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Abstract 

This research presents a viability assessment of using urea as an energy vector. Urea 

is attractive in comparison to the chemicals previously considered for supplying 

hydrogen since it is non-toxic, non-flammable and stable at room temperature and 

atmospheric pressure. Urea is cheap to produce and has an existing manufacturing 

infrastructure, but it also has a huge untapped natural resource, of which this study 

found that the knowledge to extract was technically attainable. Modelling predicted that 

when urea is heated with steam, a simple hydrogen-rich synthesis gas is formed, with 

product concentrations of ca. 60 % H2, 20 % CO2 and 20 % N2. Relatively mild 

temperatures of 500 °C ≤ T ≤ 700 °C were predicted for optimum steam conversion and 

H2 yield. Experimental steam reforming in this temperature range using a fixed bed 

catalytic flow reactor was developed specifically for aqueous urea fuel using a novel 

drop-feed and passively cooled inlet system. Steady state operation created a hydrogen 

rich syngas with a composition closely matching that predicted at equilibrium. A nickel 

catalyst was found to be effective and robust for the process, permitting repeated cycling 

without observed degradation. Characterisation of the catalyst revealed urea steam 

reforming to be clean, with no evidence of carbon formation apparent. The experimental 

study used urea solutions in the steam to urea (S:C) range of 3:1 to 7:1. Preliminary 

analyses of these mixtures confirmed that the fuel would be unaffected by isomerisation 

and decomposition prior to reactor input. Further preliminary experimentation of kinetic 

mechanisms confirmed that thermal urea conversion alone would be at worst 99.9 % 

within 0.5 seconds at T ≥ 500 °C. Simultaneous thermal analyses explored a greater 

than previously reported range of evolved species produced by thermolysis of urea and 

urea solution in the presence of nickel catalyst. 
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1 Introduction 

1.1 Background. 

One hundred and fifty years of large-scale fossil fuel extraction and combustion 

have led to a scientific consensus that the resultant product gases are forcing observed 

changes in atmospheric composition [1]. This phenomenon is ‘global warming’ with the 

combustion products responsible termed ‘greenhouse gases’. The two main combustion 

greenhouse gases are carbon dioxide (CO2) and methane (CH4). 

Environmental disturbances such as the shrinkage of polar ice-caps and rising sea-

levels have been recorded to validate scientific theories of global warming. These had 

been predicted along with other events that posed a serious threat to humanity and life 

on earth such as increased frequency of extreme weather events, famine caused by 

failing crop yields, and ecosystem collapse with resulting species extinctions [2]. 

Further scientific predictions have identified that the future trend is for an increasing 

acceleration of climate change due to the longevity of atmospheric greenhouse gases, 

and resultant positive feedback effects in other systems [3]. 

 Despite these warnings, economic and social preferences in many of the more 

‘developed’ countries favour the ease and relative cheapness of fossil fuels for heating 

and power, particularly with associated individual rather than communal technologies. 

Additionally, the economic development of some of the other most populated countries 

has seen them embracing the fossil fuel-driven economic philosophy and tapping the 

resources that they possessed to support this expansion. This has resulted in a global 

failure to offset emissions mitigation strategies implemented by European Union and 

United States governments. Consequently atmospheric greenhouse gases are predicted 

to increase by 44% (CO2 equivalent) by 2020 relative to 1990 levels (Figure 1-1). 

Furthermore, deforestation, which had been occurring throughout this time (forests 

being a known atmospheric carbon sink keeping the global balance in equilibrium) 

continued [1]. 
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Figure 1-1. Global CO2 emissions by region [3]. 

 

World energy consumption decreased by 1.1% in 2009 for the first time in 30 

years due to global financial recession. The long term trends however are for increased 

energy consumption, with electrical energy demand expected to increase by 76% from 

2007 to 2030 [4].  

 Though it is considered that the World’s energy resources are adequate to meet 

projected demands up to 2030 [4] this would have dire consequences for climate 

change. Furthermore, it takes no account of the social and economic implications of 

increasing dependence on fossil fuels as these finite resources reach the end of their 

feasible extraction and supply lifetimes up to and beyond 2030. It is widely accepted 

that alternative sustainable energy sources are needed. 

1.3 billion people (mostly in Africa, Latin America and Asia) presently live in 

energy poverty without access to electricity [4] and are therefore unable to acquire the 

most basic services of clean drinking water, communication, improved health services 

and education. Not only are alternatives to fossil fuels required to meet the global 

energy demand, but also new power sources that can meet the energy needs of poorer 

communities. For remote regions, this is likely to require energy creation close to the 

point of use due to the absence of a supply infrastructure. 

Hydrogen powered fuel cells are identified as one attractive option in the search 

for alternatives to fossil fuels and as a way of supplying energy to remote locations as 

they offer the potential to be a reliable, mobile, non-polluting technology using an 

abundant and almost infinite resource. Present obstacles to the large scale application of 

hydrogen fuel cells include issues with the fuel, namely hydrogen production, storage, 

and transportation. Numerous compounds have been considered as suitable hydrogen 
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carriers, but all have inherent disadvantages. This project’s aim was to assess the 

feasibility of using the stable and naturally occurring hydrogenous molecule urea as a 

hydrogen carrier for fuel cell energy supply. 

1.2 Project Aims and Objectives 

The objectives for achieving the aim of making an adequate and thorough 

assessment on the feasibility of using urea as a future energy vector are specified in the 

relevant introductory sections throughout this thesis. A summary list of these objectives 

is also given below: 

• Determine the context in which urea would fit as a hydrogen carrier substance, 

understanding urea’s physical properties in comparison with previously suggested 

contenders, its resource availability, and environmental impact. Specific focus was 

given to the identification of sustainable production routes, and long-term global 

availability of urea. 

• Assess the thermodynamics of urea steam reforming by using equilibrium 

modelling calculations to predict optimum conditions for hydrogen production 

over a range of temperatures, pressures and reactant mixtures. To also calculate 

the energy required for the production of hydrogen from urea. 

• Design and operate bench-scale steam reforming process systems that produce 

a hydrogen-rich synthesis gas from a urea feedstock. Emphasis was placed on 

optimised conditions for steam conversion and steady state operation at 

thermodynamic equilibrium. 

• Characterisation of the urea fuel and of the catalyst used in experimental work 

to appraise the robustness of the process for scale-up, longer periods of operation, 

and practical application. 

1.3 Thesis Structure 

Succeeding Chapter 1, which has already provided an introduction to the context 

of this research and the motivating rationale behind it, Chapter 2 contains the literature 

survey that presents the status of present knowledge into which urea steam reforming 

and hydrogen production from urea fits. This Chapter describes how the physical 

properties, environmental impact, and resource availability of urea relate to the present 

technological requirements of a hydrogen carrier substance and to those materials which 

have previously been suggested as vectors for fuel cell feedstock and hydrogen supply.  

Chapter 3 contains the results of modelling calculations that reveal predictions of 

product variations attainable at thermodynamic equilibrium. Calculations that estimate 
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the energy required to produce one mole of hydrogen gas from urea are also provided in 

this Chapter. The results from this section continue to be used in Chapter 5 and Chapter 

6 in comparison with experimental results. 

The central Chapter 5 and Chapter 6 of this thesis report the experimental results 

of optimised urea steam reforming in catalytic bench-scale reactor process systems, 

focussing, as per the research objectives, on maximum steam conversion and optimised 

steady state operation. Chapter 5 describes first attempts at extracting hydrogen from 

urea, while Chapter 6 reports an extended parametric study using a process system 

design specific to urea solution fuel, and with an extended range of product analyses. 

Results of in-situ process characterisation are also provided in these chapters. 

Ex-situ characterisation of a urea solution fuel and of the catalyst used in urea 

steam reforming is discussed in Chapter 4 and Chapter 7 respectively. A range of wet 

chemistry and instrumental analytical techniques were used to achieve the objectives of 

exploring the underlying nature of urea thermal decomposition with excess steam in 

flow reactor conditions, and of the catalyst’s ability to achieve and maintain the process 

of urea steam reforming. 

Following the Conclusions provided in Chapter 8 are Appendices. Appendix A 

contains results of a urea steam reforming experiment outside of the parametric study 

remit. Appendix B contains a description of a steam reforming reactor system that was 

built by the author at the direction of, and utilising a novel reactor component that had 

been supplied by, the industrial sponsor. 

Reference citations within the text are numbered consecutively and contained 

inside square brackets. A reference list is provided at the end of the thesis. 



5 
 

2 Literature Review 

2.1 Aims and Objectives 

No previously reported studies were available for consultation on the subjects of 

either using urea as a hydrogen carrier, or of extracting hydrogen gas (H2) from urea. 

Consequently, the aim of this literature review was to determine the viability of these 

processes. 

The first objective was to critique the present status of chemical energy supply, 

fuel cell technology, and steam reforming methodologies in perspective of their 

adequacy to meet future sustainable energy needs; and, in terms of the chemical energy 

carriers presently identified, by comparison with the physical properties of urea. The 

second objective was to determine the knowledge of urea decomposition with a focus on 

possible pathways for H2 release, release conditions, and the chemical reactions 

involved. Focus was also given to urea decomposition by-products that could be 

considered either beneficial or detrimental to wider applications of the urea-derived fuel. 

An appraisal of the methods available to manufacture urea was made, both historically, 

and with present processing systems. This encompassed an assessment of energy 

requirements for urea production and the environmental fate of both urea products and 

urea manufacturing by-products. Finally, this section had an objective to identify the 

present and long-term resource availability of urea, with emphasis made to sustainable 

and future supply routes. The state of knowledge and the availability of technology 

necessary to extract urea from these novel sustainable resources was investigated. 

2.2 Hydrogen 

Hydrogen forms just water when used to generate electrical power in fuel cells 

resulting in no greenhouse gas emissions, silent operation, and high efficiency. It has the 

highest energy to weight ratio of any fuel with an energy content of 141.78 MJ per kg 

(higher heating value), equating to the standard heat of formation of water [5]: 

H2   +   ½O2   →   H2O  (R1) 

 Hydrogen is considered to be the most abundant element in the universe. However, 

it does not occur in elemental form to a significant level in nature; being mainly 

combined with oxygen as water, or with carbon as hydrocarbons. The ideal engineering 

solution for hydrogen extraction would be to split water, because of its abundance; but 

water’s thermodynamic stability makes dissociation difficult to achieve in practice.  
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Storing hydrogen in its pure form is a major challenge for adopting hydrogen as an 

energy carrier: high pressure and/or large vessels for gaseous phase storage, or cryogenic 

(-253 °C) enclosures for liquid phase [6], make storage costly and bulky. Even with 

these extreme measures, due to its small molecular size, evaporation losses of 2-3 % per 

day can still occur [5]. Consequently, either an advanced distribution and storage 

infrastructure would be required, or the utilisation of some stable hydrogen carrier 

substance creating the need for small-scale discharging technology, either on board 

vehicles/at point of use or at a local re-fuelling/supply station. 

Ideal hydrogen carrier substances would have high hydrogen to weight and volume 

ratios. They would also possess simple, rapid and inexpensive dissociation mechanisms, 

have the ability to be either recharged (“two-way carriers” that have reversible reaction 

chemistry so that the carrier elements can be retained for re-hydrogenation) or release 

only environmentally benign by-products (“one-way carriers”). 

One proposed target for the viable utilisation of hydrogen storage in transportation 

applications is having a hydrogen density of at least 6 wt% (gravimetric) and 0.045 kg/L 

(volumetric) H2, increasing to 9 wt% and 0.081 kg per Litre H2 by 2015 [7, 8]. This 

refers to useable hydrogen in not just the storage medium, but the total onboard storage 

system. 

2.3 Steam Reforming 

Steam reforming is a mature technology for the production of hydrogen from 

hydrocarbons. Because natural gas is widely available, relatively easy to handle, has 

been relatively cheap, and has a high hydrogen to carbon ratio, this is usually the 

preferred choice, although other hydrocarbons, both fossil fuel and biomass are feasible 

alternatives [9]. Natural gas has a high component of methane, and therefore this 

process is sometimes referred to as methane steam reforming (MSR). 

Steam reforming to produce hydrogen (following hydrogenation to remove any 

sulphur that might be present in the feedstock) is highly endothermic and brought to 

equilibrium at high temperatures (ca. 900 °C) and pressures of several MPa over nickel-

based catalysts [10]: 

 CH4 + H2O → CO + 3 H2   (R2) 

The product of steam reforming is termed “synthesis gas” or “syngas”. Present 

reformers are suited to sustained steady operation, delivering relatively high 

concentrations of hydrogen (> 70 % in dry syngas) [10]. This is further processed by 

mildly exothermic “water gas shift” reactions that occur in two sub-stages at high (~ 400 

°C) and then low (~ 200 °C) temperature: 

CO + H2O → CO2 + H2  (R3) 
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Temperature, pressure and chemistry must be carefully controlled in order to 

suppress carbon build up (coking) which can deactivate the catalyst and block the 

reactor [10]. Steam to carbon feeds of 2 to 3 are usual [5]. 

The final process stage to produce hydrogen of fuel cell purity is “pressure swing 

adsorption”. This results in a hydrogen yield of > 99.9 % from the original feedstock [9] 

and separates H2 from CO2 and any other impurities that might be present at high 

pressure (up to 4 MPa) on an adsorbing medium. 

The disadvantages of steam reforming to produce hydrogen are that it is highly 

energy intensive and the energy content of the natural gas is greater than the energy 

content of the H2 produced per unit volume. Also, large quantities of CO2 are created 

adding to atmospheric pollution. This is mitigated if a biomass feedstock is used. To try 

and improve the efficiency of steam reforming, a number of concepts have been 

proposed. 

2.3.1 Partial Oxidation 

This type of reformation uses sub-stoichiometric oxygen in the fuel/oxygen 

mixture instead of steam, causing some of the fuel to oxidise exothermically: 

2CH4 + O2 → 2CO + 4H2 ∆H < 0 (R4) 

Because the entire hydrogen product comes from the hydrocarbon, this process 

creates a smaller hydrogen yield per volume of fuel. Also, if for cost reduction, air is 

used instead of pure O2, the syngas is further diluted. However, the subsequent internal 

heat generation of this reaction, raises the temperature in the reactor to over 1000 °C, 

enabling easier steam reforming of any fuel remaining [11]. 

2.3.2 Autothermal Steam Reforming 

This uses the partial oxidisation concept at high temperature (or lower temperature 

in the presence of a catalyst) producing CO and H2 exothermically. The objective is to 

attain ideal conditions so that no external heat input is required so that the endothermic 

steam reforming reaction and the exothermic partial oxidation run together at the same 

time as creating a H2 yield that is higher than partial oxidation on its own [9]. 

2.3.3 Sorbtion Enhanced Steam Reforming 

This process mixes a CO2 adsorbent with the reforming catalyst. It allows 

temperatures to be reduced to 400-500 °C, and operates with the steam reforming and 

shift reaction stages combined [12]. 
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2.3.4 Unmixed Steam Reforming 

With the aim of achieving autothermal production, Unmixed Steam Reforming 

keeps the fuel-steam feed and the air feed un-mixed. An oxygen transfer material 

(OTM) stores the oxygen exothermically [13]. Nickel has been successfully used as the 

OTM, accepting oxygen to form NiO and releasing heat to the reactor bed [14]. The 

NiO then regenerates to Ni by reduction when it meets the fuel-steam feed. CO2 capture 

can also occur if a suitable adsorbant is included in the design. 

2.4 Fuel Cells 

Fuel cells convert the chemical energy of a fuel directly into electric and thermal 

energy by reaction with an oxidizing agent. This is more efficient than combustion for it 

does not include the intermediate stages of conversion into thermal energy then 

mechanical energy. Additionally, fuel cells have no moving parts which means that 

friction is negated, they are virtually silent in operation, and they have no direct 

pollutant emissions. They can give rapid response times, and they have a good power to 

weight ratio [5]. Fuels cells can also operate continuously as long as a continuous supply 

of reactants are available for they do not store energy in the same way as batteries. This 

means that fuel reservoirs are required to achieve continuous operation. 

There are many types of fuel cell, differing and categorised by their choice of 

electrolyte medium, feedstock, and operating temperature range. Each is composed of a 

central electrolyte bounded on either side by electrodes. The electrodes are invariably 

coated with a catalyst to accelerate the reaction and reduce reaction temperatures. On the 

outer side of these electrodes are “bipolar plates”. Functioning only at low voltages 

(typically 0.6 to 0.8 V), fuel cells are usually combined in stacks to increase the voltage 

with the bipolar plates separating individual cells within a stack and allowing gas flow 

into, and water flow out of, the cell. 

In addition to being stable under both strongly reducing and oxidising conditions, 

the electrolyte must be an electron insulator, an ion conductor, and must not allow any 

gas crossover. To reduce resistance losses in the electrolyte, it is made as thin as 

possible without compromising its functionality. 

Hydrogen is the cleanest fuel for fuel cells although they can be powered by other 

substances such as ammonia or hydrocarbons. Where other substances are used as a 

feedstock, these can either be supplied directly to the anode or “reformed” into fuel and 

by-products prior to use with the hydrogen (or other direct fuel) then being fed to the 

cell. Air is often used as the oxidiser for convenience and cost reduction at the opposite 

electrode. 
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Proton-exchange Membrane Fuel Cells [PEMFC] have acquired much of the 

recent focus for application to transportation. These are also called “polymer electrolyte 

membrane fuel cells” and “solid polymer electrolyte fuel cells (SPEFC)”. They operate 

at low temperature (80 – 90 °C) and pressure ranges thereby enabling rapid start up from 

cold. They are lightweight, compact, and have a high power density [15]. Although all 

modern fuel cells operate on the same physical principle and have the same components 

to optimise output, they can have differing electrolyte chemistry involving either anion 

or cation throughflow dependent upon their specific fuel type. 

Where reference to the suitability of urea as a hydrogen fuel cell feedstock is 

made, most consideration is given to PEMFCs. This is because, at the time of writing, 

these were deemed to be the most attractive for vehicular application. Other types of 

fuel cell have attributes more favourable than PEMFCs in specific operating conditions 

and environments. A list of the major fuel-cell types is obtainable in many standard 

texts (see [5]).  

PEMFCs use platinum catalysts which are susceptible to poisoning from 

impurities, particularly CO, which has to be kept below a few ppm to preserve the 

negative electrode [16]. This requirement for high purity hydrogen and the problems of 

its on board storage are the main obstacles for vehicular PEMFC implementation using 

hydrocarbon carriers. Furthermore, if there is a reforming step, polymeric carbon 

deposits can accrue during reforming, reducing system performance by aggregating and 

de-activating catalysts. 

2.5 Current Hydrogen Carriers 

A number of substances and materials have been considered as hydrogen carriers 

for fuel cells. These include reversible storage alloys (conventional metal hydrides), 

high surface area sorbents (such as carbon nanostructured materials and other porous 

media), ionic complex chemical hydrides, and simple hydrogen bearing chemicals. 

A typical metal hydride storage system would comprise a tank containing granular 

metal which adsorbs hydrogen, and has the capacity to release it upon heating. This is a 

relatively established technology and although some can have a good volumetric energy 

density of hydrogen, their weight percentage is poor and they have exhibited problems 

with controlled hydrogen release [17]. 

Nanostructured storage materials are not yet at a stage where uniform and 

economic synthesis is determinable, plus there has been a lack of reproducibility on 

experiments into their functionality [5, 18]. Other porous media include zeolites and 

metal organic frameworks. The former have relatively low storage capacity [19], while 
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the latter are considered to have limited potential for hydrogen storage at present due to 

the extremely low temperatures (77 K) required for operation [20]. 

2.5.1 Simple Hydrogen-bearing Chemicals 

Cheap industrial chemicals are attractive as hydrogen carriers because they have 

the benefit of some form of established technological infrastructure for manufacture, 

storage and distribution. They have covalent bonding with hydrogen, generally with 

high atomic concentrations and can be likened to crude oil sourced fuels since they are 

chemical energy carriers, supplying energy at the point of use. Instead of combustion 

however, hydrogen can be released from these compounds by a number of other well 

developed chemical techniques, usually requiring the control of pH and catalysts. 

Thermolysis reactions are the route of dehydrogenation from all hydrocarbon 

hydrogen carriers. Although these major reforming techniques are relatively efficient, 

unfavourable operating conditions during reforming can create similarly unfavourable 

by-products, such as methane, carbon monoxide, and coke. 

There follows a description of some of the major hydrogen-bearing chemical 

carriers that have been considered. This is not an exhaustive list and some categories 

such as alcohols and cycloalkanes encompass numerous compound options. Weight 

percentage hydrogen is given, and where known the extractable hydrogen weight 

percentage also. This latter value is of most relevance and as can be seen, often appears 

to be well below the carrier compound hydrogen content. Table 2-2 shows a 

comparison of these chemical contenders against the properties of urea. 

2.5.1.1 Methanol (CH3OH) 

Methanol (methyl alcohol) is the first member of the homologous series of 

alcohols and has the lowest molecular weight. Although produced naturally by 

anaerobic bacteria [21], it is presently obtained commercially from hydrocarbon fossil 

fuels utilising copper-based catalysts. Biomass however is identified as a viable 

alternative route [22]. 

Methanol thermolysis is undertaken at moderate temperatures (200-400 °C) with 

noble metal catalysts via four main reaction routes, steam reforming (R5), partial 

oxidation (R6), decomposition (R7) and oxidative steam reforming (R8) [22]: 

CH3OH + H2O → 3H2 + CO2  (R5) 

CH3OH + 0.5O2 → CO2 + 2H2  (R6) 

CH3OH → CO + H2  (R7) 

4CH3OH + 3H2O + ½O2 → 4CO2 + 11H2  (R8) 
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It is reported that (R8) can be autothermal at 325 °C, while (R5) is known to give 

maximum hydrogen yields with 75 % in the product gas [23]. As can be seen from (R7) 

however, carbon monoxide is a by-product of dehydrogenation. Any PEMFC 

application requiring hydrogen conversion would therefore need to incorporate 

technology for oxidising this CO to CO2, posing major difficulties and also creating 

greenhouse gas emissions. 

This need for reformation and gas purification is a major obstacle for methanol’s 

use as a hydrogen feed in PEMFCs, with the present status of high temperature steam 

reforming technology that could alleviate these problems presently considered 

impractical for transport applications. Furthermore, there is also no apparent benefit to 

be gained from subjecting methanol to further energy and cost intensive processing as a 

hydrogen carrier due to the greenhouse gases it releases for it can, without alteration, be 

used directly in internal combustion engines. It is in this form of application where 

alcohols of biological origin are probably most suitable as they are proven alternatives 

to fossil fuels. 

Methanol can be supplied directly without modification to certain fuel cells. This 

has been shown with high temperature Solid Oxide (SOFC) and Direct Methanol 

(DMFC) fuel cells, with the added bonus that the waste heat can aid the decomposition 

of methanol while also assisting with the cooling of the cell [5]. 

2.5.1.2 Ethanol (C2H5OH) 

Ethanol (ethyl alcohol) has an advantage over methanol for it can be produced far 

more easily and therefore economically from a wide range of biomass feedstocks. This 

makes it a carbon neutral hydrogen source as long as no extra fossil-fuel energy input 

was used in the synthesis from biomass to ethanol or in associated distribution costs. It 

also has a high hydrogen content of 13.1 wt%. 

Ethanol is mainly synthesised from ethylene in the petrochemicals industry. Bio-

ethanol however is produced by the fermentation of sugars in vegetative matter, but can 

also be made by hydrolysis. Many countries also have energy policies that include 

increasing bio-ethanol production as a replacement for fuel in internal combustion 

engines. Consequently ethanol is a readily available potential hydrogen carrier, with 

flexible and stable future supply prospects. 

There are concerns about the ethics of using biomass for energy. This relates to the 

deforestation and replacement of arable land to grow bio-fuel crops [24], with the 

implications of loss of carbon sinks (forests) offsetting the benefits of using bio-fuel, 

land use for fuel in regions where human food poverty is prevalent, and also the 

application of environmental pollutants for fertilisation and pest control of biomass 
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crops. It is probable that urea would be the most commonly used fertiliser in these 

situations, with the potential irony that it could be the better fuel alternative. 

Ethanol is an irreversible hydrogen carrier and since it is a hydrocarbon, this 

creates the same disadvantages as methanol: greenhouse gas emissions and high purity 

reformation technology required to eliminate impurities from the inlet gas, all of which 

give it associated unfavourability. It is reformed to hydrogen at temperatures in excess 

of 800 ºC, using noble metals as catalysts [25]. The steam reforming reaction for 

optimum hydrogen production is strongly endothermic [26]: 

C2H5OH + 3H2O → 2CO2 + 6H2  (R9) 

2.5.1.3 Cycloalkanes 

A number of cyclic hydrocarbons have been considered as potential hydrogen 

carriers, with the two receiving most interest being cyclohexane (C6H12) and 

methylcyclohexane (C7H14). These are proposed as reversible hydrogen carriers that 

require independent hydrogen production prior to their formation, but their reaction 

chemistry is relatively well established and they have high boiling points meaning 

storage and transportation could be feasible with present infrastructure technology [27]. 

Hydrogenation/dehydrogenation reactions involve gas phase thermolysis over a 

catalyst, with noble metals presently achieving optimum temperature ranges of between 

210 - 350 °C [27]: 

C6H12 → C6H6 + 3H2  (R10) 

C7H14 → C7H8 + 3H2  (R11) 

2.5.1.4 Hydrazine (N2H4) 

Hydrazine is relatively easy to dehydrogenate [5] though it has not been the focus 

of much research as a hydrogen carrier due to its high toxicity and explosivity (see 

Table 2-2). However, fuel cells powered by hydrazine have reportedly achieved 

comparable power outputs to hydrogen fed fuel cells without creating CO2 emissions, 

and significantly using much cheaper cobalt or nickel catalysts instead of platinum [28]. 

Whether this substance will “open the fuel cell age for vehicles” as its inventors suggest 

may depend on whether a method of detoxification can be found. A record in the 

primary literature source of attempts to address this by incorporating hydrazine into a 

less toxic carrier polymer are given, but no extended toxicity tests were reported [28]. 

Much further evidence is therefore required in order to prove the viability of this 

substance as a safe energy vector. 
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2.5.1.5 Ammonia (NH3) 

Ammonia has many favourable attributes as a hydrogen carrier. It is not a 

greenhouse gas, is available in large quantities, and there presently exists a worldwide 

infrastructure for its manufacture, storage and distribution [29]. Ammonia has a high 

hydrogen content and is much safer than hydrocarbons when assessed on the criterion of 

being a fire and explosion hazard (see Table 2-2). Ammonia also has a density which is 

lighter than air meaning that any emissions dissipate rapidly and beneficially for safety 

reasons. It can be liquefied under mild conditions meaning that relatively simple and 

inexpensive storage solutions could be applied to give a volumetric hydrogen density 

that is 45 % greater than liquid hydrogen [30]. Evidence in support of this is that in 

industrial applications, ammonia is presently stored safely under similar conditions to 

propane: at 8 bar vapour pressure and room temperature [31]. 

The major obstacle however to ammonia’s favourable consideration as a hydrogen 

carrier and fuel cell feed is that in pure form it is highly toxic to both humans and the 

environment (Table 2-2). Although this can be slightly mitigated by the fact that 

ammonia has a strongly pungent odour, thereby revealing itself for early detection of 

leaks, it is so hazardous that any large spillages are likely to result in local and lethal 

concentrations [32]. 

Dissociation of ammonia, known as “cracking” or “splitting”, is the reverse of 

synthesis [30]: 

2NH3 → N2 + 3H2  (R12) 

This has advantages over hydrocarbon reformation because the dynamics are fast 

and the reaction occurs in one single step without the need for oxygen or steam, making 

the process requirements simpler and relatively cheap. In industry this process is 

catalysed with nickel supported on alumina at high temperatures. The literature quoted 

temperatures for this reaction are 900-1050 °C though this is for optimum conversion 

and at cooler conditions it is reported that ammonia dissociation will still occur. Using 

equilibrium modelling data, at atmospheric pressure it is reported that at 600 °C, 90 % 

of ammonia will be decomposed to N2 and H2 (see Table 2-1). 
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Table 2-1. Equilibrium ammonia cracking as a function of temperature and 

pressures of 1 and 10 bar [30]. 

Temperature (°C) Unconverted NH3 (1 bar) Unconverted NH3 (10 bar) 

400 0.88% 7.91% 

500 0.26% 2.55% 

600 0.10% 1.00% 

700 0.047% 0.47% 

800 0.025% 0.25% 

900 0.015% 0.15% 

 

There always appears to be some trace of ammonia in the cracking process 

product. Even at the high temperatures that yield a 99.9 % conversion using pre-heated 

fuel feeds, residues of ammonia in the outlet gas of ca. 50 ppm occur [32]. Recent 

advances in the optimisation of ammonia decomposition technology have utilised 

ruthenium, caesium and barium catalysts to conditions at atmospheric pressure and 

reaction temperatures of 300 °C [33]. However, this research has not presently by-

passed the problem of incomplete conversion. 

Some fuel cells such as those using solid oxide and alkaline electrolyte are tolerant 

of ammonia [34, 35]. Poisoning of PEMFCs by ammonia is a deep process that creates 

resistance in the membrane and reduced conductivity elsewhere in the cell components 

that takes hours if not days to reach a steady state for both poisoning and recovery [36]. 

The exact mechanisms involved are not fully understood, but the holistic nature of the 

poisoning has been shown to include effects on both electrodes due to the rapid 

diffusion of ammonium ions (NH4
+) [36, 37]. Performance loss is significant, and 

although in most cases this can be reversed, long term operation has been shown to 

require ammonia concentrations of less than 1 ppm [36]. 

To overcome the human toxicity of ammonia it has been proposed to store 

hydrogen in an inert form as a compact metal ammine chloride [29, 38]. These 

reversible hydrogen/ammonia storage materials: Mg(NH3)6Cl2, Ca(NH3)8Cl2, 

Mn(NH3)6Cl2, and Ni(NH3)6Cl2 reportedly require little energy in construction: 

Mg(NH3)6Cl2 are formed at room temperature by passing ammonia over anhydrous 

magnesium chloride [29], have extremely fast reaction kinetics and can release 

hydrogen corresponding to 9.78 wt% [38]. They are made more attractive by being 

shaped into dense, stable tablets or powdered form with hydrogen content of 110 kg m-3 

[29, 38]. This is higher than liquid ammonia and many other proposed hydrogen storage 

mechanisms. 
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Some of the authors responsible for the metal ammine discovery concede that 

ammonia production is presently undertaken with natural gas as a feedstock and 

acknowledge that this cannot remain a long-term source of ammonia due to finite 

reserves [33]. In the context of long term supply and also dubiously as an 

environmentally favourable option, they then state that ammonia could equally be 

manufactured from coal utilising 200 years worth of reserves, and citing simultaneous 

sequestration as a means to carbon-zero ammonia production [33]. This statement is a 

weak argument for sustainability at best. 

The combination of hydrogen with nitrogen to form ammonia is a relatively energy 

efficient process. It is the production of hydrogen that is responsible for the energy 

intensive component in present ammonia synthesis [32]. Taking a further step to 

produce urea might slightly improve on the environmental impact as some of the CO2 

would be used to form urea rather than emitted as process waste. However, this would 

just delay the release of the carbon until urea decomposition occurred. 

It seems at present that until a cost-effective renewable source of hydrogen or 

ammonia synthesis can be developed it is unlikely that ammonia could be called an 

environmentally attractive long term energy carrier contender. To obtain ammonia 

sustainably, research is ongoing in the biological sciences to replicate the processes of 

leguminous plants that are able to fix atmospheric N2 utilising microbial enzymes [39]. 

One such sustainable source of ammonia is urea, from which it decomposes 

enzymatically at room temperature or with heat. As can be seen in Table 2-2, urea has 

no associated toxicity and is a stable solid. Therefore it can be considered as a natural 

competitor to the metal ammine storage tablets as an ammonia carrier, and also as a 

potential hydrogen carrier – the object of this study. 
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Table 2-2. Comparison of physical properties, hydrogen content, toxicity and safety aspects of hydrogen carriers [40] 

Substance H2 (wt%) 
Safety 

Classifications 
Toxicity TLV Flammability in air 

Melting 
Point 

Boiling 
Point 

Ammonia (NH3) 17.6 T,N,C 
25ppm as TWA 
35ppm as STEL 

Auto-ignition temp 651°C. 
Explosive limits 15-28% vol% 

-78°C -33°C 

Cyclohexane 
(C6H12) 

7.2 F, N, Xn 100ppm as TWA 
Auto-ignition temp 260°C 

Explosive Limits 1.3-8.4 vol% 
7°C 81°C 

Ethanol (C2H5OH) 13.1 F 
1000ppm as 

TWA 
Auto-ignition temp 363°C 

Explosive limits 3.3-19 vol% 
-117°C 79°C 

Hydrazine (N2H4) 11.2 T,N,E,Carc,C 0.01ppm 
Auto-ignition temp 24-100°C 
Explosive limits 1.8-100 vol% 

2°C 114°C 

Hydrogen (H2) N/A F+ simple asphyxiant 
Auto-ignition temp 500-571°C 

Explosive limits 4-76 vol% 
N/A -253°C 

Methanol (CH3OH) 12.6 F,T 
200ppm as TWA 
250ppm as STEL 

Auto-ignition temp 464°C 
Explosive limits 5.5-44 vol% 

-98°C 65°C 

Methylcyclohexane 
(C7H14) 

6.2 F 400ppm 
Auto-ignition temp 258°C 

Explosive limits 1.2-6.7 vol% 
-126.7°C 101°C 

Urea (NH2)2CO 6.7b None None established Non-flammable 
Crystalline solid. 

Decomposes at 133°C 
T = toxic, F = flammable, F+ = extremely flammable, N = dangerous for the environment, Xn = harmful, E = explosive; C = 
corrosive, Carc = carcinogen; TLV = threshold limit value, TWA = time weighted average (8h/day 40h/week), STEL = short term 
exposure limit (15 minutes); b 7.95wt % in aqueous solution. 
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2.6 Urea ((NH2)2CO) 

2.6.1 History and Properties 

Urea is a non-flammable, relatively non-toxic, colourless, anisotropic and 

birefringent crystalline substance that is perhaps best known for its presence in urine. It 

was first isolated some time before 1727 by Herman Boerhaave though many texts 

mistakenly attribute the discovery to H.M.Rouelle in 1773 [41]. In 1798-1799 urea was 

first obtained in crystalline form by Fourcroy and Vauquelin and ultimately synthesised 

from inorganic reagents in 1828 by F. Wöhler while heating what is now known to be its 

isomer: ammonium cyanate (NH4
+ CNO-). This had historical significance for it began 

the eventual demise of the theory of vitalism among scientists, showing that ‘life 

process’ chemicals were not distinct from other substances, as had previously been 

thought. Many textbooks define this discovery as marking the foundation of modern 

organic chemistry. Accessible accounts of Wöhler’s work and its implications in a 

historical context are provided by Werner [42] and more recently, Cohen and Cohen 

[43]. 

The reaction mechanics of Wöhler’s synthesis, namely how the salt ammonium 

cyanate transforms into urea, are still not fully understood despite efforts being made by 

numerous researchers over the last century. This search described thirty years ago as ‘a 

saga in reaction mechanisms’ [44] continues to be appropriate today, as recent studies 

focused on ammonium cyanate had to be corrected by the same research group five 

years later [45, 46]. Work is apparently still in progress, with the theory now that solid 

state transfer to urea occurs by a proton (H+) jump from ammonium (NH4
+) to cyanate 

(NCO-) along one of the salt’s hydrogen bonds, followed by ammonia’s nucleophilic 

attack on the carbon atom of hydrogen cyanate [46]. 

Aside from this present uncertainty, methods of urea synthesis have been 

identified and applied both in the laboratory and in industry such that urea is now a 

widely used commodity. Because of this, its physical properties are known and available 

in standard literature (Table 2-2 – Table 2-5). 
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Table 2-3. Physical Data of Urea [47]  except where stated. 

Property Value 

Molecular formula (NH2)2CO 

Synonyms Carbamide, carbonyldiamide, isourea, B-I-K 

Relative Molecular Mass (Mr) 60.06g/mol 

Freezing/melting point 133 °C [48] 

Boiling point N/A (decomposes) 

Density 1.32g/cm3 

Flash point Non-flammable 

 

Urea is stable at room temperature and atmospheric pressure. In pure form it is 

crystalline in habit, though is easily shaped into granules and prills [47]. This fact, 

combined with its stability, non-flammability and low density give urea favourability as 

a hydrogen carrier substance offering the potential for it to be easily transported and 

stored. Urea is however, hydrophilic and hygroscopic, being also soluble in alcohol, 

glycerol, and ammonia (see Table 2.4 and 2.5). This would necessitate dry containment 

for hydrogen supply applications. 

Table 2-4. Properties of Saturated Aqueous Urea Solutions. Columns 1-5 from 
reference [47]. Column 6 calculated from column 2 by division through relative 
molecular masses of urea (60.06) and water (18). 

Temperature 
(°C) 

Solubility in 
water (wt%) 

Density 
(g/cm3) 

Viscosity 
(mPa/s) 

Water vapour 
pressure (kPa) 

Molar water: 
urea ratio (S:C) 

0 41.0 1.120 2.63 0.53 4.80 

20 51.6 1.147 1.96 1.73 3.13 

40 62.2 1.167 1.72 5.33 2.03 

60 72.2 1.184 1.72 12.00 1.28 

80 80.6 1.198 1.93 21.33 0.80 

100 88.3 1.210 2.35 29.33 0.44 

120 95.5 1.221 2.93 18.00 0.16 

130 99.2 1.226 3.25 0.93 0.03 

 



19 
 

Table 2-5. Solubility of Urea in Alcohol Solvents (wt% of urea) [49]. 

Temperature (°C) 
Solvent 

0 20 40 60 

Methanol 13.0 18.0 26.1 38.6 

Ethanol 2.5 5.1 8.5 13.1 

 

2.6.2 Occurrence 

Urea is produced synthetically on a commercial scale and is also naturally 

abundant as an in-vivo product of protein catabolism, where due to its high solubility it 

is present in bodily fluids and excreted in urine by mammals and all other animals 

except birds and saurian reptiles [50, 51, 52, 53]. In mammals, urea is concentrated in 

the kidney prior to excretion as a means of water conservation; while those animals that 

do not have a kidney that can concentrate urine in this way excrete waste forms such as 

uric acid and allantoin. These nitrogenous wastes and other nucleic acids such as purines 

[54] when acted on by micro-organisms and enzymes inside the body of higher animals 

degrade to urea thereby providing a further route to synthesis. 

Plants are also found to contain urea, although the mechanisms of accumulation 

and transport are not fully understood. It is believed to be used as a nitrogen store, 

present through a combination of acquisition from the environment and by way of 

internal synthesis [55]. 

2.7 Urea Decomposition and Dehydrogenation 

2.7.1 Enzymatic Decomposition 

Because it is a naturally occurring part of the nitrogen cycle, organisms that are 

able to decompose urea enzymatically are widespread. This enzymatic decomposition is 

believed to be hydrolysis rather than ammonia elimination, given here as occurring via 

the intermediate compound ammonium carbamate [56]: 

(NH2)2CO + H2O  →
urease  NH2COONH4 → CO2 + 2NH3 (R13) 

2.7.2 Thermal Decomposition 

Articles reporting work that has attempted to clarify the mechanisms of thermal 

urea decomposition still appear in current scientific journals, evidencing the uncertainty 

that exists in this area. It has long been proved that when heat is applied to urea it 

primarily decomposes by eliminating the gases ammonia and isocyanic acid [42]: 

(NH2)2CO → NH3 + HNCO (R14) 
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The product HNCO (Isocyanic acid) is occasionally referred to in modern 

publications as its tautomer cyanic acid (HOCN) [48, 57] and the terms seem to be used 

interchangeably which is confusing. It has been shown, (though not with respect to urea 

decomposition) that in the vapour phase HNCO predominates, and that cyanic acid is an 

unstable species [58, 59]. Molecular formulae of the compounds named in this thesis are 

provided in Figure 2-1. 
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Figure 2-1. Molecular structure of some urea-derived compounds named in this 
document [60]. Note that isocyanic acid and cyanic acid are tautomers. Reference 
books sometimes refer erroneously to cyanic acid as a synonym for isocyanic acid. 

 

By far the most thorough report of urea thermal decomposition is provided by 

Schaber et al. [48]. This study is of a batch process involving open reaction vessel 

heating of dry (non-aqueous) urea. Both evolved gases and residue were analysed using 

the following techniques: thermogravimetric analysis (TGA), high performance liquid 

chromatography (HPLC), fourier transform infra-red (FTIR) and ammonium ion-

selective electrode. Other studies have applied additional analytical techniques of 

differential scanning calorimetry (DSC) [61] and mass spectrometry (MS) [57]. To 

summarise, it is generally accepted that urea thermal decomposition commences at ca. 

133 °C [48, 57, 61], and though melting is commonly reported to occur first, the exact 

nature of the physical state of urea at this point is unclear [62]. In the absence of water, 

with continued increasing temperature, residual species (mainly HNCO and urea) 
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interact within this melt to form polymers, the first of those being biuret which is seen to 

occur in the temperature range between 135 °C to 220 °C [42, 48, 61]. With further 

temperature increases triuret, cyanuric acid (at low temperature), and ammelide, 

ammeline, and melamine (at higher temperature) appear [48]. Ammonium cyanate is 

also seen to form as a sublimate from the melt [42, 48]. A number of repeatable 

decomposition stages have been identified corresponding to enthalpy changes with 

increasing temperature up to complete urea decomposition prior to 500 °C [48]. 

Thargard et al. [63] relied on the work of Schaber et al. [48] and Stradella and 

Argentero [61] as citations for thermal decomposition products and stages. Their work 

involved thermal decomposition of urea between 150 °C to 200 °C using dielectric 

barrier discharge (DBD) under both dry and humid air flow. Analysis was by an NH3-

NOx sensor and FTIR for gas species, and Nessler’s reagent for ammonium in water. 

The major gaseous products were identified as NH3, HNCO, and NO2. Since no CO2 

was detected in their product gas analyses, they confirmed that the reaction for first 

stage urea thermolysis was (R14). They also deduced that the NO2 product was a 

consequence of using an air flow (i.e. oxidation of ammonia and HNCO) since this was 

the only major by-product when the DBD was run using only air. 

A soluble white powder was observed to form on the inside reactor walls and post-

reactor tubing, light in structure and having a flaky-type appearance. Their tests on this 

substance involved a colorimetric test which indicated ammonia and they concluded that 

it was ammonium cyanate (NH4
+NCO-). A second type of solid was also observed as 

being insoluble in both cold and 70 °C water, though later they describe it as being 

soluble in hot water (without giving a temperature). Their FTIR analysis on this 

substance suggested that it could by cyanuric acid (C3H3N3O3). 

The decomposition of urea in both air and inert (argon) gas up to 1200 °C was 

reported by Carp [57]. Simultaneous TGA, MS, and differential thermal analysis (DTA), 

were used. The presence of ammonium cyanate (NH4
+NCO-) was observed leading the 

author to conclude that reaction (R14) had occurred with ammonium cyanate as an 

intermediate by the detection of an ionic mass of 18 (NH4
+) post decomposition and 

immediately prior to a detection peak of mass 17 (NH3): 

(NH2)2CO → NH4
+NCO- → NH3 + HNCO (R15) 

The presence of biuret and triuret was inferred and the onset of their 

decomposition was above 260 °C. 

Elkanzi [64] gives a review of side reactions common in urea synthesis with 

elevated temperature (160-200 °C) and pressure (10-25 MPa). In this the following side 

reactions are considered: 
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1. Hydrolysis of Urea (R16), which is the reverse synthesis reaction, and as 

previously quoted for urease-catalysed decomposition. This is promoted by high 

temperatures and long residence times: 

(NH2)2CO + H2O → NH2COONH4 → 2NH3 + CO2 (R16) 

2. Biuret formation from urea (R17) occurs where urea concentration in the 

solution is high. This can be minimised with increased NH3 concentrations, but also by 

avoiding high temperature and long residence times. 

2(NH2)2CO → NH2CONHCONH2 + NH3 (R17) 

Kinetic parameters of (R16) were assessed by Zanoelo [65], who found greatest 

accuracy in a method that resulted in a value of Ea = 61.36 kJ mol-1 though with a large 

error range of ± 20.86 kJ mol-1. Mahilik et al. [66], then reported the thermohydrolysis 

of non-catalytic semi-batch reactor experimentation of urea solutions from 7 ≤ wt% ≤ 

40, up to 160 °C, and calculated Arrhenius kinetic variables for (R16) of frequency 

factor (A) = 3.9x106 min-1, and activation energy (Ea) of 59.85 kJ mol-1. These findings 

were based on refractive index analysis of urea conversion. They did not therefore 

involve product or residual composition analyses, which introduce error since the 

assumption is made that no reaction other than (R16) occurred. 

Limited experimental range with respect to product analysis is common among 

current publications which have the objective of determining the extent of NH3 

production for combustion-derived NOx reduction systems. Therefore most of the recent 

work on urea thermolysis is limited in scope for elucidating the mechanisms involved in 

hydrogen production. Of relevance to urea steam reforming are some of the studies on 

aqueous urea thermolysis. 

Lundström et al. [67] analysed the thermal decomposition of aqueous urea 

solution using DSC and FTIR. Only one type of urea aqueous solution was used; that 

being a 32.5 wt% urea in de-ionised water - a mixture sold commercially as Adblue for 

selective catalytic reduction of combustion emissions (see Table 2-7) - and only the 

gaseous products NH3 and HNCO were measured. In these experiments the solution was 

loaded into a reactor and a sweep gas of 100 ml min-1 was applied. Temperature range 

was between 25 °C and 700 °C. Maxima of ca. 650 ppm for NH3 and ca. 800 ppm for 

HNCO were reported. Calculations for their mass balances are not given, and it is not 

suggested whether any N2 was produced. 

According to Koebel and Strutz [68], aqueous urea solution thermolysis progresses 

firstly via water evaporation: 

(NH2)2CO(aq) → (NH2)2CO(s) + xH2O (R18) 

then via urea decomposition (R19) giving equimolar products of NH3 and HNCO: 
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(NH2)2CO(s) → NH3(g) + HNCO(g)  (R19) 

In water-rich solutions, further reactions then involve the creation of a second 

mole of NH3 via reaction (R20) as the isocyanic acid interacts with steam that has not 

yet evolved and/or it encounters coming through the feed flow: 

HNCO + H2O → NH3 + CO2  (R20) 

It has been shown that (R20) proceeds quickly with temperatures above 400 °C 

[69], and rapidly in the presence of metal oxides with alumina identified as one of the 

most favourable [70]. Kleemann et al., experimenting in a temperature range up to 500 

°C, calculated an apparent Ea value for (R20) of  ̴ 13 kJ mol-1 suggesting that it was 

limited by mass transfer control [70]. Yang et al., also found very low activation 

energies (18.4 kJ mol-1 ≤ Ea ≤ 26.1 kJ mol-1 for (R20) at T > 250 °C in the presence of 

zeolites [71]. 

Aqueous urea thermolysis flow reactor experiments have been studied using a 

weak urea aqueous solution (1.0 M) in a 93% N2 flow at atmospheric pressure up to 450 

°C [69]. This study reported complete decomposition of urea into NH3 and HNCO 

above 350 °C for residence times longer than 0.1 seconds. It also confirmed that higher 

urea-derived product molecules were negligible, corroborating previous work reported 

by Krocher and Elsener [72]. 

The higher molecular compounds that form in pure urea thermolysis due to the 

retention of HNCO can also form in aqueous urea solutions. As water evolves first at 

100 °C, urea-rich conditions have a propensity to occur. These polymers are easily 

suppressed however by designing for rapid sample heating and short residence times 

[72], as would occur in a flow reactor. 

It is generally believed that urea does not enter a vapour phase, and that the 

vapours emitted on thermolysis are its product species. Where reference was found of 

urea being mentioned as having a vapour phase following thermal decomposition, this 

was either with theoretical modelling [73], or when the cited reference was pursued it 

was found that the citation had been quoted erroneously [69] citing [74]. This 

uncertainty is touched upon by Birkhold et al. who used computational fluid dynamics 

in order to elucidate the matter [62]. They concluded that water evaporates at a faster 

rate than urea resulting in increased urea concentrations and potentially incomplete 

decomposition particularly at temperatures below 300 °C. 

2.7.3 Spontaneous Decomposition 

Non-enzymatical decomposition pathways for urea have been identified and with 

these the presence of water is essential. For spontaneous decomposition the half-life 

times are estimated to be from 40 years at 25 °C for elimination, to ~ 1019 years for non-

enzymatic hydrolysis [75]. This knowledge gives a measure of the proficiency of the 



25 
 

urease catalyst, and also indicates that a dry air environment should be maintained to 

preserve urea, necessitating storage systems that prevent moisture ingress. 

Kinetic analyses have identified that the reason a solvent is required for standard 

temperature spontaneous elimination is that water lowers the activation energy and 

stabilises the products of urea decomposition [76]. This type of interaction between 

water and urea is not unique to just decomposition mechanics. Many of urea’s properties 

that are utilised commercially are attributed to its presence in aqueous solution (see 

section 2.8.2). Computer modelling has shown that the hydrogen bonds in urea are 

weaker than the hydrogen bonds between water molecules thereby creating a tendency 

for urea to aggregate in solution and to influence the stability of water structure [77]. 

2.7.4 Previous Reports of Urea Steam Reforming 

No prior reports of urea steam reforming for hydrogen production were found. The 

only previous account of steam thermolysis as a means of urea decomposition was with 

three test runs on an experimental set up with combined gasifier and reformer in the 

context of waste conversion with application to spacecraft occupancy [78]. This formed 

a minor part of waste thermolysis along with other substances, and did not measure 

hydrogen produced. The study did not give detailed values for energy requirements or 

reaction kinetics, though substantial uncatalysed decomposition of urea was 

qualitatively reported at low temperatures, with the main product being ammonia. 

Evidence of urea’s low melting point was confirmed with the recording of volatisation 

post-gasification and prior to the reformer stage. 

2.7.5 Previous Reports of using Urea for Hydrogen and Energy. 

In 2009 a study reported that hydrogen can be produced from urea by electrolysis, 

using aqueous urea solutions replicating those found in urine [79]. In 2010, a direct urea 

fuel cell was reported [80] with the assertion that PEMFCs cannot be operated using 

urea fuels due to potential ammonia content. This statement fails to consider ammonia 

scrubbing methods. A novel approach to produce hydrogen from the wastewater of a 

urea production plant was reported in 2010. This modelled the feasibility of system 

design, using a nickel-alumina catalyst bed [81]. 

2.8 Production of Urea 

2.8.1 Present Industrial Synthesis 

Urea is a widely available market commodity with present commercial production 

plants operating on well-established technological methods. The chemistry of current 

manufacture is well documented and involves the combination of the reagents ammonia 

and carbon dioxide (CO2). This synthesis is called the Bosch-Meiser process and 
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proceeds according to the Basaroff reactions at heightened pressures of 13-25 MPa and 

temperatures of 170 – 200 °C [49]: 

2NH3 + CO2 ↔ NH2COONH4  (R21) 

NH2COONH4 ↔ (NH2)2CO + H2O  (R22) 

The reagents for R21 and R22 are obtained by the steam reforming of fossil fuels 

(usually natural gas; although naphtha, fuel oil and coal are alternative feedstocks) to 

yield hydrogen and then ammonia using N2 from air over iron catalysts. The process of 

ammonia production (Haber-Bosch), at high temperatures and pressures, also creates 

CO2 and consequently commercial urea production is undertaken adjacent to ammonia 

production plants.  

At operating conditions, (R21) using liquid-phase NH3 and CO2 to form 

ammonium carbamate is fast and complete. Both reactants are in their supercritical 

states and no catalysts are involved due to the high corrosivity of the ammonium 

carbamate containing mixture. Reaction (R22), carbamate dehydration, occurs at lower 

pressure, is slow, and never results in complete conversion of reactants. 

Processing of the effluent from (R22) is where present production methods differ, 

with either the un-changed products being utilised in downstream processing to create 

by-product commodities of nitric acid and ammonium salts (“once-through systems”), 

or re-cycled to increase percentage urea conversion (“total-recycle systems”). With total 

recycle, a 99 % conversion to urea can be achieved [82] either separating the reactants 

by scrubbing with a solvent or passing the solution through a stripper which reduces the 

concentrations of either NH3 (Snamprogretti process) or CO2 (Stamicarbon process, or 

Toyo-ACES process). Total recycle processing therefore requires additional energy, of 

which all have similar requirements but produce a higher urea yield [83]. 

In its product form, urea is supplied as required according to grade in either liquid, 

crystalline, or as solid agglomerate (prills or granules). Prills and granules are produced 

for fertiliser applications as this form allows for efficient and flexible utilisation. 

Reagent grade urea can be over 99 % pure according to manufacturing specifications. 

Trace elements are ubiquitously present through contamination with process piping or 

from the original feedstocks [84] which may necessitate further processing prior to 

steam reforming for fuel cell applications in order to protect catalyst and fuel cell 

component integrity. The chemical composition of the reagent grade urea used in this 

project is given in Table 2-6. 
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Table 2-6. Urea reagent composition using in experimentation. Purchased from Fisher 
Scientific (U/P610/50). 

Product Specification Composition (wt%) 

Urea > 99.5 % 

Insoluble (5M aq. sol) < 0.005 % 

Cadmium < 0.5 ppm 

Cobalt < 0.5 ppm 

Copper < 0.2 ppm 

Iron < 0.2 ppm 

Lead < 0.5 ppm 

Magnesium < 0.2 ppm 

Potassium < 5 ppm 

Total chloride < 5 ppm 

 

2.8.2 Production Status and Trends 

Demand for urea is high with an increase of 3.8 % per annum anticipated, giving 

an annual total demand of 174.6 Mt by 2014 [85]. Production plant capacity is expected 

to grow by 51.3 Mt or 30 % from 2009 levels to an estimated global production of 222 

Mt by 2014 [85]. 55 new production plants are expected to open, with the major regions 

of production being Asia, Latin America and Africa. There are no longer any production 

plants in the UK and all commercially manufactured urea is imported [86]. Due to the 

expansion in global production the supply/demand balance shows an anticipated rise in 

surplus from 3 Mt per year in 2010 to 10 Mt per year in 2014 [85].  

Urea’s main commercial application is as a slow release fertiliser. In the 1960s, it 

represented 5 % of global fertiliser consumption which had increased to ca. 40% by the 

early 1990s [87] and is now estimated at >50 % [88]. Urea is now also the primary 

means of NOx abatement in > 2.0 litre diesel engines where it is employed as a selective 

catalytic reductant [89]. Usually this involves an aqueous solution of the eutectic 

mixture at 11 °C and 32.5 wt% [84]. The values quoted for urea product growth are 

inclusive of non-fertiliser product applications. Non-fertiliser demand is anticipated to 

account for 13 % of the total usage by 2014. New uses for urea are increasing and some 

present applications are shown in Table 2-7. These new markets, plus the potential for 

urea as a hydrogen carrier could provide the lever for future sustainable urea production 

which will be discussed in section 2.10. 
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Table 2-7. Present applications of urea. 

Use Description 

Slow-release fertiliser Main commercial outlet. 85-90% of commercial 
application [88].  Agricultural grade flakes or prills. 

Explosives additive A propellant stabiliser in nitro-cellulose explosives 
[90].  

Reagent in catalytic reactions 
to reduce oxides of nitrogen. 

Urea reacts with NOx and is utilised for the catalytic 
and non-catalytic reduction of combustion gasses to 
mitigate pollutant emissions [84]. 

Pharmaceuticals/Medicine Used to make emollient creams for treatment of dry 
skin due to its water-binding capacity and softening 
effects on the epidermis [77, 91]. It is also used to 
detect the presence of pathogenic bacteria in the 
stomach [92]. 

Animal feed additive As an inclusion in cattle feed to aid the assimilation 
of proteins [93]. 

Material in glue manufacture Urea-formaldehyde and urea-melamine-formaldehyde 
(waterproof glue for marine plywood) [94]. 

De-icer Urea is a non-corrosive alternative to sodium chloride 
as a de-icer [95]. 

Cosmetics ingredient In antiperspirants, a preservative in water-based 
soaps, and in moisturisers and skin creams [96]. 

Cloud seeding agent Due to its hygroscopic, non-toxic and non-corrosive 
properties [97]. 

Petroleum processing Urea has the ability to form clathrates and occlude 
hydrocarbons; used in petroleum refining to produce 
jet aviation fuel and for de-waxing of lubricant oils 
[47]. 

A flame-proofing agent in dry 
fire extinguishers 

Urea-K bicarbonate is a dry powder extinguisher for 
flammable liquids, ordinary combustibles, and 
electrical fires [98]. 

Ingredient in dental products Carbamide peroxide for bleaching [99]. Urea also has 
pH-elevation properties that make it effective at 
neutralising acidic plaque [100]. 

Food additive Formulation of alcoholic beverages, and gelatine 
[101]. 

Dispersion and degradation of 
hydrocarbon oil spills 

Stimulates the growth of bacteria which break-up the 
oil [102, 103, 104]. 
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2.8.3 Economics of Present Production 

Present commercial urea production is energy intensive and its economic cost is 

linked to the price of its feedstock Natural Gas. Any consideration of environmental and 

economic factors must also include creation of the raw materials ammonia and carbon 

dioxide. Ammonia production is estimated to contribute ca. 80 % of the total 

manufacture cost for present urea production [84]. Transport costs are taken as nil since 

ammonia plants are sited adjacent to urea production. Current values of technical grade 

urea in the quarter up to April 2010 were €160 - €214 per tonne [105]. 

2.9 Environmental Impact of Urea 

2.9.1 Environmental fate of Urea 

Urea is biodegradable and classified as having “no indication of concern for 

human health or the environment” [106]. Long-term human exposure studies have also 

indicated that it is non-allergenic and virtually free of side effects [106]. Biodegradation 

is rapid upon contact with soil and water due to the presence of the enzyme urease (urea 

amidohydrolase), and urea is reported as being unlikely to undergo bio-accumulation 

[106]. Toxicity studies have indicated that only with levels above several thousand 

mg/litre may it become toxic to mammals and birds, with low levels of ingestion 

permissible without ill effect [84, 106]. 

Urea is excreted by fish, amphibians, zooplankton and bacteria [50, 51, 52, 53, 

107] and it is therefore naturally present in balanced water ecosystems, both in the water 

column and also in sediments. Its presence, transport and dynamics are not well 

understood, and along with other reduced nitrogenous compounds, these substances 

comprise the least known parts of the nitrogen cycle [108]. 

There has been recent work attempting to assess the environmental role of urea 

with some authors having concerns that with the present global scale of urea production 

and applications, its usage could have adverse ecosystem effects [109]. The basis for 

this conjecture is due to scientific evidence reported on other artificial fertiliser 

applications being responsible for a large influx of nitrogen (along with other elements 

such as phosphorous and sulphur) that consequently disturb naturally balanced ecology. 

Nutrients containing these elements have been shown to cause the onset of 

eutrophication in water bodies where excessive compound leachate from soil has led to 

an increase in primary production, oxygen depletion and aquatic mortality [110, 111]. It 

is this that has been proposed as a potential cause for concern about the escalating use of 

urea and agricultural urease inhibitors that slow down its hydrolysis [109]. The 

proponents of these hypotheses concede that causal links with anthropogenic sourced 

urea driving any ecosystem change have yet to be established and that there are many 
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other factors that affect algal bloom dynamics [109]. Furthermore, where in-situ studies 

of urea influx on coastal waters and shorelines have been performed, results refute 

suggestions of harmful environmental disturbance. Evidence of this comes from two 

sources; firstly with bioremediation applied to the Exxon Valdez oil spill in 1989, a 

summary of which can be found in publications by Bragg et al. [102], and Pritchard and 

Costa [103]. This application of urea to the Alaskan shoreline was independently 

monitored for eutrophication by sampling ammonia concentration, chlorophyll bacteria 

and primary production, along with potential toxicity caused by degradation products 

and no such adverse ecological effects were observed [103]. A PhD thesis from 1980 

looked at the distribution of urea in coastal waters and found no evidence to indicate 

that land-derived urea was an important contributor to oceanic urea concentration, with 

the major source likely to be from in-situ production [112]. 

The increase in urea production seems therefore to be at the expense of more 

environmentally damaging substances which would undoubtedly be used in the absence 

of urea for anthropogenic crop fertilisation. Naturally occurring nitrogen is only 

considered capable of supplying half the present global agricultural need, and this does 

not take into account predicted future population growth or changing food preferences 

that might require higher fertilisation rates [87]. Taken in comparison with other 

nitrogenous fertilisers and indeed many of its other commercial applications, urea is 

chosen because it is a stable and less toxic alternative. With fertiliser use, although 

soluble in water, urea hydrolyses relatively quickly and is taken up by plants rapidly thus 

minimising nitrogenous leachate to water and ammonia volatisation [55]. 

2.9.2 Environmental Aspects of Present Production 

Due to stringent safety emissions legislation and the high commodity cost, direct 

losses of urea and ammonia to the environment from industrial production is relatively 

small [108]. The synthesis section of a modern urea plant will create wastewater in a 

ratio of 0.3:1 for every unit of urea produced [88]. On the level of present production 

plants creating 2000 tonnes of urea per day, these large amounts of water must be 

treated to comply with local legislation and to moderate adverse environmental impact. 

Urea process water treatment systems therefore are able to reduce the effluent by 

desorption, distillation and stripping to create effluent NH3 and urea concentrations of 5 

mg/litre and 1 mg/litre respectively [88]. 

Gaseous emissions have been estimated for a urea processing plant and are given 

in Table 2-8. These include total production costs for natural gas processing and 

electricity consumption. 
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Table 2-8. Life Cycle Greenhouse Gas Emissions from Urea Production Plant 

[84]. 

Emissions (grams per tonne of urea) 

CH4 N2O CO2 

6,428 10 746,797 

 

Airborne particulate emissions from urea production plants are potentially high 

because prilling generates very fine dust which is technically difficult and expensive to 

mitigate. Granulation dust emission is considerably higher at 5-40 kg per tonne of urea 

produced [88], but its larger particle size decreases its health risk and increases its ease 

of abatement. Wet scrubbing is identified as the optimum particulate abatement method 

and efficiencies of 98 % can be achieved [88]. Emissions of this kind (though 

effectively abated) are related to process shaping requirements for agricultural fertiliser 

products and so should not be relevant in the context of reagent purity grade used for 

application to a potential hydrogen economy. Where airborne urea particles are released, 

a half-life of less than a day is expected due to photochemical reaction with hydroxyl 

radicals resulting in ammonia and carbon dioxide [84]. 

2.10 Alternative/Sustainable Routes of Urea Production 

It has been described that urea is manufactured, at present, cheaply using fossil 

fuels, so attractively enabling rapid implementation for hydrogen supply infrastructure. 

As this does not offer long-term supply security and is environmentally damaging, this 

section identifies and assesses potentially sustainable production routes. These would 

also detach production from the need for adjacency to hydrocarbon reserves allowing 

global energy independence. Furthermore it would reduce overall processing as 

presently hydrogen has to be created and then re-formed into urea to be re-formed back 

to hydrogen again. An illustration of the potentially available urea resource is given in 

Figure 2-2. 
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Figure 2-2. Potential global urea resource. Human urine resource estimated from 
average daily production of 35 g [113] multiplied by world population of 6.8 
billion. 

 

2.10.1 Urea from Urine 

Large quantities of urea are produced to fertilise land for food production, yet at 

the same time, the natural quantities of urea produced by catabolism in urban areas, are 

flushed away through wastewater sewage systems; a process which then involves the 

additional expense of energy intensive methods of removing nitrates that would 

otherwise have completed a closed nitrogen cycle by being utilised in plant metabolism. 

The mammalian catabolic route of urea synthesis is both abundant and well understood 

yet there is little written about the scope for exploiting this natural route and obtaining 

urea from urine. 

Medical texts quote that urea is excreted (quantified and termed as urea 

“clearance”) in urine at a rate of approximately 33-35 g day-1 in a healthy adult, 

dependent on diet - with concentration increasing with increasing dietary protein intake 

[113]. For an estimated average adult, the urine excretion rate is 1.5 litres day-1 [114] 

giving an approximate concentration of urea as 22-23 g litre-1. It can be assumed 

however that these values based on medical estimates will differ outside of the clinical 
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environment due to dilution and contamination with other elements when mixed with 

flushing water in a modern sanitary system [115]. Of more importance is the fact that 

urea decomposes quickly outside of the non-sterile environment due to the ubiquitous 

presence of enzymatic micro-organisms. A study in 2003 identified that urine in a 

collection tank would be completely hydrolysed within little more than a day, and for a 

supply pipe completely filled with urine, ureolysis would be completed in about two 

minutes [116].  

Before attempts can be made to stabilise urine and extract urea, the urine must first 

be separated from faeces and any other components presently disposed of in wastewater. 

Separation will be easier if urine is not well mixed with other contaminants, and due to 

the extended residence times in wastewater, providing adequate mixing with urease 

containing bacteria, end of pipe treatments for urea collection would appear to be too 

challenging. Similarly, the collection, and preservation of urea from animal wastes 

would pose identical difficulties through mixing with other contaminants. A patent from 

2005 however cites as one aspect of its invention the proposal of separating urine from 

livestock waste into a urea-rich fraction having the potential to be a saleable commodity 

[117]. The methodology of this patent is not detailed but involves the use of urease 

inhibitors to stop ureolysis and subsequent decomposition. 

Urease inhibitors are not a new discovery. Several microbial urease inhibitors are 

known along with a number of chemical elements and compounds [118]. These 

microbes are widespread, and the high concentration of carbon in urine also accentuates 

their growth [114]. 

Biological catalytic decomposition of a urea solution occurs at an optimum neutral 

pH but causes it to rise to 9.5 at which point ammonia evaporates from the mixture 

[114]. It is known that below pH 5 microbial urease is denatured [116]. The 

acidification of urine is therefore the major research method of urease inhibition. In 

tests, the addition of sulphuric or acetic acid could inhibit urea decomposition for over 

100 days [119]. 

Studies into the separation and stabilisation of urine come mainly from the 

perspective of wastewater treatment. Most of this is driven by environmental concerns 

with the focus on sustainability, reducing waste, and mitigating nitrate build up in 

watercourses. There is also a focus on the possibility of utilising nutrient components of 

separated urine for fertiliser applications, but not specifically urea. The preservation of 

pure urea is occasionally mentioned, but then only as a minor aspect and consequence of 

the main study. 

Modern attempts at urine separation and stabilisation have yet to go beyond the 

research and development stage. Source separation “no-mix” toilets have been created 

and tested. In one project application the results were disappointing, with dilution and 
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contamination of the urine occurring. This was attributed to a combination of inadequate 

system design and construction, plus inappropriate usage [120]. 

In space station environments, urine can be acidified to inhibit urease activity then 

subjected to distillation and filtration [121]. Again this research was with the objective 

of volume reduction and hygienation rather than the isolation and extraction of urea. 

One recent publication revealed that as a consequence of attempting to separate 

pharmaceutical pollutants from urine by the use of a nanomembrane, urea was found to 

permeate on the membrane in relatively high yields [122]. Once more this result was 

reported as a side issue and not the main focus of the research. 

The potential to extract urea in sufficient quantity from mammalian waste to offset 

some of the present commercial stock therefore seems a long way from reality. The 

resource is available, and the chemistry is in the most part understood, but it seems that 

not enough work is being done at present to adapt technology that is fit for purpose, and 

the required paradigm shift in modern waste removal seems to be too dramatic a step. A 

summary of these findings are illustrated in Figure 2-3. Drivers for change such as 

increasing prices of fossil fuels, depletion of resources, and uncertainty of supply, 

coupled with concerns about environmental damage caused by additions to the nitrogen 

budget, are however becoming increasingly prominent. If urea was shown to be a 

promising hydrogen carrier then this would undoubtedly generate interest in combining 

this knowledge to tap the huge waste resource. 
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Process 

Stage 
1.Source Separation → 2.Urease Inhibition → 3.Urea Concentration 

    

Solution No-mix toilets for humans → Chemical, Microbial and Temperature → Solar, wind and battery/grid electrical 

    

Status 

Simple Technology 

Product Designed 

Product Implemented 

→ 
Simple technology 

Currently applied in laboratories 
→ 

Electrical heaters are a mature technology. 

Solar concentrators not known as being 
applied in this situation 

    

Obstacles 
Paradigm shift in waste disposal 

required. 
→ 

Would need incorporating into no-mix 
toilet design due to rapid enzymatic 

decomposition of urea 
→ Prolongs process stages. 

    

Further 
Observations 

Considerably greater resource from 
animals and plants. Animal sourced 
urea more challenging to separate. 

Absence of adequate knowledge on 
urea content in plants. 

→ 
May require further sterilisation for 
safe handling to remove potential 

pathogens. 
→ 

Solar concentrators, combined with urea’s 
ease of transportation and storage make 
this combination highly attractive for 

remote applications 

Figure 2-3. Status of technology and process stages necessary for utilising the urea produced by animals and plants in preparation for steam reforming.
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2.10.2 Urea from Bacteria 

Arginine is a ubiquitous amino acid, found in most organisms, throughout all 

biological kingdoms [123]. Those that also contain the arginase enzyme are able to 

synthesise urea. 

In ureotelic organisms (mainly mammals and marine fish) urea is created in vivo 

by the catalytic hydrolysis of the amino acid arginine in the presence of the enzyme 

arginase. This mechanism is part of the ornithine-urea cycle (or Krebs-Henseleit Cycle) 

which involves four other enzymes along with the intermediate amino acids citrulline 

and aspartate [124]. Arginase is the key enzyme in the stage of the cycle that creates 

urea [123]. Bacteria are able to catabolise arginine [125] and it has been shown that urea 

can also be created in-vitro using the arginase enzyme [126]. It therefore follows that if 

a cost effective and abundant source of arginine could be found then an alternative route 

of urea production is theoretically achievable (see Figure 2-4).  

 

Figure 2-4. Ornithine-urea cycle in ureotelic organisms showing possible in-vitro 
mechanism for urea production. 

 

One naturally-occurring source of arginine is in cyanophycin (Cyanophycin 

Granule Polypeptide: CGP). Cyanophycin is an organic granule that is synthesised in 

and used as an energy store by cyanobacteria [127, 128] and some heterotrophic bacteria 

[129] at relatively low temperature and light intensity. The cyanophycin synthelase 

enzyme has also been isolated and inserted into genetically modified recombinant 
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bacteria. These have subsequently been tested on different ferment media [130]. A 

patent was submitted by Elbahloul et al. in 2006 [131] to make use of this micriobial 

synthesis using bio-refinery waste streams as a substrate for fermentation. 

Biomass has ecological advantages since the CO2 released by combustion is only 

that which the plant has captured during its lifetime. Theoretically therefore biomass is 

“carbon-neutral”, and does not add to the atmosphere in the same way as fossil fuels. 

Moreover, there is presently a large volume of protein-rich waste streams that are 

generated with biofuel production and in established bio-refineries such as starch 

fractionation from wheat, sugar and potatoes and oil, proteins and nutraceuticals from 

soyabeans [132, 133]. These amino-acid wastes have financial advantages since their 

calorific values are reportedly comparable with presently used petrochemical feedstocks, 

and furthermore they have in-built chemical functionality that could allow the 

circumvention of some or all of the process stages [133]. Using biomass in this way 

could be a more efficient use of inherent chemistry than for the production of power 

which is biomass’ present commodity outlet. Biological fermentation is one possible 

route of isolating these functional compounds for utilisation. 

In Elbahloul’s study, a 28 wt% yield of cyanophycin was produced per dry cell 

matter within 24 hours using a potato starch waste stream of which an estimated 22,000 

tonnes of amino acid are created every year. Present knowledge gaps occur on how to 

extract urea in useable form from bio-fuel ferment CGP, and also with the optimisation 

of substrate media and conditions. One interesting result from the study by Elbahloul et 

al. was that the ferment apparently synthesised CGP from amino acids other than 

arginine. This, and the opportunity to isolate other synthetase enzymes for insertion into 

genetically modified bacteria, is an area that requires further examination. 

A study in 1984 also found that urea could be synthesised from arginine using 

inorganic montmorillonite clay particles as a shape selective catalyst [134]. This result 

does not appear to have been pursued since then. 

2.11 Conclusions 

Urea possesses many favourable attributes as a fuel cell energy vector to justify 

further study on its use for hydrogen supply and to fill the need of future global energy 

requirements. Compared with present hydrogen carrier chemicals, urea is stable, non-

toxic and in most circumstances can be described as environmentally benign. The only 

controls required for adequate storage would be dry containment due to its hygroscopic 

nature and ease of decomposition in the presence of water, unless urease inhibitors were 

incorporated. Like the other simple chemical hydrogen vectors, urea is a well known 

and understood compound. A benefit of having half a century of commercial urea 
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production means that there is a good understanding of knowledge to draw upon for 

working with urea as a process chemical. The transferability of this knowledge is 

definitely a boon. 

Urea decomposes relatively easily with heat and at room temperature with 

enzymes. This review has identified that there are possibilities that urea might initially 

be suitable for supplying NH3 either directly into fuel cells or as an intermediate for 

hydrogen evolution. Many of the advantageous aspects of the recently developed metal 

ammine storage tablets could also be said of urea. These comparisons and therefore the 

potential for urea as a similar stable and dense ammonia/hydrogen carrier do not appear 

to have so far been made. In comparison, pure urea has a lower hydrogen weight 

percentage (6.7 wt%) but this value increases to 7.7 wt% when steam reforming is 

considered. 

Urea is a cheap and readily available substance. The resource of urea is high, with 

production increasing and an annual surplus expected for the near future based on fossil 

fuel synthesis. Present manufacture of urea releases quite high greenhouse gas emissions 

which is not sustainable. Also, with this manufacturing process, as with many other 

hydrogen carrier options, hydrogen is a reagent in the synthesis reaction meaning it is 

extracted from other substances to be made into urea to be released again. To overcome 

this problem, urea does have many varied natural production routes that have been 

combined and discussed in this review for the first time in the context of using them as 

an alternative source of urea for energy. Based on this assessment, it is considered 

realistic that these routes could be exploited if they are given sufficient focus of research 

attention. 
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3 Thermochemical Equilibrium Modelling 

3.1 Objectives 

Equilibrium modelling was used to ascertain the feasibility of urea steam 

reforming and then to help identify potentially optimum operating conditions. Modelling 

was also used to explore reactor design by observing changes in syngas equilibrium 

products with varying diluent flow rates and fuel feed rates. Throughout the reactor 

experimental work, modelling was used to assess process performance by applying the 

same variables used for experimentation to modelling and comparing the results. 

Consequently, in addition to the presentation of modelling results in this chapter, they 

are also presented in comparison with experimental results in Chapter 5 and Chapter 6. 

To assess the economics of urea steam reforming, calculations were made to determine 

total energy requirements per mol of hydrogen (H2) produced at a range of temperatures 

and reactant fraction variables.  

3.2 Method 

3.2.1 Conditions of Simulation 

Equilibrium calculations were performed using EQUIL in CHEMKIN software 

[135]. This allows the user to input a range of reactants, temperatures and pressures 

then, once running, accesses thermochemical data libraries to calculate and generate 

equilibrium outputs. The model considers the distribution of the number of moles of 

each species which in total minimises the system Gibbs free energy at the set state 

parameters of temperature and pressure using STANJAN routines [136]. The results 

provide values of gas phase concentrations at equilibrium in addition to reaction 

enthalpy for a range of temperatures. 

EQUIL in CHEMKIN was programmed to run with the following chemical 

species: CH4, CO, CO2, O2, H2O, H2, N2, NH2, NH3, CH4N2O (urea), Ar, HNCO and 

HCN. The model was also tested with: HCO, HOCN, H2CN, HCN, HNO, N2H2, N2O, 

HCNO, H2NO, NO, NO2, but these were ultimately eliminated from the program input 

files as their product fractions were deemed negligible. Negligibility was defined as 

product concentrations < x10-9 mol fraction in the wet syngas at equilibrium. Reaction 

temperatures were set to a range between and including 300 K to 1280 K (27 ˚C to 1007 
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˚C) for all analyses with output values obtained for every 10 K interval within this 

range. 

3.2.2 Products at Equilibrium 

Reactant water to urea molar ratio (S:C) was input in the range 0.1:1 ≤ S:C ≤ 8:1 

at atmospheric pressure with a range of diluent concentrations from zero to 84 %. 

Diluents of N2 and argon (Ar) were used to simulate the presence of process carrier gas. 

Thermodynamic equilibrium was also modelled at increased pressure up to a maximum 

of 20 atmospheres, this being identified as the maximum quoted in literature for 

methane steam reforming [10]. 

Following each programmed EQUIL in CHEMKIN run, results were used to 

generate further data using the following terms, where i = chemical species, Nout = total 

number of moles out, Nin = total number of moles in (this is always  = 1), and x = mole 

fraction:  

Steam conversion  = 
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Hydrogen yield = 
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Hydrogen yield per reactant urea = 
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Carbon selectivity for species CO, CO2, and CH4  

SelCeq = 
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 (Eq. 5) 

Hydrogen selectivity for species H2, CH4, NH3 and NH2 (plus if steam conversion 

is negative then H2O is also a product) 

SelHeq = 
outOHoutNHoutNHoutCHoutH
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xxxxx
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 (Eq. 6) 

Dry corrected syngas (the syngas product mole fraction excluding water and 

diluent) for species i  

= 
))(()1)((
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,,2

,
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outouti
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−−
 (Eq. 7) 

All references to syngas in the Products at Equilibrium section relate to a dry 

corrected syngas. Wet syngas H2 is discussed in section 3.3.2.2. 
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3.2.3 Thermochemistry 

Calculations were devised to determine the energy needed to produce one mol of 

hydrogen gas by reforming of urea with steam for various reactant mixtures. An 

assessment of the energy required for each component in the overall process was also 

determined, including the energy for different types of carrier gas. Change in energy was 

calculated in terms of the state function Enthalpy (H) = energy at constant system 

pressure. 

3.2.3.1 Stoichiometric Calculations 

Step1) Reaction Enthalpy 

Product concentrations at optimum temperatures from both EQUIL in CHEMKIN 

modelling (see section 3.3.1) and experimentation (Chapter 6 and Chapter 7), gave 

corroborative results for a global urea steam reforming reaction (R25). This was seen as 

potentially yielding two moles of H2 via decomposition, as illustrated in reaction (R23), 

then with the involvement of steam, a further mole of H2, as in reaction (R24) was 

provided, showing that the stoichiometric steam to carbon ratio is 1:1 (R25): 

(NH2)2CO(g) → CO(g) + N2(g) + 2H2(g)  ∆H298 = + 124.97 kJ (R23) 

CO(g) + H2O(g) ↔ CO2(g) + H2(g)   ∆H298 = - 41.15 kJ (R24) 

(NH2)2CO(g) + H2O(g) → CO2(g) + N2(g) + 3H2(g)  ∆H298 = + 83.82 kJ (R25) 

The above reaction enthalpy (∆Hr) values were obtained by summation of the 

constituent’s molecular enthalpy of formation (∆Hf°). These values for ∆Hf° are shown 

in Table 3-1. 

Table 3-1. Values for molecular enthalpy of formation [137]. 

Molecule ∆Hf° kJ mol-1 

NH3 -46.1 

CO2 -393.5 

H2O (g) -241.82 

H2O (l) -285.83 

CH4 -74.6 

CO -110.53 

HNCO -101.67 

Urea (s) -333.1 (±0.69) 

Urea (g) -235.5 (±1.2) 
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The value of reaction enthalpy for (R25) at heightened temperature was obtained 

using a variation of Kirchhoff’s Law [138]. This is shown as (F1), where T2 = final 

temperature, T1 = initial temperature (25.15 °C), ν = species stoichiometric co-efficient. 

The values of ∆Hsens in (F1) were calculated from Step 2. 

∆HT2 = ∆HT1 + ( ) ( )∑∑ ∆−∆
REACTANTS

Tsens

PRODUCTS
Tsens HH 22 νν   (F1) 

For the purposes of rigour, (F1) was tested by comparison with Kirchhoff’s law 

using (F2), where Cp = species constant pressure heat capacity was calculated using 

formula (F3), and values contained in Table 3-3: 

∆HT2 = ∆HT1 + ( ) ( ) ( )1222 TTCpCp
REACTANTS

T

PRODUCTS

T
−








− ∑∑ νν  (F2) 

Cp = A + Bt + Ct2 + Dt3 + E/t2 where t = T/1000 (F3)  

Step 2) Sensible Enthalpy 

Urea sensible enthalpy (∆Hsens) was calculated independently by the integration of 

Cp using a polynomial formula provided by the EQUIL program (F4). The variables 

used for calculating (∆Hsens) via (F4) are shown in Table 3-2. 

∆Hsens for urea = ∫
2

1

.
T

T

H

H

dTCp   (F4) 

Where Cp = (R)(A)+(R)(B)(T)+(R)(C)(T2)+(R)(D)(T3)+(R)(E)(T4); HT1 and HT2 are as 

stated for (F1); and R = universal molar gas constant (8.314 J K-1 mol-1). 
 

Table 3-2. Values used to calculate urea sensible enthalpy [139]. 

Temp -73 to 727 °C 727°C to 5727 °C 

A -0.210707501 1.03E+01 

B 0.043694861 8.95E-03 

C -4.60608E-05 -3.10E-06 

D 2.36548E-08 4.90E-10 

E -4.42051E-12 -2.89E-14 

F -29419.8537 -3.20E+04 

G 26.0661959 -2.70E+01 

 

Sensible enthalpy values for H2O, N2, H2, Ar and CO2 were calculated using 

formulae provided by NIST [137]. Polynomial functions provided data on sensible 

enthalpy using formula (F5) and variables contained in Table 3-3.  

∆Hsens = At + Bt2/2 + Ct3/3 + Dt4/4 - E/t + F – H where t = T/1000 (F5) 



 

 

43 

Table 3-3. Values used to calculate reactant and product species ∆Hsens and Cp [137]. 

CO2 Ar H2O H2 N2 

≤5727°C ≤5727°C ≥227 °C 25-727°C ≥ 727°C 25-227°C ≥227 °C 

A 24.9974 20.7860 30.0920 33.0662 18.5631 28.9864 19.5058 

B 55.1870 0.00000 6.83251 -11.3634 12.2574 1.85398 19.8871 

C -33.6914 0.00000 6.79344 11.4328 -2.85979 -9.64746 -8.59854 

D 7.94839 0.00000 -2.53448 -2.77287 0.26824 16.6354 1.36978 

E -0.13664 0.00000 0.08214 -0.15856 1.97799 0.00012 0.52760 

F -403.608 -6.19735 -250.881 -9.98080 -1.14744 -8.67191 -4.93520 

G 228.243 179.999 223.397 172.708 156.288 226.417 212.390 

H -393.522 0.00000 -241.826 0.00000 0.00000 0.00000 0.00000 

 

Step 3) Reactant Latent Heat 

Latent heat of urea sublimation was taken as ∆Hsub, UREA = 97.6 kJ mol-1 at 133 °C 

[137]. This value was applied to all S:C mixtures modelled at temperatures T ≥ 133 °C. 

Latent heat of vaporisation of water was taken from literature as ∆Hvap, H2O = 40.6 kJ 

mol-1 at 100 °C [137]. This value was applied to all S:C mixtures modelled at 

temperatures T ≥ 100 °C. 

Step 4) Excess water from S:C Ratios 

Since water and urea mixtures of 1:1 ≤ S:C ≤ 7:1 were considered, an extra 

calculation to account for the energy input for water above the stoichiometric amount 

(R25) was required. This was obtained by multiplication of the combined energy for the 

water component obtained in Steps 2 and Step 3 (∆Hvap, H2O + ∆Hsens H2O) with the S:C 

of the reactant mixture to give a total energy component for the vaporisation of water 

and heating to the desired reaction temperature: 

∆Htotal, H2O = (∆Hvap, H2O + ∆Hsens H2O)(S:C) (F6) 

Step 5) Total Energy  

Combining the formulae in Step 1 through to Step 4, gave a formula for the total 

energy required for urea steam reforming at constant pressure and volume: 

 ∆Htotal = ∆Hr + ((∆Hsens,H2O + ∆Hlat,H2O)(S:C)) + ∆Hsub, UREA (F7) 
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Step 6) Standardisation for 1 mol of Product H2 

Calculations were standardised to give total enthalpy based on 1 mol of reactant 

mixture. According to (R25) three mols of H2 are created for 1 mol of urea and 1 mol of 

water, the final values for total energy were based on three mols of urea and so were 

divided by 3 to give final energy per one mol of H2 gas.  

3.2.3.2 Equilibrium Mol Fraction Calculations 

In order to relate thermodynamic equilibrium modelling to the experimental work 

presented in later chapters of this thesis, the stoichiometric method was adapted to 

include data predicted by EQUIL in CHEMKIN software. This permitted greater 

accuracy and a directly comparable set of results for the energy needed to produce H2 to 

the process parameters reported in the Chapter 6 experimental work where steam 

reforming of urea was optimised. To achieve this, the programmed input mol fractions 

and the output mol fractions at equilibrium predicted by EQUIL in CHEMKIN were 

used instead of the stoichiometric co-efficients of (R25). 

During experimentation, carrier gas dilution was necessary for mass balance 

analysis and for the operation of experimental gas analysers (see sections 5.2 and 6.2). 

Two molar flow rates of urea solution were used for the two experimental parametric 

studies (4 ml hr-1 and 10 ml hr-1) which together with the fixed carrier gas flow rate of 

300 cm3 min-1 resulted in the carrier gas dilution constituting 0.84 and 0.63 respectively 

of the total molar flow into the reactor. 63 % dilution was applied to the optimised 

process parametric study so has been used here. 

EQUIL in CHEMKIN calculates ∆Hr as the difference between mean molar 

enthalpy values for product and reactant gas mixtures. Enthalpy for the initial gas 

mixture and for the gas mixture at predicted equilibrium state for the temperature 

specified is calculated from: 

∑=
TOTALi

i

ii xHH  (F8) 

The mol fractions (xi) in the output gas composition were determined by the 

EQUIL in CHEMKIN Gibbs free energy minimalisation method as previously described 

in section 3.2.1. Input gas composition was chosen as shown in Table 3-4. Using these 

values for gas composition mol fraction, EQUIL in CHEMKIN calculates the species 

molar enthalpy (Hi) necessary for (F8) using thermodynamic data of molar heat capacity 

contained in its database. This database draws from literature sources such as Burcat 

[139] and NIST [137] as also used for the calculations in section 3.2.3.1. Also, 

following the method in section 3.2.3.1, ∆H was calculated from a baseline standard 

state of 25.15 °C, and pressure maintained at 1 atmosphere.  
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Four reactants were used at varying mol fractions: urea, H2O, and diluents nitrogen 

and argon. The range of steam to carbon ratios input was varied from 2 ≤ S:C ≤ 7 for a 

dilution fraction of 0.63 (Table 3-4). S:C = 2 is added to the range reported in Chapters 

5 and 7 (3 ≤ S:C ≤ 7, representing the mixtures used in the reactor experiments), to 

show the trend for moving outside the range as this may be possible in future work with 

a pre-heat system (see Chapters 5 and 7).  

Table 3-4. EQUIL modelled reactant mole fraction values for 63% dilution. Diluent = 
Ar or N2 

S:C 
Xreactant  

2 3 4 5 6 7 

Urea 0.123 0.092 0.074 0.061 0.053 0.046 

H2O 0.245 0.276 0.294 0.307 0.315 0.322 

Diluent 0.632 0.632 0.632 0.632 0.632 0.632 

 

The values of ∆Hr calculated by EQUIL in CHEMKIN are inclusive of ∆Hsens for 

each species but since this is a gas phase model they are exclusive of ∆Hvap H2O and 

∆Hsub UREA. Two additional terms were therefore included in the calculations to account 

for the energy needed to vaporise water and sublime urea. The urea sublimation 

enthalpy term was obtained by multiplication of the reactant urea mol fraction (xurea,in) 

by ∆Hsub, UREA (97.6 kJ. mol-1 [137]) at T ≥ 133 °C, and the water vaporisation term by 

multiplication of the steam mol fraction (xH2O,in) by ∆Hvap, H2O (40.6 kJ [137]) at T ≥ 100 

°C. 

Values for the hydrogen product mol fraction at equilibrium were obtained from 

the EQUIL in CHEMKIN software for each run. To standardise for the difference in 

total number of input and output moles, uncorrected (wet and dilute) syngas H2 mol 

fraction was used as denominator to leave the kJ/mol H2 product with the same term of 

1 mol of reactant mixture. H2 product was therefore obtained by multiplying total 

product moles (obtained from EQUIL in CHEMKIN) by the wet and undiluted H2 mol 

fraction. The total enthalpy was divided by this sum to leave kJ of energy per mol of H2 

product. 

3.3 Results/Discussion 

Results shown and discussed in this section all report predicted modelling outputs 

at 1 atmosphere pressure. The effects of varying pressure are discussed in section 3.3.1.6 

only. 
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3.3.1 Products at Equilibrium 

3.3.1.1 Syngas Composition 

Figure 3-1 illustrates how at the attainment of steam reforming temperatures 

hydrogen production occurs, then increases to a maximum of ca. 50 % at temperatures ≥ 

500 °C. Hydrogen thereafter remains the major product. This H2-rich syngas is made 

more favourable for direct supply to fuel cells by the ubiquitous by-product diluent N2, 

shown to improve PEMFC performance [140]. Methane occurs as a major product pre-

steam reforming, but declines to negligible concentrations thereafter, resulting in carbon 

selectivity favouring CO2 and CO, with CO increasing and CO2 decreasing with greater 

temperatures as would be expected by the endothermic reverse water gas shift reaction 

(R24) becoming increasingly dominant. Urea steam reforming at optimum temperature 

is therefore predicted to create a relatively simple syngas with no hydrocarbons higher 

than CH4. This is highly advantageous in terms of hydrogen purity (with minimal post-

reforming processing required). The methane component being relatively low is also 

favourable in terms of the overall synthesis product greenhouse gas potency. Results of 

calculated dry corrected syngas products (excluding hydrogen which is described by its 

yield) with temperature for varying steam to urea ratios are shown in Figure 3-4 to 

Figure 3-7. NH3 values are not shown on Figure 3-1 due to their low concentrations but 

are discussed in section 3.3.1.5. HNCO, and all other product species evaluated did not 

occur in concentrations above 10-8 mol fraction in the dry corrected syngas across all the 

temperatures modelled. This was four orders of magnitude less than the next 

concentrated species (NH3). 
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Figure 3-1. Dry corrected syngas (excluding water and diluent) with argon diluent to 
show product nitrogen from reactant mixture of S:C = 7. All significant species 
are shown. 
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3.3.1.2 Reactant Conversions 

Urea conversion was 100% for all conditions and temperatures.  

Steam conversion (Figure 3-2) is important as it provides evidence of the extent 

of steam reforming. By optimising steam conversion, hydrogen from a relatively cheap 

and abundant reagent is produced. Modelling showed that below 300 °C no steam 

reforming occurred for all programmed operating conditions. The onset of steam 

reforming was pushed to higher temperatures by increasing the fraction of urea in the 

reaction mixture.  

Plots of steam conversion with varying temperature for varying S:C of the reactant 

mixture exhibited curves with maxima at mid-range (450 °C ≤ T ≤ 750 °C) temperatures 

(Figure 3-2). With increasing temperature, pre-maxima values increased steeply for all 

S:C mixtures. The post-maxima declination trend with increasing temperature was 

greatest for urea-rich mixtures. Negative values at low temperatures occurred, indicating 

that water production becomes thermodynamically favoured. These variations can be 

explained by the endothermic global steam reforming reaction (R25) predominating at 

lower temperatures and the endothermic reverse water gas shift reaction becoming more 

favourable at higher temperatures thus limiting overall conversion. That the maximum 

steam conversion is seen around equimolar reactant mixtures can be attributed to the 

requirements of the stoichiometric urea steam reforming reaction with excess water 

resulting in availability of urea limiting overall water conversion, thus a reduction in 

steam conversion above S:C = 1. Similarly, water will be limiting at highest urea 

concentrations.  
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Figure 3-2. Steam conversion for urea steam reforming. 
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Beneficially, for the mixtures that are practically achievable at laboratory 

temperatures, due to the solubility of urea in water (S:C ≥ 3), optimum temperatures for 

steam conversion were in a range of moderate 400 °C ≤ T ≤ 600 °C. This is a 

temperature range where the water gas shift reaction still dominates over its reverse. 

Consequently, and unlike methane steam reforming, there would in practice be no need 

for separate high temperature and low temperature WGS reactors, as the unreacted CO 

at these temperatures would be less than a few percent for S:C = 3 as shown in Figure 

3-4.  

3.3.1.3 Hydrogen Yield 

Figure 3-3 shows hydrogen yield per mol of reactant urea as a function of 

temperature for a range of S:C mixtures. H2 yield with increasing temperature, as 

predicted by the urea steam reforming reaction (R25) was seen to exhibit a peak that 

approached the ideal value of 3 (corresponding to the complete conversion of urea and 

steam to H2, CO2, and N2). A steep rise with increasing temperature in pre-maxima yield 

for all S:C mixtures was observed. This can be explained by the medium endothermicity 

of urea steam reforming (R25) and of its thermal decomposition products (R23). The 

gradual post-maxima decrease in H2 yield is likely attributable to the mild exothermicity 

of (R24) and thus by the reverse water gas shift becoming more favourable. 
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Figure 3-3. H2 Yield per mol of reactant urea with 63 % N2 dilution 

 

3.3.1.4 Carbon Selectivity  

Carbon-species syngas mol fraction was independent of diluent type and diluent 

concentration. The fraction of carbon monoxide in the calculated equilibrium dry 



 

 

49 

corrected syngas (Figure 3-1) was seen to increase with increasing urea concentration in 

the reactant mixture though this was observed to be a relatively minor dependence 

compared to temperature. Values of CO below a few ppm level were only recorded at 

temperatures well below the onset of steam conversion: ca. 300 °C for all reactant 

compositions. Carbon monoxide only occurred below the ppm value at temperatures 

below 177 °C where steam reforming had yet to begin. This could necessitate post-

reactor processing for direct supply to PEMFCs which are intolerant of CO above ppm 

levels [16]. At steam conversion temperatures, CO constituted between 5 to 23 % of the 

dry corrected syngas, dependent on reactant S:C (see Figure 3-4). 
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Figure 3-4. CO in the dry corrected syngas. 

 

CO2 was seen to increase with increasing temperature to a maximum output 

fraction in the dry corrected syngas that occurred for all S:C ratios at ca. 500 °C (Figure 

3-5). Reactant mixture S:C variation dictated both the rate of increase in dry corrected 

syngas CO2 before reaching its maxima and also its post-maximum decrease with 

increasing temperature. This post-maxima function changed from a linear trend at low 

urea-lean reactant concentrations to exponential decay for stoichiometric and super-

stoichiometric urea-rich mixtures as reaction temperature increased as shown in Figure 

3-5. 
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Figure 3-5. CO2 in the dry corrected syngas. 

 

Methane mol fraction in the dry corrected syngas decreased linearly with 

increasing temperature, with the onset of steam reforming, then decreased 

asymptotically with increasing temperature to negligible values of x10-4 to x10-7 

dependent on S:C. Decrease in dry syngas CH4 with increasing temperature was steepest 

with water-rich reactant concentrations. These results are shown in Figure 3-6. 

200 400 600 800 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ol

 fr
ac

tio
n

Temperature (°C)

 SC0.25
 SC0.5
 SC1
 SC2
 SC3
 SC4
 SC5
 SC6
 SC7

 

Figure 3-6. CH4 in the dry corrected syngas. 
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3.3.1.5 Ammonia (NH3) in Dry Corrected Syngas. 

Equilibrium maxima of predicted product mol fraction NH3 in the dry corrected 

syngas occurred advantageously prior to the onset of steam conversion. Of further 

benefit was the identification that during steam reforming, NH3 concentrations in the dry 

syngas had a decreasing trend with increasing temperature. This decrease approximated 

to an exponential decay at ca. 700 °C. Results of NH3 content in the dry corrected 

syngas with temperature and variables of S:C and dilution representative of the range of 

conditions modelled are displayed in Figure 3-7. Concentrations of 10 to 100 ppm NH3 

were predicted at moderate steam reforming temperatures of 550 °C to 600 °C. Also, at 

temperatures where steam conversion occurred, NH3 values decreased with increasing 

reactant mixture water content. 

Throughout all calculation parameters, NH3 in the dry corrected syngas never 

occurred below the ppm level. This level of concentration is identified as the minimum 

necessary to avoid poisoning of PEMFCs [36]. Dependent on S:C and level of dilution, 

this means that very high reforming temperatures would be needed to achieve a dry 

syngas NH3 fraction of >10 ppm as required by the present technology for this type of 

fuel cell. For supply to solid oxide and alkaline fuel cells, trace ammonia in the syngas 

would not be a problem [34, 35]. The 10-100 ppm NH3 predicted at 500 °C ≤ T ≤ 600 

°C is advantageous as it coincides with the temperature region where steam conversion 

and H2 yield were highest. In practice, gaseous NH3 will likely dissolve in the 

unconverted water exiting the reactor due to its high solubility. This can then simply be 

removed by the inclusion of a post-reactor condensate trap, and so should not be 

considered a problem of the process. 
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Figure 3-7. NH3 in dry corrected Syngas. 
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The absence of an NH3-rich syngas, particularly at low temperature differs from 

what might be expected based on some previous reports of simple urea solution 

thermolysis where the pathway was considered to be firstly via water evolution, then 

urea decomposition with the initial products of NH3 and HNCO, with further 

decomposition to NH3 in the presence of water as temperature increased (section 2.6). 

This apparent discrepancy is not surprising considering that previous published work 

has neglected any consideration of H2 production or the involvement of high 

temperature steam. Since this is a first attempt at urea steam reforming interpretation, 

the model does not allow any further elucidation of reaction mechanisms other than by 

product fractions at equilibrium. Evidence that NH3 cracking occurs could however be 

inferred from these results as the exponential decay of NH3 concentration at higher 

temperatures is comparable with previous analysis [32]. The reactions that determine the 

presence of high quantities of CH4 and to a lesser extent N2 predicted by these 

calculations at pre-steam reforming temperatures are also less certain. 

In terms of life cycle analysis of the other products, CO could be reformed to more 

hydrogen in downstream water gas shift reactors, and CO2 captured on materials such as 

ethanolamine which work best at room temperatures or with pressure swing adsorbers. 

Product N2 is inert and could be released or used as a commodity. NH3 captured in the 

unconverted water condensate could theoretically be re-cycled back into the reactor – an 

area for future study. 

3.3.1.6 Pressure 

Increasing pressure for all S:C mixtures had an adverse effect on steam 

conversion, reducing its total value and requiring higher temperatures to achieve the 

same fraction of steam conversion as at lower pressure. Hydrogen yield and syngas 

hydrogen mol fraction also decreased with increasing pressure at any given temperature. 

The influence of varying system pressure on urea steam reforming dry synthesis gas 

equilibrium content of NH3, H2, and CH4, and H2O conversion, is shown in Figure 3-8 

to Figure 3-11. 

The equilibrium hydrogen mol fraction in the dry syngas decreased by 38 % at 600 

°C with increasing pressure from 1 to 20 atmospheres (Figure 3-9). Overall maxima of 

syngas hydrogen mol fraction also decreased, with the temperature required to achieve 

maximum mol fraction increasing by 250 °C for pressure up to 20 atmospheres. H2O 

conversion was predicted to be suppressed by increasing pressure. From 1 to 20 

atmospheres at 600 °C there was a 100 % predicted reduction in steam conversion with 

the temperature required for maximum conversion being increased with increasing 

pressure (Figure 3-10). To achieve maximum steam conversion at 20 atmospheres 

required an increase in temperature of 230 °C compared to that achievable at 1 

atmosphere. A large increase in NH3 with increasing pressure across all temperatures 
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was observed at equilibrium (Figure 3-8). At 600 °C this increase was 808 % by raising 

the pressure from 1 to 20 atmospheres. Carbon selectivity with increasing pressure (not 

shown) showed an increase in methane and decrease in carbon monoxide at steam 

reforming temperatures. Methane mol fractions in the dry syngas followed a similar 

relation as with increasing urea content such that for any temperature in the region of 

steam reforming, methane content was higher in the dry syngas with increased pressure. 

Carbon dioxide mol fractions fell with increasing pressure, for any fixed reaction 

temperature up to an inflexion point at ca. 600 °C. Therefore, in terms of syngas 

products, it would not appear advantageous to steam reform urea at increased pressure, 

with the greatest adverse consequence of increased pressure being the reduction in 

steam conversion, subsequent hydrogen yield and an increase in ammonia product 

concentration. 
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Figure 3-8. NH3 in dry corrected syngas as a function of temperature, with varying 
pressure. 
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Figure 3-9. H2 in dry corrected syngas as a function of temperature, with varying 
pressure. 
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Figure 3-10. Conversion of H2O as a function of temperature, with varying pressure. 
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Figure 3-11. CO2 in dry corrected syngas as a function of temperature, with varying 
pressure. 

 

3.3.2 Thermochemistry 

3.3.2.1 Stoichiometric Calculations 

The results of this method provided an idealised maximum model only, accounting 

for no carrier gas and assuming a complete forward reaction of (R25) for total product 

creation. Therefore this is the most simplistic of the two approaches studied to 

determine total process enthalpy per mol of H2 produced. This is not necessarily a 

weakness of the method as it does permit an easy “field” judgement of the process 

determining factors plus permitting the incorporation of additional impositions on the 

energy budget, through for example process inefficiencies or post-processing stages. 

Furthermore, as will be seen in Chapter 5 and Chapter 6, the validity of this method, 

based on (R25) is in fact supported by the, as predicted, composition ratio of 

experimental products during steady state operation. 

Figure 3-12 shows the results of these calculations on the total energy needed to 

produce one mol of H2 from urea by steam reforming at equilibrium at optimum 

temperatures (500 °C ≤ T ≤ 700 °C). This temperature range is chosen due to the 

modelling predictions for greatest proximity to high H2 yield and maximum steam 

conversion, and for which the stoichiometric reaction mechanism (R25) is seen to be 

most valid. 
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Figure 3-12. Total kJ per mol of H2 produced at equilibrium. 

 

Both water vaporisation and urea sublimation need to be overcome prior to steam 

reforming with relatively high energy demands at 100 °C and 133 °C respectively. It is 

apparent from Figure 3-12 that increasing water content for higher S:C mixtures 

resulted in greater energy demand due to the need to raise the temperature of excess 

steam. For future applications, enzymatic urea decomposition (R13) could be utilised. 

This would also overcome the ∆Hsub UREA energy (96 kJ mol-1) that was a feature of the 

urea enthalpy intermediate stage and potentially lead to a substantial reduction in total 

energy required for the process. The gradual increase in enthalpy per mol of H2 with 

temperature for all S:C variables is indicative of the ∆Hsens involved. 

Table 3-5 shows comparisons between these results and the energy content of H2. 

The total mean energy to produce one mol of H2 in the range 500 °C ≤ T ≤ 700 °C is 

shown, compared to the higher heating value of hydrogen (-285.83 kJ mol-1). This was 

considered most appropriate as the lower heating value excludes the latent heat of 

condensation of steam, and fuel cells release water in liquid phase [5]. The column 

headed “kJ surplus” in Table 3-5 shows the energy of the process for one mol of H2 

produced subtracted from the higher heating value of hydrogen. Values are also given in 

terms of power available per unit time (in Watt hours) which is derived from the kJ 

surplus column. 



 

 

57 

Table 3-5. Values of minimum energy needed to produce 1 mol of H2 from urea 

and steam. kJ surplus and power available has been calculated by deducting from the 

energy content of H2 (285.83 kJ mol-1). 

S:C kJ per mol 
H2 

kJ surplus per 
mol of H2 

Power available 

(Wh) 

1 76.05 209.78 58.27 

2 94.45 191.38 53.16 

3 112.84 172.99 48.05 

4 131.24 154.59 42.94 

5 149.64 136.19 37.83 

6 168.04 117.79 32.72 

7 186.44 99.39 27.61 

 

It can be seen in Table 3-5 that based on these calculations, surplus power is 

available with all S:C mixtures. Note that these values of power availability are not only 

theoretical maxima for each reagent mixture, since they assume the optimum forward 

reaction for urea steam reforming (R25) as has been described, but they take no account 

of process inefficiencies, the inclusion of which is easily applicable but which would 

reduce the overall surplus of power available. Additionally, these results also exclude 

final power conversion inefficiency. Factorisation for this is non-generic and outside the 

scope of this study, but to use the H2 produced by urea steam reforming in the most 

efficient power generation device (a fuel cell) would need to incorporate a value for its 

operating efficiency which can be estimated to create an additional reduction of between 

47 % - 40 % [5].  

If urea is supplied to the steam reforming process combined with water in aqueous 

solution, then an additional energy demand is incurred for solvation, which will 

decrease further the power available as shown in Table 3-5. Solvation of urea in water 

is mildly exothermic with the enthalpy change for this reaction at 25 °C quantified by 

Koebel and Strutz [68]:  

∆Hsolv = [(3656.308 – 89.9082(M) + 5.54228(M2) – 0.24071(M3) +  

 0.00449022(M4)] x 4.186 J mol-1 (F9) 

where, M = molality. (F9) is reportedly valid within the molar range 0.319 < M < 

20.18. [See Table 4.1 for a comparison of molar and S:C urea solutions.] For the range 

of experimental mixtures 3 ≤ S:C ≤ 7, the mean average energy required is found to be 

13.115 ± 0.411 kJ mol-1. This energy demand has been excluded from the calculations 

in this section as for 4 ≤ S:C ≤ 7, solvation will occur with heat flow from its room 

temperature surroundings (see Chapter 4). 



 

 

58 

Though the incorporation of carrier gas is not a pre-requisite for steam reforming, 

it was used in this study’s reactor experimentation. Diluting the reactant mixture incurs 

extra energy costs and reduces the concentration of H2 in the syngas. Argon was found 

to be the least energy intensive carrier gas as can be seen in the comparisons of diluents 

∆Hsens in Table 3-6 due to its lower heat capacity. However, due to the relative higher 

cost of using argon, it is likely to be more favourable to operate with N2 as a carrier gas 

although it is predicted to have higher enthalpy requirements. Furthermore, for a 

PEMFC, the dilution affects of N2 with the H2 feed have a beneficial effect in stabilising 

power outputs when demand fluctuates [140]. Though this citation specifies the effects 

of N2 only, its benefit is related to dilution, therefore Ar (or any inert gas) should have 

the same positive effects. It is feasible, and advantageous as perhaps a means of 

mitigating its release to the atmosphere, that CO2 may be used as a carrier gas, and then 

be removed by a CO2-sorbent either in the reformer or downstream, prior to feeding a 

fuel cell. Though an assessment of the feasibility of urea steam reforming with a CO2 

diluent was not attempted, the ∆Hsens of this diluent was found to be more energy 

intensive than both Ar and N2. 

 

Table 3-6. Calculated enthalpy of different carrier gases at the range of optimum 

urea steam reforming temperatures. 

N2 ∆Hsens Ar ∆Hsens CO2 ∆Hsens Temperature 
(°C) (kJ) (kJ) (kJ) 

500 14.1064 9.8078 21.2719 

550 15.6767 10.8472 23.8395 

600 17.2635 11.8865 26.4483 

650 18.8663 12.9258 29.0946 

700 20.4846 13.9651 31.7753 

3.3.2.2 Equilibrium Mol Fraction Calculations 

The parameters of this model are identical to the parameters of results reported in 

Chapter 6, and are therefore directly comparable. Therefore they provide an economic 

assessment of this optimised process. Figure 3-13 shows the results of calculations on 

the total energy needed to produce one mol of H2 from urea by steam reforming with 

63% carrier gas dilution plotted as curves as a function of temperature. For the S:C 

mixtures attainable at room temperature and used in experimentation 3:1 ≤ S:C ≤ 7:1, 

these curves are seen to have minima that occur at relatively low mid-range 

temperatures: 500 °C ≤ T ≤ 700 °C which is advantageous in energy input terms. This 

temperature range is also advantageous as it coincides with the range for optimum 
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functioning of industrial nickel steam reforming catalysts [12, 141], and see Chapter 7. 

Furthermore, it is a temperature range which has been shown as attractive based on 

lower CO product, and rapidly declining NH3 concentration (see section 3.3.1).  
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Figure 3-13. Total kJ per mol of H2 for 63% diluent urea steam reforming. 

 

The calculations predicted that an energy requirement of ≥ 250 kJ per mol of H2 

would be necessary to produce H2 at low pre-steam reforming temperatures; a factor that 

is independent of reactant S:C or dilution concentration, making these conditions 

unfavourable despite the lower heating demand. Post-minima kJ per H2 values for all 

reactant mixtures were predicted to remain relatively low and begin to increase 

gradually with increasing temperature. To understand the cause of this dependency, 

intermediate stages in the enthalpy calculation were assessed. ∆Htotal was found to 

increase up to T = 900 °C ± 10 °C and then to decrease relatively gradually as a function 

of temperature at these highest temperatures for all mixtures. The high energy required 

to heat urea resulted in an increase in ∆Htotal directly proportional to the urea content of 

the reactant mixture for all temperatures. Thus despite the extra heat necessary to 

generate and heat up steam, urea was the most energy intensive reagent. 

Though it would seem attractive to operate urea steam reforming at T ≥ 800 °C, 

the disadvantages are that an increased CO content will result, caused by an increase in 

the reverse water gas shift reaction, and a reduced H2 yield per mol of urea input and 

reduced steam conversion due to the shift away from the forward reaction of (R25). 

Higher temperatures of operation would incur extra process running costs to maintain 

temperature and avoid heat losses. These inefficiency factors are idiosyncratic and so 

were not quantifiable in the model. 
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Increasing the urea concentration in the fuel S:C mixture was predicted to decrease 

the energy required to produce one mol of H2. The cause of this lower energy demand 

with increasing urea enrichment was found to be due to the increased H2 mol fraction in 

the corrected wet syngas since these mixtures also had the highest reaction enthalpy. 

This is shown in the graph of the hydrogen product mol fraction as a function of 

temperature for 63 % carrier gas dilution (Figure 3-14). In contrast to Figure 3-3 

showing hydrogen yield based on mol of urea reactant, Figure 3-14 is calculated per 

mol of reactant mixture and consequently shows decreased hydrogen output with 

decreasing urea content. This is due to the greater amount of unconverted water present, 

a result of water content in excess of the stoichiometric amount. A larger number of Nout 

with increasing urea content in the reactant mixture also accentuates the differences in 

H2 product across the range when compared in this way. 
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Figure 3-14. Hydrogen product mol fraction in the wet syngas for urea steam reforming 
with 63% carrier gas dilution. 

 

With increasing dilution of the reactant mixture, the H2 output mol fraction varied 

from 0.35 (at zero dilution) to 0.05 (at 84 % dilution) in the wet syngas at 600 °C. 

Reaction enthalpy increased with decreasing dilution, due to the higher sensible and 

latent heat demands of urea and water.  

It is interesting to compare these results with the energy demands to produce H2 by 

conventional methane steam reforming. Methane steam reforming was modelled with 

EQUIL in CHEMKIN at S:C = 3 which is mid-range in the optimum ratio for industrial 

applications [142]. The same method as for urea modelling was followed. In the regions 

of temperature where steam reforming was optimum, results showed that an increase in 

energy of 58 % was necessary to produce one mol of H2 from urea compared to the 
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energy necessary from MSR at T = 500 °C. This is shown in Figure 3-15. The 

difference in energy fell slightly to 54 % at T = 700 °C and remained consistent (correct 

to 1% difference) with increasing temperature thereafter. The cause of this increase in 

energy demand was due to the slightly higher concentration of H2 in the methane 

derived syngas, since ∆Hr was comparable between both processes from 550 °C ≤ T ≤ 

600 °C, and became less for urea reforming than MSR at temperatures greater than 600 

°C (not shown). Though disadvantageous in energy terms, choosing the urea steam 

reforming process over MSR is mitigated by the potential sustainability and future 

supply security of urea, plus the advantage of slightly lower temperature creating a 

process environment that may negate the need for post-reactor stages to reduce CO 

content. 
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Figure 3-15. Comparison between the energy needed to produce one mol of H2 by 
steam reforming urea and methane. Both results shown are for reactant mixtures of 
S:C = 3, and with a 63% dilution of carrier gas. 

 

3.3.3 Model Limitations 

The reference source that provided the polynomial data [139] for urea gives heat 

capacity values attributable to a gas phase only. These urea Cp and ∆Hsens values were 

used throughout yet, as has been described in section 2.6.2, there is uncertainty about 

whether urea has a gas phase or whether it dissociates upon heating. To test the method, 

modelling was done with HNCO and NH3 (the predicted urea sublimation products) as 

alternatives to urea and found to give outputs correct to ≥ 90 %, with Cp values varying 

by 14 ± 0.2 J mol-1 K.  
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For energy demand modelling, it was also chosen to use urea instead of combined 

values of sensible enthalpy for NH3 and HNCO following urea sublimation at 133 °C. 

The influence of this on urea total enthalpy was checked by comparison and the values 

were found to be correct to < ± 0.005 kJ. This low variation and the closeness of these 

predictions to experimental outputs at steady state, calculated to give adequate residence 

time for equilibration (Chapters 4, 5, and 6), support the validity of this chosen model. 

Enthalpy of water vaporisation was placed at 100 °C when calculating ∆Hvap, H2O. 

However the reference source [137] gives 227 °C as the transition point between phase 

change polynomials co-efficients, despite this temperature being 127 °C above water 

boiling point. Since these values are below steam reforming temperatures, though 

uncertainties remain, they are prior to optimum operating temperatures and so will not 

have influenced the total energy per mol of H2 values. Burcat [139] gives two sets of 

polynomial values for the different phases of water with the partition being 227 °C. For 

consistency, the steam polynomial values were extrapolated to 100 °C. 

In the Equilibrium Mol Fraction Calculation Method it was stated that direct 

comparability was achieved between the model and the experimental reactor results in 

Chapter 6 excluding unknown system operating inefficiencies. In the experimental 

process system, unconverted water was condensed upon leaving the reactor. Therefore 

the values for ∆Hvap H2O could, in theory, be added back on to the calculation, thereby 

reducing the overall energy demand. This was not done based on the rationale that the 

condenser is outside of the reactor bed and therefore any heat gain would be to the 

surroundings rather than the reactor system model. 

3.4 Conclusions 

Resolution of the chemical reactions involved in urea steam reforming cannot be 

achieved by equilibrium modelling, but factors influencing conversion (temperature, 

pressure, S:C, diluent) can be assessed. Syngas composition, reaction enthalpy, steam 

conversion and H2 yield were predicted with software that calculates outputs using 

Gibbs minimisation algorithms. Total energy needed to produce H2 was then calculated 

from these results. The results were used to set system parameters for the 

experimentation described in Chapter 5 and Chapter 6. They also have importance for 

the utilisation of urea as a hydrogen carrier, as they give information to help assess the 

need for any post-reforming process stages to further purify the syngas, and, particularly 

if remote/renewable technologies were required, to assess the energetic and economic 

viability of the process for dehydrogenation. 

Hydrogen was seen to be the major product from urea steam reforming, with a 

predicted volume fraction of ca. 50% excluding carrier gas and unconverted steam. 
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Minor by-products of CO2, little CO, and negligible CH4 were present in the equilibrium 

syngas with no other higher hydrocarbons predicted. This simple syngas composition is 

favourable due to its low greenhouse gas potential and the ease with which further 

purification could be achieved in a practical setting. Ammonia values were low at the 

tens of ppm level, but these may still be too high for direct application of reformed urea 

syngas into certain fuel cell types. All other species (including HNCO) were absent at 

mol fractions of ≥ 10-8 in the dry corrected syngas. 

Increasing pressure was seen to have an adverse effect on equilibrium in terms of 

desirable products and outputs. It was predicted to decrease steam conversion and 

hydrogen yield for any given temperature, and also to increase ammonia production. 

Two methods were employed for the estimation of determining energy required to 

produce one mole of hydrogen. EQUIL in CHEMKIN output results, combined with 

similar concentrations of chemical species found during experimental steady state 

operation support the stoichiometric model based on a global urea steam reforming 

reaction. This provides an easy calculation of total energy requirements with values of 

80 to 220 kJ minimum for reactant mixtures in the range 1:1 ≤ S:C ≤ 7:1. This equates, 

based on the energy content of H2 to an energy gain of between 99 to 210 kJ per mol of 

H2, or a power capacity of between 28 to 58 Wh. The stoichiometric model predicts a 

theoretical maximum energy and power gain as it fails to account for thermodynamic 

limitations and possible competing reaction mechanisms. To incorporate extra detail, to 

apply factors to account for carrier gas dilution and to model energy demand comparable 

to successfully reported urea steam reforming operating parameters, values of enthalpy 

and equilibrium mol fraction predictions based on Gibbs free energy minimalisation 

were obtained from EQUIL in CHEMKIN. Not surprisingly it was found that mixtures 

closer to the stoichiometric amount were predicted to create H2 for the lowest energy 

demand. Advantageously, these minima were in the mid-range (500 °C ≤ T ≤ 650 °C) 

temperature region. In a practical setting however, this will need to be balanced against 

the difficulty posed by the solubility of urea in water at concentrations higher than S:C = 

3. This will be explored in the next chapter. 

Energy needed to make one mol of H2 from urea steam reforming was found to be 

58 % - 54 % greater than if using CH4 as a fuel in the temperature range T ≥ 500 °C. 
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4 Fuel Characterisation 

4.1 Introduction 

4.1.1 Solubility 

Urea is soluble in water for a range of water-rich S:C mixtures. As a function of 

temperature, the concentrations practically attainable at standard conditions (25 °C and 

1 atm) are S:C ≥ 3:1 (see Table 2-4). The molality of these concentrations is shown in 

Table 4-1.  

Table 4-1. Concentrations of urea in de-ionised water solution in Molar and S:C terms. 
* represents the concentration of urea in human urine. 

Molar concentration 
(mol litre-1) 

S:C 

0.33 M* S:C = 150:1 

7.9 M S:C = 7 

9.26 M S:C = 6 

11.1 M S:C = 5 

13.9 M S:C = 4 

18.5 M S:C = 3 

  

It simplifies the process of steam reforming to have one fuel feed line consisting of 

urea in solution, rather than a separate water feed and urea feed. Consequently, an 

assessment of the urea reagent’s solubility in de-ionised water was required to 

understand the nature of urea solvation. This aided the design and optimisation of urea 

steam reforming experimentation, and gave a greater understanding of the state and 

composition of the fuel as it enters the reactor.  

In aqueous solution, the isomerisation of urea to ammonium cyanate can occur 

(R26):  

(NH2)2CO ↔ NH4
+NCO- (R26) 

Shorter [44] quotes an equilibrium constant value of ca. 1x104 mol L-1 in favour of 

the reverse reaction to urea, but does not give details of the range of aqueous urea 

mixtures to which this value relates, merely stating that it is applicable to solutions used 
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“in most of the kinetic work”. As will be discussed below, previous reports have not 

extended investigations to the urea-rich ratios used in this study’s experimentation. 

The forward reaction of (R26) increases with temperature. For 8 M urea in de-

ionised water solutions only, equilibrium constant values of 2.48 x10-5 at 18 °C, 3.65 

x10-5 at 25 °C, and 19.0 x10-5 at 60 °C have been reported [143]. The same authors 

report that acidification inhibits cyanate formation. Again with investigations on an 8 M 

solution, with pH at 6, 7, and 8, the concentrations of cyanate were detected at a 

maximum of x10-5 M up to 5 hours after solvation [143]. In gravimetric terms, based on 

the molecular weight (Mr) of CNO- = 42 g mol-1, this concentration is 0.42 ppm. 

Lin et al. [144] quantified (R26) with greater precision using ion chromatography, 

though still limited to an assessment of only 8 M urea solutions. Their results showed 

significantly low levels of urea isomerisation, with one week residence time at high 

alkalinity (pH = 10) necessary to detect cyanate above µM levels. 

Welles et al. [145] studied isomerisation of urea in aqueous solution at 2, 4, 6, and 

8 M at 25 °C. They confirmed that cyanate production was negligible and that the rate of 

production was independent of concentration. Their values for the rate constants of 

(R26) were: 

Forward reaction = 0.2 mole-1 hr-1 

Reverse reaction = 0.3 x 105 hr-1  

Based on the values quoted by Hagel et al. [143], an 8 M aqueous urea solution 

(S:C ≈ 7), up to five hours after solvation would contain: 

8 – 0.00001 = 7.9999 M urea, or 99.9988 % urea. 

Though the work of Welles et al. [145] stated that the reaction rate constants were 

independent of concentration, this can only be assumed relevant in the context of the 

mixtures used in their study. Their study did not extend to the relatively high urea 

concentrations (3 ≤ S:C ≤ 6) used in these urea steam reforming experiments. A short 

investigation by ion chromatography of urea solutions for 3 ≤ S:C ≤ 6 was therefore 

required to assess the extent of urea isomerisation prior to its contact with the reactor 

catalyst bed. 

4.1.2 Thermolysis 

The aim of urea thermolysis experimentation was to provide a greater 

understanding of the nature of the gaseous fuel as it entered the temperature gradient 

inside the reactor and at the catalyst bed. It also permitted further examination of how 

initial heat exposure could affect the extent of urea isomerisation as previously 

considered in section 4.1.1. Analysis of controlled thermal decomposition and 
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associated mass loss can also be used to quantify the kinetic parameters of underlying 

reaction mechanisms. The acquisition of all this information was considered pertinent 

for optimising reactor design, for setting steam reforming operational/experimental 

parameters, and as a means of verifying whether all significant species were considered 

in the material balances used to quantify steam reforming reactor product analysis. 

Though urea thermolysis is one area where scientific literature is relatively 

abundant (a discussion of which has already been critiqued in section 2.6.2) compared to 

other aspects of this project’s theme, the existing literature is found to be limited by its 

focus on NH3-producing reaction mechanisms for NOx reduction, a narrow range of 

gaseous product analyses, and an absence of experimentation involving nickel catalyst. 

The need for greater analysis is best described by a quote from one of the recent authors 

[48]: 

“the intricate and undoubtedly complex kinetics associated with [urea 

thermolysis] largely remain a mystery and a challenge to investigators”  

Previous studies using Simultaneous Thermal Analysis (STA) have monitored 

evolved gases by FTIR [48, 61, 63] and MS [57] to elucidate thermolysis, but for 

anhydrous (pure) urea only. Extended analysis was therefore required to include 

thermolysis of aqueous urea mixtures, with also a greater range of ions monitored by 

MS. Additionally, nickel catalyst (as used in urea steam reforming experimentation – 

see Table 5-1) was incorporated into thermolysis samples to try and reveal its influence 

on steam reforming. The rationale for these fuel characterisation experiments was given 

extra weight by the need to investigate possible early (very low temperature) H2 

evolution as observed in some experimental results where aqueous urea mixtures close 

to the eutectic range (S:C = 7) were used (see section 5.4.1). 

4.2 Method 

4.2.1 Urea in Water Solubility 

The composition of the urea reagent is given in Table 2-6. Room temperature de-

ionised water (obtained using an Elgastat water purification system) was used as the 

solvent. The desired ratio of urea in water on a molar S:C basis was determined from the 

following formula: 

S:C = 
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Volumes of water used were < 50 ml, and typically between 20 – 40 ml. Relative 

molecular masses of the reagents were taken as Mr(urea) = 60.06 g/mol, and Mr(water) = 18 

g/mol.  

A quantity of de-ionised water was first poured into a 50 ml graduated flask and its 

mass was determined using an electronic balance that had been calibrated to discount 

the weight of the flask. Mass measurements were obtained to an accuracy of ± 0.0005 g. 

A relative density of 1.000 was assumed for water. By transposing (F10), the mass of 

urea was determined by inserting the desired value of the S:C mixture: 

measured mass(urea) = 
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A mass of urea – value obtained from (F11) – was then measured out using the 

calibrated electronic balance. This was then combined with the water and its solubility 

observed. Complete solvation was determined by visible observation. This procedure 

was conducted at a laboratory temperature of 20 °C. 

4.2.2 Ion Chromatography 

Based on the method by Lin et al. [144], a Dionex DX-100 Ion Chromatograph 

with an AS14A column (4 mm × 250 mm), was used to determine the concentration of 

cyanate ions in urea solution and therefore by inference the extent of the urea 

isomerisation for solutions S:C = 3, 4, 5, 6, and 7. An eluent of 3.5 mM/1.0 mM 

Na2CO3/NaHCO3 was prepared by dissolving 3.710 g (350 mM) Na2CO3 and 0.840 g 

(100 mM) NaHCO3 in 1 litre of distilled water and diluting this ten times. A de-ionised 

water sample was run through the column prior to analysis of cyanate to calibrate a 

baseline. 

Prior to analysis of the urea solutions, a 100.60 ppm sodium cyanate (NaCNO) 

stock solution was prepared by dissolving 160.51 mg of 97% sodium cyanate (Alfa 

Aesar) in 1 litre of distilled water. Serial dilutions of this stock solution were then made 

at 1.006, 5.031, 10.060, 20.124, and 40.248 ppm. These standards were eluted through 

the chromatograph to create a calibration plot. The five calibration points and resultant 

peak detection values were also plotted using Microsoft Excel. By linear regression a 

trendline was added to quantify the linearity using the statistical co-efficient of 

determination (R2) method. The analytical limit of detection was determined from this 

plot by the trendline’s axial intersection. 

Urea solutions were prepared as described in section 4.2.1. All sample preparation 

was performed immediately prior to analysis. At most, three samples were loaded into 

the Dionex “rack”. The eluent flow rate during analysis was 1 ml min-1 with a run time 
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of 15 minutes, making a maximum residence time of the samples prior to analysis of < 1 

hour after preparation. 

The urea solution samples were also tested for pH using a Corning 135 pH/ion 

meter. This test was done by insertion of the ion probe into the volumetric flask 

containing the remainder of the sample. The remaining portion of sample was that 

which had been left over after a quantity had first been loaded into the ion-

chromatograph. This was to avoid contamination of the sample prior to ion 

chromatography. The pH/ion meter was calibrated by pH buffers prior to analysis. 

4.2.3 Thermal Analysis 

Urea was in its as-supplied dry crystalline powder form (see Table 2.6 for 

composition). Urea solutions were prepared as described in section 4.2.1. Where catalyst 

was included in the sample, this was nickel catalyst as used in all urea steam reforming 

reactions. The catalyst had been subject to a chemical reduction experiment prior to 

analysis and had then been crushed to a fine powder. This is described fully, along with 

the sample’s provenance, preparation and mode of storage in section 7.1. Samples were 

weighed on an electronic top pan balance accurate to ± 0.005 mg.  

Previous studies had identified initial urea decomposition as a first order reaction 

[69]. Therefore the reaction rate constant method was used to derive the kinetic 

parameters of urea thermolysis as it has been found to give excellent results, comparable 

with more complicated methods [146]. It assumes that the reactions obey the Arrhenius 

equation: 
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where: 

k = experimental reaction rate constant 

Ea = activation energy, in J mol-1 

A = frequency factor, in units of collisions sec-1  

R = universal gas constant, in J K-1 mol-1 

T = temperature, in Kelvin 

 The apparent first order rate constant (k) for each stage of mass loss per unit time 

was calculated over numerous small (seven second) iterations from: 
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where: 

wi = initial mass 

w∞ = terminal mass 

dw = small change in weight 

dt = small change in time 

From these calculations of k, a plot of ln(k) versus 1/T (where T is the mid-range 

temperature of each iteration) was created. The slope of the trendline was used to 

determine Ea and A, with A being the ln(k) axis intercept and Ea being calculated by the 

slope value multiplied by R according to (F12).  

These Arrhenius parameters were then used to provide values of k at a range of 

temperatures. Residence time (t) was then determined for urea conversion using: 

[ ]
[ ]ureak

dt

uread
−=  (F14) 

and 

Residence time (t)
 

[ ]
[ ]
k
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ureat

0

ln−

=  (F15) 

where:  

[urea] = concentration of fuel,  

t = terminal,  

0 = initial 

Two analytical systems were used for these experiments: 

4.2.3.1 Thermogravimetric Analysis 

A mass of 19.35 mg urea was weighed and inserted into a Stanton Redcroft 

TGH100 Thermogravimetric Analyser, Starting at 14 °C, the urea sample was subjected 

to increases in temperature at a rate of 3 °C min-1, under a 50 ml min-1 N2 gas flow. The 

N2 gas was zero grade > 99.99 % purity from BOC cylinders. At 900 °C, the gas flow 

was changed to air (also from BOC cylinders) and the temperature was held for ten 

minutes, following which the experiment was stopped. Sample weight loss was obtained 

every second by the analyser and recorded onto a personal computer. Only a urea sample 

(Table 2.6) was analysed with this apparatus. 
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4.2.3.2 Simultaneous Thermal Analysis 

Four samples were analysed: 

1. Urea 

2. De-ionised water and urea (in a mixture ratio of S:C = 7) 

3. Urea and catalyst 

4. Catalyst, plus de-ionised water and urea (in mixture ratio of S:C = 7) 

The samples contained a mass of urea in the range 10.07 ≤ mg ≤ 33.49. The dry 

urea and nickel sample (sample 3) was prepared by mixing an identical weight of each 

reagent and then taking the final sample from this on the assumption that it represented 

a 50:50 mix. For the urea solution with nickel (sample 4), catalyst was added to the 

crucible and then drops of urea solution were administered using a pipette. 

An alumina crucible that had been pre-heated to 1050 °C then allowed to cool was 

used to contain the samples. This was inserted into a Netzsch 449C Jupiter thermo-

microbalance which was coupled (by a transfer line heated to 250 °C) to a Netzsch TA 

Quadruple Mass Spectrometer (QMS) 403C Aëolos for simultaneous detection and 

quantification of the evolved gases. The analyser was calibrated immediately prior to 

experimentation and a buoyancy baseline calibration also completed. 

Once the crucible and sample were in-situ, the system, at 30 °C, was evacuated 

and de-pressurised from 1.0 atm to –1.0 atm three times, then purged with 80 ml min-1 

pure helium flow for at least 30 minutes. For samples containing water, the evacuation 

and de-pressurisation steps were omitted and the helium flow purge was maintained for 

90 minutes to compensate. 

The helium flow was maintained and the pressure set to 1.0 atm for the duration of 

the analyses. Helium was used instead of N2 to identify any product N2 evolved. The 

sample was then heated at a rate of 5 °C min-1 from 30 °C to 700 °C and the results of 

mass loss logged on a personal computer. A range of m/z values, compiled from 

literature and including speculative species was programmed into the QMS for 

detection. This list, which is shown in Table 4-2, included all parent ions, plus fragment 

ions with an intensity ≥ 2 % of the parent. Evolved gases were scanned approximately 

every 15 seconds and all (m/z) values were monitored simultaneously, with dwell times 

of 0.5 seconds for each. Recorded data was saved on a personal computer using Aëolos 

software. 

The experiments were repeated for each sample under identical TGA operating 

conditions but this time with a gas splitter installed prior to the QMS and a transfer line 

connected to divert evolved gases into an FTIR analyser. The FTIR transfer line was 

heated to 150 °C. A laser controlled Nicolet AVATAR 370 DTGS FTIR was used, with 
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the results processed by OMNIC software. This analyser had a detection cell volume of 

400 ml. Residence time of gases in the transfer line was considered to be negligible. 
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Table 4-2. Mass/charge values programmed for detection in QMS. Values 

obtained from [137] unless otherwise stated. 

Parent 

Species 

m/v Fragment Ion m/v Abundance (Intensity 
relative to Parent Species) 

H2 2 n/a n/a n/a 

C 12 n/a n/a n/a 

CH4 16   100 % 

  CH3
+

 15 90 % 

  CH2
+

 14 21 % 

  CH 13 13 % 

  C+
 12 5 % 

NH3 17   100 % 

  NH+ 16 80 % 

  NH2
+ 15 8 % 

  N2
2+, N+ 14 2 % 

H2O 18   100 % 

  OH+ 17 20 % 

N2 28   100 % 

  N2
2+, N+ 14 17 % 

CO 28   100 % 

  C+ 12 5 % 

HNCO 43   100 % 

[59, 147]  NCO+ 42 22 % 

  HCO+ 29 14 % 

  NH+ 15 7 % 

  CO+ 28 7 % 

  u/k 44 2 % 

  NO+ 30 2 % 

  HCN+ 27 2 % 

  CN+ 26 2 % 

CO2 44   100 % 

  CO+ 28 10 % 

  O+ 16 10 % 

  C+ 12 9 % 

CN2 52 n/k n/a n/k 

Urea 60 n/k n/a n/k 
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4.3 Results/Discussion 

4.3.1 Solubility 

Urea dissolved within seconds for S:C = 7 and all increasingly water-rich 

mixtures. For S:C = 5 and 6, solvation took a few minutes and required the application 

of energy by holding the flask tightly in cupped hands with gentle agitation (refer to 

section 3.3.8 for energy of solvation). Urea dissolved by the same method with S:C = 4 

but took between five to ten minutes. To obtain an S:C = 3 solution, it was necessary to 

apply heat from a Bunsen burner to the base of the flask. Solvation took 30 minutes. The 

solvation of the S:C = 2 mixture was attempted using heat from a Bunsen burner. After 

twenty minutes these attempts were aborted due to the observations of evaporate being 

emitted from the flask and also a precipitate forming around the flask’s rim evidencing 

that the solution ratio was no longer accurate. 

The values of solubility are consistent with those quoted in literature, as shown in 

Table 2-4. Accordingly, the maximum solubility attainable at 20 °C is 51.6 wt%, 

corresponding to S:C = 3.13. Higher temperatures would be expected to dissolve urea to 

S:C = 2 and greater. It is probable that with a less direct source of heat, evaporation 

could be avoided and therefore complete solubility of S:C = 2 mixtures achieved. This 

was not pursued further as it would have required that the reforming reactor be fitted 

with apparatus to maintain the feed line temperature at ≥ 40 °C. These requirements 

were considered impracticable due to the low temperature tolerance of the dispensing 

syringe, and the dispensing mechanism of the syringe pump prohibiting any form of 

insulating cover attachment (see Chapters 5 and 6). 

Extending the time allowed for complete solvation was disfavoured due to the 

potential for enzymatic urea decomposition occurring in the non-sterile flask. All 

equipment was however clean and rinsed with de-ionised water prior to usage so it is 

considered that best practice was adopted to avoid sample degradation. 

4.3.2 Ion Chromatography 

Well defined cyanate peaks occurred with the calibration standards, eluting at 6.9 

minutes (± 0.1). An example for the 40 ppm stock dilution, and representative of all the 

calibration standards is given in Figure 4-1. An R2 value of 0.9999 was obtained for the 

calibration plot trendline. A limit of detection value of 0.5 ppm was obtained from this 

same trendline’s intersection with the x-axis. 



74 
 

 

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Minutes

-2.0

0

2.0

4.0

6.0

8.0

10.0

12.0

uS

1 - Unknown 1 / 3.972 - Unknown 2 / 5.37

3 - Cyanate / 6.97

 

Figure 4-1. Ion chromatogram for 40 ppm cyanate stock dilution used in calibration. 

 

No cyanate peaks were detected in any of the urea samples. An ion chromatogram 

showing the urea sample for S:C = 3, and representative of all the urea solutions 

analysed is given in Figure 4-2.  
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Figure 4-2. Ion chromatogram of S:C = 3 (18.5 M) urea in distilled water. 

 

The raised baseline shown in Figure 4-2 was evident in all samples analysed. This 

phenomenon was also observed by Lin et al. for samples containing high concentrations 

of urea [144]. No explanation was offered by the authors, but since a de-ionised water 

baseline test was run in this analysis prior to the samples and seen to show a level 

baseline at zero conductivity, the influence of the water can be discounted. It is likely 

therefore that the raised baseline is symptomatic of urea’s interaction with the column 

matrix. As this experiment used much higher concentrations of urea in solution, the 

presence of a raised baseline, and its probable amplification, is corroborative of the 
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reports made by Lin et al. Despite the raised baseline, cyanate peaks were still present in 

Lin et al.‘s report, evidencing the adequacy of this method if cyanate were present in 

sufficient concentration. 

Due to the good resolution of cyanate detection with the calibration standard 

dilutions, the absence of a cyanate peak in these results is good evidence that cyanate 

was not present above the detection limit of 0.5 ppm in any of the urea samples 

analysed. The higher standing time for the solution prior to analysis in the work of Lin 

et al. [144] can explain why cyanate was detected only in their study.  

Further validation for the rigour of the experimental method is provided by results 

of sample pH. These results revealed values of pH = 7.3 ± 0.1. Thus, according to Hagel 

et al. [143], the presence of cyanate, if sample urea decomposition had occurred, should 

not have been inhibited.  

For future work, this method may detect cyanate in urea solutions by repeating the 

calibration to a lower level of concentration. However, the limit of detection at 0.5 ppm 

is considered adequate for the aims of this study since it confirms the maximum limit 

detected by Hagel et al. up to 5 hours after urea solvation [143]. 

4.3.3 Thermal Analysis 

4.3.3.1 Stanton Redcroft TGH100 

The mass loss curve from the thermolysis experiment in the Stanton Redcroft 

TGH100 is shown in Figure 4-3. An apparent increase in mass of ≤ 0.5 % was observed 

from the commencement of the experiment and prior to the first decomposition stage. A 

corresponding value of mass gain was detected after the introduction of airflow at 900 

°C. This is attributed to buoyancy effects on the sample within the analyser and 

therefore not a truly representative phenomenon of thermolysis. The switch to air flow at 

900 °C was to detect whether any additional mass loss may occur due to oxidation. 

Results were analysed as a function of time and temperature on a mass, and on a 

weight percent basis. A multi-step decomposition was observed up to complete sample 

thermolysis (< 0.5 wt% mass remaining ± 0.1 wt%) at 506 °C. The results of this 

analysis are shown graphically on a weight percent basis as a function of temperature in 

Figure 4-3. A thorough discussion on the shape of the urea decomposition curve is 

given later in section 4.3.3.2 combined with the results of EGA (Evolved Gas Analysis).  

No additional mass loss was observed when the system was then switched to air 

flow at 900 °C. These results indicate that a reactor temperature of 700 °C maximum 

would be sufficient for 99.9 % urea conversion, with 99.5 % conversion above 500 °C. 
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Figure 4-3. TGA curve of urea at a heating rate of 3 °C min-1. Weight percent mass loss 
shown as a function of temperature under N2 flow of 80 cm3 min-1.  

 

4.3.3.2 Simultaneous Thermal Analysis 

The usual procedure in STA-MS is to evacuate the sample prior to analysis in 

order to lower the baseline signal. However, high mass losses were observed in the 

samples containing water during the preparatory evacuation step with the sample in-situ. 

This was investigated by testing evacuation on a pure water sample and on a pure urea 

sample. It was found to be due to water evolution accentuated by system de-

pressurisation. Thereafter, the evacuation step was omitted for all analyses on samples 

containing urea solution. To compensate, the helium transfer line purge was increased to 

90 minutes duration. 

Even under atmospheric pressure, samples containing aqueous urea solution 

exhibited a small but constant mass loss. This was observed during transfer line purge to 

be at a rate of 0.01 mg sec-1. Consequently there is experimental error associated with 

the accuracy of the urea solution’s final concentration during analysis. To correct for 

this phenomenon, the mass immediately prior to the onset of heating was recorded and 

taken as the initial mass, with the difference attributed to loss of water. For urea samples 

of S:C = 7, given the mass loss rate of 0.01 mg sec-1 over a time of 90 minutes, this is 

negligible, with the water to urea ratio still remaining as S:C = 7.00 correct to two 

decimal places: a 0.03 % change. 

Figure 4-4 shows the TGA curve of mass loss for urea as a function of 

temperature. The apparent mass increase prior to 133 °C has been removed by the 

buoyancy calibration; otherwise the results show a mass loss curve similar in shape to 
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Figure 4-3 though less well resolved in smaller features such as the small step change in 

mass loss at 205 °C and the gradient change in mass loss at 362 °C. These are probably 

a consequence of the lower heating rate applied to the Stanton method creating greater 

accuracy. 
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Figure 4-4. TGA, DTA, and DTG curves for urea as a function of temperature under a 
He flow of 80 cm3 min-1. A heating rate of 5 °C min-1 was applied. 

 

Superimposed on the TGA curve in Figure 4-4 are the results of DTA, which 

shows the difference in temperature between the sample and an inert reference, and 

Derivative Thermogravimetry (DTG) which shows the rate of mass change. Two heat 

absorption peaks during the first stage of mass loss are apparent from the DTA and 

evidence the endothermic events of first urea melting at 133 °C (evident as melting 

rather than decomposition from the DTG curve by the absence of any detected mass 

loss) and then the urea decomposition reaction (R19) up to 215 °C as previously 

reported (see section 2.6). The second episode of urea thermolysis, from ca 235 °C ≤ T 

≤ 330 °C, is seen from the DTA curve to involve multiple reaction mechanisms when 

the decomposition of urea melt constituents (cyanuric acid, ammeline, and ammeline) 

occurs; an overall exothermic event as it reaches completion. 

EGA detected an increase in ion intensity for all species measured except ions m/z 

= 52 and 60. These species were not detected throughout the full temperature 

programme in any of the samples tested therefore they have been omitted from all 

graphs that show Multiple Ion Detection (MID). Since there is no ambiguity in the 

detection of urea at m/z = 60, the analysis evidences that it did not evolve at all. In all 

MID graphs, the ion intensity curves have been corrected to a zero baseline. Note the 

difference in scale on the y-axis where stacked MID graphs are displayed (e.g. Figure 
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4-5). The bottom stacked graph shows a higher resolution of the detection range to 

reveal low ion intensity species variations. Concentration cannot be revealed from the 

individual ion intensities, but qualitative relations can be inferred based on comparisons 

between experimental samples. Similarly FTIR results were not calibrated to provide 

values of concentration; and though high accuracy in identification can be assumed by 

the transmissions, only comparisons between the spectra from different samples can be 

used to provide inferences on species abundance. FTIR did provide a rigorous means for 

resolving ambiguities in identification of species that have the same mass/charge 

number as shown in Table 4-2. 

The dry urea sample thermolysis MID plot (Figure 4-5) shows ion intensity peak 

maxima coincident with the DTG minimum for stage one mass loss. Upon closer 

examination this region can be seen to result from two separate episodes of species 

evolution, a feature not seen in the previous urea MS study by Carp [57]. Carp’s study 

did not analyse for the ions that permit this identification. The earlier ion intensity 

maxima region occurs at ca. 185 °C and coincides with the onset of endothermicity seen 

on the DTA curve (Figure 4-4). At this lower temperature, m/z = 16 and 17 had major 

ion intensity peaks. These were identified as being from NH3 by FTIR [137, 148], with 

the MS m/z = 16 intensity peak originating from the 80 % abundance fragment ion 

NH2
+ (see Table 4-2) and, therefore confirming the proposal of Carp [57]. The MID 

curves of dry urea thermolysis shown in Figure 4-5 also reveal the three most abundant 

m/z numbers that originate from HNCO (m/z = 43, 42, and 29 – see Table 4-2) peaking 

at this earlier episode of stage one mass loss and following similar trends with respect to 

temperature; thus firmly evidencing the detection of HNCO. This initial thermal 

decomposition of urea via reaction mechanism (R19) is as suggested by some previous 

authors. HNCO was not however seen in the spectra from FTIR at all in the temperature 

range T ≤ 180 °C (see Figure 4-6), corroborating the results of the study by Schaber et 

al. [48]. HNCO has uniquely strong peaks in the 2250 – 2300 cm-1 wavenumber and 

3500 – 3530 cm-1 wavenumber regions [147, 149], which, as can be seen in Figure 4-7 

at T = 170 °C are clearly absent. Relatively smaller peaks, attributable to CO2 (doublets 

in the region 2350 – 2361 cm-1) [137] were however detected by FTIR and are also 

shown by Figure 4-7. This may indicate a detection of background air contamination, or 

that some HNCO was produced, but rapidly hydrolysed according to (R20) as predicted 

by kinetic studies [69, 70, 71]. For this latter reaction to have occurred would 

necessitate the presence of water. This water could have originated as a by-product of 

ammelide production as previously suggested by Schaber et al. [48]. Evolved gas 

profiles for wavenumbers specific to HNCO do highlight a difference in HNCO 

detection between dry urea samples and those containing urea solution. The urea in 

solution samples show little or no HNCO released until ca. T ≥ 330 °C, whereas the dry 

urea samples show some HNCO released in the temperature region ca. 100 °C earlier 
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(Figure 4-6). This can be attributed to the occurrance of HNCO hydrolysis (R20), 

promoted by the presence of water in the urea solution samples. 

The occurrence of partial and preliminary thermal decomposition to ammonium 

cyanate (R15) appears evident by the peak in intensity m/z = 42 (NCO+), but is refuted 

by FTIR due to an absence of its unique spectral peak in the region 2180 cm-1 [150] (see 

Figure 4-7). FTIR also confirmed the absence of CO and CH4, resolving the ambiguity 

over assignation of numbers m/z = 28 and m/z = 16. 

With increasing temperature, the species observed by MS and attributed to HNCO 

then decline in intensity, with ion intensities related to ammonia, m/z = 17 (NH3
+) and 

m/z = 16 (NH2
+) continuing to increase, both reaching maxima at 228 °C. This tends to 

accord with the reaction mechanisms proposed by previous authors where, at T > 185 

°C, it is suggested that further evolution from secondary decomposition polymer 

products occur (section 2.6.2). Note the small step change in ion intensity for species 

m/z = 15, 16, 17, 44, and 12 at ca. 220 °C representing the region of biuret stability prior 

to the onset of its decomposition and further species evolution thereafter. An increase in 

intensity for probable fragment ions from both nitrogen (m/z = 28 and 14) and carbon 

(m/z = 12) at these temperatures support this. 

The plateau region seen in Figure 4-3 between 330 °C and 360 °C, and less well 

resolved in the DTA curves at 350 °C in Figure 4-4, reveals the thermal stability of 

cyanuric acid. As temperature increases, decomposition of cyanuric acid, and the 

residual polymers ammelide and ammeline has been shown to occur [48]. This 

represents the final asymptotic mass loss from anhydrous urea. One interesting 

observation from this EGA experiment with pure urea was the relatively prominent peak 

for m/z = 15 (NH+), having a maximum at 220 °C. In Carp’s study, though it was one of 

the species monitored, it had negligible ion intensity variation from its baseline 

throughout [57]. A reason for this discrepancy cannot be explained other than it being 

due to differences in instrumentation and/or methodology. 
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Figure 4-5. Selected MS multiple ion detection curves for pure urea thermolysis EGA. 
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Figure 4-6. Evolved gas profiles for HNCO, detected via FTIR absorbance at wavenumber 2271 – 2285 cm-1. 
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Figure 4-7. FTIR transmittance spectrum from STA of pure (anhydrous) urea sample at T = 170 °C. Spectral peaks identified from [137] and [148]. 

 

 

Figure 4-8. FTIR transmittance spectrum from STA of S:C = 7 aqueous urea sample at T = 105 °C. Spectral peaks identified from [137].
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The relevance of anhydrous urea sample decomposition (particularly at T ≥ 185 

°C) to the context of flow reactor urea steam reforming is considered to be limited for a 

number of reasons. The absence of water from this TGA experiment precludes the full 

realisation of the urea steam reforming reaction (R25) and also isocyanic acid hydrolysis 

(R20). Consequently in a urea flow reactor (and particularly one containing a metal 

oxide catalyst) any HNCO acid is anticipated to rapidly hydrolyse as reported previously 

by Yim et al. [69] and Kleeman et al. [70], rather than remain to form a melt, to which 

this second TGA mass loss stage is attributed. Therefore, further discussion of pure 

(anhydrous) urea thermolysis from these fuel characterisation experiments is avoided as 

it is considered to provide little to enhance previous literature reports. The remainder of 

this chapter will focus on the novel approach of analysing the observed effects of 

incorporating water and nickel catalyst into the thermolysis samples. Furthermore, and 

in general to all samples analysed in this series of characterisation experiments, the 

gradual heating rate of this methodology is not directly comparable with the temperature 

exposure that the reagents would encounter in a flow reactor. In a flow reactor, the 

process design would create instantaneous exposure of the urea solution to the high 

temperature at the catalyst bed, at which completely different reaction mechanisms may 

prevail. 

Analysis of the TGA/DTA/DTG curves for urea solution thermolysis add little to 

permit elaboration on the relevancy of this method since they show a pronounced peak 

in mass loss and temperature differential due to endothermic water vaporisation prior to 

urea decomposition (Figure 4-9). With the water component evolved, all curves 

thereafter exhibit apparently identical features to those of pure urea thermal 

decomposition. EGA results however did indicate the occurrence of different reaction 

mechanisms when water was included. 
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Figure 4-9. TGA, DTA, and DTG curves for S:C = 7 urea solution as a function of 
temperature under a He flow of 80 cm3 min-1. A heating rate of 5 °C min-1 was 
applied. 

 

As expected, the MID curves for S:C = 7 urea in de-ionised water (Figure 4-10 

and Figure 4-11) revealed water evolution by a broad peak of m/z = 18, coincident with 

the DTA, and TGA curves ca. 105 °C. The evolution of water was also detected by 

FTIR at this temperature region (see Figure 4-8). An increase in ion intensity for m/z = 

17 at this same temperature is likely due to the water fragment ion OH+, previously 

shown to occur at 20% relative abundance to the parent species [137]. The increase in 

ion intensity for m/z = 16 at this early temperature, could also be attributed to 

fragmentation from water vapour as previous MS studies have identified it as present 

though with very low relative abundance of ca. 1 % [137, 151]. There are complications 

to this simple model of pure water vapour evolution however, as the MS results 

suggested that other species were apparently released at the same temperature. This is in 

contrast to the pure urea sample thermolysis. Figure 4-11 shows increases in ion 

intensity for m/z = 28,  m/z = 14, and m/z = 2 as having occurred simultaneously with 

water vapour from ca. 80 °C and peaking (again coincident with water vapour) at ca. 

105 °C. The m/z = 28 and m/z = 14 detections are obviously unrelated to the H2O 

molecule; and no fragmentation of m/z = 2 has been previously reported to occur from 

water vapour MS [151]. The presence of H2 (probable source of m/z = 2) and N2 

(probable source of m/z = 28 and 14), cannot be revealed by the FTIR technique due to 

these species being diatomic molecules and not capable of infra-red induced interbond 

vibrations. 
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Figure 4-10. Urea in de-ionised water at S:C = 7 MS full ion intensity range curves.  

 

The most likely explanation for the appearance of these unexpected mass/charge 

numbers is that some air was dissolved in the sample’s water component (the source of 

the m/z = 28 and m/z = 14 ion detection being N2), however this would be unlikely to 

account for the increase in m/z = 2 intensity. If this were not the cause, then the 

alternative would be that some NH3 or NH4 (producing m/z = 18, 17 and 16) and H2 

(m/z = 2) was actually released with the water. To support this in theory, it has 

previously been reported that urea has a unique bonding interaction with water (see [77] 

and section 2.6.3) that could be responsible. It is also known that NH4
+ can be created 

via isomerisation of urea when heated (see section 4.1) and that NH4
+ is highly soluble 

in water. This alternative conjecture is weakened by the FTIR results which show an 

absence of absorbance peaks corresponding to the molecular vibrations from NH3 as 

seen by comparison of Figure 4-7 and Figure 4-8. Common N-H stretching and 

deformation vibrations occur for ammonia in the wavenumber 1600 – 1650 cm-1 and 

3200 – 3500 cm-1 regions respectively [148], and though these could be masked by the 

H2O spectra also having transmittance in these regions (very broad peaks at 3656, 3755, 

and 1595 cm-1 [137]), the unique ammonia peaks in the fingerprint region between 800 

– 1100 cm-1 [137] are absent from Figure 4-8. Similarly, FTIR discounts the presence 

of CO+ as being the source of the m/z = 28 detections, with CO+ having a strong peak 

doublet in the wavenumber 2100 cm-1  and 2200 cm-1 region, which again is clearly 

absent. 

Of note here, to add to the discussion on possible release of H2 from urea-water 

solutions at low temperature, is that some H2 was detected as being released earlier than 

expected during urea flow reactor steam reforming experimentation (see Chapter 5). 



86 
 

 

Elucidation of this phenomenon is considered of relevance for future study as it may 

reveal a mechanism that can be utilised beneficially for low temperature H2 production. 
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Figure 4-11. Urea in de-ionised water at S:C = 7 MS multiple ion detection curves (low 
and medium intensity detection). 

 

As temperature increased further, and with water now mostly evolved, peaks for 

m/z = 17 and m/z = 16 were seen to occur in the ratio 1 : 0.8 as predicted for definite 

identification of NH3. Additionally, m/z = 44 (CO2), m/z = 15 (NH), and m/z = 14 (N2
2+ 

or N+) occurred with maxima at 238°C (± 1°C) corresponding to ions detected from 

gases evolved during thermolysis of the dry urea sample. 

A significant difference with the HNCO ion intensities for dry urea and aqueous 

urea was detected. The HNCO (m/z = 43) peak doublet previously seen with the dry 

urea sample (at 185 °C and then ca. 240 °C) was absent in the aqueous urea EGA 

results, with now only one low intensity maximum for m/z = 43 coinciding with 
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maxima for m/z = 17 (NH3
+), m/z = 16, and m/z = 44 (CO2

+) at 238 °C (± 1 °C). To 

quantify this, in comparison with the dry urea EGA experiment, the peak height ratios of 

NH3:HNCO were 57:1 for dry urea and 1567:1 for urea solution; and for CO2:HNCO 

these were 14:1 for dry urea and 153:1 for urea solution for this first stage of urea 

decomposition. This significant difference can be explained by the prevalence of the 

HNCO hydrolysis reaction (R20) as predicted because water was present in the sample. 

Despite the limitations of drawing parallels between the slower batch heating of this 

TGA and the rapid heating, flow conditions of the steam reforming reactor, these results 

show how water can significantly reduce the concentration of any HNCO emitted from 

urea decomposition, a phenomenon likely to be assured of with a process containing 

excess flowing water. 

Close observation of the dry urea and catalyst TGA curve shows an apparent affect 

on the mass loss compared to the non-catalyst containing sample by smoothing out the 

end of each decomposition stage (labelled point ‘a’ and point ‘b’ on Figure 4-12. This 

suggests that the catalyst could have reduced the thermal stability of residual products in 

the melt and/or brought forward the onset of next stage decomposition to a lower 

temperature by reduction of activation energy Ea, a beneficial effect as it is reducing the 

overall product stability. This phenomenon was not however seen for the S:C = 7 urea 

solution with catalyst sample (Figure 4-13) which tends to refute the hypothesis.  

The TGA curve shown in Figure 4-12 has been normalised to discount the mass 

remaining after analysis (assumed to be solid nickel). The initial mass, assumed 

according to the method of preparation to be a 50:50 mix of urea and nickel, was 20.13 

mg. The residual mass following analysis was however 7.92 mg, rather than the 10.07 

mg expected with total decomposition of the urea component. The method of 

preparation which involved first mixing the urea and nickel and then taking a portion of 

this as the sample rather than adding each constituent individually, though considered to 

be the best possible choice, did not allow precision in ensuring that the initial sample 

contained an equal mixture of urea and nickel. Uncertainly here was not considered 

relevant to valid analysis of the results. One influencing factor on the residual mass 

value may be that some of the nickel had been oxidised by urea decomposition products, 

but this would have increased rather than decreased the final mass. Catalyst oxidation is 

supported by the apparent exothermic heat difference detected after 350 °C, and shown 

by the DTA curve on Figure 4-12. However it is not supported by the multi ion 

detection plots for this sample as a relative dip in oxygen-containing species, which 

would be expected, did not occur. It is feasible also to consider that some moisture may 

have been present in the catalyst at the time that its weight was measured, resulting in a 

loss of mass during heating. However, the most likely cause is that the final mass of 

nickel reflects the unequal ratio of the sample mixture. 
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Figure 4-12. TGA, DTA, and DTG curves for urea and nickel catalyst as a function of 
temperature under a He flow of 80 cm3 min-1. A heating rate of 5 °C min-1 was 
applied. Marked regions are referred to in text. 

 

The nickel catalyst and S:C = 7 urea solution sample TA (Figure 4-13) revealed, 

as expected, initial mass loss and endothermicity associated with water evolution as per 

Figure 4-9. With increasing temperature, TGA, DTA, and DTG curves were 

indistinguishable from Figure 4-9 and similar to Figure 4-12. 
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Figure 4-13. TGA, DTA, and DTG curves for S:C = 7 urea solution and nickel catalyst 
as a function of temperature under a He flow of 80 cm3 min-1. A heating rate of 5 
°C min-1 was applied. 
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The MID m/z = 43 (HNCO+) peak at ca. 185 °C appeared again in the absence of 

water when the experiment was repeated with dry urea mixed with nickel catalyst 

(Figure 4-14), but did not when urea was mixed with water (Figure 4-15). Similarly, 

the urea solution sample with catalyst was seen to exhibit the same phenomenon of 

evolving m/z = 16 and 17 (water fragmentation or ammonia) plus m/z = 28 (N2
+), m/z = 

14 (N2
2+, N+), and m/z = 2 (He+ or H2

+) along with water at 80 °C ≤ T ≤ 150 °C.  

Both dry urea samples exhibited, via EGA, a release of N2 at 410 °C which was 

completely absent when water was included. This could be explained by the source of 

the N2 being HNCO, a species greatly reduced in quantity because of the hydrolysis 

reaction (R20) having occurred at lower temperatures. 

There were few other observable differences between the EGA multi-ion detection 

plots for samples with and without catalyst at temperatures below 500 °C. This is not 

surprising considering that this catalyst has been shown to be relatively inactive at 

temperatures T ≤ 500 °C ([12] - see also Chapter 5 and Chapter 6). At temperatures 

greater than this, in the region of proven catalyst activity, the difficulty however of 

drawing parallels between the conditions of this TGA and those of steam reforming are 

perhaps too great to be of any significance. Prior to 500 °C all water had evolved, and 

only a ≤ 0.5 % residue (derived from urea decomposition products and therefore having 

a completely different chemical structure) remained. Steam reforming conditions do not 

pertain, and therefore the methodology here is considered limited in terms of assessing 

the influence of nickel catalyst on urea thermolysis in a flow reactor with excess steam. 

Consequently it is not possible to observe the influence of the predicted global urea 

steam reforming reaction (R25). Some interesting results at higher temperatures were 

observed however, and conjectures as to their origins in the context of applicability to 

urea steam reforming can be made.  
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Figure 4-14. Urea and reduced nickel catalyst MS multiple ion detection curves.  

 

Of interest is the m/z = 27 (HCN+) ion intensity curve, which at higher 

temperature showed marked differences due to the inclusion of catalyst in the sample. 

Both with and without water in the sample, m/z = 27 exhibited an ion intensity peak at 

higher ca. 600 °C temperatures without catalyst, but had no peak in this temperature 

region with catalyst in the sample. The precise cause of this is unknown other than it 

being evidential of catalytic activity enabling a reaction that releases its source molecule 

at a lower temperature. That this species contains hydrogen reveals indirectly evidence 

of catalyst activity on urea decomposition and hydrogen release.  
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Figure 4-15. Urea in de-ionised water at S:C = 7 plus reduced nickel catalyst MS 
selected multiple ion detection curves. 

 

Comparable with all sample MS results, the FTIR results revealed that above ca. 

350 °C transmittance peaks attributed to NH3 diminished to the state of levelling slightly 

above baseline levels thereafter (not shown). This was not identified as being a 

symptom of the catalyst’s ability to “crack” NH3 due to comparable results found with 

the non-catalyst samples and the likelihood of there being little NH3 available due to its 

prior evolution. It is considered that the method does not permit an adequate assessment 

of the catalyst’s ability to produce hydrogen from NH3, though an indication that this 

reaction (R12) did occur can be inferred by the small increase in m/z = 2 (H2
+) evident 

at T ≥ 500 °C in Figure 4-15.  
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4.3.3.3 Reaction Kinetics 

Reaction kinetics for mass loss observed with urea, and urea with nickel samples 

were found to have linear plots of ln(k) versus 1/T only within the range of 140 ≤ T ≤ 

185 °C (coinciding with the early stages of step one in the multi-step TGA curves). 

Outside of this region, the non-linear relation proved that the reaction mechanisms were 

complex as inferred by the variation in DTA curves and that the parameters A and Ea 

varied with temperature. This was not surprising considering that the multiple and non-

simultaneous decomposition of melt polymers is known to occur above this temperature 

with non-aqueous urea thermolysis (see section 2.6.2). Kinetic values obtained from the 

trendline fitted by linear regression on these plot’s apparent first order reaction kinetics 

are shown for the three comparable TGA experiments in Table 4-1, along with their 

statistical co-efficient of determination (R2) values.  

Table 4-3. Kinetic parameters, and statistical co-efficient of determination calculated 
from results of urea thermolysis over temperature range 140 °C ≤ T ≤ 185 °C. 
Name of analyser used given in brackets.  

 Ea (kJ mol-1) Ln (A) (sec-1) R2 

Urea (Stanton) 81.45 15.47 0.984 

Urea (Netzch) 93.12 18.69 0.998 

Urea and reduced nickel 
catalyst (Netzch) 

89.95 18.03 0.999 

 

The R2 values report a good statistical fit, revealing high accuracy to the Arrhenius 

model, particularly with the Netzch (STA) analyser. The Netzch results are slightly 

outside the range of Ea values (Ea = 61.36 kJ mol-1 ± 20.86 kJ mol-1) previously 

considered most accurate for (R19) in literature [65].  

Comparison of the Netzch results show a slight reduction in Ea in the presence of 

catalyst as would be expected. However, considering the small difference in values 

between the two Netzch analyses, plus the Stanton results that show a lower Ea value 

than that obtained from the Netzch analyser with catalyst, and the temperature of this 

thermolysis reaction being well below the range of identified activity for this catalyst 

(see section 6.5.1), it is not considered strong enough evidence of catalytic influence. 

Estimates of residence time for urea conversion from 90 % to 99.9 % based on the 

kinetic results shown in Table 4-3 are provided in Table 4-4. Based on the assumption 

that these kinetics apply throughout the whole of urea decomposition, then ≥ 99 % 

conversion will be achieved within 2 seconds at T ≥ 400 °C. For a reactor with rapid 

entry of fuel, and temperatures close to the considered optimum for steam reforming 

based on modelling (Chapter 3) and on the known activity range of this catalyst (T ≥ 
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500 °C), a 99.9 % conversion is predicted within half a second. With the anticipated 

reactor settings of T ≥ 550 °C, any urea remaining would be instantly decomposed upon 

contact with the catalyst bed. 

 

Table 4-4. Residence time (in seconds) for values of urea conversion as a function 
of temperature based on derived thermal decomposition parameters in the range 140 °C 
≤ T ≤ 185 °C.  

Temperature (°C) Analyser Conversion 

Urea % 700 600 500 400 300 200 

99.9 0.031 0.098 0.420 2.766 35.09 1303 

99.0 0.020 0.065 0.280 1.844 23.39 868.6 

Stanton 

(urea) 

90 0.010 0.033 0.140 0.922 11.70 434.3 

        

99.9 0.005 0.020 0.103 0.888 16.22 1011 

99.0 0.004 0.013 0.069 0.592 10.81 674.1 

Netzch 

(urea) 

90 0.002 0.007 0.034 0.296 5.406 337.0 

        

99.9 0.007 0.025 0.122 0.977 16.16 874.9 

99.0 0.005 0.016 0.081 0.652 10.77 583.3 

Netzch 

(urea + 
catalyst) 90 0.002 0.008 0.041 0.326 5.386 291.6 

 

 The relevance of these results to steam reforming urea process design are however 

limited. To use them as a model for quantifying process design would require the 

assumption that these kinetic parameters apply throughout the whole decomposition up 

to at least 700 °C. This they undoubtedly do not, due to the deviation from linearity of 

plots of ln(k) versus 1/T, and from what is known about the complex mechanisms 

involved above ca. 185 °C at these slow heating rates. In the presence of water at T ≥ 

133 °C, the HNCO-derived polymers that affect the reaction kinetics would not occur 

due to HNCO hydrolysis (R20), and not considering this reaction has ramifications on 

the elucidation of actual urea steam reforming kinetics. This is because HNCO 

hydrolysis, as has been previously reported in literature and in these EGA studies, would 

occur simultaneously with (R19). Its rapid hydrolysis kinetics would likely cause the 

reaction to be limited only by mass diffusion and water availability. The rate of (R20) is 

also increased by rapid heating, so the comparability of these TGA experiments to 

conditions prevalent in a flow reactor are very different and promote caution in the 

application of these derived kinetics. Finally, the temperature range over which these 

kinetics were calculated was significantly outside the range of this catalyst’s activity, 
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and despite the inclusion of catalyst in the TGA experiments, no effect could be 

discerned due to the decomposition being complete prior to the minimum catalyst 

activity temperature of 500 °C (see Chapter 6). Overall, the values calculated here can 

be considered to provide a quantified “worst case scenario” for the reaction mechanism 

kinetic parameters involved in steam reforming of urea. 

 Supporting these conclusions, at the time of writing, experiments linked to the 

author’s and pursuant to the steam reforming experiments reported in Chapter 6 

assessed the free energy associated with ammonia and water reforming†. It was found 

that the steam reforming of urea was also a more thermodynamically favourable reaction 

than ammonia cracking alone, indicating that the mechanism of H2 production from urea 

and steam was indeed more active than just a sequence of decomposition to HNCO and 

NH3, followed by hydrolysis of HNCO and finally by ammonia cracking. This supported 

the assertion that the reaction (R25) could be defined on its own, as a global steam 

reforming mechanism. 

4.4 Conclusions 

The maximum solubility of reagent urea in de-ionised water at room temperature 

was found to be S:C ≥ 3, with at most 30 minutes required for complete solvation. 

Cyanate ion concentration, evidential of urea isomerisation, was not observed above 0.5 

ppm using chromatography in all samples up to one hour after preparation, supporting 

literature predictions for the same low levels of isomerisation with dilute urea solutions 

up to 5 hours after mixing. These results help to set parameters for experimental steam 

reforming and show that the nature of the fuel entering a steam reforming reactor will 

be, to significant proportions, almost totally urea in solution rather than any significant 

concentration of its isomer ammonium cyanate. 

Evolved gas analyses by mass spectroscopy and FTIR were used in combination 

with thermogravimetric analyses (TGA, DTG, and DTA) of pure urea, aqueous urea 

(S:C = 7) solution and urea with nickel catalyst samples to expand on presently 

available literature in an attempt to further understand the nature of the aqueous urea 

fuel as it approaches and enters the catalyst bed in a urea steam reforming flow reactor 

as used and described in Chapters 5 and 6. These STA experiments also had the aim of 

verifying the mass balances used in experimentation by observation of species evolved 

                                                 

† See publication: Rollinson, A.N., Rickett, G.L., Lea-Langton, A., Dupont, V., Twigg, 
M.V. Hydrogen from urea-water and ammonia-water solutions. Applied Catalysis 

B: Environmental, 2011, 106 (3-4), pp. 304-315. The contribution of the author’s 
work to this publication is explicitly given on page ii of this thesis 
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during heating to ensure that all were accounted for. TGA was also used to calculate 

probable reaction kinetics of urea steam reforming.  

Results of EGA supported previous literature reports that urea decomposition 

starts ca. 133 °C, though a previously unreported two stage evolution was detected by 

MS in the first episode of mass loss up to ca. 235 °C. HNCO was not detected in this 

first stage of mass loss by FTIR, though was inferred as present at higher temperatures 

by increases in ion intensity of m/z = 43 with MS results. NH3 was found to 

predominate in first stage urea decomposition for all samples, evident with results from 

both MS and FTIR. With the samples that contained water, HNCO concentration was 

drastically reduced due to the availability of water and the consequent occurrence of 

HNCO hydrolysis. This was quantified by peak height ratios for NH3:HNCO of 57:1 for 

dry urea and 1567:1 for urea solution. These results were significant in validating the 

exclusion of HNCO from experimental steam reforming material balances. 

An unexpected detection of additional evolved species was observed by MS to 

accompany water evolution at temperatures from 80 °C. This was prior to the 

temperature necessary for decomposition of urea when dry urea alone was heated. The 

presence of species with mass/charge values of m/z = 28, 14 could be attributed to 

dissolved N2 (from air) in the water vapour, however this would not account for the 

appearance of m/z = 2 (H2). An alternative explanation is that when water and urea were 

combined, there occurred a simultaneous release at low temperature of some NH3 and 

H2. Identification of NH3, H2, and N2 could not be discerned from FTIR analyses, 

though CO could be discounted with certainty. The low temperature release of H2 from 

urea-water solutions, if feasible, would have major beneficial applications in energy 

technology systems, so the phenomenon constitutes an area for future work. 

The catalyst used in this series of experiments had been shown in steam reforming 

to be effective only at temperatures ≥ 500 °C ([12] - see also Chapter 5 and 6). 

Therefore, the comparability of this methodology to flow reactor steam reforming and as 

a means of elucidating the nature of thermolysis was found to be limited by most of the 

urea decomposition having occurred prior to the catalyst’s active temperature range. 

This was caused by the slow heating rate of the TGA programme and the sample being 

in an open reaction vessel under batch conditions rather than exposed to excess flowing 

steam. Furthermore, the evolution of water at low temperatures, prior to this catalytic 

activity temperature zone and prior to the temperature of urea decomposition also 

prohibits an appropriate analysis as it negates the availability of water for the important 

global urea reforming and HNCO hydrolysis reactions. Consequently, an assessment of 

the influence of nickel catalyst on urea thermolysis in a flow reactor with excess steam 

cannot be fully appraised. Therefore, observing the urea steam reforming reaction (R25) 
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predicted by modelling (Chapter 3) and supported by experimentation (Chapter 5 and 6) 

was not possible. 

For the same reasons, the TGA method adopted in this series of experiments was 

found to be inadequate for elucidating the reaction kinetics of urea steam reforming. 

This was accentuated by an observed non-linear relation between temperature and urea 

decomposition above 185 °C. Despite these limitations, reaction kinetics for the first 

stage of thermal urea decomposition were determined and residence times calculated for 

variations in urea conversion. These provide a quantified “worst case scenario” for the 

reaction parameters and the residence times calculated for steam reforming of urea, with 

a predicted 99.9 % urea conversion within 0.5 seconds for the fuel prior to the reactor 

bed and any remaining urea predicted to be instantly decomposed upon contact with the 

catalyst bed at T ≥ 550 °C. 
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5 Steam Reforming: Quartz Upflow Reactor 

5.1 Introduction 

First attempts at extracting hydrogen from urea are described in this section. The 

aim of this research stage was to explore the practical feasibility of urea steam 

reforming, with the objectives of: attaining the steady state operation predicted by 

equilibrium modelling, acquiring knowledge of the particular behaviour of urea as a 

steam reforming feedstock, and assessing resultant product species. There were no 

previous reports of urea steam reforming available to use as a basis for process design. 

A bench-scale rig with ancillary equipment used previously for steam reforming of 

glycerol was adapted for these first experiments. A nickel catalyst also proven for steam 

reforming glycerol, methane and waste cooking oil was used. Nickel catalysts are 

economically attractive since they are cheap in addition to being sufficiently active at 

steam reforming [152]. Therefore these catalysts have long-term potential for practical 

application.  

5.2 Method 

A Nickel-based commercial steam reforming catalyst, containing 18 wt% NiO 

supported on Al2O3 and manufactured by Johnson Matthey as 1.38 cm diameter pellets, 

1.84 cm in length, with 0.38 cm perforations was used for all experimentation (see 

Table 5-1). The catalyst was crushed using a ceramic mortar and pestle and sieved to 

create a 0.66 – 1.70 mm particle size for the experiments.  

Table 5-1. Urea steam reforming catalyst composition as supplied. 

Component wt% 

NiO 18, 

SiO2 <0.1, 

SO3 <0.05 

Al2O3 balance 

 

Each experiment reported here used undiluted 15 grams of fresh (as supplied) 

catalyst occupying a volume of 7.9 cm3 within the reactor tube supported on a stainless 
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steel circular mesh screen, though preliminary studies were done using a smaller 

quantity of catalyst.  

The aims of these steam reforming experiments were to obtain hydrogen from 

urea, with an emphasis on maximum steam conversion and achieving equilibrium. The 

experiments were continuous flow and conducted in a brand new fixed-bed quartz 

tubular reactor under atmospheric pressure. A schematic diagram of the experimental 

system is shown in Figure 5-1, and a photograph of the experimental rig is shown in 

Figure 5-2. 
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Figure 5-1. Schematic diagram of the atmospheric pressure quartz upflow urea steam reforming reactor system. 
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Figure 5-2. Photograph of the quartz upflow urea steam reforming reactor. 

 

The reactor tube was 48 cm long with an internal diameter of 12 mm, connected at 

the top to a glass adaptor section and at the bottom to a glass inlet assembly creating a 

total vertical length of 70 cm. The glass inlet and outlet adapter sections were connected 

to the reactor tube by conically-tapered ground joints. The reactor was contained in, and 

heated by, a tube furnace with a programmable temperature controller operating via a 

thermocouple attached on the internal wall of the furnace. Kaowool insulation was 

packed into the 16 mm space between reactor tube and internal tube furnace walls along 

the full length of the reactor for stability. A K-type thermocouple inserted through the 

outlet assembly and into the reactor tube was used to measure the actual catalyst bed 

temperature. Inlet gases from BOC cylinders of > 99.99 % purity were regulated by 

MKS mass flow controllers. Steel tubing (30 mm long, 1 mm internal diameter) 

connected a syringe containing aqueous urea solution to the inlet assembly where a 

quartz tube (4 mm internal diameter, 27 cm long) connected this into the reactor tube. 

The syringe was connected to the feed tubing using an SGE Analytical NLL – 5/16, 4.5 

cm needle attached to a Swagelok tube connector. Aqueous urea solutions of between 

4:1 ≤ S:C ≤ 7:1 were injected into the reactor. Reactor temperature was set at 600 °C for 

all experiments. 
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Prior to steam reforming, the catalyst was reduced at 500 °C by a flow of 15 cm3 

min-1 at standard temperature and pressure (STP) of H2 in 300 cm3 min-1 (STP) of N2 for 

1 hour. Then, the reactor was purged for at least ten minutes with the same flow of N2. 

N2 carrier gas was used in all steam reforming experiments with a flow of 300 cm3 min-1 

(STP). This was fed separately into the inlet glassware and prior to the fuel-line outlet 

(see Figure 5−1). Reactor temperature was increased to 600 °C and steam reforming 

commenced with the introduction of aqueous urea solution into the reactor. This was 

dispensed via a micro-syringe pump (New Era Pump Systems). Fuel feed rates in the 

range of 3 ml hr-1 to 20 ml hr-1 (20 °C) were used. The reactor effluent was passed 

through two oil-cooled condensers and a silica gel trap containing 30 cm3 silica gel 

(connected by ground glass conically-tapered joints and ball and socket joints), to 

remove moisture before being analysed. The dry gases were measured online with a 

series of ABB Advance Optima Analysers comprising a Uras 14 non-dispersive infrared 

module for CO, CO2 and CH4 analysis, and a Caldos 15 thermal conductivity module 

for H2. 

Off-line gas chromatography was carried out by collecting product gas samples in 

a Tedlar bag. For hydrocarbons from C1 to C4, a Varian 3380 gas chromatograph with a 

flame ionisation detector (GC/FID) was used with N2 as a carrier gas and with a 2 m 

length by 2 mm diameter column packed with 80-100 mesh Haysep material. H2, CO, 

O2, N2 and CO2 were analysed by a Varian 3380 GC with two packed 2 m length by 2 

mm diameter columns and with two thermal conductivity detectors (GC/TCD). H2, CO, 

O2 and N2 were analysed on a column packed with 60-80 molecular mesh sieve, with Ar 

as carrier gas. CO2 was analysed on a column packed with 80-100 mesh Haysep. 

On-line analysers were calibrated to zero and span prior to experimentation using 

pre-mixed (and therefore accurately known) concentrations of gas supplied by BOC 

cylinders. Mass flow controllers were calibrated to zero and span: for H2 and air flow by 

using a bubble tube built in-house – where the gas volumetric flow rate was determined 

from timed measurements of a weak soap solution bubble traversing the known distance 

of tube length; and for N2 by using an AGILENT ADM1000 gas hand-held gas flow 
meter. These values ( measuredV& ) obtained at room temperature, were corrected to give a 

value for volume flow rate at STP ( STPV& ) to permit accurate operation of the mass flow 

controllers. This was accomplished using the formula: 

( ) 















=

kPa

K
V

T

P
V measured

measured

measured

STP 328.101

15.293
&&  (F16) 

The values for room pressure ( measuredP ) and temperature ( measuredT ) were obtained 

from a barometer and thermometer located in an analytical laboratory in the same 

building as the experimental rig. 
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The experimental system was checked for gas-tight integrity prior to each steam 

reforming run and prior to each catalyst reduction stage to maintain accuracy by 

ensuring constant pressure and to protect against the occurrence of leakage from joints. 

This leak testing was achieved by connecting the AGILENT ADM1000 hand-held gas 

flow meter to the product outlet pipe with the system under carrier gas flow. 

5.3 Data Analysis 

Values of urea and steam conversion, species selectivity, and hydrogen gas yield 

were calculated with a mass and elemental balance spreadsheet using reactor exit 

concentrations of H2, CO, CO2, and CH4 and the known inlet flows of aqueous urea and 

N2. The mass balance spreadsheet was formulated by Dr Valerie Dupont. 

The possible presence of volatile hydrocarbons higher than CH4 was eliminated by 

off-line GC analysis, and unmeasured products N2 and H2O were predicted by 

calculation. Urea conversion was calculated from the carbon product concentrations and 

the urea feed rate, as in equation (E1), in which ‘ n& ’ are the relevant flow rates (mol s-1), 

and ‘y’, the gas mol fractions. 
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 In (E1), outdryn ,&  is the dry total molar flow of gaseous products, and ∑yc refers to 

the sum of the mol fractions of the carbon species (CH4, CO2 and CO). outdryn ,&
 
was 

calculated from the nitrogen balance given in (E2): 
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In (E2), the mol fraction of nitrogen leaving the reactor outNy ,2
, not measured 

online, was calculated from a balance to 1 from the sum of the measured dry gases H2, 
CO, CO2 and CH4. The calculated outdryn ,&  may be a minimum estimate because of the 

assumption that no products other than CO, H2, CO2, and CH4 were formed from urea. 

As a result, the urea conversion xurea calculated with (E1) may also be a minimum 

estimate. 

The conversion of steam was then estimated from the hydrogen balance via 

equation (E3), where the molar rate of hydrogen input is that contained in the urea and 

steam flows, and the molar rate of hydrogen output is that in the product gases (H2 and 

CH4), as well as in the unconverted urea and water. 



103 
 

 

( ) ( )( )[ ]
inOH

ureainureaCHHoutdryinOH

inOH

outOHinOH

OH
n

xnyynn

n

nn
x

,

,,,

,

,,

2

422

2

22

2 2

4422

&

&&&

&

&& −+−
=

−
=  (E3) 

With both dryoutn ,&  and xurea being minimum estimates, xH2O may either increase or 

decrease if any non-measured products were present. 

Species selectivity (%) was calculated from the ratio of measured hydrogen or 

carbon species molar product flow to the known molar inflow of total hydrogen or 

carbon. Hydrogen selectivity (E4) assumed only the following product molecules: H2, 

H2O, CH4. No consideration was made for NH3 or other nitrogenous-hydrogen 

molecules. 
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Calculations of carbon selectivity assumed there were no carbon products other 

than CO, CO2, and CH4 in the product gas and that no carbon deposits accumulated in 
the reactor. Because of this, and also from the fact that dryoutn ,&  is also at its minimum, the 

total carbon product (totalC) is a minimum. 

( )
42, CHCOCOdryoutMIN yyyntotalC ++= &    (E5) 

Selectivities of CO, CO2 and CH4 are estimates based on totalCMIN. 
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Molar flow for the nitrogen carrier gas,

 

inNn ,2& was determined by (E9), where 2NV&  

is the measured volume flow rate of N2, and STP refers to standard conditions of 

temperature and pressure:
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5.4 Results/Discussion  

A syngas rich in hydrogen was produced for fuel mixtures of 4:1 ≤ S:C ≤ 7:1. The 

syngas had a simple chemical composition, with hydrogen, nitrogen and carbon dioxide 

as the major products. Methane production was negligible. Experimental dry product 

gas concentrations as a function of time, representative of the set of experiments 
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conducted at S:C from 4 to 7, are displayed in Figure 5-3 for S:C of 7 along with their 

respective equilibrium calculated values (shown as dashed lines). A detailed discussion 

of the calculated equilibrium values is given in Chapter 3. 
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Figure 5-3. Dry product gas concentrations for S:C = 7 at 600 °C with a 4 ml hr-1 fuel 
feed rate, and 300 cm3 min-1 carrier gas flow rate, shown as scatterpoints as a 
function of time using 20 % of datapoints for clarity. Also shown are calculated 
equilibrium values represented by dashed lines for H2 and CO2. 

 

The off-line GC analysis from a dry reformate gas sample taken immediately 

following steam reforming revealed no additional hydrocarbons. Results of this analysis 

are displayed in Table 5-2 and represent ten minutes of dry gas capture at 4090 seconds 

(1 hour 8 minutes following a steam reforming experiment at 600 °C using S:C = 6 fuel 

dispensed at a rate of 4 ml hr-1 with N2 carrier gas flow at 150 cm3 min-1. These results 

show the absence of any hydrocarbon greater than methane. No assessment to detect for 

the presence of NH3 or other amide molecules was made during this analysis. 
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Table 5-2. GC analysis of dry reformate sample obtained immediately following 

on-line analysis of urea steam reforming with S:C = 6 fuel mixture fed at 4 ml hr-1, 600 

°C reactor temperature, and 150 cm3 min-1 N2 carrier gas flow. 

Gas Species Gas Concentration 

(Vol %) 

Gas Species Gas concentration 

(Vol %) 

Carbon monoxide 0.8 Ethene 0.0 

Hydrogen 13.0 Ethane 0.0 

Oxygen 0.0 Propene 0.0 

Nitrogen 82.2 Propane 0.0 

Carbon dioxide 3.9 Butene & Butadiene 0.0 

Methane 0.1 Butane 0.0 

 

The concentration ratios of the dry gas species detected with offline GC analysis 

accord with those detected by the online analysers. Figure 5-4 shows the dry syngas 

profile for the urea steam reforming experiment at 600 °C using S:C = 6 fuel dispensed 

at a rate of 4 ml hr-1. The difference between the actual concentration values in Table 

5-2 and Figure 5-4 is due to the lower carrier gas flow rate used in the batch sample 

syngas capture for offline analysis (150 cm3 min-1) compared to that used while the 

experiment was being analysed online (300 cm3 min-1). The carrier gas flow was 

reduced because the minimum value necessary for accurate detection at the online 

analysers was considered too high to practically obtain a representative batch sample 

into the Tedlar bag.  
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Figure 5-4. Dry product gas concentrations for S:C = 6, at 600 °C with 4 ml hr-1 feed 
rate, and 300 cm3 min-1 carrier gas flow rate, shown as scatterpoints as a function 
of time, using 20 % of datapoints for clarity. Also shown are calculated 
equilibrium values represented by dashed lines. 

 

A comparison between all the experimental urea and steam conversions using 

equations (E1) and (E3), and the products distribution at steady-state compared to their 

equilibrium calculated counterparts for 4:1 ≤ S:C ≤ 7:1 are shown in Table 5-3. See 

Chapter 3 for equilibrium calculations. These results quantify the closeness of the 

experimental profiles with the calculated equilibrium values and suggest that all 

significant products were measured. 
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Table 5-3. Mean experimental steady state (Exp), and calculated equilibrium 

(Eq.Calc) reactant conversions and product distribution at 600 °C with 4 ml hr-1 fuel 

feed, and 300 cm3 min-1 carrier gas flow rate. 

Selectivity  

C-products % 

S:C  xurea xH2O 

CO2 CO CH4 

H2:CO2 H2:CO Selectivity 

% 

H2 

Exp. 0.59 0.09 76.0 23.6 0.41 3.3:1 12:1 99.5 4 
Eq.Calc 1.00 0.19 75.5 24.2 0.29 3.6:1 11:1 99.8 

Exp. 0.96 0.19 76.0 21.6 2.39 3.6:1 12:1 99.1 5 

Eq.Calc 1.00 0.15 80.4 19.4 0.18 3.5:1 14:1 99.9 

Exp. 1.15 0.16 80.8 17.9 1.33 3.9:1 19:1 98.8 6 

Eq.Calc 1.00 0.15 83.2 17.8 0.07 3.4:1 17:1 1.00 

Exp. 0.96 0.14 87.0 12.0 0.94 3.5:1 26:1 99.8 7 

Eq.Calc 1.00 0.12 85.6 14.4 0.04 3.3:1 20:1 1.00 

 

The conditions close to equilibrium found in the experiments suggest that NH3 

would also have been close to equilibrium and therefore produced at very low 

concentrations (ca. 1-100 ppm). This could not be proven and the inability to measure 

product ammonia is considered a limitation of this experiment. The inability to measure 

other urea thermolysis species is not considered limiting due to TGA results and 

previous literature reporting complete urea decomposition (ultimately to CO2 and NH3) 

prior to the reactor temperature of 600 °C (see section 2.6 and Chapter 4) in the 

presence of excess water. 

Very slight blackening of the catalyst and interior of reactor tube outlet was 

observed post-experimentation and this was considered to be evidence of coke 

deposition. The spent catalyst was not subjected to further analysis during this stage of 

experimentation.  

Some precipitation of the urea in the form of crystals in the water solution in the 

(colder) inlet part of the reactor was also evident being particularly prevalent in the urea-

rich solutions tested. This was probably caused by the different boiling points of urea 

and water, resulting in two stage evaporation as the solution made a slow ascent up the 

reactor tube (see Figure 5-5). The temperature gradient encountered in this section of 

the reactor would have caused primarily water evolution and then supersaturation of the 

urea and so is a serious limitation of the process design. 

Combined with the high prevalence of urea crystals observed, this supersaturation 

is also believed to be the cause of the lower urea conversion found for the S:C of 4 

experiment (Table 5-3) and also in the overall instability of the online hydrogen gas 
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product that was a feature of all S:C runs. This instability in hydrogen output can be 

seen in the S:C = 6 dry syngas plot (Figure 5-4), also in the S:C = 4 dry syngas plot 

(Figure 5-6), and in many repeated experiments (not shown). Of note in Figure 5-6, in 

addition to the wide scatter of H2 concentrations over time, is the lower than predicted 

hydrogen product fraction. This is indicative of the low urea conversion for this fuel 

mixture. 

Occasionally, complete blockages of the inlet feed tube occurred, primarily 

identified by the syngas H2 value dropping to zero. When the system was dismantled 

and inspected it was found that the blockages were caused by precipitate accumulation 

at the inlet and in particular inside the fuel feed tube. Only two runs at S:C = 4 and 5 

could be obtained up to a duration of 1 hour without the feed tube blocking. S:C = 6 and 

7 were less affected by precipitate blockages. A dry syngas plot for S:C = 5 at 600 °C 

with 4 ml hr-1 fuel feed rate is shown in Figure 5-7. Of note is the instability in H2 

output, with particularly high peak of H2 at the outset of detection. This feature was 

investigated and will be discussed in section 5.4.1. 
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Figure 5-5. Schematic diagram of the fuel line, inlet and lower section of the upflow 
urea steam reforming reactor showing temperature gradient encountered by the 
urea solution. 
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Figure 5-6. Dry product gas concentrations for S:C = 4, at 600 °C with 4 ml hr-1 feed 
rate, and 300 cm3 min-1 carrier gas flow rate, shown as scatterpoints as a function 
of time, using 20 % of datapoints for clarity. Also shown are calculated 
equilibrium values represented by dashed lines. 
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Figure 5-7. Dry product gas concentrations for S:C = 5, at 600 °C with 4 ml hr-1 feed 
rate, and 300 cm3 min-1 carrier gas flow rate, shown as scatterpoints as a function 
of time, using 20 % of datapoints for clarity. Also shown are calculated 
equilibrium values represented by dashed lines. 
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Fuel feed rates higher than 4ml hr-1 were found to flood the inlet, with the solution 

not vaporising at the feed line outlet and remaining in liquid state. This led to the 

solution pooling at the base of the inlet assembly. This is a second limitation of the 

upflow reactor design. Increased fuel would have increased the energy demand of the 

system with the greater energy demand to overcome the phase change enthalpy of 

increased quantities of water and urea per unit time, in addition to the enthalpy for 

reforming. It is possible that these endothermic phase changes may have resulted in a 

fall in reactor bed temperature that the response time of the tube furnace was not able to 

sustain. The endothermic demand of repeated injection of fuel combined with inertia of 

tube furnace response may also be an explanation for the output oscillations at steady 

state observed for the hydrogen product profiles. This theory is supported by the 

ubiquitous observance of oscillating hydrogen profiles as a function of time on-line with 

prior experimentation that used the same upflow design but with glycerol as a fuel [12]. 

The kaowool insulation inserted between reactor tube and tube furnace internal wall 

probably accentuated the reduced response time of the furnace. 

5.4.1 Residence Times 

5.4.1.1 Rationale 

It was observed during the upflow reactor experiments that occasionally a peak of 

H2 occurred at the start of online analysis. This can be seen in the syngas profiles shown 

in Figure 5-6 and Figure 5-7. Additionally, the H2 peak was less frequently seen to 

occur prior to the appearance of other species in the syngas online profiles (see Figure 

5-3). 

Due to the knowledge of when the fuel was dispensed, the known fuel feed rate, 

and by the known length of the feed line, the distance travelled by the fuel could be 

calculated and compared with the H2 breakthrough time detected at the analyser. These 

calculations revealed that the hydrogen peak recorded by the analysers had occurred 

prior to the fuel solution having reached the end of the feed line, and consequently prior 

to having entered the catalyst bed. Therefore, two hypotheses were formulated from this: 

1. The H2 peak is an anomaly consequential of physical interactions in the reactor 

system, e.g. different residence times of gases en-route to the analyser. 

 2. A vapour with low boiling point was released at an early stage as the fuel 

ascended the temperature gradient into the reactor, and that this vapour was being steam 

reformed at the catalyst bed yielding a quantity of H2. Since it is known that water 

evolution occurs first (at 100 °C) with thermolysis of the urea solution, it led to the 

supposition that non-instantaneous vaporisation of the fuel was occurring, with 
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predominantly water vapour released into the reactor in the early stages. This would lead 

to hydrogen production from the gaseous urea-derived thermolysis products that were 

seen by the EGA experiments (Chapter 4) to be released with water evolution at ca. 100 

°C. The possibility also existed that water splitting may be occurring at the catalyst bed: 

Ni + H2O → NiO +H2 (R27) 

This chemical reaction would have major industrial importance since creating H2 

from water is the ideal economic method of hydrogen production. Furthermore, NiO is 

widely acknowledged not to have catalytic activity for a number of steam reforming 

reactions, in particular steam methane reforming. As a result, commercial catalysts, 

although delivered mostly in oxidised state, are required to be fully reduced prior to 

steam reforming, which is carried out following a recommended ‘start-up’ procedure 

[152]. This reduction step is most often conducted in high excess of steam in order to 

prevent carbon deposition. While the presence of excess steam would seem beneficial to 

prevent catalyst deactivation by coking, the possibility of (R27) would instead cause 

deactivation by Ni oxidation. 

A residence time experiment was undertaken to determine whether the 

phenomenon was due to the chemical reaction (R27) or due to the experimental 

residence time, i.e. different reactor bed interactions with the species or different speed 

of analysers’ response. Residence time of the fuel on the catalyst bed was also 

calculated for consideration with the values of residence times calculated from reaction 

kinetics (Chapter 4). 

5.4.1.2 Method 

To test the hypotheses for the observed H2 peak at syngas breakthrough, 

experiments were designed to assess residence time within the total system. High purity 

bottled calibration gases from BOC were used for the test gases. These were: H2:N2 = 

80:20 volume % pre-mixed, and CO2:N2 = 25:75 mixed by the author from pre-supplied 

bottled gases of N2 and CO2 using calibrated mass flow controllers. A flow of 300 cm3 

min-1 of nitrogen (the same rate as used in the urea steam reforming experiments) was 

switched to the calibration gases to introduce a step-change, and were passed over the 

same 15 g of (fully reduced) catalyst as in the steam reforming experiments using the 

experimental set-up. Conditions were set at 400 °C, to avoid the higher temperatures 

where the catalyst may have been chemically active. 

For the residence time of the fuel on the catalyst bed, simple mean residence time 

was calculated. This assumed that the fuel was vaporised, and that particle density was 

constant: 

Mean residence time = Volume of catalyst/Fuel flow rate (F17) 
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5.4.1.3 Results/Discussion 

Residence times for the system with calibration gas compared against those from 

the urea steam reforming experiments under the same carrier gas flow rate are displayed 

in Table 5-4. As the calibration gases were released through the system at the inlet of 

the reactor, the time of detection at the analyser was recorded as follows:  

t0 = the time when the gases first appear at the analyser from the time of flow start. 

t50 = the time when 50% of the calibration value is reached (for calibration test) or 

when 50% of recorded maximum is reached (for experimental results). 

t90 = the time when 90% of the calibration value is reached (for calibration test) or 

when 50% of recorded maximum is reached (for experimental results). 

Table 5-4. Calibration gases and experimental residence times through the upflow 
reactor system at a flow rate of 300 cm3 min-1. Time (t) values are in seconds. See 
text for definition of t0, t50, and t90. 

 H2 CO2 Difference 

 t0 t50 t90 t0 t50 t90 t0 t50 t90 

Calibration gas 130 195 270 90 255 470 -40 60 200 

S:C = 7 330 515 835 600 1080 1450 270 565 615 

S:C = 6 320 1105 1250 530 1470 1945 210 365 695 

S:C = 5 0 90 125 0 160 995 0 70 870 

S:C = 4 170 205 235 185 270 370 15 65 135 

 

In the case of experimental S:C = 7, the initial measurement of CO2 occurred 

approximately 330 seconds later than that of H2, time during which the syngas appeared 

to be free of carbon-containing products. The effect was slightly less severe for S:C = 6, 

and gradually reduced for the lower S:C ratios. For all the S:C range, the time at which 

CO2 plateaued was always at least 200 s later than H2.  

The intervals of time between the two species H2 and CO2 in the calibration gas 

were calculated to be t0 = -40, t50 = +60, and t90 = +200 s respectively, based on ‘CO2 

minus H2’ times. By comparison, in the experiment S:C = 7, the intervals of time 

between H2 and CO2 were t0 = +270, t50 = +565 and t90 = +615 s respectively. This 

suggests that at the higher S:C ratios of 6 and 7, the detection of H2 in the reactor 

products prior to that of CO2 was indeed due to chemical reaction, but as the S:C was 

lowered to 4, with t0 = +15, t50 = +65 and t90 = +135 s respectively, it is more likely that 

physical interactions accentuated the observed lag in the two species measurements. 

These are significant findings and could be attributable to the fuel (S:C = 6 and S:C = 7) 
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being the water:urea eutectic mixture. The properties of this solution and the unique 

interaction between water and urea have previously been discussed [77]. 

To test (R27) outside the context of a steam reforming experiment, a pure de-

ionised water feed solution was dispensed under experimental conditions with 15 g of 

freshly oxidised catalyst and at 600 °C temperature setting. Hydrogen production was 

not observed to occur with this pure water feed. The absence of hydrogen suggests that 

if (R27) occurred, then it was due to the presence of urea in the feed solution. 

The high variation in residence times, particularly with the S:C = 5 experiment in 

comparison with the other results, reduce confidence in accepting either hypothesis 

about the cause of the H2 peak. With certainty it has revealed that CO2 had a longer 

residence time in the reactor system than H2. This could have been exacerbated by the 

quantity of silica gel in the moisture trap. The silica gel occupied an unknown volume in 

a 250 ml capacity Dreschel bottle; it was frequently changed and the capacity was not 

measured. Silica gel has been shown to retard CO2 in a syngas flow [14] though in this 

publication no value of silica gel quantity was given by which to determine a relation 

and with which to compare results. The none uniform quantity of silica gel used in these 

residence times experiments and in the upflow reactor steam reforming of urea may 

account for the anomalously high S:C = 5 experimental residence times. Future 

experiments will operate with a reduced quantity of silica gel and the volume will 

remain fixed. 

Two further limitations in the experimental method exist. Firstly, the temperatures 

were different between calibration tests and experimental runs. This may undermine 

accurate comparison between experimental and calibration gas results if chemical 

reactions were influencing the outputs. Secondly, in attributing times for t0, t50, and t90, 

maxima were not always clearly identifiable. For example, H2 peaks were strong at the 

start for S:C = 4 and 5. With CO2, this species increased gradually over the experimental 

run time with S:C = 6 rather than plateauing. 

The mean residence time of the vaporised fuel on the catalyst bed based on a 

carrier gas flow of 300 cm3 min-1, and catalyst volume of 7.9 cm3 was 1.58 seconds. 

Using the worst case scenario with the kinetic model devised in section 4.3.3.3, at T ≥ 

500 °C this depth of catalyst would be more than adequate to achieve 99.9 % urea 

conversion.  

5.5 Conclusions 

The results of preliminary experimentation on steam reforming of urea reflect the 

tentative nature of extracting hydrogen using this novel approach. Hydrogen was 

detected in appreciable quantities in the dry output gas when compared with the other 
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gaseous constituents CO, CO2, and CH4, though oscillations in output values indicated 

some process instability. Concordance between experimental product values at steady 

state and modelled thermodynamic equilibrium values indicate that the process operated 

close to equilibrium. This leads to the conclusion that all significant gaseous species 

were likely to have been identified and measured; however a limitation is created by the 

inability to detect potential nitrogenous species, particularly ammonia, a factor that 

could undermine the accuracy of product calculations if this were present in significant 

quantity.  

Work is needed to both stabilise output concentrations and optimise both urea and 

steam conversion, which was estimated as being slightly below expectations. The 

upflow design does not adequately permit the injection of urea in solution into the 

reactor due to the physical properties of this fuel and its ascent across a temperature 

gradient up to the catalyst bed. This limited the fuel flow rates to ≤ 4 ml hr-1 and led to 

multi-staged vaporisation with consequent supersaturation of the fuel. 

An understanding of the practical requirements of using urea solution as a reactor 

fuel were revealed, and the design conditions necessary to maintain steady state and 

total fuel input have become apparent. This would involve, a balance between keeping 

the pre-reactor tube inlet temperature below 100 °C to avoid water evaporation from the 

fuel, and then a rapid entry to the catalyst bed to retain the urea in solution at time of 

vaporisation. Rapid delivery to the bed should not inhibit urea conversion based on 

previous kinetics evaluation and would also suppress the formation of unconverted urea-

derived polymers. 

An insight into the total process residence time for gases was provided for this 

urea steam reforming system. CO2 was seen to exhibit a longer residence time than H2; a 

phenomenon to some extent attributable to the silica gel moisture trap. To identify 

whether the nickel catalyst was splitting water due to the presence of urea requires 

further detailed study which was considered to be outside the scope of this project. This 

significant hypothesis is an area for future work along with study into utilising the 

possible release of urea-derived products with water at ca. 100 °C. 
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6 Steam Reforming: Quartz Downflow Drop-feed Reactor 

6.1 Introduction 

In the work presented in Chapter 5, a hydrogen-rich synthesis gas was produced by 

urea steam reforming but a number of limitations were identified. To address these 

limitations and optimise the process, again with an emphasis on maximum steam 

conversion and stable proximity to equilibrium over time, the experimental system was 

redesigned as follows: 

 Ammonia product in gaseous and liquid phase would be measured to improve 

product analyses. 

 The inlet and fuel feed system would be redesigned to avoid fuel supersaturation 

prior to the reactor bed. The aim of this was to improve hydrogen product process 

stability as a function of time, to avoid fuel line blockages, and to maintain accuracy of 

product evaluation by ensuring that all urea remained in solution prior to instantaneous 

evaporation. 

Post-reforming catalyst characterisation would be attempted to identify any 

changes to the catalyst following steam reforming such as coke formation. This was 

considered pertinent for identifying whether the integrity of the catalyst could be 

maintained for longer process running times. This work is presented in Chapter 7. 

A full parametric study would be completed at a greater range of fuel S:C mixtures 

and reactor temperatures. 

Syngas hydrogen concentration would be increased by using the lowest possible 

carrier gas dilution and a higher fuel feed rate. 

6.2 Method 

The same programmable tube furnace as described in section 5.2 was used to 

house the reactor and to supply controlled heat for the experiments. The quartz reactor 

tube (48 cm x 12 mm) described in section 5.2 was inverted inside the tube furnace, 

with carrier gas and fuel flow entering from a new design of glass inlet at the top. Inlet 

gases were from BOC cylinders of > 99.99 % purity and were regulated by MKS mass 

flow controllers. 
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 Inlet and outlet ancillary glassware were connected to the reactor by conically-

tapered ground glass joints. A schematic diagram of the experimental system is shown 

in Figure 6-1, and a photograph of the experimental rig is shown in Figure 6-2. Mass 

flow controllers were calibrated, and the experimental system checked to ensure 

constant pressure as described previously in section 5.2. 

 Kaowool insulation was packed into the 16 mm space between reactor tube and 

tube furnace walls to a depth of 4 cm from the furnace’s longitudinal extremities. This 

was to stop radiative heat transfer from the furnace to the inlet assembly and therefore to 

keep the feed line cool and avoid urea crystallisation. A photograph of the inlet 

assembly is shown in Figure 6-3 showing the kaowool insulation between reactor tube 

and internal tube furnace walls. The central 40 cm longitudinal section between tube 

furnace internal wall and reactor tube was therefore uninsulated by kaowool with a 

space cavity created. This cavity was designed to try and improve heating response 

times of the tube furnace at the catalyst bed to possible decreases in temperature caused 

by endothermic demands of the reactants. 

 A K-type thermocouple embedded in the catalyst was used to measure the reactor 

bed temperature. This thermocouple was inserted through one end of a plastic Y-

connector below the glass outlet component. A second K-type thermocouple was 

inserted into the cavity between reactor tube and tube furnace, adjacent to the reactor 

bed. This measured the outer reactor temperature. Reactor temperature was monitored 

and recorded manually. 
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Figure 6-1. Schematic diagram of the experimental setup for atmospheric pressure quartz downflow drop-feed urea steam reforming reactor. 
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Figure 6-2. Photograph of the atmospheric pressure quartz downflow drop-feed urea 
steam reforming reactor. 

 

 The new inlet assembly (Figure 6-3) comprised steel tubing (14 cm long, 1 mm 

internal diameter) connected to a syringe pump via an SGE Analytical NLL – 5/16, 4.5 

cm needle attached to a Swagelok tube connector. The feed line entered the top of the 

reactor through a 90° bend via Swagelok connector to a 2 mm I/D steel tube. This tube’s 

outlet was situated centrally 2 cm above the reactor tube top and horizontally adjacent to 

the gas inlet. N2 carrier gas was used in all of the experiments with a flow of 300 cm3 

min-1 (STP), this being the minimum operating flow rate for the online analysers.  

 The system was at atmospheric pressure. Heightened pressure reforming was not 

attempted due to the unfavourable outputs predicted by thermodynamic modelling and 

by the limitations of the glass components for potential breakage. 

 The positioning of the carrier gas inlet was to both cool the inlet assembly to 

ensure that temperatures were kept < 100 °C and thereby avoid water evolution, and to 

promote the fuel drop dispensation. It was also considered that this design should inhibit 

convective heat transfer from the hottest zone of the reactor and thereby further help to 

keep the fuel line cool. When released, the drop of urea solution travelling under gravity 

and aided by the carrier gas flow, fell 20.5 cm to the top of the catalyst bed. This is 

shown in Figure 6-3. Its aim was to achieve rapid transport of the fuel along the 

temperature gradient prior to the catalyst bed and therefore permit instantaneous 
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vaporisation while the urea remained in solution. Thus, supersaturation of the fuel 

would be avoided and more urea would enter the reactor than with the upflow design. 

 

Carrier gas inlet

Reactor inlet

Urea solution feed line

Tube Furnace

Drop of urea solution

28cm

Carrier gas inlet

Reactor inlet

Urea solution feed line

Tube Furnace

Drop of urea solution

28cm

 

Figure 6-3. Inlet assembly of drop feed quartz urea steam reforming reactor during 
operation. 

 

The gaseous effluent leaving the reactor was passed through two oil-cooled 

condensers to remove moisture before analysis. Condensate was collected in a glass 

flask at the base of the outlet assembly for determination of its ammonia content. The 

condensate collection system is shown in Figure 6-4. 
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Figure 6-4. Condensate collection during steam reforming operation. Experiment 
shown is at 600 °C reactor temperature with an S:C = 6 fuel feed. 

 

Preliminary experimentation was undertaken to optimise the process. A range of 

S:C mixtures, fuel feed rates and catalyst quantity were assessed to investigate 

maximum conversion of fuel at different mixtures of S:C rather than to elucidate 

reaction kinetics. From these preliminary experiments a parametric study was 

commenced using the following variables: 

 Steam reforming was performed on urea solutions of 3:1 ≥ S:C ≥ 7:1 at reactor 

temperatures of 500 °C, 550 °C, 600 °C, 650 °C, and 700 °C. Water enrichment of the 

S:C mixtures was limited to S:C = 7 due to the low conversions predicted at equilibrium 

(see Chapter 3). The following parameters were fixed: 

Catalyst (Table 5-1) was prepared as described in section 5.2. Each experiment 

used 20 grams of undiluted catalyst occupying a volume of 10 cm3 within the centre of 

the reactor tube, supported on a stainless steel mesh screen. Fresh catalyst was used, and 

this was fully replaced only three times during the parametric study of thirteen 

experiments. One quantity of catalyst was used for the five S:C = 7 experiments at the 

full range of temperatures, being regenerated each time. Similarly one quantity of 

catalyst was used for all five S:C = 6 experiments. One quantity of fresh catalyst was 

also used for the S:C = 5, S:C = 4, and S:C = 3 experiments at 600 °C. To regenerate the 

catalyst in-situ, following each steam reforming step, the system was purged with N2 at 
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the same flow rate and temperature to remove any residual gases. Then, an air feed of 

1000 cm3 min-1 (STP) maximum was applied at 700 °C. This airflow step allowed for 

an assessment of possible coke build-up on the catalyst surface. 

Prior to each steam reforming experiment, the catalyst was reduced for 1 hour at 

500 °C by a flow of 30 cm3 min-1 (STP) of H2 in 400 cm3 min-1 (STP) of N2. The reactor 

was then purged for at least ten minutes with the same flow of N2 and the reactor 

temperature was programmed as desired for the steam reforming experiment. Urea 

solution fuel mixture was then prepared and inserted into the syringe (SGE 25 ml 

capacity with an I/D of 23 mm). Once inserted, the aqueous urea was then introduced at 

a rate of 10 ml hr-1 (20 °C) into the reactor via a programmable micro-syringe pump 

(New Era Pump Systems). This capacity allowed a maximum operating period of 2.5 

hours for a full syringe. 

On-line analysers were calibrated to zero and span prior to experimentation using 

pre-mixed (and therefore accurately known) concentrations of gas for species N2, CO2, 

CO, NH3, CH4, and H2, supplied by BOC cylinders. The system was leak tested prior to 

catalyst oxidation with an electronic flow meter inserted into the gaseous effluent line 

after the condensers and while carrier gas was supplied at the system inlet at a known 

flow rate. 

6.3 Product Analysis 

6.3.1 Dry Gases Online Analysis 

The dry product gases were measured online with a series of (non sample-

destructive) ABB Advance Optima Analysers comprising a Uras 14 non-dispersive 

infrared absorption module for CO, CO2 and CH4 analysis, a Caldos 15 thermal 

conductivity analysis module for H2, and a Limas 11 ultraviolet absorption module for 

NH3 analysis. Product concentration values were obtained every five seconds. During 

the air feed stage, oxygen was analysed at the end of the line using a Magnos 106 

paramagnetic susceptibility module also by ABB Advance Optima. 

6.3.2 Condensate Ion Chromatography 

At cessation of the steam reforming step, condensate was collected immediately 

and stored in glass vials with screw-top lids (Bacto Laboratories T102/V2 and 

T1001/C7) and in dark refrigerated conditions. This condensate was then analysed using 

a Dionex DX-100 Ion Chromatograph at room temperature, with 0.02 mols methane 

sulphonic acid as eluent and Dionex polymeric packing (IONPAC CS12A), on a column 

4 mm × 250 mm. Calibration samples were created by diluting a 1% ammonia nitrogen 
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standard (on a gravimetric basis) in deionised water to 1:100 and 1:200. A de-ionised 

water sample was run through the analyser to form a baseline. 

Raw condensate samples were diluted (x625) with deionised water to fit within the 

detection range of the analytical technique and were analysed at room temperature. The 

pH of the diluted sample was measured using litmus paper after ion chromatography 

analysis. 

Ion Chromatography results gave values for ammonium (NH4
+) concentration. 

This was corrected to NH3 by multiplication with the difference in Mr of NH3/NH4 = 

17.031/18.031. To create these values, an inference was made that at steady-state, there 

was a uniform rate of solvation of the NH3 in unconverted H2O leaving the reactor and 

therefore the ratio of NH3:H2O found in the condensate remained constant. Thus the 

values obtained in the condensate analysis are used to represent a time-averaged NH3 

flow rate out of the reactor. This calculation is shown algebraically in section 6.4.1. 

6.4 Data Analysis 

A new mass and elemental balance spreadsheet using reactor exit concentrations 

of H2, CO, CO2, and CH4 and the known inlet flows of aqueous urea and N2 was 

devised to incorporate gaseous and condensate NH3. This provided values of urea and 

steam conversion, species selectivity, and hydrogen gas yield. The spreadsheet was 

formulated collaboratively by the author, Dr Valerie Dupont, and Dr Gavin Rickett.  

The possible presence of volatile hydrocarbons higher than CH4 was eliminated by 

off-line GC analysis (Table 5-2), and unmeasured products N2 and H2O were predicted 

by calculation. An assumption was made that all water and urea is vaporised prior to 

entering the reactor.  

Species comprising the flow entering the reactor were N2 (considered inert), H2O, 

and urea. In the following elemental balances, urea is CnHmOkNj with the subscripts 

being molar elemental composition of n, m, k, and j moles of C, H, O and N in the fuel, 

where n =1, m =4, k =1 and j =2. 

Elemental balances on carbon, hydrogen and nitrogen are given below, where: 

yi = mol fraction of species i in the dry gas (known from online measurements). 

in, and out subscripts denote relevant flows entering or leaving the reactor.  

dry subscripts denote conditions after the condensate trap, prior to dry gas 

analyses. 

inn &&, = total molar flow rate and molar flow rate of species i (mol s-1). 

o u tcNH
n

,,3
&
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6.4.1 Condensate 

The condensate molar flow rates were determined to be constant at steady state: 

outcNHoutOHcond nnn ,,, 32
&&& +=  (E10) 

condNHoutcNH nyn && ×=
33

',,  (E11) 

where: 

3
'NHy = liquid mol fraction of NH3 in the condensate (known from ion 

chromatography analysis). Combining these equations gives a value for the molar flow 
rate of NH3 leaving the reactor in the condensate, outcNHn ,,3

& :  
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The value outOHn ,2&
 
is an unknown and was determined from elemental balances. 

6.4.2 Nitrogen balance 

Nitrogen entering the system from urea and carrier gas flow is balanced by 

nitrogen leaving in the dry gas (as NH3 and N2) plus NH3 in the water condensate, and 

any unconverted urea. This balance, with the outputs on the left hand side and inputs on 
the right involves three unknowns, outOHn ,2

& , dryoutn ,&  and outCnHmOkNjn ,& : 
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(E13) 

 
2Ny is the dry mol fraction of N2 leaving the reactor and was calculated by balance 

with 1 from the measured online dry gases: 

 )(1
32422 NHHCHCOCON yyyyyy ++++−=  (E14)

  

 The molar flow of the N2 carrier gas, inNn ,2
&  was calculated using (E9) (see section 

5.3). 

6.4.3 Carbon balance 

 The moles of carbon entering the system originate from the urea only (denoted by 

subscript n = 1). Carbon leaving the system is contained in the measured dry gases. The 

accumulation of coke is assumed as zero in the carbon balance, shown in equation (E14) 
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here with outputs on the left hand side and inputs on the right. This balance
 
contains two 

unknowns, dryoutn ,&  and outCnHmOkNjn ,& :
 

( )( ) inCnHmOkNjoutCnHmOkNjdryoutCHCOCO nnnnyyy ,,,42
&&& =×+×++  (E15) 

6.4.4 Hydrogen balance 

The hydrogen balance is shown in (E16). Hydrogen entering the system originates 
from water ( inOHn ,2

2 & ) and urea ( inCnHmOkNjnm ,&× ), where m = 4, representing the elemental 

hydrogen content of urea. These are shown on the right hand side of (E16). Hydrogen 

leaving the system (left hand side of (E16)) is that contained in measured dry gas 
molecules, and that contained in the condensate ( outcNHoutOH nn ,,, 32

32 && + ). It is assumed 

that there is no accumulation of hydrogen in the reactor. The hydrogen balance also 
contains the three unknowns outOHn ,2

& , dryoutn ,&  and outCnHmOkNjn ,& : 
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The three elemental balances form three simultaneous linear equations:

 

(E13), 
(E15), and (E16). Since there are three common unknowns, outOHn ,2

& , dryoutn ,&  and 

outCnHmOkNjn ,&  the equations could be solved to provide values for these terms. This was 

achieved using the

 

determinants method in an EXCEL spreadsheet.

  

6.4.5 Products, Conversions, Selectivities, and Hydrogen Yield 

Conversions for urea and water were obtained by:  
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Rates of product evolution from the reformer in mol s-1 were obtained by:  
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 The selectivity of hydrogen for the molecular species produced (in %) were 

obtained by: 
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The selectivity of carbon for the molecular species produced (in %) were obtained 

by: 
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A value for hydrogen yield was obtained in mol s-1 H2 product per mol s-1 of urea: 
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6.5  Results/Discussion 

6.5.1 Steam Reforming 

Greater stability was achieved with the downflow drop-feed process than with the 

upflow design (Chapter 5). This allowed for an extended period of steam reforming 

limited only by the maximum period of operation attainable by the volumetric capacity 

of the fuel-feed syringe; suggesting also that longer-term operation should therefore be 

achievable. Process stability is evidenced by the dry syngas concentration as a function 

of time at 600 °C for S:C = 7 shown in Figure 6-5, and in sequential order over the full 

S:C range at 600 °C in Figure 6-6 to Figure 6-9. All exhibited a rapid rise to a steady 

state and consisted of a dry syngas with hardly any of the undesired CH4 and NH3 by-

products, little CO, and mainly the products CO2 and H2 (16 mol%). The remaining 
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composition of the syngas was N2 from both product and carrier gas. The closeness of 

these experimental profiles with the values predicted by thermodynamic modelling 

(Chapter 3) show that the conditions were very near equilibrium for the full duration of 

experimentation once steady state had been reached. 

The output profiles in Figure 6-5 to Figure 6-9 show that the H2 detection at the 

analyser was seen to be concordant with the other syngas species at breakthrough, in 

contrast to the occasional discordant species breakthrough with the upflow reactor 

(section 5.4.1.3). This was probably due to a combination of an excessive quantity of 

silica gel volume in the moisture trap of the upflow system, and inability of the upflow 

inlet design to contain the urea fuel in solution prior to the reactor bed resulting in 

consequent distortion of the mixture’s S:C ratio as previously discussed. 
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Figure 6-5. Dry product gas concentrations for S:C = 7, at 600 °C reactor temperature. 
20 % datapoints are shown for clarity. Also shown is calculated equilibrium data 
displayed as dotted lines. Gaseous ammonia (< 0.00 %) at steady state omitted. 
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Figure 6-6. Dry product gas concentrations for S:C = 6, at 600 °C reactor temperature. 
20 % datapoints are shown for clarity. Also shown is calculated equilibrium data 
displayed as dotted lines. Gaseous ammonia (< 0.00 %) at steady state omitted. 

 

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

16

18

20

S
yn

ga
s 

M
ol

 %

Time (s)

 CO
 CH4
 CO2
 H2

 

Figure 6-7. Dry product gas concentrations for S:C = 5, at 600 °C reactor temperature. 
20 % datapoints are shown for clarity. Also shown is calculated equilibrium data 
displayed as dotted lines. Gaseous ammonia (< 0.00 %) at steady state omitted. 

 



129 
 

 

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

16

18

20

22

S
yn

ga
s 

M
ol

 %

Time (s)

 CO
 CH4
 CO2
 H2

 

Figure 6-8. Dry product gas concentrations for S:C = 4, at 600 °C reactor temperature. 
20 % datapoints are shown for clarity. Also shown is calculated equilibrium data 
displayed as dotted lines. Gaseous ammonia (< 0.00 %) at steady state omitted. 
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Figure 6-9. Dry product gas concentrations for S:C = 3, at 600 °C reactor temperature. 
20 % datapoints are shown for clarity. Also shown is calculated equilibrium data 
displayed as dashed lines. Gaseous ammonia (< 0.00 %) at steady state omitted. 

 

In terms of syngas purity (hydrogen concentration), the drop feed design permitted 

greater fuel feed rates. Consequently three times greater hydrogen content was obtained 

compared to identical operating S:C and reactor temperature settings used for the 

previous upflow reactor. Drop-rates were measured and the feed rate used in the 
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parametric study (10 ml hr-1) corresponded to a drop being dispensed every 12-13 

seconds. It is possible that this drop dispensation rate could be responsible for the slight 

oscillations in the profiles. The use of a controlled spray system in place of the tube and 

droplet design would be one way to assess this; however a spray injection system may 

pose extra problems because smaller injection apertures may accentuate the occurrence 

of urea precipitation and consequent fuel line blockages. Extended tests to increase the 

fuel flow rates and reduce the bore of the feed line would be another way to test whether 

the slight oscillations were caused by periodic fuel feed. 

It is considered feasible that the syngas purity could be greatly increased. Attempts 

were made, prior to the parametric study, to test the maximum flow rates achievable and 

the system was pushed to failure. In this test a dry syngas hydrogen concentration of 

55% was achieved for 10 minutes (see Appendix A). Since the objectives were for high 

steam conversion and process stability, optimisation of the reactor’s ability to 

accommodate higher fuel feed rates were not pursued. Syngas purity could also be 

increased by reducing carrier gas flow dilution. The N2 flow rate used in this study (300 

cm3 min-1) was the minimum that could be accommodated by the online analysers, so 

was used purely for the purposes of analyses rather than as a necessity of the syngas 

production process.  

The cavity design with kaowool inserted just 4 cm deep at the longitudinal 

extremities of the tube furnace/reactor tube may be a factor that led to an improvement 

in stability of the H2 profiles over time. Observations on the thermocouple readings and 

the reactor temperature readings during steam reforming revealed that they were stable 

throughout, with never more than 2 °C difference between them. This indicates that any 

temperature changes that may have occurred due to endothermic energy demands inside 

the reactor were corrected rapidly by the thermostatic tube furnace control and that the 

design allowed the response time of the tube furnace to adequately maintain the set 

reactor temperature. 

Crystallisation caused by fuel supersaturation was successfully overcome by this 

drop-feed process and by the method of passive cooling incorporated into the inlet 

design. The exterior of the inlet glassware was measured during reactor operation and 

found to maintain a temperature of 35 °C ± 5 °C. This was in the desired range. Though 

some slight crystallisation was observed for S:C = 3 and S:C = 4 on the fuel feed outlet 

at the region where the droplet formed prior to its release onto the reactor bed, this 

phenomenon was not observed to affect the product output values or the process 

stability. This is evidenced by the product gas profile for S:C = 3 (Figure 6-9) which 

shows the improvement (in terms of steady state H2 output stability and syngas 

composition with respect to time) when compared to the upflow process design at S:C = 
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4 at the same reactor temperature (Figure 5-6). Crystallisation was not observed for 

experimentation with 5:1 ≤ S:C ≤ 7:1 fuel mixtures. 

 Mixtures of S:C ≥ 4:1 were able to be fed directly into the reactor without any pre-

heating. For S:C = 3:1, gentle heat was applied to the solution by a Bunsen burner for 

solvation; and a simmerstat controlled heating cord (Thermoscientific HC503) was 

applied to the syringe and feed line during operation. Pre-heating of the syringe and fuel 

feed line was aimed at maintaining a temperature of ca. 40 °C at the fuel prior to its 

release into the reactor. Great care was needed to keep the temperature within a narrow 

range as the maximum temperature tolerance of the syringe was 70 °C and overall a 

temperature of < 100 °C was necessary to avoid water evolution. Steam reforming with 

S:C ≤ 2 fuel mixtures could not be achieved as previously described (see Chapter 4). It 

would be advantageous to steam reform urea-rich mixtures of S:C ≤ 2 due to the higher 

hydrogen content and water conversion predicted (see section 3.3), however this would 

need further adaptations of this process design to achieve. Those adaptations would 

involve an accurately controllable heat resistant injection system and feed line tolerant 

of temperatures between 40 °C ≤ T ≤ 100 °C and between 60 °C ≤ T ≤ 100 °C for S:C = 

1 (see Table 2-4), or a pressurised system at reduced temperature. Lower than these 

temperatures, urea would not dissolve; higher than these temperatures, water would 

evolve and supersaturation would occur. Alternatively a separate water and fuel feed 

system might be suitable, thereby keeping the water and urea feeds apart prior to the 

reactor. This would however require a solid-fuel feed system for the urea. Pre-loading 

the reactor with urea reagent and then dispensing pure water into the system was 

considered, but not pursued since no means of accurately determining the reagent molar 

input ratios entering the reactor per unit time could be found. Though dry syngas 

concentrations would have been obtainable from the online analysers, the other product 

variables obtained from elemental calculations would not be as they depend on known 

molar input rates for each element. 

Table 6-1, Table 6-2, and Table 6-3 list all the experimental urea and steam 

conversion fractions derived from the elemental balances, and the products distribution 

at steady-state, compared to their equilibrium calculated counterparts. These outputs 

show a trend towards higher urea and lower steam conversions as S:C increased. S:C = 

7 is seen to give the best experimental results in terms of stability, urea conversion and 

closeness to predicted equilibrium values. This is advantageous for potential 

assimilation of technologies involving combustion, with the S:C = 7 mixture 

corresponding to the eutectic mixture (32.5 wt%) presently employed in SCR systems 

for NOx removal [89]. The carbon products selectivity values were close to equilibrium 

and beneficially, in terms of its high greenhouse gas potential, CH4 was not produced in 

significant amounts at any time. The decreasing selectivity of carbon for CO2 and 

increasing selectivity for CO with increasing temperature can be explained by the 
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reverse WGS reaction (R24) becoming increasingly dominant as was predicted by the 

equilibrium modelling (section 3.3.1). 

Table 6-1. Mean experimental (Exp) and calculated equilibrium (Eq.Calc) reactant 
conversions and product species distribution at 600 oC for a range of S:C fuel 
mixtures at steady state operation. 

Sel. H-products % Sel. C-products % 
S:C  xurea xH2O 

H2 NH3 CH4 CO2 CO CH4 

H2 Yield 

mol/mol 

Exp 0.86 0.31 91.9 7.51 0.57 64.5 33.9 0.02 2.32 3 
Eq. Calc 1.00 0.22 99.0 0.05 0.92 69.1 28.5 2.43 2.62 

Exp 0.88 0.15 95.3 4.38 0.32 73.8 25.4 0.01 2.17 4 
Eq. Calc 1.00 0.19 99.5 0.05 0.42 75.5 23.4 1.14 2.72 

Exp 0.95 0.15 97.0 2.65 0.32 74.5 24.6 0.01 2.53 
5 

Eq. Calc 1.00 0.16 99.8 0.05 0.20 80.1 19.4 0.56 2.78 

Exp 0.93 0.13 96.6 3.24 0.18 76.3 23.2 0.01 2.50 
6 

Eq. Calc 1.00 0.14 99.8 0.04 0.12 82.8 16.8 0.32 2.82 

Exp 0.97 0.10 98.0 1.92 0.05 80.6 19.2 <0.01 2.57 
7 

Eq. Calc 1.00 0.12 100 0.04 0.07 85.3 14.5 0.19 2.85 

 

Table 6-2. Mean experimental (Exp) and calculated equilibrium (Eq.Calc) reactant 
conversions and product species distribution for S:C = 7 for a range of reactor bed 
temperatures at steady state operation. 

Sel. H-products % Sel. C-products % Temp 

°C 
 xurea xH2O 

H2 NH3 CH4 CO2 CO CH4 

Exp 0.51 0.13 76.0 23.8 0.20 83.9 15.4 0.01 500 
Eq. Calc 1.00 0.12 98.2 0.10 1.68 87.9 7.43 4.69 

Exp 0.76 0.08 97.1 2.60 0.25 83.8 15.5 0.01 550 
Eq. Calc 1.00 0.12 99.6 0.06 0.33 88.0 11.1 0.95 

Exp 0.97 0.10 98.0 1.92 0.05 80.6 19.2 <0.01 
600 

Eq. Calc 1.00 0.12 100 0.04 0.07 85.3 14.5 0.19 

Exp 1.00 0.09 99.6 0.47 0 75.0 25.3 0 
650 

Eq. Calc 1.00 0.12 100 0.03 0.01 81.9 18.0 0.04 

Exp 1.00 0.08 99.9 0.19 0 70.1 30.2 0 
700 

Eq. Calc 1.00 0.11 100 0.02 <0.01 78.5 21.5 0.01 

 



133 
 

 

Table 6-3. Mean experimental (Exp) and calculated equilibrium (Eq.Calc) reactant 
conversions and product species distribution for S:C = 6 for a range of reactor bed 
temperatures at steady state operation. 

Sel. H-products % Sel. C-products % Temp 

°C 
 xurea xH2O 

H2 NH3 CH4 CO2 CO CH4 

Exp 0.53 0.16 79.4 20.1 0.40 81.2 17.4 1.39 500 
Eq. Calc 1.00 0.13 97.3 0.10 2.62 84.7 8.22 7.09 

Exp 0.84 0.13 93.5 5.6 0.9 79.3 18.1 2.5 550 
Eq. Calc 1.00 0.14 99.4 0.07 0.57 85.6 12.8 1.6 

Exp 0.94 0.13 96.6 3.2 0.2 76.3 23.2 0.5 
600 

Eq. Calc 1.00 0.14 99.8 0.04 0.12 82.8 16.8 0.3 

Exp 0.96 0.10 98.9 1.1 0.0 71.8 28.2 0.0 
650 

Eq. Calc 1.00 0.13 1.00 0.03 0.03 79.2 20.7 0.07 

Exp 0.98 0.09 99.5 0.5 0.0 67.9 32.2 0.0 
700 

Eq. Calc 1.00 0.13 1.00 0.02 <0.01 75.5 24.5 0.02 

 

The results of reforming across a range of temperatures for S:C = 6 and S:C = 7 

fuel mixtures, as shown in Table 6-2 and Table 6-3 evidence that 600 °C is the 

optimum temperature for urea steam reforming in terms of steam conversion. 

Temperatures between 600 °C and 700 °C, are seen as favourable in terms of urea 

conversion close to 100 %, and experimental product selectivity close to predicted 

equilibrium values. Practically however, experimentation at temperatures above 600 °C 

would not be advantageous due to the predominance of the reverse water gas shift 

yielding higher relative concentrations of CO in the syngas. In commercial applications 

this would necessitate increased post-reforming process requirements to purify the 

syngas. Further support for 600 °C being an optimum process condition is found with an 

assessment of hydrogen yield as a function of temperature for S:C = 6 and S:C = 7 

(Figure 6-10). Values of H2 yield as functions of temperature reach maxima at 600 °C 

and then plateau when reactor temperatures are increased further. Thus no benefit in 

terms of hydrogen yield was obtained for the extra input of energy required. 
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Figure 6-10. Mean experimental and calculated equilibrium hydrogen yield (mol H2 
produced per mol of urea in the feed) for S:C = 6 and S:C = 7 at a range of 
temperatures. 

 

With consideration given to other criteria, urea steam reforming above 600 °C is 

not entirely disadvantageous. Maximum urea conversion was achieved (Table 6-1 to 

Table 6-3) at temperatures of 650 °C and 700 °C. Furthermore, steady state profiles of 

the gaseous outputs (therefore also species selectivity and reagent conversions) were 

very stable over time at these heightened temperatures as shown in Figure 6-11. Though 

the ratio of CO2:CO decreased with increasing reactor temperature as previously 

discussed, CH4 concentrations remained negligible. What was also noted as being 

favourable was that higher temperatures resulted in lower overall NH3 production, a 

phenomenon that is discussed in greater detail in section 6.5.2. 
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Figure 6-11. Dry product gas concentrations for S:C = 7, at 700 °C reactor temperature. 
20 % datapoints are shown for clarity. Also shown is calculated equilibrium data 
displayed as dashed lines. Gaseous ammonia (< 0.00 %) at steady state omitted. 

 

The effects of temperature in the range 500 °C to 700 °C are much larger than 

those observed when the S:C varied from 7 to 3 at 600 °C. Firstly, the fraction of urea 

converted reduced from near complete conversion at 600 °C to the poor value of 0.51 

(for S:C = 7) and 0.53 (for S:C = 6) at 500 °C, with very significant drops between 600 

°C and 550 °C, and again between 550 °C and 500 °C (Table 6-2 and Table 6-3). This 

can be explained by a decrease in catalyst activity in the urea steam reforming reaction 

below 600 °C, as had been observed in previous studies using other feedstocks [12].  

The importance of the catalyst for urea steam reforming was confirmed by a 

“blank run” experiment with no catalyst inside the reactor (not shown graphically). 

Alumina beads occupying the same volume as the catalyst bed were used instead, and 

the reactor set at a temperature of 600 °C. Using an S:C = 7 fuel mixture, fed at a rate of 

10 ml hr-1, and an N2 carrier gas flow rate of 300 cm3 min-1, this experiment produced 

no hydrogen over the full duration of the run time (1 hour). The onset of steady state 

was identified at ca. 8 minutes, whence carbon species outputs were stable and 

concordant with both equilibrium predictions and previous catalytic steam reforming 

results at this temperature and fuel feed parameters. NH3 outputs in the dry gas and in 

the condensate were also significantly higher than recorded with comparable catalytic 

reforming. A greater discussion of these NH3 outputs is given in section 6.5.2. 

 A graph showing the gaseous product profiles measured online for S:C = 7 at 500 

°C is provided in Figure 6-12. A comparison between Figure 6-12 and plots of the 
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identical fuel feed rate at higher temperatures (cf. Figure 6-5 and Figure 6-11) reveals 

how the H2 concentration has decreased well below that predicted at equilibrium and 

below that achieved by the comparable experiments at higher temperature. This is 

further evidence that the speed of catalytic activity reduces below 600 °C. 
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Figure 6-12. Dry product gas concentrations for S:C = 7, at 500 °C reactor temperature. 
20 % datapoints are shown for clarity. Also shown is calculated equilibrium data 
displayed as dashed lines. Gaseous ammonia (< 0.00 %) at steady state omitted. 

 

Modelling had predicted that the S:C = 7 steam conversion was expected to 

slightly increase as temperature decreased from 700 °C to 500 °C (Figure 3.2). The 

general trend of the experiments did show a slight increase in steam conversion from 

0.08 to 0.13 in the same temperature range (Table 6-2), although the experiment at 550 

°C indicated a larger deviation from equilibrium with a poorer than expected steam 

conversion (0.08 instead of 0.12).  

The temperature dependence of the selectivity of the H-containing products for 

S:C = 7 revealed that for CH4 this was insignificant (0 % to 0.2% with decreasing 

temperature). In contrast, NH3 selectivity increased significantly from 2.6% to 23.8% 

between 550 °C and 500 °C. The values, being a function of total urea entering the 

reactor rather than converted urea, suggest that the catalyst’s ability to reform NH3 

between 550 °C and 500 °C was influential. The larger NH3 selectivity adversely 

affected that of H2, causing a corresponding large drop from 97.1% to 76% between 550 

°C and 500 °C. Above 550 °C however, the selectivity to H2 remained very high, 

reaching above 99.6% from 650 °C. 
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Recall that HNCO is not expected in any appreciable amount, based both on 

literature evidence (that confirmed its ultimate decomposition via interaction with water 

and urea derivatives to NH3 and CO2 prior to ca. 500 °C), and on TGA experiments (see 

Chapter 4). The closeness of the carbon selectivity values to the calculated equilibrium 

predictions, for which the potential presence of HNCO would also have created 

discordance, provides confirmation that HNCO was not present as a significant product. 

 The maximum H2 yield per mol of urea in the fuel feed was found, as expected 

from the equilibrium trends (Chapter 3, Figure 3-2), for S:C of 7. This experimental 

yield maximum, as shown in Figure 6-10, had a value of 2.57 mol H2/mol urea that 

corresponded to 90% of the equilibrium value. A cause for the decline in H2 yield with 

S:C mixtures ≤ 5 as shown in Table 6-1 can be found in the significant decrease in urea 

conversion from S:C of 5 compared to S:C = 4 (xurea of 0.95 and 0.88 respectively). 

Another contributing factor for this decline in H2 yield with S:C ≤ 5 was the increase in 

NH3 selectivity in the H-containing products (Table 6-1). These high values of NH3 

come from the measured ammonium ion in the condensate. It can be observed that the 

only other H-containing by-product CH4 did not appear significantly dependent on the 

steam to carbon ratio, as predicted by the equilibrium calculations. 

6.5.2 Condensate ion Chromatography 

Ammonium ion detection was good in the condensate from the reforming 

experiments, with well defined peaks evident in all analyses. Figure 6-13 shows an ion 

chromatogram produced by these experiments and representative of all samples 

analysed.  
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Figure 6-13. Ion chromatogram of condensate obtained during downflow reactor urea 
steam reforming experiment with S:C = 6 fuel at 550 °C reactor temperature. 
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The concentrations of NH3 measured in the condensate from urea steam reforming 

experiments are shown in Table 6-4. All diluted samples had a neutral pH of 7. The 

acidity of the eluent was not tested but was expected to be only mildly acidic due to its 

low concentration. Therefore it was expected that eluted samples would have had a pH 

of 6 or 7 as they passed through the analytical column. Based on this assumption and 

from previous studies of the dependency of ammonia concentrations in solution to pH 

and temperature [153], it is expected that the results provided in Table 6-4 are 

minimum values correct to + 0.02 - 0.5% relative uncertainty. 

Table 6-4. NH3 concentration in the urea steam reforming condensate in gravimetric 
parts per million (ppm). 

 Steam:carbon (S:C) of fuel 

Temperature 7 6 5 4 3 

700 °C 119 1588 - - - 

650 °C 1221 3787 - - - 

600 °C 6926 14396 14559 26557 85156 

550 °C 7338 23621 - - - 

500 °C 61564 66940 - - - 

 

It can be seen from Table 6-4 that the NH3 produced with urea steam reforming 

increased with urea content in the feed solution as would be expected by the higher 

values of elemental nitrogen and hydrogen present. The increase in ammonia with 

decreasing reactor temperature is likely due to lower catalytic activity. Nickel catalysts 

have shown activity for splitting NH3, with conversion increased with higher 

temperature [32]. The activity of the catalyst for decomposing NH3 is supported by the 

analysis of NH3 from the blank run with alumina beads instead of catalyst (not shown in 

Table 6-4). This result showed that without the catalyst a value of 82788 ppm (8.27%) 

NH3 was recorded, this being higher than all other samples analysed.  

The condensate trap fed by a reflux condenser (shown during steam reforming 

experimentation in Figure 6-4) worked effectively at removing NH3 from the product 

gas. In all but two experiments, the online dry gas concentrations of NH3 were detected 

at < 10 ppm for the duration of steady state operation. The contribution of dry product 

NH3 to the overall hydrogen selectivity was negligible with more than 99.3% of the NH3 

generated being collected in the condensate. This is highly advantageous process design 

as by utilising the unconverted water it is a cost-effective method of removing a 

component that is toxic to both humans and PEMFCs. During operation the condenser 

oil coolant remained within the temperature range of -5 °C ≤ T ≤ -20 °C.  
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The overall values obtained for experimental product NH3 showed an apparently 

exponential decay with increasing temperature and S:C, and were unexpectedly higher 

than those predicted by thermodynamic modelling, (Figure 6-14 and Figure 6-15). This 

would indicate the difficulty of the catalyst to reform the ammonia at lower steam to 

carbon ratios and at lower temperatures. Tests on varying concentrations of NH3 

decomposition in the presence of steam and CO2 would be one way to test this 

conjecture. This is an area for future study. 

In Table 6-1 the value for steam conversion with S:C = 3 is calculated as being 

slightly higher than that predicted by equilibrium modelling. Other steam conversion 

discrepancies appear with the higher than predicted (by equilibrium modelling) values at 

500 °C for both S:C = 6 and S:C = 7. The S:C = 7 value only varies by one tenth and 

could be caused by averaging the data and by rounding errors created by placing the data 

to three significant figures. Interestingly, all these three steam conversion results 

correspond with a far higher than expected (by equilibrium modelling) estimation of the 

condensate NH3 concentration. This indicates that the discrepancy may be a result of 

either minor inaccuracies in the equilibrium model, errors caused by condensate 

calibration at the highest concentrations, or most likely an inability of the catalyst to 

actively decompose ammonia and bring the reaction close to equilibrium at these low 

temperatures, as discussed previously. 
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Figure 6-14. Mean experimental and calculated equilibrium hydrogen selectivity 
towards NH3 for a range of experimental temperatures. Experimental values are 
steady-state averages from 20 minutes after start of the experiment up to cessation. 
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Figure 6-15. Mean experimental and calculated equilibrium hydrogen selectivity 
towards NH3 for a range of S:C fuel mixtures at 600 °C reactor temperature. 
Experimental values are steady-state averages from 20 minutes after start of the 
experiment up to cessation. Exponential decay curve fit applied. 

 

6.5.3 Coke Formation 

In the experiments presented in section 6.5 there were several indications that coke 

formation was insignificant. These include: product outputs and calculations matching 

those at equilibrium, the absence of any degradation of catalyst activity over time, and 

no observed blackening at the reactor outlet and/or in the condensate. Black deposits 

(identified as coke) had been observed with preliminary experimentation using a 

glycerol feed (unpublished) following which carbonation was confirmed [12]. If coke 

formation had occurred with aqueous urea fuel, the post-steam reforming air-feed step 

was expected to create a rapid temperature rise inside the reactor and measurable carbon 

species detected at the gas analysers due to oxidation of any coke that had built up on 

the reactor bed: 

C + O2 → CO2  ∆H°298 < 0  (R28) 

C + 0.5 O2 → CO  ∆H°298 < 0  (R29) 

It is also possible that slight increments in detected reactor temperature could be 

due to catalyst oxidation: 

Ni + 0.5O2 → NiO  ∆H°298 < 0  (R30) 

There was no recorded carbon species burn-off and no temperature increase 

detected by the in-situ reactor bed thermocouple following all S:C = 7 experiments at 
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the full range of temperatures, and following the S:C = 6, 700 °C steam reforming 

experiment. Short term and gradual increases in temperature were detected inside the 

reactor during the air feed step following other steam reforming experiments. The rise in 

temperature was small, between 1 °C ≤ T ≤ 40 °C and was recorded over periods of 1 ≤ 

T ≤ 5 minutes. This occurred only when the air flow was increased to a maximum 

capacity of 1000 cm3 min-1, thus evidencing that any oxidation was very small. 

The catalyst can be inferred to be robust in terms of its ability to repeatedly 

regenerate under the air-feed (oxidation) then N2:H2 (reduction) steps, which would also 

be further evidence that coke formation was negligible. With five stages of steam 

reforming for fuel mixtures of S:C = 6 and S:C = 7 for the full range of temperatures, no 

signs of degradation were observed, with its efficacy for urea steam reforming 

apparently maintained. No experiments were performed under completely identical 

operating parameters using a regenerated catalyst, thus making absolute conclusions 

about catalyst integrity under repeat cycling inappropriate. As has been previously 

described, there was clear evidence that the variables of temperature and fuel S:C 

mixture influenced the observed parameters that would also otherwise lead to an 

assessment of catalyst integrity following regeneration (such as urea conversion, steam 

conversion, H2 yield, syngas composition, and species selectivity). However, this 

postulation that the process remained robust and highly active for steam reforming can 

be qualified by a comparison of the results for the experiments in the high temperature 

range for both S:C = 6, and S:C = 7 which each used the same catalyst, and for the 600 

°C experiments with fuel mixtures of 3 ≤ S:C ≤ 5. This is seen in Figure 6-10, where 

for both S:C = 6 and S:C = 7 (which each used the same, regenerated catalyst), the H2 

yield between 600 °C and 700 °C remains relatively constant and very close to the 

equilibrium predicted values. These same experimental results further support the 

process stability over repeated stages by comparison with the species selectivity and 

reagent conversion values shown in Table 6-2 and Table 6-3. Here, particularly 

between the 650 °C and 700 °C experiments, values closely adhere to those predicted at 

equilibrium. Figure 6-7, Figure 6-8, and Figure 6-9 also display results where the same 

regenerated catalyst had been used. From these output profiles no qualitative evidence 

of deterioration in gas concentration output with respect to equilibrium predicted values 

can be seen. 

To provide more conclusive evidence on the status of the catalyst following 

regeneration and steam reforming experiments, used catalyst was left to cool in-situ and 

then saved in glass vials with screw-top lids (Bacto Laboratories T102/V2 and 

T1001/C7) in dark refrigerated conditions. This was then used for subsequent 

characterisation analysis. Results of this analysis will be discussed in Chapter 7. 
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6.6 Conclusions 

A catalytic steam reforming reactor designed specifically for the physical 

properties of a urea in water solution fuel was tested in a parametric study at 600 °C 

over a range of fuel mixtures from 3 ≤ S:C ≤ 7, and over a range of reactor temperatures 

from 500 °C ≤ T ≤ 700 °C for S:C = 6 and S:C = 7. Conditions were chosen to 

maximise the conversion of urea and steam and to maintain steady state operation close 

to equilibrium predicted values.  

Results of outputs and output trends with respect to variations in temperature and 

S:C closely followed those predicted by equilibrium modelling. Greater stability in 

product outputs over time in comparison with the previous upflow method (Chapter 5) 

was achieved, with the process remaining close to equilibrium for the duration of the 

experiments. Longer operation times in excess of two hours were achieved, limited only 

by the volumetric capacity of the injection system, and suggesting that the process could 

effectively be increased in scale. 

A new reactor inlet design successfully allowed a greater fuel input rate to be 

applied and successfully avoided supersaturation of the fuel prior to its release onto the 

reactor bed. The preservation of the urea solution fuel at below 100 °C is identified as 

essential for urea steam reforming. This was achieved by the experimental method, with 

the urea remaining in solution up to vaporisation at the catalyst bed by way of a novel 

drop-feed design. Inlet solution cooling was further enhanced by selective application of 

insulation and by the carrier gas inlet feed line supplying the point where the fuel drop 

was dispensed.  

Selective insulation of the reactor tube also created a space cavity between reactor 

tube and furnace in an attempt to increase response times of the furnace to internal 

temperature changes. This was identified in previous experimentation as being one 

possible cause of oscillating H2 product profiles. Small scale oscillations still occurred, 

but it is considered that this cavity design is favourable to the alternative full length 

insulation previously used (section 5.2) as no significant fluctuation in output was 

observed and thermocouple readings remained stable to ± 2 °C, matching those of the 

tube furnace temperature throughout. 

A hydrogen rich syngas was produced with three times higher concentrations of 

hydrogen than had been achieved by earlier experiments with an upflow reactor design. 

The syngas was simple in composition, with minor products of CO2 and CO only. CH4 

concentration was negligible. NH3 was measured online in the dry gas and also offline 

by ion chromatography of the condensate leaving the reactor. A new design for 

condensate collection was implemented and was shown to be a cheap, simple and 

effective method of removing NH3 from the gas stream due to its high solubility in the 
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unconverted water leaving the reactor. Dry gas NH3 concentrations were detected at < 

10 ppm level. Thus the system effectively detoxified the syngas of NH3 making it 

attractive for fuel cell applications.  

Fuel mixtures of S:C = 7 were considered to give the best experimental results in 

terms of stability, urea conversion, and closeness to predicted equilibrium values. 

Greater urea content in the fuel increased steam conversion and product H2 under the 

same conditions. 

In terms of variation in reactor temperature, 600 °C was identified as the optimum, 

with H2 yield plateauing thereafter. With decreasing temperature, urea conversion and 

therefore H2 product decreased markedly; a phenomenon that can be attributed to lower 

catalytic activity below 600 °C. Analysis of the products revealed that the reverse water 

gas shift was affecting the carbon selectivity at higher temperature, and ammonia 

cracking was affecting the hydrogen selectivity at lower temperature. A trade-off in 

terms of water conversion and temperature was also identified, with greater temperature 

reducing the water conversion. 

NH3 values in the combined dry gas and condensate were seen to be greater than 

had been predicted by thermodynamic modelling at low temperatures. This 

contradiction requires further study to identify whether it is the presence of steam and 

CO2 that is causing the NH3 cracking reaction to be inhibited. It is speculated that urea 

decomposition to NH3 is rapid, but NH3 decomposition is the rate determining step and 

its conversion at temperatures < 550 °C is too slow to enable equilibrium conditions to 

be attained. 

 Urea steam reforming was seen to be a clean process. The nickel catalyst was 

found to remain effective at steam reforming over time without deactivation. Catalyst 

speed of reaction was seen to decrease below 600 °C. Coke formation was not identified 

by visible observation or by air-flow oxidation tests. Repeated regeneration of the 

catalyst allowed for steam reforming to be continued over five experiments without 

noticeable deterioration. This, combined with urea solution’s safe and easy to handle 

properties meant that steam reforming experimentation could be undertaken and 

repeated with minimal intervention. 
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7 Catalyst Characterisation 

7.1 Introduction 

Catalyst characterisation provides a means to indirectly assess the underlying 

chemistry of the steam reforming reactions. It also gives information that can help 

assess the process for industrial applications, such as its influence on the catalyst’s 

ability to remain active for long periods. 

Reactor experiments had provided some qualitative characterisation on the 18 

wt% nickel catalyst’s ability to steam reform urea (Chapters 5 and 6); for example, a 

high purity syngas product and no apparent deactivation with repeated cycles of 

regeneration. Observations of phenomena apparent during experimentation also 

indicated that there was an absence of coke formation. Catalyst morphology, texture, 

and chemical composition, and any changes in these characteristics due to the various 

stages of the experimental steam reforming process could not be determined with the 

catalyst in-situ, due to the high temperatures and the enclosure of reactor and tube 

furnace prohibiting access. To investigate these parameters and give a comprehensive 

characterisation of catalyst function in the urea steam reforming process, alternative 

analytical techniques were necessary on the catalyst in its cooled state after extraction 

from the reactor.  

There has been no prior published work on nickel catalyst characterisation 

following steam reforming of urea. Though this same catalyst had been used for steam 

reforming experiments with methane and sunflower oil [153], glycerol [12], and waste 

cooking oil [155], little ex-situ characterisation had been attempted. Dou analysed the 

catalyst in three states (oxidised, reduced, and post-reforming) using Scanning Electron 

Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) following steam 

reforming with an S:C = 3 fuel mixture [12]. A different morphology was described 

between the pre- and post-reforming catalyst, with carbon structures identified as 

entirely covering the catalyst surface, and larger crystallites previously seen in the 

reduced sample, were no longer visible post steam reforming. Knight also characterised 

the catalyst using SEM and EDX after methane steam reforming (S:C = 0.1), in 

comparison to catalyst in its oxidised and reduced states [153]. Carbon was present on 

the post-reforming catalyst and clearly visible on SEM images as abundant 1-100 µm 

forms. 
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7.2 Method 

The catalyst (composition given in Table 5-1) used in the urea steam reforming 

experimentation (Chapters 5 and 6) was analysed in three states: 

1. Post-steam reforming (two samples). 

2. As supplied (fresh and oxidised). 

3. Fully reduced (pre-steam reforming). 

 The provenance of the catalyst samples used for characterisation is shown in 

Table 7-1. Sample 2 contained nickel in its oxidised (NiO) state. This sample had never 

been exposed to heightened temperature or the application of reagents post-

manufacture. The fully reduced sample (3) was prepared by inserting the fresh as 

supplied catalyst inside the downflow steam reforming reactor (described in Chapter 6) 

and subjecting it to a flow of 30 cm3 min-1 (STP) of H2 in 400 cm3 min-1 (STP) of N2 for 

1 hour at 500 °C. It had not been subjected to steam reforming. Sample 1a had 

undergone five stages of steam reforming, with interstage air-oxidation and hydrogen-

reduction; its maximum temperature exposure being 700 °C, and its final stage being 

steam reforming at 500 °C. Sample 1b had undergone three stages of steam reforming 

(with fuel mixtures of S:C = 5, S:C = 4, and lastly S:C = 3), all at 600 °C, with 

interstage oxidation and reduction. The final stage of exposure for Sample 1b was 

reduction with a flow of 30 cm3 min-1 (STP) of H2 in 400 cm3 min-1 (STP) of N2 for 1 

hour at 500 °C.  

 After steam reforming, all samples were left to cool in-situ in the sealed reactor. 

Once cooled, the catalyst was placed in a glass vial with a screw top lid (Bacto 

Laboratories T102/V2 and T1001/C7) and stored in dark refrigerated conditions. 

 

Table 7-1. Provenance of catalyst samples prior to characterisation analyses 

Sample S:C 
Reactor 

temp 

Times used 
for steam 
reforming 

Condition 
Experimental 
urea feed rate 

1a 6 
700°C to 

500°C 
Five Post steam reforming 10 ml hr-1 

1b 5, 4, 3 600°C Three 
Post steam reforming, 

oxidation and reduction 
10 ml hr-1 

2 N/A N/A None Fresh oxidised catalyst N/A 

3 N/A 500°C None Reduced catalyst N/A 
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Where catalyst was analysed that had never been used for steam reforming 

experiments (samples 2 and 3) it was prepared and stored in the same manner. All 

samples were therefore in the form of 0.66 – 1.70 mm particles having been crushed in a 

ceramic pestle and mortar. Further preparation was necessary for the TEM, EDX and 

XRD techniques, and a description of this method is given under the relevant sections. 

7.2.1 Digital microscopy 

High resolution digital microscopy images were obtained of catalyst samples post 

steam reforming (Sample 1a) and fresh as supplied catalyst (Sample 2) using a Keyance 

VHX-600 (GEN-2) digital microscope. 

7.2.2 Scanning Electron Microscopy 

Catalyst samples 1a, 2, and 3 (Table 7-1) were analysed. Each was sprinkled onto 

an individual 1.5 cm diameter platform containing tacky carbon cement. Pressurised air 

was blown onto the samples to remove dust, then they were sprayed with a 

platinum/palladium film 15 nm thick using an Agar high resolution sputter coater. The 

samples were placed in the SEM analyser (a Leo 1530 Field Emission Gun (FEG) SEM) 

and a vacuum was applied to evacuate pore spaces. Two point analyses and two wide 

region analyses were made on each catalyst sample. Images were saved in digital form 

using Smartsem v5 software. 

7.2.3 BET Adsorption/Desorption 

All catalyst samples in Table 7-1 were analysed. A mass of catalyst (between 

0.210 ≤ g ≤ 0.400, correct to ±0.0005 g) was weighed and inserted into a Quantachrome 

NOVA 2200e Surface and Pore Size Analyser. This was programmed to subject the 

sample to small incremental volumes of gas (adsorbate) in an evacuated isothermal 

chamber, to allow for the calculation of sample surface area using the Brunauer, Emmett 

and Teller (BET) method [156]. Samples were degassed at 120 °C under vacuum prior 

to analysis, and the final mass value obtained for use in the programming of the 

analyser. The Quantachrome NOVA 2200e was then run using helium as the carrier gas 

and nitrogen as the adsorbate for a range of N2 partial pressures from 0.00 to 1.00, with 

1 minute allowed for equilibration at each increment. High purity gases from BOC were 

used: CP grade He and zero grade N2. Sample temperature was maintained at -196 °C 

inside the analyser. 
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7.2.4 Transmission Electron Microscopy and Energy Dispersive X-ray  

Catalyst samples 1a, 2, and 3 (Table 7-1) were analysed. Samples were finely 

ground in a ceramic pestle and mortar then mixed with distilled water in a ratio of ca. 

1:8 by volume. The resulting suspension was sonicated then transferred by pipette drop-

casting onto a holey carbon film supported on a gold (sample 1) or copper (samples 2 

and 3) mesh grid. Samples were analysed on a FEI CM200 FEG Transmission Electron 

Microscope (TEM) running at 197 kV with an Oxford Instruments EDX Spectrometer 

and a Gatan Imaging Filter. The FEI Tecnai F20 microscope was fitted with an 80 mm2 

X-max SDD detector. Using an imaging filter, Fast Fourier Transform (FFT) power 

spectra (analogous to electron diffractograms) were taken at selected regions to examine 

visible repeating spatial frequencies (d-spacings). These d-spacings were used to 

identify compound-specific crystal lattice planar distances. 

7.2.5 X-ray Diffraction 

Samples 1a, 2, and 3 (Table 7-1) were subjected to analysis. Each sample was 

crushed to a fine powder using a pestle and mortar and packed flat (to minimise surface 

topography) into a 10 mm diameter cavity-type sample holding spinner stage (PW3064). 

The sample was then placed into an X:Pert Philips X-ray Diffractor (XRD) by 

PANalytical, with a 240 mm radius goniometer (PW3050/60). The system operated at a 

temperature of 25 °C. A copper anode x-ray generator set at 30 mA and 40 kV supplied 

radiation of K-Alpha1 = 1.54060 Å, K-Alpha2 = 1.54443 Å, K-Beta = 1.39225 Å, with 

a K-Alpha1/ K-Alpha2 ratio of 0.50000. The samples were scanned at 0.017° angle 

intervals from 5° ≤ θ ≤ 91° with a scan step time of 40.7 seconds. The incident beam 

passed through a fixed divergence slit of 1° and a receiving slit of 0.1° prior to entering 

the detector. 

Spectra were analysed qualitatively by comparing peak intensities. Peak fitting and 

phase identification was made using Highscore Plus software. 

7.3 Results and Discussion 

7.3.1 Digital Microscopy 

High resolution (54 million pixel) images were obtained. A topography profile 

was produced by taking slices at different resolutions to give a 3-D image. This 

“topography in focus” image of the catalyst post steam reforming (Sample 1a) is 

provided in Figure 7-1. The image shows a grain of catalyst at the size range obtained 

by crushing and sieving to 0.66 – 1.70 mm (see section 5.2) with the cross sectional 

distance shown and marked as scale. The height distance between points b and c in 
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Figure 7-1 is 1.2 mm. It can be seen from this that the catalyst surface did not 

apparently fracture along planes when crushed, but was left in the form of a smoothly 

undulating semi-cylindrical grain. A higher magnification image of the same catalyst 

sample, with the smaller scale topographical features discernible is shown in Figure 

7-2. This shows the surface texture exhibiting a rough topography at µm scale, with 0.1 

mm rounded features visible along with smaller particles not discernible at this 

magnification but appearing to be of a size ≤ 1µm.  

The catalyst appeared homogeneous, with no crystalline features evident or 

textures indicative of carbon. This relatively low magnification however does not give 

sufficient evidence to discount the presence of carbon.  

 

 

Figure 7-1. Digital microscopy image and topography of urea steam reforming catalyst 
crushed to size used in experiments (0.66 – 1.70 mm). Sample shown is post 
steam reforming catalyst 1a (see Table 7-1). 
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Figure 7-2. Digital microscopy image of urea steam reforming catalyst. Sample shown 
is post steam reforming catalyst 1a (see Table 7-1). 

 

7.3.2 Scanning Electron Microscopy 

A wide region image taken of the post steam reforming catalyst (sample 1a) shows 

the globular nature of the rough topography at µm scale (Figure 7-3). It can be seen that 

all crystallites appear to be sub-circular with larger particles having crystal faces, and 

smaller fragments with no crystal structure visible at this magnification. 

Higher magnification images (Figure 7-4 to Figure 7-6) showed more clearly the 

two types of particulate present in the catalyst, with the crystal faces visible on the 

larger particles and the smaller particles still revealing no long range crystal order. 

Based on known composition (18% Ni, 81.8% Al2O3), the larger, more abundant 

crystals can be identified as alumina, with the smaller particles being nickel. 

No evidence of carbon accumulation was identified in the post-steam reforming 

samples, easily seen as stringy/filamentous deposits (whisker carbon) and common to 

previous methane steam reforming work using the same catalyst and different fuels [12, 

154]. This was particularly surprising considering that sample 1a had been exposed to 

the relatively adverse conditions of reforming at 500 °C where the urea conversion was 

lowest and NH3 production highest (see section 6.5) with high excess steam in the 
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reactor. The absence of observable differences in morphology between higher 

magnification images of the three catalyst samples suggest no significant carbon 

deposition and that urea steam reforming in the downflow reactor was therefore a clean 

process. Also, the similarity in morphology between the samples suggests that no 

sintering of the nickel had occurred. Sintering is known to take place at temperatures ≥ 

600 °C, particularly in the presence of steam resulting in a loss of surface area and an 

increase in particle size [152]. As sintering and carbonation (along with poisoning) are 

two of the three phenomena that adversely affect catalyst performance [152], these 

findings establish that the process permitted the catalyst to remain apparently free of 

these events. Therefore the results are highly favourable in terms of the potential for 

prolonged process run time. 

 

 

Figure 7-3. Low magnification SEM image of post steam reforming catalyst Sample 1a 
(see Table 7-1 for sample provenance). 
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Figure 7-4. High magnification SEM image of the reduced catalyst Sample 3 (see 
Table 7-1 for sample provenance). 

 

 

Figure 7-5. High magnification SEM image of fresh as supplied catalyst Sample 2 (see 
Table 7-1 for sample provenance). 
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Figure 7-6. High magnification SEM of catalyst sample 1a post steam reforming (see 
Table 7-1 for sample provenance). 

 

7.3.3 BET Adsorption/Desorption 

Results of the surface area analyses are displayed in Table 7-2. Values shown in 

column 3 of Table 7-2 were obtained by the author, whereas values in column four 

were not and are marked with an asterisk. In terms of accuracy, repeatability appears 

poor (12 – 15 % error) between the two sets of experiments. Though the provenance of 

the column 4 samples were known, it was not known what methods in preparation or 

analyses they were subjected to. The differences appear to be due to systematic error, 

since column 4 values are always greater than those in column 3. The two sets of results 

however did show a concurrent pattern, with highest surface area recorded for both the 

Fresh Reduced samples, followed by next highest the Fresh Oxidised samples, then 

lowest surface area recorded for the Post Steam Reforming samples. This can be 

explained by the reduced samples acquiring an increased surface area during the 

reduction process: it is known that activation of catalyst by reduction with hydrogen at 

the temperatures used in these experiments reduces nickel crystallite size and therefore 

increases Ni surface area [152]. Lower surface area post-steam reforming, could be 

explained by sintering having occurred. Sintering is known to reduce surface area, and 

also to have a positive correlation with higher reactor temperatures and the presence of 

steam [152]. This would however conflict with the absence of any morphological 

evidence of sintering observed with the high magnification SEM analysis (section 
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7.3.2), unless the morphological changes were small and not visibly discernible by this 

technique. 

Table 7-2. Results of catalyst surface area at different stages of the steam reforming 
process, obtained by BET adsorption/desorption method. 

Sample Condition 
Surface 

Area 
Replicated Surface 

Area* [157] 
Mean Average 

1a Post steam reforming 2.971 m2/g - 3.0 m2/g  

1b Post steam reforming, 
oxidation & reduction 

2.775 m2/g 2.266 m2/g 2.5 m2/g ± 0.3 

2 Fresh oxidised 3.262 m2/g 2.557 m2/g 2.9 m2/g ± 0.4 

3 Fresh reduced 3.720 m2/g 2.798 m2/g 3.3 m2/g ± 0.5 

 

The shape of the adsorption/desorption isotherms (not shown) approximated most 

closely to a Type 2 classification, associated with non-porous or macroporous solid 

(pore width > 50 nm) [158, 159]. This identification validates the reliability of the 

surface area results using the BET technique [158], but precludes analysis of pore 

structure [159]. This classification of a low porosity surface, is further corroborated by 

an absence of mesopores (2-50 nm) and micro-pores (≤ 2 nm) seen with the SEM 

(section 7.3.2) and TEM analysis (section 7.3.4); a discussion of which follows. 

7.3.4 Transmission Electron Microscopy and Energy Dispersive X-ray 

Magnification to ≤ 1 nm was achieved and a smooth surface texture observed with 

no pore structure evident. This accords with the results from SEM (section 7.3.2) and 

BET (section 7.3.3) analyses. The catalyst was seen to have an undulating µm-scale 

topography. The minimum size of structure observed was particles ca. 30 – 50 nm. An 

error of ±10 % can be applied to FFT d-spacing values for operator assignation.  

Density contrasts within the sample, revealed by TEM, allowed for inferences to 

be made on the identification of crystallites/particulates. Denser areas within the sample 

had a greater inhibition for electron transmission and these were revealed as darker 

regions.  

EDX provided only a qualitative identification of sample elemental composition. 

Electron’s penetrated the subsurface of the sample to approximately 5 micrometres with 

error introduced by depth and latitude of penetration being a function of sample 

material, topography, and the relatively large field of analysis. With confidence, 

however, the content ratio of alumina and nickel in each sample could be affirmed and 

therefore comparisons could be made between sample compositions. 
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Relatively low magnification images from TEM analysis revealed the two 

different types of component present, the particle distribution of nickel on the alumina 

support, and also the crystal structure of alumina. An example from the fresh oxidised 

sample (sample 2) but representative of all samples analysed is provided in Figure 7-7. 

The nickel particles were seen to be occluded onto the closely packed and largely 

crystalline alumina. Common 120° angles between the alumina crystal faces identified 

the hexagonal crystalline form of α-alumina [160]. 

 

 

Figure 7-7. TEM image of fresh oxidised catalyst (Sample 2) showing differences in 
morphology between alumina and nickel.. 

7.3.4.1 Sample 1a. Post Steam Reforming Catalyst 

A high-magnification image representative of the full sample composition is 

shown in Figure 7-8. The light grey area to the left is taken from the large crystal face 

regions and further identified as aluminium oxide based on its 3.4 Å FFT d-spacing. 

This spacing is unique to previously determined crystal lattice distances for alumina 

[161]. No EDX was done on this region. Other light grey sample regions were analysed 
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and found to have the same unique d-spacings as shown in Figure 7-8, and also to have 

observable striations attributable to long-range crystal order (see Figure 7-10).  

 

 

Figure 7-8. TEM image of post-steam reforming catalyst (Sample 1a) with FFT analysis 
in boxed region showing structural distances. 
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3.3Å + 2.0Å FFT3.3Å + 2.0Å FFT3.3Å + 2.0Å FFT

 

Figure 7-9. TEM image of post-steam reforming catalyst (Sample 1a) with FFT analysis 
in boxed region showing structural distances. 

 

In contrast, the dark globular structure in the centre of Figure 7-8 exhibited no 

nanoscale striations or d-spacings from FFT analysis and is labelled as “nickel”. These 

structures were seen throughout the sample and are representative of the relatively low 

(18 wt%) nickel component of the catalyst. That this structure is nickel-rich was 

confirmed by EDX analysis (Figure 7-11). The presence of gold in Figure 7-11 can be 

attributed to the supporting grid material and not a feature of the catalyst sample. The 

very low concentration of oxygen in the EDX spectrum is evidence of nickel being in its 

reduced state. Small amounts of oxygen are considered to enter samples via 

contamination between sample and the oxygenated carbon support film, which is a 

possible explanation for its presence here. However, that the nickel in this sample was 

still in a reduced rate despite steam reforming is established by comparison with the 

higher oxygen content of nickel regions in TEM analyses of the “as supplied catalyst” 

(Figure 7-12. cf. also reduced sample EDX – Figure 7-13). This is a very desirable 

outcome, since Ni rather than NiO is active for reforming of hydrocarbon fuels. 
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Figure 7-10. TEM image of post-steam reforming catalyst (Sample 1a) with FFT 
analysis in boxed region showing structural distances. 

 

 

Figure 7-11. EDX of nickel in post steam reforming catalyst (Sample 1a) showing 
nickel is in its reduced state. Gold is from the support media, not the catalyst. 

 

The presence of nickel-oxide in this sample or of long range crystal order in the 

nickel regions was not apparent. No visible lattice striations, no FFT detection, and no 

high-oxygen EDX results were found on any analyses of complete nickel regions, 
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indicating that the nickel lacked morphology and was in its reduced state. The only 

striations and FFT values found on regions containing nickel in this sample were where 

the detection range overlapped adjacent alumina. Since this technique involved the 

transmission of electrons through a sample region, detections from overlapping particles 

would create potentially spurious results. In Figure 7-9, such an overlapping region of 

the two different morphologies is shown. The FFT d-spacing value of 3.3 Å is uniquely 

identifiable of alumina, whereas 2.0 Å is a d-spacing that could be either alumina, 

nickel, or nickel-oxide [161]. Thus, a clear assignation of nickel cannot be made, and it 

is far more likely that the 2.0 Å d-spacing pertains to alumina, which had clearly 

revealed its structures and features elsewhere in the sample. 

7.3.4.2 Sample 2. Fresh Oxidised Catalyst 

Alumina and nickel regions could be clearly identified from their morphology and 

were seen to have concentrations and spatial distribution concordant with those found in 

sample 1a. Visible striations at higher magnification and FFT d-spacings repeatedly 

identified the higher-concentration light grey alumina regions. The nickel component, 

identified from EDX, shade gradation, and absence of FFT was again seen as ubiquitous 

dark low-concentration globules attached to the alumina matrix. Some poorly-defined 

edges could be seen on some of the nickel particles, but predominantly their shape was 

globular as per sample 1a, indicating that this morphology was not a symptom of reactor 

high-temperature induced sintering. 

In contrast to sample 1a, definite oxygen content was revealed from EDX analyses 

of the nickel-regions (Figure 7-12), as would be expected of a catalyst that was known 

to be in its oxidised state. FFT analyses of the nickel regions were inconclusive with no 

d-spacings evident that could be definitely attributed to either nickel or nickel-oxide, in 

contrast to the alumina regions which were clearly identifiable from FFT. The further 

absence of visible lattice striations in the nickel regions also indicates that these were 

non-discernable crystallite or amorphous forms. 
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Figure 7-12. EDX of nickel in as supplied catalyst (Sample 2) showing the higher 
presence of oxygen indicative of nickel in its oxidised state. Copper is from the 
support media, not the catalyst. 

 

7.3.4.3 Sample 3. Reduced Catalyst 

Alumina and nickel regions were again clearly identified by their concentrations 

and morphology being identical to Samples 1a and 2. EDX analyses of the nickel 

regions (Figure 7-13) showed an absence of oxygen-content similar to Sample 1a. This 

was as expected of a catalyst that had been subjected to a reducing H2:N2 gas flow. All 

except one nickel-region showed no visible crystal lattice striations and would not yield 

FFT d-spacings, further evidencing its amorphology. One nickel region did have 

striations with two FFT-derived 2.3 Å d-spacings, a value that can be attributed to either 

alumina or nickel-oxide, but not (reduced) nickel [161]. It is possible however that this 

region could have overlain an alumina area as the image clarity was poor. 
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Figure 7-13. Reduced catalyst (Sample 3) EDX of nickel area. Copper comes from 
support grid 

 

7.3.5 X-ray Diffraction 

Figure 7-14 to Figure 7-16 show the presence in the catalyst samples of Al2O3 

(Red), NiO (Blue), and Ni (Green). The detection of nickel by XRD reveals that there 

was crystal order greater than 5 nm (50 Å) – the limit of detection for XRD [162].  

As expected, and as shown in Figure 7-14, the as supplied catalyst (Sample 2) 

was found to only contain nickel in its oxidised state (NiO). It can be seen from Figure 

7-15, that also as expected, after reduction under a H2:N2 flow, the catalyst sample 

(sample 3) exhibited nickel in its elemental (Ni) state. Interestingly, and of most 

importance, is the comparability between the fully reduced sample (Figure 7-15) and 

the spectra for sample 1 (Figure 7-16). This shows that after five stages of urea steam 

reforming the redox state of the nickel component in the catalyst appears to have been 

unaffected, with Ni still in its reduced state. These results support the findings of TEM 

and EDX analyses, that the catalyst was robust for the process and able to maintain its 

active state despite repeated and adverse operating conditions. 
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Figure 7-14. XRD spectrum of nickel in as supplied catalyst (Sample 2) revealing the 
presence of NiO and the absence of Ni peaks. 
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Figure 7-15. XRD spectrum of reduced nickel catalyst (Sample 3) revealing the 
presence of Ni peaks. 
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Figure 7-16. XRD spectra of catalyst sample post five-stage steam reforming, showing 
nickel still in its reduced state (Ni). 

 

7.4 Conclusions 

Characterisation of the catalyst used in urea steam reforming was assessed by 

digital microscopy, SEM, TEM, EDX, XRD and BET adsorption. The morphology, 

presence of carbon deposits, and nickel redox state was compared between fresh as-

supplied catalyst, reduced catalyst, and spent catalyst. This assessment was to 

supplement knowledge gained of catalyst functionality and performance during 

experimentation. Comparisons were also made to previous characterisation of this 

catalyst when used with other fuels. 

Each sample was subject to long range and also high magnification TEM analyses 

to ≤ 1 nm at approximately ten regions per sample. TEM analysis verified the non-

porous nature of the catalyst with rough µm-scale topography, corroborating therefore 

the low surface area values identified by BET analyses and the images obtained using 

SEM.  

The two compounds in this catalyst were clearly identified in all three samples. 

Alumina was identified by EDX and FFT by its unique 3.4 Å d-spacing. This atomic 

distance is not shared by either nickel or nickel oxide even with the 10 % error applied 

for operator assignation. Nickel regions were identified as lacking in long-range crystal 

order due to the absence of lattice striations in nickel regions observed using TEM and 
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the inability to detect crystal plane spacing using FFT. Where FFT d-spacings of nickel-

regions were detected, no unique values were apparent to allow substance identification, 

and these were coincident with the FFT/visible striations only being detected from 

regions suspected of overlapping with alumina.  

XRD analysis was able to identify some crystallinity in the nickel constituents and, 

in combination with the results from EDX, gave corroborative affirmation of nickel in 

its reduced state (Ni) in the reduced catalyst and oxidised state (NiO) in the fresh as 

supplied catalyst. The post-steam reforming catalyst also revealed nickel to be in its 

reduced state despite being analysed immediately post-steam reforming and following 

five episodes of reforming activity. This was a surprising result and one which is highly 

favourable for long-term catalytic activity as it proves that the catalyst is robust for the 

urea steam reforming process.  

The catalyst was also found to have emerged apparently unaffected in terms of 

morphology and carbonation following repeated steam reforming activity. The 

similarity between nickel particle morphology in the samples exposed to the high 

temperatures of steam reforming and reduction, and the as-supplied sample indicated 

that its globular form was not a product of in-reactor sintering. However, that some 

sintering may have occurred was suggested by the decrease in surface area of the post-

steam reforming catalyst following BET analyses. If sintering had occurred it was 

therefore unobservable using these high magnification imaging techniques. The 

presence of carbon was not identified in any of the analyses on any of the catalyst 

samples, corroborating the in-situ experimental observations that coke formation had 

not occurred to any significance. This was despite relatively low temperatures, 

sometimes resulting in incomplete urea conversion and where the condition would 

favour carbonation. 

The absence of changes in morphology observed by comparing catalyst samples 

using TEM, and SEM, and the analysis of qualitative elemental composition determined 

using EDX, support the results of in-situ experimental catalyst characterisation. Thus it 

can be concluded that the urea steam reforming process imposed little deleterious affect 

on the catalyst and that it remained active and robust throughout repeated steam 

reforming cycles. This resistance to coking, oxidation of Ni surface sites and sintering 

reveals the catalyst as being highly resistant and robust. It also establishes that urea 

steam reforming is a far cleaner process than has been reported for previously successful 

fuels.
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8 Conclusions 

This study has investigated the potential for using urea as a source of energy. A 

consideration has been made of urea’s ability to release predominantly hydrogen, but 

also ammonia, since both these molecules can be used to generate energy when supplied 

to fuel cells. Steam reforming was the method used to produce hydrogen from urea. 

Urea is as a non-toxic, safe and environmentally benign substance, setting it apart 

from other previously considered fuel cell energy carriers. A large and expanding 

commercial industry presently exists for urea manufacture from fossil fuels, creating a 

resource that is both readily available and relatively cheap; thus making urea 

advantageous for short term supply and rapid infrastructure implementation. This study 

has also identified that a large sustainable resource exists with the consequence being 

that urea is attractive as a long-term energy vector, with potential for global CO2-neutral 

power generation. It was discovered that the practicalities of extracting sustainably-

sourced urea is lacking in research focus, despite the necessary technology being proven 

in other disciplines. 

The feasibility of extracting hydrogen from urea was assessed by thermodynamic 

modelling. The results of these calculations were favourable, with complete urea 

conversion predicted over a wide range of temperatures. Predicted maximum steam 

conversion and H2 yield coincided at mid-range temperatures of 500 °C ≤ T ≤ 700 °C 

for aqueous urea reactant solutions attainable at room temperature (3:1 ≤ S:C ≤ 7:1). 

The synthesis gas composition at optimum equilibrium conditions was ca. 60 % H2, 20 

% N2, and 20 % CO2, as dry products. Dry syngas NH3 concentrations were predicted to 

be in the 10 ≤ ppm ≤ 100 range at moderate (500 °C ≤ T ≤ 600 °C) temperatures, with 

concentration decreasing as temperature was increased. Methane production was 

predicted to be negligible. Calculations were devised to determine the energy needed to 

produce H2 from urea and steam. This was found to be slightly higher (55.5 % ± 1.5%) 

than that for methane steam reforming, but still with a theoretical surplus when 

compared against the maximum possible energy content of the H2 molecule. 

Equilibrium calculations were also used to assess the performance of urea steam 

reforming experiments. Urea steam reforming was initially achieved in a bench scale 

reactor made of quartz, 70 cm long and 12 mm diameter, with a fixed-bed of nickel 

catalyst at its centre, supplied by a urea in aqueous solution (4:1 ≤ S:C ≤ 7:1) fuel, and 

heated by an electrical tube furnace. Catalyst was proprietary 18 wt% nickel supported 

on alumina and crushed to a 0.66 – 1.70 mm particle size. Catalyst was primed by 

reduction under a H2:N2 flow at 550 °C for one hour, and then the system flushed with 

N2 prior to steam reforming. Fuel entered the system via a programmable syringe pump 
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and traversed the reactor in an upflow direction under an N2 carrier gas flow. The carrier 

gas flow enabled product analyses by material balance following species detection in a 

series of online analysers. Species monitored were H2 (by thermal conductivity), CH4, 

CO, and CO2 (by non-dispersive infrared). NH3 was not monitored in this first episode 

of experimentation. A greater range of hydrocarbon species were analysed by batch 

sample off-line gas chromatography. Moisture was removed from the synthesis gas in a 

series of post-reactor/pre-analyser condensers. At reactor temperatures of 600 °C, a 

synthesis gas rich in hydrogen was produced, with steady state outputs closely matching 

those predicted by the equilibrium model. No other hydrocarbons were identified by off-

line analyses. Instability in output profiles over time was identified as a weakness of the 

reactor design and attributed to an incompatibility of the urea fuel with the slow ascent 

across a temperature gradient prior to vaporisation at the catalyst bed, thus creating a 

propensity for urea to supersaturate out of solution. Additional experiments were 

completed with this reactor system to assess species residence times for comparison 

with parallel investigations into reaction kinetics and to investigate an unexpected 

phenomenon of early (low temperature) H2 detection at the analysers. Results suggested 

that H2 production prior to the urea fuel having reached the catalyst bed was due to 

chemical reaction for fuels close to the urea eutectic mixture (S:C = 6 and 7) rather than 

physical interaction. 

Based on the knowledge acquired with preliminary urea steam reforming 

experiments, a new reactor system was designed that was specific to the requirements of 

aqueous urea fuel. The same quartz, fixed bed catalytic reactor was used, but inverted, 

with a new fuel inlet assembly designed and implemented to supply aqueous urea by a 

passively-cooled (to avoid supersaturation), drop feed (to avoid slow ascent across the 

temperature gradient and achieve a rapid approach to the catalyst bed) system. A 

parametric study assessed urea steam reforming at temperatures of 500 °C ≤ T ≤ 700 °C 

and fuel mixtures of 3:1 ≤ S:C ≤ 7:1; parameters chosen with the intention of optimising 

steam conversion, and maintaining thermodynamic equilibrium. Twenty grams of 

undiluted catalyst was used and this was regenerated under airflow after steam 

reforming to assess for process recycle ability. In addition to the product gases measured 

in the previous upflow reactor, product NH3 was also monitored in both the online 

(post-condenser) gas and by off-line ion chromatography of the liquid collected in the 

post-reactor condensate trap. A new material balance was devised to incorporate the 

measurements of NH3. Problems associated with fuel supersaturation were greatly 

overcome and improved stability was achieved with the new drop-feed reactor system, 

with the output products again matching those predicted by equilibrium and remaining 

close to steady state for the duration of the experiments: a period of two hours, which 

was limited by the volumetric capacity of the fuel dispenser. The new fuel input 

assembly permitted a lower ratio of fuel to carrier gas and consequently a three times 
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higher concentration of H2 was produced. Yields calculated from the material balance 

and matching those at equilibrium indicated the existence of a global urea steam 

reforming reaction. Comparisons between material balance results and equilibrium 

modelling also strengthened the belief that all significant product species were 

measured. The condensate system was found to be highly effective at capturing NH3, a 

feature that is attractive for potential assimilation of technologies for direct supply of 

urea-derived syngas to fuel cells, particularly as the capture involved a simple passive 

trap using only the unconverted water leaving the reactor. NH3 values in the condensate 

were however found to be higher than had been predicted by equilibrium modelling at 

the lower temperature operating range. This is an area that requires further study, but it 

is suspected that the cause is catalytic inability to rapidly decompose NH3 at T ≤ 550 °C. 

Preliminary laboratory experimentation had confirmed that the extent of urea 

solubility at room temperature was achievable for the mixtures 3:1 ≤ S:C ≤ 7:1. Ion 

chromatography had confirmed that urea isomerisation prior to 5 hours after solvation 

could be discounted, with isomer products not detected above 0.5 ppm in all samples up 

to one hour after preparation. Simultaneous thermal and evolved gas analysis of aqueous 

urea and nickel catalyst using mass spectroscopy and FTIR identified that HNCO was 

hydrolysed rapidly when water was present with urea and that it would not evolve or be 

likely to occur in significant quantity under steam rich flow reactor conditions. These 

experiments also attempted to elucidate further the phenomenon of early (low 

temperature) H2 release, first suggested by upflow reactor experiments. From 80 °C, 

STA results showed detections that could evidence both NH3 and H2 evolving from the 

urea solution samples, but not from pure (anhydrous) urea. This is an area for further 

study as it may provide a mechanism for low temperature H2 production. 

Though kinetic calculations could only determine a worst case scenario, based on 

the known parameters of rapid fuel entry, temperatures close to the considered optimum 

for steam reforming based on modelling and on the known activity range of this catalyst 

(T ≥ 500 °C), a 99.9 % conversion of urea was predicted in the experimental reactor 

within half a second. With the anticipated reactor settings of T ≥ 550 °C, any urea 

remaining would be instantly decomposed upon contact with the catalyst bed. 

Post-reactor experimentation was completed using a variety of techniques (TEM, 

SEM, XRD, BET adsorption, digital microscopy) on post-steam reforming catalyst, 

fresh (as supplied catalyst), and fully reduced catalyst. This was used in combination 

with the in-situ experimental observations on coke formation, repeat cycling, and output 

performance over time to characterise the catalyst and assess its functionality. The 

nickel catalyst was found with experimentation to remain effective at steam reforming 

over repeated cycles of regeneration without deactivation. This was supported by 

observations from ex-situ analysis that the catalyst had retained its active Ni surface 

sites despite repeated steam reforming cycles. A resistance to coke formation and 
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sintering was also observed, establishing urea as a far cleaner fuel for steam reforming, 

more so than has been found with previous successful attempts at generating H2 using 

the same catalyst but with alternative fuels. 
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Appendix A: Downflow Reactor Maximum Fuel Feed Test 
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Figure A. Dry product gas concentrations for S:C = 7, at 600 °C with 350 cm3 min-1 
carrier gas flow rate, shown as scatterpoints as a function of time, using 20 % of 
datapoints for clarity. Fuel feed rate varied, and increased to maximum during late 
stages of analysis time. 

 

Figure A shows the online dry product gas results for a pre-parametric study using 

the downflow drop-feed urea steam reforming reactor described in Chapter 7. Fuel feed 

rate was started at 50 ml hr-1 and then increased to maximum (999 ml hr-1). Stages of 

fuel feed rate increase were not measured, but where known, they are shown on Figure 

A. The test was aborted due to fuel flooding back along the carrier gas feed line. NH3 

measured at below 6 ppm for duration of experiment run time. 

Parameters differ from study reported in Chapter 6 by carrier gas flow rate and fuel 

feed rate. 
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Appendix B: Urea Wire Monolith Spray Reactor 

B.1 Introduction 

Previous chapters have attempted to address the important considerations 

associated with using urea as a hydrogen carrier, to give a comprehensive appraisal of 

this novel energy source, and the feasibility of urea steam reforming as a realistic 

methodology for hydrogen extraction. The energy required to make the urea steam 

reforming reaction proceed in the process design reported in Chapters 6 and 7, and by 

the equilibrium modelling reported in Chapter 3 is however an unavoidable necessity of 

the mechanism. Though the obviation of this energy demand by using renewable energy 

systems such as solar concentrators is identified as attractive for future work, 

improvements in efficiency by reducing radiative and conductive heat losses, and by 

quickening the reaction rate kinetics by reducing fuel droplet size are other alternatives. 

This would require a new reactor system to the one used successfully in earlier chapters 

of this thesis. To reduce heat losses from the system, a more compact reactor with the 

application of concentrated and focused heating would be required. 

A novel component was supplied by the industrial sponsor of this project with the 

requirement that it be built into a steam reforming reactor. There follows in this chapter 

a description of the construction of this reactor and fabrication of a process system 

around it specific to aqueous urea fuel. Though in many respects this could be 

considered merely an addendum to the research on “Hydrogen from Urea”, it does have 

relevance in describing an alternative, potentially optimised system for producing 

hydrogen from urea. The work involved in building this novel steam reforming system 

has also constituted a significant part of the time and effort involved in this project. 

With the lessons learned about the utilisation of a urea fuel for steam reforming, 

the system was constructed with the following design objectives:  

1. Durability, with long term operation and low operational maintenance. 

2. A more reliable system of introducing larger flow rates of urea solution yet still 

protected against the risk of urea solution supersaturation prior to reactor. 

3. Reduction in carrier gas dilution (obviated in a research sense by alternative 

on-line analysis tools that do not require minimum gas flow rates).  

4. As will be seen with a description of the reactor, its relative small size, 

sturdiness and compactness appeared to have an advantage over the glass reactor system 

in which urea reforming was successfully achieved, for wider practical application. The 
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monolith reactor core was also considered to have potential for alleviating problems 

with pressure drop as may be encountered at high flow rate across a fixed catalyst bed. 

These attributes made it favourable for small-scale and lightweight applications as are 

envisaged to be the major benefit of a urea-derived energy supply, and also for scale-up 

to a larger industrial system. Creation of a prototype suitable for these practical 

applications was a fourth design objective.  

This study concentrated on initial reactor design and fabrication of a urea spray 

system. Ancillary pre- and post-reactor process components were also incorporated into 

the design. 

B.2 Materials 

 A stainless steel encased reactor that contained a ceramic monolith (length = 75 

mm, diameter = 30 mm) with 55 x 1.8 mm longitudinal holes was supplied. This is 

shown in Figure B-1. One single length of nickel-chromium (nichrome) wire was 

threaded through the monolith holes to function as both catalyst for the steam reforming 

reaction and as a heating coil. There was one vacant hole in the monolith. 

 

 

Figure B-1. Ceramic monolith in stainless steel casing with nichrome wire. See text for 
dimensions. 

 

Seen separating the monolith from its temporary steel casing in Figure B-1 is a 

quantity of 3M 100 EPP interam mat. This packing material (see Table B-1 for 

composition) was unsecured within the steel casing, but was held in place by friction. 
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Table B-1. Insulating mat composition, used as packing in spray reactor. Purchased 
from 3M (100 EPP) 

Product Specification Composition (Wt %) 

Vermiculite 50 - 65 

Refractory ceramic fibres 25 - 40 

Copolymer binder 1 - 10 

Fibre bonding agent 0.1 - 5 

 

 A 316 stainless steel reactor casing was also supplied and is shown in Figure B-2. 

This casing was in two sections. The top of the casing was detachable and was secured 

to the main body by six bolts positioned along its circumference. A silicon o-ring was 

embedded between the two casing sections to create a gas-tight seal. The body section 

of the casing (point “a”) was the same dimensions as the casing shown in Figure B-1. 

Interam mat was fitted between monolith and the body of the casing. Each end of the 

nichrome wire exiting the monolith at the top, passed out through the steel casing via 

holes on either side of the reactor top insulated by PTFE sheaths.  
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Figure B-2. Stainless steel casing supplied to house monolith as shown in Figure B-1. 
Annotated areas “b” to “d” show components that were removed or replaced (see 
section B.3). Text refers to annotated areas “a”, “c”, “e”, and “f”. 

 

A pressure spray nozzle was supplied with this reactor, permanently affixed 

(internally) to the casing top (at point “b” on Figure B-2) such that the nozzle was 

aligned axially with the top of the monolith. No details of the nichrome wire 

specifications were known. 
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B.3 Reactor Design 

The monolith reactor did not function within the casing supplied and shown in 

Figure B-2. The casing was re-designed, and ancillary equipment purchased to create a 

full process system. Sections of the reactor casing identified as areas “b” to “d” on 

Figure B-2 were either removed, replaced or re-fabricated. Interam mat was packed 

between monolith and casing body. Two holes were drilled into the casing at the point 

marked “e” on Figure B-2 180° apart along the circumference of the casing top section. 

A lip of 3 mm high stainless steel was welded around these holes on the outside of the 

casing top. Through these holes, the two ends of nichrome wire exited the reactor. The 

nichrome wire was sheathed in 1.5 mm ceramic fishspine beads (by RS Components) 

along its full length outside of the monolith. This was to stop possible short-circuiting of 

the electric current onto the reactor casing during operation. The wire and sheath 

assembly was sealed to make the system gas tight by a combination of fire cement (by 

KOS) base layer and high temperature-tolerant epoxy resin (Optitec 5054) secondary 

layer. The nichrome wires were then connected to a Thurlby Thandar Instruments (TTI) 

QPX1200L DC power supply, and a power control unit with programmable temperature 

setting (built in-house). A schematic of the reactor system designed for urea steam 

reforming is provided in Figure B-3. The area marked “Reactor” on Figure B-3 shows 

the monolith contained in the steel casing. 

 A K-type thermocouple was inserted into the vacant monolith hole to a depth of 30 

mm. This exited the reactor casing top via a stainless steel Swagelok connector with 

PTFE ferrule through aperture “f” on Figure B-2 and connected to the power control 

unit for manipulation as required of the reactor temperature settings. The other vacant 

aperture “f” was sealed with a Swagelok stainless steel plug. 

An air atomiser nozzle by Delavan was connected at point “b” on Figure B-2 

using a Delavan stainless steel ¾” screw thread mounting bracket. This was inserted 

centrally in the reactor top, 7 cm longitudinally above the monolith top-end face. The 

nozzle could be lowered or raised by the screw threads of its mounting to adjust its 

spray pattern onto the monolith top. The spray nozzle was 46 mm long and 25.7 mm 

wide. Various nozzle types with different apertures (creating different spray patterns) 

were available and this flexibility in design allowed for easy access to clean and repair, 

or to remove and replace the nozzle type. It was also a design that permits easy access 

for loading/unloading of additional catalyst into the reactor should that be considered 

necessary. 

The spray nozzle had two 1/8” bsp screw threads for entry of atomising gas and 

fuel. Both were connected by Swagelok fittings. Atomising gas was > 99.99 % purity N2 

from BOC cylinders, supplied by a calibrated rotameter for flow rate control and 
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regulator-controlled gas cylinder via ¼” tubing and Swagelok fittings. The other feed 

line was urea solution via a syringe (SGE) and programmable micro-syringe pump (New 

Era Pump Systems) connected to the feed tubing using an SGE Analytical NLL – 5/16. 

4.5cm needle attached to a Swagelok tube connector.  

For operation, the reactor was pressurised to 1 atm. Pressure was monitored for 

safety and operational flow rate accuracy by a pressure gauge with a safety pressure 

relief valve inline, set at 2 atm. 

The gaseous effluent leaving the reactor was passed through the same reflux 

condensate collection system that had been shown to be successful with quartz reactor 

experiments (Chapter 6) with two oil-cooled condensers to remove moisture before 

analysis, and condensate collected in a glass flask at the base of the outlet assembly for 

determination of its ammonia content. 

The dry product gas line leaving the condenser system entered a (non sample-

destructive) ABB Advance Optima Limas 11 ultraviolet absorption module for NH3 

analysis, then on to an AS-Series NH3 scrubber, containing silicon orthophosphate 

combined with silicon pyrophosphate (99 Wt%) and quartz dust (1 Wt%). Following the 

NH3 scrubber, a Varian CP-4900 micro GC supplied with argon carrier gas analysed the 

product composition of the syngas. Both micro GC and Limas 11 analysers were 

connected to a personal computer for collection of data. 
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Figure B-3. Schematic of wire and monolith spray reactor 
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B.4 System Tests 

B.4.1 Power Controller and Pyrometry 

B.4.1.1 Method 

A Fluke 62 Mini Infrared Pyrometer was used to calibrate the power settings 

necessary to heat the monolith. The monolith was inserted into the casing body section 

and connected to the power supply with a thermocouple inserted into the vacant hole of 

the ceramic reactor. For each programmed temperature, three measurements were taken 

at locations as shown in Figure B-4 of: 

 1) The outer casing of the reactor. 

 2) The centre of the monolith face. 

 3) 5 mm in from the outer edge of the monolith face. 

 

 

Figure B-4. Positions of pyrometer sampling on reactor outer metal casing 

 

The pyrometer was activated for three seconds from 15 cm away from the source 

in all cases. The first measurement was recorded one minute after the temperature was 

stable (as shown by the thermocouple). Readings were taken at 50 °C intervals from 300 

°C to a maximum of 500 °C (the limit range of the pyrometer). For each temperature 

setting, measurements were repeated three times at 1 minute, 3 minutes, and 5 minutes. 

Tests with the encased reactor in-situ (as Figure B-3) were also done with the 

pyrometer to assess heat loss from areas on the casing body and for reasons of safety to 

monitor heat gain of the outer components. Using a multimeter, the interim packing was 

measured for its electrical resistance and heat resistance. 

1 

2 

3 
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B.4.1.2 Results and Discussion 

Temperature measurements using the pyrometer on the ex-situ monolith and steel 

casing body are shown in Table B-2. These values are maxima: the default display 

setting of the pyrometer. Heating rate was found to be rapid, with stable temperatures 

achieved within 1 minute (≥ 97 % of final value) of power output. 

Table B-2. Results of pyrometry test on reactor and power unit. T/C = thermocouple. 

 

The observed disparity between pyrometer detected temperatures on the monolith 

and its casing and the desired temperature settings as shown in Table B-2 can be 

confidently attributed to heat loss by radiative and convective air cooling. The reactor 

was just held on a bench in stand and clamp below an air extractor and therefore 

exposed to lab air temperature of 23 °C. The temperatures were very stable throughout 

the sampling period. When measuring the outer monolith edge temperature it was 

difficult to attain a steady “5 mm from edge” recording so operator error at this location 

of ± 3 mm is attributed. 

Following the rapid heating of the monolith used in this method, cracks were 

observed in the ceramic. This was considered to be due to rapid heating. An identical 

replacement monolith and nichrome wire insert was used in all subsequent experiments. 

With the reactor in its housing and connected as per Figure B-3, heat was applied 

gradually and temperatures were maintained for as long as desired up to a maximum test 

period of five hours. With the reactor operating temperature stable at 700 °C, different 

external sections of the outer components were measured with a thermocouple. It was 

Outer Casing (1) 

Temp (°C) 

Monolith Centre (2) 

Temp (°C) 

Monolith Edge (3) 

Temp (°C) 

Temp 
setting 
(°C) 

V A 

1min 3min 5min 1min 3min 5min 1min 3min 5min 

300 36 4 59 55 55 225 231 239 202 211 210 

350 36 4 69 68 68 273 280 278 225 240 243 

400 36 4 77 79 78 338 329 347 314 292 311 

450 36 4 87 88 92 354 358 358 324 349 324 

500 36 4 98 102 103 391 390 401 346 333 345 

550 36 4 111 111 111 413 435 449 390 352 408 

600 36 4 124 122 123 449 443 467 414 407 394 

650 40 5 N/K N/K N/K       

700   N/K N/K N/K       

750   N/K N/K        
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found that the maximum temperature recorded was for the ceramic beads at 126 °C. The 

nichrome wire and reactor casing top were recorded at 70 °C and 118 °C respectively. 

Without insulation, the outer case was seen to have a temperature of 250 °C. The 

interim mat was found to have poor heat insulating qualities. With kaowool insulation 

wrapped around the exterior of the reactor casing body, a significant reduction in outer 

temperature was seen with a value of 50 °C recorded. Not surprisingly, the kaowool 

insulation also significantly reduced the power output from the electricity supply unit.  

The interim mat when dry, exhibited zero electrical resistance but it conducted 

electricity when wet. Testing with the multimeter showed 1MΩ resistance compared to 

the heating wire resistance of 8 Ω. 

B.4.2 Spray System 

When tested, the fuel delivery nozzle provided with the casing was found to 

generate a spray pattern only under high pressure (≥ 5 bar) and, according to 

manufacturer specifications, with a high fuel flow of ≥ 1450 ml hr-1. Both these state 

parameters were unsuitable due to the inability of the syringe dispenser to function at 

this pressure value and for the fuel flow rate being excessively high for this bench-scale 

system. It was therefore decided to choose an alternative air-atomising fuel delivery 

nozzle that could operate at atmospheric pressure. These chosen nozzles (see section 

B.4.2.1) were provided with guideline functional ranges with a pure water feed. 

Calibration tests were therefore required to determine their performance with a urea 

solution fuel. 

B.4.2.1 Method 

Two types of nozzle were purchased and tested: an AL04 air atomiser - with an 

orifice of 0.088 mm, and an AL01 air atomiser - with an orifice of 0.040 mm). Both 

nozzles were made of 316 stainless steel. Tests were done with urea solution of S:C = 

6.5 to determine conical spray pattern and distance required from the monolith top to 

produce this conical pattern. This ratio of mixture was chosen due to its closeness in 

concentration to the eutectic mixture and it being mid-range between the mixtures found 

to produce the best urea steam reforming results with the previously successful system 

(see Chapter 6) The rotameter used to control carrier gas flow rate, and the mass flow 

controllers used for fuel flow were calibrated using the bubble tube method as described 

in section 5.2. Extent of atomisation under different gas flow and fuel feed rates was 

also measured. The experiments were attempted using the final system set-up as 

described in section B.3, except that the reactor was removed and the spray pattern 

monitored as follows:  
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Initially droplet distribution was measured by putting a paper towel under the 

spray to assess the pattern. This was deemed inappropriate because the fluid soaked into 

the paper upon impact and spread out thus distorting the appearance of the actual 

droplet size and spray dispersion. An improved method for characterisation of spray 

distribution was employed by capturing the droplets in oil based on a design advocated 

by Ahmed [163]. Sunflower oil, 1-2 mm deep, was placed in a petri dish and inserted 

under the operating nozzle 2 - 4 cm axial distance from the nozzle orifice and held there 

for 1-2 seconds to capture droplets. This distance was chosen based on the diameter of 

the monolith end section (30 mm). For a 60° cone (bisecting two 30° angles from the 

vertical, the positioning of the nozzle aperture necessitated a position of 15.00/Tan30° = 

25.98 mm away from the monolith. 

Earlier tests had shown that the syringe pump dispensing capacity and system 

pressure were in the correct range for the nozzle to function but that atomising carrier 

gas flow was higher than desired. These tests were to formally assess the range of 

carrier gas flow and fuel feed rates that could achieve spray, commenting on the droplet 

sizes and the spray spread at a fixed distance from the nozzle aperture. 

Initial tests had used 4 ≤ m ≤ 10 lengths of 4 mm I/D diameter tubing to supply N2 

from cylinder to nozzle. This was found to necessitate very high 10 dm3 min-1 (STP) N2 

flow rates to generate fuel atomisation. To reduce energy losses in the N2 supply piping, 

a shorter length of 0.7 m of 4 mm I/D tubing was used and found to successfully permit 

a greatly reduced atomising gas flow rate.  

For the AL04 (0.088 mm orifice) nozzle, N2 gas flow was tested in the range 3 ≤ 

dm3 min-1 ≤ 7. Pressure was tested in the range 0.5 ≤ bar ≤ 2, and fuel flow was tested in 

the range of 50 ≤ ml hr-1 ≤ 900. Based on these results and on the results of EQUIL 

modelling of anticipated urea steam reforming products at speculated fuel/N2 mixtures, 

experiments with the smaller aperture, AL01 (0.040 mm orifice) nozzle, and N2 carrier 

gas flow in the range of 1.5 ≤ dm3 min-1 ≤ 2.5, were attempted Pressure was tested at 1 

bar, and fuel flow was tested in the range of 100 ≤ ml hr-1 ≤ 500. This had the aim of 

reducing the syngas dilution by lowering the ratio of input N2 to fuel. 

B.4.2.2 Results and Discussion  

A range of 11 different operating conditions were captured in sunflower oil and 

photographed. According to Ahmad [163], evaporation of droplets is reduced by this 

method as they are suspended just below the surface of the oil, and the droplets remain 

almost spherical as long as the density of the oil is only slightly less than the sprayed 

liquid. It was for this contrast in density that sunflower oil was chosen: 

Density of sunflower oil = 0.92 kg m-3 
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Density of urea solution = 1.1 kg m-3 

Potential errors associated with this method include, coalescence of the droplets 

(in flight or due to impact), shattering of the droplets on impact, and potentially, 

evaporation of the droplets in flight. None of these were considered likely to affect the 

visible appearance of the spray pattern breadth however. 

With the larger aperture AL04 (0.088 mm orifice) nozzle, the N2 gas flow rate of 4 

dm3 min-1 was found to be the minimum for liquid atomisation. At, and below this flow 

rate, no spray was formed, with the fluid just exiting the orifice as drips. Between N2 

flows of 3.75 dm3 min-1 (where one single drip was emitted) and 4 dm3 min-1, the drips 

were still clearly singular but began to spread out in a radial pattern. Selected images of 

the spray pattern produced by the AL04 nozzle at a range of carrier gas flow rates are 

shown in Figure B-5 to Figure B-7. These images show how the droplet sizes increase 

with decreasing N2 flow, but that spray spread remains constant. 

These N2 carrier gas flow rates with the AL04 (0.088 mm orifice) nozzle, though 

successful in dispensing the fuel in a conical spread, were higher than expected and 

outside the desired range. Though the 4 dm3 min-1 flow rate was within the capacity of 

the system, it would result in excessively high dilution of the syngas based on the 

limited 50 ml capacity of the dispensing syringe. It was not therefore considered 

practicable to choose this due to the short run time not giving adequate opportunity to 

assess whether the system reached equilibrium. The fuel rate could obviously be set at a 

lower rate and the syngas diluted, which may necessitate further post-reactor processing 

to increase purity. Alternatively, the fuel dispensing system could be replaced with a 

higher capacity vessel. Increasing the fuel flow rates to this extent would however affect 

the operating capacity of the reactor as a bench scale system would likely be unable to 

cope with the kinetics of reacting larger volumes of fuel. 

Variations in N2 pressure had no discernible effect on the ability to spray or 

droplet size. Consequently all tests with the AL01 nozzle were performed at 1 bar 

pressure. Variations on liquid feed rate affected atomisation at the lowest range of N2 

flows only, with increased liquid flow rate undermining spray formation and increasing 

droplet size. With the AL04 (0.088 mm orifice) nozzle, variations in fuel feed rate had 

no effect on atomisation at ≥ 5 dm3 min-1 N2 gas flow. At the minimum N2 gas flow rate 

for the AL01 nozzle, atomisation only occurred for fuel flow rates of ≤ 400 ml hr-1. 

When spraying at higher fuel flow rates (of > 500 ml hr-1) it was difficult to 

discern the droplet sizes visibly as the flow was so great. However, the oil capture 

method was found to be effective at recording and retaining each droplet. It is probable 

that there was some droplet coalescence and droplet shattering due to impacts with the 

oil at the close proximity to the nozzle orifice due to higher kinetic energy of the fuel 

flow. To compensate, the petri-dish was moved to the maximum distance of 35 to 40 
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mm away from nozzle aperture. Because of this the breadth of spray increased. 

Additionally, it was observed that the energy of droplet impact in the oil created 

movement of the oil, particularly at distances closer to the nozzle aperture. An 

operational error of ± 5 mm is assigned to the breadth of spray shown in Figure B-5 to 

Figure B-11. 

 

 

Figure B-5. AL04 (0.088 mm orifice) nozzle spray pattern with 5 dm3 min-1 N2 flow at 
3 – 4 cm from nozzle aperture and fuel flow of 100 ml hr-1. 

 

 

Figure B-6. AL04 (0.088 mm orifice) nozzle spray pattern with 4.5 dm3 min-1, N2 flow 
at 3 – 4 cm from nozzle aperture and fuel flow of 200 ml hr-1.  
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Figure B-7. AL04 (0.088 mm orifice) nozzle spray pattern with 4 dm3 min-1, N2 flow at 
3 – 4 cm from nozzle aperture and fuel flow of 200 ml hr-1.  

The smaller aperture (0.040 mm orifice) AL01 air atomiser was capable of 

spraying the fuel at much lower N2 carrier gas flow rates, with 1.5 dm3 min-1 found to be 

the minimum. As with the larger aperture nozzle, at its lower limit of carrier gas flow, 

drops were emitted rather than small atomised droplets. The atomisation produced by 

this nozzle was however seen to be unaffected by fuel feed rate, in contrast to the AL04 

nozzle. Not surprisingly, due to the smaller aperture, droplet size was in general smaller 

than with the AL04 nozzle. Photographic images of the spray patterns produced by the 

AL01 nozzle at a range of fuel feed rates and N2 carrier gas flows are provided in 

Figure B-8 to Figure B-11. 

 

 

Figure B-8. AL01 (0.040 mm orifice) nozzle spray pattern with 1.5 dm3 min-1, N2 flow 
at 3 – 4 cm from nozzle aperture and fuel flow of 200 ml hr-1. 
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Figure B-9. AL01 (0.040 mm orifice) nozzle spray pattern with 1.8 dm3 min-1, N2 flow 
at 3 – 4 cm from nozzle aperture and fuel flow of 100 ml hr-1. 

 

 

Figure B-10. AL01 (0.040 mm orifice) nozzle spray pattern with 2.0 dm3 min-1, N2 flow 
at 3 – 4 cm from nozzle aperture and fuel flow of 500 ml hr-1. 

 

 

Figure B-11. AL01 (0.040 mm orifice) nozzle spray pattern with 2.5 dm3 min-1, N2 flow 
at 3 – 4 cm from nozzle aperture and fuel flow of 500 ml hr-1. 

 

In terms of spray achieved at lower atomising gas flow, the smaller aperture AL01 

nozzle therefore performed better in these tests. This nozzle would permit a smaller 

ratio of carrier gas to fuel input resulting in a syngas greatly enriched with H2 by 
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comparison to the AL04 nozzle. With the lowest possible atomising gas flow for the 

AL01 nozzle of 1.5 dm3 min-1 this would, with a 200 ml hr-1 fuel feed rate, give a syngas 

dilution value of 28 %.  

With such a lower dilution, a greater quantity of H2 in the syngas should be 

produced. This is not necessarily an improvement on the 63 % and 84 % dilution used 

in the Chapter 5 and Chapter 6 experimentation, since these carrier gas flow rates were 

required only for analytical purposes via online systems and material balance 

calculations. Both designs are therefore considered to have great flexibility for diluent 

range when used in practical applications. Though the spray system requires gas flow 

for atomisation, whereas the glass reactor system does not, the spray system could in 

theory be operated by a similar drop feed and therefore the carrier gas flow rate 

considerations made superfluous. Whether this may be possible would depend on the 

ability of the reactor to cope with the energy demands of both the steam reforming 

reactions and overcoming the latent heat phase transitions of water and urea as 

discussed in Chapter 3. Obviously, a period of experimentation with the system to 

establish optimised conditions for steady state operation is an area for future work. This 

was not possible as the system was made unavailable for further use once its 

construction was complete. The component having greatest novelty – the nichrome wire 

designed to act as both heating element and catalyst – still remains to be tested and 

assessed for efficacy.  

With both nozzle types tested, no blockages occurred when using urea solution. 

This may not hold however when operating at steam reforming temperatures, with the 

preferred smaller aperture nozzle more likely to block. As has been shown previously 

with the quartz reactor the preservation of the aqueous urea at low temperature prior to 

reactor entry is a crucial consideration in using urea solution as a fuel due to its 

propensity for supersaturation above 100 °C. The design of the spray reactor nozzle 

system with cooling N2 carrier gas flow mixed with fuel prior to release onto the 

monolith chamber was chosen to avoid crystal precipitation. The relatively high carrier 

gas flows required by these nozzles for atomisation, would accentuate the cooling effect 

and potentially decrease the risk of system failure from precipitate blockages. In 

addition to the experimentation for optimised operation of this reactor for actual steam 

reforming, computational fluid dynamics to model the reaction dynamics and kinetics of 

the spray system in comparison to a droplet fed system is an area for future work.  

B.5 Conclusions 

A novel steam reforming spray reactor electrically powered and heated by catalytic 

nichrome wire was designed and fabricated. The full spray reactor system was tested 

and found to maintain integrity at ≤ 10 bar and ≤ 700 °C for five hours, at which time 
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the test was ceased with the system still fully functional and gas tight. The reactor was 

able to be heated rapidly, within 1 minute, using low ≤ 36 Watts power, and ≤ 5 amps of 

current. The reactor was encased in stainless steel and heat losses from the casing body 

were minimised by the application of kaowool. 

A gas-flow spray system was incorporated to supply the fuel at varying states of 

atomisation dependent on gas flow rate and to a lesser extent, fuel feed rate. The carrier 

gas was mixed with fuel within the nozzle to generate atomisation in the form of a 

conical spray pattern between 2 ≤ cm ≤ 5 beyond the nozzle aperture, this being the 

desired distance between nozzle aperture and reactor surface. The carrier gas flow 

would also cool the fuel prior to its rapid entry to the reactor, thereby reducing the 

propensity for urea solution to supersaturate and cause precipitate blockages. A reflux 

condensate trap and two-stage oil-filled condenser system was incorporated post-

reactor, with an online non-destructive NH3 analyser, NH3 trap and online micro GC to 

monitor syngas composition. 

Though all the components were seen to work independently as planned, the 

system remains to be tested for its overall ability to steam reform urea. In comparison 

with the previously successful quartz fixed-bed catalytic flow reactor system discussed 

in Chapters 5 and 6, the spray reactor is considered to have the advantage of being more 

sturdy and compact; aspects that make it attractive for both for scale-up and applications 

involving mobile and remote energy production to which it is envisaged that urea could 

hold great benefits as a hydrogen carrier. Possible problems that may be encountered 

with this reactor involve feed-line blockages due to urea fuel crystallisation if very small 

nozzle apertures are chosen. Flexibility of design allows different nozzles be inserted to 

overcome this issue, though increasing nozzle aperture size necessitates an increased 

atomising gas flow and therefore greater syngas dilution. This would not be a problem if 

the reactor were operated as a drop-feed, rather than spray, fuel inlet system. A 

determination of this could be made by future work involving steam reforming 

experimentation with the reactor and computational fluid dynamics at a range of spray 

parameters. 

The main novelty of this new reactor was the dual functioning nichrome wire, 

designed to function as both heating element and catalyst. Though its efficacy for 

heating was shown, its ability to function as catalyst for steam reforming of urea was not 

tested. This is an area for future work. 
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