
 
 
 
 
 

 
Access to Electronic Thesis 

 
 
Author:  Chung-Te Chang 

Thesis title:    SRAG Functions as a New mRNA Export Co-adaptor 

Qualification: PhD 

 
 

This electronic thesis is protected by the Copyright, Designs and Patents Act 1988.  
No reproduction is permitted without consent of the author.  It is also protected by 
the Creative Commons Licence allowing Attributions-Non-commercial-No 
derivatives. 
 
This thesis was embargoed until 23rd January 2013. 
 
If this electronic thesis has been edited by the author it will be indicated as such on the 
title page and in the text. 
 
 
 
 
 



 

 

 

SRAG Functions as a New mRNA Export Co-adaptor 

 

 

 

Thesis submitted to obtain the degree of Doctor of Philosophy 

by 

 

Chung-Te Chang 

 

M.Sc. in Biochemistry (National Chung Hsing University, Taiwan) 

B.Sc. in Life Science (Tzu Chi University, Taiwan) 

 

 

 

 

Department of Molecular Biology and Biotechnology 

 

University of Sheffield 

 

Sheffield, United Kingdom 

 

 

January 2012 



 

 

Acknowledgements 

 

To begin with, I would like to express my gratitude to my supervisor Stuart Wilson for 

giving me the opportunity to complete this thesis and for his patience, support and 

advice throughout my project. I would also like to thank Prof. Phil Mitchell and Prof. 

Chris Smith for looking closely at my thesis and offering suggestions for improvement. 

 

I am deeply indebted to Dr. Guillaume Hautbergue whose help, stimulating suggestions 

and encouragement helped me throughout my PhD. I am also obliged to Dr. Nicolas 

Viphakone for giving me useful advices and practicing martial arts with me. I’m so lucky 

to meet and work with you both. Hope I can be a postdoc like you in the future. 

 

To my lab mates: Matt, Vicky, Arthur, Michaela and Ella. Thank you for all your help, 

support, interest and valuable hints. Especially I want to thank Arthur for correcting my 

thesis for English style and grammar. I am so happy to be part of the great team and 

work with you.  

 

Finally, I would like to give my special thanks to my parents and my girlfriend Min-Yi. 

Thank you for all your kind words of support and for your great financial help during my 

PhD. Your patient love enabled me to complete this work. 

 

 

                                                                                                                         

                                                                                                                               Chung-Te Chang 



III 

 

 

Index of Contents 

 

INDEX OF CONTENTS                                                                                              III 

INDEX OF FIGURES                                                                                                  VI 

ABSTRACT                                                                                                                 IX 

ABBREVIATIONS                                                                                                       X 

 

CHAPTER I: INTRODUCTION                                                                                  

1.1 THE NUCLEAR PORE COMPLEX (NPC) ································································ 14 

1.1.1 THE STRUCTURE OF NPC ················································································· 14 

1.1.2 CARGO TRANSLOCATION ················································································ 15 

1.2 RAN-DEPENDENT NUCLEAR EXPORT OF RNAS ·················································· 18 

1.2.1 CRM1-DEPENDENT NUCLEAR EXPORT ···························································· 18 

1.2.2 EXPORTIN-T (EXP-T) ························································································ 21 

1.2.3 EXPORTIN-5 (EXP-5) ························································································ 22 

1.3 mRNA EXPORT ·································································································· 22 

1.3.1 BULK mRNA NUCLEAR EXPORT IS MEDIATED BY TAP-P15 ······························· 23 

1.3.2 THE mRNA EXPORT ADAPTORS ······································································· 24 

1.3.3 THO AND TREX COMPLEX ··············································································· 26 

1.3.4 COUPLING SPLICING AND mRNA EXPORT ······················································· 27 

1.3.5 EXPORT OF INTRONLESS TRANSCRIPTS ··························································· 29 

1.3.6 ROLE OF 3’ END PROCESSING AND mRNA EXPORT ·········································· 30 

1.3.7 EXPORT OF VIRAL RNAS ·················································································· 31 

1.3.8 REGULATION OF mRNA EXPORT ····································································· 33 

1.3.9 MODEL OF mRNA EXPORT ·············································································· 33 

 



IV 

 

1.4 POST-TRANSCRIPTIONAL CONTROL OF GENE EXPRESSION ······························ 35 

1.4.1 REGULATION OF mRNA TURNOVER/STABILITY ··············································· 36 

1.4.2 REGULATION OF mRNA TRANSLATION···························································· 36 

1.5 AIM OF THIS STUDY ·························································································· 37 

 

CHAPTER II: MATERIALS AND METHODS 

2.1 MATERIALS ······································································································· 39 

2.1.1 BACTERIAL STRAINS ························································································ 39 

2.1.2 TISSUE CULTURE ····························································································· 40 

2.1.3 VECTORS ········································································································· 41 

2.1.4 BUFFERS ········································································································· 42 

2.1.5 MOLECULAR BIOLOGY KITS ············································································· 44 

2.2 METHODS ········································································································· 45 

2.2.1 MOLECULAR BIOLOGY ···················································································· 45 

2.2.2 BIOCHEMISTRY ······························································································· 58 

2.2.3 CELL BIOLOGY ································································································· 61 

 

CHAPTER III: DISCOVERY OF A NEW mRNA EXPORT FACTOR - SRAG 

3.1 IDENTIFICATION OF UAP56-ASSOCIATED PROTEINS BY BLAST ························· 66 

3.2 SRAG IS A NUCLEAR PROTEIN LOCALISED IN NUCLEAR SPECKLES ····················· 67 

3.3 OVEREXPRESSION OF SRAG CAUSES mRNA ACCUMULATION IN THE NUCLEUS     

 ························································································································ 70 

3.4 DOUBLE KNOCKDOWN OF SRAG AND REF CAUSES A MAJOR mRNA EXPORT BLOCK

 ························································································································ 70 

3.5 SRAG IS INVOLVED IN mRNA EXPORT ACTIVITY················································ 73 

3.6 SRAG INTERACTS WITH mRNA EXPORT FACTORS IN VIVO ······························· 75 

3.7 SRAG CAN BE METHYLATED ·············································································· 78 

3.8 SRAG INTERACTS WITH PRMT1 ········································································· 82 

3.9 SUMMARY ········································································································ 82 



V 

 

 

CHAPTER IV: SRAG FUNCTIONS AS A NEW mRNA EXPORT CO-ADAPTOR 

4.1 METHYLATION REGULATES THE PROTEIN-PROTEIN INTERACTION ACTIVITY OF 

SRAG ··············································································································· 85 

4.2 METHYLATION REDUCES THE RNA-BINDING AFFINITY OF SRAG ······················ 87 

4.3 CHARACTERISING THE BINDING REGIONS OF SRAG ········································· 89 

4.4 SRAG AND REF BIND TO DIFFERENT REGIONS OF TAP ······································ 92 

4.5 SRAG AND REF BIND CONCOMITANTLY TO THE TAP-P15 HETERODIMER ········· 95 

4.6 SRAG AND THOC5 BIND AT THE SAME SITES ON TAP ······································· 95 

4.7 SRAG STIMULATES mRNA HANDOVER FROM REF TO TAP ································ 97 

4.8 SUMMARY ······································································································ 100 

 

CHAPTER V: TREX ASSMEBLY IS DRIVEN BY UAP56 DEPEDENT ATP 

HYDROLYSIS 

5.1 SRAG AND REF CANNOT INTERACT WITH UAP56 SIMULTANEOUSLY ············· 103 

5.2 SRAG STIMULATES ATPASE AND HELICASE ACTIVITY OF UAP56 ····················· 106 

5.3 UAP56 ENHANCES SRAG LOADING ONTO mRNA ············································ 109 

5.4 SRAG TRIGGERS TAP OPENING ······································································· 109 

5.5 SRAG AND THOC5 ARE PART OF THE SAME TAP-CONTAINING COMPLEX(ES) IN 

VIVO ·············································································································· 111 

5.6 SUMMARY ······································································································ 114 

 

CHAPTER VI: DISCUSSION                                                                                  116 

REFERENCES                                                                                                          123 

APPENDIX                                                                                                              136 

 

 
 
 



VI 

 

 

Index of Figures 

 

CHAPTER I: INTRODUCTION 

FIGURE. 1-1 MODEL OF Ran-GTPase CYCLE ····························································· 19 

FIGURE. 1-2 THE DIFFERENT RNAs ARE EXPORTED VIA DISTINCT PATHWAYS ·········· 20 

FIGURE. 1-3 A MODEL FOR mRNA EXPORT ······························································ 34 

 

CHAPTER III: DISCOVERY OF A NEW mRNA EXPORT FACTOR - SRAG 

FIGURE. 3-1 SRAG HAS TWO POTENTIAL UAP56 BINDING SITES ······························ 68 

FIGURE. 3-2 SRAG LOCALISES IN NUCLEAR SPECKLES ·············································· 69 

FIGURE. 3-3 OVEREXPRESSION OF SRAG CAUSES mRNA ACCUMULATION IN THE 

NUCLEUS ········································································································· 71 

FIGURE. 3-4 TESTED OF SRAG RNAi VECTOR ON EXOGENOUS AND ENDOGENOUS SRAG

 ························································································································ 72 

FIGURE. 3-5 DOUBLE KNOCKDOWN OF SRAG AND REF CAUSES BLOCKING IN BULK 

mRNA EXPORT ································································································· 74 

FIGURE. 3-6 WEAK BUT SPECIFIC mRNA EXPORT ACTIVITY OF SRAG ······················· 76 

FIGURE. 3-7 SRAG INTERACTS WITH UAP56 AND TAP IN VIVO································· 77 

FIGURE. 3-8 SRAG INTERACTS WITH mRNA EXPORT FACTORS ································· 79 

FIGURE. 3-9 SRAG CAN BE METHYLATED BUT NOT PHOSPHORYLATED ··················· 80 

FIGURE. 3-10 ENDOGENOUS SRAG EXISTS TWO DIFFERENT FORMS ························ 81 

FIGURE. 3-11 MASS SPECTROMETRY ANALYSIS OF THE SRAG BINDING PROTEINS··· 83 

 

CHAPTER IV: SRAG FUNCTIONS AS A NEW mRNA EXPORT CO-ADAPTOR 

FIGURE. 4-1 METHYLATION AFFECTS PROTEIN:PROTEIN INTERACTIONS BETWEEN SRAG 

AND REF AND TAP IN VIVO ·············································································· 86 



VII 

 

FIGURE. 4-2 METHYLATION AFFECTS PROTEIN:PROTEIN INTERACTION BETWEEN SRAG 

AND REF AND TAP IN VITRO ············································································· 88 

FIGURE. 4-3 METHYLATION INCREASES SRAG:RNA INTERACTION···························· 90 

FIGURE. 4-4 CHRACTERIZATION OF THE BINDING REGIONSOF SRAG TO UAP56, REF, TAP, 

AND RNA ········································································································· 91 

FIGURE. 4-5 REF BINDS TO SRAG THROUGH ITS N-TERMINAL REGION ···················· 93 

FIGURE. 4-6 SRAG BINDS TO C-TERMINAL REGION OF TAP ······································ 95 

FIGURE. 4-7 SRAG AND THOC5 BINDS AT THE SAME REGION OF TAP ······················ 96 

FIGURE. 4-8 SRAG AND THOC5 BIND AT THE SAME SITE ON TAP ····························· 98 

FIGURE. 4-9 SRAG AND REF WORKS IN THE SAME PATHWAY ·································· 99 

FIGURE. 4-10 SRAG ENHANCES mRNA HANDOVER FROM REF TO TAP ·················· 101 

 

CHAPTER V: TREX ASSMEBLY IS DRIVEN BY UAP56 DEPEDENT ATP 

HYDROLYSIS 

FIGURE. 5-1 SRAG BINDS TO THE N-TERMINAL REGION OF UAP56 ························ 104 

FIGURE. 5-2 REF AND SRAG CAN NOT BIND TO UAP56 AT THE SAME TIME ··········· 105 

FIGURE. 5-3 SRAG ENHANCES UAP56 ATPASE ACTIVITY ········································ 107 

FIGURE. 5-4 SRAG ENHANCES UAP56 HELICASE ACTIVITY······································ 108 

FIGURE. 5-5 UAP56 STIMULATE REF AND SRAG LOADING ONTO mRNA ················ 110 

FIGURE. 5-6 SRAG ENHANCES CONFORMATIONAL CHANGE OF TAP ····················· 112 

FIGURE. 5-7 WESTERN ANALYSIS OF DOUBLE IP BETWEEN FLAG-TAP AND SRAG (OR 

THOC5) ·········································································································· 113 

FIGURE. 5-8 EXPRESSION OF VARIOUS GENES IN SEVERAL INDUCED-RNAi HUMAN CELL-

LINES ············································································································· 115 

 

CHAPTER VI: DISCUSSION 

FIGURE. 6-1 A MODEL OF TREX COMPLEX ASSEMBLY NEEDS ATP HYDROLYSIS OF UAP56

 ······················································································································ 118 



VIII 

 

FIGURE. 6-2 A MODEL OF SRAG AND REF DRIVE TAP INTO AN OPEN CONFORMATION 

 ······················································································································ 120 



IX 
 

 

Abstract 

 

DEAD  box  RNA  helicases  play important roles in  many  cellular  processes  including  

splicing, mRNA  export  and  translation. The two domains of many DEAD box RNA 

helicases adopt radically different conformations according to whether they are 

nucleotide free, ADP or ATP bound. This change in conformation is often harnessed to 

drive subunit rearrangements in multiprotein complexes. Assembly  of  the  TREX  

complex  which  plays  a  role in mRNA export requires  a  DEAD  box  helicase, UAP56 to 

bind ATP.    Here we show that a novel mRNA export co-adaptor, SRAG, binds UAP56 in 

a mutually exclusive manner with REF, yet both REF and SRAG are found in a fully 

assembled TREX complex. Interestingly, REF and SRAG stimulate ATP hydrolysis and RNA 

helicase activity. This implies that UAP56 goes through at least two rounds of ATP 

hydrolysis to assemble TREX. Within assembled TREX, SRAG functions as an mRNA 

export co-adaptor and binds synergistically with REF to the TAP mRNA export factor, 

whose recruitment to TREX triggers UAP56 loss. Depletion of REF or SRAG alone in vivo 

has a modest effect on mRNA export, but their combined knockdown causes a drastic 

mRNA export block. Interestingly, the TAP:SRAG interaction is dependent on 

methylation of SRAG. SRAG binds to TAP in a manner which is mutually exclusive with 

the TREX component THOC5 and yet TAP, SRAG and THOC5 are found in a single 

complex in vivo. These data indicate that TREX undergoes substantial rearrangements 

during its assembly and interaction with TAP, and these rearrangements are driven by 

UAP56 dependent ATP hydrolysis. 
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Chapter I 

Introduction 
 

The Central Dogma of molecular biology states that DNA is transcribed to RNA, and then 

translated to protein. In prokaryotic cells, transcription and translation occur in the 

same cellular space. Unlike prokaryotic cells, eukaryotic cells have a nuclear envelope 

(NE) which separates transcription and translation. While small molecules and ions may 

cross the membranes through small pores or ion pumps, macromolecules such as 

proteins and RNAs are transported via the channel of the nuclear pore complex (NPC) by 

specific receptors.   

 

1.1    The Nuclear Pore Complex (NPC) 
In interphase eukaryotic cells, the double-membraned nuclear envelope (NE) separates 

the cytoplasm from the cell nucleus. The nucleus and cytoplasm can exchange materials 

via the nuclear envelope channels called nuclear pore complexes (NPCs) that form 

aqueous channels inserted in the nuclear membrane (Rabut et al., 2004; Vasu and 

Forbes, 2001). This ~40nm channel is composed of 8 to 30 copies of ~30 different 

nucleoporins (Nups) spanning the nuclear envelope in yeast (~50 in vertebrates) 

(Cronshaw et al., 2002; Fahrenkrog et al., 2001; Rout and Aitchison, 2001; Rout et al., 

2000).  

 

1.1.1 The structure of NPCs 

In structural terms the Nups can be divided into three groups: The pore membrane 

proteins which anchor the NPC in the nuclear envelope; The FG (Phenylalanine-glycine) 

nucleoporins  have  FG,  GLFG  or  FXFG  amino  acid  repeats  (where  X  is  any  amino  acid), 
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which interact with transport receptors (e.g. importins, exportins, and TAP) directly 

(Bednenko et al., 2003; Fabre and Hurt, 1997; Stewart et al., 2001; Tran and Wente, 

2006). The third class of Nups supports the structure of the NPC. The central pore is able 

to dilate to ~40 nm in order to allow molecule passage (Kiseleva et al., 1998). 

        Small molecules, which like ions, small metabolites and proteins under 40 kDa, can 

diffuse freely through NPCs (Fried and Kutay, 2003). However, the trafficking of 

macromolecules (proteins, RNAs, RNPs) is transported through the pore requires 

binding to specific transport factors (importins and exportins), which can recognize the 

target signals (nuclear localisation signal (NLS) or nuclear export signal (NES)) and 

transport cargoes through the NPC (Nakielny and Dreyfuss, 1997; Nakielny and Dreyfuss, 

1999).  

 

1.1.2 Cargo translocation 

Although it is still largely unknown how translocation of cargo complexes through the 

NPC occurs, there is emerging evidence that interactions between FG nucleoporins and 

transport  receptors  are  involved  (Rexach  and  Blobel,  1995;  Shah  et  al.,  1998).  Crystal  

structures have been obtained of FG-repeat peptides in complex with karyopherin, the 

mRNA export receptor TAP/NXF1, and NTF2, which is the important receptor for 

RanGDP (Bayliss et al., 2002a).  

        FG repeats are often embedded in larger repeat motifs, such as FXFG repeats and 

GLFG repeats. Both of them bind to transport receptors (Bayliss et al., 2002b; Grant et 

al., 2003). However, the FXFG-repeat nucleoporins are exclusively located on the 

nuclear side of the NPC, whereas the GLFG-repeat nucleoporins have been found on 

both sides of the NPC (Bayliss et al., 2002b). Based on the types of interactions between 

transport receptors and FG nucleoporins, different translocation models through the 

NPC have been proposed. 
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The affinity-gradient model 

The affinity-gradient model predicts that cargo–receptor complexes bind to FG 

nucleoporins, and then pass through the NPC driven by Brownian motion (Ben-Efraim 

and Gerace, 2001). However, high-affinity interactions would slow down cargoes 

through the NPC and perturb the recycling of the receptors. To address this question, 

kinetic studies have shown that high affinity interactions between transport receptors 

and nucleoporins are not required for efficient NPC translocation, and that the 

dissociation rates for receptor–nucleoporin interactions are high, which indicates that 

nucleoporins are forming an attractive channel more than a proper binding interface to 

trigger cargos move rapidly  through the NPC (Bayliss  et  al.,  1999;  Delphin et  al.,  1997;  

Grant et al., 2002). 

 

The Brownian affinity-gating model 

The Brownian affinity-gating model is based on the diffusion of transport complexes 

through the NPC. Cargo that is targeted to the NPC through a transport receptor has a 

higher probability of entering and traversing the central pore than cargo that is not 

targeted to the NPC. The Brownian affinity-gating model therefore does not require a 

physical barrier that controls and regulates the translocation of cargo through the 

central pore (Rout et al., 2000). 

 

The selective phase model 

By contrast, the selective-phase model assumes that the FG nucleoporins that line the 

central pore attract each other through weak hydrophobic interactions and therefore 

form a meshwork that functions as a physical barrier and only allows the translocation 

of cargo that can interact with the transport receptors, which are able to associate with 

the FG repeats (Jaggi et al., 2003; Ribbeck and Gorlich, 2001; Shulga and Goldfarb, 

2003).  
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        There are three major classes of transport proteins to facilitate all transport 

through NPC. They are the importin -like/exportin transport factors, the small nuclear 

transport factor (NTF2), and the transporter involved in the export of mRNA molecules 

TAP. These proteins can be separated into different categories determined by the 

identity of the cargo they recognise and the directionality of the transport being carried 

out. Interestingly, even though all three classes carry out the same function they share 

very little sequence homology (Weis, 2003). 

        The direction of protein transport through the NPC is generally signal dependent. 

Proteins to be imported into the nucleus carry defined sequence motifs referred to as 

nuclear localisation sequences (NLSs). There are two major NLS motifs: a rather basic 

monopartite motif and a more complicated bipartite motif. The monopartite sequence 

was originally discovered in simian virus 40 (SV40) large-T antigen and consists of the 

short peptide sequence PKKKRK (Macara, 2001). In contrast, the sequence signals which 

promote nuclear export tend to be short motifs (~10 amino acids) with no defined 

consensus sequence. The nuclear export signals (NESs) are rich in hydrophobic residues 

and were first found in the cellular protein kinase inhibitor (PKI) and the HIV protein Rev 

(Hope,  1997).  Both  NLS  and  NES  act  to  affect  the  cellular  localisation  of  the  proteins  

which carry them, by serving as recognition sites for transporter proteins called 

karyopherins, or exportins. 

        With the exception of mRNA, cargoes that contain targeting signals are recognized 

by members of the karyopherin family of transport receptors (also named importins and 

exportins) (Gorlich  and  Kutay,  1999;  Moore  and  Blobel,  1995).  Besides their ability to 

bind their respective cargoes as well as the FG-repeats of nucleoporins, the 

karyopherins are characterized by a conserved N-terminal domain, which interacts with 

the small GTPase, Ran, to direct nucleo-cytoplasmic transport (Moore and Blobel, 1993). 

Ran can be considered as a molecular switch which is able to exist in two distinct forms: 

a GTP bound nuclear form and a GDP-bound cytoplasmic form. These two types of Ran 

become apparent when the processes of nuclear import and export are examined. 
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1.2    Ran-dependent Nuclear Export of RNAs 
Ran, which is a GTPase and a member of the Ras superfamily, exists in either a GDP or a 

GTP-bound form to regulate transport factors. When Ran is in the nucleoplasm, the Ran 

guanine nucleotide exchange factor (RanGEF), which associates with histones H2A and 

H2B, can convert Ran into the GTP-bound form (Nemergut et al., 2001). In contrast, the 

Ran GTPase activating protein (RanGAP) is located on the cytoplasmic face of the NPC 

(Hopper et al., 1990; Mahajan et al., 1998; Matunis et al., 1998). Similarly, the RanGAP 

activation co-factors, RanBP1 and RanBP2, are located in the cytoplasm, which results in 

Ran  being  predominantly  in  the  GDP-bound  state  in  the  cytoplasm.  (Coutavas  et  al.,  

1993; Wu et al., 1995; Yokoyama et al., 1995).  

        RanGTP would bind export factors in the nucleus. Once in the cytoplasm, RanBP1 

and RanGAP can stimulate RanGTP to be converted into RanGDP. This conversion would 

lead  Ran  to  dissociate  from  the  export  factor.  The  free  export  factor  returns  to  its  

original  conformation,  and then,  releases the cargo into the cytoplasm (Cullen,  2003a;  

Rodriguez et al., 2004a). Finally, NTF2, a RanGDP-binding protein, mediates the nuclear 

import of Ran in its GDP-bound form (Figure. 1-1).  

 

1.2.1 Crm1-dependent nuclear export  

Human CRM1 export receptor was identified based on its ability to bind nucleoporins. 

Adaptor proteins can mediate an interaction between mature RNA and export 

receptors.  Ribosomal  RNA  (rRNA)  and  spliceosomal  U  snRNA  utilise  the  CRM1  export  

pathway. These two kinds of RNA share the same export receptor known as CRM1, but 

arerecognized by different adaptor proteins (Allison et al., 2000) (Figure. 1-2). 

 

Pre-snRNAs 

Major spliceosomal U snRNAs are transcribed by RNA polymerase II in the nucleus, but 

need to be exported to the cytoplasm to associate with Sm proteins and become 

hypermethylated on their 5’ cap structure. Once mature, functional snRNPs are re-

imported back into the nucleus (Johnson et al., 2011; Phelan et al., 2011). Experiments  



[Figure. 1-1] Model of Ran-GTPase cycle 

The Ran-GTPase cycle regulates the binding and release of the transport cargos from its
transport receptor.

(Taken form Fahrenkrog et al., 2003)
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[Figure. 1-2] The different RNAs are exported via distinct pathways.

Crm1 interacts with specific adaptors to export U snRNAs and ribosomal subunits.
Moreover, Crm1 also interacts with HIV-1 Rev adaptor protein to export viral RNAs
containing RRE. Crm1, Exp-t and Exp-5 export their cargoes all via the Ran-GTP pathway.
However, mRNA export is a TAP/NXF1-p15/Nxt1 dependent process. TAP also binds to CTE-
containing viral RNAs directly to promote their export.

(Taken form Rodriguez et al., 2004)
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revealed that CRM1 is responsible for the transport of U snRNAs from the nucleus to the  

cytoplasm (Allison et al., 2000; O'Connor et al., 2000). However, CRM1 does not directly  

interact   with   snRNAs   and  therefore   requires  an  additional  protein,  PHAX  

(phosphorylated adaptor for RNA export), to mediate an interaction between the snRNA 

and CRM1 (Ohno et al., 2000). 

 

Ribosomal subunits 

CRM1 was also described as the export receptor for small and large rRNA subunits in 

higher  eukaryotes.  Nmd3p  was  proposed  to  act  as  an  adaptor  for  Crm1p  on  60S  

ribosomal subunits (Hanamura et al., 1998). Nmd3p is a shuttling protein containing a 

leucine-rich NES and mutations in Crm1p result in the accumulation of Nmd3p in the 

nucleus. (Caceres et al., 1998; Wang et al., 1998b). In addition, human NMD3 directly 

interacts with CRM1 in a Ran-GTP dependent manner consistent with its proposed role 

as an adaptor (Hanamura et al., 1998). 

        Some  viruses  also  export  their  RNA  through  this  pathway.  For  example,  HIV  can  

produce  an  adaptor  protein,  Rev,  to  interact  with  CRM1  and  then  export  HIV-1  RNAs  

which contain a specific sequence called the REV responsive element (RRE) (O'Connor et 

al.,  2000).  However,  some  types  of  RNA  export  do  not  have  adaptors.  tRNA  can  be  

recognized by the receptor protein (Exportin-t) without adaptors (Arts et al., 1998b; 

Cullen,  2003a).  Micro  RNA  and  adeno  virus  RNA  ,VA1,  directly  bind  to  Exportin-5  

(Gwizdek et al., 2003). 

 

1.2.2 Exportin-t (Exp-t) 

Using the ability of exportins to bind RanGTP in a cargo- dependent manner, a member 

of this family, exportin-t, was identified as the nuclear export receptor for tRNA in 

higher eukaryotes (Los1p in yeast). Unlike CRM1-dependent export pathways, tRNAs 

directly bind exportin-t and don’t require any adaptor. Exportin-t also serves as a quality 

control checkpoint for tRNAs before their export. Unprocessed or mutant pre-tRNAs are 
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not exported because of their poor interaction with exportin-t (Arts et al., 1998a; Cullen, 

2003b; Kutay et al., 1998; Rodriguez et al., 2004b).  

 

1.2.3 Exportin-5 (Exp-5) 

Exportin-5, a member of the karyopherin  family related to the S. cerevisiae protein, 

Msn5p/Kap142p, was identified as the transport receptor for the minihelix-containing 

RNAs  (Kaffman  et  al.,  1998).  Interestingly,  tRNAs  also  contain  a  highly  degenerate  

minihelix motif able to directly interact with exportin-5. Although compared to an 

optimal minihelix structure it only provided a weak affinity, exportin-5 was proposed to 

define an alternative tRNA export pathway. 

        In addition to the minihelix-containing RNAs, exportin-5 has initially been reported 

to mediate the nuclear export of the interleukin enhancer-binding factor (ILF3) and the 

eukaryotic  elongation  factor  1A  (eEF1A)  (Bohnsack  et  al.,  2002).  Also,  two  groups  

reported  that  exportin  5  mediates  the  nuclear  export  of  short  microRNA  (miRNA)  

precursors (pre-miRNAs) (Lund et al., 2004; Yi et al., 2003). Therefore, Exp5, in addition 

to being an export factor, is central to miRNA biogenesis and might help to coordinate 

nuclear and cytoplasmic processing steps. 

 

1.3    mRNA Export 
In eukaryotes, gene expression starts with DNA transcription in the nucleus and ends 

with protein synthesis at the cytoplasm. A myriad of different proteins bind mRNA as it 

progresses to form a mature mRNP in the nucleus (Kelly and Corbett, 2009a; Moore and 

Proudfoot, 2009). Many of these proteins are associated with steps in the gene 

expression pathway, such as 5’ capping, splicing, and 3’ polyadenylation, and many are 

removed before export. There is also a system called nonsense-mediated decay (NMD), 

which  eliminates  mRNAs  with  premature  termination  codons  to  control  the  mRNA  

quality.  

        The first step that the nascent pre-mRNA transcript undergoes is 5’ capping. When 

a transcript reaches about 20-30 nucleotides in length, a 7-methylguanosine cap is 
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added to the 5’ end, which protects the nascent pre-mRNA from degradation (Shatkin 

and Manley, 2000). The 5’ cap is bound by the cap binding complex (CBC) composed of 

CBP20 and CBP80 (Izaurralde et al., 1995). Next, a transcript undergoes splicing. During 

this  stage,  a  set  of  proteins  called  the  exon-exon  junction  complex  (EJC)  is  

simultaneously deposited at the site of exon fusion. Capping and splicing are both 

important for the recruitment of the transcription-export (TREX) complex. In higher 

eukaryotes, the TREX complex is poorly recruited to transcripts that lack either the 5’ 

cap or the EJC (Cheng et al., 2006; Masuda et al., 2005; Zhou et al., 2000). The final step 

of pre-mRNA processing events are 3’ end cleavage and polyadenylation. A 

polyadenylation signal is recognised by cleavage and polyadenylation specific factor 

(CPSF) in the 3’ untranslated region (UTR), resulting in the pre-mRNA polyadenylation 

site cleavage.  Then,  the poly(A)  tail  is  added by a poly(A)  polymerase and bound by a 

poly(A) binding protein (Proudfoot, 1994). Through these steps, mRNA is packaged into 

a messenger ribonucleoparticle (mRNP) and prepared for exported. 

        Unlike proteins and several RNAs (tRNA, rRNA, and snRNA) which require 

karyopherins, export of mRNAs is mediated by a conserved heterodimeric receptor 

(TAP-p15  in  metazoans;  Mex67p-Mtr2p  in  yeast)  that  is  structurally  unrelated  to  the  

karyopherin family. 

 

1.3.1 Bulk mRNA nuclear export is mediated by TAP-p15 

Nuclear export of mRNA does not depend on RanGTP (Zenklusen and Stutz, 2001). 

Instead, the mRNA export receptor is highly conserved and is called TAP-p15 (or NXF1-

NXT1) in metazoans and Mex67-Mtr2 in Saccharomyces cerevisiae (Herold et al., 2000). 

Nuclear export factor 1 (NXF1/TAP) is considered to be the major receptor for bulk 

mRNA exports and transports mRNA through interactions with adaptor RNA-binding 

proteins (Katahira et al., 1999; Strasser and Hurt, 2000).  

        TAP contains five domains: the N-terminal domain, RNA recognition motif (RRM), 

and leucine-rich (LRR) domain, mediate binding to mRNA, whereas the C-terminal 

region, which contains a nuclear transport factor 2 (NTF2) -like domain and a UBA 
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domain (homologous to ubiquitin-binding domains), binds FG nucleoporins and 

facilitates movement through NPCs (Suyama et al., 2000). Through the last two C-

terminal domains, TAP can form a heterodimer with p15 as well as associate with 

nucleoporins  of  the  NPC  (Fribourg  et  al.,  2001;  Levesque  et  al.,  2001;  Strasser  et  al.,  

2000b). The phenylalanines of the FG repeat cores bind to shallow hydrophobic cavities 

on these domains. In metazoans, two separate FG binding domains are required for 

efficient transport (Braun et al., 2002). Although Mex67–FG nucleoporin interactions 

facilitate export through NPCs, they do not impose directionality, which instead involves 

export complex disassembly mediated by Dbp5.  

 

1.3.2 The mRNA export adaptors 

Recruitment of TAP-p15 is crucial for generating export-competent mRNPs. However, 

TAP binds bulk mRNA only weakly,  and is  thought to be recruited to mRNPs primarily  

through adaptors (Carmody and Wente, 2009; Iglesias and Stutz, 2008; Kelly and 

Corbett, 2009b; Köhler and Hurt, 2007).  

 

RNA-binding and export factor (REF) 

An intensely studied adaptor is REF (Yra1 in yeast), a TREX complex component that 

binds mRNA cotranscriptionally and recruits TAP (Hautbergue et al., 2008).  

        The REF proteins belong to a family of hnRNP-like proteins which contain two major 

domains with a characteristic arrangement. In the central region is a RNP-motif RNA-

binding domain (RRM) while at each terminus is a highly conserved sequence unique to 

the REF family. These sequences are known as REF-N and REF-C respectively. Between 

the  RRM  and  the  REF-N  and  REF-C  sequences  lie  variable  regions  rich  in  glycine,  

arginine,  and  serine  residues  which  are  referred  to  as  arginine-rich  domains.  This  

structural arrangement allows REF to bind to both RNA and single-stranded DNA and 

also interact with both TAP and UAP56  (Golovanov et al., 2006; Stutz et al., 2000). 

Surprisingly, REF contacts RNA only very weakly via their RRM domain with the majority 

of their RNA-binding activity being conferred by the two arginine-rich regions. The 
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interaction between REF and TAP is mediated by a combination of the N-terminal 

domain and the RRM while REF binds UAP56 via the conserved REF-N and REF-C motifs 

(Golovanov et al., 2006; Hautbergue et al., 2008). Other notable observations regarding 

REF  include  its  ability  to  shuttle  between  the  nucleus  and  the  cytoplasm  and  to  co-

localise with splicing factors in bodies called nuclear speckles (Zhou et al., 2000). 

        Yra1 is essential for mRNA export in Saccharomyces cerevisiae.  Metazoan REF/Aly 

also mediates mRNA export, but is not essential for bulk mRNA export in Caenorhabditis 

elegans, Drosophila melanogaster, Arabidopsis thaliana, Mus musculus, and Homo 

sapiens (Strasser and Hurt, 2000; Stutz et al, 2000). However, REF/Aly is not the only 

factor to promote nuclear export of mRNA. 

 

UAP56-interacting factor (UIF) 

In metazoan, REF/Aly is not essential for bulk mRNA export (Gatfield and Izaurralde, 

2002; Longman et al., 2003). In yeast, Yra1 appears to bind only a subset of the S. 

cerevisiae mRNA (Hieronymus and Silver, 2003). This evidence suggests that there is not 

only one mRNA adaptor. 

        In 2009, a novel mRNA export adaptor, UAP56- interacting factor (UIF) was 

identified (Hautbergue et al., 2009). As with REF, UIF interacts with UAP56 and TAP to 

deliver  mRNA  to  the  NPC.  Moreover,  UIF  is  recruited  to  mRNA  via  the  FACT  histone  

chaperone complex subunit, SSRP1. The finding of UIF supports the view that cells 

contain more than one adaptor to ensure mRNA export efficiently. 

        However, adaptor proteins might also need co-adaptor proteins to ensure ef cient 

translocation of the mRNA. For example, TREX component THOC5 binds directly to the 

middle domain of TAP, which contains an NTF2-like domain. Although not required for 

bulk  mRNA  export,  THOC5  is  crucial  for  nuclear  export  of  a  specific  mRNA,  HSP70,  in  

conjunction with the adaptor protein REF/Aly (Katahira et al., 2009). This result suggests 

that not only adaptor proteins, but co-adaptors could also be involved in the export of 

different classes of mRNA. 
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1.3.3 THO and TREX complex 

THO  is  a  multimeric  complex  conserved  in  higher  eukaryotes  and  required  for  mRNP  

biogenesis. In yeast, it comprises Tho2, Hpr1, Mft1, and Thp2. In humans and 

Drosophila, THO complexes contain subunits homologous to Tho2 and Hpr1 and three 

additional subunits THOC5, THOC6, and THOC7.  

        THO is recruited to chromatin during transcription and needed for transcription 

elongation  (Köhler  and  Hurt,  2007).  Previous  work  has  shown  that  the  THO  complex,  

two mRNA export factors, UAP56 and REF/Aly (known as Sub2 and Yra1 in yeast), as well 

as a novel protein termed Tex1 are present in the so-called TREX (transcription/export) 

complex (Chavez et al., 2000; Strasser et al., 2002). The TREX complex is highly 

conserved from yeast to metzoans. However, recent studies shows that this complex is 

recruited onto mRNAs during  transcription in yeast, whereas it is recruited by the 

splicing factors during a late step in splicing in mammals (Reed and Cheng, 2005b). TREX 

complex is required for transcription elongation. In addition, in yeast, Sub2 and Yra1 are 

co-transcriptionally  recruited  to  nascent  mRNA  by  THO  complex.  In  contrast,  human  

TREX is loaded onto mRNA during splicing.  

        RNA interference and biochemical studies indicate that TREX complex functions in 

mRNA export. Katahira et al. reported that TREX component THOC5 binds directly to the 

NTF2-like doamin of TAP and is crucial for HSP70 mRNA export (Katahira et al., 2009). In 

2010, Reed and our lab collaborated to identify a new subunit of hTREX, CIP29, which 

works  with  REF  in  mRNA  export  (Dufu  et  al.,  2010).  Gwizdek  et  al.  were  found  that  

Mex67 can also be recruited to mRNPs through interactions between its UBA domain 

and the TREX component Hpr1, which is ubiquitinylated in a transcription-dependent 

manner (Gwizdek et al., 2006). The Mex67 UBA domain also binds FG nucleoporins at a 

site that  overlaps with the Hpr1 binding site (Grant et  al.,  2002;  Hobeika et  al.,  2009).  

Mex67 cannot bind FG nucleoporins while it is bound to ubiquitinylated Hpr1, and so 

the Mex67–Hpr1 interaction might contribute to a checkpoint that prevents export until 

Hpr1 is deubiquitinylated. Although ubiquitinylation appears to participate in the 

recruitment of Mex67–Mtr2 and other mRNA export machinery components to actively 
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transcribing  genes,  the  actual  transfer  of  Mex67  to  mRNA  appears  to  occur  during  3’  

end processing (Johnson et al., 2009). 

 

1.3.4 Coupling splicing and mRNA export 

Besides THO/TREX complex, many other proteins have been found to be involved in 

mRNA export. For example, several EJC proteins—including Magoh and Upf3— 

cooperate to recruit TAP. Otherwise, some SR (serine/arginine)-like proteins, members 

of the splicing factor family, also can directly bind to TAP (Huang et al., 2003; Huang and 

Steitz, 2001).  

 

Exon junction complex (EJC) 

The exon junction complex (EJC) is a set of proteins stably deposited on spliced mRNAs 

about 20 nucleotides upstream of exon-exon junctions (Le Hir et al., 2000). EJC functions 

as a signal capable of tagging splice junctions to mark mature mRNAs (Thermann et al., 

1998;  Zhang  et  al.,  1998).  The  core  proteins  of  EJC  are  MLN51,  Magoh,  Y14  and  the  

DEAD-box protein eIF4AIII (DDX48) (Le Hir and Andersen, 2008). MLN51 associates with 

RNA directly and also interacts with eIF4AIII and Magoh. Magoh is able to form a 

heterodimer with Y14 (Bono et al., 2006). It is thought that this core set of proteins acts 

as a platform for other EJC components which can be loaded during the splicing and 

mRNA export process.  

        In higher eukaryotes, the TREX complex is poorly recruited to transcripts that lack 

either the 5’ cap or the EJC, indicating that mRNA export mechanism is linked to splicing 

and/or capping (Cheng et al., 2006; Zhou et al., 2000). 

 

SR proteins 

In  addition to the REF/Aly and UIF,  SR and SR-like proteins can also function as mRNA 

export  adaptors  (Huang  and  Steitz,  2005).  As  with  REF/Aly,  the  shuttling  SR  proteins  

SRp20,  9G8,  and  ASF/SF2  can  all  serve  as  mRNP  binding  sites  for  the  general  export  

receptor TAP (Hargous et al., 2006; Tintaru et al., 2007). Intriguingly, TAP preferentially 
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interacts with the hypophosphorylated form of SR proteins (Huang and Steitz, 2005; 

Köhler and Hurt, 2007). In contrast, lower eukaryotic organisms contain very few intron-

containing genes. This lack of intron-containing transcripts means that the majority of 

mRNA export is coupled to transcription rather than splicing. However, in S. cerevisiae, 

there are still some SR-like proteins, such as Npl3, which is another mRNA export 

adaptor  and  is  essential  for  mRNA  export,  where  it  associates  with  mRNA  

cotranscriptionally and can recruit Mex67–Mtr2. 

        Members of the SR protein family contain one or more N-terminal RNA Recognition 

Motifs (RRM) and a C-terminal domain rich in serines and arginines (RS/SR). The 

sequences recognized by SR proteins are known as exonic splice enhancer (ESE) (Smith 

et al., 2006). RRMs can control the recognition of ESEs and the SR domain provides a 

protein-protein interaction region to assemble the spliceosome (Hertel and Graveley, 

2005). SR proteins are generally thought to function by binding to ESE and promoting 

the recruitment of U1 and U2 snRNPs to alter pre-mRNA splicing (Graveley, 2000; Tacke 

and Manley, 1999). However, the previous studies reported that this interaction could 

also regulate mRNA export, and translation initiation (Kress et al., 2008; Sanford et al., 

2004).  

        SR proteins are primarily localized to the nuclear speckles, and a subset of SR 

proteins shuttle continuously between the nucleus and the cytoplasm (Caceres et al., 

1998). Within the cell, the RS domain acts as a nuclear localization signal by mediating 

the interaction with the SR protein nuclear import receptor transportin-SR and also 

influences the nucleo-cytoplasmic shuttling of individual SR proteins (Wang et al., 

1998a). The shuttling ability of a subset of SR proteins suggested additional roles in 

mRNA transport, and/or in cytoplasmic events, such as mRNA localization, stability, or 

regulation of translation (Sanford et al., 2004). 

        Notable members of the SR protein family are 9G8, SRp20 and SF2/ASF. These 

proteins are able to shuttle between the nucleus and the cytoplasm and share a similar 

modular structure. SF2/ASF is made up of two RRM domains and a C-terminal 

arginine/serine-rich (RS) domain while 9G8 and SRp20 contain only one RRM. 
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Significantly, it was shown that both 9G8 and SF2/ASF can interact with TAP. 9G8 is able 

to form an interaction with TAP via a short arginine-rich located at the C-terminus of the 

RRM domain, while SF2/ASF associates with TAP using the arginine-rich region located 

between  its  two  RRMs  (Hargous  et  al.,  2006;  Tintaru  et  al.,  2007).  Further  evidence  

implicating 9G8 in mRNA export via TAP has come from microinjection experiments 

involving Xenopus oocytes. These experiments showed that injection of a dominant 

form of 9G8 blocked mRNA export and that this blockage could be lifted by co-injection 

of TAP (Huang et al., 2003). 

        Because most yeast genes are intronless, the widespread belief is that yeast also 

lacks SR proteins. Yet a recent study reported that Npl3 and Gbp2 have a high structural 

similarity to canonical SR proteins and directly bind to Mex67 (Gilbert and Guthrie, 

2004). Thus, this result suggests that SR proteins also play an important role in mRNA 

export.  

        Furthermore, splicing factor 2/alternative splicing factor (SF2/ASF) also stimulates 

translation. Cytoplasmic SF2/ASF associated with the translation machinery is 

hypophosphorylated, suggesting that the phosphorylation state of RS domain may 

influence the role of SF2/ASF in mRNA processing. Indeed, phosphorylation can regulate 

its ability to bind to mTOR (the eIF4E binding protein kinase) (Michlewski et al., 2008). 

Although the regulation of the processes of mRNA export remains unclear, these results 

imply  that  mRNA  export  is  not  only  regulated  by  nuclear  processing  events,  but  also  

coupled to the cytoplasmic events of translation. 

 

1.3.5 Export of intronless transcripts 

Although many studies showed that the splicing process is able to enhance mRNA 

export, some genes don’t contain introns and therefore never undergo splicing. 

However, these transcripts are still exported efficiently. Replication-dependent histones 

and a natural intronless human gene, c-Jun, both belong to this type of gene. 

        There are around 65 non-allelic replication-dependent histone genes in the human 

genome and they encode the four core histones as well as histone H1. The mRNA 
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transcripts of these genes lack intron and are not polyadenylated. Instead of 

polyadenylation  the  mature  3’  ends  are  formed  by  cleavage  after  a  highly  conserved  

stem loop sequence.  This cleavage process requires the presence of the stem loop and 

a second cis-acting element called the histone downstream element (HDE) as well as 

two trans-acting factors called stem loop binding protein (SLBP) and U7 snRNP 

respectively.  

        Replication-dependent histone transcripts also contain transport elements which 

recruit export factors (such as 9G8 and SRp20). This export depends on the length of the 

region  upstream  of  the  stem  loop  structure  which  provides  a  platform  for  export  

adaptor binding, and then promoting the histone transcript export. Because the length 

of the transcript was shown to significantly affect the efficiency of export, these adaptor 

binding sites may be required to ensure efficient export of intronless transcripts.  

        Another natural intronless gene is a human gene called c-Jun. This transcript 

contains elements within the protein coding region called c-Jun processing enhancers 

(CJEs) which enhance RNA stabilisation and 3’-end formation. The CJE has, in addition, 

been shown to be a transferable element which promotes export by an as yet 

uncharacterised mechanism (Guang and Mertz, 2005).  

        Recently,  Reed’s  lab  reported  that  TREX  and  TAP  are  required  for  the  export  of  

three naturally intronless mRNAs (HSPB3, IFN-a1, and IFN-b1). These intronless genes 

contain specific sequences, which allow them to be packed into TREX complex, 

therefore bypassing the splicing requirement (Lei et al., 2011). 

 

1.3.6 Role of 3’ end processing and mRNA export 

mRNA 3’ polyadenylation processing is necessary for mRNA export. This physical link 

could be to ensure the termination of transcripts is correct before export. For example, 

Yra1 preferentially associates with the 3’ end of transcripts from intronless genes (Lei 

and Silver, 2002). However, although Yra1 is recruited to intron-containing transcripts in 

a splicing-dependent manner, 3’ end formation is also required for its recruitment. Thus, 
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this  result  indicates  that  Yra1  is  recruited  during  3’-end  processing  (Johnson  et  al.,  

2009). 

        Studies in yeast also showed that Yra1 recruitment appears to be independent of 

Sub2 (Johnson et al., 2009), and instead requires the CF1A components Rna14, Rna15 

and Pcf11. It has been proposed that Pcf11 binds the Sub2/Mex67-interacting regions of 

Yra1. These interactions are conserved in both yeast and humans, which has led to the 

proposal that Yra1–Pcf11 binding is an important early step (Johnson et al., 2009). 

Moreover, the Bentley group reported that depletion of Yra1 affects poly(A) site choice. 

Yra1 competes with the CF1A subunit Clp1 for binding to Pcf11, and overexpression of 

Yra1 inhibits 3'-end processing in vitro (Johnson et al., 2011). 

        However, although Yra1 can be recruited to mRNA via Pcf11, it could also be 

recruited to Mex67 by other pathways involving, for example, the SR-like protein, Npl3. 

The poly(A) tail length control factor Nab2 also function in mRNA export in 

Saccharomyces cerevisiae (Green et al., 2002; Viphakone et al., 2008). Similar to yeast, 

polyadenylation and mRNA export are coupled in higher eukaryotes. Silver’s group 

reported that a drosophila Zn-finger protein, ZC3H3, which interacts with both 

polyadenylation and mRNA export components, is required for mRNA export (Hurt et 

al., 2009).  

 

1.3.7 Export of viral RNAs 

Although the mechanism of mRNA export functions to ensure that the incompletely 

spliced transcripts are retained within the nucleus, many viruses are able to hijack the 

export machinery, bypass normal cellular controls and promote the export of 

incompletely  spliced  RNAs  to  the  cytoplasm.  There  are  a  variety  of  different  ways  to  

achieve this, including using viral expressed protein factors or incorporating attractive 

secondary sequence elements (e.g. RRE and CTE) into viral RNA. 
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Rev/Rev-like protein dependent transport 

Some transcripts of retrovirus, such as HIV, are spliced and some are not. The spliced 

transcripts are able to be exported via the normal pathway. However, the incompletely 

spliced transcripts are exported by a protein called Rev, which is the product of one of 

the fully spliced viral transcripts. 

        Rev is a shuttling protein which consists of two distinct functional domains. It 

contains an NES motif at the C-terminus; at the N-terminus, there is a specific structure 

called the Rev response element (RRE), which is present in the incompletely spliced viral 

transcripts, required for both Rev multimerisation and recognition. Rev is able to bind to 

any RNAs containing the RRE and promote their export by interacting with the export 

factor  Crm1.  Other  viruses  such  as  human  T-cell  leukaemia  virus  encode  a  Rev-like  

protein called Rex which binds to an element in the viral long terminal repeats (Bogerd 

et al., 1992). 

 

CTE-dependent transport 

The constitutive transport element (CTE) is an RNA structure found in the transcripts of 

many retroviruses. It was originally identified in the Mason-Pfizer monkey virus (MPMV) 

genome. The CTE functions by binding to TAP directly, allowing viral RNAs to be 

exported through the mRNA export pathway. Interestingly, CTEs exist in both unspliced 

and spliced viral RNAs, but are only required for unspliced transcript export (Strasser et 

al., 2000a). Significantly, the TAP pre-mRNA has also been shown to contain a CTE (Li et 

al., 2006). 

 

ICP27/ORF57 dependent transport 

ICP27 and ORF57 are proteins encoded by many herpesviruses and promote the export 

of viral RNAs. The viral RNAs are bound by ICP27/ORF57 which in turn binds to the 

mRNA export adaptor REF. Binding to REF allows the viral RNAs to proceed through the 

mRNA export pathway. Unlike Rev and CTE-dependent transport, ICP27/ORF57 

dependent transport is not used to force export of unspliced viral RNA. Instead, this 
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method ensures the preferential export of viral intronless RNAs (Koffa et al., 2001; 

Williams et al., 2005)  

 

1.3.8 Regulation of mRNA export 

mRNA  export  can  also  be  regulated  by  the  modification  of  proteins.  There  are  many  

different quality controls of mRNA export. For instance, Tom1, the E3 ubiquitin ligase, 

associates with the mRNA binding protein Nab2p and blocks mRNP complex export 

(Duncan  et  al.,  2000).  Another  example  is  Rrp6p,  which  is  an  exosome  specific  

component in the nucleus. Rrp6p can stimulate mRNP assembly. If the pre-mRNA is not 

adenylated, Rrp6p will trigger TREX complex disassembly and cause mRNA export to be 

stopped (Hilleren et al., 2001; Libri et al., 2002). 

        Phosphorylation is another key point of regulation during mRNA export. For 

example, in yeast, Npl3 can associate with mRNA in its phosphorylated form; however, 

only in the unphosphorylated form can Npl3 interact with the export receptor (Gilbert 

et al., 2001; Gilbert and Guthrie, 2004).  By contrast, studies in mammals also revealed 

the regulation between SR proteins and TAP. The hypophorylated SR proteins could 

associate with mRNA and TAP (Lai and Tarn, 2004). This evidence provides interesting 

views of the coupling between transcription, splicing, and mRNA export. 

      In addition, Dufu et al. reported that the novel TREX component, CIP29, assembles 

into hTREX in an ATP-dependent manner with UAP56. This evidence suggests a new 

level of mRNA export regulation (Dufu et al., 2010). 

 

1.3.9 Model of mRNA export 

It is crucial that only fully processed mRNAs will be exported. To achieve this, the cell 

has efficient quality control mechanisms for mRNA export. The following discussion 

presents a summary of the current working model for mRNA export (Walsh et al., 2010) 

(Figure. 1-3). 

        During transcription the carboxyl terminal domain (CTD) of the large subunit of RNA 

polymerase II deposits a multitude of protein factors on the nascent transcript. Subsets  



[Figure. 1-3] A model for mRNA export 

During transcription, Pcf11 is recruited to the CTD of Pol.II together with REF. At the late
stage of transcription, Clp1 displaces REF to generate the 3’-end processing complex with
Pcf11. REF is then transferred to the cap-binding complex to form the TREX complex via
UAP56. REF and hypophosphorylated SR proteins recruit and hand the mRNA over to TAP.
When the TAP reaches the nuclear pore, Dbp5 displaces TAP and releases the mRNA on the
cytoplasmic side.

(Taken form Walsh et al., 2010)

-34-
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of these proteins are involved in adding the 5’ cap to the mRNA and recruiting the TREX 

complex.  

        Another group of proteins called the transcription elongation factors promote 

transcription elongation by RNA polymerase II and also recruit the splicing machinery. 

The splicing machinery can then act to remove introns from the pre-mRNA and deposit 

EJC at exon-exon junctions. Disruption of 5’ capping or splicing both disrupt normal 

mRNA export. 

        In the TREX complex, REF could recruit the essential export factor TAP. Then, UAP56 

is displaced by TAP and mRNA is handed over from REF to TAP (Strasser and Hurt, 2001). 

Although under normal conditions TAP has a low affinity for mRNA, the binding of REF is 

able to increase this affinity significantly. It is notable that once TAP has been recruited 

REF remains bound to mRNP via TAP but not via mRNA (Hautbergue et al., 2008). The 

TAP-mRNA  complex  can  then  interact  with  nucleoporins  at  the  NPC  and  promote  

translocation to the cytoplasm; then,  Dbp5p,  a  RNA helicase and also a component of  

mRNP,  triggers  the  dissociation  of  mRNP  particles  and  releases  mRNA  into  the  

cytoplasm (Hodge et al., 1999; Schmitt et al., 1999; Strahm et al., 1999). 

 

1.4    Post-transcriptional control of gene expression 
The regulation of gene expression is a fundamental process to allow a cell to respond to 

both intrinsic and environmental information to ensure the best use of its resources. 

The most basic form of gene expression regulation is at the transcriptional level where 

different genes can be selected for transcription by various mechanisms including 

chromatin-remodeling or by the action of specific transcription factors. However, a 

more complex form of control is exerted at the post-transcriptional level. 

        After transcription has occurred, the cell can regulate the fate of the transcripts 

using a number of processes. In all these different processes, RNA-binding proteins 

(RBPs) are important players. 

 

 



- 36 - 
 

1.4.1 Regulation of mRNA turnover/stability 

mRNA could decay naturally or be actively targeted for degradation. The natural decay 

rate of mRNA can be specified by control elements present in the 3’ untranslated 

regions (UTRs) which are recognised by RBPs. The RBPs can act to increase the stability 

of the transcript or protect it from decay. 

        Some transcripts can be actively degraded because of sequence error or as a way of 

regulating transcript levels. In eukaryotes, most cytoplasmic mRNA degradation begins 

with the shortening of the poly(A) tail by deadenylating proteins. The decapping enzyme 

Dcp1 and Dcp2 can then remove the 5’ cap structure of mRNAs. After that, mRNAs are 

able to be degraded by the action of an exonuclease called Xrn1p or the cytoplasmic 

exosome complex. The exosome also contributes to other mRNA degradation processes 

called nonsense-mediated decay (NMD) and non-stop decay (NSD). 

        If a transcript contains a premature stop codon, it is identified by the NMD complex 

and degraded by the exosome. In contrast, if a transcript has no stop codon, NSD 

complex will target it for degradation. These processes ensure that potentially aberrant 

protein products are not translated (Hausmann et al., 2000).  

  

1.4.2 Regulation of mRNA translation 

The initiation of translation is the rate-limiting step in eukaryotic translation and is the 

main target for mRNA translation control. There are two categories in translational 

control: global control and transcript-specific control.  

        Global control affects the translation of many transcripts at the same time and is 

usually achieved by changing the phosphorylation state of translation initiation factors 

or by changing the number of ribosomes present. In contrast, transcript-specific control 

changes  the  translation  rate  of  a  distinct  subset  of  transcripts  by  a  diverse  array  of  

mechanisms. This type of control is particularly important during conditions which 

require rapid change in proteins levels, such as stress response, apoptosis, and cell 

development (Stenzl et al., 2000; Strasser et al., 2000c).  
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        As with mRNA decay, this process involves the interaction of RBPs with structural or 

control elements located in the UTR sequences of target transcripts. The presence of 

these RBPs can either enhance the translation by promoting its association with the 

ribosome or decrease by blocking association. A prominent example of this kind of 

control is the regulation of iron-dependent translation by the protein aconitase (Haile et 

al., 1997) 

 

1.5    Aims of this Study 
As mentioned previously, the human TREX complex is composed of the hTHO sub-

complex (hHpr1, THOC2, THOC5, THOC6, and THOC7), Tex1, UAP56, and REF/Aly. TREX 

complex is required for coupled transcription elongation and nuclear export of mRNAs, 

and provides an example of an mRNA-specific adaptor (Aguilera, 2005; Köhler and Hurt, 

2007; Reed and Cheng, 2005a; Reed and Hurt, 2002). REF/Aly is recruited to mRNA 

though the interaction with UAP56 and directly interacts with TAP-p15. In Xenopus 

oocytes, REF/Aly was shown to be a limiting factor for nuclear export of mRNA (Zhou et 

al., 2000). In Drosophila, gene knockdown experiments have shown that only the UAP56 

orthologue, but not the other THO/TREX component is required for mRNA export (Farny 

et al., 2008; Gatfield and Izaurralde, 2002; Gatfield et al., 2001; Herold et al., 2001). It 

has  also  been  shown  that  nuclear  export  of  only  a  subset  of  mRNAs  is  affected  by  

depletion of TREX components (Farny et al., 2008). These results suggest the existence 

of additional adaptors. 

        Indeed, except REF, there are many different mRNA export adaptor proteins in 

eukaryotes.  As  we  mentioned  before,  SR/SR-like  proteins  also  can  bind  to  TAP  to  

enhance mRNA export. Another example is UIF, which also functions as an export 

adaptor  binding  TAP  and  delivering  mRNA  to  the  nuclear  pore.  Both  REF  and  UIF  are  

required for ef cient export of mRNA (Hautbergue et al., 2009). These data imply that 

various nuclear mRNA export pathways, which may be dictated by different adaptor 

RNA binding proteins, exist in higher eukaryotes. 
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        The mechanism of RNA export remains to be established, there are many details 

still unknown. Only when we understand all the functions of each RNA export factor, we 

can view the panorama of RNA export. Thus, in this study, we aim to find new mRNA 

export factors and through analysing the biological function of a novel protein, SRAG, 

with focus on a possible role in mRNA export. 
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Chapter II 

Materials and Methods 
 

2.1    Materials 

2.1.1 Bacterial Strains 

The following bacteria strains were used during the project all from Invitrogen 

 

Strain Genotype 

DH5  E.coli supE44  lac U169 (Ø80 lacZ M15) 

hsdR17 recA1 endA1 gyrA96 thi-1 relA1 

BL21 CodonPlus(DE3) RP Stratagene E.coli B F- ompT 

 

Growth Media 

All media were sterilised before use by autoclaving at 15 lb/in2 for 15 minutes and then 

stored at room temperature until use. All recipes were taken from Sambrook’s 

Molecular Cloning: A Laboratory Guide (Sambrook, 1989). 

 

 Luria Bertani (LB): 10 g/L Bacto-trypton, 10 g/L NaCl, 5 g/L Yeast Extract. 

 LB Agar: as above, but supplemented with 15 g/L Agar. 

 Terrific Broth (TB): 12 g/L Trypton, 24 g/L Yeast Extract, 4 mL/L Glycerol, 2.31 g/L 

KH2PO4, 12.54 g/L K2HPO4. 

 SOB Medium: 2%  Tryptone,  0.5%  Yeast  Extract,  10  mM  NaCl,  2.5  mM  KCl,  10  

mM MgCl2, 10 mM MgSO4. 
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Antibiotics used as selection agents in E. coli 

In order to select for bacterial cells carrying particular plasmids, antibiotics were used as 

selective agents. The concentrations of these antibiotics are outlined in the table below. 

 

Antibiotic Final Concentration 

Ampicillin 100 g/mL 

Kanamycin 50 g/mL 

Chloramphenicol 12.5 g/mL 

Spectinomycin 50 µg/mL 

 

2.1.2 Tissue Culture 

Cell lines 

The following cell-line strains were used during the project all from ATCC or Invitrogen 

 HEK-293T – Human embryonic kidney transformed with SV40 which expresses 

the large T antigen. 

 Flp-In 293 – These cells contain a single stably integrated FRT site at a 

transcriptionally active genomic locus.  

 Cos7 – Vervet Monkey kidney fibroblast 

 HeLa – Human cervical epithelial carcinoma. 

Growth Media 

The cells were propagated in Dulbeccos Modified Eagle Media (DMEM) (Sigma D-5796) 

supplemented  with  10%  fetal  calf  serum  serum  (Life  Technologies  10106-169),  1%  

penicillin-streptomycin  (Life  Technologies  15070-063)   and  2  mM  glutamine  (Life  

Technologies 25030-024). 
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2.1.3 Vectors 

Plasmid Manufacturer Features/Promoter 

p3XFlag-myc-

CMV-26 

Sigma Mammalian expression vector, CMV 

promoter, ampicillin resistance. Allows 

transient or stable expression of dual tagged 

N-terminal 3XFLAG and C-terminal c-myc 

fusion proteins. 

pCI-neo Promega Mammalian expression vector, CMV I/E 

promoter/enhancer, neomycin resistance. 

pEGFP-N1 BD Biosciences Mammalian expression vector, CMV 

promoter, neomycin/kanamycin resistance. 

Allows  expression  of  GFP  fusion  proteins  in  

mammalian cells. 

pET24b Novagen Prokaryotic expression vector, T7 promoter, 

kanamycin resistance, C-terminal His-Tag. 

Allows expression of 3’ His-tagged fusion 

proteins in E.coli. 

pcDNA6.2-

GWEmGFP-miR 

Invitrogen Mammalian RNAi vector, miR cassette, CMV 

promoter, Spectinomycin/Blasticidin 

resistance. Allows knockdown of specific 

mRNA targets in mammalian cells. 

pGEX-6P1 Amersham 

Bioscience 

Prokaryotic expression vector, ampicillin 

resistance. Allows expression of GST fusions 

in E.coli under control of the tac promoter 

which is induced by IPTG. 
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2.1.4 Buffers 

All buffers which were required to be sterile were sterilised by autoclaving or by being 

passed through a 0.2 m filter. 

 

DNA & RNA protocol buffers 

 TE (Tris-EDTA): 10 mM Tris-HCl, pH 8.0; 1 mM EDTA, pH 8.0. 

 6x DNA Loading Buffer: 0.25% (w/v) Xylene Cyanol; 0.25% (w/v) Bromophenol 

Blue; 30% (v/v) Glycerol. 

 1x TBE: 90 mM Tris; 90 mM boric acid; 2.5 mM EDTA, pH 8.0. 

 mRNP Capture Assay 

Lysis Buffer: 50 mM Tris-HCl, pH 7.5; 100 mM NaCl; 2 mM MgCl2; 1 mM EDTA, 

pH 8.0; 0.5% (v/v) Igepal Ca-360; 0.5% (w/v) Sodium Deoxycholate; 2 mM PMSF. 

2x Binding Buffer: 20  mM  Tris-HCl,  pH  7.5;  1  M  NaCl;  1%  (w/v)  SDS;  0.2  mM  

EDTA, pH 8.0. 

Elution Buffer: 10 mM Tris-HCl, pH 7.5; 1 mM EDTA, pH 8.0; 2 mM PMSF; 2mM 

RNase A. 

 Hypotonic Buffer: 10 mM HEPES-KOH (pH 7.9), 1.5 mM MgCl2, 10 mM KCl, 0.5 M 

DTT. 

 
SDS-PAGE/Western Buffers 

 4x SDS-PAGE Loading Buffer: 200 mM Tris-HCl, pH 6.8; 1% (w/v) Bromophenol 

Blue; 50% (v/v) glycerol; 10% (w/v) SDS.  

 4x SDS-PAGE Stacking Gel Buffer: 0.5 M Tris-HCl, pH 6.8; 0.15% (w/v) SDS. 

 4x SDS-PAGE Resolving Gel Buffer: 1.5 M Tris-HCl, pH 8.8; 0.15% (w/v) SDS. 

 SDS-PAGE Running Buffer: 25 mM Tris; 250 mM glycine; 0.1% (w/v) sodium 

dodecyl sulphate (SDS). 

 Coomassie Brilliant Blue Stain: 0.1% (w/v) Coomassie Brilliant Blue R-250, 40% 

Methanol, 10% Acetic Acid. 

 Destain Solution: 40% (v/v) Methanol, 10% (v/v) Acetic Acid. 
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 Transfer Buffer: 39 mM Glycine, 48 mM Tris, 0.037% (w/v) SDS, 20% Methanol. 

 

 

Miscellaneous Buffers 

 1x PBS (phosphate buffered saline): 137 mM NaCl; 2.7 mM KCl; 4.3 mM 

NaH2PO4; and 1.47 mM KH2PO4. pH to 7.4 using HCl. 0.1% (v/v) Tween-20 was 

added to make into 1x PBS-Tween. 

 1x TBS (Tris buffered saline): 50 mM Tris-HCl, pH 7.5; 150 mM NaCl. 2% Tween-

20 was added to make into 1x TTBS. 

 Transformation buffer: 10 mM PIPES, 55 mM MnCl2 , 15 mM CaCl2 , 250 mM KCl, 

pH to 6.7 with KOH. The MnCl2 was added last, after the pH was altered. Buffer 

was then filter sterilised. 

 2M Imidazole stock: 136.2 g/L Imidazole, pH to 7.5 with NaOH. 

 Immunoprecipitation Lysis Buffer: 50 mM Tris-HCl, pH 7.5; 100 mM NaCl; 2 mM 

MgCl2; 1 mM EDTA, pH 8.0; 0.5% (v/v) Igepal Ca-630; 0.5% (w/v) Na-

deoxycholate; 2 mM PMSF. 

 Immunoprecipitation Wash Buffer: 50 mM Tris-HCl, pH 7.5; 100 mM NaCl; 2mM 

MgCl2; 1 mM EDTA, pH 8.0. 

 GSH Elution Buffer: 100 mM Tris-HCl, pH 7.5; 100 mM NaCl; 100 mM reduced 

Glutathione. 

 Luciferase Assay Buffer: 25 mM Gly-Gly,  pH 7.8;  15 mM Potassium Phosphate,  

pH  7.8;  15  mM  MgSO4; 4 mM EDTA, pH 8.0; 1 mM DTT. 2 mM fresh ATP was 

added when ready to use.  

 11.1% Paraformaldehyde: 24 mL 1x PBS, 2.87 g paraformaldehyde. Dissolve 

paraformaldehyde by adding a few drops of NaOH and heating to 50°C. Adjust to 

pH 7.4. 

 3.7% Paraformaldehyde Fixing Solution: 10 ml 1x PBS, 33.4 ml 11.1% 

Paraformaldehyde (pH 7.4), 0.6 mL 30% Triton X-100, 56 ml Millipore-filled H2O. 
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 10x Oligo Annealing Buffer: 100 mM Tris, pH 8.0; 10 mM EDTA, pH 8.0; 1 M 

NaCl. 

 ECL Solution #1: 100 mM Tris-HCl, pH 8.5; 2.5mM luminol; 400 µM p-coumaric 

acid; ECL Solution #2: 100 mM Tris-HCl, pH 8.5; 5.3 mM hydrogen peroxide 

 

2.1.5 Molecular Biology Kits 

Small scale plasmid DNA purification: QIAGEN Mini spin preparation kit. 

Midi scale plasmid DNA purification: QIAGEN Midi spin preparation kit; Promega Midi 

spin preparation. 

DNA extraction from agarose: QIAGEN Gel Extraction Kit. 

In vitro transcription / translation: T7 Quick Coupled Transcription / Translation System 

(Promega). 

-Galactosidase Assay: Clontech Luminescent -Galactosidase Detection Kit II. 
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2.2    Methods 
 

2.2.1 Molecular Biology 

Phenol Chloroform-Isoamyl Alcohol DNA Purification 

One volume of phenol chloroform-isoamyl alcohol (25:24:1, pH 6.6/8) was added to 

DNA solution. Mixture was vortexed for 1 minute and then centrifuged for 5 minutes at 

13,000 rpm. The upper phase was transferred to a fresh tube and 2.5-3 volumes of 

100% ethanol were added. 3 M Sodium acetate (pH 5.3) was also added to a final 

volume of 10%. This mixture was incubated on ice or -20 C for 20 minutes and then 

centrifuged for 20 minutes at 13,000 rpm. The supernatant was removed and discarded 

before 1 mL of 70% ethanol was added. Sample was then centrifuged again for 20 

minutes at 13,000 rpm. Supernatant was discarded and the pellet was air-dried. Dried 

pellet was resuspended in required volume of Millipore-filled H2O. 

 

Isolation of Plasmid DNA from E. coli 

For mini-preps, single bacterial colonies were inoculated into 3ml LB supplemented with 

the appropriate antibiotic (for midi-preps and maxi-preps, 200 mL and 400 mL LB was 

used respectively). The cultures were incubated overnight at 37 C with shaking to allow 

bacterial  growth.  To  purify  plasmid  DNA  the  appropriate  QIAGEN  or  Promega  kit  was  

used, following the manufacturer’s instructions. 

 

DNA restriction digest 

Unless otherwise specified, restriction digests were carried out in the optimal buffer 

supplied by the enzyme manufacturer and with the amount of enzyme never exceeding 

10% of the reaction volume (to avoid problems caused by high glycerol concentration). 

Typically, reactions were incubated at 37 C for 1-2 hours to allow efficient digestion. 
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DNA ligation 

Approximately 200ng of purified, cut vector (previously treated with 1U of alkaline 

phosphatase for 15 minutes at 37°C) was incubated with purified DNA insert in the 

presence  of  1  U  T4  DNA  ligase  (Roche)  for  2  hours  at  room  temperature.  The  ligation  

products were then transformed into competent DH5  E. coli. 

 

Making competent cells: chemical method 

Overnight cultures were prepared by inoculating 50 mL LB with the appropriate 

bacterial strain. This overnight culture was used to inoculate SOB medium to an OD600 ~ 

0.05-0.1 and incubated at 25 C with shaking. When the OD600 reached 0.4-0.5 the cells 

were  placed  on  ice  for  10  minutes.  After  this  incubation  the  cells  were  centrifuge  at  

4000 rpm for 15 minutes at 4 C in pre-sterilised Beckman JA10 pots. Cell pellets were 

then resuspended in 160 mL transformation buffer (TB) and left on ice for 10 minutes. 

Cells were then spun down again at 4000 rpm for 15 minutes at 4 C. Cells were gently 

resuspended in 40 mL TB and DMSO was added to a final concentration of 7%. Cell 

suspensions were left on ice for a further 10 minutes before being aliquoted and frozen 

in liquid N2. Aliquots of competent cells were stored at -80 C until needed. 

 

Transformation of chemically competent bacteria 

Competent  cells  were  thawed  at  room  temperature  and  added  to  DNA  (either  half  a  

ligation reaction or ng quantities of plasmid DNA). Mixtures were incubated on ice for 

20-30 minutes and then heat-shocked at 42 C for 30 seconds. LB (800 L) was then 

added and the cells were incubated at 37 C for 1 hour to allow recovery. Cells were then 

spun down at 7000 rpm for 1 minute, resuspended in a small volume residual LB and 

spread onto LB plates supplemented with the appropriate antibiotic(s).  
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Polymerase Chain Reaction (PCR) 

PCR  reactions  of  50  µl  were  set  up  as  follows:  100  ng  DNA  template,  10  µM  forward  

primer, 10 µM reverse primer, 1x reaction buffer, 2.5-5 U DNA polymerase, 200 µM 

dNTPs  and  1.5  mM  MgCl2. Routinely, 25 cycles were performed using an annealing 

temperature between 55-65 C and an extension temperature of 72 C. 

 

Molecular cloning 

Molecular cloning is a technique which enables the introduction of a known DNA 

fragment (insert) into a plasmid (vector) with the required genetic properties. The 

inserts to be used are usually produced by PCR but can also be excised from an existing 

plasmid and transferred to a new host vector. 

        Recipient plasmids were prepared for cloning by digestion with the desired 

restriction enzymes. Usually 5 g of plasmid is digested for 2 hours at 37 C with 50 U of 

enzyme,  followed  by  30  minutes  incubation  at  37 C  with  1  L  calf  intestinal  alkaline  

phosphatase (CIAP) (1 U/ L). This CIAP treatment prevents the cut vector from re-

ligating to itself by removing the 5’ phosphate (PO4). After this treatment the CIAP was 

inactivated and the plasmid DNA purified by phenol-chloroform extraction followed by 

ethanol precipitation. If the insert was produced by excision from an existing plasmid, 

restriction  digests  of  the  plasmid  were  carried  out  so  that  ~1  g  of  insert  DNA  is  

released. The digestion products were separated by agarose gel electrophoresis and the 

desired DNA fragment was cut from the gel and purified using a QIAGEN Gel Extraction 

Kit. The DNA obtained was ethanol precipitated and resuspended in an appropriate 

volume of TE buffer or Millipore-filled H2O. 

        In most cases, insert fragments were generated by PCR. The primers required for 

each cloning were specific for the reaction carried out, but all incorporated the 

necessary restriction sites flanked by 6 additional 5’ bases. These 5’ bases were 

introduced to provide a platform through which the restriction enzyme(s) could bind 

and digest the DNA efficiently. After amplification, the PCR reaction is gel extracted and 

digested overnight at 37 C with 100 U of the appropriate restriction enzyme(s). The 
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digestion reactions were then phenol-chloroform extracted and ethanol precipitated 

before being resuspended in an appropriate volume of TE buffer or Millipore-filled H2O. 

To determine DNA concentration and whether complete vector linearisation had 

occurred samples of both the vector and insert DNA were run on an agarose gel. Once 

DNA concentration is determined 100 ng of linearised vector was added to the 

remaining insert  DNA, along with 10 U of  T4 DNA Ligase in T4 DNA Ligase Buffer  (1x).  

This reaction mix was incubated overnight at 16 C to allow efficient ligation to occur. 

Half of the ligation mixture was then transformed into competent E. coli. 

 

Plasmid construction & primer sequences 

 p3XFLAG-myc-CMV-26 vectors 

The  full  length  SRAG  construct  was  PCR  amplified  from  the  I.M.A.G.E.  clone  (IMG  

4450075). This construct was cloned into p3XFLAG-myc-CMV-26.  

 

 pCI-neo-MS2 vectors 

The pCI-neo-MS2 vector and pCI-neo-MS2-GFP, pCI-neo-MS2-REF, pCI-neo-MS2-TAP 

were previously created in the laboratory. The full-length SRAG constructs were PCR 

amplified from the I.M.A.G.E. clone (IMG 4450075) and then sub-cloned into pCI-neo-

MS2.  

 

 pET24b & pET24b-GB1 vectors 

The full-length SRAG construct and various SRAG truncations were amplified from the 

I.M.A.G.E. clone (IMG 4450075). These constructs were cloned into pET24b or pET24b-

GB1 vectors. Mutated version of pET24b or pET24b-GB1 were produced by site-directed 

mutagenesis.  
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 pGEX-6P1 (GST) vectors 

pGEX-6P1  vectors  containing  various  truncations  of  UAP56,  REF,  and  TAP  were  

previously created in the laboratory. The full-length SRAG construct and various SRAG 

truncations were amplified from the I.M.A.G.E. clone (IMG 4450075) and then sub-

cloned into pGEX-6P1.  

 

Cloning BLOCK-IT RNAi (Invitrogen) vectors 

The BLOCK-IT RNAi system is a commercially available cloning system allowing the user 

to  clone  pre-miRNA  sequences  of  their  choice  into  linearised  pcDNA  6.2-GW/EmGFP-

miR vector. These vectors can then be used to “knockdown” the levels of the mRNA for 

which the pre-miRNA is specific. 

 

DNA sequencing 

The fidelity of cloned inserts was determined using the ABI Big Dye 3.1 Terminator 

system. Various primers were used in the sequencing reactions including standards such 

as  T7/T3  promoters,  M13  as  well  as  gene  specific  primers.  Reactions  were  set  up  as  

follows: 1-2 g DNA template, 1 L sequencing primer (10 M), 1 L Big Dye mix V3.1, 

1x sequencing reaction buffer. The reaction mixes were then subject to following PCR 

parameters:  

 

Cycles Temperature ( C) Time  

25 

96  30 sec 

55  15 sec 

60  4 min 

 

After PCR the reactions were cleaned up by ethanol precipitation. The DNA pellets were 

air-dried and then sent to the University of Oxford sequencing facility to be read. The 

sequences produced were analysed using Chromas II software and the NCBI database. 
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In vitro site-directed mutagenesis 

This is a PCR based method used to introduce nucleotide changes into a wildtype 

sequence. In each round of PCR, up to 6 closely positioned nucleotides can be altered. 

Primers are designed for the area which requires mutating. The nucleotides to be 

altered are positioned in the centre of the primer sequences and are flanked either side 

by up to 18 nucleotides of wildtype sequence (these ensure correct annealing during 

PCR).  Reactions  were  set  up  with  125  ng  of  each  primer,  50-100  ng  dsDNA  plasmid  

template, 200 M of each dNTP, 2.5 U Pfu TurboTM polymerase  and  1x  Pfu TurboTM 

polymerase buffer in a total volume of 50 L. All PCR reactions were then carried out 

using the parameters outlined in below.  

 

Section Cycles Temperature ( C) Time (min) 

1 1 95 0.5 

2 25 

95 0.5 

55 1.0 

68 1.0/kb plasmid size 

 

After PCR, reactions were treated with 10 U DpnI  for  1  hour  at  37 C.  DpnI  cuts  at  5’-

Gm6ATC-3’ and is specific for methylated DNA. Generally, DNA produced by E. coli (i.e. 

the original plasmid template) is dam methylated and therefore susceptible to DpnI, 

while the PCR produced mutant DNA is unmethylated. This difference allows for an easy 

enrichment of intact mutant plasmid by DpnI digestion. After digestion the reaction was 

ethanol precipitated and transformed into DH5 , where only the intact mutant plasmid 

can be propagated. The resultant colonies were then screened for presence of the 

desired mutation(s) by DNA sequencing.  

 

Total cellular RNA and cytoplasmic RNA extraction using Trizol 

To  each  100  mg  of  harvested  cells,  1  mL  Trizol  reagent  was  added.  The  mixture  was  

homogenised by pipetting and incubated at room temperature for 5 minutes. After 
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incubation, 200 L Chloroform was added and the tubes were shaken vigorously for ~30 

seconds. Samples were then centrifuged for 15 minutes at 13,000 rpm and 4 C. The 

upper phase was removed and the RNA was precipitated by addition of an equal volume 

of isopropanol. Samples were centrifuged for 20 minutes at 13,000 rpm and 4 C. 

Supernatant was discarded and 1ml of 70% ethanol was added. Samples were 

centrifuged again for 20 minutes at 13,000 rpm and 4 C and the supernatant discarded. 

Pellet was then air-dried and resuspended in the required volume of Millipore-filled 

H2O. 

        To isolate cytoplasmic RNA, 293T cells were first grown in 24-well plates. For each 

condition 12 wells of cells were trypsinised and pooled before being centrifuged for 5 

minutes at 2000 rpm and room temperature. The pelleted cells were then washed once 

with serum-free DMEM before being resuspended on ice-cold hypotonic buffer and 

incubated an ice for 15 minutes. The samples were then centrifuged for 8 minutes at 

2500 rpm and 4°C to clear nuclear components. The supernatant was transferred to a 

fresh tube and residual nuclear contaminants were removed by centrifuging for 5 

minutes at 6000 rpm and 4°C. Again the supernatant was removed and transferred to a 

fresh tube before being centrifuged for 1 minute at 16000 rpm and room temperature. 

The remaining supernatant was brought to 100 mM NaCl, 0.5% NP40, 10 mM EDTA (pH 

8.0), 0.5% SDS and phenol-chloroform extracted twice. These extractions were followed 

by a single chloroform extraction before the RNA was precipitated and resuspended in 

44 L Millipore-filled H2O and 5 L DNase I buffer. Each sample was then treated with 2 

U RNase-free DNase I for 30 minutes at 37°C. After DNase treatment another phenol-

chloroform extraction was carried out, followed by a single chloroform extraction. 

Finally, the RNA was precipitated again and resuspended in 24 L Millipore-filled H2O. 

The concentration of the RNA was then determined by NanoDrop (Thermo).  

 

Reverse transcription PCR (RT-PCR) 

Purified RNA (1-3 g) was incubated with RNase-free DNase I (4 U) for 30 minutes at 

37 C to remove any contaminating DNA. The DNase was then inactivated by incubation 
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at 70 C for 15 minutes. After DNase inactivation the following were added, 1 L 

oligo(dT)20 primer (50 M), 4 L dNTP mix (2.5 M per oligo) and Millipore-filtered H2O 

to a total volume of 13 L. Reaction mix was then incubated at 65 C for 5 minutes to 

denature RNA secondary structure. After this incubation the tubes were immediately 

put on ice for 1 minute. To the cooled reaction mixes the following were then added, 4 

L  first  strand  synthesis  buffer  (5x),  1  L  DTT  (0.5  M),  1  L  RNase  inhibitor  and  1 l  

Superscript III reverse transcriptase (200 U/ L). These reactions were mixed by gentle 

pipetting and then incubated at 50 C for 45 minutes. After this incubation the reverse 

transcriptase was inactivated by incubation at 70 C for 15 minutes. The cDNA was then 

ready to be used in subsequent PCR reactions. Typically, 2 L of cDNA was used per PCR 

reaction. 

 

Quantitative PCR (qPCR) 

Total cellular RNA and cytoplasmic RNA preparations were reverse transcribed as 

described previously using between 1-2 g template RNA and the resultant cDNA was 

diluted two-fold and stored at -20°C until required. Each qPCR reaction contained 1 L 

cDNA (1/40), 0.4 L SYBR green, 5 L Sensimix SYBR Kit (2x) (Bioline), 1 L primer mix 

(100 ng/ L) and 2.6 L Millipore-filled H2O. Reactions were then cycled according to the 

parameters outlined in the table below. 

 

Section Cycles Temperature ( C) Time (mins:secs) 

1 1 95 10:00 

2 40-50 

95 0:10 

58-60 0:15 

72 0:25 

 

The qPCR analysis of total cellular RNA and cytoplasmic RNA preparations were used for 

Figure. 5.8. 
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Agarose gel electrophoresis of DNA 

DNA can be separated in relation to its size by gel electrophoresis, with smaller 

fragments migrating faster through the mesh-like agarose. Due to its negatively charged 

phosphate backbone DNA migrates towards the positively charged anode. Different 

percentages of agarose can be used to resolve different sizes of DNA fragment. 

        The appropriate amount of agarose was dissolved in SB (1x) or TBE (1x) and heated 

in the microwave for 3-5 minutes. During heating the mixture was gently swirled to 

ensure the agarose dissolved completely. 

 

Agarose Concentration (%) Efficient Range of Separation of DNA 

Molecules (kb) 

0.5 1-20 

0.8 0.8-10 

1.0 0.5-7 

1.5 0.2-3 

2.0 0.1-2 

 

        Melted agarose was allowed to cool to around 50 C before ethidium bromide (10 

mg/mL) was added to a final concentration of 10 g/mL. Agarose was then poured into 

a mould with a comb inserted and left to set at room temperature. Set gels were placed 

in the appropriate electrophoresis tank and the tank was filled with either SB (1x) or TBE 

(1x) until buffer just covered the gel.  

        1/6th volume of 6 x loading buffer was added to the DNA samples. These samples 

were then loaded onto the gel along with an appropriate commercial size marker and 

run at a constant voltage (150 volts for SB; 100 volts for TBE) until the dye front reached 

the end of the gel. DNA bands were then visualised by fluorescence upon exposure to a 

UV light using a transiluminator. 
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Gel extraction of DNA 

DNA fragments were resolved by agarose gel electrophoresis, as described previously. 

Desired DNA fragments were excised from the gel and the purified using a QIAGEN Gel 

Extraction Kit, following the manufacturer’s instructions. 

 

Recombinant protein expression in E. coli 

Recombinant proteins such as GST fusions were expressed in E. coli transformed with 

the appropriate plasmids. Competent E. coli strain BL21 RP was transformed with the 

required expression vector and plated out on selective media. Single colonies were 

inoculated with 50 mL overnight culture of TB. This culture was incubated overnight at 

37 C with shaking. 

        The following day, 2 liter flasks containing 600 mL of TB were inoculated to an OD600 

= 0.05-0.1. The cultures were then incubated at 37 C with shaking until the OD600 = 0.7. 

Once this optical density had been reached the cells were induced by addition of IPTG to 

a final concentration of 200 M. The cultures were then grown at 37 C with shaking for 

a further 1 hour before being switched to 25 C overnight. After incubation the culture 

was spun down at 4000 rpm for 15 minutes and the resultant pellet stored at -20 C until 

the protein was required. 

 

Purification of affinity tagged recombinant proteins from E. coli 

For GST proteins the appropriate amount of cell pellet was resuspended in 1x PBS/1% 

Triton X-100. The mixture was then sonicated to lyse the cells. After sonication the 

samples were centrifuged at 13000 rpm at 4 C for 10 minutes to pellet cellular debris 

and the supernatant was applied to glutathione sepharose resin equilibrated with 1x 

PBS/1% Triton X-100. The beads were incubated at 4 C for 1 hour with agitation before 

the slurry was spun down at 2000 rpm for 2 minutes. The supernatant was removed and 

the  beads  were  washed  three  times  with  1x  PBS/1%  Triton  X-100.  To  elute,  an  equal  

amount (relative to slurry) of GSH elution buffer was added and the mixtures were 

briefly vortexed. Samples were then incubated at room temperature for 10 minutes 
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before being centrifuged at 2000 rpm for 2 minutes. The supernatant containing the 

eluted protein was carefully removed and transferred to a fresh tube. Eluted protein 

was then stored at either 4 C or -20 C depending on the subsequent application. 

        His-tagged proteins were purified using immobilised metal affinity chromatography. 

The appropriate amount of cell pellet was resuspended in Co2+ loading buffer (50 mM 

Tris-HCl, pH 8.0; 1 M NaCl; 0.5% Triton X-100), sonicated and spun down as described 

previously. The supernatant was then applied to Co2+ beads (Geneflow) and incubated 

at  4°C  for  1  hour  with  agitation.  The  beads  were  then  washed  three  times  with  Co2+ 

wash buffer (50 mM Tris-HCl, pH 8.0; 1 M NaCl; 5 mM Imidazole). The bound proteins 

were then eluted by addition of Co2+ elution buffer (50 mM Tris-HCl, pH 8.0; 100 mM 

NaCl; 200 mM imidazole) and vortexing. The supernatant containing the eluted protein 

was carefully removed and transferred to a fresh tube. The protein sample was dialysed 

against an appropriate buffer to remove any residual imidazole. Samples were then 

stored at either 4°C or -20°C depending on the subsequent application. The protein 

samples obtained were of sufficient purity for the required applications. 

 

Western blotting 

Western blotting is a technique which involves the transfer of proteins, previously 

separated by SDS-PAGE, onto nitrocellulose membrane (Whatman Optitran BA-S 83). 

Protein samples were separated by electrophoresis as described previously with pre-

stained protein markers (BIORAD Precision Plus Protein Standards: All Blue) replacing 

unstained markers. After electrophoresis the contents of the gel were transferred to the 

nitrocellulose using the semi-dry Biometra western blotting apparatus.  

To set up the blot a “sandwich” structure was made consisting of 3 pieces of 3 mm of 

Whatman paper, the gel to be blotted, a piece of nitrocellulose membrane and a further 

3 pieces of 3 mm Whatman paper. 

        All these components were saturated in transfer buffer prior to assembly. The 

completed “sandwich” was then placed membrane side down (closest to the positive 

electrode)  on  the  blotting  apparatus  and  air  bubbles  were  removed  by  rolling  with  a  
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10ml pipette. A constant current of 2 mA/cm2 was applied in order to transfer the 

proteins.  Blots  were  carried  out  for  between  45-60  minutes  depending  on  the  

percentage gel used. Once the blot was completed the gel was discarded and the pre-

stained standards were marked on the membrane in pencil. 

 

Identification of immuno-reactive proteins by ECL detection 

The membrane produced by western blotting was incubated overnight at 4 C in blocking 

solution (4% milk powder in 1x TBS/Tween-20). The membrane was then incubated for 1 

hour with shaking in blocking solution containing the required dilution of primary 

antibody. Three 5 minute washes with 1x TBS/Tween-20 were carried out to remove any 

unbound primary antibody. The membrane was then incubated for 1 hour with shaking 

in blocking solution containing the required dilution of secondary antibody. This 

antibody is conjugated to horse radish peroxidase (HRP). Three 5 minutes washes with 

1x TBS/Tween-20 were again carried out to remove any unbound secondary antibody. 

Once the washes were completed the membrane was ready for ECL detection. 

        This detection method works on the principle that the HRP molecule conjugated to 

the secondary antibody can react with a luminal substrate found in the ECL reagents 

leading to light being emitted. This light can then be detected by exposure to film. To 

carry out this detection method the ECL reagents were first prepared and then applied 

to the membrane. The membrane was then transferred to a film cassette and exposed 

to film for between 10 seconds and 30 minutes, depending on the intensity of the 

signal. The film was then developed using an automatic film developer and the pre-

stained standards were marked.   

 

GST pull-down assay 

This assay was used to detect protein-protein interactions between GST fusion proteins 

and radio-labeled proteins of interest. GST tagged protein was immobilised on GSH 

sepharose and used as bait for interaction with radio-labeled proteins produced in the 

T7 Quick Coupled Transcription / Translation system (Promega). 
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        The transcription / translation reactions were set up as follows: 1.5 L mini-prep 

DNA; 0.5 L [35S]-Methionine (18.5 MBq); and 8 L rabbit reticulocyte lysate master mix. 

These reactions were mixed by gentle pipetting and then incubated at 30 C for 90 

minutes. During this incubation time the GST proteins were extracted as described 

previously.  For  GST  extraction  0.1  g  of  cell  pellet  was  used  and  for  GST  fusion  protein  

extraction 0.4 g of cell pellet was used. The supernatant from these extractions was 

removed  and  applied  to  30  L  Glutathione  (GSH)  sepharose  slurry.  The  extracts  were  

incubated with the beads for 30 minutes at 4 C on a rotating wheel to allow binding of 

the GST protein. After this incubation the beads were washed twice with 1x PBS/0.1% 

Tween 20. Once the transcription translation reaction was completed, 8 L of the 

reaction mix was removed and mixed with 400 L 1x PBS/0.1% Tween 20. This mixture 

was then applied to the GSH beads and the tubes were incubated for 30 minutes at 4 C 

on a rotating wheel. The remaining reaction mix was kept to be resolved by SDS-PAGE. 

After this incubation the beads were again washed twice with 1x PBS/0.1% Tween 20. 

Elution was then carried out by adding 50 L GSH elution buffer and then vortexing the 

tubes briefly. The beads were then allowed to settle for 5 minutes before the 

supernatant was removed. Two 12% SDS-PAGE gels were prepared and the collected 

samples were resolved on them. On one gel 0.5 L of each input sample was run and on 

the second gel 12 L of each eluted sample was run. The radiolabelled protein was 

visualized by autoradiography. 

 

His-tagged proteins in vitro pull-down assay 

This assay was used to detect interactions between purified recombinant proteins. To 

begin with His-TAP, purified previously using immobilised metal affinity 

chromatography, was dialysed against RB100 buffer (25 mM HEPES-KOH, pH 7.5; 100 

mM potassium acetate; 1 mM EDTA, pH 8.0; 1 mM DTT; 10 mM MgCl2; 10% glycerol; 

0.05%  Triton  X100).  GST  proteins  of  interest  were  then  immobilised  on  GSH  resin  and  

washed. The bound proteins were then incubated with the RB100 buffer at 4°C for 1 

hour with agitation. After incubation, 50 g dialysed His-tagged protein was added to 
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the beads and the mixture was again incubated at 4°C for 1 hour with agitation. The 

protein-protein complexes were then eluted from the beads by addition of GSH elution 

buffer and vortexing. Eluted complexes were then resolved by SDS-PAGE and the 

resultant gels were coomassie-stained. 

 

2.2.2 Biochemistry 

RNA UV cross-linking assay 

Before the experiment could begin properly a radio-labelled RNA probe was produced 

by in vitro T4 PNK kit (Roche). 0.5 g short strand of the substrate RNA was labeled at 

the 5‘-end with [ -32P]ATP  using  T4  PNK  at  37  °C  for  1  hr.  The  reaction  mixture  was  

boiled for 5 min to inactivate polynucleotide kinase. The complementary strand was 

added to reach a molar ratio of 1:1.2 between the labeled and the unlabeled 

complementary strand. The reaction mixture was boiled for 3 min and cooled to room 

temperature in 3 hr. Labeled dsRNA was purified using phenol:chloroform extraction to 

remove excess [ -32P]ATP. 

        To set up the cross-linking reactions the required amount of protein was added to a 

fresh microcentrifuge tube and the NaCl content of each tube was then standardised. To 

each tube, 5 L RNA binding buffer (4x) was added and the reactions were then made 

up to 20 L with DEPC-dH20. After this 40 ng radio-labelled RNA probe was added and 

the mixtures were incubated on ice for 15 minutes. After this incubation the tubes were 

opened, kept on ice and then cross-linked at 254 nm for 20 minutes using an UVItec CL-

508 cross-linker. After cross-linking the samples were incubated with 1 L RNase A (10 

U/ L) at 37 C for 15 minutes in order to remove all unbound RNA probe. The remaining 

complexes were then resolved by 12% SDS-PAGE and visualized by autoradiography. 

 

UV cross-linking: trimeric complex assay 

This assay was used to determine whether a GST-tagged protein of interest could form a 

trimeric complex with both TAP-p15 and RNA in vitro. Reaction mixes were made up in 

1x RNA binding buffer with the required amount of GST-protein and 1 L radio-labeled 
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RNA. The mixtures were incubated on ice for 10 minutes and then at room temperature 

for a further 10 minutes. After incubation the appropriate amount of TAP-p15 was 

added and the amount of NaCl in each tube was standardised. The reaction mixes were 

then incubated on ice for 10 minutes and then at room temperature for 10 minutes. The 

samples were returned to ice and then cross-linked at 254 nm for 20 minutes using an 

UVItec CL-508 cross-linker. After cross-linking the samples were incubated with 1 L 

RNase A (10 U/ L)  at  37 C for  15 minutes in order to remove all  unbound RNA probe.  

During RNase treatment, an appropriate volume of GSH sepharose slurry was washed 

with 1x RNA binding buffer/50 mM NaCl. The beads were then spun down and 

resuspended in 500 L 1x RNA binding buffer/50 mM NaCl before being equally 

distributed to the RNase A treated samples. These reaction mixes were incubated on ice 

for 10 minutes with occasional mixing. After incubation the samples were washed three 

times with 1x RNA binding buffer/50 mM NaCl/0.5% Triton before complexes were 

eluted in 20 L GSH elution buffer. The eluted complexes were then resolved by 12% 

SDS-PAGE and the gel as dried and visualized by autoradiography. 

 

Immunoprecipitation: FLAG-tagged proteins 

Flag-tagged proteins were purified from eukaryotic cells by immunoprecipitation using 

mouse  -FLAG  M2  agarose.  Tissue  used  was  from  293T  cells  transfected  with  flag  

vector. Cells were lysed with immunoprecipitation lysis buffer (either 48 hours after 

transfection or 72 hours after plating depending on the cells used) and the extracts were 

centrifuged at 13,000 rpm for 10 minutes at 4 C. The supernatant was then removed 

and transferred to eppendorf tubes containing 30 l mouse -FLAG M2 agarose slurry. 

These tubes were then incubated at 4 C for 3 hours with constant agitation. After 

incubation the beads were spun down at 2000 rpm for 2 minutes and the supernatant 

was removed. The beads were then washed twice with 1x PBS and then 4 times with 

immunoprecipitation wash buffer. Flag-tagged protein was then eluted from the beads 

by addition of 10 g 3x FLAG peptide in wash buffer and incubation at 4 C for 30 



- 60 - 
 

minutes with constant agitation. After incubation the beads were again spun down at 

2000 rpm for 2 minutes and the supernatant was removed. 

 

mRNP capture assay 

This assay was used to determine whether proteins of interest could interact with mRNA 

in vivo. On the day of the experiment, the media was removed and the cells were 

washed once with 1x PBS. After washing a small amount of 1x PBS is added so that the 

cells are just covered in liquid. The cells were then exposed to UV light (300 mJ/cm2) for 

2 minutes. After exposure to UV light, 400 L mRNP capture assay lysis buffer was 

added and the lysed cells were scraped and transferred to a fresh microcentrifuge tube. 

Lysates were then spun at 10000 rpm for 10 minutes at 4 C to pellet the cell debris and 

the supernatant was transferred to another tube. The supernatant was denatured by 

addition of 400 L 2x mRNP capture assay binding buffer. This mixture was then added 

to 25 L (bed packed volume) of oligo-d(T) cellulose and the tubes were incubated at 

4 C for 1 hour with rotation. After incubation the cellulose was spun down and the 

supernatant was discarded. The cellulose was then washed three times with 1x mRNP 

capture assay binding buffer. Elution then carried out by addition of 400 L mRNP 

capture assay elution buffer and 4 L RNase A (10 mg/mL). The cellulose was incubated 

with this buffer for 30 minutes at 37 C with agitation. After incubation with elution 

buffer, the cellulose was spun down and the supernatant transferred to a fresh tube. 

The proteins in the solution were precipitated by the addition of 400 L ice-cold 20% 

TCA and incubation on ice for 20 minutes. The precipitated proteins were spun down by 

centrifugation  at  10000  rpm  for  20  minutes  at  4 C  and  the  resultant  pellets  were  

washed with ice-cold acetone. The cleaned pellets were then resuspended in the 

required volume of dH20 and resolved by SDS-PAGE. The SDS-PAGE gels were then 

blotted to nitrocellulose and the membranes were probed for the presence of the FLAG-

tagged proteins of interest with -FLAG primary antibody. 
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In vivo co-immunoprecipitation assay 

293T cells were grown in 24-well plates and each well was transfected with 350 ng 

plasmids encoding myc-tagged target protein and 350 ng plasmid encoding FLAG-SRAG. 

For each condition, 3 wells were transfected. After 48 hours cells were lysed in 80 L 1x 

Reporter Gene Lysis buffer (Roche) and the extract was scraped and transferred to a 

fresh 1.5 mL eppendorf tube. For each condition, one cell extract was treated with 1 L 

RNase A (10 mg/mL) for 30 minutes at 37 C, while the other was left untreated. This was 

to ensure any interaction between myc-TAP and FLAG-SRAG was direct and not bridged 

by RNA. After the RNase A treatment the cell extracts were applied to 20 L pre-washed 

FLAG agarose slurry and the immunoprecipitation was carried out as described 

previously. 

        After immunoprecipitation was completed, the eluted complexes were resolved by 

SDS-PAGE and the gel was blotted onto nitrocellulose membrane. Two membranes were 

prepared using the same samples. One membrane was probed with -myc primary 

antibody and the other was probed with -FLAG primary antibody.  

 

2.2.3 Cell Biology 

Mammalian tissue culture 

All cell types were grown as a monolayer in Dulbecco’s modified Eagles’ medium 

(DMEM) supplemented with 2 mM L-glutamine, 10% (v/v) fetal bovine serum, 1% (v/v) 

streptomycin and 1% (v/v) penicillin. Cells were maintained in an incubator set at 37 C 

with 5% CO2. 

      Cells were passaged 2 to 3 times a week (depending on the cell line). During each 

passage,  the  media  was  removed  and  cells  were  washed  once  with  1x  PBS.  After  

washing the cells were detached by incubation with 0.25% trypsin/EDTA solution at 37 C 

for 5 minutes. Trypsin was then deactivated by addition of DMEM and the cells were 

transferred to new culture flasks containing the appropriate volume of DMEM.  
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Long term storage of cell lines 

Tissue culture cell lines can be stored cryogenically until needed. The cells to be stored 

were spun down at 1000 rpm in a swinging bucket centrifuge and the pellet was gently 

resuspended in cell freezing media (FCS/10% DMSO) at a concentration of 3 x 105 

cells/mL. The cell suspension was divided into 1 mL aliquots and transferred to 2 mL 

cryo-vials. These vials were placed in an insulated box and transferred to -80 C until fully 

frozen. Once they were fully frozen the vials were transferred to liquid nitrogen where 

they were stored indefinitely. 

        To revive cells from cryogenic storage, they were thawed quickly at 37 C, washed 

and  gently  pelleted  in  10  mL  of  pre-warmed  media  to  removed  cytotoxic  DMSO.  The  

pellet was then gently resuspended in 5 mL pre-warmed media, transferred to a sterile 

tissue culture flask and allowed to grow until confluent.  

 

Transient transfection: calcium phosphate method 

One day prior to transfection cells were split to a confluency of ~80% in the required 

culture dish/plate. Transfections were typically carried out on 150 x 15 mm dishes which 

required between 20-30 g of DNA per transfection.  The following 1 mL reaction mixes 

were set up: 20-30 g DNA; 250 mM CaCl2; 1x HBS. The transfection mixes were gently 

mixed and incubated at room temperature for 20 minutes to allow precipitate to form. 

After incubation the transfection mixes were gently mixed again and then added drop-

wise to the cells. After 12 hours the cells were washed once with 1x PBS and the media 

was replaced.  

 

Transient transfection: Lipofectamine 2000 method 

Lipofectamine  2000  (Life  Technologies)  is  a  commercial  transfection  reagent  which  

contains cationic lipids. One day prior to transfection cells were split to a confluency of 

~80% in the required culture dish/plate. On the day of transfection, DNA was aliquoted 

and then incubated with Optimem (Gibco) and Lipofectamine 2000 reagent (Invitrogen) 
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(concentrations as described in user’s manual) for 20 minutes at room temperature. 

After incubation the mixture was gently dispensed onto the cells to be transfected. 

 

Generating stable cell lines: p3XFLAG-myc-CMV-26 vectors 

To begin with, 30 g of the appropriate p3XFLAG-myc-CMV-26 vector was digested with 

2 L XmnI (10 U/ L) for 2 hours at 37 C. The DNA was then phenol-chloroform extracted 

and precipitated, before the pellet was resuspended in 16 L Millipore-filled H2O. This 

DNA was then transfected into confluent HeLa S3 cells grown in 6cm tissue culture 

dishes using 20 l Lipofectamine 2000 reagent. After transfection the cells were allowed 

to  grow  for  48  hours  at  37 C  before  being  split  into  96  well  plates  containing  media  

supplemented with the selective agent G418 (1 mg/mL). In cells in which the linearised 

plasmid had been successfully integrated single colonies were present. Once the cells 

reached the appropriate confluency any colonies produced were transferred to 24 well 

plates and allowed to grow to confluency. The potential clones were then screened for 

efficient expression of the desired flag-tagged protein by western analysis of total cell 

extracts. 

 

Immunostaining 

Cells were grown on coverslips for 48 hours at 37°C before the media was removed. The 

cells were then washed once with 1x PBS to remove residual media and permeabilised 

in 3.7% paraformaldehyde fixing solution for 15 minutes at room temperature. The cells 

were then washed three times with 1x PBS and incubated for 1 hour with 1x PBS (1% 

BSA). After this the cells were incubated for 1 hour with primary antibody diluted in 1x 

PBS (1% BSA). Following this incubation the cells were washed three times again and 

then incubated for 30 minutes with secondary antibody (Invitrogen) diluted 1/800 in 

PBS+. The cells were then washed again and coverslips were then mounted in 

Vectashield anti-fade medium (Vector) on glass slides and sealed using nail vanish. 
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Luciferase assay 

This assay was carried out as part of MS2-tethered assay experiments and was used to 

give  a  relative  estimate  of  the  amount  of  luciferase  protein  in  the  cell  cytoplasm  by  

measuring luminescence produced by cell extracts. 

        Previously transfected 293T were washed with 1x PBS 48 hours after transfection 

then lysed with 80 L 1x Reporter Gene lysis buffer for 10 minutes. Cell extracts were 

then harvested and transferred to microcentrifuge tube. Extracts were then spun down 

at 10,000 rpm for 3 minutes to pellet cell debris and the supernatant was transferred to 

a fresh tube. Luciferase activity was measured using a Sirius Luminometer (Berthold 

Detection Systems). For each sample 10 L of supernatant was added to a luminometer 

tube and the tubes were put into the luminometer. To each luminometer tube 200 L of 

luciferase assay buffer was added and after 10 seconds the luminescence was recorded. 

Each experiment was usually carried out in triplicate and an average reading was 

determined at the end. 

 

Chemi-luminescent -Galactosidase assay 

This assay was used as an indicator of transfection efficiency and various experiments, 

most notably in the MS2-tethered assay experiments. Previously transfected 293T cells 

were lysed and harvested as described for the luciferase assay. From each supernatant, 

5  L  was  taken  and  diluted  1  in  100  in  500  L  of  1x  Reporter  Gene  lysis  buffer.  From  

these  dilutions  10 l  was  taken  and  mixed  with  50  L  -Galactosidase  Detection  Kit  

reaction mix (49 L  buffer;  1  L  reagent)  (BD Biosciences)  in  a  luminometer tube.  The 

mixtures were then left to incubate for 1 hour at room temperature. After incubation 

the -galactosidase activity was measured using a Sirius Luminometer (Berthold 

Detection Systems). The luminescence of each sample was recorded after 10 seconds. 

Each experiment was carried out in triplicate and an average reading was determined at 

the end. 
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ATPase assay 

ATPase assays were essentially performed as described in Shi et al., 2004. Reactions of 

50 µL were stopped by the addition of 10 µL 0.5 M EDTA, pH 8.0 and supplemented with 

140 µL Millipore-filtered H2O  before  addition  of  800  µL  of  Malachite  green-

Phosphomolybdenum reagent. 

 

Helicase  assay 

Unwinding of duplex RNA was monitored by following the displacement of a short 32P-

end radiolabeled strand (GCUUUACGGU) from the duplex formed with a long non-

labeled strand (AAAAACAAAACAAAACAAAACAAAACUAGCACCGUAAAGC) essentially as 

described in Chang et al., 2009. Briefly, 2 µg recombinant UAP56-6His synthesised in E. 

coli were  incubated  in  presence  or  absence  of  recombinant  SRAG,  REF-6His,  CIP29,  or  

Magoh-6His at a 4:1 molar ratio for 10 minutes at room temperature prior addition of 

125  µM  duplex  RNA  and  1  mM  ATP.  Products  of  reactions  were  run  on  15%  native  

polyacrylamide gels in TBE buffer before autoradiography. 
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Chapter III 

Discovery of a new mRNA export 
factor - SRAG 
 

In eukaryotic cells, mRNA has to be transported from the nucleus to the cytoplasm to be 

translated. Various protein factors are involved in mRNA export including UAP56, 

REF/Aly, and TAP/NXF1. mRNA export adaptor proteins such as REF, UIF and certain SR 

proteins serve an essential function in mRNA export. The recruitment of some adaptor 

proteins to the mRNP are driven by UAP56, which is an RNA helicase required for 

spliceosome assembly and mRNA export.  

        During mRNA processing, UAP56 provides a bridge between THO proteins and REF 

to form the TREX complex, which indirectly couples transcription and export by splicing 

(Masuda et al, 2005). REF recruits TAP/NXF1 to mRNP and UAP56 is displaced by TAP. 

REF  binds  to  the  N-terminal  domain  of  TAP  directly  and  hands  mRNA  over  to  TAP.  In  

turn, TAP associates with the nuclear pore delivering mRNA to the cytoplasm. However, 

depletion of REF does not block bulk mRNA export, suggesting that other proteins can 

fulfill this role and that there may be functional redundancy between export adaptors. 

 

3.1    Identification of UAP56-associated proteins by BLAST 
To identify export factors with functions possibly overlapping those of REF, we 

examined its interaction with UAP56. From a previous study, we knew that a C-terminal 

peptide of REFc (amino acids 198-218) was involved in binding UAP56. Using basic local 

alignment search tool (BLAST) database search with the C-terminal REF peptide, we 

identified an uncharacterized protein named Small protein Rich in Arginine and Glycine 

(SRAG; also known as FOP or CHTOP), which is identical to the predicted protein product 
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of the human C1orf77 gene (Figure. 3-1A) (Zullo et al., 2009; van Dijk et al., 2010b). 

SRAG  has  an  expected  molecular  mass  of  27  kDa  (248  amino  acids)  and  is  highly  

conserved in all vertebrates (human SRAG: NP_056422, mouse SRAG: BAE31263, 

Xenopus SRAG: NP_001011271, zebrafish SRAG: NP_955840, and chicken SRAG: 

XP_424013), while no orthologs could be identified in yeast, worm, or flies. However, 

we cannot exclude the possibility that there may be highly divergent members of SRAG 

that nevertheless fulfill a similar function in other species. Secondary structure 

predictions suggest that SRAG lacks known conserved domains, but its central sequence 

contains an Arg/Gly-rich region (RGG-rich, amino acids 87-208), while the C-terminal 

region  harbors  a  duplication  of  the  sequence  LDXXLDAY  (where  X  is  any  amino  acid)  

which is similar to the UAP56 binding peptide of REF.  

        To date, a small amount of information regarding SRAG has been deposited in the 

literature. However, in the course of characterizing proteins encoded in the human 

major histocompatibility complex class III region, yeast-two hybrid analysis detected an 

interaction between SRAG and UAP56 (Lehner and Sanderson, 2004).  These studies 

imply that SRAG is a potential UAP56 binding protein. We used real time-PCR to detect 

the amount of endogenous SRAG in different cell-lines. The results show that SRAG is 

widely expressed in all tested cell-lines (Figure. 3-1B). 

 

3.2    SRAG is a nuclear protein localised in nuclear speckles  
In order to determine whether SRAG had the potential to function as an export factor, 

initial experiments were to be focused on determining whether SRAG was a nuclear 

protein. The localisation of SRAG was analysed first by analysis of a GFP-SRAG fusion. As 

shown in Figure. 3-2A, we observed that SRAG (green) displayed a predominately 

nuclear localisation in HeLa cells. Moreover, SRAG co-localised in nuclear speckles with 

the splicing factor SC35 (red) where splicing factors are dominant.  This distribution 

pattern was further confirmed by using SRAG antibody to detect endogenous SRAG (Fig. 

3-2B). 
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[Figure. 3-1] SRAG has two potential UAP56 binding sites.

(A) To identify export factors with functions possibly overlapping those of REF, we
examined its interaction with UAP56. From previous studies, we knew that a C-terminal
peptide from REF is involved in binding UAP56. Through basic local alignment search tool
(BLAST) database search with the C-terminal REF peptide we identified an uncharacterized
protein named small protein rich in Arg and Gly (SRAG). The amino acid sequences of SRAG
is shown (green: RGG-rich region; purple: REF similar peptides). (B) Quantitative RT-PCR
analysis of the SRAG mRNA transcriptional level in different cell-liness. The ratio of
cytoplasmic to total RNA normalized to U6 small nuclear RNA (snRNA) with values for
control samples set at 100%. Error bars represent standard error of the mean for three or
more experiments.
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[Figure. 3-2] SRAG localises in nuclear speckles

(A) (Upper panel) HeLa cells were placed onto coverslips and transfected with GFP-SRAG
for 48 hours. The fixed cells were then probed with anti-SC35 primary antibody and anti-
mouse ALEXA555 (red). The cells were then imaged using fluorescence microscopy. (Lower
panel) Using ImageJ to analyse the fluorescence intensity between two speckles (Bars, 7.5

m). (B) Localization of SRAG in HeLa cells. Cells were stained with anti-SRAG and anti-SC35
antibodies.
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        Nuclear speckles (also known as the SC35 domain) has been traditionally 

considered as a storage site for splicing factors which are recruited to active genes for 

co-transcriptional splicing. However, nuclear speckle domains are not only the sites 

enriched  in  mRNA  splicing  machineries,  but  also  contain  mRNA  export  factors  (for  

example, TREX complex) (Zhou et al, 2000). The localization of SRAG implies it might be 

involved in mRNA processing.  
 

3.3    Overexpression of SRAG causes mRNA accumulation in the 

nucleus 
To examine whether SRAG has an important function in mRNA export, overexpression 

experiments were performed. In these experiments, we used Fluorescence in situ 

hybridization (FISH) assays with Cy3-oligo dT probe to detect poly(A) RNA to infer the 

distribution pattern of mRNA and investigate changes after overexpressing GFP-SRAG in 

HEK-293T cells. After 48 hours of overexpression of GFP-SRAG, it is possible to observe a 

dramatic mRNA accumulation inside the nucleus (Figure. 3-3). Similarly, overexpression 

of GFP-REF or GFP-UIF caused an mRNA export block, whereas cells expressing the GFP 

control showed a normal mRNA distribution. 

 

3.4    Double knockdown of SRAG and REF causes a major mRNA 

export block 
To obtain further evidence for the function of SRAG in mRNA export, development of an 

RNA interference (RNAi) system was considered necessary. The BLOCK-iT Pol II miR 

Expression vector system (Invitrogen) was used in this study. A vector specific for SRAG 

was constructed as detailed in materials and methods. 

        To test for knockdown of exogenous SRAG, HEK-293T cells were co-transfected with 

350ng  pCineo-SRAG  and  350ng  negative  control  RNAi  or  SRAG  RNAi  vector.  The  cells  

were then lysed 72 hours after transfection and an equal amount of each total lysate 

was used in western analysis. The results are shown in Figure. 3-4. SRAG was  
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[Figure. 3-3] Overexpression of SRAG causes mRNA accumulation in the nucleus.

Overexpression of GFP, GFP-REF, GFP-UIF, and GFP-SRAG in COS-7 cells leads to nuclear 
accumulation of poly(A)+ RNA. Panels are shown at the same exposure. Poly(A)+ RNA was 
detected via uorescence in situ hybridization (FISH) with a Cy3-oligo-dT probe.
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[Figure. 3-4] Tested of SRAG RNAi vector on exogenous and endogenous SRAG.

Western analysis was used to determine the effectiveness of the RNAi vectors at knocking
down both exogenous and endogenous SRAG. For the exogenous experiment, co-
transfections were carried out in HEK-293T cells with pCineo-SRAG and the appropriate
RNAi vector and the cells were incubated for 72 hours. For the endogenous experiment
only the appropriate RNAi vector was transfected and cells were incubated for 72 hours. In
each lane an equal amount of total protein extract was loaded as shown by the tubulin
loading controls.

Cells transfected 
with pCineo-SRAG

Endogenous 
SRAG
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successfully  knocked  down  by  the  SRAG  RNAi  vector.  The  same  experiment  was  also  

repeated with endogenous SRAG.   

        After finding the SRAG RNAi target sequence, we constructed control, REF, SRAG, 

and REF/SRAG double RNAi FLP-IN 293T stable cell-lines. Fluorescence in situ 

hybridization assays were performed on the FLP-IN 293T cells after 96 hours siRNA 

induction, the results are shown in Figure. 3-5A. Cells depleted of REF showed a modest 

accumulation of poly(A)+ RNA as reported previously (Katahira et al., 2009). In contrast, 

knockdown of  SRAG gave a weak phenotype.  However,  double knockdown of  REF and 

SRAG resulted in a robust mRNA accumulation in the nucleus, clearly visible in the 

majority of cells.  

        The cell growth curves shown in Figure. 3-5B are consistent with the overexpression 

SRAG FISH experiment. Knockdown of both REF and SRAG caused the cells to die after 

six days. These data indicate that REF and SRAG work together and play a crucial role in 

nuclear export of poly(A)+ RNA. 

 

3.5    SRAG is involved in mRNA export 
Previous results implied that SRAG is involved in mRNA export processing. Therefore, we 

used a tethered mRNA export assay to test whether SRAG has the ability to export 

mRNA. In this assay, a reporter construct called Luc6xMS2 was used. This vector consists 

of a luciferase open reading frame (ORF) within an inefficiently spliced intron derived 

from the HIV-1 env region, which is constitutively expressed from a CMV promoter. Six 

MS2 operators are located adjacent to the 3’ end of the luciferase ORF. MS2 is a 

bacteriophage RNA binding protein which binds to stem-loop structures present in RNA 

called operators (Koning et al. 2003). Under normal circumstances, any intron-

containing pre-mRNA molecules would be retained within the nucleus while fully 

processed, mature mRNA would be exported to the cytoplasm and expressed. Since 

splicing removes the luciferase ORF, the fully spliced version of the transcript doesn’t 

give rise to luciferase activity in the cytoplasm. However, if a protein actively involved in 

mRNA export is overexpressed, it may overcome the nuclear retention of the immature  



A

B

[Figure. 3-5] Double knockdown of SRAG and REF causes blocking in bulk mRNA export.

(A) Localization of poly(A)+ RNA following induction of miRNAs targeting export factors for
96 hr. All equivalent panels are shown at the same exposure. (B) Growth of stable cell lines
following induction of miRNAs targeting the indicated genes. Error bars represent the
standard deviation of three independent experiments.

Zoom of merge image
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pre-mRNA and lead to its export and subsequent expression of the luciferase ORF. This 

effect can then be measured by assaying for luciferase activity present in total cell 

lysate. 

        Figure. 3-6 shows the results of the MS2 assay. The positive controls MS2-TAP and 

MS2-REF gave 71 and 5 fold activations respectively, corroborating previously reported 

results (Hargous et al., 2006). Only low levels of luciferase activity were detected for 

MS2-SRAG. All proteins were expressed at comparable levels. Compared to MS2-GFP 

and FLAG-SRAG, MS2-SRAG has weak activity for mRNA export, though it is less active 

than TAP and REF in this assay. However, the activity of MS2 assay is specific for mRNA 

export; therefore we conclude that SRAG is involved in mRNA export. 

 

3.6    SRAG interacts with mRNA export factors in vivo 
Given the role of SRAG in mRNA export, we next tested whether SRAG can interact with 

important export factors. We used two different SRAG monoclonal antibodies (KT59 and 

KT64)  to  immunoprecipitate  endogenous  SRAG  from  293T  cells.  As  a  negative  control  

Flag antibody was used in this experiment. The results showed that SRAG can 

successfully IP both UAP56 and TAP (Figure. 3-7). Because UAP56 and TAP are known to 

have a crucial function in mRNA export, the interaction between SRAG and the TREX 

complex components shown here suggest that SRAG may also function in mRNA export. 

       The ability of SRAG to bind both UAP56 and TAP was investigated via IP assays.  To 

further systematically investigate the network of interactions between SRAG and export 

factors, co-immunoprecipitation (co-IP) experiments were performed. In these 

experiments, HEK-293T cells were co-transfected with FLAG-SRAG and 13-myc-tagged 

fusion proteins and allowed to grow for 48 hours before total cell lysates were obtained. 

These cell lysates were then applied to M2 flag-agarose in the presence or absence of 

RNase A. Any bound complexes were then eluted, resolved by SDS-PAGE and then 

blotted to nitrocellulose. The resultant membranes were then probed for either anti-

myc or anti-flag antibodies. 
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[Figure. 3-6] Weak but specific mRNA export activity of SRAG 

(A) Schematic of MS2 aassay system. (B) 293T cells were co-transfected with Luc6xMS2 and
respective MS2-fusion proteins. Cells were lysed and luciferase assays were carried out 48
hours after transfection. The graph shows an average of three independent experiments
carried in triplicate. A value of 1 was assigned to MS2-GFP and all other experiments were
normalised to it. (C) Western analysis to detect MS2-fusion protein. The MS2-fusions are N-
terminally myc tagged and detected using a myc antibody.
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[Figure. 3-7] SRAG interacts with UAP56 and TAP in vivo.

Immunoprecipitation of SRAG from 293T cells extracts shows that SRAG is in 
complex with UAP56 and TAP in vivo (KT59 and KT64 are two SRAG monoclonal 
antibodies).
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        The results obtained from this analysis are shown in Figure. 3-8. We observed that 

SRAG coimmunoprecipitated a lot of mRNA export factors, including UAP56, TAP, REF, 

UIF, THOC5, and CBP80. These interactions were all insensitive to RNase A treatment. 

Taken together, SRAG interacts with lots of mRNA export factors in vivo consistent with 

a role for SRAG in mRNA processing and/or export. 

 

3.7    SRAG can be methylated 
In coimmunoprecipitation analysis, we noticed that there were two bands present when 

we overexpressed Flag-SRAG. This result implied that SRAG may be subject to post-

translational modification. Since arginine methylation is reported to affect RNA binding 

affinity of REF (Hung et al., 2010), we investigated whether SRAG can be methylated. To 

test this possibility, extracts were prepared from HEK-293T cells transfected with FLAG-

SRAG expression vector, which had been incubated with/without the methylation 

inhibitor adenosine dialdehyde (AdOx). Analysis of total extracts revealed a clear 

electrophoretic mobility shift for SRAG following the inhibition of methylation (Figure. 3-

9A). We further tested whether SRAG could be phosphorylated, but the level of SRAG 

was not affected at any time point tested in the presence of the alkaline phosphatase 

(Figure. 3-9B). 

        Although  we  showed  that  SRAG  can  be  methylated,  the  unmethylated  form  of  

SRAG can only be detected by overexpression or AdOx treatment. However, it does not 

mean there is no unmethylated form of SRAG in the cells. Unmethylated SRAG may exist 

transiently so that it is difficult to detect.  

        Next, we treated 293T cells with cycloheximide for 8 hours to prevent new protein 

synthesis; after that, we lysed the cells with IP lysis buffer with/without AdOx. When we 

lysed cells with normal lysis buffer, there was only fully methylated SRAG present in the 

nucleus.  However,  if  cells  were  lysed  with  the  lysis  buffer  containing  AdOx,  we  could  

successfully detect the unmethylated form of SRAG (Figure. 3-10). These results showed 

that both forms of SRAG exist in vivo and unmethylated SRAG is a transient state. 
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[Figure. 3-8] SRAG interacts with mRNA export factors.

Co-immunoprecipitation of SRAG and FLAG-tagged mRNA export factors under
native conditions. Proteins were immunoprecipitated with FLAG antibody. The
following abbreviations are used: IP, immunoprecipitation; WB, western blot.
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[Figure. 3-9] SRAG can be methylated but not phosphorylated.

(A) FLAG-tagged SRAG was expressed in 293T cells grown in the presence or 
absence of AdOx for different time. After treatment, 10 g of total cell extracts 
were analysed by western blot using anti-FLAG antibody. (B) Flag-tagged SRAG was 
expressed in 293T cells and treated with Ca++ inhibitional alkaline phosphatase 
(CIAP) as indicated. Na-Phosphate is used as a competitive inhibitor of CIAP.
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[Figure. 3-10] Endogenous SRAG exists two different forms.

293T cells were incubated with 10 g/mL cycloheximide for 8 hours. After
treatment, Western blot analysis of 293T cell extracts (-/+ Adox, a competitive
inhibitor of all S-Adenosyl Methionine dependent methylation) with an antibody
(KT64) raised against SRAG.
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3.8    SRAG interacts with PRMT1  
In humans, there are nine different arginine methyltransferases (PRMTs) that have been 

discovered.  PRMTs  divide  into  two  groups:  PRMT1,  3,  4,  6,  and  8  all  belong  to  type  I  

asymmetric arginine methylation enzymes (Lin et al., 1996; Scott et al., 1998; Tang et al., 

1998; Zhang et al., 2000; Frankel et al., 2002); whereas PRMT5, 7, and 9 belong to type II 

symmetric arginine methylation enzymes (Branscombe et al., 2001; Miranda et al., 

2004; Cook et al., 2006). However, PRMT2 has not yet been classified (Scott et al., 1998). 

        To identify which PRMT enzymes can catalyse SRAG methylation, proteomic mass 

spectrometry was carried out with immunopurified FLAG-SRAG. 293T cells were 

transfected with FLAG-tagged SRAG for 48 hours, lysed with IP lysis buffer and  

immunoprecipitated by M2 FLAG-agarose. The eluted protein mixtures were analysed 

by mass spectrometry. The identification revealed that PRMT1 was present in the 

immunoprecipitate independently. Van Dijk et al. also showed that SRAG was a 

substrate for PRMT1 (van Dijk et al., 2010b) (Figure. 3-11).  

        From the mass spectrometry data, many partners of SRAG were defined. UAP56, 

importin-7, and importin subunit beta-1 are all involved in transport of molecules, 

however, there are also some factors involved in various other processes. For example, 

protein SET which is involved in apoptosis, transcription, nucleosome assembly, and 

histone binding. This evidence implies that SRAG may have multiple functions which 

could lead to further study of relationships between SRAG and gene regulation. 

 

3.9    Summary 
In this chapter, we used BLAST to find a functionally unknown TAP-interacting factor, 

SRAG. Immune-fluorescence assays showed that SRAG is a nuclear protein and co-

localises with SC35. Overexpression of SRAG caused modest mRNA accumulation similar 

to other mRNA export adaptors. In contrast, when depleting SRAG, the phenotype was 

far less severe than knockdown of REF. However, knockdown of REF/SRAG showed huge 

mRNA accumulation in the nucleus, and cell growth curves also supported these results. 

This implies REF and SRAG work together. MS2 assays demonstrated SRAG has weak but  



[Figure. 3-11] Mass spectrometry analysis of the SRAG binding proteins.

Coomassie stained gel of a control (p3XFLAG) or FLAG-SRAG
immunoprecipitate. (*: non-specific binding)
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Strept. PD of FLAG-SRAG

Name Unique 
Peptides MASCOT score

SRAG 35 530
Importin subunit beta-1 12 539

GAPDH 10 418
SET 9 296

UAP56 6 295
Importin-7 5 211

PABP1 6 136
PRMT1 4 115
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specific mRNA export activity. IP and co-IP assays indicated that SRAG interacts with lots 

of mRNA export factors in vivo.  

        Another interesting observation is that SRAG can be methylated. In 2010, 

Philipsen’s group identified that SRAG can be methylated by PRMT1 (van Dijk et al., 

2010b). This result supports our mass spectrometry data. Arginine methylation is a 

common post-translational modification in mRNA binding proteins. In earlier studies, we 

showed that arginine methylation of REF reduced its RNA binding affinity (Hung et al., 

2010). This modification ensures mRNA can be efficiently displaced by TAP during mRNA 

export.  Moreover,  many  proteins  involved  in  mRNA  export  (e.g.,  hnRNP  proteins  and  

Y14) are arginine methylated. A number of these proteins may be regulated by 

methylation to switch the protein-protein and/or protein-RNA interactions as RNA 

processing proceeds. To understand whether arginine methylation plays a regulatory 

role for SRAG, more functional assays are needed. 

        Collectively, these observations indicate that SRAG is a novel mRNA export factor 

that functions in REF-mediated mRNA export. However, the biological function of SRAG 

is still unknown. In the next chapter, we will focus on further characterising SRAG and 

demonstrating its function. 

 

 

 

 

 

 

 



- 85 - 
 

 

Chapter IV 

SRAG functions as a new mRNA 
export co-adaptor 
 

In the previous chapter I showed that SRAG is a novel mRNA export factor and interacts 

with  PRMT1.  However,  the  molecular  function  of  SRAG  is  still  unclear.  To  further  

understand the function of SRAG, we continued to work on the relationship between 

methylation and SRAG.  

  

4.1    Methylation regulates the protein-protein interaction 

activity of SRAG 
To determine the influence of arginine methylation on SRAG, pull-down assays were 

used to analyse the interaction between SRAG and mRNA export factors. In these 

assays, GST tagged UAP56, REF, and TAP-p15 were used to pulldown endogenous SRAG 

from the extracts of HEK-293T cells cultured in the presence or absence AdOx. The 

results are shown in Figure. 4-1. It was noticeable that the SDS-PAGE mobility of SRAG 

changed in the presence of AdOx. This change in mobility suggests that AdOx treatment 

was successful in inhibiting arginine methylation. Analysis of pulldown assays indicated 

GST-UAP56  can  interact  with  both  forms  of  SRAG.  Interestingly,  GST-TAP  can  only  

pulldown methylated SRAG but not the unmethylated one; in contrast, GST-REF cannot 

pulldown the methylated form of SRAG but interacts with the unmethylated form.   

        To gain a precise understanding of the interactions between mRNA export factors 

and SRAG, we decided to purify recombinant SRAG proteins expressed in E.coli and GST 

pulldown assays were performed. In order to characterize whether methylation 

in uenced the interactions between SRAG and mRNA export factors, we decided to  
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[Figure. 4-1] Methylation affects protein:protein interactions between SRAG and 
REF and TAP in vivo. 

GST-UAP56, GST-REF, and GST-TAP were used in pull-down assays with 293T cell
extract with/without AdOx in the presence of RNase A. Proteins were detected via
Coomassie staining and Western Blot.
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create GB1 tagged SRAG fusion protein. Immunoglobulin-binding domain of 

streptococcal protein G (GB1; 56 residues) is the solubility-enhancement tag and also 

increased the sample stability (Huth et al, 1997). We purified GB1-SRAG with/without 

co-expressed PRMT1 to produce unmethylated or methylated SRAG for use in  in vitro 

GST pulldown assays (Figure. 4-2A).  

    Through this assay, we found SRAG can form a direct interaction with UAP56, REF and 

TAP. GST-tagged UAP56, REF and TAP were used as the bait while purified 

methylated/unmethylated GB1-SRAG was used as the prey protein. The results of this 

experiment are detailed in Figure. 4-2B. As in previous experiments, it was observed 

that  UAP56  can  pull  down  both  forms  of  SRAG.  However,  GST-REF  only  pulled  down  

unmethylated SRAG and GST-TAP only interacted with methylated SRAG. Collectively, 

our results indicate that SRAG can directly interact with UAP56, REF and TAP and that 

the interaction was regulated by arginine methylation. An important implication from 

these results is that SRAG acts as a regulator molecule. By methylation, it can bridge the 

interaction between the mRNA export adaptor, REF, and the receptor, TAP. 

 

4.2    Methylation reduced the RNA-binding affinity of SRAG 
Having established that SRAG can interact with UAP56, REF and TAP directly, we tested 

for  whether  SRAG  could  interact  with  RNA  in vivo. The experimental approach 

undertaken  was  the  mRNP  capture  assay.  In  this  assay,  in  vivo  UV  cross-linking  was  

carried out on HEK-293T cells. The UV crosslinking step led to formation of direct links 

between proteins and RNA molecules which were in close enough proximity with each 

other in the cell (~2-3Å).  

        To determine the influence of arginine methylation on the ability of SRAG to bind 

RNA, we took HEK-293T cells, which had been grown for 48 hours with/without AdOX, 

and crosslinked using UV radiation. Cells were then lysed and the lysates were applied 

to oligo-d(T) cellulose and allowed to bind under denaturing conditions. The purification 

enriched for poly(A) RNA and proteins crosslinked to the RNA were eluted by the action 

of RNase A and then detected  by western blots.  
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[Figure. 4-2] Methylation affects protein:protein interaction between SRAG and 
REF and TAP in vitro. 

GST-UAP56, GST-REF, and GST-TAP were used in pull-down assays with
recombinant SRAG alone or co-expressed with PRMT1 in the presence of RNase A.
Proteins were detected via Coomassie staining and Western Blot.
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        Figure. 4-3 shows  the  results  of  the  Western  analysis.  Both  forms  of  SRAG  were  

eluted from the oligo-d(T) cellulose after UV crosslinking, indicating that SRAG could 

associate  directly  with  poly(A)  RNA  in  the  cell.  Whilst  SRAG  showed  a  clear  UV-

dependent crosslink with RNA when methylated, the unmethylated SRAG UV cross-

linked  with  RNA  much  more  efficiently.  We  measured  the  difference  of  the  yield  of  

crosslinked RNA between two forms of SRAG. The results demonstrated that there was 

a ~3-fold increase in SRAG crosslinked RNA when cells were AdOx-treated and had 

reduced arginine methylation. Since the Adox treatment of cells does not block 

methylation completely and methylated arginine involved in RNA crosslinking can still 

be detected,  it  is  likely  that  the significance of  methylation on SRAG binding to RNA is  

greater than the effect observed 

 

4.3    Characterising the binding regions of SRAG 
To further characterise which regions of SRAG were required for interaction with mRNA 

export  factors,  GST-UAP56,  GST-REF,  and  GST-TAP  fusion  proteins  were  used  in  

pulldown assays with various SRAG truncations. To establish which regions of SRAG 

conferred binding activity, GB1-tagged SRAG recombinant truncation constructs were 

generated. The plasmids were transformed into competent BL21 RP E. coli cells and 

purified using protein G beads. GST fusion proteins were immobilized on glutathione 

sepharose (GSH sepharose) and used as bait while various 35S-labeled GB1-SRAG 

truncations (synthesized in rabbit reticulocytes) were used as the prey proteins.  

        In Figure. 4-4A, we observed that UAP56 interacted with N-terminal and C-terminal 

fragments (amino acids 1-87 and 93-249) of SRAG, but not with a construct containing 

its RGG-rich region (amino acids 93-213). Surprisingly, amino acids 214-249 of SRAG 

contain the regions similar to UAP56 binding region of REF. However, this peptide did 

not  appear  to  bind  UAP56.  It  is  possible  that  this  region  (amino  acids  214-249)  is  too  

small to be able to form the appropriate structure which allows interaction with UAP56. 

In contrast, TAP can only bind to the RGG-rich region and REF can only interact with the 

N-terminal but not to other regions of SRAG. 



[Figure. 4-3] Methylation increases SRAG:RNA interaction

mRNP capture assay. Poly(A)+ RNA from 293T cells -/+ AdOx was puri ed on oligo-
dT beads in denaturing conditions after UV cross-linking (+) or not (–). Total extract
(1% of input) and eluted proteins were analysed by western blotting (WB) with -
SRAG antibody.
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        Next, we set out to determine whether SRAG binds to RNA directly and which 

regions of  SRAG were involved in the interaction with RNA. Each binding reaction was 

set up in duplicate (with/without UV crosslinking) using 1 L of radio-labeled 15mer RNA 

(5’-CAGUCGCAUAGUGCA-3’). The mixtures were incubated for 10 min at room 

temperature. After the incubations, the samples were UV crosslinked and the 

complexes were resolved by SDS-PAGE before being exposed as phosphoimages. 

        As shown in Figure. 4-4B, the results observed indicate that SRAG could bind to RNA 

directly through its RGG-rich (amino acids 93-213). Interestingly, the minimum TAP-

binding region of SRAG is also the RGG-rich region, implying SRAG may coordinate the 

mechanism of mRNA handover to TAP through mutually exclusive interactions involving 

this region. However, in contrast to other in vivo and in vitro data the 35S-labelled SRAG 

produced  by  TNT  system  (Promega)  can  bind  to  both  REF  and  TAP.  As  we  described  

before, REF and TAP interact with different forms of SRAG. The fact that the TNT-

produced SRAG can interact with both proteins in this assay means it is difficult for us to 

definitively conclude whether the 35S-labelled SRAG is methylated or not. 

     

4.4    SRAG and REF bind to different regions of TAP  
After  establishing  the  important  mRNA  export  factor  binding  regions  of  SRAG,  we  

focused on determining SRAG binding sites on REF. As previously described, we used 

GST-SRAG to pulldown 35S-labelled GB1-REF truncations. The results show that SRAG 

interacts  with  the  RG  box  (amino  acids  16-79)  of  REF,  which  is  also  required  for  TAP  

binding (Figure. 4-5). To understand the relationships between SRAG, REF, and TAP was 

the next target. 

        Because both SRAG and REF bind to TAP, I tried to define which regions of TAP were 

required for the interaction to determine the functionality of SRAG. In this experiment, 

TAP was separated into two regions: the N-terminal region (amino acids 1-198) which is 

known to be involved in adaptor binding (e.g., REF, 9G8, or SRP20) and the C-terminal 

region (amino acids 204-619) which interacts with p15 and mRNA export co-adaptors 

(e.g., THOC5 and RBM15B). 
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        As described before, we analysed the ability of GST-REF and GST-SRAG to pull down 
35S-labeled TAP truncations. As expected, GST-REF pulled down the N-terminal part of 

TAP; however in contrast, we found that SRAG bound to the C-terminal region of TAP 

(Figure. 4-6). Importantly, these results imply that SRAG is not an mRNA export adaptor 

but a co-adaptor. Furthermore, the previous tethering assays also supported this 

conclusion that the mRNA export activity of SRAG is not as efficient as REF (Figure. 3-6). 

 

4.5    SRAG and REF bind concomitantly to the TAP-p15 

heterodimer   
Previous results imply that SRAG plays a co-adaptor role in mRNA export. Although 

SRAG and REF bind to different domains within TAP-p15, it is possible that they bind 

concomitantly  to  the  mRNA  export  receptor.  To  confirm  this  suggestion,  we  used  

purified REF and THOC5, which is a component of TREX and functions as an mRNA 

export co-adaptor (Katahira, et al., 2009), to perform the competition assays. In these 

assays, HEK-293T cell extracts or cell extracts transfected with FLAG-SRAG was pre-

incubated with increasing amounts of purified REF-6His or THOC5-6His to compete 

SRAG, respectively, and added to GST-TAP immobilized on GSH beads.  

        Figure. 4-7 shows  that  SRAG  was  not  competed  by  REF.  Moreover,  REF  could  

enhance the binding affinity of SRAG to TAP implying that SRAG, REF, and TAP can 

assemble into a complex and SRAG may work co-operatively with REF; yet, the TAP 

interaction with SRAG and THOC5 appears to be mutually exclusive, suggesting that the 

binding surfaces partially overlap. Alternatively, THOC5 may interfere with SRAG binding 

as the result of steric hindrance. Because SRAG can only be competed by THOC5 but not 

REF, our observation further demonstrates that SRAG is an mRNA export co-adaptor but 

not an adaptor.  
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4.6    SRAG and THOC5 bind at the same sites on TAP  
To further investigate whether SRAG and THOC5 form mutually exclusive interactions 

with TAP, we decided make use of the TAP mutations known to prevent interaction with 

THOC5 and new pulldown assays were carried out. In 2009, Yoneda’s group defined four 

surface residues of TAP involved in the interaction with THOC5. The quadruple alanine 

substitutions of TAP (450m: aa 450-453; 456m: aa 456-459) effectively disrupted binding 

to THOC5, but p15 binding was unaffected (Katahira et al., 2009). To determine whether 

SRAG competes with THOC5 for the same binding surface, we generated these two 

mutants within a GST-TAP fragment containing the NTF2-like domain (amino acids 371-

619) and carried out pulldown assays. Either puri ed THOC5-6His or HEK-293T cell 

extracts from cells transfected with FLAG-SRAG in the presence of RNase A was added 

to examine whether SRAG and THOC5 bind at the same sites on TAP. 

        In competition assays, the two TAP mutant fragments did not interact with THOC5, 

as expected. However, SRAG cannot bind to the TAP mutants either (Figure. 4-8). Since 

p15 still binds to the mutant forms of TAP this indicates there has not been a general 

disruption  of  the  protein  fold.  Our  results  suggest  that  SRAG  and  THOC5  bind  at  the  

same surface on TAP. After combining the results from competition assays, we conclude 

that SRAG is a new mRNA export co-adaptor. 

 

4.7    SRAG stimulates mRNA handover from REF to TAP  
After the encouraging results outlined in the previous experiments, the biological 

function of SRAG was investigated further. In RNAi knockdown assays, we showed that 

co-depletion of SRAG and REF cause a huge mRNA block in the nucleus. These results 

imply SRAG and REF may work together. To understand the relationship between SRAG 

and REF, we tested REF, SRAG, and THOC5 RNAi stable cell-line extracts by western blot. 

As shown in Figure. 4-9, in REF knockdown cell-line, SRAG protein level was higher than 

other  knockdown  cells.  This  result  strongly  suggests  that  cells  increase  SRAG  level  to  

compensate REF knockdown. As suspected, UAP56 increased in all knockdown cell-lines. 

In contrast, the protein level of REF is stable in all knockdown cell-lines. We also  
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Pull-down assays using GST-TAP(371-619)-p15 wild type or mutants with puri ed
THOC5-6His or 293T cell extracts from cells transfected with FLAG-SRAG in the
presence of RNase A. Proteins were detected by Coomassie staining or Western
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[Figure. 4-9] SRAG and REF works in the same pathway

Poly(A)+ RNA from stable FLP-IN 293T cells, expressing Control RNAi, REF RNAi,
SRAG RNAi, or THOC5 RNAi, was puri ed on oligo-dT beads in denaturing
conditions after UV cross-linking (+) or not (–). Total extract (1% of input) and
eluted proteins were analysed by Western Blotting (WB) with -ALY, SRAG, THOC5,
UAP56, TAP, or CBP80 antibody.
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performed mRNP capture assays in RNAi stable cell-lines. Interestingly, knockdown of 

SRAG led to an accumulation of REF associated with mRNA in vivo. The accumulation of 

REF on mRNA may result from the failure to transfer RNA from REF to TAP during mRNA 

export. Consistent with this idea is the observation that SRAG and REF cooperate with 

each other to interact with TAP. SRAG also accumulated on mRNA in response to REF 

RNAi (~10.7 fold); however, on the level of SRAG increased in the input samples (~4.3 

fold) it is not clear whether the increased levels of SRAG on the mRNA were simply 

caused by higher levels of SRAG in the cell or by genuine accumulation of SRAG on the 

mRNP. 

        During export, once REF is loaded onto mRNA, it subsequently recruits TAP. mRNA 

is displaced from REF by TAP, which in turn binds directly to the mRNA. REF bound to 

TAP  also  enhances  TAP  RNA-binding  activity  (Hautbergue  et  al.,  2008).  Since  the  data  

presented above shows that SRAG is an mRNA co-adaptor working with REF, to better 

understand the function of SRAG's contribution to mRNA export, we performed the 

remodeling assay to test if SRAG can stimulate mRNA handover from REF to TAP. 

        In this experiment, GB1-REF was rst incubated with 32P-radiolabeled RNA; and 

then, GST-TAP-p15 with/without SRAG was added to the REF-RNA complexes. After 

protein–RNA complexes were eluted, bound RNA was UV-cross-linked. Eluted 

complexes were analyzed by Coomassie blue, Western Blot and PhosphorImaging. 

        The results indicate that TAP-p15 showed a weak cross-link with RNA and adding 

REF would increase mRNA handover from REF to TAP. Interestingly, when adding SRAG 

into REF-RNA complex mixed with TAP, we found SRAG increased the amount of TAP 

RNA UV-crosslinking ~10 fold (Figure. 4-10). Taken together, these data show that SRAG 

and REF synergistically enhance the RNA binding activity of TAP. 

 

4.8    Summary 
In this chapter, we showed that arginine methylation not only reduced RNA-binding 

activity, but affects the protein-protein interactions of SRAG.  This observation unravels 

a novel way to regulate mRNA export factors. Using pulldown assays, we found that  
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SRAG and REF bind in the different regions of TAP. In contrast, SRAG and THOC5 interact 

with TAP at the same surface. Therefore, we conclude SRAG functions as a new mRNA 

export co-adaptor but not an adaptor.  

        The earlier studies on mRNA export co-adaptors did not indicate how co-adaptors 

help mRNA export processing. To answer this question, we began to study the 

relationship between adaptor and co-adaptor. Here, we used western blots and mRNP 

capture assays to examine the protein expression level in different RNAi knockdown 

stable  cell-lines.  Through  these  results,  we  confirmed  that  SRAG  and  REF  affect  each  

other and mRNA transfer might be the answer. This is consistent with the earlier FISH 

assays, double knockdown REF and SRAG cause strong mRNA blocking. 

        Finally, we used in vitro remodeling  assay  to  prove  that  SRAG  can  help  REF  to  

remodel TAP so that it binds RNA with higher affinity. These results indicate both 

proteins are required for optimal TAP:mRNA interactions.  
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Chapter V 

TREX assembly is driven by UAP56 
dependent ATP hydrolysis 
 

In this chapter, I further investigated the biochemical functions of SRAG, in particular 

the function relationship between SRAG and UAP56 and the role of SRAG in TREX 

assembly.  

 

5.1    SRAG and REF cannot interact with UAP56 simultaneously 
In the previous chapter it was shown that SRAG can bind to UAP56 directly. The 

DEXD/H-box helicase UAP56 is essential for the export of the majority of mRNAs from 

the nucleus to the cytoplasm. REF also interacts with UAP56, we were interested in how 

SRAG binds to UAP56 and exploring the relationship between SRAG and REF binding to 

UAP56.  

        To investigate this further, we analysed which regions of UAP56 were required for 

the interaction with SRAG. First, we characterized SRAG binding using GST pulldown 

assays. GST-SRAG was incubated with 35S-labeled UAP56 N-terminal and C-terminal 

truncations and pulled down by GSH beads. Interestingly, SRAG and REF both bind at the 

N-terminal region of UAP56 (Figure. 5-1). These results suggest that SRAG and REF may 

not bind to UAP56 at the same time. 

        To confirm this, competition assays were performed. GST-UAP56 was used to pull 

down 35S-SRAG before adding increasing amounts of purified GB1-REF to the 

UAP56:SRAG complex. As shown in Figure. 5-2,  when  increasing  the  amount  of  REF,  

SRAG dissociated from UAP56. These results indicate that SRAG and REF cannot interact 

with UAP56 at the same time. 



GST-SRAG

GST

[Figure. 5-1] SRAG binds to the N-terminal region of UAP56

GST and GST-SRAG were used in pull-down assays with 35S-labeled UAP56 full-
length or truncations. Proteins were detected via Coomassie staining and 
phosphoimage.
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[Figure. 5-2] REF and SRAG can not bind to UAP56 at the same time

Pull-down competition assay with GST-UAP56  complexed with  S35-labeled SRAG  
and  increasing amounts of GB1-6His-REF2-I. Proteins were detected via Coomassie
staining and phosphoimage.
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5.2    SRAG stimulates ATPase and helicase activity of UAP56 
In  isolation,  UAP56  has  a  weak  ATPase  and  helicase  activity  that  is  similar  to  eIF4A  

alone. In the case of eIF4A, the presence of eIF4B and eIF4H stimulates eIF4A’s ATPase 

(~3-fold) and helicase activity (4–8-fold) (Richter-Cook et al., 1998; Rogers et al., 2001). 

These stimulations likely contribute to the ability of eIF4A to efficiently unwind 

secondary structures in the 5’-untranslated region of the mRNA. We evaluated here 

whether UAP56’s ATPase and helicase activity can be affected by protein factors known 

to interact with UAP56. 

        To test whether SRAG stimulates ATP hydrolysis, we performed biochemical 

characterization of UAP56’s ATPase and helicase activity. We first examined UAP56’s 

ATPase activity. His-tagged UAP56 was expressed in E. coli. UAP56-6His was first purified 

with Co2+ resin and then was further purified using gel filtration chromatography. 

Purified UAP56-6His was incubated at 37 °C with ATP, in the presence or absence of 

mRNA,  and  REF,  SRAG,  and  CIP29.  The  amount  of  ATP  hydrolyzed  was  quantified  on  

ELISA plate reader. The results show that UAP56 has an RNA-stimulated ATPase activity 

and not only SRAG but also REF and CIP29 can robustly activate the ATPase activity of 

UAP56 (Figure. 5-3).  

        The ATPase assay data for SRAG was surprising because all the UAP56-binding 

mRNA  export  factors  promote  ATP  hydrolysis  of  UAP56.  We  further  examined  the  

helicase activity of UAP56 by using a 15-nt cohesive end RNA duplex. First, we tested the 

helicase activity of UAP56. The weak helicase activity is common to DEXD/H-box 

helicases, and large amounts of proteins are routinely used for helicase assays of 

DEXD/H-box proteins. For example, 0.8 uM protein was used for eIF4A’s helicase assay 

that produces a roughly 35% unwinding of dsRNA with the same substrate (Rogers et al., 

2001). UAP56 clearly unwinds this dsRNA in a protein concentration-dependent manner 

(Figure. 5-4A). The helicase activity is weak, and a large amount of UAP56 (0.5 M or 

higher) is needed to observe significant unwinding.           

        To further confirm the relationship between SRAG and UAP56 helicase activity, we 

performed helicase assays using recombinant UAP56 and purified SRAG, REF, CIP29, and  
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[Figure. 5-3] SRAG enhances UAP56 ATPase activity

ATPase activities for purified UAP56 added REF, SRAG, and/or CIP29 containing -/+ 
RNA and/or ATP. Values are the average from 3 independent assays and error bars 
represent the SD.
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[Figure. 5-4] SRAG enhances UAP56 helicase activity

(A) UAP56 unwinds a RNA duplex in a protein concentration-dependent manner. 
(B) The helicase assay was performed at 37°C for 15min with 3 m M ATP, 100 nM
unlabeled complementary strand RNA, 2.5 nM labelled dsRNA substrate, and 1 M 
UAP56, 2 M REF, SRAG, CIP29, or Magoh.

-108-



- 109 - 
 

Magoh. Interestingly, SRAG, REF, and CIP29 dramatically increase UAP56 helicase 

activity; in contrast, adding Magoh has no significant effect (Figure. 5-4B).  Given  that  

REF and CIP29 specifically bind UAP56 in the presence of ATP (Dufu et al., 2010) these 

results  suggest  that  the  interaction  of  REF,  SRAG,  and  CIP29  with  UAP56  might  be  

transient, leading to the stimulation of UAP56 ATPase activity and subsequent 

dissociation of REF, SRAG, and CIP29 from UAP56. 

 

5.3    UAP56 enhances SRAG loading onto mRNA 
To explore the idea that UAP56 might drive TREX assembly by sequentially loading 

export factors onto mRNA I investigated what impacts UAP56 had on the RNA binding 

activities of REF and SRAG. 

        In the presence of UAP56 and ATP the RNA binding activity of REF and SRAG are 

enhanced (Figure. 5-5). Of note, without ATP, SRAG and REF mRNA binding affinity are 

not influenced by UAP56. These results indicate that UAP56 can enhance SRAG and REF 

loading  onto  mRNA.  Furthermore,  SRAG  and  REF  cannot  bind  to  UAP56  at  the  same  

time, indicating that UAP56 triggers SRAG and REF loading onto mRNA sequentially. 

However, the requirement of UAP56 ATP hydrolysis still needs to be tested. 

 

5.4    SRAG triggers TAP opening  
In Figure. 4-10, we revealed that SRAG stimulates mRNA handover from REF to TAP, but 

the mechanism is still unknown. Recently, our lab reported that TAP uses an 

intramolecular interaction to silence its own RNA binding activity. Moreover, when the 

TREX subunits REF and THOC5 make contact with TAP, this drives TAP into an open 

conformation, exposing its RNA binding domain, allowing efficient mRNA binding 

(Viphakone et al., Nature Communications, in Revision).  

        Since SRAG and THOC5 bind the NTF2-like domain of TAP, SRAG may also be able to 

trigger TAP opening. To test this possibility, we used GST-TAP mixed with 35S-labelled 

TAP to mimic its intramolecular interaction. Consistently, the addition of REF alone does  
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SRAG) with/without ATP were UV-crosslinked with 32P-radiolabelled RNA
oligonucleotide. Resulting complexes were analysed by SDS-PAGE stained with
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not prevent the interaction between TAP domains. However, unlike THOC5, SRAG  

appears to be sufficient to trigger TAP:TAP dissociation, as supported by the 

approximately 2-fold decrease in 35S-TAP retained by GST-TAP in the presence of SRAG  

(Figure. 5-6).  These  observations  lead  to  the  suggestion  that  REF  binds  to  TAP  and  

makes the NTF2-like domain more accessible to SRAG.  

 

5.5    SRAG and THOC5 are part of the same TAP-containing 

complex(es) in vivo 
Since the NTF2-like domain of TAP was used for both SRAG and THOC5 binding, there is 

potentially functional redundancy between SRAG and THOC5, therefore we considered 

that SRAG and THOC5 may not be present in the same TREX complex. To explore this, 

we designed double immunoprecipitations to determine whether SRAG and THOC5 are 

in the same TAP-containing complexes. In this assay, we immunoprecipitated Flag 

tagged TAP in 293T cells. After elution, we performed a second immunoprecipitation by 

using SRAG or THOC5 antibody, and then detected components of each complex by 

western blotting. 

        Surprisingly, whilst SRAG and THOC5 bind at the same site of TAP, the results 

showed they still bound TAP together (Figure. 5-7). This finding indicates that SRAG and 

THOC5 are in a single complex with TAP. Given SRAG and THOC5 bind to TAP in a 

mutually exclusive manner these data imply there are significant rearrangements within 

the TREX-TAP complex during assembly of the complex and mRNA export. 

        Although the previous results show SRAG and THOC5 are in the same complex, it 

generates another issue of whether mRNA export depends on the same core set of 

export  factors  and  occurs  in  precisely  the  same  manner  in  every  mRNA  type.  For  

example, whereas bulk mRNA export occurs via TAP pathway, a subset of endogenous 

transcripts is exported via the karyopherin Crm1 (Cullen et al., 2003a). Crm1 is not an 

RNA-binding protein, and thus must use different adaptors for the export of 

endogenous mRNAs. Some possible adaptors have been reported, including HuR for the  

 



[Figure. 5-6] SRAG enhances conformational change of TAP

GST-TAP pulldown 35S-labeled TAP and then using purified 5 or 25 g GB1-REF, 
SRAG, or both to compete 35S-labeled TAP. 
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export of Cd83 and Fos mRNAs, and eukaryotic translation initiation factor 4E (eIF4e) for 

cyclin D1 mRNA in human cells (Brennan et al., 2000; Culjkovic et al., 2006; Prechtel et 

al.,  2006).  Since  Katahira  et  al.  reported  that  THOC5  only  enhances  intron-less  mRNA  

HSP70 export but not general mRNAs export (Katahira et al., 2009), it is possible that 

TAP uses different mRNA export co-adaptors to recognize variant mRNAs instead of 

adaptors. 

        To test this hypothesis, we used qRT-PCR to test intron-less and intron-containing 

mRNA export efficiency in SRAG or THOC5 knockdown stable cell-lines. Following RNAi 

of REF, SRAG, or THOC5 individually there were variable effects on mRNA export (Figure. 

5-8). Double RNAi of REF/SRAG or REF/THOC5 caused a stronger block in mRNA export, 

compared with RNAi of the single genes, for all the genes tested. 

 

5.6    Summary 
In this chapter, I present further evidence for a role for SRAG in mRNA export. Through 

pulldown assays, we observed SRAG and REF both interact with the N-terminal domain 

of UAP56. Moreover, SRAG, REF, and CIP29 all stimulate the ATPase and helicase activity 

of UAP56. The mRNA binding assays indicate that UAP56 enhances the mRNA binding 

affinity of SRAG and REF in an ATP-dependent manner. These results suggest that TREX 

assembly is driven by UAP56 dependent ATPase and helicase activity. 

        In the previous chapter I found that SRAG and THOC5 bind in a mutually exclusive 

manner  to  TAP.  In  this  chapter  I  have  found  that  both  SRAG  and  THOC5  exist  in  a  

complex with TAP in the cell. Moreover, both SRAG and THOC5 are required for optional 

mRNA export of the same genes, indicating they work in the same export pathway. 

Together these results indicate that TREX is a dynamic complex, which is likely to 

undergo significant rearrangements at the point that TAP binds TREX and displaces 

UAP56 and at subsequent steps in the mRNA export pathway.  

 

 

 



[Figure. 5-8] Expression of Various Genes in Several Induced-RNAi Human Cell 
Lines

Quantitative RT-PCR analysis was used on cyto/total RNA to assess the levels of 
each gene relative to the U1 snRNA. Efficiency of RNAi was controlled for each 
RNAi stable cell lines. Error bars represent s.e.m. from 3 experiments. (Intron-
containing RNAs: ARAP3, CCNL2, EPHX2, and OGDHL; Intronless RNAs: FOXD2, JUN, 
and CALML3.) 
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Chapter VI 

Discussion 
 

The mRNA export mechanism is a largely unexplored area. Many questions remain in 

the field. The precise biochemical determinants of mRNA export factors and whether 

they are the same for every mRNA are not fully defined. In this study, through discovery 

and characterization of a novel mRNA export co-adaptor, SRAG, I addressed some 

outstanding questions in the field of mRNA nuclear export, and a model for the mRNA 

export mechanism is proposed. 

 

UAP56 recruits TREX components onto mRNA by hydrolyzing ATP  

Previous mRNA export models have assumed the formation of TREX complex begins at 

transcription. During transcription elongation, the nascent mRNA 5’ cap is bound by the 

cap-binding complex (CBC; composed of CBP20 and CBP80) (Izaurralde et al., 1995). 

Next, a transcript undergoes splicing and the EJC is deposited at the site of exon fusion. 

Capping and splicing are both important for the recruitment of the TREX complex. The 

TREX  complex  is  poorly  recruited  to  transcripts  that  lack  either  the  5’  cap  or  the  EJC,  

indicating that its mechanism of recruitment is linked to splicing and capping (Cheng et 

al., 2006; Masuda et al., 2005; Zhou et al., 2000). It should be pointed out that UAP56 is 

essential for the export of most mRNAs, but this is not the case with REF in Drosophila 

melanogaster and Caenorhabditis elegans (Gatfield and Izaurralde, 2002; Longman et 

al., 2003). Therefore, UAP56 may have additional functions beyond recruiting REF, 

alternatively other proteins may functionally replace REF in its absence, such as UIF 

(Hautbergue et al., 2009) 

        In this study, I demonstrated that TREX components bound to UAP56 can stimulate 

its  ATPase  and  helicase  activity.  Moreover,  UAP56  drives  SRAG  and  REF  loading  onto  
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mRNA by hydrolyzing ATP. These results imply that after TREX components are 

recruited, UAP56 can hydrolyze ATP and promote TREX components binding to mRNA. 

Because SRAG and REF both interact with the N-terminal domain of UAP56, it indicates 

this processing is likely to be a mechanochemical cycle.  

        Based on the results obtained in this study, I propose a model of how UAP56 may 

recruit  export  factors  onto  mRNAs  (Figure. 6-1).   In  the  ATP  bound  state,  UAP56  

associates with mRNA and provides a site for recruitment of SRAG. SRAG preferentially 

binds  ATP-bound  UAP56  (Robin  Reed,  personal  communication).  Once  SRAG  is  

recruited,  this  stimulates  ATP  hydrolysis  by  UAP56,  which  results  in  release  of  SRAG  

from UAP56 and its loading onto mRNA. UAP56 is then reloaded with ATP ready to 

recruit REF. The mechanism by which ADP is exchanged with ATP on UAP56 remains to 

be determined. In turn REF binds ATP bound UAP56 (Dufu et al., 2010), stimulates ATP 

hydrolysis  and  is  itself  loaded  onto  the  mRNA.  This  loading  cycle  may  repeat,  and  

multiple proteins may be loaded onto a single RNA molecule.  It is not clear on the basis 

of my data whether SRAG or REF is loaded onto the mRNA first and a number of 

experiments designed to address this question produced inconclusive results. However, 

loss of SRAG in cells leads to accumulation of REF on the mRNP (Chapter IV). This may 

arise because SRAG helps the association of REF with TAP which results in the transfer of 

RNA from REF to TAP and this transfer cannot occur in the absence of SRAG, therefore it 

is plausible that SRAG associates with TAP first during TREX maturation.  

 

SRAG enhanced handover of mRNA to TAP 

TAP binds RNA weakly via a non-canonical arginine rich RNA binding domain 

(Hautbergue et al., 2008). Because the intrinsic RNA binding activity of TAP was found to 

be weak in vitro, it was proposed that TAP required an adaptor protein (e.g. REF or UIF), 

which bound mRNA with high affinity, to bridge its interaction with mRNA (Liker et al., 

2000). In 2011, our lab reported that THOC5 and REF, which together drive TAP into an 

open conformation, allow it to stably bind mRNA and trigger its export (Viphakone et al, 

Nature Communications, in Revision).  



TREX

[Figure. 6-1] A model of TREX complex assembly needs ATP hydrolysis of UAP56.
TREX complex assembly involves at least two rounds of ATP hydrolysis by UAP56 triggered 
by REF and SRAG. 
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        In this study I showed that SRAG also functions as an mRNA export co-adaptor and 

enhances mRNA transfer from REF to TAP mRNA (Figure. 6-2). Depletion of REF or SRAG 

alone in vivo has a modest effect on mRNA export, but their combined knockdown 

causes a drastic mRNA export block. The ability of the cell to maintain recruitment of 

TAP to mRNA in the absence of SRAG may be since another mRNA export co-adaptor, 

THOC5, has been shown to bind the TAP NTF2-like domain and may compensate for the 

SRAG loss, maintaining TAP in an open conformation able to bind mRNA. However, 

SRAG binds to TAP in a mutually exclusive manner with the THO complex component 

THOC5  and  yet  TAP,  SRAG,  and  THOC5  are  found  in  the  same  complex  in vivo. This 

suggests some rearrangements that must take place during mRNP formation and/or 

export and indicate that TREX is a dynamic complex undergoing substantial 

rearrangements during mRNA export.  

 

Arginine methylation regulates mRNA export factors 

Protein methylation is a common and stable post-translational modification (PTM) in 

higher eukaryotes. Protein methylation has been shown to affect several cellular 

processes, including protein:protein interaction, intracellular localisation, and 

maturation of heterogeneous ribonuclearproteins (hnRNPs) (Liu and Dreyfuss, 1995; 

Bedford et al., 2000; Cote et al., 2003). In 2010, our lab reported that a key TAP-binding 

site of REF is contained within a small arginine-rich region, which can be methylated by 

PRMT1. Functional studies of REF methylation revealed that it reduces the RNA-binding 

properties of the protein. Furthermore, the reduced RNA-binding affinity of REF 

facilitates  handover  of  bound  mRNA  to  TAP  during  mRNA  nuclear  export  (Hung  et  al.,  

2010). This finding indicates the importance of arginine methylation to direct TAP-mRNA 

interactions. 

        Here, I reveal that arginine methylation influences not only protein:RNA interaction, 

but protein:protein interaction. My data provide strong evidence that methylation of 

SRAG by PRMT1 does occur in vivo and plays an important role in facilitating SRAG 

mRNA export co-adaptor function: (1) REF can only interact with unmethylated SRAG.  



[Figure. 6-2] A model of SRAG and REF drive TAP into an open conformation.
SRAG and REF drive TAP into an open conformation allowing handover mRNA to TAP. (M: 
hypermethylation) 

Export
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(2) TAP:SRAG interaction is dependent on methylation of SRAG. (3) The Arginine 

residues that are methylated by PRMT1 are important for the ability of SRAG to bind to 

TAP and mRNA. (4) Endogenous SRAG contains both forms and the unmethylated form 

is transient. These evidences point towards another possible regulation mechanism in 

the mRNA export pathway through arginine methylation. Methylation of SRAG and REF 

by PRMT1 may be regulated, for example, when they are both recruited into TREX 

complex and then handed over mRNA to TAP, arginine methylation adopts the 

appropriate conformation. In support of this idea, the methylation of SRAG regulated its 

protein:protein interactions and methylated REF has weaker mRNA binding affinity.  

        The findings with SRAG reveal that arginine methylation is used to fine tune mRNA 

export and also raises the possibility that combinatorial use of different adaptors and 

co-adaptors give rise to transcript specific mRNA export.  

 

Future Work 

Eukaryotic mRNA export is controlled by multiple mechanisms and regulated by post-

translational modification of mRNA export factors. As we delve deeper and wider into 

the mRNA export mechanism, the emerging landscape becomes ever more complex.  

        This study demonstrates that arginine methylation takes place in regulation of 

mRNA export factors. It is worth further examining whether there is an arginine 

demethylase which interacts with and regulates the arginine modification of mRNA 

export  factors.  Until  now,  there  is  no  convinced  evidence  to  prove  an  arginine  

demethylase exists. 

        Another issue is whether mRNA export depends on the same core set of export 

factors  in  every  organism,  or  in  every  cell  type.  For  example,  Mex67  is  essential  for  

mRNA export in the budding yeast S. cerevisiae (Segref  et  al.,  1997),  but  not  in  the  

fission yeast Schizosaccharomyces pombe (Yoon et al., 2000); Yra1 is essential for export 

in S. cerevisiae (Strasser and Hurt, 2000), but not in Drosophila or C. elegans (Gatfield 

and Izaurralde, 2002; Longman et al., 2003). In this study, I presented results indicating 

that SRAG and Thoc5 provide redundant mechanisms. Since SRAG only exists in 
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vertebrates, it is worth investigating more fully whether SRAG and THOC5 contribute to 

different kinds of mRNA export to understand these species-specific differences.  

        The present studies provide compelling evidence that SRAG is an mRNA export co-

adaptor; nevertheless, some evidence suggests that SRAG regulates cell proliferation 

(Zullo et al., 2009). Thus, a critical question is raised: Does SRAG have other functions 

and play a role in different mechanisms? Since SRAG is an mRNA export factor, I cannot 

conclude that the inhibition of the cell cycle is an independent mechanism in which 

SRAG functions, or whether it is a consequence of a primary effect on blocking mRNA 

export?  

        However, more and more studies indicate that mRNA export co-adaptor cannot be 

the only function of SRAG. In 2010, Duensing’s group showed that SRAG is involved in 

centriole length control. Depletion of SRAG is implicated in microtubule anchoring and 

stability that attenuated daughter centriole elongation (Korzeniewski et al., 2010). 

Moreover, van Dijk et al. showed that knockdown of SRAG in adult erythroid progenitors 

strongly induces HbF (van Dijk  et  al.,  2010a).  These results  conclude that  SRAG plays a  

critical role in fetal globin expression. Therefore, the present studies add to the growing 

support for the idea that SRAG is a multi-functional protein. Although it remains unclear 

how SRAG affects  both mRNA export  and gene regulation,  one possibility  is  that  SRAG 

contributes to target mRNA recognition, thereby increasing target export. However, this 

cannot be the only function, because knocking down both SRAG and REF causes a huge 

mRNA block in the nucleus. Although we cannot provide an answer for what this 

mechanism might be, by studying the function of SRAG, we have a starting point in the 

linkage between mRNA export mechanisms and gene regulation. 
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Abstract 

The TREX complex couples nuclear pre-mRNA processing with mRNA export and 

contains multiple protein components, including UAP56, ALY, CIP29 and the multi-

subunit  THO complex.  Here we have identified SRAG as a  novel  TREX component.   We 

show that both SRAG and ALY activate the ATPase and RNA helicase activities of UAP56 

and that UAP56 functions to recruit both ALY and SRAG onto mRNA. As observed with 

the THO complex subunit THOC5, SRAG binds to the NTF2-like domain of NXF1, and this 

interaction requires arginine methylation of SRAG. Using RNAi, we show that co-

knockdown of either ALY and SRAG or ALY and THOC5 results in a potent mRNA export 

block. Interestingly, SRAG binds to UAP56 in a mutually exclusive manner with ALY, and 

SRAG binds to NXF1 in a mutually exclusive manner with THOC5.  However, SRAG, 

THOC5 and NXF1 exist in a single complex in vivo. Together, our data indicate that TREX 

and NXF1 undergo dynamic remodeling, driven by the ATPase cycle of UAP56 and post-

translational modifications of SRAG.  

 

Keywords: C1ORF77/nuclear export/REF/TAP 
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Introduction 

The TREX complex plays a central role in eukaryotic gene expression, integrating 

information from nuclear mRNA processing events to ensure the timely export of mRNA 

to the cytoplasm (Rodriguez-Navarro & Hurt, 2011). The metazoan core TREX complex 

contains multiple subunits including the RNA helicase UAP56 (Sub2 in yeast), ALY 

(THOC4/REF/BEF; Yra1 in yeast), CIP29 (Tho1 in yeast), and the THO subcomplex which 

comprises THOC1 (HPR1), THOC2, THOC3 (TEX1), THOC5, THOC6, THOC7 (Dufu et al, 

2010). The recruitment of TREX to mRNA is splicing dependent (Masuda et al, 2005) and 

results in the loading of TREX near the 5’ end of mRNA through an interaction between 

CBP80 and ALY (Cheng et al, 2006). The assembly of UAP56, CIP29 and ALY within TREX 

is  dependent  on  UAP56  binding  ATP  whereas  the  association  of  UAP56  with  THOC2  is  

ATP independent (Dufu et al, 2010). The recruitment of metazoan ALY to the TREX 

complex is probably coupled with 3’ end processing since Yra1 is specifically recruited to 

Sub2  in  yeast  via  the  3’  end  processing  factor  Pcf11  and  the  ALY:PCF11  interaction  is  

conserved (Johnson et al, 2009). Clp1 displaces Yra1 from Pcf11 as does Sub2 when 

loaded with RNA and ATP (Johnson et  al,  2011).  Moreover,  the recruitment of  Clp1 to 

Pcf11 is an important step in generating an active CF1A complex required for cleavage-

polyadenylation (Haddad et al, 2011),(Ghazy et al, 2011). Therefore recruitment of ALY 

to TREX via PCF11 provides a means to couple 3’ end processing with mRNA export.  

The  mRNA  export  receptor  NXF1  (Mex67  in  yeast)  functions  to  translocate  

mRNPs through the nuclear pore complex and GANP facilitates NXF1 interaction with 

the  nuclear  pore  (Wickramasinghe  et  al,  2010).  The  N-terminus  and  the  NTF2-like  

domain of NXF1 bind to the TREX components ALY and THOC5, respectively,  and the 

term co-adaptor has been used for THOC5 since it binds to NXF1 simultaneously with 

the adaptor protein ALY (Katahira et al, 2009). During export, mRNA is handed over from 

ALY to NXF1 and NXF1 uses an N-terminal arginine-rich peptide to interact directly with 

RNA (Hautbergue et al, 2008; Walsh et al, 2010). The methylation of arginines in ALY, 

reduces its ability to bind mRNA and therefore this post-translational modification 

facilitates hand over of mRNA from ALY to NXF1 (Hung et al, 2010).  In yeast, the TREX 
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subunit Hpr1 binds to the C-terminal UBA domain of Mex67 and recruits Mex67 to 

actively transcribed genes (Gwizdek et al, 2006).  

The loss of THO subunits in yeast leads to a rapid mRNA export block (Strasser et 

al,  2002)  and  recent  evidence  indicates  that  TREX  plays  a  genome-wide  role  in  mRNP  

biogenesis in yeast (Gomez-Gonzalez et al, 2011). In contrast knockdown of metazoan 

THO components leads to a less severe export phenotype (Rehwinkel et al, 2004). 

Similarly loss of ALY in metazoans results in a modest mRNA export block. This may be 

partly accounted for by the existence of redundant pathways for mRNA export. For 

example,  loss  of  ALY  triggers  increased  expression  of  UIF  which  can  also  act  as  a  link  

between UAP56 and NXF1 (Hautbergue et al, 2009). In yeast, Nab2 also appears to be 

capable of promoting recruitment of Mex67 to the mRNP (Iglesias et al, 2010). The loss 

of UAP56 in combination with its paralogue DDX39, leads to a severe mRNA export 

block in humans (Hautbergue et al, 2009) and this is accompanied by accumulation of 

mRNA within nuclear speckles (Dias et al, 2010). This export block applies to both 

spliced and unspliced mRNAs and interestingly unspliced mRNAs require a specific 

coding region sequence to promote their export (Lei et al, 2011).  

Here we describe and characterise a new component of the TREX complex, 

SRAG. We show that SRAG binds UAP56 and activates its ATPase and RNA helicase 

activities. SRAG also competes with THOC5 for binding to the NTF2-like domain of NXF1 

and  yet  both  are  found  associated  in  a  single  complex  in vivo.  Thus  the  discovery  of  

SRAG indicates that the TREX complex is likely to undergo substantial rearrangements 

during  mRNP  formation.  In  this  respect  TREX  may  well  act  like  other  macromolecular  

machines such as the spliceosome, undergoing numerous conformational and 

compositional rearrangements in performing its cellular functions.  

 

Results 

SRAG binds UAP56 and associates with TREX.  

To identify novel UAP56 binding proteins we took the REF2-I (the murine orthologue of 

ALY) C-terminal UAP56 binding motif (UBM) (Hautbergue et al, 2009) and used this in a 
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BLAST search which led to the identification of SRAG/FOP/C1ORF77/CHTOP, a nuclear 

protein previously shown to be a substrate for the arginine methylase PRMT1 and 

required for ligand-dependent activation of estrogen receptor target genes (van Dijk et 

al,  2010).  SRAG  contains  two  copies  of  a  sequence  similar  to  the  REF2-1  UBM  located  

towards the C-terminus. Alignment of metazoan UBMs reveals an invariant 

subsequence DXXLD (Figure 1A), which forms part of a transient alpha helix in the REF2-

1 protein (Golovanov et al, 2006). Since SRAG and ALY use a similar peptide sequence to 

bind UAP56 we investigated whether they could simultaneously bind UAP56 in vitro. 

Pulldown assays confirmed that SRAG bound GST-UAP56 (Figure 1B). Increasing 

concentrations of ALY efficiently displaced SRAG from GST-UAP56, indicating that SRAG 

and ALY bind in a mutually exclusive manner to UAP56. Since UAP56 is a component of 

the  TREX  mRNA  export  complex,  we  investigated  whether  SRAG  might  also  associate  

with TREX components. This analysis confirmed that SRAG co-immunoprecipitated with 

multiple components of the TREX complex including UAP56 (Figure 1C) and the 

interaction was not sensitive to the presence of ribonuclease (Figure 1C and 

Supplementary Figure S1). These data are consistent with the identification of SRAG by 

mass spectrometry in TREX complexes immunopurified with antibodies to THOC2, CIP29 

and UAP56 TREX subunits (Dufu et al, 2010). Moreover, mass spectrometry analysis led 

to the identification of multiple proteins which co-purify in vivo with biotinylated SRAG. 

These proteins included multiple TREX components which are shown in Supplementary 

Table  S1  (Fanis,  P,  Gillemans,  N,  Pourfarzad,  F.,  Aghajanirefah,  A.,  Demmers,  J.,  

Esteghamat, F., Vadlamudi, R.K., Grosveld, F., Philipsen, S and van Dijk, T., manuscript in 

preparation). In common with several other mRNA export factors, SRAG co-localises 

with the splicing factor SC35 in nuclear speckles (Supplementary Figure S2).  

 

SRAG, ALY and CIP29 stimulate the ATPase and helicase activities of UAP56 

We examined the effects of both ALY and SRAG on the ATPase and helicase activity for 

UAP56. UAP56 showed minimal ATPase activity in the absence of RNA, but significant 

activity in its presence, consistent with an earlier report (Figure 2A) (Taniguchi & Ohno, 
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2008) . SRAG, ALY and CIP29 displayed no ATPase activity even in the presence of RNA. 

However, ALY, SRAG and CIP29 individually stimulated both the RNA-dependent and 

RNA-independent ATPase activity of UAP56, although combinations of ALY and CIP29 or 

SRAG and CIP29 did not further enhance the observed ATPase activity for UAP56. We 

also found that ALY, SRAG and CIP29 all stimulated the UAP56 helicase activity, whereas 

the exon junction complex component MAGOH did not (Figure 2B).  

 

UAP56 loads SRAG and ALY onto mRNA.  

An earlier study examined how UAP56 and ALY bound RNA using immunoprecipitation 

(IP) of radiolabelled RNA (Taniguchi & Ohno, 2008). However, this study did not address 

which proteins were directly bound to RNA within ternary complexes. Therefore to 

examine how RNA associates with UAP56 and its binding partners we firstly carried out 

UV cross-linking experiments with proteins in solution (Figure 2C). In isolation, ALY 

cross-linked with RNA well, irrespective of the presence of ATP whereas UAP56 showed 

a weak cross-link with RNA but only in the presence of ATP as reported previously 

(Taniguchi  &  Ohno,  2008).  When  ALY  and  UAP56  were  mixed,  there  was  a  dramatic  

stimulation of RNA cross-linked to ALY and this was dependent on ATP (Figure 2C left 

panel lanes 3,4 &7,8). Similarly for SRAG, there was an extremely weak cross-link with 

RNA in the absence of  UAP56 (Figure 2C right  panel  lanes 3,4),  but  in  the presence of  

ATP  and  UAP56,  there  was  a  dramatic  increase  in  the  amount  of  RNA  cross-linked  to  

SRAG (Figure 2C right panel lanes 7,8). Together these data indicate that in the presence 

of UAP56 and ATP, SRAG and ALY are loaded onto mRNA. Given that both ALY and SRAG 

stimulate  the  helicase  and  ATPase  activity  of  UAP56  we  also  carried  out  RNA  binding  

studies in the presence of the non-hydrolysable ATP analogue AMP-PNP. For these 

studies  we  also  ensured  that  all  UAP56  present  in  the  RNA  UV  cross-linking  step  was  

complexed with ALY by isolating a GST-ALY:UAP56 complex by pulldown on glutathione 

sepharose beads (Figure 2D). Here we observed that UAP56 still cross-linked with RNA 

in isolation but failed to cross-link with RNA when in complex with GST-ALY.  However,  

GST-ALY cross-linked with RNA in the complex.  Therefore the RNA is  normally  likely  to 
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be handed over from UAP56 to ALY. Since in the presence of the non-hydrolysable AMP-

PNP, UAP56 failed to stimulate the loading of RNA onto GST-ALY above that seen with 

GST-ALY alone,  this  transfer  is  normally  likely  to take place concomitantly  with ALY-  or  

SRAG-stimulated  ATP  hydrolysis  (Figure  2D).  We  were  unable  to  perform  a  similar  

experiment with SRAG, since GST-SRAG expressed poorly in E.coli. We further 

investigated the role of UAP56 and its paralogue DDX39, in loading TREX factors onto 

the mRNP using in vivo UV  cross-linking  in  a  stable  cell  line  where  UAP56  and  DDX39  

expression can be knocked down by RNAi (Hautbergue et al, 2009) (Figure 2E). These 

experiments showed that both SRAG and ALY loading onto the mRNP is dependent on 

UAP56/DDX39. Since both SRAG and ALY are found in the TREX complex and bind UAP56 

in a mutually exclusive manner, these data suggest that UAP56 may go through more 

than one round of ATP hydrolysis during TREX assembly and this ATP hydrolysis drives 

loading of both TREX components onto the mRNP.   

 

Methylation of SRAG regulates its interactions with ALY, NXF1 and RNA but not 

UAP56.  

To generate SRAG protein for further analysis we constructed a FLAG-tagged SRAG 

cDNA expression vector and transfected it transiently into 293T cells. Western blot 

analysis reproducibly generated two discrete bands (Figure 3A). Since SRAG is a binding 

partner for PRMT1 (van Dijk et al, 2010), we investigated whether the two bands 

correspond to different methylation states of SRAG. Cells expressing FLAG-SRAG were 

treated  with  the  methylation  inhibitor  AdOx  for  varying  times.  We  found  that  by  48  

hours the slower migrating SRAG band disappeared, suggesting this band corresponded 

to  a  hyper-arginine  methylated  SRAG  form,  whereas  the  faster  migrating  band  

corresponding to hypo-arginine methylated SRAG remained (Figure 3A).  We then 

investigated the methylation status of endogenous SRAG in both nuclear and 

cytoplasmic fractions. In whole cell lysates, SRAG was predominantly methylated while 

growth of cells in AdOx, shifted SRAG predominantly to a faster migrating hypo-

methylated state (Figure 3B, lanes 1,2). However, we considered that PRMT1 may 



- 143 - 
 

methylate some SRAG post cell lysis and during preparation of subcellular fractions. To 

prevent this we prepared fractions using a lysis buffer containing AdOx from cells grown 

in the absence of AdOx. This revealed that a significant proportion of SRAG exists in the 

nuclear fraction in the hypo-methylated state (Figure 3B, lanes 3-8). We then 

investigated whether SRAG associated with other mRNA export factors and what impact 

methylation might have on such interactions using GST-pulldown assays with 293T cell 

extracts (Figure 3C). GST-UAP56 bound both hyper- and hypo-methylated SRAG, 

whereas GST-ALY only bound hypo-methylated SRAG. In direct contrast, GST-NXF1 only 

associated with hyper-methylated forms of SRAG. To confirm that SRAG associated with 

NXF1 we immunoprecipitated NXF1 from cells and found that it did IP with SRAG but 

only in the absence of AdOx (Figure 3D). To establish that the interactions between 

SRAG and NXF1/ALY were direct and regulated by SRAG methylation we generated and 

purified methylated SRAG in E.coli by coexpression with PRMT1 (Supplementary Figure 

S3).  In pulldown assays direct interactions were observed between GST-NXF1, ALY and 

UAP56. Interactions with GST-UAP56 were not influenced by SRAG methylation, in 

contrast GST-NXF1 interaction required SRAG methylation whereas GST-ALY only bound 

hypo-methylated SRAG. (Figure 3E). We further investigated whether methylation of 

SRAG influenced its ability to bind the mRNP in vivo as it does for ALY (Hung et al, 2010) 

and  found  that  the  hypo-methylated  form  of  SRAG  cross-links  with  mRNA  more  

efficiently in vivo than the methylated state (Figure 3F). We conclude that SRAG exists in 

both hypo- and hyper-methylated states in the nucleus and that its methylation status 

governs its interactions with ALY, NXF1 and mRNA.  

 

SRAG and THOC5 bind NXF1 in a mutually exclusive manner 

To examine the interaction of SRAG with NXF1 we mapped which domain of NXF1 was 

responsible for interaction with SRAG using GST pulldown assays (Figure 4A,B). This 

analysis revealed that whilst ALY bound amino acids (aa) 1-198 of NXF1, corresponding 

to the N-terminal RNA binding domain and pseudo-RRM, SRAG bound aa 372-619, 

encompassing the NTF2-like and UBA domains. We therefore investigated what impact 
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ALY had on the interaction of SRAG with NXF1 (Figure 4C) and found that increasing 

amounts of GB1-ALY bound to NXF1, stimulated the interaction of FLAG-SRAG with 

NXF1. In contrast, FLAG-UIF, which binds aa1-198 of NXF1 was efficiently displaced by 

GB1-ALY in this assay. Together these data suggest that ALY and SRAG bind 

cooperatively to NXF1. Since the NTF2-like domain of NXF1 is also known to bind the 

TREX component THOC5, we examined whether SRAG might recognise a similar surface 

of  the  NTF2-like  domain  of  NXF1.  Point  mutations  in  the  NTF2-like  domain  which  are  

known  to  block  the  NXF1:THOC5  interaction  (Katahira  et  al,  2009),  also  block  the  

NXF1:SRAG interaction (Figure 4D). To confirm that SRAG and THOC5 utilise a common 

binding site on NXF1 we examined the effects of increasing amounts of THOC5 on the 

NXF1:SRAG interaction and found that THOC5 efficiently displaces SRAG from NXF1 

(Figure 4E). We conclude that SRAG and THOC5 bind in a mutually exclusive manner to a 

common binding site on NXF1 which encompasses the NTF2-like domain.  

 

SRAG works with ALY to enhance the RNA binding activity of NXF1  

When  NXF1  binds  to  ALY,  it  hands  mRNA  over  to  NXF1  and  remodels  NXF1  so  that  it  

binds RNA with higher affinity (Hautbergue et al, 2008). We therefore investigated 

whether SRAG might also play a role in remodelling NXF1. We incubated radiolabelled 

RNA with GB1-ALY and SRAG and then pulled down the protein:RNA complex using GST-

NXF1. The complex was then eluted and the RNA was subsequently UV cross-linked to 

proteins. Since GST-NXF1 produced a number of truncation products which masked 

where SRAG would migrate on the gel we confirmed the presence of SRAG in the 

pulldowns by Western blotting (Figure 5A). In this assay GST-NXF1 bound RNA weakly, 

but showed significantly enhanced RNA cross-linking activity in the presence of ALY, an 

effect that was further enhanced in the presence of SRAG (Figure 5A). In complex with 

NXF1, no RNA binding to ALY or SRAG was detected. In the case of ALY which cross-links 

with RNA efficiently by itself (Figure 5B), it is clear that the RNA is handed over to NXF1. 

In  the  case  of  SRAG  it  is  less  clear  whether  SRAG  retains  RNA  binding  activity  in  the  

complex with ALY and NXF1 as it binds RNA poorly in isolation (Figure 5B).  
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SRAG is required for efficient mRNA export  

To investigate the role of SRAG in vivo we  generated  stable  HEK  293  cell  lines  which  

expressed  inducible  miRNAs  targeting  either  SRAG,  ALY  or  SRAG  in  combination  with  

ALY and examined the impact of RNAi of these export factors on the protein levels of 

other export factors by Western blotting (Figure 6A). The levels of UAP56 were 

increased following RNAi of each export factor, with a particularly dramatic increase in 

the cell line where both ALY and SRAG were depleted. The levels of ALY did not increase 

in the SRAG RNAi cell line, whereas the levels of SRAG increased significantly following 

ALY RNAi. Together these data indicate that the cell mounts a compensatory response 

to loss of specific export factors by increasing the levels of other export factors in the 

same pathway. This response has previously been observed in both Drosophila cells 

(Herold  et  al,  2003)  and  human  cells  where  UIF  levels  increase  following  ALY  RNAi  

(Hautbergue et al, 2009). We also investigated the effects of SRAG RNAi on cell growth 

(Figure 6B) and found that SRAG RNAi had no significant impact whereas ALY RNAi led to 

a significant growth defect. Strikingly, the combined RNAi of ALY and SRAG led to cell 

death within 6 days. We investigated the impact of SRAG RNAi on mRNA export using 

fluorescence in situ hybridisation with oligo(dT) (Figure 6C). As reported previously ALY 

RNAi led to a small but detectable mRNA export block which was most apparent at 96 

hours post-induction of the ALY miRNA (Hautbergue et al, 2009). In contrast there was 

no discernable mRNA export block in cells following SRAG RNAi. However, the combined 

RNAi of ALY and SRAG led to a very strong mRNA export block which was visible as early 

as 48 hours post miRNA induction and was very severe by 72 hours. This strong export 

block probably accounts for the death of the SRAG/ALY RNAi cell line by 6 days (Figure 

6B). Together these data indicate that SRAG cooperates with ALY to ensure efficient 

mRNA export in vivo. We further investigated the impact of ALY and SRAG RNAi on the 

ability of mRNA export factors to directly associate with the mRNP using in vivo UV 

crosslinking  assays  in  denaturing  conditions  (Figure  6D).  Strikingly  SRAG  RNAi  led  to  a  

significant accumulation of ALY on mRNA, despite ALY levels remaining constant in the 

cell. This suggests that ALY displacement from RNA which is normally accompanied by 
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NXF1  binding  to  ALY  (Hautbergue  et  al,  2008)  is  disrupted  in  these  cells.  We  also  

observed  increased  levels  of  SRAG  associated  with  the  mRNP  following  ALY  RNAi,  

however, the levels of SRAG were also significantly increased in the cell, so it is not clear 

from these data whether SRAG is specifically blocked on the mRNP in these cells. 

Depletion  of  ALY  or  SRAG  had  no  impact  on  UAP56  association  with  the  mRNP,  

consistent with it lying upstream of these proteins in the mRNA export pathway.  

 

SRAG, THOC5 and NXF1 exist in the same complex and are all required for export of 

mRNAs.  

We have established that SRAG and ALY bind to different regions of NXF1 and that the 

proteins  appear  to  cooperate  to  ensure  efficient  mRNA  export.  Moreover  SRAG  and  

THOC5 binding to NXF1 are mutually exclusive. This raises the possibility that different 

combinations of  ALY with SRAG or ALY with THOC5 might promote export  of  different 

groups of mRNAs in the cell. Alternatively but not mutually exclusively, THOC5, SRAG 

and ALY might exist in a single dynamic complex in which NXF1 might exchange binding 

partners during mRNA export. To address this we immunoprecipitated FLAG-NXF1 and 

FLAG-ALY from cells and gently eluted the IP from beads using FLAG peptide. A 

proportion of the IP was subjected to Western analysis for TREX components (Figure 

7A). In the FLAG-ALY IP we detected multiple TREX components including UAP56. FLAG-

NXF1  associated  with  multiple  TREX  components  except  UAP56,  as  expected  since  

UAP56 is displaced from ALY by NXF1 (Hautbergue et al, 2008). We then took the eluate 

from  the  FLAG-NXF1  IP  and  subjected  it  to  a  second  round  of  IP  with  either  SRAG  or  

THOC5 antibodies and again analysed these IPs for TREX components. In both cases we 

identified multiple TREX components. These data indicate that NXF1, SRAG and THOC5 

exist in a single complex in cells. To examine whether loss of SRAG and THOC5 affected 

export of common mRNAs we analysed the export of specific spliced and intronless 

mRNAs in cell lines depleted for ALY, SRAG, THOC5 and combinations (Figure 7B). ALY 

RNAi blocked export of all mRNAs tested with variable efficiencies ranging from 15-70% 

inhibition. SRAG and THOC5 caused a much less severe block of export for the mRNAs 
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tested. In fact several mRNAs showed no export block at all and for the spliced mRNAs 

CCNL2 and EPHX2, and we even observed increased cytoplasmic RNA levels. The 

combined RNAi of ALY/SRAG (40-90% export inhibition) or ALY/THOC5 (40-80% export 

inhibition) gave a robust mRNA export block for all mRNAs tested. Together these data 

indicate  that  SRAG  and  THOC5  exist  in  the  same  TREX  complex  and  act  in  the  same  

pathway to export mRNAs from the nucleus to the cytoplasm.  

 

Discussion 

We have defined SRAG as a new component of the TREX complex which interacts with 

both  UAP56  and  NXF1.  SRAG  harbours  a  short  peptide  motif  found  in  other  UAP56  

binding proteins and competes with ALY for association with UAP56, though both SRAG 

and ALY are found in a single complex with NXF1 in the cell. ALY, SRAG and CIP29 are 

able to activate the ATPase and helicase activity of UAP56 and this in turn stimulates 

loading of SRAG and ALY onto mRNA. This suggests a model in which UAP56 acts as an 

assembly factor for TREX, recruiting subunits in a sequential manner and loading them 

into an assembling TREX complex on mRNA (Figure 7). Since CIP29 can bind UAP56 

simultaneously  with  ALY  it  may  well  be  loaded  into  TREX  in  combination  with  ALY  or  

may remain bound to UAP56 during subsequent ATPase cycles.   

It is not uncommon for RNA helicases to drive assembly and conformational 

changes in protein complexes and associate with specific proteins at different stages in 

the ATPase cycle. For example, the translation initiation factor eIF4A associates with 

eIF4G heat repeat domain 1, EIF4H and RNA in an ATP dependent manner and in the 

nucleotide free state associates with eIF4G heat repeat domain 2 (Marintchev et al, 

2009).  Similarly  the  DBP5  RNA  helicase,  which  is  involved  in  a  terminal  step  in  mRNA  

export makes interactions with other proteins and RNA which are coupled with the 

ATPase  cycle  (Folkmann  et  al,  2011).  Gle1  together  with  IP6 stimulate ATP binding by 

DBP5 which reciprocally stimulates Gle1 and IP6 binding to DBP5 and in this respect the 

action of ATP parallels that observed previously for ALY and CIP29 interacting with 

UAP56 (Dufu et al, 2010) . The ATP bound DBP5 is then thought to associate with RNA 
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and similarly UAP56 requires ATP to bind efficiently to RNA. Gle1 and IP6 stimulate ATP 

hydrolysis  by  DBP5,  which  also  mirrors  what  we  observe  with  SRAG  and  ALY.  

Subsequently, NUP159 promotes ADP release from DBP5 and ATP hydrolysis, together 

with ADP release, reduces the affinity of DBP5 for RNA. Whether UAP56 also requires an 

ADP release factor remains to be determined. UAP56 associates with the THO complex 

and  components  of  this  complex  may  be  involved  in  such  an  activity.  Ultimately  the  

DBP5 ATPase cycle is coupled with displacement of mRNA export factors such as Mex67 

from the mRNP on the cytoplasmic face of the nuclear pore (Lund & Guthrie, 2005). 

Thus, whilst there are certainly apparent similarities between UAP56 and DBP5 in their 

ATPase cycles, UAP56 appears to drive assembly of a protein complex whereas DBP5 

appears  to  be  disassembling  complexes,  therefore  the  details  of  how  these  two  RNA  

helicases work may have important differences.  

SRAG is a substrate for the arginine methylase PRMT1 (van Dijk et al, 2010) and 

here we have shown that arginine methylation enhances the ability of SRAG to bind 

NXF1 and reduces its ability to bind mRNA. Interestingly, ALY is also arginine methylated 

by  PRMT1  and  this  promotes  the  handover  of  mRNA  from  ALY  to  NXF1  during  mRNA  

export  (Hung  et  al,  2010).  Moreover  ALY  and  SRAG  appear  to  bind  synergistically  to  

NXF1 (Figure 4C) and loss of SRAG leads to accumulation of ALY on mRNA in vivo (Figure 

6D),  suggesting  it  may  be  incapable  of  recruiting  NXF1  efficiently  and  handing  mRNA  

over  to  it.  Therefore  the  combined  methylation  of  SRAG  and  ALY  is  likely  to  be  an  

important control step in the recruitment of NXF1 to mRNA. However, ALY only binds 

hypomethylated SRAG in vitro (Figure 3C). Therefore SRAG and ALY may directly interact 

at an early stage in TREX assembly prior to arginine methylation which promotes their 

association with NXF1. The observed synergy of binding to NXF1 may result from the 

altered conformation of NXF1 on binding ALY and SRAG rather than a direct association 

of the two proteins on binding NXF1. The use of methylation in the regulation of mRNA 

export is conserved since in yeast the methylation of mRNA export factors by the 

PRMT1 orthologue Hmt1 also alters their interaction with other export factors. 

Moreover Hmt1 is recruited to genes during transcription (Yu et al, 2004), therefore 
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methylation may provide an additional transcription coupled trigger for TREX assembly, 

together with splicing (Masuda et al, 2005) and polyadenylation (Johnson et al, 2011).  

SRAG and THOC5 bind in a mutually exclusive manner to the NTF2-like domain of 

NXF1 (Figure 4E). However, SRAG and THOC5 are found in a single complex with NXF1 in 

vivo. Together these data suggest that the NTF2–like domain of NXF1 exchanges binding 

partners within TREX during mRNA export (Figure 7C), though the order of binding and 

stages of mRNA export where partner exchange occurs remains to be determined. 

Consistent with the NTF2-like domain dynamically interacting with TREX components 

and other export factors, RBM15 and the related protein RBM15B also interact with the 

NTF2-like domain of NXF1 (Uranishi et al, 2009). RBM15 preferentially associates with 

the  nuclear  pore  and  promotes  the  association  DBP5  with  NXF1-mRNP  complexes  

(Zolotukhin et al, 2009). Therefore RBM15 may represent the terminal partner for the 

NXF1 NTF2-like domain during mRNA export. One explanation for why proteins maintain 

the interaction with the NTF2-like domain of NXF1 maybe that this, together with ALY 

bound to the N-terminus, enhances the NXF1 RNA binding activity, which is essential for 

NXF1 mRNA export activity (Hautbergue et al, 2008). Consistent with this idea, we found 

that SRAG works synergistically with ALY to enhance the NXF1 RNA binding activity 

(Figure 5A). In yeast, the loss of Yra1 (ALY in metazoans) from the mRNP through 

ubiquitinylation by Tom1 occurs on the nuclear side of the nuclear pore complex 

(Iglesias et al, 2010). Such a mechanism, if conserved in metazoans would also 

destabilise  the  association  of  SRAG  and  THOC5  which  bind  synergistically  with  ALY  to  

NXF1  (Katahira  et  al,  2009).  Loss  of  both  ALY  and  SRAG/THOC5  from  NXF1  would  be  

predicted to dramatically reduce its RNA binding activity and this together with the 

action of DBP5 on the cytoplasmic side of the nuclear pore is predicted to trigger 

dissociation of NXF1 from the mRNP.  

In addition to SRAG, five other putative new components of TREX have recently 

been identified, though none of these have UBMs which might promote direct 

interaction with UAP56. Therefore, assembly of these other components into TREX may 

be driven by interaction with UAP56 via an alternative interaction mechanism, as is the 
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case for CIP29, or indirectly by binding ALY or SRAG or via interactions with other TREX 

components. However, the role of these additional TREX components in mRNA export 

remains  unclear.  The  regulation  of  the  UAP56  ATPase  cycle  by  TREX  components  and  

establishing how UAP56 is  first  recruited to mRNA remain important questions for  the 

future.  

 

Materials and Methods 

Plasmid, Antibodies, and Cell cultures 

FLAG-NXF1, GST-NXF1 and 6His-ALY full-length and truncations were described 

previously (Hautbergue et al, 2008). The open reading frame of SRAG and THOC5 were 

cloned into pGEX-6P1, pET24b, and pET24b-GB1 vectors. Mutations in NXF1 and THOC5 

were generated by Quickchange mutagenesis (Stratagene). Human inducible FLP-In T-

REX 293 RNAi cell lines were constructed as described previously (Hautbergue et al, 

2009) using the following target sequences: SRAG (ATATGCATCCAATTGGTTGTC) and ALY 

(CCGATATTCAGGAACTCTTTG). miRNA expression was induced with 1 g/ml tetracycline 

(Sigma). The NXF1, CBP80 and Hpr1 antibodies were from Abcam. The ALY and FLAG 

monoclonal antibodies, anti-6His antibody, FLAG-agarose and FLAG peptide were from 

Sigma. The SRAG monoclonal antibody (KT64) was described previously (van Dijk et al, 

2010). Antibodies to THOC5 (Hautbergue et al, 2009) and THOC2 (Masuda et al, 2005) 

were described previously.  

 

GST-pulldown experiments and immunoprecipitations 

The indicated GST-fusion constructs were expressed and purified essentially as 

described previously (Hautbergue et al, 2009). The binding reactions were performed in 

1 ml of either PBST buffer (1X PBS, 0.1% Tween) for GST-fusion proteins interaction or 

RB100 buffer (25 mM HEPES-KOH pH 7.5, 100 mM KOAc, 10 mM MgCl2, 1 mM DTT, 0.05 

% Triton X-100, 10 % Glycerol)  when purified proteins were present. Both buffers 

contained RNase A (10 µg/ml). The bound proteins were then washed with RB100 

buffer, and then eluted with 50 mM Tris-HCl (pH 8.2), 40 mM reduced glutathione, 100 
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mM KOAc. Endogeneous SRAG was immunoprecipitated using 2 µg KT64 SRAG 

monoclonal antibody bound to 40 µl Protein G sepharose. FLAG-SRAG was 

immunoprecipitated using 30 µl FLAG-agarose (Sigma). RNAse A was used in 

immunoprecipitations where indicated at 10 µg/ml.  

Sequential immunoprecipitations 

18 µg of FLAG or FLAG-NXF1 was transfected into a 10-cm dish of 293T cells. After 48 

hours, each dish was lysed in 1 ml of IP lysis buffer (50 mM HEPES pH 7.5, 100 mM NaCl, 

1 mM EDTA, 1 mM DTT, 0.5 % Triton X-100, 10% glycerol) with 10µg/ml RNase A. The 

supernatants of cell extracts were incubated with 30 µl of FLAG-agarose beads (1% BSA 

blocked overnight) for 1 hour. The beads were then washed with 1 ml of IP lysis buffer 3 

times and the bound proteins were subsequently eluted in 1 ml of IP lysis buffer with 

100 ng/µl FLAG peptide. 2 µg of anti-SRAG  or 50 µL of anti-THOC5 antibody was bound 

to 30 µL of Protein G-Sepharose. The eluate from the first IP was incubated with anti-

SRAG or anti-THOC5 beads for  1 hour.  The beads were then washed with 900 µL of  IP  

lysis buffer 3 times. The bound proteins were finally eluted from the protein G-

Sepharose with 50 µl of (0.2 M glycine pH 2.8, 1mM EDTA), and analysed by 12% SDS-

PAGE and Western Blot with the indicated antibodies. 

 

mRNP capture assay 

A 15-cm dish of  293T cells  was UV-crosslinked in 1 mL PBS with 300 mJ/cm2 and then 

lysed in 1 ml IP lysis buffer described above. The extracts were cleared by centrifugation 

at 16100 g for 5 minutes 2 mg of total protein was denatured in Binding Buffer (10 mM 

Tris-HCl pH 7.5, 0.5 M NaCl, 0.5 % SDS, 0.1 mM EDTA) then incubated with 25 µl (bed 

volume) of oligo(dT)-cellulose beads (Sigma) for 1 hour at room temperature. The beads 

were then washed with 900 µl of Binding Buffer 3 times. The mRNPs were finally eluted 

for 30 min in Elution Buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 50 µg/ml RNase A) and 

analysed by 12% SDS-PAGE and Western Blot with the indicated antibodies. 
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UV-crosslinking experiments 

A 5'-radiolabeled 15-mer RNA (5'-CAGUCGCAUAGUGCA-3') described previously (Hung 

et al, 2010) was incubated with the indicated proteins for 15min on ice in 20µL of RNA 

binding buffer (15 mM HEPES pH 7.9, 0.2 mM EDTA, 5 mM MgCl2, 0.05 % Tween 20, 10 

% Glycerol, 100 mM NaCl). The reactions were then UV-irradiated for 15 minutes on ice 

and then analysed by SDS-PAGE. The gels were dried and the results were visualized by 

Phosphorimaging. 

 

Human SRAG expression and purification 

Full length SRAG was subcloned into a modified pFASTBAC (Invitrogen) vector. The 

corresponding baculoviruses were made in SF9 cells according to the instructions of the 

Bac-to-Bac Baculovirus Expression System from Invitrogen. Full length SRAG was purified 

on cobalt beads (TALON) from a 400 ml roller bottle culture of SF9 cells three days after 

infection. Purified SRAG was used in the ATPase, helicase, and RNA remodeling 

experiments. 

NXF1 Remodeling assay 

The RNA remodeling assay was described previously (Hautbergue et al, 2008). Purified 

GB1-ALY was rst incubated with 32P-radiolabeled RNA; then, GST-NXF1-p15 

with/without SRAG were added to the ALY:RNA complexes and complexes purified on 

glutathione sepahrose. After protein:RNA complexes were eluted using reduced 

glutathione, bound RNA was UV-cross-linked. Eluted complexes were analyzed by 

Coomassie blue staining Western Blotting and PhosphorImaging. 

 

Fluorescence in situ hybridization 

Fluorescence in situ hybridization using Cy3 labelled oligo(dT) was carried out as 

described previously (Hautbergue et al, 2008).  
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ATPase assay 

ATPase assays were essentially performed as described in (Cruz-Migoni et al, 2011). 

Reactions of 50 µl were stopped by the addition of 10 µl 0.5 M EDTA and supplemented 

with  140  µl  H20 before addition of 800 µl of Malachite green-Phosphomolybdenum 

reagent.  

 

Helicase assay 

The helicase assay was described in (Cruz-Migoni et al, 2011). Briefly, 2 µg recombinant 

UAP56-6His synthesised in E. coli were incubated in the presence or absence of 

recombinant GB1-ALY, SRAG, or MAGOH-6His at a 2:1 molar ratio for 15 minutes at 

room temperature prior addition of duplex RNA and ATP. Products of reactions were 

run on 15% native polyacrylamide gels in TBE buffer before Phosphorimaging. 

 

Quantitative Analysis of Total and Cytoplasmic mRNA Levels  

Total and cytoplasmic RNA were extracted from indicated RNAi stable cell lines as 

described (Hautbergue et al, 2009). Dried RNA pellets were resuspended in H2O and 2 

g RNA  was used for cDNA synthesis using Poly(dN)6  random priming as described by 

the manufacturer (Bioscript kit from Bioline). 35 l H2O  were  added  to  20  l  cDNA  

reactions and 1 l diluted cDNA with 5 ng/ l  primers were used in 10 l quantitative 

PCRs (Quantace) run on a Rotorgene 6000 (Qiagen). 
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Figure Legends 

Figure  1. SRAG interacts with UAP56 and TREX. (A) Alignment of the UAP56-binding 

motif (UBM) from REF2-1 and UIF with SRAG proteins. (B) Pull-down competition assay 

with GST-UAP56 complexed  with  35S-labeled SRAG  and  increasing amounts of GB1-

ALY. Proteins were detected by Coomassie staining and Phosphorimaging.(C) 

Coimmunoprecipitation of SRAG with TREX subunits using 293T cell extract. SRAG was 

immunoprecipitated using anti-SRAG monoclonal antibody and TREX subunits were 

detected by Western blotting with the indicated antibodies. Monoclonal FLAG antibody 

was used as a control for the immunoprecipitations.  

 

Figure 2. SRAG activates the ATPase and helicase activity of UAP56. (A) ATPase activities 

for  purified  UAP56  in  the  presence  of  ALY,  SRAG,  CIP29,  RNA  and  ATP  as  indicated.  

Values are the average from 3 independent assays and error bars represent the SD. 

Values are shown relative to the values observed for UAP56 + ATP + RNA. (B) The 
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helicase assay was performed at 37°C for 15 min with 1 mM UAP56, 2 mM ALY, SRAG, 

CIP29 or MAGOH. (C) In vitro protein:RNA UV cross-linking assay. Puri ed GST-UAP56 

and GB1-ALY, SRAG, or MAGOH with/without ATP were UV-crosslinked with 32P-

radiolabelled RNA oligonucleotide. Resulting complexes were analysed by SDS-PAGE 

stained with Coomassie blue and Phosphorimaging. (D) In vitro reconstitution of UAP56-

RNA-ALY complexes. Purified UAP56 expressed in E. coli was first incubated with 

continuously 32P-radiolabelled RNA and non-hydrolysable ATP. Recombinant GST or 

GST-ALY were added to the reactions when indicated. Bound RNA was cross-linked (+) 

or not (-) to the proteins by UV irradiation, treated with RNAse A, and the resulting RNA-

ALY protein complexes were purified using glutathione sepahrose. Eluted complexes 

were analysed on SDS-PAGE by Coomassie blue (left panel) and Phosphorimaging (right 

panel).(E) mRNP capture assay. Poly(A)+ RNA  from  stable  FLP-In  293  cells,  expressing  

Control or UAP56/DDX39 miRNAs was puri ed on oligo-dT beads in denaturing 

conditions after UV cross-linking (+) or not (–). Total extract (1% of input) and eluted 

proteins were analysed by Western Blotting with SRAG antibody. 

 

Figure 3. Arginine methylation of SRAG regulates its interaction with export factors. (A) 

FLAG-tagged  SRAG  was  expressed  in  293T  cells  grown  in  the  presence  or  absence  of  

AdOx for different time. After treatment, 10µg of total cell extracts were analysed by 

Western  Blot  using  anti-FLAG  antibody.  (B)  Western  Blot  analysis  of  293T  cells   

incubated with 10 mg/ml cycloheximide for 8 hours. Whole cell extracts of cells grown 

+/- AdOx were  analysed (lanes 1,2). Additionally, untreated cells were lysed in a buffer 

+/- AdOx and nuclear and cytoplasmic fractions were analysed with the indicated 

antibodies (lanes 3-8).  SSRP1 Western blotting was used to confirm that the 

cytoplasmic fractions were not contaminated with nuclear material. (C) GST-UAP56, 

GST-ALY,  and  GST-NXF1  were  used  in  pull-down  assays  with  293T  cell  extract  

with/without AdOx in the presence of RNase. Proteins were detected via Coomassie 

staining and Western Blot. (D) Immunoprecipitation of NXF1 from 293T cells treated 

with AdOx as indicated. Immunoprecipitations were carried out in the presence of 
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RNase A. Proteins were detected by Western Blotting. (E) GST-UAP56, GST-ALY, and 

GST-NXF1 were used in pull-down assays with recombinant SRAG alone or co-expressed 

with PRMT1 in the presence of RNase A. Proteins were detected via Coomassie staining 

and Western Blot.(F) mRNP capture assay. Poly(A)+ RNA from 293T cells +/– AdOx was 

puri ed on oligo-(dT) beads in denaturing conditions after UV cross-linking (+) or not (–). 

Total extract (1% of input) and eluted proteins were analysed by Western Blotting with 

SRAG antibody.  

 

Figure 4. Mutually  exclusive  binding  of  THOC5  and  SRAG  to  NXF1.  (A)  Schematic  

representation of NXF1 truncations used in this study. (B) GST-ALY and GST-SRAG pulled 

down 35S-labelled NXF1 full-length and truncations. (C) Pull-down competition assay 

with GST-NXF1-p15, 293T overexpressed FLAG-SRAG or FLAG-UIF, and increasing 

amounts of purified GB1-ALY in the presence of RNase A. Proteins were detected by 

Coomassie staining or Western Blot. (D) Pull-down assays using GST-NXF1(aa 371-619)-

p15 wild type or mutants with 293T cell extracts from cells transfected with FLAG-SRAG 

in the presence of RNase A. Proteins were detected by Coomassie staining or Western 

Blot. (E) Pull-down competition assay with GST-NXF1-p15, with 293T cell extracts from 

cells overexpressed FLAG-SRAG and increasing amounts of purified THOC5-6His in the 

presence of RNase. Proteins were detected via Coomassie staining or Western Blot. 

 

Figure 5. SRAG and ALY modulate the RNA binding activity of NXF1. (A) GB1-ALY was 

rst incubated with 32P-radiolabeled RNA. Then GST-NXF1-p15 with/without SRAG were 

added to the ALY:RNA complexes. After protein:RNA complexes were purified using 

glutathione sepharose and subsequently eluted with reduced glutathione, bound RNA 

was UV-cross-linked. Eluted complexes were analyzed by Coomassie blue, Western Blot 

and PhosphorImaging. (B) Purified GST, GB1-ALY, or SRAG was incubated with 32P-

radiolabeled RNA with/without UV-crosslinking. Eluted protein:RNA complexes were 

analyzed by Coomassie blue and PhosphorImaging.  
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Figure 6. SRAG is required for efficient mRNA export in vivo. (A) Total cell extracts from 

stable  FLP-In  293  cells  expressing  Control  RNAi,  ALY  RNAi,  SRAG  RNAi  and  ALY/SRAG  

were analysed by Western Blot.(B) Growth of stable cell lines following induction of 

miRNAs targeting the indicated genes. Error bars represent the standard deviation of 

three independent experiments.(C) Localization of Poly(A)+ RNA following induction of 

miRNAs targeting export factors for 48, 72, and 96 hr. All equivalent panels are shown at 

the same exposure.(D) Poly(A)+ RNA  from  stable  FLP-In  293  cells,  expressing  Control  

RNAi, ALY RNAi, or SRAG RNAi, was puri ed on oligo-(dT) beads in denaturing conditions 

after UV cross-linking (+) or not (–). Total extract (1% of input) and eluted proteins were 

analysed by Western Blotting with ALY, SRAG, UAP56, or CBP80 antibodies.  

 

Figure  7.  SRAG,  THOC5  and  ALY  function  in  the  same  mRNA  export  pathway.  (A)  

Immunoprecipitations were carried out with anti-FLAG antibody followed by anti-SRAG 

or anti-THOC5 antibody. Proteins were detected by Western Blot. (B) Quantitative RT-

PCR analysis was used on cytoplasmic and total mRNA to assess the levels of each gene 

relative to the U1 snRNA. mRNA levels for the cytoplasmic/total ratio are expressed 

relative to the values seen in the control RNAi which was set at 1.0.  Error bars represent 

s.e.m. from 3 experiments. (C) A model for assembly and maturation of the TREX mRNA 

export complex. Me = arginine methylation.  
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Strept. PD of Bio-SRAG

Name Aliases IPI Unique 
Peptides

MASCOT 
score

SRAG FOP, CHTOP IPI00469107 4 340
DDX39 DDX39a IPI00123878 4 159
UAP56 BAT1, DDX39b IPI00409462 4 266
HPR1 THOC1, p84 IPI00153778 3 191

THOC2 Tho2 IPI00664886 7 345
ALY REF, THOC4 IPI00114407 4 343

THOC5 fSAP79, Fmip IPI00222687 2 156
THOC6 fSAP35, WDR58 IPI00123949 2 92

UIF FYTTD1 IPI00462979 4 372

Table S1

Supplementary data 
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SRAG                                 SC35 OVERLAY                               DAPI

Figure S2. Localization of SRAG in HeLa cells. Cells were stained with antibodies to SRAG 
and SC35 and DNA was stained with DAPI. 
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Figure S3
Purified GB1-SRAG alone or co-expressed with PRMT1 from E.coli. Proteins were detected via 
Coomassie staining and Western Blot.
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