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ABSTRACT 

An investigation has been performed into the dynamics of thin 

liquid sheets. Observation by high speed photogra9hy has revealed a 

newmech&nism of sheet instability, electrohydrodynamic in origin, 

when water· is injected into hot combustion gases. An estimation 

has be~n made of the charge transferred to a liquid sheet from an 

ionised gas and a first order solution of the resulting coupled 

surface wave has been derived. 
I 

General first order solutions of wave-growth on finite viscosity 

liquid sheets have been made, while a second order solution has been 

obtained for the growth of inviscid sinuous waves. The results of 

the latter analysis have been used to satisfactcrily correlate the 

coherent sheet length. 
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Chapter 1. Introduction 



. l..~ 

The atomisation of liquids is an essential feature of a wide-

spread range of industrial equi~ment snd has important applications 

in combu~tion (1), chemical (2) and agricultural engineering (3). 

In many cases· it is· desirable to control the quality of 

atomisation within well~defined limits. For example, in combustion 

a proportion of very small drops is necessary to assist ignition and 

promote flame stability, although the size range and relative 

proportion of bigger drops must be kept within suitable limits in 

order to achieve complete combustion. On the other hand, in 

agricultural usage, where it is cemmon practice tc spray concentrated 

solutions of toxic selective materials, it is essential for the 

proportion of fine drops within the spray to be reduced to a minimum 

in order to avoid contamination of the surrounding areas by "drift". 

No successful solution to this problem has been found, although it 

has been mitigated by the use of additives to control the physical 

properties of the liquids·and by the use of speCially designed 

atomisers for specific purposes. 

Few advances can, however, be expected in the contrel of the 

spray characteristics until a fuller understanding is achieved of 

the complex precesses of drop formation. 

While there is a growing knowledge of the factors influencing 

the disintegration of liquid streams under normal atmospheric 

conditions (4), little is known of the performance characteristics 

of spray nozzles in more extreme environments. The purpose of this 

research has been tg study the mechanisms of drop formation in high 

t \,. b designed to enable visual temperature gases, and appara us lias een 

f t Y ~ to be made in combustion and phctcgraphic observation 0 we er spra s 
. 0 

gases at temperatures ranging up to lOCO C. The single-orifice fan· 
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spray pressure nozzle was used for mest of the work since it produces 

a flat sheet which is convenient for both analytical and experimental 

study, and on which there is a good background of information (5~11). 

Former investigations (6) at normal atmospheric temperature and 

pressure have established a mechanism of drop formaticn by rapidly 

growing sinuous aerodynamic waves, as a result of which fragments of 

liquid are detached at regular intervals and contract into unstable 

ligaments from which drops are formed. On the basis of a simplified 

model, expressicns were developed ~hich related the mean drop size 

to the operating condition~. 

. 0 
It has been found in this work that hot gases above 300 C cause 

". high frequency capillary waves to be superimposed on the sheet and 

disintegration then occurs by the combined action of aerodynamic 

waves and perforations, the contribution of the latter predominating 

with increase in temperature. Measurements have slown a critical 

dependence of break-up length and drop size upon the nature of the 

disintegration process. It is demonstrated that the new wave 

system is electrohydrodynamic in origin, the electric field being 

generated by the charged particles present in the gas. 

An analysis has been performed of the electrical boundary layer 

flow characteristics around a liquid sheet and first order expressions 

derived for the criterion of stability and wavelength of the neutral 

wave. Calculated and observed wavelengths are found to differ 

appreciably and this is attribut~d to unknown turbulent motion around 

the sheet. . 

Previous first order theories provide a basis upon which sheet 

break-up lengths and average drop sizes may be correlated, but no 

information is provided on the actual mechanism by which the sheet 

disinteerates. In this thesis further insight has been obtained by 
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extending the analysis to include second 'order terms, and it has 

been shown that for low viscosity liquids u critical amplitude exists 

at which the s~eet breaks down,disintegration occurring at positions 

~orrespondinc to ~ and % of the wavelength. Break-up lengths have 

been shown to be a function of the amplitude of tIle initial disturbance 

and experiments tave demonstrated its value to be critically 

dependent on a Reynolds number, based upon the nozzle orifice 

dimensions.· 

The first order theory has b~en extended to include real 

liquids, and expr8ssions are derived whicll show the effect of viscosity 

on wave growth for both sinuous and dilational waves. 

The mechanism of disinteeration of the edge of a fan spray sheet 

has been explained as a combination of both Rayleigh and Taylor 

instability ,and exrressions have been developed for the trajectory 

of the rim and for the size of drops formed from disintegration. 

A critical assessment has been made of th~ commonly accepted 

procedure for ana lysine photofrapts cf sprays. It is SllGWn that, 

because of the periodic nature of drop formation, unsteady state 

conditions may persist which eive rise to unpredictable errors and 

it is therefore concluded that accurate drop size frequency 

distributions can only be obtained from an analysis of single flash 

photographs taken near the atcmiser. 



5 

Chapter 2. Theoretical Considerations 
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·~1. _. '" Dlii",mics of the Rim of a Fan Spral Sheet 

The flow cheracteristics of fan-shaped liquid sheets have been 

subjected to much study (see for example Ref. 4.), but little attention 

seems to have been directed towards the factors influencing their 

developlJent. A typical photograph o'f a low viscosity fa.n spray sheet 

~ssuing from a single or-ifice fan spray nozzle is shown in Fie.(2:).a.).and 

it is seen that as a result of surface tension the edges contract and a 

curved boundary is produced as the sheet e:>.."i;ends from the origin. 1'11e 

rims ini~ially thicken as liquid accumulates from the contracted sheet, 

but, as a result of disturbances which sL~ulttneously appear on the 

outer surface, rapidly break down into drops. Dombrowski at al (19 

derived an approximate expression for the trajectory of the ri:ns by 

neglecting the effect of accumulated mass and they found that it could 

be used to correlate results for low viscosity liquids over a ~ide range, 

of conditions for cases where disintegration occurred close to the origin. 

At relatively low e,jection velocities the coharent rim may persist 

i, 6 ... 

some considerable distance before break-up and thus effectively control the sheet 

area Fig. (2.1b). In thissect .. ion, an' ~n~riysis is carried .out·of: i.t..s path, 
and its stbbi1ity. 

~~l.l Trajectory of the Rim of a Fan Spral Sheet 

The equilibrium system considered, Fig.(2:2) comprises an attenuating 

inviscid liquid sheet bounded by liquid ri~s of cylindrical cross-section. 

Conservation of momentum noroal to a rim elem~nt of length, ds, gives 

Ad ',1 + (2.1) 

ds 

Where C is the angle between the tanGent and radius vectors J .rnile 

conservation of momentum along the ric element gives, 

Pd(AU2
t ) =ed(AUi;) ~ cosd (2.2) 

CIS -<is 

For cons·er-v"'ation of mass, the net change of flux, within the ele:wnt is 

,balanced by liqui~ entering from the liquid sheet i.e. 

, (2·3) 



" , ,r' 

.' i 

In the absence of external forces, the thickness of a fan spray sheet 

varies inverselY with distance from the origin.*(lO)viZ. 

h = 1£0 
r 

and henco eq,uation (2.3)m'tJ.y be re-written as, 

P d(AUt ) = ptt I~de' - -as ds 

Eliminating d (AU . ...> from equation (2,.2) and (2.4) 
-..!:. 

ds e 
2 ~ 5 AUt = U;K cos d d e 

eo 
~'hus combining equations (2.1), (2.4) and (2.5) and noting that 

sin 6= i ,r ~~ we get, 
ds 

N = di·r 
d'S 

lYhere N = 2'1' 
pTi£ 

. 2 ... 
Sl.Tl. ,0. 

r 

and, .ill!" the radius of cUl-vaturo of the rim, is given by 
ds 

(2. 6) 

Inspection of photographs reveals that to a first order of a.pproximntion 

a. parabolic rela tiOll exists bct1·reen the dimensionless parumeter Nr and 

(e - eJ and hence, 

giVing, . 

~ - 2. _dG 
ds - 2 d.r 

Thus, combinini equations (2,6) and (2.8) we r;et, 

-
* Streamlines in a :f'a:;l.-shaped sheet appear to diverge from a centre of 

Pressure behind the orifice. (10) a~d the . ~rigin is taken at this point 

(Cf]j'I' "2) log .r.. • 

7 



" . , 
; 

where B 

= 

= 2. 
2 

4 (N - B)2 -2 
(1 - (1-r (N - B» ) 

r>cos & de 

eo 
In order to provide a simple analytical expression for the trajectory 

of the rim, it is assumed that since ~ is small over a large portion of 

tile rim, B will vary little over the range of integration and may be 

replaced by the average value i defined by, 
. l" 

B = .1 (B dr . 'r.J 
\""0 

Equation (2.9) may thus be inteB'!'ated to giver 

'(6 - 6 0 ) =:: L cos-
1 

(1- 2r (~ - B»] ro 

. , 

" 

For the nozzles used in the present "Tork (of Table 2) ro covers a 

range from about 0.4 to 0.75 rom, and. thus, except within the vicinity 

of the orifice, ro <<. r. Rence for cos 6 ~ 1, the si'..ape of the 

boundary may be described by the following l4elation. 

(2.1 0) 

The velocit,y of the rim, U
t

, is obtained ,by integrating e~uation (2.4) and 

combining with e~uation (2~5r viz. 
(e . 
) cos & de 

0 0 

U Uo 
t =-a-a '. . 0 

For small values of & , U
t 
~. U

o
_ 

:; 

.. ' .. :" 

", ~ 

'. ; 

. ',' . 
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2.1.2 Stabili.ty of a Liquid Rim Lovinf,Lalonfi a Curved Path 

An enlarsement of part of a ri.m cn a sheet of water is shewn in 

Fig.(2.3) which demcnstrate6 that disintegration occurs as a result of 

a.high frequency wave motion. A pictorial representation is given in 

Fif,.(2.4). Growth is initially symmetrical, but becomes asymmetrical 

at later stag:es, the waves h·avinz; the form of spiky projections 

separated by shallow troughs. Eventually the troughs break through 

the rim into the thinner sheet where expansion takes place at a con-

siderably accelerated r~te. The base of the wave becomes rapidly 

undermined to ferm a swollen ended protubernnce joined to the sheet by 

a narrow stem. The end of the protuberance contracts into a spherical 

form end then beccmes detached ~hen the stem breaks down, producing 

large drops with a few satellites. It has been found that under 

steady flow cenditions this mechani~m may fenerate a 6trea~ of 

regularly sized drops (c.f. Fig.(2.5). The general appearance of 

the waves is characteristic of Taylor instability U2) and the wave 

erowth can thus be expected to be influenced by thi centrifugal forces 

generated by a curved trajectory. A rigorous analysis of the problem 

is most complex; it requires soluticn of the equations of mction in 

three dimdnsions ~here body fcrces and equilibrium fluid boundaries 

are both time dependent. I , . most cases the variation of rim ..cv;ever, ~n 

diameter over several wavelengths is very small and the problem can be 

reduced to that of a laterally accelerated liquid jet cf copstant radius. 

T~e system thus considered {Fig.(2.6» com~riseB a cylindrical 

jet of uniform crese sectien in which the motion is constrained along 

a line formed by the intersection ~ith the surface of a plane passing 

through the jet axis. ~he liquid is accelerated in a direction from 

It is aSBumdd ctat tts 
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cross section of tIle jet remains sensibly circular under the action cf 

the acceleration. 

Instability can be attributed toa combination of two effects, 

n~rnely, the capillary force generated by a reduction of surface energy 

and a ~cdy fcrce generated by acceleration. The two effects Gay be 

studied by Lagrange's method 03) which requires evaluation of the 

kinetic and potential energies of the jet when subjected to an arbitrary 

disturbance. 

Where viscous dissipaticn is negligible)conservation of energy 

gives, 

(Sl - S ) =-(Q'l - Q ) o "0 
(2.11) 

where ~ and Q denote respectively total kinetic and potential energies 

ccntained in one wavelength) and till) subscripts 1 and 0 denote the 

disturbed and initial state of the jet. The chanee in potential 

energy between tbese two states, (Ql - Qo)' results from a net change 

in surface area and net force displacement. 

In the disturbed state the surface area of the jet along a wave 

is given by the relation~ 

A
1
.n "(1 +( ~~',z)y,,(l+ ~(~~Ni 

-'\1 0 

d (~x ) d® 
C:'ll 

For an arbitrary harmonic disturbance of the form, 

r = a + H cos kx cos mB: 

(2.12) 

','ihere B = H(t) <::<. a, and a ·is the effective ra.dius of the disturbed 

jet (22). 

E . f th . t nd 4n equation ( 2.12) to include terms .Jxpans~,)n c . e ~n egra .J. _ 

2 ' 
of COr ) gives I 
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H k 2}J2 2 2 
(1 + cos(kx) cosem 8) + sin (kx) cos (m (8)+ 

a L 

m2H2 2 
-_- cos (kx) sin2 (m S » d(~:) d e 
2a~ Lh 

U6ing the identities, 

and 2 cos (x) .-

1 - cos(2x) 
2--

1 + cos(2x) 
2 

equation (2.13) may be integrated to give, 

f ' 2u2 . (~ ('.- ) 
, Al = 2tr a +t K ;: a (! + Sl.~mc::m_1I ) 

(2.13) 

The net change in surface area bet~een the disturbed and un-

disturbed states is therefore, 

= 2'i1'a - 20a 
o 

k2 2) 
~ (Sf.. 

+ 2 l 2 

where a , the radius of the undisturbed je£ is related to a, the o 

effective radius of the disturbed jet by continuity viz. 

·0 = a[iJf 
~tr 0 

Combining equations (2.14) and (2.15) gives to C(H2) 

2 
m' "2 (~ 
a 2 

sin(2mfr 
4m 1r 

The surf ~ (- Q) as~oCl.·ated with this con-ace energy cllange, ~A1 - AO --

figuration is 

" )' -' TaH
2

'fj [( 1 sine 2I1lIT ) (k2 - 1.
2

) + 
(QA1 r:J'Ao =--2-- 2. + 4m'1l a 

(2.14) 

(2.15) 

(2.16) 
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The energy chanCl'e associated with the force displacement (Q' -,..,' ) 
U fl <tfo 

is given by, 
+~ , 

= ~~l J r ~(H cos(kx) 

-'11' 0 

cos(rn 0) - (a 
o 

2 - a» 

f Do d (xk) d D.H cos ~ -zit ~ 
,(2.17) 

where f is the centrifugal acceleration. 

Using the relation 

~os e cos(2m 9)= ~(cos«2m + 1) S ) + cos«2m - 1) e» 
, ., 2 

equation. (2.17) can be integrated to give to O(H ) 
2 " 

( ) __ afH ( sin«2m + 1)7r ) + 
Qf 1 - Qf 0 - (' 1 a ( (" 2m + 1) 

sin«Zm - 1)11' )} (2.18 
(2m - 1) 

For irrotational flow the kinetic energy can be written as 

s = +J'f'r 1 elf r' cP (acp) d ( xk) d e 
2. C)1" -2'1r-

-iJ' 0 

(2.19), 

~, the velocity potential is a solution of' Laplace's equation which 

written in cylindrical co-ordinates j,s, 

and is made unique by the boundary conditions, 

'd<f> C>r' 
ar = - cft" 

for ~ = a + E cos(kx) cos(m e ) and-'li < B ~'ir 
and ciQ) 0 

Or' = 

, f~r r' = a + E cos(kx)cos(m e ) and 

The a'ppropriate solution is" 

~ =-H
t 

co~(kx) cos(rn 9 ) Im(kr) 
k I ,(ka) ID,r 

, 

t 
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where I is a modified Ressel function; I I is its derivatives with 
m m,r 

respect tOkr~ and m may take only the values~, ~, ~,etc. 

Equation (2.19) may now be integrated to give to 0(H
2

) 

2 
.!it. 

= 2k 
Im(ka)'T\' 

I I ( ka) 
In,r 

If it is now assumed that the wave amplitude H varies as 

(2.20) 

Hoexp ("~t), then combining (2.16), (2.18) and (2.20) the amplitude 

growth rate, ~ ! 
, is defined by, 

l1 + 
sin(2m'h' )] 

H2 r (ka)·· 
TH2 t sin(2m'i'r' ) ) t m 

~'lrm • k I 10ea) = -- (1 + 2'i1 m 2 
m,r a e 1 

sin«2rn + l}!r ) 
(2m + 1) + 

(2.21) 

Equation (2.21) indicates that the en1y unstable mode corresponds 

to ill = ~ and the relation may therefore be written, 

I~(ka) 

IIi. I ( ka) 
l~, r 

and the criterion of instability becomes 

C[ + 3T _ ) > Tk2 

2 4a2el & 

(2.22) 

(2.23) 

For a rim of slowly increasing th~ckness subjected to a variable 

normal acceleration, the total growth may be defined in terms of the 

time aver::l.ocre Q rn wh ere - fJI, , 

. t 
. 1 S ~m = t 0(t) dt (2.24) 

o. 

It has been shown in Section 2.1 that the stape of the boundary 

may be described by the following relation, 



Nozzle axis 

, , 
" . -, , , 

"- , 

FIG.2.7 TRAJECTORY OF RI~v1· 

, , , , 
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4Tr 2 
-- == 1 - cos (e - eo) + 1. 5 ( e - eo) 
p K u2 
\.1 0 0 

(2.25) 

where e defines tlle direction of the tangent velocity vector at the 
o 

origin' (cf. Fig. (2.7»), 

3 dr 

tte radius of curvat~re at any point is given by, 

R = 2" de (2.26) 

end that for the greater paft of the rim)U
t 

is close to the velocity of 

tbe sheet U • 
o 

(e -8 )<:1 
o 

Thus, combining (2.25) and (2.26), and noting that 
2 

1 - cos(9 - e ) ~ (e - e 0) ,tJ}e acceleration 
'0 2 . 
2 

experienced by the rim (i.e. ~t ) is given as 

for 

f = 3T (2.27) 

liOelKO(e - 9 0 ) 

. whilst t~e radius at any point io given as 

The criterion ~f stability therefore becomes, 

3 ('i'r + ~) "7 k 2 
LtK (e - f) ) o 0 

which is independent of surface tension, density and vilocity~ . 

Equation (2.24) can only be solved analytically fer the limitinE case 

of ka '7 1, 1. e. tIle diameter 2a :;. ;. Inspection of a large 

nUmuer c-f protographs indicates nat this condition corresponds to 

liquid sheets of low ejection velocity, ~hen the rims are of relatively 

large curvature. Thus, 

1" (ka) 
2 }~ sinh(ka) -:::. ('iT ka) /2 

and, I.,' ,(ka) t- cosh(ka) + 
sin!::.(ka) ] (_2_)72 

Y2,r 2ka 'i'rka 

and hence, 

1./ (ka ) 
}'2 ~ 1 

. I.:-~, :/1<:.a) 

(2 ""0) • c.. "' 
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Combining equations (2.22), ,(2;2~), (2.27), (2.28) and (2.29) gives; 

1 ft 
~m = t (2.30) 

o 

In principle, the lower limit of integration in equation (2.30) 

should be taken from the instant at which the rim has thickened 

sufficiently for the a~ove requirement to be satisfied. !1owever, the 

growth is initially small and little error will be incurred by taking 

the limit as zero. 

Since ds = ~dt end noting also that 

equation (2.30) ~ay be rewritten in terms of 0 viz, 
2 e 

(J. = 3(1)' + i) (e luO )~J 
I-'m 4( e - e) T 

, 0 a. 

1 
p( e - e 'PI 2 _ e )::.)~ 

~ 0 (1 - P (e c 
k 

2 . 

(1 + (e -4 eo) f1 dEl (2.31) 

4K k 2 .-
where P ~ 0 1 ~ 

=(3('fT + DJ 
" 

Under normal operating conditions rim disintegration occurs wrien 
2 

1 and sinc e for instability 4k Ko '( B - (7 ) ~ 1 
"='3-r( ~'iT-+-{') 0 

(e - e ) ~ 
. 0 

e'quation (2.3l) can be simplified to give, 
2 9 ~ 

3('iT + t) 
~ m = 4( e - 9 ) 

elUo ~ r·p(B -6 0 ) f'l 
( T ), j k~ l 

p2 
----2 (8-e) , 0 

o eo 

...... 
which on integration gives, 

U 2 
3(~ + 1) p (el 0 ~ 

~ m C 4 Tk ) 

'4 p 
28' (e-9 

5/2 .' 
) ...... 

o 

J de 

(2.32) 
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The wave cf maximum growth, ~'d' with ~ave number k'd is 

obtained at any point along the rim by putting = o. Thus, 

fr(;m equation (2.32. ) 

Equation (2.33) shows the wavelength to be independent of sheet 

velocity and liquid properties and dependent solely on the sheet 

thickness parameter and the distence from the orifice. },owever, only 

the first of these predictions tas been verified, the observed (or 

dominant) wave remaining sensibly con~tant along the rim. The latter 

result is not unexpected since the linearized analysis cnly effectively 

describes waves during thei~ early stages of growth, higher order 

terms not being taken into account. Calculated wavelengths for low 

values of (e - 9 0) where the 'waves are seen to be in their early 

stages of growth are about one third of those observed. Measurements 

of wavelength were made for the range of experiments listed in Table 5 

and the resulting relation between the dominant wavelength, \ d, and 

K is e;iven by, o 

Ad = 2.42 K }2 
o 

Equations (2.32) and (2.34) have been used to estimate the sizes 

of drops produced when the rim eventually disintegrates, by assuming 

that tie liquid in each drop is derived solely from that tontained in 

.' one wavelength. By mass balance the drcp diameter is given by, 

(2.35) 

where a* denotes the effective radius the rim would have at the point 

of break-up, and is eiven by, 

a* = (Ie o 
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Br~ak-up occurs when the amplitude of the wave grows to a critical 

value, and is defined by the relation, 

H'" = II exp «(3 * (e * - e ) ) a ill 0 

which may be more conveniently wtitten as, 

f\;. (e * - eo) = In (~~ * ) 
o 

where the asterisk denotes values at break-up. From (2.32) and 

2 

)%{ ~£"{e* - e)>{ Pd _ e )3/2 -
3 Q .. 0 - 5 <8* 0 

1 ( fl*) = Canst. x n 
Ho 

Since in E.eneral Pel<S - e 0) ~ 1 the series may be truncated 

after tte first term giving, 
. .. 

(9* - e )3/2 p 
o d 

12 H* ) = In (E)x Const. 
a 

Combining equations (2.34), (2.35) and (2.37) 

. K 2 

D t · (T )1/9( 0 )2/9 = cons fl U
o 

In (~*) 
o 

The tern. on the right hand side of equation (2.38) contains the 

unknown initial and final wave amplitudes. It is shown in Sectien (4.3) 

that for sheets undergoing aeroclynamic wave disintegration In <fo) 
has a particular ccnstant value when tte orifice Reynolds number is 

below 9,OCO and another value between Reynolds numbers of 9,000 and 

33,OCO. In the present study all Reynolds numbers lie below the 

fermer value and sin~e it is reasonable to assume that rim waves will 

exhibit BiJnilar characteristics under the sa~e floW regime, eq~atien 

< 2.3'a) can be written as) 



D = const 

Equation (2.39) indicates that the drop size is only weakly 

determined by the liquid properties and virtually a function of 

\ 
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2.2 Aerod~'namic Instf:lbility of Liqllid Sheets 

The theory of perturbations in liquids has been investigated 

extensively, the earliest tydrodynamic considerations being connecte~ 

natur~lly, with the tides. Basset (14) presents a comprehensive 

account of the early history of hydrodynamics, covering the early 

work of Newton and Laplace. Lamb ( 15), in order to discriminate 

between tidal and surface waves, introduced the concept of the 

capillary ~ave, with the assumpticn that it was initiated by a 

simple harmonic disturbance of low amplitude. Selection of the 

appropriate velocity potentials led to an expression for the velocity 

of surface waves of any particular wavelength. 

Rayleigh (16 ), in addition to his well known thecretical analysis 

of jet disintegration, studied the inatability present at the inter-

face of two fluids of differing density and noted that, in cases 

where the upper fluid is the denser, growth rates were large for 

small disturbance wavelengths. In similar studies G.r. Taylor ( 17) 

examined theoretically the growth of perturbations on an interface 

accelerated in a direction perpendicular to its plane. 

Bellman and PenningtLn ( 18) included the effects of surface 

tension and viscosity and shewed that viscosity reduces the rate 

of grdwth of surface disturbances, while surface tension reduces 

the cut-off wave number. Keller and Kolodner ( 19) further 

extended the theory by examining the disruption of inviscid sheets 

by explosion induced acceleration, and estimated, frem the most 

unstable mode, the size of drops which might be obtained as a . 
result of the instability. 

Refinements te these theories were carried out hy Ingraham (20 ), 

who derived a seccnd order approximation, and by Chang et al ( 21 ) 
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whc carried the analysis furtter to a ttird approximation. Chang 

noted that the asymmetric development of an initially sinusoidal 

disturbance was a non-linear effect and significantly devendent upon 

the characteristics of the initial disturbance. A similar method 
'" 
of analysis was used by Yuen (22 ) to study capillary wave growth 

on liquid jets, and he found that the fundamental frequency and the 

cut-cff wave number were also controlled by the initial amplitude. 

Melcher (23) studied the effect of electric and magnetic 

fields on the growth of waves on conducting liquid surfaces. Fe 

applied first order pertu~bation techniques to Maxwell's equations 

and developed a criterion of stability for surfaces subject to a 

stress of electrical crigin. 

The characteristics of" aerodynamic wave growth on parallel-

sided inviscid liquid sheets has been studied by Squire (24) and 

Hagerty and Shea (25). Their analyses have been based uFon ccn-

ventlonal linearized tteory)and first order solutions have been 

obtained for dilational and sinuous waves. Dombrowski and Johns (11) 

carried out an approximate analysis for the growth of sinuous waves 

on viscous sheets by neglecting the tangential compOnent of 

perturbation velocity and assuming the normal component to be 

constant throughout the sheet. 

In Section 2.2.1 the metbod of perturbation analysi·s has been 

used to provide a more rigorous treatment of the growth of viscous 

waves. In Section 2.2.2 first" order solutions of inviscid flow 

have been e~tended to provide a secend order solution and, as a 

result, it has been possible to calculate·the critical amplitude at 

which a sheet breaks down. 
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2.2.1 First Crder Solution for Viscous Liquids 

. The equilibrium system considered, . (Fig. (2.8», comprises a two-

dimensional parallel sheet moving with velocityJU , throueh an inviscid 
o 

.stationary f!as~ The yaxis is'takenperpendicular to the undisturbed 

sheet, while the x axis lies alone the centre line. The two 

undisturbed faces are defined by the relation· y = :h. 
The system is regarded as having, initially, an arbitrarily 

small disturbance, the Fourier components of which are assumed • 

dynamically independent. Since each Fourier component is a 

solution of the linearized equations of motion, it is sufficient to 

examine the behaviour of a general harmonic disturbance. Zero 

order acceleration forces Rre neglected. 

For incompressible fl~w the equations of motion may, therefore,· 

be written as 

and 

j)~ ~ 
Di: 

C)~~) -+. 
o:):.~ 

d~ - 0 
dlJi -

(2.40) 

where l~ is the symmetric unit tensor and"'~the shear stress tensor 

governing Newtonian flow. 

The effect of viscosity is to make the flow within the liquid 

film rotational, and we therefore introduce a perturbation stream 

function to satisfy the continuity equation. 

~(x'Ylt) = - ~(y) exp (i (kx + nt) 

such that the perturbation velo'city components are 

u =, -t y 

v = ix 

(2.41) 

Co~bining equations(2.40)ahd (2.41) an~ collecting first 

order terrnsgives, 
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. ~ IV + 71\ I I (. ( ) 2) 2 ( ( ) _'\ ~ - ~ ~ n + U k + 2" k + kin + U k 
¥ Y Y 0 0 

(2.42) 

e exp i(kx + nt) 

t -Pv f ~yII + k2~} exp i(kx + nt) (2.lt4) . L xy = yx = l.. L 

where l' and "Yare the perturbation components of the tangential' 
! xy L yx 

and normal stress. 

Equation (2.42) is a form of the Orr-Sommerfield equation. 

Unique solutions are obtained by s~tisfying the boundary conditions 

at each interface. 

1. The noraial velocity of each fluid is 

'tx 
_ E'~ + 
.., C) t U~ 

o~x 

!h y~~o + for y = and for y~_OO 
xj 

2. Shear stress continuity is given by 

, :(, Lxy~ • :: 

+ for y = -h 

"'" f 'dv dUJ eL L l ax + ay 

Normal stress continuity is given by 

for y = !h 

2 
= -T~ 

dx2 

given by the relation 

(2.45) 

(2.46) 

(2.47) 

where '7. (x, t) is the E'ourier ccmponent of the initial disturbance 

and is given by '£.1 = '1.0 exp(i (kx + nt») for the upper interface 

und '7.2 :: '7.~ exp(i (kx + nt + a ») for the J.ower interface. 

+ The 3uperscripts I, II, III I and IV denote the' def;ree cf 

differentiation w.r.t. the subscripted variable. 

• r[ ~ denotes a step change across tli'e interface-. 
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Equations ( 2.42 ) through to ( 2.47) constitute a complete 

boundary value problem, and its solution yields a relation between 

the properties of primary flow and those of the disturbance. From 

this relationstip may be deduced the conditions governing instability 

of the liquid film. 

where 

Equation (2.4~ has a solution of the form, 

2 
m k 2 . (n + U k) = + ~ 0-

Vl 

The stream function then becomes 

Y =(al exp(ky)+ a 2 exp(- ky)+ a
3 

exp(my)+ a4 exp(- my» 

(2.48) 

exp(i (kx + nt» (2.49) 

For the gaseous phase "" = 0, and equation (2.49) tberefcre 
a 

reduces to the simple form 

--r j = (al e~ptkY) + a 2 exp(- ky» exp(i (kx + nt)) 

~here the subscript j = 1 ccrresvonds to the upper interfaces and 

j = 2 corres~onds to the lower interface. 

As y...:::r -(-l)joa, ~.-:,. 0 
J 

and therefore 

(2.50) 

Solutions of equations (2.49) and (2.50) are obtained for imposed 

disturbances of sinuous and dilaticnal form • 

. ,2.2.1.1 Sinuous I;isturbances 

For sinuous disturbances 11 = "12 = '70 exp (i(kx + nt» and 

hence combining equations (2.45) and (2.50) and noting that fer the . 
gaseous phase U o 

- -



Therefore, 

tj =1. 0 ~ exp,(-(-I)j k~;~!.s» exp (i(kx + nt» (2.51) 

Combining equations ~.45) and (2.49) and noting that the liquid 

phase has a finite velocity and viscosity, we get, 

+ a 4 ex p (- mh») (2.52) 

for y = +h 

and 

'01 (n + Uok) = ik (al exp(- kh)+ a 2 exp(kh}+ a
3 
exp~ mh) 

+ a 4 eXIl(mh» (2.53) 

for y = -h 

Ccmbining equations (2.L~SD and (2. /f5) gives, 

_2k
2 

(a
1 

exp(kh)+ a 2 e~p(- khU - (m2 + k 2 ) (a
3 

exp(mh) 

+ a 4 exp(- mh» (2.54) 

for y = +h 

and 

_2k2 (a
l 

exp(- kh)+ a
2 
~xp(kh»- (m2 + k 2 ) (a

3 
exp(- mh) 

+ a4 exp(mh» (2.55) 

for y = -h 

-Exc ludine: the triv ial case of a1 , a
2

, 8
3

, a 4 = 0, the set of 

equations (2.52 ) to ( 2.55 ) have the [011o~ine solutions 

a1 = a_ 
e. 

a
3 = a4 

2k2 .£.~£(kh) a
3 = a l 2 

k.
2 cosh(rnh) m + 

"0 
(n + U k) 

0 a1 = 
2k2 

k(l- 2 2) cosh(kh) 
m + k 

and tL"refore frem equation C2.l.jl) tbe liquid streo.:n function is 

given by, 
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exp (i (kx + nt») (2.56) 

Combining equations (2.51), (2.56) and (2.47) provides an equation 

governing normal stress continuity, i.e~ 

cothtkh) (2.57) 

In order to proceed further and obtain a solution ot equation (2.57) 

it is necessary to gain insight into the nature of the flow within 

the liquid film by examination of the vorticity function'" , 

defined as, 

From equation (2.56) equation (2.58) may be re-written as 

\'ihere 

G,)= 2k '(n "+ Uok) fey) exp(i (kx + nt») 

f ( y) = cos h l mJi/ co 6 h l mb) 

(2.58) 

The dimensionless parameter fey) is uniquely determined by roh, 

the liquid film Reynolds number (c f. equation (2.48» and provides 

a measure of the vorticity profile within the liquid film. The 

ftincti~n is plotted in Fig.( 2.9) for a range of values of mh 

against the dimensionless thiCkness parameter y/h*. The curves 
) 

indicate that for mh ''i> 1 the effect of viscosity is essentially to 

produce a thin boundary layer near the interface in which the flow 

is rotational. As mh is progressively .decreased ,,'the 

Circulatory flow penetrates further into the liquid film until for 

* It is 8SSUL'led that v;"[J.ves trav'!'l wltl1 the sheet veLocity 60 that 

mh is real (cf. equation (2.48». 
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mh« 1 the vorticity is practically ccnstant throuehout. In 

character with all singular perturbation problems the boundary 

layer is effectively a region of non-uniformity wLich must arise 

f~llowing the neglect of the gas phase viscosity and the consequent 

abolition of the non-slip boundary condition. (26). ~olution of equation 

(2.57) must therefore be restricted to the limiting case of mh)~ 1 

when the boundary laYEr is thin and -the' 'rel~tion is thus valid 

over the bulk of the liquid film. 

For mh »1 tunh(mh) ~ 1 and henc e equation (2.57) reduces to the 

form 

2 2 Tk3 - e a n 
2 

_ 3 2 
(2 V. k' + i (n + Uk» + 4k m"" cothlkh) (2.59) 

~ 0 fl tanhlkb) - L 

Using the transformations (15), 

ean2 Tk
3 

N
2 = 

and 

equation (2.59) reduces to the form 

( 2 (') ) 2 ',.. 2 ( ) X tanh Kh + 1 = 10M X - M 

In general Ir.q ~<. 1 and hence equation (2.63) bec()mes 

2 
(X: tanh (kh) + 1) = 0 

which, expressed in dimensional variables, is 
2 _ ean 
'" Tk3 

(l(U k n) 2 '\l, k2 ) 2 = 0 -+ + "+ f" tanh(kh) 0 

The solution' of equation (2.64 ) gives two rootsof the 

n= C(-iP 

where oi., the Wave velccity, is given by the relation 

(2.6c) 

(2.61) 

(2.62) 

(2.64-) 

form, 
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c!.= 
1 + e a (2.65) 

et t a -n h--'('-~.-h·) 

and P the ~ate of wave growth or decay, is given by 

t
ea 2 2 3 Tk3 e a ] ~2. (U'k -4"'IJkUi)- (1+ - J el tanhlkh) 0 1 0 el tanh(kh) e,l. tanh(khJ 

e a 
(1 + el tanh(kh» 

~here the two roots can be used to specify the initial velocity 

and initial surface displacement. In general, for a gas liquid 

system e a ~< 1 and the criterion of stability is then el. tanh {kh) 

given by 

(2.66) 

2 where the term 2 ~lk may be defined as a damping facter. The 

equation shows that instability arises ~hen energy d~rived from the 

flow field is sufficient to 0verccme visccus dissipation within the 

sheet. 

2~2.2.2 Dilational Di2turbances 

Solution bf equati0ns ( 2.42 i through to (2.47) and. (2.28) for 

dilationsl disturbances are obtained in a similar way after first 

noting that '11 = '10 exp(i (kx + ntJ) and '7,2 = "20 exp(i (k-x + nt + 'iT »). 

Ttus, fer the gaseous phase, 

1j ::-(-l)j '70 ~ (exp(. (-l)j k~~~f.~~~» expli (kx + nt») (2.67) 

and for the liquid, 
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10 (n + Uok) 

~ (1 - - ;2 2k2 2 ) 

~ sinh(ky) _ ~~_ 
L sinh{kh) 2 k2 m + 

Sinh(my>} , .. ... 
sinh(mh) ex.r:(1.(kx + .nt» 

m + k (2.68) 

Com,bining equations (2.47),·(2.67) and '(2.68) provides the normal stress 

ccntinuity equation 

«2"lk2 + i(n + U k»2 + Tk
3 

- <?.a
n2 

) 
o elcoth(kh) 

= 4k3m~~ tanhlkh)coth(mh) (2.69) 
~ 

From equations ~.58) and ~.68) the vorticity is given by, 

W = 2k (n + Uk) fey) exp(i"(kx + nt» 
o 

where fey) = sinhlm~/sinhlmh) 
The 'function fCy) is plotted in Fig.~.lO) against the 

dimensionless thickness parame.ter y/b for a rang;e of rr;h. For 

mh» 1 the vorticity profiles are similar to those obtained for 

sinuous disturbances and stow that the region of nen-uniformity is 

again restricted to a thin layer in the region of the interface. 

For mh <.( 1, ho,';ever, the function fey) -';>- y/h which may be. compared 

with the uniform value attained for a sinuous disturbance (cf. Fig.( 2.9», 

As before, a valid soluticn of equation (2.69) can be obtained only 

for the limiting case of mh »1 and hence 

3 2 
( 2 k 2 . (U k ) ) 2 Tk - f. -~ = 

-U 1. + 1. 0 + n + e1. coth'{Kh) 

j' 

3 2 4k m "'1 tanh(kh) (2.70) 

Using the transformations given by equations (2.60), (2.61) and 

(2.62) and noting that, in general, IH\ « 1 equation <2.70) reduces to, 

2 3 -e an - + Tk 2 2 
---::--th(-j-})+ (2 ""tk + i (n + Uk» el. co - <:1. 0 

= 0 

which has the solutions 
U Ie 

eX. = o . (2.'71) 



c.'9 

and, 

(2.72) 

for (;'..3:. ,«1 
el 

The dampine factor is thus similar for both sinuous and 

dilational waves, and jp common with inviscid flo~ sinuous waves 

grow at a greater rate than dilational waves for kh ~<. 1 and at 

equal rates when kh ')7 1. 

The square root terms in (2.66) and (2.72) are identical to 

the expressions for the growth rates of inviscid waves found by 

and ( 25) equation (2.60) and (2.72) may theiefore be written as, 

~ = p' - 211l.k
2 

(2.'13) 
where a' ~s the inviscid erowth rate. 

Thus, combining equations (2.48) and (2.73) 

f ~' - 1J'~ 
mh =l~,k2 kh 

and henc e for roh >"> 1 

(3' » 
.,)1 k Z 

1 

Inspection of equation (2.74) indicates that the level of 

viscosity at wLich the equations may be applied is essentially 

determined by the sheet thickness, so that wave growth can be 

(2.74) 

examined for either relatively thick sheets of hi5h visccsity or 

thinner sheets of lOwer viscosity. Further for mh »,)1 the region 

of non-uniformity is restricte? to a thin layer adjacent to the 

interface. The flow within the bulk of the film is'then 

irrotational and the potential distribution reduces to that of 

inviscid flow (cf. equation 2.102). Under these conditions the 

~elocities of both sinuous and dilationsl wav~s are independent of 

viscosity for a gBs-liquid system and are effectively equal to that 

of the sheet (ef. equations (2.65) nnd (2.'11». 

, -
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2.2.2 A Second Order Solution of ~ave Growth on Inviscid 

Liquid Sheets 

First order analysis provides a criterion of aerodynamic 

instability and describes the characteristics of waves in their 

early stages of growth. It cannot, however, predict the critical 

amplitude at which the sheet breaks down, since it sho~6 that. 

during wave growth the two gas-liquid interfaces remain parallel. 

Thus~·to gain:further insight into the mechanism 0f sheet dis-

integration, the analysis has been extended by a method of successive 

approximation to take into account nvn-linear effects. The 

approach assumes that the velocity potential and the free surf~ce 

displacement functions may each be expanded as a series of functions 

of a small parameter which characterises the wave amplitude. Sets 

of linp.arized boundary value problems ar~ the.n obtained by 

arranging for each series to satisfy the equations of motion and 

the boundary conditions. The calculations presented have been 

taken up to the second order terms. 

2.2.2.1 Wave Growth on Uniform Sheets 

The system considered again comprises a two-dimensional 

parallel-sided sheet moving with velocity throagh a stationary gas. 

The y axis is taken p~rpendicular to the undisturbed sheet, while 

the x axis lies along the centre line. The two undisturbed inter

faces are defined by the relation y = tho Zero order acceleration 

forces are neglected. 

At zero viscosity the flow is irrotational and may be described 

by a velocity pctential. The general equations of continuity 

are thus: 

1. For the gas phase 
, . , 

cP . xxj + <p yy j = 0 



,',' jl 

for en + h <: y< co, - cO <. y <. - h +"11.' where j 

corresponds to the upper (j = 1) and lower (j = 2) inter-

faces. 

Similarly for the liquid phase 

q> xx +cP yy = 0 

for '? 2 - h , y, h + "11 
Unique solutions are obtained by satisfying the following 

boundary conditions:-

1. The surface of the fluid moves with the fluid. 

Thus for the gaseous phase, 

(2.76) 

, (2.77) 

for y 

and for the liquid phase 

"ltj -cpx, ~xj +q>y':O 

where each surface is defined by y = ~j(x, t) - (-l)jh 

2. The component of normal stress is continuous across the 

interface. 

for y 

Thus, 

(1 +11)2 ,)-3/2 , 
, x, J 

Following Rosenhead (27' we assume that the sur,face dis-

turbances and velocity potentials admit expansions of the form, 

• (x,t) 

(2.78) 

(2.80) 

• Superscripts preceeding the terms of the series represent 

the order of that term 



and 

(2.82) 

where ~ is a small dimensionless parameter defined as the initial 
. (0 

amplitude to sheet thickness ratio, 

where cf> = -UG- and r ~ 't rep must satisfy equations (2.75) and (2.76)' 

respectively. 

The function cP can be expressed at y = '?;!;. h in terms of its 

value and .those of its derivatives at y = h by a Taylor series, i.e. 

. ..' (2.83) 
y = _(_l)J h 

The surface disturbance may be re'presented as a periodic 

(2.84) 

fTll" 
wh ere "f (t) is a func tion of time only, and k is a real number 

representing the spatial frequency. . mr 
Solut~ons of ~(t) are made 

unique by the condition that, 

trlr....u ( ) _ ~~ 
f j 0 - c>t = o r~2 J (2.85) 

t=o 
lW ( d7W 
I. 0)=1, ~ 

J t=o 
and = (2.86) 

The set of linear equations thus generated have been 

successively solved to obtain a solution of the second apprcximation. 

I. Solution of the first order e~uations 

Combining equations (2.75) throueh'to (2.83) 

and collecting first order terms gives; 



l,fP + 1 CP' . __ 't' . 0 , h <. y<..«>, -oZ>~ y .... -h XX.J yy,J ..... 

1 1 . 
0 -h ~ y:S' h ·q>xx,· + q>yy. = 

lcp '. 1 ' 
0 !h + h"ltlj = , Y = YIJ 

1 1 1 + 
Cpy + hU.tpx, + h ~~j = 0 , y = -h 

(lCPt, el - lCP:j e a) + e 1 U;<Px -( -'l;iht"p{Xj::O '. y = !h 

Substitution in (2.89) , for 11 j .. from equation 2. 84 gives, 

1 ' cp ;.j ~ ~h"'Y t.j exp (i kJ¢ +-h Y = 

and lcp = -h"ft.' exp(ikx)- i~kh exp(ikx), y = !h 
y, J 

33. 

(2.87) 

,( 2. 88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

From: equations (2.88) and G2.87) the solutions for lcp and l~'. have 

the form, 

~j' = (A
j 

exp (ky) + Bj exp (-kY»(C j exp (ikx) + Dj exp - (ikx» 

F.(t) + fJ'(t) 
J 

tp : = (E exp (ky) + F exp (- ky»(G exp (ikx) + H exp (- ikx» 

(2.94) 

where,A
j

, Bj , C
j

' D
j 

and E, F, G, H are constants of integration. 

As y .. -(-l)jco then lCPj'-+ 0 for all t and hence, Al =B2 = 0 

, ~~-rT~::'~:::":.~:;·.:·<f 
t:::.::::.·~· . .',," 

Also from equations (2.92) and (2.94) ,we ge~, 

1 exp (ikx) = (-k!h) exp (- kh)Fl(t) (C
l 

exp (ikx) + Dl -~t'l 
exp (- ikx» 

for y = +h, and, 

-\p t;2 exp (ikx) = (k!h) exp (kh)F /t) (C
2 

exp G..kx) + D2 

exp (- ikx) ) 

for y = -h 
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F
3
(t) k(E exp(kh) - F exp (-kh»(G exp(ikx) + H ~x~ (-ikx» 

=-h~~ exp(ikx) - iUokh exp(ikx) ~l 

for y = +h 

F
3

(t) k (E exp(-kh) - F(exp kh»(G exp(ikx) + H exp(- ikx» 

=-h~t,2 exp(ikx) - iUokh exp(ikx)l~ 

for y = -h 

where by inspection E = 0 and thus, by elimination 

F (t)" EG 
3 

_(hl~ + iUokh Ijf2)( ~ exp(kh) - exp(- kh» 
= ------- 2k sinh (2kh) 

~3(t) FG = 
1 " 

where 0 = fl 
l~ 

-(h~ + iUokh
l
Y2)( '6 exp( - kh) - exp(kh» 

2k sinh (2kh) 

Eence combining equations (2.91), (2.94) and (2.95) 

the t~o linear differential equations governing normal stress 

continuity at each interface are; 

el (-lhlitt,2 + l~2 iUokh){ !~~~~ g~~~-!] exp (ikx) -ea-ft,• 

• e1ft,3 - (eah~t,2 'lI exp (ikx) )-el. Uo (t hLy-t,,2 + it2 iU okh} 

{i.k) \'tcosh (2kh)- lJexp (ikx» - Tk2~ hl'\l..2 = 0 
lk sinh (2kh) /-:. (2.96) 

for y = +h, and, 

{ 
11f,. l-,t. 11. [ ~ - cosh (2kh n ( . ) t'1 (- h /ttl2 + /tl2 l.UokhJ k sinh (2~h) J exp. l.kx + el f t,3 

-Co.h,t + ( Cab~ t,2 exp (ikx» - el U 0 (t hl1t,2 + 112 iU ok] 
k " 

51- cosh (2kh)1 (ikx» + Tk2hl~2 = 0 
l k sinh (2kh)J exP I~ 
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By inspection ~ = 1 and~"f3. = 0 and equations (2.96) and (2.97) 

reduce to the single expression: 

1 

- 't'!tl e i tanh (kh) +e' aJ - 2iUoet tanh: (kh )lft + 

t kq,'e 1 tanh ( lili - Tk2 J l-r = 0 

which has. the solution: 

l"t = A exp( i (ci + iB')t) + B exp (i (Q(.' - '/J')t) 
, " . 

wh ere cL and n are the real and imaginary parts of the complex wave 

frequency n and its conjugate fi, i.e. 

, -lbk 
ot. =1+ ea 

f'a t anb(kh) 
, (2.98) 

8 = (~a U Ok tanh 'kh -Tk (el tanh(kh) +eiil 2-'t 2 2 () 3 . J~ 
(e.l tanh (kh) + e aY-

Equations '(2.98) and (2.99) are identi6al to those presented 

by Squire without derivation ~nd identical to equations(2.65) and (2.66) 

when "l) = O. 

'J
l
""" For the initial ccnditions 1'1(0) = 1 and ~ = i.~ 

t=O 

. 1 ' 
A = B = ~and therefore ~= cosh ~t exp(~t) (2.100) 

Thus combining equations (2.84),(2.94), (2.95), and (2.100) gives for 

1 1.1\ 1bf,'t' viz • 

. ~ = .11 exp (ikx) , (2.101) 

l tO ~hl 'h 'ulN~Sinh .(ky) ('k) . ,= -L ~t/k + ~ orJ cosh (kh)exp ~ x 
(2.102) 

(2.103 



II . Solution of 2nd Order Equations 

Combining equations (2.75) .. through to (2.83) 

and collecting second crder terms gives:-

2' ~' 
qJxx.j + 'i' YJ'ij = O,for h <. y.(,oO ., -00 <Y < -h 

2<' 2 . 
CPxx: + CPyy = 0, for -h ~ Y' h 

= 0tfor Y = !h 

~ Ih 
. + '1' YY 'rz. 

(2.104) 

(2.105) 

(2.107) 

(2.108) 

where 14', 1cP.i', l"land~J are defined by equaticns (2.102), (2.103), 

{2~J01)·anaj(2.84) respectively. 

Solving equati~n3 (2.104) and, (2.105) gives, 

2cp; = (A j exp(2ky)+ B
j 

exp (-2ky )X C
j exp(2 ikx)+Dj exp(- 2 ikx» 

F .(t) + [.(t) 
J J 

(2.109) 

2'V. = (E exp (2ky) + F exp (- 2ky)XG exp (2 ikx) + H exp (- 2 ikx» 

F
3

et) + [3(t) (2.110) 

where Aj' Bj , Cjt Dj' [jet) j = 1 and 2 and [3' E, F, G and E are 

constantsof integration. 

As y-", -(-l)jcQ 

Al = B2 

2 • then tpj-7 0 

t
- <.' ~.< •• , 

- 0"· .;.~.~ 
- 2~'::~~ 

for all t and henc e, 
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Also from equations ~.101) tc (2.10}) and"(2~106) we'get, 

. h2~~1 exp (2ikx) 

, 
(1 + cosh (2Bt») 

2 

for y = +h 

, 
2' 2. 25 1".1' , 

+ 9Py~ =~Rh l(~ sinh (2~t) 
, 

+ iOl. 

exp (2~t) exp (2 ikX3' (2.111) 

and h
22

"ft;2. exp (2 ikx) + ~~2 = h2t k
2 (ffc sinh(2Bt)+ i~ 

I 

(1 + C~Sh(2J3t:))eXp(2 i~t) "exp(2 ikX)] , (2.112) 

~for y = -h 

Similarly from equations ~.101)to (2.103) and (2.107) we get, 

h~?~~l exp(2 ik~ + J~~ 2 ik exp(2 ikx)+ ~CPy = k
2

h
2 

, " , 
l~ sinh(2~t)+ i (U

o 
+ ~/k) (1 + C~Sh(2Bthanhtkh) 

exp (2 iolt) exp (2. ikX)] , (2.113) 

for y = +h 

h~~~2 exp (2 ikx) + a~~2 ik exp (2 ikx) + 2fy = _k
2

h
2 

, I 

[:k sinh (2Pt) + i(Uo + al/k)(l + CO~h (2(jt» tanh{kh) 

exp (2 i~t)"exp (2 ikX)J . (2.114) 

for y = -h 

Combining equations (2.109) t (2.1'11)" and (2.112) gives, 

and 

D. = 0 and hence, 
J , 

exp (~k2 kh)f h2~t' 
B1 F 1 (t) = '- L Itt"'- + kh~(g sinh (2Pt) 

, 
+ iO(." 

, 
(1 + cosh (~~t~) exp(2 i~t) 

2 

, 
(1 + cosh (2pt» exp (2 i~t) 

2 

(2.115) 

I 

+ 2kh2(f sinh (2P't) + i:/. 

(2.116) 



Similarly combining equations (2.11e), (2.113) and {2~114) gives, 

H = 0 and hence, 

2k i_E exp(2kh) -f eXP(-2khJF
3

<t) = 
, 

t2~t) + i (U
o 

+ cl/k)(l + C~Sh (2{3t)>j exp (2 
, 

iC(.t) tan h (kh) 

-h 22Ytl - ~1i 2 ikh (2.117) 

and 

2k l E exp (- 2kh) -F exp (2kh)} F 3 (t) = 
, 

+ -1(U
o

+ OC/k)(l + c~s~t~} exp (2 iC:t)tanh (kh)-

-rr~~2 ikh (2.118) 

E1illiination of EF
3
(t) between (2.117) and (2~118) gives 

, 
FF

3
(t) = ' 4-k Si~h"l4kh)tt (2k

2
h

2 (-J%: sinh:aizt)+ i(Uo + ~/k) 
, 

(1 + CO~h·(2fu.~) tanh. (kh) cosh (2kh») exp(2 i~t1 + p~2ft2 

+ Uo 2 ikh '22~ J exp( 2kh) "'1 h ?2i'tl + Uo 2kh ~llJ exp (-2kh)J 

~imilarly eliminating FF
3
(t) between (2.1~7) ~nd (2.118) gives 

1 fr 2 2 ~. ~ '. ' 
EF3(t) = 4k sinh ~4kh) U2k h (2k s~nhl c~t)+ ~(~ + «/k) 

, -

( 1 + c os h (213 t) ~ ( . I il l2~ . 2 ') cos h (ckh) tanh, kh) exp (2 ~c:(t]... h It2 

+ U 0 2 j,k612J exp (- 2kh) - 1 J21t1 + Uo 2k~2'1i J exp (2kh )} , 

Frem equations (2.109) and (2.110~theqie16city~otentia1s may then be 

written as 
, , I 

2cp; = !X~~2kh)It ~2 't +'kh2 (g sinh, (2P't) +io/. (1 + CO~h (2/3t h 

exp (2 irtt)J exp (2 ikx )exp (- 2kY )] + tIlt) (2.119) 
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2cp; = ~~k 2kh) fF1t,2 +{kh2«Sinh (2;it) + i.x 
, " 

( 1 + COS
2

h (2{1t) '/J' ( ')] ( ) ( )J exp 2 i~t exp 2 ikx ex~ 2ky 

. ... t2. tl::) 
2cp ,=' (EF

3
(t) exp (2ky) + FF

3
(t) exp (- 2ky )j exp (2 

(2.120) 

ikx) 

+ f
3
(t) (2.121) 

where 

EF3 (t) = 4-k S:!h (4kh) {~k2h2f (.£f sinh (2P~) + i (Uo + ~/k) 
, , 

(1 + CO~h (2Pt») exp (2 i~t) tanh (kh) cOsh (c:kh~+ h'221t2 

I. 
/ (2.122) 

and , 
+ 1 r 2 2[" (3' , 

FF3 (t) = 4k sinh (Ltkh)L 2k h (2k sinh (2Pt) + i(Uo + ~/k) 
, 

(1 + CC~h (2P~») exp (2 ~t) tanh (kh) cosh (2kh)j ~lJ2~2 

+ U
0

2 ikh22j;Jf exp (2kh) - 'texp (- 2kh}] (2.123) 

,F'rom equations (2~84), (2.108) and (2.119) through to (2'.123) we get the 

following simultaneous linear differential equations which satisfy 

the requirement of ~tress cont~nuity at each int~rface, i.e. 

for y 

and 
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where R(t) is given by, . 

, 2 R( t)=f-t' k
2

{ c~sh(2dt) (!~ -(Uo +O:/k)2)+ 6inh(2~t) 
(~(UO+~k»- (U

o
+ ~/k)2] tanh(kh) coth(2kh) 

+ C ~(2dp'i sinh(2fi t ) + (~2 _01..,2 )(CCSh(2~t»-aL23exp{2ic/t) 

andP(t) by , 2 "2 '2 ~-t h2 (1. h) 
2P(t) =kl!~{COSh(2Pd( ~ -( Uo+cx./k) )(--' a~ .1: __ ) 

+(sinh(2ft)(~~~')(Uo+Cx/k~ (3 - ta~h2(kh~) +.~2 
k 

~'2 2){ . (1 + tanh (kh» - (U + ct/k) O-tanh (kh»j , 

f ,,2 I '2 0 ,2 2 I \1J' , -e aL2:itX.~ sinh{2~t) + (~ .,. c<.. )(cosh(2~t) + 1~ e'xp(2:ie<t) 

By inspection of equations (2.124) and (2.125) ~ =-1 and f, .. f,.: i..1=>~'nh.t2.~t;) 

D\:]10 (~!!~:~~~:~'~;":::'~~~~::~~:~~U:~~'-::t~'~~~ . 
relations , 

sinh(4kh)= 2cosh(2kh) sinh(2kh) 

and 

l+:~:~~ttt~~ =coth(2kh), r~duce to the form, 

'22'rtt2 +22~t2b +22~2c =hfpCOSh(2p't) ... Q. sinh(2~'t) +R} 
, 

exp(2P-t) (2.125a) 

, ,. 
where, 

b=4elUoki coth(2kh) 

el coth(2kh) +(a 

c= -4e
1 
U~k2 coth(2kh) +8Tk3 

el coth(2kh) +(a 

Q=[f1k3( ~i~' ( U
o 
'+~/k) (3 _t~nh2(kh») -2 tanh(kh) 

coth(kh» + ~ak (21~i)]Iz((lcoth(2kh)+ e a) 

+ ~'/k)20 -tanh2 (kh) -2tanh(kh) coth(2kh) 
2 

t 



, 

and, 

'2 2 - (Uo + cl/k) 0- tanh (kh) 
2 

-2tanh(kh) coth(2kh)] d 2 '2," '.- (ak (I-' -to :·ct )J /2( (a +l1 coth(2kh) 

Equation' (2.125) may be conveniently solved by Laplace transformation 

giving the auxillary equation, 
! 

,yes) h 

+c) f 
P+Q 

= 2 ( 2(s-s ... bs 

R 

J + 
(s- 2i ex' ) 

+ P-Q 

2i( c< ',. i ~' ) ) 2(6 . ( , -2J. 0(. + 

for the initial conditions ~2t2(O) = 0 and Cf2!1 =0 
~2 t~O 

2 Defining the rocts of the quadric group,s +bs + c, as 8=a 

i (3') ) 

and s~-a equation (2.126) may be split into parti~l fractions as 
r 

follows, 

~;Q 1 1 
i ~'» 1 (s- a) (8 a) (s 2i(0I.' --

+ 
A2 , 

+ A3 . , 
(s - a) (s -2i(0£' - i~' » 

1 P-Q 
2 [ (8 - a) (s - a) (s -. 2i (cX.' + 

+ A5 
(s - a)' 

R 

(8 - a) (8 

where A -1 -

A 
+ ,.6 . 

(s - 2iCoI.'+ i ~'» 

- a )(s 

(p + 92 
2 

-
- 2i 0(..') (8-

- (p + Q) ( 1 
2 ' 1a _ a ) (a 

A9 + 
.... I ' 
clCX, ) 

=. Al 

(s - a) 

= A4 
(8 - a) 

A7 A8 
t 

+ 
i a) (8 - a } 1.8 -
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1 
2i( ci - i 13' ) )( a - 2i{ ol- i (3' ) ) ) 

= (p - Q) ( 
A4 2 (a 

1 
aHa - 2i«>" + i [3'») 

A6 - (p - Q) 
«a 

1 
i (3'») -', 2 - 2i(Ol' + , i 13') ) (a - zi(ex'+ 

A7 R ( (a 
1 

a» = 2ioD (a -

A8 -R ( (a 
1 

a» = 2i«)(a 

Inverse transformation of equation ~.12@ give~ the general ~econd 

order solution as follows. 

22~(t) = hf[(Al + A4 + A7) exp at + (A 2 + A5 + A8 ) exp(at) 

+ (A
3 

exp(2{3t>+ A6 exp(- 2P~)+ A
9
)] eXP(2'ioCtj (2.127) 

2 where the roots of the equation s + bs + c are given in terms of 

the actual parameters ~s:-

, 1 
In general kh«l, so that tanh(kh~ kh' and ¢oth (2kh)= ill,and for a 

gas-liquid system ea.c::: el and hence equation (2.l2~ may be simplified. 

Since the complex wave frequency a and its conjugate a may be 

written as, 
. If 

a = i(oc. 
I, 

+ i J3 ') . 
I, 

i {!> ) " l! = i(~ 
and exrunination of equations (2.98) and (2.128) shows that 



" , 
~ = 2 oc. = -2UcJc 

and thus equation (2.12~ beccmes 

22~1. = (. Ph f cosh (2~'t) - cosh «(3"t)] 
r2 . l (2 (3' + (3")( 2 f3' - f3") l ~ 

+ ~~21 CCSh, (/3\) - 111exp (2 icl.t) (2.130) 

where 

Combining equations (2.84), (2.119), (.2.120), (.2.121) ci"nd (2.130) gives the 2nd 

2 2tO' 2cp order solutions for ~j' the wave amplitude, ,and . the 

velocity potentials, i.e. 

2 221- ikx) (2.131) 
"lj 

= h ,exp (2 
J 

( p't)] , f Ph /3" )i cosh 

I 

where 221
j 

J r " , 
<,2pt).- cosh 

= (-1) (2 P + f3 )( 2 f3 -

Rh t · 9] + (~") 2 ccsh ({3 t) - 1 exp (2 ittt) 

2f~ exp ( 2k(h 
= 2k 

I 

• 
..;;,;..;..~:.-...~;~--,,-y..;..»{ ;..J~t2. + :~h2 (~sinh (2rit) + i«. 

(1 + cosh 
2 

(2p-t») 
exp (2 idt1 exp (2 .ikx)+-4-~S'Ilh.L2.r.t) ') (2.133) 

for h <. y ~CIO 

, 

ctp; = !,xp (2k(y" + h» I -~CYt2 + kh2 (g sinh (2pt) + ~ 
2k , 

(1 + cosh (2~t») exp (2 i~t~ exp (2 ikx) .. ~ j3Sioh 12~t:) (2.134) 
2 

for -~<: y <.-h 
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FIG. 2.11 PICTORIAL REPRESENTATION OF A SINUOUS WAVE AT BREAK-UP 
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where f3' = rCau!k -
. e lh. 

Tk2)] )! 

f3 
II i(CaU;k2 - 2Tk3)2khj )! = 

e'l 

The second order solution describes some new features of 

aerodynamic wave growth. EquationsQ.13l)and (2.101) which describe the 

interfacial disturbances. shows that wave growfh corresponds to a 

combination of a basic sinuous mode and a dilational first harmonic. 

As a result wave growth is asymmetric and the sheet progressively 

diminishes in thickness at points equal to '~A and .t ~ of the 

fundamental mode. The sketch shown in Fig.(2.ll) demonstrates 

the wave profile at the point of rupture. Equations (2.132) and (2.133) 

show that t~e growth of the first harmonic is due to two effects, 

namely, the energy addition derived solely from the fundamental and 

the inherent instability of the first harmonic itself when the wave 

eaU2 
number k <zr . 

Inspection of the series expansion of the liquid phase velocity 

.,potential obtained by combining equations (2.102) and (2.132) i.e. 

"UltJsinh (ky) ("k )J1 "l2h2 { ~ h' (: 1..\ exp ~ x + o cos, KIV 0 

I 

cosh (2ky) f k2(fi sinh(2dt)+,:.~_",(UO+~k')U·+~OSh' 2{it») 
2k sinh. (2ky) l ~k 1-1 \ 

, 2- 22~ 3 1 
tanh (kh)exp(2 iCCt) + ~t2 + 2ilblt 1i exp(2 ikX)fhJ •• 

. 
shows that at large values of time the series becomes invalid when 

lcp = 2CPqO(1~1) 



2.2.2.2 Break-up Length of an Attenuating Sheet 

Equation (2.l3l~ showS that on a parallel sided sheet thinning 

and eventual rupture occur at half wavelength intervals. The 
" 

break-up length may therefore be defined by the i~plicit equation~ 

• • • • 
'12 ( x , t ) - '71 (x ,t) = 2h 

where ~ denotes the break-up leneth, t· denotes the break-up time 

and the interfacial disturbances "12 and '11 are_ given by,e_~uations Q.IC1) 

(3 '" . and (2.1~1~ Since the second order growth rate is negligible, 
I •. 

cosh ( f3t) ~ 1 and thus, the point of rupture occurs when 

(2.135) 

Equation (2.13~ Can be applied to an attenuating sheet, if ilie 

effect of surface curvature is neglected and if it is assumed that 

the wave growth at any point depends solely upon the values of the 

local parameters. The growth rate then becomes time dependant and 

the total e:rowth ~an be defined by a time averag;e. Thus, equation 

~.135) may be re-written as 

(2.136) 

where 

In the absence of external forces the thickness of an 

attenuating sheet at any point is inversely-proportional ~o its 
.... 

distance frem the orifice 
. " 

i.e. 

Hence, 

and (2.137) 

** When an attenuating sheet is formed from an orifice the t s ream1ines 



.' 

l V ~ 
Since x =Uot equations (2.130) and (2.137) give tte break-up leneth 

of the sheet i.e. 

(2.138) 

appear to diverge from a source situated behind it. Since the 
distance between this 'origin' is negligible compared to t~e 
length of the sheet,x can effectively be measured from the 
orifice. 



2.3 The Electrohydrodynamic Instability_of Liquid Sheets 

in an Ionised Gas 

The behaviour of liquid streams in an applied electric field 

has r~ceived much attention ~8-3D and it has been shown that for 
"-:,,, 

conducting jets, ctarge, under certain limiting conditions) has the 

effect of extending the range cf instability. 

In Appendix I a description is ~iven of the characteristics of 

a liquid sheet injected into a hot ionised eas, and the ~ollcwing 

arlalysis provides approximate expressions for the early stages of 

growth of field-coupled ~aves, where the surface charge is derived 

solely by diffusion from the surrounding gas in the absence of an 

applied field. 

The system considered com~rlses an isolated parallel-sided 

inviscid liquid sheet of perfect electrical conductivity supporting 

an equilibrium charge and moving through a stationary gas. Tbe y 

axis is taken perpendicular to th~ plane of the undisturbed sheet 

and the x axis lies along the centre line. The interfaces are 

defined by the relation y = ~ + -h I v,here nz = '1. (x ,t) is a small 

imposed periodic disturbance. 

For incompressible flow the equations of motion may therefore 

be written as, 

and 
"" • J ChlJX 

= 
(2.139) 

== 0 (2.139) 

where 
(' ax..", 
(FXr ,is the symmetric unit tensor an:l t-vr is u~ e haxwell 

stress tensor defIned as, 

where D is the dielectric constant and E.\t the p <3 r ini t t i v it y 0 f 1'.1' e e 

Sp,3CC. 



/.,,·8 

The flow is implicitly irrotational and hence, 

r C)tL::( _,... 
cc<p 1) dut' '- '-' 

where f:otf'~ is the aIte,rnating; unit tensor. 

For zero magnetic field streneth Maxwells equations reduce to, 

(2.141) 

and 

for IYl. + h <: y -< 00 and '00 - ~ y.t( -h+"l. 
and 

E~ = 0 

for '1.. - h< yo(. + h 

As a consequence of equations ~.14d and (2.14» both the field 

strength and fluid velocity can be written in terms of their 

respective potential functions viz. 

Combining (2.138 

d cfJ~. 
C)::t.c.<; 

@...t 
C5 .:x.~ 
and (2.14,9; 

(2 • 145) gi v e s' r e oS p e c t i v e 1y 

o 

and 

cP e = c(;nst 

for + h 

(2.144) 

(2.145) 

(2.14;:) and (2.14LQ and (2.l4~ [md 

(2.146) 

(2.147) 

(2.148) 

Unique solutions of equaticns (2.14E),) anel (2.14~ are obtained 

by satisfying the following boundary condition~ 
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1) For y -';:- ! c\l) cp.~ 0 

For y = . nz + h, the normal v~lccity of each fluid is [iven 

by tb e relation 

'40' 
cPy + (qt + ~x 1(x = 0 (2.150) 

2) Kormal stress ccntinuity L; given by 

n.p [-rr.~ -t (vb,r (\"'1-:: TfY}Ji.:)(' tit q~]-3/).. (2.151) 

where'n~ is a unit vector normal to the interface.' 

For y .~'7 :!: co (2.1.52 ) 

Further, ~he electrical boundary·conaitions at the interface are 

found by integrating equations (2.14~ and ~.13~ over the volume of 

a nermal cylinder w1ich instantaneo 11s1y includes the interface, i.e. 

-~I (.d" 

o .-

(2.153) 

(2.154) 

If the dimensions of the cylinder are diminished such that in 

the limit it becomes a disc lying in the interface equations ~.15j 

and (2.154) I usint: Gauss's theorem, reduce to a form which c:escribes 

the l1electrical ll boundary ccnditions, i.e. 

t\i fJ) t·o Ex} '-:. C} 

E,;:( rll n ,) {fi1\ ':: 0 

where crs denotes the charge per unit area at the interface. 

(2.155) 

(2.156) 

Equations (2.1l~6) through ,to (2.152), and (2.155) and (2.157) 

define B copp1ete boundary value problem for the velocity and e1ectricDl 

potenti~ls and may be solved aSGuming that fer small perturbations 

th(;! eL,rFe delisity, electrical pcter:tinl, velocity ljctential snd 

surfaco disturbance functions may oe expand~d in the form 



50 

0'''> 

Cr .~ 
Z ~ r 
- rlJ.,-~ fr (x, y, t) (2.157) 

".=-o 
00 

CPt = ~ "Z:' 'cp~ (x, y, t) 
"-'-' r;.o 

(2.158) 

oD 

cp [n{ rr (x, t) ~ .... .., , " C" y, 
I"'::-c) 

(2.159) 

and <>0 

~ L I' r (x,t) :::;: h ([2 0 nz 1'=0 
(2.16c) 

where tte first term of the series defines the equilibrium state 

and ~ 0 is the dimensionless parameter a/h. 

Combi nine eqnat ions e. 1.Lt7) , (~.157) cmd (2.158) 6nd col1ee ting 

first order terms we eet 

\I 2 11) 1 
\J ~', = - fF e . _~ 

lJEc 
(2.161) 

for h '" Y.t.:..~ and-~..:.y~-h 

Equation (2.16]) iG solved in the region h .< yo.:?, the 

solution for tlJe 10\,er l'E:gion being given by symmetry. 

The cberged particle density in tbe region adj[;lCent to tr.e 

~urfece is a function of the potential and may be expressed by the 

relation 

T})e first order perturbation term call therefcre be written as 

0" 'U. 

For a disturG~nce 
I .\l--

of the fcrill .rr;.1,2 = I (t) exp (F.x), 

(2.151) tLeri::fore };.:-;s a s01uti0D cf tLe ferm, 

equDticn 

'\ 
I 
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where 1y(y) is a solution of the'second order differential equntion 

(2.162) 

The solution of equation (2.162) dSllends upon the value of the 

bracketed function. :F'or (~~ I 2] - - k 70 
q~ ute. 

the equation has an oscillating solution and for 

it has an exponential solution. Using the transformation of 

variables given on paee A7 Appendtx I and nc.!ti.ng that (y-h)/s 0 ::: it, 

k' = kSo and x' = x/g 0 equation (2.l6q can 'be written as, 

where q (-1;) = d(n- - n ) 
\. € -_._----
dlR 

2 . 
p ~s a large paremeter B.nd k' is~C(l ) ("<Jer tl:e wL0le runte c,f 4:. 

The form of the equation is therefore similar to that considered by 

Langer ( 32 ) and assuming q(~) has a root of order 1 at ~ = ~ • o 

then the solution of equation ~.16~ which is finite 0ver the whole 

range of t is 

·In the analysis performed in Appendix I it h~s been assumed that the 

positive and negative charge densities are 3ero at the interface and 

equal and finite at larte distances from it. Under these conditions 

it is found that the electrical potential increases monctonically cn 

moving away frcm the interface, while the char~e separation passec 

through a maximum valu~. The parameter qtherefore has 3 zero at 

this point. 



r 3 -i"j' 
lR - l2.

o 
q}:2 d. } 1/6 t A.Ai (p2/3>! 

---'-1~ 

q' 

:here·" = (t J q}:2 d.)2f3. and Ai (p2/37, ) "nd Bi (l/3l; 

-to 

are Airy functions of the first and second kind. 

) 

Invoking the boundary condition of equation ~.15~, equation 
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~.160 has a bounded solution previded that B = O. The perturbation 

distribution therefore beccmes 

_ ~O = ~_ G., 
'{' e e y", q 

q;.2 dJ-] 1/6 .. A 1.' (p2/3 ..... , ) 1\, (t) ('k ) ~ ... '.i:' exp 1. x (2.165) 

G is found by utilizing the boundary conditions of equation 

ComDining (2.14~, ~.148) and (2.150 and noting that to a first order 
'1 

of approximationii = ~ - '10 ~ '~ 1) whe'r'e 11' and 1) are unit vee;tors . 

in the y and x directions respectively, we get, 

i.e. the interface remains at ccnstant potential so that 

Expanding cp «(\1 + h) by means of a Taylor expansion 
. e 

first order terIllS, gives, , 

Cfe(flL: h) = o(Ye (h) +fll o lCYe (h) + 

and hence fr(lffi equatiun (2.166), 

o 
J,() <1J "\ C~l; e ( h ) 
~/ e'( h) = - h exp (ikx) ( t) CJ -cry--

From equatio~ (2.165) 

1 
h q 0 1)1 

to include 

C)~p e (h) 

dy 

(2.166) 

all 

(2.167) 

}~ '30 11/6 (\.'(,.7 2/3);:r (t) exp (H:x) (2.1;)0) q o~J' ·1..:P ':t 
)It-

eq 
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Thus, combining squat ions (2.167) and (2.168) and nctine; tbat 

~Pe = °Eb ~ .'\\~ (t) cxp (ikx) 
o 

(2.169) 

where F 

t 

= 1 10 qll at ] 1/6 Ai (-t //3) 
(2.170) 

--·----·--14 
q' 

and the subscript 0 indicates the functio~ to be evaluated at the 

interface. 

By symmetry the solution for the lower region is, 

F' 
F o 

eX!, (ik.x) 

where in the corresponding expression for F and F t is replaced 
0' 

by - .'1;. 

Comparing.first crcler terms in equatiGn ( 

i 
P + D t:..:, a 

. 1 
= (_l)J 'r 112 h 

xx 

) gives 

(2.171) 

where j = 1 denotes the upper interface and j = 2 the lower interface. 

In this research tte nature of wave ercwth in iGniscd gases 

has oeen examined at temper~tures of about 10CO
o

C. Under these 

conditions aercdynamic effects are necligible for velocities 

3,oeo em/sec (ref. Section 4.1 ) and hence the perturbation 

value of eBS pressure may be omitted from eq~ation (2.171). 

It was shown in Section 2.2.2.1 that for sinucus disturbances 

the velGcity potential ruay he written as 

lcp ~ -h t ]-' t + i u '\t] .~-!:0~U~l) ex~) (ikx) L K Q I c0shlkh) 



. ' 

where'dlcP + U ~lcQ 
at o~ 

1 = - P 1 
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Com~ining equations (2.169) ,(2.171) and (2.172) eives two 

identical expressions for each interface, i.e. 

''\L, 2'U k-v.,_-w.T2k2_~(-D~ °E
2F

-t,o )'k-Tk!c J r t t + ~ 0 It J U 0 -l 0 F 0 0 . (2.173) 
el tanh (kh) 50 

Equation (2.173) h~s a solut~on of the form exp(int) where 

for temporally growing waves, 

n = Uok + i~(-DeooE2 F;t O )k-' Tk3.so J)2, 
l el tagh(kh).so 

A dilational disturbance of the form 11=hl«t)1oexP(ikX) 

and '?2=h'Y< t)1oexp (i(kX+I'(» ~imilarlY yields the growth rate 

of dilational waves i.e. ~ 

n= U ok - ~ 0 F ;> 0 
+ "lC-De:- °E2 \Ft,v)k_ Tk3~ ] 

o 

reduces to the form, 

giving the 

-. ~ , 

~(-DE: °E2 
F ~,o)/T .5 ] > k l 0 F 0 

o cut-off wave number as, 

t ( 0' 2 F 1)f! 
k = -D € E t J 0 ) IT.5co 

c 0 F 
, 0 

(2.174) 

--The optimuo wave numbers are ,however, only similar for kh'>l when, 

t< 
0 2 F 

k t= -DE- E ~ op .0 F 

while for kh(l ,0 

k = 0 opt 

for sinuous waves 

and 

f 0 2 F 
k t= C-Df E ~ op 0 . F 

o 

for dilational waves 

Y3T So 1 
)f! 

... ' • 

(2.175) 
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k and k can be evaluated for any Bct of operatinf conditions c opt 

provided °E and F are known. Approximate values of the latter may o 

be obtained by 2ssumint that the sheet has reached its floating 

potential. This approximation is valid when the relaxation time of 
". 

the ioniGed gas is at least an order of magnitude less t1an the 

break-up time of the sheet; In the present werk the hot gases 

contain sodium as an impurity and electron concentrations 

ffi3 can be expected (33 ). The corresponding valve of relaxation 

t · . 10-6 
~me ~s secs, which is significantly greater than the sheet 

break-up time of sees. 

A partial analysis of the characteristics of the ffiomcntuill and 

electrical boundary layers surrounding a conical liquid sheet is 

carrico cut in Appendix I. It is Ehown that the dimensionless 

electric field strength, G, arising at the BBs-liquid interface as a 

result of charge separation in a nen-convective sheath adjacent to 

ttc sheet is determined by the equation 

1 Gn:, 

2 G 

(J. - J ). 
~ e 

= :-2 
P ep }Ii 

G1 r 1 } - - - 1 2 }Ii 

P 

~ith boundary conditions 

61 = 0, all = _p2(J. _ 
~ 

J ) ano G = Gw when t ::: 0 

G·7' 0 

e 

, (J. - J') ______ ~ _____ e~ __ _ 

(J .. + J e )( -t - ts) 
~ 

}Ii 

HS t -'-... 1 

G 

[: 
where p , }Iii J. and J are dimensionless paramet&rs, 

1. e 

related tc its dimensional value by tte expression 

"CD G=-~.r.'e 
')·0_ 

K e c 

und G is 

(2.1'76) 



where 50 is the thickness of the non-convective sheath. 

Since the parameter q is defined as, 

-where, 

q = 
den. - n ) 

1 e ---dE 

dl-{ = - Gdt 

and from equation 

(n. - n ) 
1 e 

Equations (A.35) and e.17~ can be combined to give, 

GlI; G
2 (J. - J ) 

J. e 
q = = ... 

2 ;2 
P G 2p * 

G 

(2.1'17) 

For the case where the surface potential is negative .with 

respect to the free stream gas (i.e. charging results from more 

mobile negative ions or electrons) q is negative and hence arg q =~ 
F 

1'11e ratio ;,0 cen be obtained from equation G2.17C) as, 
o 

F 
_~_1.£ 

1" 

d (AiC 2/3 11r » r I» 2/3] 
= ci t P e. l 0 L I qo P 

A . (2/3 i;Y . -) OJ X . 1/3 ° 

and from equation 

GI (1 
2 
P 

1 P e 1:0 (lqI2dt) 
to . 

- t) ( J. + J /3-r) 
J. e 

dt 

2 
G 

(2.178) 

• (2.179) 



and LL 
dt t=o = J. + 

~ 

J e 1 
+ (J. - J )(- - 1) 

J. e if 
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For any Bet of operating conditions the dimensionless parameters 

2 
P , t , J., J and G , and the parameter r 0 has been determined 

s ~ e w ) 

using the matching procedure described in Appendix I, part 3. 

With these data available equation (A.35) has then been solved 

numerically using 

GII 
an RKM procedure, the point t being given by the 

o 

zero of ----- and the resulting 
p

2G 
equation .1(:.179) by quadrature. 

I G used to evaluate values of G and 
F 

'fhc ratio, ;' <! has then' been 
o 

obtained from equation (2.l7~ ~sing tabulated values of th~ Airy 

functions, ~hile °E has been oetained from equation (2.17~ using the 

calculated values of G and G • 
VI 0 
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3.1 Layout of Apparatus 

The apparatus has been designed for the purpose of studying the 

performance characteristics of pressure spray nozzles in gaseous 

environments ranging up to 1,COOoC. The flow diagram is shown in 

Fig.(3.1). The nozzle is positioned in the test chamber to spray 

'Vertically dO"\oljiWards into a conical funnel, which removes most of the 

spray by impingement. An exhaust fan draws the rem~inder through an 

internally spray cooled duct, and through an impingement separator. 

All the work was carried out with water apart from a short 

series of experiments in which organic liquid~ were used. V,ater is 

fed to the nozzle from a 5.46 x 10 1 (12 gallon) pressurE! vessel, A, 

by means of compressed 4itrogen isolated fr0m the liquid in a 

flexible bag. Provision is made for de-aerating the liquid by 

applying a vacuum to the vessel, and for heating the liquid by means 

of a 2 Kw manually controlled immersion heater operating on a by-

pass. ether experimental liquids are fed from a 6.85 1 (l~ gallon) 

cadmium plated pressure vessel, B, the pressure being applied by 

means of oxygen-free nitrogen. 

The hot gas is supplied by a specially designed 1.78 x la-1 m 

(7 in) square propane~8ir. flat flame burner, attached to a 

4 -1 (r ) .57 x 10 m IB in high asbestes-lined chamber. The fuel and 

oxidant, metered separately by variable area flow meters, are 

injected tangentially int0 a mixing vessel and then fed to the 

burner. Rectangular ports cut in the sides of the chamber afford 

access to the interior for photographic observation and temperature 

measurement. _ Provision is made for cooling the g;a.ses by inserting 

one or two sets of water-cooled tubes between the burner body and 

test ci:.amber. 
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The- liquid temperature at the nozzle is measured by a copper-

constanton thermocouple placed just upstream of the orifice, while 

the hot gas temperature is measured by a Platinum-Platinum 13% 

Rhodium thermocouple. The output from each thermocouple is 
'<t 

displayed upon separate chart recorders. 

3.2 tesign ~f the Burner 

The basis of design of the gas burner is to produce an 

environment with uniform temperature and velocity profiles. These 

requirements are best satisfied by an en61csed flat-flame burner 

whose characteristics approximate to a one-dimensional system. 

The operation of a flat-flame burner necessitates a balance 

between the approach gas and flame velocities at all points in the 

combustion plane. In practice this can only be achieved by burning 

the gases upon a stabilisine grid. Gas is passed through the grid 

at a velocity lower than that of the free space flame, which, as a 

result, tends to burn back. As the latter approaches the grid)loss 

of heat by conduction lowers the flame velocity until the required 

balance is reached between the velocity of the flame and that of the 

incoming gas. A flame maintained under such conditions is extremely 

stable and unaffected by transient disturbances. To maintain a 

uniform temperature profile it is necessary to ensure that combustion 

takes place only at the surface of the grid, and the gas mixture 

must therefore be homogeneous and uniformly distributed. 

Fig.(3.2) shows a diagram' of the gas burner and mixing vessel 

finally ado~ted, which implements the above requirements. The 

apparatus has ~een designed to burn an 85~ lean stoichiometric 

mixture of propane and air, which corresponds to ~n 'apprciximate flame 

speed of O.l13 w/sec at atmospheric pressure (YI-)· 

- . 
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The propane and air enter respectively thrcugh diametrically opposed 

6.35 mm (0.25 in) tangential ports let into the cylindrical walls, 

and leave through a 12.7 mm (C.5 in) outlet at the top. A bur;sting 

disc clamped betwee~ a spigot and flange ferms the base of the 

vessel. Preliminary tests indicated th&t the required propane and 

4 2 air flow rates of 1.65 x 10 and 6 x 10 1 Isec respectively gave a 

pressure drcp of 0.276 bar (4 psi) over the whole system, and con

sequently a bursting disc fabricated from 6.35 x 10-3mm (2.5 x 1C-4 in) 

aluminium foil which ruptures under a differential pressure of 

0.552 bar (8 psi) was used. 

The premixed gases are distributed initially at the top of the 

Durner by a perforated toroidal pipe and subsequently by 2~3 gauge wire 

gauze, before passin5 through a ceramic stabilising grid. The grio. 

comprises a number of 9.5 mm (0.375 in) thick ceramic blocks pinned 

and cemented together to form a 1.78 x Ie-1m (7 in) square. The 

blocks, which. have been kindly supplied by Messrs. SiQPs*, have a 

free area of flow equal to half the total area. In order that the 

nozzle may be rotated about the axis and located at any desired 

height below the combustion zone, a 6.35 llL'll (0.25 in) I.D. pipe is 

inserted along the' axis of tte burner. The nozzles may be clamped 

at any position by means of a gland with an O-ring seal. 

Fig. (3.3 ) shews typical axial temperature profiles nermal to 

the liquid sheet when water at 25°0 and 78°0 respectively is injected 

° into hot gases at a bulk temperature. of 1,OCO C. 

also plotted in Fig.(3.4) as isotherms. 

The results are 

·Siaps Gaa Radiants Ltd., Grand Buildings, Trafalgar Sq., 

London W.O.l 



3.3 Temperature Measurement 

3.3.1 Gas _Temperature 

The most convenient method of measuring gas temperature of not 

more than about 10000C is by thermocouple probe, although these must 

be fabricated frofu fine wires in order to afford good spatial 

resolution which Cb.n be in the order of lOx tbe wire diameter and to 

minimise both aerodynamic and thermal disturbances. Catalytic 

effects at the hot junction ~hich give rise to spuriously high 

• 
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readings can be eliminated by a coating of non-catalytic material such 

as silica (34). Low readings due to conduction losses can be neg-

lected if fine wires less than 0.25 mm diameter with an exposed 

surface to diameter ratio of abcut 50 are used (35), whilst those due 

to radiation may be estimat~d by making a balance between the energy 

received by convection and that lost by radiation. 

Thus, for a small spherical body within a large enclosure at 

constant temperature we have, 

h(T
t 

- T
J
.) = e.cr (T.

4 - T 4) 
J J. w 

(3.1) 

where h, the heat transfer coefficient, is determined from the 

expression, (36) 

N.u = 0.l.j-2 PrO. 2 + 0.57 ?rO. 33 ReO. 5 

for 0.01.s; Re ~ 10,000 

Gas properties in equation (3.2) are evaluated at the mean of the 

junction temperature T., and the true gas temperature Tt • 
J . 

The emittance, e
j

, of the coated junction has been taken 

as bein~ ~qu~l to 0.22(34) since microscopic examination of the 

thermocouple used in the present work indicated the thickness of the 

silica to be small in comparison to the total diameter of the junction 



The wall temperature, T , has been estimated by equating the heat 
w 

lost by convection from the outer surface of the test section with 

that flowing through it by conduction, i.eo 

T 
T w = ( h 2 ( To - T a) + RO ) R 

In equation 0.3) the heat transfer· coefficient, ~ is given by 

the relation, (37) 

m- 2 °C-l) (W (3.4) 

The thermal resistance of the test chamber, R, is ~.19 2 ° -1 m C Vi • 

The outer wetll temperature, T , and the ambient gas temperature, T ° a' 
were measured directly. 

In this research temperatures tave been measured of the bulk 

flow from the burner and that adjacent to fan shaped sheets of water. 

~ater has an absorption spectrum with a peak of 3 p-!ll (38 ) 

corresponding closely to the reak in the radiation from a black body 

at ° 900 c. It can therefore be expected that the sheet .will tend 

tc act as a heat sink and thus make additional ccrrections necessary. 

!;cwever, the maximum radiaticn loss thC1.t cculd cccur Vloilid ccrresp·ond 

to·an enclosure maintained at a rc~m temperature. Under thesA 

conditicns e~uation (3.1) predicts a positive correction of 40°C 

for a thermocctiple reading of 9200 C. At a gas temperature of 

960°C the walls of the test chamber have a temperature of 570°C 

which results in a correction of 30°C. The presence ~f a water 

sheet will produce a correction lying between these two values, but 

since the maximum possible difference of 10°C lies ~ell within the 

+ 0 .. 
experimental error of -15 C, its effect can be neglected. 
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Temperat~res have been measured over a range of lCO-lOCOoe 

and a Platinum-Platinum 13% Rhodium thermocouple has been used. 

The thermocouple assembly is shown in Fig.(3.5a). The wires, each 

of 0.125 mm diameter, were supported in a twin bore ceramic tube 

and welded at the hot junction to form a bead of approximately 

0.5 mm diameter. Further support and rigidity is given by a con-

centric 3 mm O.D. single bore ceramic tube and a 6.35 mm (C.25 in) 

O.D~ brass tube. A terminal block clamped to the fermer.provides 

electrical contact with the B.S. compensating cables. Extraneous 

temperature effects at this junction are minimized by enclosing it in 

·a glass wool filled cardboard case. The hot junction was coated 

with silica by passing it s10wly (about 1 pass per second) through 

a flame containing particles of silica from the deccmposition of 

dimettyl siloxane, and then examinin8 the junction under a microscope 

fer possible flaws. The thermocouple is supported by a system of 

micrometer screw slides, so ttBt it can be traversed at ~ny plane 

around the nozzle. 



Fig.3.5. Thermocouole Assemblies for _._------>-
the Measurement of Liquid and 

Gas Temzeratures 



· . 

Single bore ceramic tube 
Terminal block 

.... ~O:; ," 

Brass support, tube 

Compensating cable 

( 

Twin bore 
ceramic tube 

Sil ica coated 
bead 

overall length 0·3 m. .. 

(b) Pt.- Pt. 13 % Rh. Thermocouple assembly. 
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3.3.2 Liquid T~erature 

In order to evaluate temperature dependent properties of the 

liquidas,it is injected into a gaseous atmosphere a 0.25 mm diameter 

Shellac covered Copper-Constantan thermocouple was positioned just 

upstream of the orifice. A diagram of the assembly is shewn in 

Fig.(3.5b). The thermocouple wires are supported in a stainless 

steel tube, which passes down the centre of the feed pipe. 

Effective sealing is provided by plugging the top end of the thermo-

. couple tube with "Araldite" and. attaching it to the feed pipe with a 

tapered compression fitting. 

De-aeration of Liauid Feed . 
In order to inventlfate the effect ef dissolved air on the 

mechanism of sheet disintegr~tion in hot atmospheres, the equipment 

shown in Fig.( 3.6) was used to obtain de-aerated water and inject 

it into the test chamber by applying compressed nitrogen, yet 

avoiding gas to liquid contact. 

To prepare a batch of distilled water, the first ~tep was the 

evacuation of the pressure vessel and also the flexible bag which 

would otherwise expand and prevent the entry of water. 

Vacuum was applied to the system through a water trap by means 

of a water ejector. During the evacuation A, B, C, D, G and li were 

closed while E and F were open. When the minimum pressure was 

reached, A was opened to admit distilled water from a 5C litre 

reservoir. It entered through a Bray miniature Unijet Y nozzle. 

Water accumulbting in the water trap indicated that the pressure 

vessel had been filled and it was then isolated by closing A, E and 

F. Finally, D was opened to connect the f~exible bag with the 

ccmprcssed nitrogen supply and the de-a0rated water was new r0ady 

for injection into the test chaIT,ber 'by opening G. 

. -



Samples of water were withdrawn through B after each batch was 

produced. The air current in the samples was analysed by the 

method due to Winkler ( 39 ), which depends on the chemical 

estimation of the amount of dissolved oxygen. 
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3.5 Determination of Sheet Thickness and Sheet Lenrth ---.... _------ ------_. ----- . ',) 

The thickness of spray sheets has been measured by an inter-

:erometric technique developed by Dombrowski, Lasson and Yiard (10), 

since it enables thickness variations ever the entire sheet to be determined .. 
from a single photograph. 

'The break-up length of spr·[tJ sheets has been measured directly 

from sub-microseccnd fl~sh photographs which have been obtained 

employing an optical system identical to that in Sectien 3.6 

Theory 

When a monochromatic parallel beam of light falls upon a film, 

reflection takes place at both the front and rear surfaces.(3.7).· Because 

~f the difference in the li~ht paths, the reflections mutu~lly inter-

fere or reinforce to produce a system of fringes,Fig.(3~8). If the 

light paths between two adjacent lifht fring~s are D and D l' then r r+ 

Dr = (2n + 1) w/2 = 2Srf-Cos e 
Dr+l = (2n + 3) w/2 = 23rJl. Gose 

~here w is the wavelength of light 

~ is the refractive index of the film 

e is the angle of refraction of the light beam in the film 

Sr' and S 1 are the sheet thicknesses correspondinp: to. the light r+ ' -

path len~ths D and D l' 
r r+ 

. ' 
since for Cl, spray S = Ko equation ( 3·5 ) e;ives: - , 

x 

. (.!. 1 ) w 
Ie - --- = 2 J.L Case 0 x x r+l r -

or mere generally, 

(! 1 ) wn 
K - -~-- = 21l CC;-;O 0 x x r r+n 
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A linear relation therefcre exists between and 
]. 

n 
x 

r+n 
If the slope is given by m, then 

w sin2 e, 
K (1 )~ = -0 2mp'. f2 0.6) 

~ 

where 6' is the angle of incidence. 

;~xperimental ' 

For convenience the optical system was combined with that 

employed for reccrding sheet length by submicrosecond~spark photography 

(Fig.0.1~ Section 3.6 ), a comffion camera being usqd for both sets of 

experiments. The arrangement is shown in Fig.0.9. Light from a 

250 watt mercury vapour lamp (J) is condensed by a pair of 

. -1 
1.52 x 10 m (6 in) plane convex lenses (1) into an approximately 

parallel beam and transmitted through a mercury yellow filter (K) onto 

the liquid sheet by a front aluminized mirror. The reflected light 

. is directed back to the camera CD) by apprcpiately rotating the plane 

of the sheet ab0ut the nozzle axis. Equation (3.6 ) ShONS that the 

value of K depends upon the value of sin
2e '. 

o 
The error in 

'ceterwinine e' has been reduced by placing the mirror and camera as 

close tOBether as possible and under .these conditions the angle 9 ' 
o 

was about 9 so that any error in measurement was negligible. 

Because the plane of the sheet is disturbed by waves, relatively 

long exposures and a wide aperture are required to ensure that light is 
. " 

reflected from every part of the sheet as the latter moves past the 

lens. The best arrangement embodied a shutter setting of 1/30 sec at 

an aperture 01 f5.6 with PanF film reversally processed to give hieh 

contra,st. 
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Experimental Results 

The thickness pararne(er, K , has been measured for the tbree o 

sizes of Bray miniature unijet nozzle listed in Table 3 over a range 

of injection pressures. .. Since it has been established by previous 

workers that K is independent of surface tension, measurements have 
o 

, -

only been made with water and aqueous glycerine mixtures. Fiks.(3.lC) 0.lnan~ 

0.1~ ~how the results obtained for W, X and Y nozzles using water, 50% and 

75% ilycerine water mixtures respectively, for an injection pressure 

range of O. 69 - 6.91 bar (10-100 psie;). 

3.6 Measurement of Drop Size 

FiSh speed flash photography was chosen as the means for assessing 

the drop size dlstributions. It is a relatively simpletechniqu0 and 

has a further advantage in that measurements can be made without 

affecti~g the dynamics of the spray. 

It is shown in Appendix III that, because of tbe periodic nature 

of drop formation, accurate results can only be assured by measurements 

of the spatial size distribution within the vicinity of the atomiseI'. 

'Double-flash photography, usually employed for obtaining teffiporal size 

distribution, was t~us unnecessary, and a single-exposure electronic 

flash unit has been used • 

. A diagram of the plan view of the optical system is given in Fig.(3.13) 

Light from a spark source (A) is focussed by means of a condensing 

-1 ; ) lens system, comprising a 1.52 x 10 m (0 in single element convex 

lens (n) and 8 1.72 x Ie-1 m (7 in) Aero Ektar lens (F)" into the 

centre of the ~amera iris eB). A 1:1 object/image magnification at 

an aperture of f/16 was chosen to provide the best compromise between 

a eoed depth cf field and hi8h resolution. Bedauss of the limitations 
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of the opticel components the field of view cculd not always 

incorporate the region of drop formatien and the nozzle, and, in order 

to ascertain the position of the nozzle on the photograph, it was 

illuminated by an auxilliary light source. 
~ 

This was carried out by 

focussing the light from a Pointolight lamp onto the nozzle tip by a 

condensing lens-mirror Rystem. 

The light flashes, of sub-microsecond duration, were provided by 

an open electrode spark dischare€ system comprising a 0.02f-F rapid 
~ 

discharge condenser charged to 15 Kv. The electric gap was set to 

8 mM and the light intensity adjusted to the required value by a 0.1 

natural density filter (G). Kodak Kodaline KS5 film, giving high 

··resolution and contrast, was used; the optimum developing conditions 

were found to b~ 390 sees (6* mins) in Ilford I.D.ll developer. The 

minimum size of drop H.st could be reso Iv ed was 10 frn. wi th a depth of 

field of 4 mm. 

3.7 Drop SizinF, and qounti~ 

To avoid the difficulties of counting and sizing drops by micro-

scopic techniques the negatives were examined at a magnification of 

x60 by rear projection on a screen ccvered with tracing paper; the 

size groups chosen were C-3C}J-IP.' .3C-45p(iJ., 45-6CfU'Tl., etc., in intervals 

of 15 l.\Jfl. 
The minimum number of drops to be counted in a sample to give a 

reasonable estilrl8.tc of mean drop size is difficult to determine. 

Hooper (40) has shown that a drop count of l,CCO gives the mean 

diameter to a~ accuracy of !lC%. The nor~ul counting rate of samples 

ranging in size from 800-~200 drops was about 2,CCC per hour and the 

total number c0unted per day by dictation into "a tape recorder was lO,CCO. 
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It is sliowh in Appendix III that the true drop size distribution of a 

spray can only be accurately determined if the drops are measured 

close to the region of disintegration. Thus, for each photograph the 

section analysed covered the first band of drops formed. ., ]'or con-

siatency, drops were measured within 5.0 mm on either side of the 

nozzle axis. 

Calculation of s~uter Mean Diameter 

The mean drop size was expressed in terms of the volume-surface 

mean'diameter, D
32

, defined as:-

D D 

D32 
= Smax D3 dn d/ fmax D2 dn 

dD 
dD dD 

0 0 

In equation C3.7 ) D is the drop diameter and 

distribution. Since 

~3 dn 
dD 

dD = Total drop volume 

suitable rearrangement of equation (3.7 ) gives 

1 
D 

dU· dD 
dD 

where U' is the fractional volume oversize. 

dn 
dD 

For discrete drop sizes U,e equation may" be written as 

(3.7) 

in the frequency 

(3.8) 

In equation (3.9 ) Dm is the median drop size in any group, N 

is the number of drops in a group, D is the maximum drop diameter in 
max 

the spray. 



. ' 

. Table 1. Calculation of Volume-surface 

Hean Diameter 

Nozzle:- Bray Unijet Y 

Injecticn Pressure:- 50 psig 

~iquid Temperature:- 26°c 

Ambient Gas Temperature: 675°C 

A. Calculation of ~umulative Fraction Oversize 
, 

Size IMedian, D3x l.'lN/ D3xlO-6 D3x!:"N
6 

Group Range Dis .• D.N !D3x 1'[ /J-rfI. p.(1l. x,10-
-

1 0-30 15 0.0034 llC C'.062 0.00013 

2 30-45. 37.5 0.0535 526 27.878 0.05967 

3 45-60 52.5 0.1455 320 46.400 0.09932 

4 60-75 67.5 0.3085 122 37.576 0.08034 

5 75-90 82.5 0.5675 66 37.092 C.C7940 

6 90-105 97.5 0.9275 64 59.328 0.12699 

7 105-120 112.5 1.4245 32 45.568 0.09754 

8&9 120-150 135 2.460 54 132.840 o.28Lf-35 

10&11 150-180 165 4.492 8 35.936 0.07692 

12&13 180-210 lq-,:;J 7.415 6 44.490 0.09523 
Totals 467.170 C.999.:59 

B. Calculation 9LQ.32_UsinP: Smoothed DElta from Fip: 

Size Hedian Cumulative CumulatiVe 
(D3x~~'J)/ Fraction Fraction Range Dia. Vol. Vol. in DID3x AN Prfl. {len. Range Each Group 

0-20 10 1. 00-0.992, o.cc/:$ 0.00000 .. 
20-40 '30 0.992-0.954 0.046 0.00153 

40-60 50 0.954-0.865 0.089 c.00i78 

60-80 70 0.865-0.735 0.130 0.00185 

80-100 90 0.735-0.592 0.143 0.00158 

100-120 110 0.592-0.455 0.137 0.00124 

120-140 130 0.455-0.308 ' 0.147 0.00113 

140-160 150 0.308-c.175 0.133 0.00086 

160-180 170 0.175-0.081 0.094 0.C0053 

180-200 190 0.081-C.015 0.066 C. 00035 

200-220 210 0.015-0.0CO 0~015 0.CCC07 

220-240 230 -
1 

Cumulative 
Fraction 

Vol. 
Oversiz;.~ 
1. cecco 
0.99987 

0.94020 

0.84c88 

0.76045 

0.68105 

0.55406 

' 0.45652 

0.17217 

0,09523 
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li'ollowing IieyvlOod (41) the data is first smoothed by plotting 

against DL, the lower limit of the size groups (cf. Fig.(3.14). 

The abscissa js divided into 20J.lm.intervals· and tr.e volume for each 

is read from the curve, and divided by its median diameter. 

The summation of all these quantities gives 

D max 

L 
o 

D max 

D3m~N L 
-n-- ° 

the reciprocal of which· (i.e. equation (3.9 ) gives the mean drop 

A sample calculation is given in Table 1. 

. ' 



(i) List of Fan Spray N~zzles 

~--N-o~z-z~l-e----~----C-r-i-fice+ 

Catalogue Dimensions 
Designation (mm) 

Water :F'low 
Ntunber 5 

(FN) x 10 

Velocity , 
Coefficient 

(Cv) 

x 

o. 85 xC. 395 f_o, _. 4_0 __ '3. ___ (_0_._84_)_~_O_._8_5_--I 
~.745 x 0. 3111°.275 (0.57) 0.84 

y 
I 

0.46: x 0.247;°.1,4 

(ii) List of S~irl Spray Nozzles 

(0 • . 26) O.Bl 

I 
~~ 

Vanufacturer's 
Designation 

v,'ater Flo'll 
Number 

(n:) x 105 

Velocity Sheet Thickness 
Caeffic Lent Par2,m§;'ter (~'o) . 

(Cv)· mm2 x 10~ 
~--------------'r------------4-----------'~--------------~ 

D8/30· 0.072 (0.15) 0.79 2.8 

D8/45 • 0.01'1 (0.16) 0·79 2.8 
. 

D25/45 • 0.288 (0.6) 0.84 8.5 
- ' 

DIOO/Bo 1.2 (2.5) 0.84 23.7 

i' . 
These figures are based upon the dimensions of a rectangle 

of equivalent area • 

• 
·The number appearing after the solidus signifies the nominal 

spray angle. 



Table 1._ 

List of Li~ Properties 

=-r ' I 
50;'; • 

I 
. . . Distilled ' Carbon 75%' 

J.~quld ." t Acetone Tetra- Glycerine Glycerine 
'ia er chlcride -water -water 

Density, e ' \ 1.0 0.79 1.595 1.13 1.2 
(Kgm-3) x 1:0-3 I 
Surface Tension) 72.8 23.7 26.95 70 69 
T, at 20°C x '10 
(Nm-1) 
, ! 

I Viscosity, 
10~' 

1.0 0.405 0.6c6 5.65 31 
at 20°C x I 

I 

(m2s-1) i 
I. 
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3.8 Liquids Studied in Present Work 

The mC:ljority of the work was carried out with distilled water, 

while a short series of experiments were conducted on sheet length 

~etermination ~ith acetone, carbon tetrachloride and 5C% elycerine 

solu tion. The physical properties of the four liquids are given in 

'l'able 3. 

Experiments were perfcrmed with both single hole fan sprays and 

swirl spray. nozzles. 

The single hole fan spray nozzles used were Bray miniature 

unijets, manufactured by Geo. Bray and Co. Ltd. :rr:e functional 

part of the nozzle is a porceliin moulding in a brass frame (cf. Fig. 

3.15)~.Table 2 gives the dimensicns cf the r~ctangular orifices of 

the nozzle, mea~ured with a microscope, and the flow characteristics. 

The flow number, FN, is defined as the ratio 

FN = ~ 
11.2 

P' 

where Q is the injection flow rate and P the differential injection 

pres.:: ure. For convenience the value of flow nu~ber is presented both 
l' 

iri S.I~ units and conventional units (gph/(psig)~), the latter 

appearing in brackets. The velocity coefficient(C ) has been taken 
~ . v 

equal to the discharg-e coefficient (CQ ), wrdch has been obtained frGm 

volumetric flew measurements. Since it has been shown (2 ) that 

the area coefficient (C
A

) is apI)roximately equal to unity fer flew 

through fan spray nozzles. 

The swirl sprays llSt~d were manufc:ctared by rc1nfoss I,td. 

(Lenden)s .Greenford, fliddlesex. '1'able 2 

characteristics (42 ). sheet ·thicknes.s 

gives their flew 

K 
o 

is 



. ' 

defined as 

K o 
Q 

- 21f U sin rt\ 
o ~ 0 

where Q is the volume flowrate, Uo is the sheet velocity and 

~ ~ is the cone angle. 
o 
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Chapter 4. Results 
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. \ 
4.1 The Mechanism of Drop Formation in Bot Atmospheres 

The effect of ambient gas temperature on the mechanism of sheet 

disintegratien was 'examined 

o 
and 950 c~ Some results are demonstrated in Figs.(4.l), (4.2) and 

(4.3) for a range of injection pressures. Fig~(4.l) sho~s typical 

photographs of sheets formed at room temperature with aerodynamic 

waves being clearly visible and causing break-up at the higher pressures. 

Fig.(4.2) demonstrates that, as expected, the aerodynamic wave motion , 

becomes less pronounced when the teLtlperature is raised to 380oc. 

The photographs also reveal, however, the presence of a series of high 

frequency capillary waves ever a large portion of the sheet, and that 

sheet disintegration occurs as a result of aerodynamic wave motion and 

random perforations. .At 675°~ (Fig.(4.3» aerodynamic waves are only· 

apparent at the highest pressure and capillary wave mction predominates 

throughout. Perfer~tions become more frequent and the region of dis-

integration recedes back towards the nozzle. The mechanism of drop 
. ,,-

formation now follows more closely the simple model employed for wa~e 

disintegration, the liquid trapped within the network of holes contracting 

into ligaments which subsequently break down into a corresponding net-

work of drops. Fig.(4.4) shows part of the sheet illustrated in 

" Fig.(4.3b). Inspection of the edges of the larger-perforations 

reveals varicose profiles which indicate the ripples to be dilational 

waves. This conclusion may also be drawn trom the highly eccentric 
. ' 

elliptical shape of the perforations ~hich can be assumed to result 

from the relatively high rate of expansion along the wave troughs 
t 

where the sheet is thinnest. The enlargement also reveals the 

'presence of numero~s pointd~sturbances where the waves have high local 

f,rcwth rat es. 
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shows the disturbances always to be present and randomly distributed 

about the sheet. This phenomenon was examined further with the aid of 

a high speed cine camera* operated at a rate of 10JOCO pictures per 

second. 
,,;. 

The resulting film demonstrated that the disturbances became 

apparent only at some distance from the orifice and that they were 

eventually the sole cause of sheet break down. 

A series of experiments was undertaken to ascertain the cause of 

these phenomena. InitiallYJ in order to determine whether the presence 

of dissolved air affected the behaviour of the sheetJ experiments were 

carried out with tap water, which was generally found to be super-

saturated with air, and with distilled water in which the air content 

"was reduced to a value of 1 ppm by means of the method described in 

Section 3.4. No difference could be detected. Experiments were then 
/ 

carried out in the open laboratory with a Meker burner to examine the 

sheet more closely. It was discovered t~at the perforations were 

produced only when the luminous gases came into contact with the sheet. 

Since they are a rich so~rce of charged particles, figures in the range 

1013 - 1015 ions/m3 being reported for bunsen flames (42), 1015 _ 10
18 

ions/rn3 for hydrocClrbon-air flc: ... mes (43-4l;) and'let7 _1019 ions/m3 for flaP-les 

containing traces of alkali metals+0], it was pc,:tulated that the 

phenomen"a were associated with the electrical properties of the flame 

gases • 

.. The high speed film was taken with a hitachi Rymac 16 mm camera 

synctronised ~ith an Ernest Turnr,r '66/AV sub-micro~eccnd repetitive 

spark light sortrce. 

+ The burners used in the 0crk inccrforated ceralliic stabilising grids 

ar,d P"cc'lcecl prcduninc.nt; ly yello'.': fl.ames tY9iGa1 cf the CClGr,3tion of 

scdium traces. 
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In order to determine whetherctarge transference could take place 

in the relatively short lifetime of the sheet (i.e. 10-3 secs); a 

simple apparatus was ccn~tr~cted to det~rmine approximate valu~s of the 

charge collected by the liquid. A schematic diaeram of the apparatus 

is shown in Fig.(4.5). Water from a swirl spray nozzle operate~ at a 

low pressure of about 0.69 bar (10 psig) to minimise droplet dispersion, 

was passed through the impinging interconel gases of two meker burners 

and then collected in aperspex container. The bottom half of the 

/ latter was covered with a thin copper electrode which was connected 

through a micrcammeter to earth. The whole apparatus was surrounded 

by an earthed aluminium screen. It was observed that, in the absence 

.of"the flame, the spray produced a small positive current of appro x-

-2 imately 10 fLA. Vihen the burners were ignited a negative current of 

the order of l~~ fA was recorded. The negative polarity was not 

unexpected since it has been previously demonstrated that non-emitting 

surfaces placed in an ionised gas accumulates charge as a result of the 

high mobility of electrons. Rowever, at this stage, evidence for the 

waves being electrohydrcdynamic in origin was inconclusive, since the 

possibility of temperature effects could not be excluded. Further 

experiments were therefore performed to isolate these two properties. 

The first series was devised to study the behaviour of sheets in hot 

gases with the surface charge reduced ~o negligible proportions, while 

~he second was performed to eximine the effect Dfsurface charge at 

room temperature. All experiments were performed with a Bray miniature 

unijet Y nozzle. 
" . 

Two approaches were adopted to reduce the surface charee. The t 

first was concerned with reducing the electron mobility and promoting 

recombination by introducing a material ~ith a hi[h collisicn crcss-

section into the boundary layer. The most convenient Rettod of 

r 
\ 



: ... -

" 

;t;i'::;';7 
t: ; ~, ,,;, > , 

Liquid Temperature 

" 

.. ~ 

~.'. '. " 

c· ". , . 
~ .... ' 

-,., ." .::'\. . . 
, , ' (~~' ~ I, 

" ,-.. ) .... 
c.: >i~·:· 

(a ') 56°C 

" 

- " 

, .. " 
," 

", 

pifferential Injection Pressure 1.72 bar (25psig) 

Magnification x 2 

Nozzle Bray Unijet Y 

Ambient gas temperature 940°C 

" 

, " '!: • / " 

, ' " • ¥ • 

'" 

(b) 67°C (c') 78°C 

1.59 bar (23psig) 1.72 bar (25psig) 

Fig • ~.6 Typical PhotOgraphs showing the effect of Liquid Temperature on the Mechanism of Water Sheet disintegration in 
Hot Atmospheres. 
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accomplishing this is, in fact, to raise the partial pressure of water 

vapour adjacent to the surface by heating the liquid, and a series of 

( 

photographs were taken of sheets at various te~peratures in a gas stream 

Tile partial pressure of water vapour in the combustion gas 

was estimated to be about 0.133 bar (lD3 mm Eg) and it was ther~fore 

expected that significant effects in sheet stability were only likely to 
g"""I\,3 v().Four rte-:'~'-'tes 

be observed Rt liquid temperatures~above this value. Fig.(4.6) shows 

photographs of sheets of water with temperatures ranging from 56°c to 78°c*, 

Fig! (4.6a) (56°C equilibrium vapour preS3ure 0.165 bar (124 mm Hg» 
" , 

demonstrates capillary wave motion and disintegration typical of that 

observed at low liquid temperatures. As tbe liquid temperature is 

'raised above 56°C the i~cidence of perforations bec~mes less, until at 

67°C, Fig (4.6b) (equilibrium vapour pressure 2.72 bar (2C5 mm Hg», 

they cease. Capillary waves are, however, still evident although the 

wavelength is increased. As the temperature is raised still further 

the wave~ become leas pronounced until, at a temperature of 78°C 

(Fig.(4.6c), equilibrium partial pressure 0.432 bar (327 mm Hg)), they 

disappear. Under these conditions the sheet remains plane and dis-

integration occurs at the edees in a manner similar to that observed 

by rooper at low gas densities (L~O). Temperature profiles in the test 

chamber (Fig. <3.3 » show tbat the temperatures adjacent to the sheet 

are ~ot significantly different from th~se at liquid injection temperatures 

o 
'of 20 C. Confirmation of· these measurements is afforded by the fact 

o . 
that, at gas temperatures below 3CO C, where capillary waves have 

disappeared, the gas density is sufficiently high for aerodynamic waves 

to re-appear.-
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The second approach took advantage of the fact that ionisation in 

hydrogen-air flames is several orders of magnitude less than that of 

! 

hydrocarbon-air ~ixture. A meker burner was modified to burn premixed 

hy~rogen and air by first removing the ceramic grid and placing a fine 

mesh stainless steel gauze in the mouth of the burner. High purity Air 

Products Ltd. hydrogen and air were used, grea.t care being taken to 

ensure that all surfaces were free from contaminants. The flame was 

directed to impinge on both sides of the sheets and t~mperatures of 

l3COOC were recorded adjacent to the surface. stroboscopic illumination 

showed the sheet to be plane; devoid of both aerodynamic and capillary 

wave motion. The two free surfaces contracted by surface tension and 

~ sheet similar to that shown in Fig.(4.6c) was produced. Capillary 

waves could, however, be induced by seeding the flaee with small 

amounts of sodium bicarbonate. 

Some observations were also made of the behaviour of conical 

sheets under the same set of operating conditions, arid a few typical 

results are given in Fig.(4.7). Similar effects were found to occur 

at low liquid temperatures, but differences were noted at higher 

tempera.tures. 

At low gas temperatures (Fig.(4.7a»* disintegration takes place· 

thrcugh aerodynamic wave motion. At high temperatures (Fig.(4.7b) the 

sheet length is markedly decreased by the onset of perforations, and 

. capillary waves may readily be identified. 

*No significant differences were observed for sheets ranging in 

temperature from 1Bo to 82°C and Fig.(4.7a) is used to represent sheets 

produced beth at 20°C and 82°C ~hen injecte~ into air at room 

ten.pcra t.ur2. 
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di st uroanC~8 ~£iAi~3 fro~ a hint frequenc y 89a~k diachargc . 



()l. 

It has been shown (45 ) that when a cenical sheet, produced by a 

swirl spray nozzle, is injected into an environment of sufficiently 

low density, aerodynamic ~ave motion disappears. The sheet length 

insreases, but premature breakdown by perforations occurs as a result 

of ripples originating at the crigin (cf. Section 4.3) befere the 

leading edge attains at equilibrium position. In the light of the 

findings. for fan sprays it was therefore expected that at high liq~id 

temperatures conical sheets would exhibit similar phenomena. IJowever, 

alt~ough Fig.(4.7b) demonstrates the absence of aerodynamic waves and 

tile presence of perforations, the latter occur relatively close to the 

nozzle. Inspection of the sheet again reveals the presence of 

'associated capillary waves. The reason for this is not cle&r, although 

it is likely that the boundary layers around conical sheets are com-

paratively thinner as a result of their more turbulent nature and 

hence a biEher tc.mperature and thus higher v8pour pressure is required 

to reduce charte diffusion to the surface. 

The effect of surface charge at room temperatur~wa$ studied by 

placing an electrode near the sheet ind causing a high frequency, high 

voltage discharge to take place between it and the lTletal pressing 

surrcunding the nozzle tip. The power source consisted of an Zrnest 

Turner B~S/4/8 stroboscope operating at 4,000 flashes/sec with the 

standard flash lamp replaced by a pair of electrodes. The charging 

~echaniEm is not directly comparable with that occurring in hot gases, 

since surface charge will result Ircm both ihduction and diffusion. 

However, it w~s expected that the general char~cteristics would be 

similar. A typical result is shown in Fig.(4.8). Tbe photograph 

demonstrates a similar pattern of waves and local disturbances, although 
, 

t]-!e:'l differ in c3~;:t~1il, tl's cisturbe.Ecep t:;~~cinp; en tll,3 .Zc~c{n of cr3ter~:;. 



Table 4 

Data used to calculate the surface charge, and cut-off and optimum 

wave numbers on liquid sheets 

Nozzle 
gas temperature) e (Ambient at 

(OK) 
9

1
, (Liquid temperature) 

Gas composition 

Nfo (Charge particle density) 
(m-3 ) 

&a (Ambipolar schmidt number) 
ei (Ion tempera ture) (OK) 
~g (Gas phase kinematic 

~iscosity) (m2sec-1 ) 
(Ion mobility) (m2sec-l ) k_ 

~ 

* 
Ji/Je 
Uo (Liquid velocity) 

(m sec-I) 
A (eq.A.48) 
p2 (eq. A.32) 
rq (eq.12c) 
d~ (eq. A.42) 
k opt 
kc 
k measured 
°E calculated 
°E observed 

Flat Sheets . Conical Sheets 
f------------Bre1y Unij et Y Danfoss IJbjLr5 
~-------------------

H 0 
2 

C(\2 + 
02 
N2 

A 

1220 

300 
:::: 

:::: 

= 
= 

1018 

1 
760 

0.133 
0.106 
0.032· 
0.735 

-4 5.7 x 10 
-4 0.7 x 10 

. 0.62' 
103 

1---------..::.. 
14 

10- 4 
1.72 x 
1.2 x 102 

0.38 
18.2 

0.85 x 102 
2 1.47 x 10
4 1. 2 x 10
4 2.99 x 10 

8.1 
8.2 x 10-4 

1.0 x 102 * 
0.67 
17.4 

0.64 x 102 
~ 

1.21 x lOt:. 
3.3 x 104 
2.38 x 10: 
2.07 x 10° 

2 *Although thes~ values of p and ~o do not satisfy the requirements 

given on page A.12 they are sufficiently cl03e to provide reasonable 

estimates of the charge and field distributions. 

",. 
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It ~s ~ell known (28-31) that liquid streams become more unstable 

under the influence of an applied electric field and it was therefore 

reasonable to conclude that the small waves are electrohydrody~amic in 

or!gin, while the localized disturbances are a result of random 

fluctuations in the charged particle distribution in the surrounding 

gas. An analysis was then performed of the electrical boundary layer 

characteristic~ around a continuously expanding liquid sheet assuming 

laminar flow (Appendix I) and expressions were developed for the 

criterion of stability,an~ the cut-off and optimum wave-numbers of the 

field coupled waves (cf. equations (2.17~ and (2.17' Section 2.3). 

Values of cut-off and optimum wave-numbers have been calculated 

'for flat sheets and conical sheets and compared with observed values. 

Typical sets of operating con~itions and calculations are given in 

Table ~ .. It is assumed that the gas composition corresponds to 

that obtained from complete combustion of an 85% stoichiometric mixture 

of propene and air to carbon dioxide and water and that the ionization 

results from sodium inpurities of low electronegativity, 'which at the 

theoretical flame texperature of 21400 K give rise to a free stream 

charge particle density, Nfo ' of 1018 electrons m-3• 

Little information is available on the values of ambipolar Schmidt 

numbers in ionized* gases and recourse was made to estimation+ taking 

average values of the temperature dependent properties in the gas 

boundary layer (9. I ~ and k~) based upon the arithmetic mean 
~ g ..... 

temperature (8 + 9 . )/2. a ~ 

*Talbot(46) h~s reported values of 1.3 for.ions in Argon at low 

temperature. 
..y- ..y 

+ h . .. b C' 1t ( f, e :.£ e ) The ambipolar Sc nil-a t nuruber 1.6 g1. V en y ,:)ca = /2 KO.k. + K9 k 
J. 1. e e 

and since the len i!iCobility k. is much less than the electron i!lObility 
1. 

k tl'€ expression reduces to Sea:: 'Vq e)2KS.k:. e ~ 1. 1. 



e., the ion temperature, was then assumed to be equal to the 
~ 

mean temperature since ions are generally in thermal equilibrium with 

the neutral carrier gas, while ~ , the viscosity of the boundary laye~, 
g 

has then been taken to be that of air under the same conditions. 

k., the ion mobility, is dependent upon the nature of the carrier 
~ 

gas, particularly its permittivity. For example, the presence of 

water molecules over a wide range of conditions reduces the ion mcbility 

as a result of ion-molecule cluster formation. Preliminary cal-

culaticns using the approach of_Bloom and MarEenau (47) indicated that, 

for the proportions of water and carbon dioxide present in the ionized 

gases, appreciable clustering will occur at temperatures below 4COoK 

for CO
2 

and lCOOoK for ~ater. Munsen and Eoselitz (48) have measured 

the mobility of sodium ion8in Argon in the presence of varying amounts 

of water vapour at a temperature of 2930 K,and calculated the corresponding 

cluster sizes by means of the classical Langevin equation in the small 

ion limit (49). Their results indicated that at zero field strength 

the cluster attains a maximum of six water molecule~. "The' maximum 

field strength/eas pressure ratio was of the order of 1.52 x 10
6 

-1 
volts (m.bar) ,and for 2.8% by volume water vapour the cluster was 

estimated to centain four molecules, corres~onding to 0.7 of the 

maximum. Loeb (50) has noted that a field of this magnitude corres-

ponds tc an increase in the gas temperature tc about 550
o

K. Since 

Munson and foselitz have also shown that cluster stability increases 

with incrpase in water vapour content, it is reasonable to assume that 

for t~e present wor~ where the mean temperature is 750
0

K and tte water 

vapour content is 13%, the cluster size will bc'! near to its maximum 

value ttroufhout tte boundary ~ayer. For this cluster size the 
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Langevineo.uation gives a value of mobility of 5.7 x 10-4 m2 (sec volt)-l 

at 700
0

K in N; at 1 bar (760 mm Hg)*, compared to a value of 

_L~ 2 -1 
7.7 x 10 ill sec volt -1 for the unclustered ion. Usine this value 

of mobility gives the ambipolar Schmidt number a value of 1 • ..... 

The parameter, A, defined by equation (A.48) is 

dependent upon the surface radius yes) (cf. equation (A.54» 

For simplicit~ an average value based upon half the sheet length has 

been used. 

In determining the value of H, the ratio of ion to electron 

temperature to 'be used in the calculations, it has been assumed that 

because of the relatively small size of electrons little momentum 

transfer occurs as they pass through the boundary layer. Their 
r' --,,--

temperature thus remains close to that of the ambient gast.::;· 

(9 a ), givine A value of * of 0.62. The ratio Ji/J
e 

given by 

equation ~.29~ is equal to the ratio of ion and electron diffusivities 

at their respective temperatures. 
Kg. 

Using tb e Bins tein relations, D. = k. __ 1 the ratio becu!l1es 
]. 1 e 

k. /*k .• . e 1 
k has been determined by utilizing the Compton equation 

e 

with tabulated values of collision crcss section. Since k is also 
e 

a function of DE, the interfacial field strength, an iterative 

procedure was adopted using equations(A.4" and (A.4a) to obtain the 

appropriate value. 

+Although nitroeen censtitutes only 73% of the gas mixture, Blancs 

Law ~9) shows that little error is incurred by treatine the gas as . 
pure nitrogen. 

*For convenience Loeb's com~uted values of m6bility at 293
0

K have been 

utilized and the required values at 75CoK determined frcm the 

approximate relation k. e. - cenet (49 ). 
1 1 
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Examination of the numerical results shov:sthe theory to predict 

cut-off and optimum wave-numbers to be of approximately two orders of 

magnitude smaller for both flat and conical sheets. These differences 

are most likely to be due to tile implicit assumption in the boundary 
.;.-

layer analysis that the mode of charge transfer is independent of the 

nature of the surface. In practice it would be expected tilat the 

onset of wave mction would induce local turbulence and thus enhance 

diffusion rates. This effect would be particularly marked for 

conical sheets, which show the greatest discrepancies, since, compared 

to flat sheet~ the photographs (e.e. Fig.(4.7» reveal the presence of 

a basic irregular wave pattern caused by flow disturbances within the 

-nozzle. 

An alternative method of testing the electrohydrodynamic theory of 

wave-growth derived in Section 2.3 could in principle be carried out by 

using known values of the charge distributions on and adjacent to the 

surface of the sheet. It is not possible, however, to make direct 

measurements from moving liquid sheets, but an indirect estimate of the 

surface charge en conical sheets can be made from its effect upon the 

sheet profile. This is discussed in detail in Appendix II where it is 

shown that the field is much greater than that estimated above, being 

2.07 x 166 , volts/m compared to the theoretical value of 2.38 x 10
4

• 
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LEGEND GAS LIQUID 
TEMP TEMP 
°c °c 

+ ' 380 24-28 
x 675 24-26 
v 950 22-24 
B 950 78 
• 950 67 
A 950 56 
c 20 78 
0 20 67 
A 20 56 
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Drop size distributions as produced by both fan and swirl spray 

nozzleshave been determined fer a range of gas temperatures and 

injecti.on velocities using Bray unijet Y and Danfoss D8/45 nozzles. 
"" 

In gener~l two measurements were made fer each set of operating con-

ditions using the technique described in Section (3.6).· 

For shaets disintegrating through aerodynamic wave motion the 

volume surface mean diameter, D32' can be related to the operating 

co~dition~ anj relations are available fer beth fan and swirl sprays. 

For liquids of low viscosity, Hooper (40 ) and Briffu (53 ) have shown 

that 

(4.1) 

for fan sprays, while ~olfsohn (54) has shown that 

D ~2 7 (FN .• T '"2\)1/3 (i2.)1/6 (Hrn) 
32 = c:. Ai? siner c: a ,--

(4.2) 

fer swirl sprays. 

The results for all operating conditicns are plotted in Figs. (4.9) 

and (4.10) on the basis of equations with the corresponding mechanisms 

of sheet disintecration identified. In Fig. (4.9 ), in order to 

avoid confusion due to a multiplicity of points, some of the data are 

plotted separately on the inset graph. The fig~~es show that,where 

drop formation occurs through aerodynamic wave motion, the results 

compare favourably with those obtained by previous workerso It is 

also seen that the superimposition of perforations on the waves has no 

significant ~ffect. Bowever, where disintegration occurs solely by 

perforations Ute resultinrr drop size tends to be higher than that 

predicted by equation (4.1 ) to an extent inversely related to the 

pressure a~d indcpandent cf C~S und liquid te~,eroture. 



. ". 

in drop size with pressure may be explained by a close examination of 

phbtographs such as those in Fie.(4.3), which indicate that the number 

of perforations increases with pressure. The sizeof tte ligaments 

are consequently reduced, resulting in relatively smaller drop sizes. 

The increased frequency is probably due to a greater number of flow 

disturbances Wllich act as sites of high local growth rate, and it is 

therefore likely that higher pressures may lead to even smaller drop 

sizes. 

The figures also shew that, as found previously (40) for both 

types of sheet, edge disintegration causes larger drGp sizes than the 

other mechanisms. 
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4.3 Comparison of Meaaured Bnd Theoretical Break-up Lengths 

of Attenuating Sheets 

Break-up lengths have been determined fer attenuating sheets 

~s produced by fan and swirl spray nozzles*. The measurements 

were made using flash ptotography, tle initial point of rupture 

being clearly delineated by using 3. "focussed shadoYlgraphl1 ligLting 

technique (Section 3.6 ). It was f(·und that break-~p lengths 

fluctuated by !20% about a mean, and at least a dozen readings were 

taken in each case. The average values are listed in Table 7· 

In order to compare these values with those predicted by 

equation ( 2.138), it is necessary to determine the value of 

dominant wavelength, ~dom, and initial disturbance ~oh character-

istic of the operating conditions. 

Previous workers have taken the dominant wave as the optimum, 

i.e. the wave of ml~imum thecretical growth according to first order 

theory viz. Eowever, there is no real 

justification for this choice, as it implicitly assumes a uniformly 

distributed wave spectrum in which each component grows independ-

- ently of the others. Hooper (40 ) found that the dominant wave-

length is significantly greater than the optimum, although, for a 

limited range of conditions, the values may be correlated. Second 

order theory does not pro~ide any further information on the 

relation between optimum and dominant wavelength. 

*Application of equation (2.13m to liquid sheets issuing from 

orifices is not strictly valid since disturbances are unlikely to 

be instantaneously impos~d at the origin arid, as a result, spatially 

gro~ing w~ves are ccnerated which iliay be ~eGcribed oy the relation 

'7. = ~oh exp ~i « kr + i ki) x of- C!. t) ) 
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Indeed, since equation C2.l32) d,emonstrates that energy for 

wave growth is essentially derived frcm the fundamental,· theJoptimum 

wavelength is identical to that given by equation (2.99). 

Values of dominant wavelength as observed directlytfrom the 

photographs have therefore been used, and for ease of handlinE the 
I 

data have been correlated with ~ t" 
op 

A plot of the.two wavelengths 

is shown in FigA.Il.and a linear regression gives 

= 0.9 4'i1~2+C.602:t 0.oeo18 e a 0 

While some theoretical background exists for predicting 

characteristic wavelengths, the unknown nature of the random molecular 

or turbulent motions at the interfaces makes it impossible to 

specify the amplitude of disturbances initiating wave growth. In 

principle, therefore, recourse has to be made to direct measurement. 

This was readily achieved for the conical sheets by examiniLg the 

profile at the orifice and it was found that the initial values of 

_4 + 
amplitude were approximately 10' rn" It was not possible, however, 

to measure initial amplitudes on fan spray sheets, since the presence 

of the rims precludes observations along the plane of the sheet. 

It was tberefore necessary to make an estimation of this value. 

Disturbances observed on conical sheets are most likely caused by 

wave motions within the air core upstream of the orifice. These 

values cannot be used as a working basis for estimations for fan 

sprays, since th~ orifice runs'full, and disturbances can only be 

propagated ,upstream of the outlet. 

+Because '7.8 occurs as a logarithmic term in equation (2.138 ) 

accurate measurements are unnecess&ry. 
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a~ Re = 8,150 

Liguid : Distilled water 
Differential Injection 

Pressure: 2.41 bar 
(36 psig) 

Magnification 

Nozzle 

x 11.1 

Bray Unijet X 

b) Re = 23,800 

Acetone 

2.75 bar 
(40 psig) 

Fig. 4.13 Typical Photographs of a Fan Spray Sheet Taken of the Region near the Nozzle Orifice. 
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It is reasonable to postulate, however, that the minimum value 

. -8' 
is likely to be of the order ef molecular dimensions, i.e. 10 m. 

This value was therefore used for calculating break-up 'lengths frem 

,r,.;' 
equation (2.138). I'-ieasured values of break-up lengths, and those 

calculated, are plotted in Fig.(4.~2). The fieure shows that the 

results for ccnical sheets fall about the theoretical line, while 

those for fan sheets are scattered above it. 'fhis ostensibly 

implies that smaller values of initial disturbances should be used 

as a basis for calculation and a figure of 10-12 m would be necessary 

to perform their appropriate adjustments. Little significance can, 

however, be attached to this value and the discrepancies are more 

likely to be understood in the light of approximations incurred in 

the derivation of the equations. The satisfactory agreement fer 

conical sheets may well, therefore, be fcrtuitous as a result of 

~dditional' thlnnin~"cause~ by iurfa~e ripples which are probably' 

generated in the swirl "chamber. However, 'the 'fan ~heet' 

data were re-exBJrlined in conjunction 'IIi th the corresponding photographs 

to establish the CBuse of the wide scatter, and it was. observed 

"that, for the results nearest the theoretical line, regular non-

growing capillary waves were visible at the orifice, while the sheet 

remained plane for the others. Typical enlarged photographs of the 

regions within the vicinity of the orifices for these two cases are 

shown respectively in Figs.~.13~ and 0.13b). On this basis it was 

found that the experimental points could be separated inte two 

distinct b~nds. This suggested differences in the nature of flow 

in tLe nozzles and it was established, in fact, that the onset of 

ripples occurs at a critlcal value cf Re. Fo.· wtich lies around 9,cce . 

• Bascd upon the hydruulic lli~an ,diameter of the orifice. 
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The effect is demonstrated in Fig. ~.l4) which shows photo-

graphs of water sheets produced from the nozzles at constant 

ejection velocity. The nozzle orifices increase in size from left 

to right, the first two, (a and b), operating at Reynolds numbers 

below 9,000, whilst the third (c) operates above. Comparison of 

photographs (a and b) clea~ly shows the expected increase of sheet, 

length with nozzle size. A further increase, however, photograph 

(c), results in a Reynolds number of 10,400 ripples are tlerefore 

propagated, and the sheet markedly diminishes in length. 

These findings can be used to explain the apparent anomalous 

results of D6mbrowski ~nd Eooper (9) and eriffa (52), who 

correlated sheet lengths on the basis of 0 thecretical relation 

developed from the first order Heory of Squire: viz. 

i K TLn rn I.-m ~1/3 * e 1 0 Vi. (0 
x = Const 2 U2 . 

. (a 0 

Ln ~A11 0' was taken 

.. 
line' relation between x 

to be constant and eval 1wtcd frGm the 'best 

found the value to be 12, 

andl 
~ 1K02TJ 1/3 • ~ Dombrowski and Eooper 

eo U 
while Brfffa and Dombrowski found it to be 

50, i.e. sheet lerigths predicted by the latter were ereater than the 

former. 

Re-examination of their data reveals that the former worked at 

Reynolds numbers in excess of 9,OCO, while the latter worked below 

the value. Fig.4.l5, which sholVs a plot of these parameters, 

indicates that the present data compares favourably with these of 

the other w~rkers. 

+The previous published results cannot be plotted accGrding to 

Fig. (4.]2) since no details were f,iven cf tLe operating conditions 

fer each experimental point. 



0'6 

0-5 

0-4 

Nr 
0'3 

0-2-

0-1 

0·1 0-2 0-3 0'4 0'5 0-6 

(8 -eo) (radians) 

FIG.4_16 COMPARISON OF THEORETICAL AND MEASURED 
RIM TRAJECTORIES (FOR LEGEND SEE TABLE 5 ) 



, , 
i! 

, I 
i ' 

i 
r! 

Table 5. 

;----" 

Legend 
(Fig.4.l6 Liquid 
and 4.17) 

1---

\} ~7ater 

Water 
0 , 

+ Acetone 
0 

+ 5C% Glycerine-
+ lfjater 

)( 
V1ater 

+ 50/; Glycerine-
b Water 

-
• Carbon 

a Tetrachloride 

"--- -

+ FiE.4.16 only 

* l"ig.4.17 only 

o· _ 

l 

Injection Pressure Range Nozzle ( b!.-lr ) 

Y 
0.69 - 1.38 2 (K , 5.5 x 10-2 mm ) 

0 

-
X 0.69 - 2.41 

10-2 2 
(K , 11.3 - 11.1 x mm ) 

0 

Y 0.69 
10-2 2 

(K , 11.3 x mm ) 
0 

X 1.38 
10-2 2 

(Ie , 11.6 x mm ) 
0 

VJ 
0.69 - 1.38 

10-2 2 
(K , 12.5 - 13.5 x mm ) 

0 

-
VI 1.38 

10-2 2) (K , 15 x mm 
0 . 

y 2.41 
10-2 2 (K , 5.0 x mm ) 

0 



4.4 Comparison of Theoretic?l and Measured Him Trajectories ---
Equation ~.l~ has been tested by plotting the dimensionless 

parameters Nr and (8 -0 ) for a range of Bray miniature fan spray 
. 0 

nozzles and liquids as listed in Tables ( 2 ) and ( 3 ). 
'-, 

The Rtreamline velocity, 

U :: C (2~P/ )}~ 
o Q Q 

while from ccntinuity 

• 80 = 71/2 - _.!L 
2U K o 0 

U , is given by (10 ) o 

The distance of the sheet origin from the orifice is then given by, 

f = 2d tan e 
. . 0 

~here d is the width of the orifice. Tte distance r is then 

measured frem this point. 

The results are shown in Fig.4.l6 • It is seen that for the 
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lower viscosity liquids the experimental points lie very close to the 

theoretical line, but tend to fall below it with increase of (9 -e ). 
() 

This divergence is not unexpected, because of the initial assumption 

C08e; ~ 1. While this simplification is justified near to tbe origin 

discrepancie~ becc~e progressively msgnifiad further away (cf. 

equation (2.6» 

Viscous forces can be expected to oppose contracticn of the rim 

so that corres~onding points should lie above the inviscid line • 

. This is demonstrated in Fig. (4.l0 for a viscosity of 5.65 cs, although 

it should be borne in mind that ·the aI)parent differences have been 

minimised by the inherent theoretical errors described above • . 
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4.5 Sizes of Drops For~ed frem a Liquid Rim 

Some xeasureffiente have been made of the main drops pr0duced at 

the edEes of sheets ejected from the range of Bray miniature fan spray 

n,ozzles listed in Table 2. It was noticed in some photographs that, 

because of initial random disturbances, adjacent waves occasionally 

tended to merfe (cf. Fig.(2.3» producing relatively larEe drops and 

these were neglected. Between Ie Hnd 20 meD.Sllrem",nts ",ere mode for 

each set cf operating conditions Rnd the arithmetic mean values each . 
with a scatt~r of approximately ±ll% are listed in Table 9. The data 

have been c0rrelated on the basis of equation (2.39) and the results 

shown in Fig. (4.17), ~\here it is ,seen tta t the eXl)erirnental points 

fall close to a straight litie·passing ttrcuth the origin. 

It should be noted thai~part frcm one experiment with Carbon 

tetradIc-ride, all the .... erk WGS c2,rried cut with water and the eC:llfitic'n 

therefore re~uir~s further experimental confirmation.' 
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1. TheoreticDl and eX;lerimcntal studies bave been made of tlJe flow 

instabilities of liquid ShC0tS under a wide range of conditions. 

2. tn nnalysis has been carried cut of the trajectory of the riu of 

..... a fan spray sheet of liquid end 8 theoretical relation derived 

which shows satisfactory aereement with experiment~l valuEs 

(c.f. Sections 2.1.1 and 404). 

3. It is postulated thCl,t the f;ubsequent breal~ cOVIn of the rim is 

due to both Rayleie;h e.l1d Taylor instability' ,U,e 1at t'er resul t:inz 

from centrifugal forces generated by a curved trajectory. A semi-

empirical relation is developed which satisfactc.rily correlates 

the sizes of drops fermed from the disintegrating rim with 

operating c0nditions for a limited number of experimental data 

(c.f. Bections 2.1.2 and 4.5). 

L~. The e:n'ly stoces of EJercdynar.1ic v.s.va e:rovlth have been analysed 

fer both sinuous and dilationsl wuves using first order 

perturbation t~eory, and it tas been stown that the velocities of 

both forms of wave are independent of viscosity 8n~ effectively 

equal to that of the sheet. The viscous damping facter is found 

to be similar for both types cf ~ave, and, in cemmon with inyiscid 

flow, long sinuous waves grow at a ereater rate than dilational 

waves, Rhilst short waves grow at an equal rate (c,f; Section 2.2.1). 

5. In order to gain insirht into the' mechanism of aerodynamic wave 

disintet:7l'ijtion a secend order analysis hlS been mude of the 

Grcwth of wdves on parallel-aided inviscid liquid sheets. It is 

shown that th:; wave i)rcfile CCrIll)rises a basic sinuolJ.s mode And a 

dilation3l first harmonic. ~ave growth is consequently 

asym~etric end the sheet prc[recsively diminishes in thic~ness 

at ~o~nts equal to ~ ~ a nd 7/, ~ 
/ .. cf tb; fnndi'lmeEtal mede, \',lJere 

it subsequctitly breaks down. 
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6. The results cf the above analysis have been applied to attenuating 

liquid sheets nnd a relation has been derived which relates the 

lengths of sheets produced by fan and swirl spray nozzles to the 

operating ccnditions (c.f. Section 2.2.2.2) • 

. ? The derived relations show that break-up lengths are a function 

of the a~plitude of tLe initial disturbance and experi~ents have 

suggested that its value is critically dependent upon the nature 

of tte flew within the orifice (c.f. Section 4.3) • . 
8. An experimental study llas been made of the stability of li~uid 

sheets in hot combustion gases, ~nd a new form of instability has 

been discovered in which high frequency capillary waves are super~ 

imposed upon the sheet. This tas been shown experimentally to be 

caused by the chareing ~f the sheet by ionised particles present 

in the Gas. The sheet subsequently perforates, giving a larger 

drop size than is produced in otherwise ccmparable conditions 

(c.!. Sections 4.1 and 4.2). 

9. Perturbation analysis has been used to study w~ve ~tability Bnd 

characteristics of sb~ets subjected to electrohydrodynamic 

instability, ~ut insufficient ph~sical data ere available to 

verify the findings completely (c.f. Section 2.3). 

10. An estimation of the charge diffusine to the sheet surface has 

been obtained by examining the profile of B conical sheet in both 

th~ presence and absence of hot eases (c.f. Appendix II). 

11. Theoretical analyses cf cha~ge transfer using laminar bcundary 

layer t1ecry tave been carried out, the results of which predict 

the value of the equilibrium surface 6harge to be approximately 

two crders of magnitude less than that observed. It h8.s been 

diffusion aTounc! tl.e sheet (c.f.·Aljl)enc~ix I). 
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12. A critical appraisal has been made of the comffionly ueed high speed 

photogra~hic techniques for measuring drop size in sprays, and it 

is shown that, because of the pericdic nature of drop fcrmation J 

unsteady state conditions may persist near the atomiser which give 

rise to unpredictable errors. In these circumstances, correct 

size-ftequency distributions can be obtained only from the analysis 

of single flash photographs taken of the region of drop formation 

(c.f. Appendix III) • 
• 
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Sheets Flowin~ jn an Ionised Gas 

<.-
As a liq~id she8t flows through an ionised gas, an electrical 

boundary layer is develoI)ed in which interaction occurs betwee,n the 

gas and the surf&ce as a result of the transference of charged particles. 

In particular, ~hen the charge carriers exhibit a difference in mobility 

cllarge separation occurs giving rise to a field cf si~nificant effect, 

which for an isolated liquid. becomes a maximum at ambipolar diffusion. 

Under such conditions, the system is similar to that considered by 

Chung . (55) ", who analysed the boundary layer characteristics for 

flow past two dimensional and axisymmetric solids. It was found t~at 

fer a weakly ionised gas the diffusiun boundary layer could be divided 

into two regions, as shown in Fig. Al • Region I is electrically 

neutral ttrouehout and particle flux results frem ambifolar diffusion 

~hich is described oy the classical boundary layer similarity equaticns. 

hegion II aefines a thin sheath adjacent to the wall of t11e ccnductor 

in which charge separation .occurs effectlvely in the absence of 

convective diffusion. 

In section Al.l and Al.2 analyses are made of the Charted particle 

and field strength distributi0ns in Regions I and II respectively f0r 

the case of a conical liquid sheet in wtich tile liquid flo~s in the 

. direction cf the meridian. 

In Section Al.3 expressions are derived to determine the thickness 

cf tte non-convective sheath • . 

t};e free .~CI'earn ras is consicert:d t(· cL·ntLli!l only 

ions and electroDs and it is assumed that negligible ion-



A2 

electronreccmbination occurs in the boundary layer.' For a weakly 

ionised gas the electrical properties have no effect upon the macro-

scopic equations of charge transfer, and in general the equations of 

continuity fer ions and electrons throughout both regions become 
'" 

respectively, 

~ 
aNi 'dfirx. 

0 (.U) 
a~ + d x rx-'-

:: 

Ut:< 
dNe dre{\( 

0 (A2) 
Cl~ +a~" = 

hhere K. and N are the number densities of ions and electrons and 

r ip< 

]. e 

and their flux densities, are given by, 

"") N. N.D. e ~(' n 
(j]. ].]. (') ~Ve 

:: Di e d x-a + K () i d Xc.( 

d Ne -r el)( :: De e crx: ... 
I • 0( 

where ~ e' the elect~ical potential, is determined by, 

and 

and, 

\7
2 

cP e 
:: 

where N. :: N 
]. e 

N. :: N 
]. e 

-e (N. -
DE-o ]. 

:: Nfo and <Pe 

:: 0 and CPe 

N ) e 

:: 

:: 

o in the free gas stream 

1.~ at the surface. t' ew 

Because of surf9ce tension the profile of a conical she~t is 

U.4) 

curved (Appendix II). However, the boundary layers will generally be 

small in comparison to the radius of curvative and the neutral 

boundary layer aP.9roximation of equations (AI - A5) becomes 

The 

~ N d N d2I~ 
;;, s + v ul~:: Da og 2 u (A6) 

equations of Illotion and continuity may be written as (Neskyn (57)) 

"d 2
u - d u dU U Os + v 'rl-- :: 05 

y(s)u 
d'1p 

:: 
~ 

.) 

-V, --- CA'n 
3 d 1: 2 

...; 

<A.d) 

y(s)'1 
- d'\}' 

and :: --",-o s 
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where Da is the ambipolar diffusion coefficient, s and ~ are eeneral 

orthogonal co-ordinates respectivelY\llieasured along and nor~al to the 

meridian, and where yes) is the radius of the surface • 

.... 

The 

and 

boundary conditions fer 

u = U 
0' 

v = 0, w:b.-en 

u == U 
5' 

v- 0, ~~ = 
u . ...,.. 0, N -"". N as 

fo 

N 

equations (A6 to A9) 

5= ° 
when ~= ~ a ~ oJ 0 

are, 

Equations (A6 to A9) can be reduced to a form which is identical 

with those for plane flow using Manglers transformation (57). 

Lettine, 

x = (y(s» ds, I
s 2 

''f = 
}? 

(2-", U x) -f('7 ) 
g 0 

and f")= 
N gives --N fo 

U U 
df 

== drrz 0 

. U }2 

1 = 120 \i 
0 x] .5 .)' ( S ) , 
g 

-.) Y,2. 1 f df J V == -u ( s ) yes) -
rrz @nc. 0 2x 00 

and 

(AIC) 

(All) 

Combining equations (AIO), (All) with their respective differential 

coefficients, equations (A6), (A7), (AB) and (A9) are transformed into 

ftl I + fftf == 0 

and mil + .5:a. m'f == ° 
with the correspqnding boundary conditions 

fl, == 1, f == 0 at ~= ° 
. m == mo at. _ rtL == fYl 0 

and f I -,.'? 0, In '-'? 1 as rrz .-,,-;> oa 

lJ 
a 

(AI2a) 

(A12b) -

(AI2c) 
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To solve equation (A4 ) which defines the velocity distribution, we 

put, 

wh:re f(~) satisfi~s the boundary conditions at ~ = O. Substitutine; 

the expansion into (A12) we find the coefficients a in terms of 
n 

~ 
+ t 2 

2 5 
\1-

6 3a m
+ ---r

lb 

(A13) 

The unkno~n parameter, a, is foun~ by integrating equation (A12), i.e. 
00 

- ( f 1 (00) - f I ( c » = a J ex p - F (1. ) d rrz = -1 ( A ll~ ) 
o 

"A14) iE evaluated ~ith the following substitution 

and <>a 

L Am/tl'l1.+ l)L~(f'r).+l) 
irt =0 

where by comparison with (A13) 

C = Y2, °1= a/!3, C2 0, C
3 = = 

0 

2 
ro 

a/15, 

C._ = 3a/17, = 11/2416a 
) "6 ....... 

Cumbining equations (A14) and (A15) we get, 

...:> C>O A 
a J e't ~ ~ L }2(m-l) d\: = - 1 

o m=O 

Integrating (A17) in Gamma functions we obtain 

C4 
2/ 1 ,. = ·-a • b, 

~ [ Ao r (}2) + Al r(l) + .42 r 0/2) + fl.3 r(2) 

+ A4 r (5/2) ............. = - I 

(A15) 

(A16) 

(A17) 

(AlB) 
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To evaluate the coefficients we differentiate (AIG) to give, 

oa A 

d1 .y- m L ~(m-l) d"'( = 2-m=O 

when it follows that, 
r .. ' 

A 0+,0+ 
jO+ drfl m J d~ 2'1\' i A (AI9) 

l}Hm+l) = 2 = m 

where 0+ ~enotes a circuit in the positive direction around the ~ero 

point, the ~ingle circuit around ~ = 0 corresponds to a double circuit 

round ~ = 0 in the plane. This integration path is necessary to 

dispose of the fractional powers of ~ • It follows, therefore, from 

ff) -1 . . -}H m+l) (A19) that Am is the coefficient of ( ~n the expanslon of 1: . 

in ascending powers of nz . 
Now from (A15) 

Expanding (A20) by th~ binomial expansion we find, 

A 
o 

A3 

A4 

= C o 
-~ Al = -C C -2 

1 0 

= _C-5 (2C 2C-, + . 0 0 
4c 3) 

1 

C-13!2(_5/2C 3C4 + = o 0 

= C-8 (-3C C4 
050 

3.4.5.6.7 
t5 

35 
if 

2 
Co C,3C l 

15 
"7t 

+ 5.7.9. 11C1 
4 

1614 
) 

The value of the parameter, a,can now be found by substituting 

fer the coefficients A in equation (AlB) and then determining the 
• m 

rocts of' Ule generated power series by successive apprcxirJaticn. 'I'he 

f a < 1 and, tru n.catin~ after tte first four series ccnverbes rapidly or I. 0 

terms, ~i~es a value of a equal to -0.625. Thi~ aGrees well with the 
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exact value of -C.627 obtained by ~owar~h (58) who obtained a numerical 

sblution of equation (AI2). 

Equation (1.2.6) \'lbich defines the charg'ed particle distribution 

may be solved to give, 
"" 

~ 
m - m ~ exp (- F) d '"'L 0 

1 = - m c.o 0 J ~xp (- F) d i1( 

f 
' 'Yo 

wI] er'e F = Sea f d'1 
~o 

From (AI2) f = -f' , , fll and equation (A21) may be written more 

Si;:lply as, 

Ill£. Sca 
m - m 'l1{o I fill' d1 

0 

1 = -c;? 
- m J 

Sea c If"\ d l 
~o 

Tll e denominator on Us R.LS. equation (A22) may be v,ritten 

co 00 10 .. 

'If 
Sea J Sea ~a 

jf"l 
" - J I fill fll d' = d1 d~ 7 

0 0 

(A21) 

(A22) 

as, 

(A23) 

The first term on the R.~.S. of equation (A23) is solved usin~ 

equations (AI7) and (AlB) to five, 

c.os Sea I l A r O~) I fll I 'd~ ="2 _0_-;--
o ~ ; Sca~ 

+ ....... 

The last term may be integrated by the mean vallie theorem to give, 

where f" den0tes tl:e mean value cf fit in tbe ranee C ~ r~ ~ r7c' 
ill 

(A25) 
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Examination of equati(~n (A13) S110W6 that for 1.( l,f" is e.pprcximately 

cen,stant and we may therefore put fIlm = fll (0) = a. 

Thus, after substituting for the values of A , found above, in 
m 

equation (A24) and combining with equation (A25), equation (A23) 
,..' . 

becomes, 

~ 

J 
Sca 

I fit \ ' - d '( 
o 

1.26 Sca-~ + 0.209 Sca- l + 0.206 

Sca-3/ 2 .. O.llL~ Sca-2 + 0.028 Dca-5/ 2 
I .~ • 

(A2G) 

Distributions in a Non-convective Sheath 

Omitting convective terms fr0m equations (Al) and (A2) and con-

siderine transport only in the direction normal to the interface we 

get, 
dN. N. 

d cfJ ~ ) D. (d 3~ ~ 
I. (A27) e + -- = ~ k9i dS ~ 

dN N dG>e 
(d i e (A28) and e D - ke- d S ) = I e e e 

where I. and I are constants of integration and denote respectively 
~ e 

i0n and electron currents which are identical (r. = I = I) for 
~ e 

ambipo1ar diffusion. 

Equation (A5) is then, 

d2~ e -e 
dSZ- = DEc (N. - N ) 

~ e 
(A29a) 

Introducing the dimensionless var.i:ab1es, 

e~e N. 
=~ 

~ 

H • = K8 -t n . = N 50 ~ 
e 0 

Gi ISo 1£0 

* = J. = J e = eNIJ Ge 
~ eN D. 

0 ~ 0 e 
and 

2 
he DE 

h 
(: 0 

= --2-e 
I'.i e c 
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where '50 denotes the thickness of the sheath, equations (A27), (A28) 

and (A29) 

.... 

and 

Vihere 

reduce to 

JE 

dn 

dt 

1 
2 

p 

2 
p 

e 

dn. 
J. 

dt 

+ 

d
2

R 

dt 2 

= 

the form, 

dR 
J. n. dt 

:: JE 
J. J. 

dR 
J n 

dt 
:: 

e e 

:: n. - n 
J. e 

with the transformed boundary conditions 

(.4.30) 

(A31) 

(A32) 

dR Replacing - dt in equations (A30), (A31) and (A35) by G and 

eliminating n i and ne , a differential equation describing the dimension-

less field strentth is obtained viz • 

.L [GTI: ] I 
2 G. 

p 

. Inteeration gives 

where C
l 

is a constant of integration. 

GI 
+ - (J. - J ) . G J. e 

The four boundary conditions required to solve equation (A33) can 

be found using equations (A30), (~3l) and (A32) together with the 

conditions imposed upon the charged particle densities at t :: 0 and 

t = 1. 

GTI 
2 J ) at -f:; 0 i.e. GI :: 0 and :: -p (J. - :: 

J. e 

cI err 
;;:. 

[ G (1 1) (J
i - ~1 e) ] at t :: 1 and . :: C' .and :: -p + + 

Y.: 



A9 

~e are, ho~ever, ~nly interested in solutions of equation (A33) for 

which G is small and n.~ n in the neighbourhood of t = 1. 
1. e 

2 Examination of equation (A33) shows that for large p it tends to the 

asyptotic form 
. J. - J 

G 
1. e 

= t(J. + J /M) C 
1. e + 1 

as t_ 1 

Invoking the boundary conditions ne (l) = Di (1) = 1 equations 

(A30) and (A31) give G 
(J" . - J ) at t 1 and hence, = * 1. e = 

1 + * 
1 J 

C
1 

1 (J. e ) = + - + -
* J. * 

2 The bcundary conditions for equation (A33) when p is large may 

therefore be written 

(+1 0 and Gn 2 (J. IJ ) at -f. 0 = = -p - = J. e 
*J. - J 

and G~ 
1. e t -+ 1 (A34) 

(HJ
i 

J )(t ts) as 
+ -e 

The self consistency of equation (A34) in the neighbourhood of 

t = 1 may be examined by using it to evaluate the order of the neglected 

terms. It can be shown by this method that the errors involved are 

<. 0(p-2/3 ). Thus, for p2 = 103 the error is in the order of less 

Introducing the scaling variables 

. ". p2/3 [-(J
i 

J 
}1/3 [ts - t] e 

s = + -) 
* 

(A35) 

and G = p2/3 [-(J
i 

J ]1/3 F + ~) 
* 

(A36) 

equation (A33) reduces-to the form, 

Fit F2 1 ~ 
- ---F' + + FI (- - 1) = - S - F 2::£ :<' 



Ta ble 6 

Summary of Cohen's Numerical Results' 

1 
}. 

1 
!is ~ - E -W *" W * 

-3.3Y~ 0.9990 1.00 -6.263 0.990 5.00 

-2.36 ft 0.9900 " _L~. 599 0.9900 " 
-2.000 0.9785 1\ -2.1+95 0.9000 " 
-1.176 0.9000 II -1.245 0.7000 " 

-0.521 .0·7C(;0 " -0.627 0.5000 " 
-0.500 0.6890 " 
-0.232 0.5000 II 

--
-4.456 0·9990 2.00 -7.987 0.9990 10.00 

-3.228 0·9900 II -5.888 0.9900 11 

-1.690 0·9000 " -3.233 0.9('00 " 
-0.798 0·70(,0 " -1.646 0.7000 " 
-0.376 0·50CO " -0.855 0.5000 " 
-0.135 0·30('0 " -0.356 0.3000 " .. 
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where A. 
*(J.-J) 

~ e 
= (*J. + J ) 

~ e 

with the boundary conditions 

F 2 = -2S?J )< , F' = 0 and F" = w 'Ii 
at !3 = 5 (t = 0) 

VI 
(A3B) 

F __ 'A 
!3 as s..., s (t = 1) 

o 

Equations (A37) to (A39) are of an identical form to those 

(A39) 

obtained fer spherical electrostatic prebes by Cohen 5~ who solved 

them numerically by initially choosing a p6int (F , s ) at the conw w 

ductor surface and adjusting the value of \ until the integral curve 

was found which satisfied relation (A39). 

Cehen's values ef Band '>-- have been used to provide values of w 
2 G and J. in equaticn (A53) for a range of J./J , )£ and p using 

w ~ ~ e . 

equations (A35) and (A36) re-wr~tten in tilB following form, 

-J. = (1. + 
~ 

),. 
/1t)(1 -

-J e = (1 - ~ )( 1 -

)£(-J
i

) 

H+-~ 

2/3 

2/3 

5 *1/3 
VI ------z 1/7. ) «1 + *)p) :; 

J 1/3 
and G = p2/3 F [-(J. + ~)J 

w w ~)£ 

A summary of Cc}1en's numerical results is shovlD in Table 6. 

A1. 3 The Thickness of the Non-convective Sheath - . 

(A4c) 

2 
The three parameters p', m and m (cf equation8 (A3~ and (A12c»' 

(0· 0 

define the thickne::ls of tl";e ncn-convecU.ve cheath, and are evaluated 

by matching the electric field strengths (E), the charge particle 

densities (N) and tlle "fluxes (I), in each regicn at the commen boundary. 



All 

For am bipolar diffusion the equations of continuity fer ions and 

electrons (cf. equations (Al) and (A2» at the common boundary of region 

become, neelecting convection effects, 

dN I D. -- -
~ e d£ ~= '" ..J .;J. 50 

D. EN 
~ e 0 

k 8. 
~ 

and 

dN I D EN 
D e e 0 

e dg.5 + k8 e = (" 
So e 

Eliminating dN I f= g between (A~2 ) and 
dS ;> 0 

I D. eN E 

= 

= 

I 
a 

I a 

(A43 ) 

1 a (1 - 2.) 0 

D. = k e (- + 1) D * ~ e e 

gives, 

Equation (A451
) is recognised as beint; identical in· form to 

erluation (A38) which defines the field strength in the non-convective 

2 
sheath for t -+ 1 and large values of p • 

Continui ty of tt:e -charged particle fluxes requires that the 

dimensionless variable J
l 

is matched at the boundary and since, 
N 

o 
m = o Nf 

o 

is the value at the boundary of the dimensionless variable, m, def~ned 

above, elimination of E between equations (A43) and (A44) gives 

(l + *) m' = o 

J.m 
~ 0 

D. 
(1 + -~) 

D 
e 

(A46) 

~I is obtained by differentiating equation (A21), and evaluating the 
o 

dimensionless variable 1-. at the boundary we e;et, 

Sf'a 

·-Cl+J€)(l-m)'Tl If"\~ o 0 -00 SC;'; -

. fli"l ·d'7. 
nzo 

D. 
( 2) =J.r1*1+D 

~ 0 e 
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Be-arranging (A4~) and sub~tituting for m 
o from 

corresponding relation solely in terms of ~o' i.e. 

where A = 

2 

(!J..!2 
2 Ap 

Sca 

- 1) fh JJ.~_II ~ = 
Lo c· Sca 

S If"l ., 
1,0 

D. 
J. 1 * (1 + D1.) 

1. + * e 

(11.46 ) gives.a 

Equations (A47) and (A48) have been solved by an 'iterative 

procedure which satisfied simultaneously the conditions cf. p2> 103 

AI? 

df 
a.nd 0'I( (cf. equation (A13), which represents a mcas~re of convection, 

> 0.8. 

The dimensionless interfacial field strength G / has then been 
Vi '? 0 

calculated from equations (A42), (1.47) a.nd (11.48). Some typical results 

are presented in Fig.02) as a function of the Schmidt number for 

1, J./J = 103 and values of A equal to 10-6, 10-5 a~d 10-4 .• 
1. e * = 

2 
·The latter value of A corresponds to the limitinc values of p and 

~; 000-3 • 0.8 respectively. It is seen Uat the value of G,/ "I ~ 
progressively increases with Schmidt number. Beyond .a value of about 

102 equations reduce to a simple form in which l/~ 0 is proportional to 

1h Sea • Under these c~nditions the interfacial field strength is most 

sensitive to variations in ambipola~ Schmidt number. 



(a') Ambient gas temperature . 20°C 

Magnification 

Nozzle 

x 16 

Danfoss D8./45 

Differential Injection Pressure 0.69 bar (lOpsig) 

~ 

• 

{bS Ambient gas temperature 940°C 

Fig. A. 3 Typical Photographs of Conical Water Spray Sheets showing the change in profile when injected into a Hot 
Ionised Gas. 
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FIG. A4 PROFILE OF CONICAL SHEET 
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in an Ionised·Gas 

As a reiult cf surface tension a conical sheet initially 

em~rging int6 the atmosphere as a plane cone ra~idly assumes a 

curved prufile. When the sheet is injected into an ionised gas 

the surface beccmcs chareed by diffusion and, as a result of the 

generated electrical stress, the sr.eet curvature becomes less cen-. 
vex. This is clearly demonstrated in Fie.( A3 ) which shows photo-

graphs of conical water sheets produced from nozzles at constant 

injection velocity with the le:t:J .. hand one, (a), being formed at room 

temperature, wljilst the right hand. one, (b), is formed in a hot ionised 

gas. 

It has been shown by Xolfsohn (54 ) that the profile of the 

meridian section of a cenical sheet produced under atmospheric 

conditions, i.e. for the Case of zero normal stress, is accurately 

given by utilizing the equations derived by Taylor ( 59) for the 

trajectery of a water bell. In this section the equations are 

solved for the more general case of an imposed stress norMal to the 

sheet. The electrical stress is then calculated by matching the 

observed and calculated prefiles. 

The model considered by Taylor, Fig.( A4 ), comprises an 

inviscid liquid sr.eet projected in the form of a thin walled cone of 

angle 2 cp 0' with the x axis lying; along the centre line. 

Neglecting.gravity, a momentum balance perpendicular to the 

surface gives, 

2T + ~T c os ~ _ p _ U 2e .. L.!':' = 0 
r c y r c 

where Cp is the slope of tte surfc)c e axis, r c 
the rH1.i.lwof 
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curvature of the meridian section and p is a normal imposed stress 
II 

taken as the electrical stress, p, in the present case. 

The equation of continuity is, 

2 n yUo h= Q (/'0.50) 

where Q is the volume of fluid projected per second. Equations 

(A~9 ) and (A50 ) can be expressed in non-dimensional form as 

wher'e ex-

(l - 1) ~ sin d>,' Y dY 

U Q' Po ~. . 

2 
811'T 

by setting, 

R X Y l.m T c 
= = = " QU = r x y c l~ 0 

_0.:. 

1 
R 

Bquation (A5l ) can be integrated to give 
2 ...c 1'''': Y (l - y) cos '-I) - C - 2 

= 0 (A5l) 

(.0.52) 

where C is a constant of integr~ticn ~hich satisfies the condition 

(P = cf' 0 when Y = O. 

Uence (1 y) cos ~ 
. 2 

n ()<: Y 
= cos Cr 0 - ~ 

dY 
Since = 

dX 
tan cp equation (.0.52 ) gives 

x = 

y 
'" y2 } . 

f 
( cos cp - -~-) o c. 

1 - Y 
dY (A53) 

{I - ex: yc. 
(cos CP o - --;;-l J )! 

1 - Y 

In :~ection 2.3 the ~rcfile is required in terms of S, the 

arc length .of a meridian section. This is obtained by expressing s 

in the n-(.n-dimensional form S = 

h dY . qf'l T' u'" - - s' n ' ,::>, dS - .... and hence, 

s.41fT 
U 0 o " 



0<=2-7 
(oE=2'07 x10() Vm-') 

0( = 1'4 
(oE=1'82 x 106 Vm-') 

0'3 

o~ __ ~ ____ ~ ____ ~ ______ ~ ____ ~ __ ~ 
o 0'1 0'2 0'3 0'4 0-5 0'6 

X 

FIG.A.S CALCULATED PROFILES OF CONICAL WATER SHEETS 
WITH A DIFFERENCE I N NORMAL STRESS ACROSS 
THE SURFACE (DANFOSS D8.45 NOZZLE) 
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2 

Ii ~ (cos cP a -""/ ) J }l dY . I Y . 
dS = 

giving S explici tly CIS 

dY 

) Ll 
S 

2 = (cos <\l ~ - "'} ) J }l (A9t) 
.",. 

I - Y 

Equation (,\53 ) has been solved for a r8.Dge of values of Cp 0 

and ~ by numerical computation based upon an R.K~M. proc~dure, and 

ve.l ues of selected to match the experimental and calculated 

profiles. The results of calculations for two ejection velocities· 

are shown in Fig.( A5 ) together with the calculated values of the 

field strength ~. They demonstrate that the field strength is 

sensibly independent of sheet velocity and hence suggests that 

equilibrium iE rapidly achieved. 

*The velocities have been determined from the profiles of sheets 

emerging at room temperature, i.e. (~ = 0) by ~rojecting images of 

the sheets cn an X - Y plot and adjustine the magnification until 

the curves superimposed. 
Lj.T( T . 

The value of the I;arameter UQ ~s then 
o 

given by the ratio of the image and abscissa magnifications • 

. ' 



Fig.A? Forwa ti on of Dro ps from a Conical She e t in a 

Hi~h Ve locity Air s tr eam 



Fig .A6. Forma ti on of Dro ps fr om a Fla t Sheet 
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Photorraphic Analysis of Sprays 

Introduction . -

Hieh speed photography affords a convenient means of assessing the 

drop-size distribution of a spray and has been widely used. The 

. ., technique usually consists of . taking double-exposure photographs to 

determine drop velocities and then weighting the number of drops found 

in each size range. This procedure is adopted, since drag creates a 

relative velocity between drops of different sizes, and the spatial 

distribution, as recorded by a single exposure, may be considerably 

* different from that actually produced. The 'weighted' distribution 

is generally accepted as giving good correspondence (see for example 

ref. 60», but it does not however seem to be realised that this implioi tly 

assumes the drops to be moving in a continuous stream. . In fact, the 

processes of drop formation usually occur in a periodic manner. 

This is demonstrated in figuresC\6) and( A,7), which shO\'1 respectively 

examples of a flat sheet breaking down by aerodynamic wave motion in 

a quiescent atmosphere and a conical sheet of liquid atomised by a high 

velocity air stream. In each of these cases the spatial distribution, 

as represented by. the first discrete band of drops, will clearly be 

identical to the temporal distribution of the spray, and it would thus 

be incorrect to 'weight' the drops even though they may be travelling at 

different speeds. It also follot.'s that similar 'corrections' carried out 

further downstream where band.s start to merge will also involve errors 

and a 'true' distribution will only be obtained ~nere the drops are 

moving at their terminal velocities. 

* The term "temporal distribution" is usually employed in the literature 

as a synony~ for a weighted drop-size distribution. However, the former 

really describes the frequencies by which drops of various size ranges 

traverse a plamnormal to the direction of flow. It is not possible to 
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Theoretical Considerations 

A rigorous .theoretical analysis of the relation betw'een 't.rue' and 

'i'Teighted' drop-size distributions is not at present possible since it 

requires a knouledge of both the initial drop-size and velocity spectra. 

Drop formation is a complex process and occurs randomly from the free 

edges of fragments of liquid which are simultaneously being torn from the 

main stream in an irregular manner. \-!hen atomisation is complete, drops 

of all sizes 1-1i11 have been subjected to drag for different periods of time 

and their velocity 1-iill thus be unknovm. nevertheless, some appreciation 

of the effect of periodic disintegration on the likely errors vrhich may 

arise by conventional r"reighting' can be adduced from the follo"l"Ting simple 

model, ,"There it is assumed that fragments are detached at ree;ular intervals 

and subsequent drop formation occurs only at a fixed distance from the 

nozzle. It is further asslu~ed that for a given drop size, the number 

of drops generated per '-mit area is constant, and that all drops are 

projected dOi'ffistream 1iith the sar.le initial velocity. A pictorip...l 

representa tion of the spray pattern '(Thich i"lould be observed as a reBul t 

. of this idealized process, both in the absence and the nresence of drag, 

is sh01m for hTO drop sizes in Figs).,sa and'A~'b respectively. 

In the absence of drag, drops are propagated dmmstream as a series 

of eC].uispaced bands of constant 1'Tidth in uhich the concentration 

of drops is uniform. In the presence of drag, houever, 

derive this information from. a double-flash photograph since there are 

insufficient image-pairs passing through anyone plane. The size 

distri butiol1s 1Thich are obtained from these photographs are deternined 

by lveiehting drops "l-Thich extend over a re·la tively large area. and they 

should be more accurately dcsiJIlCl. ted as '"I>leightcd' or 'quasi-te:::lpor~l t 

distributions, 

AI? 
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drops immediately decelerate after formation with a consequent distortion 

of the' regular opray pattern. The bands are preserved for each drop 

size but become narrower and closer together to an extent which is 

dependent in their decelerations, and as a result the bands merge with 

a consequent loss of identity. In order to describe this analytically 

we shall first write the appropriate Fourier series for the square wave 

spray pattern shown in Fig.~ea, noting that the length of a detached 

fragment is equal to the distance behrcen successive ones. 
Thus 

t [~ ] }A55) aN. N.k l~ L sin (k ( 2m+1 LVs."t9l.. 
--'1. = .22... -+ -
dx 2\r ~ m=o (2m+1) 

\-There N jo is ihe ir1i.tb.l number of drops of diameter D j in an element dx, 

k is the wave nU1J~ber (2 \I / ~ ), 

A is the spatial period of the distribution, and ' 

E represents a phase difference which may vary between 

(- = 0 and 

The effect of drag, as shoi7U in Fig.Aeb,is to cause a contraction 

of the waves as they move progressively away from their origins. The 

appropriate expression describing this spray pattern is conveniently 

obtained from equation A55 by introducing a neV{ variable x' such that 

x' 

J va dxt = X' (A56) 

Vj (x') 
0 

" 

E. = 0 corresponds to the conditions when a sheet fragment has just 

disintegrated, while E = >-'/2 corresponds to the 'condition where 

. disintegration of the succeeding fragment begins, i. e. as shown in Fig.:ib. 
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where V .(x') is the velocity decay function of the drop D .• 
J J 

In cquntio!1 A56 

x represents the distance travelled by a drop in time t in the absence 

of drag while Xl corresponds to the distance the drop actually travels 

in the same time 'when decelerated by drag. 
-.!t-

Substituting f or x in equation (.'.55) gives the number of drops 

in an element of length ax', i. e. 

dN~ Vo N. k [ 1 ;. !t [t sin It JJ (A57) ~ = .-J.9_ 
V;-("i') 11 -c1x1 2 ",. B 

xt 
where A = k(2m+1) ( f Vo + f) 

.; 

axt - "{ ") o V Xl 
j 

and B = 2m + 1 

A pictorial representation of equation A57isrc given in Fig.(A~) 

which shows the histories of bands of drops comprising two widely 

differing drop si zes 1'rhen E. = 0 and . E. = ~ 12 • 

Integrating equation A57. gives the number of d.rops in an element 

of co-ordina tes x~1 to x' 2 i. e. 

L:::. N . 
J c1x' (A5B) 

The weighted number of drops is obtained by multiplying the 

right-hand side of equation A57 by the normalised velocity decay 

function V. (x' )/vo and integrating between the limits xt 1 to ,:;:'2. 
. ~ 

Hence, -

JJ~I 6N'W N . k {2 l 1 +L [t sin .A 
U.59 ) = -.J.9.-J Ii' 2 'jr B 

xI1 
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• 

For a poly-disperse system the possibility of an infinite 

number of drop sizes exi::;ts and consequently N. munt be re-1'rri tten 
JO. . 

as AN. , the initial number of drons of average diameter D. in JO • J . . 
the size range. ~D. For the purpose of the illustration, calculations .., 

have been carried out for the follo1'1ing realistic example. It is 

assumed that 

(a) the initial drop size spectrum varies from 12t - a61~.1 l'li th 
- . 

a root-normal dintribution, (61) viz 

exp .- ( J Dj -
(A60) 

such that the standard deviation s = 15 and the 

lin~ar mean diameter Dm = 1aJ f. and 

-(b) the drops are injected with an initial velocity of 10 m/sec • 

vertically dmml·rards into stagnant air, from fragments 5 mm in lene;th. 

It is further assumed that standard drag relations can be applied 

to decelerating particles. The drops thus move in the intermediate 

rIm., regime according to the followine relation (62'). 

( ) dV = g _ 18 11 

V I' ~ 

j x dIJ D .2p'. 
J L 

D,1 Pa ] 
F 

0.687 
) (A6l) 

Equations A5B, A59 and .4.61 have been solved numerically for E = -;... /2:'* and 

AD = 25 J1. , 

*Since drop for~ation is a randon process. the value of ( recorded on 
a single flash p~otoeraph taken at any i~tant in tine hns an equal· 
probability of lying a..'1Y':There in the range 0 to '/\/2. A value of A/2 
has been arbitrarily selected. ,~ 

A20 
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Resv..l.t.~ 

! ~g.AIO shows computed weighted size-frequency distributions 

(curves II to V) at various intervals dorm-stream of the site of 

drop fornation compared with that initially produced (curve I). 

It is seen that, near the atomiser, marked differences e~~st, 

particularly around the pe~ks, and it is thus necessa~ to measure 

drop sizes some distance dovmstream (curve V) before congruence 

occurs between the measured and true distributions. 

The corresponding spatial size-frequency distributions within 

1\21 

the first three 0.01 m intervals are shoml in Fig.AII. The curves 

demonstrate that the composition of the first band of drops (curve II) 

is practically identical to that of the original distribution (curve r), 

discrepancies only arising further dovmstream (curves III and IV). 

AI though the frequency distribution is essential for accura.tely 

defining the performance of a spray, it is often desirable in many 

transport processes to work with mean diameters. The input data has 

therefore been used to calculate two common mean diemeters; namely, 

the vol~~e-surface mean (D32) and the linear mean (D10). 

Fig.A12 Cbmpa:res the weighted and true mean diameters at various 

distances from the origin. It is seen again that discrepancies may 

occur near the region of disintegration, although these are less marked 

for the volume-surface mean diameters, which are least sensitive to 

variation in the smaller drop sizes. Fig.A13 ", on the other h~md, 

"demonstrates that while considerable errors arise from unweighted 

measurements obtained some ru.stanoe away from the nozzle, yery accurate 

results can be expected near the region of disintegration. 



. " 

The idealised model e~~mined has shovm that for specific types 

of sprays a. \'I'eighting technique can result in significant disparities 

between the measured and true drop-size distributions. The size cif 

these errors and the dista~ce over which they persist are determined 

by the initial drop-velocity and size spectra, the band frequency, 

.4.22 

and the nature of the surrounding a.tmosphere. These conditions nre 

effectively unknown in practice and hence except for regions where the 

drops approach their terminal velocities, it is not possible to relate 

a measured drop-size distribution to that originally produced. 

'-
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Appendix IV. Tabulated Results 

. ' 
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Table 7 
Measured and Theoretical Break-up lengths 

(a) Flat sheets 

Ambient gas temperature: 

h'1o = 10-8 
(m) 

200 C. L' . d t t '. EOo. C 1qU1 empera ure 

Liquid .: (i) Distilled Water. 

. K T 
Reynolds CalcUla"te( -~Iean or-

Nozzle (et °2)1~3103 brea-up qJeasured 

(aUo 
No. 

length,~ ~reak-up 
(m) x 10 lengths2 (m) xlO 

y 1.38 7,350 1.3'7 2.8 
1.68 5,670 1.53 3.4 
2.38 };340 1.90 4.0 

X 1.79 13,500 1.79 2.6 
2.18 9,950 1.99 3.0 
2.86 6,400 2.47 5.4 

IV 1.99 16,900 1.98 2.7 
2.40 12,6('0 2.21 3.2 
3.17 8,300 2.74 4.6 

(ii) Carbon Tetrachloride. 

. ..... 
y 1.16 - 12,100 1.43 2.3 

1.41 9,350 1.51 2.7 
1.84 5,5CO 1.72 3.8 

X 1.51 22,10C 1.86 2.5 
1.83 1.5,400 1.97 2.9 
2.40 10,500 2.24 3.1 

(iii) Acetone 

.. . y 0.88 1@',200 1.13 . 2.0 
L67 14,000 1.18 2.3 , 

1.40 8,300 1.23 3.2 
X 1.15 '53,400 1.46 2.0 

1.39 24,60C 1·54, ' 2.3 
1.83 16,000 1. 73 2.8 



Table 7 (cont.) . 

(iv) 50% Gllcerin-water solution 

'*" l1ean of 
K T Calculated measured 

Nozzle t~ ~ )1/3xl03 Reynolds break-up break-up No. length
2 e aUo lengths 2 (m) x 10 

(m) x 10 

1.43 1~lf10 1.42 2.8 
Y 1.73 1,090 1.58 3.7 

2.27 .,{20 1.96 4.0 
I 

1.85 2,500 1.84 4.2 
X· 2.25 1,840 2.06 4.7 . 

2.95 1,240 2.55 4.9 

(b) Ambient gas temperature: 380°C. 

(i) Distilled water 

Liquid temperature: 24°C 

y 2.38 8,800 2.13 3.2 
2.88 11,000 2.50 3.5 

Ambient gas temperature: 675°C. Lo id t t ?6°C 1qU empera ure:, ~ 

11,400 

(e) Conical sheets 

Ambient gas temperature: 20°C. 

(i) Distilled water 

Danfoss 0.32 
" 0.34 DB/30 

0.55 
1.08 Not 

Danfoss 0.67 given 

i>i25/45 0.72 for 
. 1.12 conical 
2.26 sheets 

Danfoss 1.42 

D100/80 
2.26 
4.44 

-4 
~oh :3 x 10 m 

Liquid temperature: 20°C 

0.22 0.27 
0.22 0.30 
0.28 0.39 
0.4.9 0.49 
0.31· 0.33 . 
0.32 0.40 
0.41 0.46 
0.72 0.48 
0.44 

. 0.3 6 
0.57 0.49 
0.99 0.63 

. 4. .... 
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Table 8 

Drop size distributions at various injection pressures and ambient 

• eas and liquid temperatures 

Nozzle: Bray Unijet Y 

Liquid: Distilled water 

Differential injection 
1.72 1.59 3.58 3.58 6.35 1.72 1.72· pressure (bar) . 

(psig) 
(oC) 

25 23 52 52 92 25 25 
Ambient gas temp. 380 380 380 380 380 675 675 
Liquid temp. (oC) 28 28 26 26 24 26 26 

Volume surface 170 150 85 81 70 125 165 
mean diameter (D32)(fl-m) 

Size range (p-m) 6.N ~N ~N bN /),.N /IN J).N 

0-30 180 120 298 308 370 80 60 
30-45 268. 230 422 590 425 3C7 206 
45-60 84 174 lCO 198 118 139 200 
60-75 76 136 142 136 96 61 92 
75-90 28 42 48 50 30 37 34 
90-105 .. 84 172 92 64 18 41 56 
105-120 14 46 18 28 7 28 28 
120-150 54 102 16 17 2 26 54 
150-180 28 94 2 8 - 13 . 24 
180-210 16 36 ... - - 10 6 
210-240 6 14 - - - 4 8 
240-270 8 6 - - - 2 12 
270-330 10 - - - - - -
330-390 2 - - - - - -

. .. 
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Table 8 (cont.) 

.:. 
Differential injection 3.44 3.44 6.35 6.35 1.72 3.44 3.44 pressure (bar) 

(psig) 
(oC) 

50 50 92 . 92 25 50 50 
Ambient gas temp. 675 675 675 675 950 950 950 
Liquid temp. ( °C) 25 25 24 24 24 23 23 
Volume surface 85 114 75 67 173 105 110 mean diameter (D32) (J-Lm) 

Size range (p-m) ~N W {:}.N DoN 6.N ~N /:)..N 

0-30 110 90 141 135 60 88 50 
30-45 526 263 459 447 300 390 308 
45-60 320 16c 178 161 203 312 218 
60-75 .122 61 65 37 61 80 86 
75-90 66 33 40 25 36 122 49 
90-105 64 32 21 12 43 60 22 
105-120 32 16 7 3 11 18 14 
120-150 54. 30 7 2 .31 28 17 
150-180 8 4 1 2 24 12 6 
180-210 6 3 - - 16 10 8 
210-240 - - - - 9 2 1 
240-270 - - - - 8 - 1 .. 
270-330 - - - - 6 - -
330-390 - - - - 1 - -

. .. 
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Table 8 (cont.) 

D~fferential injection 90 1.72 1.59 1.72 1.65 1.59 1.72 pressure (bar) 
(psig) 90 25 23 25 24 23 25 

Ambient gas temp (oe) 950 950 950 950 20 20 20 . 
Liquid temp (Ce) 22 56 67 78 56 67 78 

Volume surface 81 157 185 165 115 III 100 mean diameter (D32)( Mm) 

Size range (pm) liN 6N llN I1N n.N boN 6N 

0-30 350 260 94 36 176 65 341 
30-45 659 440 146 56 210 193 218 
45-60 220 116 50 82 77 99 80 
60-75 150 138 40 32 92 101 78 
75-90 57 26 26 10 17 59 13 
90-105 70 102 70 62 76 35 53 
105-120 30 12 13 26 10 43 12 
120-150 20 52 66 70 25 17 22 
150-180 9 54 50 40 5 11 8 
180-210 - 36 58 18 14 4 5 
210-240 - 24 18 10 - - -
240-270 - 6 20 8 - - -
270-330 - - 6 4 - - - -
330-390 - - - - - - -



Table 8 (cont.) 

Nozzle: Danfoss D~/45 

Liquid:' Distilled water 
• 

Differential injection 
6.9 3.44 3.44 3.44 1.38 1.38 0.69 pressure (bar) 

(psig) 100 50 50 50 20 20 10 
Ambient gas temg (oe) 950 950 950 20 950 20 950 
Liquid temp. (C) 25 26 26 20 27 20 27 

Volume surface 
mean diameter (D

32
) ( p.m) 100 95 93 49 125 188 165 

Size range (fID ) llN I1N fj.N ~N ~N . ~N tlN 

0-30 106 132 62 282 13 1 10 
30-45 180 100 110 391 13 8 18 
45-60 .96 126 104 150 12 12 8 
60-75 106 84 98 72 16 6 14 
75-90 30 36 26 29 4 3 1 
90-105 60 56 72 13 17 13 8 
105-120 6 6 16 4 2 3 ·1 
120-150 - 20 14 26 1 16 15 7 
150-180 6 4 4 - 9 6 2 
100-210 6 - - - 4 10 3 
210-240 - - - - 2 3 2 
240-270 - - - - 2 2 2 
270-330 - - - - - 2 -

A29 
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Table 8 (cont.) 

.. 
Differential injection 0.69 6.9 pressure (bar) 

(psig) 10 100 
Ambient gas temp.(oC) 20 20 
Liquid temp. (OC) 20 20 
Volume surface 210 38 mean diameter CD3~ '(~) 

Size ranee (pm) N\f Size 'range AN 

0-30 14 0-10 321 
30-45 8 10-18 141 
45-60 16 18-28 101 
60-75 21 28-38 LtO 

75-90 5 3b-48 19 
90-105 14 Lj8-58 8 
105-120 3 58-68 6 
120-150 17 68-78 1 
150-180 15 78-98 1 
180-210 5 
210-240 4 
240-270 ' -. 5 
270-330 3 



• Liquid 

~'Ja ter 

Water 

Water 
! 

Carbon. 
Tetrachloride 

Table 9. Sizes of Drops Formed at the 

Rims of Flat Spray Sheets 

K 2 

Nozzle Uo ( !.. ) 1/9 (~ ) 2/9 l1ean Diameter 
(m.sec-l ) (1 Uo (ft- m) 

. 4-
x 10' 

Y 11.9 1.19 310 
9.25 1.23 330 

X 6.75 1.86 404 
9.25 1.76 ·430 

Vi 6.75 1.98 475 
9.25 1.84 431 .. 

y 14.1 0.98 185 

)1 

.1 
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APP:E:NDIX V 

.Numerical Solution cif Equations Describing Spatial and Weighted Drop-

Size Distributions 

Equ~tions (A56 ), (A58 ) and (A59 ) have been solved numerically 
• 

using a computer program written in Algol. Drop velocity - distance 

data obtained by solution of equation (A6l ) is provided in the form 

of the polynomial, 

. 23M 1 
v(l) = a(l) + a(2) s + a(3) s + a(4) s •••• a(H+l) s + 

where the coefficients a(l) - a(M+l) have been ottained separately by 

the method of Ip.8st squares. 

The computed results are presented as a set of spatial and weighted 

drop size distributions and mean drop diameters at consecutive down-

stream elements commencing at 'the region of drop formation. Because 

of the restricted choice of typewritten symbols it has not been 

possible to identify variables used in the program with the symbols' 

appearing in the text. The following are, therefore, a list of "., 
1 

equivalents. I D. = d(j) 
J i 
D deltad 

,. 
= ~ 

I DIO '= d 
m 

D . '- SMD 

I 
32 -

XJ. 
, = 'Sl 

X2 
, = 6 2 I , 

! 
X2 

, 
Xl 

, = ds' t 
I 
" 

N. = NO ~ f 

, JO , 
i 
I 

N. w INTND (2, j I r) = J , I ,. 

N. = nnND (I, j, r) ...... i 

J Ii, .. ' . , 
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v = Vel) 

dV V(2) etc. dx = 
V = VO 

0 

2 sd s = .. 

Cc.·mputer proe;ram; 

. ! 

bee;in 

real k,deltad,dm,sd,I,i,sl,VO,eps,deltas,totsum,SXD,Tv,Ts,s2,pi,A,B,Z,NO; 

integer r,N,j,n,M,p,l,z,q,m,b; 

open(20)jopen(70)j 

k:reed(20); deltas: mread(20)j 

deltad: wread(20); 

dm: =read(20) j 

sd:=read(20); 

VO:=read(20)j 

N:-read(20); 

n:=read(20); 

p:=read(20); 

b:=read(20) j 

begill array d,VOLDELTAN,AFEADELTAN,Vstar(l:n),PARTSUM(O:n),a(1:-20?, 

INTND(1:2 l:p), V(1:20); 

for j:=l step 1 until n do be&in 

. d(j):=read(20); 

'~j 

beein procedure summation(b,q)j 

. value b,qj 

integer q; 

array bj 

bep;in totsum: =0 ; 

for j:=l step 1 until q do begin PARrrSUH(j):=Oi~j 



for j:=l step 1 until q do begin 

PARTSUi'i(j): =PARTSUM( j-:l) + b( j) ; end; 

totsum:=PARTEUM(q)j 

~'procedure function(s,X)j 

valueXj 

~ s,X; 

begin 

real.Fj~ntee:er p,Oj 

F:=Oj 

for z:=l step 1 until M+l do begin 

V(z):=Oj 

if s Ts then begin 

for l:=z ~ 1 until H+l do begin 

p:=1j 

if zll then for 0:=1 step 1 until z-l do begin p:=px(1-0)jendj 

V(z):=V(z)+px(g l=z then a(z) else a(l)xs t (l-z»; 

end--' 
end else 

V(l):=Tvj 

A34 

end;~ z:=l step 1 until M+ldo begin for m:=1 steE 2 until b do begin 

F:=F+V(z)x4/pix(g z/2=z~2 ~ (sin(mxkxX+pi»/(kfzxmf(z i-l)x(if (z)/4=(z).:. 

+ 4' then +1 ~ -l)~ (cos(mxkxX+pi»/(kfzxmf(z+l»x(g (z+1)/4=(z+lh4 then 

-1 else +l)~·(i~:~= 1 then + 1 else(Vp)t(z.-l)/(VO'(z-2»);!E.9.;~; 

. func tion: =F j • 

real procedure f(s); 

real Sj 

begin 

t 

·1 



. ' 

if s T~ then beein 

V(l):=Oj 

for 1:=1 step 1 until 11+1 do begin 

Vi1):=V(1)+(!! l=lthena(l) else a(l)xs t (l-l»j~ndj 

end else V(l):=Tvj 

f:VO!If(l) ; 

procedure simpson(a, b, f, I, i, eps, N)j 

value a, b, eps, Nj 

real a, b, I, i, epSj integer Nj real procedure fj 

comment a procedure based upon simpsons rule; 

be$in integer ro, n; 

real d, h, ga, gb, gc, gd, ge, aa, ab, ac; 

real array s(1:N , .l:3); 

I:=Oj m:=n:=Oj 1:=aj 

ga:=f(a)j gc:=f«a+b)!2)j ge:=f(b)j 

aa:=(b-a)x(ga+4xgc+ge)!2j 

AA: d:=2 mj h:=.25x(b-a)!dj 

gb:=f(a+hx(4xm+l»j 

gd:=f(a+hx(4xm+3»j 

ab:=hx(ga+4xgb+gc)j 

ac:=hx(gc+4xgd+ge)j 

if abs(ab+ac-aa» epsxabs(ab+ac) 

then 

begin m:=mx2j n:=n+l; 

g n)N ~ goto eej 

aa:=abj 

s (n I 1): =ac j 

s(n,2):=gdj 

sen, 3):=gej 

A35 
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ge:=gCj 

gc:=gbj 

goto AA 

end 
• 

else 

m:=m+lj 

i:=a+mx(b-a)/dj 

BBII if m=2x(m~2) ~ 

begin m:=m~2j 

n:=n-lj 

,e:oto BB 

end' -' 
if (m/l) or (nfO) then 

begin aa:=6(n, l)j 

ga:=gej 

gc : =6 ( n , 2) j 

ge : =6 ( n, 3) i 

goto AA 

end 

end' -' 
cc: 

end of procedure simpson; 

.j:=Oj 

loop: j:=j+li 

M: =read(20) j 

Tv:=read(2C); 

Ts:=read(2C); 
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for l:=l~ 1 until H+l~ begin 

a(1):=readC20)j 

end-
-"-- ' 
NO:=deltad/(2xsqrt(2xsdxpixd(j»xexp«sqrt(d(j»-sqrt(dm» 2/(2xsd»)xlCOOj 

write text (70,il3c14s)Drop*sizeicll)jwrite(70,formatCil2s+doddlO+!ldcl),d(f 

wri te text (70 ,il3c14s1Frequencyic ll) j wri te C70, formo.t Ci12s+d. ddd10+ndc 1) ,NO: 

write text C70,ii3c14s1Axial*drop*densityicll)j 

write text C70,ii3clOslSpatiali8s1Apparent*temporal1l2s1Axial*distance1cll)j 

for r:=l steEl until p do begin 

sl:=(r-l)xdeltasj 

s2::sl+deltasj 

simpson(O,sl,f,I,i,eps,N)jA:=I; 

simpson(sl,s2,f,I,i,eps,N);B:=I; 

Z:=Oj 

for m:=l·~ 2 until b ~ begin 

Z: =Z+( cos (mxkx(A+B) +pi) )/m t2xk) -( cos (mxkxA+pi) )/(m f2xk)·j~j 

INTND(1,j,r):=NOxk/(2xpi)x(B-C4Ipi)xZ)j 

INTND( 2, j ,r) : =NCxk/( 2xpi)x C func tionC sl, A) -function( s2, B+A) +voxa el.tas) j end; 

fer 1':=1 step 1 until p do bee;in 

wri te (70, forma t (18s+d 0 dddd10+ndl) , INTND(l, j , 1'» j 

writeC70,formatC18s+doddddlO+ndl),INTND(2,j,r»; 

. write(70,format(1l5s+doddio+ndcl),Crxdeltas»; 

!££j write text(70,ilpll); if j "n ~ ~oto loop; 

for q:=lstep.l until 2 do begin 

if q=l~ 

. write text C70,i~3clCsllSpatial* drop *size ... distributions*and*drop·sizes* 

evalua ted *a t * equal* inc reilients *elong* the*spray*axis 1 c lL) 



~ write test (70,ll3clCsl temporal*drop*size*distributions*and*drop*siz81 

evaluated*at*equal*increments*along*the*spray*axislcll); 

!.~ r:=lstep 1 until p do begin ~ j:=l step 1 until n do beein 

VOLDELTAN(j):=d(j) 3xINTND(q,j,r)jendj ... ' -
summation(VCLDZLTAN,n)j 

until n do begin 

Vstar(j):=lOCx(l-PARTSUM(j)/totsum); 

write(70,formatJ.~12s+d.dd9l0+ndl),VstClr(j»; 

write(70,fcrmat(i12s+d.dddlO+ndcl),d(j»j 

~ j:=l~ 1 until n do begi~ 

AREADELTAN(j):=d(j) 2xINTND(q,j,r)/totsumjendj 

summa tion (.AREADELTAI{, n) j 

SMD:=lOO/totsum; 

write text (70'1l3c4s1sauter*mean*diameterll5s1Axial*distancelclL); 

write(70,format(l14s+d.dddlO+ndl),SMD); 

write(70,format(i15s+d.dddlO+ndcl),rxdeltas)j 

end jwrite text ('lC,iipll) j 

~i 

write text (70,ii7c7s1 order *of*approximation *to*a*square*wave*is*12s11)i .. 
write(7C,format(lsddl),b)j 

'write text(70,«3c7s)Drop*number*density(7s)x-cocrdinate(c»); - - ----

!.£!. r:=l step 1 until 20 do ~gin 

, sl:=rxdeltas/(20); 

Z:=Oj 

for m:=lstep 2 until b do begin - -
Z:=Z+(sin(mxkxsl+pi»/mj 

end--' 

J 
,\1 
" 



Z:=(1+C4/pi)xZ)i 

write C70,fcrmatCi12s+d.dddlO+ndl),Z); 

writeC70,formatCi12sd.ddlC+ndcl),sl); 

end--' 
endjendjclose(2C);closeC7C)jend 
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NOTATION 

In order to use commcnly a.ccepted notation, duplication has been 

unavoidable; the notation used in each section is therefcre listed 

separately • 
• 

2.1.1 

A cross sectional area of rim 

C orifice discharge coefficient 
q 

d width of orifice 

f distance of centre of pressure behind orifice 

h half sheet thickness 

K sheet ttickness parameter (= 2hr) o 

N parameter 

differential injection pressure 

r distance frcm centre of pressure to any point on the rim 

s distance slong the rim 

T surface tension 

liquid velocity along any streamline within the sheet 

liquid velocity at any point along the rim 

distance from centre cfpressure to initial point of 

thickening along the rim 

,6.1 90 I w. rs angles defined in. Fig. (2.2) 

e r liquid density 

2.1.2 

a 

a* 

effective equilibrium radius of perturbed cylindrical rim 

effective equilibrium- radius of perturbed cylindrical rim at 

break-up 



a radius of unperturbed cylindrical rim 
o 

D diameter of drops produced at a liquid rim 

f acceleration experienced by a liquid rim 

H time dependent amplitude of arbitrary surface disturbance 

H o 

I m 

k 

k opt 

K o 

m 

p 

r 

s 

t 

T 

x 

initial amplitude 

modified Bessel function of order m 

spatial frequency (wave number) 

spatial frequency corresponding to wave of maximum growth 

sheet thickness parameter (= 2hr) 

eigenvalue 
4K k2 

y.! 
. 0 

parameter (=(3( J. ) ) 
'if :+ a. 

kinetic energy per unit ~avelength in perturbed state 

kinetic energy per unit waveleneth in unperturbed state 

radial distance measured from jet axis (cf. Fig.2.6 ) 

distance measured along rim arc (cf. Fig.2.7 ) 

potential energy per unit wavelength in perturbed state 

potential energy per unit wavelength in unperturbed state 

time 

surface tension 

velocity along any streamline in a liquid sheet 

distance co-ordinate measured along rim axis 

velocity potential 

angle shown in Fig. (2.6) 

angle shown in Fig. (2.7-) 

liquid density 
• 

wavelength 

.'" '" ~ 
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Subscripts 

f denotes potential energy term due to acc elera.tion 

s denotes potential energy term due to surface area 

denotes a time averaged quantity or order of Bessel function 

t denotes differentiation with respect to time 

r denotes differentiation with respect to l' 

2.2.1 

constants of inteeration 

half sheet thickness 

k spatial frequency (wave number) 

m dimensionless parameter 

dimensionless parameter 

n complex t'emporal frequency 

N 
2 

d . . 1 (:'V·Nk
r 

) 1menSlon ess parameter -

t time 

T surface tension 

U velocity vector 

U 
0 

zero order liquid velocity 

U x-component of perturbation velocity 

V' y-component of perturbation velocity 

x distance co-ordinate along steet axis 

X . . ( (i(n+U kh2"" lc
2

» d1mens10nless parameter = 0 1 . - . N 
y distance co-ordinate nermal to sheet axis 

.11 stream function 

'"'V j 
gasecus phase stream function 

~j 
separated variable in stream function 

LOl~ Newtonian stress tensor 
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symmetric unit tensor 

real part of temporal frequency 

complex part' of temporal frequency 

complex part of inviscid temperal frequency 

kinematic viscosity 

Fourier component of arbitrary surface displacement 

ratio of amplitude of initial surface displacement to 

sheet thickness ratio 

€. phase angle 

component of vorticity 

density 

S'ubscripts 

a gaseous phase 

1 liquid phase 

j integer, (j=l) upper interface (j=2) lower interface 

~\~ components of vector or tensor quantity with respect to 

rectangular Cartesian co-ordinates 

2.2.2 

a second order complex temporal frequency 

a conjugate of seccnd order complex temporal frequency 

A, B, C, 

D, E, F, constants of integration 

, G, H 

P, Q, R coefficients appearing .in equation 

h half sheet thickness 

k spatial frequency (wave number) I , , 

n first order complex temporal frequency 

n conjugate of first order ccmplex temporal frequency 



. -

t 

T 

U 
0 

X ... 

y 

Yes) 

<? 
r~ 

~' j 
r<pj 

~j 
r 
rrtj 

rflo 

"f 
r1 

"t 
r"t

j 
, 

t(. 

II. 
C( 

~'. 

~" 

1 

e 

" 

time 

surface tension 

zero-order liquid velocity 

distance co-ordinate along sheet axis 

distance co-ordinate normal to sheet axis 

Laplace transform of 2~2 

liquid phase velocity potential 

rth term in perturbation expansion of ~ 

gaseous phase velocity potential 

rth term in pertubation expansion Of~j 

Fourier ccm20nent of arbitrary surface displacement 

rth ter~ in perturbation expansion of 1j 

amplitude of initial disturbance to sheet thickness ratio 

separated variable in liquid phase velocity potential 

rth term ip perturbation expansion of ~ 

separated vBriable in gasecus phase velocity potential 

rth term in perturbation expansic..n of 1--. , ... 
real part of first crder complex temporal frequency 

real part cf second order complex temporal frequency 

imaginary part of first crder ccmplex tecpcral frequency 

imaginary part of seccnd order compl~xtemporal frequency 

ratio 

density 

wavelength • 

Subscripts 
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y 

j 

a 

2.2.3 

h 

h* 

k 

K o 

t 

t* 

T 

U o 

x 

x* 

[j' 

{31t 

denotes differentiaticn ~ith respect to y 

~lteger, j=l denctes up~er interface, j=2 denotes lo~er 

interface 

gaseous phase 

balf sheet thickness 

half thickness of uridisturbed sheet at break-up 

spatial frequency 

sheet thickness parameter (=2hr) 

time 

brea.k-up t imc 

surface tension 

zero order sheet velocity 

distance co-ordinate along sheet axis 

break-up length of a liquid sheet 

imaginary part cf first order temporal fre~ueDcy 

imaginary part of second order te~poral frequency 

Fourier components of initial surface displacement 

Subscrir;,ts 

n 

j 

2.3 

a 

a 

A 

(j 

B 

denotes a time aver~ged value 

integer j=l denotes upper interface, j=2 denotes lower 

interface 

Bwplitude of initial disturbance 

unit vector in y-direction 

constant cf intee;ration 

unit vector in x-direction 

c0nstant of integration 

" 



D 

e 

o 
E 

F 

G 

G 

h 

J. 
~ 

J e 

k 

k' 

k c 

k 
opt 

K 

n e 

p 

'p 
J 

'p a 

q 

R 

t 

T 

Uoc. 
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dielectric constant 

electronic charge 

electric field strength vecter 

zero order component of electric field strength in y-direction 

first order ccmponent of electric field strength in y-direction 

function defined by 

constant of integration in equ~tion 

dimensionless field strength 

half sheet thickness 

dimensionless ion current 

dimensionless electron current 

spatial frequency (wave number) 

dimensionless spatial frequency (=k 50) 

cut-off wave number 

wave number corresponding to wave of maximum growth rate 

Boltzmann ccnstant 

Maxwell's stress tensor defined by equation 

unit vector nermal to liquid-gas interface 

normalised electric density 

ncrmalised ion density 

dimensionless parameter defined by equation 

perturbation value of liquid pressure 

perturbation value of gas pressure 

dimensionless functi~n. (= d(ni - n!) ) 
d'R 

cPe e 
diiliensicnless electric potential (= Ke ) 
time' 

dimensionless distance 

surface tension 

velocity vector 

" 
" 

, 
:,." . , 



u o 

v 

x 

x' .. 

y 

y 

cp 

r~ 

. ~e 

reV e 

!7(j 

r~j 

10 

e
f 
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zero order sheet velocity 

volume 

distance co-ordinate along sheet axis 

dimensionless distance co-o~dinate along sheet axis 
'x 

(= -) 
30 

ratio of ion and electron temperatures (= 8i) 
ee 

distance co-ordinate normal to sheet axis 

separated variable in electric potential 

dimensionless function (=(~ tj q~dt)2/3) 
to 

velocity potential 

rth term in velocity potential perturbation expansion 

electric potential 

rth term in electric potential perturbation expansion 

Fourier component of surface displacement 

rth term in surface displacement perturbation expansion 

amplitude of initial surface displacement to sheet thickness 

ratio 

permittivity of free space 

density 

electric charge density 

rth term in electric charge density perturbation expansion 

symmetric unit tensor 

alternatingunit tensor' 

veQtcr differential operator 

thickness of non convective sheath 

surface ctarge density 

temperature 

separated variable in electric potential 

separated variable in ve~ocity potential 



Subscripts 

t 

t 

x 

y 

o 

w 

e 

h 

L 

Nu 

Pr 

Re 

R 

T 
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components of. vector or tensor quantity with respect to 

rectangular Cartesian co-ordinates 

integer' (j = 1) upper interface (j = 2) lower interface 

differentiation with respect to t 

differentiation with respect to t 

differentiation with respect to x 

differentiation with respect to y 

denotes the value of the subscripted variable at the outer 

edge of the non-convective sheath 

denotes the value of the subscripted variable at the liquid 

surface 

emittance 

heat transfer coefficient 

heiGht of test chamber 

Nusselt number (h x diameter of junction) 
thermal conductivity 

Prandtl number (specific heat x viscosity) 
thermal conductivity 

R ld ' (velocity x diameter of junction) 
eyno s numoer - k' t' , , ----

~n€ma ~c v~sccs~ ty . 

heat transfer resistance 

tem~ rature 

~ Stefans constant 

Suhscripts 

a denotes the value of the subscripted variable within the , 

surrounding air 

j denotes value of thi subscripted variable at the thermo-

couple junction 

o denotes vallle of the subscripted variable at the outer wall 

.. 



.. 
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t denotes the value of the subscripted variable within the 

gaseous phase at the thermocouple junction 

w denotes the value of the subscripted variable at the inner 

3.5 

D 

n, m 

wall 

length of light path in liquid sheet 

sheet thickness parameter (Sx) 

integers -_ 

s sheet thickness-

x distance from centre of pressure to interface fringe 

w wavelength of light 

e (',/ ,~ angles defined in Fig.(3.8) 

~ refractive index . 

Subscripts. 

integ~rs : 

boD -drop size range 

D drop diameter 

n cumulative number of drops in the range '0 to D 

~ N number of drops in t:.. D 
, 

U cumulative fraction volume oversize 

Subscripts 

max 

m 

1 
t;..3 

ki,kr 

denotes the maximum drop size in a spray 

denotes the median diameter of.a range 

denotes the smallest diameter of a range 

imaginary and real parts ~f a ~omplex spatial frequency. 

i 

I 
I 
\, 
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a l-n 
A
1

_
n 

c l-n 

D 

D a 

D e 

D. 
~ 

e 

°E 

f(1 ) 

F 

F(l ) 

G 

h e 

I 

I e' I. 
~ 

J , e J i 

K 

m , 

coefficients in power seri~expansion of f(1 ) 

coefficients in power series expansion of (Ifl.) 

coefficients in power series expansion of F(~ ) 

dielectric constant 

ambipolar diffusion coefficient 

electron diffusion coefficient 

ion diffusion coefficient 

charge on an electron 

zero order electric field strength 

transformed stream function 

transformed variable (=G p-2/3<_eJ. 
]. 

dR dimensicnless electric field streneth (= - dt ) 

Debye attenuating length 

ambipolar current 

electron and ion currents respectively 

dimensionless electron and ion current respectively 

Boltzmann's constant 

integer or dimensionless charge density in neutral 

A50 

region 

~n = N/Nf ) 
0 

.' n 

N 

integer dimensionless charge density, (= 
N ) or N 

0 

. 
dimensionless electron and. ion charge densities 

• N. N 
1 e 

(= N ' = iT ) 
o .. 0 

charge density in neutral region 

electron and ien charB€ densities respectively in non-

ccnvective sheath .' • 



\ 

free stream ~hargedensity 

dimensionless perturbation parameter 

R dimensionless electric potential (= -

• 

h 
(= ~ ) 

50 
q) e e ) 
K9 e 

S general ortlogonal co-ordinate along liquid surface 

Sca ambipolar Schmidt "number 

t dimensionless distance 

U velocity vector in gaseous phas~ 

U liquid sheet velocity 
o 

U S - component of gas velocity 

v 

x 

'y(s) 

"V 
.' g 

e 
E 

o 

Subscripts 

~ - component of gas velocity 
s ~ 

transformed variable (= J (y(s»~ ds) 

t " f' d 1 t °t t (_- ee i ) ra 10 0 10n an e ec rcn empera ures 
, e 

radius of curvative of surface measured from axis 
J . 

transformed variable (= p2/3(_(J. + ~»1/3(ts - t) 
1 1E 

electric potential 

stream function 

generalised ortlogonal co-ordinate 

ion flux 

electron flux density 
u . 

similarity variable (=(2 ~ x)~5 yes?). 
g 

gas kinewatic viscosity 

temperature 

permittivity of free space 

vector differential operator 

A5l 

o denotes t~e value of the subscripted variable at the outer 

edge of the non-convective sheath 



denotes the value of the subscripted variable at the 

liquid surface 

components of vector or tensor quantity with respect to 

rectangular Cartesian co-ordinates 

Appendix· II 

C 

F 

p 

Q 

R 

R c 

s 

s 

T 

x 

x 

y 

y 

E 
o 

constant of integration 

zero order electric field strength 

electrical stress (= 

normal stress 

volume flowrate 
e IQUo 

dimensionless parameter (= . 4~ T ) 

radius of curvature of meridian section 

dimensionless radius of curvature of meridian section 

arc length of the meridian section 

dimensionless arc length of meridian sectio~ (= S ) 
R 

surface tension 

liquid velocity 

distance co-ordinate measured along the centre line 

dimensionless co-ordinate along the centre line (= ~) 

distance co-ordinate measured normal to centre line 

dimensionless co-ordinate normal 
U QF 

dimensionless stress (= ~ ) 
81rT~ 

permittivity of free space 

cone angle 

to centre line (= l) 
R 

slo~e of liquid surface to the x axis 
• 

A,ependix III 

A, B see equation A5? 
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Dim number median diame ter 

• 

k 

N. 
J 

N. 
JO 

fl Nj 

~ N~ 
J 

m 

s 

x 

x' 

00 

f D ~~ dD 
o 

&l 

f dN dD 
dD 

o 

01 

I D3 dN dD dD 
0 

cD f D2 dN dD 
dD 

0 

. drop size of type j 

drop size range, 

. I ( __ 2~ ) spat1a frequency cf square waves r 

number of drops of type j 

initial number of drops of type j 

total number of drops of type j in a given element 

weighted number of drops of type j in a gi~en element 

integer .. 

standard deviation 

distance co-ordinate in the absence of drag 

distance co-ordinate in the presence of drag 

velocity of drops of type j 

initial velccity of drops of type j 

phase lag 

jJ.. air viscosity 

ea air density 

el liquid density 

~ wavelength 
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