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SOUND DISSIPATION IN POROUS MEDIA

INTRODUCTION AND ABSTRACT

0.1 . The particular field that has been the concern of this work is that
of Building Science. The porous media of interest are consequently those
commonly used as absorbents in Architectural Acousticeg1)

The object of the work has been to formulate quantitatively a theory
of the dissipation of scund in such materials, so that a basis can be laid
for optimising and predicting their coefficients of absorption. The theory
has aimed at avoiding the inclusion of empdrical constants.

0.2 A review of literature is made involving a somewhat wider range of
porous media, including those of interest in the fields of Geophysics and
Engineering Geology. Porous fluids, a term employed by A.B. Wood (in

"A textbook on Sound" Ch.3 ), as they occur, for instance, in Underwater
Acoustics are also considered. Further, the literature concerned with sound
propagation in more general inhomogeneous and composite fluids and solids,

is examined, where the theoretical techniques are relevant to our study.

0.3 It is found that the literature specifically related to sound absorbing
materials and also to unconsolidated or consolidated granﬁlar media: -

(a) develops theories which are essentially macroscopic and do not
allow adequately for the microstructure of nonoisot;opic flexible framed
media i.e. fibrous media.

(b) provides little realistic description of the
dissipation in closed pore viscoelastic absorbers e.g. cellular rubber.

O.4 A theoretical technique, previously reserved for problems in under-
water acoustics and sound propagation in suspensions is applied, as an

alternative,to cases of fibrous and viscoelastic foam media.
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The predictions of absorbtion thus obtained for fibrous media are
found to correlates reasonably with experimental data on glass fibre block
samples,

Further, an explanation of the physics of scund absorbtion in cellular
viscoelastic media is suggested and conclusicns and observations of previous

literature are corroborated.

The literature is examined in the wider context previously mentioned.
As might be expected, the field of interest has determined the particular
type of porous medium considered; the model assumed; and often the
theoretical technique.

The fold-out diagram shows these links, together with those discussed
in the thesis and provides a classification for the review., Models

numbered in the chart are now discussed,

Chapter 1 Review of Literature

157 Model 1. This is the basic conceptual model which underlies most of
the work on sound absorbing materials.

Essentially, the porous medium is assumed to have a rigid solid,
continuous frame containing a number of parallel cylindrical pores open at
the surface of the material and normal to this surface.,

1:11 After initial work by Rayleigh(5) and Crandall(#) dissipation can be
postulated to take place according to such a model by:

(a) viscous losses in the boundary layer of the walls of each capillary
tube owing to relative motion between the contained viscous, conducting and

compressible fluid and the solid walls; and
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(b) heat conduction, i.e. exchanges of heat energy between contained
fluid and pore walls during cycles of fluid compression and rare-faction.

This stems from the Helmholtz-Kirchoff theory for sound propagation
in a rigid walled tube containing a compressive, viscous conducting fluid.
1.12 Zwikker and Kosten(s) extend this theory to a complete medium cor-
responding to Model 1. In order to allow for irregularity in the pore
cross sections; viz. deviations from circular cross-section and changes
in effective radius causing a variation in the fluid particle velocity
across each capillary pore (superimposed on the variation due to viscous
drag at the pore walls); the fluid particle velocity is replaced by an
average particle velocity over the cross-section of any pore. This can
then be related to the volume flow through the porous material by Dupuit's

Relation(6)2=

volume flow = [ porosity x average particle velocity]
(8)

1.13 The viscous drag effects in the separate capillary pores are combined

by the introduction of the spacific resistance or flow resistance coefficient

(d) for the porous material which relates volume flow with the pressure
variation through the material. Its steady state value corresponds to the
case where the equation of motion in the individual pores reduces to that for
Poiseuille flow. Then the equation of motion for volume flow in the total
medium is Darcey’s empirical 1aw(6)(for non=turbulent flow) and the flow
resistance is equivalent to an igverse permeability coefficient.

The high frequency extreme where the Helmholtz annular effect(7) can be
considered to exist in the capillary pores is given an approximate value by
Crandall. An expression for the flow resistance coefficient which applies
at intermediate frequencies is computed by Zwikker and Koatenc(g)

The characteristic impedance and propagation constant for a medium

corresponding to Model 1. are derived considering viscous and thermal effects in



1.2 Meodel 2 - a generalisation of model 1.

The porous medium is‘regarded as having a continuous solid flexible
frame containing péresv the structures of which are not specified, apart
from the requirement that the medium be homogeneous and isotropic.

1.27. Zwikker and Kosten(16) extend their previous work for the rigid

framed model 1 to the more general flexible frame model 2, by introducing

the concept of a coupling factor. This factor includes the inertial and

viscous coupling between the solid frame and the pore fluid resulting from

their relsative motion. The parameters of porosity, structure factor and

flow resistance coefficient are retained in modified equations of motion

and continuity for both pore fluid and solid frame. This procedure does
not require the more rigorous calculations for complex density and stiffness
for the rigidly framed model 1. The solution of these equations provides
for the existence of two types of coupled waves, which become decoupled

into separate compressional waves for frame and pore fluid at:certain
frequencies depending on the compressibility of the frame.

1,22 Other authorsg17’18“19)using a similar general flexible frame model
based on a rigid frame approach, define parameters less easily identifiable

with the structural properties of actual materials, In particular an

effective dynamic mass factor (m) is introduced; defined as the ratio of

the effective mass of air in the pores to the mass of an equal volume of
"free" air. This is meant to contain the effect of the presence and motion

of the sclid skeleton on the motion of the fluid. This parameter reduces
tounity i.e. to the same value as Zwikker and Kosten's structure factor, for

a medium corresponding to Model 1 with a rigid frame and all the pores
parallel to the wave vector of the incident (plane) sound wave. Rettinger(ao)

defines a slightly different parameter representing the amount of vibrating
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air mass per unit volume of the medium. This differs by a factor of bulk

f(18)

density from the above definition due to Morse and Bolt:

(21)

1,23 Beranek applies the coupling factor approach to medel 2 type media.
However, greater concern with fibrous materials is shown, in that friction

between fibres is introduced as a further comnsideration, in the equation of

(22)

motion of the solid frame., Kosten and Jamnssen = ° express doubt as to the

(21)

correctness of Beranek's derivation of the coupling factor and poinmt out

his misinterpretation of the structure factor as a "dynamic mass" coefficient

similar to m. Further(za) the coupling factor derivation of Zwikker and

(16)

Kosten is adapted to include the more complete expressions for complex

density and complex stiffness of air in a rigid-walled poreg))
It is remarked that to be fully rigorcus these expressions should in

fact be developed for a gas contained in a flexibly walled cylindrical pore.
(23)

1.24 Zwikker and Kosten compare their theoretical predictions for model

2 with experimental observation for wood-fibre plate and hair-felt. Kosten

and Janssen(22) further compare the modified theory with experimental results

for more flexibly framed fibrous media. The correlation in this latter case

is found good; if, as is required for the earlier theoryss) some suitable

estimation of the structure factor is made.

(24) (5)(16)

Paterson applies the Zwikker and Kosten theory further to
flujid-saturated granular materials and obtains reasonable correlation with
experiiital resiits:’

1.3 Model 3 - applied particularly in the context of fluid-saturated

granular media, where concern is more with sound propagation than sound

absorbtion.



136
The porous medium is regarded as a fluid-saturated aggregate of
closely-packed spheres. The spheres are assumasd elastic and in contact
such that applied isotropic pressure causss changes in the area of contact
between adjacent spheres, The saturating fluid is assumed incompressible
and inviscid.

Brandt(as)

considers a randomly packed array of four different sphere
sizes such that each smaller size completely fills the volds of the next
larger size to a constant fraction. A non-linear stress-strain relationship
for such a model is obtained by calculating the dilatational deformation of
sphere radius as a function of the force between the particles,

A similar model is used by Duffy and Mindlin(26)

, however tangential
as well as normal contact pressure is included, and the frictional loss
per cycle due to slip is considered. In both cases the velocity of com-
pressional waves through such a frame is calculated.

1.4  Model 4 - of fibrous materials.

The fibre block is considered as an air-fibre composite medium in
which parallel fibres of uniform diameter and length are either freely
suspended in air, or bound elastically *to fixed positions in space.

141 Kawasima(27) chooses this model as an alternative to models 1 or 2 for
the case of a flexible and fibrous acoustic material. The incident sound

is restricted theoretically to plane waves propagating in the direction
perpendicular to the fibre axes. In the elastically bound case, a string
model and a bonded rigid bar model are differsntiated. In the former case
the fibres are assumed to move as clamped strings i.e. as though the major
fraction ( 8/r> ) of their length were a rigid bar, and the remainder
fixed permanently at the equilibrium position. The latter case is a simpli-

fication of this, where the whole of the fibre is assumed to oscillate as a

rigid bar; constrained according to Hooke'’s Law.
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1,42 The clamped string model is developed as a general case and the other
two cases are considered to be special cases of this. Equations of con-

tinuity, introducing porosity, motion of fibres, and volume flow of air are
deduced, together with equations of motion of fibres and air, derived from

Hamilton's Principle, and incorporating a resistance coefficient for each

fibre. This resistance coefficient is given by Stoke’s law for a "long

e llipsoid of gyration" and gives a frequency dependent expression for
specific flow resistance when the equations of motion for fluid and fibres
are combined in terms of relative velocity.

The general form, because of the model assumed, predicts total
absorbtion at resonant frequencies of the elastically bound fibres.

1.43 A similar model of an array of identical parallel rods uniformly
spaced in air has been adopted by Lang ( {©4) in discussing the abgorbtion
properties of cellular plasters e.g. polyeurethane foam. The theory used
is essentially based on Zwikker and Kosten. However, by choosing this
particular model he avoids the use of their structure factor. Thermal
dissipation is not considered.

1.5, Model 5 = of particular importance in discussion of sound propagation
through unconsolidated, granular, fluid-saturated media where dissipation
is also considered.

The medium is considered to consist of an elastic solid matrix,
saturated with a compressible, viscous fluid. No specific assumptions are
made about micro-structure, However, certain restrictions apply at some
stages.

1.51 The literature based on this type of model is more concerned with the
formal derivation of the equation of motion of the solid frame via a stress-

strain constitutive relation than the previously discussed theories(5’7°8"23)

o
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A linear stress-strain relationship involving porosity is derived by

(28)

Biot. Analytic expressions for the resulting six elastic coefficients

are obtained from three equations of equilibrium and three equations

(6) (29)

representing a generalised form of Darcy’s law. Biot uses this
formulation together with a Lagrangian form of the equations of motion to

derive wave equations.

(16) (21)

1.52 The coupling factor of Zwikker and Kosten and Beranek: is split
up into its inertial and viscous components for this model. The inertial
coupling is introduced into the equations of motion via three '"mass" co-

efficients derived empirically. The viscous coupling is introduced allowing

for the variation of the viscous dissipation with the micro-velocity field

across the pores i

veltoeity—field—aoross—the pores i.e. variation with frequency and with
change of cross-sectional pore shape. These effects are combined into a
viscosity function which depends on frequency, a characteristic dimension

of the pore (extremes of shape being parallel walled slits and circular

capillaries), tortuosity(6) and the kinematic viscosity of the pore fluid.

The effect of tortuosity of the pores, in particular is contained by a

(30)

structural factor. The frequency dependent viscosity function is a

more comprehensive, microstructurally sensitive representation of the

(16-21)

dynamic flow resistance coefficient than that used by other authors.

1,53 In a later paper, Biot(31)

rederives the elastic stress-strain relation
for a porous medium, considering both "closed" (fluid not free to circulate
in and out of the medium) and '"open" pore situations, (as do Gassman(Ba) and

(2k)

Paterson for model 3). Anisotropy of the medium is also considered in
this paper, together with the effects of heat conduction between grains and

pore fluid and internal friction between the grains of the unconsclidated solid.
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The latter two considerations are introduced under the general heading of

(33)

ehermoelastic effects" and previous theories of irreversible thermo-

dynamics are evoked, resulting in the replacement of the elastic coefficients

by operators. The equations of motion are derived in a different form,

(29)

reducing the three mass coefficients used previously to a single coef-

ficient dependent on the pore geometry, i.e. more simply analogous to the

(16,21)

inertial part of the coupling factor.
Another paper(Eq) sees the introduction of a viscodynamic operator in
an equation of relative motion of fluid in the pores. This represents a
generalisation of a method previously used to obtain the complex wiscosity
function. The equation of relative motion, together with an equation of
motion representing the time derivative of the total momentum of the fluid-

solid mixture, are used rather than separate equations of motion for fluid

and solid respectively528929’31) A wave equation is then derived which can
be analysed as pr’ev'iously,(28929931 )into two compressional and one shear wave.

1.54 Hardin and Richart(js) point out that the elastic constants introduced

(28,29)

by Biot are difficult to measure in practice. In their theory there-

for the Young's modulus of the elastic frame is derived from.Duffy and Mindlin's

analysis(zs) according to model 3, and this is substituted into the Biot

theoryu(au) Brutsaert(56)

extends analysis based on Model 5 to the case of a
three phase medium; a porous granular medium saturated with air, some grains
being covered with a wetting fluid. A Lagrangian approach, for the equations
of motion, similar to that of Biot's isotropic medium theory(ag)g is used,

The difficulty with Biot's elastic coefficients(28°33°3k) is partially avoided

by employing Brandt's approach(zs)

for elasticity of Model 3, pointing out
that the remainder of Braadt’s theory for the compressional wave velocity

assumes that the fluid and solid move together and exhibit the same displace-
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ments. Viscous effects in the air are included according to Zwikker and
Kosten for Model 155) and those in the liquid according to Biot's viscosity
functioégg) The effects of change of pore shape, tortuosity of pores; and
heat conduction are not considered and it is assumed that the two fluids
do not occupy the same pore at the same time.
1.6 Model 6 - represents a "finite element" approach to the problem.

The medium is considered to consist of a number of identical elements
of volume or "cells'" containing proportions of fluid and solid.
1,61 A rigid, porous, sound absorbing material is compared by Beranek(3?)
to a model containing a series of rectangular cells divided into proportions
of rigid solid and fluid according to the volume porosity. Flow resistance
is also introduced into a theory in which the equations of continuity and
fluid motion are deduced from first principles, making no specific assumptions
about pore characteristics but making a number of restricting approximations.

This model and approach were rejected by Beranek(21) in favour of Model 2.

(38)

However, McGrath points out that an analytic solution for model 6 is

possible without the number of approximations used and that reascnable
results can be obtained with two acoustic materials with fairly rigid frames,
1,62 Tyutekin(Bg) develops a theory for a hypothetical rubber-like material
containing an array of parallel cylindrical ducts with their axes normal

to the jincident plane wave front. The medium is treated as if it con-
sisted of an array of identical close-packed hexagonal '"prisms', each of
which contains an infinitely long cylindrical channel. Each "prism" or cell
is approximated to a cylinder with a radially fastened external surface for
the purpose of applying simple boundary conditions for continuity of radial

displacement and transverse stress of the boundary. The boundary conditions

together with the requirement of continuity of direct and transverse stress
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at the channel boundaries furnish a wave equation for each cell corresponding
to that for the propagation of axially symmetric elastic waves in a solid
rod with a free surface.

(40a) to describe sound

1,63 A cell model approach is also used by Nesterov
propagation in a concentrated suspension of heavy, rigid solid particles in
a viscous fluid. Each cell is postulated to consist of a double plug i.e.
a cylindrical solid plug surrounded by a coaxial cylindrical liquid plug.
For a regular array of particles, the assumed cylindrical shape of the
liquid plug is an approximation to the rectangular box shape obviously
required for a representation of the actual medium.

Neglecting thermal effects; equations of motion for the liquid and
the solid are obtained and used to defipe a complex density for the
suspension which includes the viscous éffects in much the same way as the
somplex dengl iyl deri vad by T ikiar and Koaben 2. for. the rigld walled. tubw.

Bysova and Nesterov(“Ob) extend this cell model to include thermal
effects., In this case the spherical shape is chosen for the liquid-
solid plug. A complex compressibility is thus defined expressing the
thermal attenuation within the concentrated suspension (c.f. Zwikker and
Kosten(s)'s complex stiffness for a medium with rigid walled pores). The

(4Oa, b)
i

theor is suggested as being more applicable to concentrated sus-

(41)

pensions than other theories which do not include interactions between

the particles.

1.7 Model 7 - applicable to various types of suspensions in fluids; and of
inhomogeneous or composite solids.

1,71 The suspension or inhomogeneous solid is considered to contain a
distribution of discontinuities according to the following forms:-

(a) spherical fluid discontinuities in a denser fluid medium
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(b) spherical fluid discontinuities in a less dense fluid medium

(c) spherical rigid or elastic solid discontinuities in a fluid

medium.

(a) sphericél or arbitrarily shaped solid, fluid or cavity

discontinuities in a solid medium.

When dissipation is calculated for (a), (b) or (c¢) it is based on the
solution of the scattering problem for a single scatterer and extended by
simple addition to the total medium. i.e.the scatterers are assumed to have
only a slight effect on the properties of the imbedding medium.

1.72 Rayleigh(ua) develops the spherical harmonic approach to the single
scatterer . problem where the incident wavelength is large compared with the
radius of the scattering obstacle, Lamb(“3) extends this analysis to include
viscous effects and derivesscattering coefficients for a rigid sphere free

to move, from rate of change of momentum considerations. The first appli-
cation to a number of obstacles is made by Sewell(uu) for a suspension of
fixed, rigid, solid obstacles in a viscous fluid. A correction is applied

in this treatment to account for movement of the obstacles. A more rigorous

(45)

approach, for suspensions of types (a), (b) and (c¢) is given by Epstein .

This is revised and extended by Epstein and Carhart(46)

for types (a) and
(b), to include the effects of heat exchange between particles and imbedding
medium. It is shown that the irreversible effects due to viscosity and

heat conduction are simply additive to within a close approximation, at
audio-frequencies., The attenuation coefficient for the medium is cor-
respondingly calculated from dissipation functions representing viscous loss

(47)

and thermal loss separately. Chow considers suspensions of type (a)

(46)

and (b) and includes surface tension effects. The theory is shown to

be applicable even in the case of large displacements of the scatterers(u7)
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i.e. the boundary conditions used for each scatterer retain the same form

when either the origin of coordinates is fixed in space or allcwsd to move

(2)

with the scatterer. Wood considers attenuation in bubbly water by a

u8) o

scattering procedure. The same problem is considered by Devlin a

somewhat different technique considering the passage of the sound wave as
a small perturbation on the volume of the bubble (c.f. model 3). The
equations of motion are derived using generalised coordinates and a Lagrangian

I
(uga)apply the Epstein and Carhart(*é) theory to

(45)

approach., Zink and Delsasso
suspensions type (¢); pointing out Epstein’s conclusion that when only
viscous attenuation is considered dissipation becomes almost independent
of density, (when the density of the solid obstacles is much greater than
that of the 4mvbedding fluid). It is further remarked that, in such media,
1>sses due to (i) thermal effects within the scatterers (ii) relaxation
phenomena and (iii) spherical scattered wave formation (removing energy
from the incident plane wave front - umimportant in reverberation

45)
( 5') are negligible compared with the effects of viscous and

measurements
thermal attenuation,
1,73 Attenuation in inhomogenecus solids of type (d) is considered by Ying
and Truellsso) The particular obstacles considered are (i) isotropic elastic
sphere, (ii) rigid sphere and (iii) spherical cavity embedded in an elastic
solid., The average energy removed as a fraction of the incident energy per
unit area per particle by spherical compressional and shear wave formation
in scattering, is calculated.

The case of scattering of high frequency sound by arbitrarily shaped
and orientated grains in polycrystalline materials is developed by Bhatia(51)

as a problem of "slight" scattering i.e. where the properties of the scattering

medium differ only slightly from those of the imbedding medium. The effect
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of multiple scattering, i.e.the effectt of the material surrounding a single
grain, being granular s and not bulk material, is disregarded because of

the grains' random orientation with respect to each other.

1.74 vyrick and Ament(u1) consider the propagation of sound in a finite slab
region, (thickness d), containing a concentrated suspension of elastic, solid
particles, the imbedding fluid being viscous and non conducting. Model 7
conditions are assumed within the slab i.e. the wave incident normally on

the slab is assumed to be a close approximation to that incident on each of

the particles. The inhomogeneous nature of the slab medium is brought into
account by assuming plane reflected and transmitted waves either side of

the slab which are respectively the sum of the backward scattered and forward
scattered waves from the particles. The single scatterer coefficients for

an elastic sphere free to move in a non-conducting viscous fluid as

calculated by Lamb(gs) are used for each particle. The propagation constant

and complex velocity of the model are calculated on the supposition that the
scattering from the inhomogeneous slab region is identical with transmitted/
reflected components from the homogeneous slab. The viscous attenuation
expression is shown to be the same as predicted by the relevant single scatterer
theory543’45) Correlation is also shown with the derivation of Urick(68)
based on a theory of the viscous drag process between fluid and particles

(92)

according to Stoke’s Law. Duykers shows that this in turn can be related

(28,31)

to Biot's theory for viscous attenuation in a relevant model.

1.8 Model 8 - a more concentrated version of model 7.

This model applies where the wave incident on each scatterer within the
suspension is not necessarily approximately the same as the source plane wave
i.e. the obstacles do not scatter independently to any reasonable approxi-

mation.
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(52)

(54-56)
1.81 Morse and Feshbach, Waterman and Truell

(53)

and Twersky
include the interaction between the particles of model 8 caused by multiple

(52)

scattering. The first is concerned with propagation in bubbly waters

and bases the technique of solution on the construction of a Green's function

(53-56) jea1

for the complete case. The other references with a more general

class of problems by constructing integral equations for the exciting field

(56)

on any scatterer in the medium. Twersky derives bulk parameters for a

multiple scattering slab medium containing a random array of similarly
(54)

aligned, identical scatterers of general shape, In a first formalism

these are computed in terms of the properties of the imbedding medium and
the single scattering coefficients for an isclated scatterer in the imbedding
medium. A second formalism(ss) derives the bulk parameters in terms of a
generalised isolated scattering amplitude corresponding to each scatterer
being excited by the coherent multiple scattering field but radiating into
the imbedding medium. This is considered to be more accurate than the
first formalism,

Embleton(57) applies the first formalism(su) to the attenuation of
sound by compressional wave scattering in forests by considering the case

of sound incident on a slab region of parallel rigid cylinders, their axes

normal to the incident plane wave vector.
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Chapter 2 Dissipation in Fibrous Media

Fibrous materials are now very commonly used as sound abscrbing

(1)

materials and a large variety of proprietarybrgnds are available.

(59)

They also provide the best scund absorbition characteristics , in the
audio-frequency range. Thus, it is important that there should be
adequate theoretical work available to explain their performance and

lay the basis for their design.

251 Criticism of existing models, theories and resulting parameters

Although several authors specifically concerned with Architectural
(5, 17-21)

Acoustics have suggested that their theories are applicable to

fibrous media, certain inadequacies of their work can be pointed out.

These stem basically from the differences between the microstructure of

the conceptual models (1.2) behind their theoretical work and that of the
materials under consideration. It is proposed that the material parameters
on which the dissipative capacity depends tend %o represent macroscopic

(14) (17,18)

properties and are often frequency dependent. The most com-

(28-31)

prehensive treatments are those due to Zwikker and Kosten(5) and Biot ',

thus their parameters are the primary ones reviewed,.

2.11 Structure Factors

(10)

As remarked in 1.14, the structure factor is introduced to allow
for effects of orientation of pores and of side-holes. Also, at least for

that theory based on the rigid framed Model 1, the factor is required to

include the effect of the motion of the frame(10) i.e, a slight frequency

(17,18,21)

dependence is introduced as in the effective air mass parameter:
The result for all absorbing materials is a factor which cannot be exactly
measured(12) and is calculated simply as a factor required to bring

theoretical prediction into line with experimental observation. It can
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only be predicted in fact for special cases of "artificial media" e.g.

(59)

stacked glass straws which are unlikely to correspond in structure

to materials used for sound absorbtion, of the high flexibility, low flow

(5,21)

resistance catagory, such as glass fibre wocl. The structure factor

may be more viable for high demsity, high flow resistance materials such
as wood-fibre plate: where it would serve as a 'persistence factor"(so)
measuring the persistence of a pore in direction and cross-sectional area
in a section parallel to the "common" direction of the fibres. For such
materials it may be expected that the fibres are close-packed i.e. in
contact for the major portion of their length with other fibres and thus
such concepts as capillary pores, side-hcles, orientation(1o) and

(6,30)

tortuosity have meaning. For loosely compacted fibre wools, where the

fibres cannot be expected to be in contact for any appreciable portion of
their length such concepts as these have 1little place., Only that of
(6)

tortuosity of streamline flow retains any meaning.

2,12 TFlow Resistance

\
This parameter is introduced by authors(5°1u*21’

to express the
viscous boundary layer action, at the solid-fluid interfaces within

porous materials, in the equations of motion. It is given an accurate
representation (1.,13) as a frequency dependent function only for Model 1
(carried over to Model 2) i.e, for the case of periodic motion of a
viscous, compressible fluid in a fixed, rigid walled, circular, cylindrical

pore. For model 5 (1.52), a viscosity function(a9)

is introduced to express
the more general periodic micro-velocity field situation across a pore of
arbitrary shape, with a limited motion of the rigid pore wall, i.e., unidi=-
rectional motion parallel to the induced pressure gradient. An analysis of

incompressible, viscous fluid flow inside a cylindrical tube with elastic
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walls, which are massive and capable of three dimensional motion, is made

(61

by Womerszley §

the analytic solution being in terms of unchart ed functioms.
Fibrous material in which capillary pores can be defimed, such as the wood~
fibre plates already mentioned, would require an analysis of wiscous,
compressible, conducting fluid motion within pores of arbitrary shape,
possessing massive, conducting elastic walls, capable of three dimensional

motion. Clearly for this cate, and for locsely compacted woollen materials

where capillary pores cannot be defined, an analytic expression for the

: 14-21
dynamic flow resistance coefficient necessary in the relevant theorles(?' 21)
even in terms of the measurable static coefficient§62) presents a somewhat

intractable problem. Thus the practicability of dynamic flow resistance
as a parameter for flexible, fibrous absorbing media must be questionable.

20,13 Concept of a continuously framed and isctropic medium

The theories of propagation, based on models 2, 3 and 5, predict plane
"frame waves', coupled or decoupled with the motion of the saturating
fluid. This requires the existence of a continuous sclid frame through
the medium or at least a discontinuous frame which will transmit the effect
of periodic loading on the "front" surface of the medium. A continuous
rigid solid frame, of course, is an integral specification of model 1.

The requirement of continuity of frame is met in actual materials of
the acoustic plaster, wood fibre plate (from the observations of 2.11),and
granular, types. Where the wcod fibre and granular materials may be
expected to show a non-linear elasticity due to their essential discontinuity -
s pointed out by some authors concerned with models 3 and 5 (1.3 and 1.54)

and by JonesSGB)
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(27)

However, the correlation achieved by Kawasima

L(64)

between theory
based on the unbonded version of Meodel and experimental observation
on glass fibre material, would seem to indicate that in such materials; for
the small displacements and velocities involved in an acoustic disturbance
the fibres react quite independently of each other, at least at high
frequencies, This is not true in the pressence of resin bonding.

Further, the condition of isotropy, required in many of the continuum
mechanical theories(5“19’21’35’36> based on models 2, 3 and 5, is not
necessarily satisfied by fibrous materials if the fibres have a '"preferred"
direction. Thus materials must come under the catagory of materials not
adequately described in their sound absorbing properties by theories based
(65)

on homogeneous, isotropic media.

2.2 Application of the unbonded version of Model 4

2,217 Kawasima's Theory - advantages and disadvantages

By choosing a model for the fibrous material as described in 1.4
Kawasima avoids many of the difficulties mentioned in the previous section.
However, new problems are introduced in attempting to apply a continuum
mechanical approach to this model. An approximation is introduced with
the resistance aoefficient(sé) iee. ar application of Stoke's Law for
motion of a body through a viscous fluid. Further, the heat conduction

(67)

effect can only be introduced assuming a square array of fibres. Also,
the compressibility, and three dimensionsl strain of the elastic fibres
are not taken into account by the assumed rigid fibre model.

2.22 A scattering theory

Model 4, at least with unbound or lightly bound conditions, may also
be regarded as a version of model 7 or 8. Thus the fibrous medium may be

considered to be a suspension of fibres in air and the techniques of
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analysis reviewed in 1.7 and 1.8 may be applied. Each fibre may be compared
to an elastic, cylindrical conducting solid scatterer immersed in a viscous
conducting, compressible fluid medium. The tractability of this approach

is ensured for most materials in use as sound absorbing materials by the
very small dimensions of the component material fibres (diameters between

% and 10 microns in most instances). This means that the harmonic functions
used in the scattering theory are rapidly convergent and need only be expanded
for the first few orders of their arguments; i.e. Rayleigh scattering
conditions exist, the wavelength of the incident sound being much greater
than the radius of the scattering obstacles for the frequency range (100~
6000 ¢/s) of interest.

2,23 Dissipation in Fibrous Media on a scaﬁtering model

(46)

Epstein and Carhart analyse sound propagation in a viscous,

conducting, compressible fluid medium into three types of waves; two
compressional waves and one rotational or shear wave. Within a small
approximation one of the compressional waves is shown to be ascribable
purely to thermal effects, the other corresponding to dilatational
propagation in an invisid, non-conducting fluid. It is noticed that the
shear (viscous) wave and the "thermal" wave are rapidly attenuated in air
and water. The attenuation of sound in its passage through fluid
suspensions, as described in 1,7, can then be attributed to the '"mode
conversion'" of incident plane dilatational waves into thermal and viscous

waves by scattering at the various obstacles (suspended particles).
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. : i . (68) (47)
This mode conversion into viscous waves/accepted by Urick s Chow
and CCartensen and Schwan(69) as equivalent to the more conventional
representation of viscous drag. Urick(68) shows that the attenuation

(43)

coefficient derived by Lamb can be divided into two parts related
to the scattering ldés and viscous loss respectively,and proceeds to
verify that the viscous part can be derived independently by means of

(47)

Stoke's equation. Chow similarly shows, that the first order (low
frequency) approximation of the viscous draig (as a function of relative
velocity) on water droplets in air, subject to an incident sound wave

(46)

according to the Epstein and Carhart formulation,is equivalent to
Stoke's law for spheres moving with the same velocity-. Further, Chow(u7)
derives the first order (low frequency) approximation of the heat transfer
rate for this formulation,including heat conduction effects for each
droplet, as equivalent to the>étandard expres;ion for heat transfer to
a sphere when Reynolds number tends to zero and heat exchange is by
conduction only.

It may therefore be expected that the expressions for dissipation i
given by mode conversion within Model 4 (as a type of Model 7) are
accurate representations of the mechanisms of dissipation in an ideal
fibrous medium previously inaccurately represented by theories using flow
resistance etc. The main parameters in this approach are; radius of
fibres, their elasticity, number (average) per unit volume and properties
of the imbeddimg medium (air). Such quantities are readily measurable
compared with the less convenient parameters previously required, and indeed a

'scattering theory is more directly related to the microstructure of a

fibrous material.
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2.3%. Restrictions and assumptions required in spplying a scattering theory

2,31 The unbonded version of Model 4 is the only one which correspondsto
Model 7. Each fibre is assumed freely suspended in air so that boundary
conditions of continuity of pressure, velocity, temperature and heat flow
can be applied to any point on its surface. Thus the contact between
fibres, necessarily occurring in actual materials, is neglected, intro-
ducing & systematic error in so far as they induce "frame" waves.
Friction between fibres is &lso neglected, as is the effect of
resin bonding which alters the apparent elasticity of the fibres, their
orientation and degree of contact with each other. The influence of resin
or cross bonding of the fibres is to decrease the sound absorption at low

s(vo)b It may te con-

frequencies and increase it at high frequemcie
sidered that a bonded material is more amenable to analysis based om
continuous frame models (2.13) than a loose pile.

2.32 When a single scattering approach specific to Model 7 is used,

the time average of the power dissipated per scatterer, as a fraction

of the incident energy,is calculated to give the attenuation coefficient
of the medium. The pcwer dissipated per scatterer is found by integrating
the dissipation functions over a large volume surrounding each scatterer.
This volume must be at least large enough for the viscous and thermal
waves to have died out before reaching its surface. Thus a minimum

radius of the volume of integration must be the wave decrement distance

(46),

for the viscous and thermal waves (rcughly equal It follows that
this method of calculation requires the scatterers to be separated by
at least twice this distance so that the viscous and thermal waves do not

interfere. The required separation in &ir has been calculated to be
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ue) ¥

0,02 cm . In a fibrous block, this requirement is unlikely to be met
over the whole length of every fibre, and must provide another source of
systematic error.

2,33 In view of the concentration of fibres to be expected in actual media
and the variation in their separation, the single scattering theory can
only provide a crude approximation. The multiple scattering theory
apprepriate to model 8 should improve on this by introducing the
possibility of scattered dilatational wave interference. In the multiple
scattering theories available, however, for general situations, viscous

and thermal wave multiple scattering ars not considered.

The work of Waterman and Thue11(53) would seem to indicate that
symmetry arguments discount any effect of viscous (shear) wave multiple
scattering among spherical scatterers. More general situations, however,
requiré modification of the theoretical arguments used to allow for
shear wave interaction.

Further, the first formalism of Twersky('su)g although allowing for
random spacing of the fibres, requires them to be parallel along their
whole length. The extra refinement of scattered wave interaction
therefore limits the flexibility of the single scattering technique as
regards the orientation of each fibre with respect to the incident wave

front.

? for frequencies > 550 Hz
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CHAPTER 3. SCATTERING BY A SINGLE FIBRE

The scattering approach to the problem of sound dissipation in a fibre
block, as indicated in the previous chapter, requires the solution of the
scattering problem for a single fibre.

Each fibre may be approximated by an elastic, conducting solid c¢ylinder,

which is suspended in a viscous, conducting fluid viz. air, for the cases of

interest.

Scattering by solid cylindrical objects is considered by Lamb(BO)9 Morse(812

Morse and Feshbach(82) and Lyamshev(HO)u Further the cylindrical scattering

problem for plane acoustic waves is investigated by White(77) and Tyutekin(78’79) :
both for normal and oblique incidence on fluid filled or evacuated cavities.
The treatment of White(77) allows both shear and compressional wave incidence.

None of the literature, however, comsiders dissipation, due to the scat-
tering of viscous and thermal waves, around a cylindrical object; this, there-

fore, must be investigated.

3.1. Scattering by an elastic, conducting. solid cylinder imbedded in a

viscous, conducting fluid

2,11, Oblique incidence

L= xqu—i— ‘2.&1/\\-9

y
i

WNCIDENT
WAVEFRONT
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Following White?”’

, consider a plane compressional wave incident on the
cylinder, choosing a system of coordinates as shown above, with their origin
inside the cylinder, and the z-axis coincident with the axis of the cylinder.

(77,79)

For simplicity the incident wave vector is chosen to lie in the

Xz- plane. The incident wave potential may therefore be written
c]ﬁi = u?(Aw{) u(p [iwg (&w&up -+ zs;M‘)>]

using the convention that this represents a progressive wave, travelling in
the positive X direction, and stipulating that #L must satisfy the scalar
Helmholtz equation.

3,12, Other potentials

In general as both the fluid and the solid are allowed to support shear,
it is necessary to consider more general solutions of the vector Helmholtz
equation,

For certain coordinate systems [f‘)§>,§3] s by (83),it is possible to
represent the vector potentials of the velocity fields in terms of two

scalar potentials:-

e = Lu)'\[&‘»o»{/*- 1, wl(c;\wxw] (3.121)

~ K.“.

where w = v(}) and 8y, is g unit vector parallel to the axis representing
the coordinate {‘ (with parameter unity in the curvilinear system), and
G# 9X both satisfy the scalar Helmholtz equation.
Thus it is necessary to consider nine scalar potentials in the scattering
problem for oblique incidence, including the dilational, thermal and shear

potentials derived in Appendices A and B for both fluid and solid.
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According to the conventional treatmentswo?gd) it is possible to expand

the incident plane wave together with scattered and induced wave potentials,

as solutions of the scalar Helmholtz equation, in c¢cylindrical harmonics viz,
" | 1, a=0O

writing K= \-ws@ N K=K‘§Su\\Q ) K‘gctKguSLQ and e“;{ )

a2, a>o
1 .
¢l = a_x?(‘u(z\ Z| e T,,(K“,c!) w&(«\@) (3.,122)
LS
where the -J’,\ are cylindrical Bessel functions of the first kind and order A
and the time dependence éxp(-iwt>is understood.

The outgoing fluid scattered waves may similarly be written, further

suppressing time dependence:

oby
B - el Lo A B () wsld)

n=90

T: - explice) 2 et W) @s(&) > (3.123)
Ve ey (D CEE W) 6 (D)

¢

X = aq () 7 2 DR Halet) #ia (40)

where the H,\ are Hankel functions of the first kind and order n  (representing

outgoing waves).
The induced solid wave potentials may also be written in expansions of

¢ylindrical harmonics, again suppressing time dependence.

$£DS Qx‘i)(lv(z) Z_‘. Af AR A wg(;@b
?{1: - oplivd) i‘. B ) u&(a@}

= o

Ve el P 080 T ws(®)

=0

X = e (ixd i Do 1 Tl aad)

(3.124)

2 > \ ¢
K = Kfﬁwswﬁ iy = Feot®
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KD o= V(-DM\-Q) ) KT!! = KTﬁM\‘QTH ) K'_‘ = K_‘_(/O'S@ )
and the z dependence of all the waves relates the scattered and refracted

angles to the angle of incidence, assuming a ''generalised Snell's law"(85)

to hold viz. L? = \?f )
K = K:S\;IL\Q = K?t MLQ.‘: = KTPM@)F = KéﬂQ\Qs ’ \(Tgﬂnlmgiwfséﬁs (3.125)
The expressions (3.123) and (3.124) introduce eight sets of unknown
coefficients. However, there are 8 boundary conditions which may be applied
at the surface (r = R) of the cylindrical fibre viz. continuity of pressure
(three components), continuity of velocity (three components); continuity

of temperature and continuity of heat flow.

3,13. Boundary conditions

3,131 Velocity (o displacement)
It ig necessary toc deduce the components of velocity x of the fluid

or displacement w of the solid from the form

3&3 - _V?{ S oux\ ﬁ\/ (see Appendix A)

in cylindrical pola:s,
Now from (3.121) the particular case of cylindrical polars giVes(83) .,o(é ): \
and 6y = 9_ (unit vector in the Z direction)
Thus the expression required for v and w is
Cur‘f}/ = etew) (54)) + L ocl e e (—'}_X)
Calling upon the vector identities(8‘+):- e .
el et L) = grad v D = V)

div ($a) = fdule) + (qodd) (o)

cwrl ($o) = ¢ ewl(e) + (@w&*“" (o)
and the scalar Helmholtz equations satisfied by+ and X viz:-

(Vx-i- K:>(\;> = O

The expression for cusl ﬁ, can be transformed to

W

R A > é\ ~ 3’ 2
el R o= 3 LAY [0 [ U L 42 Y k| uazny
g Iz 2 rT W) vz 32" +
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Thus from (3.1311) and the expression for Y/( > in cylindrical polars(gl’)

~ A ~
v 3D+ () H+EI(C)
’“( ) I T é%t )z

the components of fluid velocity or solid displacement may be written

A= Loufpm\ef& - = E)_é & 3_3 4 KT%_')C
T 3z T A

O comgorank - R R 4(_‘,<73_X>
NI

Pt e (3.1312)

Z b«?o.'\&-wk

-¥ 4 W42

3z ¥2*

Substitution of the relevant potential expansions (3.123) and (3.124),
where the solid fibre velocity components are given by the partial derivative
Wor.t., time of the displacement components, and remembering that the total
fluid field must include both scattered and incidemt potentials, then yields,

for example, for continuity of ¥ component of velocity { Vy = \A‘_]
o

ob
- axp Cw(z) { Z: P\: L‘x‘n‘\\:k;‘r} u,s(‘,\@ -+ Z 'Bf L‘K‘:‘ H,\‘b(‘;“r\)us (4\@3

LS Y]

.
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=
o
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¥
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L) feo

b o5
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\
where the notation ’P\A(x) = %}_IVR,\(&)J is understood for the
Ic—
cylindrical Bessel Functions.
This boundary condition may then be simplified by multiplication

through with the factor:- ]
e R 'LL"\\JJ?(-'LK23 J oS (M@)

o

such that the orthogonmality of cos(m©) is invoked viz.

=

=| |

«

jwﬂm@\usb@} dd <40 M=+
o T‘—/Q_ M =N\ #O ‘

Ly Mm=n =0
N

This has the effect of picking out the Mm=wn terms. Similar factors

may be used for simplification of the other boundary conditions : in parti-
cular the continuity of & compt. of velocity and v compt. of stress
require the corresponding orthogonal property of SC:\(M@B o

Introducing the notation K“fp\ - (')f ; .('129\ aLE ; K‘TFR = 2F
\s \ |
BR = <qR =0T IR

The welocity boundary conditions finslly yield the formss-

[l

- [ T6) + A5 D] - BTN (594 st e e + axct Dhu ()
A i-&‘lﬁ'}]’: (C«“) . h‘& gﬁ%-;ﬁl U}‘!)q. '\K“—‘SC}T': ds) +M<‘}D§-&@s)}

oy " {e“TA&‘)J« Afh P+ 8.5w,(69 —LKCE“A(;‘F)] - wEf phuled)
= —wfa[AITE) + BIT - a)] - VT

- [e“Tﬂ(&“) + A58, + Q,\@HA(\Q‘) ] + (Pod) ek (@
- - (AT + BRG] - w6 BT
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3.,132. Pressure and stress

from Appendix A, the total fluid stress may be written:-

¢ V}f + wapd ] R S A
and from Appendix B, the total solid sitress is given by

6,“ BN N (185(" l.;) - ; /A éu\ & m>
= 38V 4+ p 5 3“ B

Further, from the expressions for the strain components in cylinmdrical
polars, given in Appendix B, which apply equally well to the rate of strain
components, where displacements are replaced by velocities for the fluid,

it may be seen that:-

P

(

voar r‘a%* Ar‘hv_ NN YA
{ 23 Lo ¥ Ry
oYy T ér%%éz ’% bz

( i bx@ élf@ émx{’
Fae ar” v* 3>

a,f{\i RARC I Tl ) éiﬁ}

(3.1321) ?‘e

R A fi i éy! 3 gg-xc
_ = f'\ 3:51 5\'57- -21/ i (r ¥ )z

Also, identical forms for O",T ,5}9 ) Oy- exist, where the fluid

potentials are replaced by corresponding solid potentials and the fluid

constants are replaced by the relevant solid constants.

;. [ S | S 3.8
Use is made in each case of e Efo ; \(.“ = ‘j_ﬁ respectively.

,*(L /As

Introducing the further notation KW= & o the continuity of stress
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at the fibre boundary gives, essentially by the procedure ocutlined in
3.131:~
L?n = °—rv]

v=R

¢ i eﬁ[‘“ ‘(‘@)Jr(Gl g ’\)ﬂa@]u\‘['m '+)+\ e )M&)] }
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3.133. Temperature and Heat flow
From Appendix A, the following expression for the temperature

variation within the fluid holds:-
F(gﬁ +di) 4 F

where (: = '6[»0 = &“-m‘)hﬁ)] (ﬁco o
= X[w <“‘(C“-\ n ]((Ac Lﬂ'\

and ‘ . 4
neglecting small quant tities ﬁ LN
5 P ¢ £\ t) .0
which from eqn (A.20) el U‘l'c' compared with (fs ! Bel> " Pee
Further, from Appendix B, for the solid
S S
e = ¢Tn
£ < ) q NS S
where (i i9ap (L\AP + —s) on the assumption that ¥ ~ |

e and N> = (%7
Thus temperature continuity at the fibre surface gives

@[egﬁ@e)ﬂumkuﬂ] + TR nk(ge) = -GR89
Kt’ LS 3T
)

(3.1331)

and continuity of heat flow viz. g‘ St gives

K(';l(' b [eT EORFT RN *)] + Frtgfy ‘(‘Aﬁ} N A (D)
(3.1332)
From the eight boundary conditions (3.1313), (3.1322), (3.1331) and

(3.1332) the coefficients ‘\i required (see Appendix E) for attenuation
calculations, for normal or oblique incidence, may be calculated (see
Appendix C), showing their dependence on fluid and fibre properties
(Appendix D).

3.2. Attenuation due to a single cylindrical scatterer

From Appendix E, the energy loss per scatterer per unit time is given by
W = -dwpfrRe (ad+ah)

for a normally incident plame wave, for which the energy carried per unit time

(46,47)

through unit area normal to its direction may be written J_w()f;(: = E
x
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Thus a "dissipation cross section" (o), for each unit length of
cylindrical scatterer parallel to the incident wave front may be defined
by

o =

n

o - Re(AS+ ﬁ\@>
E - W (3.21)



l“1°

Chapter & ABSORPTION OF A NORMALLY INCIDENT PLANE SOUND WAVE BY A

FIBROUS BLOCK, BACKED BY A RIGID PLANE.

In the discussion of chapters 1 and 2 it is suggested that a model
for the fibrous block similar to that used by Kawasima(27)may be chosen.
In particular, if the block is regarded as a region of space (imbedding
fluid) containing an array of parallel fibres, which are completely
separate and free to move in the incident field, & scattering approach
is suitable, This approach may be based on either the single scattering
technique assocciated with model 7 or the multiple scattering techniques
used with model 8.

The special circumstance of a rigid plane backing is also considered
in order to correspond with the physical situation of impedance tube
measurement.

4.1, Single Scattering Theory

4.4.4 Attenuation constant

Each fibre is considered to be a right circular cylinder, so that
the aﬁalysis of chapter 3 applies,

If the.wave incident on each fibre is assumed to be identical with
that incident on the block surface and all the fibres are assumed parallel,
then the total energy removed from the incident wave front by scattering,
per unit volume of the fibre block is (NW), i.e. the product of the average
number of fibres crossing unit area normal to their axes and the time .= -
average of the overall energy loss throughout a volume that is large com-
pared with the decrement distance of the thermal and viscous waves (Appendix
E). Thus, if E represents the time averaged energy flux, then the energy

loss during traversal of thickness element dx of the block is given by
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oQC: = -NwWdx = —l\fg—Eu&x (from Appendix E and 3,2 )
where X is the direction of propagation of the incident wave front.
The solution of this is
E n=a%; 23q>(—hﬁrk>
and hence No may be regarded as the attenuation coefficient of the medium.
Writing ﬂ# = Aexpﬂﬁ;—ﬂk>to represent the internal field potential for
the model, with bulk propagation constant, W, = o+ b

the form of b may be deduced i.e.

b - N\T'
by (H.1,1)
3
since E & (+‘
. ., (49b) . : i .
t may be noted that this definition of b, includes only the effects

of conversion of the incident plane wave into viscous and thermal waves at
the fibre boundaries.

To be complete other effects, mentioned in 1.72, should be included.
Of these, the dissipation due to normal wave motion within the imbedding
fluid has already been neglected in the derivation of W, by assuming Kf
to be real.

Further, the time averaged power logg identifiable with the conversion
of the incident plane wave into cylindrical scattered dilatational waves
at the fibre boundaries, under Rayleigh scattering conditions may also be
neglected, as follows:s=

The time averaged power per unit length of scatterer, carried out
(through surface F; of a large volume V surrounding the scatterer) by

the scattered dilatational wave can be shown to be given by
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: ¥
o AL RS

Wave
The process of integration used previously in Appendix E; then gives the

following expression for this term:-

] 3 £ Ey
iRe { o’ 2, AR
a=0 (4e4,2)
This expression is of the same order as the second term of W (E.10) and
thus may be neglected by the argument of Appendix (E.3). As remarked by

Epstein(qs)

, this wave conversion will not anyway, represent energy '"loss"
in reverberation measurements, since the energy re-enters the enclosure.

It should be mentioned thaf the similarity of the expression for the
scattered energy above, and that for the total energy loss in the region
surrounding a scatterer, given by E.1. o f Appendix E; is fortuitous. The
latter has considered viscous and thermal dissipation throughout a volume,
and develops (Epstein and Carhart) to the form E.1. only after some mani-
pulation. The "Rayleigh Scattering' expression above is a first state-
ment of the scattered energy carried across a surface. The subsequent
evaluations of these expressions must differ since the dissipation integral
includes both incident and scattered dilational potentials (¢% and ¢§ ),
whilst with the scattering integral q%f alone is involved.

4.12 surface normal impedance
For a single scatterer therefore o (3.21) represents the main part

of the dissipation of energy from the incident beam.
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o A From the above argument the single

scattering model, predicts dissipaticn
as in (4.,11). As a first approximation
this may be considered as the only

«— e
(’\Pﬂ ('J(") /’ , , effect of the presence of the fibres

on the properties of the imbedding

medium.

Thus, in the following simple analytic treatment, the fibre block is replaced

by a homogeneous attenuating medium having a propagation constant given by

¢
"ﬂ,“‘»*

No
> (4.1.3)
Assuming the forms ,4, = uv(iwﬁx>u\> (-iwt) for the incident wave

'\,I/a LrP (.—;s(f,aeﬂe,,(?(-(\.oks for the reflected wave

.»\.k %P (iv(.,nx‘) Q,,(?(—'\\.)E) for the forward wave

A{/_ 2P (4»(9() Q\)L-i..;&) for the backward wave

inside the slab,
the latter pair assume the field inside the fibrous block to be plane and
compressional.
Writing % for the total field potential at any point, the pressure

and velocity along the +ve direction are given at any point by
?“_ = i.»off +
S e e
d N

®
and the boundary conditions of continuity of normal pressure and velocity

at o=-4 and Zero velocity at X =© |, necessary for ‘the ""impedance tube"

situation are given by
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“")f) 1“?( ‘Kv&s + ’\h u?(tv(‘,AB;l \wf’b r\(/uo -\,
. - +/\{/ pr( be‘)J
—-'\v(f iup(-iﬁf&) - Qau\qwévﬁj - iv(b{f\#" o ~d ) .
I )
R R b

(L.1.4)

The last condition of (4.14) gives '\h = '\.L d
Thus the surface normal impedance,
z = -
Yeleo d
- 1,3()3 (-t d) + e uq(«@&}
Wy axp (~idd) - e u?(aw‘“&\
- Qpb{ A, -tk d) + ) u?(w(.,@
""’-r QAV(*;‘(\;&\ = '\l/, e’“?(;w\o&\
may be written v N ()bch ' +""‘(’(‘Q‘Kb‘n (4.1.5)
= 26206

where (’.b= Y is the complex velocity of sound waves in the bulk medium.
"e
Writing P, WL A e,
the normal incidence absorbtion coefficient is related to these expressions
1
by D) :
”‘ rvl\ (‘c

(x, +F~ ‘)+.x

where I, and X, derive from (ka,5)

4.2 Multiple scattering theory

The single scattering approach previcusly detailed enables arrange-
ment of the fibres obliquely to the surface of the block to be considered
as the scattering coefficients used in 6 may be made appropriate to either

normal or oblique incidence conditions. Further, distributions of variously
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inclined fibres may also be considered, requiring only that No be replaced
by an appropriste summation viz gg\uim; . where bﬁ( is the no.of(parallel)
fivres inclined at angle &K to the block surface (per unit velume of the
block) and 0y is the scattering cross section of these fibres employing

the relevant oblique incidence scattering coefficients.

These straightforward relations together with(4°{°3_are only possible
however if the interactions, betwesn the warious s£;£:;;£y compressional
waves inside the tlock, are neglected.

Restricting, for the moment, the problem to one of normal incidence
on a block containing fihrgs parallel to the block surface, the single
scattering theory may be improved upcn by using the first formalism of
Twersky(su)o

By this approach forward and backwsrd plane waves representing the
block’s internal field are derived ams integral summations of the forward
and backward scattered waves within the relevant scattering region,

4,21 Single scattering amplitude

Initially, it is necessary to derive the single scattering amplitude

of interest i.e. for a c¢cylindrical fibre, in the form used by Twersky(54)°

Considering omnly normal incidence, the scattered dilational wave from any

fibre is given by:-

o
‘7{; e Zl avf ta Hu(“’)f") QOS(AQ)

A=0

At large r, the asymptotic form of the Harikel function (Appendix E) may be

i
H.\(KGQ ~ —a—->l K; (. _ iw i /&
9~ (ool - gep

used viz.
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= o
\\\(\‘)' C
- AT A\ N i ,(E I_JS'
since & - (e, g AL and & *~- ¢
t

Thus the far field form of f{; is

A

( ‘l:lfj-u? (K,F) Z‘A (.x.a l\g)
i'rrKDi‘ -] (L"oao '5)

In general, Twersky(sq) (eqn. (2.7) p. 702) gives this far field form as

f{ (l(p.> (0 , -) (4.2.2)
where %(/(s(,‘r) = C :{ > u’p(«u) and %(g L) = ﬁ)(@) 3

being the angle between the direction of incidence and observation

Comparing 4.2.1 and 4.2.2. (8) Z‘ ﬂﬂ.oS(AS) (4.2,3)
Aso
4.2,2, Internal field
KDP \/%7- ’{b \.\ .(f Now, considering the general
,\4/ (,\v,) o transmissicn case for the fibrous
e ; _(fz? block, as shown, the forward and
Q.brvm |blod¢( \ backward waves within the slab may
» <_LA be taken directly from equations (3.1)
() | (“2( )N \ \ of Twersky'”*) with suitable limit
x‘_&' !’:\o \x‘ 4 modifications viz.

(4.2.4) 'k(-&.x) - %Y(“‘Mz‘*j_ fy(—«éﬂ[c%*é&z)wﬁ'«p_(p&)] a{}
Ve d) = (i) j&u?(:ué\()[ca‘*(ﬂg,()+ca\k(~(\&)]&z

(time dependence understood)
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where, for normal incidence, and cylindrical scatterers, from (4.2.3)
O c()(f)) PN
%r : ta("\) ok 0" AL
h i

N (s4), <
(and the axes chosen here differ from Twersky's 2 ioe%chosen to lie along

"

A\

the fibre axes, and X is as shown).

The total internal field 4}/1 = '\h‘*«\*’, ; now represents a multiple
scattering process in the imbedding fluid, the field at any fibre at point
X inside the fibre block, being assumed to consist of contributions from
the incident plane wave; the backward scattered waves from fibres beyond X
and forward scattered waves from fibres in front of x .

4,2.3 Bulk propagation constant

If a bulk propagation constant K| is now attributed to the scattering

regicn, so that the internal waves may be written in the alternative form

mh = A aeplin) + LY NE OXD) (4.2.5)

the second differentials (w.v.t.x) of (4.2.4) and (4.2.5) give together

an expression for W, viz.

 fe g -

\
¢ e S
T K, = { e .auc,‘ca + r_‘(a“- i\)}L (4.2.6)

This may be separated out into real and imaginary components a and b viz.

[uewset]f

2
L.

=



Lo,

where A ~ KDP-L l-FIMN(’Q - 0 [Qeﬁfﬁaﬂ} - -IMAS_IM‘\O"]
ey MCQ - CL[Q'L Af 'IMA‘&-&—'IMA.EQQMJ

R

and (&

{
(’a and % here are taken to have approximate values,
Cd ~ (\j + AF
! ¢
~ AF A
which are consistent with the approximation of E.11.

L,2.4 Low concentrations

When Cg and Cg1 are very small and can be neglected above first order,

Kb» ~ y((;y- S“CCQKD&

¢ %
i.eo Ky & K - LN (4.2.7)

%

where use has been made of the Binpmial expsnsion,

This situation corresponds to very sparse concentrations where the
effect of multiple scattering is likely to be small. (4.2.7) indicates an
attenuation constant given by  ~ i_ﬂ‘.b.a . This corresponds to (4.1.1),
again if the Af are small and may b? neglected above first order.

However, it should be noted that the real part of K, in (4.2.7) i.e.

the phase constant, is given by _

~

&= 4 %_“L«cQ (4.2.8)

it ;
This does not correspond to the assumption of the small perturbation theory
in 4.1 i.e. the single scattering theory does not completely correspond to
the low concentration situation as predicted by the multiple scattering
theory.

Thus the multiple scattering theory predicts a change in phase as

well as attenuation of the incident fluid wave.
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L,2,5 Surface normal impedance

The coefficients introduced in equation (4.2.5) may be evaluated,
for the fibrous block situation of interest, by using boundary conditions

(54)

corresponding to the two dimensional forms of Twersky modified for
normal incidence and scatterers symmetrical to reflection in the surface(s)

of the slab viz.

AN
ﬁ’ = == QA-L
e
-iw‘,& + h{ol 2 CKD('& (40209)
A*‘Q/ + 6+€, ‘b &= e
hoeod L g "= ©

where Fia
Q- /it i)

The first two equations of (4.2.9) are given by direct substitution of
(4,2.5) into the first derivative of (4.2.4), namely,

Y = ok (%‘*C%)’J(t E: C%;“I’:;
The third equation requires that the forward travelling wave at the surface
(x= —&) of the slab must be the incident wave at the plane. Finally the
fourth equation of (4.2.9) represents the requirement that the backward
travelling wave must cease to exist at the surface x = + (Q .
(4.2.9) may be solved for &t and the results substituted in the expression

for the total internal field to give

( fo = ot b 20 Regitadi[e e gistid)]
where ;D [ { — Q>2,m‘("& 1 i

"

1N

Similarly, the reflected wave amplitude is given by

(lr.:uob ["‘h{ %(—Lﬁfv)}v__& = ('&WD
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Craan ie. Mg o= *Qu‘?(-ﬂ\‘%f&)[l-a‘*""‘bﬂp

and the transmitted wave amplitude by

[4eopGe) Ly = 4 (4D
3 LY
e = (@)es [ie-H

If now the impedance tube situaticn is considered, by replacing the part
of the slab O« < & by a rigid medium, providing a rigid plane at =0
the method of images may be invoked to compute the new internal and
reflected fields.

! o B '

For a wave ?{ - e,,ap(-m‘;&)@ (the image of g{ = ed\x.‘x)),incident on

the surface JL=-<1 of the slab, the new internal waves may be written

It is easily seen that the boundary conditions (4.2.9) are unchanged i.e.
the Ay @ are identical for both§ and ¢'incident. Thus the new internal
wave potential %z and the new reflected wave and transmitted wave
amplitudes, ’% and "{/T are given by replacing & by —x in the expressions
of (4.2,10).

The method of images requires that the total internal and reflected
field potentials (f,(I and %() for the impedance tube situation previously

referred to, should be given by

g -+t
o g« i (’\La + ’f,) 2y (- 162)

Thus §1 y P("GD [u? i(v(rK,D&J (e_;«.,vc+ Qo_i(.ul«)wi e—i\’,f_"Qo’iK,(as\w)J
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i.e, substituting for D

U~ WX MR
$1 - (\»Q?a‘[‘{” “’)&gﬂ,‘(bl—%& ij (4.2.12)

I (l L QL;M{,& >
_Q\'\ & & ‘& -\K
Similarly *ZQ s - ‘ [& :b &J> Q (4.2.13)
kv C( a Q o d(g,

(54)

At this point, it is necessary to note that in the notation of Twersky .
which has been used here, the wave potentials r\h ¢ etc, correspond to
acoustic pressure and not to acoustic velocity as required in Chapter 3
and 4.2

The potentials can be transformed by

el iX : A

_é (-) g pressure

s f é {, = velocity -
EY

m)(” 3
where f refers to the potentials so far used in 4.2, and q{ to the
?

~N

potentials required.
The surface normal impedance for the layer —&gago now follows
from z, = ‘?j‘l at % =-& as in 4.1. The total potential required

Vi
for calculation of Py and vy may be taken to be either ¢ -+ ﬂ or %x'

¢ f () (Q-e MA)
Thus Zo0 = %ii {W(\W"> = (s (‘Q.Q,\K" ) }

{b;?(siwpto -+ Mf(ﬂ“v‘&)[ ;Ti& f

1ies N (’op%c ("@ { \ "2*?("“@7} (4.2,14)
(@) [ (- explaiaid)
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This expression corresponds to (4.1.5) if’(i:@ may be taken to be

1+&
the relative characteristic impedance of the material on a multiple scattering

theory viz. if b (‘::9 (4.2.15)
o¥es +Q

Thus using a multiple scattering theory on an idealised model, the
fibrous block is shown to behave like a homogeneous medium, having a

propagation constant K, given by (4.2.6) and a bulk density given by
€ = poc("‘vc (“"Q)
b - .
¢, (+Q)

i.e. substituting for Q and using the approximate form for 9 and 9’

¢ : <
/b = fo (8 (‘K)P + “iAue_(’"" "KL) (k,2.16)
o (1.(,‘+&A§C. +16, )

The expression (4.2.15) is derived by Twersky(sq)

for the case of a
slab region of scatterers O < x é& bounded by an infinite fluid., It
can be seen that the conditions (4.2.9) replace, effectively in the
multiple scattering case, the boundary conditions (4.1.4) for the single

scattering case.

L,2,6. Oblique Incidence

The multiple scattering theory has, thus far, been restricted to
normal incidence on the fibrous block. Twersky"s(su) theory, however,
allows more generally for arbitrary incidence,

(i) Obligque incidence in the Xy plane
T

For this situation, the incident plane wave front is still normally
incident on fibres with their axes running parallel to the z axis.

The forms of g and g1 are therefore unaffected, and the only result
of the oblique incidence is to introduce a phase dependence along the
fibrous block surface normal to the X direction (parallel to the y

direction). This alters the expressions both for the propagation constant
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in the scattering region and for the effective relative characteristic
impedance.

These are now given by

b
K’ = K,“'-H-iNa +( IN > (ad" a’) (4.2,17)

Ky cosex
BrG Zre(: &54(_’_5(' X. iKD&SQ\o( +C<aiﬁt>+iKb (4.2.18)
) L dennt + C(% +€]'> + UG,
where C = _ﬂ_gld;__ (4.2.19)
Ky tos o y
for incidence at angle W in the 1,7 plane. T
(ii) Oblique incidence in the Xz plane
x

For fibres with their axes parallel to the z axis oblique incidence
in the 2z plane will introduce a phase dependence along them according
to the general theory of Chapter 3.

Thus g and g1 must be calculated from the oblique incidence
scattering coefficients Af— and A,c given in (C.1.1).

The alteration in these scattering amplitudes must then be super-
imposed on the expressions corresponding to (4.2.17) and (4.2.18) to give
the relevant K, and Z .

(iii) Departure from continuum behaviour

Both situations (i) and (ii) would indicate that the behaviour
of the idealised model used for the multiple scattering theory, departs
considerably from that of a continuum slab, when the angle of incidence
of the incident_plane wave is varied.

This follows from the fact that both the propagation constant and
the relative characteristic impedance attributable to the model vary with

the angle of incidence of incident sound.
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A behavicur such as this is possibly to be expected in a model which
allows the incident wave to penetrate, gradually altering in phase and
amplitude, the internal incoherent field represented by ‘}Z being a
limiting state.

This penetration can easily be seen from the simplified situation
corresponding to smail N (as in 4.2.7 and using 4.2.19) giving from

Twersky(sk) p. 708

‘

K, P

T wsX -l
J
i.e. the propagation constant is that of the incident plane wave modified
in phase and amplitude by a single-scattering traversal of unit thickness
of the material.
It is to be expected that the behaviour of actual fibrous blocks

will differ from that of continuum materials to the extent that the

blocks correspond to the idealised model used.
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CHAPTER 5 ABSORPTION MEASUREMENTS AND THEORETICAL RESULTS

5.1, Experimental Procedure

5.101c Absorption Cocefficient

The absorption coefficient i.e. the fraction of incident sound energy
absorbed, is the parameter of greatest practical significance in assessing
the performance of absorbing materials in various situations.

In order to substantiate the theory developed in Chapter 4, the
impedance tube method of measurement was used to obtain normal incidence

absorption coefficients for several fibre glass materials.

5.1.2. Standing Wave Method

This method of measurement which requires relatively small samples of
material, probes the sound field, generated at discrete frequencies within
a closed tube. The sample, cut into the shape of a disc, is positioned at

one end of the tube.

(93, 95)

From the standard theory , the ratio of the magnitudes of the

°,,(95)

pressure maxima and minima, corresponding to the '"pseud standing wave
pattern’s nodes and antinodes, may be used to calculate the normal incidence

absorption coefficient ab:-

p
= where n . MAX

h+_1 42 PMIN

5:1.3. Materials

Samples of glass fibre quilt, (as specified in Appendix F); in layers
of 2.54 cm and 5.08 cm. thickness and 3 cm. and 10 cm. diameter, circular
cross-section, were tested. The various bulk densities were computed by

weighing a known volume of each of the sample types. The weight of the
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enclosed volume of air was not taken into account, for the purpose of

the theoretical calculation (Appendix D).

5.1.4. Apparatus
Use was made of the Bruel and Kjaer (B & K) Standing Wave Apparatus

(Type 4002).
Basically this apparatus includes:
(i) a large tube of internal diameter 10 cm which was found to
be applicable in the frequency range 300 Hz - 1800 Hz
(ii) a smaller tube of internal diameter 3 cm., applicable in the
frequency range 1800 Hz - 6000 Hz.
(iii) sample holders of appropriate and adjustable size.
(iv) a speaker with a cone approximately 10 cm. diameter.
(v) a condenser microphone with a wheeled carriage and probe tube
attachments.
The speaker was driven by a B & K Beat Frequency Oscillator (Type 1022)
and the microphone was connected to a B & K Frequency Analyser (Type 2107)

used as an amplifier.

5:1.5, Errors

Values for the normal incidence absorption coefficients were read
directly from the calibrated scales on the B & K Frequency Analyser. This
procedure requires corrections for air-absorption and non-rigidity of the
tube walls and terminations.

Further inaccuracies are introduced due to:
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(a) the small disturbance on the standing wave pattern in the tube
probe
caused by the geometrical shape of the,(tube(gz"gl‘)°
(b) the non-infinitely high impedance of the probe tube opening.
(c¢) the contradictory requirements for flexible, fibrous materials, of
(i) an airtight sample fit
and (ii) avoidance of a situation in which the impedance tube walls
hamper the vibration of the materials constituent fibres
by compression.
(d) the non-plane and non-verticalfront surfaces of the samples used
(e) the leakages and resonances in the system e.g. the leakage around
the probe tube channel passing through the speaker cone.
(f) the possibility of the wavefronts, generated by the speaker,
differing from plane wavefronts at the surface of the samples: this is a

(93, 9‘4)o

large problem when transverse modes are excited

5.1.6. Alternative Methods
(22)

Kosten and Janssen review a method in which the whole tube is filled
with circular discs of the material; each disc containing a triangular notch
in its centre, to allow the passage of the probe tube. This allows the direct
measurement of the characteristic impedance of the material, which is another
quantity of interest. Furthermore, the problem of sample fit, in the

standard method, is substantially reduced. Another method suggested by

Taylor(gs)

, dispenses with the probe tube, and hence the error of 5.1.5(a).
The method uses a microphone diaphragm, as one end of the tube, and a piston
which can be used to alter the effective length of the tube, as the other

end.
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However, the standard method used was considered adequate for
observing the variation with fibre radius; slab density and slab thickness
of the frequency dependant material absorptions. Further, the results of
measurement are sufficiently accurate for comparison with the scattering

theory predictions.

5.2. Comparison of calculated and measured absorption coefficients

The measured absorption=frequency characteristics are shown in graphs
1 and 2. Some of the calculated characteristics are plotted for comparison

in graphs 3-7.

5.201, Low frequency discrepancy

The absorption-frequency characteristics calculated for the free fibre
model have the same general shape as those measured for the relevant materials.
However, it can be seen from graphs 3=5 that considerable differences in
coefficient magnitudes existat low frequencies. This discrepancy is greater
(graphs 3 and 5¢) for the 2.54 cm. layers than for the 5.08 cm. layers
(graphs 4, S5a and 5b). Further for the latter thickness, better correlation

is obtained the less dense the material considered.

5.2.2, Dependence on assumed fibre radius

The respective (average) fibre radii for the Rocksil materials and the
Rocksil-K (resin bonded) materials are given to be 5 u (microns) and 3 u
respectively. Therefore the computer programs were designed (Appendix D)

to output a  values for both radii (for the same values of the other variables)_



60.
As may be seen from graphs 5a; 5b and 5c¢ the multiple scattering calculation
for the free fibre model is sensitive to the assumed fibre radius; however,
greatest correlation is obtained by taking R = 5 microns for the Rocksil-K

materials. The correlation is better, the thicker the layer considered.

5¢:2.3. Dependence on slab density and thickness

The calculated absorption characteristics show the expected improvement
with increased thickness from 2.54 cm to 5.08 cm.

The improvement in absorption with slab density for 2.54 cm. layers
(graph 1) is obtained with the calculated curves,; if R = 5 microns is used
for the Rocksil-K materials (graph 6). The measured curves for the 5.08 cm.
layers show an inversion of the rank ordering according to density in the
range 1250 Hz - 2500 Hz (graph 2). A similar inversion is observed in the
calculated curves but (using R = 3 microns for the Rocksil-K materials) in

a lower range viz. 600 - 1600 Hz (graph 7).
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CHAPTER 6 DISCUSSION OF RESULTS AND CONCLUSIONS

6.1, Comparison of single scattering (SS) and multiple scattering (MS)

6.1.1. Attenuation
The SS form of the attenuation constant = frequency characteristic
for a particular density of fibres on the free fibre model (graph 9) is

similar to that obtained by Epstein and Carhart(ue) (L7)9

and Chow for
aerosols.

This indicates that with a scattering theo?y applied both to the
fibre model and to a suspension of liquid droplets, neither the geometry
nor the concentration of scatterers seriously alters the frequency
dependence of the attenuation.

Epstein and Carhart(46‘ figo2)

compare their calculated characteristic
with measured values. It may be observed that the difference between
these curves, corresponds roughly to the difference between the SS and

MS attenuation characteristics on the free fibre model (graph 9). Thus
neglect of multiple scattering effects by Epstein and Carhart, even at

the sparse concentrations involved, must be a greater source of error

than they estimate.

6.1.2. Absorption

MS also provides a considerable improvement on SS for the calculation
of absorption - frequensy characteristics (graph 3) by the methods of Ch. 4,
The assumption of a real density for sound propagation; equal to the actual

bulk density of the fibrous block; in the SS theory is, therefore, a
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severely limiting one. It would seem that the MS prediction of a complex

density for sound propagation in fibrous media is more accurate.

6.2, Limitations of MS theory for flexible, fibrous media

6.2.1. Motion of a single fibre

For a single fibre freely suspended and parallel to the incident wave
front the mode of vibration resulting from the analysis of Chapter 3 may be
taken to be that of simple oscillation without distortion, i.e. that derived

(45, pp. 180-182) in the analogous situation for a spherical

by Epstein
droplet. For oblique incidence where dependence along the fibre axis is
introduced, end effects have been neglected by assuming the fibre length

to be infinite. Clearly, end effects are also important where the fibres
parallel to the incident wave front are bound, or must satisfy some boundary
conditions of contact at their extremities. The situation inside fibrous
materials embraces both variously orientated fibres and fibres bound or in
contact at randomly distributed nodes. Therefore the theory for a single

scatterer should be extended to include end effects and thus to allow

flexural end torsional modes of vibration.

6.,2.2. Macroscopic effects of bonding or contact

From a more macroscopic point of view the bonding or fibre contact
will result in motion and distortion of '"'groups" of fibres rather than
individual fibres. These groups of fibres will represent individual
"frameworks of motion" within the total slab medium., The number of bonds

defining a particular framework and the size of the framework will increase,
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with increase in the wave length of the incident sound, until at low
frequencies, where the wavelength is much larger than the thickness of
the material, the slab will tend to move as a whole,

This picture is consistent with the theory of Kosten and Janssen
(K. and Je)(aa? which according to the discussion of 1.2 is the most
refined of those concerning flexible sound absorbing materials and
using a continuous framework model.

K & J predicts thats

(a) at high frequencies the flexible skeleton is so inert that
it does not wibrate appreciably i.e. the air and skeleton are almost
decoupledo

(b) at low frequencies, the coupling between air and frame is
so tight that they tend to move together.

This means, in effect, that sound propagation in flexible fibrous
media should be dominated by "frame action'" in the low frequency range
and by the air-wave at higher frequencies.

On the MS theory a comparison of absorption characteristics based
on fibres (i) freely suspended and (ii) rigidly fixed in space, shows
negligible differences above a clearly defined lower limit in the audible
frequency range. Since the MS theory represents a purely "air-wave" for
all frequencies in the "rigidly fixed" case, the correspondence of (i)
and (ii) above a lower limiting frequency confirms prediction (a) of
K&dJ.

Further the discrepancy between the absorption characteristics

predicted by the free fibre MS theory and those measured (graphs 3-5c)
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is largest at low frequencies and increases with decrease in frequency.
This suggests that K & J's prediction (b) is correct and that the neglect
of fibre contact and bonding (previously discussed in 2.3) is the
principal error of the present theory. Thus the discussion of 6.2.1

indicates the required extension of the scattering theory.

6.2.3. Decoupling

The MS theory for free fibres makes some allowance for frame action.
Thus the frequencies at which the MS abscrption curves for fibres rigidly
fixed in space begin to follow those for free fibres and give an indication
of the decoupling frequencies discussed by Zwikker & Kosten(16)o From

graphs 3 and 4 for "Acoustic Blanket'", decoupling frequencies are seen to

be approximately 1200 Hz for 2.54 cm., and 750 Hz for 5.08 cm. layers.

6.2.4, Impervious coverings

Zwikker and Kosten(16) (Z & K) consider the effect of closing the
surface of an elastic porous layer with a thin impervicus covering, for
the simplified case of unit porosity. Having deduced the propagation
constant for an elastic porous layer, Z & K derive 2, for a closed layer
by altering the boundary conditions at the closed surface. These then
express the fact that the enclosed fluid and the solid frame are constrained
to move together at this st;rfaceo

This procedure cannot be used with the free fibre model, as no such
frame exists. Moreover, the presence of a solid skin at x =-d, introduces
the complication of "reflected" scattered waves into the analysis of the

scattering theory (4.2.)-
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6.3, Effective Radius

The resin bonding in the Rocksil-K materials (Appendix H) can
frequently be observed to bind fibres along the majority of their
lengths., This "clumping" of fibres along their lengths represents
a form of "framework of motion' not discussed in 6.2.2. As each
fibre "clump" will move as an individual unit the effect of "clumping"
must be to increase the apparent physical size of the fibres. Thus,
assuming that small departures from a cylindrical cross section do
not substantially affect the theory of Chapter 3, the effect of this
type of bonding could be included in the MS theory, by taking the
effective radius of the fibres to be greater than the actual mean
radius. Evidence for this argument is given by the results discussed
in 5.2

Using MS theory, therefore, it must be possible to choose an
"effective radius", giving greatest correlation between calculation
and measurement for any given material, which radius will represent

the extent of this type of fibre contact or bonding.

6.4, Prediction of obligue incidence behaviour

(97)

Zwikker and Kosten argue that flexible porpus layers should
be locally reacting to incident pressure variation i.e. the velocity
component perpendicular to the surface should depend only on the
pressure and not on the angle of incidence of the incident wave.
This argument depends on the high damping of the incident wave,
predicted by their theory, and is affected only by the extent of
(98)

interconnection of the pores in a "sideways' direction. Pyett
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develops a "frame' theory for an anisotropic situation, which predicts
considerable departure from locally reacting behaviour. A similar

(99)

prediction is made by Ford, Landau and West by a theory, in which
both dilatational and shear waves are allowed to propagate in the solid
part of a fluid-solid mixture as a result of obliquely incident waves.

Locally reacting behaviour requires that Zn should be constant,
and that the oblique incidence surface impedance (QK) from which the
absorption coefficient aéx) can be calculated, should be given by Zn
cos o£(97)o A plot of Ze( in the complex plane therefore, for a
particular frequency, should yield a straight line of slope ( Xn/4ﬁ)
for a range of ol.

The MS theory, predicts rangle: dependent functions for both propa-
gation constant and characteristic impedance (4.2.6 (iii)). It is
therefore evident that the MS theory will predict considerable departure
from locally reacting behaviour. In fact, graph 11 shows that this
departure reduces considerably with increase in thickness of layer and
reduces slightly with increase in frequency. The tendency towards locally
reacting behaviour with increase in thickness is consistent with the
extremely high damping of the internal wave calculated on the MS theory
(graph 10), the effect being particularly marked at low frequencies.

The absorption coefficient for the 1.27 cm. layer case increases rapidly
with ©( i.eo. the random incidence coefficient may be deduced to have

a somewhat higher value than Qs for thin layers. Thicker layers (5,08 cm)
have calculated values of absorption coefficient which are roughly

constant with ©oC,
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€6.5. Angular Dependence of Dissipation for single fibre

¢
The form of the expressions (C.2.4 - C.3.6) for A and Af9

{ .
indicate that (i) A, represents the thermal part of the dissipation
and (i1) AY is associated primarily with viscous dissipation.

(46)

These conclusions are deduced by Epstein and Carhart for the case
of a spherical droplet.
Thus the following interpretation may be placed on the results
of the calculations (D.2) for the oblique incidence scattering coef-
figients, (by ‘cblique’ here is meant that (/ in fig. 3.11 is other than
zero) typical forms of which are shown in graph 12:-
(1) the thermal dissipation increases steadily with
obliquity of incidence
(ii) the viscous dissipation decreases rapidly with
obliquity of incidence
and apparently tends towards a limiting condition of zero dissipation
at 90o i.e. grazing incidence.
(ii) might ocecur. ' with the formation of surface waves along the cylinder
(100)

at grazing incidence whereby there would be no relative motion between

the cylindrical fibre and the imbedding fluid,

6.6, Further application of MS theory

6.6.1. Granular media

(14)

R.W, Morse suggests the possibility of using a '"microscopic"
scattering theory for rigid grained granular media. Indeed the wave
motion through a suspension of rigid, spherical scatterers may be

analysed by a MS theory. However, such a model departs considerably from
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granular media, where grain contact is inevitable, and problems of
"interference" of the scattered fluid viscous and thermal waves at and
around each inter-grain boundary of contact must be considered.

Any extension to elastic grain situations will introduce the
problem (analogous to the fibrous one) of frame wave contribution.
Further the problem of friction between the grains wmust oe cousidered.
This is probably greater than in fibrous media because of the rougher

surfaces involved,

6.6.2. Consolidated media.

(i) Materials such as acoustic plaster do not lend themselves very
readily to a wave analysis of the type employed in the MS theory.
Consider first a general case, where the persistent direction of the
pores is not normal to the surface of the model or the incident (plane)
wave front., It is necessary to choose wave functions inside fluid and
solid which must satisfy boundary conditions both at the pore walls and
at the surface of the material. The surface would be a fluid/solid
interface for the solid waves and a pore entrance for the fluid waves.
The latter situation requires consideration of problems of diffraction
effects at the edges of the pore entrances which will interact with
reflected waves from the solid surfaces and radiation from the pore
interior, Further for the case which should represent a simplified
situation, where the pore axes are normal to the surface (model 1 with
flexible frame), one finds an ambiguity in the wave analysis. This is

due to the existence of surface waves along the pore boundariea(1oo)u
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Numerous authors , have considered relevant cases of

fluid wave propagation in elastic walled tubes. Chester(102) has
considered propagation in a rigid walled tube whose entrance is
surrounded by an infinite baffle; a case, which might be applicable
to Model 1 but tends to intricate analysis. Apart from this, a

less refined approach could neglect near-surface diffraction effects
by assuming'that within a few wavelengths of the surface the wavelets
would have recombined as an effective plane wave,

(ii) However, the scattering theory does give an explanation of

the poor absorption characteristic observed with stiff framed,

(103)0 In

consolidated media when their front surfaces are sealed
this situation, a reasonable model is one of a continuous "imbedding"
solid frame containing a "suspension" of cylindrical, fluid-filled
pores which do not cut the surface., The pores will scatter waves
propagating from the solid surface snd the single scatterer situation
will correspond to the "inverse' of that analysed in Chapter 3.

The energy calculation corresponding to Appendix E, therefore,
predicts a dissipation cross-section (& ) dependent only on the
internal friction of the solid. Even for very large concentrations

of pores, the total dissipation is thus very small except when the

solid is very elastic and has high internal losses.

6.6.3. Polymer foams

Many materials referred to as flexible '"foams'" have an open-
celled structure which differs greatly from models 1, 2, 3 and 5 and

are consequently unsuitable for the application of theories based on
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these models, Taking polyurethane foam as an example of such media one
can distinguish two casesi-

(i) Rigid polyurethane foam (plate 3 ) has its porosity completely
based on sealed off pores, thus corresponding to the previously
discussed case of covered consolidated media (6.6.2).

(ii) Flexible polyurethane foam consists essentially of a continuous
three dimensional lattice of polygons (usually hexagons) of polymer
fibre, Occasicnal "sides" of the lattice are filled in with skins
of the polymer (plates 4 and 5).
With such a microstructure, one has the interconnected porous
structure of a fibrous material interspersed with closed or "sealed-
off" pores. where the polymer skins are concentrated.
In view of the facts that:

(a) these materials have absorption characteristics very similar
to those of glass fibre

(104) obtains reasomnable results with an analysis similar

and (b) Lang
to that of Kawasima(27) (see 1.4)3
the MS theory should also be applicable,

However, the problem of a continucus network of "fibres'" is there
from the outset and some knowledge of the polymer elasticity is required.
It is possible that an equivalent geometrical form (q.v. 6.3) could be
devised which would make the scattering problem tractable. Further,

scattering by geometrical forms other than sphere or circular cylinder

must be solved.
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6.7. Viscoelastic Absorbers

6.7.1. Cellular Rubber

(105) &

This type of absorber is mentioned by Zwikker and Kosten nd

Furrer(qo@° It is described as consisting of a rubber-like solid
matrix containing a random distribution of closed pores. A particular
porous medium model is not suggested. A qualitative assessment, only,

(105)

of its performance is given in terms of internal friction ascribing

a complex stiffness (or bulk modulus) to the material.

607.2. MS description

A viscoelastic material may be regarded as having complex propagation
constants for both dilatational and shear waves; signifying both compressional
and shear viscosities., A rubber-like material in particular, exhibits
very little effect due to compressional viscosity compared with that due
to shear(1o7)o

Thus a pore-discontinuity inside such a material will, from the
scattering viewpoint, alter part of any iancident compressional wave into
shear wave by mode conversicn at its boundary, thus causing dissipation
(the shear wave being damped). This mechanism is similar to that
previously cited for a fibre imbedded in a viscous fluid, but now with
the solid as imbedding medium.

Vovk, Pasternak and Tyntekin(108) suggest the controlled manufacture
of such absorbents with high absorption. Their main advantage over the
traditional fibrous or '"foam' absorbents would be; of course, that their

surfaces are impervious i.e. they do not rely on the penetration of the

incident fluid wave for their absorptive property. This means that their
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surface acts as a vapour and/or dust barrier, these being important
considerations, say, in swimming pools and hospitals. Vovk et sec(qos)
in fact consider the special case of a material containing cylindrical
channels normal to the surface and radislly fastened, following the
cell model theory of Tyutekin(39) (see 1.6). The materials should
still absorb, however, according to the MS description,.whether or nct
the pores cut the surface., This statement is consistent with the
observation by Koaten(gz) that very flexible materials i.e. materials
like sponge rubber (with a viscoelastic frame) do not have their
absorption impaired by covering their surface with a light coating.
Indead, it is stated that coating improves the absorption at low
frequencies, and is not particularly detrimental at high frequencies.
Thus choosing a '"'suspension' mocdel for such a viscoelastic
absorber enables a deduction of its absorbtive behaviour in terms
of:=(i) the number of discontinuities per unit volume (ii) their
dimensions and (iii) the elastic properties of the imbedding visco-
elastic matrix. In Appendix Gy, an outline is given of the theory
for a single scatterer in this absorber following the work of Chapter 3.
For simplicity, thermoelasticity is neglected, and the pore discontinuities
are assumed evacuated. Moreover a phenomenclogicaldescription is used
for the wiscoelastic behaviour. The theory therefore requires modifi-
cation for a more exact theory of viscoelasticity and the presemce of air
in the pores. The propagation constant and characteristic impedance
for a slab region of such discontinuities may then be derived, following
L.2. The impedance of a layer of viscoelastic absorbeX against a rigid

backing, may subsequently be calculated by assuming the layer to be
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homogeneous, containing forward and backward (plane) waves, with
the propagation constant and characteristic impedance as previously
derived,

This procedure, however; introduces some inconsistency into
the macroscopic picture as the surface of the layer will act as a

reflector of scattered waves, hence a problem similar to that

mentioned in 6.2.3.
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APPENDIX A. SMALL AMPLITUDE WAVE PROPAGATION IN A VISCOUS, CONDUCTING,

COMPRESSIBLE FLUID

For a compressible fluid, the equation of continuity(7?), may be written:-
¢
¥ Lav(fy) -0
dt
thus where x‘?\‘w/(w-g) ¢ (’G&N,’VV o+ (Q“"&(};>o ;s
4 ! wd o).y
E el { + /¢~
and -a¥ S{ (.% F
¢
then i? + (;@clwg - O (A.9)
dk

If the usual assumption for a normal acoustic disturbance is made
i.e. that all the velocities, displacements, etc. are small, such that
the products of the perturbations introduced may be neglected e.g. the
density alters with FE_ = ()DF o+ clpe Pl (75 being’the equilibrium value),
and the product (cl()ﬂ ( dWy ) may be neglected; then the equation of

continuity becomes,

6&5

4 ;
é_f’ + ()j' div v =0
dt (A.2)
i ' . “(7a)
eglecting body force, the equation of motion is,
¢ |
pde . -% 4 3
At é&l 6&&
where P = (‘( il +> Vdvy + Vv
— 3# e ~ /A Y
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Here, the

N

summation convention is implied, and the viscosity
coefficients \("‘/u\ have been assumed isotropic.
Using the vector identity Y%(YX )() = Y&‘N\,(, - ‘vl'}.’, , and
the small disturbance assumption, the above equation of motion may

be transformed to:-

Fle o -y (gt ALt w
The energy equation‘’>) may be written
PC &_U = -?S;\“&;& +'P\‘;\ a;‘\ -&ch
de A

the rh.s. of
The second term in Athe energy equation, may be ignored, by the

small disturbance assumption, leaving,

b du i - R
P et SPTe e,

Further, for U = U(eﬁ'\'> s then é\j = %—U?B é_kpq‘ + 5_\) AT (A.5)
de ¢ Tdt

r\f,r Ak

Thus with( 7"’ i
§!> =
T /e
T (c (A.6)
EU _ .. . Ao
a’vl A F
Qv T TR/
h)
(5‘—?\— (,e = ‘RF
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(A.5) becomes

ALY

\ _ ) E(x-Dey T
dv . (-@f&.vﬁ( %,5{9 2 '?3 + e 8 (A.7)

and the modified energy equation (A.h4) gives

o div (U IR AR A (A.8)
< de
Similarly if p = p (g‘,'ﬁ then 8% . (6)> c_iﬁ dP\ dr (A.9)
At /1 dE A‘r/omr
and with (A.2) and (A.6); (A.9) becomes
) (pHdvy) + Bp AT
Q(Ve, o J\t (Aa1°)

\ (E 0 5” and from (A.6) B(A = ﬁ‘(&tﬁl

and noting tha% the small disturbance assumption makes the total and partial

derivative with respect to time approximately equal e.g.

dvy AL v dmp WL Wy A

.

c\—\’ g_t ayz NG Y < \xi e Ve

the time derivative of (A.3) becomes

Lv 5 cs’ T 4
REN L ’V/Q — NV dv &y (a.11)
e = X dt o I\

-+ VY»((Y’( ‘i;_‘() =

dt

vhere N = _53(7.\\. ‘13»{3—3
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Postulating a time dependence exp(-iwt), where all the variables take

on the significance of smplitude variation from equilibrium values e.g.

{ = T, + T exyp (-er

where T' represents the total value T previously used, then (A.71) may
te written

3 o Y
Ty Ay divy + 0 & o YT -Nw¥ divy +evT (1Y), 10y
e ¥
= 0O
and (A.8) may be written WO+ ¥NT - (6-1) dvy = O (A.13)

Further, if the particle velocity is written in terms of potential functions

V==V + b

(A.14)
dw ﬂ’ = 0
wherec# and 6\/ satisfy the scalar and vector Helmholtz equations respectively
iceo
P 3
V' + K ) = O
L ¢ qé (A.15)
L 2
(V =+ Kﬁ > ﬂ/ = 80

then from (A.1%1)

TCRROREE B 0
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The R.H.S. of this equation may be transformed to Y X [U\\l{\ A var ]
by Vx(Txh) < V(&oh)-VA ana divfl = O

This is zero by (A.15) if «, - «f> -

<|g

foe. A LS (iy (A.17)

where Kf represents the viscous wave propagation constant.
The LoHoS. of (A.16) may then be used with (A.13) to eliminate T and

give the following biharmonic form for sza

'y Y + o (Y1)
—‘WJ'\DVYg e (co _M“) VY it -0 (e

which can be seen to correspond to two dilatational waves satisfying

(v« K‘h>¢‘=o and (T4 K}»‘) (A = O where cé\ + ¢> = ?6
and
{ = feb\>
O R

e and f representing the small quantities ¢ = N\ and ¢ - G'PN

»

Y Co
which are beth < W ~ 10 at 1000 Hz (as an upper limit)
cg»
Hence \ Cf 5 s »
3 = (& I = ilesxF) +:€
KG)— W
: al

\ = Rake
p Sk
>

where use has been made of the binomial expansion and the small quantities
& and f have been neglected above first order.

Inspection shows that \K: may be identified completely with thermal wave
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propagation, and « ‘P with the usual compressional wave, i.e., one may

write with further approx.

B _"3\> [\ + .LVJ (N+U‘(’f"\\> ]
% (coc ﬂf,*‘ (A.19)
KTn i (‘ e ) (5*)
These two expressions correspond to those derived by Epstein and Carhart(46)°

(75)

The expression for K.E is alsoc derived by Mason
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APPENDIX B. SMALL AMPLITUDE WAVE PROPAGATION IN A LINEAR, ELASTIC,

CONDUCTING SOLID

The equations of motion and energy balance for such a solid can be

written a§76):~
f)s Q i /,«S V}»; + (& +;SY bvw - {&SBS VT
de> (B.1)
and (sc\fdj + ToﬁSBScQ\v‘E - VT (B.2)
de At

respectively; where ’I‘o refars to the steady state temperature such that T
represents the difference (T' - TO)s T' being the actwal temperature at time t.
As with the fluid (Appendix A), postulating time dependence exp(-iwt) and
considering W = ~ Y/# ~+ C@Qﬁ s &W (,\v = O and similar

~

manipulations yield from (B.1):-
v [fg”’l?g + (& +3{"$>V11£ +(‘g@ST]‘ s [Ps"’li TR J (B.3)

From the R.H.S. of this equation; the solution satisfying the vector Helmholtsy

equation for f\ gives

Px L
< >
YRR 1) (},‘é> (B.4)

representing the standard shear wave propagation constant in the solid, which
is real i.e. non-dissipative for a linear, elastic solid with no relaxation.

(B.2) may be transformed to
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- S a3 2 S e
_LN(JSCV ( +—TO(L%L\JV>{ = K V 1
which together with the L.H.S. of (B.2) and the third relation of (A.6)

Yields a biharmonic equation for ¢

Clag (‘)V#‘W’(g) Lufg(x O—wur*‘ ]‘\7’7/ +¢ -0 (.5

Co w (Scé:v

3

S: A+

where o > = & J[ > s the isothermal dilatational velocity of sound
S

in the solid, may be obtained from setting T = O in the L.H.S. = O of (B.3)
and use has been made of (A.6).

Analysing in a similar mauner to that of Appendix A, the resultant
propagation constant solutions may be written:-

KS> - (w Y > A e _ Ali- \wo-sxs+ Diwsy
\ e x _—
divwody? g* + A s> f7eS>

g 3 . S
vhere f - !+ 8 (¥-) and the small quantity ‘0%
iz Ei

has been neglected above first order in binomial expansions (c,,fv 5 x 105 cm/sec),

Under the further approximation that (¥°—|) is small (this is necessary as

§
3~C§ ’),the propagation constants may be separated out as
ionlgrel
> 3 SC,:',"

a3 22

Using these in L.H.S. bracket of (B.3) = 0, with 7! = qﬁ *‘?{
\ 2

Y4

(B.6)

where 75\ s cﬁ» are associated with K‘S . Kf respectively:-

e {(ew et g+ (gt f“’"f%i

AT R e -]
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+<‘a¢\ + Gd_ | say . (B.7)

It can be seen from (B.6) and (B.7) that, it is convenient to make

3
the approximation ¥ = | (a reasonable one for sclids), for then
the propagation constants may be identified with dilatational and

thermal waves respectively, as in the fluid case (Appendix A) viz.

g [N]
EomE fj\>

A B,
= L\+Q>L£>l —
W do*
and the temperature expression reduces to
3
U = ¢
™
e @ (B.9)
o) \
where bl = s l_fs W+ -53
Ao i -
asfor X' > | , A — | and ¢ —> O
Here the results for Kl,s and K_:' are standard and the form for V(.:“
corresponds to that for K'r» (Appendix A). = 0 above .

}’s
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CALCULATION OF SINGLE FIBRE SCATTERING COEFFICIENTS

Elastic Fibre

C.1. The boundary conditioms (3.1313), (3.1322), (3.1331) and (3.1332) for

oblique incidence, may be collected together as below

(€.1.21)

CAleT@) + AO]+ FEIG) - - 68T
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In particular the solutions for normal incidence for the elastic

fibre case are required (Chapter 4).
At normal incidence the axial phase constant K is zero (}9 = 0 in
equation 3,125) and thus the Bessel function arguments a'jbjjc/fetco

lose their dashes, Further it ¢an be seen that with k = o, @he equations
of (C.1.1) representing the continuity of V; and Precan onl& be satisfied
if Cn4'and CASare arbitrary (or trivial viz. Ch+= C”S= O ) i.e. the wave
potentials ’V/+ and 7}/5 , representing the part of the vector field

normal to the r coordinate surface(77) are redundant and therefore may be

rejected.

Thus the equations of (C.71.1) have their z dependence removed and

reduce to the six below:-=

A [T + ] + FRILE) - - G RITL()
& &c i KLJJWai“g(cs)]w&eiulw)} BTN GRS,

- e T+ AD] -8 + ackdEu
=% (w% —e haTa (o) - B85 T () + axt DT, (@)2

c[eTled + AL+ 80N - e D
i § ST BT - e ;r:wﬁ
/} e T+ (O TOT + Al O+ (5 -%) Hﬁiaﬂi
(c.1.2) g & Q,f [b' W () + (cﬁi-ﬂ ““(5’);] 4 act DS YJH,:(CF), H.(t‘ﬂ
e { INEAGRICE S IO R A h%*(%-t)‘fx(b‘ﬂj
/M + axt .D,\! [( :.TA'(L!)"—JA((‘.S\]
AN j \ FCon @) -MAH
B e [:of n (G\G) :L\(O\qJ + -A.\f E&c“vx(ﬂ‘\’qn(‘\‘-\] 4 Kl‘_bn H‘(LL % J
/5 [ % N CENGERE) 4 { - W) j

S D5 (S
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Coao n=090

For this situation, from the fourth and sixth equations of (C.1.2)
the only possible solution for D: and D“S is the trivial one 'D,\Q -—'Df: o
Otherwise ?} }f are arbitrary, their contribution for Ae0 vanishing
anyway from the remaining equations.

This means that asin the spherical case(u,s)the zero order coefficients

are independent of the shear wave potentials of both fluid and solid.

The boundary conditions may now be written:-

[ EL RO + a5OT 4 FBIED - - 6 AT
G Et [T+ AN | + PRI = - L RITID

(C.2.1)

~d [T+ ATO | - wedu - m% AT ()-HBIT ( \:)]
/A% {[ T )+ ¢ T[cf)] + fs [ oy (&‘)" ‘)]‘* Q‘[\H (L‘) )% h(')]}
-l [& T+ & D] + 8 [m W)+ (& Jm]%

Further, the following small argument Bessel Function expansions can

be used for functions of 0!" cj and & ; all of which are very small (~!0-5>;
( Tolx) ~ | ToD ~ - T = - 2
_\YJ' () .JJ(&\ = —&-&,(&) hence ’,Y\,“(:Q ~ —--‘.-‘_
e oG = — W)
(86)

where use has been made of the small argument relation

N e\

3, (xz\ —_— =5t (-\)
X =0

\ (C.2.2) and the Recurrence relations, which apply where Q is either J,\

(87)
or H& 7 12"\(&\ - Q Q*(m) = aQH\(&\
\ ARG+ 8 « R - xRu(¥)
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and thus the set(C.2.1)becomes:

FLv b ] + egbnW) = - GR2T0D
¢{ o[- @] -evnrtf - oo vrW
(Ce203.) N
i JVC A (\5“\(@] 4+ B - -zw{uju‘isfm(»bj
y 2
P8 1 i [0 -chul) ] + 8 [t - 10 6] §
\ e [ -]

from the first two equations of (C.2.3).

f[{ wat> %_; { PUNRCONES Hggo_ﬂ iﬂo(-
gl ir 2T Tl SUTH) )
{ TECOR ) j
W) D

{ e |
=?[X*Y“°l\; ' say

and thus in the first equation

B Lk the { 4+ Xy )+ A [H.w%l’m(mH
° Gl P ¥

= —i Kw—\ZAQ !
(T say

where X, Y, W and Z have straightforward connotations.
¢ S
In the third equation, substitution for %o and ‘20 will not add

appreciably to the coefficient of (\f ,%Y and -t %) both being << c}“.(cf)
GI(b



87.

since é and é are both very small, and o H(f) ~ - 5 further,

A\
of the constant terms %th(o\ and - ? —{F_-, s 1t is possible to retain only

the —‘_ (-l— s)> term from ?;‘, . thUDe"

e L%b \
$a L4
o> At _t Pl e T
I - Ao H‘(C}) E \:t “\(k) [ Hu\\oo }U H (H)} £
SET)

Finally in the last equation:-

¢ L, & B S Wt
/;—:! {l;@ _ o) H‘é[ = ) ,}“‘m}+ F—’P\% B, \M\(&})X(& \/(\D%

¥ (c“,c}‘) of '\%H( ) (f oy (U){
e LY RCOR m\(m 0

RIET)
A ST T
GI u;)[N ]E ]

¢
By inspection, as /;‘S r\./10—1l+, the L.H.S. is negligible compared in
particular with terms in the first bracket on the R.H.S.; and neglecting

again _E compared with ¥ | and with & (this time)-

G ¢ X
A" " - o’ -4 ¢ ht“((\b L
' 24 (o) S e (o)
Ty (b) (C.2.4)
where 5 = F [H.Uﬂ T Kg 2 3, Bﬂ>]
< b7 .
C.3. n = |

For this case all six equations of the set (C.1.2) must be retained,

however, the following small argument forms(86°87) for the Bessel functions
involving i ’ ¢’ and may be used:-
: s T

T () ~ = W) >~ P T o~ |

(C.3.1) L Rs
P S
= — urhy i i MRS
J\\(VJ = Tl - "s'c J‘(*.) = LSy T (e\u.wc&e\»ll §>

Rl T
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Further r RUx) - R (w) - (2‘(;5) = aQQ"(uz)— {-xQ:(x)-i(\-ae“)Q‘(x)] - R(>)
= 2R (%) - 30(x) + 22R\(X)
= RO - xR ()
In particular, when R = J this becomes < Ea - 5‘;3 = 5_3
x—>o0 > H o+
The set (C.1.2) may then be written (where ¢, = 2 fora = 1):-
2

et 4 atu (o )J + FR () = - GRIT(H)
K‘{h‘[u A )] + Frf! H,‘(b')} - - SEHRST (W)
U T TS PON QT ST B )
3 ~iw{ “\\ EACHETSS g
3
<c.,3‘,a>g o+ AT + BFR, (8 —kFI DI ()
- M{A ¢ LRI - e Sh‘}
/f{ AL + (-] 05 [ (¢ 0"(\9]}
+ <D [etn () - u(d)]
=/«‘ Afa‘(é‘ *‘>+6 [b*"(q,% n).\(b‘):) it j

2 \Fa el

E0 3 A b b 1)y i) 0 )] Y D {8 )
L /A E :‘-\vﬁ‘ [a. Hl(a) “\(&)]46, [l) H,(‘)) Hn(b):]" ‘12 _J_‘l“)(‘l) r 45 [hl ;'(\‘) E(\}ﬂ

+x7% 3,
From thefirst two equations of (C.3.2), it is possible to write,

3 _\_ ) (H\a\ NCARN §
6‘ = w&) nﬁ,u)’) T e TE)

7 {K‘U“.b‘) _ n,(w)l
IS () T(") (C.3.3)

is small (approx. 10~7 at 1000 c/s) ,

As with a=0 , since
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Substitution of (C.3.3) in either of the first two equations of

(Co3.1) does not appreciably affect the coefficients of R,c (for instance

ol bty = ‘:_l—j. ) or the constant terms ( ot ).
\\
Further from the fifth equation c¢f (C.3.2) if G,F may be written

from (C.3.3).

g.{: e é -I\l:-\ ? then
g2 s faptby [ F L (C.3.4)
(A’T\(B‘vﬁ{;& +A‘R‘(&’)] N H‘(U,) F"

S
10 at 1000 ¢/s) may again be called upon

to indicate that Qf , also has a negligible effect on the last two
equations of (C.3.2). Thus from these,
¢ ¢
DP SR e O H;(“) Ap

' R E ! (C.3.5)
EF () 3.5

It can further be seen, that in subtraction of the last two

AEY 2
equations c¢f (C.3.2) and neglecting € compared with 1 (&; Ao
22

S f
at 1000 c¢/s), %‘ terms vanish anyway, and &, terms do not contribute

anything appreciable compared with other terms (by the previous arguments),

thus, '
R|J o%qu — Kg C /A /\AO\FCFL-{- /‘*(‘_ “(h¢3k€ qu{.“xn&‘) K-\"}f

s
i.e, in the second equation of (C.3.1), D‘ may be eliminated

a + M’H (Qg) K‘SJD‘R (Q;) = ( W >{ of et @9 u(‘)k‘ Hl“w\“cbf}

giving, finally, with further use of relevant recurrence relations,

ﬂ\t - ‘/\‘S&Sl

{ro ) e tmonff e o
}éc /‘{s A )

(c.3.6)

1§
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¢
It may be noted that the procedure used for ﬂf and A\ above
involves a somewhat more refined argument, in each case, than that

employed by Epstein and Carhart(b6)

for the spherical casze {fluid/fluid).
(,

Where, for the corresponding ﬁo , the heat flow squation ils divided

through by «t€ , and the term in % then neglected; and for the cor-

responding &f , the temperature and heat flow equations are made identically

S
zero; neglecting GF , and 8, , terms in the remaining equations.

Co4. Fibre rigidly fixed in space

For investigating the effect of variation in the angle of incidence
of the incident plane wave on the scattering coefficients Af , it is
convenient to consider the simplified case of a fibre rigidly fixed in space.,
This case is also, of interest, when considering the effect on the
absorption characteristics of a fibre block of resin bonding (Chapter 5).

< S < 4
For a rigid fibre, the potentials 515‘) . ¢“ g A{/ , and X vanish, i.e.

S
"

the coefficients ﬁ,} e C: and D,? are all zero. Thus if the fibre
is also fixed in space, the boundary conditions which may be applied, are
merely, continuity of temperature (i.e. zero variation) and the necessity
for zero velocity (displacement) at the fibre boundary. The temperature

gradient is not necessarily zero at this boundary, however, the conditions

cited are sufficient to evaluate the Af o

col"o“ ’\‘O
From the set (C.1.1), the relations (C.2.2) and the argument of C.2

which concerns the ]Ef s the relevant conditions may be written:-
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\
L e ] + e efur -
[ ptn] 8 aEn G - eten (@)= o
* (Col.1.1)
R L R U E e A NEO R
/
From the first equation

Gf = == __V; i (4 A;“obﬂ)‘i
£ Holot)

which can be substituted in the remaining two equations, neglecting
terms in %’ wherever possible i.e. in a similar manner to the procedure

of C.2, giving:-
[ o emmD | 4 platy )

3 - kR =0

ALY
A8 (- )+ (Peluled -0
It (3 i AL

Horoe of_ eyt (Y )J W)
: |& U] BN
Ao ~ a3t F “0 ) ( - K uL ) ((0040102.)

[ Sk e - wnm]
(ke >-x>) wleh)

C.4,2, n = |

Similarly from the set (C.1.1) and the relations (C.3.1)
(ots atn@d] + FBhaD = o

L( + aful *)J L FRFH 06 + et (@ et
+ %/ DI () = ©
S

(Cotr2.1) | &b 4 AT N )+ RFREE) < 6 - ettt -

= (&“ + AfR) + 8"&\.(8‘)] T O T P
N
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The first equation of this set, again shows that the effect of 6&
in the other equations is entirely negligible.

Thus from the last equation of (C.4.2.1).

= N | it f
G o i L 7 S ]

Substitution of this into the sum of the second and third equations

of (C.4.2.1) then gives, after rearrangement

B - L Al s it e
() (et o) WD (k- 0

¢ ¢
and finally, substitution for both C, , and D, into the third

equation gives:-

2. W0
T [‘_*cﬂ\(c‘
¢

‘)}
)

- St (P (©
() ‘4 E (. .g) 4dW!J>QE§9
K) W) INCD)
(C.ko2.2)

C.5. Normal Incidence

For 90 = o the boundary conditions exlsting and required reduce
to three and four in number for A=O and A=\ , respectively, and the
expressions for R: and Rf for normal incidence are simply given by

putting k = o in (C.4.1.2) and (C.4,2.2); and removing the dashes, viz:-

A SR st S
TG F Al et

Je

(C.5.1)

A‘@- - &p (C.5.2)
(A + e A )

W ()

e
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subject to the approximations invelvin f made previously.
PP 3

F
C.6. The affect of the scatterer properties on the Ha

C.5:1
; . \ ¢
It is easy to see that the expressions (C.5.1) and C.2.4) for ﬂo at
inei 4 1 fu (b‘) i S
normel incidence differ only as VTHo\b/differs from °
¢
Thus allowing 3,—><)immediately makes the two expressicns identical,
i.e. allowing the fibre to bacome infinitely conducting, removes the
dependence of ﬂf on the fibre properties.

It is alsc of interest to examine the effect of pg —> 6
| 1
4 5 3 . S 3
Now b o~ (\4‘)(_&31(2 = (l+\>(%()s> ©
QoS 2wt

1
Thus as /S —> ob 5 bh™ — &

and using the asymptotic forms of the Bessel functions introduced in

Appendix E, Al
L\ $ _ W
‘To(bg> m (E!> oS [k E]
and 553_\(‘3&\) e (_‘\‘ >%l 6> eos lbg— 3w ]
ke °
IS
ok 3 (b ) ) / tam (rS-p/ o
b T, (k) | (S

Hence, the expected result that the value for ﬂ;—tends to that for
a fibre rigidly fixed in space as the density of the scattering fibre

increases.

C.6.2

at normal

. (SN 2%
incidence, shows that they differ from each other only as the term “ottc

/AJCSL

Comparison of the expressions (C.5.2) and (C.3.6) for Af
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differs from zero.

; 3 ¢
Now “:‘)_ﬁ“;h = \»o/f( :o'if >Rl - \ie‘

P A

from the expressions (Appendix A and B) for (Tp , Xy and the definitions

f"‘ cS'L

$
of ¢ ¢ (Chapter 3).
i
Hence, again the expected result that allowing &s-vo implies the
4

reduction of ﬂ,f to the value for a fibre rigidly fixed in space.
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APPENDIX D CALCULATION OF ABSORPTION COEFFICIENTS AND SCATTERING

COEFFICIENTS; COMPUTER PROGRAMMES

D:1, Normal Incidence scattering coefficients

Using the expressions (C2.4), (C3.6), (C5.1) and (C5.2), from
Appendix C, together with the approximate expansions of Bessel Functions
given in Appendix F, the real and imaginary parts of the relevant
scattering coefficients for an elastic fibre and a rigidly fixed fibre

may be calculated as follows:-

Elastic fibre ?\Q Ai’ . - T ’\1 (Rﬁ o~ W6>
LA+ &)
Imﬁﬁ = —T\_C‘p + M>
H a(a+e)
where —é < N ) L = Re HJB") y = M - Tm Ha(bc3
an . - av .
a A bl (WZ m’)
B - - - S (wy+2)
where
= Re[Ww(®)] |, - W = Tu[du]
S T,(5) \ +Z = Im _\)—,(\os>
b T,() o T, (6)
Rofl= ~mEO-8) | Tubf- + Aot
where < (A Rl 4
| i % 7 i
A= ax (=S -1-8 . 8 = gy (-8
and X = R| (O = Tl KD

' et ) i »u‘»)
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Rigid fibre Re Gf - N (Ru+ W)
L (> + M)
Lo AO(’ = "‘:\_p - T'\{(@M~WL>
H 2 (L+M>)
Re/ ﬁf = o l\& Y
(ax-1) +4y>
dt ﬂ‘F = ~Wc~p(dx—!>

2 (x-) 4 ]

D.2 Oblique Incidence scattering coefficients

Similarly from the expressions (C4.1.2) and (Ck.2.2) the oblique

incidence scattering coefficients for a fibre rigidly fixed in space may
be calculated as follows:-

B L Ay LR L
A"+ 8 R+ &>
where Ad =tz & i
Q_L
e T A e M)
‘ i e ]
L ol EG b*q(\,‘)] < SN (D) S QQ[(K"—K‘ (- WIRH
2 .6 £ H(bt) T et ()
and the approximations

(<P o)
(01") = |+ U1Z :
d \ \ 4 : ;
() o W (el ¢

c.
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have been made, which rely on the definitions of UF, cf‘ given in
Chapt he fact that “ apa w»f 11 it
apter 3 and the fac Ef’ an ?E’ are small quantities.
This is an equivalent approximation to the assumption that Kf is
real,
s ¢ \ i
Similarly Re A‘ i T\CAHL &(5—‘--’1‘/) - b(od- &K—&)]
1z
— ¢ o
b= - ‘ﬁd“{\a(c&&x—&) + b(b+&\/7]
where =\t Q(\+F\>—M€>

o
b = m(148) + 4¢

GRS LD EnG
[y ) = 4\&
((T_K) Ht(CF)

2 = (et &t-2) + (bray),

t

13 ;
and the approximation concerning b \ c is again assumed

D.3  Absorption Coefficient

The Twersky theory in general (see Chapter 4) gives:
LT [ 3% it . » 1
=t e H.\M% + (g «»%\)(cQ a\

where = and 3 (N IR N
¢ %L % T /\A.\ ) %'ZX("P}AA
Ky Cos X : &
The form of g is to the approximation suggested in Appendix E,
= Af + Af
Lyt { ¢
and % = Ao - A‘
“@ A@
o , N, may be evaluated from D.1 and thus
b

S e 4iNg - weafalt

e, K, = & +1b



98.

b ol
3 | %
where generally Caas -L;_ [ﬁ + (ﬂx—%— 6>> J ) b = 3%\

A= ke N Ty - e (e AL Rehf - Tuahl Tud! |
= & L;MRQ% o {QQA‘,‘TMA'?JrTM“fQQAF]

To be consistent with the previously used convention for a forward

travelling wave (Chapter B)Q(a)must be real and positive.
| o
i.e. , fo = +[ii‘\+(“>*&;>:-}]).
Further from Chapter 4, the relative characteristic impedance is given by
e Q > = V + ;‘\I
| +Q

n &f B e
V—%) wﬁ'%i‘“r

('Q* %'Fc

e = 3R hf-t . 4~ o+ 2eTubfra

Tl &+ deTuhd 4 a

4 - JCRAS -1

and the surface normal impedance

pre (vaiw)(@+:9)

Z o=
where
o g‘ G e agwml)j
{l - ejah& ( CoS b’o\& -+ Ca QAA)?
Thus finally ,
A (va-Sw)
ko i

o8 3
(vR-3wW+ 1)+ (RW+VS)
The following computer program, written in Algol 60 for use with the

English Electric - Leo-Marconi KDF-9 machine at Leeds University, was
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used for calculation of normal incidence absorption coefficients according
to expression (D.3).

The various materials for which experimental values existed, were typed
in terms of mean fibre radius, slab density and slab thickness and this data
together with the constants tabled in Appendix F were input.

It should be noted that the program, as written, cutputs values of
@, for a given slab density and thickness, for each of the values of mean

fibre radius fed in.
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This program was modified to calculate absorption coefficients
for oblique incidence in the XY plane, by including an extra loop for
values of incident angle from 0° to 9O°9 and by replacing the

expressions for K ab, V and W, as in D.3 by deviations of them

bv
based on expressions 4.2.17 to 4.2.19. Similarly a program was
written to compute oblique incidence scattering coefficients

according to the expressions (4.2.,17 to 4.2.19),



begin

said L

comment Calculation of normal incidence absorption coefficient

against frequency for fibre glass by a scattering theory
developed by Attenborough. Variatlon with fibre radius

slab density and slab thickness 1s also considered.;

library An,A6;

integer 1,J,k,n,m,s,kt,1,£0,£1,£2,13;

real W,gamma,rof,ros,kf,ks,cpf,cps,mf,mis,pi,rog,b,af,Cof,

Cos,N,nuf,kdfr,C,cs,c,2,Y,W,R2,L,M, A,B,ReAOf, ImAOST,P,Q,
s,T,LL,YY,X,x,ReA1f, ImA1f,ReRigA0f, ImRigAOf,ReRigAif,
ImRigAif,yxz,V,gg,WW,RR, SS,kfg,a0,NN,Reg, Ing,d,e,ff,g,mm,
pp, AA,BB, AAA,BBB, sigmaf,sigmas,delta,a,bb,11,yy, Xx;
open(20); open(70);
format([2s+d.dddp+nd]); 3
]

O
T e

format([2s+nddd.ddddd]) ;
f2:=format([2s+d.dddp+ndc]);

£3:= format([2s+nddd]);



Cof:=read(20); gamma:=read(20); rof:=read(20);
rog:= ros:=read(20); kf:=read(20); ks:=read(20);
epf:=read(2");cps:=read(20); Cos:=read(20);
muf:=read(20); mus:=read(20); n:=read(20);

m:=read(20); s:=read(20); kt:=read(20);

begin integer array f[1:n];

array R[1:m], ¢[1:s], roli:kt];

for 1:=1 step 1 untll n do f[1]:=read(20);
for i:=1 step 1 until m do R[i]):=read(20);

for 1:=1 step 1 until s do t[1]:=read(20);

for 1:=1 step 1 until kt do rol[i]:=read(20);
close(20);

pi:=3.142; nuf:=muf/rof; sigmaf:=kf/(rofxcpf);
sigmas:=ks/(rosxcps);

write text(70,[[2c]i[2s]j[2s]1[2s]k[2s]V[6s]WW[6s]albs]

bb[6s]an[4s]ImRigAif[2c]]) ;




for 1i:= 1 step 1 until n do
begln wi=2xpixf[i]; N:=(gamma-1)xwxsigmaf/Cof12;
kdf:=w/Cof;

for j:=1 step 1 wuntil m do

begin b:i=sqrt(w/(2xsigmas))xR[j]; af:=wxR[j]/Cof;
cs:=sqrt(ros/mus)xR[JIxw; '
c:=(w/nuf)xR[j]12;
Z:=(-12-bT4/35) /(48+bT4);
Y:=(U48+2xbTl) /(48Bx0T2+0T6) X (=1) ;
x:=wxR[J]12/(lUxsigmaf); W:=2/pi+x;
xx:=(1n(sqrt(w/sigmaf)/QxR[j]));
R2:=2xx/pl-Uxx/pix(xx+0.5772) ;L:=0.5+(xx+0.5772) x2X

x/pi-2xx/pi;
M:=0. 5xx- (xx+0.5772)x2/pi;
A:=L-kf/ksX(R2XZ+WXY) ; B:=-M-kf/ksX(R2XY-WXZ) ;
delta:=w/nufxR[J]12;



o .

Re A0 :==pIXNX(R2XA-WXB) /(2x(AT2+BT2)) ;
ImAOL :=-pixaf12/U+piXNX (WXA+R2XB) /(2% (AT2+B12) )}
yy:=(0.5772+".5%XIn{c)=1n(2) )3
Pi=c/(2xp1)-c/pixyy+ct2/32;Q:=2/pi-c12/8x1
/pix(-5/b+yy)+c
/b3
S:=¢/pi-c13/L48x1/pixyy-c12/16;
T:=U/pi+c12/(16xp1) X(Uxyy=-3);
X:=(PxXS+QXT) /(ST2+T12) ;
LL:=mufxw/musXcs12;
AP :=2XXX( 1-deltaXLL)~1-deltaxLL;
YY:=(TxP-QxS)/(S12+T12) ;
BB:=2XYYX( 1-deltaxLL);

ReA1f :=-pixBBx( 1-deltaxLL)Xaf12/(2x( AAT2+BB12)) ;
ImA1f:=ReA1fXAN/BB;

ReR1gAOf :==0. 5Xp1XNX( R2XL+WxM) / (LT2+M12) ;
ImR1igAOf :=-pixaf12/4-pixXN/2x(R2XM-WXL) /(LT2+M12) ;
ReRigA1f:==pixaft2xyy/( (2xX-1)T2+4xYY12)
ImRigA1f:=0.5XReRigA1rX(2XxX~1) /YY;



for 1:=1 step 1 until kt do

begin NN:=ro[1]/(pixR[j]r2xrog) ;
C:= 2XNN/kdf;Reg:=ReAOf+ReA1f;
Img:= ImAQOL+ImAIL;
AP :=kd £T2+UXNNXImg-L4XCT2X
(ReA1fXRe AOF-ImA1LXIMACT) 5
BBB:==4XNNXReg-UxXCT2X
(ReACSXImA1£+ImMAOLXReAlr) ;

a:=sqrt(0.5x( AAA+sqrt (AAAT2+BBB12)) ) ;
bb:=BBB/(2xa) ;
d:=kdf+2XCxXImA1f+aje:=2XCXReA1f-bb;
£ :=kd f+2XCXImAOf+a ;g : =2XCXRe AOf-bb;

for k:=1 step 1 until s do

begin yxz:=exp(-2Xbbxt[k]);
11:=1+yxzxsin(2xaxt[k]);
mm: =yxzXcos (2xaxt [k]) ;
pp:=1-yxzXsin(2xaxt[k]);
ggi=gre+ff12kfg:=ppT2+mmT2; :
Vi=(exg+dXLr) /og; WW:=(dXg-exrf) /gg;
RR:=(11Xpp-mmT2) /kfg;SS:=mmxX(pp+11) /kfg;



a0 :=Ux( VXRR-SSxWW) /( (VXRR-SSXWW+1) 12
+(RRXWW+VXSS) 12) 3
write(70,£3,1) ;write(70,£3,3) swrite(70,£3,1) jwrite
(70,£3,k) swrite(70,£1,V) swrite(70,£1,WW) swrite(70,£1,2
)3 write(70,£1,bb) jwrite(70,£1,20) swrite(70,£2, IMRigA1If);
end;
Reg:=ReR1gAOf+ReRigA1f;
Img:=TmRigAOLf+ImRigA1f;
AAR :=kdf T2+UXNNXImg=-4XCT2X
(ReRigA1fXxReRigAOf-ImR1gA1£XImR1igAOrL) 3
BéB:=-uxNNxReg-ux012x(ReRigAOfXImﬁigA1f
+ImRigANfXReRigA1f) 3
a:=sqrt(0.5x( AAA+sqrt (AAAT2+BBBT2)) ) ;
bb:=BBB/(2xa);
d:=kdf+2XCXIMRigA1l+a;e :=2XCxXReR1gA1L~bb;

ff:=kdf+2XCXImR1gA0f+a ;g :=2XCXReR1gAOf-bb;



for k:=1 step 1 until s do

begin yxz:=exp(-2xbbxt[k]);
11:=1+yxzxsin(2xaxt[k]) ;
mm:=yxzxcos(2Xaxt [k]);
pp:=1-yxzxsin(2xaxt[k]);
ggi=gre+ff123kf'g:=ppT2+mmT2;
Vi=(exg+dX{f) /gg; WW:=(dxg-exfT) /gg;
RR:=(11xpp-mm12) /kfg;
SS:=mmX(pp+11) /kfg;
af:=Ux(VXRR-SSXWW) /( (VXRR-SSXWW+1) 12

+( RRXWW+VXSS) 12)

write(70,£3,1) jwrite(70,£3,3) swrite(70,£3,1) swrite(
70, £3,k) swrite(70,£1,V) swrite (70,£1,WW) jwrite(70,£1,2a);
write(70,£1,0b) ;write(7",£2,a0);

end

end end end endjclose(70)

end->



101,

APPENDIX E. ATTENUATION DUE TO A SINGLE CYLINDRICAL SCATTERER

E.1. The Dissipation Integral

Briefly outlining Epstein and Carhart's approach.46) for fluid spheres,

the time average of the overall energy loss consists of viscous and thermal

parts** viz:- \4\( = Nr\ + W
where NI’“ = j <~1&"‘>N§>ﬁ df & L<? V~i> v
F X v
and Weds JV <§‘; (VL_\_> 4 av

in which N signifies the component of R\]\ in the direction of the outward
normal drawn from the surface F of a large volume V surrounding the scatterer
concerned.

Remembering that Y, and ?N' contained in the time average are complex

A wb)

and have time dependence P,(—‘ ; and introducing the complex number nctatjon

Ll
The energy losses are given by the integration and time average of

the viscous and thermal dissipation functions
T B S O
¢I‘* fL ]

and ¢c’

respectively.

i
( P\‘ is the dissipative part

«f %
— (V T) of the total stress tensor)

The viscous dissipation function ¢/A has the standard form introduced by
Rayleigh ("Theory of Sound"vol. I. Ch. 4), the temsor expression above being
used by Mason(71)o The thermal dissipation function ¢0_ is derived by Tolman

and Fine (Rev.Mod.Phys. 20, 51, 1948).
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Re 22> = 4o+ o]

the time mean can be considered from
4 ~wat -k b , ; )
{Re [x&/ wy»z i J>‘w < g (xeu e “E>(\/e“°§ e >
= 5 Re (&% - 1 Qe (xv*®)
-2k ek :- )’> 2 14

as the terms in e and e vanish in the time aversging.

Thus the dissipation expressions above can be written in the forms
W LR, E P +J *
W < L Red PdE [y av
Ay A Ra{’KFj w*(g)av— K| Tt o\v§
To N v

P 3
shows that the sum of the second terms (i.e. the

The analysis(hs)
volume integrals) of each expression is zero whilst the first term of

V%r is negligible leaving the total

*
W o= é Re L ¥ ?Nsi dF (E.1)
in which the time dependence is now suppressed.
This argument is unaffected by change from a spherical to a
cylindrical coordinate system, thus for a single cylindrical fibre
choosing V to be a large concentric cylindrical volume, radius B and
surface F the integral (E.1) can be evaluated again following Epstein

(46)

and Carhart where the contributions of the surface integrals over
thevinterior and exterior surfaces FL and Fi of the scatterer cancel,
due to the continuity of both the vs and‘RNiacross the scatterer boundary
(the ?ks being equal and opposite for F, and F3)°

If the radius B is chosen sufficiently large the highly damped

thermal and viscous potentials will not contribute at F1 and in the

-
expressions for Vi and 'PN-‘ viz. (3.1312) and (3.1321) terms in v  may
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0 -3
be neglected compared with terms in & , and y terms neglected
~\
against Vv terms.

Thus it is possible to write

.
and Prr = LNP % T :‘g— )
e [la)“t{s;\% ]

where 5_[._— 5}“4,#;% " ( g Irdz >

*
For large r, obviously the product VsPrB may be neglected (e.g.

compared with v:?r‘. ) as it decreases with "‘!.1 s thus it Iis required

It

1

to obtain onl&

+ &
& Re f (Vr Py + vy (PT'LB ng\ (E.2)
F\

E.2. Oblique incidence

In general(89) the element of ares on the surface ? = const.
in curvilinear coordinates ? ; ,g, ,13 with parameters k‘) ‘_ )k's is
(H:. < "\1‘\3 “\21‘&23 = L
i.e. for cylindrical polars OF =Rd0dz and L dF, - J' 38 &Qj\ dz.
\ 0
where L is the length of the cylindrical fibre. i
Further, defining e = e T £ SERCED

then % - Qx'?('w(zy Z‘ Y 2 (ﬁf\-) w0l (4\@>
ana 1‘5 QQ\Y V:?r\' df, - K Re LVT (Prr ) &F
il =§er {[ m@«b'zl AR wn (@) x

(o -3 et DRI fs)ww@]

M=o



104,

the orthogonality of te («‘Q) then picks out the m = n terms, 1eav:ing

iﬁg]‘hv:‘ﬁr dF, = %Rz%& Lwe§+¢ ‘«’)L.KL‘%Z ik >\ iy i (E.3)

Similarly

{{ Re j‘: V:Rz&F Qo,g LL/AK Lﬁc% Z % (E.4)
where A { b= o
g Hn>o

Now assuming K;F is real i.e. neglecting the damping of the fluid
dilatational wave (the order of small quantities, see Appendix A),
Z W M[c RACS SR NINEUS) [ CeA R ANEIY)
s P TT e M Tas e T N0y
Ao
and as 'EQL('\;Q T‘L L(1~m‘>
L_.L Reﬁlé, k.ik:s = Qe{ " [ HERA h)ﬂ,\l\“\{,\u ]E

Then using the recurrence rélatiofo? (E.5)
XR,KOJf A(RAQO = le_ (K‘) - where Qa: Ja or Ha

’a.nd the large argument approxi m::ad:ions(9 0)

—S()() . ”6 (T_%_B‘ Cod Lx — —T(l\*.'_BJ
e Vi (T‘QL ‘“‘?[ =y 3)]

[

TATN, = (A 80T G4 3ON,
LA L e
(o et
X COS["T('\'“ ]&PEK—’\"(“*Y
- (Sfbpmeffieloie]
Similarly = Q:?} (Eoé)u\ X —Lm “17

s @)@

o™X =N
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The second term vanishes anyway for A=0O | and may be neglected
otherwise if the condition X —>04 | which allowed the approximate forms
of J, and M, to be used, obtains
i.e. write H,‘\H: ~ (%_\x> (E.7)
It should be noted that this argument requires B to be very large
(as Kpf is small) viz. B ~(0€m at 10ke[s and B~ Icem. at 50 els.
Further from the "generalised Snell's law" of (3.125) and also from

Appendix A. s P p
\r(L = K.ELS\‘A)_@)G = u‘Afo S\.»\>®
¢
(sin8f = 8 2l (*
thus using (E.3) - (E.8) 1'(1‘1“ (E.2)

o4
W~ - awpf (4 kps@*@e}LQa [7_\ (Af+ %AGEAS‘*)] (E.9)

A=0

(E.8)

where the Rf have their oblique incidence values (Appendix Ch).

E.3. Normal Incidence

For the particular case of normal i.ncidsnce required in Chapter 4,
K = 0 (the z components of the Vi and pﬁj vanish) the A,E take on their
normal incidence values (Appendix C) and the time averaged energy loss
per scatterer of length L is given by

W = —JLOFOFLRQ [i‘ (Af+é&\ﬁ{\ﬁ*>} (E.10)
Azo N

As can be seen from Appendix C, the values of the P\.f will involve
orders of higher powers of O.‘L as \ increases €.g8o ﬂﬁ will be at least ofx A\c
as .3;(&(; ~_°§l and T\(of‘)'\/%‘ . Thus as &a-vlo*s over the audieo frequency
Tange of intg/erest:9 it seems a satisfactory approximation (following Epstein

¢ 3
and Carhart(us)) to consider only the values of ﬂo and f\‘ i.e, it is

Possible to write

W e - Qw()oFLQ‘L(M* M) (E.11)
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¢att crp i . .
vwhere further ‘\n A.\ has been neglected compared with Ny (calculation

=\s 4 ‘~6
showing that ‘\,Ffv o, A~ 10 even at higher frequencies).
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¢ ¢
where further ‘\f A.Lt has been neglected compared with M, _ (calculation

showing that (\ot'rv o b, A~ 0 even at higher ;f‘requencies)o
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APPENDIX F

A, Material Constants used in calc ulatxone(l*b1 91)111' 12 )

ATR GLASS
M = 0,1825 x 1073 g on” sec™ i1 x dynesqum1 (fkbre)
/9 = 1,17 x 2070 g cm™> 2.3 g cm -5
C; = 3.b4b x *ﬂO‘+ cm secw1 S5.749 x 107 em sec
Cp = 0:240 cal qm ! 0.198 cai gm™' °¢”'

= T4 1.0

oy = - R T
K = 0.000058 cal sec 1”6 1cm 1 0,00155 cal sec ' °C 1cm :
-6.021 x 1070 dynes cn™2

= Ppp 4,0 x 10" dynes em™® (fivre)
1/T (absolute) 2.5 x 102 !

X W

B, Approximate expansions of Bessel Functions

Using the well-known expansions(87) for the cylindrical Bessel

function of the first kind and the Weber Bessel function of the second

kind respectively, i.e.

\ (5
_:):(73 Z: ) k! (v\-» V3\
X\(ZB = % {Y-\— -M(liz\)g'&\(z\) E. (n-k- \‘y zyﬁ’ak

"‘ K
- _\_‘:Z ‘k(al (\411...%>+(\_;§,,._L

W K )
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where Y (Euler®’s constant) = 0.5772 ...

the following approximate expressions can be derived;-

§__ E{u{gd—m% 3§»

(F.1)
vhere cf2 = LS and <:f is small such that for higher powers than 4 it may

be neglected compared with 1.

N =

Similarly N (b’—k‘—\.«&—-lﬂl\) +y
“ 3 = J -3 - = —

() '\T b ™ 3sb

§ "
[T‘ J,M{u(n RERVES: H 5.2

N o\ W L ¥ (F.
Further R& ToQ))’ ' —\Tob A (‘,.(110‘~>Lk> i
Ta T - -8, ¢
(&) T (F.4)
(V) - ¥ &
> ™ ,(Lﬁ) (F.5)

Ta EST‘(L‘) - b - bL/
U (F.6)

A
where ‘o%= (\&(\(ﬁ)—g)}Q:(\—\'\»L s Bay, and b is small such that
oo
Powers of b higher than the fourth may be neglected compared with 1.

The expression (F.1) for f , also applies for ol which is of the same

order&\ac'—- 1+ 1) (a’.o}>%R1

Further
H() = 05 +-}T‘_:f (¥~ 73’ 9_: + A (\”rj\ Ty (F.7)
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i
2> i1
where ® = . W& , 7 = \AIL} (Q‘>>KJ
o 2
l@crc
the zero order Weber Bessel function being given by

AGIEERNCORT NG
ST ICTRENS

o (k)

=

similar expressions to (F.?7) also beiag valid for oF.

Co Fibrous materisls examined
Rocksil and Rocksil -K resin bonded materials were used, supplied

by Cape Insulation Limited in 1" and 2" thick circular disc samples, as

specified below:-

Name and specgfied Density Measured Density Average fibre
(1v/ ) g. cm™> radius R
I

Rocksil-K 1 0,0184 3

" 1.5 0,02462 3

" 2 0,0288 3

" (M.D.S.,) 5 0.0825 3

" (H.D.S.) 6 0,0863 3
Rocksil Building Slab 0,0874 5
Rocksil Acoustic Blanket 0.0636 5
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Appendix H

Viscoelaétic Absorber

Following Nowacki (Dynamics of Blastis Systems 1963 Chapman and Hall
Ltd.) neglecting thermcelasticity, the constitutive relation for the standard

viscoelastic model, may be written.

(l + €, ¥ )(0’ %QKKS > ‘9‘/‘*g (l+ E’*%L—><Q“J— égw(gxd>

Ue (,(L = i{“ ((+t>dt> Q + &’g/Ax (“H"’?t 'QKKS:J
(_\-Lt‘& (l-tL‘gK)

(6.3
for a periodic situation, é_ = —{,) and on comperison with the tensor

de
constitutive relation for a normally elastic solid viz.

%»ea +»>QKKSO

it can be seen that the effect of viscoelasticity is to replace ths
elastic real constants by frequency dependent complex variables i.e. if

poo= o G

A= X\ ()
where F} and X‘ are given by (6.1) the form of the constitutive relation,
Propagation constants and stress expressions for the normally elastic
Problem may be retained.
This corresponds to the Voigt case as given by Kolsky (Stress Waves in

8olids 1953),

1+ W s (- wek)

In detail ¢

Ct- qu‘)
and U -‘-{A*’i ¢ _ 2 s(\-ith
A s f R D)
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I 1
>l—- >~
Yy I/

> >

‘ +
w2 (2]
R
—\S_ , \
!l wiw
>
—~
+
\s
~
L,

e, 3 /‘*/"//\ in this case therefore it is only

necessary to retain one frequency dependent elastic coefficient.

N.B. this relationship is equivalent to putting B1 = 07[398(1 + 313)

found to be roughly true for rubber-like materials as the effect of

1. |
B' is very much smaller than for ,A, .

The wave propagation constants may then be written

L
vaes - w [0 }-"
() + (D

i
3

glemirretl
(3a+ ,Q + W 4 r\gf«'

- w l L1
() = 5751 1
- X
-y [ L ] ~
Lt Al ¢

when A >> /V\

(G

and Koo 2 e (/A(l+p«3>

- K (‘*I‘ Y
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Consider now the model of the hypothetical absorber to be a continuous
viscoelastic solid matrix, containing a random distribution of spheri:zal
or gylindrical cavities sealed off from =ach other and from the surface
by intervening layers of viscoelastic material. This model is obviously
susceptible to the same kind of scattering approach as that employed for
the fibrous material.

Firstly, it is necessary to consider the probtlem of scattering by a
spherical or cylindrical cavity imbedded in a semi-infiuite viscoelastic

solid.

(a)  Spherical
For simplicity the amplitude of the incident wave may be %aken

as unity (it is immaterial to the expression for the attenuation due to
a single scatterer).

Then the coefficients representing the scattering inside a viscoelastic
50lid are given simply by the boundary conditions for a cavity inside

a normally elastic solid with the real elastic coefficients and

constants replaced by the relevant complex ones viz.

[ QkV&S’— M’((:S ;\;\ CO\Vtg.) + Q O\Vﬁg XVES\&}& (&V€5> 4 ’\((\* \\)L\/li}_“(‘a\vé\)]
" Aias &u&;N%Sk: (o\qeg) + ac«“s/\ﬂ& k,‘\ (&-‘n) " A(M— \) AM hw (&Vﬂ) ]

+ f/\vur\(m—\w C:&SQ‘A.\LL‘ES‘) _ C/vu ‘A'\\ (LVU‘) > - 0
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/\A“S E[i,(&“) - a._YES\]’lz (oﬂﬁQJ + 4 [l«,\ (aves) - pves l’\:\ @v&s)j

P[00 ) - )] |

=0 .

which express the fact that the radisl and 8 compt. of stress at

the boundary of the cavity must be zeroc.

¥ .
[N &St Q/"‘“S“' k\'ag. , O\Vm - K;ﬂ Q , C,“S'; (Tvﬁge ]

From these equations) where use has been made of the relation

i 5 ; P = + On ol
= s‘s(‘“‘@““) = (i) Tules®)

a
[0 - - 4% () |
A&
for n = o the 9 dependence vanishes
C\m’t\l vss\io“ (o\v&s*) P AV&S\]‘O\ ((‘»M> + A:’e& [ ek ko“ (&ve&>

+ a&ves’\vc—fk‘\’ (&VH)] = O

thus A\'es ] _ VES 3 VER W g LIS U A7 3 )
, e« N \J"(& >49¢* A \!o(“‘ >

[ &us ;'N vt&k;' L&m)+ Jpr A, (&Vﬁ) ]



114,

Now the functions :],\ and "\,\ satisfy Bessel's differential equation

€+ 2e, +((—“_@Q>Qﬂ =0
x »*

{ _
e R+ %eﬁﬂo e

R'-- 22 -@

\ o

and as Qo :—Q\
Qo“ = +iQ\'— @u

»

. YES
Further the small argument forms for \J,\(CA ) from Epstein and Carhart

may be used. viz.

P e e e ) = 2

VES > VES 3 vetty ves
! ﬁ Vs A [‘ ‘E(’» f\f - 30 A
o o ~ -

[ &VE! INM l’\o“ (c\m> + &vas xm "\o\ (&v&) ]
&v&s > 6\(&;\.

—[Ous NN (o g) PRI (a\ves> J

similarly

&:r.s > N we.s‘i\“ (&ve&> + &&vd }\vm\}. ‘I (&ves) ) ’\V’Lj\ ( &vu>
4 A(tS [am% }N‘Bk\“(&ms) 4 &c\'(&SAW:Sk\\ &m) + .QAW—!‘\\(A"“>]

+ #rvks Q/(wsg [k‘ cveq) 'c,“glml C“vkg>J = O
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/v\ves{ [\i\(&ve&> AGT l( vm)j + ﬂ ["\ (a was) Ve ( VES)J
+ C,,\g [O‘U\,(Cvm) _ i}avas _JL‘"(C_V&S)}J? = O

Yes Y
! - 3 3
Ar o VS vES R
NI 38 — s N
3 /“/vES , E_L + §_L
¢ / cvf_&‘z c\(ﬂ"

. § 3
- (g}((& : K/A'ﬂ%ﬂg N "/ASG«V£S /'5

3 - + 3

vel — -
N v C/u >

¢ylindrical For generality oblique incidence is considered. However,
this means that even when the surface of the material is ciosed with an
impervious layer, the existence of end effects at the cylindrical channel
intersections with the material boundariss ig & complication which

requires consideration over and above the fsllowing, where they are

neglected.
From Appendix ( C ); again neglecting thermoelasticity, where the symbols

have obvious meanings, dropping superscripts, where redundant:-

/A i N (a) (.-K>’5 (o) + & [(LH ¢ K)“(c\)]—+ e ﬂ.,"(d)j=0

P § S [T + @ | +°‘Co(”‘%'“’>"°’@')} )

and for n = 1

for n = o
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2T +(c;l_w-:):y(c;>] 4 [l 4 (o), wj
2o () + D [en'e) - w) ] =
2Le'@) -7 ] + 4 [ w @ -4 ] + ac fene - 0]
+ D [ - R R ] o

S [ 20T 4 M ]+ (e ) + ey D)o

Appendix G.

Solid stress in spherical poler coordinates for a normally elastic
solid.

O/\\i = &f'\eil_*’\e“‘%\'
¢y = éw m=—‘[l5—“‘ “Sk}(‘tfﬂ

%9 = é Qu9> s \Ar -Ql(( = ‘f_\’ A ueeis’

and for the axially symmetric problem (ind.of\{)) 4'“(’ - Q9~{? =0

thus % - dpg, theg - /Agw; +Mdwy y
o = N ¢ = ﬁ_&_ u 4 3 w ]
o /A Y} Lr —a—g r—é“_ _‘:0)
N NN ( &>
VN g 2 W
also t _—A_r ;-_g:@ Xe Q Q ‘\
'} S N N Ay
and b Y ’!\t gc(f‘\B
thus L = %— ¥ _ oy (h% O 41 Y (8. mi
97M % pPsub B r28 3nd
A A &vw
and thus after some manipulaE}ﬁ; ) ~§ \ )
v S u»_(_\_,_ m;.a’) 2 g8
TIe T30 ro@_sasae( ) T b



Plate 1 Plan view of sample of Rockesil Acoustic Blanket

Plate 2 Side elevation of Acoustic Blanket showing the tendency
of the fibres to lie in layers parallel to the surface
(netting) of the sample.






Plate 3 Surface of rigid polyurethene foam sample (approx 5 x magnificatioi’)

Plate 4 Sample of coarse, flexible polyurethene foam in which all "gking"
have been dissolved. The bagic "fibrous" lattice framework i
clearly shown,






Plats 5 Finer sample of flexible polyurethens foam in which the 'skins"
are retained,

Plate 6 Surface of Rockasil-K Resin Bonded sample, showing the tendency
towards "clumping".
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RESUME OF DATA RELATING TO FIBROUS MATERIALS

Name and specified Density Measured Density Average fibre
(1b/ $3) g. cm~D radius R (microns)

Rocksil-K 1 ' 0.0184 3

" 1.5 0,02462 3

" 2 0,0288 3

" (M.D.S.) 5 0.0825 3

" (H.D.S.) 6 0.0863 3
Rocksil Building Slab 0,0874 5
Rocksil Acoustic Blanket 0,0636 5
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11. . VARIATION OF SURFACE IMPEDANCE WITH
ANGLE OF INCIDENCE IN"XY" PLANE
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