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Abstract 

Alteration of the oceanic crust by hydrothermal circulation is one of the 

most important processes in the Earth System, responsible for cooling of 

ocean lithosphere affecting the heat budget of ocean crust and making a 

significant contribution to the chemistry and the isotopic composition of 

oceans. Oceanic crust has been proven to be structurally heterogeneous 

depending on the rate of spreading. Fast spreading crust is characterised by 

a layer cake model with pillow lavas underlain by sheeted dykes and 

plutonics, whereas ultra-slow/slow spreading oceanic crust is more complex 

with gabbro bodies intruded into peridotites brought to the surface via low 

angle detachment faults, forming oceanic core complexes (OCCs). Large 

hydrothermal systems such as TAG (Trans-Atlantic Geotraverse) are 

associated with detachment faults and may involve much deeper fluid 

circulation than typical systems at fast spreading ridges. The Atlantis Massif, 

30c N is an OCC located at the inside corner high between the Mid-Atlantic 

Ridge and the Atlantis Transform Fault that has been drilled during IODP 

legs 304 and 305. IODP Hole U1309B and D are dominated by gabbro with 

minor interlayered ultramafic rocks and diabases intruded at the top. 

The aims of this project are to characterise the fluids that circulated in 

the section sampled by IODP Holes U1309B and D and to assess what 

processes control the fluid chemistry, to assess fluid fluxes related to various 

stages of alteration, and to better constrain how fluids circulate in OCCs by 

placing the results in the context of models for hydrothermal circulation at 

TAG. Fluid inclusion analyses - microthermometry and LAICPMS - and 

isotopic analyses of strontium and oxygen were undertaken in an attempt to 

answer these questions. 

Fluid inclusion microthermometry underlines the occurrence of four 

types of fluid in the Atlantis Massif. Fluid type 1 a is a seawater-like salinity 

fluid that is observed in late quartz vein precipitating at low pressure low 

temperature. Fluid type 1 b is depleted with respect to seawater salinity and is 
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observed in plagioclase of gabbros and is the result of mixing with recharge 

seawater and supercritically phase-separated seawater-derived fluid. High 

salinity fluid (Type 3a) and halite-saturated fluid (type 3b) are observed in 

quartz grains of a trondjhemite intrusion. These fluids are interpreted to be 

generated by condensation of a magmatic fluid. Fluid chemistry is controlled 

by phase separation processes and mainly by fluid-rock interactions. 

Isotopic analyses show that fluids circulated mainly close to the 

detachment fault and that limited amounts of fluid escaped into the footwall. 

Whole rock isotopic analyses show that gabbros are relatively little altered 

while serpentinites show elevated strontium isotope ratios. Small sample 

analyses show that gabbros are heterogeneous, with amphibole vugs and 

prehnite showing elevated seawater-like values, amphiboles replacing 

pyroxene intermediate values, and plagioclase commonly retaining igneous 

values. Serpentinites might be contaminated by late carbonate precipitation. 

However, the elevated strontium isotope ratio of prehnite replacing 

plagioclase during .formation of micro-rodingite argues for the serpentinising 

fluid being seawater like. Oxygen isotope analyses support the conclusions 

of metamorphic petrology, that the majority of alteration took place at 

temperatures > 300 °C. The patterns of hydrothermal alteration can be 

understood in terms of kinetically limited exchange of isotopes between fluid 

and rock. High flux pathways such as the amphibole vugs were formed at 

low effective Damkohler numbers (No), such that the amphibole reflects the 

fluid composition while the altered plagioclase in the vug walls have rock­

dominated isotopic ratios. Tremolite-talc veins also appear to have formed 

under high flux, low No conditions, while tremolite-chlorite coronas and 

micro-rodingite veins are also quite high flux features. Reaction permeability 

may have played a role in generating all of these fluid pathways. Although 

nominal fluid fluxes can be calculated on the basis of the downhole isotopic 

profile, it is likely that the main direction of fluid flow was parallel to the fault 

and hence perpendicular to the Hole. The evolution of fluid flow and 

alteration in the Atlantis OCC can be interpreted in terms of the TAG model 

in which fluid discharge at black smoker temperatures occurs up the fault 

zone. 
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Chapter 1 Thesis Introduction 

Chapter 1. Introduction 

1.1 Introduction to the scientific problem 

Alteration of the oceanic crust by hydrothermal circulation is one of 

the most important processes in the Earth System, responsible for cooling of 

ocean lithosphere affecting the heat budget of ocean crust (Stein & Stein, 

1994) and making a significant contribution to the chemistry and the isotopic 

composition of oceans (Edmond, et al., 1979; Palmer & Edmond, 1989). The 

ocean crust is one of the last frontiers for geological studies but the problem 

is that key samples are hard to collect and most of the crust is inaccessible. 

The composition of hydrothermal vent fluids and the composition of seawater 

are well known, but because of the sampling difficulties, the state of 

knowledge regarding fluid flow mechanisms is still quite ill-defined. 

In addition, heterogeneities of the oceanic lithosphere make the 

challenge even more difficult. Variations in crust structure are indeed 

observed between ultraslow/slow spreading crust and fast spreading crust. 

Fast spreading crust is characterised by a significant magma supply and 

"cake model" crust with pillow lavas underlain by diabase sheeted dikes and 

gabbros. Slow spreading ridges crust is structurally more complex and is 

mainly characterised by a low magma supply and low angle detachment 

faults responsible for the exhumation of lower crustal and upper mantle rocks 

on the seafloor forming corrugated massifs. These massifs are known as 

oceanic core complexes (OCCs) (Blackman, et al., 2002; Cann, et al., 1997; 

Dick, et al., 1991; Dick, et al., 2000; Karson, 1990; Tucholke & Lin, 1994; 

Tucholke, et al., 1998). Approximately half of the global mid-ocean ridges 

spreads at slow rates (Carbotte & Scheirer, 2004) and OCCs have been 

estimated to cover approximately 30% of the Atlantic Ocean floor (Smith, et 

al., 2008) so hydrothermal alteration of such crust is important for the 

evolution of the lithosphere and the geochemical budget of oceans. Large 

hydrothermal systems such as TAG (Trans-Atlantic Geotraverse) are 

associated with detachment faults and may involve much deeper fluid 

circulation than typical systems at fast spreading ridges 
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Nonetheless, even if an important number of OCCs have been 

identified along the Mid-Atlantic Ridge, only two have been extensively 

studied: the 15°45'N Massif and the Atlantis Massif (Blackman, et al., 1998; 

Blackman, et al., 2006b; Blackman, et al., 2002; Boschi, et al., 2006; Cann, 

et al., 1997; Oelacour, et al., 2008a; Oelacour, et al., 2008b; Oelacour, et al., 

2008c; Escartin, et al., 2003; McCaig, et al., 2010; McCaig, et al., 2007; 

Nozaka & Fryer, 2011). 

The Atlantis Massif (AM) is an Oceanic Core Complex (OCC), which 

formed in the past 1.08 ± 0.07 My to 1.28 ± 0.05 My (Grimes, et al., 2008), 

located at the inside corner of the Mid-Atlantic Ridge (MAR) and the Atlantis 

Transform Fault (ATF) (30 0 N) (Figure 2-1). The AM is composed of three 

different parts: The central dome dominated by gabbroic rocks, the southern 

wall dominated by serpentinites, being the host of the Lost City hydrothermal 

field, and the eastern block, interpreted as a fault-bounded block of basaltic 

material structurally lying above the central dome. The central dome has 

been the subject of two consecutive lOOP expeditions 304 and 305 in order 

to investigate processes controlling the formation of OCCs and the exposure 

of ultramafic rocks in a young oceanic lithosphere. Overall, two deep holes 

(U1309B and U13090), and five shallow-penetration holes recovering upper 

sediment cover and fragments of detachment faults (U1309A and U1309E­

H) have been drilled (Figure 2-1). More details are provided in chapter 2. 
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1.2 Main goals and objectives of the thesis 

The aims of this project are (1) to test and refine models for 

permeability generation and hydrothermal alteration in oceanic gabbros, (2) 

to characterise the fluids that circulate in IODP hole U1309D, (3) to assess 

fluid fluxes related to various stages of alteration, (4) to assess what 

processes control the fluid chemistry, (5), to better constrain how fluids 

circulate in OCCs. 

To answer these questions, fluid inclusion studies such as 

microthermometry (Chapter 3), and Laser Ablation Inductively Coupled 

Plasma Mass Spectrometry (Chapter 4), and geochemical studies of 

strontium and oxygen isotopes (Chapter 5) were undertaken. These studies 

were carried out with the support of transmitted microscope and Scanning 

Electron Microscope (SEM) + Electron Microprobe Microanalyser (EPMA) 

observations and analyses of alteration fronts and phases. 

Fluid inclusion work was conducted on quartz veins and plagioclases 

in gabbros as well as quartz grains of a trondjemitic intrusion. Strontium and 

oxygen measurements were carried out on powders and/or mineral extracts 

of lithologies representative of the diversity of both IODP Hole U1309B and 

D. 
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1.3 Thesis outline 

The following chapters present petrological, chemical, and 

geochemical studies on samples from IODP Hole U1309B and D located at 

the central dome of the Atlantis Massif. Throughout the thesis the inferred 

geology beneath the TAG hydrothermal field is used as a framework within 

which to interpret the data obtained from the Atlantis massif, an analogy first 

proposed by McCaig et al., (2010). 

This chapter presents the overview of the thesis with scientific 

background to the research. 

Chapter 2 describes the geology of the Atlantis Massif and contains 

petrographic descriptions of rocks recovered at the central dome of the 

Atlantis Massif during the 304 and 305 expeditions. Descriptions of all the 

rock types defined by Blackman et al. (Blackman, et al., 2006a; Blackman, et 

al., 2002) are given. Alteration history and common metamorphic reactions 

observed in the cores are also reviewed. 

In chapter 3, fluid inclusions observed in quartz veins and in 

plagioclase of gabbros are described petrographically. Results from 

microthermometry are presented and compared to previous studies in 

oceanic sections (Kelley & Delaney, 1987; Kelley & FrOh-Green, 2001; Kelley 

& Malpas, 1996; Kelley, et al., 1993; Saccocia & Gillis, 1995; Tivey, et al., 

1998; Vanko, 1992) and in ophiolites (Cowan & Cann, 1988; Hopkinson & 

Roberts, 1996; Kelley & Robinson, 1990; Kelley, et al., 1992; Morgan, 2008; 

Nehlig, 1991). This chapter also provides a discussion on processes 

generating salinity variations observed in the fluid inclusions. Results are 

finally replaced in the context of the TAG model interpreted from seismicity 

(deMartin, et al., 2007) in order to better constrain the location of trapping of 

fluid inclusions during the exhumation history of the Atlantis Massif. 

Chapter 4 summarises the fluid chemistry of fluid inclusions obtained 

by Laser Ablation Inductively Coupled Plasma Mass Spectrometry 

(LAICPMS). The results are compared to data from Troodos and from lOOP 

Hole U1256D (Morgan, 2008) that is to date the only study of fluid inclusion 
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chemistry in oceanic sections. In the past, Results are compared to TAG 

vent fluids as a means of constraining the nature of fluid trapped in fluid 

inclusions in the hydrothermal system. Finally, a discussion on the processes 

influencing the chemistry of hydrothermal fluids is undertaken in which 

metamorphic reactions observed in the core are reviewed. 

Chapter 5 gives the results from isotopic analyses on samples from 

lOOP Holes U13098 and O. Strontium and oxygen isotopes were combined 

in order to better constrain the intensity and temperature of seawater/rock 

interaction at the Atlantis Massif. Previously reported small sample results 

are also presented. Extracts from individual minerals have been analysed 

both for strontium and oxygen, in addition to the bulk rock from which they 

belong. Results are compared to various oceanic sections such as the 

15°45'N Massif (McCaig, et a/., 2007), lOOP Hole 5048 (Alt, et al., 1996) and 

7358 (Hart, et a/., 1999). Results are also used to quantify fluid fluxes at the 

Atlantis Massif and replaced in the context of the TAG model. 

Chapter 6 summarises the main results and conclusions of this work, 

in addition to views on potential and needed future work. 

Appendices are presented at the end of the thesis. It comprises all 

the micro probe analyses (appendix 1), all the microthermometry 

measurements (appendix 2), LAICPMS data (appendix 3), details on 

analytical procedures used for strontium analyses (bulk rock and small 

samples) (appendix 4). 
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Chapter 2. The Atlantis Massif, lOOP Site 

Hole U1309 Band 0, 300 N Mid-Atlantic 

Ridge: Petrology and Metamorphism 

2.1 Introduction 

This chapter has the aim to set the geological context of this study. A 

summary of the principal features of the Atlantis Massif (AM) as well as the 

mechanism of formation of the massif are presented. Following this, the 

different types of rock recovered at IODP Hole U1309B and D are described 

with their primary and secondary mineral assemblage. Geochemistry of the 

principal secondary minerals encountered in all rocks (plagioclase and 

amphibole) analysed with electron micro probe is also presented in this 

chapter. The whole collection of analyses is tabulated in Appendix 1. The 

alteration history and metamorphic facies with their main consequences for 

rocks occurring in the AM are described. Finally, a description of the TAG 

hydrothermal system model that is going to be used in the following chapters 

is presented. 
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2.2 The Atlantis Massif 

The Atlantis Massif (AM) is an Oceanic Core Complex (OCC), which 

formed between 1.08 ± 0.07 My and 1.28 ± 0.05 My (Grimes, et al., 2008). If 

is located at the inside corner of the Mid-Atlantic Ridge (MAR) and the 

Atlantis Transform Fault (ATF) (30 0 N) (Figure 2-1). The OCC is a dome-like 

exposure of variably deformed and metamorphosed lower crustal and upper 

mantle rocks that has been unroofed by movement on a major detachment 

fault (Figure 2-2) (Blackman, et a/., 2002; Blackman, et al., 2011; Cann, et 

a/., 1997; Dick, et al., 1991; Dick, et a/., 2000; Karson, 1990; Tucholke & Lin, 

1994; Tucholke, eta/., 1998). 

The AM is composed of three different parts: The central dome, the 

southern wall, being the host of the Lost City hydrothermal field, and the 

eastern block, interpreted as a fault-bounded block of basaltic material lying 

structurally above the central dome. The central dome is characterised by a 

corrugated surface believed to be an exposure of a major detachment fault 

responsible for the uplift of the massif. The corrugations are parallel to the 

spreading directions and have a wavelength of approximately 1000 m, 

amplitude of tens of meters, and length of several kilometres (Cann, et al., 

1997). 

The central dome has been the subject of two consecutive IODP 

expeditions 304 and 305 in order to investigate processes controlling the 

formation of OCCs and the exposure of ultramafic rocks in young oceanic 

lithosphere. Overall, two deep holes (U1309B and U1309D), and five 

shallow-penetration holes recovering upper sediment cover and fragments of 

detachment faults (U1309A and U1309E-H) have been drilled (Figure 2-1). 

Hole U1309B initiated at the same location as Hole U1309A (30 0 10.11'N, 

42°07.11W; 1642 mbsl) is 20 m away from Hole U1309D and was drilled up 

to 101.8 mbsf with an average recovery of 46% for the upper 25 m and 52% 

for the rest of the core. Site U1309 Hole D, located at 30 0 10.12'N, 

40°07.11 'W, 1645 mbsl, penetrated 1415.5 mbsf, with a recovery of 75% 

comprising intrusive basalt (3%), gabbroic (91 %) and olivine-rich rock (5%) 

consisting of dunites, wehrlites, troctolites, as well as a few mantle 
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peridotites (harzburgite) in the upper 200 m (Figure 2-3) . The core presents 

strong evidence of penetration of altering fluids . Alteration occurred over a 

range of temperatures ranging from granulite facies to zeolite facies . For 

more details, see paragraph 2.5. 
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Figure 2·1: 3D view of the Atlantis Massif from a WSW perspective, showing 
morphotectonic features (different parts of the massif), and the location of lOOP holes 
U1309A·E. Illumination comes from SE. Vertical exaggeration is about 1.8. A colour 
scale is shown to indicate the bathymetry.(Blackman, et al., 2006) . 
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Figure 2·2: Schematic 3D cross section of the Atlantis Massif. Detachment 
fault is shown as a curved white line which steepens at depth. Location of U1309D is 
also shown in white. Red bodies represent active zones of intrusions. Blue sills are 
gabbro bodies intruding each other and forming the plutonic sequence of the 
lithospheric crust. Dykes also intrude one another and are shown in blue green. 
Pillow lavas lie on top of the dykes (from Grimes et al., 2008) . 
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Figure 2-3: Lilthostratigraphy of holes U1309B and U1309D (Blackman, et a/., 
2006). 
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2.3 Petrology of the Atlantis Massif 

This section describes the igneous petrology and the metamorphic 

petrology of lithologies recovered at the two main core sections of the 

Atlantis Massif during campaign 304 and 305, IODP Hole U1309B and 

U13409D. 

2.3.1 Igneous and metamorphic petrology 
Samples recovered at IODP Hole U1309B and U1309D are mainly 

from the gabbro group with a few intercalated serpentinised peridotites and 

olivine-rich troctolites. Basalts and diabases are recovered in the upper part 

of the cores and locally as intrusions into other lithologies deeper in the 

holes. These lithologies represent approximately 3% of the overall coverage. 

The gabbroic rocks are variable in composition and comprise medium to 

coarse-grained gabbro and gabbronorites (55.7%), olivine gabbros and 

troctolitic gabbros (25.5%), troctolites (2.7%), and oxide gabbros (7%). 

2.3.1.1 Diabase 

Diabases are recovered mainly from the upper 150 mbsf of the IODP 

Hole U1309D but also occur as intrusions into gabbro at several depths (the 

deepest was recovered at 1377.6 mbsf). In Hole U1309B, diabases are 

present throughout the entire depth (Figure 2-3). Basalt represents the fine­

grained margins of diabase intrusions, and the apparently higher proportion 

of basalt relative to diabase in Hole 1309B is not significant. 

Diabases are characterised by a fine to medium-grained ophitic to 

subophitic texture with laths of plagioclase surrounded by clinopyroxene 

(Figure 2-4A). Clinopyroxene is partially altered to amphibole, and 

plagioclase is relatively unaltered; non-uniform alteration to albite occurs in 

the rim or in the core of laths. 

2.3.1.2 Gabbro and gabbronorite 

Gabbros and gabbronorites are the most common lithologies in both 

IODP Hole U1309B and D (Figure 2-3). They are found at all levels in both 

cores. Primary mineral assemblage for gabbros consists of anhedral 
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plagioclase of intermediate composition (labradorite/bytownite; see 

paragraph 2.4.1) and anhedral clinopyroxene, Fe oxides, and/or 

orthopyroxene, with a low percentage of olivine rarely exceeding a few 

percent. Plagioclase is usually anhedral and sometimes deformed (undulose 

extinction and deformed twins - Figure 2-48 and C). It shows interlocking 

textures with clinopyroxene and sometimes high temperature equigranular 

recrystallisation textures (Figure 2-4C), especially at contacts. Grain size 

varies through depth from microgabbros (grain size <1 mm) to seriate 

medium-grained gabbros to pegmatitic gabbros (grain size >10cm generally 

above 650 mbsf) (Figure 2-5A, 8 and C). The mineral assemblage of 

gabbronorites consists of anhedral plagioclase, clinopyroxene and 

orthopyroxene >5% (low Ca-pyroxene) occurring as large subhedral grains in 

coarse gabbros and more commonly anhedral in microgabbros. 

Plagioclase is rarely altered to albite and when it is fractured, the 

fractures are filled in with chlorite. Clinopyroxene is commonly altered to 

amphibole: hornblende under amphibolite facies, and actinolite and/or 

tremolite under greenschist facies (Figure 2-4C). 

2.3.1.3 Olivine gabbro and troctolitic gabbro 

Olivine gabbros and troctolitic gabbros (Figure 2-5D and E) are the 

second most common lithologies at the Atlantis Massif. They are mostly 

found in the intervals 400-600 mbsf, 1000-1100 mbsf, 1200-1300 mbsf, and 

1380-1415 mbsf in lOOP Hole U13090 and between 70 and 90 mbsf in 

lOOP Hole U 1309B. Modal composition of olivine gabbros vary greatly with 

modal olivine raging from 5% to 50%. The primary mineral assemblage 

consists of interstitial olivine, euhedral to anhedral plagioclases (25% to 

80%), anhedral interstitial clinopyroxene (10% to 70%) interlocking with 

plagioclase and rare orthopyroxene (more common in the upper part of the 

core). 

Olivine is replaced by serpentine and magnetite at depth (Figure 

2-4E). In the upper part of the core, plagioclase and olivine have reacted 

together to form a corona texture (Figure 2-4D and Figure 2-5F) in which 

chlorite replaces plagioclase and tremolite replaces olivine at the contact 
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between plagioclase and olivine. Clinopyroxene is partially to completely 

altered brown amphibole (hornblende, amphibolite facies) and green 

amphibole (actinolite and/or tremolite, greenschist facies). Alteration occurs 

particularly along exsolution lamellae. Micro-rodingite (Frost, et al., 2008) 

occurs as thin seams in which plagioclase is replaced by prehnite +/­

hydrogarnet, and olivine by serpentine + magnetite. It occurs below about 

350 mbsf where the corona formation had not gone to completion (Figure 

2-4G; Figure 2-5G; see troctolites paragraph for more details 2.3.1.4). 

Plagioclase exhibits high temperature recrystallisation indicating 

crystal-plastic deformation in rare shear zones at the top of the hole. 

Secondary minerals indicate static metamorphism under greenschist facies 

conditions. 

2.3.1.4 Troctolite 

Troctolites represent only 2.7% of lithologies in lOOP Hole U13090. 

They are mainly found in the interval 400-600 mbsf. Primary mineral 

assemblage in modal composition consists of olivine from 30 to 70%, 

subhedral to anhedral plagioclase form 30 to 50%, and clinopyroxene (S 

5%). The relative proportion of plagioclase and olivine is significantly 

variable, and spatial gradation into troctolitic gabbros or olivine gabbros is 

commonly observed. 

Olivine-rich troctolites are rocks with relatively low modal plagioclase 

and clinopyroxene, comprising dunite and wehrlite, in addition to troctolite. 

They represent 5.4% of the total recovery of lOOP Hole 13090 and are 

concentrated in the interval between 1092 and 1236 mbsf although they are 

found throughout the entire core. Olivine-rich troctolite has a high modal 

olivine percentage (70 to 90%) showing subhedral to rounded grain shape, 

interstitial to poikilitic plagioclase (5 to 20%) and clinopyroxene (0 to 15%). 

Alteration in these particular rocks is significantly variable with the 

degree of serpentinisation ranging from >90% to nearly unaltered (1 %) 

(Figure 2-4E and F). The secondary mineral assemblage consists of 

serpentine ± magnetite after olivine and chlorite + prehnite + hydrogarnet 
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after the neighbouring plagioclase (Figure 2-4G and Figure 2-5G). Prior to 

that reaction, corona forms between olivine and plagioclase as described in 

2.3.1.3 but do not go to completion, hence the chlorite rim in Figure 2-4G. 

The sequence of reactions is as follows: coronas followed by 

serpentine +/- prehnite and hydrogarnet. However, the high proportion of 

olivine means that plagioclase is often completely consumed in the corona 

reaction. In this case olivine alters to serpentine/brucite/magnetite 

assemblages in a sequence described by Beard et al. (2009). 

2.3.1.5 Oxide gabbro 

Oxide gabbros (Figure 2-4H and Figure 2-5H) represent a relatively 

important percentage of recovery at IODP Hole U1309D with 7% of the 

overall lithologies. Apart from the Fe-Ti oxide content «2%), the primary and 

secondary mineralogy is similar to the coarse-grained gabbros. Accessory 

minerals such as apatite and less commonly zircon occur in oxide gabbros. 

Titanite is also present as an accessory phase. It is nonetheless difficult to 

determine whether titanite is of magmatic or metamorphic origin. However, 

brown amphiboles that are believed to be magmatic are relatively common in 

oxide gabbros. 

2.3.1.6 Leucocratic intrusions 

Leucocratic intrusions occur as veins or dikes crosscutting the 

general fabric of the surrounding rocks (Figure 2-5/). They are centimetre­

scale anorthosite, quartz diorite, and tonalite / trondjhemite leucocratic melt 

intrusions (Grimes, et al., 2008), characterised by a light colour from the 

albite-rich plagioclase ± chlorite. They consist primarily of brown amphibole 

(hornblende) to green amphibole (actinolite) and plagioclase. These dikes 

commonly host accessory minerals such as titanite, epidote (important phase 

in the alteration assemblage between 380 and 950 mbsf but scarce both 

below and above this interval), apatite, calcite and zircon and are interpreted 

as igneous in origin derived from evolved silicate melts with solidus 

temperatures estimated between -750 and 850°C (Blackman, et al., 2006). 
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Figure 2-4 : Photomicrographs of thin sections from 10DP Hole U1309B and 
D. A: Medium-grained diabase (U1309D 16R-2 58-61 cm) ; subophitic texture with laths 
of plagioclase in a clinopyroxene matrix often replaced by actinolite (cross polarised 
light). B : Deformed plagioclase showing microfractures and undulose extinction as 
well as bended twins (U1309B 9R-1 38-41 cm) (cross-polarised light, field of view = 4 
mm). C: Mylonitic gabbro with high temperature recrystallisation of plagioclase and 
replacement of clinopyroxene by actinolite and tremolite (U1309D 8R-2 138-141 cm) 
(cross polarised light). 0: Corona texture in olivine gabbro consisting of tremolite 
replac ing oliv ine and chlorite after plagioclase at the original contact between the two 
initial minerals (U1309D 80R-2 16-19 cm) (cross polarised light, field of view = 1.4 
mm). E: Troctolite in which olivine is replaced by serpentine + magnetite (U1309D 
80R-1 39-41 cm) (plane polarised light, field of view = 5.5 mm). F: Fresh olivine and 
plagioclase in olivine-rich troctolite (U1309D 248R-2 7-9 cm) (cross-polarized light, 
field of view = 11 mm). G: Plagioclase in olivine-rich troctolite that has been partially 
replaced by prehnite and hydrogrossular during the micro-rodingitisation reaction ; 
chlori te at the contact between serpentine and plagioclase is a relict of the earlier 
corona forming reaction , although some has also grown during the micro-rodingite 
development (U1309D 63R-3 54-57 cm) (plane-polarized light, field of view = 10 mm). 
H: Oxide gabbro (U1309D 133R-1 24-26 cm) (plane-polarized light, magnification = 
10x). Pig = plagioclase; Px = Clinopyroxene; Act = Actinolite ; Chi = Chlorite ; Trm = 
tremolite; 0 1 = Olivine; Serp = Serpentine; Prh = Prehnite ; Hgt = Hydrogarnet ; Ap = 
Apat ite. 
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Figure 2·5 : Photographs of cored samples of IODP Holes U1309B and D I. A : 
Coarse gabbro (U1309B 9R·1 44·48 cm. B: Contact between medium·grained 
gabbronorite and micro'gabbronorite (U1309D 165R·1 37-57 cm). C: Pegmatitic 
gabbro (U1309D 82R·2 5~7 cm). 0: Contact and example of spatial gradation from 
olivine gabbro into troctolite (U1309D 251R·1 44-65 cm). E: Contact and example of 
spatial gradation from olivine gabbro into olivine·rich troctolite; this particular 
example show a partially serpentinised olivine·rich troctolite (U1309D 227R·2 22-45 
cm).F: Olivine gabbro showing the corona texture where tremolite and chlorite 
replace olivine and plagioclase respectively at the contact between those two 
minerals (U1309B 15R·1 107·113 cm). G: Olivine gabbro showing the rodingitisation 
reaction in which prehnite is replacing plagioclase (U1309D 60R·3 48·68 cm) . H: Oxide 
gabbro (U1309D 87R·2 59-76 cm). I: Leucocratic dike containing epidote and bladed 
pyroxene growing inward from margin + secondary plagioclase, titanite and actinolite 
(U1309D 75R·2 74-82 cm). Pig = plagioclase; Cpx = clinopyroxene; Chi rim = chlorite 
rim ; Trm = tremolite. White boxes represent 2 cm. 
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2.3.1.7 Amphibole vugs 

Figure 2-6 shows examples of amphibole + clay vugs. One example 

is observed in Hole U1309B (Figure 2-6A) and several in Hole U1309D, one 

at -50 mbsf (U1309D 8R-2 55-60 (Figure 2-68», and below 140 mbsf. They 

are rare below 1000 mbsf. They occur as dark green patches as long as 8 

cm and are filled almost entirely with fine-grained actinolite and have 

"bleached" milky wallrocks as wide as 2 cm, in which turbid secondary 

plagioclase and actinolite needles are developed. XRD analyses (Figure 2-7) 

show that those amphibole vugs consist of actinolite + clay, possibly saponite 

(Blackman, et al., 2006). 

2.3.1.8 Serpentinised peridotite 

Peridotites represent less than 1 % of the total recovery of Hole 

U1309B and D (Figure 2-3). Different peridotites recovered consist of 

harzburgite (Figure 2-8A, 8 and D), wehrlite and dunite (Figure 2-8C). 

Primary mineralogy consists of olivine, orthopyroxene and/or clinopyroxene, 

and chromium spinel. Plagioclase is also present but is the result of melt 

impregnation (Figure 2-88) (Drouin, et al., 2009). Texturally, serpentine 

occurs via the development of kernel texture in which olivine grains are 

penetrated and surrounded by serpentine veinlets, leaving isolated relic 

olivine. Serpentine forms mesh texture when olivine is completely altered. 

Pyroxenes are replaced by serpentine as well (bastite pseudomorph). In 

harzburgite, orthopyroxene and olivine are usually completely replaced by 

. serpentine, and in wehrlite relics of olivine and diopside can be observed. 

Carbonate such as magnesite appears to replace relict olivine in mesh 

texture, and calcite veins are also present at contacts with gabbros 

(Blackman, et al., 2006). 
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U1309B 14R-1 

Amphibole 
(actinol ite ) 
+/- clays 

Bleached 
walls 
Albite + An40 
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Figure 2-6: Photographs of cored samples II. Late magmatic intrusion 
hydrothermally altered. Vugs are filled with fine-grained actinolite + clay and walls 
contain turbid secondary plagioclase and actinolite needles. A = U1309B 14R-1 ; B = 
U1309D 8R-2 55-60 cm. C = Back-scattered electron microphotograph of bleached 
walls of U1309D 8R-2 55-60 cm 
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Figure 2-7: XRO spectra of samples showing green fine-grained amphibole 
filled vugs. The spectra show that these vugs can contain a certain amount of clays -
possibly saponite (Blackman, et al., 2006). U1309B 14R-1 59-66 cm analysed at School 
of Earth and Environment - Leeds; U13090 8R-2 56-57 cm analysed on ship board 
during lOOP campaign 304. 

2.3.1.9 Talc tremolite schist 

Talc tremolite schists and talc tremolite veins are a minor but 

important component of the rocks recovered in Hole U1309D. Talc tremolite 

assemblages are commonly found at contacts between ultramafic and mafic 

rocks and talc tremolite veins cut peridotites (Sample U1309B 11 R-2 35-51 

cm - Figure 2-80). This sample shows a zone of green tremolite and pale 

talc replacing serpentinised harzburgite. This zone has undergone reverse 

shear (in the present core orientation) along talc-rich horizons, but the 

margin of talc alteration against serpentinite is unsheared , overprinting the 

preexisting serpentinite foliation defined by magnetite seams and serpentine 
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ribbons. The zone tapers upward in the present orientation and has an outer 

talc-rich zone with an isotropic fabric replacing serpentinite and an inner 

tremolite-rich zone with highly schistose talc bands. Dark grains within the 

talc alteration are bastites containing serpentine + magnetite assemblages 

(Blackman, et al. , 2006) .The metasomatic alteration is due to circulation of 

fluid rich in Si and Ca from mafic to ultramafic rocks. (Blackman , et al., 2006 ; 

Boschi, et al., 2006) . 

Figure 2-8 : Photograph of cored samples from lOOP Hole U1309B and D. A : 
Serpentinised harzburgite in contact with a coarse gabbro; the contact is marked by a 
talc-tremolite alteration (U1309B 11 R-1 86-99 cm). B: Serpentinised plagioclase­
bearing harzburgite (U1309D 27R-3 0-8 cm). C: Dunite almost totally serpentinised 
(U1309D 31 R-1 24-33 cm) . 0: Zone of green tremolite and pale talc replacing 
serpentinised harzburgite (U1309B 11 R-2 25-50 cm). This zone has undergone 
reverse shear along talc-rich horizons, but the margin of talc alteration against 
serpentinite is unsheared, overprinting the preexisting serpentinite foliation defined 
by magnetite seams and serpentine ribbons. The zone tapers upward and has an 
outer talc-rich zone with an isotropic fabric replacing serpentinite and an inner 
tremolite-rich zone with highly schistose talc bands. Dark grains within the talc 
alteration are bastites containing serpentine + magnetite assemblages. White boxes 
represent 2 cm. 
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2.4 Mineral chemistry of gabbroic rocks at 
Hole U1309B and D 

2.4.1 Chemistry of plagioclases in lOOP Holes 
U1309B and 0 
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Figure 2-9: Plagioclase chemistry in lOOP Holes U13098 (open symbols) and 
U13090 (solid symbols). Approximate depth below seafloor can be estimated using 
the following formulae; For Hole 13098, depth = (core number)*5 + 5m. For Hole D, 
depth = (core number)*5 + 20m. 

Figure 2-9 shows a summary of electron micro probe data for 

plagioclase of lOOP Hole U 1309B and Hole U 13090. The whole collection of 

analyses made in this study is presented in appendix 1, and mainly come 

from the upper 100m of the two Holes with the exception of two samples 

coming from about 200 mbsf and one from about 375 mbsf. Open symbols 

are analyses of Hole B, and solid symbols are analyses of Hole O. 

Plagioclase chemistry is significantly variable and covers the full range from 

bytownite to albite with only a few example of anorthite . 

In gabbro and diabase, primary igneous plagioclase is generally in 

the range An40 to An65, with more An-rich compositions occurring in olivine­

rich lithologies such as troctolite. Plagioclases with An contents < 40% are 

mainly secondary with the exception of late leucocratic veins (trondjemite) . 

Igneous plagioclase commonly shows zoning while secondary plagioclase is 

present as bleached margins of veins (Figure 2-6), thin albitic veinlets and 
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irregular patches replacing primary plagioclase. An-rich secondary 

plagioclase, as observed in diabase in OOP Hole 5048 (Vanko & Laverne, 

1998) has not been observed. 

2.4.2 Chemistry of amphiboles in lOOP Holes 
U13098 and 0 

Figure 2-10 shows the range in amphibole chemistry recovered in 

both lOOP Holes U13098 and D according to the amphibole classification 

described by Leake et a/. (1997). The whole collection of amphibole analyses 

is available in appendix 1. Amphiboles of high temperature (amphibolite 

facies) and of low temperature (greenschist facies) are recovered. 

Magnesiohornblende and actinolite are the two main amphiboles found in 

both cores. Tremolite is usually found in olivine-rich rocks such as troctolite. 

An unusual enrichment in Fe is observed in olivine gabbro sample (U1309D 

144R-1 105-116 cm) in which ferroactinolite is found. Greenschist 

amphiboles seem to be the most abundant in both cores. Amphiboles from 

corona formation are systematically tremolite, although hornblende has been 

identified as a secondary phase (Nozaka & Fryer, 2011). Greenschist facies 

amphiboles commonly replace clinopyroxene (see paragraph 2.5). 
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Figure 2·10: Amphibole chemistry in lOOP Holes U1309B and D. Amphiboles 
from Hole U1309B are plotted with open symbols, and amphiboles from Hole U1309D 
are plotted with solid symbols. The top panel is a plot of silicon in the tetrahedral site 
against the Mg number, allowing us to name the amphibole recovered in both lOOP 
Holes U1309B and D. The bottom panel is a plot of the sum of cations K and Na in the 
site A against the number of AI in the tetrahedral site, allowing us to determine the 
temperature and the facies of amphiboles present in the cores. The lower the two 
numbers are, the lower the temperature is. 
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2.5 Alteration history 

IODP Holes U1309B and D record the cooling history of plutonic 

rocks from magmatic conditions (>1000°C) to zeolite facies conditions 

«200°C) during the unroofing and uplift of the AM. Samples from both cores 

present evidence of penetration of altering fluid. Nonetheless, even if one 

sample can show a range in metamorphic conditions, no sample contains the 

entire cooling history. The whole history is therefore inferred from 

observations on several samples (Blackman, et al., 2006; Backman, et al., 

2011). Overall, the intensity of alteration is moderate, decreases downhole, 

and is related to the intensity of veining below 1000 mbsf (Figure 2-11). 

Exceptions to the downhole decreasing pattern of the alteration are observed 

in parts of the core where alteration is correlated to the abundance of olivine 

(interval 1100-1250 mbsf for instance). At great depths alteration is 

controlled by lithologies rich in olivine, lithological contacts, faults, and veins. 

The metamorphic chronology at site U1309 can be subdivided as follows and 

is summarised in Table 2-1: 

• Granulite facies metamorphism 

• Amphibolite facies metamorphism 

• Static upper greenschist facies to lower amphibolite facies 

metamorphism 

• Static lower greenschist facies to subgreenschist facies 

metamorphism . 

• Zeolite facies and clay grade metamorphism 
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2.5.1 Granulite facies metamorphism 
In more detail, the granulite facies alteration is characterised by 

mylonitic deformation, dynamic recrystallisation of plagioclase and pyroxene, 

and the presence of brown amphibole in a few thin shear zones, mainly in 

the upper part of the section. 

2.5.2 Amphibolite facies metamorphism 
Amphibolite facies alteration is manifested mainly by static 

replacement of pyroxene by green to brown hornblende in diabases, gabbros 

and especially in oxide gabbros, and in mylonitic zones. It is nonetheless 

difficult to estimate the extent of this metamorphic event due to the 

overprinting by greenschist amphibole alteration (Blackman, et al., 2006). 

2.5.3 Greenschist facies metamorphism 
The main alteration occurs in the greenschist facies. Distinctions 

between upper greenschist facies alteration and lower greenschist facies 

alteration are observed. 

2.5.3.1 Upper greenschist facies to lower amphibolite 
facies metamorphism 

Upper greenschist facies assemblages have textures indicative of 

growth under static conditions, without deformation. It is mainly characterised 

by the formation of secondary plagioclase, and secondary amphibole, with 

crystallisation of epidote related to late magmatic leucocratic intrusions below 

400 mbsf (Figure 2-5/). 

The major effect of the greenschist alteration in most gabbros and 

diabases is the replacement of pyroxene by actinolitic amphibole. All 

samples are affected by this alteration in the upper 300 m of Hole U 1309D; 

deeper, alteration is more associated with amphibole veins. 

In rocks containing both plagioclase and olivine, formation of 

tremolite-chlorite ± talc corona textures occurs. Tremolite replaces olivine 

and chlorite replaces plagioclase. This reaction is accompanying by a 

volume expansion which is compensated by radial fractures around the 

olivine that propagates in plagioclase. Those fractures are filled in with 
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chlorite. Corona textures are usually observed in the upper 300 m of Hole 

U1309D (Figure 2-11 alteration mineral section) where the reaction goes to 

completion by removing completely either olivine or plagioclase. At greater 

depths, this reaction becomes localised by amphibole veins and rims of 

gabbro dikelets (Blackman, et al., 2006). In the absence of olivine, 

plagioclase seems to be unaltered, except in the vicinity of veins and late 

magmatic/leucocratic intrusions, where albitisation occurs. 

2.5.3.2 Lower greenschist facies to subgreenschist facies 
metamorphism 

Serpentinisation of olivine occurs above 300 mbsf when olivine is in 

excess over plagioclase and has survived the corona formation. Below 300 

mbsf, rodingitisation takes over from simple serpentinisation and is 

characterised by the replacement of neighbouring plagioclase by prehnite ± 

hydrogrossular (Frost, et al., 2008) (Figure 2-11 alteration mineral section). 

The fluid influx that produced the serpentine-prehnite alteration was localised 

and clearly fracture related and serpentine-prehnite ladder veins commonly 

appear to follow stress trajectories, so a tectonic control appears probable 

(Blackman, et al., 2006). 

Serpentinisation is overprinted by metasomatic talc-tremolite vein 

alteration that is the result of fluid rich in Si and Ca circulating form mafic to 

ultramafic rocks (Blackman, et al., 2006). Talc-tremolite-chlorite schist 

formation after ultramafic rocks occur in the upper 30 m of both Holes 

U1309B and D. They are inferred to reflect the deformation on the 

detachment fault (Boschi, et al., 2006) 

2.5.4 Zeolite facies and clay grade metamorphism 
Zeolites occur in late fractures and veins, and replacing plagioclase, 

but are only common below 700 mbsf. It is likely that much of the zeolite 

observed in fractures formed under ambient conditions because 

temperatures at the bottom of the hole were at least 120°C (Blackman, et al., 

2006). The lack of zeolite above 700 mbsf suggests rapid cooling during 

unroofing from >300°C to <80°C in the upper part of the Hole (Blackman, et 
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al., 2006; McCaig, et al., 2010). Clay minerals forms also in veins and as 

replacement of serpentine (Nozaka and Fryer, 2011; Nozaka, et a/., 2008) 

2.5.5 Summary paragenetic sequence 
The paragenetic sequence in IODP Holes Band D can be 

summarised as follows: 1) granulite shear zones; 2) corona textures probably 

formed in amphibolite and upper greenschist facies; 3) microrodingites and 

serpentinisation at <360DC; 4) talc-tremolite rocks locally overprinting 

serpentine; 5) zeolites and clays. In parallel with this is the general 

replacement of pyroxene by amphibole with a wide range of composition, 

accompanied by partial replacement of igneous plagioclase by more albitic 

plagioclase. Table 2-1 gives more details on mineral involved and 

temperatures of metamorphism. 

Table 2-1: Summary paragenetic sequence in lOOP Hole U13090. Pig = 
plagioclase; Px = pyroxene; lIary = secondary; Hb = hornblende; T = temperature; Act 
= actinolite; Trem = tremolite; 01 = olivine; Serp = serpentine; Preh = prehnite; Hgt = 
hydrogarnet. 

Description 
Primary Secondary Metamorphic Temperature 
minerals minerals facies estimates(°C) 

Recrystallisation Pig + Px 
lIary Pig + lIary 

Granulite facies High T (800) Px+ brown Hb 

Replacement Px 
Brown + green Amphibolite 

600-700 Hb facies 

Q) 
Replacement Px Act andlor Trem } Amphibolite and 400-500 

E Chi + Trem ± Greenschist 
i= Corona formation Plg+OI Talc facies 450 

Serpentinisation 01 Serp ± brucite } 300 

Rodingitisation Pig Preh + Hgt 
Greenschist 

<360 
facies 

Steatisation Serp Talc 400 

Vein filling Zeolite + clay Zeolite facies <300 
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2.6 The TAG Hydrothermal Model 

The TAG hydrothermal mound is located at 26D08'N in the middle of 

a 40 km long segment on the MAR. It is underlain by an arcuate zone of 

seismicity which steepens downwards beneath the Neo-Volcanic Zone to 

root at a depth of 7 km below seafloor (deMartin, et al., 2007) where gabbro 

bodies are emplaced. This arcuate zone of seismicity is inferred to be an 

active detachment that picks up the intrusive bodies and exhumed them to 

the seafloor (McCaig, et al., 2010). In this model, the detachment fault feeds 

the TAG hydrothermal field with hydrothermal fluid that discharges along the 

fault. However, it is important to remind that the maximum depth at which 

fluid can circulate and the localisation of any magma chamber is still ill 

defined. 

The evolution of the AM is used as an analogue for processes in the 

current TAG footwall. Figure 2-12 shows the position of IODP Hole U1309D 

in the model before it was exhumed. 

In the TAG model, fluid flow occurs along the major detachment fault 

with potential circulation at various fluid fluxes in the footwall (Chapter 5). 

The model suggests that the gabbroic sequence was altered by fluid flowing 

mainly upwards and parallel to the detachment fault, more or less 

perpendicular to the orientation of the hole at the time. Temperatures in the 

fault zone are buffered to -400 DC by upward flowing black smoker fluid, and 

temperatures in the footwall can only fall below this value in the later stages 

of exhumation. 
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2 Seawater TAG field 
3 

~ .. 
4 

..--
E 

5 ~ -.r:. 
Hypothetical a. 6 

<IJ U1309D 0 
7 position 

8 Maximum depth 
of fluid 
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10 
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Figure 2-12: Interpreted cross section through TAG (deMartin, et al. , 2007) . 
Maximum depth of circulation of fluid is shown (-9 km), as well as the hypothetical 
position of lOOP Hole U13090 at a time T. Isotherms are from McCaig et al. (2010). 
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Chapter 3. Fluid evolution in the oceanic 

crust: a fluid inclusion study from lOOP 

Hole U1309 D - Atlantis Massif, 30 ON. 

Microthermometry 

3.1 Introduction 
This chapter presents the microthermometric properties of fluid 

inclusions observed in 6 samples of IODP Hole U1309D. Samples and fluid 

inclusions are described petrographically. A reminder of what 

microthermometry is and what it is used for is also given in the methodology 

section. 

Results are compared with various studies of fluid inclusions in 

oceanic settings along the Mid-Atlantic Ridge such as the MARK area (Kelley 

& Delaney, 1987; Kelley, et al., 1993) and the Oceanographer Transform 

(Vanko, et al., 1992), as well as the South West Indian Ridge (Kelley & Fruh­

Green, 2001) and in ophiolites from Oman (Nehlig, 1991) and Troodos 

(Cowan & Cann, 1988; Kelley, et al., 1992). There follows a discussion on 

the processes that generate salinity variation as it is observed in the core. 

These processes are: subcritical phase separation (boiling) or supercritical 

phase separation (condensation) of a seawater-like fluid or magmatic fluid; 

magmatic fluids exsolving from melts; hydration/dehydration reactions; and 

variable mixing of hydrothermal fluid with a phase-separated brine or vapour. 

In the discussion, the evolution of fluids in the Atlantic Massif is discussed in 

the context of the TAG hydrothermal system. Hypotheses on processes and 

on conditions of trapping of fluids are therefore dependent on the TAG model 

(McCaig, et al., 2010) that is an interpreted cross section (Chapter 2) based 

on observations of deMartin et al. (2007). 

LEEDS UNIVERSI1Y LIBRARY 
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3.2 M icrothermometry methodology 

The fluid inclusion study has been undertaken using two methods; is 

microthermometry (this chapter) which is a non-destructive method , and 

laser ablation inductively coupled Mass Spectrometry(LAICPMS), which is a 

destructive method (Chapter 4) . 

Microthermometry is a technique allowing us to witness phase 

changes in fluid inclusions during cooling and heating . As fluid inclusions 

(primary inclusions) may either contain the fluid from which the mineral host 

grew, or fluids that were incorporated after growth of the mineral (secondary 

fluid inclusions) , they are witnesses of fluid circulation . Assuming that the 

chemical composition of the fluid and the volume of the cavity remain 

unchanged, it is possible via the results obtained by microthermometry to 

estimate the salinity and the density (hence the temperature and the 

pressure) of the fluid circulating at time of trapping . 

Nonetheless, processes such as diffusion, precipitation/dissolution 

and interaction with fluids having circulated previously in the rock can affect 

the composition of the fluid. Processes such as necking down , stretching , 

and decrepitation can change the volume of the cavity (Roedder, 1984). 

Special care must then be taken in order to not use such inclusions in 

interpretation. 

Figure 3-1: Photograph of the Linkam THMSG 600 (Source: 
www.linkam.co.uk). 
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3.2.1 Instrumentation 
Microthermometry measurements were carried out on an Olympus 

BX-SO transmitted light microscope mounted Linkam THMSG 600 heating­

freezing stage (Figure 3-1) covering a range in temperature from -196°C to 

+600°C from 300 !-1m thick double-polished wafers. The stage is controlled by 

a Linkam TMS 93 programmer via the LinkSys software version 2.15. 

Observation of fluid inclusions can be made by looking directly down the 

microscope or on the computer screen via a JVC TK-C1380 colour video 

camera. 

3.2.2 Analytical routine and data processing 
Repeated homogenisation and freezing measurements were 

undertaken on individual inclusions in order to observe phase changes (such 

as ice melting pOint, halite dissolution temperature, liquid-vapour 

homogenisation temperature) and to obtain homogenisation temperatures 

and fluid salinities (in Wt% NaCI equivalent). Salinities were calculated using 

the temperature of melting of ice (9) for low salinity fluids from the following 

equation (Bodnar, 1993): 

Salinity = 0.00 + 1.786 - 0.0044262 + 0.00055763 Equation 3·1 

Salinities for high salinity fluids were calculated using the 

temperature of dissolution of solid halite (Sterner, et al., 1988): 

Salinity = 26.242 + O. 49281/J + 1. 4291/J2 - O. 2231/J3 + 4. 129 X 10-21/J4 + 

6.295 x 10-31/Js - 1.9675 X 10-31/J6 + 1.112 X 10-41/J' Equation 3·2 

Where Ip is T (OC) dissolution of halitel1 00. 

Ice melting temperatures were reproducible to ± 0.1°C, giving an 

error of ± 0.17 Wt% NaCI equivalent for unsaturated inclusions. Halite 

dissolution temperatures were reproducible to ± O.soC giving an error of ± 

0.03 Wt% NaCI equivalent. Homogenisation temperatures were reproducible 

to ± 1°C. 
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3.2.3 Calibration 
Synthetic fluid inclusions of CO2 (Figure 3-2A) and of pure H20 

(Figure 3-28) in quartz have been used to calibrate the microthermometric 

stage at temperature of -56.6°C (triple point temperature of CO2) , O.O°C 

(triple point of H20 pure) and +374.1°C (critical point of H20 pure). 

Calibration was always checked previously to a set of measurement. If 

variations in any of the three temperatures of calibration used were 

observed , the necessary changes were conducted to the machine. 

® +20 0' C 

® +20.0· C 

H.O liquid 

·500· C OO' C +374.1·C 

10 11m 
I--f 

Figure 3-2: Photomicrographs of synthetic fluid inclusions used for 
calibration: A = Triple phased CO2 fluid inclusion, containing a H20 liquid phase and 
two CO2 phase, liquid and vapour. B = H20 pure fluid inclusions containing a liquid 
and a vapour phase. 
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3.3 Petrography 

This section describes the samples that were studied for 

microthermometry. Petrography of the rock including chemistry of mineral 

hosts along with petrography of the fluid inclusion populations are described. 

3.3.1 Diabase 
Diabases occur as intrusions mainly in the upper part of the cores, 

but also rarely deeper down in core U1309D (Figure 2-3) 

3.3.1.1 Sample U1309D 1R-1 41-44 

Sample U1309D 1R-1 41-44 cm is a subophitic medium grained 

diabase composed of laths of unaltered and fractured plagioclase of 0.1 to 

2.5 mm in length, with poikilitic augite generally partially replaced by green 

hornblende (Figure 3-3A). Ilmenite partially replaces magnetite. A 3 mm-wide 

quartz-chlorite vein crosscuts the general fabric of the matrix. Quartz grains 

are commonly equant in size and of irregular shape. They exhibit a texture in 

which the grains go to extinction in a radial pattern (Figure 3-38). It is difficult 

to determine the time relationship between quartz and the fine grained 

chlorite. In hand specimen, the chlorite was only on one side of the vein and 

most of the chlorite was lost during sample preparation. The chemistry of 

several laths of plagioclase is presented in Chapter 2 and in Appendix 1. 

Close to the quartz-chlorite vein, laths of plagioclase tend to have an albitic 

core and intermediqte edges (labradorite), whereas away from the vein (laths 

3,4 and 5), the opposite is observed. Chemistry of amphibole in this sample 

(see also Figure 2-10) is also presented in Appendix 1. No particular pattern 

away from the vein is observed. All amphiboles in this sample are green 

magnesiohornblende. 

3.3.1.2 Fluid inclusions 

Fluid inclusions occur as irregular shaped primary (?) inclusions 

clustering in the centre and clear part of the quartz grains of the vein (Figure 

3-4A). They are 2 phase liquid-dominated inclusions ranging in size from 5 to 

10 \Jm. 
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Figure 3-3: Photomicrographs; A = ophitic texture of diabase with laths of 
plagioclase, green hornblende and clinopyroxene relics as bright colours (sample 
U1309D 16R-2 58-61 cm piece 4, cross-polarised light). This sample is similar to the 
sample in which microthermometry was performed except that the grain size is 
coarser in that one. B = Quartz-chlorite vein in diabase (sample U1309D 1R-1 41-44 cm 
piece 1, cross-polarised light). C and 0= Troctolitic gabbro showing corona texture -
tremolite replaces olivine and chlorite replaces plagioclase (sample, plane-polarised 
light [C) and [0))). E = Actinolite replacing clinopyroxene in troctolitic gabbro (sample 
U1309D 5R-3 107-110 cm, piece 12, cross-polarised light). F = Graphic texture of 
trondjhemite (sample U13090 40R-1 21-24 cm , piece 5, cross-polarised light). 
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10pm 

Figure 3-4: Photomicrographs of fluid inclusions. A: Irregular shape primary 
(7) fluid inclusions of type 1a (see 3.4.1) in the quartz chlorite vein of sample U1309D 
1R-1 41-44 cm. B: Irregular shape secondary fluid inclusions of type 1b (see 3.4.1) in 
plagioclase of sample U1309D 10R-1 127-129 cm. C: Irregular shape primary fluid 
inclusions of type 1a in quartz vein of sample U1309D 40R-1 17-19 cm. D: Irregular 
shape primary inclusions of type 1a in quartz vein of sample U1309D 40R·1 21-24 cm. 
E: Halite bearing fluid inclusions of type 3b (see 3.4.1) in a quartz grain of a 
trondjhemite (U1309D 40R·1 21·24 cm). Note that inclusions of fluid type 3a are similar 
in shape with inclusions of type 2b but do not host a halite cube. F: Secondary fluid 
inclusions in plagioclase related to chlorite vein. 
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3.3.2 Gabbro 
Gabbros in U1309B and U1309D vary in grain size (microgabbro to 

coarse grained gabbro), and deformation type, and can also be divided in 

several groups (Figure 2-3): microgabbro, oxide gabbro, gabbronorite, 

gabbro, olivine gabbro, troctolitic gabbro, and troctolite. The gabbroic series 

are divided into units throughout the core according to the primary 

mineralogy, igneous contacts, and variations in grain size (Blackman, et a/., 

2006). 

Gabbros of the upper part of the core are intruded by a series of 

basaltic and diabasic dikes. Gabbros in this section are commonly coarse 

grained, extremely brecciated, cataclastic in texture, and show yellow-green 

alteration veins. The yellow-green alteration, possibly actinolite/tremolite, 

also quite commonly forms the matrix supporting the gabbroic clasts 

(generally plagioclase). 

Deeper, units consist of a series of interlayered gabbroic rocks, with 

a general downhole coarsening from medium to coarse-grained. Overall, 

gabbros are equigranular, but can exhibit different types of deformation 

ranging from (rare) mylonitic to absolutely undeformed. Plagioclase is 

generally unaltered, but can show evidence of albitisation in the vicinity of 

veins and magmatic/leucocratic intrusions. Plagioclase can also be altered to 

chlorite along fractures. Clinopyroxene rarely survives alteration and is 

replaced by amphiboles (hornblende, actinolite, and tremolite). When olivine 

is present, in troctolitic gabbro and olivine gabbro for instance, it is more or 

less replaced by amphibole and chlorite to form corona texture along with 

plagioclase. Dynamic recrystallisation of plagioclase and amphibole is a 

particular feature of a few samples. 

3.3.2.1 Sample U1309D SR-3 107-110 

Sample U 1309D SR-3 107-110 is a medium grained troctolitic 

gabbro exhibiting deformed plagioclase grains partially replaced by chlorite. 

Olivine is replaced by tremolite (Figure 2-10; Appendix 1). Amphiboles 

replacing clinopyroxene are actinolitic in composition (Figure 3-3E). 

Tremolite replaces olivine to form the corona texture with the chlorite around 
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the plagioclase (Figure 3-3C and OJ. Plagioclase is slightly deformed and 

exhibits subgrain boundaries and deformation twins. It is also commonly cut 

by chlorite veins. 

3.3.2.2 Sample U1309D 10R-1 127-129 

Sample U1309D 10R-1 127-129 cm is a mylonitised coarse gabbro 

composed of roughly 60% deformed plagioclase, recrystallised in part, 40% 

clinopyroxene replaced by green-brown hornblende and actinolite. 

Granoblastic recrystallisation also affects the boundaries of amphibole grains 

suggesting that the shear zone was active at amphibolite facies conditions. 

3.3.2.3 Fluid inclusions 

In those two samples, fluid inclusions occur as both regular and 

irregular shape secondary inclusions in plagioclase (Figure 3-48). They are 2 

phase and liquid-dominated, ranging in size from 10 to 20 !-1m. They occur in 

trails decorating fractures or perpendicular to chlorite veins. 

3.3.3 Trondjhemite 

3.3.3.1 Sample U1309D 40R-1 21-24 

Sample U1309D 40R-1 21-24 cm is a fine to medium grained 

trondjhemite composed of plagioclase of albitic composition (Figure 2-9; 

Appendix 1) and quartz. Plagioclase and quartz are usually anhedral and 

form also graphic intergrowths (Figure 3-3F). Alteration minerals are not 

common. This sample is a late leucocratic magmatic intrusion crosscut by a 

late quartz vein of 4 to 5 mm in width. Quartz grains are elongated and show 

radial extinction as the quartz from the quartz-chlorite vein of sample 

U1309D 1R-1 41-44 cm. 

3.3.3.2 Fluid inclusions 

Fluid inclusions in the vein are generally distributed as clusters in the 

centre and clear part of the grains, and are interpreted as being primary in 

origin. They are of irregular shape (Figure 3-40) ranging in size from 10 to 20 

!-1m, with some reaching several 10's of !-1m 
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A 5 mm quartz grain of the host rock contains a large number of fluid 

inclusions, making the interpretation of their origin difficult, but nonetheless 

assumed to be primary. Two populations are observed; one with irregular 

shaped liquid-dominated inclusions and the other one with a halite daughter 

crystal. Halite bearing inclusions (Figure 3-4E) are generally bigger than the 

ones without and are irregular in shape (20 to 50 !-1m). 
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3.4 Results 

3.4.1 Fluid inclusion petrography and results 
Three types of fluid inclusions have been identified in the samples 

studied (Figure 3-4). Table 3-1 summarises the results obtained for 

homogenisation temperature and salinity for each type of inclusion and 

material. Types of fluid inclusions presented in this chapter are classified with 

the numbering used in Kelley et a/., (1992): 

Sample 
(U1309D) 

1R-141-
44 

5R-3 
107-110 
10R-1 
127-129 
40R-16-
12 
40R-1 
17-19 
40R-1 
21-24 
40R-1 
21-24 
40R-1 
21-24 

• Type 1 inclusions are liquid-dominated low salinity 

• Type 2 inclusions are vapour-dominated low salinity 

• Type 3 inclusions are high salinity inclusions 

Table 3-1: Fluid inclusion microthermetric analyses. Tdjh = Trondjhemite 

Rock 

Diabase 

Troctolitic 
gabbro 

Gabbro 

Troctolite 

Troctolite 

Tdjh 

Tdjh 

Tdjh 

Depth 
(mbsf) 

21.93 

39.96 

61.48 

214.89 

214.98 

215.02 

215.02 

215.02 

Mineral 
host 

Qtz­
Chi 
vein 

Pig 

Pig 

Qtz 
vein 
Qtz 
vein 
Qtz 
vein 

Qtz 

Qtz 

Inclusion N 
type 

Th 
range 
(0C) 

Salinity 
range 
(wt% 
NaCI) 

1a 

1b 

1a/b 

1a 

1a 

1a 

3a 

3b 

67 ~~~.~- 161.7 3.1-5.1 

96 123.2-
349.0 

82 220.0-
376.5 
167.0-
238.8 

5 

83 135.0-
289.5 

58 124.5-
204.9 

12 314.5-
>400 

336.4-
>400 

7 

277.0 0.2-1.1 

267.3 0.7-4.3 

3.4-3.9 

210.0 2.4-3.7 

166.0 2.9-4.0 

9.5-
20.7 
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The origin of fluid inclusions was not always really clear; 

nonetheless, fluid inclusions in quartz veins were usually concentrated in 

clusters in the centre of the quartz grains and therefore interpreted as 

primary inclusions. In plagioclase and in quartz grains of the trondjhemite, 

fluid inclusions are secondary in origin as they are commonly decorating 

sealed fractures. Nonetheless, the network of fluid inclusions in the 

trondjhemite is so complex that it is difficult to have a definite idea on their 

origin. 
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Figure 3-5: Histograms of homogenisation temperature on left and of 
temperature of melting of ice on right for type 1 inclusions. Colour scheme is related 
to samples and is the same in the following figures. Patterns are related to the fluid 
type. Lines dipping towards the left are for fluid type 1a and lines dipping towards 
right are for fluid type 1 b. Sample D40R-1 6-12 is not represented as the number of 
measurements was insufficient for generating meaningful statistics (N=5). 
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Figure 3-6: A: Homogenisation temperature against temperature of melting of 
ice for low salinity inclusions. B: Homogenisation temperature against salinity. 
Seawater salinity and temperature of ice melting for seawater is shown (dashed line). 
Range in salinity for fluids exiting submarine hydrothermal vents is also shown 
(shaded grey area). 

3.4.1.1 Type1: Liquid-dominated low salinity inclusions 

Liquid-dominated , low salinity inclusions have been found in all the 

samples in both quartz and plagioclase, and generally occur as irregular 

inclusions ranging in size from 5 to 30 IJm with the exception of sample 

U1309D 40R-1 17-19 cm , where inclusions up to 100 IJm in size have been 

found . Rare regular shaped inclusions are found in plagioclase grains. 

Irregular shaped inclusions might be the result of necking-down, stretching 

and/or leaking . Therefore , particular care has been taken to verify the 

49 



Chapter 3 Fluid Inclusion Microthermometry 

similarity in behaviour of irregular shaped inclusions relative to regular 

shaped ones. Where fluid inclusions exhibited salinities and/or 

homogenisation temperatures significantly different from the other inclusions 

inside the same population, those were not included in the statistics. 

Type 1 inclusions can be subdivided into two types. Type 1 a 

inclusions are liquid-dominated with seawater-like salinity (Figure 3-4A, C, 

and D) and are generally found in quartz. Type 1 b inclusions are liquid­

dominated (Figure 3-48) to vapour rich and depleted in terms of salinity 

compared to seawater (0.1 to 2 Wt% NaCI equivalent). 

3.4.1.1.1 Type 1a: Liquid-dominated seawater-like salinity 

Quartz vein-hosted type 1 a inclusions homogenise in the liquid 

phase at temperatures of 124.5 to 349°C and show ice melting at -1.4 to -

3.1°C (Figure 3-5 and Figure 3-6), implying salinities of 2.4 to 5.1 Wt% NaCI 

equivalent (Figure 3-6). Fluid inclusions generally (mode = 3.4 ± 1.2 Wt% 

NaGI equivalent) cluster around the seawater value (3.2 Wt% NaGI 

equivalent). 

3.4.1.1.2 Type 1 b: Liquid-dominated low to depleted salinity with 
respect to seawater 

Plagioclase-hosted low salinity type 1 b inclusions homogenise in the 

liquid phase at temperatures of 192 to 320.3°C and exhibit melting of ice at -

0.1 to -1.0°C (Figure 3-5 and Figure 3-6), indicating salinities of 0.2 to 1.7 

Wt% NaGI (Figure 3-6). Average salinity is 1.4 Wt% NaGI equivalent, 

depleted relative to the seawater value. In sample U1309D 10R-1 127-129 

em, type 1 a inclusions are also present and homogenise in the range of 

temperatures at equivalent salinities of 2.0 to 4.3 Wt% NaCI. 

3.4.1.2 Type 2: Vapour-dominated low salinity 

Type 2 vapour-dominated low salinity inclusions (Kelley & Delaney, 

1987; Kelley & Robinson, 1990; Kelley, et al., 1992) have not been observed 

in the samples. 

3.4.1.3 Type 3a: Liquid-dominated high salinity 

Liquid-dominated high salinity inclusions lacking daughter minerals 

are found in quartz grains of the trondjhemite sample (U1309D 40R-1 21-24 
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cm), and are associated with type 3b inclusions. Their primary or secondary 

origin is not really clear. They are irregular in shape with a range in size of 5 

to 20\..lm. Homogenisation occurred in the liquid phase at temperatures of 

314.5 to >400°C. Melting of ice occurred at -6.2 to -17.6°C (Figure 3-5 and 

Figure 3-6), indicating salinities of 9.5 to 20.7 Wt% NaCI (Figure 3-6). 

3.4.1.4 Type 3b: Daughter mineral bearing inclusions 

Halite-bearing fluid inclusions have been found in quartz grains of 

the trondjhemite and are associated with type 3a, although their temporal 

relationship is not clear. They are irregular in shape with variable size of 10 

to 50 \..1m, liquid-dominated, and rarely contain other daughter mineral than 

halite. Dissolution of the halite cube (184 to 294°C) always occurred at lower 

temperatures than the homogenisation temperature, marked by the 

disappearance of the vapour bubble (336.4 to >400°C). Some inclusions 

remain unhomogenised at a temperature of 400°C (the limit of the stage 

used). Halite dissolution has already been observed, and the behaviour of 

the vapour bubble suggests that the homogenisation is going to occur in the 

next 20 to 30°C. Those inclusions are indicated by an arrow on Figure 3-7. 

Halite dissolution temperatures indicate equivalent fluid salinities of 31.1 to 

37.7 Wt% equivalent. 

Cooling experiments have been undertaken in order to test for the 

presence of additional gas species in the vapour phase, but no clear phase 

changes have been observed. 

3.4.1.5 Liquid-dominated related to chlorite veins 

Elongated cigar shape inclusions have been observed in plagioclase, 

and occur adjacent and perpendicular to chlorite filled veins (Figure 3-4F). 

Attempts at microthermometric analyses have not been successful. The 

thickness of the wafer made the observation of a single inclusion impossible 

and therefore, no results will be presented. 
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3.4.2 Summary 
• Table 3-2 summarises the characteristics of the different fluid types 

• Type 1 a fluid has a seawater salinity signature. 

• Type 1 b fluid is depleted in salinity with respect to the seawater 

value. 

• Type 1 b fluid seems to homogenise at temperature greater than 

type 1 a fluid. 

• Type 3 fluid shows the highest homogenisation temperatures. 

• In the trondjhemite sample (U1309D 40R-1 21-24), type 1a fluid is 

observed only in the late crosscutting quartz vein. Fluids present in 

the rock are all high salinity with respect to seawater. 

• All inclusions homogenise in the liquid phase. None of the 

hypersaline inclusions exhibit homogenisation by halite dissolution. 

• Some hypersaline inclusions remain unhomogenised at 

temperature greater than 400°C. The vapour bubble behaviour 

suggests homogenisation would have occurred in the next 20-30°C. 

• No additional gas species have been detected. 

Table 3-2: Summary of microthermometry results 

Fluid type 

1a 

1b 

2 

3a 

3b 

Description 

L +V(L) seawater 
like salinity 

L +V(L) low salinity 
with respect to 

seawater 
L+V(V) 

L +V(L) high salinity 
with respect to 

seawater 
L+V+H(L) 

High salinity with 
halite daughter 

crystal 

Salinity (wt% 
NaCI) 

2.4-5.1 

0.7-2.2 

9.5-20.7 

31.1-37.7 
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Homogenisation 
temperature (0C) 

120-300 

220-380 

315->400 

340->400 

Paragenese 

Quartz vein in 
diabase, 

troctolite and 
trondjhemite 

Plagioclase in 
gabbros 

Not found 

Quartz grain of 
trondjhemite 

Quartz grain of 
trondjhemite 
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Figure 3-7 Temperature of homogenisation against salinity for all samples. 
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3.5 Discussion 

3.5.1 Temperatures of fluid entrapment 
A pressure correction is necessary to determine the actual 

temperature of entrapment of aqueous inclusions and can be made 

accurately for inclusions that contain pure NaCI solution, for which the 

salinity of the fluid has been correctly determined, and for which 

homogenisation occurs in the liquid phase, and when pressure of formation 

can be estimated (Roedder, 1984). 

Why pressure correction is needed: the pressure of trapping is 

actually higher than the vapour pressure. To calculate it, pressure of trapping 

is estimated from the recorded depth of the sample in the hole in addition to 

the water column. Pressure of trapping is then estimated to be at a minimum 

of 400 bars, assuming a water column of 2000m, with samples subject to 

hydrostatic pressure only, and at a maximum of 2800 bars, assuming a water 

column of 3500 m as suggested by the TAG model, and with a lithostatic 

pressure. 

Temperatures of trapping were calculated from the software 

Loner38© from http://fluids.unileoben.ac.at, that computes the following 

equation (Zhang & Frantz, 1987). 

P = At + AzT Equation 3-3 

Where P is the pressure, T the corrected temperature, and A 1 and 

A2 constant calculated from the following: 

At = 6.100· 10-3 + (2.385 . 10-1 - at)Th_(2.855 .10-3 + a2)Tl 

- (a3 Th + a4TDm 

Where m is the molality, Th the homogenisation temperature and a1, 

a2, a3, and a4 are parameters specific to the studied system, which is H20-

NaCI in the study's case. This is justified by results to be presented in 

Chapter 4. Their values are shown in Table 3-3. 
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Table 3-3: Parameters for the system H20-NaCI (Zhang & Frantz, 1987). 

a1 a2 a3 a4 

2.873 '10' -6.477 ' 10.2 -2.009·10" 3.186.10.3 

The temperature of trapping is generally 20 to 30°C higher than the 

temperature of homogenisation for the minimum pressure correction (Figure 

3-9A) and -150°C (for quartz vein samples) to -240°C (for plagioclase 

samples) higher than the temperature of homogenisation for the maximum 

pressure correction (Figure 3-98). The correction is not constant because it 

depends on the composition of the fluid and the temperature of 

homogenisation as isochores calculated show a higher angle from vertical at 

higher temperature. 
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Figure 3-8: Temperature-pressure projection of the H20-NaCI system 
showing the path followed by a fluid inclusion of 3.5 Wt.% NaCI. At room temperature, 
the inclusion contains a vapour bubble and liquid. With heating, the inclusion follows 
the liquid-vapour curve (Khaibullin and Borisov, 1966) and the vapour bubble 
decreases before disappearing at homogenisation temperature. At this temperature, 
the inclusion follows the isochore (dependent on the salinity and the homogenisation 
temperature of the inclusion). The isochore is calculated with the software Loner38© 
from http://fluids.unileoben.ac.at. The pressure of trapping is estimated and the 
temperature of trapping can be read on the x axis. 

Figure 3-8 shows an example of the P-T path followed by a fluid 

inclusion with heating . The average salinity of fluid type 1 a (3 .5 Wt.% NaCI) 

and the average temperature of homogenisation (185.5°C) is used in this 

diagram. The L +V curve is from Khaibullin and Borisov (1966) that present 
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temperature-pressure-composition-density data for the H20-NaCI liquid­

vapour surface. At homogenisation , the fluid inclusion follows the isochore, 

and at selected or estimated pressure of trapping (400 and 2800 bars), the 

temperature of trapping is read on the x axis (208 and 346.85°C 

respectively) , that is 22.5°C higher than the temperature of homogenisation 

for the minimum pressure correction and 161 .35°C higher than the 

temperature of homogenisation for the maximum pressure correction. 
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Figure 3·9: Salinity against temperature of trapping for a minimum pressure 
of 400 bars (A) and a maximum pressure of 2800 bars (8). Pressure correction applied 
on low salinity inclusions only. 
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3.5.2 Previous work on fluid inclusions in oceanic 
settings 

3.5.2.1 Fluids in the oceanic crust 
Fluids in the oceanic crust have been studied in the past in order to 

better understand the seawater circulation in the crust at various places 

including the Mid-Atlantic Ridge - Kane Fracture Zone (MAR-KFZ) which is 

very similar to the Atlantis Massif in terms of geological, geophysical and 

tectonic setting (Kelley & Delaney, 1987; Kelley, et al., 1993), the MAR 

Oceanographer Transform (Vanko, et al., 1992), Hole 894G at Hess Deep 

(Kelley & Malpas, 1996; Saccocia & Gillis, 1995), Hole 5046 near the Costa 

Rica Rift (Kelley, et al., 1995), the Hole 7356 at the Southwest Indian Ridge 

(SWIR) (Kelley & Fruh-Green, 2001), and the TAG hydrothermal mound 

(Tivey, et al., 1998). 

Overall, fluid inclusions in the oceanic crust occur in three types: A 

liquid-dominated low salinity that homogenises in the liquid phase (type 1), a 

vapour-dominated low salinity that homogenises in the vapour phase (type 

2), and a daughter mineral-bearing (generally halite) inclusion of high salinity 

that homogenises either in the liquid phase, or the vapour phase or even by 

halite dissolution (type 3). This general observation may vary according to 

the behaviour at homogenisation, the presence of various gas phase and/or 

other daughter crystals inside one single inclusion. 

Fluid type 1 a (liquid-dominated low salinity) are common in oceanic 

crust samples and in ophiolite samples. This type of fluid is found in the 

MARK area in plagioclase grains and apatite of metagabbros (Kelley & 

Delaney, 1987), in plagioclase grains of gabbro and metabasalt and in quartz 

grains of quartz breccias and metabasalts (Kelley, et al., 1993). It is also 

present at Hess Deep in plagioclase and apatite of gabbros and quartz 

grains of quartz breccias (Kelley & Malpas, 1996; Saccocia & Gillis, 1995), in 

the Southwest Indian Ridge hole 7356 in plagioclase, apatite and quartz of 

gabbros (Kelley & Fruh-Green, 2001), in quartz and plagioclase of 

plagiogranite and epidosite from the Oceanographer Transform (Vanko, et 

al., 1992), in plagioclase and quartz of diabase from the Costa Rica Rift hole 
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5048 (Kelley, et al., 1995), and in anhydrite of breccias from TAG (Tivey, et 

al., 1998). 

Fluids of salinity depleted with respect to seawater salinity (3.2 Wt% 

NaCI equivalent) are less common in oceanic crust. They are found in 

plagioclase of metagabbros and gabbros from the MARK area (Kelley & 

Delaney, 1987; Kelley, et al., 1993), in plagioclase and apatite of gabbros 

and quartz of breccias and gabbros from Hess Deep and SWIR (Kelley & 

FrOh-Green, 2001; Kelley & Malpas, 1996; Saccocia & Gillis, 1995), in 

plagioclase and quartz of diabase from the Costa Rica Rift hole 5048 

(Kelley, et al., 1995), and in anhydrite of breccias from TAG (Tivey, et al., 

1998). 

Type 3a fluid is a fluid of moderate to high salinity without halite 

daughter crystals at room temperature. This type of fluid is less common in 

oceanic sections but quite often present in ophiolites. It is found in apatite 

and plagioclase from Hess Deep (Kelley & Malpas, 1996), in quartz of 

gabbros from SWIR (Kelley & FrOh-Green, 2001), in plagioclase of diabase 

from hole 5048 of the Costa Rica Rift (Kelley, et al., 1995). 

Fluid type 3b is a saturated fluid in NaCI. They contain a halite 

daughter crystal at room temperature. This type of fluid is found in apatite 

and quartz of metagabbros from the MARK area (Kelley & Delaney, 1987; 

Kelley, et al., 1993), in apatite and plagioclase of gabbros from Hess Deep 

(Kelley & Malpas, 1996), in quartz of gabbros from the SWIR (Kelley & FrOh­

Green, 2001), in quartz and plagioclase of plagiogranite and epidosite from 

the Oceanographer Transform (Vanko, et al., 1992). 

Table 3-4 gives a detailed summary of studies carried out in those 

areas. 

3.5.2.2 Fluid inclusions in Ophiolites 

Fluid inclusions studies have also been carried out in samples from 

ophiolite complexes such as the Troodos ophiolite (Cowan & Cann, 1988; 

Kelley & Robinson, 1990; Kelley, et al., 1992; Morgan, 2008; Spooner & 
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Bray, 1977; Vibetti, 1993), the Oman ophiolite (Nehlig, 1991), and the Lizard 

ophiolite (Hopkinson & Roberts, 1996). 

As for fluid inclusions studied in samples from sections of oceanic 

crust, three types of fluids are found in ophiolites. 

• A liquid-dominated fluid with low salinity (type 1) 

• A vapour-dominated low salinity fluid (type 2) 

• A high salinity halite bearing fluid (type 3) 

Fluid type 1 a is quite commonly found in ophiolites. It is found in 

quartz and epidote of plagiogranite, gabbros, sheeted dykes, and stockwork 

from the Troodos ophiolite (Cowan & Cann, 1988; Kelley & Robinson, 1990; 

Kelley, et al., 1992; Morgan, 2008; Spooner & Bray, 1977; Vibetti, 1993), in 

quartz of sheeted dykes, plagiogranite and gabbros from the Oman ophiolite 

(Nehlig, 1991), and in quartz of gabbros from the Lizard ophiolite (Hopkinson 

& Roberts, 1996). 

Fluid type 1 b is also found commonly in ophiolite samples. It is found 

in quartz and epidote of plagiogranite, gabbros, sheeted dykes, and 

stockwork from the Troodos Ophiolite (Cowan & Cann, 1988; Kelley & 

Robinson, 1990; Kelley, et al., 1992; Morgan, 2008; Spooner & Bray, 1977; 

Vibetti, 1993), in quartz of sheeted dykes, plagiogranite and gabbros from 

the Oman ophiolite (Nehlig, 1991), and in quartz of gabbros from the Lizard 

ophiolite (Hopkinson & Roberts, 1996). 

Fluid type 3a is quite commonly present in ophiolites. Examples 

include inclusions in quartz of stockworks, sheeted dyke, gabbros and 

plagiogranite from the Troodos, Oman and Lizard ophiolites (Hopkinson & 

Roberts, 1996; Morgan, 2008; Nehlig, 1991). 

Fluid type 3b is found in quartz of plagiogranite and gabbros from the 

Troodos and Oman ophiolites (Cowan & Cann, 1988; Kelley & Robinson, 

1990; Kelley, etal., 1992; Morgan, 2008; Nehlig, 1991; Vibetti, 1993). 

Data collected in ophiolites are shown in Table 3-5. 
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Table 3-4: Review of oceanic crust fluid inclusions data available in the literature. 3bL = type 3 inclusions with halite cube and 
homogenisation occurring in the liguid ~hase. 3bH = t~~e 3 inclusions with homogenisation occurring b~ halite dissolution. 

Site Rock Mineral host Type Homogenisation Th (0C) Salinity 
Reference 

wt% NaCI) 

MARK metagabbros Pig 1 liquid 270-300 1-7 (Kelley & DelaneY,1987) 
metagabbros Ap 1 liquid 260-300 4-5 
metagabbros Ap 2 vapour 370-400 1-2 
metagabbros augite 2 vapour 380-440 3.5-6.5 
metagabbros epidote 2 vapourlliquidfpseudocritic 370-440 4-6 
metagabbros Ap 3bL liquid >700 38-48 
gabbros Pig 1 liquid 240-326 0.4-7.6 (Kelley et al., 1993) 
Qtz bcc Qtz 1 liquid 187-343 3.5-6.5 
metabasalt Qtz 1 liquid 266-303 3.8-4.8 
metabasalt Pig 1 liquid 193-313 3.8-6.9 
gabbros Ap 2 vapour 364-416 1-2 
gabbros augite 2 vapour 387-433 3.5-6.5 

() 
gabbros epidote 2 vapour 397-435 4.4-5.9 ::r 
gabbros Pig 3bL liquid 330-349 0.4-0.9 Q) 

gabbros Pig 3bL liquid 257-311 0.4-7 -c ..... 
0) gabbros FAp 3bL liquid >700 41-47 

(J) 

0 
.., 

gabbros Qtz 3bH halite diss 312-338 39-41 (,.) 

Hess Deep 894G gabbros Pig 1 liquid 207-323 0.1-13.4 (Kelley & Malpas, 1995) 

" gabbros Ap 1 liquid 216-372 0.9-19.3 c 
gabbros Ap 3bL liquid 193-346 29-32 a: 
gabbros Pig 3bH halite diss 191-305 31-39 ::l 
Qtz bee Qtz 1 liquid 160-370 0.1-4.8 (Saccoeia & Gillis, 1995) 0 

SWIR 735b gabbros Pig 1 liquid 190-292 2.3-6.7 (Kelley & FrOh-Green, 2001) C 
(J) 

gabbros Ap 1 liquid 339-395 1.4-4.5 o· 
gabbros Qtz 1 liquid 333-465 3.3-18 ::l 

gabbros Ap 2 vapour 369-401 1.4-4.5 ~ 
gabbros Qtz 3bL liquid 333-418 32-51 o· 
gabbros Qtz 3bH halite diss 255-418 32-47 

.., 
0 

Oceanographer metag, plggranite, epidosite Qtz f Pig 1 liquid 150-400 3-8 (Vanko et al., 1992) 
..... 
::r 

plgg fepi Qtzl Pig 2 vapour 370->500 3.2-8 (J) .., 
plgg fepi Qtz f Pig 2 liquid 125-395 3.5-8 3 
plgg fepi Qtzf Pig 3bL liquid 247-362 14.8-27.7 0 

plgg fepi Qtz f Pig 3bH halite diss 293->500 37.6-59.8 3 
(J) 

Costa Rica Rift 504b diabase Pig 1 liquid 124-202 0.0-11.7 (Kelley, et al., 1995) ..... 
diabase Qtz 1 liquid 140-146 2.9-4 -< 

TAG anhydrite bee anhydrite 1 liguid 168-361 1.2-5.1 ~Tive:i' et a/., 1998} 



Table 3-5: Review of ophiolite fluid inclusions studies. *= Calculation made on melting of ice instead of halite dissolution. 

Site Rock Mineral host Type Homogenisation Th CC) 
Salinity 

Reference (wt% NaCl) 

Troodos plggranite (dykes) Otz / epidote 1 liquid 330-410 0-2 (Cowan & Cann, 1988) 
plggranite (dykes) 3bL liquid 330-430 37-48 
plggranite (dykes) Otz 1 200-400 2-7 (Kelley & Robinson, 1990) 
plggranite (dykes) Otz / epidote 2 vapour 360-420 1-5 
plggranite (dykes) Otz 3bH halite diss 400-500 46-56 
plggranite / gabbros Otz / epidote 1 Liquid 182-437 2-7 (Kelley et aI., 1992) 
plggranite / gabbros Otz / epidote 2 Vapour 378-413 1-5 
plggranite / gabbros Otz 3bL Liquid 375-400 36-45 
plggranite / gabbros 3bH Halite diss 302-537 38-61 
stockwork Otz 1 liquid 319-422 3.3-10.9 (Morgan, 2008) () 
sheeted dyke Otz 1 liquid 280-418 0.17-8.2 ::r 
plutonic sequence sheeted I» 

Otz 1 liquid 314-477 1.8-19 "0 
dyke transition 

.... 
0> CD ...... 

plutonic sequence sheeted 
..., 

Otz 3bL liquid 272-377 31-44 w 
dyke transition 

.. 

." 
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3.5.3 Comparison with literature data set 
In this section, the new data are compared with literature data and 

results compiled in Figure 3-10 for sections of oceanic crust and in Figure 

3-11 for ophiolites. 

3.5.3.1 Type 1a 

Samples from the Atlantic oceanic crust (MARK, Oceanographer and 

TAG) exhibit roughly the same range in salinity as the samples of fluid type 

1a (Figure 3-10). Samples from the Pacific, Indian oceanic crust (Hess Deep 

and SWIR 7358), Troodos, Oman and Lizard ophiolite cover the range in 

salinity of the type 1a samples but reach much higher values (up to -22Wt% 

NaCI equivalent). These salinities are comparable to fluid type 3a (see 

3.5.3.3 au-dessous). Temperatures of homogenisation are roughly similar, 

although almost all oceanic sections reported show higher maximum 

temperatures. Higher temperatures are common for ophiolite samples where 

the temperature of homogenisation can reach 475°C (Morgan, 2008) (Figure 

3-10, and Figure 3-11). 

3.5.3.2 Type 1b 

In this study, this type of fluid was only found in plagioclase in 

secondary fluid inclusions. Figure 3-11 shows that these type 1 b samples 

give comparable ranges of salinity to samples from the Troodos ophiolite 

(Cowan & Cann, 1988), with the difference that homogenisation occurs at 

higher temperature in the ophiolite. In oceanic crust sections, 

homogenisation temperatures are similar (Figure 3-10). 

3.5.3.3 Type 3a 

Figure 3-10 shows that only fluids from SWIR hole 7538 match the 

existing data. Samples from Hess Deep exhibit high salinity but homogenise 

at lower temperature than fluids from the Atlantis Massif. Troodos and Oman 

ophiolite samples (Morgan, 2008; Nehlig, 1991) also show moderately high 

salinity at homogenisation temperatures in the same range as those of fluid 

from U1309D (Figure 3-11). 
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3.5.3.4 Type 3b 

Fluid inclusions of type 3b always homogenise in the liquid phase 

with halite dissolution occurring before the disappearance of the vapour 

phase. This is illustrated in Figure 3-10 and Figure 3-11 where fluid 

inclusions cluster beneath the equilibrium curve of halite + liquid + vapour. 

The same observations are made in samples from the MARK area, Hess 

Deep and hole 7358 (Kelley & Delaney, 1987; Kelley & FrOh-Green, 2001; 

Kelley & Malpas, 1996) (Figure 3-10), and samples from Troodos (Kelley & 

Robinson, 1990; Kelley, et a/., 1992) (Figure 3-11). 

Several studies show that homogenisation can also occur by halite 

dissolution. This is the case in quartz of gabbros from the MARK area, in 

plagioclase of Hess Deep, in hole 7358 of the SWIR and in quartz of 

plagiogranite from the Oceanographer (Kelley & FrOh-Green, 2001; Kelley, et 

al., 1993; Kelley & Malpas, 1996; Yanko, et al., 1992) (Figure 3-10), as well 

as in quartz of plagiogranite and gabbros from the Troodos and Oman 

ophiolite (Cowan & Cann, 1988; Kelley & Robinson, 1990; Kelley, et a/., 

1992; Morgan, 2008; Nehlig, 1991) (Figure 3-11). This type of 

homogenisation indicates that the fluid has been trapped in the presence of 

halite. In that case, fluid inclusions lie on the H + L + V curve or above. 

Fluid type 3b is best compared to fluid in quartz from hole 7358 

where both salinity and homogenisation temperature match the Atlantis 

Massif data. The same range in homogenisation temperature is also 

observed in samples from Troodos but with higher salinities (Kelley & 

Robinson, 1990; Kelley, et al., 1992). 

3.5.3.5 Other types of fluid 

Unlike samples of the Atlantis Massif, oceanic crust sections and 

ophiolite samples may contain vapour-rich, low salinity fluid inclusion 

populations (Tab/e 3-4 and 

Table 3-5). As for fluid type 1, these vapour rich fluids can be divided 

in two different populations in which one is less saline than seawater, and the 

other is equivalent and/or enriched. In general terms, these fluids had been 
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trapped at higher temperature than fluids of lOOP Hole U13090 (270°C -

>500°C) . 
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well as the range of salinities for fluids exiting hydrothermal vents. Inclusions which 
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3.5.4 Hydrostatic versus lithostatic pressure 
Interpretations of the temperature and pressure conditions of the 

two-phase curve are strongly dependent on the type of fluid pressure which 

occurs in the crust. Hydrostatic pressure applies to fluids in cracks under 

brittle conditions. Lithostatic pressure applies to fluids exsolving from a melt 

under ductile conditions and to fluids isolated from the convective circulation. 

The change between those conditions is relative to the depth interval of the 

brittle-ductile transition. Calculations estimate this transition at temperature of 

700-800°C in moderately shallow gabbroic rocks (Hirth, et al., 1998). For a 

seawater model, hydrostatic pressure will be favoured, whereas in a 

magmatic fluid source model, both hydrostatic and lithostatic pressure will be 

discussed depending on depth of fluid circulation. 

The hydrostatic pressure can show a wide range of gradient whether 

circulation of cold water or hot water is considered. A cold hydrostatic 

pressure gradient is -10000 Palm or 100 barslkm, whereas a hot hydrostatic 

pressure gradient is -3000 Palm or 30 bars/km (Coumou, et al., 2009) (see 

discussion 3.5.5.2 and Figure 3-12). The vertical pressure gradient must be 

small enough for cold water to flow down in the recharge zone, and large 

enough for hot water to flow up in the discharge zone, making therefore the 

pressure gradient lying between cold and hot hydrostatic pressure (Jupp & 

Schultz, 2000). Nonetheless, several studies (Jupp & Schultz, 2004; Wilcock 

& McNabb, 1996) assume that hydrostatic pressure very close to cold 

hydrostatic pressure defines the properties of the circulating fluids such as 

viscosity and flow resistance. Conditions will be closer to cold hydrostatic in 

recharge zones, and closer to hot hydrostatic in discharge zones. 

3.5.5 Processes modifying the salinity 
Several processes have been suggested to explain the variations in 

salinity observed in fluids circulating in. the oceanic crust. They include 

subcritical phase separation (boiling) or supercritical phase separation 

(condensation) of a seawater-like fluid (Kelley, et al., 1993; Kelley & Malpas, 

1996) or magmatic fluid (Kelley & FrGh-Green, 2001), magmatic fluids 

exsolving from melts (Kelley, et al., 1993; Kelley & Malpas, 1996; Kelley, et 
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al., 1992), hydration/dehydration reactions with precipitation/dissolution of 

associated chloride-bearing minerals (Kelley & Robinson, 1990; Kelley, et al., 

1992), and variable mixing of hydrothermal fluid with a phase-separated 

brine or vapour (Kelley & Robinson, 1990). The commonest explanation for 

the generation of low salinity fluids is phase separation of seawater-like 

fluids, and the most approved explanation for generation of high fluid 

salinities is phase separation of magmatic or seawater-like fluids, without 

neglecting the possible role of hydration reactions in certain cases. Variable 

mixing of hydrothermal seawater with phase-separated brines and vapour 

can change the salinity and temperature of fluids as a late process. 

3.5.5.1 Hydration/Dehydration 

Under rock dominated condition, hydration reactions or retrograde 

dissolution of chloride bearing mineral phases have the potential to modify 

the ionic strength of hydrothermal fluids by consuming or liberating chloride 

ions (Kelley & Robinson, 1990; Kelley, et al., 1992). Formation of secondary 

amphibole containing up to 4 Wt% chlorine (Vanko, 1986) can then result in 

the decrease of fluid salinities, and dissolution of such phases might increase 

fluid salinities by opposition (Seyfried, et al., 1986). 

These processes could then account for slight changes in fluid 

salinities (low temperature, low salinity fluid generation) at relatively low 

water-rock ratio conditions, preferentially in a near axis environment 

recharge zone (Kelley, et al., 1995), in opposition to an outflow zone where 

fluids rapidly pass through the oceanic crust (Delaney, et al., 1987). 

Nonetheless, electron microprobe data of amphiboles in U1309B and 

U1309D indicate a CI content of 0.00 to 0.32 Wt% with a mean at 0.05 Wt% 

(appendix 1). Those data are comparable with concentrations of chlorine 

observed in amphiboles of gabbros of the MARK area (0.3 Wt% on average -

(Delaney, et al., 1987; Kelley, et al., 1993)) By considering the highest 

concentration, and admitting perfect partitioning between chlorine and 

hydrous mineral phases, at least 50% of gabbros would have to be altered to 

decrease the fluid salinity by half, or double it if 50% of the initial seawater is 

consumed (Cathles, 1983; Delaney, et al., 1987; Kelley, et al., 1993). These 
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processes are therefore unlikely to have a significant impact on through 

going fluids, although it may have play an important role in the vicinity of 

veins. 

3.5.5.2 Phase separation 

3.5.5.2.1 Generation of brines 

Fluid sources and pressure conditions for brine-bearing inclusions 

are difficult to detennine. Brine inclusions homogenise by disappearance of 

the vapour bubble at temperature >400°C. Two models for the generation of 

brine are as follow: (1) brine and vapour are generated during supercritical 

phase separation or condensation of either magmatic or seawater-derived 

fluids with segregation of the phases driven by density differences and 

entrapment of the brine at depth; (2) direct exsolution of magmatic brine from 

late stage melts with significant cooling during the migration of the brines 

along the microfractures (Figure 3-12). The system H20-NaCI will be used in 

the discussion below as an analogue for fluid circulating in the oceanic crust. 
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The two-phase curve separates the one phase field (liquid) from the 

two-phase field (liquid + vapour) at pressure-temperature conditions greater 

than the critical point of seawater (Cp: 407°C; 298 bars). Fluids of seawater­

like salinity or magmatic fluids that circulate at deep levels of the oceanic 

crust and intersecting the two-phase curve will undergo supercritical phase 

separation (or commonly named condensation) where droplets of brines will 

separate out of a vapour rich phase (Figure 3-12A). Fluids circulating under 

low pressure conditions will boil and separate a vapour from a low salinity 

fluid. However, in the TAG model, a water depth of approximately 3500 mbsf 

is assumed. Boiling cannot happen in this system. As seawater-like fluids 

circulate down to depth, fluids will traverse several condensation curves 

depending on the composition while approaching the heat source (Kelley, et 

al., 1993). For instance, a fluid of seawater composition (3.2 Wt% NaCI), 

which circulates at crustal depth of approximately 2 km and under 550 bars 

of pressure assuming a water column of 3.5 km and cold hydrostatic 

conditions, will encounter the two phase curve at a temperature of 500°C, 

and will condense a fluid containing 25.3 Wt% NaCI and a vapour with 2.2 

Wt% NaCI (Figure 3-13). Under hot hydrostatic conditions, the fluid would 

need to circulate as deep as 10.5 km (Figure 3-128 and C) in order to 

undergo phase separation and generate the same result, which is obviously 

inconceivable in the TAG model as the maximum depth of circulation is right 

on top of the melt zone at 9.5 km (Figure 2-12). Higher salinity fluids (in 

comparison to seawater) circulating under the same pressure temperature 

conditions would give the same composition for brine and vapour, but would 

separate a bigger proportion of brine. If fluids circulate at shallower levels, 

they will separate out a greater volume of vapour given the pressure 

dependence on the shape of the two phase curve (Kelley, et al., 1993). 

Under lithostatic conditions, the same fluids must be at higher temperature in 

order to undergo phase separation (Figure 3-12C). 

69 



-en 
~ 

co 
CO ---
0.> 
~ 

::::J 
en 
en 
0.> 
~ 

0.. 

1 

Chapter 3 Fluid Inclusion Microthermometry 
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Figure 3-13: P-X projection of the system H20-NaCI contoured for T under 
hydrostatic conditions I. The critical curve (dashed line), the isotherms (dotted lines) 
and the three phases curve (plain line) are from Sourirajan & Kennedy (1962). A 
seawater-like fluid which intersects the two phase curve, at temperature of 500°C at 
pressure of -550 bars will undergo supercritical phase separation and separate 
droplets of brines with salinities of -25.3 Wt% NaCI equivalent from a vapour of 
salinity close to 2.2 Wt% NaCI equivalent. 

Generation of hypersaline magmatic brines can be explained by two 

different processes. Vapour and brine can be formed by (1) exsolution of 

magmatic fluids under supercritical conditions and condensation of droplets 

of brines in a vapour phase (Figure 3-12 path 01) (Kelley & Delaney, 1987; 

Kelley & Fruh-Green , 2001), or (2) by direct exsolution of brines in the 

absence of a vapour phase (Figure 3-12 path 02) . Figure 3-120 shows the 

two phase curve for a fluid of seawater salinity (3 .2 Wt% NaCI equivalent) for 

lithostatic conditions. Fluids in the melt are under lithostatic pressure, and at 

depth < 8 km and at temperature> to the solidus, crystal , melt, liquid and 

vapour coexist. A fluid exsolving under cond itions of the two phase field will 

undergo exsolution under supercritical conditions and condensation of 

immiscible droplets of brine in a vapour phase (Figure 3-1201). At pressure­

temperature conditions greater than that, the solidus separates a field where 

crystal , melt and liquid coexist from a single phase liquid field , such that any 

fluid under those conditions would be exsolved as one single phase. A 

similar result can be obtained from a flu id originally in the field where crystal , 
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melt, liquid and vapour coexist, if it encounters the two phase field curve 

during the cooling history. Such fluid would then be exsolved as a single 

phase (Figure 3-12 path 02) . 

A minimum and a maximum temperature and pressure for the 

generation of brine from a seawater-derived parent fluid can be estimated for 

sample U1309D 40R-1 21-24 cm . Fluid inclusion microthermometry shows 

that this sample contains brines of -35Wt% NaCI equivalent. In order to 

produce such a brine and assuming TAG model conditions, the initial 

seawater derived fluid must lie between 500°C at 450 bars (Figure 3-14 dark 

blue) and 625°C at 900 bars (Figure 3-14 sky blue). These various conditions 

would generate vapour of extremely different salinity (0.3 Wt% NaCI for the 

minimum and -5 Wt% NaCI for the maximum). 
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Figure 3-14: P-X projection of the system H20 -NaCI contoured for T under 
hydrostatic conditions II. The critical curve (dashed line), the isotherms (dotted lines) 
and the three phases curve (plain line) are from Sourirajan & Kennedy (1962). A 
seawater-like fluid which intersects the two phase curve, at temperature of 500°C and 
at pressure of -475 bars will undergo supercritical phase separation and separate 
droplets of brines with salinities of -12.5 Wt% NaCI equivalent from a vapour of 
salinity close to 0.3 Wt% NaCI equivalent (dark blue). At a temperature of 625°C and a 
pressure of 900 bars, a seawater-like fluid that intersect the two phase boundary, will 
undergo phase separation for which the brine would have a salinity of -12.5 Wt% 
NaCI equivalent and the vapour a salinity of -5 Wt% NaCI equivalent. 

71 



Chapter 3 Fluid Inclusion Microthermometry 

However, as halite-bearing inclusions have been found only in 

trondjhemite, a magmatic fluid source for generation of hypersaline 

inclusions seems to be the most probable. The condensation model is 

preferably applicable for brines and associated low salinity vapour rich 

inclusions, whereas the direct exsolution of brines model is more applicable 

to inclusions that homogenise by halite dissolution (Kelley & FrOh-Green, 

2001). From these statements, it is suggested that brines have been formed 

by condensation of a magmatic fluid at maximum conditions of 770°C and -7 

km depth (which is equivalent to -1690 bars according to the lithostatic 

gradient of Figure 3-128) and at minimum conditions of 790°C and -4 km 

depth (which is equivalent to -540 bars according to Figure 3-128) (Figure 

3-15). Note that as it concerns a magmatic intrusion (trondjhemite), the 

maximum conditions seem to be the most probable. Condensation of the 

magmatic fluid is located in the TAG model in Figure 3-17 location A. 

Homogenisation temperature of those inclusions is -400°C. Trapping must 

therefore be preceded by an event of significant cooling during the ascent of 

the fluid towards shallower depth. 
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Figure 3·15: Temperature-depth diagram under hydrostatic conditions above 
seafloor (dashed line) (Sourirajan and Kennedy, 1962) and lithostatic conditions 
under seafloor (dotted line), showing maximum and minimum conditions for brine 
generation by exsolution under supercritical conditions and condensation. 
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3.5.5.2.2 Generation of low salinity fluid 

Low salinity fluid in plagioclase 

Fluid of low salinity relative to seawater can be generated by phase 

separation as described above. Trapping of a low salinity vapour fluid has 

not been observed. What is observed are liquid-dominated low salinity fluids 

in plagioclase at lower temperature than the brine inclusions and higher in 

the stratigraphy. As brine and vapour are segregated after separation by 

density effects, it is suggested that a late mixing of seawater-like fluid occurs 

with the initial vapour fluid-like to reach the salinity and temperatures of 

homogenisation observed. Note that the phase separation event does not 

have to be the same event described in the previous paragraph for 

generation of brine observed in trondjhemite. 

In the model of Figure 3-16 it is assumed than the vapour fluid 

generated by phase separation has a salinity of -0.2 Wt% NaCI. That salinity 

can be obtained at various conditions that will generate different brine 

salinities. The minimum temperature, at which supercritical phase separation 

generates a vapour phase of 0.2 Wt% NaCI under hydrostatic conditions, is 

450°C at a pressure of 340 bars (Figure 3-16 dark green). The maximum 

temperature is -600°C at 550 bars (Figure 3-16 light green). In both case, 

significant cooling must occur in order to reach the trapping temperature of 

such inclusions that does not go beyond 350°C under the minimum 

conditions of pressure corrections. Cooling is however not needed if 

inclusions are subject to the maximum pressure corrections assumed in 

3.5.1. Figure 3-17 (location B) shows the hypothetic position of the core 

when these fluids were trapped. 

Seawater like salinity fluid in quartz vein 

Quartz being a mineral that precipitates when pressure drops, it is 

easy to assume that fluids of seawater-like salinity have been trapped in 

quartz veins at relatively low pressure. It is suggested therefore that 

seawater-like salinity fluid have been trapped after an event of recharged 

seawater at shallow depth in the system. Those fluids have therefore been 

trapped when the core was close to the surface (Figure 3-17 location C). 
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Figure 3-16: P-X projection of the system H20-NaCI contoured for T under 
hydrostatic conditions III. The critical curve (dashed line), the isotherms (dotted lines) 
and the three phases curve (plain line) are from Sourirajan & Kennedy (1962). In this 
model, it is assumed than the vapour fluid generated by phase separation has a 
salinity of -0.2 Wt% NaCI. That salinity can be obtained at various conditions that will 
generate different brine salinities. The minimum temperature, at which supercritical 
phase separation generates a vapour phase of 0.2 Wt% NaCI under hydrostatic 
conditions, is 450°C at a pressure of 340 bars (dark green) and the maximum 
temperature is -600°C at 550 bars (light green). 
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3.6 Conclusions 

• Fluid inclusion microthermometry demonstrates the occurrence of four 

different types of fluids in IODP Hole U1309D: 

o Type 1a fluid - liquid-dominated seawater-like salinity (L-V). 

o Type 1 b fluid - liquid-dominated low salinity (L-V). 

o Type 3a fluid - liquid domimnated high salinity (L-V) 

o Type 3b fluid - high salinity with halite daughter crystal (L-V-H). 

• L-V homogenisation temperatures vary between different fluid type. 

The lowest homogenisation temperature is exhibited by fluid type 1a, 

and the highest by fluid type 3. Homogenisation of high salinity fluids 

occur in the liquid phase. Halite crystal always dissolves before the 

disappearance of the vapour bubble. 

• Type 3 fluid is only found in evolved trondjhemite intrusion and is 

therefore assumed to have been generated by condensation of a 

magmatic fluid at maximum temperature of 770°C at depth of 7 km 

(Figure 3-17 location A). Significant cooling occurs during the 

segregation of brine and vapour before trapping. The associated low 

salinity vapour fluid has not been identified. 

• Low salinity fluid (Type 1 b) are believed to have been generated by 

mixing with seawater derived fluid after supercritical phase separation 

of a seawater-like fluid at temperatures of 450 to 600 0 e and pressures 

of 340 to 550 bars and assumed to have been trapped at depth of -5 

km (Figure 3-17 location B). 

• Late stage fracturing event has provoked precipitation of quartz veins 

at low pressure low temperature that have trapped seawater-like 

salinity fluid (Figure 3-17 location C). 
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Figure 3-17: Interpreted cross section of TAG (deMartin, et al., 2007) showing 
the position of lOOP Hole U1309D at different times of the fluid history.lsotherms are 
from McCaig et al. (2010). A: Condensation of exsolved magmatic fluid generating 
hypersaline brine observed in trondjhemite. B: Trapping of low salinity fluid in 
plagioclase. The vapour fluid phase of a phase-separated, seawater-derived fluid is 
mixed with recharged seawater. C: Late stage quartz precipitation and trapping of 
seawater like salinity fluid. 
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Chapter 4. Fluid evolution in the oceanic 

crust: a fluid inclusion study from lOOP 

Hole U1309D - Atlantis Massif, 30 oN. 

Fluid chemistry 

4.1 Introduction 

This chapter presents the chemistry of hydrothermal fluids that 

circulated in the Atlantis Massif. These fluids have been characterised in 

chapter 3 in terms of temperature and salinity by microthermometry. Here 

results obtained by Laser ablation ICPMS are presented. Instrumentation 

and methodology of LAICPMS is described. 

The results include data from three samples: 

• U13090 1R-1 41-44: A quartz-chlorite vein in diabase 

• U13090 40R-117-19: A quartz vein in troctolite 

• U1309 40R-1 21-24: A quartz vein in trondjhemite and quartz 

grains of the host rock. 

Sample names in the text will be as in Table 4-1. lOOP identification 

numbers of the samples will nonetheless be repeated in the legends of 

figures. Other samples analysed for microthermometry did not produce 

LAICPMS data. Reasons are given in the chapter. 

Table 4-1: Nomenclature for samples in that chapter 

lOOP identification 
number 

U13090 1R-1 41-44 
U13090 40R-117-19 
U1309D 40R-1 21-24 
U1309D 40R-1 21-24 

Fluid inclusion host 

Quartz-chlorite vein 
Quartz vein 
Quartz vein 

Quartz from matrix 

80 

Fluid type 

1a 
1a 
1a 
3b 

Name used in this 
chapter 

Sample 1 
Sample 2 
Sample 3 
Sample 4 
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The chapter also presents a discussion where Atlantis Massif data 

are compared with data collected by Morgan (2008) on Troodos ophiolite 

samples and on ODP Hole 1256D, as well as a comparison to the TAG vent 

fluids, leading to a discussion of the processes that control the fluid 

chemistry. TAG vent fluids are also used as a subject of comparison to test 

the possibility of fluid mixing between seawater and fluid inclusions to 

achieve vent fluid compositions. 
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4.2 Methodology 

4.2.1 LAICPMS 
Laser ablation inductively coupled plasma mass spectrometry 

(LAICPMS) is a destructive technique. Therefore, microthermometry 

(Chapter 3) was undertaken prior to ablation. 

LAICPMS combines the high spatial resolution of laser probes with 

the high sensitivity, low detection limits, and multi-element capabilities of 

ICP-MS analysis (Allan, et al., 2005 and references therein). Because of 

these reasons, this technique is best suited to the in situ analysis of 

geological materials. The LAICPMS has been used for mineral, melt 

inclusion analysis, but has become more and more popular for individual fluid 

inclusion analysis, especially in ore deposit (Audetat, et al., 1998 and 2000; 

Muller, et al., 2001; Rusk, et al., 2004; Ulrich, et al., 2002) with the first study 

on natural fluid inclusions reporting analytical precision (Ghazi, et al., 1996). 

Allan et al. (2005) have addressed the remaining uncertainties in the 

analytical procedure and the data quality. 

The procedures used in this study have been described by Allan et 

al. (2005). 

4.2.1.1 Instrumentation 

LAICPMS is an in situ technique permitting the acquisition of 

quantitative multi-element microanalyses for major, minor and trace 

elements. This method has been used in this study in order to analyse 

concentrations of a list of elements in fluid inclusions. 

The system used in this study couples a 193 nm ArF Geolas Q Plus 

exciplex laser (ArF, 193 nm, Microlas, Gottingen, Germany) ablation unit to 

an Agilent 7500c quadrupole ICP-MS equipped with an octopole reaction 

cell, and consists of the following parts: 

• A laser source: 193 nm ArF excimer, allowing the ablation of 

material from a selected area of the order of 5 IJm in diameter 

or larger 
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• An ablation cell containing the sample 

• Flexible tubing 

• A gas mixing device 

• An ICP 

• A mass spectrometer 

An optical system (described in detail in Gunther et al. (1997» is set 

up in order to observe in real time the ablation process via a LED (Light 

Emitting Diode) source and a CCD camera (Charge Coupled Device). 

Once the inclusion is targetted by the laser, the ablated material is 

transported in 0.68 L.min-1 He from a cylindrical chamber via a Teflon® tube 

to a cyclone gas mixer where the analyte is combined with 0.94-0.98 L.min-1 

Ar before introduction into the plasma. The analyte is then analysed with an 

Agilent 7500c quadrupole ICPMS (Allan, et al., 2005). 

4.2.1.2 Isotope list and dwell times 

The isotope list and dwell times selected were dependent on the 

salinity, the size and the number of inclusions of a definite population. A 

short list of isotopes is preferable for low salinity inclusions and a longer list 

can be used for brine inclusions. The number of elements analysed does 

indeed (amongst with other parameters such as the dwell times, the volume 

of the inclusion, the concentration ... ) influence the signal intensities of the 

analytes which governs the precision of the analysis. Dwell times of 10 ms 

for Na and 5 ms for other elements have been used throughout. 

Two different methods have been used to maximise the quality of 

data of elements analysed: 

• Major and minor elements analysed without a reaction gas. 

The list of isotopes is the full list of all isotopes used in the 

whole study but have not been analysed all the time 

altogether: 7Li, 23Na, 24Mg, 27 AI, 29Si, 35CI, 39K, 44Ca, 55Mn, 

58Ni, 59CO, 63CU, 66Zn, 75As, 85Rb, 88Sr, 107 Ag, 121Sb, 133CS, 

208Pb. 
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• Major and minor elements analysed with H2 (2.5mL.min-1
) as 

a reaction cell gas: 23Na, 39K, 44Ca, 55Mn, 57Fe, 88Sr. 

Note that the element list varied between samples such that not all 

the samples have been analysed for all the elements described in the lists 

above. Note that one individual inclusion can only be analysed by one 

method or the other. 

4.2.1.3 Calibration 

Calibration has been performed at the beginning of a session and at 

the end of the session of analyses of fluid inclusions using NIST SRM 610 

and 612 (where SRM stands for Standard Reference Material). Composition 

of the two standards is shown in Table 4-2 only for the elements relevant to 

this study (Pearce, et al., 1996; Allan, et al., 2005 and references therein). 

The standards were ablated twice each for 200 pulses using a 

repetition rate of 5Hz and laser fluence of 10 J.cm-2 over a spot of 50 IJm. 

Table 4-2: Chemical composition of NIST SRM 610 and NIST SRM 612. 

NIST SRM 610 (ppmw) NIST SRM 612 (ppmw) 

484.6 
99052.0 

465.3 
10791.1 

327115.5 
470.0 
486.0 

81833.3 
433.3 
457.1 
443.9 
405.0 
430.3 
456.3 
317.4 
431.1 
497.4 
239.4 
368.5 
360.9 
413.3 
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41.5 
103704.0 

77.4 
11166.9 

336114.4 

66.3 
85263.8 

38.4 
56.3 
38.4 
35.3 
36.7 
37.9 
37.3 
31.6 
76.2 
21.9 
38.4 
41.6 
39.0 
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Ablation of fluid inclusions in quartz and 
plagioclase 

Small chips of microthermometry wafers (approximately 300 IJm in 

thickness) were stuck to a slide with a sugary solution and placed in the 

ablation chamber. Individual fluid inclusions were relocated after having been 

observed, photographed and sketched under transmitted light microscope in 

order to be sure that only inclusions that have been analysed previously by 

microthermometry are ablated. 

Ablation was started after recording a minimum of 20 seconds of gas 

blank. The laser was fired for 200 pulses at a repetition rate of 5Hz and at a 

laser fluence of 10 J.cm·2 and with a laser aperture of similar size to the fluid 

inclusions. 

Si was included in the isotope list in order to observe the beginning 

of ablation of quartz and to better identify the fluid signal. Frequently 

however, the quartz matrix undergoes fracturing shortly after the start of 

ablation so that only a small amount of material is ablated and the Si signal is 

not significant, leaving only the fluid signal. Measurement of Si was 

abandoned after a few analyses, in order to maximise the dwell time spent 

on the masses of interest. 

Ablation of plagioclase has been proved to be rather difficult as 

signal from the mineral host was overprinting the fluid signal. An attempt was 

made to subtract the signal of an inclusion-free area in plagioclase from an 

area with inclusions in order to counter that overprinting effect. Results have 

not been conclusive. Data will not be presented. 

4.2.1.5 Data processing 

The output files from the ICPMS are spreadsheet tables and spectra 

for individual inclusions. Those files are imported into software called SILLS© 

(Signal Integration for the Leeds Laser System) (Guillong, et al., 2008) where 

the individual fluid inclusion signal is shown graphically. The signal selected 

has to be the smoothest possible avoiding any background noise and is 

generally determine by the peak of Na. The absolute concentration of other 

elements is calculated by multiplying the concentration ratios to Na by the Na 
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concentration (in Wt% NaCI equivalent) determined by microthermometry. 

Absolute concentrations are then output in an Excel® spreadsheet alongside 

with the composition of standards and limits of detection for every single 

inclusion. 

4.2.1.6 Data reduction 

Absolute concentrations from LAICPMS analysis were calculated on 

the basis of a known Na concentration. However, establishing an internal 

standard concentration can be challenging. Na is commonly chosen as the 

internal standard for natural inclusions, and its concentration is estimated 

from microthermometric data (chapter 3) using the temperature of melting of 

ice for fluid type 1 a (Bodnar, 1993) or the halite dissolution temperature 

(Sterner et al., 1988) for fluid type 3b. 

In this study, thermodynamic equivalency to a pure NaCI-HzO 

solution is assumed. There are different approaches to quantify complex 

chloride fluids from LAICPMS and microthermometric data: the mass­

balance approach (Heinrich, et al., 1992) and the charge balance approach 

(Allan, et al., 2005). In this study, the charge balance method was used with 

the assumption that chloride is the dominant anion species. The approach is 

based on the following equation: 

mel = mNa + L ni 'mXi 
i 

Where m is molality (mol.kg,1) and I1j is the charge on each 

secondary cation Ai. The internal standard concentration (Na) is calculated 

from the molar ratios mAi/mNa obtained by LAICPMS analyses using the 

following equation: 

mel 
mNa=----~-

( 1 + ~ . nj • mXi) 
£.1 mNa 
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4.2.1.7 Quality of the data set 

The analyses were selected according to a set of criteria. Likely 

effects of solid impurities were carefully "scanned" for AI data. Most of the AI 

signals were indeed not interpreted as being the fluid signal as peaks of Na 

and peaks of AI in the output charts were not coming out at the same time. AI 

data were therefore excluded from the data reduction calculation. Limits of 

detection (LOD) were calculated as the concentration equivalent of three 

times the standard deviation in the gas blank, over a time interval 

approximately equal to the signal duration (Allan, et al., 2005). Signals of 

fluid inclusions below this limit were rejected especially when the average of 

signals above the LOD is significantly different. However, in the case of 

elements consistently near the LOD, the signals below the LOD were 

preferred to the only few fluid inclusion signals showing suspiciously high 

level (see below). 
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4.3 Fluid chemistry results 

4.3.1 Variations in fluid chemistry 
This section reports laser ablation results for all four samples (Table 

4-1). When possible, data for individual fluid inclusion are plotted and, when 

needed, median concentrations are used for a population of fluid inclusions 

(for comparison for instance). Fluid types 1 a (liquid dominated seawater 

salinity) and 3b (liquid dominated with halite daughter crystal) are presented. 

Measurements on fluid type 1 b were attempted but since plagioclase is the 

mineral host, the fluid signal for Na was hidden by the mineral signal. Fluid 

type 3a inclusions did not give quality data with more than 95% of 

concentrations under the detection limit. 

Errors in concentrations are expected to mainly arise from the spiky 

nature of the signal derived from a fluid inclusion, and at a smaller extent, the 

result of analytical uncertainties (salinity and data reduction calculation). 

4.3.1.1 Type 1 a fl uids 

Type 1a fluids have been found in samples 1, 2 and 3 (Table 4-1). 

The results are shown in Figure 4-1 and presented in Table 4-3. Median 

concentration is preferred over mean concentration in order to avoid 

distortion by outliers. Generally, elements for which the concentration is 

below the limit of detection (LOD) are elements for which no signals were 

observed during ablation. Such elements were not included in the statistics 

(e.g. Ca). Numbers can nonetheless be found in the appropriate appendix. 

However in some circumstances, values below the LOD were calculated for 

elements that showed a distinct signal corresponding to the Na signal 

(sample 1, Li signal for fluid inclusions 2 9 and 10 of zone 1; K signal for fluid 

inclusion 2 zone 1 (see Appendix 3». Concentrations of these signals were 

included in the statistics. As and Cs were consistently below the LOD but 

yielded consistent calculated concentrations. They are shown in Figure 4-1 

for information. 

Na is the major cation species in the fluid with median concentration 

of -6830 ppm (N=66). Median concentration varies between samples from 
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-6270 for sample 3 (N=20) to 9870 ppm for sample 1 (N=15) and 6380 ppm 

for sample 2 (N=31). K and Ca represent the other major cation species with 

Ca being the most concentrated. Sample 1 is distinguished by a lower 

concentration in K relative to the two other samples; K being 4 to 8 times 

more concentrated in other quartz. 

Mg contributes to the cation population with moderate concentrations 

relative to the major cations with median concentration of 180 ppm (N=61). 

Sample 1, 2 and 3 are depleted relative to seawater. Sample 1 is also 

depleted relative to the two other samples as per K. Fe also contributes to 

the major cation species present in this fluid with median concentration of 

-500 ppm with a range of concentrations from -125 ppm (sample 3; N=3; 

170 ppm in mean concentration) to -425 ppm (sample 2; N=17). 

Transition metals such as Cu are present in the order of 10's of ppm 

(Cu=70 ppm; N=39) with a great variation between samples, sample 3 being 

enriched relative to sample 1 and 2 

Li is present in the fluid at a lower concentration than the other alkali­

metals (Na and K) (-40 ppm). Ni, Zn and Pb are present in the same sort of 

range. Mn, Co, Rb, Sr, Ag, and Sb are the metals that are the least 

concentrated with median concentrations ranging from <1 ppm to 10 ppm. As 

and Cs were also analysed with As concentrations under -25 ppm and Cs 

concentrations under 1.5 ppm (all the measurements wer below the LOD for 

these two elements). 

Seawater is also plotted in Figure 4-1 for comparison. Samples 

generally show metal concentrations greater than those of seawater, with the 

exception of Na, Mg and Sr. Sample 1 is generally depleted in metal 

concentrations relative to samples 2 and 3 with the exception of Cu which is 

more concentrated in sample 1 than in sample 2. Sample 1 is also depleted 

in K relative to seawater. 

Figure 4-2 shows a comparison of the cation to Na ratios for samples 

of fluid type 1a. Great variation in the ratio to Na is observed between the 3 

samples for K, Mg, Cu, Zn, Sr, and Pb (± Rb). Depletion in metal 

concentration relative to Na is again observed in sample 1 for K, Mg, and Zn. 

Ratios to Na of sample 1 overlap those of sample 2 for Ca and Cu. Sample 2 
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is in turn generally depleted in metal concentration relative to Na compare to 

sample 3 (Ca, Mg, Cu, Pb, and Sr). The opposite relationship is nonetheless 

observed for K. 

Ratios to Na do not vary between samples for other elements (Ca 

and Fe). Data is insufficient to make good comparison for the rest of the 

elements Mn, Li, Ni, Sb, Ab, and Co). Note that data that align with median 

ratio (solid black line in Figure 4-2), are data with constant cation to Na ratio. 

Values of the ratios are given in the figure. All element concentrations 

correlate positively with Na. 

Ca/Sr ratios are shown in Figure 4-3 for samples 2 and 3. The plot 

shows a positive correlation between Ca and Sr for samples 2 and 3. Sample 

2 has a higher Ca/Sr (1000) than sample 3 (250). All fluid inclusions have a 

Ca/Sr greater than seawater. Mg/Fe (Figure 4-4), Fe/Mn (Figure 4-5), show 

also a positive correlation for sample 2. Measurements in sample 3 are 

insufficient to discuss trend in this particular case. Mg/Fe is greater in 

seawater than in all samples. KlCa (Figure 4-6) is characterised by a 

negative correlation in sample 2 in contrast to Ca/Sr, Mg/Fe, and Fe/Mn. K 

and Ca of sample 1 and 3 do not correlate. 

Figure 4-7 shows a plot of Ca/Sr against CalK. This diagram 

indicates that those two ratios correlate for both samples 2 and 3. Great 

variations are again observed between samples of same fluid type with 

sample 2 having a KlSr approximately 10 times greater than sample 3. 

Relative proportions of Pb, Cu and In are shown in Figure 4-8. 

Those three elements all together were measured only for sample 2. 

Nonetheless, it is observed that there is a trend between the pole Cu and the 

pole In. Seawater and TAG vent fluids are also plotted for comparison. 

Concentrations in In and Cu in Atlantis Massif fluid and in seawater and 

TAG are in good agreement. It is not the case for Pb which seems to be 

enriched. 

A ternary diagram showing the relative proportion of Na, Ca and K 

(Figure 4-9) underlines a trend for sample 2 between the pole Ca and the 

pole K. This is not the case for sample 1 and 3 for which the data scatter. 

Figure 4-10 shows the relative proportion of Mg, Fe, and Mn. Sample 2 is 
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characterised by Mn being depleted relative to Mg and Fe, and by the trend 

from the pole Mg (characteristic of seawater) and the pole Fe (characteristic 

of TAG vent fluids). 

4.3.1.2 Type 1 b fluid 

Fluid of type 1 b was found only in plagioclase grains. Signal depicted 

by the ICPMS was contaminated by the mineral composition and the fluid 

signal was therefore not detected. Thus, results are not available. 

Table 4-3: Fluid composition in ppm of sample 1, 2, 3 and 4. 

Saml:!le 1 Saml:!le 2 Saml:!le 3 Saml:!le 4 

Mean Median Mean Median Mean Median Mean Median 
(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 

CI 21385,9 21524,3 19629,7 19571,6 20179,5 20061,2 210596,7 212258,9 
Li 51,9 47,2 
Na 10258,6 9864,9 6435,9 6382,4 6688,6 6265,8 89393,5 76731,9 
Mg 86,4 40,3 508,7 347,9 757,2 674,9 1448,9 1148,6 
K 363,7 313,9 2068,9 2682,7 1159,1 1356,3 29470,9 24011,5 

Ca 2648.2 2648,2 3112,2 2944,7 3003,2 3321,2 15265,3 10015,9 
Mn 3,9 2,2 69,6 69,6 3520,8 1452,6 
Fe 506,7 428,2 170,9 124,4 18424,5 18424,5 
Ni 74,8 74,2 845,4 622,2 
Co 1,8 1,8 12,2 13,2 
Cu 139,4 128,2 113,7 66,4 291,4 282,3 571,4 697,6 
Zn 42,4 36,9 98,8 73,2 
Rb 1,6 1,6 2,7 2,6 
Sr 4,9 2,9 10,4 12,1 22,7 22,0 
Ag 12,3 12,3 775,7 624,8 
Sb 16,6 16,6 
Pb 13,1 7,3 273,9 257,4 126,8 124,8 
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Figure 4-1: Chemical composition of fluid of type 1 a in samples 1, 2 and 3 
and of fluid of type 3b in sample 4. Median values are plotted for each sample. Y axis 
is displayed in logarithmic scale. Seawater concentrations are also plotted for 
comparison. 

4.3.1.3 Type 3b fluid 

Fluid type 3b has only been found in sample 4. The chemical 

composition of this fluid is shown in Figure 4-1 and presented in Table 4-3. 

The median calculation includes five measurements made on fluid inclusions 

with the halite daughter crystal being included in the calculation of the 

solution 's concentration. 

Na is again the dominant cation with a median concentration of 

-76730 ppm . K, Ca, Fe and Mn are major cations with median 

concentrations in the order of 10000's ppm. Mg is also highly concentrated in 

that fluid (1000 ppm). 

Transition metals such as Ni , Cu and Ag are present at a median 

concentration of -620 ppm, -700 ppm and -625 ppm respectively. Pb 

contributes at a minor scale with a median concentration of -125 ppm. 

Co and Sr contribute to the cation population of type 3b fluid at an 

even smaller scale with median concentration of -10 ppm and -20 ppm 

respectively. 
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Ca and Sr (Figure 4-3), do not correlate in sample 4. As Ca/Sr of 

sample 3 and 4 are different, Ca/Sr of fluid type 1a (sample 3) cannot be 

inherited from fluid type 3b (sample 4). Ca and K (Figure 4-6) do not 

correlate either with the data showing a wide spread. Data are insufficient to 

interpret Mg/Fe and Mn/Fe for sample 4 (Figure 4-4 and Figure 4-5). Figure 

4-7 shows that sample 4 has a KlSr of approximately 1000. 

Figure 4-9 shows no correlation between Na, Ca and K for sample 4. 

The triangular plot between Mg, Fe, and Mn (Figure 4-10) for sample 4 

shows that Fe proportion is close to TAG vent fluids. This indicates a 

potential mixing between seawater and fluid from sample 4 to reach TAG 

vent fluids composition in those three elements. 
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Figure 4-7: Ca/Sr concentration ratio (ppm/ppm) against K1Ca concentration 
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proportion calculated from the respective concentration in ppm. 
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Figure 4-10: Ternary diagram of Mg-Mn-Fe. Mg, Mn and Fe are relative 
proportion calculated from the respective concentration in ppm 

98 



Chapter 4 Fluid Chemistry of the Atlantis Massif 

4.3.1.4 Fluid type 1 a versus fluid type 3b 

Results in Figure 4-1 show that all elements are more concentrated 

in fluid type 3b than in fluid type 1a, as a consequence of the difference in 

salinity. Co, Sr and Pb are the cations for which the difference between fluid 

type 1 a and fluid type 3b is the least important while the biggest shift in 

median concentration between the two types of fluids apart from Na is shown 

byK. 

Figure 4-11 shows a comparative plot of cations to Na ratio for both 

fluid types and for seawater. Fluid type 1a has Mg, Ca, Ni, Co, Cu, Sr and Pb 

to Na ratio greater than fluid type 3b which has in turn AI, K, Mn, Fe and Ag 

to Na ratio greater than fluid type 1a. Mg/Na is the only ratio for which all 

fluids have a smaller ratio to that of seawater (0.12). Nonetheless, ratios of 

Co/Na and Sr/Na are pretty similar in both fluid types since the difference is 

at the fifth decimal place and the fourth decimal place respectively. The 

biggest shift in ratios between the two types of fluid is observed by Ca/Na, 

Fe/Na and KINa. 

Mg/Fe and Fe/Mn of fluid type 3b are lower than that of fluid type 1a 

(sample 2 and 3), while KlCa of fluid type 3b is greater than that of fluid type 

1 a for which sample 1 has the lowest KlCa and sample 2 and 3 spreading 

between those two extremes. KlSr (Figure 4-7) seems to be equivalent in 

sample 2 and sample 4. Sample 3 shows a ratio much smaller. All samples 

have a greater KlSr than seawater (50) and TAG vent fluids (75). 

Ternary plots (Figure 4-9 and Figure 4-10) show enrichment in K and 

in Fe in fluid type 3b relative to Na and Ca and relative to Mg and Mn in 

comparison to fluid type 1 a. 
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Figure 4-11: XlNa concentration ratio (ppm/ppm) for both fluid type 1 a and 
3b. Symbols represent here the median of all inclusions for fluid type 1a and all 
inclusions for fluid type 3b. 

4.3.2 Summary 
This paragraph summarises the big trends and patterns observed in 

the fluid chemistry data set. 

• Na is the major cation species in both fluid types 1 a and 3b. 

• Data set show significant variations in median concentrations 

between samples 1, 2, and 3, which all contain type 1a fluids of similar 

salinity. Concentrations are generally lower in sample 1 than in samples 2 

and 3. 

• The general concentration pattern in fluid type 1 a is: Na > Ca > 

K> Fe> Mg > Cu > Zn > Li -Ni > Pb > Sb > Ag.> Sr > Mn-Rb > Co. 

• Type 3b median concentrations are greater than in fluid type 

1 a, owing to the difference in salinity. 

• The general concentration pattern in fluid type 3b is: Na > K > 

Fe> Ca > Mn > Mg > Ni-Ag > Cu > Pb > Sr > Co . 
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• Except for Mg/Na and Sr/Na, all cations to Na ratios for fluid 

type 1 a and fluid type 3b are greater than that of seawater. 

• Fluid type 1a is enriched in Ca, Mg, Pb, Cu, Ni, Co, and Sr 

relative to Na by comparison to fluid type 3b. 

• Fluid type 3b is enriched in K, Fe, AI, Mn and Ag relative to Na 

by comparison to fluid type 1a. 

• Ca and Sr show a positive correlation for sample 2 and 3 but 

not for sample 4. Data range from 100 to 10000 and are always greater than 

seawater. On the contrary, Mg/Fe is much greater in seawater. Fe/Mn is 

greater in all samples, and is much higher in fluid type 1a than in fluid type 

3b. Mg/Fe and Fe/Mn behaviour indicates an enrichment in Fe, and depletion 

in Mg in fluids relative to seawater. Unlike other ratios KlCa shows a 

negative correlation for sample 2. K and Ca do not correlate for other 

samples. 
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4.4 Discussion 

4.4.1 Deep fluid chemistry in oceanic settings 
The only fluid chemistry analysis of fluid inclusions from oceanic 

settings has been done by Morgan (2008). Her study consisted of analysing 

fluid inclusions from diverse "stratigraphic levels" from the Troodos ophiolite, 

and fluid inclusions from OOP Hole 12560. Comparing data from Morgan 

(2008) and data from the Atlantis Massif might be considered controversial 

due to the different settings in which samples are set. Samples from the 

Troodos ophiolites are indeed issued from a supra-subduction zone. 

Alteration observed in Troodos is different from lOOP Hole U13090 with 

abundant epidosites. Samples from Hole 12560 come from a super-fast 

spreading rate crust compared to slow spreading crust for lOOP Hole 

U13090 and from just above the dyke-gabbro contact. Nonetheless, it is the 

only comparable LAICPMS study to date. 

In Troodos, fluids of low salinity were found, and separated into two 

sets: those less saline than seawater and those of greater salinity. Fluid type 

1a (seawater-like salinity, this study) are compared with Troodos fluids of 

salinity in the range 5.5-3.5 Wt% NaCI equivalent. For fluids from OOP Hole 

12560, comparison is with fluids with salinity in the range 2.5-5.5 Wt% NaCI 

equivalent. Comparison of hypersaline fluids with halite daughter crystals is 

also done in this chapter. 

4.4.2 Fluid chemistry in ophiolites - example of the 
Troodos ophiolite 

Comparison of data from lOOP Hole U13090 and that of Morgan 

(2008) is shown in Figure 4-12. One of the most striking observations is that 

fluid type 1a samples from this study (Figure 4-12 top) are depleted in all 

elements relative to Troodos. Variation in the magnitude of depletion 

between the samples is observed. Note that sample 1 is the most depleted. 

Comparison of hypersaline fluid (Figure 4-12 bottom) shows that sample 4 is 

not depleted in all elements relative to Troodos samples. Na, K, and Pb are 

enriched in Atlantis Massif fluids, whereas Mg, Ca, Mn, Fe, Cu, and Sr are 
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depleted relative to Troodos samples. The order of magnitude is also highly 

variable. 

Figure 4-13 shows a plot of Atlantis data and Troodos data 

normalised to seawater. The plot shows a consistent pattern of depletion and 

enrichment relative to seawater which might suggest similar processes of 

fluid-rock reaction. Fluid type 1 a samples and Troodos samples of the same 

type are generally enriched relative to seawater, and depleted in Mg. Sr 

concentration is enriched relative to seawater in Troodos samples and 

depleted in samples 1, 2, 3 and 4. Concentration of Na is roughly similar to 

seawater and generally greater in Troodos samples. Figure 4-14 shows a 

plot of samples 1, 2, 3 and 4 and Troodos ophiolite samples normalised to 

seawater after being normalised to seawater salinity to remove any effects of 

dilution and/or passive enrichment. Although this reduces the differences 

between samples, significant differences are still present, and the large 

differences between all the fluid inclusions and seawater are not removed. 
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Figure 4-12: Fluid chemistry of samples of fluid type 1a (top) and of fluid type 
3b (bottom) normalised to Troodos ophiolite from (Morgan, 2008). 
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study and for samples from Troodos ophiolites (Morgan, 2008) after being normalised 
to seawater salinity in order to remove any dilution or passive enrichment. 
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4.4.3 Fluid chemistry in oceanic sections - example 
of ODP Hole 1256 D 

Comparison of samples 1, 2, 3 and 4 to samples from ODP Hole 

1256D is shown in Figure 4-15. Fluid type 1a is normalised to samples from 

1256D of type 1 (top), and hypersaline fluid is normalised to Hole 1256D 

hypersaline fluid (bottom). 

In general, fluid type 1a samples are depleted relative to samples 

from ODP Hole 1256D as for the comparison with Troodos samples. Sample 

1 is again the most depleted. 

Comparison of hypersaline fluids shows the same pattern with all 

elemental concentrations depleted in Atlantis Massif fluid relative to ODP 

Hole 1256D samples (Figure 4-15 bottom). 

Figure 4-16 shows a plot of samples 1,2,3 and 4 and samples from 

ODP Hole 1256D both normalised to seawater. As in Figure 4-13, the 

consistent pattern of depletion and enrichment is still observed. Mg is still 

depleted with respect to seawater except for hypersaline fluid from ODP Hole 

1256D. Sr is depleted in Atlantis Massif samples and enriched in ODP Hole 

1256D relative to seawater. Figure 4-17 shows a plot of IODP Hole U1309D 

samples and Troodos ophiolite samples normalised to seawater after being 

normalised to seawater salinity to remove effect of dilution and/or passive 

enrichment 
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Figure 4-15: Fluid chemistry for all samples normalised to data from lOOP 
hole U1256D (Morgan, 2008), when data available. 

107 



Chapter 4 Fluid Chemistry of the Atlantis Massif 

10000000~================~----~:-------------------~~ 

1000000 

100000 

10000 

~ 1000 '" ~ 
'" :;: 

X 100 .... 
X 

10 

0.1 

<> I R· I 41 ·441,ample 1· la) 
<> 40R·117·191,ample 2· la ) 
• 40R· I 2l ·241,ample 3· la) 
• M edian l a 
% 40R· I 21 ·241,ample 4·3b) 
• Median la 12560. Morgan. 2008 
% Median 3b 12560. Morgan. 2008 

0 .01L-----~----~------~----~----~------~----~----~----~ 
Na Mg K Ca Fe Cu Zn Sr Pb 

Figure 4-16: Seawater-normalised fluid chemistry for samples of fluid type 1a 
and 3b and for sample from OOP Hole 12560 (Morgan, 2008). 
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Figure 4-17: Seawater normalised fluid chemistry for all fluid types of this 
study and for samples from OOP Hole 12560 (Morgan, 2008) after being normalised to 
seawater salinity in order to remove any dilution or passive enrichment. 
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4.4.4 Processes modifying the fluid chemistry 

4.4.4.1 

4.4.4.1.1 

Are vent fluids a simple mixing between 
hydrothermal fluids and seawater? 

The concept of backwater 

Hydrothermal systems are systems in which heated cold seawater 

penetrates oceanic crust to vent as a hydrothermal fluid after having 

interacted with rocks. Such fluids may have a short residence time with 

limited fluid-rock reaction, and may never approach equilibrium with any 

assemblage. In a more complex system, cold seawater penetrates the 

oceanic crust before being heated at depth, interacts with rocks and some is 

trapped in inclusions and/or stays longer in the system without being part of 

the main circulation that vents. These fluids which may have a much longer 

residence time in the crust represent backwater fluids. They are much more 

likely to approach equilibrium with particular assemblages. Later, that 

backwater can be mixed with recharged cold seawater to form the 

hydrothermal fluid that is going to vent. In this section lOOP Hole U1309D 

fluid inclusions are treated as being inclusions that trapped backwater fluid. 

4.4.4.1.2 Comparison with vent fluids - the example of the TAG 
vent fluid 

The Atlantis Massif can be used as an analogue for the geological 

setting of the TAG Hydrothermal system (McCaig, et al., 2010). The TAG 

vent fluid composition (Douville, et al., 2002) is therefore used here for 

comparison to lOOP Hole U13090 fluid inclusion chemistry. 

Fluid inclusions and TAG vent fluids are normalised to seawater 

concentrations Figure 4-18. For most elements, TAG vent fluid plots outside 

the range of the fluid inclusions, and intermediate between seawater and the 

fluid inclusion concentrations. For some elements (Na, K, Mn, Fe, Rb and 

Sr), TAG vent fluid has a concentration within the range of the fluid inclusions 

(Figure 4-18). 
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Figure 4-18: Type 1a, 3b and TAG vent fluids normalised to seawater. TAG 
vent fluid concentrations are from Douville et al. (2002). 

4.4.4.1.3 Fluid mixing calculation 

Observations from Figure 4-18 lead to the following hypothesis: 

Are vent fluids a simple mixing between seawater and deep fluid 

represented by lOOP Hole U13090 inclusion fluids? This hypothesis can be 

simply tested by a calculation involving the concentration in vent fluids, the 

concentration in seawater, and the concentration in fluid inclusions, with the 

following equation where (X) is the proportion of seawater needed to mix 

with the inclusion fluid in order to reach the vent fluids composition and X the 

concentration of an element. Table 4-4 shows the results multiplied by 100. 

Concentrations used in this calculation are presented in Table 4-3 and Table 

4-5. 

x = (X Inclusion fluid - XVent)/(XlncIusionfluid - XSeawater) 4-1 

Results show that a simple mixing between seawater and fluid 

inclusions cannot result in TAG vent fluids on its own. In order for it to be a 

true mixing, the proportion of seawater would need to be the same across 

the elements. Instead, numbers show a certain inconSistency across the 

elements. Nonetheless, results for type 3b fluid indicate a range in value 

from 93 to almost 100%. However, this observation is the result of these 

fluids being much more concentrated than either vent fluid or seawater. 
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Bigger ranges in values are observed for samples of fluid type 1 a. This 

characteristic might be a result of the difference in salinity. Inconceivable 

values (greater than 100% or negative) are reported in red in the table. 

Negative numbers are the results of the fact that concentration in that 

particular element is greater in the vent fluids than in fluid inclusions, which is 

in turn greater than in seawater, or that this element is less concentrated in 

fluid inclusions than in seawater and absent in vent fluids (case of Mg). 

Values greater than 100% are the result of the element being more 

concentrated in the vent fluid than in seawater, which is in turn more 

concentrated than in Atlantis Massif fluids. Values close to 100 % are quite 

common in all samples. They indicate that only a small amount of fluid needs 

to be added to seawater to generate vent fluids . The calculation show results 

that are variable, indicating that simple mixing is not the process that leads to 

the generation of vent fluids. Different processes such as phase separation, 

exsolution of brines from magmatic fluids, fluid rock interaction , and mineral 

preCipitation must also have a control on fluid chemistry. The results show 

also that fluids from lOOP Hole U1309D can be interpreted as backwater 

fluids that need to interact more with the surrounding rocks to reach vent 

composition. 

Table 4-4: Fluid mixing calculations. Numbers are the proportion of seawater 
needed to be mixed with fluid inclusions to result in TAG vent fluids composition. 
Report to text for significance of red numbers. 

Sample 1 Sample 2 Sample 3 Fluid 1a Fluid 3b 

Li 94.02 92.76 
Na 297.25 141 .75 140.68 146.42 97.20 
Mg -3.22 -36.93 -109.74 -16.31 -812 .60 
K 499.24 86.39 67.67 67.82 98.68 

Ca 68.21 71 .93 75.56 71.93 92.60 
Mn -1642.63 43.95 -1062.81 97.31 

Fe 32.57 -132.01 42.40 98.43 

Ni 99.85 99.85 99.98 
Co 93.63 91 .71 99.11 
Cu 93.56 87.55 97.07 88.02 98.82 
Zn 85.29 92.60 86.87 
Rb 54.37 72.32 73.57 
Sr 117.64 76.65 125.88 93.36 

Ag 99.93 99.95 99.99 

Sb 99.99 99.99 
Pb 99.70 99.95 99.78 99.98 
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Table 4-5: Fluid composition of fluid type 1a and 3 b (sample 1, 2 and 3 -
presented in Table 4-3, and of seawater and TAG hydrothermal fluids from Douville, et 
al., 2002. 

Fluid type 1a (ppm) Fluid type 3b (sample 
Seawater TAG 

4) (ppm) 
(ppm) hydrothermal 

Mean Median Mean Median fluids (ppm) 

CI 20119,6 20550,7 210596,7 212258,9 19400 23044,4 
Li 41,9 39,0 0,17 2,9 
Na 7558,2 6826,4 89393,5 76731,9 10800 12644,4 
Mg 423,9 180,9 1448,9 1148,6 1290 
K 1592,9 1360,9 29470,9 24011,5 392 703,8 

Ca 2896,2 2944,7 15265,3 10015,9 411 1122,2 
Mn 19,7 3,3 3520,8 1452,6 0,0004 39,0 
Fe 581,1 501,2 18424,5 18424,5 0,0034 288,7 
Ni 54,8 73,8 845,4 622,2 0,0066 0,117 
Co 1,4 1,4 12,2 13,2 0,00039 0,118 
Cu 140,5 68,9 571,4 697,6 0,0009 8,261 
Zn 68,3 41,3 0,005 5,426 
Rb 2,9 2,7 0,12 0,812 
Sr 6,5 4,5 22,7 22,0 8,1 9,025 
Ag 9,0 10,7 775,7 624,8 0,00028 0,0055 
Sb 7,7 5,5 0,00033 0,00047 
Pb 55,4 10,1 126,8 124,8 0,00003 0,0228 

4.4.4.2 Phase separation and magmatic exsolution 

Phase separation accompanied by seawater mixing has been 

inferred to be the major process generating the populations of various 

salinities encountered in lOOP Hole U1309D, although magmatic exsolution 

was described as being the processus generating the brines (Chapter 3). 

High chloride contents of fluids are likely attributable to phase 

separation (Butterfield, et al., 1990; Douville, et al., 2002). The consequence 

of that enrichment in chloride is that cr will be the dominant ligand. Metals 

that form chloride complexes will then be stabilised in the fluid. Calculations 

show that Atlantis Massif fluids are enriched in chloride relative to seawater 

and in the same order of magnitude as Rainbow or TAG fluids (Table 4-6). 

Results show also enrichment in metal concentrations relative to seawater. 

The origin of the fluids in sample 1, 2, 3 and 4 was discussed in 

Chapter 3. Type 1 fluids were seawater-derived fluids trapped at at shallow 

hydrostatic conditions. Type 3b fluids in sample 4 fluids were generated by 

direct exsolution of brine from melt. Any vapour phase from that exsolved 

fluid was not found. 
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The fluid chemistry of sample 4 is inferred to represent brine 

exsolved from a melt. Metals for which concentrations would be similar in low 

and/or high chloride fluid (Butterfield, et al., 1990) are metals for which other 

processes than phase separation (e.g. fluid-rock interaction) must have 

occurred to control their concentration. However, such processes can also 

occur to a fluid that underwent phase separation. 

Table 4-6: Content in CI in fluids of this study and fluid from Rainbow and 
TAG vent from Douville et af. (2002). 

Sample1 Sample2 Sample3 Sample4 Rainbow TAG Seawater 
(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 

CI 21380 
content 

19630 20180 210600 26590 23045 19400 

4.4.4.3 Reactions controlling the fluid chemistry 

Fluid-rock interactions involving specific reactions are assumed to 

have a major control on fluid chemistry apart from phase separation. These 

reactions include albitisation, replacement of clinopyroxene by amphibole, 

corona texture formation, serpentinisation + rodingitisation, steatization, 

chloritisation, epidotisation and anhydrite precipitation. Many of these 

reactions are observed in U1309D core, and will be investigated as potential 

controls on fluid chemistry through the following paragraphs. Epidotisation is 

not an important reaction in IODP Hole U1309D but can influence the fluid 

chemistry of local fluids when occurring. Anhydrite does not occur in Atlantis 

Massif samples either, owing to its retrograde solubility. Nevertheless, the 

precipitation of anhydrite may have occurred at the time of hydrothermal 

circulation and therefore might have influenced fluid chemistry. 

4.4.4.3.1 Albitisation of plagioclase 

Albitisation reaction involves consumption of Na and Si from the 

interactive fluid and release of Ca if AI is immobile. The reaction can involve 

mobilisation of trace elements as well, leading to formation of ore deposits 

(Hovelmann, et al., 2010). 

As albitisation occurs, Na/CI would tend to decrease (if chlorinity is 

constant) and Ca/Na would increase since Ca is released. Those two ratios 
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can then be plotted together to test the possibility of albitisation occurring in 

the Atlantis Massif samples as a control on fluid chemistry. 

Figure 4-19 shows a plot of Na/CI molar ratios against Ca/Na molar 

ratios. An albitisation vector is also plotted to show the influence of 

albitisation of seawater. The vector has been calculated on the basis of mass 

balancing that occurs through the reaction: for every mole of Ca released to 

the fluid, 2 moles of Na are consumed from the fluid (Equation 4-2). 

4-2 

Only one data point lies on the vector whereas all the other fluid 

inclusion molar ratios lie to the left. Albitisation seems to have no effect or at 

least not alone on the fluid chemistry of brines as Na/CI decreases while 

CaiN a decreases. The only sample for which albitisation seems to be likely 

to control fluid chemistry is sample U13090 40R-1 17-19. Nonetheless, data 

points are not lying on the albitisation vector of seawater meaning that other 

reactions involving Na and Ca exchange must be taken into account. This 

indicates that fluids form lOOP Hole 13090 are influenced by several 

combined reactions. 

K content of plagioclase (even if minor) can also influence the fluid 

chemistry during albitisation (Figure 4-6). Concentration in K in solution 

increases indeed with albitisation and increased temperature (Berndt & 

Seyfried, 1993; Seyfried, 1987; Seyfried, eta/., 1991). 
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Figure 4-19: NatCI versus CatNa. The vector of albitisation is calculated on 
the basis of mass balancing in which 1 mole of Ca is added to the fluid for every 2 
moles of Na removed from it. Dashed lines and black arrows represent reactions that 
would influence those ratios leading to decreasing CatNa NatCI. 

4.4.4.3.2 Replacement of clinopyroxene by amphiboles 

The most common reaction observed in lOOP Hole U13090 is the 

replacement of clinopyroxene (diopside-augite) by amphiboles 

(magnesiohornblende and actinolite). At high temperature, pyroxene is 

replaced by green-brown hornblende. At lower temperature conditions 

(greenschist facies) , the same reaction can occur with replacement of 

pyroxene by green and acicular actinolite. Observation of thin sections and 

electron microprobe analysis show that the most common reaction is the 

replacement of clinopyroxene by actinolite. 

Replacement of clinopyroxene by hornblende 

A model for the replacement of pyroxene by hornblende is given by 

the following reaction (4-3) (Blackman, et al., 2006): 

plagioclase + augite + orthopyroxene + H20 = hornblende 4-3 

Balancing that reaction can be difficult because the composition of 

hornblende is changing with temperature-pressure conditions. In addition , 

orthopyroxene does not commonly occur in recovered rocks from lOOP hole 

U13090, with a few exceptions especially in ultramafic rocks and in the 

gabbronorite deeper in the hole . The reaction assuming constant volume 

would imply that 1 hornblende replaces -4 augites, this being based on the 
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molar volume of end member minerals in Holland & Powell (1998). Diopside 

and enstatite are used as a proxy for augite (6.619 and 6.262 J.ba(1 

respectively), and ferroactinolite and tremolite are used as a proxy for 

hornblende (28.28 and 27.27 J.ba(1 respectively). This reaction must be 

accompanied by plagioclase as a source of AI (assumed to be immobile). 

The combined effect of the molar ratio of pyroxene consumed to amphibole 

of 4:1 and the albitisation of anorthite have for consequence to release Ca 

and to consume Na. According to mineral compositions (appendix 1) and the 

molar ratio of 4:1, it is likely that Fe will be consumed and Mg will be 

released. The reaction can be written as follows (4-4). Note that the reaction 

is not balanced in full. 

4 augite + anorthite + water + Fe2+ + Na + -+ hornblende + albite + 

4-4 

Replacement of clinopyroxene by actinolite 

In gabbros, clinopyroxene is more commonly replaced by actinolite. 

At constant volume, 4 clinopyroxenes are needed to form 1 amphibole 

(Holland and Powell, 1998 - see above). Again, as per the reaction in which 

clinopyroxene is replaced by hornblende, this reaction implies the 

involvement of plagioclase, and can be written as follows (4-5). Note that the 

reaction is not balanced as presented. 

4 augite + anorthite + water + Na+ + Fe2+ -+ actinolite + albite + 

quartz ± H+ + Ca2+ + Mg2+ 4-5 

Both reactions imply the release of Ca and Mg and the consumption 

of Na and Fe. If release of major cations and heavy metal seems reasonable 

owing to the fluid chemistry recorded in fluid inclusions, Mg should be 

removed from solution in chlorite as it is assumed to be removed during 

hydrothermal alteration of basalt (Seyfried, 1987; Seyfried & Mottl, 1982) and 

of ultramafic substratum at Rainbow and Logatchev site (Douville, et al., 

2002). Experimental studies of Seyfried and Mottl (1982) shows that Mg is 

completely removed from solution at 150°C and at seawater/rock ratio of 50. 
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Microthermometry (Chapter 3) indicates that fluid type 1 a has been trapped 

at temperature of - 150-200°C. At such temperature, and assuming a 

system dominated by fluid (seawater/rock W/R = 50), fluid inclusions should 

contain 0 Mg. The fact that Mg is still in solution in fluid inclusions indicates 

that IDOP Hole U1309D fluid is influenced by the amphibole after 

clinopyroxene reactions but that the results of those reactions must be 

accompanied by reactions that mobilise Mg in the solid phase in order to 

allow for Mg concentration (depleted relative to seawater - see Figure 4-1). 

4.4.4.3.3 Corona texture formation 

In olivine rich rocks, corona formation is a common reaction 

observed in the core especially above 350 mbsf. Under that depth, the 

reaction does not go to completion and olivine is replaced. by serpentine 

instead. 

The corona texture reaction involves olivine and plagioclase which 

are being replaced at the contact by tremolite and chlorite respectively. The 

reaction can be written only if one component is mobile (CaO or Si02 here) 

since AI203 has generally a limited mobility. This reaction can then be 

modelled with 2 different reactions depending on which component is 

considered as being the most mobile (reaction 4-6 for Si02 and reaction 4-7 

for CaO) (Blackman, et al., 2006). 

4 anorthite + 15 olivine + 5 silica + 18 water -+ 2 tremolite + 4 

chlorite 

4-6 

11 anorthite + 35 olivine + 47 water -+ 3 tremolite + 11 chlorite + 5 

CaO 

4-7 
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Those two reactions seem a bit unrealistic as they involve huge 

amount of olivine for a significantly smaller amount of amphibole. In addition, 

those two reactions use end member minerals. In lOOP Hole U1309B and 0, 

corona texture is composed of intermediate mineral composition of solid 

solution. Using electron microprobe data on corona texture for tremolite 

(average of three measurements in U 13090 5R-3 107-110 cm, see Appendix 

1), assuming a XMg = 0.6 for chlorite (Nozaka, et a/., 2008), and assuming a 

maximum volume increase of -20% owing to the replacement of olivine by 

tremolite Uustified by micro cracks observed in surrounding plagioclase -

Figure 4-20), approximately 4.5 olivine is needed to form 1 tremolite. Note 

that the percentage in volume increase (10% for instance making the 

olivine:tremolite ratio equal to 5:1) during the reaction has no influence on 

the behaviour of the cations. The only thing that changes is the coefficient of 

water, quartz, Mg2+ and Fe2+. The corona texture formation reaction (4-8) can 

be balanced as follows: 

1.15 bytownite + 4.5 olivine + 6.96 water + 3.92 quartz + 1.56 Fe2+ + 

1.03 Ca2+ -+ tremolite + chlorite + 3.92 H+ + 0.54 Mg2+ + 0.18 Na+ 

3. 92SiOz + 1. 56Fez+ + 1. 03Ca2+ -+ 

(Ca1.9SNao.Os) (M94.s6Feo.46Alo.o2) [Si7.9sAlo.osOzz](OHh + 

(Mg3Fez)Alz[Si3010](OH)s + 3. 92H+ + O. 54Mgz+ + O.18Na+ 4-8 

LAICPMS data of lOOP Hole U13090 fluid inclusions show an 

enrichment in Ca and Fe with a depletion in Na and Mg relative to seawater. 

Corona texture formation reaction shows the exact opposite (Fe and Ca are 

consumed from the fluid, while Mg and Na are released to the fluid), meaning 

either that fluid from lOOP Hole U13090 are not influenced by the corona 

texture formation, or that other reactions must be taken into account. The 

resulting Na release and the consumption of Ca can be compensated by 

albitisation in order to generate a fluid depleted in Na and enriched in Ca 

relative to seawater. The resulting release of Mg from corona formation must 
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be compensated by reactions that mobilise it in the solid phases such as the 

serpentinisation and the steatisation (see 4.4.4.3.4 and 4.4.4.3.6 below) . 

. ' • I . 
. ; 

-' ~ • I' ... 

' .. 

Figure 4-20 : Photomicrograph of thin sections showing cracks in plagioclase 
generated by formation of corona texture: A:U1309D 12R-1 65-67 cm (plane polarised 
light) ; B: U1309D 33R-2 41-43 cm (plane polarised light). Trm = tremolite ; Chi rim = 
chlorite rim ; Pig = plagioclase. 

4.4.4.3.4 Serpentinisation 

Serpentinisation is another common reaction occurring in olivine­

bearing rocks. When plagioclase is present, rodingitisation can be associated 

with serpentin isation (see below 4.4.4.3.5). 

Serpentine is the product of different reactions. It can be obtained in 

the presence of pyroxene where olivine + clinopyroxene + fluid = serpentine 

or olivine + tremolite+ fluid = serpentine + clinopyroxene. It can be formed 

from hydration of ol ivine by a silica rich fluid . Finally, it can be the product 

with brucite from pure hydration of olivine (4-9): 

2 olivine + 3 water -t serpentine + brucite 

4-9 

Serpentinisation does not release anything to the fluid. However this 

conclusion is based on the Mg-end member mineral reaction . With real 

composi tion measured by electron microprobe, an intermediate olivine of 

composition FOeD reacts with fluid to form an intermediate composition 

serpentine (XMg = 0.83) + brucite and magnetite and produces H2. 

4 olivine + 5.6 water ---+ 2 serpentine + 1.4 Mg(OHh + 0.2 Fe30 4 + 

0 .4 H2 
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1.4Mg(OHh + O.2Fe30", + O.4H2 4-10 

This reaction shows that serpentinisation does not release anything 

to the fluid. On the contrary, it immobilises Mg and Fe in the solid phases 

with formation of serpentine, brucite and magnetite. In fluid inclusions of 

lOOP Hole U13090, concentration of Fe is greater than in seawater. This 

indicates that other processes must be taken into account to allow for 

generation of fluid chemistry such as the ones observed in fluid inclusions. 

Note that olivine has a significant Ni content, which is not the case of 

serpentine. The Ni enrichment observed in fluid inclusion chemistry can 

therefore be explained by leaching occurring during serpentinisation. 

4.4.4.3.5 Rodingitisation 

Rodingites are rocks containing Ca-rich silicates that are associated 

with serpentinites. They are classically believed to be the result of intense Ca 

metasomatism (Coleman, 1963; O'Hanley, 1996). Nonetheless, 

rodingitisation in Atlantis Massif is usually associated with serpentinisation 

and occurs with no addition of Ca as long as Si and AI are mobile (Frost, et 

al., 2008). In that case there are a series of reactions that influence one 

another. Alteration of plagioclase into prehnite in these rocks occurs as a 

result of the low silica activity that characterises serpentinisation (Frost & 

Beard, 2007). The replacement of plagioclase by prehnite and prehnite by 

hydrogrossular provide indeed a source of Si02 which permits the olivine to 

alter into serpentine. The alteration of plagioclase produces an excess of 

AI20 3 which is in turn used to react with serpentine and form chlorite plus 

Si02. Figure 4-21 shows a diagram which represents what happens during 

rodingitisation in a sample of lOOP Hole U13090. 

The only metal which is therefore released to the fluid during 

rodingitisation with associated serpentinisation is Na+ (Frost, et al., 2008). 

This should result in a shift in Na concentration in fluid inclusions relative to 

seawater. And yet, Na median concentrations in fluid type 1 a are lower than 

that of seawater. As rodingitisation implies release of Na into the reactive 
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fluid and albitisation implies consumption of Na from the reactive fluid , the 

median concentrations of fluid from fluid inclusions could be the combine 

effect of albitisation and rodingitisation . However, as seen in corona 

formation (4.4.4.3.3 au-dessus), corona formation also produces Na. It is 

unclear whether albitisation overtakes rodingitisation and corona formation, 

or other processes must be taken into account (e.g. phase separation) to 

allow for the generation of fluid chemistries observed in fluid inclusions. 

Note that fluid type 3b has indeed Na concentration greater than 

seawater but this is a result of the generation of brines by magmatic 

exsolution and has nothing to do with metamorphic reactions. 

Figure 4-21: Schematic representation of the processes of rodingitisation 
(from Frost, et a/. , 2008). 01 = olivine; Serp = serpentine; Pig = plagioclase; Prh = 
prehnite; Gr = grossular; Chi = chlorite. 

4.4.4.3.6 Steatization 

Steatization is the processes from which olivine is replaced by 

serpentine which is in turn replaced by talc (model 1). Sample U1309D 

117R-2 24-32 shows an example of steatization where talc replaces 

serpentine after olivine (Figure 4-22). These reactions are observed in olivine 

rich rocks in the upper part of the core and can be modelled by the reactions 

(4-9 - see serpentinisation paragraph) and (4-11) below: 

serpentine + 2 quartz ~ talc + water 

4-11 
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Steatization can also replace olivine directly by talc (model 2) without 

the intermediate serpentine (4-12). 

3 olivine + 5 quartz +2 water -+ 2 talc 

4-12 

These reactions imply consumption of silica from the fluid and do not 

imply any metal release to the fluid. Nevertheless, these reactions are written 

for pure forsterite and pure Mg talc without considering the Fe content of the 

olivine and talc. Olivine gives serpentine + brucite + magnetite and H2 as 

equation 4-10 shows for the first step of model 1. Serpentine gives talc as 

equation 4-13 shows for the second step of model 1: 

2.8 serpentine + 5.2 quartz + 1.3 H2 -+ 2.5 talc + 4.4 water + 0.3 

magnetite 

2. 8MOz.sFeo.sSizOs(OH)4 + 5. 2SiOz + 1. 3Hz ~ 

4-13 

Model 2 is given by equation 4-14 in which olivine gives talc + 

magnetite + H2: 

2.8 olivine + 3.6 silica + 10.268 water -+ 1.6 talc + 0.267 magnetite + 

8.668 H2 

4-14 

Steatisation consumes silica and fixes Mg and Fe in solid phases. 

lOOP Hole U13090 fluids show an enrichment in Fe relative to seawater. 

This indicates that other reactions or processes must be taken into account 

to allow for Fe concentrations. 
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Figure 4-22: Microphotograph showing the replacement of serpentine after 
olivine by talc in a corona texture (U1309D 117R-2 24-32 cm) 

4.4.4.3.7 Epidotisation 

Epidotisation is another reaction that involves consumption of Ca 

from the fluid. It is a hydrothermal process by which feldspars , pyroxenes 

and amphiboles are altered to epidote. Epidote in the core is not really 

common but occurs in one or two samples (U1309D 75R-2 77-80 cm for 

instance) in which it is believed to replace clinopyroxene (Blackman, et al., 

2006). 

4.4.4.3.8 Anhydrite precipitation 

Anhydrite precipitation also potentially consumes Ca from the fluid. 

However, anhydrite is not common in the core and occurs in only one sample 

(U1309D-150R-3, 22-23 cm). This absence can be explained by its 

retrograde solubility amongst other explanations. However, at time of 

hydrothermal circulation anhydrite precipitated and could have influenced the 

fluid chemistry of fluid . 

Experimental studies on hydrothermal alteration of basalt have 

shown that anhydrite precipitation causes the loss of S04 from seawater at 

temperature> 150°C (MotU & Holland, 1978; Seyfried & Bischoff, 1979; 

Seyfried & MotU, 1982). As S has not been measured, the loss or enrichment 

in S04 in the system cannot be estimated . However, the high Ca requires 
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that S04 is low (Yardley B., pers.comm.) indicating that anhydrite has not 

contributed to Ca concentration of lOOP Hole U1309D fluids to increase. 

4.4.4.3.9 Considerations on trace elements 

Strontium 

In samples 1, 2 and 3, Sr is depleted relative to seawater. Sample 4 

shows a greater concentration but this particularity is the result of the greater 

salinity of that fluid. In experimental studies of alteration of basalt and 

diabase (Seyfried, et al., 1998; Seyfried & Mottl, 1982) and of peridotite 

(Seyfried & Dibble, 1980), Sr is taken from the fluid to incorporate into 

secondary phases. It is even sometimes completely removed from fluid. 

Nonetheless, Sr is also leached from silicates, and mobilised in the fluid. As 

shown by Menzies and Seyfried (1979), this Sr was in anhydrite and 

substituted with Ca. Its presence in the Atlantis Massif fluids might therefore 

come from the alteration of anhydrite, assuming anhydrite was occurring at 

time of hydrothermal circulation and to a lesser extent plagioclase. 

The transition metals 

Experimental studies show that transition metals, namely Fe Mn Zn 

Cu Pb Ni Co are leached and maintained in fluid reacting with basalt and 

diabase during hydrothermal alteration at various temperature and 

water/rock ratios (Menzies & Seyfried, 1979; Mottl & Holland, 1978; Seewald 

& Seyfried Jr, 1990; Seyfried, 1987; Seyfried & Bischoff, 1977; Seyfried & 

Bischoff, 1979; Seyfried & Bischoff, 1981; Seyfried & Mottl, 1982). Those 

studies demonstrate also that the concentrations in fluid of those metals 

depend on the pH of the solution which is controlled by the loss in Mg and 

Ca from seawater (Seyfried & Bischoff, 1981; Seyfried & Mottl, 1977), which 

in turn frees H+ (decreasing the pH). Concentrations of heavy metals are 

therefore essentially controlled by fluid rock interactions and mineral 

equilibria. Concentrations of heavy metals in fluid type 1 a agree with 

estimates from these studies. 
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4.5 Conclusions 

• Fluid chemistry shows variations throughout lOOP Hole 

U13090 samples resulting from the coactions of several processes. 

• All samples show enrichment in major cations and heavy 

metals, except Mg and Sr with respect to seawater. 

• Phase separation clearly influences the salinity variation but 

can also playa role in concentration of major and trace elements. 

• It has been clearly shown that Atlantis Massif fluids are not an 

intermediate composition fluid between seawater and vent fluid. They are 

instead back-water fluid that can mix with recharged seawater and interact 

further with the rock in order to reach vent fluid compositions. 

• Fluid rock interactions clearly playa major role in the variation 

of fluid chemistry. Replacement of clinopyroxene by amphiboles in addition 

to serpentinisation and steatisation control the concentration in Mg. Ca is 

mainly controlled by alteration of plagioclase. Na is controlled by albitisation 

and corona formation. Fe is controlled by steatization and serpentinisation + 

oxide minerals. 
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Chapter 5. Geochemistry of mafic rocks 

from IODP Holes U1309 Band D of the 

Atlantis Massif - 30oN: a study of 

strontium and oxygen isotopes. 

5.1 Introduction 
Hydrothermal circulation at Mid-Ocean Ridges exercises a control on 

the structure of the oceanic crust and interactions between fluids and rocks 

induced by this hydrothermal circulation control in part the chemical and 

isotopic composition of the oceanic crust and the ocean. Past studies have 

documented variations and changes in chemistry and mineralogy of basalts 

and sheeted dikes (Alt, et al., 1996; Gillis, et al., 2005; Teagle, et al., 1998a; 

Teagle, et al., 1998b; Teagle, et al., 2003) and ophiolite complexes (Bickle & 

Teagle, 1992) during hydrothermal circulation. Studies quantifying the 

geochemical variations due to hydrothermal circulation in sections of oceanic 

crust dominated by gabbros and ± interlayered serpentinites are much less 

common (Delacour, et al., 2008; McCaig, et al., 2007). The Atlantis Massif is 

a perfect site to monitor fluid circulation into oceanic crust dominated by 

gabbros. 

In this chapter, strontium and oxygen isotope data for gabbros and 

serpentinites of the Atlantis Massif, 10DP Hole U 1309B and D are presented. 

The difference in the Sr ratio between seawater (0.70916,7.6 ppm (Hodell, 

et al., 1991; Palmer & Edmond, 1989) and MORB (average = 0.70247 (Hart, 

et al., 1974), 117 ppm for fresh basalt (Teagle, et al., 1998b» makes 

87Sr/86Sr an excellent tracer for seawater alteration of oceanic crust. 

Interaction between fresh crustal rocks and seawater leads to an increase in 

the strontium isotope ratio of the rock. Oxygen isotopes exhibit large 

temperature dependent fractionations between fluids and minerals, such that 

oceanic crust altered at low temperature «250°C) is generally enriched in 
180, while higher alteration temperature leads to depletion in 180. Alteration 
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temperature is estimated using experimental fractionation curves that are 

calculated for individual minerals and water of 0180 = 0%0 (seawater 

composition) (80ttinga & Javoy, 1973; Cole & Ripley, 1998; Saccocia, et al., 

1998; Saccocia, et al., 2009; Wenner & Taylor, 1971; Zheng, 1993). The 

influence of the oxygen composition of the circulating fluid on the resulting 

0180 of the rock is discussed below (see 5.4.1). Difference in oxygen isotopic 

compositions is also present between seawater and unaltered oceanic crust 

(&180 - 6%0). 

Here, analyses of bulk rock isotopic composition and of separated 

micro samples are presented in order to better constrain the circulation of 

fluids into the oceanic crust at OCCs. Variations observed in micro-sample 

analyses show that secondary minerals in oceanic crust samples can be 

significantly more radiogenic than bulk rock. Data are then compared with 

published results from oceanic sections such as lOOP Hole 7358 (Hart, et 

al., 1999), Hole 504B (Alt, et al., 1996), anhydrite from TAG hydrothermal 

field 1 and 2 (Teagle, et al., 1998b), and the 15°45'N massif (McCaig, et al., 

2010; McCaig, et al., 2007). 

Estimation of the amount of fluid that circulated in the Atlantis Massif 

was conducted using the approach of Bickle (1992) and Bickle and Teagle 

(1992). All these results and interpretations are compiled in a model for 

hydrothermal circulation at Atlantis Massif in which fluid flow is concentrated 

along the detachment fault. Hydrothermal fluids mainly circulate in the 

hanging wall of the detachment fault with local escape into the footwall. The 

TAG model suggested by deMartin et al. (2007) in which a detachment fault 

is deduced from the distribution of seismicity is used to better constrain 

hydrothermal circulation in the Atlantis Massif. 
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5.2 Analytical methodology 

5.2.1 Analytical procedure for strontium isotopic 
measurement 

Samples representative of different mineral assemblages and extent 

of alteration were selected for strontium analyses. They were reduced to 

powders after being rinsed with deionised water (18MO) and dried down with 

acetone. As isotopic analysis by Thermal Ionisation Mass Spectrometry 

(TIMS) requires the strontium to be analyzed in the form of a pure salt, 

minerals have to be decomposed and brought to solution in an appropriate 

acid before chemical separation. 

5.2.1.1 Whole rock samples preparation procedure 

The samples are weighed with an appropriate amount of 84Sr spike. 

Powders were then left to dissolve in a 1:5 concentrated sub-boiling distilled 

nitric acid and 48% hydrofluoric acid mix. Following decomposition, fluorides 

were dissolved by treatment with concentrated HN03, followed by conversion 

to chloride and dissolution in 2.5M HC!. Strontium separated on cation 

exchange columns in 2.5M HCI and further purified by a second pass 

through the same column (details in Appendix 4). 

5.2.1.2 Micro-drilled samples preparation procedure 

Micro-samples were extracted from uncovered thin sections 

approximately 150 IJm thick using a microscope-stage-mounted drill 

(manufactured by Ulrike Medenbach, Witten, Germany) which removes an 

annulus of material allowing core samples to be extracted. The diameter of 

samples was decided in advance depending on the mineral density and 

estimated Sr concentration. Samples were cleaned in dilute HCI and rinsed 

in water several times before dissolution. 

Amounts of Sr were determined by isotope dilution with a 84Sr spike. 

Concentrations are only known to ca. 10% due to uncertainties in sample 

weight which were calculated from optical estimates of sample volume. 

Samples were dissolved in 1:4 concentrated UpA HN03 and 48% UpA HF 

mix. Chemical separation is performed twice in Sr-spec columns as 

described in appendix 4. 
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Some of the samples were analysed for strontium isotope ratios at 

the National Oceanography Centre (NOC) in Southampton, UK. These 

samples are marked with a star in column 3, in Table 5-2. 

5.2.1.3 Dentist-drilled samples preparation procedure 

Small samples were reduced to powder using a dentist drill. The 

same chemical treatment as for micro-drilled samples was used on these 

samples, except for the cleaning in dilute HC!. Composition of the powders is 

uncertain as more than one type of mineral can be included during drilling 

generating uncertainties on isotope ratio. 

Some of these samples were also analysed for strontium isotope 

ratios at the National Oceanography Centre (NOC) in Southampton, UK, and 

are also marked with a star in column 3, in Table 5-2. 

5.2.1.4 Standards and uncertainties 

At Leeds, Sr extract was loaded onto a tungsten filament using a 

TaCI5 loading solution and analysed for strontium isotope ratio (87Sr/86Sr) in 

the Thermo-Finnigan Triton® TIMS. The mean value for the SRM 987 

standard during bulk rock measurements was 0.710279 ± 0.000050 (N=8) 

and 0.710247 ± 0.000086 (N=20) for micro-sample measurements. Samples 

analysed at the NOC in Southampton were subject to the same analytical 

procedures and analysed using a VG/Micromass Sector 54 TIMS. The mean 

value for SRM 987 in Southampton was 0.710238 ± 0.000091 (N=8). 

Sr isotope compositions were adjusted to be consistent with a SRM 

987 value of 0.710248. Final data were corrected for 87Rb and for blanks. 

The maximum 87Rb correction affects the final 87Sr/86Sr composition at the 

fifth decimal only. Blank correction affects samples for which the Sr content 

is s 1 ng (amphiboles and pyroxenes) at the fourth or fifth decimal, and at the 

sixth decimal for other samples. Blanks of less than 100 pg Sr were difficult 

to obtain. The calculated error (presented as 20) incorporates errors in blank 

and spike corrections, the measured value of 85Rb/86Sr, and the assumed 

values of 87Rb/85Rb (0.386 ± 5%). Sr concentration (in ppm) for micro­

samples has to be used with caution as it is dependent on the estimation of 
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the sample weight that is calculated from the diameter and thickness of the 

annulus and the density of the mineral. 

5.2.2 Analytical procedure for oxygen isotopic 
measurement 

Samples that were analysed for strontium isotope ratios were also 

subject to oxygen isotope composition determination. Sample preparation 

and isotope composition were executed at the Scottish Universities 

Environmental Research Centre (SUERC) by Dr. Anthony Fallick. They are 

presented as & values in per mil (%0) relative to Vienna Standard Mean 

Ocean Water (V-SMOW). 

Samples were first reduced to powder (at least 50 mg) using a 

dentist drill at Leeds University before being chemically prepared at the 

SUERC. The powders were heated to 200°C overnight under high vacuum in 

order to remove interlayered and absorbed water. &180 values are 

detennined by laser fluorination techniques (Macaulay, et al., 2000). 

Powders were heated with a C02 laser in a CIF3 atmosphere in order to 

extract the oxygen out of the powders. The resultant oxygen was purified and 

converted to C02. The yield was measured by a capacitance manometer. 

Oxygen isotope compositions of the C02 were measured by a dual-inlet 

mass spectrometer. Precision of measurements are ± 0.2%0 (10'). 
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5.3 Results 

5.3.1 Bulk rock Strontium and Oxygen variation 

5.3.1.1 A downhole profile 
Variations in strontium and oxygen compositions from whole rock 

samples are presented in Table 5-1 and 87Sr/86Sr ratios as well as &180 are 

plotted against depth (Figure 5-1). Strontium isotope data presented here are 

a compilation of analyses done at the School of Earth and Environment in 

Leeds by the author and analyses collected at ETH Zurich by Adelie 

Delacour (Delacour, 2007; Delacour, et al., 2008). These data have been 

published in an AGU Monograph (McCaig, et al., 2010). All the Sr data lie 

between seawater (87Sr/86Sr = 0.70916 (Palmer & Edmond, 1989); &180 = 
0%0) and oceanic crust MORB (87Sr/86Sr = 0.70247 (average of MORB 

values (Hart, et al., 1974)); &180 = 6 (Gregory & Taylor, 1981 )). 

The first striking observation is the decreasing in strontium and 

oxygen isotope ratios with increasing depth indicating a decreasing effect of 

seawater, with the most intense alteration occurring in the first 400 mbsf. 

Note that depth here is not the depth of penetration of seawater since the 

core was - perpendicular to the detachment fault orientation at time of 

hydrothermal circulation; depth is therefore the distance away from the major 

detachment fault. 

The second striking information is that there is a major difference in 

87Sr/86Sr between mafic rocks and ultramafic rocks. Mafic rocks range from 

0.70261 to 0.70429 and average at 0.70319, whereas ultramafic rocks give 

more radiogenic values in the upper part of the core with a minimum of 

0.70687 and a maximum of 0.70904. Serpentinites deeper down in the core 

(- 600 mbsf) show intermediate values (0.7052 and 0.7058) before unaltered 

igneous values at the bottom of the core (0.702964; 0.702909; 0.702745). A 

serpentinite at -310 mbsf shows a relatively low strontium isotope ratio 

(0.703797). Late carbonates such as magnesite, calcite and dolomite have 

been observed in serpentinite (Blackman, et al., 2006; Klein, 2010). The 

occurrence of such phase influences the isotopic composition of serpentinite, 
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and the elevated ratio showed by some ultramafic rocks may be the result of 

carbonates. A leaching experiment to test this has been undertaken and 

results are presented below (paragraph 5.3.3; Table 5-3). 

No obvious variation between mafic (1.44 to 5.62%0), and ultramafic 

rocks (1.38 to 4.64%0) is observed for oxygen. As no whole rock samples 

show 5180 greater than the unaltered oceanic crust, alteration occurred at 

temperatures greater than 200-250°C (Shanks, 2003; Alt, et al., 2007) (see 

discussion 5.4.1 below). 

Variations in both 87Sr/86Sr and in 5180 between the different mafic 

rocks are not obvious. Overlap between rock types is common (Figure 5-1). 

Olivine gabbros show nonetheless the widest range in 87Sr/86Sr (0.70262 to 

0.70429) and in 5180 (1.44 to 4.38%0). Diabases of the top 100 mbsf range 

for strontium from not altered (0.70268) to slightly altered (0.70328) and 

average 0.70294. They give 5180 in the same range as troctolites (2.25 to 

4.27%0). Talc tremolite schists and vein material (U13098 11 R-2 35-55 cm; 

Figure 2-80) at the top of the core show elevated strontium isotope ratios 

(0.70448 to 0.70563) and are among the most altered for oxygen (two 

measurements: 1.41 and 1.93%0). 

5.3.1.2 Correlation between Sr and 0 isotopes 

Figure 5-2 shows plot of 87Sr/86Sr against Sr concentration (A) and 

against 5180 (8). The 87Sr/86Sr - 5180 plot show that there is a negative 

correlation between 87Sr/86Sr ratios and 5180, with the most altered samples 

in terms of 87Sr/86Sr being generally the most altered in 5180. This trend is 

obvious for gabbro samples and is not verified for diabase that show 5180 

values lower than some serpentinites with low value of 87Sr/86Sr. Figure 5-2A 

shows no evident correlation between 87 Sr/86Sr and the strontium 

concentration except for the serpentinites and talc-tremolite schists that are 

the most altered with the lowest strontium content. However the less altered 

serpentine show strontium content in the same order of magnitudes as the 

most altered ones. Strontium content of olivine gabbros is relatively constant 

whichever the strontium isotope ratio. One sample of olivine gabbro (U1309D 
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75R-2 77-80 cm) is however really high in strontium (334 ppm). This sample 

conta ins a leucocratic alteration vein with epidote. Gabbro samples seem to 

show a positive correlation . 
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Figure 5-1: Strontium and oxygen isotope ratio against depth in lOOP Hole 
U13090.Verticall ines represent seawater and MORB value. Note that two samples are 
from lOOP Hole U1309B: a talc tremolite schist (B11R-2 62-66 cm) and a serpentinite 
(B11R-223-31 cm). 
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87Srt,86Sr 
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Table 5-1: Whole rock geochemical composition in Strontium and oxygen. Error at 2cr is given for 87Srt 6Sr. * are data from Delacour (2007) 

Sample number Rock type Sr content (ppm) 87Srt6Sr Error (2 a) 
l)'BO Depth (mbsf) 

~%o V-SMOW) 
B11R-223-31 Serpentinite 1.0 0.708862 0.000064 2.92 58.79 
B 11 R-2 62-66 Talc schist 1.8 0.705631 0.000096 1.41 59.14 
D1R-141-44 Diabase 69.0 0.702897 0.000010 2.35 20.93 
01 R-1 72-80* Diabase 91.5 0.702962 0.000011 2.25 21.26 
D1R-34-8* Talc-schist 2.0 0.704477 0.000014 1.93 23.33 
D4R-180-89 Brecciated gabbro 96.3 0.703667 0.000006 2.42 32.25 
D4R-1135-137 Brecciated gabbro 121.8 0.703848 0.000010 2.22 32.76 
D4R-311-14 Gabbro 186.7 0.703914 0.000010 3.05 34.53 
D5R-322-28 Gabbro 162.7 0.703983 0.000110 3.34 39.57 
D6R-1 132-140 Olivine gabbro 110.7 0.703666 0.000010 2.84 42.16 
D7R-3101-102 Gabbro 121.2 0.703641 0.000010 3.07 49.05 0 

:::r 
D8R-256-59 Olivine gabbro 151.6 0.704287 0.000001 52.54 Q) 

"0 
D10R-1 127-129 Gabbro 88.2 0.703592 0.000010 3.31 61.48 -(» 

-" D12R-346-51 Troctolite 84.5 0.702810 0.000002 2.76 73.07 ... 
C,..) D13R-28-22 Troctolitic gabbro 105.3 0.702915 0.000072 3.64 75.98 

c.n 
co 

D17R-29-17* Olivine gabbro 50.0 0.702841 0.000014 3.74 99.93 Q 
(» 

D23R-2 29-36 Olivine rich troctolite 31.5 0.703544 0.000002 132.83 0 

D23R-298-101 Serpentinite 0.3 0.706890 0.000110 133.49 0 
:::r 

D27R-1 36-42.5 Olivine gabbro 50.6 0.702822 0.000028 3.19 152.69 (» 

3 
D31R-1128-132 Serpentinite 1.2 0.708012 0.000128 2.81 172.80 en' 
031 R-2 19-30* Serpentinite 32.0 0.709036 0.000011 3.32 173.21 --< D40R-1 6-12 Troctolite 80.8 0.702854 0.000006 2.31 214.89 0 
D42R-10-8* Serpentinite 4.0 0.708571 0.000015 3.54 224.34 --051 R-4 30-38* Gabbro 86.0 0.702686 0.000011 4.25 271.02 :::r 

D56R-1 35-45 Serpentinite 0.4 0.708071 0.000656 291.20 
(» 

» 
D58R-1 22-25 Serpentinite 9.6 0.708707 0.000026 2.35 300.60 -iii 
D60R-3 35-45 Serpentinite 1.8 0.703797 0.000152 2.97 313.23 ::J 

D60R-3 35-45* Troctolite nd 0.703354 0.000013 4.27 313.23 -en' 
D65R-2 22-30* Serpentinite nd 0.706870 0.000079 2.48 335.40 s: 
D75R-277-80 Olivine gabbro 334.1 0.703802 0.000010 1.44 383.83 Q) 

CJ) 
CJ) 
:;; 



Table 5-1 continued 

Sample number Rock type Sr (ppm) 87Srt8Sr Error (2 0) 
6'80 

Depth (mbsf) (%0 V-SMOW) 
D77R-40-10 Olivine gabbro 50.6 0.703296 0.000010 3.78 395.37 
D83R-1 16-26* Olivine gabbro 54.0 0.702721 ·0.000013 4.20 415.21 
D83R-1 53-64· Olivine gabbro nd 0.703202 0.000012 2.97 415.59 
D84R-28-17* Oxide gabbro nd 0.703698 0.000012 2.27 421.01 
D87R2 63-71 * Oxide gabbro 95.0 0.702857 0.000013 4.19 436.33 
D94R-3 46-48 Diabase 73.0 0.702849 0.000008 2.51 471.24 
D100R-142-46· Olivine rich troctolite 44.0 0.702688 0.000010 4.51 497.04 
D111R-425-26 Serpentinite 8.6 0.705194 0.000164 4.09 553.80 
D116R-1 58-68* Oxide gabbro nd 0.703604 0.000013 3.17 574.03 
D117R-2 24-32 Olivine gabbro 47.8 0.702980 0.000010 2.23 579.69 
D127R-1 145-148 Diabase 78.3 0.702969 0.000010 2.27 627.67 () 

;:r 
D136R-221-29 Serpentinite 0.2 0.705802 0.000118 2.33 671.01 Il) 

""0 
D136R-221-29· Olivine gabbro 29.0 0.702814 0.000012 3.50 671.01 -CI) 

...... D137R-285-91· Oxide gabbro nd 0.702709 0.000012 676.48 .., 

.J:a. D144R-1 105-116 Olivine gabbro 102.9 0.703381 0.000001 708.91 
(J1 

0 
D155R-268-72 Diabase 70.9 0.702684 0.000012 2.39 759.64 G) 

D169R-190-100· Gabbro 101.7 0.702627 0.000012 5.62 819.00 
CI) 
0 

D180R-113-17 Diabase 89.6 0.703281 0.000010 4.27 875.95 0 
;:r 

D210R-143-46 Olivine gabbro 49.7 0.702622 0.000008 4.38 1010.85 CI) 

3 D227R-3 6-12· Olivine rich troctolite 29.8 0.702686 0.000013 3.70 1095.02 en· 
D228R-2 18-22 Serpentinite 0.8 0.702973 0.000172 2.53 1098.20 --< D235R-2100-114 Serpentinite 7.6 0.702909 0.000342 4.64 1131.80 

0 
D237R-2 6-18· Olivine rich troctolite 21.0 0.702693 0.000010 4.61 1140.64 --D256R-3 88-93 Serpentinite 0.6 0.702745 0.000072 3.10 1233.76 ;:r 

CI) 
D292R-2 78-88* Gabbro nd 0.702614 0.000012 5.39 1398.68 » -Il) 

::l -en· 
s: 
Il) 
CJ) 
CJ) 

=t; 
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5.3.2 Micro-sample Sr and 0 isotope variation 
Micro-sample data for 87Sr/S6Sr and 8180 are summarised in Table 

5-2 and are plotted against depth for both holes U1309S and D in Figure 5-3. 

Results show that igneous plagioclase and clinopyroxene range from 

a MORS-like strontium isotope ratio of 0.70260 to slightly altered value of 

0.70348 for plagioclase and from 0.70256 to 0.70302 for clinopyroxene. Sr 

concentration in igneous plagioclase (generally of bytownitic composition -

see Figure 2-9) is typically -100 ppm (Table 5-2). Some samples 

(plagioclase 3 [An3s] and 4 [Anso] from a troctolite - U1309D 12R-3 46-51 cm) 

show suspiciously high concentration (e.g. 500 ppm). Low Sr concentration 

(e.g. plagioclase An30 and Anso of sample U1309D 144R-1 105-116 cm) can 

be explained by loss of material during transfer and/or washing. However, 

these uncertainties in Sr concentrations do not mean that the strontium 

isotope ratios cannot be trusted. 

Actinolite replacing pyroxene exhibits intermediate ratios ranging 

from 0.70366 to 0.70410 and is significantly more radiogenic than the whole 

rock composition (Figure 5-5). Even if the Sr fraction analysed is usually 

small «1ng; e.g. U1309D 117R-2 24-32 cm - Table 5-2), the consistency in 

actinolite strontium isotope ratios makes the values truthful. 

Epidote vein shows also intermediate ratio in sample U1309D 75R-2 

77-80 cm (0.70389, average of 3 samples). This sample is a coarse-grai~ed 

gabbro cut by a leucocratic dike with epidote (Figure 2-5/). Plagioclase is 

fairly unaltered except close to the epidote where albite is present. 

Secondary minerals consist of actinolite after pyroxene and chlorite after 

plagioclase. Titanite and zircon are accessory minerals associated to the 

leucocratic dike. 
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Chapter 5: Geochemistry of the Atlantis Massif 

Ratios approaching seawater isotopic composition have been found 

in actinolite ± clay vug veins (Figure 2-6 and Figure 2-7) (0.70608 to 0.70893 

_ Figure 5-3; average of 4 samples = 0.70762) of gabbro samples (U1309B 

14R-1 59-66, U1309D 8R-2 56-59, U1309D 12R-3 46-51 and U1309D 144R-

1 105-116) with coarse-gra ined plagioclase of bytownitic composition and 

cl inopyroxene replaced by actinol ite. (Figure 2-9 and 2-10, appendix 1). 

White bleached walls related to actinolite vugs are composed of plagioclase 

(albite + An40 in a -50:50 proportion) + randomly orientated and actinolite 

needles. Plagioclase of these walls shows elevated 87Sr/86Sr ratios compare 

to igneous plagioclase (0.70414 to 0.70416). Data also suggest that 

plagioclase is less radiogenic away from the vugs (Figure 5-4 and Figure 

5-5). 
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Figure 5-4: Strontium isotopic composition of minerals away from amphibole 
+ clay vugs in sample U1309D 8R-2 56-59 cm and U1309D 12R-3 46-51 cm. Errors are 
indicated when possible. 
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Sample U1309B 11 R-2 35-51 cm is a serpentinite cut by a talc 

tremolite vein (Figure 2-80). This sample shows a zone of green tremolite 

and pale talc replacing serpentinised harzburgite. This zone has undergone 

reverse shear along talc-rich horizons, but the margin of talc alteration 

against serpentinite is unsheared, overprinting the pre-existing serpentinite 

foliation defined by magnetite seams and serpentine ribbons. The zone 

tapers upward in the present orientation and has an outer talc-rich zone with 

an isotropic fabric replacing serpentinite and an inner tremolite-rich zone with 

highly schistose talc bands. Dark grains within the talc alteration are bastites 

containing serpentine + magnetite assemblages (Blackman, et al., 2006). 

Elevated 87Sr/86Sr ratios are also found in this sample. Serpentine 

(whole rock - Table 5-1) and tremolite give seawater-like ,values (0.709077 

and 0.709018 respectively). Talc that occurs as replacement of serpentine 

gives intermediate ratio (0.706288) (Figure 5-3, Figure 5-6A and Table 5-2). 

Samples U1309B 10R-2 17-35 cm and U1309D 14R-1 64-67 cm are 

olivine gabbros showing corona texture (Figure 2-40 and Figure 2-5F). In 

corona texture, plagioclase is replaced by chlorite and olivine is replaced by 

tremolite at the contact between plagioclase and olivine (Figure 5-6B). The 

tremolite rim (sample U1309B 10R-2 17-35 cm; Table 5-2) around olivine 

gives an elevated ratio (0.70652) and chlorite replacing plagioclase a much 

lower but nonetheless intermediate ratio (0.70458 = average of 2 

measurements in sample U1309B 10R-2 17-35 cm and U1309D 14R-1 64-

67 cm; Table 5-2). The relatively high strontium concentration of chlorite in 

sample U1309B 10R-2 17-35 cm makes this analysis doubtful. Relic 

plagioclase in sample U1309D 14R-1 64-67 cm still shows an igneous value 

(0.70297) (Table 5-2; Figure 5-6 B). 

Prehnite from micro-rodingite samples give a range of strontium 

isotope ratios. Only sample U1309D 60R-3 35-45 cm of the four is certified to 

be 100% prehnite because it is the only one to have been micro-drilled from 

a thin section analysed in SEM and the microprobe. Sample U1309D 60R-3 

35-45 cm is a troctolite that is altered at -80% with olivine being replaced by 

serpentine + magnetite and plagioclase altered to prehnite (see electron 

microprobe analyses in Appendix 1) and is rimmed by chlorite. Micro-
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rodingites are described in Chapter 2 and 4 (refer to Figure 2-4G and Figure 

4-21). Prehnite in sample U1309D 60R-3 35-45 cm shows elevated 87Sr/86Sr 

ratios (0.707736; Table 5-2 and Figure 5-6C). Other samples containing 

prehnite have been reduced to powder using a dentist drill and mineralogy 

can therefore not been certified to be 100 % prehnite. Ratios indicate that the 

powder might be contaminated by "fresh" plagioclase that has not been 

replaced. This is the case for samples U1309D 228R-2 18-22 cm and 

U1309D 256R-3 88-93 cm recovered deep down in the core (at depth of 

1000 mbsf) that show igneous value. XRD analyses show that the powders 

contain prehnite (-30%), Ca-plagioclase (-45%), and serpentine. Sample 

U1309D 61R1 15-18 cm for which the XRD analyses shows only 25% of 

prehnite, 60% of garnet, and 15% of serpentine has a strontium isotope ratio 

of 0.703835. 

Oxygen data for micro-samples are summarised in Figure 5-3 in a 

plot against depth and in Table 5-2. All samples except four show oxygen 

isotope compositions that scatter between modern seawater composition 

(0%0) and unaltered oceanic crust composition (6%0). Results show that 

amphibole + clay vugs have high 8180 values (4.33 to 8.45%0) except for one 

sample (U1309B 14R01 59-66 cm) which shows a much lower 6180 (1.29%0). 

Plagioclases of bleached walls show value of -5%0 (U1309B 14R-1 59-66 

cm; U1309D 8R-2 56-59 cm; U1309D 12R-3 46-51 cm). Plagioclases in vein 

give similar results (U1309B 9R-1 108-109 cm; U1309D 10R-1 127-129 cm; 

U1309D 41R-1 89-92 cm). Amphiboles in vein (U1309B 12R-1 43-46 cm; 

U13098 19R-1 121-123 cm; U1309D 5R-3 22-28 cm) give lower b180 than 

amphiboles in vugs. One quartz sample (U1309D 27R-1 36-43 cm) shows 

elevated b180 (10.38%0). 
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Table 5-2: Micro-samples geochemical composition in Strontium and oxygen. Error at 2cr is given for 87SrfSSr. Samples marked by a star 
were analysed at NOe in Southampton. 

Sample number Rock type Mineral XRD Drill type Sr analysed (ng) Sr (ppm) B7Srf!!)Sr Error (2 CJ) ~HlO ('.l1'Wl) Depth (mbsf) 
B8R-257-67 Gabbro Am + Clay? vug Micro 5.16 45.29 

Pig wall Micro 2.79 45.29 
B9R-1 108-109 Gabbro Pig (VEIN) Micro 82.2 20.5 0.704240 0.000034 5.34 48.58 
B10R-217-35 Gabbro Tremolite (corona) Micro 10.3 2.5 0.706521 0.000104 2.44 54.13 

Chlorite (corona) Micro 84.2 12.2 0.704322 0.000052 1.08 54.13 
B11R-235-51 Serpentinite Serpentine Dentist 21.1 2.9 0.709077 0.000292 1.43 58.90 

Tremolite (VEIN) Dentist 207.9 35.0 0.708976 0.000104 1.26 58.90 
Talc (VEIN) Dentist 2.1 0.4 0.706288 0.000166 1.45 58.90 

B 12R-1 43-46 Diabase Am (VEIN) Micro 25.5 2.8 0.705287 0.000044 2.06 62.00 
B14R-1 59-66 Gabbro Am + Clayvug X Micro 52.6 4.7 0.706082 0.000088 1.29 71.73 

Pig wall Micro 477.4 238.7 0.703957 0.000018 5.95 71.73 
(") 

B16R-1 33-44 Brcc gabbro Matrix Dentist 123.0 34.2 0.704361 0.000018 5.69 80.68 =r 
B19R-1121-123 Diabase Am (VEIN) Dentist 39.9 12.1 0.703560 0.000026 1.59 95.20 Q) 

"0 
~ D5R-322-28 Gabbro Am (VEIN) Micro 5.6 2.0 0.703314 0.000110 2.71 39.57 ... 

CD 
~ Pig wall Micro 40.3 125.0 0.703980 0.000028 4.90 39.57 

..., 
0> 01 

D8R-256-59 Olivine gabbro Am + Clayvug X Micro 5.6 4.1 0.708931 0.000036 6.79 52.54 
Pig wall 1 Micro 89.1 115.0 0.704161 0.000016 52.54 G) 

CD 
Pig wall 2 Micro 89.4 132.7 0.704139 0.000012 52.54 0 

Pig wall 3 Micro 86.9 118.2 0.704157 0.000012 52.54 
0 
=r 

Average Pig wall Micro 88.5 122.0 0.704152 0.000013 5.84 52.54 CD 
3 

Plg4 Micro 106.0 152.0 0.703981 0.000016 52.54 iii" 
Pig 5* Micro 4.5 110.4 0.703476 0.000352 52.54 ... 

-< Pig 6* Micro 3.7 108.7 0.702814 0.000312 52.54 0 
Pig 7* Micro 5.1 101.3 0.702665 0.000232 52.54 -... 
Actinolite 1* Micro 2.4 4.3 0.704015 0.000160 52.54 =r 

CD 
Actinolite 2* Micro 0.9 10.9 0.703925 0.000436 52.54 » 

D10R-1 127-129 Gabbro Pig + Am (VEIN) X Dentist 334.6 128.7 0.704292 0.000026 5.89 61.50 ... 
iii'" 

Am Dentist 0.39 61.50 ::J ... 
D12R-346-51 Troctolite Am vug* Micro 1.5 11.7 0.707041 0.000240 4.33 73.06 en· 

Pig wall 1* Micro 16.7 558.0 0.704220 0.000084 4.38 73.06 s: 
Pig wall 2* Micro 30.5 117.0 0.704172 0.000086 73.06 Q) 

en 
en 
::0; 



Table 5-2 continued 

Sample number Rock type Mineral XRD 
Drill Sr analysed Sr (ppm) 87Srf6Sr Error ~180 Depth 
type (ng) (2 (7) «J60) (mbsf) 

D12R-346-51 Troctolite Pig 3* Micro 3.5 500.1 0.702735 0.000282 73.06 
Pig 4* Micro 7.5 381.3 0.702811 0.000290 73.06 

D14R-1 64-67 Olivine gabbro Tremolite (corona) Micro 0.62 80.05 
D14R-1 64-67 Olivine gabbro Chlorite (corona) Micro 1.6 1.0 0.704830 0.000170 0.59 80.05 

Plagioclase Micro 23.9 75.0 0.702975 0.000240 80.05 
D27R-1 36-43 Olivine gabbro Quartz (VEIN) Dentist 10.38 153.12 
D31R-1 128-132 Serpentinite Tremolite (VEIN) Dentist 4.3 0.8 0.707811 0.000140 2.39 172.80 

Talc (VEIN) Dentist 2.4 0.4 0.706779 0.000180 1.99 172.80 
D41 R-1 89-92 Troctolite Pig-Am (VEIN) Dentist 34.8 5.3 0.703447 0.000026 6.76 220.40 
D60R-3 35-45 Troctolite Prehnite* Micro 13.5 800.0 0.707736 0.000284 2.13 313.24 

D61R-115-18 Ol-rich troct 
Prehnite + Garnet + 

X Dentist 5.2 4.4 0.703835 0.000078 4.45 315.00 () 
Serp ;;;r 

D75R-277-80 Olivine gabbro Epidote 1 (VEIN) Micro 44.2 289.6 0.703900 0.000038 383.83 Q) 
-0 

~ Epidote 2* (VEIN) Micro 148.6 1000.0 0.703876 0.000534 383.83 ... 
CD J:o,. Epidote 3* (VEIN) Micro 88.8 808.0 0.703887 0.000082 383.83 
..., 

--..J U'1 
Average Epidote Micro 93.9 699.2 0.703888 0.000218 0.39 383.83 
Pig 1 Micro 34.3 126.9 0.702685 0.000028 383.83 G) 

CD 
Pig 2 Micro 19.9 210.6 0.703336 0.000028 383.83 0 
Actinolite Micro 0.7 3.1 0.703966 0.000362 383.83 0 

;;;r 

Clinopyroxene Micro 0.5 2.6 0.703018 0.000496 383.83 CD 
3 Calcite* Micro 8.5 26.6 0.704513 0.000280 383.83 iii· 

Apatite Micro 6.3 22.3 0.702823 0.000056 383.83 ... 
-< D84R-28-17 Oxide gabbro Epidote (VEIN) Dentist -0.03 421.00 0 

D117R-2 24-32 Olivine gabbro Pig (corona) Micro 14.9 97.0 0.702639 0.000026 579.69 -... 
Actinolite Micro 0.7 2.8 0.704102 0.000288 579.69 ;;;r 

CD 
Clinopyroxene Micro 2.3 3.2 0.702556 0.000184 579.69 » 

D140R-257-60 Diabase Altered diabase Dentist 52.7 6.9 0.705569 0.000014 3.08 690.10 ... 
or 

D144R-1105-116 Olivine gabbro Am + Clay? vug Micro 1.1 1.5 0.708419 0.000386 8.45 708.91 :J ... 
Pig (albite) Micro 4.3 29.2 0.703072 0.000040 708.91 iii· 
Pig (An30) Micro 8.2 76.1 0.702658 0.000026 708.91 s:: 
Pig (AnSO) Micro 18.5 82.6 0.702601 0.000022 708.91 Q) 

CJ) 
CJ) 

=--
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Table 5-2 continued 

Sample number Rock type Mineral XRD Dri ll type Sr analysed (ng) Sr (ppm) s7SrfSllSr Error (2 a) ~180 (''l')(») Depth (mbsf) 
Actinolite 1 Micro 2.4 1.4 0.703662 0.000264 3.52 708.91 
Actinolite 2 Micro 3.6 2.3 0.703946 0.000172 708.91 
Clinopyroxene Micro 15.1 3.5 0.702968 0.000050 708.91 

D228R-2 18-22 Ol-rich troct Prehn ite + Pig + Serp X Dentist 1.3 0.2 0.702469 0.000278 4.38 1098.20 
D256R-3 88-93 Ol-rich troct Prehn ite + Pia + Sero X Dentist 211 .7 70.6 0.702582 0.000024 5.96 1233.80 

Figure 5-5: Backscatter electron microphotographs montages. All 3 samples show actinolite vugs with white plagioclase walls, together 
with host rock. Am = amphibole; Act = actinolite; Pig = plagioclase; Ab = albite; An = anorthite; FeAct = ferroactinolite; Cpx = clinopyroxene. 
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Chapter 5: Geochemistry of the Atlantis Massif 

Figure 5-6: Backscatter electron microphotograph montages. A: Serpentinite 
with a talc tremolite vein running through it. Samples were reduced to powders using 
a dentist drill on this sample in order to generate enough powder for strontium and 
oxygen analyses. Locations of actual sampling are therefore not included in the 
montage (U1309B 11R-2 35-51 cm). B: Olivine gabbro (U1309D 14R-1 64-67 cm) 
showing corona texture with chlorite replacing plagioclase and tremolite replacing 
olivine. 87Sr/86Sr of the tremolite (marked with a star *) was analysed from an other 
sample that shows corona texture (U1309B 10R-2 17-35 cm). C: Micro-rodingite 
showing alteration of plagioclase into prehnite (U1309D 60R-3 35-45 cm). 
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5.3.3 Carbonate content and leaching 
experimentation 

In this section, the influence of late carbonate on isotopic 

compositions of serpentinite samples is assessed. Serpentinites are the 

result of alteration of an ultramafic protolith with low Sr content and a 

strontium isotope ratio representative of oceanic crust samples (MORB = 

0.70247 average of typical range for MORB (Barrett & Friedrichsen, 1982; 

Hart, et al., 1974)), modified by seawater of greater strontium isotope ratio of 

0.70916 (HodelJ, et al., 1991; Palmer & Edmond, 1989). Interaction at any 

fluid flux between those two end members will lead to serpentinite with a low 

Sr content and a high strontium isotope ratio. It is true for serpentinites of the 

upper part of the core (Figure 5-1 and Table 5-1). However, Sr content is 

sometimes relatively high (Sample U1309D 31R-2 19-30cm, Sr = 32 ppm; 

Table 5-1). This is difficult to explain unless serpentinite contains minerals 

that are rich in strontium and that can therefore influence both the 

concentration and the strontium isotope ratio. Magnesite, calcite and 

dolomite have been found by electron microprobe and described in the 

literature (Blackman, et al., 2006; Klein, 2010). 

A leaching experiment (details in Appendix 5) was conducted on one 

serpentinite sample that showed relatively high strontium content (Sample 

U 1309D 31 R-2 19-30cm, Sr = 32 ppm; Table 5-1) in order to assess the 

influence of potential carbonate content. Results are summarised in Table 

5-3. 95% of the Sr of the initial powder was removed after the leaching step. 

The leached serpentine shows 0.1 ppm Sr and is comparable to analyses on 

serpentinite of oceanic crust. The leachate strontium isotope ratio is greater 

than that of the leached serpentine (0.708208 against 0.707941). Compared 

to the bulk analysis previously done, greater difference between the 

strontium isotope ratios was expected. However, both analyses were not 

conducted on the same powders. There is also a significant difference 

between the calculated integrated strontium concentration from the leaching 

experiment and the strontium concentration of the original bulk analysis. This 

might be the result of a highly heterogeneous distribution of the strontium, 

which might concentrate in veins. 
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This experiment shows that Sr isotope analyses of serpentinite 

samples from the upper part of the core are influenced by the presence of 

late carbonate veins. Results show also that the leached serpentine still has 

a relatively elevated strontium isotope ratio with a low strontium content (0.1 

ppm). Nonetheless, nothing in this experiment allows to certify that the 0.1 

ppm of strontium in the leached serpentine are not even more carbonate that 

have not been leached during the experimental procedure. However, 

prehnite (sample U1309D 60R-3 35-45 cm) also has an elevated strontium 

isotope ratio (0.707736; Table 5-2). Prehnite and serpentine are coeval in 

micro-rodingites (Frost, et al., 2008), and this indicates that the 

serpentinising fluid was close to seawater strontium isotopic composition. 

Table 5-3: Leaching experiment result of sample U1309D 31R-2 19-30 cm. 

Sample 

Nature of 
weight Sr 

Mass Sr content 
sample 

before analysed 
balance (ppm) 

87Srl'6Sr 2cr error 
analyses (ng) 

(g) 

Serpentinite 32.0 0.709036 0.000011 
bulk rock 

Leached 0.0095 0.95 5% 0.10 0.707941 0.000298 
serpentine 

Leachate 19.99 95% 0.708208 0.000028 

Leached 
serpentine + 0.0128 20.94 1.6 0.708196 0.000069 

leachate 

5.3.4 Comparison with literature dataset 
Figure 5-7 shows a comparison of our data with those from the 

15°45'N massif which was drilled during cruise JR63, and composed of 

peridotites intruded by a gabbro body in the footwall of a fault zone of talc 

schist rocks (MaCaig, et al., 2007), Hole 5048 drilled in sheeted dikes of the 

EPR (East pacific Rise - fast spreading crust) (Alt, et al., 1996), Hole 7358 

drilled in deformed gabbros of an acc of the SWIR (Hart, et al., 1999), and 

with serpentinites of the southern wall of the Atlantis Massif (8oschi, et al., 

2008). Anhydrite samples from TAG 1 and 2 (Teagle, et al., 1998b) are also 

plotted for comparison with the serpentinite high value of strontium isotope 

ratio (see below). 
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Samples from 15°45'N show a negative correlation that is more 

pronounced than Atlantis Massif samples with a trend towards seawater that 

is remarkable (McCaig, et BI., 2007). Talc schists are more altered in both 

strontium and oxygen than Atlantis Massif ones and show strontium isotope 

ratios close to seawater composition comparable to lOOP Hole U13090 

serpentinites. Oiabases are slightly more altered in strontium and show lower 

()180. Our gabbros show a wider range both in oxygen and in strontium. 

Sheeted diabases of Hole 504B show the same degree of alteration in terms 

of strontium as our diabases but do not show such low ()180 (Alt, et BI., 

1996). Gabbros from OOP Hole 735B show much less alteration in strontium 

isotopes. The range in oxygen isotopes is however equivalent (Hart, et BI., 

1999). Serpentinites of the southern wall of the Atlantis Massif at the Lost 

City hydrothermal field site show elevated strontium isotope ratios close to 

seawater composition (Oelacour, et. BI., 2008) similar to the two most altered 

serpentinite samples. However, unlike serpentinites of the lOOP Hole 

U1309B and D, all serpentinites of the southern wall show elevated strontium 

isotope ratios (Boschi, et BI., 2008). The range in oxygen isotope 

composition is also much wider in the southern wall than in the lOOP cores. 

Anhydrite samples from TAG (Teagle, et BI., 1998b) show elevated 

strontium isotope ratios comparable to our serpentinite, amphibole vugs and 

prehnite. Two amphibole vugs are greater in strontium isotope composition 

for the same range of oxygen isotope composition. Amphibole vugs and 

prehnite that show similar 87Sr/86Sr are however much lower in ()180 than 

anhydrite from TAG. 
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Figure 5-7: Comparison of 87Srt86Sr versus 0180 of whole rock from 10DP Hole 
U13098 and D with data from 15°45'N (McCaig , et al., 2007), Hole 5048 (Alt, et al., 
1996), Hole 7358 (Hart, et al., 1999), and serpentinites from the southern wall of the 
Atlantis Massif (80schi, et al., 2008). A few micro-samples are also plotted for 
comparison with anhydrite (Teagle, et al., 1998b). 
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5.4 Discussion 

5.4.1 Temperatures of isotopic alteration 
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Figure 5-8: A: Oxygen isotope fractionation curves for different 
thermometers from the literature. B: Oxygen fractionation curves for different 
minerals in Zheng (1993) ; C: Oxygen fractionation curves for plagioclase (Bottinga & 
Javoy, 1973) 
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Oxygen isotopes have a large temperature dependent fractionation. 

Several experimental studies were carried out to calibrate interaction of 

minerals with water at different temperatures (Figure 5-8). In Figure 5-8A, the 

fractionation curves show disagreement in the delta of mineral-water value 

for a range in temperature between calibration of the same thermometer. 

Serpentine - water interaction for instance has been intensly studied 

(Saccocia, et al., 1998; Saccocia, et al., 2009; Wenner & Taylor, 1971; 

Zheng, 1993). Estimation of the alteration temperature can be significantly 

different (shift of 50°C can be observed - see Figure 5-9) depending on the 

equation used. Calculations in this study were done for micro-samples 

assuming a fluid circulating that is seawater, characterised by 0180 = 0%0 and 

are summarised in Table 5-6. The influence of the altering fluid oxygen 

composition is discussed below where a comparison of temperature of 

alteration of serpentinites obtained with seawater (0%0) and a seawater­

derived fluid (1 %0 and 2%0) is shown in Figure 5-9. Seawater-derived fluid of 

0180 = 1 and 2 %0 are used to be in agreement with hydrothermal fluids 

composition (1.70/00) (Shanks III, et al., 1995). 

5.4.1.1 Alteration temperatures from whole rocks 

Whole rock 0180 values never exceed that of the 'unaltered oceanic 

crust, indicating of alteration occurring at temperatures greater than 200-

250°C (Shanks, 2003; Alt, et al., 2007). 0180 values of serpentinite indicate a 

minimum alteration temperature of 250°C using the serpentinite-water 

fractionation curve of Zheng (1993) and 360°C using the fractionation curve 

of Saccocia et al. (2009). Alteration generating talc-tremolite schist occurred 

at 230°C (Zheng, 1993) if the schist is 100% tremolite and at 360°C 

(Saccocia, et al., 2009; Zheng, 1993) if the schist is composed of talc only. 

Intermediate composition of schist will shift the alteration temperature 

between those two end members. 
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5.4.1.2 Alteration temperatures from small samples 

Figure 5-3 shows variation of (i180 for micro-sample with depth. All 

but four samples show oxygen isotope compositions that scatter between 

seawater (0%0) and fresh oceanic crust (6%0). Note that hydrothermal fluids 

have 8180 = 1.70/00 (Shanks III, et al., 1995). 

5.4.1.2.1 Amphibole + clay vugs and amphibole veins 

Results of calculations of alteration temperature show that amphibole 

+ clay vugs (composition determined on shipboard and at Leeds by XRD -

see Figure 2-7) precipitated at low temperature (between 100 and 160°C and 

between 115 and 180°C with an evolved fluid 8180 water of +1%0) (Figure 

5-88). One vug sample (U13098 14R-1 59-66 cm) shows much lower 8180 

(1.29%0) that indicates a higher alteration temperature (245°C). Clays shift 

the 8180 towards heavy values. They are assumed to be a late alteration of 

the amphiboles at low temperature (-100°C). In sample U13098 14R-1 59-

66 cm, clays may not have been included in the powder analysed for oxygen 

(XRD measurement on shipboard on this sample states clays as possible 

traces; in other amphibole + clay vugs, clays are stated as minor phases), 

giving different results to the other amphibole + clay vugs, and a better 

approximation of amphibole alteration temperature prior to clay alteration. 

Mass balance calculations are presented in Table 5-4 and Table 5-5. 

Calculations were made assuming formation of amphibole at 400°C or 300°C 

using calibration of Zheng (1993) giving 8180 of -1%0 and 0%0 respectively 

and formation of chlorite at -100°C for different calibration curves. Results 

imply that the percentage of chlorite must be low for sample U1309B 14R-1 

59-66, but unreasonably high for other amphibole + clay vugs, indicating that 

clays could have formed at even lower temperature than 100°C. 

Bleached walls related to the amphibole + clay vugs are altered at 

higher temperature (290 to 400°C) (Figure 5-BC). 

Amphiboles in vein (U13098 12R-1 43-46, U13098 19R-1 121-123, 

U1309D 5R-3 22-28) precipitate at higher temperature than amphiboles in 

vugs (200-230°C) (Figure 5-88). 
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Table 5-4: Mass balance calculation for the lightest amphibole vug ~180 = 
1.3%0. 

Lightest 
amphibole 

vug 
0180=1.3%0 

Amphibole 
(400°C) 

0180=-1%0 
Amphibole 

(300°C) 
0180=0%0 

Chlorite at -100°C 
(Wenner and 
Taylor, 1971) 
0180=6.5%0 

35% 

20% 

Chlorite at -100°C 
(Zheng,1993) 

0180=9%0 

25% 

14% 

Chlorite at 
-100°C (Cole & 

Ripley, 1999) 
0180=14%0 

16% 

9% 

Table 5-5: Mass balance calculation for the heaviest amphibole vug l)
1BO = 

8.5%0 

Lightest 
amphibole 

vug 
8180=8.5%0 

Amphibole 
(400°C) 

8180=-1%0 

Amphibole 
(300°C) 

0180=0%0 

5.4.1.2.2 

Chlorite at -100°C 
(Wenner and 
Taylor, 1971) 
8180=6.5%0 

Corona textures 

Chlorite at -1 oooe 
(Zheng,1993) 

8180=9%0 

95% 

Chlorite at 
-100°C (Cole & 

Ripley, 1999) 
8180=14%0 

68% 

61% 

In corona texture, chlorite grows as an alteration product at varying 

temperature ranging from 245°C to 260°C for sample U1309B 12R-2 17-35 

and from 270°C to 280°C for sample U1309D 14R-1 64-67 (Cole & Ripley, 

1998; Wenner & Taylor, 1971; Zheng, 1993) (Table 5-6, Figure 5-8A and B). 

Tremolite grows as an alteration product at a temperature of 200°C (U1309B 

12R-2 17-35) to 265°C (U1309D 14R-1 64-67) (Zheng, 1993) (Figure 5-88). 

Coronas were inferred to form at temperatures >400°C (Nozaka & Fryer, 

2011) indicating that the fluid that circulated at the time of corona formation 

was unlikely to be a fluid of seawater isotopic composition. Strontium isotope 

ratios of corona minerals attest for this (Table 5-2). According to Zheng 

(1993), Cole and Ripley (1999) and Wenner and Taylor (1971), the fluid 
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generating the corona formation at > 400°C must have had 5180 between 1 

and 2%0 for the replacement of plagioclase by chlorite and at least 3%0 for the 

replacement of olivine by tremolite. However, fluids with different oxygen 

isotopic composition would mean that corona texture forms in two steps with 

two different circulating events. This being unlikely, it is probable that the 

calibration curves are wrong. 

5.4.1.2.3 Quartz vein 

One quartz sample (U1309D 27R-1 36-43) shows elevated 5180 

indicating of alteration/precipitation temperature of 210°C (Zheng, 1993) or 

250°C (Bottinga & Javoy, 1973). These temperatures agree with 

temperatures of homogenisation measured on fluid inclusions of quartz vein 

presented in Chapter 3. 

5.4.1.2.4 Serpentinites and micro-rodingites 

Prehnite (U1309D 60R-3 35-45) replaced plagioclase in micro­

rodingite at temperatures >300°C (Figure 5-88; Table 5-6). This agrees with 

estimation of temperature of formation for micro-rodingite at temperatures 

<350°C (Frost, et al., 2008). 

Figure 5-9 shows that the estimated temperature of alteration 

increases if the fluid is assumed to have already interacted with the rock. 

During alteration, rocks are losing 180 and the fluid is gaining the loss of the 

rock in exchange. This consequence is more significant with the Zheng 

equation than for the Saccocia et al. equation for serpentinite. A serpentine 

with the lowest c)
180 of our samples (1.38%0 - U1309B 11 R-2 35-51 cm) 

would have been altered at -250°C with seawater, but at -300°C with a fluid 

for which ()180 = 1 %0, and 370°C with a fluid for which ()180 = 2%0 using the 

Zheng (1993) fractionation curves. The same serpentine would have been 

altered at 295°C with seawater, but at -320°C and 355°C with a fluid for 

which ()180 = 1 and 2%0 using the Saccocia et al. (2009) fractionation curves 

respectively. Table 5-7 shows a comparative analysis of the alteration 

temperature of prehnite and serpentine using different properties of the 

circulating fluid and the two different calibration curves of Zheng (1993) and 

Saccocia et al. (2009) in order to check on the prehnite and serpentine timing 
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relationship. Results show that unless we consider only the lowest 0180 

value of serpentinites with the Saccocia et al. (2009) calibration and 

seawater circulating in the rock, it is difficult for prehnite and serpentine to be 

coeval. This is very unlikely, and the conclusion to that matter is that the 

calibration curves are probably wrong. 
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Figure 5-9: Serpentine - water fractionation curves from Zheng (1993) and 
from Saccocia et al. (2009). Fractionation is here calculated with seawater, a fluid for 
which 0'80 = Woo, and a fluid for which 0

18
0 = 2%0.0180 used here for the serpentine is 

the minimum value found in our samples (1.38 'Yoo- U1309B 11R-2 35-51 cm). 

5.4.1.3 Conclusions 

• It is unlikely that fluid of seawater oxygen isotopic composition 

is the altering fluid of gabbros of IODP Hole U1309B and D. 

• It is unlikely that the fluid that circulated at the time of corona 

formation and replacement of clinopyroxene by amphibole in 

the greenschist and amphibolite facies is a fluid of seawater 

oxygen isotopic composition. These fluids are representative 

of hydrothermal fluid oxygen isotopic composition with 0180 of 

1.7%0 - (Shanks III , et al., 1995), and might be comprised 

between 1 and 2%0. 

• It is likely that the fluid Circulating in amphibole + clay vugs 

and in serpentinites and in micro-rodingites is a fluid of 

seawater isotopic composition (strontium and oxygen) . 

• Results for corona textures and serpentinites + associated 

micro-rodingites show that calibration curves are probably 

wrong. 
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Table 5-6: 0 isotope data for micro-samples and nominal alteration temperature in °C assuming equilibrium with seawater. Calculations 
are made using published equations (Bottinga & Javoy, 1973; Cole & Ripley, 1998; Saccocia, et al., 2009; Wenner & Taylor, 1971; Zheng, 1993) 

Samele Nb Mineral OHlO (%o} Bottin9a & Javot Saccocia Zheng Cole & Rielet Wenner & Tatlor Comment 
B8R-257-67 Amvug 5.16 150 Actinolite+clay 

Pig wall 2.79 350-410 An50-Ab 
Amphibole 3.17 185 Actinolite 

B9R-1103-108 Pig 5.34 210-300 An-Ab 
B10R-217-35 Chlorite (corona) 1.08 255 260 245 Corona 

Tremolite (corona) 2.44 200 Corona 
B11R-235-51 Talc (VEIN) 1.45 360 365 

Tremolite (VEIN) 1.26 240 
Serpentine 1.43 290 250 245 230 

B11R-262-66 Talc-Trm Schist 1.41 -/360 230/365 TrmlTalc 
B12R-143-46 Am(VEIN) 2.06 210 Actinolite 
B14R-1 59-66 Pig wall 5.95 250/285 An40/Ab () 

:T 
Amvug 1.29 245 Actinolite+clay? Q) 

"0 .... B16R-1 33-44 Yellowish vein 5.69 2601- 210/150 -/165 -/110 Talc/Chi .-
CD 

0> B19R-1121-123 Am (VEIN) 1.59 230 Actinolite ..., 
0 (]'I 

D5R-322-28 Am (Dk green) 2.71 120 200 Actinolite 
Pig 4.90 260-310 An60-Ab G) 

CD 
D8R-256-59 Amvug 6.79 120 Actinolite+clay 0 

Pig wall 5.84 290/250 An40/Ab 0 
:T 

D10R-1127-129 Pig (VEIN) 5.89 285 Ablbite CD 
3 Amphibole patch 0.39 280 Actinolite Ui' 

D12R-346-51 Amvug 4.33 160 Actinolite+clay .-
-< Pig wall 4.38 300/340 An40/Ab 
0 

D14R-1 64-67 Tremolite (corona) 0.62 265 Corona -..... 
Chlorite (corona) 0.59 275 280 270 Corona :T 

CD 
D23R-298-101 Serpentine 1.38 270 250 250 235 

~ D27R-1 36-43 Quartz (VEIN) 10.38 250 210 Dr 
D31R-1128-132 Tremolite (VEIN) 2.29 205 ::l 

Talc (VEIN) 1.99 330 
.-
Ui' 

Serpentine 2.81 260 205 210 180 s: 
D41R-1 89-92 Pig (VEIN) 6.76 260 Albite Q) 

C/I 
C/I 
::0; 
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Table 5-4 continued 

Sample Nb Mineral &180 
(%0) 

D60R-3 35-45 Prehnite 2.13 
Serpentine 2.97 

D61R-1 15-18 Prehnite + Garnet 
4.45 +Serp 

D75R-2 77-80 Epidote 0.39 
D84R-28-17 Epidote -0.03 
D111 R-4 25-26 Serpentine 4.09 
D136R-221-29 Serpentine 2.33 
D140R-257-60 Hyd alt diabase 3.08 
D144R-1105-116 Amvug 8.45 

Amphibole 3.52 
D228R-2 18-22 Serpentine 2.53 

Prehnite + Pig + 
4.38 Serp 

D235R-2100-114 Serpentine 4.64 
D247R-1128-133 Serpentine 2.73 
D256R-3 88-93 Serpentine 3.10 

Prehnite + Pig + 
5.96 Serp 

Bottinga & Javoy 

100 

Saccocia Zheng 

255 

235 
270 

265 

310 
205 

230 

335 
367 
175 
220 
195 
100 
180 
215 

235 

220 165 
260 210 
250 200 

195 

Cole & Ripley Wenner & Taylor Comment 

210 180 

190 150 
220 200 
205 175 Chlorite 

Actinolite+clay 
Actinolite 

220 190 

180 135 
210 185 
205 175 

Table 5-7: Alteration temperature of prehnite and serpentine in °C for different properties of circulating fluid and calibration curves 

Sample 

D23R-298-101 
D235R-2100-114 
Mean 
D60R-3 35-45 

Mineral 

Serpentine 
Serpentine 
Serpentine 
Serpentine 
Prehnite 

&18
0 

Zheng Zheng Zheng Saccocia et al. Saccocia et al. Saccocia et al. 
(1993) (1993) (1993) (2009) (2009) (2009) 

(%0) &180=0%0 &180=1%0 6180=2%0 &180 =0%0 &180 =1%0 0180=2%0 
1.38 250 300 370 295 320 355 
4.64 165 185 215 225 246 264 
3.04 200 228 265 255 278 303 
2.97 201 230 268 256 279 305 
2.13 312.5 370 466 
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Chapter 5: Geochemistry of the Atlantis Massif 

5.4.2 Model for hydrothermal circulation in the 
Atlantis Massif 

In this section, hydrothermal circulation in the Atlantis Massif is 

modelled using the TAG hydrothermal cross section (Figure 5-10) interpreted 

from seismicity by deMartin et al. (2007). It is assumed that lithologies 

beneath the TAG field are similar to the ones in the central dome of the 

Atlantis Massif and that circulation of fluid is focused onto the fault zone as 

suggested by the strontium and oxygen isotope profiles (Figure 5-1 and 

Figure 5-3). 

Circulation in the fault zone converts peridotites into talc tremolite 

schist as described for the ace from 15°45' N (McCaig, et al., 2007) at a 

depth of -7-8 km and equilibrium between fluid and rock is reached. 

However, this reaction involves an increase in the silica activity (Yardley, 8., 

pers. comm.) implying that the fluids have already reacted with silicate rocks 

(gabbros) at higher temperatures. 

Limited amount of fluid escapes into the first 300 mbsf of the footwall 

and preferential alteration of clinopyroxene of gabbros by amphiboles at 

temperature <400°C occurs. 

Corona textures form at a similar depth (-6-7 km) but at temperature 

of 400-500°C. However, according to the interpretation of the TAG model 

(McCaig, et al., 2010), fluids in the footwall are buffered at 400°C along the 

detachment fault. None of our samples show such high temperature of 

alteration, with inferred temperatures ranging between 250°C and 300°C 

(Table 5-6). Those temperatures are however estimated assuming a 

seawater-like fluid with 0180 of 0%0. In order to get the fluid along the 

detachment fault buffered at 400°C, fluid circulating in the fault zone must be 

seawater derived fluid that has evolved to a more negative composition 

(equivalent to black smoker vent fluids - 1.7%0; see 5.4.1). 

Later on, seawater of the recharge zone circulates through veins and 

amphibole vugs (sample U13098 14R-1 59-66, U1309D 8R-2 57-67; Figure 

2-6) at a temperature of 300-350°C and reaches ultramafic layers to alter 
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Chapter 5: Geochemistry of the Atlantis Massif 

them into serpentinites (see 5.4.4.3) when the hole is in the low angle part of 

the fault and further from the vent site (Figure 5-108) . Beyond this point, both 

fault zone and footwall cool rapidly below 300°C. 

Circulation of seawater-like fluid alters plagioclase into prehnite in 

micro-rodingite at depth ~ 300 mbsf and olivine into serpentine at 

temperatures of -300-350°C. 

The upper part of the hole is currently below the zeolite facies in 

terms of temperatures with zeolite veins only developing at depth greater 

than 700 mbsf. 

..... 

Recharged seawater 
cIrculates Into serpentmttes 

and alter plagioclase Into 
prehn>le at depth of - 300 mbsf 

and beyond at T=-350 C tz:~~i'l:l.LI 

..... . ........... .... · .... ·400 C 

Recnarged seawater 
Circulates In veins where 
amphibole preap,tates at 
temperature of 300-350 C and 
seawater IsotOPIC compoSition 1 
Ftuod reaches ultramafic lay rs to 
alter them Into serpentinite 

--- - 1 

Corona forma lion 
With flUid Circulating at 
the bOundary With 
oliVine and plagIOClase 

CirculatlOO at the bOunadary 
between plagIOClase and 
clinopyroxene that are altered 
Into amphlboJe 
Plaglolase are unaltered 

Figure 5-10: Interpreted cross section at TAG showing fluid flow through 
lOOP Hole U13090. Blue arrows show fluid flow along the detachment fault. 
Thickness of the arrows represents the importance of the flux . The fluid flux is greater 
in the hanging wall than in the footwall. Ultramafic rocks are altered into talc schist in 
the hanging wall and the fault zone. Circulation in the footwall is limited in the first 
300-500 m. A: Gabbros are altered with circulation at the boundary between 
plagioclase and clinopyroxene that are altered into amphibole and troctolites are 
altered with circulation at the boundary between plagioclase and olivine to form 
corona texture. B: Ultramafic layers are altered into serpentinites by fluids that 
circulate into veins where amphibole precipitates at low temperature. C: Plagioclase 
are altered into prehnite by recharged seawater. 
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5.4.3 Transport of Strontium and Oxygen in the 
oceanic crust 

5.4.3.1 Water/rock ratio 
Water/rock ratios based on mass balance calculations assuming 

isotopic equilibrium were first applied to stable isotope (Taylor, 1977) and to 

strontium isotope budgets (Spooner, et al., 1977) as follow: 

Equation 5-1 

where W/R is the water/rock ratio in a closed system, W the mass of 

hydrothermal fluid, R the mass of rock being altered, X rock and Xfluid the 

concentration of the rock and the fluid of the element in question 

respectively, and r the isotope ratio of the element with i being the initial ratio 

and f the final ratio. In an open system, water/rock ratio is modelled by the 

integration of the closed system equation (Albarede, 1995). 

Water/rock ratios are based on the assumption that fluid and rock 

have the same isotope composition at equilibrium for strontium (Albarede, et 

al., 1981). Calculations have been done using seawater end member (7.6 

ppm Sr and 87Sr/86Sr = 0.70916, (Palmer & Edmond, 1989)), MORS end 

member for mafic rocks (87Sr/86Sr = 0.70247) and the average of the olivine­

rich troctolites as end member for ultramafic rocks (87Sr/86Sr = 0.70269). 

Results of water/rock calculations for bulk rock are summarised in Table 5-8. 

Results show that conditions are generally rock dominated for mafic rocks 

except for the ones that show high strontium content, and more likely to be 

fluid dominated for ultramafic rocks showing elevated strontium isotope ratio. 
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Table 5-8: Water/rock ratio for bulk rock samples of lOOP Hole U1309B and 
D. 

Sample number Rock type Sr (ppm) 87Sr,sSSr W/R 

B11 R-2 23-31 Serpentinite 1.0 0.708862 2.7 
B11 R-2 62-66 Talc schist 1.8 0.705631 0.2 
D1R-141-44 Diabase 69.0 0.702897 0.6 
D1 R-1 72-80* Diabase 91.5 0.702962 1.0 
D1R-34-8* Talc-schist 2.0 0.704477 0.1 
D4R-180-89 Brecciated gabbro 96.3 0.703667 2.8 
D4R-1135-137 Brecciated gabbro 121.8 0.703848 4.2 
D4R-311-14 Gabbro 186.7 0.703914 6.8 
D5R-322-28 Gabbro 162.7 0.703983 6.3 
D6R-1132-140 Olivine gabbro 110.7 0.703666 3.2 
D7R-3101-102 Gabbro 121.2 0.703641 3.4 
D8R-256-59 Olivine gabbro 151.6 0.704287 7.4 
D10R-1 127-129 Gabbro 88.2 0.703592 2.3 
D12R-3 46-51 Troctolite 84.5 0.702810 0.6 
D13R-28-22 Troctolitic gabbro 105.3 0.702915 1.0 
D17R-29-17* Olivine gabbro 50.0 0.702841 0.4 
D23R-2 29-36 Olivine rich troctolite 31.5 0.703544 0.8 
D23R-298-101 Serpentinite 0.3 0.706890 0.1 
D27R-1 36-42.5 Olivine gabbro 50.6 0.702822 0.4 
D31R-1 128-132 Serpentinite 1.2 0.708012 0.7 
D31 R-2 19-30* Serpentinite 32.0 0.709036 215.9 
D40R-16-12 Troctolite 80.8 0.702854 0.6 
D42R-10-8* Serpentinite 4.0 0.708571 5.3 
D51R-430-38* Gabbro 86.0 0.702686 0.4 
D56R-1 35-45 Serpentinite 0.4 0.708071 0.2 
D58R-1 22-25 Serpentinite 9.6 0.708707 16.8 
D60R-3 35-45 Serpentinite 1.8 0.703797 0.0 
D60R-3 35-45* Troctolite nd 0.703354 
D65R-2 22-30* Serpentinite nd 0.706870 
D75R-2 77-80 Olivine gabbro 334.1 0.703802 10.9 
D77R-40-10 Olivine gabbro 50.6 0.703296 0.9 
D83R-1 16-26* Olivine gabbro 54.0 0.702721 0.3 
D83R-1 53-64* Olivine gabbro nd 0.703202 
D84R-2 8-17* Oxide gabbro nd 0.703698 
D87R2 63-71* Oxide gabbro 95.0 0.702857 0.8 
D94R-346-48 Diabase 73.0 0.702849 0.6 
D100R-142-46* Olivine rich troctolite 44.0 0.702688 0.2 
D111 R-4 25-26 Serpentinite 8.6 0.705194 0.7 
D116R-1 58-68* Oxide gabbro nd 0.703604 
D117R-2 24-32 Olivine gabbro 47.8 0.702980 0.5 
D127R-1145-148 Diabase 78.3 0.702969 0.8 
D136R-2 21-29 Serpentinite 0.2 0.705802 0.0 
D136R-2 21-29* Olivine gabbro 29.0 0.702814 0.2 
D137R-2 85-91 * Oxide gabbro nd 0.702709 
D144R-1105-116 Olivine gabbro 102.9 0.703381 2.1 
D155R-2 68-72 Diabase 70.9 0.702684 0.3 
D169R-190-100* Gabbro 101.7 0.702627 0.3 
D180R-1 13-17 Diabase 89.6 0.703281 1.6 
D210R-1 43-46 Olivine gabbro 49.7 0.702622 0.2 
D227R-3 6-12* Olivine rich troctolite 29.8 0.702686 0.1 
D228R-2 18-22 Serpentinite 0.8 0.702973 0.0 
D235R-2 100-114 Serpentinite 7.6 0.702909 0.0 
D237R-26-18* Olivine rich troctolite 21.0 0.702693 0.1 
D256R-3 88-93 Serpentinite 0.6 0.702745 0.0 
D292R-2 78-88* Gabbro nd 0.702614 
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Water/rock calculations were undertaken for micro-samples as well 

when possible and are summarised in Table 5-9. Minerals that crystallise in 

veins cannot be easily used to calculate water/rock ratios (they are equal to 

infinity as it does not imply replacement of a mineral by another one). W/R 

has been done for plagioclase walls of amphibole vugs and for prehnite 

replacing igneous plagioclase. Initial igneous plagioclase of strontium 

concentration of 50 ppm is assumed and initial strontium isotope ratio is 

assumed to be equivalent to MORS ratio. Calculation for actinolite replacing 

clinopyroxene is modelled with initial clinopyroxene of 2 ppm Sr and 87Sr/86Sr 

of MORS composition. Tremolite replacing olivine in corona texture is 

submitted to a model assuming olivine with 1 ppm Sr. W/R modelling chlorite 

from corona texture has been calculated in the same way than plagioclase 

walls and prehnite. Results show that apart from the tremolite and actinolite 

replacing clinopyroxene, all W/R are high and conditions are fluid dominated. 

Calculations in open system have not been conducted. However, following 

the result tabulated in Delacour et a/. (2008) that shows that in an open 

system, W/R ratio are much less than in a closed system, we assume that 

W/R ratio in an open system model will lead to rock dominated conditions 

except for the prehnite sample (U1309D 60R-3 35-45) that shows very fluid 

dominated conditions (W/R = 24.3). 
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Table 5·9: Water/rock ratio for chosen micro·samples. 

Sample number Mineral Sr (ppm) 87Srt6Sr W/R 

B10R·217·35 Tremolite (corona) 2.5 0.706521 0.2 
Chlorite (corona) 12.2 0.704322 2.5 

B14R-1 59-66 Pig wall 238.7 0.703957 1.9 
D5R-322-28 Pig wall 125 0.703980 1.9 
D8R-256-59 Pig wall 122 0.704152 2.2 

Actinolite 1 4.3 0.704015 0.1 
Actinolite 2 10.9 0.703925 0.1 

D12R-346-51 Pig wall 558 0.704220 2.3 
D14R-1 64-67 Chlorite (corona) 1 0.704830 3.6 
060R-3 35-45 Prehnite 800 0.707736 24.3 
D75R-277-80 Actinolite 3.1 0.703966 0.1 
D117R-2 24-32 Actinolite 2.8 0.704102 0.1 
D144R·1105-116 Actinolite 1 1.4 0.703662 0.1 

Actinolite 2 2.3 0.703946 0.1 
D256R-388-93 Prehnite + Pig 70.6 0.702582 0.1 

5.4.3.2 Fluid fluxes 

5.4.3.2.1 Principles 

The total volume of fluid infiltrated or time integrated fluid flux is 

reflected in the shape and relative displacements of isotopic profiles that 

record the fluid flow. Time integrated fluid flux depends therefore on the 

assumption that geochemical fronts for different tracers move along the flow 

path at rates that depend on the portioning of the tracer between rock and 

fluid. In purely advective transport with perfect fluid-rock equilibrium, 

geochemical fronts are sharp steps in composition. Fronts are broadened by 

diffusion, hydrodynamic dispersion, and kinetic dispersion (Bickle & Baker, 

1990a; Bickle, 1992; Bickle & Baker, 1990b; Lassey & Blattner, 1988). Time 

integrated fluid flux J int is given by: 

Equation 5·2 

where ZGF is the advective displacement of the geochemical front, 

and Kv is the fluid-rock partition coefficient by volume unit given by 

XfluidPfluid/XrockProck where X is the concentration in ppm and P is the density. 

Motion of an isotopic signature into the rock occurs by advection of 

fluid along a flow path. The isotopic signature moves through the rock as a 

sharp front if advection is the only process involved (Figure 5-11A). In that 

case, to a single time integrated fluid flux corresponds an infinite calculated 
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W/R ratio upstream of the front (100% of alteration) and a W/R ratio 

calculated as 0 downstream of the front (no alteration) and fluid and rock 

have a defined isotopic composition at every point along the flow path, at any 

time. 

In reality, advective fronts are broadened by diffusion or dispersive 

processes (Bickle & Baker, 1990a; Bickle, 1992; Bickle & Teagle, 1992; 

McCaig, et al., 2010). In this model, fluid and rock have the same strontium 

isotopic composition at any point along the flow path. A range of isotopic 

compositions and water/rock ratios for the same time-integrated fluid flux is 

observed (Figure 5-118). 

The most common situation is when the shape of the front is 

governed by kinetically limited exchange between fluid and rock by a kinetic 

rate law (Bickle, 1992) (Figure 5-11C). In this model, fluid and rock have 

systematically a different strontium isotopic composition and isotopic 

equilibrium is never reached. 

The shape of the fronts profile depends on the dimensionless 

Damkohler number, No, (Bickle, 1992; Bickle & Teagle, 1992; Blattner & 

Lassey, 1989; Lassey & Blattner, 1988) which is given by 

No = kh/roo Equation 5-3 

where k is the exchange rate for linear kinetic exchange, h is the 

length scale and roo is the fluid velocity in pore space or crack. At low No, 

equilibrium between fluid and rock is never reached and fluid and rock 

compositions are therefore systematically different. 
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Figure 5·11: Schematic geochemical fronts from McCaig et al. (2010). A: 
Geochemical front governed by advection only. B: Geochemical front broadened by 
diffusion or hydrodynamic dispersion. C: Geochemical front broadened by kinetically 
limited fluid-rock exchange at low No. At high No, the shape of the front will tend to be 
similar to the front broadened by diffusion. 

5.4.3.2.2 Review of previous work on fluid fluxes in oceanic 
settings 

Bickle and Teagle (1992) described a 87Sr/86Sr profile indicating 

alteration in the recharge zone of the Troodos ophiolite. Calculations show 

that a minimum time-integrated fluid flux of 2.9 x 107 kg.m-2 is required to 

transport the strontium isotope composition of - 0.7054, set in the kinetically 

controlled exchange zone of extrusive lavas, through the - 1 km of sheeted 

dykes and uppermost gabbros in which fluid flow is inferred to be pervasive 

with near fluid-rock equilibrium, and into the zones of concentrated 

upwellings that are the epidosites. 
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Gillis et al. (2005) used the same approach to quantify the volume of 

fluid that circulates downhole in a section of upper oceanic crust at Hess 

Deep. Calculations show a time-integrated fluid flux of 3.2 x 106 kg.m,2. 

Delacour et al. (2008) similarly estimated the volume of fluid that 

circulates at the Atlantis Massif. Calculations were done assuming kinetically 

controlled fluid-rock exchange. The calculations are modelling the down flow 

component. Results show two distinctive time-integrated fluid fluxes 

depending on the data that are included in the model. The first model gives 

lower time-integrated fluid fluxes than those calculated for Troodos (Bickle & 

Teagle, 1992) or Hess Deep (Gillis, et al., 2005) with 2.88 x 105 kg.m,2 

assuming a Damkohler number (No) of 39.1 and an advective displacement 

of the geochemical front (ZGF) of 317.9 m. The second model for which 

gabbroic samples of the interval 415-500 mbsf are not included in order to 

give more impact to serpentinite and leucocratic gabbro located at 335.7 

mbsf and 574 mbsf respectively, gives a time-integrated fluid flux of 3.7 x 105 

kg.m,2 assuming a No of 17.2 and a ZGF of 410.6 m. 

Teagle et a/. (2003) used a slightly different approach in that they 

used the strontium isotopic composition of rocks from DSDP/ODP Hole 

504B, and of anhydrite, as a proxy for fluid composition to calculate the 

recharge flux to the axial high temperature hydrothermal circulation. The 

strontium isotopic profiles are well fit by a tracer transport mass-balance 

model that approximates fluid-rock exchange by linear kinetics. The time­

integrated fluid flux gives 1.7 x 106 kg.m,2. 

McCaig et al. (2007) show that the strontium isotopic profile of 

oceanic crust at 15°45'N indicates that most of the alteration occurs close to 

the detachment fault. It suggested that flow was concentrated within the 

detachment fault rocks (talc schists) and a time-integrated fluid flux of - 2 x 

106 kg.m,2 could be inferred for each kilometer that the fluids advects along 

the fault-controlled flow path. Recovery of talc shists in the area suggests a 

flow path to the alteration site of at least 2 km within the fault zone and at 

least 1 km through the hanging wall, and fluid flux parallel to the fault is 
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inferred to be at least 5 x 106 kg.m'2. This estimation was done using the 

approach developed by Bickle (1992). 

5.4.3.2.3 Quantification of fluid fluxes in the Atlantis Massif 

Figure 5-12 shows a plot of bulk rock strontium isotope data on a 

diagram where depth is converted to dimensionless distance and where 

strontium isotope ratio is converted to dimensionless concentration (Bickle, 

1992). Following Delacour (2008), the component of fluid flow downwards in 

the borehole is constrained using the downhole data as if it was an in situ 

section. In order to convert depth into dimensionless distance, depth is 

divided by an assumed ZGF of 400m (supported by the fact that alteration 

occurs mainly close to the detachment fault - see strontium isotope profile 

Figure 5-1 and Figure 5-3) and multiplied by 0.001 which is the 

dimensionless distance scaled to fluid penetration distance. This centres the 

geochemical front at 0.001 on Figure 5-12 (Bickle, 1992). In order to convert 

a strontium isotope ratio into a dimensionless concentration ranging from 0 

(not altered) to 1 (100% altered or seawater composition), a lever rule 

calculation is applied to individual strontium isotope ratios with MORB 

unaltered value (0.70245) and seawater value (0.7091) as end-members. 

Solid lines represent rock composition and dashed lines represent fluid 

compositions (Bickle, 1992). In reality, at the time of alteration the fault is 

likely to have been covered by a significant overburden in the hanging wall, 

which the fluid must have passed through in order to reach the analysed 

samples (McCaig et a/., 2010). ZGF should therefore be higher, although 

there is little constraint on the actual penetration distance. Assuming a higher 

value of ZGF would compress all the data horizontally towards the 0.001 

value on Figure 5-12. Consequences for the fit of ND curves would not be 

important at low values of ND but would be quite important for high values of 

ND' 

With a calculated Kv = 0.03 (estimated with an assumed seawater 

circulating fluid of density = 1000 kg.m'3 and Sr content of 7.6 ppm and a 

rock of gabbroic composition of density = 2900 kg.m'3 and a calculated 

average Sr concentration from samples of IODP Hole U1309B and D of 90 

ppm), a ZGF = 400m, the downward component of volume fluid flux would be 
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at 13333 m3.m-2 and the mass fluid flux would be at - 1.33 x 107 kg.m-2
• If an 

arbitrary 2km of overburden is added, the integrated flux would increase to 

6.67 x 107 kg.m-2
• 

The plot shows that if serpentinites are treated as the fluid 

composition, fluid and rock fit for a low ND of - 0.1 to 0.3. The justification for 

treating the serpentinites as fluid compositions is that the low Sr content of 

peridotite means that they are likely to closely reflect the composition of fluid 

reaching the site of serpentinisation. However, serpentinites of the top of the 

hole are probably contaminated by late, low temperature carbonate 

precipitation (section 5.3.3). The main support for the serpentinites being 

representative of high temperature fluid compositions is the high 87Sr/86Sr 

ratios of a prehnite sample from the micro-rodingites. Since this has a Sr 

content much higher than adjacent plagioclase, it must reflect in large part 

the composition of local fluid and by implication, coexisting serpentine. 

Figure 5-13 shows a Damkohler plot for micro-samples. 

Dimensionless distances and dimensionless concentrations were obtained 

using the same method described for bulk rock and assuming a ZGF of 400 

m. Amphibole vugs and associated plagioclase walls fit with a low No of -0.1 

to 0.3. These vugs must certainly have precipitated under fluid dominated 

conditions and reflects high flux pathways. Fluid that circulated in these 

cracks did not have time to equilibrate with the surrounding rock. Alteration of 

the walls must have been controlled by diffusion and/or dispersion. 

The only prehnite sample yields a slightly higher No of -0.3 to 1. The 

fluid flux that reaches olivine-rich troctolites must be high but an order of 

magnitude lower than the high flux pathways that create the amphibole vugs. 

Amphibole veins fit with low No curves of rock composition indicating 

that they precipitate under rock dominated conditions at much lower fluid flux 

with a fluid that tends towards equilibrium with the surrounding rock. 

Tremolite from a corona texture indicates a higher No of 1 or 3. From 

its relatively high strontium isotope ratio, the corona is believed to have 

formed at fluid flux lower than fluid flux that generated the amphibole vugs 

and the micro-rodingite but higher than the fluid flux that generated 

amphibole veins. Chlorite is not included in this interpretation as analyses 
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show strontium content is very low, making the strontium isotope ratio 

doubtful due to the high blank correction. 

Talc-tremolite veins that cut serpentinites form in sequence in which 

fluid rich in strontium circulates at high flux [low No] (probably as high as the 

fluids that circulate in amphibole vugs) to replace serpentine by tremolite. A 

second circulation event with fluid circulating at lower fluid flux (intermediate 

strontium isotope ratio and higher No) generates the replacement of 

serpentine by talc at the boundaries between tremolite and serpentine. 
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Figure 5-12: Advective transport with kinetic control on fluid-solid exchange 
for Damk6hler numbers between 0.1 and 100 for bulk rock samples. Solid lines show 
rock composition and dotted lines show fluid composition. Dimensionless 
concentration is a conversion of the strontium isotopic ratio and dimensionless 
distance is a conversion of the depth (see text). 
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Figure 5-13: Advective transport with kinetic control on fluid-solid exchange 
for Damk6hler numbers between 0.1 and 100 for micro-samples. 
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5.4.4 How does seawater reach serpentinite without 
87Sr/86Sr decreasing? 

Serpentinites from the upper part of the core show elevated 87Sr/86Sr. 

The 87Srfl6Sr ratio of peridotite can readily be altered during serpentinisation 

because of the high Kv. The strontium isotopic ratio of seawater will not be 

changed, unlike the rock. However, the system in the Atlantis Massif is 

dominated by gabbroic rocks (Chapter 2). Gabbroic rocks contains minerals 

such as plagioclase that are rich in strontium (order of 50 to 500 ppm - see 

content of different plagioclases analysed in Table 5-2). In a 

diffusive/dispersive model (such as described in 5.4.3.2.1), a fluid that 

passes through gabbros with strontium isotopic composition of 0.7035, would 

be in equilibrium with the rock and have the same isotopic composition. 

Serpentinites in the Atlantis Massif show elevated strontium isotope ratio 

despite the fact that the massif is dominated by gabbros. This raises a 

question: How did fluid with a seawater isotopic Signature pass through 

partially altered gabbros to reach thin ultramafic horizons without 87Sr/86Sr 

decreasing? Different models are a possible answer to that question: 

5.4.4.1 

• Model 1: Direct link between serpentinite layers and seawater 

• Model 2: Fluid path is gabbroic. 

• Model 3: Fluid circulates through fractures and veins 

• Model 4: Late carbonate precipitation 

Model 1 - Direct link between serpentinite and 
seawater 

In this model, ultramafic layers are directly connected to seawater. 

The southern wall of the Atlantis massif is predominantly composed of 

serpentinised peridotites at -70% with interlayered gabbro bodies (-30%) 

(Blackman, et al., 2002; Boschi, et al., 2006; Karson, et al., 2006). The 

degree of serpentinisation ranges from 70 to 100%. It is suggested that 

seawater penetrates the oceanic crust at the detachment shear zone (DSZ) 

consisting of deformed serpentinites and metagabbros marked by focused 

fluid flow during exhumation (Schroeder & John, 2004). However, Delacour 

et al. (2008) suggested that alteration of serpentinites from the southern wall 
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was associated with the hydrothermal circulation related to the Lost City low­

temperature vent field that post-dates the circulation along the detachment 

fault. Model 1 is unlikely. 

5.4.4.2 Model 2 - Gabbroic fluid path 

In this model it is suggested that 87Sr rich fluid (seawater) reached 

serpentinite layers via a gabbroic pathway. In order for seawater to reach 

ultramafic layers and interacts with them without 87Sr/86Sr decreasing in a 

gabbro dominated system, seawater must avoid interaction with plagioclase 

to minimize isotopiC exchange that would lower the seawater strontium 

signature. 

From the observations made on gabbros and alteration features, it is 

suggested that seawater circulates preferentially at the boundaries between 

clinopyroxene and plagioclase and along clinopyroxene cleavages. Seawater 

alters the clinopyroxene into amphiboles that show strontium isotope ratios 

greater than the bulk rock signature. Seawater can preserve its elevated 

strontium isotope value until it reaches ultramafic layers to alter them into 

serpentinites with elevated seawater-like ratios. 

However, small samples of amphiboles replacing clinopyroxenes 

show strontium isotope ratios that are not as high as the serpentinites, and 

fluid would be expected to have equilibrated with the local minerals before 

reaching the ultramafic layers. This model is therefore unlikely. 

5.4.4.3 Model 3 - Circulation through fractures and veins 

Bickle (1992) describes a model where fluid circulates in cracks and 

interacts with the wall rock by diffusion and/or limited advection. Several 

samples in our core show veins that are filled with actinolite + clays of 

elevated strontium isotope ratio (Table 5-2; Figure 5-5). It is suggested that 

those veins act as high fluid flux pathways and 87Sr rich fluid can pass 

through gabbros to reach serpentinites. However, the respective 0180 

indicates alteration temperatures for veins and for serpentinites that quite 

different (Table 5-2). The clay content of these vugs can distort the isotopic 

composition of serpentinite (see 5.3.3). Fluid that reaches the ultramafic 
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layers must therefore be from a flow event that precedes the low temperature 

carbonate alteration of these vugs. 

5.4.4.4 Model 4 - Late carbonate precipitation 
A leaching experiment (5.3.3) shows that serpentinites are likely to 

be contaminated by late precipitation of carbonate minerals such as 

magnesite, calcite and/or dolomite that influence the strontium isotope ratio 

of serpentinite. One prehnite analysis shows however elevated strontium 

ratio indicating that the serpentinising fluid strontium isotope ratio must have 

been seawater-like whether or not serpentinites are contaminated by late 

precipitation of carbonates. 
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5.5 Conclusions 

• Isotopic analyses show that fluids circulated mainly close to the 

detachment fault and that limited amounts of fluid escaped into the footwall. 

Fluid fluxes can be calculated on the basis of the downhole isotopic profile, it 

is likely that the main direction of fluid flow was parallel to the fault and hence 

perpendicular to the Hole. 

• Small sample analyses show that oceanic samples are locally 

more modified than what bulk rock analyses indicate. 

• Bulk rock isotopic analyses show that gabbros are little 

modified while serpentinites show elevated strontium isotope ratios. 

• Small sample analyses show that gabbros are heterogeneous, 

with amphibole vugs and prehnite showing elevated seawater-like values, 

amphiboles replacing pyroxene intermediate values, and plagioclase 

commonly retaining igneous values. 

• Serpentinites might be contaminated by late carbonate 

precipitation. However, the elevated strontium isotope ratio of prehnite 

replacing plagioclase during formation of micro-rodingite argues for the 

serpentinising fluid being seawater-like. 

• Oxygen isotope analyses support the conclusions of 

metamorphic petrology, that the majority of alteration took place at 

temperatures> 300 °C. 

• The patterns of hydrothermal alteration can be understood in 

terms of kinetically limited exchange of isotopes between fluid and rock 

• High flux pathways such as the amphibole vugs were formed at 

low effective Damkohler numbers (No), such that the amphibole reflects the 

fluid composition while the altered plagioclase in the vug walls have rock­

dominated isotopic ratios. 

• Tremolite-talc veins also appear to have formed under high 

flux, low No conditions, while tremolite-chlorite coronas and micro-rodingite 

veins are also quite high flux features. 

• The evolution of fluid flow and alteration in the Atlantis OCC 

can be interpreted in terms of the TAG model in which fluid discharge at 

black smoker temperatures occurs up the fault zone. 
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Chapter 6. Conclusions and views on 

potential future work 

6.1 Conclusions 

• Four types of fluid in terms of salinity were identified during 

microthermometric investigation. 

o Fluid type 1 a is a fluid of seawater-like salinity 

homogenising at temperature of 140-290DC and occurs in quartz 

veins formed at low pressure and low temperature. 

o Fluid type 1 b is also of low salinity (depleted with respect 

to seawater), but homogenises at higher temperature than 1 a and 

occurs in plagioclase. This fluid was generated by mixing with 

recharged seawater after supercritical phase separation of a 

seawater-like fluid at temperatures of 450 to 600De and pressures of 

340 to 550 bars and is estimated to have been trapped at depth of 

-5 km, assuming near-hydrostatic fluid pressures 

o Fluid type 3a is a high salinity fluid with respect to 

seawater, and Fluid type 3b is a halite saturated fluid. Fluid type 3 

was found only in evolved trondjhemitic intrusions. These fluids 

homogenised at temperatures 320->400De. Brines (type 3b) were 

generated by condensation of a magmatic fluid at a depth of 7 km 

and temperature of -770DC. The associated low salinity vapour­

dominated fluid has not been observed. 

• No gas phases were identified. 

• Fluid chemistry shows variations throughout lOOP Hole 

U1309D samples resulting from the coactions of several processes. 

• All samples show enrichment in major cations and heavy 

metals, except Mg and Sr with respect to seawater. This is consistent with 

experimental studies. 

• Atlantis Massif fluids are not an intermediate composition fluid 

between seawater and vent fluid. They are inferred to be back-water fluid 
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that can mix with recharged seawater and interact further with the rock in 

order to reach vent fluid compositions. 

• Fluid rock interactions playa major role in the variation of fluid 

chemistry at Atlantis Massif. Replacement of clinopyroxene by amphiboles 

controls the concentration in Mg. Ca and Na are mainly controlled by 

albitisation. Fe is controlled by steatization and serpentinisation. 

• Isotopic analyses show that fluids circulated mainly close to the 

detachment fault and that limited amounts of fluid escaped into the footwall. 

Fluid fluxes can be calculated on the basis of the downhole isotopic profile, it 

is likely that the main direction of fluid flow was parallel to the fault and hence 

perpendicular to the Hole 

• Small sample analyses show that oceanic samples are more 

altered than what bulk rock analyses indicate. Bulk rock isotopic analyses 

show that gabbros are little altered while serpentinites show elevated 

strontium isotope ratios. Small sample analyses show that gabbros are 

heterogeneous, with amphibole vugs and prehnite showing elevated 

seawater-like values, amphiboles replacing pyroxene intermediate values, 

and plagioclase often retaining igneous values 

• Serpentinites might be contaminated by late carbonate 

precipitation. However, the elevated strontium isotope ratio of prehnite 

replacing plagioclase during formation of micro-rodingite argues for the 

serpentinising fluid being seawater like 

• Oxygen isotope analyses support the conclusions of 

metamorphic petrology, that the majority of alteration took place at 

temperatures> 300 °C 

• The patterns of hydrothermal alteration can be understood in 

terms of kinetically limited exchange of isotopes between fluid and rock 

• High flux pathways such as the amphibole vugs were formed at 

low effective Damkohler numbers (No), such that the amphibole reflects the 

fluid composition while the altered plagioclase in the vug walls have rock­

dominated isotopic ratios 
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• Tremolite-talc veins also appear to have formed under high 

flux, low ND conditions, while tremolite-chlorite coronas and micro-rodingite 

veins are also quite high flux features 

• Figure 6-1 shows a model for hydrothermal circulation at the 

Atlantis Massif. In this model, the maximum depth of circulation at Atlantis 

massif and the main magma supply are unknown unlike the TAG model 

(deMartin, et al., 2007; McCaig, et al., 2010) used in this study. In the TAG 

model, isotherms in the hanging wall are inferred from seismicity, whereas in 

the Atlantis Massif, nothing constrains the thermic regime in the hanging 

wall. In contrast, in the footwall, isotherms can be constrained by the 

alteration temperature estimated with the oxygen isotope compositions of 

minerals. One particular difference from the TAG model in which fluid 

circulating along the detachment fault is buffered at a temperature of 400 °c, 
is that fluid can circulate at higher temperature at depth (fluids type 3b were 

trapped at least at a temperature of 770 °C -see Chapter 3), meaning that 

isotherms were closer to each other and to the detachment fault at depth. At 

shallower depths, isotherms cannot be as close to the detachment fault as in 

the TAG model, this being constrained by serpentinisation and by the 

trapping of seawater-like fluid in late quartz veins under low pressure. 

The evolution of fluid flow and alteration in the Atlantis acc can be 

interpreted in terms of the TAG model at the limit of what the results of this 

study constain. 
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Figure 6-1 : Model fo r hydrothermal ci rculation in the Atlantis Mass if through 
t ime of exhumation. 

6.2 Future work 

• Measure homogenisation temperature of halite bearing 

inclusions. Use a microthermometric stage from which the temperature limit 

is higher than 400°C. 

• Microthermometric measurements in plagioclase, olivine and 

clinopyroxene at various depths to better constrain salinity-temperature 

variations with depth and with reactions involved in the oceanic crust. 

• Try to develop a laser ablation method thto measure the fluid 

chemistry in other mineral than quartz (such as plagioclase). 

• Systematically combine small sample analyses to bulk rock 

analyses to better constrain the intensity of the alteration . 

• Calculate fluid fluxes and water/rock with oxygen isotope data. 

Compare these results with the ones obtained with strontium. 

• Model amphibole vugs on the basis of the crack model of 

Bickle (1992). 
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Appendices 

1 - Electron microprobe measurements 

Analyses in lOOP Hole U1309B 
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Table 7-1: Microprobe measurement in sample U1309B 7R-1 55-60 em. Amphibole analyses 

Oxide Am1 Am2 Am3 Am4 Am5 Am6 Am7 Am8 Am9 Am10 Am11 Am12 wt% 
Si02 53.441 52.729 53.339 53.208 52.089 52.192 51.212 52.888 50.989 53.555 49.183 54.254 
Ti02 0.439 0.189 0.398 0.155 0.224 0.105 0.135 0.202 0.158 0.180 1.061 0.149 
AI20 3 2.473 1.060 2.603 1.088 1.712 3.517 4.721 1.703 2.248 1.435 4.065 0.712 
Cr203 0.066 0.114 0.000 0.053 0.112 0.024 0.000 0.039 0.140 0.004 0.043 0.035 
Fe203 0.997 0.450 1.142 0.207 1.163 2.649 0.000 0.926 0.000 0.875 4.241 0.822 
FeO 14.669 18.454 14.447 18.844 14.487 7.115 12.176 14.221 14.945 15.660 8.898 13.825 
MnO 0.356 0.526 0.402 0.612 0.329 0.008 0.156 0.219 0.283 0.382 0.244 0.152 
MgO 13.440 11.360 13.453 11.527 13.520 17.460 14.529 14.185 14.346 13.647 15.704 14.981 
CaO 11.714 11.838 11.825 11.795 12.001 12.123 12.939 12.118 12.031 12.149 10.789 12.207 
Na20 0.452 0.178 0.423 0.134 0.319 0.415 0.466 0.243 0.244 0.225 1.051 0.181 
K20 0.033 0.005 0.037 0.037 0.014 0.023 0.019 0.000 0.000 0.012 0.073 0.030 
H2O 2.016 2.003 2.067 2.015 1.977 2.070 2.046 2.037 1.997 2.053 1.985 2.037 

F 0.112 0.000 0.000 0.000 0.084 0.000 0.000 0.000 0.000 0.000 0.028 0.028 
CI 0.000 0.013 0.008 0.026 0.000 0.019 0.018 0.018 0.022 0.022 0.123 0.049 

Total 100.208 98.919 100.145 99.701 98.031 97.720 98.417 98.799 97.403 100.199 97.487 99.463 
-.>. Si 7.743 7.878 7.728 7.889 7.744 7.542 7.489 7.766 7.635 7.800 7.267 7.885 
00 AI(IV) 0.257 0.122 0.272 0.111 0.256 0.458 0.511 0.234 0.365 0.200 0.708 0.115 00 

AI(vl) 0.166 0.065 0.172 0.079 0.044 0.141 0.303 0.061 0.031 0.046 0.000 0.007 
Ti 0.048 0.021 0.043 0.017 0.025 0.011 0.015 0.022 0.018 0.020 0.118 0.016 
Cr 0.008 0.013 0.000 0.006 0.013 0.003 0.000 0.005 0.017 0.000 0.005 0.004 

Fe3+ 0.109 0.051 0.125 0.023 0.130 0.288 0.000 0.102 0.000 0.096 0.471 0.090 
Fe2+ 1.778 2.306 1.750 2.337 1.801 0.860 1.489 1.746 1.871 1.907 1.099 1.680 
Mn 0.044 0.067 0.049 0.077 0.041 0.001 0.019 0.027 0.036 0.047 0.031 0.019 
Mg 2.903 2.531 2.906 2.548 2.997 3.761 3.168 3.106 3.203 2.963 3.459 3.246 
Ca 1.819 1.895 1.836 1.874 1.911 1.877 2.027 1.907 1.930 1.896 1.708 1.901 
Na 0.127 0.052 0.119 0.039 0.092 0.116 0.132 0.069 0.071 0.064 0.301 0.051 
K 0.006 0.001 0.007 0.007 0.003 0.004 0.004 0.000 0.000 0.002 0.014 0.006 

OH 1.949 1.997 1.998 1.993 1.961 1.995 1.996 1.996 1.994 1.995 1.956 1.975 
F 0.051 0.000 0.000 0.000 0.040 0.000 0.000 0.000 0.000 0.000 0.013 0.013 
CI 0.000 0.003 0.002 0.007 0.000 0.005 0.004 0.004 0.006 0.005 0.031 0.012 

total 17.006 17.001 17.007 17.007 17.057 17.062 17.157 17.045 17.176 17.042 17.181 17.019 
Nature Act Act Act Act Act Act MgHb Act Act Act MgHb Act 



Table 7-1 (continued) 

Oxide 
Am13 Am14 Am15 Am16 Am 17 Am18 Am19 Am20 Am21 Am22 Am23 Am24 wt% 

Si02 47.267 55.495 53.340 48.877 53.951 49.595 55.150 50.320 55.018 51.725 53.420 54.209 
Ti02 1.771 0.570 0.874 1.630 0.525 1.270 1.037 0.691 0.139 0.644 0.186 0.147 
AI20 3 7.514 1.752 3.605 6.798 2.394 5.206 3.391 4.438 1.192 3.465 1.721 1.638 
Cr203 0.270 0.083 0.086 0.125 0.071 0.097 0.059 0.132 0.000 0.104 0.000 0.000 
Fe203 5.063 1.770 2.433 1.687 1.560 2.843 2.044 3.960 0.000 2.541 0.662 0.139 
FeO 8.567 5.436 7.819 8.798 5.250 8.668 4.121 7.769 13.449 11.446 14.277 15.898 
MnO 0.151 0.000 0.040 0.251 0.043 0.142 0.150 0.240 0.325 0.328 0.275 0.232 
MgO 14.430 19.698 17.171 15.808 19.748 16.153 19.807 16.617 15.156 14.585 14.062 13.582 
CaO 11.368 12.659 12.518 12.012 12.810 11.873 12.577 11.911 12.982 11.747 11.803 11.972 
Na20 1.661 0.338 0.534 0.967 0.458 1.057 0.536 0.944 0.198 0.693 0.251 0.228 
K20 0.116 0.017 0.028 0.037 0.029 0.225 0.000 0.040 0.000 0.050 0.015 0.024 
H2O 2.068 2.080 2.121 2.047 2.118 1.938 2.143 2.008 2.085 2.037 2.014 2.006 

F 0.000 0.145 0.000 0.028 0.000 0.169 0.058 0.085 0.000 0.000 0.055 0.109 
CI 0.029 0.000 0.032 0.062 0.018 0.213 0.043 0.114 0.033 0.112 0.024 0.034 

Total 100.275 100.043 100.601 99.127 98.975 99.449 101.117 99.268 100.577 99.477 98.764 100.218 
...... Si 6.829 7.742 7.511 7.059 7.621 7.176 7.580 7.264 7.881 7.510 7.829 7.866 
00 AI(lV) 1.171 0.258 0.489 0.941 0.379 0.824 0.420 0.736 0.119 0.490 0.171 0.134 co 

AI(VI) 0.109 0.030 0.109 0.216 0.019 0.063 0.130 0.019 0.082 0.102 0.126 0.147 
Ti 0.192 0.060 0.093 0.177 0.056 0.138 0.107 0.075 0.015 0.070 0.021 0.016 
Cr 0.031 0.009 0.010 0.014 0.008 0.011 0.006 0.015 0.000 0.012 0.000 0.000 

Fe3+ 0.550 0.186 0.258 0.183 0.166 0.310 0.211 0.430 0.000 0.278 0.073 0.015 
Fe2+ 1.035 0.634 0.921 1.063 0.620 1.049 0.474 0.938 1.611 1.390 1.750 1.929 
Mn 0.018 0.000 0.005 0.031 0.005 0.017 0.017 0.029 0.039 0.040 0.034 0.029 
Mg 3.108 4.097 3.605 3.404 4.159 3.484 4.059 3.576 3.237 3.157 3.072 2.939 
Ca 1.760 1.892 1.889 1.859 1.939 1.840 1.852 1.842 1.992 1.827 1.853 1.861 
Na 0.465 0.091 0.146 0.271 0.125 0.297 0.143 0.264 0.055 0.195 0.071 0.064 
K 0.021 0.003 0.005 0.007 0.005 0.042 0.000 0.007 0.000 0.009 0.003 0.004 

OH 1.993 1.936 1.992 1.972 1.996 1.870 1.965 1.933 1.992 1.972 1.969 1.942 
F 0.000 0.064 0.000 0.013 0.000 0.077 0.025 0.039 0.000 0.000 0.025 0.050 
CI 0.007 0.000 0.008 0.015 0.004 0.052 0.010 0.028 0.008 0.028 0.006 0.008 

total 17.291 17.004 17.039 17.225 17.103 17.251 17.000 17.197 17.031 17.081 17.003 17.004 
Nature MgHb Act Act Mgljb Act MgHb Act MgHb Act Act Act Act 



Table 7-2: Microprobe measurement in sample U1309B 7R-1 55-60 cm. Plagioclase analyses 

Oxide Plg1 Plg2 Plg3 Plg4 Plg5 Plg6 Plg7 Plg8 Plg9 Plg10 PIg11 Plg12 wt% 
Si02 56.523 67.579 54.737 69.290 53.372 64.619 53.259 58.351 66.216 66.267 57.565 66.687 
Ti02 0.000 0.078 0.000 0.004 0.000 0.000 0.101 0.055 0.000 0.051 0.125 0.078 
AI20 3 27.835 20.535 28.265 19.679 29.679 21.849 28.776 26.728 21.650 21.955 26.341 21.188 
Fe203 0.245 0.161 0.000 0.000 0.374 0.071 0.164 0.224 0.084 0.106 0.057 0.002 
MnO 0.000 0.000 0.119 0.000 0.004 0.042 0.053 0.000 0.081 0.000 0.091 0.121 
MgO 0.000 0.035 0.000 0.029 0.009 0.000 0.000 0.001 0.000 0.028 0.000 0.000 
CaO 9.996 1.203 11.631 0.343 12.890 3.610 12.349 8.747 2.881 3.104 9.238 2.421 
Na20 6.161 11.464 5.503 11.772 4.733 9.536 4.977 6.658 10.285 10.285 6.640 10.813 
K20 0.000 0.041 0.032 0.041 0.019 0.019 0.026 0.000 0.041 0.010 0.000 0.037 

Total 100.760 101.096 100.287 101.158 101.080 99.746 99.705 100.764 101.238 101.806 100.057 101.347 
Si 2.523 2.934 2.469 2.993 2.398 2.854 2.423 2.592 2.880 2.867 2.582 2.897 
Ti 0.000 0.003 0.000 0.000 0.000 0.000 0.003 0.002 0.000 0.002 0.004 0.003 
AI 1.464 1.051 1.503 1.002 1.572 1.137 1.543 1.399 1.110 1.120 1.392 1.085 

Fe3 0.008 0.005 0.000 0.000 0.013 0.002 0.006 0.007 0.003 0.003 0.002 0.000 
Mn 0.000 0.000 0.005 0.000 0.000 0.002 0.002 0.000 0.003 0.000 0.003 0.004 

~ 
Mg 0.000 0.002 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.002 0.000 0.000 

<D Ca 0.478 0.056 0.562 0.016 0.620 0.171 0.602 0.416 0.134 0.144 0.444 0.113 
0 

Na 0.533 0.965 0.481 0.986 0.412 0.817 0.439 0.573 0.867 0.863 0.577 0.911 
K 0.000 0.002 0.002 0.002 0.001 0.001 0.002 0.000 0.002 0.001 0.000 0.002 

total 5.007 5.019 5.021 5.000 5.017 4.985 5.020 4.990 4.999 5.001 5.005 5.014 
An% 47.8 5.8 56.7 1.8 62.1 17.2 60.4 41.6 13.7 14.6 44.7 11.7 



Table 7-3: Microprobe measurement in sample U1309B 8R-2 55-57 cm. Amphibole analyses 

Oxide 
Am1 Am2 Am3 Am4 AmS AmS Am7 Am8 Am9 Am10 Am11 Am12 wt% 

Si02 48.767. 44.974 54.714 53.835 50.370 50.056 53.225 52.734 54.898 55.988 55.514 53.194 
Ti02 0.530 1.397 0.248 0.640 0.408 0.694 0.092 0.081 0.246 0.064 0.194 0.031 
AI20 3 7.951 9.872 2.752 2.553 7.404 4.327 2.343 1.859 1.861 1.234 2.354 2.739 
Cr203 0.036 0.071 0.052 0.255 0.067 0.000 0.000 0.069 0.016 0.020 0.012 0.027 
Fe203 4.364 4.478 1.195 1.484 1.206 5.426 1.730 0.000 0.000 0.000 0.299 1.115 
FeO 6.971 9.029 7.803 8.158 8.839 10.669 13.201 19.399 9.961 9.438 7.390 12.883 
MnO 0.085 0.137 0.070 0.071 0.096 0.392 0.423 0.338 0.082 0.065 0.050 0.126 
MgO 15.526 13.922 17.819 17.305 15.566 14.261 14.673 11.192 17.236 17.576 18.519 14.403 
CaO 11.490 11.383 12.732 12.503 12.367 10.167 10.682 10.311 12.125 12.792 12.724 12.236 
Na20 1.342 2.231 0.312 0.324 1.123 1.096 0.441 0.312 0.240 0.148 0.340 0.235 
K20 0.017 0.138 0.020 0.032 0.032 0.067 0.000 0.010 0.000 0.005 0.051 0.032 
H2O 2.046 2.039 2.068 2.058 2.043 2.051 2.013 1.985 2.096 2.112 2.106 2.034 

F 0.057 0.028 0.117 0.088 0.115 0.000 0.084 0.000 0.000 0.000 0.058 0.056 
CI 0.051 0.003 0.016 0.025 0.000 0.006 0.016 0.065 0.000 0.013 0.000 0.009 

Total 99.233 99.703 99.917 99.330 99.636 99.212 98.924 98.355 98.761 99.455 99.611 99.120 
~ Si 7.009 6.567 7.712 7.665 7.199 7.312 7.756 7.901 7.853 7.935 7.802 7.730 
co AI(IV) 0.991 1.433 0.288 0.335 0.801 0.688 0.244 0.099 0.147 0.065 0.198 0.270 ~ 

AIM) 0.356 0.266 0.169 0.094 0.446 0.057 0.159 0.229 0.166 0.141 0.192 0.199 
Ti 0.057 0.153 0.026 0.069 0.044 0.076 0.010 0.009 0.026 0.007 0.021 0.003 
Cr 0.004 0.008 0.006 0.029 0.008 0.000 0.000 0.008 0.002 0.002 0.001 0.003 

Fe3+ 0.472 0.492 0.127 0.159 0.130 0.597 0.190 0.000 0.000 0.000 0.032 0.122 
Fe2+ 0.838 1.103 0.920 0.971 1.056 1.303 1.609 2.431 1.192 1.119 0.868 1.566 
Mn 0.010 0.017 0.008 0.009 0.012 0.049 0.052 0.043 0.010 0.008 0.006 0.016 
Mg 3.327 3.031 3.744 3.674 3.317 3.106 3.188 2.500 3.676 3.714 3.880 3.120 
Ca 1.769 1.781 1.923 1.907 1.894 1.591 1.668 1.655 1.858 1.942 1.916 1.905 
Na 0.374 0.632 0.085 0.089 0.311 0.310 0.125 0.091 0.067 0.041 0.093 0.066 
K 0.003 0.026 0.004 0.006 0.006 0.012 0.000 0.002 0.000 0.001 0.009 0.006 

OH 1.962 1.986 1.944 1.954 1.948 1.999 1.957 1.984 2.000 1.997 1.974 1.972 
F 0.026 0.013 0.052 0.040 0.052 0.000 0.039 0.000 0.000 0.000 0.026 0.026 
CI 0.012 0.001 0.004 0.006 0.000 0.001 0.004 0.017 0.000 0.003 0.000 0.002 

total 17.211 17.508 17.012 17.006 17.223 17.102 17.000 16.968 16.997 16.975 17.017 17.006 
Nature MgHb Ed Act Act MgHb . ___ MgHb Act Act Act Act Act Act 



Table 7-3 (continued) 

Oxide 
Am13 Am14 Am15 Am16 Am 17 Am18 Am19 Am20 Am21 Am22 Am23 wt% 

SiOl 52.471 54.091 51.924 54.387 52.236 50.950 52.840 52.522 52.073 52.484 52.540 
TiOl 0.129 0.113 0.210 0.040 0.161 0.259 0.110 0.160 0.109 0.062 0.048 
AI20 3 2.295 2.557 2.333 1.732 1.859 5.869 2.165 2.601 2.925 2.426 2.043 
CrZ03 0.053 0.043 0.023 0.000 0.027 0.020 0.092 0.050 0.000 0.000 0.023 
FeZ03 1.057 0.900 0.075 0.000 0.000 1.766 0.600 1.578 2.033 1.408 1.382 
FeO 18.151 9.066 17.262 9.314 17.522 6.160 17..897 15.691 15.199 13.095 18.351 
MnO 0.314 0.204 0.340 0.005 0.343 0.000 0.300 0.286 0.298 0.458 0.412 
MgO 11.342 17.053 11.603 16.542 11.687 17.221 11.844 12.534 12.423 11.097 11.429 
CaO 11.468 12.157 11.363 12.184 11.346 11.956 11.025 11.032 11.403 11.188 11.176 
NazO 0.301 0.277 0.327 0.222 0.242 0.912 0.384 0.514 0.434 0.450 0.450 
KlO 0.000 0.062 0.019 0.000 0.000 0.026 0.010 0.005 0.011 0.016 0.014 
HlO 1.990 2.087 1.914 2.041 1.989 2.069 2.021 2.033 2.029 2.020 1.951 

F 0.054 0.000 0.138 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.161 
CI 0.040 0.016 0.056 0.000 0.012 0.025 0.025 0.009 0.012 0.025 0.000 

Total 99.665 98.627 97.587 96.496 97.424 97.233 99.313 99.015 98.949 99.729 99.980 
...... Si 7.767 7.754 7.809 7.936 7.863 7.360 7.814 7.739 7.682 7.766 7.771 
<0 AI(lV) 0.233 0.246 0.191 0.064 0.137 0.640 0.186 0.261 0.318 0.234 0.229 N 

AI(VI) 0.167 0.186 0.223 0.234 0.193 0.359 0.191 0.191 0.191 0.189 0.127 
Ti 0.014 0.012 0.024 0.004 0.018 0.028 0.012 0.018 0.012 0.007 0.005 
Cr 0.006 0.005 0.003 0.000 0.003 0.002 0.011 0.006 0.000 0.000 0.003 

Fe3+ 0.118 0.097 0.009 0.000 0.000 0.192 0.067 0.175 0.226 0.157 0.154 
Fe2+ 2.247 1.087 2.171 1.137 2.206· 0.744 2.213 1.933 1.875 2.239 2.270 
Mn 0.039 0.025 0.043 0.001 0.044 0.000 0.038 0.036 0.037 0.057 0.052 
Mg 2.503 3.645 2.602 3.599 2.623 3.709 2.611 2.753 2.732 2.448 2.520 
Ca 1.819 1.867 1.831 1.905 1.830 1.850 1.747 1.742 1.802 1.774 1.771 
Na 0.086 0.077 0.095 0.063 0.071 0.255 0.110 0.147 0.124 0.129 0.129 
K 0.000 0.011 0.004 0.000 0.000 0.005 0.002 0.001 0.002 0.003 0.003 

OH 1.965 1.996 1.920 1.987 1.997 1.994 1.994 1.998 1.997 1.994 1.925 
F 0.025 0.000 0.066 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.075 
CI 0.010 0.004 0.014 0.000 0.003 0.006 0.006 0.002 0.003 0.006 0.000 

total 17.000 17.011 17.004 16.942 16.987 17.145 17.002 17.001 17.002 17.003 17..033 
Nature Act Act Act Act Act MgHb Act Act Act Act Act 



Table 7-4: Microprobe measurements in sample U13098 8R-2 55-57 
cm. Plagioclase analyses 

Oxide Plg1 PIg2 Plg3 PIg4 Plg5 PIg6 Plg7 
wt% 
Si02 51.823 67.541 53.379 58.551 68.235 66.981 68.460 
Ti02 0.081 0.000 0.029 0.023 0.006 0.000 0.000 
AI20 3 30.255 20.059 29.643 26.704 20.486 20.556 20.068 
Fe203 0.475 0.000 0.312 0.339 0.000 0.165 0.000 
MnO 0.000 0.000 0.000 0.000 0.064 0.000 0.000 
MgO 0.050 0.036 0.010 0.003 0.010 0.114 0.088 
CaO 13.239 0.865 12.052 8.896 1.052 1.413 0.595 
Na20 4.044 11.570 4.629 6.683 11.156 11.218 11.731 
KzO 0.059 0.044 0.006 0.087 0.051 0.020 0.027 
Total 100.026 100.115 100.060 101.286 101.060 100.467 100.969 

Si 2.356 2.956 2.413 2.591 2.955 2.927 2.968 
Ti 0.003 0.000 0.001 0.001 0.000 0.000 0.000 
AI 1.621 1.035 1.579 1.393 1.046 1.059 1.025 

Fe3 0.016 0.000 0.011 0.011 0.000 0.005 0.000 
Mn 0.000 0.000 0.000 0.000 0.002 0.000 0.000 
Mg 0.003 0.002 0.001 0.000 0.001 0.007 0.006 
Ca 0.645 0.041 0.584· 0.422 0.049 0.066 0.028 
Na 0.356 0.982 0.406 0.573 0.937 0.950 0.986 
K 0.003 0.002 0.000 0.005 0.003 0.001 0.001 

total 5.003 5.018 4.994 4.996 4.992 5.017 5.014 
An% 64.8 4.3 58.4 42.2 5.2 7.4 3.3 

Table 7-4 (continued) 

Oxide PIg8 PIg9 PIg10 PIg11 PIg12 PIg13 PIg14 
wt% 
Si02 56.014 52.095 52.310 61.212 66.761 67.924 56.979 
Ti02 0.000 0.000 0.091 0.000 0.000 0.000 0.010 

AI20 3 27.865 30.367 29.996 24.192 21.081 21.024 28.033 
Fe20 3 0.000 0.251 0.232 0.364 0.000 0.161 0.203 
MnO 0.000 0.000 0.045 0.000 0.142 0.022 0.063 
MgO 0.000 0.038 0.023 0.019 0.000 0.032 0.000 
CaO 10.145 12.935 12.973 6.045 1.284 1.529 9.563 
Na20 5.667 4.218 4.260 8.616 11.051 11.093 6.203 
KzO 0.011 0.036 0.042 0.110 0.045 0.045 0.033 
Total 99.702 99.940 99.972 100.558 100.364 101.830 101.087 

Si 2.522 2.365 2.375 2.713 2.918 2.926 2.531 
Ti 0.000 0.000 0.003 0.000 0.000 0.000 0.000 
AI 1.479 1.625 1.605 1.263 1.086 1.068 1.468 

Fe3 0.000 0.009 0.008 0.012 0.000 0.005 0.007 
Mn 0.000 0.000 0.002 0.000 0.005 0.001 0.002 
Mg 0.000 0.003 0.002 0.001 0.000 0.002 0.000 
Ca 0.489 0.629 0.631 0.287 0.060 0.071 0.455 
Na 0.495 0.371 0.375 0.740 0.937 0.927 0.534 
K 0.001 0.002 0.002 0.006 0.003 0.002 0.002 

total 4.986 5.004 5.004 5.023 5.008 5.002 4.999 
An% 48.9 63.2 63.4 28.8 6.5 7.3 45.8 
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Table 7-4 (continued) 

Oxide 
PIg15 PIg16 

wt% 
Si02 64.892 52.231 
Ti02 0.000 0.036 
AI20 3 22.775 30.297 
Fe203 0.049 0.404 
MnO 0.000 0.000 
MgO 0.000 0.024 
CaO 3.004 12.697 
Na20 9.965 4.403 
K20 0.010 0.046 
Total 100.695 100.138 

Si 2.837 2.368 
Ti 0.000 0.001 
AI 1.173 1.619 

Fe3 0.002 0.014 
Mn 0.000 0.000 
Mg 0.000 0.002 
Ca 0.141 0.617 
Na 0.845 0.387 
K 0.001 0.003 

total 4.998 5.010 
An% 14.1 61.8 
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Table 7-5: Microprobe measurement in sample U1309B 8R-2 57-60 
cm. Amphibole analyses 

Oxide Am1 Am2 Am3 
wt% 
Si02 55.903 57.956 53.976 
Ti02 0.191 0.000 0.164 
AI20 3 0.771 0.549 2.779 
Cr203 0.007 0.000 0.000 
Fe203 3.476 1.696 0.000 
FeO 7.879 3.754 11.491 
MnO 0.259 0.093 0.062 
MgO 17.735 20.651 16.739 
CaO 11.237 12.810 11.886 
Na20 0.253 0.089 0.397 
K20 0.000 0.007 0.030 
H2O 2.088 2.166 2.089 

F 0.049 0.000 0.012 
CI 0.050 0.025 0.010 

Total 99.898 99.796 99.634 
Si 7.892 8.000 7.717 

AI(lv) 0.108 0.000 0.283 
AI(VI) 0.020 0.089 0.185 

Ti 0.020 0.000 0,018 
Cr 0.001 0.000 0.000 
Fe~+ 0.369 0.176 0.000 
Fe2

+ 0.930 0.433 1.374 
Mn 0.031 0.011 0.008 
Mg 3.733 4.250 3.568 
Ca 1.700 1.894 1.821 
Na 0.069 0.024 0.110 
K 0.000 0.001 0.005 

OH 1.966 1.994 1.992 
F 0.022 0.000 0.005 
CI 0.012 0.006 0.002 

total 16.873 16.880 17.089 
Nature Act Trm Act 
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Table 7-6: Microprobe measurement in sample U1309B 14R-1 59-66 
cm. Amphibole and wall plagioclase analyses 

Oxide Am1 Am2 Am3 Am4 PIg1 PIg2 
wt% 
Si02 50.948 52.842 52.242 53.112 62.255 66.719 
Ti02 0.972 0.268 0.217 0.412 0.000 0.000 
AI20 3 3.223 2.894 2.538 2.495 23.075 20.402 
Cr203 0.023 0.000 0.000 0.011 
Fe203 0.000 0.000 0.000 0.000 0.036 0.077 
FeO 10.061 10.026 9.865 11.032 
MnO 0.000 0.111 0.159 0.135 0.000 0.042 
MgO 16.392 16.960 17.171 17.155 0.000 0.000 
CaO 10.875 10.483 11.293 9.912 5.212 1.930 
Na20 0.791 0.561 0.442 0.539 8.958 11.151 
K20 0.036 0.005 0.005 0.051 0.023 0.002 
H2O 1.981 2.005 1.977 2.043 

F 0.000 0.050 0.101 0.000 
CI 0.122 0.058 0.026 0.031 

Total 95.424 96.263 96.035 96.928 99.559 100.323 
Si 7.590 7.754 7.712 7.763 2.773 2.925 

AI (IV) 0.410 0.246 0.288 0.237 1.211 1.054 
AI(vl) 0.157 0.254 0.153 0.193 

Ti 0.109 0.030 0.024 0.045 0.000 0.000 
Cr 0.003 0.000 0.000 0.001 

Fe3+ 0.000 0.000 0.000 0.000 0.001 0.003 
Fe2

+ 1.254 1.230 1.218 1.348 
Mn 0.000 0.014 0.020 0.017 0.000 0.002 
Mg 3.641 3.710 3.779 3.738 0.000 0.000 
Ca 1.736 1.648 1.786 1.552 0.249 0.091 
Na 0.228 0.160 0.126 0.153 0.774 0.948 
K 0.007 0.001 0.001 0.010 0.001 0.000 

OH 1.969 1.962 1.946 1.992 
F 0.000 0.023 0.047 0.000 
CI 0.031 0.014 0.007 0.008 

total 17.134 17.047 17.107 17.057 5.009 5.021 
Nature Act Act Act Act 
An% 24.9 9.2 
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Table 7-7: Microprobe measurements in sample U13098 16R-1 45-46 cm. Amphibole analyses 

Oxide 
Am1 Am2 Am3 Am4 Am5 Am6 Am7 wt% 

Si02 54.979 46.080 51.572 45.629 54.827 52.363 53.943 
Ti02 0.209 1.424 0.386 2.089 0.113 0.280 0.221 
AI20 3 1.978 8.242 3.881 8.115 2.013 5.785 3.628 
Cr203 0.024 0.008 0.161 0.056 0.000 0.000 0.008 
Fe203 0.135 5.265 1.131 1.526 0.000 0.518 0.533 
FeO 10.235 9.447 13.064 12.831 10.437 6.549 6.161 
MnO 0.042 0.324 0.281 0.438 0.114 0.052 0.086 
MgO 17.269 13.277 14.144 12.969 16.961 18.366 19.167 
CaO 13.075 11.537 12.841 11.732 13.049 13.182 13.275 
Na20 0.248 1.694 0.535 2.020 0.227 0.993 0.517 
K20 0.043 0.488 0.055 0.491 0.041 0.053 0.046 
H2O 2.113 1.938 2.004 1.922 2.108 2.133 2.077 

F 0.000 0.154 0.089 0.111 0.000 0.000 0.117 
CI 0.024 0.143 0.083 0.224 0.000 0.018 0.011 

Total 100.373 100.020 100.226 100.152 99.891 100.292 99.790 
~ Si 7.778 6.746 7.478 6.735 7.797 7.344 7.574 
co AI(IV) 0.222 1.254 0.522 1.265 0.203 0.656 0.426 ..... 

AI(VI) 0.108 0.168 0.141 0.147 0.135 0.301 0.175 
Ti 0.022 0.157 0.042 0.232 0.012 0.030 0.023 
Cr 0.003 0.001 0.018 0.007 0.000 0.000 0.001 

Fe3+ 0.014 0.580 0.123 0.170 0.000 0.055 0.056 
Fe2+ 1.211 1.157 1.584 1.584 1.241 0.768 0.723 
Mn 0.005 0.040 0.035 0.055 0.014 0.006 0.010 
Mg 3.643 2.898 3.058 2.854 3.596 3.841 4.013 
Ca 1.982 1.810 1.995 1.855 1.988 1.981 1.997 
Na 0.068 0.481 0.150 0.578 0.063 0.270 0.141 
K 0.008 0.091 0.010 0.092 0.007 0.009 0.008 

OH 1.994 1.893 1.939 1.892 2.000 1.996 1.945 
F 0.000 0.071 0.041 0.052 0.000 0.000 0.052 
CI 0.006 0.035 0.020 0.056 0.000 0.004 0.003 

total 17.064 17.382 17.157 17.574 17.057 17.260 17.148 
Nature Act MgHb .. Mgljb __ Ed Act MgHb Act 



Table 7-7 (continued) 

Oxide 
Am1 Am2 Am3 Am4 Am5 Am6 Am7 wt% 

Si02 53.623 46.333 44.933 45.312 43.206 47.984 47.783 
Ti02 0.229 1.646 2.157 1.993 2.033 0.628 0.569 
AI20 3 4.135 8.057 9.087 8.328 9.682 7.223 7.242 
CrZ0 3 0.000 0.000 0.000 0.073 0.081 0.000 0.008 
Fe203 0.000 4.087 2.157 1.641 1.844 2.369 2.264 
FeO 6.452 10.587 12.891 12.926 13.379 13.882 13.689 
MnO 0.100 0.308 0.094 0.222 0.362 0.417 0.299 
MgO 18.839 13.155 12.613 12.678 11.981 12.045 12.090 
CaO 13.333 11.811 11.576 11.821 11.751 11.873 11.663 
Na20 0.613 1.788 2.000 1.711 2.253 1.172 1.272 
K20 0.061 0.185 0.384 0.382 0.541 0.077 0.088 
H2O 2.054 2.028 1.980 1.909 1.928 2.027 1.893 

F 0.117 0.000 0.044 0.156 0.000 0.000 0.264 
CI 0.080 0.086 0.121 0.136 0.275 0.037 0.026 

Total 99.637 100.071 100.037 99.288 99.317 99.734 99.150 
~ Si 7.548 6.778 6.631 6.735 6.485 7.066 7.077 
CD AI(lV) 0.452 1.222 1.369 1.265 1.515 0.934 0.923 en 

AI(Vl) 0.235 0.167 0.211 0.193 0.197 0.320 0.341 
Ti 0.024 0.181 0.239 0.223 0.230 0.070 0.063 
Cr 0.000 0.000 0.000 0.009 0.010 0.000 0.001 

Fe3+ 0.000 0.450 0.240 0.184 0.208 0.263 0.252 
Fez+ 0.760 1.295 1.591 1.607 1.679 1.710 1.695 
Mn 0.012 0.038 0.012 0.028 0.046 0.052 0.038 
Mg 3.954 2.869 2.775 2.809 2.681 2.645 2.670 
Ca 2.011 1.851 1.830 1.882 1.890 1.873 1.851 
Na 0.167 0.507 0.572 0.493 0.656 0.335 0.365 
K 0.011 0.035 0.072 0.072 0.104 0.014 0.017 

OH 1.929 1.979 1.949 1.892 1.930 1.991 1.870 
F 0.052 0.000 0.021 0.073 0.000 0.000 0.124 
CI 0.019 0.021 0.030 0.034 0.070 0.009 0.007 

total 17.173 17.393 17.542 17.500 17.700 17.281 17.292 
Nature Act MgHb Ed MgHb ___ ~gHast ___ MgHb . MgHb 



Table 7-8: Microprobe measurements in sample U13098 16R-1 45-
46 cm. Plagioclase analyses 

Oxide PIg1 PIg2 PIg3 PIg4 PIg5 PIg6 PIg7 
wt% 
Si02 54.668 67.599 52.292 65.382 67.714 66.804 51.541 
Ti02 0.000 0.007 0.000 0.000 0.000 0.000 0.000 
AI20 3 28.805 20.995 30.160 22.241 19.011 20.979 30.920 
Fe203 0.215 0.114 0.338 0.231 1.002 0.000 0.200 
MnO 0.143 0.000 0.000 0.000 0.042 0.125 0.020 
MgO 0.000 0.004 0.039 0.000 0.911 0.000 0.000 
CaO 11.811 1.400 12.789 3.186 1.186 1.648 13.638 

Na20 5.139 11.281 4.384 9.974 10.910 10.882 3.987 
KzO 0.036 0.033 0.030 0.042 0.041 0.021 0.006 

Total 100.817 101.433 100.032 101.056 100.817 100.459 100.312 
Si 2.453 2.925 2.373 2.851 2.953 2.918 2.337 
Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
AI 1.523 1.070 1.613 1.143 0.977 1.080 1.652 

Fe3 0.007 0.004 0.012 0.008 0.033 0.000 0.007 
Mn 0.005 0.000 0.000 0.000 0.002 0.005 0.001 
Mg 0.000 0.000 0.003 0.000 0.059 0.000 0.000 
Ca 0.568 0.065 0.622 0.149 0.055 0.077 0.662 
Na 0.447 0.946 0.386 0.843 0.923 0.922 0.350 
K 0.002 0.002 0.002 0.002 0.002 0.001 0.000 

total 5.006 5.012 5.009 4.996 5.004 5.003 5.009 
An% 57.3 6.5 62.4 14.9 11.6 8.2 66.3 

Table 7-8 (continued) 

Oxide Plg8 Plg9 PIg10 PIg11 Plg12 PIg13 PIg14 
wt% 
Si02 66.454 53.393 65.181 52.494 65.101 69.019 65.040 
Ti02 0.000 0.000 0.000 0.064 0.000 0.000 0.000 
AI20 3 21.085 29.903 21.642 30.225 21.619 20.037 22.265 
Fe203 0.113 0.417 0.000 0.128 0.090 0.032 0.000 
MnO 0.053 0.000 0.000 0.000 0.074 0.046 0.000 
MgO 0.037 0.039 0.000 0.000 0.000 0.007 0.010 
CaO 0.123 12.157 2.613 1.099 2.449 0.625 2.968 

Na20 10.323 4.800 10.224 3.943 10.233 11.549 9.745 
K20 0.048 0.055 0.023 0.000 0.033 0.041 0.035 
Total 98.236 100.764 99.683 87.953 99.599 101.356 100.063 

Si 2.944 2.401 2.875 2.566 2.875 2.978 2.857 
Ti 0.000 0.000 0.000 0.002 0.000 0.000 0.000 
AI 1.101 1.585 1.125 1.741 1.125 1.019 1.153 

Fe3 0.004 0.014 0.000 0.005 0.003 0.001 0.000 
Mn 0.002 0.000 0.000 0.000 0.003 0.002 0.000 
Mg 0.002 0.003 0.000 0.000 0.000 0.000 0.001 
Ca 0.006 0.586 0.124 0.058 0.116 0.029 0.140 
Na 0.887 0.419 0.874 0.374 0.876 0.966 0.830 
K 0.003 0.003 0.001 0.000 0.002 0.002 0.002 

total 4.948 5.010 5.000 4.746 5.000 4.997 4.982 
An% 1.0 58.8 12.4 5.8 11.9 3.1 14.0 
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Analyses in lOOP Hole U13090 

Table 7-9: Microprobe measurements in sample U1309D 1R-1 41-44 
cm. Amphibole analyses 

Oxide Am1 Am2 Am3 Am4 Am5 
wt% 
Si02 46.34 49.25 48.39 50.77 49.12 
Ti02 0.33 0.40 0.39 0.31 0.14 
AI20 3 7.98 5.93 7.10 4.40 4.77 
Cr20 3 0.00 0.30 0.32 0.00 0.00 
Fe203 3.70 1.18 2.17 2.52 3.61 
FeO 14.89 14.85 12.60 12.63 15.01 
MnO 0.12 0.08 0.25 0.24 0.25 
MgO 10.56 12.12 12.94 13.94 11.77 
CaO 12.31 12.64 12.03 11.96 11.60 

Na20 0.92 0.67 1.19 0.75 0.70 
K20 0.09 0.06 0.06 0.06 0.05 
H2O 1.97 1.99 2.01 2.04 1.92 

F 0.07 0.09 0.07 0.04 0.20 
CI 0.00 0.00 0.01 0.00 0.00 

Total 99.27 99.55 99.53 99.66 99.15 
Si 6.926 7.259 7.094 7.401 7.317 

AI(lV) 1.074 0.741 0.906 0.599 0.683 
AI(VI) 0.332 0.289 0.322 0.158 0.154 
Ti 0.037 0.044 0.043 0.033 0.015 
Cr 0.000 0.035 0.038 0.000 0.000 

Fe:$+ 0.416 0.131 0.239 0.277 0.404 
Fe2+ 1.861 1.830 1.545 1.540 1.870 
Mn 0.015 0.010 0.032 0.030 0.032 
Mg 2.352 2.664 2.828 3.031 2.614 
Ca 1.972 1.996 1.889 1.868 1.850 
Na 0.267 0.191 0.339 0.212 0.202 
K 0.016 0.012 0.011 0.010 0.010 

OH 1.968 1.959 1.967 1.980 1.908 
F 0.031 0.041 0.031 0.020 0.092 
CI 0.001 0.000 0.002 0.000 0.000 

total 17.268 17.201 17.286 17.160 17.153 
Nature MgHb MgHb M9Hb M9Hb MgHb 
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Table 7-9 (continued) 

Oxide Am6 Am7 Am8 Am9 Am10 
wt% 
Si02 49.16 49.43 47.55 50.35 48.55 
Ti02 0.39 0.30 0.34 0.42 0.49 
AI20 3 5.70 4.89 6.30 6.00 5.77 
Cr203 0.04 0.40 0.41 0.16 0.11 

Fe20 3 3.09 2.82 5.05 3.55 2.95 
FeO 12.49 12.53 12.01 7.97 12.35 
MnO 0.27 0.26 0.37 0.26 0.27 
MgO 13.30 13.40 12.73 16.35 13.21 
CaO 11.42 11.77 10.95 10.80 12.00 
Na20 0.98 0.92 1.34 1.16 1.05 
K20 0.06 0.06 0.05 0.04 0.07 
H2O 2.00 1.96 1.98 2.00 1.94 

F 0.07 0.16 0.09 0.18 0.18 
CI 0.03 0.00 0.00 0.01 0.00 

Total 98.99 98.90 99.18 99.26 98.93 

Si 7.237 7.295 7.040 7.232 7.174 
AI(lV) 0.763 0.705 0.960 0.768 0.826 
AI(VI) 0.226 0.147 0.140 0.248 0.178 
Ti 0.044 0.033 0.038 0.045 0.054 
Cr 0.005 0.046 0.048 0.018 0.012 

Fe3+ 0.342 0.314 0.563 0.384 0.328 
Fe2+ 1.537 1.546 1.487 0.957 1.526 
Mn 0.033 0.033 0.047 0.032 0.034 
Mg 2.919 2.949 2.809 3.501 2.910 
Ca 1.802 1.861 1.737 1.663 1.900 
Na 0.280 0.262 0.384 0.322 0.301 
K 0.011 0.012 0.010 0.008 0.014 

OH 1.962 1.927 1.959 1.915 1.917 
F 0.031 0.073 0.041 0.082 0.083 
CI 0.008 0.000 0.000 0.003 0.000 

total 17.197 17.203 17.263 17.178 17.257 
Nature MgHb MgHb MgHb MgHb MgHb 
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Table 7-10: Microprobe measurements in sample U1309D 1R-1 41-44 cm. Plagioclase analyses 

Oxidewt% 
Core of lath Edge of lath Core of lath Edge of lath Core of lath Edge of lath Core of lath Edge of lath Core of lath Edge of lath 

1 1 2 2 3 3 4 4 5 5 
Si02 67.26 54.79 68.17 53.70 51.81 68.88 51.79 60.96 52.39 61.50 
Ti02 0.00 0.06 0.00 0.04 0.09 0.00 0.08 0.00 0.07 0.00 
AI20 3 21.29 27.98 20.33 28.49 30.69 20.60 30.56 24.20 29.37 24.38 
Fe203 0.03 1.03 0.11 1.08 0.61 0.20 0.59 0.76 1.02 0.54 
MnO 0.00 0.00 0.07 0.01 0.04 0.00 0.04 0.04 0.01 0.08 
MgO 0.00 0.13 0.00 0.16 0.23 0.00 0.15 0.04 0.15 0.02 
CaO 1.78 11.46 0.69 11.75 13.98 1.02 13.90 6.21 12.61 6.39 
Na20 10.46 5.25 10.95 4.93 3.64 11.02 3.63 8.16 4.52 7.98 
K20 0.01 0.06 0.04 0.04 0.04 0.05 0.01 0.13 0.05 0.12 
Total 100.82 100.74 100.36 100.19 101.13 101.76 100.75 100.48 100.17 101.01 

Si 2.921 2.464 2.966 2.432 2.334 2.959 2.340 2.705 2.380 2.711 
Ti 0.000 0.002 0.000 0.001 0.003 0.000 0.003 0.000 0.002 0.000 
AI 1.090 1.483 1.042 1.520 1.629 1.043 1.627 1.266 1.572 1.267 

Fe3 0.001 0.035 0.004 0.037 0.021 0.006 0.020 0.025 0.035 0.018 
Mn 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.002 0.000 0.003 

N Mg 0.000 0.008 0.000 0.011 0.015 0.000 0.010 0.002 0.010 0.001 
0 Ca 0.083 0.552 0.032 0.570 0.675 0.047 0.673 0.295 0.614 0.302 
N Na 0.880 0.458 0.924 0.433 0.318 0.918 0.318 0.702 0.398 0.682 

K 0.000 0.003 0.002 0.002 0.002 0.003 0.001 0.007 0.003 0.007 
total 4.975 5.006 4.973 5.006 4.998 4.976 4.993 5.004 5.014 4.991 
An% 8 56 3 58 69 5 68 30 62 30 



Table 7-11: Microprobe measurements in sample U1309D 1R-3 9-11 cm. Amphibole analyses 

Oxide 
Am1 Am2 Am3 Am4 Am5 Am6 Am7 Am8 Am9 Am10 Am11 wt% 

Si02 45.584 53.161 53.597 53.258 45.979 46.775 53.663 45.267 51.515 54.400 52.115 
Ti02 1.949 0.244 0.057 0.092 1.483 1.048 0.308 2.008 0.012 0.124 0.228 
AI20 3 8.942 5.317 4.859 4.187 9.744 9.325 4.658 10.015 5.750 2.054 6.746 
Cr20 3 0.168 0.040 0.000 0.000 0.013 0.042 0.016 0.013 0.029 0.000 0.000 
Fe203 5.342 1.144 1.488 2.636 3.370 4.400 2.792 2.866 3.105 1.272 2.778 
FeO 6.108 4.518 4.604 3.582 6.794 4.691 2.049 7.301 4.196 8.904 4.382 
MnO 0.163 0.022 0.073 0.079 0.081 0.174 0.000 0.119 0.158 0.144 0.110 
MgO 15.168 21.207 19.647 19.541 15.686 16.928 20.737 15.327 18.885 17.791 20.117 
CaO 11.565 11.106 12.846 12.315 11.733 11.726 12.504 11.864 12.746 12.373 10.515 
Na20 2.018 0.890 0.748 0.806 1.887 1.824 0.766 1.815 1.022 0.334 1.288 
K20 0.235 0.029 0.051 0.066 0.237 0.253 0.053 0.307 0.071 0.025 0.042 
H2O 2.058 2.144 2.145 2.097 2.068 2.082 2.158 2.059 2.115 2.105 2.151 

F 0.031 0.057 0.035 0.123 0.015 0.035 0.023 0.015 0.049 0.013 0.047 
CI 99.331 99.879 100.151 98.782 99.089 99.303 99.727 98.976 99.654 99.540 100.519 

Total 45.584 53.161 53.597 53.258 45.979 46.775 53.663 45.267 51.515 54.400 52.115 
N Si 6.615 7.382 7.459 7.504 6.654 6.706 7.435 6.580 7.258 7.736 7.224 
0 AI(lV) 1.385 0.618 0.541 0.496 1.346 1.294 0.565 1.420 0.742 0.264 0.776 (,.) 

AI(Vl) 0.144 0.253 0.256 0.199 0.316 0.281 0.196 0.295 0.213 0.080 0.326 
Ti 0.213 0.025 0.006 0.010 0.161 0.113 0.032 0.220 0.001 0.013 0.024 
Cr 0.019 0.004 0.000 0.000 0.001 0.005 0.002 0.001 0.003 0.000 0.000 

Fe3+ 0.583 0.120 0.156 0.280 0.367 0.475 0.291 0.314 0.329 0.136 0.290 
Fe2+ 0.741 0.525 0.536 0.422 0.822 0.562 0.237 0.887 0.494 1.059 0.508 
Mn 0.020 0.003 0.009 0.009 0.010 0.021 0.000 0.015 0.019 0.017 0.013 
Mg 3.282 4.391 4.076 4.105 3.385 3.618 4.284 3.322 3.967 3.772 4.157 
Ca 1.798 1.652 1.915 1.859 1.819 1.801 1.856 1.848 1.924 1.885 1.562 
Na 0.568 0.240 0.202 0.220 0.529 0.507 0.206 0.511 0.279 0.092 0.346 
K 0.044 0.005 0.009 0.012 0.044 0.046 0.009 0.057 0.013 0.005 0.007 

OH 1.992 1.987 1.992 1.971 1.996 1.991 1.995 1.996 1.988 1.997 1.989 
CI 0.008 0.013 0.008 0.029 0.004 0.009 0.005 0.004 0.012 0.003 0.011 

total 17.412 17.217 17.164 17.115 17.456 17.430 17.113 17.470 17.243 17.059 17.233 
Nature MgHb MgHb MgHb __ MgHb_ MgHb MgHb MgHb MgHb MgHb Act MgHb 



Table 7-12: Microprobe measurements in sample U1309D 1R-3 9-11 

em. Plagioclase analyses 

-oxide PIg1 PIg2 PIg3 PIg4 PIg5 PIg6 PIg7 
wt% 

45.962 52.862 47.042 49.015 44.376 45.365 42.458 
- Si02 

Ti02 0.000 0.000 0.000 0.000 0.000 0.043 0.048 

AI203 34.093 22.720 33.616 32.281 35.076 35.365 34.885 

Fe20 3 
0.347 2.314 0.619 0.553 0.559 0.388 1.640 

0.076 0.000 0.000 0.019 0.059 0.000 0.000 
MnO 

0.036 5.155 0.082 0.280 1.000 0.052 0.910 
MgO 

17.147 4.525 16.557 15.398 18.303 18.527 17.758 
CaO 
Nap 1.495 5.881 2.091 2.840 0.691 0.988 0.776 

0.005 0.060 0.023 0.014 0.077 0.009 0.051 
KP 

99.161 93.517 100.030 100.400 100.141 100.737 98.526 
- Total - Si 2.131 2.536 2.161 2.235 2.049 2.078 2.002 

Ti 0.000 0.000 0.000 0.000 0.000 0.001 0.002 

1.863 1.284 1.820 1.735 1.909 1.909 1.938 
AI 

0.012 0.084 0.021 0.019 0.019 0.013 0.058 
Fe3 

0.003 0.000 0.000 0.001 0.002 0.000 0.000 
Mn 

0.002 0.369 0.006 0.019 0.069 0.004 0.064 
Mg 

0.852 0.233 0.815 0.752 0.905 0.909 0.897 
Ca 

0.134 0.547 0.186 0.251 0.062 0.088 0.071 
Na 

0.000 0.004 0.001 0.001 0.005 0.001 0.003 
K 

4.999 5.056 5.011 5.014 5.020 5.003 5.035 
- total 

85.7 60.1 82.1 77.2 97.7 91.3 96.1 
- An% 
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Table 7-13: Microprobe measurements in sample U1309D 4R-1135-137 cm. Amphibole analyses 

Oxide Am1 Am2 Am3 Am4 Am5 Arn6 Arn7 Am8 Arn9 Am10 Am11 wt% 
Si02 51.157 50.225 50.883 50.251 50.289 55.167 51.316 54.702 52.552 50.223 51.871 
Ti02 0.462 0.890 0.294 0.208 0.126 0.041 0.232 0.264 0.136 0.154 0.146 
Al20 3 5.234 4.624 5.333 5.285 4.858 0.505 5.623 2.211 4.956 4.962 3.480 
Cr20 3 0.130 0.260 0.128 0.028 0.000 0.030 0.000 0.000 0.033 0.020 0.018 
Fe20 3 3.142 3.743 4.259 3.979 3.202 0.000 4.315 1.321 2.895 3.090 1.642 
FeO 4.459 8.580 4.166 6.068 12.811 11.334 5.879 7.445 6.150 12.749 13.863 
MnO 0.063 0.217 0.145 0.078 0.137 0.079 0.124 0.138 0.068 0.192 0.072 
MgO 18.766 16.223 18.740 17.416 13.603 16.452 17.879 19.437 18.320 13.592 14.044 
CaO 11.790 11.473 11.951 11.882 11.934 13.022 11.324 12.149 12.183 11.968 11.766 
NazO 1.279 1.162 1.293 1.231 0.940 0.132 1.282 0.531 0.930 0.921 0.641 
KzO 0.097 0.054 0.091 0.023 0.027 0.000 0.021 0.019 0.041 0.082 0.038 
HzO 2.069 2.073 2.082 2.059 2.042 2.073 2.111 2.120 2.123 2.051 2.041 
F 0.150 0.022 0.129 0.090 0.059 0.021 0.048 0.072 0.050 0.024 0.064 
Cl 98.799 99.546 99.494 98.599 100.028 98.856 100.154 100.410 100.437 100.028 99.687 

Total 51.157 50.225 50.883 50.251 50.289 55.167 51.316 54.702 52.552 50.223 51.871 
N Si 7.278 7.243 7.213 7.236 7.330 7.956 7.247 7.668 7.376 7.319 7.559 
0 AI(IV) 0.722 0.757 0.787 0.764 0.670 0.044 0.753 0.332 0.624 0.681 0.441 
01 

AI(vl) 0.156 0.029 0.104 0.133 0.165 0.042 0.183 0.034 0.196 0.172 0.156 
Ti 0.049 0.097 0.031 0.023 0.014 0.004 0.025 0.028 0.014 0.017 0.016 
Cr 0.015 0.030 0.014 0.003 0.000 0.003 0.000 0.000 0.004 0.002 0.002 

Fe3+ 0.336 0.406 0.454 0.431 0.351 0.000 0.459 0.139 0.306 0.339 0.180 
Fez+ 0.531 1.035 0.494 0.731 1.562 1.367 0.694 0.873 0.722 1.554 1.689 
Mn 0.008 0.027 0.017 0.010 0.017 0.010 0.015 0.016 0.008 0.024 0.009 
Mg 3.981 3.488 3.960 3.739 2.956 3.538 3.765 4.062 3.834 2.953 3.051 
Ca 1.797 1.773 1.815 1.833 1.864 2.012 1.713 1.825 1.832 1.869 1.837 
Na 0.353 0.325 0.355 0.344 0.266 0.037 0.351 0.144 0.253 0.260 0.181 
K 0.018 0.010 0.016 0.004 0.005 0.000 0.004 0.003 0.007 0.015 0.007 

OH 1.964 1.995 1.969 1.978 1.985 1.995 1.988 1.983 1.988 1.994 1.984 
CI 0.036 0.005 0.031 0.022 0.015 0.005 0.011 0.017 0.012 0.006 0.016 

total 17.243 17.217 17.262 17.250 17.199 17.013 17.208 17.125 17.175 17.205 17.129 
Nature MgHb MgHi:> MgHb MgHb MgHb Act MgHb Act MgHb MgHb Act 



Table 7-13 (continued) 

Oxide Am12 Am13 Am14 Am15 Am16 
wt% 
Si02 53.400 53.660 56.688 50.384 51.214 
Ti02 0.355 0.628 0.060 0.384 0.144 
AI20 3 2.893 2.846 0.967 5.826 4.102 
Cr20 3 0.127 0.170 0.007 0.094 0.043 
Fe203 2.678 2.582 0.778 4.680 2.836 
FeO 6.890 6.015 5.081 6.073 13.034 
MnO 0.164 0.114 0.178 0.088 0.162 
MgO 18.505 19.123 21.792 17.468 13.858 
CaO 11.833 12.275 12.035 11.493 11.536 
Na20 0.697 0.651 0.220 1.333 0.781 
K20 0.033 0.011 0.013 0.018 0.051 
H2O 2.098 2.128 2.154 2.084 2.051 

F 0.080 0.030 0.041 0.103 0.032 
CI 99.753 100.234 100.014 100.027 99.844 

Total 53.400 53.660 56.688 50.384 51.214 
Si 7.559 7.533 7.851 7.160 7.455 

AI(lv) 0.441 0.467 0.149 0.840 0.545 
AI(vl) 0.041 0.004 0.009 0.135 0.159 

Ti 0.038 0.066 0.006 0.041 0.016 
Cr 0.014 0.019 0.001 0.011 0.005 

Fe 3+ 0.285 0.273 0.081 0.500 0.311 
Fe2+ 0.816 0.706 0.588 0.722 1.587 
Mn 0.020 0.014 0.021 0.011 0.020 
Mg 3.905 4.002 4.500 3.701 3.008 
Ca 1.795 1.846 1.786 1.750 1.799 
Na 0.191 0.177 0.059 0.367 0.220 
K 0.006 0.002 0.002 0.003 0.009 

QH 1.981 1.993 1.990 1.975 1.992 
F 0.019 0.007 0.010 0.025 0.008 
CI 17.111 17.109 17.053 17.241 17.134 

total 0.014 0.019 0.001 0.011 0.005 
Nature Act Act Act MgHb MgHb 
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Table 7-14: Microprobe measurements in sample U1309D 4R-1135-137 cm .. Plagioclase analyses 

Oxide wt% PIg 1 PIg 2 PIg 3 PIg 4 PIg 5 PIg 6 PIg 7 PIg 8 PIg 9 PIg 10 PIg 11 PIg 12 
Si02 68.251 52.284 65.291 59.935 51.292 67.850 58.900 51.669 67.229 52.079 68.555 51.226 
Ti02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.000 
AI20 3 20.211 30.379 22.156 25.981 30.920 20.522 26.067 30.630 20.818 30.531 20.089 30.686 
Fe203 0.038 0.142 0.087 0.020 0.210 0.000 0.044 0.479 0.106 0.424 0.180 0.136 
MnO 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.040 0.000 0.000 0.000 0.000 
MgO 0.012 0.000 0.015 0.009 0.049 0.007 0.000 0.043 0.000 0.026 0.021 0.048 
CaO 0.992 13.577 3.007 7.645 13.946 0.991 7.751 13.215 1.305 13.572 0.577 13.733 
Na20 11.397 4.249 10.051 7.619 3.545 11.455 7.316 3.750 11.051 3.817 11.687 3.988 
K~O 0.032 0.016 0.009 0.011 0.025 0.045 0.015 0.000 0.015 0.000 0.036 0.027 

Total 100.933 100.647 100.616 101.240 99.987 100.870 100.093 99.826 100.524 100.467 101.145 99.844 
Si 2.961 2.362 2.857 2.643 2.332 2.947 2.627 2.350 2.931 2.355 2.967 2.335 
Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 
AI 1.033 1.617 1.142 1.350 1.657 1.051 1.370 1.642 1.070 1.627 1.025 1.648 

Fe3 0.001 0.005 0.003 0.001 0.007 0.000 0.001 0.016 0.003 0.014 0.006 0.005 
Mn 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 
Mg 0.001 0.000 0.001 0.001 0.003 0.000 0.000 0.003 0.000 0.002 0.001 0.003 

N Ca 0.046 0.657 0.141 0.361 0.679 0.046 0.370 0.644 0.061 0.658 0.027 0.671 
0 Na 0.959 0.372 0.853 0.651 0.313 0.965 0.633 0.331 0.934 0.335 0.981 0.352 ...... 

K 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.000 0.001 0.000 0.002 0.002 
total 5.002 5.014 4.997 5.008 4.993 5.011 5.003 4.987 5.000 4.991 5.009 5.016 
An% 4.7 65.7 14.2 36.3 68.3 4.7 37.1 64.8 6.1 65.9 2.8 67.4 



Table 7-15: Microprobe measurements in sample U1309D 4R-3 11-14 cm. Amphibole analyses 

Oxide wt% Arn1 Arn2 Arn3 Arn4 Arn5 Arn6 Arn7 ArnS Arn9 Arn10 Arn11 Am12 Arn13 
SiOz 51.676 48.817 49.544 55.177 53.343 51.701 51.561 52.701 54.405 53.064 53.399 53.643 55.071 
TiOz 0.175 1.298 1.186 0.373 0.028 0.034 0.099 0.414 0.170 0.001 0.000 0.357 0.287 
Alz0 3 6.342 5.650 4.717 2.201 2.646 2.703 4.336 4.526 1.921 4.224 0.898 2.119 1.845 
CrZ03 0.762 0.257 0.242 0.000 0.000 0.000 0.000 0.660 0.570 0.000 0.000 0.039 0.011 
Fez03 3.217 6.076 5.465 2.781 1.554 1.356 3.068 2.620 0.545 1.747 0.894 0.985 2.660 
FeO 3.606 8.205 8.386 5.407 13.216 18.001 5.363 5.532 8.174 5.724 15.354 11.714 5.314 
MnO 0.189 0.294 0.212 0.109 0.169 0.291 0.114 0.060 0.163 0.150 0.355 0.249 0.188 
MgO 18.660 14.922 15.246 20.215 14.305 11.778 19.578 18.356 17.940 18.761 13.950 15.444 20.348 
CaO 12.245 10.443 10.031 11.081 11.710 11.250 11.178 12.260 12.923 12.571 11.751 11.744 11.071 
Na20 1.128 1.277 1.286 0.666 0.365 0.372 0.977 0.810 0.192 0.819 0.182 0.363 0.564 
K20 0.048 0.094 0.274 0.038 0.015 0.037 0.025 0.038 0.010 0.021 0.026 0.011 0.023 
H2O 2.127 2.065 2.022 2.130 2.067 2.018 2.074 2.113 2.102 2.118 2.017 2.065 2.127 
CI 0.073 0.009 0.134 0.094 0.000 0.013 0.102 0.085 0.013 0.011 0.070 0.015 0.052 

Total 100.248 99.406 98.746 100.272 99.419 99.554 98.476 100.176 99.129 99.211 98.897 98.747 99.561 
Si 7.221 7.080 7.223 7.680 7.736 7.669 7.361 7.402 7.747 7.500 7.867 7.774 7.713 

AI(IV) 0.779 0.920 0.777 0.320 0.264 0.331 0.639 0.598 0.253 0.500 0.133 0.226 0.287 
N AIM) 0.265 0.046 0.034 0.041 0.188 0.141 0.090 0.151 0.070 0.204 0.023 0.136 0.018 
0 Ti 0.018 0.142 0.130 0.039 0.003 0.004 0.011 0.044 0.018 0.000 0.000 0.039 0.030 00 

Cr 0.084 0.029 0.028 0.000 0.000 0.000 0.000 0.073 0.064 0.000 0.000 0.004 0.001 
Fe3+ 0.338 0.663 0.600 0.291 0.170 0.151 0.330 0.277 0.058 0.186 0.099 0.107 0.280 
Fe2+ 0.421 0.995 1.022 0.629 1.603 2.233 0.640 0.650 0.973 0.677 1.892 1.420 0.622 
Mn 0.022 0.036 0.026 0.013 0.021 0.037 0.014 0.007 0.020 0.018 0.044 0.031 0.022 
Mg 3.887 3.227 3.314 4.195 3.093 2.605 4.167 3.844 3.809 3.953 3.064 3.337 4.249 
Ca 1.833 1.623 1.567 1.653 1.820 1.788 1.710 1.845 1.972 1.904 1.855 1.824 1.661 
Na 0.306 0.359 0.364 0.180 0.103 0.107 0.270 0.221 0.053 0.224 0.052 0.102 0.153 
K 0.009 0.017 0.051 0.007 0.003 0.007 0.005 0.007 0.002 0.004 0.005 0.002 0.004 

OH 1.983 1.998 1.967 1.978 2.000 1.997 1.975 1.980 1.997 1.997 1.983 1.996 1.988 
CI 0.017 0.002 0.033 0.022 0.000 0.003 0.025 0.020 0.003 0.003 0.017 0.004 0.012 

total 17.185 17.137 17.135 17.048 17.003 17.072 17.237 17.118 17.039 17.169 17.034 17.002 17.042 
Nature MgHb _ MgHb MgHL Act Act Act MgHb MgHb Act MgHb Act Act Act 



Table 7-15 (continued) 

Oxide wt% Am14 Am15 Am16 Am17 Am18 Am19 Am20 Am21 Am22 Am23 Am24 Am25 Am26 
Si02 52.221 53.658 54.980 53.078 53.280 53.614 56.094 56.195 53.781 54.273 53.856 56.235 57.230 
Ti02 0.725 0.036 0.492 0.048 0.040 0.071 0.094 0.132 0.000 0.052 0.034 0.265 0.000 
AI20 3 3.611 2.607 1.986 3.034 2.929 2.881 1.803 1.849 2.598 4.949 2.825 1.465 1.029 
Cr203 0.000 0.000 0.008 0.021 0.003 0.000 0.000 0.037 0.000 0.045 0.029 0.107 0.000 
Fe203 4.134 0.930 1.303 1.784 3.369 1.280 0.878 0.568 1.666 1.702 1.224 0.891 0.094 
FeO 5.349 12.985 6.332 12.090 11.893 13.970 6.989 7.182 11.736 5.287 10.406 5.323 5.345 
MnO 0.097 0.220 0.181 0.226 4.455 0.156 0.109 0.023 0.368 0.000 0.386 0.047 0.004 
MgO 18.402 14.735 19.625 14.544 14.264 14.265 19.034 18.996 15.329 19.144 15.793 21.314 20.714 
CaO 10.998 12.113 11.372 11.829 11.25.8 11.409 12.982 12.978 11.769 12.706 12.566 11.610 13.027 
Na20 0.909 0.383 0.539 0.401 0.420 0.376 0.275 0.223 0.321 0.724 0.319 0.281 0.182 
K20 0.130 0.049 0.011 0.000 0.014 0.030 0.014 0.006 0.000 0.031 0.000 0.005 0.005 
H2O 2.066 2.076 2.108 2.065 2.121 2.076 2.149 2.146 2.084 2.166 2.090 2.148 2.162 
CI 0.144 0.007 0.071 0.015 0.019 0.014 0.009 0.018 0.005 0.023 0.011 0.040 0.000 

Total 98.786 99.799 99.008 99.134 104.064 100.143 100.430 100.353 99.656 101.102 99.538 99.731 99.793 
Si 7.445 7.741 7.753 7.694 7.515 7.728 7.819 7.833 7.734 7.491 7.717 7.812 7.935 

AI(IV) 0.555 0.259 0.247 0.306 0.485 0.272 0.181 0.167 0.266 0.509 0.283 0.188 0.065 
N AIM) 0.052 0.184 0.083 0.212 0.002 0.218 0.115 0.136 0.174 0.296 0.194 0.051 0.103 
0 Ti 0.078 0.004 0.052 0.005 0.004 0.008 0.010 0.014 0.000 0.005 0.004 0.028 0.000 co 

Cr 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.004 0.000 0.005 0.003 0.012 0.000 
Fe3

'" 0.444 0.101 0.138 0.195 0.358 0.139 0.092 0.060 0.180 0.177 0.132 0.093 0.010 
Fe2'" 0.638 1.567 0.747 1.466 1.403 1.684 0.815 0.837 1.411 0.610 1.247 0.618 0.620 
Mn 0.012 0.027 0.022 0.028 0.532 0.019 0.013 0.003 0.045 0.000 0.047 0.006 0.000 
Mg 3.912 3.169 4.126 3.143 3.000 3.066 3.956 3.948 3.287 3.939 3.374 4.414 4.282 
Ca 1.680 1.872 1.718 1.837 1.701 1.762 1.939 1.938 1.813 1.879 1.929 1.728 1.935 
Na 0.251 0.107 0.147 0.113 0.115 0.105 0.074 0.060 0.089 0.194 0.089 0.076 0.049 
K 0.024 0.009 0.002 0.000 0.003 0.006 0.002 0.001 0.000 0.005 0.000 0.001 0.001 

OH 1.965 1.998 1.983 1.996 1.995 1.997 1.998 1.996 1.999 1.995 1.997 1.991 2.000 
CI 0.035 0.002 0.017 0.004 0.005 0.003 0.002 . 0.004 0.001 0.005 0.003 0.009 0.000 

total 17.089 17.041 17.035 17.000 17.117 17.005 17.016 17.001 17.000 17.110 17.018 17.027 17.001 
Nature MgHb Act Act Act MnAct Act Act Act Act MgHb Act Act Act 



Table 7-16: Microprobe measurements in sample U1309D 4R-1 135-137 cm. Plagioclase analyses 

Oxide 
Plg1 Plg2 Plg3 Plg4 Plg5 Plg6 Plg7 Plg8 Plg9 Plg10 Plg11 Plg12 Plg13 Plg14 wt% 

Si02 47.897 64.972 64.591 47.426 47.725 54.060 65.577 51.716 68.795 47.262 67.796 47.482 56.315 66.096 
Ti02 0.000 0.000 0.000 0.015 0.001 0.000 0.000 0.027 0.000 0.005 0.000 0.000 0.000 0.019 
AI20 3 33.626 22.430 22.412 34.095 33.447 29.750 21.853 31.415 20.559 33.651 20.195 33.379 27.708 21.364 
Fe203 0.090 0.000 0.155 0.052 0.227 0.045 0.000 0.000 0.000 0.139 0.075 0.243 0.033 0.000 
MnO 0.000 0.000 0.000 0.093 0.000 0.060 0.012 0.025 0.002 0.000 0.000 0.058 0.113 0.068 
MgO 0.014 0.000 0.032 0.000 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.009 
CaO 17.033 3.355 3.506 17.191 16.950 11.904 2.571 14.062 0.653 17.083 0.791 16.799 9.546 2.313 
Na20 2.067 9.729 9.486 1.803 2.191 4.758 9.988 3.694 11.258 2.027 11.217 2.017 6.319 10.562 
K~O 0.025 0.065 0.059 0.000 0.035 0.017 0.049 0.000 0.058 0.019 0.066 0.017 0.049 0.051 
Total 100.752 100.551 100.241 100.675 100.603 100.594 100.050 100.939 101.325 100.186 100.140 100.000 100.083 100.482 

Si 2.182 2.846 2.839 2.162 2.179 2.427 2.878 2.329 2.966 2.167 2.961 2.180 2.529 2.892 
Ti 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 
AI 1.805 1.158 1.161 1.832 1.800 1.574 1.130 1.667 1.044 1.819 1.040 1.806 1.467 1.102 

Fe3 0.003 0.000 0.005 0.002 0.008 0.002 0.000 0.000 0.000 0.005 0.002 0.008 0.001 0.000 
Mn 0.000 0.000 0.000 0.004 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.002 0.004 0.003 

I\) Mg 0.001 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
...... Ca 0.831 0.157 0.165 0.840 0.829 0.573 0.121 0.678 0.030 0.839 0.037 0.826 0.459 0.108 
0 

Na 0.183 0.826 0.808 0.159 0.194 0.414 0.850 0.322 0.941 0.180 0.950 0.180 0.550 0.896 
K 0.001 0.004 0.003 0.000 0.002 0.001 0.003 0.000 0.003 0.001 0.004 0.001 0.003 0.003 

total 5.006 4.990 4.984 5.000 5.015 4.993 4.983 4.998 4.984 5.012 4.994 5.003 5.014 5.005 
An% 83.2 15.7 16.7 84.3 83.1 57.5 12.1 67.9 3.0 83.9 3.7 82.9 46.4 11.2 



Table 7-17: Microprobe measurements in sample U1309D 5R-3 22-28 cm. 
Amphibole analyses 

Oxide wt% Arn1 Arn2 Arn3 Arn4 Arn5 Arn6 Am? Am8 
Si02 46.741 47.454 52.743 49.001 53.433 50.032 50.945 45.334 
Ti02 0.996 0.505 0.095 0.908 0.310 0.718 0.291 0.000 
AI20 3 7.476 5.839 1.727 4.872 1.591 3.191 2.325 2.978 
Cr20 3 0.172 0.178 0.000 0.348 0.227 0.011 0.000 0.000 

Fe20 3 1.568 1.985 0.000 1.090 0.548 1.368 1.119 0.078 
FeO 4.927 3.966 9.437 7.122 4.992 7.772 5.440 10.169 
MnO 0.077 0.085 0.221 0.081 0.132 0.072 0.128 0.138 
MgO 17.885 18.314 16.104 16.399 19.798 17.002 19.075 12.831 
CaO 10.468 10.991 11.916 11.515 11.564 10.316 10.202 9.834 
Na20 1.520 1.316 0.080 0.907 0.275 0.690 0.458 0.325 
K20 0.100 0.076 0.016 0.154 0.025 0.102 0.020 0.011 
H2O 1.998 1.945 2.001 1.968 2.036 1.934 1.936 1.751 
CI 0.000 0.080 0.000 0.000 0.000 0.061 0.062 0.000 

Total 0.027 0.007 0.006 0.124 0.068 0.074 0.071 0.015 
Si 6.991 7.169 7.896 7.346 7.802 7.569 7.699 7.745 

AI(IV) 1.009 0.831 0.104 0.654 0.198 0.431 0.301 0.255 
AI(VI) 0.309 0.209 0.201 0.207 0.076 0.138 0.113 0.344 
Ti 0.112 0.057 0.011 0.102 0.034 0.082 0.033 0.000 
Cr 0.020 0.021 0.000 0.041 0.026 0.001 0.000 0.000 

Fe3+ 0.177 0.226 0.000 0.123 0.060 0.156 0.127 0.010 
Fe 

2+ 0.616 0.501 1.182 0.893 0.610 0.983 0.688 1.453 
Mn 0.010 0.011 0.028 0.010 0.016 0.009 0.016 0.020 
Mg 3.988 4.125 3.595 3.666 4.310 3.835 4.298 3.268 
Ca 1.677 1.779 1.911 1.850 1.809 1.672 1.652 1.800 
Na 0.441 0.385 0.023 0.264 0.078 0.202 0.134 0.108 
K 0.019 0.015 0.003 0.029 0.005 0.020 0.004 0.002 

OH 1.993 1.960 1.998 1.968 1.983 1.952 1.952 1.996 
F 0.000 0.038 0.000 0.000 0.000 0.029 0.030 0.000 
CI 0.007 0.002 0.002 0.032 0.017 0.019 0.018 0.004 

total 17.369 17.330 16.954 17.185 17.025 17.098 17.066 17.005 
Nature MgHb MgHb Act MgHb Act Act Act Act 
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Table 7-17 (continued) 

Oxide wt% Am9 Am10 Am11 Am12 Am13 Am14 Am15 Am16 
Si02 48.778 50.088 51.697 52.763 52.420 54.067 52.174 49.418 
Ti02 0.136 0.470 0.024 0.029 0.144 0.183 0.277 0.016 
AI20 3 1.933 2.767 1.155 2.159 3.859 2.123 2.305 0.799 
Cr20 3 0.000 0.032 0.005 0.000 0.016 0.016 0.032 0.032 
Fe203 0.464 2.029 0.000 0.000 2.475 1.252 1.197 0.015 
FeO 5.113 6.885 14.469 11.345 3.672 5.794 5.539 14.065 
MnO 0.078 0.157 0.539 0.198 0.085 0.114 0.158 0.418 
MgO 18.339 17.372 12.159 14.876 19.653 19.835 19.252 12.634 
CaO 9.136 10.347 11.655 11.940 10.764 10.798 10.344 11.343 
Na20 0.474 0.737 0.029 0.164 1.000 0.601 0.599 0.033 
K20 0.003 0.068 0.016 0.025 0.023 0.023 0.013 0.019 
H2O 1.764 1.914 1.913 2.010 2.066 2.028 2.010 1.868 
CI 0.210 0.079 0.043 0.000 0.000 0.096 0.000 0.000 

Total 0.034 0.106 0.019 0.000 0.060 0.062 0.061 0.010 
Si 7.811 7.592 7.997 7.871 7.552 7.759 7.724 7.922 

AI(lV) 0.189 0.408 0.003 0.129 0.448 0.241 0.276 0.078 
AI(vl) 0.175 0.086 0.207 0.250 0.207 0.118 0.126 0.073 

Ti 0.016 0.054 0.003 0.003 0.016 0.020 0.031 0.002 
Cr 0.000 0.004 0.001 0.000 0.002 0.002 0.004 0.004 

Fe3+ 0.056 0.231 0.000 0.000 0.268 0.135 0.133 0.002 
Fe2+ 0.685 0.873 1.872 1.415 0.442 0.695 0.686 1.886 
Mn 0.011 0.020 0.071 0.025 0.010 0.014 0.020 0.057 
Mg 4.378 3.926 2.804 3.308 4.221 4.244 4.249 3.020 
Ca 1.567 1.680 1.932 1.908 1.661 1.660 1.641 1.948 
Na 0.147 0.217 0.009 0.047 0.279 0.167 0.172 0.010 
K 0.001 0.013 0.003 0.005 0.004 0.004 0.002 0.004 

OH 1.884 1.935 1.974 2.000 1.985 1.941 1.985 1.997 
F 0.106 0.038 0.021 0.000 0.000 0.044 0.000 0.000 
CI 0.009 0.027 0.005 0.000 0.015 0.015 0.015 0.003 

total 17.037 17.104 16.901 16.963 17.112 17.059 17.063 17.005 
Nature Act Act Act Act Trem Act Act Act 
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Tab\e 7-18: Microprobe measurements in samp\e U1309D 5R-3107-110 em. Amphibo\e ana\yses 

Oxide wt% Am1 Am2 Am3 Am4 Am5 Am6 Am7 Am8 Am9 Am10 Am11 
SiOz 56.19 47.23 43.65 58.51 46.61 41.40 57.10 57.66 57.36 48.55 52.84 
TiOz 0.01 0.54 0.07 0.00 0.47 0.03 0.00 0.02 0.00 0.78 0.48 
AI20 3 0.81 10.30 12.09 0.09 10.94 15.44 0.58 0.55 0.36 9.45 3.73 
Cr203 0.02 0.18 0.00 0.00 0.09 0.00 0.04 0.01 0.00 0.78 0.39 
Fe203 0.70 2.94 5.20 0.00 4.14 4.70 0.00 0.50 0.13 1.42 0.72 
FeO 4.19 3.54 8.56 3.28 2.99 10.60 6.74 4.77 3.63 6.23 9.35 
MnO 0.19 0.09 0.22 0.14 0.09 0.21 0.25 0.28 0.24 0.13 0.18 
MgO 21.27 18.24 13.24 22.61 18.03 11.04 21.31 21.52 22.08 17.80 16.87 
CaO 12.58 12.22 12.45 13.24 12.08 12.16 12.58 13.04 13.29 10.64 12.82 
NazO 0.21 2.20 2.05 0.09 2.22 2.39 0.17 0.14 0.13 1.78 0.59 
K20 0.01 0.13 0.09 0.01 0.11 0.14 0.01 0.00 0.01 0.13 0.02 
H2O 2.12 2.12 2.03 2.19 2.12 2.01 2.17 2.18 2.16 2.10 2.11 
CI 0.04 0.01 0.07 0.02 0.01 0.10 0.01 0.00 0.00 0.09 0.00 

Total 98.34 99.75 99.71 100.17 99.90 100.23 100.97 100.67 99.39 99.86 100.08 
Si 7.894 6.674 6.390 8.000 6.590 6.089 7.885 7.927 7.946 6.869 7.516 

AI(IV) 0.106 1.318 1.610 0.000 1.410 1.911 0.094 0.073 0.054 1.131 0.484 
N AI(VI) 0.029 0.400 0.476 0.014 0.413 0.765 0.000 0.016 0.005 0.445 0.142 
~ Ti 0.001 0.058 0.007 0.000 0.050 0.004 0.000 0.002 0.000 0.083 0.052 
(..) 

Cr 0.003 0.020 0.000 0.000 0.010 0.000 0.004 0.001 0.000 0.087 0.043 
Fe3+ 0.074 0.313 0.573 0.000 0.440 0.520 0.000 0.052 0.014 0.151 0.077 
Fe2+ 0.493 0.419 1.048 0.375 0.353 1.304 0.778 0.549 0.420 0.737 1.112 
Mn 0.023 0.011 0.028 0.016 0.011 0.026 0.029 0.032 0.028 0.015 0.021 
Mg 4.455 3.847 2.890 4.615 3.801 2.421 4.388 4.411 4.560 3.754 3.576 
Ca 1.893 1.853 1.952 1.941 1.830 1.916 1.862 1.920 1.972 1.613 1.954 
Na 0.057 0.603 0.581 0.025 0.609 0.682 0.045 0.037 0.035 0.488 0.162 
K 0.002 0.024 0.016 0.002 0.020 0.026 0.002 0.000 0.001 0.023 0.003 

OH 1.990 1.999 1.983 1.996 1.999 1.975 1.999 2.000 1.999 1.979 2.000 
CI 0.010 0.001 0.017 0.004 0.001 0.025 0.001 0.000 0.001 0.021 0.000 

total 17.029 17.548 17.572 16.997 17.538 17.664 17.088 17.019 17.036 17.397 17.142 
Nature Trem Edenite MgHast Trem Edenite Pargasite Act Act Trem MgHb Act 



Table 7-19: Microprobe measurements in sample U1309D SR-3 107-110 em. Plagioclase analyses 

Oxide 
Plg1 PIg2 PIg3 PIg4 Plg5 PIg6 Plg7 Plg8 Plg9 Plg10 wt% 

Si02 48.391 48.096 49.919 48.342 47.932 47.890 48.166 48.786 48.646 48.121 
Ti02 0.003 0.000 0.000 0.040 0.006 0.000 0.070 0.000 0.015 0.000 
AI20 3 33.509 32.964 32.145 33.162 33.391 33.173 33.193 33.041 32.404 33.404 
Fe203 0.172 0.295 0.130 0.472 0.447 0.203 0.344 0.264 0.350 0.331 
MnO 0.000 0.032 0.000 0.000 0.028 0.000 0.000 0.032 0.000 0.059 
MgO 0.058 0.046 0.027 0.034 0.077 0.030 0.048 0.037 0.041 0.033 
CaO 16.662 16.659 15.521 17.112 16.595 16.930 16.565 16.532 15.502 16.845 
Na20 2.274 2.291 2.900 2.015 2.123 2.118 2.110 2.152 2.536 2.003 
K20 0.036 0.049 0.007 0.002 0.000 0.018 0.023 0.002 0.234 0.016 

Total 101.105 100.432 100.649 101.179 100.599 100.362 100.519 100.846 99.728 100.812 
Si 2.195 2.199 2.265 2.194 2.186 2.190 2.197 2.215 2.233 2.190 
Ti 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.001 0.000 
AI 1.791 1.776 1.719 1.774 1.795 1.788 1.784 1.768 1.753 1.792 

Fe3 0.006 0.010 0.004 0.016 0.015 0.007 0.012 0.009 0.012 0.011 
Mn 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.002 

N Mg 0.004 0.003 0.002 0.002 0.005 0.002 0.003 0.003 0.003 0.002 
->. Ca 0.810 0.816 0.755 0.832 0.811 0.830 0.810 0.804 0.762 0.821 
,J:I. 

Na 0.200 0.203 0.255 0.177 0.188 0.188 0.187 0.189 0.226 0.177 
K 0.002 0.003 0.000 0.000 0.000 0.001 0.001 0.000 0.014 0.001 

total 5.008 5.011 5.001 4.998 5.002 5.006 4.996 4.991 5.003 4.997 
An% 81.4 82.0 75.6 83.5 81.7 83.2 81.3 80.8 76.5 82.6 



Table 7-20: Microprobe measurements in sample U1309D 6R-1132-140 cm. 
Amphibole analyses 

Oxidewt% Am1 Am2 Am3 Am4 Am5 Am6 
Si02 49.123 43.017 50.217 54.119 54.717 51.804 
Ti02 0.297 3.262 0.195 0.305 0.273 0.430 
AI20 3 7.545 11.902 7.535 3.304 1.926 5.698 
Cr203 0.016 0.681 0.016 0.268 0.156 0.011 
Fe203 3.025 0.515 2.968 0.219 1.956 2.512 
FeO 4.076 6.514 4.378 6.524 4.195 4.391 
MnO 0.080 0.143 0.000 0.055 0.038 0.017 
MgO 18.737 15.780 18.317 18.741 20.767 19.121 
CaO 11.315 11.988 12.034 12.750 12.297 12.267 
Na20 1.842 2.852 1.446 0.624 0.397 0.805 
K20 0.159 0.175 0.056 0.045 0.043 0.068 
H2O 2.088 2.020 2.109 2.091 2.127 2.127 

F 0.000 0.078 0.009 0.061 0.000 0.000 
CI 0.036 0.020 0.029 0.012 0.029 0.009 

Total 98.339 98.947 99.310 99.118 98.921 99.260 
Si 7.023 6.255 7.098 7.644 7.686 7.295 

AI(IV) 0.977 1.745 0.902 0.356 0.314 0.705 
AI(vl) 0.294 0.294 0.353 0.194 0.005 0.240 

Ti 0.032 0.357 0.021 0.032 0.029 0.046 
Cr 0.002 0.078 0.002 0.030 0.017 0.001 

Fe3+ 0.325 0.056 0.316 0.023 0.207 0.266 
Fe2+ 0.487 0.792 0.518 0.771 0.493 0.517 
Mn 0.010 0.018 0.000 0.007 0.005 0.002 
Mg 3.994 3.421 3.860 3.947 4.349 4.014 
Ca 1.733 1.867 1.822 1.929 1.851 1.851 
Na 0.511 0.804 0.396 0.171 0.108 0.220 
K 0.029 0.032 0.010 0.008 0.008 0.012 

OH 1.991 1.959 1.989 1.970 1.993 1.998 
F 0.000 0.036 0.004 0.027 0.000 0.000 
CI 0.009 0.005 0.007 0.003 0.007 0.002 

total 17.416 17.720 17.298 17.112 17.071 17.169 
Nature MgHb Ti Eargasite MgHb Act Act MgHb 
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Table 7-21: Microprobe measurements in sample U1309D 7R-3 101-102 cm. Amphibole analyses 

Oxidewt% Am1 Am2 Am3 Am4 AmS Am6 Am7 AmS Am9 
Si02 49.400 49.179 55.201 52.577 50.769 51.373 53.482 50.590 43.476 
Ti02 0.947 1.033 0.154 0.093 0.399 0.075 0.456 0.273 0.205 
AI20 3 4.629 4.521 1.322 0.517 4.164 4.813 3.120 5.519 11.889 
Cr20 3 0.125 0.152 0.099 0.392 0.818 0.444 0.464 0.063 0.063 
Fe203 6.069 4.074 2.430 0.000 2.320 6.917 3.833 2.247 4.825 
FeO 8.449 9.045 5.868 20.379 9.384 3.612 5.380 9.876 7.482 
MnO 0.285 0.279 0.194 0.707 0.100 0.189 0.175 0.159 0.220 
MgO 14.809 15.570 19.931 9.875 15.879 17.844 19.028 15.438 14.359 
CaO 10.853 11.351 11.285 12.372 11.783 11.082 11.116 12.193 11.325 
Na20 1.193 1.186 0.508 0.089 0.867 1.405 0.829 0.970 2.675 
K20 0.288 0.223 0.055 0.018 0.009 0.069 0.025 0.054 0.272 
H2O 2.014 2.040 2.116 1.985 2.044 2.112 2.100 2.059 1.985 
CI 0.167 0.032 0.048 0.004 0.069 0.038 0.138 0.076 0.218 

Total 99.227 98.686 99.212 99.008 98.606 99.973 100.146 99.517 98.995 
Si 7.202 7.198 7.778 7.935 7.383 7.259 7.510 7.299 6.387 

AI(IV) 0.795 0.780 0.219 0.065 0.617 0.741 0.490 0.701 1.613 
N AI(VI) 0.000 0.000 0.000 0.027 0.096 0.061 0.027 0.238 0.446 
~ Ti 0.104 0.114 0.016 0.011 0.044 0.008 0.048 0.030 0.023 (» 

Cr 0.014 0.018 0.011 0.047 0.094 0.050 0.052 0.007 0.007 
Fe3+ 0.666 0.449 0.258 0.000 0.254 0.736 0.405 0.244 0.533 
Fe2+ 1.030 1.107 0.691 2.572 1.141 0.427 0.632 1.192 0.919 
Mn 0.035 0.035 0.023 0.090 0.012 0.023 0.021 0.019 0.027 
Mg 3.219 3.397 4.187 2.222 3.443 3.759 3.984 3.321 3.145 
Ca 1.695 1.780 1.704 2.001 1.836 1.678 1.672 1.885 1.783 
Na 0.337 0.337 0.139 0.026 0.244 0.385 0.226 0.271 0.762 
K 0.054 0.042 0.010 0.003 0.002 0.012 0.004 0.010 0.051 

OH 1.959 1.992 1.989 1.999 1.983 1.991 1.967 1.981 1.946 
CI 0.041 0.008 0.011 0.001 0.017 0.009 0.033 0.019 0.054 

total 17.152 17.255 17.036 16.999 17.166 17.138 17.070 17.217 17.697 
Nature MgHb MgHb Act FeAct ___ MgHb MgHb Act MgHh_ MgHast 
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Table 7-21 (continued) 

Oxidewt% Am10 Am11 Am12 Am13 Am14 Am15 Am16 Am 17 
Si02 44.042 41.724 49.479 49.476 50.013 47.868 55.441 51.440 
Ti02 0.163 0.790 1.107 0.246 0.352 1.407 0.178 0.081 
AI20 3 10.710 13.180 3.921 5.645 4.980 4.994 1.435 2.497 
Cr203 0.011 0.078 0.151 0.048 0.000 0.193 0.391 0.415 
Fe203 3.669 4.981 5.895 8.427 0.000 6.322 0.800 0.709 
FeO 8.519 8.162 8.378 2.661 10.206 8.985 6.957 18.587 
MnO 0.107 0.196 0.212 0.188 0.217 0.141 0.119 0.139 
MgO 13.983 13.458 14.995 17.771 17.839 13.936 20.349 10.837 
CaO 11.206 11.476 10.830 10.724 10.764 10.522 11.725 12.202 
Na20 2.389 2.894 1.239 2.022 2.060 1.589 0.434 0.294 
K20 0.141 0.184 0.337 0.158 0.121 0.399 0.006 0.000 
H2O 1.951 1.959 2.010 2.080 2.048 1.981 2.140 2.000 
CI 0.216 0.289 0.139 0.088 0.061 0.183 0.006 0.025 

Total 97.108 99.372 98.693 99.535 98.661 98.520 99.982 99.226 
Si 6.582 6.154 7.251 7.055 7.267 7.079 7.761 7.688 

AI(IV) 1.418 1.846 0.677 0.945 0.733 0.870 0.237 0.312 
N AI(V1) 0.469 0.446 0.000 0.003 0.120 0.000 0.000 0.128 
~ Ti 0.018 0.088 0.122 0.026 0.038 0.157 0.019 0.009 -J 

Cr 0.001 0.009 0.017 0.005 0.000 0.023 0.043 0.049 
Fe3+ 0.413 0.553 0.650 0.904 0.000 0.704 0.084 0.080 
Fe2+ 1.065 1.007 1.027 0.317 1.240 1.111 0.815 2.323 
Mn 0.014 0.024 0.026 0.023 0.027 0.018 0.014 0.018 
Mg 3.116 2.960 3.276 3.778 3.865 3.073 4.247 2.415 
Ca 1.794 1.814 1.700 1.638 1.676 1.667 1.759 1.954 
Na 0.692 0.828 0.352 0.559 0.580 0.456 0.118 0.085 
K 0.027 0.035 0.063 0.029 0.022 0.075 0.001 0.000 

OH 1.945 1.928 1.965 1.979 1.985 1.954 1.999 1.994 
CI 0.055 0.072 0.035 0.021 0.015 0.046 0.001 0.006 

total 17.609 17.762 17.162 17.284 17.569 17.232 17.097 17.061 
Nature Edenite MgHast MgHb __ MgHb Edenite MgHb Act Act 



Table 7-22: Microprobe measurements in sample U1309D 7R-3 101-102 cm. Plagioclase analyses 

Oxide Plg1 Plg2 Plg3 Plg4 Plg5 Plg6 Plg7 Plg8 Plg9 . Plg10 wt% 
Si02 48.428 53.852 60.236 67.389 54.248 61.148 65.820 54.547 67.927 51.979 
Ti02 0.102 0.065 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.000 
AI20 3 32.812 29.720 25.750 21.161 29.118 24.598 21.883 28.726 20.505 31.144 
Fe203 0.335 0.000 0.142 0.092 0.002 0.137 0.041 0.087 0.077 0.000 
MnO 0.014 0.001 0.012 0.000 0.000 0.000 0.053 0.000 0.000 0.000 
MgO 0.007 0.000 0.006 0.007 0.007 0.009 0.000 0.003 0.000 0.000 
CaO 16.122 11.577 7.309 1.498 11.181 6.147 2.940 11.168 0.751 13.501 
Na20 2.450 5.119 7.675 10.697 5.186 8.404 10.136 5.100 11.401 3.886 
K20 0.000 0.021 0.015 0.060 0.055 0.067 0.012 0.000 0.068 0.038 
Total 100.270 100.355 101.145 100.904 99.805 100.510 100.885 99.631 100.729 100.548 

Si 2.213 2.424 2.656 2.925 2.451 2.707 2.871 2.467 2.952 2.346 
Ti 0.004 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
AI 1.767 1.577 1.338 1.082 1.551 1.283 1.125 1.531 1.050 1.656 

Fe3 0.012 0.000 0.005 0.003 0.000 0.005 0.001 0.003 0.003 0.000 
Mn 0.001 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 

N Mg 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 ...... 
co Ca 0.789 0.558 0.345 0.070 0.541 0.292 0.137 0.541 0.035 0.653 

Na 0.217 0.447 0.656 0.900 0.454 0.721 0.857 0.447 0.961 0.340 
K 0.000 0.001 0.001 0.003 0.003 0.004 0.001 0.000 0.004 0.002 

total 5.003 5.009 5.001 4.984 5.002 5.012 4.995 4.990 5.004 4.997 
An% 79.0 55.8 34.6 7.0 54.2 29.2 13.9 54.1 3.5 65.3 



Table 7-22 (continued) 

Oxide PIg11 PIg12 PIg13 PIg14 PIg15 PIg16 PIg17 PIg18 PIg19 PIg20 
wt% 
Si02 59.242 67.207 65.258 51.422 67.192 49.465 55.451 65.618 49.156 63.615 
Ti02 0.004 0.046 0.000 0.015 0.000 0.062 0.027 0.000 0.005 0.000 
AI20 3 26.603 21.499 22.577 31.056 21.159 32.166 28.759 21.725 32.829 22.357 
Fe203 0.168 0.053 0.000 0.477 0.188 0.328 0.123 0.122 0.184 0.038 
MnO 0.000 0.000 0.000 0.035 0.135 0.030 0.000 0.000 0.000 0.042 
MgO 0.019 0.021 0.010 0.069 0.000 0.000 0.000 0.000 0.004 0.000 
CaO 8.001 2.052 3.439 13.978 1.455 15.258 10.392 2.852 15.771 3.018 
Na20 7.316 10.706 9.544 3.844 10.699 2.966 5.713 9.859 2.750 10.090 
K20 0.000 0.056 0.013 0.021 0.164 0.028 0.072 0.037 0.032 0.019 
Total 101.353 101.640 100.841 100.917 100.992 100.303 100.537 100.213 100.731 99.179 

Si 2.613 2.903 2.847 2.322 2.919 2.255 2.483 2.878 2.232 2.830 
Ti 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.000 0.000 0.000 
AI 1.383 1.095 1.161 1.653 1.083 1.728 1.518 1.123 1.757 1.172 

Fe3 0.006 0.002 0.000 0.016 0.006 0.011 0.004 0.004 0.006 0.001 
Mn 0.000 0.000 0.000 0.001 0.005 0.001 0.000 0.000 0.000 0.002 

I\) Mg 0.001 0.001 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000 
-" Ca 0.378 0.095 0.161 0.676 0.068 0.745 0.499 0.134 0.767 0.144 co 

Na 0.626 0.897 0.807 0.337 0.901 0.262 0.496 0.838 0.242 0.870 
K 0.000 0.003 0.001 0.001 0.009 0.002 0.004 0.002 0.002 0.001 

total 5.006 4.997 4.977 5.012 4.991 5.006 5.005 4.979 5.008 5.019 
An% 37.9 9.6 16.1 68.2 7.3 74.6 49.9 13.4 76.8 14.5 



Table 7-23: Microprobe measurements in sample U1309D 8R-2 22-26 cm. Amphibole analyses 

Oxidewt% Am1 Am2 Am3 Am4 Am5 Am6 Am7 AmS Am9 Am10 
Si02 54.038 48.394 55.933 45.305 52.615 57.707 57.317 52.319 53.074 57.382 
Ti02 0.000 0.004 0.040 0.144 0.111 0.015 0.041 0.147 0.031 0.055 
Alz0 3 3.986 8.593 2.516 11.526 6.381 0.847 0.609 4.851 5.212 0.803 
Cr203 0.000 0.000 0.048 0.026 0.005 0.000 0.000 0.069 0.062 0.000 
Fez03 2.640 0.000 2.280 3.659 5.293 0.540 0.793 3.401 1.555 0.809 
FeO 3.398 9.426 3.149 7.655 3.366 3.401 2.869 3.924 2.916 2.432 
MnO 0.216 0.253 0.140 0.000 0.100 0.091 0.148 0.100 0.083 0.144 
MgO 20.405 16.003 21.167 14.670 20.220 22.483 22.129 19.423 20.815 22.407 
CaO 12.649 13.039 12.509 12.408 8.830 12.601 13.235 12.230 13.303 13.294 
NazO 0.829 1.510 0.489 1.934 1.293 0.185 0.208 0.749 1.119 0.230 
KzO 0.025 0.096 0.028 0.114 0.334 0.046 0.030 0.069 0.051 0.023 
H2O 2.156 2.074 2.174 2.066 2.156 2.184 2.167 2.126 2.125 2.166 
CI 0.029 0.018 0.022 0.020 0.062 0.006 0.019 0.025 0.159 0.054 

Total 100.371 99.409 100.495 99.527 100.766 100.107 99.565 99.432 100.505 99.799 
Si 7.491 6.981 7.694 6.559 7.262 7.915 7.914 7.357 7.347 7.892 

AI(lV) 0.509 1.019 0.306 1.441 0.738 0.085 0.086 0.643 0.653 0.108 
N AIM) 0.142 0.442 0.102 0.525 0.301 0.052 0.013 0.161 0.197 0.022 
N Ti 0.000 0.000 0.004 0.016 0.012 0.002 0.004 0.016 0.003 0.006 
0 

Cr 0.000 0.000 0.005 0.003 0.001 0.000 0.000 0.008 0.007 0.000 
Fe3+ 0.275 0.000 0.236 0.399 0.550 0.056 0.082 0.360 0.162 0.084 
Fe2+ 0.394 1.137 0.362 0.927 0.389 0.390 0.331 0.462 0.338 0.280 
Mn 0.025 0.031 0.016 0.000 0.012 0.011 0.017 0.012 0.010 0.017 
Mg 4.217 3.442 4.341 3.166 4.161 4.597 4.555 4.072 4.296 4.595 
Ca 1.879 2.015 1.844 1.925 1.306 1.852 1.958 1.843 1.973 1.959 
Na 0.223 0.422 0.130 0.543 0.346 0.049 0.056 0.204 0.300 0.061 
K 0.004 0.018 0.005 0.021 0.059 0.008 0.005 0.012 0.009 0.004 

OH 1.993 1.996 1.995 1.995 1.986 1.999 1.996 1.994 1.963 1.987 
CI 0.007 0.004 0.005 0.005 0.015 0.001 0.004 0.006 0.037 0.013 

total 17.160 17.508 17.045 17.524 17.134 17.016 17.022 17.150 17.295 17.028 
Nature MgHb MgHb __ Trem Edenite MgHb Trem Trem MgHb MgHb Trem 



Table 7-23 (continued) 

Oxidewt% Am11 Am12 Am13 Am14 Am15 Am16 Am 17 Am18 Am19 Am20 
Si02 43.626 57.223 51.590 56.015 58.014 51.993 57.156 42.883 51.569 46.775 
Ti02 3.139 0.000 0.129 0.000 0.000 0.174 0.099 2.774 0.278 0.340 
AI20 3 12.162 1.124 7.059 0.690 0.365 6.856 0.741 10.739 5.063 9.350 
Cr203 0.029 0.022 0.019 0.000 0.000 0.011 0.030 0.150 0.000 0.048 
Fe203 1.805 0.000 1.333 0.000 0.000 3.152 0.501 2.940 4.138 2.743 
FeO 4.150 2.847 6.201 2.742 2.813 3.704 4.791 8.550 5.622 7.977 
MnO 0.063 0.009 0.124 0.000 0.129 0.026 0.125 0.157 0.146. 0.143 
MgO 16.869 22.510 19.668 25.002 22.572 19.639 21.182 13.634 17.576 15.219 
CaO 11.862 13.724 10.660 11.143 13.555 11.716 12.936 11.435 11.117 12.173 
Na20 2.924 0.301 1.095 0.207 0.113 1.280 0.116 2.544 0.943 1.724 
K20 0.215 0.022 0.052 0.049 0.037 0.082 0.000 0.276 0.053 0.109 
H2O 2.080 2.157 2.135 2.133 2.182 2.159 2.160 2.013 2.090 2.041 
CI 0.016 0.098 0.036 0.069 0.002 0.029 0.015 0.024 0.036 0.073 

Total 98.941 100.037 100.101 98.050 99.782 100.821 99.851 98.119 98.632 98.716 
Si 6.275 7.861 7.213 7.809 7.969 7.196 7.917 6.366 7.364 6.809 

AI(lV) 1.725 0.139 0.787 0.113 0.031 0.804 0.083 1.634 0.636 1.191 
N AI(V1) 0.337 0.043 0.376 0.000 0.028 0.314 0.038 0.245 0.216 0.413 
N Ti 0.340 0.000 0.014 0.000 0.000 0.018 0.010 0.310 0.030 0.037 
~ 

Cr 0.003 0.002 0.002 0.000 0.000 0.001 0.003 0.018 0.000 0.006 
Fe3+ 0.195 0.000 0.140 0.000 0.000 0.328 0.052 0.328 0.445 0.301 
Fe2+ 0.499 0.327 0.725 0.320 0.323 0.429 0.555 1.061 0.671 0.971 
Mn 0.008 0.001 0.015 0.000 0.015 0.003 0.015 0.020 0.018 0.018 
Mg 3.618 4.611 4.100 5.196 4.623 4.052 4.375 3.018 3.742 3.303 
Ca 1.828 2.020 1.597 1.664 1.995 1.737 1.920 1.819 1.701 1.898 
Na 0.815 0.080 0.297 0.056 0.030 0.343 0.031 0.732 0.261 0.487 
K 0.039 0.004 0.009 0.009 0.006 0.014 0.000 0.052 0.010 0.020 

OH 1.996 1.977 1.992 1.984 2.000 1.993 1.996 1.994 1.991 1.982 
CI 0.004 0.023 0.009 0.016 0.000 0.007 0.004 0.006 0.009 0.018 

total 17.683 17.089 17.274 17.167 17.020 17.241 17.000 17.604 17.093 17.453 
Nature TiPargasite Trem __ MgHb _ Trem Trem MgHb Act Ti Has!. __ M~I-I"- __ MgHb 



Table 7-24: Microprobe measurements in sample U1309D 8R-2 22-26 cm. Plagioclase analyses 

Oxide PIg1 PIg2 PIg3 PIg4 PIg5 PIg6 PIg7 PIg8 PIg9 PIg10 PIg11 PIg12 PIg13 PIg14 wt% 
Si02 48.657 48.019 47.054 46.804 48.006 47.829 43.900 63.301 55.107 62.239 47.825 48.669 47.199 48.346 
Ti02 0.000 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.000 0.000 0.000 
AI20 3 32.547 32.825 34.123 34.020 33.008 33.079 34.941 22.754 27.003 23.535 32.684 32.680 32.596 33.449 
Fe203 0.279 0.000 0.139 0.196 0.297 0.200 0.056 0.081 0.169 0.122 0.121 0.179 0.370 0.118 
MnO 0.004 0.000 0.032 0.000 0.000 0.191 0.000 0.054 0.000 0.054 0.032 0.000 0.000 0.000 
MgO 0.000 0.010 0.000 0.007 0.032 0.037 0.009 0.007 0.004 0.039 0.000 0.034 0.085 0.010 
CaO 15.736 16.357 17.050 17.266 16.549 16.458 18.519 3.493 8.742 4.452 15.605 15.677 16.162 16.004 
Na20 2.531 2.606 1.807 1.844 2.380 2.268 0.725 9.356 6.358 8.965 2.409 2.682 2.329 2.391 
K20 0.039 0.030 0.000 0.011 0.032 0.006 0.000 0.031 0.032 0.050 0.011 0.030 0.069 0.021 

Total 99.793 99.872 100.205 100.148 100.304 100.068 98.150 99.077 97.415 99.456 98.732 99.951 98.810 100.339 
Si 2.231 2.205 2.156 2.149 2.197 2.194 2.064 2.816 2.538 2.769 2.215 2.228 2.193 2.204 
Ti 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 
AI 1.758 1.777 1.842 1.841 1.780 1.788 1.936 1.193 1.466 1.234 1.784 1.763 1.785 1.797 

Fe3 0.010 0.000 0.005 0.007 0.010 0.007 0.002 0.003 0.006 0.004 0.004 0.006 0.013 0.004 
Mn 0.000 0.000 0.001 0.000 0.000 0.007 0.000 0.002 0.000 0.002 0.001 0.000 0.000 0.000 

N Mg 0.000 0.001 0.000 0.000 0.002 0.003 0.001 0.000 0.000 0.003 0.000 0.002 0.006 0.001 
N Ca 0.773 0.805 0.837 0.849 0.811 0.809 0.933 0.167 0.431 0.212 0.774 0.769 0.805 0.782 
N 

Na 0.225 0.232 0.160 0.164 0.211 0.202 0.066 0.807 0.568 0.773 0.216 0.238 0.210 0.211 
K 0.002 0.002 0.000 0.001 0.002 0.000 0.000 0.002 0.002 0.003 0.001 0.002 0.004 0.001 

total 4.999 5.022 5.001 5.010 5.014 5.010 5.001 4.990 5.011 5.000 4.998 5.008 5.015 5.001 
An% 77.3 80.6 83.8 85.0 81.4 81.9 93.3 16.9 43.2 21.7 77.6 77.1 81.0 78.3 



Table 7-25: Microprobe measurement in sample U1309D 10R-1 127-129 cm. 
Amphibole and plagioclase analyses of leucocratic vein 

Oxide 
Am1 Am2 PIg1 PIg2 wt% 

Si02 48.446 53.238 58.690 67.628 
Ti02 0.949 0.331 0.000 0.029 
AI20 3 5.169 2.885 26.200 20.322 
Cr203 0.051 0.134 
Fe203 0.000 0.000 0.000 0.097 
FeO 16.657 12.645 
MnO 0.254 0.089 0.000 0.022 
MgO 12.529 14.542 0.022 0.013 
CaO 10.305 12.473 7.915 0.918 
Na20 1.047 0.373 7.276 11.450 
K20 0.332 0.000 0.035 0.022 
H2O 1.898 2.051 

F 0.095 0.000 
CI 0.183 0.049 

Total 97.914 98.810 100.138 100.501 
Si 7.301 7.736 2.619 2.949 

AI(lv) 0.699 0.264 1.378 1.044 
AI(vl) 0.219 0.230 

Ti 0.108 0.036 0.000 0.001 
Cr 0.006 0.015 

Fe3+ 0.000 0.000 0.000 0.003 
Fe2+ 2.099 1.537 
Mn 0.032 0.011 0.000 0.001 
Mg 2.815 3.150 0.001 0.001 
Ca 1.664 1.942 0.378 0.043 
Na 0.306 0.105 0.629 0.968 
K 0.064 0.000 0.002 0.001 

OH 1.908 1.988 
F 0.045 0.000 
CI 0.047 0.012 

total 17.314 17.026 5.008 5.011 
Nature MgHb Act 
An% 38.0 4.5 
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Table 7-26: Microprobe measurement in sample U1309D 12R-3 46-51 cm. 
Amphibole analyses 

Oxide 
Am1 Am2 

wt% 
Si02 50.995 53.194 
Ti02 0.256 0.134 
AI20 3 4.004 1.960 
Cr203 0.026 0.083 
Fe203 2.505 1.738 
FeO 12.930 13.493 
MnO 0.216 0.294 
MgO 14.054 15.247 
CaO 11.074 10.737 
Na20 0.770 0.541 
K20 0.118 0.042 
H2O 2.032 2.000 

F 0.000 0.123 
CI 0.053 0.027 

Total 99.033 99.613 
Si 7.473 7.722 

AI(lV) 0.527 0.278 
AI<VI) 0.165 0.058 
Ti 0.028 0.015 
Cr 0.003 0.010 

Fe3+ 0.276 0.190 
Fe2+ 1.585 1.638 
Mn 0.027 0.036 
Mg 3.071 3.300 
Ca 1.739 1.670 
Na 0.219 0.152 
K 0.022 0.008 

OH 1.987 1.937 
F 0.000 0.056 
CI 0.013 0.007 

total 17.134 17.076 
Nature MgHb Act 
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Table 7-27: Microprobe measurement in sample U1309D 17R-2 59-61 cm. 
Amphibole and plagioclase analyses 

Oxide 
Am1 Am2 PIg1 PIg2 

wt% 
Si02 53.980 54.138 60.784 68.977 
Ti02 0.277 0.123 0.035 0.008 
AI20 3 2.755 1.490 25.917 20.975 
Cr203 0.000 0.026 
Fe203 0.000 0.000 0.000 0.002 
FeO 11.361 17.242 
MnO 0.262 0.239 0.000 0.000 
MgO 16.705 12.564 0.000 0.000 
CaO 11.197 12.022 7.627 1.387 
Na20 0.769 0.215 7.826 11.583 
K20 0.047 0.006 0.014 0.039 
H2O 1.991 2.016 

F 0.196 0.071 
CI 0.040 0.016 

Total 99.580 100.168 102.203 102.971 
Si 7.728 7.902 2.654 2.939 

AI(lv) 0.272 0.098 1.334 1.053 
AI(vl) 0.193 0.159 

Ti 0.030 0.014 0.001 0.000 
Cr 0.000 0.003 

Fe3+ 0.000 0.000 0.000 0.000 
Fe 2+ 1.360 2.105 
Mn 0.032 0.030 0.000 0.000 
Mg 3.566 2.734 0.000 0.000 
Ca 1.718 1.880 0.357 0.063 
Na 0.213 0.061 0.663 0.957 
K 0.009 0.001 0.001 0.002 

OH 1.902 1.963 
F 0.089 0.033 
CI 0.010 0.004 

total 17.120 16.986 5.009 5.014 
Nature Act Act 
An% 35.7 6.3 
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Table 7-28: Microprobe measurement in sample U1309D 40R-1 21-24. 
Plagioclase analyses. 

Oxide Pig 1 Pig 2 
wt% 
Si02 70.21 69.89 
Ti02 0.03 0.01 
AI20 3 20.36 20.52 
Fe203 0.00 0.00 
MnO 0.04 0.00 
MgO 0.00 0.00 
CaO 0.58 0.81 
Na20 11.64 11.57 
K20 0.06 0.04 
Total 102.93 102.83 

Si 2.981 2.971 
Ti 0.001 0.000 
AI 1.019 1.028 

Fe3 0.000 0.000 
Mn 0.001 0.000 
Mg 0.000 0.000 
Ca 0.026 0.037 
Na 0.958 0.953 
K 0.003 0.002 

total 4.990 4.992 
An% 2.8 3.7 

Table 7-29: Microprobe measurement in sample U1309D 41R-1 89-92 em. 
Plagioclase analyses 

Oxide Pig 1 Pig 2 Pig 3 
wt% 
Si02 68.101 70.217 51.141 
Ti02 0.000 0.041 0.077 
AI20 3 20.318 19.915 32.177 
Fe203 0.123 0.020 0.178 
MnO 0.087 0.005 0.002 
MgO 0.000 0.034 0.000 
CaO 1.904 0.396 15.166 
Na20 10.598 12.299 3.039 
K20 0.416 0.020 0.032 
Total 101.547 102.947 101.812 

Si 2.946 2.986 2.289 
Ti 0.000 0.001 0.003 
AI 1.036 0.998 1.698 

Fe3 0.004 0.001 0.006 
Mn 0.003 0.000 0.000 
Mg 0.000 0.002 0.000 
Ca 0.088 0.018 0.727 
Na 0.889 1.014 0.264 
K 0.023 0.001 0.002 

total 4.990 5.021 4.989 
An% 9.1 2.0 72.8 
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Table 7-30: Microprobe measurement in sample U1309D 60R-3 35-45 cm. 
Prehnite and hydrogrossular analyses 

Oxide Prh1 Prh2 Prh3 Prh4 Prh5 Prh6 Prh7 Hglr1 Hglr2 Hglr3 
wt% 
Si02 42.01 42.07 42.91 41.98 43.26 42.88 42.97 36.58 36.63 35.99 
Ti02 0.000 0.021 0.049 0.053 0.000 0.068 0.000 0.030 0.053 0.108 
AI20 3 24.57 24.82 25.05 25.27 24.89 24.76 25.41 21.03 22.00 20.84 
Fe20 3 0.280 0.279 0.207 0.211 0.113 0.129 0.214 1.858 0.899 3.141 
MnO 0.168 0.072 0.073 0.003 0.12 0.000 0.074 0.171 0.172 0.288 
MgO 0.006 0.008 0.009 0.046 0.039 0.017 0.000 0.635 0.068 0.152 
CaO 26.97 26.72 26.76 26.55 26.72 26.79 25.46 35.80 37.32 36.43 
Na20 0.095 0.043 0.024 0.054 0.04 0.105 0.18 0.021 0.039 0.011 
K20 0.000 0.004 0.000 0.004 0.007 0.004 0.000 0.001 0.025 0.016 
HzO 4.244 4.25 4.307 4.261 4.316 4.292 4.292 
Total 98.35 98.29 99.39 98.43 99.51 99.04 98.59 96.13 97.21 96.97 

Si 5.894 5.895 5.934 5.866 5.971 5.951 5.963 0.242 0.239 0.238 
Ti 0.000 0.002 0.005 0.006 0.000 0.007 0.000 0.000 0.000 0.001 
AI 4.063 4.098 4.082 4.163 4.050 4.050 4.156 0.164 0.169 0.162 

Fe3 0.030 0.029 0.022 0.022 0.012 0.013 0.022 0.010 0.005 0.017 
Mn 0.020 0.009 0.009 0.000 0.014 0.000 0.009 0.001 0.001 0.002 
Mg 0.001 0.002 0.002 0.010 0.008 0.004 0.000 0.006 0.001 0.002 
Ca 4.054 4.012 3.965 3.975 3.951 3.984 3.786 0.253 0.261 0.258 
Na 0.026 0.012 0.006 0.015 0.011 0.028 0.048 0.000 0.000 0.000 
K 0.000 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 

OH 3.972 3.972 3.973 3.972 3.974 3.974 3.974 
total 18.05 18.03 17.99 18.03 17.99 18.01 17.96 0.68 0.68 0.68 
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Table 7-31: Microprobe measurement in sample U1309D 75R-2 77-80 em. Plagioclase analyses 

Oxidewt% PIg1 Plg2 Plg3 Plg4 Plg5 Plg6 Plg7 PIg8 PIg9 PIg10 PIg11 PIg12 PIg13 PIg14 
Si02 67.247 65.131 66.848 65.402 59.219 60.123 59.652 59.123 58.961 59.374 65.470 64.890 65.448 66.375 
Ti02 0.064 0.000 0.000 0.000 0.000 0.024 0.018 0.039 0.000 0.036 0.037 0.000 0.000 0.013 
AI20 3 21.788 22.735 21.495 22.768 25.798 25.462 26.133 25.662 25.663 26.149 21.853 22.156 21.779 21.262 
Fe203 0.000 0.000 0.059 0.000 0.332 0.422 0.403 0.304 0.334 0.670 0.085 0.000 0.001 0.033 
MnO 0.039 0.000 0.051 0.020 0.041 0.014 0.000 0.000 0.003 0.000 0.032 0.000 0.000 0.000 
MgO 0.000 0.011 0.000 0.038 0.020 0.017 0.036 0.026 0.020 0.054 0.000 0.000 0.000 0.000 
CaO 1.618 3.209 1.629 3.028 7.690 7.803 7.663 7.967 7.939 7.712 2.424 2.492 2.588 2.052 
Na20 10.389 9.785 10.239 9.220 6.972 7.546 7.010 6.677 6.924 7.095 10.191 9.916 9.943 10.356 
K20 0.011 0.015 0.008 0.017 0.105 0.056 0.066 0.090 0.071 0.075 0.030 0.011 0.032 0.006 
Total 101.156 100.886 100.329 100.493 100.177 101.467 100.981 99.888 99.915 101.165 100.122 99.465 99.791 100.097 

Si 2.909 2.841 2.915 2.854 2.639 2.650 2.635 2.641 2.636 2.623 2.874 2.864 2.880 2.907 
Ti 0.002 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.000 
AI 1.111 1.169 1.105 1.171 1.355 1.323 1.361 1.351 1.352 1.362 1.131 1.153 1.129 1.098 

Fe3 0.000 0.000 0.002 0.000 0.011 0.014 0.013 0.010 0.011 0.022 0.003 0.000 0.000 0.001 
Mn 0.001 0.000 0.002 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 
Mg 0.000 0.001 0.000 0.002 0.001 0.001 0.002 0.002 0.001 0.004 0.000 0.000 0.000 0.000 

N Ca 0.075 0.150 0.076 0.142 0.367 0.368 0.363 0.381 0.380 0.365 0.114 0.118 0.122 0.096 
N Na 0.871 0.828 0.866 0.780 0.602 0.645 0.600 0.578 0.600 0.608 0.867 0.849 0.848 0.879 0) 

K 0.001 0.001 0.000 0.001 0.006 0.003 0.004 0.005 0.004 0.004 0.002 0.001 0.002 0.000 
total 4.970 4.989 4.965 4.951 4.983 5.005 4.979 4.969 4.985 4.989 4.993 4.984 4.981 4.983 
An% 7.6 15.1 7.8 14.5 37.0 37.0 36.5 38.3 38.2 36.9 11.5 11.8 12.2 9.6 



Table 7-31 (continued) 

Oxide PIg15 PIg16 PIg17 PIg18 PIg19 PIg20 PIg21 PIg22 PIg23 PIg24 PIg25 PIg26 PIg27 PIg28 
wt% 
Si02 67.819 65.413 65.167 67.267 65.344 67.545 65.923 59.583 59.748 59.894 66.462 66.364 58.675 66.311 
Ti02 0.018 0.000 0.000 0.004 0.048 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.067 0.000 
Ah0 3 20.326 22.055 22.150 20.713 21.792 21.583 21.769 26.215 26.044 26.192 22.588 22.101 26.200 21.498 
Fe203 0.113 0.000 0.000 0.051 0.000 0.059 0.000 0.591 0.430 0.123 0.201 0.000 0.308 0.000 
MnO 0.000 0.015 0.000 0.000 0.000 0.060 0.011 0.030 0.002 0.000 0.000 0.062 0.000 0.042 
MgO 0.022 0.020 0.000 0.014 0.006 0.000 0.000 0.032 0.033 0.000 0.000 0.000 0.027 0.000 
CaO 0.675 2.805 2.867 1.187 2.391 1.795 2.134 7.738 7.748 7.391 2.997 2.515 8.130 2.385 
Na20 10.934 10.072 10.151 10.866 9.810 9.812 10.180 7.089 7.052 7.355 9.169 9.674 6.706 10.095 
K20 0.Q13 0.013 0.027 0.038 0.006 0.038 0.021 0.056 0.094 0.019 0.004 0.004 0.041 0.029 
Total 99.920 100.393 100.362 100.140 99.397 100.892 100.038 101.334 101.180 100.974 101.421 100.720 100.154 100.360 

Si 2.963 2.865 2.858 2.940 2.882 2.924 2.890 2.627 2.636 2.643 2.871 2.887 2.617 2.898 
Ti 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.000 
AI 1.047 1.139 1.145 1.067 1.133 1.101 1.125 1.362 1.354 1.362 1.150 1.133 1.377 1.107 

Fe3 0.004 0.000 0.000 0.002 0.000 0.002 0.000 0.020 0.014 0.004 0.007 0.000 0.010 0.000 
Mn 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.002 

N Mg 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.002 0.000 
N Ca 0.032 0.132 0.135 0.056 0.113 0.083 0.100 0.366 0.366 0.349 0.139 0.117 0.388 0.112 <.0 

Na 0.926 0.855 0.863 0.921 0.839 0.823 0.865 0.606 0.603 0.629 0.768 0.816 0.580 0.856 
K 0.001 0.001 0.002 0.002 0.000 0.002 0.001 0.003 0.005 0.001 0.000 0.000 0.002 0.002 

total 4.974 4.993 5.002 4.987 4.969 4.938 4.981 4.987 4.983 4.989 4.935 4.955 4.979 4.976 
An% 3.3 13.4 13.5 5.6 11.3 8.5 10.1 36.9 36.9 34.9 13.9 11.9 39.0 11.3 



Table 7-32: Microprobe measurement in sample U1309D 144R-1 105-116 
cm. Amphibole analyses 

Oxide 
Am1 Am2 

wt% 
Si02 49.022 49.343 
Ti02 0.175 0.217 
Ab0 3 3.015 3.938 
Cr203 0.069 0.020 
Fe203 1.524 2.946 
FeO 26.245 20.030 
MnO 0.433 0.343 
MgO 5.816 9.451 
CaO 10.891 10.710 
Na20 0.414 0.698 
K20 0.055 0.099 
H2O 1.897 1.927 

F 0.000 0.000 
CI 0.154 0.248 

Total 99.710 99.970 
Si 7.591 7.434 

AI(lv) 0.409 0.566 
AI(vl) 0.141 0.133 

Ti 0.020 0.025 
Cr 0.008 0.002 

Fe3+ 0.178 0.334 
Fe2+ 3.399 2.524 
Mn 0.057 0.044 
Mg 1.343 2.123 
Ca 1.807 1.729 
Na 0.124 0.204 
K 0.011 0.019 

OH 1.960 1.937 
F 0.000 0.000 
CI 0.040 0.063 

total 17.088 17.135 
Nature Fe Act Fe Hb 
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2 - Microthermometric measurements 

Table 7-33: Microthermometric measurements of sample U1309D 
1R-1 41-44 cm quartz vein - wafer number 62965. Tm = Temperature of 
melting of ice. Th = Temperature of homogenisation. 

Stud:i Zone Inclusion Nb Origin Tm Salinit:i Th Fluid t:i~e 
1 1 Primary -2.2 3.71 149.1 1a 

2 Primary -2.1 3.55 166.2 1a 
3 Primary -2.1 3.55 161.7 1a 
4 -2.2 3.71 165.1 1a 
5 Primary -2.3 3.87 1a 
6 Primary -2.1 3.55 160.9 1a 
7 Primary -2.2 3.71 161 1a 
8 Primary -2.2 3.71 161 1a 
9 Primary -2.2 3.71 156.4 1a 
10 Prima!1 -2.1 3.55 168.6 1a 

2 1 Primary -2 3.39 229.2 1a 
2 Primary -2.1 3.55 197.5 1a 
3 Primary -2.1 3.55 183.2 1a 
4 Primary -2.1 3.55 194.9 1a 
5 Primary -2.6 4.34 229.6 1a 
6 Primary -2.2 3.71 219.5 1a 
7 Primary -2.2 3.71 238.7 1a 
8 Prima!1 -2.2 3.71 174.5 1a 

3 1 Primary -1.9 3.23 1a 
2 Primary -1.9 3.23 1a 
3 Primary -1.9 3.23 285 1a 
4 Primary -2 3.39 196.4 1a 
5 Primary -2.2 3.71 169.6 1a 
6 Prima!1 -2.1 3.55 160.5 1a 

5 1 Primary -2.6 4.34 190.6 1a 
2 Primary -2.6 4.34 186.2 1a 
3 Primary -2.6 4.34 185.8 1a 
4 Primary -2.7 4.49 182.9 1a 
5 Prima!1 -2.6 4.34 184.6 1a 

6 1 Primary -1.9 3.23 193.3 1a 
2 Primary -1.9 3.23 189.3 1a 
3 Primary -2 3.39 178.7 1a 
4 Primary -1.9 3.23 162.9 1a 
5 Primary -1.9 3.23 169.9 1a 
6 PrimarY -1.9 3.23 171.4 1a 

7 1 Primary -1.8 3.06 197.6 1a 
2 PrimarY -1.9 3.23 178.3 1a 

8 1 Primary 2.3 -4.33 128 1a 
2 Primary -1.9 3.23 147.7 1a 
3 PrimarY 9 -20.01 1a 

9 1 PrimarY -2.8 4.65 163 1a 
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Table 7-33 (continued) 

Study Zone Inclusion Nb Origin Tm Salinity Th Fluid type 
10 1 Primary -2.2 3.71 161.7 1a 

2 Primary -2.2 3.71 174 1a 
3 Primary -2.1 3.55 163.1 1a 
4 Primary -2.2 3.71 165.5 1a 
5 Primary -2.3 3.87 163.2 1a 
6 Primary -2.3 3.87 168.1 1a 
7 Primary -2.3 3.87 166.1 1a 
8 Primary -2.4 4.03 184.6 1a 
9· Primary -2.3 3.87 202.9 1a 
10 Primary 214.6 1a 
11 Primary -2.2 3.71 164.7 1a 
12 Primary -2.3 3.87 162.7 1a 
13 Primary -2.3 3.87 162.8 1a 
14 Primary -2.3 3.87 164.5 1a 
15 Primary -2.3 3.87 158.2 1a 
16 Primary -2.2 3.71 219.7 1a 
17 Primary 206.1 1a 
18 Primary -2.3 3.87 211.1 1a 
19 Primary -2.4 4.03 199.9 1a 
20 Primary -2.2 3.71 163.6 1a 
21 Primary -2.2 3.71 163.2 1a 
22 Primary -2.2 3.71 174.5 1a 
23 Primary -2.2 3.71 166.7 1a 
25 Primary -3 4.96 163.5 1a 
26 Primary -3.1 5.11 170.3 1a 
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Table 7-34: Microthermometric measurements in sample U1309D 
SR-3 107-110 quartz vein - wafer number 62968 

Stud~ Zone Inclusion Nb Origin Tm Salinit~ Th Fluid t~~e 
1a 1 Secondary -1.9 3.23 75 1b 

3 Secondary -0.2 0.35 292 1b 
4 Secondary -0.2 0.35 262 1b 
5 Secondary -0.3 0.53 311 1b 
7 Secondary -0.2 0.35 262 1b 
8 Secondary -0.2 0.35 263 1b 
9 Secondary -0.3 0.53 308 1b 
10 Secondary -0.3 0.53 298 1b 
11 Secondary -0.2 0.35 1b 
12 Secondary -0.2 0.35 254 1b 
13 Secondary -0.3 0.53 307 1b 
14 Secondary -0.4 0.70 278 1b 
15 Secondary -0.2 0.35 1b 
16 Secondary -0.3 0.53 250 1b 
17 Secondary -0.2 0.35 303 1b 
18 Seconda!y -0.2 0.35 256 1b 

4b 1 Secondary -0.4 0.70 218 1b 
2 Secondary -0.4 0.70 1b 
3 Secondary -0.4 0.70 1b 
4 Secondary -0.6 1.05 192 1b 
5 Secondary -0.4 0.70 1b 
6 Secondary -0.5 0.88 185 1b 
7 Secondary -0.3 0.53 245 1b 
8 Secondary -0.4 0.70 233 1b 
9 Secondary -0.4 0.70 1b 
10 Secondary -0.4 0.70 250 1b 
11 Secondary -0.3 0.53 281 1b 
12 Secondary -0.3 0.53 222 1b 
13 Secondary -0.4 0.70 216 1b 
14 Secondary -0.4 0.70 210 1b 
15 Secondary -0.4 0.70 144 1b 
16 Secondary -0.5 0.88 189 1b 
17 Secondary -0.3 0.53 180 1b 
18 Secondary -0.4 0.70 1b 
19 Secondary -0.9 1.57 1b 
20 Secondary 217 1b 
21 Secondary 219 1b 
22 Secondary -0.3 0.53 1b 
23 Secondary -0.8 1.40 1b 
24 Secondary -0.5 0.88 225 1b 
25 Secondary -1.4 2.41 1b 
26 Secondary -1.4 2.41 1b 
27 Secondary -0.3 . 0.53 1b 
28 Secondary -1 1.74 1b 
29 Secondary -0.4 0.70 220 1b 
30 Secondary -0.4 0.70 1b 
31 Secondary -1.4 2.41 1b 
32 Secondary -0.4 0.70 266 1b 
34 Secondary -0.6 1.05 1b 
35 Secondary -1.5 2.57 202 1b 
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Table 7-34 (continued) 

Study Zone Inclusion Nb Origin Tm Salinity Th Fluid type 
4b (continued) 36 Secondary -0.6 1.05 1b 

37 Secondary -0.4 0.70 1b 
38 Secondary -0.4 0.70 340 1b 
39 Secondary -0.3 0.53 258 1b 
40 Secondary -0.3 0.53 1b 
41 Secondary -0.6 1.05 1b 
42 Secondary -0.4 0.70 210 1b 
43 Secondary -1.2 2.07 315 1b 
44 Secondary -1.5 2.57 1b 
45 Secondary -0.6 1.05 1b 
46 Secondary -0.5 0.88 1b 
47 Secondary -0.6 1.05 1b 
48 Secondary -1 1.74 1b 
49 Secondary -0.3 0.53 256 1b 
1 Secondary -0.3 0.53 274 1b 
2 Secondary -0.2 0.35 264 1b 
3 Secondary -0.3 0.53 253 1b 
4 Secondary -0.2 0.35 300 1b 
5 Secondary -0.2 0.35 275 1b 
6 Secondary -0.1 0.18 281 1b 
7 Secondary -0.2 0.35 260 1b 
8 Secondary -0.2 0.35 216 1b 
9 Secondary -0.3 0.53 305 1b 
10 Secondary -0.2 0.35 246 1b 
11 Secondary -3.6 5.86 1b 
12 Secondary -0.2 0.35 290 1b 
13 Secondary -0.3 0.53 1b 
14 Secondary -0.4 0.70 230 1b 
15 Secondary -0.3 0.53 293 1b 
16 Secondary -0.3 0.53 232 1b 
17 Secondary -0.3 0.53 218 1b 
18 Secondary -0.3 0.53 286 1b 
19 Secondary -0.4 0.70 220 1b 
20 Secondary -0.3 0.53 227 1b 
21 Secondary -0.3 0.53 246 1b 
22 Secondary -0.3 0.53 224 1b 
23 Secondary -0.2 0.35 223 1b 
24 Secondary -0.3 0.53 219 1b 
25 Secondary -0.3 0.53 1b 
26 Secondary -0.3 0.53 217 1b 
27 Secondary -0.3 0.53 206 1b 
28 Secondary -0.4 0.70 254 1b 
29 Secondary -0.2 0.35 232 1b 
30 Secondary -0.3 0.53 230 1b 
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Table 7-35: Microthermometric measurements in sample U1309D 
10R-1 117-129 quartz vein - wafer number 62970. 

Study Zone Inclusion Nb Origin Tm Salinity Th Fluid tyee 
1a 1 Secondary -2.6 4.3 239.0 1a 

2 Secondary -2.2 3.7 245.7 1a 
3 Secondary -1 1.7 252.0 1b 
4 Secondary -2.3 3.9 267.3 1a 
5 Secondary -1.4 2.4 260.5 1b 
6 Secondary -2.3 3.9 261.2 1a 
7 Secondary -2.4 4.0 259.0 1a 
8 Secondary -2.4 4.0 261.3 1a 
9 Secondary -2.3 3.9 220.0 1a 
10 Secondary -2.3 3.9 268.0 1a 
11 Secondaty -2.3 3.9 234.8 1a 

2a 1 Secondary -1.7 2.9 278.9 1a 
2 Secondary 250.8 
4 Secondary -1.8 3.1 268.5 1a 
5 Secondary -1.9 3.2 291.5 1a 
6 Secondary -2.2 3.7 268.3 1a 
7 Secondary -1.8 3.1 237.8 1a 
8 Secondary -1.8 3.1 290.3 1a 
9 Secondary -2.1 3.5 282.7 1a 
10 Secondary -1.8 3.1 1a 
13 Secondary -1.7 2.9 293.0 1a 
14 Secondary -1.6 2.7 290.0 1a 
15 Secondary -1.8 3.1 255.3 1a 
16 Seconda!y -1.8 3.1 233.5 1a 

1b1 1 Secondary -1.4 2.4 278.1 1b 
2 Secondary -0.8 1.4 315.0 1b 
3 Secondary -0.5 0.9 294.5 1b 
4 Secondary -1.4 2.4 288.8 1b 
5 Secondary -0.8 1.4 290.9 1b 
6 Secondary -1.8 3.1 290.1 1a 
7 Secondary -1.8 3.1 . 287.5 1a 
8 Secondary 282.5 
9 Secondary -1.8 3.1 281.0 1a 
10 Secondary -0.9 1.6 287.6 1b 
11 Secondary 291.8 
12 Secondary -0.8 1.4 298.8 1b 
13 Secondary -0.8 1.4 296.0 1b 
14 Secondary -3.5 5.7 272.8 1a 
15 Secondary 280.4 
16 Secondary 278.9 
17 Secondary 273.5 
18 Secondary -0.8 1.4 300.8 1b 
19 Secondary -1 1.7 288.9 1b 
20 Secondary -0.4 0.7 293.2 1b 
21 Secondary -0.5 0.9 320.3 1b 
23 Secondary -0.6 1.1 295.5 1b 
24 Secondary -0.8 1.4 292.6 1b 
25 Secondary -1.4 2.4 306.6 1b 
26 Secondary -0.5 0.9 288.2 1b 
27 Secondary -1.8 3.1 284.0 1a 
28 Secondary -0.8 1.4 284.8 1b 
29 Secondary -0.5 0.9 291.7 1b 
30 Secondary -0.5 0.9 311.5 1b 
31 Secondary -0.5 0.9 295.8 1b 
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Table 7-35 (continued) 

Stud~ zone Inclusion Nb Origin Tm Salinit~ Th Fluid t~~e 
1b1 (continued) 32 Secondary -0.9 1.6 294.5 1b 

33 Secondary -0.5 0.9 300.9 1b 
34 Secondary -0.9 1.6 298.8 1b 
35 Secondary -0.9 1.6 297.4 1b 
36 Seconda~ -0.8 1.4 284.6 1b 

1b3 1 Secondary -0.7 1.2 307.8 1b 
23 Secondary -0.8 1.4 305.5 1b 
4 Secondary -0.7 1.2 295.9 1b 
5 Secondary -0.6 1.1 1b 
6 Secondary -0.7 1.2 304.9 1b 
7 Secondary -0.6 1.1 1b 
8 Secondary -0.8 1.4 1b 
9 Secondary -0.7 1.2 1b 
10 Secondary -0.5 0.9 1b 
11 Secondary -0.6 1.1 1b 
12 Secondary -2 3.4 1a 
13 Secondary -2 3.4 288.8 1a 
14 Secondary -0.9 1.6 1b 
15 Secondary -1 1.7 297.8 1b 
16 Secondary -0.8 1.4 300.6 1b 
17 Secondary -1.1 1.9 301.6 1b 
18 Secondary -1.2 2.1 305.5 1b 
19 Secondary -1.3 2.2 293.5 1b 

Table 7-36: Microthermometric measurements in sample U1309D 
40R-1 6-12 quartz vein - wafer number 63519. 

Stud~ zone Inclusion Nb Origin Tm Salinit~ Th Fluid t~~e 
1a2 2 Primary -2 3.4 172.4 1a 

3 Primary -2 3.4 1a 
4 Primary 143.5 
5 Primary 187.0 
8 Primary -2.1 3.5 184.0 1a 
9 Primary 169.5 
10 Primary -2.2 3.7 238.8 1a 
11 Primary -2.3 3.9 167.0 1a 
12 Primary -2.2 3.7 189.5 1a 
13 Primary 167 
15 Primary -1.9 3.2 1a 

Table 7-37: Microthermometric measurements in sample U1309D 
40R-1 17-19 quartz vein- wafer number 63520 

Study zone 
1a 

Inclusion Nb 
1 
2 
4 
5 
6 
7 
8 

Origin Tm 
Primary -1.8 
Primary -1.8 
Primary -1.4 
Primary -1.6 
Primary -2.0 
Primary -1.8 
Primary -1.9 
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Salinity 
3.1 
3.1 
2.4 
2.7 
3.4 
3.1 
3.2 

Th 
202.5 
144.5 
135.0 
193.0 

201.0 
210.0 

Fluid type 
1a 
1a 
1a 
1a 
1a 
1a 
1a 



Table 7-37 (continued) 

Study zone Inclusion Nb Origin Tm Salinity Th Fluid type 
1a (continued) 9 Primary 198.5 1a 

10 Primary -2.0 3.4 211.0 1a 
11 Primary -1.9 3.2 213.0 1a 
12 Primary -1.8 3.1 175.0 1a 
13 Primary -1.8 3.1 220.0 1a 
14 Primary -2.0 3.4 206.0 1a 
15 Primary -2.0 3.4 1a 
17 Primary -1.8 3.1 141.0 1a 
18 Primary -2.0 3.4 193.5 1a 
19 Primary -2.0 3.4 214.0 1a 
20 Primary -1.9 3.2 1a 
21 Primary -2.0 3.4 1a 
22 Primary -2.0 3.4 206.5 1a 
23 Primary -1.9 3.2 206.5 1a 
24 Primary -2.0 3.4 203.5 1a 
25 Primary -1.9 3.2 202.0 1a 
26 Primary -2.0 3.4 203.5 1a 
27 Primary -1.9 3.2 204.6 1a 
28 Primary -1.9 3.2 223.7 1a 
29 Primary -1.9 3.2 208.5 1a 
30 Primary -1.9 3.2 206.0 1a 
31 Primary -1.6 2.7 210.3 1a 
32 Primary -1.6 2.7 210.0 1a 
33 Primary -1.6 2.7 188.5 1a 
34 Primary -1.6 2.7 196.4 1a 
35 Primary -1.6 2.7 189.5 1a 
36 Primary -1.7 2.9 235.8 1a 
37 Primary -1.6 2.7 200.6 1a 
38 Primary -1.6 2.7 197.2 1a 
39 Primary -1.6 2.7 199.3 1a 
40 Primary -2.0 3.4 214.5 1a 
41 Primary -1.7 2.9 209.0 1a 
42 Primary -1.9 3.2 1a 
43 Primary -1.9 3.2 210.0 1a 

2a 1 Primary -2.0 3.4 229.0 1a 
2 Primary -2.0 3.4 228.8 1a 
3 Primary -2.0 3.4 229.5 1a 
4 Primary -1.9 3.2 238.1 1a 
5 Primary -1.9 3.2 251.0 1a 
6 Primary -2.1 3.5 229.5 1a 
7 Primary -2.0 3.4 227.4 1a 
8 Primary -2.0 3.4 226.4 1a 
9 Primary -1.8 3.1 229.4 1a 
10 Primary -2.0 3.4 231.5 1a 
11 Primary -2.0 3.4 226.0 1a 
12 Primary -1.9 3.2 239.0 1a 
13 Primary -1.9 3.2 225.1 1a 
14 Primary -2.0 3.4 219.9 1a 
16 Primary -2.0 3.4 222.0 1a 
17 Primary 224.0 
18 Primary -2.0 3.4 227.5 1a 

3a 1 Primary -2.2 3.7 289.5 1a 
2 Primary -2.2 3.7 258.0 1a 
3 Primary -2.0 3.4 202.2 1a 
5 Primary -2.0 3.4 169.8 1a 
6 Primary -2.0 3.4 201.5 1a 
7 Primary -2.0 3.4 199.6 1a 
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Table 7-37 (continued) 

Stud~ zone Inclusion Nb Origin Tm Salinit~ Th Fluid t~~e 
3a (continued) 8 Primary -1.9 3.2 201.0 1a 

9 Primary -2.0 3.4 198.0 1a 
10 Primary -2.0 3.4 195.4 1a 
11 Primary -1.9 3.2 211.5 1a 
12 Primary -2.0 3.4 194.0 1a 
13 Primary -2.0 3.4 201.6 1a 
14 Primary -2.0 3.4 205.0 1a 
16 Primary -2.0 3.4 228.0 1a 
17 Primary -2.0 3.4 196.8 1a 
18 Primary -2.1 3.5 270.0 1a 
19 Primary -2.0 3.4 197.0 1a 
20 Primary -2.0 3.4 201.4 1a 
21 Primary -2.0 3.4 204.7 1a 
22 Primary -2.1 3.5 201.4 1a 
23 Primary -2.2 3.7 204.6 1a 
24 Primary -2.0 3.4 204.5 1a 
25 Primary -2.1 3.5 184.3 1a 
26 Primary -2.0 3.4 161.3 1a 

Table 7-38: Microthermometric measurements in sample U1309D 
40R-1 21-24 quartz vein- wafer number 62973 

Stud~ zone Inclusion Nb Origin Tm Salinit~ Th Fluid t~~e 
5 1 Primary -2.0 3.4 156.4 1a 

2 Primary -2.0 3.4 163.5 1a 
3 Primary -1.8 3.1 156.5 1a 
4 Primary -2.2 3.7 204.9 1a 
5 Primary -2.0 3.4 166.0 1a 
7 Primary -2.2 3.7 1a 
8 Primary -2.1 3.5 174.5 1a 
9 Primary -2.1 3.5 1a 
10 Primary -2.1 3.5 161.0 1a 
11 Primary -2.1 3.5 124.5 1a 
12 Primary -2.1 3.5 165.0 1a 
13 Primary -2.0 3.4 171.0 1a 
14 Primary -2.1 3.5 1a 
15 Primary -2.0 3.4 180.8 1a 
16 Primary -2.0 3.4 181.5 1a 
17 Primary -2.0 3.4 170.3 1a 
18 Primary -2.0 3.4 160.0 1a 
19 Primary -1.9 3.2 150.5 1a 
20 Primary -2.0 3.4 162.5 1a 
21 Primary -2.0 . 3.4 159.5 1a 
24 Primary -2.0 3.4 160.9 1a 
25 Primary -2.0 3.4 168.4 1a 
26 Primary -2.0 3.4 155.0 1a 
27 Primary -1.9 3.2 1a 
29 Primary -1.9 3.2 144.0 1a 

6 4 Primary -2.0 3.4 1a 
5 Primary 144.6 
7 Primary -2.0 3.4 167.7 1a 
8 Primary -2.0 3.4 168.0 1a 
9 Primary -2.0 3.4 179.4 1a 

11 Primary -2.0 3.4 143.5 1a 
13 Primary -2.0 3.4 149.0 1a 
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Table 7-38 (continued) 

Study zone Inclusion Nb Origin Tm Salinity Th Fluid type 
6 (continued) 14 Primary -2.0 3.4 144.2 1a 

17 Primary -1.9 3.2 149.5 1a 
18 Primary -2.2 3.7 164.5 1a 
19 Primary -2.0 3.4 160.6 1a 
23 Primary -2.0 3.4 146.5 1a 
27 Primary -2.0 3.4 158.0 1a 
28 Primary -1.9 3.2 162.0 1a 
32 Primary -1.8 3.1 153.8 1a 
33 Primary -2.0 3.4 167.3 1a 
34 Primary -1.8 3.1 151.5 1a 
35 Primary -2.0 3.4 179.9 1a 
36 Primary -2.0 3.4 159.0 1a 
37 Primary -1.9 3.2 147.4 1a 
38 Primary -2.4 4.0 1a 
39 Primary -2.0 3.4 149.5 1a 
40 Primary 153.0 
41 Primary -2.0 3.4 151.0 1a 
43 Primary -2.2 3.7 168.0 1a 
44 Primary -2.0 3.4 157.4 1a 
46 Primary -2.0 3.4 188.9 1a 
47 Primary -1.9 3.2 177.6 1a 
48 Primary -2.0 3.4 166.0 1a 
49 Primary -2.0 3.4 173.0 1a 

13 1 Primary -1.7 2.9 1a 
2 Primary -2.3 3.9 156.0 1a 
3 Primary -2.4 4.0 166.2 1a 
4 Primary -2.2 3.7 155.8 1a 
5 Primary -2.4 4.0 139.0 1a 
7 Primary -2.3 3.9 146.5 1a 
8 Primary -2.2 3.7 173.5 1a 
9 Primary -2.0 3.4 173.0 1a 
10 Primary -2.0 3.4 162.5 1a 
11 Primary -2.0 3.4 173.5 1a 
12 Primary -1.9 3.2 177.7 1a 
13 Primary -2.1 3.5 150.3 1a 

Table 7-39: Microthermometric measurements in sample U1309D 
40R-1 21-24 quartz grain of trondjhemite - wafer number 62973. Thd = 
Halite dissolution temperature 

Study zone 
Inclusion Origin Tm Salinity THd Th Fluid type 

Nb 
1 1 Primary? -6.8 10.2 >400.0 3a 

4 Primary? -8.6 12.4 >400.0 3a 
5 Primary? -13.6 17.4 314.5 3a 
6 Primary? -8.6 12.4 3a 
7 Primary? -2.4 4.0 1a? 
9 Primary? -13.6 17.4 >400.0 3a 
10 Primary? -13.6 17.4 >400.0 3a 
11 Primary? -13.6 17.4 >400.0 3a 
12 Primary? -8.4 12.2 >400.0 3a 
13 Primary? -13.6 17.4 >400.0 3a 
14 Primary? -8.6 12.4 >400.0 3a 
15 Primary? -3.0 5.0 1a? 
18 Primary? -2.4 4.0 1a? 
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Table 7-39 (continued) 

Study zone 
Inclusion 

Origin Tm Salinity 
THd Th Fluid type Nb 

1 (continued) 19 Primary? -17.6 20.7 394.8 3a 
20 Primary? -16.9 20.1 3a 
21 Primary? -6.2 9.5 377.0 3a 
36 Primary? -8.6 12.4 3a 
23 Primary? -38.5 31.1 184 384.8 3b 
24 Primary? -39.8 34.4 245 >400.0 3b 
25 Primary? -35.5 >400.0 
26 Primary? -42.4 35.0 255 336.4 3b 
27 Primary? -37.0 35.7 266 368.1 3b 
28 Primary? -35.0 >400.0 
29 Primary? -41.0 34.9 254 391.5 3b 
30 Primary? -35.7 37.7 294 >400.0 3b 
32 Primary? -35.0 376.4 
33 Primary? -35.1 393.6 
34 Primary? -25.9 >400.0 
35 Prima!)? 36.9 283 349.8 3b 
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3 - LA-ICPMS data 

Table 7-40: Measurements in sample U1309D 1R-1 41-44 cm zone 
1 quartz vein- wafer number 62965. Numbers preceded by "<" mean that 
concentrations were under the detection limit. CI concentrations are obtained 
by calculation from microthermometry. Averages and median calculations 
are always made with concentrations above the detection limit 

Analy!e Fi1 Fi2 Fi4 {+6} Fi9 Fi10 Average Median 

Li 59.8 38.9 <9.2 <28.8 <35.0 40.6 36.9 
Na 11250.9 9864.9 7596.5 10396.5 9847.5 9791.2 9864.9 
Mg 6.0 41.7 24.9 170.2 43.9 57.3 41.7 
CI 22493.7 21524.4 22493.7 22493.7 21524.4 22106.0 24493.7 
K 348.0 341.1 161.5 998.6 325.1 434.9 341.1 
Ca <2507.8 <3146.9 5906.9 <2567.1 <3160.8 5906.9 5906.9 

Cu <16.2 41.9 26.4 283.8 62.1 103.5 52.0 

Zn 22.6 <23.9 35.2 <16.0 <30.3 28.9 28.9 
As <24.5 <35.8 <9.2 <26.9 <38.1 <26.9 <26.9 
Rb <2.2 <2.8 <0.6 <1.9 <3.2 <2.1 <2.2 
Sb <4.5 <6.1 <1.7 13.0 7.9 10.4 10.4 
Cs <1.3 <1.3 <0.3 <2.2 <1.6 <1.3 <1.3 

Table 7-41: Measurements in sample U1309D 1R-1 41-44 cm zone 
2 quartz vein- wafer number 62965 

Analy!e Fi1 Fi2 Fi3 Fi5 Average Median 
Li 39,2 50,9 47,3 47,2 46,2 47,2 
Na 9568,5 10519,0 11164,0 13263,1 11128.7 10841.5 
Mg <5.9 375,4 20,5 40.2 145,4 40.2 
CI 20550,7 21524,4 21524,4 26321.6 22480,2 21524,4 

K <195.8 265.9 361.9 <244,4 313.9 313,9 

Ca <2962,6 <2053,6 <2041,6 <2822.6 <2470.1 <2438.1 
Cu 68.6 <19,2 <16.8 187.9 128.2 128.2 
Zn <30.0 <18,4 <25.1 36,9 36,9 36.9 
As <33.7 <26.9 <22.2 <41.9 <31.2 <30.3 
Rb <4.2 1.6 <1.8 <3,2 1,6 1.6 
Sb 37,4 <7.5 <3,4 8.2 22.8 22,8 
Cs <2,4 <0.7 <1,4 <2.5 <1,7 <1.9 

Table 7-42: Measurements in sample U1309D 1R-1 41-44 cm zone 
3 quartz vein- wafer number 62965 

Analy!e Fi4 Fi4bis Fi4av Fi5 Fi3 Fi1 Average Median 

Li <29.8 69,8 49,8 <16.6 51.7 104.0 68.8 60.7 
Na 9698.1 10282.5 9990.3 9731.6 9664.2 9768.9 9855,9 9750.3 
Mg 70.1 5.2 37.6 176.7 6.1 42.9 56,4 40,3 

CI 20550.7 20550.7 20550.7 22493.7 19571.6 19571.6 19571.6 19571,6 

K <178.5 178.6 <178.5 296,8 285.3 609.1 342.5 291,1 
Ca <2815.8 <2305,1 <2560,5 3604,7 <2285,4 1691.7 2648,2 2648,2 
Cu <28,4 <21,4 <24.9 170,0 <19.5 203.1 186,5 186.5 
Zn <26.1 31.2 <28.6 62,4 39.3 112.6 61,4 50,8 
As <31.2 <26,5 <28.8 <9.9 <26.5 <11.3 <22,3 <26.5 
Rb <4,6 <3.6 <4,1 <1.5 <2.7 1,0 1.0 1,0 
Sb <5.8 <4,4 <5.1 <2.8 <5,5 <1.7 <4.2 <4.8 
Cs <2,1 <1.6 <1,8 <0.6 <2,0 <0,6 <1.5 <1,7 
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Table 7-43: Measurements in sample U1309D 40R-1 17-19 em zone 
1 quartz vein- wafer number 63520 

Analyte 
Na 
Mg 
CI 
K 
Ca 
Mn 
Fe 
Cu 
Zn 
Sr 
Pb 

Analyte 
Na 
Mg 
CI 
K 
Ca 
Mn 
Fe 
Cu 
Zn 
Sr 
Pb 

Analyte 
Na 
Mg 
CI 
K 
Ca 
Mn 
Fe 
Cu 
Zn 
Sr 
Pb 

Fi1 
6799,6 
158,0 

18587,1 
4455,5 

<1669,4 
<2,0 

<504,6 

4,4 

Fi1bis 
6835,3 
162,7 

18587,1 
4603,5 

<1559,5 
<1,8 

<497,9 

4,5 

Fi1av 
6817,5 
160,4 

18587,1 
4529,5 

<1614,4 
<1,9 

<501,2 

4,4 

Table 7-43 (continued) 

Fi22 
6777,3 
108,3 

20550,7 
1726,9 

<3963,8 
<8,9 

<935,1 

7,5 

Fi24 
7733,0 
145,9 

20550,7 
5719,9 

<1437,6 
<2,3 

<290,1 
49,8 
75,1 
2,1 
3,4 

Fi27 
6722,1 
125,7 

19571,6 
3087,0 
3179,7 

<0,8 
322,9 

3,4 

Table 7-43 (continued) 

Fi2 
6150,3 

90,6 
18587,1 
1425,5 

<3540,5 
27,9 

<979,6 

2,4 

Fi31 
6139,1 
150,5 

16604,0 
4316,5 
1353,5 

3,3 
299,0 

6,3 

Fi11 
6468,0 
109,8 

19571,6 
1784,1 
3884,9 

<3,8 
<555,6 
<24,1 
84,8 
1,6 

7,63 

Fi32 
5584,0 
127,9 

16604,0 
1738,4 

<2703,7 
<7,0 

<983,4 

2,9 

Fi40 Fi41 Fi41bis Fi41av 

Fi13 
6526,4 
143,8 

18587,1 
2811,7 

<2256,9 
<3,2 

1084,0 
112,8 
95,1 
1,9 
7,5 

Fi34 
5318,4 
131,6 

16604,0 
905,6 
3553,6 

<2,7 
<709,3 

7,7 

Fi17 
6044,5 

62,0 
18587,1 
1162,6 

<3862,0 
<4,1 

<936,0 

5,4 

Fi37 
5523,2 
159,3 

16604,0 
1796,6 
2952,1 

<2,4 
<601,0 

4,5 

Fi43 Average 
6882,1 
229,3 

20550,7 
2432,1 
3622,0 

6118,2 
306,8 

17598,3 
2699,0 
2104,2 

6026,9 
127,7 

17598,3 
2739,4 
2937,4 

6072,6 
217,3 

17598,3 
2719,2 
2520,8 

6063,4 
703,6 

19571,6 
1365,5 
3800,8 

6354,1 
186,7 

18441,7 
2802,8 
2808,1 

1,8 
407,1 
68,9 
102,1 

2,4 
10,9 

1,5 
641,3 
153,7 
197,2 

2,7 
7,4 

0,3 
153,5 
34,3 
28,2 
1,5 
3,8 

242 

0,9 
397,4 
94,0 
112,7 
2,1 
5,6 

<0,3 
89,5 
63,8 
35,2 
1,4 
2,4 

5,8 
487,8 
78,3 
93,8 
3,6 
6,5 

Fi20 
7075,4 
200,2 

19571,6 
4549,5 
2056,9 

7,3 
236,1 

3,5 

Fi39 
5758,6 
299,6 

16604,0 
2291,8 
1731,3 

3,2 
1247,2 

49,1 
114,2 

2,5 
10,1 

Median 
6150,3 
150,5 

18587,1 
2699,0 
2944,7 

2,5 
360,2 
66,4 
95,1 
2,9 
7,4 



Table 7-44: Measurements in sample U1309D 40R-1 17-19 em zone 
2 quartz vein- wafer number 63520 

Anal~e Fi4 Fi5 Fi6 Fi13 Average Median 
Na 6844,2 5181,3 7500,0 6547,2 6518,2 6695,7 
Mg 575,9 2826,7 139,5 185,6 931,9 380,7 
CI 19571,6 19571.6 21524,4 19571,6 20059,8 19571,6 
K 3920,5 869,8 3357,0 2008,4 2538,9 2682,7 
Ca <1736,1 1349,8 <2991,0 3605,6 2477.7 2477,7 
Mn <3,4 <0,8 <4,7 <1,5 <2,6 <2,4 
Fe <472,1 99,9 895,2 428,2 474,5 428.2 
Cu 66,6 23,1 34,8 32,8 39,3 33,8 
Zn 53,1 6,4 57,4 275,1 98,0 55,3 
Sr 3,8 1,1 3,2 2,0 2,5 2,6 
Pb <2,5 1,3 <3,1 3,7 2,5 2,5 

Table 7-45: Measurements in sample U1309D 40R-1 17-19 em zone 
3 quartz vein- wafer number 63520 

Anal~e Fi3 Fi5 Fi8 Fi13 Fi16 Fi17 Average Median 
Na 6338,7 6865,5 6231,2 6434,2 6318,5 6426,1 6435,7 6382,4 
Mg 367,9 515,9 178,9 327,9 282,3 771,5 407,4 347,9 
CI 20550,7 20550,7 19571,6 20550,7 20550,7 20550,7 20387,5 20550,7 
K 349,4 1624.1 835,4 529,3 384,2 1469,2 865,2 682,3 
Ca <4616,3 2871,0 4294,2 4416,5 5051,7 3620,7 4050,8 4294,2 
Mn <5,0 2,8 <5,0 <6,4 <2,9 1,2 2,0 2,0 
Fe <903,7 570,4 782,0 <1005,4 464,4 415,1 558,0 517,4 
Cu 41,1 891,0 37.1 <41,2 69,0 79,4 223,5 69,0 
Zn <25,0 275,8 73,2 76,5 43,3 54,0 104,6 73,2 
Sr 6,2 25,8 5,1 5,9 2,5 5,8 8,5 5,8 
Pb 25,0 80,5 <5,4 <5,8 9,6 5.8 30.2 17,3 

Table 7-46: Measurements in sample U1309D 40R-1 21-24 em zone 
5 quartz vein- wafer number 62973 

Anal~e Fi1 Fi3 Fi5 Fi6 Fi7 Fi8 Fi12 Fi13 

Li <44,9 <37,7 <61,4 <37,5 <24,4 <16,5 <19.8 <55,3 
Na 7442,6 6404,3 6591,2 7943,7 7903.3 7859,7 7437,1 7010.8 
Mg 7,2 233,8 109,1 371.6 467,7 432,2 456,4 387,9 
CI 20550,7 18587,1 20550,7 20965,0 22493,7 21524,4 21524,4 20550,7 
K <273,3 1573,5 689,0 2825,4 2157,9 2207,1 1463,0 1472,5 
Ca <4737,0 <3434,5 <5047,5 <2606,9 3693,7 3226,6 3945.9 <3651,4 
Mn 
Ni 
Co 
Cu <75.2 213,7 <54,5 157,9 234,4 262,7 230,8 353,1 
As <75.6 <52,8 <92,1 <48,3 <27,2 <24,4 <25,6 <79,7 
Rb <2,1 <2,2 2,8 3,3 2,8 2,2 2,1 <2,7 
Sr <1,6 16,5 7,0 16.9 16,9 12,5 13,0 13,2 
Ag 
Pb <6,1 31,3 9,9 31,8 60,7 57,2 58,6 63.2 
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Table 7-46 (continued) 

Anal~e Fi14 Fi15 Fi17 Fi18 Fi21 Fi24 Fi25 Average Median 
Li <31,5 22,1 22,1 
Na 7489,0 9925,4 10370,7 10036,0 9876,2 5561,5 6479,8 7920,6 7674,4 
Mg 490,7 246,5 209,9 272,6 648,1 2710,6 1006,4 574,5 410,0 
CI 21524,4 20550,7 20550,7 20550,7 20550,7 20550,7 20550,7 20787,5 20550,7 
K 2338,5 1436,0 1581,9 710,0 1177,6 740,1 1133,4 1536,1 1467,7 
Ca 3321,2 1529,4 1145,1 <1458,5 <1103,1 1760,6 3432,0 2832,1 3321,2 
Mn <130,8 <81,8 <174,4 <97,7 45,9 93,3 69,6 69,6 
Ni <14,7 75,8 75,8 75,8 
Co <0,6 1,4 1,4 1,4 
Cu 293,3 194,5 270,4 573,3 219,5 168,6 232,2 249,6 231,5 
As <25,2 <81,8 <46,3 <122,5 26,0 25,6 
Rb 3,5 <4,3 2,4 <9,5 2,7 2,6 
Sr 14,6 10,5 6,9 6,8 6,0 4,1 11,6 11,2 12,1 

Ag <2,4 10,7 10,7 10,7 

Pb 60,8 31,8 33,7 37,2 200,1 114,0 483,1 91,0 57!9 

Table 7-47: Measurements in sample U1309D 40R-1 21-24 cm zone 
6 and 13 quartz vein- wafer number 62973 

Anal~e Fi17a Average Median Fi8 Fi9 Fi11 Fi12 Average Median 
Na 6265,8 6265,8 6265,8 6322,1 6009,8 5083,8 6101,9 5879,4 6055,8 
Mg 939,9 939,9 939,9 1819,0 2112,4 3714,6 182,9 1957,2 1965,7 
CI 19571,6 19571,6 19571,6 22493,7 20550,7 20550,7 19571,6 20791,7 20550,7 
K 1356,4 1356,4 1356,4 519,7 <1064,1 414,7 820,2 584,9 519,7 
Ca 3039,7 3039,7 3039,7 3901,5 <1310,9 593,3 4918,7 3137,8 3901,5 
Mn <35,6 <35,6 <35,6 <10,2 <25,0 <2,5 <10,6 <12,1 <10,4 
Fe 38,3 <1417,9 350,0 124,4 170,9 124,4 
Ni 73,8 73,8 73,8 

Co 2,3 2,3 2,3 

Cu 333,1 333,1 333,1 

Sr 14,3 14,3 14,3 2,8 <4,6 1,0 13,3 5,7 2,8 
Ag 14,0 14,0 14,0 

Pb 456,8 456,8 456,8 
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Table 7-48: Measurements in sample U1309D 40R-1 21-24 em 
quartz grain of trondjehmite- wafer number 62973 

Analyte Fi23 Fi26 Fi27 Fi29 Fi35 Average Median 

Na 72266,7 97644,0 126499,7 73825,1 76732,0 89393,5 76732,0 
Mg 184,0 1148,6 2153,2 2969,6 789,3 1449,0 1148,6 
CI 188661,1 212258,9 216566,0 211712,9 223784,8 210596,7 212258,9 
K 53728,1 41019,4 7556,5 21039,0 24011,5 29470,9 24011,5 
Ca 10015,9 6146,6 2265,3 20844,9 37053,8 15265,3 10015,9 
Mn 7562,8 6851,3 1452,6 930,6 806,7 3520,8 1452,6 
Fe 25219,9 11629,2 18424,5 18424,5 
Ni 421,7 622,2 1492,4 845,4 622,2 
Co 13,2 13,2 10,1 12,2 13,2 
Cu 125,8 697,6 890,9 571,4 697,6 
Sr 22,0 25,0 16,3 29,3 21,2 22,8 22,0 
Ag 117,6 624,8 1584,6 775,7 624,8 
Pb 75,5 124,8 180,2 126,8 124,8 
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4 - Chemical processing for strontium 
analyses 

General procedures 

Isotopic analysis by TIMS requires the strontium to be analyzed in 

the form of a pure salt. For silicate rocks this means the silicate minerals 

have to be decomposed and brought into solution in an appropriate acid. 

The strontium can then be separated by cation exchange. In order to 

minimize contamination of the samples, all the labware used is either Teflon® 

or quartz glass and special quality reagents are used. The amount of sample 

used (and how much spike is added to determine concentration) depends on 

the concentrations of strontium and rubidium in the sample. Order of 

magnitude estimates of concentration are therefore required in advance, and 

can be estimated. 

Detailed procedure for rock samples analysis 

A clean 15mL Savillex® screw-cap vial for each sample or blank 

determination is dried and cooled in preparation for weighing. 

Immediately before weighing the vials are "zapped" with an anti­

static pistol to reduce electrostatic charge build-up. The balance is then 

zeroed and each beaker is weighed empty in turn, the required amount of 

sample added and the weighing repeated. The mixed Rb-Sr spike is added 

at this stage. The amount of spike is read from the chart using a 'ball-park' 

estimate of the concentrations. Then the spike bottle is weighed and the 

required amount of spike is transferred into the sample vial, without loss. The 

spike bottle is then re-weighed and the amount of spike added to the sample 

is calculated from the loss in weight of the spike bottle. This procedure 

minimizes errors caused by evaporation losses from the spike drop during 

transfer. The gain in weight of the sample vial should always be recorded as 

well, as a cross-check. It will usually be 1- 2mg less than the bottle loss 

estimate. 

246 



The samples are then wetted with ca. 10j.JL concentrated sub-boiling 

distilled nitric acid/mg of sample and then, as soon as any initial vigorous 

reaction has subsided, 50",Ls of 48% HF/mg sample are added from the 

dispenser bottle. The beakers are sealed and the samples left to digest on 

the hotplate overnight. The beakers are tapped to dislodge any drops of acid 

from the caps and then the screw caps are carefully removed and the excess 

acid plus SiF4 are evaporated off under infra-red lamp and the sample taken 

to dryness. 1 mL concentrated sub-boiling distilled nitric acid is added to 

each sample, and then evaporated under the lamps again to breakdown 

fluorides. The dried samples are then taken into solution in 6mls of 6M 

hydrochloric acid. It is important that a clear solution is obtained at this stage. 

For that the samples screw caped are placed under infra -red-lamp. The 

samples are then dried again. 1.5 mLs of 2.5M hydrochloric acid are then 

added to each sample. 

At this stage the cation exchange columns are conditioned with 2.5M 

hydrochloric acid. 

The sample solution, together with any solids, is transferred to a 

cleaned 1.8ml disposable centrifuge tube and the sample centrifuged for 15 

minutes. After centrifugation the tubes are carefully removed, avoiding any 

mechanical shock that would disturb any precipitate. 

1 mL of clear supernatant sample solution is then picked up with a 

cleaned disposable Pasteur pipette and transferred to the cation exchange 

column drop by drop taking care not to stir up the top of the resin bed. After 

the sample solution has soaked into the resin bed, two 1 mL volumes of clean 

2.5M hydrochloric acid are used to rinse down the top of the narrow part of 

the column, each time allowing the acid to soak into the resin bed. From this 

point, further volumes of 2.5M hydrochloric acid are added to the column 

according to the calibration on the column chart. Apart from the rubidium and 

strontium collection volumes the acid is allowed to run to waste in the Pyrex 

beakers. 

After the strontium has been collected the columns are immediately 

cleaned following the recipe on the column chart. 
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The strontium fraction is dried down under the lamps, re-dissolved in 

1 mL 2.5M hydrochloric acid and passed through the column a second time. 

After the second column pass the strontium fraction is dried down and is then 

ready for mass spectrometry. 

Sample preparation for small sample analysis 

Sample preparation before loading onto the cation exchange 

columns 

A clean 7ml Savillex screw-cap vial for each sample or blank 

determination is dried and cooled. The sample is transferred to an empty 

vial. Dilute Blue Rb-Sr spike is added at this stage based on expected Sr 

concentrations. The amount of spike added to the sample has to be the less 

possible knowing that the sample has not been weight due to its small size. 

The spike bottle is weighed before and after added it to the sample and the 

amount of spike added to the sample is calculated from the loss in weight of 

the spike bottle. 

The samples are then wetted with ca. 10iJL of concentrated UpA 

nitric acid and then, as soon as any initial vigorous reaction has subsided, 

50iJLs of 48% UpA HF are added. The beakers are sealed and the samples 

left to digest on the hotplate for at least 24 hours. At this stage, the following 

detailed of the procedure for the preparation of the samples can be 

undertaken in the same time than the preparation of the columns. The 

beakers are tapped to dislodge any drops of acid from the caps and then the 

screw caps are carefully removed and the excess acid plus SiF4 are 

evaporated off under the infra-red lamp and the sample taken to dryness. 

100iJi UpA nitric acid is added to each sample, and then evaporated under 

the lamps again to breakdown fluorides. The dried samples are then taken 

into solution in 100iJi of 6M UpA He!. After complete solution is achieved the 

samples are dried and converted back to nitrate by evaporation with 50iJi 

UpA of concentrated HN03. 180iJi of 3M UpA HN03 is added to each 

sample. If the samples do not go into complete solution at this stage they are 

centrifuged immediately before loading onto the Sr-spec columns. 
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Separation of Strontium using Sr-Spec 

Fresh resin and frits are used for each elution due to memory effects 

of the resin. The following cleaning procedures should be carried out in order 

to minimise blanks. Immediately prior to sample elution the following 

preparation is carried out on each column. 

• Place frit in column and push half way into column with clean stainless 

rod. 

• Fill column reservoir with H20 and push frit home. 

• Rinse with several reservoir volumes (the reservoir has a capacity of 

approximately 8001J1) of H20. 

• Fill column with water and add resin to column, allowing it to settle 

through water. 

• Wash resin with full reservoir of H20. 

• Wash resin with half a reservoir of 5% H2S04. 

• Wash resin with 1 full reservoir of H20. 

• Wash column with 1 full column 0.05M UpA HNOa. 

Resin has to be conditioned with 100IJI 3M UpA nitric acid. Samples 

are loaded in 3001J1 3M UpA HNOa. The sides of the columns are rinsed with 

501J1 3M UpA HNOa. Columns are successively eluted with 600IJL of 3M UpA 

HNOa, and with 50IJL of 0.05M UpA HNOa. The original vial, which has been 

previously cleaned, is then placed under the columns to collect 350mL of 

0.05 UpA HNOa, which is the Sr fraction. The strontium fraction is dried down 

under the lamps with 1IJL of HaP04, re-dissolved in 50IJL of 3M UpA HNOa 

and a second column pass is processed, starting again from the conditioning 

of the resin and finishing with Sr fraction collection. Add 1-21JL of HCI04 and 

1IJL of HaP04 before the final evaporation to dryness. The HCI04 is 

necessary to remove organics which get stripped from the Sr spec resin 

during elution. Once the fraction dried down, the samples are then ready for 

mass spectrometry. 
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Filament loading 

After column separation, samples have to be loaded on a tungsten 

filament that will be heated in the mass spectrometer. Tungsten filament are 

first of all welded on holders and put in an outgasser machine in order to 

remove any impurities and to avoid any contamination from laboratory and 

from the user. 

To load the sample on the filament, we use polyethylene dam, which 

are previously cleaned and dried up with acetone, and a TaCI loading 

solution. A small amount of loading solution is transferred in the sample vial, 

and sample plus loading solution are picked up with a micro pipette and 

transferred onto the filament. The filament is then progressively heated till 

the sample dries up. Every batch of five samples plus blank, is accompanied 

with one or two standards NIST SRM987 (87Sr/86Sr = 0.71024). 
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5 Sample preparation for leaching 
experiment 

The sample was reduced to powder using a dentis drill. A clean 7ml 

Savillex screw-cap vial for each sample (residue and leachate) is dried and 

cooled. The powder is wetted in 1 mL of 2.5 M Hel for 5 minutes in an 

ultrasonic bath. The sample + acid are transferred into a tube to be 

centrifuge for -15 minutes. The supernatant is immediately collected after 

centrifugation, transferred into an empty clean vial, spiked and dried down. 

The residue is also transferred into an empty clean vial and dried down. The 

appropriate amount of spike is added. At this point, the sample is treated as 

a sample for strontium isotopic ratio determination (see Appendix 4). The 

dried down leachate is converted to nitrate prior to being prepared for 

strontium isotope determination. 
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