DEFORMATION STUDIES OF THE FOLDED MYLONITES
OF THE MOINE THRUST, ERIBOLL DISTRICT, NORTHWEST SCOTLAND
by

HENRIQUE DAYAN

\sim

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

THE DEPARTMENT OF EARTH SCIENCES

THE UNIVERSITY OF LEEDS

SEPTEMBER 1981

IMAGING SERVICES NORTH

Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY

IMAGING SERVICES NORTH

Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

CONTAINS

PULLOUTS

IMAGING SERVICES NORTH

Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

VOLUME CONTAINS

 CLEAR OVERLAYS

 CLEAR OVERLAYS}

OVERLAYS HAVE BEEN SCANNED SEPERATELY
 AND THEN AGAIN OVER

 THE RELEVANT PAGE

 THE RELEVANT PAGE}

IMAGING SERVICES NORTH

Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

CONTAINS MAPS.

ABSTRACT

An area in the northern part of the Moine Thrust Zone of Loch Eriboll and in the $N E$ side of Loch Hope, NW Scotland, has been mapped in the scale of approximately 1:10,560.

Detailed measurements have been made of structures such as foliations and lineations and these have been studied and analysed geometrically in terms of their relative age and the consistence over the whole area. The mapping has also traced the intricate pattern of thrust faults which trend roughly NNE/SSW. These thrust zones delimit different nappes and the deformation aspects of these faults indicate that the rheology of the rocks suffered changes during the thrust belt evolution. The easternmost major thrust zone is considered to have been developed first and clearly shows the characteristics of a ductile deformation zone. This zone is interpreted here as the Moine Thrust Zone, sensu stricto. A conspicuous mylonitic zone lies beneath and trends parallel to the Moine Thrust Zone and is limited in the west by a thrust which carried the mylonites onto clearly non mylonitic rock. The width of the mylonitic zone varies from Loch Hope in the north to the $S E$ end of Loch Eriboll. This width variation is interpreted as due to thickening of the mylonitic zone by effects of folding and also due to the different deformation bands which anastomose and die out. Closely spaced cross sections, transverse to the extension of the belt of deformation are illustrated and discussed.

Strain analyses were carried out in two different domains of the mapped area. In the southern half of the area, where the frequency of folds is high, the distribution of fold hinges in sheath or curvilinear folds were used as strain indicators. Models, numerical methods and computer programmes for this strain evaluation have been thoroughly investigated. A detailed description of the methods used and tests performed with the constructed computer programmes is given. The
results are analysed in conjunction with the land geology and structure.
For the northerly half of the mapped area, strain estimations have been made using the grain shapes of the Paleozoic quartzites which are common in the two lowermost nappes. A new method for fitting the strain ellipsoid using three orthogonal ellipses was devised. A computer programme making use of this method was constructed and applied to the existent data. An alternative solution is also presented for the case where the fitted surface is not an ellipsoid. The strain results with the above methods are compared with those obtained using other published programmes and methods of strain estimation.

Microtextural variations in the Paleozoic quartzites of the northern domain have been studied. A detailed textural description and correlation is made between the textures and the available information on the deformation intensities shown by the quartz grains. An increase in the measured strain intensity is generally accompanied by an increase in the amount of recrystallized new quartz grains. These facts are consistent with the geology and structures of the nappes where Sampling was done.

Paleostress estimates using recrystallized grain sizes have been performed at 31 localities in the Eriboll and Hope areas. The methodology of particle-size estimation is described in detail. The necessity for a standardization in the methods of particle-size measurement is emphasized with examples. The estimations of the differential stresses are greater in zones of greater relative deformation intensity. Although there are limitations and some adverse criticisms on the reliability of these paleostress estimates, the conclusion reached by this study is that they form a pattern that fits well with the geology and structure of the investigated area.
the last part of the thesis. Deformation maps were constructed for
this study using ranges of probable differential stress and the measured
size of the newly recrystallized quartz grains. It is concluded that
strain is predominantly accommodated by internal mechanisms operated
by dislocation processes. It is also inferred that the operative
strain-rate for the deformation conditions of this area, is between
$10^{-13} . s^{-1}$ and $10^{-12} . s^{-1}$.

ACKNOWLEDGEMENTS

CONTENTS

	CHAPTER 1 - GENERAL INTRODUCTION	1
1.1	Introduction to the Area of Study	2
1.2	Review on the Early Research	4
1.3	Scope, Methods and Organization of this Study	10
	CHAPTER 2 - GEOLOGY AND STRUCTURE	13
2.1	General	14
2.2	Li tho logy	14
2.2.1	The Lewisian Suite or Rocks	19
2.2.2	The 'Oystershell' and Moine Series	19
2.2.2-a	The 'Oystershell' Rocks	19
2.2.2-b	The Moine Series	20
2,2.3	The Lower Paleozoic Rocks	23
2.2.3-a	The Arenaceous Series	24
2.2.3-a.1	The Basal Quartzite	24
2.2.3-a.2	The 'Pipe-Rock'	24
2.2.3-b	The Intermediate or Middle Series	26
2.2.3-b.1	The Fucoid Beds	26
2.2.3-b. 2	The Serpulite Grit	26
2.2.3-c	The Calcareous Series	27
2.3	Structure	27
2.3.1	Survey on Previous Work in the Study Area	27
2.3.2	General	29
2.3.2-a	The Sequence or Events and the Adopted Convention	31
2.3.3	Description of the Geometry and Analysis of the Structures	32
2.3.3-a	The Main Domains of Planar Structures	32
2.3.3-a. 1	The Geometry of S-Planes	34

2.3.3-b The Main Domains of Linear Structures 40
2.3.3-b.1 The Geometry of the L_{1}-Lineation 42
2.3.3-b.2 The Early Folds (F_{2}) 42
2.3.3-b.3 The Second Folds (F_{3}) 45
2.3.3-b. 4 The Third Set of Folds (F_{4}) 46
2.3.3-c Comments 51
2.3.4 Fold Geometry 54
2.3.4.1 General 54
2.3.4.2 Fold Class 55
2.3.4.3 Fold Shape 65
2.3.4.4 Strain Superimposition and Comments 70
2.3.5 Structure in Macro-Scale 72
2.3.5.1 Cross-Sections Description 72
2.3.5.2 Thrust Emplacement Mechanisms 85
2.3.5.3 Discussion 87
CHAPTER 3 - FOLD HINGES AS STRA IN MARKERS 96
3.1 General 97
3.1-a Review of the Literature 97
3.1-b The Organization and Contents of this Chapter 104
3.2 The Model Devised by D. Sanderson 105
3.3-a The Model Used in this Study 107
3.3-b Method of Parameter Estimation 111
3.4 Optimization Procedures 112
3.4.1 The Objective Function 112
3.4.2 The Direct Search Method 115
3.4.2-a Introduction 115
3.4.2-b The Multivariate Constrained Method 116
3.4.2-c Description and Routine 118

3.4 .3	Unconstrained Gradient Methods	121
3.4.3-a	General	121
3.4.3-b	Description and Routine	122
3.4.3-c	Preliminary Comments	127
3.4.3-d	The Partial Derivatives	129
3.4 .4	Tests	131
3.5	Data Treatment	143
3.5.1	Data Weighting	148
3.6	Parameter Estimation	151
3.6 .1	General	151
3.6 .2	Multiple Cells Sub-Division	162
3.6 .3	Procedure	162
3.7	Discussion	169
3.8	Comments on Other Possible Models	177
	CHAPTER 4 - GRAIN SHAPE ANALYSIS	181
4.1	Purposes	182
4.2	Two and Three Dimensional Strain Determination	184
4.2.1	Comments on Some of the Available Methods	191
4.2 .2	Some Problems Involved with Shape Measurements	191
4.2 .3	Determination of the Ellipsoid from Orthogonal Sections	195
4.2.3.1	General	195
4.2.3.2	The Proposed Method of Fitting the Ellipsoid From Three Perpendicular Planes	196
4.3	Possibility of Fitting a Non-Ellipsoid Surface	208
4.3.1	Introduction	208
4.3 .2	The Constraint Method	209
4.4	Results and Interpretations	217

4.4.1 Correlation Between Methods and Programmes 217
4.4.2 The Shape of the Ellipsoids 224
4.4.3 Orientation of the Ellipsoid Axes 234
4.4 .4 The Estimated Strain Intensities 236
CHAPTER 5 - MICROTEXTURAL ANALYSIS 241
5.1 Introduction 242
5.2 Textural Types 245
5.2.1 General 245
5.2.2 Group A1 245
5.2.2.1 Comparatively Low to Moderate Deformation Fabrics 246
5.2.2.2 Moderately to Highly Deformed Fabrics 250
5.2.2.3 High to Extremely High Strained Fabrics 257
5.2.2.4 Completely Recrystallized Fabrics. 260
5.2 .3 Group A2 264
5.2.3.1 Cataclastic Textures 264
5.2.4 Group B 265
5.3 Discussion 271
5.4 Correlation Between the Dynamic Recrystallization Phase and Relative Amount of Progressive Deformation 285
5.4.1 Preliminary Considerations and Methods 285
5.4.2 Results 292
CHAPTER 6 - PALEOPIEZOMETRY 298
6.1 General 299
6.2 Introduction 299
6.3 Problems and Use of Microstructures for Paleopiezometry 304
6.3.1 Problems and Difficulties in the Paleostress Calculations 304
6.3.2 Brief Review on Previous Work on Paleopiezometry 307

6.4	Stereology	309
6.4.1	Preliminary Considerations	309
6.4.2	The Grain Size Estimation	311
6.5	Results and Discussion	323
6.5 .1	From the Present Study	323
6.5.2	From Other Studies in the Mapped Area	339
6.5.2-a	The Microstructural Parameters Other than the RGS	339
6.5.2-b	Comparison of Results Using RGS.	343
6.6	Concluding Remarks	347
	CHAPTER 7 - RHEOLOGIC CONSIDERATIONS	349
7.1	Introduction	350
7.2	Flow Mechanisms and Equations	351
7.2-a	The Constitutive Equations	352
7.3	Deformation Maps	355
7.4	Discussion	366
	CHAPTER 8 - CONCLUSIONS AND INFERENCES	379
	APPENDICES	389
	Appendix I - Programme SAND	390
	Appendix II - Programme MODEL2	393
	Appendix III - Programme ISTRAES	397
	Appendix IV-a - Programme fiteli	408
	Appendix IV-b - Programme FTELAM	415
	REFERENCES	423

SYMBOLS AND ABBREVIATIONS USED IN THIS THESIS

AT

Moine Psammite

Moine Thrust Plane
MTZ

NHC

OR

PR

R
$\mathrm{R}_{\mathbf{f}}$
RGS
R_{i}
Arnaboll Thrust

Basal Quartzite

Coble Creep

Central Processor Unit

Dislocation Creep
Dislocation Density
Diffusional Creep

Durness Limestone

Dunnet and Siddan's Method

Fucoid Beds

Grain Boundary Sliding
Grid Reference
Lewisian Gneiss

Lewisian Mylonite
Moinian Gneiss

Moinian Mylonite

Sanderson's (1973) model

Moine Thrust Zone

Nabarro Herring Creep
Oystershell Rock
Pipe Rock
Finite Strain Ratio

Recrystallized Grain Size

Variation of Sanderson's (1973) model used in this study

Axial ratio of a particle in the deformed state

Axial ratio of a particle in the undeformed state

Sample Average

SG
SI
SS
ss
UAT
2D, 3D

Serpulite Grit
Shimamoto and Ikeda (1976) Method
Subgrain Size
sensu stricto
Upper Arnaboll Thrust
Two and three dimensional

CHAPTER 1

GENERAL INTRODUCTION
1.1 Introduction to the Area of Study

The region of the Moine Thrust Zone in the Northwest Highlands of Scotland has been a classic area for the study of structural geology. This zone of Caledonian deformation extends some 190 km from Whitten Head in the extreme north near Loch Eriboll to Sleat in Skye (Fig. 1.1).

The area of this project constitutes a narrow strip of land which extends from the southeastern edge of Loch Eriboll to the northeastern side of Loch Hope, as shown in the map of Fig. 1.1. This area is located approximately 100 km northwest of Inverness and 20 km southeast of Durness. Access to the area can be gained via the A838 road which connects Durness and Tongue.

The southeastern border of Loch Eriboll can be described as a hilly and step-wise plateau with higher elevations in the south which are gradually lowered northwards. The relief is clearly controlled by the structural attitude of foliation, regionally dipping eastward.

Eastward-flowing consequent streams, frequently captured in small lochs on the plateau, flow towards Loch Hope. Obsequent and more active streams, flowing to the west, cut through the escarpment facing Loch Eriboll.

Peat covers parts of the area and glacial unconsolidated deposits lie along the lower ground near the coast of Loch Eriboll. The area contains a reasonable amount of outcrop, and Figs. 2.2 can give an idea of outcrop frequency and distribution throughout the domain of the mapped ground.

Figure 1.1. The northern part of Scotland. The thick black line displays the trace of the Moine Thrust. In shaded black is shown the studied area.

Research in the area of the Moine Thrust Zone was marked from the beginning by controversial arguments and sometimes passionate discussions. This zone is often referred as the 'Belt of Complication', but from the available historic accounts it seems also appropriate to call this zone as the 'Belt of Dissention', as still there are controversial views on problems such as Thrust mechanics and emplacement which were first raised by the early geologists who worked in that area.

The early accounts on geologic research can be traced back to the beginning of the last century when Macculoch in 1819 (in McIntyre 1954) first pointed out that at Eriboll there were superposed gneisses on top of quartzites and limestones. The first interpretation of this was given by Cunningham (1839, in McIntyre 1954). He concluded that the gneisses and mica-slates (Moines) were younger than quartzites while the oldest of all were the underlying limestones, known at that time to contain fossils.

Nicol (1856) was attracted to this problem by the influence of Murchison and in this first paper he gave a poetic description of a first reconaissance of the area. He confirmed the existence of metamorphic rocks overlying fossiliferous limestone, near Ullapool, but he was in doubt whether the gneiss has formed in situ or had been pushed over the calcareous rock.

The prevalent idea at the time, as put forward by Murchison, was that the overlying gneisses and schists were younger than the limestone and formed a conformable succession. It is reported that Nicol disagreed publically with Murchison (see details in McIntyre 1954). After four years of research when Nicol visited the area four times and covered much of the ground around a line extending from

Eriboll to Skye, he published a paper, (Nicol 1860), which must be considered of utmost importance as it contains some lucid descriptions, good even by today's standards. In this paper (o.p. cited, p.86) Nicol formally disagrees with Murchison on the theory of conformable younger gneisses and schists and states that ".... where this conformable succession is said to occur is clearly a line of faulting" Nicol's (1860, p.91) comments were based on the criteria that the lithologic succession did not match in many different sections and that some beds were also missing in many sections. This in his opinion condemned Murchinson's "upward conformable succession".

Some of Nicol's.terms and stratigraphic divisions are still used today. For instance denominations Such as Pipe Rock, Fucoid-beds, Durness-Limestone, lower-quartzites (see Phemister 1960) were present in this 1860 paper.

It is reported, however, that the ideas by Murchison and his followers gained more acceptance at this period, so the polemic was temporarily closed only to be re-opened in 1878 by Hicks (in Lapworth 1885-a). In 1882 Lapworth initiated some studies in the Durness-Eriboll district. He opted for what he considered to be the only solution which could explain the geological phenomena at Eriboll, and this included, faulting, deformation, local stratigraphic inversion and partial metamorphism. While Nicol's descriptions are valuable, Lapworth's (1883, pl. $v, F i g s .1,5)$ cross sections are outstanding and detailed works of art.

Lapworth (1883) realised that there were no reasons for accepting Murchinson's ideas of superposed schists and gneisses younger than the underlying sedimentary and fossilferous rocks. Lapworth was also convinced of the existance of unconformity between the older Lewisian Gneiss and the younger paleozoic Quartzites but reported that
the latter occurred tectonically emplaced on the former, as seen in the region above the Church Crag (see Geologic Map of figs. 2.1).

In his next paper (Lapworth 1884) it is clear that he was influenced by the ideas of Heim (1878) and interpreted the superposition of schists in Eriboll as due to gigantic overfolds (op. Cit., p.438). He interpreted the schists overlying the Paleozoic rocks as being composed of a mixture of Precambrian Lewisian Gneiss and Paleozoic rocks, so it is not clear whether he was referring to what are now considered as Lewisian mylonites or the younger Proterozoic Moinian rocks. It was also Lapworth's opinion that there were no rocks younger than the Durness Limestone. Lapworth was obviously impressed by the deformation effects shown by some of these rocks, as he referred to them as "..... crushed and mechanically metamorphosed" and repeatedly used the expression " crushing effects ... " as referred to deformation. In this 1884 paper he clearly hinted the movement direction in the zone and stated (op. cited, p.441) that the rocks ".... travelled to west from east ...". It is quite clear that this was a prelude of his celebrated definition of mylonitic rock which appeared in a subsequent paper (Lapworth 1985-a).

Meanwhile B. N. Peach and J. Horne who were sent to the Eriboll
area by Geikie, possibly to disprove the ideas of Nicol, arrived at the same conclusions as Lapworth thus favouring Nicol and rejecting completely Murchison's'ideas. They also convinced Geikie who personally inspected the ground in Eriboll and immediately published an article in NATURE (1884). This paper introduces and preceeds a first analysis of the area by Peach and Horne (1884).

In Geikie's paper he criticised the interpretation of Murchison : and introduced the name "Thrust-Plane", the expression "system of reversed faults" and also noticed the presence of "a fine
paralled lineation, running in a west-north-west and east-south-east direction" (see op. cit., p.30).

Peach and Horne's (1884) paper on NW Scotland contains a stratigraphic description of the Paleozoic sequence (see fig. 1.2 for details) and also a detailed cross-section of the Durness-Eriboll region. The imbricate zone of Ben Heilam is represented in this section, the imbricates defined as reversed faults, and these two authors clearly differentiate it from the "Thrust-Plane" that brought the Lewisian over the Paleozoic suite of rocks. One can also find some remarks on the flattening, bending and rotation effects in the previously orthogonal (to bedding) pipes or worm-tubes of the so called Pipe-Rock. There are also descriptions of the thrust relationships in the region of the Arnaboll Hill and Creag-na-Faollinn, very much alike the modern interpretation.

The area of Durness-Eriboll was specifically treated by Peach and Horne in a subsequent paper (1885) where they describe the contrast between the west and east sides of Loch Eriboll. They also mentioned the formation of a secondary foliation in rocks subjected to the effects of mechanical deformation and this description also contains a remark about a "... parallel lineation like slickensides trending in the same direction, over a vast area, while the minerals were oriented along these lines ... ", which refers to an important Iirection of stretching as will be discussed in the next two chapters.

The above work, in fact, preceded Lapworth's (1885-a) paper which contains the definition of mylonites as "finely laminated schists" (mylonites, gr. mylon, a mill) composed of shattered fragments of the original crystals set in a cement of secondary quartz, the lamination being defined by minute inosculating lines (fluxion lines) of kaolin or chloritic material and secondary crystals of mica". It

Figure 1.2. Stratigraphic section of the Lower Paleozoic rocks of Loch

Eriboll (after Peach and Horne 1884).

must be remembered, however, that the expression " ... fluxion lines ..." and " .. mill .. " both connected with deformation were previously used by Geike; (1884, pp.30-31).

It is evident that all the workers were much impressed by the superimposed mylonitic foliation and, for instance, Lapworth (1885-a) reported that new minerals had been formed as a consequence of deformation. However, he interpreted the rocks to the east (the actual Moine succession) as a mixture of Hebridean (Lewisian) and patches of Paleozoic and igneous rocks.

There followed a profusion of reports and papers exploring the newly found ideas with advances not only in mapping but also in terms of experiments, such as the celebrated thrust modelling performed by Cadell (1888). This research along the Thrust Zone (Eriboll-Skye) received much attention till the end of the last century. Many of the present thrust-rules are partially derived from this work. The geology was summarised by the now classic reports Peach et al. (1907) and Peach and Horne (1930).

During this century the Moine Thrust Zone has been largely neglected, though there have been several structural projects since the fifties and sixties. Some of this research has become much more specialized. For instance, structures in rocks of the Thrust zone are now investigated from a submicroscopic (see references in Chapter 6) dimension. On a larger scale the thrust tectonics of this zone have been described in a paper by Elliott and Johnson (1980) which applied new concepts and ideas drawn from the Rocky Mountains. Much of this. recent literature will be discussed in the next chapters.

The specific area at Loch Eriboll was partially mapped and described by Soper and Wilkinson (1975) although some aspects have been described by Barber and Soper (1973). The area of the north has been
the object of PhD theses (Allison 1974, Nadir, 1980) and recent papers by Coward and Kim (1981), Fisher and Coward (in preparation). Some aspects of the thrust geometry of the Loch Eriboll area have been discussed by Coward (1980); these papers will be discussed in the next chapters.
1.3 Scope, Methods and Organisation of this Study

The aims of the present study were to investigate the geometry of the rock fabrics, to evaluate the deformation intensities and also to establish the probable deformation mechanisms that operated within the context of the deformed rocks of the Moine Thrust Zone of the Eriboll-Hope region.

The area specified in fig. 1-1 has been remapped mainly at the scale 1:10,560, sometimes at approximately 1:5,000 or locally at 1:1100 (see fig 2-4). The bulk of field work was carried out in two summer seasons, but mapping for this study was also performed during two intermediate (short) visits to the area.

Well over 7,000 measurements of planar and linear structures were recorded for the Eriboll and Hope areas, during the course of field mapping. Oriented samples were collected for purposes of laboratory work which comprised measurements of grains and analysis of microstructures.

A great deal of time was spent with computer work during the research period at Leeds. The study consisted in the elaboration of programmes, in FORTRAN IV, for the methods of strain determination. Chapters 3 and 4 are strictly connected with this part of the research.

Chapter 2 contains a description of the lithologies involved in the area. The geometry of the structures in the mylonites has
been described and systematically analysed. Fold geometry is specified in terms of class and shape. The structure of the area is reviewed in terms of detailed cross-sections.

Chapter 3 gives a numerical evaluation of the strains in the rocks, using directional data of re-oriented fold hinges. New methods of parameter estimation using optimization techniques allowed the application of two basic models. The results of these and the derivation of other possible models are discussed in the context of the present structural setting.

Chapter 4 is given to strain estimation using microscopic markers. Grain shape analysis of data were measured from oriented thin sections. A new method of fitting the ellipsoid using data from 3 orthogonal ellipses is presented. A new solution for the case of fitting a non-ellipsoidal surface is also proposed. Two computer programmes (corresponding to the above situations) were specially elaborated and applied to the available data. The results and comparisons with previously existent methods and programmes are discussed.

Chapter 5 consists of a detailed description of microstructures in rocks subject to a progressive increase of deformation. It correlates the amount of grain deformation to the percentage of recrystallization present in the sample.

Chapter 6 presents a study of Paleopiezometry using the recrystallized grain size of quartz. The methods used in this study are described and the results obtained are compared with the published results from the Moine Thrust Zone.

Chapter 7 is concerned with the Rheology of the rocks. The flow mechanisms and equations are dealt with in the form of deformation maps. These were calculated for the range of the measured grain sizes. There follows a discussion of the more probable mechanisms of deformation
affecting the studied rocks.

CHAPTER 2

Abstract

2.1

General

The first part of this chapter deals with lithological descriptions and related stratigraphic aspects of the rocks found in the studied area.

The second part of the chapter is more extensive and comprises a detailed description of the structures met in the mapped area. This is followed by a statistic and harmonic analyses of folds and finally by thrust description using detailed cross-sections. The final part is given to the interpretation, comments, comparisons and discussions which are based on the field mapping and data measurement.

2.2 Lithology

The succession of lithologic types found in the mapped area, together with their main rock-character, inferred time and group relationships, are summarised in table 2-1.

2.2.1 The Lewisian Suite of Rocks

The Lewisian rocks comprise a varied suite of lithologies. They are highly metamorphic rocks that have undergone a very complex deformation history. The Lewisian of the NW of Scotland was originally described in detail by Peach et al. (1907) and then studied by Sutton and Watson (1951, 1953 and 1962). They established a chronologic subdivision of this complex group, using dykes as stratigraphic markers. In the more recent years, other studies also attempted to establish a general chronology for these rocks and presently there is clearly a divergency of opinions (eg. Bowes 1968, 1969; in Park 1970) both on the methods employed in this kind of study and also in the interpretations

Table 2.1

Displays the series of rock types found in Eriboll and Hope areas.

Durness Limestone

Serpulite Grit
Fucoid Beds
Pipe Rock
Basal Quartzite

\qquad

Moinian and Oystershell rocks. Gneisses, schists and psammites which include acid and basic masses. Psammitic series can grade to semi-pelites and also include a
feldspathic-rich member. Amphibolite sheets in different rock domains.

- Probable Unconformity

1290-1600
Lewisian
Lewisian

Orthogneiss derived from a granite-gabbro-peridotite suite. Dykes; basic (minor) and acid composition, comprise part of the bulk of the rock.
given to the structure and sequence of events.

The Lewisian cropping out in the foreland region neighbouring Durness is of two main types: (i) a dominantly dark banded rock where the percentage of aplitic and veined material is minor and (ii) a domain visibly dominated by a rock-type characterised by intense injection of aplitic to pegmatitic material with a predominant pink colour. Most of the gneisses are considered to have been re-deformed and intruded by the aplitic/pegmatitic material during a Laxfordian episode at about 1800 my ago (cf Sutton and Watson 1962).

In the studied area, all the Lewisian rocks have suffered some effects of Caledonian deformation, dated along the Moine Thrust Zone (MTZ) as approximately 430 m . a. (see van Bremmen et al. 1979), and they exhibit characteristics of homogeneization due to:
(i) A very strong mechanical deformation which has brought to near parallelism all platy minerals; and given the rock a thinly laminated foliation. It has also erased previous structures and brought dyke-contacts and their internal fabrics into concordance with the host rock.
(ii) Metamorphic changes which have caused the crystaliization and recrystallization of grains, giving rise to the formation of a greenschist-chloritized series of minerals, in which the association of epidote-chlorite is responsible for the homogenous greenish appearance observed in the rocks.

In one locality it was possible to observe the original rock types relatively undeformed (see plate 2-1). This is on the westernmost: face: of the Creag-na-Faollinn, where the gneiss includes hornblende bearing rocks which vary from a type which.is formed exclusively of hornblende aggregates to banded hornblende-plagioclase-gneiss. Also present in this locality are metabasic lenses which attest that

Plate 2.1. 'Undeformed' Lewisian rock of the western-most face of Creag-na-Faollinn.

Plate 2.2. Milky quartz-veins (arrow) in the Moinian psammitic rock.
the Lewisian suite was previously affected by basic intrusives. Elsewhere in Creag-na-Faollinn it is possible to identify biotitegneisses.

There are two other localities where it was possible to locate metabasic-lenses; the first occurs in the area of the relatively less deformed Lewisian that constitutes the upper westernmost side of Arnaboll Hill, and the second occurs within the mylonitic zone overlying the Cambrian rocks in the top of the same hill. In the area of Lewisian mylonites of the NE side of Loch Hope serpentinized rocks form an extensive outcrop. That is the only occurance of ultra-basic rocks in the mapped area.

The rest of the area shows rocks of two types: (i) Leucogneiss massively impregnated by veins of varied thickness in which a dominant pink colour is a direct result of the microcline content. With the exception of Creag na Faollinn and the western top of the Arnaboll Hill, these veins are in perfect concordance with the host rock. (ii) Homogeneous green and greyish (both varying from light to dark) rocks which constitute the corresponding highly deformed versions of the rock-types (rich in mafics) described for Creag-na-Faollinn. The feldspar-amphibole-epidote assemblage of the Lewisian rocks seem to grade to albite-epidote-chlorite due to effects of mylonitization (Soper and Wilkinson, 1975). The feldspars show polysinthetic twining and perthitic lamellae. Among the micaceous minerals, muscovite appears with chlorite and biotite. Apparently epidote is to be located within the micaceous bands. Calcite is also present in many sections and it is considered to be due to feldspar breakdown. Other minor components include sphene, zircon and opaques.

On the geologic maps of figs. 2-1, the Lewisian rocks
appear to be confined to a narrow longitudianl NE-SW strip, bounded by
the easternmost thrust traces. Two lithologic types appear in the legend and these correspond respectively to the mylonitic and nonmylonitic types.
2.2.2 The "Oystershell" and the Moine Series
2.2.2 a The "Oystershell" Rocks

These rocks seem to be part of the Moinian Series. There is some controversy over the genesis and the stratigraphic position of these rocks.

The "Oystershell" rocks are characterized by greenschist series of metamorphic grade. They have a green colour and exhibit quartz-bearing domains with milky colour which form small plates concordantly disposed in the foliation planes. These resemble oyster shells and hence the analogy and name by Peach and Horne (1907).

In the area north of Alt-na-Eisgil, between cross sections BB' and CC' (see geologic map of fig. 2-1) the succession of "Oystershell" rocks can be divided into two clearly distinct rock types: (i) a structurally lower member characterized by alternating bands of pelitic and quarzitic layers, the latter being formed by fine grained quartz which differentiates this lithology from the coarser Moinian psammite that underliesit. The thickness of the fine psammitic layers in the Oystershell rock vary from one to a few centimetres while the pelitic bands are thicker, and resemble the Oystershell rock, sensu stricto. (ii) The structurally overlying member grades to an almost entirely pelitic rock which exhibits some psammitic members resembling 'oysters' with milky colour and oblate shape. The green colour of this schist is probably due to chlorite content but there is also epidote present in this mineralogic suite which includes cholorite-muscovite
and quartz.

There are some calcareous domains in these Oystershell rocks and calcite is frequently seen in thin section. Feldspar (albite?) is also present, especially close to the domain of the underlying feldspathic Moinian psammite.

Soper and Wilkinson (1975) have chemically analysed the Oystershell rocks and place their origin in the field of argilites (see op. cit., p.343, table I). They consider that this rock was derived from an 'off-shelf' pelitic facies of the Durness Limestone.

The thickness of these rocks is modified by the effects of multiple folding and the lithology cannot be traced both north and south of the studied area. This decrease in rock thickness (to zero) seems to be gradual in both directions. At the NE border of Loch Hope the 'Oystershell' seems to be confined to a single outcrop while south of Creag-na-Faollinn this schist is thin to non-existent in the SE of Alt-na-Craoibhe-Caoruinn.

In the geologic map of figs. 2-1, the 'Oystershell' rocks are represented by a single ornamented type. This lithology is always located to the right of the easternmost thrust trace (ie the Moine Thrust, sensu stricto).
2.2.2.b The Moine Series

This group of rocks structurally overlie the 'Oystershell' rocks in Eriboll and Hope areas. It is also shown in this area that there is a gradation to three rock types.

The lower member of the Moinian suite of rocks is an almost essentially psammitic, having a light colour, fine grained, but also presenting a small percentage of feldspars and micaceous minerals. It exhibits a granoblastic type of texture, in thin section.

The psammitic varieties of the Moines are characterised by the presence of milky quartz veins having varied thickness, oblate to signoidal shape and anastomosing at the ends. Some veins show rootless folds and are always concordant with the dominant mylonitic foliation (see plate 2-2). These veins are thought to be a product of quartz segregation processes.

In some parts of the mapped area, the Moine psammites show a gradual increase in the content of white micas and this seems to be approximately inversely proportional to the yolume of the quartz segregations. With this increase in pelitic content there is a colour change from nearly white (psammite) to light green (intermediate or semi-pelitic member) and finally the extreme member which is dominantly pelitic. The pelites exhibit some scattered and large pink feldspars (up to 3 cm) concordantly disposed in the foliation planes. Some Moinian psammites exhibit feldspars closely associated with quartz veins (see plate 2-3). Accessory minerals include epidote and sphene.

Soper and Wilkinson (1975) placed this pelitic member, as pertinent to the Lewisian domain. Indeed the resemblance is striking in many cases, especially because the strongly deformed Moine schists. can acquire the greenish colour of Lewisian Mylonites. Near to the top of Creagan Road, at Poll Mor, the contact between the psammitic and pelitic members is very sharp (thus lacking the intermediate member) so the described gradation is not visible and this is a situation that may lead one to consider a Lewisian origin for these pelites.

Furthermore to the north of the Creagan Road, towards the Arnaboll Hill the pelitic lithology changes by becoming more feldspathic and this gives the rock a distinct pink and very homogeneous appearance resembling that of strongly deformed and richly feldspathic Lewisian

Plate 2.3. Feldspars associated with quartz-veins in Moinian Psammitic rocks. Note pronounced lineation almost parallel to the pencil.

Plate 2.4. Cross-bedding in the quartzitic rocks of the CambroOrdovician sequence beneath the b-thrust near the Creagan Road.
mylonites.

Between cross sections EE' and FF' (see geologic maps of figs 2-1-a and b) there appear in the pelites, some lenses of amphibolitic material. These lenses are more common within the corresponding pelites located at the NE side of Loch Hope. The gradation from pelite to psammites is also present in this area where amphibolites occur not only•within the pelite but as well within the psammitic member. It must be remembered that the rocks to the south of Melness show amphibolitic lenses also within the Moines. This gradation from psammite to pelite has lead me to place both groups in the Moines.

On the map of figs. 2-1-a and b, the Moinian lithology constitutes the easternmost sequence of rocks. Note also the presence of the psammitic member at several localities along the mylonitic zone between the two easternmost a and b-thrust traces.
2.2 .3

The Lower Paleozoic Rocks

The lower Paleozoic rocks, which rest unçomformably on the Lewisian series, occur in the lower nappes of the thrust zone (see figs. 2-1). They are grouped in three series, according to the original division by Peach and Horne (1884) (compare table 1-1 with fig. 13 in Phemister 1960) as follows:

```
c - The Calcareous Series (top), which can have 7 subdivisions (see Phemister 1960).
b - The Passage or Middle Series, which is partly calcareous and partly arenaceous.
C - The Arenaceous Series.
```


2.2.3-a The Arenaceous Series

These rocks constitute the bottom part of the Paleozoic column and are probably of lower Cambrian age (see Phemister 1960, p.48).

2.2.3-a.1 The Basal Quartzite

These rest uncomformably on the Lewisian rocks (see fig. 2-1-b, the domain above Kempie Bay, between cross sections GG' and FF). They consist of coarse impure sandstones, with quartz grains up to a millimetrein size and even coarser pink feldspars (up to 5 mm). In places, this rock has the appearance of a microconglomerate but stratigraphically upwards a change is made to a better sorted suite clearly exhibiting cross stratification and bedding marked by thin darker bands which are richer in feldspars.

The upper horizon consists of a much more homogeneous, fine grained and massive rock. This type has a light white colour in which the only surfaces of discontinuity are some irregular partings. These could well be a result of pressure solution seams (concentrations of insoluble material). There are no indications of primary structures and this domain resembles very much the matrix of the immediately overlying 'Pipe-Rock'.

[^0]it is possible to verify the presence of micaceous minerals, probably
sericite.

The pipe-rock variations comprise 5 subzones according to their forms and frequencies - see Peach et al 1907, pp.372-373. However Hallam and Swett (1966, p.102) argue that these subzones do not constitute laterally continuous domains or even appear in constant chronological order. The present study distinguishes generally (not in sequence) three main groups with the characteristics as follows:
(i) In one group, 'pipes' and 'matrix', both have the same whitish colour. Bedding (very frequently cross bedding) is denoted by very thin darker bands. The perturbations seen in these layers, the downward drag into the pipes, allow one to recognise the right way up of those beds. In sections oblique to bedding, the traces of these burrows resemble cones while in the bedding planes the pipe sections (either circular or elliptical) can exhibit a wide area which decreases downwards - that is, the pipes have a funnel shape. This lithology is commonly referred to as the 'trumpet pipes' horizon (Peach et al. 1907, subzone III). Hallam and Swett (1966) believe that Monocraterion was the fossil responsible for the formation of these 'trumpets'.
(ii) In this group pipes and 'matrix' are nearly white in colour but with the difference that in this case the pipes shown in section have a lighter colour. Here bedding is not so conspicuous as in the previous case. This horizon could perhaps be correlated to the 'ordinary pipes' of Peach et al. (1907). In the view of Hallam and Swett (1966) these traces are attributable to the action of the fossil Skolithos.
(iii) Finally, there is a group of rocks where white pipes contrast with a purple 'matrix'. It is very easy to identify the white tubes -

```
perhaps longer than in case (ii) - but very difficult to locate bedding.
In the present mapping area, this group was rare.
```

2.2.3-b The Intermediate or Middle Series

This is the thinnest sequence among the 3 series (see Phemister $1960, p .49$) and it can be subdivided as:

2.2.3-b. 1 The Fucoid Beds

These are the lowermost rocks and consist mainly of calcareous shales with some mudstones and layers richer in quartz. The rock characteristically exhibits a brown rusty colour that variesiits shade from a darker to a lighter-brown perhaps according to the decrease in shale content. The term fucoid (a type of seaweed) is based on an early misinterpretation of flattened worm-casts found in the bedding planes.

Barber and Soper (1973) give a detailed description of these rocks for Kempie Bay. In the present study area, the most extensive outcrops of this lithology occur between the bottom of Creagan Road and Church Creag. Many of Barber and Soper's (1973) variations were observed within this area.

2.2.3-b.2 ''he Serpulite Grit

This upper member consists of a more gritty rock with a light brown colour. It is named after its fossil content (Serpulite Macculochi).

In the domain of the present mapping this rock type is restricted to a very few outcrops along the folds between the Creagan Road and Kempie Bay. It is possible that these rocks also crop out
below the lower thrust at the front of the Creag na Faollinn area.
2.2.3-c The Calcareous Series

This is stratigraphically the highest group of rocks and in the foreland exhibits the greatest vertical thickness (see Phemister 1960. fig. 13).

This lithology is referred, to here genericallyas the Durness Limestone. In the domain of this study area the calcareous rocks are confined to two localities: (i) a westernmost strip shown in the geologic maps (figs. 2-1-a and b) cropping out between the base of Creagan: Road and Kempie Bay, (ii) and as an allochtonous mass of rocks, emplaced in the middle of the mylonitic rocks above the Church Creag.

2.3 Structure

2.3.1 Survey on Previous Work in the Study Area

In recent years, a considerable amount of work has been carried out in areas in or near the area of the present study. Some research on the eastern edge of Loch Eriboll was done previously by Wilkinson (1956). He recognised, in that area, 4 nappes which are named after their underlying thrusts. Soper (1971) and Soper and Brown (1971) applied Johnson's $(1957,1960)$ concept of a four-fold deformation sequence for the Moine Thrust of Eriboll. This was confirmed in the paper of Barber and Soper (1973) which also contains detailed maps (see op. cit. figs. 3, 4) and illustrates some of the difficulties encountered in that area. These two authors also modified the previous subdivision of thrusts and nappes.

Soper and Wilkinson (1975) mapped in great detail the ground between the south of the Arnaboll Hill and the south of Alt-na Craoibhe Caoruinn. They also adopted Barber and Soper's (1973) tectonic subdivision which can be summarised as follows (from east to west):

Moine Nappe

Moine Thrust

north (off limits) of the area

Forel and

The above division reveals that it is not possible to correlate thrusts - traces along the whole of the mapped area. Thrusts can branch, merge or even die out.

This study agrees with much of the mapping by Soper and Wilkinson (1975, compare their fig. 8 with the present figs. 2,$1 ; a$. and b).

Some differences related to lithological aspects have already been mentioned (section $2.2 .2-b$) and others, relative to structures, will be discussed in detail in section 2.3.5.3.

Coward (1980) investigated domains along the thrust zone at Faollinn and the Arnaboll Hill. A model for the evolution of the Arnaboll area is also presented in his paper (op. cit. fig. 5).

Coward and Kim (1981) proposed models for strain evaluation using Cambro-Ordovician rocks of Eriboll. Recently the geology and structure to the north of the Creagan Road has been dealt with by McClay and Coward (1981) and Rathbone et al (in press).

A number of theses have made use of the rocks of Eriboll
area. For example, McLeish (1969) determined strains in the piperock of Kempie Bay, while Allison (1974) investigated the strain and microstructures in the rocks of Ben Heilam. More recently Nadir (1980) studied the structure and the deformation of the Paleozoic rocks of the Lower Nappes, north of the An-t-Sron. More references on studies in Eriboll rocks, especially those dealing with microscopic textures, will be given in Chapters 5 and 6.

2.3.2 General

The distribution of the rock-types shown in the geologic maps of figs. 2-1 has been introduced in section 2.2. The present section aims to describe the relevant structures, encountered during lithological and structural mapping, and these are represented on the structural maps of figs. 2-2.

The structures to be described in this chapter were measured in the field and the conventions and systematics adopted during the mapping routine followed those proposed by Turner and Weiss (1963) in which the geometry of the various structures is: grouped in terms of Planar and Linear elements.

For the purpose of structural analysis, the mapped area (figs. 2-1 and 2-2) has been subdivided into almost homogeneous domains, based mainly on the distribution of the attitudes of the most prominent Planar Fabrics. The data for each sub-area have been plotted on equal area (lower hemisphere) projections and these are shown in
figs. 2-3 to 2-6.

One of the aims of the present analysis is to use the mesoscale structures (cf. Turner and Weiss, 1963, pp.15-16) in order to infer the geometry of the structures on the macro-scale.

It was noticed, in the field, that the meso-structures presented some characteristically persistent patterns of style and preferred orientation, resulting from several deformation phases, and this allowed them to be grouped, taking into account the following field criteria (see Weiss and McIntyre 1957; Johnson 1960-a):
(i) By observing the relationships (ie consistent) between structures that overprint and distrub previous structures and recording their position, general characteristics and pattern of preferred orientation.
(ii) by extending the criteria of similarity in their style and pattern of preferred orientation to those domains where overprinting is not clearly seen. It must be pointed out that a similarity in orientation does not necessarily define a particular generation.

The first of the above criteria is by far the most reliable. Based on this, three main groups of structures were recognised in the upper nappes of the Thrust Zone. However, one cannot expect to find a simple structural superimposition in every outcrop and for this reason, the second of the above criteria was widely used during mapping routines.

It is also the aim of the present section to analyse the various local preferred orientations of the meso-structures and to relate them to the pattern of the whole zone and ultimately to interpret the geometry in terms of the dymanic picture of the thrusting.

2.3.2-a The Sequence of Events and the Adopted Convention

As this mapping is almost restricted to zones of thrust faults and strong mylonitization, in which most of the rocks involved have their previous structures erased, it is convenient to place this mylonitization event as a reference guide. Therefore, the structural elements will be defined according to the following subdivision:
(i) Planar structures ($S_{i}-$ Planes) - Foliation is the term adopted here (cf. Turner and Weiss, 1963. pp.97-101) in order to define the generation of planar fabrics, independent of their origin.

- ($\left.S_{0}\right)$, defines any identifiable primary structure such as bedding found especially in the Paleozoic rocks.
- (S_{1}), refers here to the foliation formed as a result of mylonitization whereas S_{2}, S_{3} and S_{4} are respectively axial planes developed during the subsequent folding phases.
- (S_{A}), can generically (or collectively) define any recognisable planar fabric, previous to S_{1}, found in the proterozoic rocks.
(ii) Linear Structures (L_{i}) - These are prominent linear features, found throughout the mapped area, which are due to structures generated sequentially, independent of the rock-type. These are divided in different sets:
- (L_{1}), refers to a characteristically (early) penetrative linear structure, thought to be syngeneticwith S_{1}, which is given by longitudinal alignment of elongated minerals.
$-L_{2} \equiv B_{S_{1}} S_{2} \equiv F_{2}, \quad L_{3} \equiv B_{S_{1}} S_{3} \equiv F_{3}$ and $L_{4} \equiv B_{S_{1}} S_{4} \equiv F_{4}$, refer respectively to the fold axes of the subsequent deformation phases.

It must be pointed out that the above convention is surely

Abstract

purposes of study and description (within the mapped domain) it proves convenient in that it avoids conflict between the numbering and definition of structures (Paleozoic and Proterozoic) formed previous to the mylonitic foliation.

2.3.3 Description of the Geometry and Analysis of the Structures
2.3.3-a The Main Domains of Planar Structures

The mapped area is composed of three distinct domains accordingly to their structural characteristics. In the north-west (i) the Lower Paleozoic rocks form a domain bounded by a thrust (b-type of thrust as dtscussed later) which separate them from (ii) the zone of strong mylonitized rocks and finally (iii) the Moinian sequence that overlie this second domain.due to the effects of the aor the easternmost. thrust (see figs. 2-1). Thrust naming will be discussed later.

The rocks of domains (i) and (iii) have been described previously but those of the mylonitic domain need a brief description.

The largest and thickest part of the mylonite belt is made up almost entirely of Lewisian rocks and these lie immediately beneath a thick sequence of Moinian rocks. This generalized mylonitic zone comprises blocks of predominantly moderately deformed Lewisian rocks which are separated by zones much more intensely deformed rocks. These heavily mylonitized rocks form an elongated zone with a NNE-SSW trend and regionally they dip towards the ESE.

In the field it is easy to observe a transition from a strong deformed gneiss showing a persistent straight banding to an intermediate stage where lamination is even more intense and finally the extreme case where the rock is finely laminated; generally dark
in colour and shows a fine grained texture of closely spaced mylonitic folia. This lamination (less than 1 mm thick) is characteristic of narrow tabular zones of intense deformation. It is formed by the parallel disposition of platy materials. This presumably originated by the re-shaping and size modification of leucocratic minerals, such as quartz. The net result is a fine grained and uniformly graded microstructure exhibiting prominent parallel banding.

The characteristics of this foliation vary not only with intensity of deformation which seems to grade away from the mylonitic zones, but also accordingly the rock type. It is clear, that in conditions of intense deformation the appearance of a fine lamination is independent of the rock composition but in the less deformed stages the rocks with some percentage of micaceous materials tend to produce a more clearly defined cleavage than for instance a sample primarily composed of quartz and devoid of micaceous and platy minerals. We shall illustrate, in Chapter 5 , the effects of this re-shaping, size grading and re-orientation of platy minerals in a zone of progressive deformation.

Another aspect of the foliation in the mylonites is that it forms a quite persistent and regular pattern which overprints and erases most of the previous structures, and generally produces a homogeneization of the whole rock. For instance, quartz-feldspathic dykes and veins in the Lewisian Gneiss, presumably of Laxfordian aje, appear totally concordant with the host rock and even develop an internal planar fabric. In the more mafic parts there is a tendency for colourhomogenization (greenish) which is given by the development of equally spaced mica layers associated with epidote and chlorite.

The thickness of the mylonites varies considerably within the area. In the Paleozoic rocks, beneath the heavily mylonitic zones composed of Lewisian gneiss, there is clearly aurapid decrease in the
intensity of the deformation. There is no transposition of fabrics, so primary structures can still be identifiable at only a short distance from the b-thrust, as can be seen in plate 2-4. Mylonitization is restricted to a few centimetres of the thrust and cataclasis may be present (see plates 2-5 and 2-6). Overlying these Paleozoic rocks there follows a thick zone of mylonites which are bounded by the upper or the easternmost thrust (the a-thrust). This upper fault is characterised by a wider zone of mylonites and also by the fact that it does not form a sharp contact. The apparent continuity of structures across the thrust often makes it more difficult to identify this fault.

The phase of mylonitic formation is envisaged here as representing the peak of the local deformation and this fabric is not totally obliterated by the subsequent fabrics, namely S_{2}, S_{3} and S_{4}. The S_{1}-fabric is so dominant that it is believed it influences the orientation of the superposed fabrics.

2.3.3-a.1 The Geometry of S-Planes

The regional attitude of the foliation planes is given by a set of 34 stereoplots (fig. 2-3) which record nearly 3400 S-planes. The division into sub-areas is mainly based on the variability of the attitudes of the S_{1}-planes.

The stereoplots in fig. 2-3 show that the geometry of S_{1} is apparently simple, and with a few exceptions the π-diagrams clearly exhibit a remarkably homogeneous fabric generally depicting a strong preferred orientation, given by a single maxima and their associated contours. In general the fabrics range from axial-orthorhombic to monoclinic. There are exceptions such as the apparently tricinic symmetry of sub-area no. 2, but this area has been mapped in a greater

Plates 2.5 and 2.6. Illustrate aspects of cataclasis in the Paleozoic quartzites in the vicinity of a thrust-plane at

Creag-na-Faollinn.

detail and one can readily see from fig. 2-4 that the geometry of the S-planes is in fact composed of two fabrics with higher symmetry. It seems clear that the π-diagram in area 2 is made of two cross girdles that interfere, and this follows from the geometry of the folds which form Lunate shapes (ie Curvilinear-Hinges, see Turner and Weiss 1963, p.107) as illustrated in figure 2-4.

There are some localities which show less homogeneity in their π-fabrics (S_{A}-structures) and these include the contiguous zones 28 and 29 which constitute the domain of the so called 'undeformed' Lewisian block. Sub-areas 32 and 33 are from zones where deformation was inhomogeneous and perhaps a pattern of higher symmetry could be found by further subdivision in those sub-areas.

In general the homogeneity of π-fabric may be connected with a long history of strong and persistent deformation. Therefore if a certain fabric in an area does not exhibit a well defined high symmetry or constancy in direction except where it is refolded, such a domain may be interpreted as having suffered less deformation.

Zones showing fabrics of highest symmetry are those of subareas nos. 17, 23, 24, 25 and 27. In general there is a strong axial (sometimes tending to orthorhombic) maximum plunging steeply towards the NW which means that the planes dip gently towards the SW. The area represented by these diagrams corresponds exactly to the domain of the Moinian rocks. These rocks also show in the field that tiey are highly deformed and exhibit a strong effect of mylonitization.

A gradual change occurs towards the south, where in subareas 16,15 and 8 there is a pattern of southward plunging folds. This is clearly reflected by the π-girdles (see in fig. 2-3, the diagrams for sub-areas 15 and 8). This change in fabric orientation, in subareas 16,15 and 8 , coincides with the greatest change in the apparent

width (hence thickness) of the underlying mylonitic zone, which was fairly constant in width, beneath sub-areas $17,23,24,25$ and 27.

Sub-areas 19, 20 and 21 are part of a large domain in which the stereoplots show a $\pi-$ pole girdle striking $W N W$-ESE in which the β-axis coincides with the mesoscopic F_{3}-fold axes mapped in the field. Those 3 sub-areas are part of the An-t-Sron syncline which is illustrated in the cross-section EE' of fig. 2-20-e.

South of this area the stereoplots comprise domains of dominantly Lewisian mylonites which are characterized by the presence of folds in the meso and macro-scales. In sub-areas 13 and 14, no major fold-structure was recognised but in subtareas $12,9,10$ and 11 there is a substantial increase in the population of F_{3}-folds and this is reflected by the formation of π-girdles in which their β-axes roughly coincide with F_{3}-maxima (see figs. 2-3 and 2-7). However, areas 6 and 3 lie across a large overturned, S-shaped fold which plunges towards the East. This field observation is reflected in the stereoplot which show a girdle whose β-axis plunges to the East and is coincident with the maxima of the measured F_{3}-structures (fig. 2-7). The influence of this folding is also reflected in adjacent sub-areas 5 and 7 which show incomplete π-girdles buit exhibit consistent F_{3}-maxima (fig. 2-7).

Sub-area 4 lies in a zone of Paleozoic rocks situated between two lower thrusts and field observations show this to constitute a huge overturned fold structure. The π-diagram from sub-area 4 gives an axis concordant with the axis direction of the fold in sub-areas 3 and 6. However the statistical maximum for its F_{3}-hinges does not coincide with the π-pole of the girdle formed by the s-poles in this diagram.

The structural maps of figs. 2-2 contain most of the planar structures described in this section. Other planar fabrics such as the axial planes of the different fold phases measured in the field, are not represented by stereoplots but these were plotted on the structural maps of figs. 2-2.
2.3.3-b The Main Domains of Linear Structures

Among all linear fabrics, L_{1} is perhaps the most impressive because of its remarkably constant trend towards the ESE and occurrence practically in every rock type. There may be more than one generation or type of linear structures with this consistently parallel attitude towards the ESE direction (or WNW in case of folding). These may include; (i) striae given by the parallel disposition of minerals in the more quartzitic members. In the essentially pelitic rock types, such as the Oystershell rocks, such lineations are well developed in the so called 'oysters' and consist of very fine parallel lines given by different white shading in the 'milky-quartz' domains. (ii) Striae given by minute corrugations in the silky surface of psammites richer in micaceous minerals. (iii) The re-orientation and alignment of hornblende and augen or feldspar. (iv) The existence of flattened quartz rods (elongated parallel to the striations see plate 2-7) in a more pelitic matrix. This is characteristic of certain domains of the Moinian rocks.

Subsequent to the L_{1} forming event there followed two phases of ductile deformation which superimpose and distort the previous structures. These two phases are termed F_{2} and F_{3}, F_{2} was observed to show an acute angle to L_{1} while F_{3} exhibited a more varied pattern of orientations relative to the early lineation.

The last folding phase (F_{4}) developed structures characterised

Plate 2.7. Flattened quartz-rods parallel to the $\mathrm{L}_{1}-$ lineation. Psammitic rocks of the Moinain sequence in Loch Hope area.

Plate 2.8. L_{1}-lineation folded obliquely to an F_{3}-fold axis. Moinian psammites in the Loch Eriboll area.
by sharp and straight hinges. These formed at an acute angle to the ESE lineation direction (L_{1}). This phase is clearly distinct from the previously described phases for the reasons to be explained later.

2.3.3-b.1 The Geometry of the L_{1}-Lineation

The stereoplots of nearly 1400 such linear structures, having a markedly persistent trend towards the ESE, are displayed in fig. 2-5. This shows the same sub-area division as for the S-planes and it can be seen that these diagrams tend to exhibit symmetries which in general also vary from axial to nearly monoclinic. The orientation of the maxima and their more closely associated contours are, without exceptions, to the ESE generally with gentle angles of plunge.

In some stereoplots the lineations tend to describe a girdle in direct analogy to the effects of lineations being subjected to folding (see plate 2-8). There are some diagrams which give girdles apparently close to great circles (see in fig. 2-5 the stereoplots for sub-areas $33,17,8,7,2,6,10$ and 3). The poles to the great circles plunge up to 30°, both to the NNE and SSE directions.

It must be pointed out that individually these folded lineations might not be contained in a plane, but collectively their diagrams can give an indication that they might be pertinent to a 'best fit' plane. These great circle girdles pass through the regional L_{1} maximum to the ESE.

2.3.3-b.2 The Early Folds (F_{2})

The collective display of nearly $400 \mathrm{~F}_{2}$-fold axes are shown in the stereoplots of fig. 2-6. These folds have their hinges trending well within the $S E$ quadrant and their angles of plunge are generally gentle. In general they form isoclinal structures with

axial planes subparallel to the dominant foliation. They occur not only in the domains of the mylonitic Lewisian rocks but also well within the Moine psammites.

It must be pointed out that not only the distribution of the F_{2}-folds is rather irregular but also their population is more restricted, when compared with the subsequent fold phase. The local scarcity of these structures in some of the heavily mylonitized zones is not just due to their possible destruction by effects of intense deformation as they are also absent in some less deformed zones. It is also important to notice that the F_{2}-folds occur throughout the whole area and are not confined to a particular nappe.

Another important point is that the F_{2}-folds both in the Lewisian mylonites and the overlying Moines share the same relationship with the early lineation L_{1} and the subsequent folding F_{3}. It is not clear whether the F_{2}-folds are a result of a single phase.

2.3.3-b.3 The Second Folds (F_{3})

The subsequent ductile phase of deformation produced folds $\left(F_{3}\right)$ that clearly overprint and distort the F_{2}-structures. The pattern of preferred orientation of F_{3}-hinges is variable with gentle plunges to the NE and SW but also to the SSE. The axial planes of the F_{3}-folds are more oblique to the foliation planes. From their asymmetry, the structures show a clear vergence towards the WNW. The F $\mathbf{H}^{-f o l d s}$ bend the mylonitic folation and in general they tend to form at high angles to the mineral lineation $\left(L_{1}\right)$, but there are domains where that angle is considerably reduced.

The F_{3}-structures occur literally in all the nappes and lithologies met in the mapped area. Contrarily to the precedent \mathbf{F}_{2} folding phase the F_{3}-population is numerous and homogeneous in

Abstract

distribution and frequency (see structural maps of figs. 2-2). In general the F_{3}-folds are well developed where the foliation is well defined, either in the domain of the mylonitic rocks or in the Paleozoic rocks.

Most of the F_{3}-structures are ductilely folded surfaces but there are some examples where the layers can show some brittle deformation.

The wavelength of the F_{3}-folds range from a few centimetres to several tens of metres. As reported previously, sub-areas 3 and 6 comprise one such huge folded structure (see plate 2.9) and away from the Lewisian mylonites (sub-area 8) it is possible to follow the limb of an overturned F_{3}-fold for more than 100 metres. These larger $F_{3}{ }^{-}$ structures are characteristically S-shaped (sub-areas 3 and 6) when plunging towards the NE direction or Z-shaped (sub-area 8), if plunging to the SE.

The style of the \mathbf{F}_{3}-folds also differs from that of F_{2}, in that they are less tight, generally overturned, asymmetric and with straight limbs and sharp hinges. The F_{3}-axial cleavage is generally poor developed so it is easy to distinguish it from the mylonite banding. However the Oystershell rock exhibits a crenulation cleavage which dates from the F_{3}-phase.

Figure 2-7 displays 25 stereoplots which give the orientations of nearly $1200 \mathrm{~F}_{3}$ axes for the whole mapped area.
2.3.3-b.4 The Third Set of Folds $\left(F_{4}\right)$

The last group of structures $\left(\mathrm{F}_{4}\right)$ which overprint the earlier two sets, comprise folds with a completely different style. The folds show sharp and straight hinges and straight planar limbs.

Plate 2.9. Panoramic view of the
Creag Coire an Eich (photographed from the back side of the Creag-na-Faollinn).
This illustrates the scale of the $\mathrm{F}_{3}{ }^{-}$ folds (S -shaped, plunging towards NNE) of sub-areas 3 and 6.

Plate 2.9. Panoramic view of the Creag Coire an Eich (photographed from the back side of the Creag-na-Faollinn) This illustrates the scale of the $\mathrm{F}_{3}{ }^{-}$ folds (S -shaped, plunging towards NNE) of sub-areas 3 and 6 .

Table 2.2
Note: The figures for contours refer to percentages per one percent of the stereonet area.

Sub area	Pop	πs_{1}-contours	Pop	L_{1}-contours	Pop	F_{2}-contours	Pop	$\mathrm{F}_{3} \text {-contours }$
1	60	1-9-17-25	21	1-12.3-23.6-35	10	1-12.6-24.3-36	10	1-15.6-30.3-45
2	154	. 4-1.8-3. 2-4.6-6	90	1-3.5-6.5-8.5			63	1-4-7-10
3	219	1-6.3-11.6-17	81	1-7.3-13.6-20	10	1-3.6-26.3-39	67	1-6-11-16
4	150	.5-8.5-16.5-24.5	22	1-10.6-20.3-30			26	1-9-17-25
5	165	. 5-10.3-20.1-30	28	1-16-31-46	10	1-16-31-46	20	1-21-41-61
6	221	1-6.3-11.7	64	1-10.3-19.6-29	20	1-8.7-16.3-24	99	1-5-9-13
7	137	1-5.3-9.6-14	76	1-4.3-7.6-11	23	1-23-19-25	93	1-4.6-8.3-12
8	61	1-10-19-28	60	1-11-21-31	9	1-8-15-22	84	1-10-19-28
9	118	1-9-17-25	89	1-7-14-21	9	1-14-27-40	91	1-4-8-12
10	107	1-8-15-22	55	1-7-14-21	19	1-10-19-29	103	1-5-9-13
11	156	1-7-13-19	45	1-6-11-16			68	1-5-9-13
12	92	1-9-18-27	61	1-9-18-27	33	1-10-19-28	57	1-7-13-19
13	105	1-5-9-13	51	1-7-13-19	26	1-8-15-22	29	1-5-9-13
14	100	1-7-13-19	65	1-9-17-25	31	1-8-15-22	31	1-4-8-12
15	137	1-6-11-16	107	1-8-15-22	19	1-14-27-40	131	1-6-12-18
16	46	1-7-14-21	44	1-10-19-28	5	1-20-40	26	1-8-15-22
17	106	1-13-25-37	111	.5-12-24-36	22	1-12-24-36	96	1-4-7-10
18	93	1-10-19-28	45	1-13-25-37	35	1-10-19-28	10	1-10-19

Table 2.2 (continued)

Sub area	Pop	πs_{1}-contours	Pop	L_{1}-contours	Pop	F_{2}-contours	Pop	F_{3}-contours
19	74	1-4-14-21	15	1-11-20-29			7	1-10-19-28
20	80	.5-5.5-10.5-15.5					127	1-11.6-22.3-33
21	102	.5-3, 5-6.5-9.5					\checkmark	
22	60	1-10.6-20.3-30	25	1-13-6-23-6-39	27	1-8-15-22		
23	45	1-16-31-46	32	1-15-29-43	10	1-16-31-46	22	1-8-15-22
24	50	1-15-29-43	30	1-22-43-64	20	1-12-23-34	- 1	
25	71	1-9-17-25	28	1-17-33-49	17	1-16-31-46		
26	70	1-10-21-32	25	1-10-21-32	10	1-9.3-18.3-28	7	1-14.6-28.3-42
27	61	1-6-11-16	40	1-12-23-34				
28	50	1-5.5-10.5-15			$11]$	1-9.6-18.3-27	10	1-10.3-19.6-29
29	141	.5-4.3-8.1-12	10	1-13.6-16.3-29	」			
30	25	1-17-13-19						
31	42	1-8.3-15.6-23						
32	80	.5-5.3-10.1-15	30	1-11.3-21.6-32	187	1-9.6-18.3-27	35	1-9-17-25
33	83	1-4.7-8.4-12.2	35	1-6-11-16				
34	95	. 5-10.3-20.1-30	57	1-12.1-23.3-34.5	19	1-9.3-17.6-26	18	1-9.6-18.3-27

They invariably show very steep axial planes and exhibit a constant hinge direction which is nearly parallel to the L_{1} direction. The distribution of F_{4}-folds is more irregular than for any other of the previously described types. The \boldsymbol{F}_{4}-structures are confined to rocks which develop very finely spaced foliation planes, forming types which range from kink bands to chevron folds.

There are no collective diagrams for this kind of structure, but they are illustrated in the structural maps of figs. 2-2.

2.3.3-c Comments

It is thought that the lack of identifiable mesostructures earlier than S_{1} or L_{1}, in the mylonitic domains, is due to the fact that any such structures have been re-oriented during the Caledonian period of deformation. There is some evidence for the existence of primary structures not only in the Paleozoic rocks beneath the lower thrust of Creagan Road (plate 2-4), but alsa in the Moinian sequence (sub-area 15), however these features proved to be rare within the limits of the mapped area. The scarcity of these primary structures in the Moinian rocks could well attest the intensity of deformation. Barber and Soper (1973) report primary structures in the Moinian sequence but these were found (outside the present area of mapping) in a domain located further away from the mylonitic zones.

As reported earlier, sub-areas 28 and 29 constitutes domains of relatively less intensely caledonized fabrics. Although there is a tendency for triclinicity of fabric in these areas, the foliation has attitudes similar to that in the neighbouring zones of strongly deformed fabrics.

Major and minor folds belonging to the first two generations (F_{2} and F_{3}) tend to develop axial planes at low angles to the horizontal.

The tightness, reclined to recumbent character of these early F_{2}-folds are characteristic features not only in the mylonite zone but also away from them (sub-area 15 can provide good examples). The resultant attitude of the folds may be interpreted as being due to the rotation of the planar structures under the effects of progressive deformation. This can be confirmed by making a comparison between the attitudes of the F_{2}-folds and the subsequent fold phases $\left(F_{3}\right)$. The latter shows axial planes not so concordantly disposed relative the dominant foliation. It is interpreted here that the F_{3}-axial planes suffered less re-orientation (rotation). These facts are supported by an analysis of fold axis orientation (see Chapter 3).

Figures 2-8-a to c show plots of the maxima taken from each of the stereoplots in figures, 2-5, 2-6 and 2-7. It is important to observe the scattering of the lineations, according to their age:
(i) For L_{1} (see fig. 2-8-a) there is a clustering around the $113^{\circ} / 15^{\circ}$ direction. The range of trend of their maxima is a mere 30°.
(ii) Figure 2-8-b contains the maxima for F_{2}-lineations and it can be seen that there is a confinement of these to the se quadrant.

In fact the range of their trends is precisely between directions 090° and 150° (ie approximately 60°).
(iii) Figure 2-8-c gives a maxima of F_{3}-lineations and these can be grouped in three sets: the first plunging towards NE-SW, the second to S-SE and the third to the ENE direction.

The above trends confirm field evidences that L_{1}-Iineations have a conspicuous and constant direction. It also suggests that the older the lineation the more clustered it appears around the ESE direction.

The scatter of F_{3}-axes was interpreted by Soper and

Figure 2.8. Synoptic diagrams, grouping only the strongly dominant maxima of the stereoplots for:
(a) L_{1}-fabrics,
(b) F_{2}-fold hinge directions and
(c) F_{3}-fold hinges. See text for explanation.

Wilkinson (1975, p.350) as being an original feature, due to the intersection of S_{1} and S_{3}, the latter being at variable attitudes. However, the present study does not disregard the possibility of the F_{3}-phase being in fact a polyphase deformation event because: (i) as reported earlier the F_{3}-structures exhibit both the ductile and brittle characteristics. The deformation history of the Thrust Zone, in Eriboll, indicates that it evolved from an early ductile to a late brittle stage (this will be discussed later). (ii) the scatter of F_{3}-axes could well indicate a very long period of progressive deformation that would include spasmodic 'sub-phases'. Also from fig. 2-8 it can be seen that the grouped maxima are contained on a plane which for L_{1} dips 15° to 115°, while for $F_{2}{ }^{-}$ axes the best fit plane dips at 20° towards 120° and the grouped maxima of F_{3}-hinges describe a girdle which dips at 25° towards 130°. Thus the picture of progressive rotation of fold axes towards the clustering direction of L_{1} is corroborated by the fact that there is a progressive rotation of the best fit planes towards the attitude of the L_{1} best fit plane. The girdie containing the lineations becomes shallower with age and increase in deformation intensity.

It is argued, in the next chapter that the above data agree with an interpretation of fold hinges having rotated under persistent strain to become arcuate or lunate-shaped; (forming curvilinear fold hinges), so that with intense deformation they direct their hinges towards the ESE direction.

2.3.4 Fold Geometry

2.3.4.1 General

the mapped folds not in terms of their orientations or spatial location, as in the previous section, but instead using the elements seen in a profile section and applying the techniques of fold analysis developed by Hudleston (1973-a).

There are two important and distinct aspects of fold geometry: (i) that given by the trace line of a single surface and (ii) that given by the characteristics of a layer (or a sequence of layers) which comprise the domain bounded by two curvature lines, an 'inner' and an 'outer' form surfaces. The latter aspect contains elements that allow a fold classification using the inclination of the dip isogon lines (Ramsay 1967, pp.363-372), while the former can give quantitative information about fold shape.

The analysed folds (figs. 2-9 to 2-15) were drawn from photographs taken from F_{2} and F_{3}-structures sampled both from the heavily and less mylonitized rocks in the area.
2.3.4.2

Fold Class

Dip isogons are defined as the lines joining points of equal slope on two adjacent trace surfaces (Elliott 1965). Ramsay (1967) classified folds according to the pattern formed by these IInes; in Class 1 these are convergent downwards (in antiforms); in Class 2 the isogons are parallel, and in Class 3 they diverge downwards. The variation (or deviation) of these lines can give some Information on how the layers interact or accommodate strains during folding or reflect fabric anisotropy, and yet to show variability in competency.

Parameters that can be used in conjunction with isogons
are: (i) the ($t^{\prime} \alpha$) orthogonal thickness (Ramsay 1967, p.359) or

Hudleston's (1973-a) parameter ($\phi \alpha$) which is defined as the angle between the dip (α) isogon and the normal to the tangent to the folded layer.

In the present study of folds, use was made of the graph relating $\phi \alpha$ vs α instead of $t^{\prime} \alpha$ vs α because the former has the advantage (i) that it does not change its shape with the change in the dip reference line as in the case of the plot t' α vs α, and (ii) also it does not require the measurement of the length of a line, as the latter does. (iii) It presents the distinct advantage that the curves behave similarly to the first derivative dt' $/ \mathrm{d} \alpha$, which make these curves very sensitive to geometric changes (see Hudleston 1973-a, pp.12-13). This is particularly convenient for the present folds. Figures 2-9 to 2-14 illustrate the variations of the parameters for the \mathbf{F}_{3}-folds not only in different lithological types but also within different zones of deformation. Figures 2-9-a and 2-10-a show F_{3}-folds from two different localities belonging to the Moine Psammites which overlie the Oystershell rocks. Being an essentially mechanically homogeneous rock, very little isogon deviations are to be expected as there should be no competence contrast (Gray 1979). However the observed isogons converge (Class 1) and diverge (Class 3) mainly due to difference in layer thickness which can cause competence differences possibly coupled with differences in layer properties due to grain size and of mica content. Whatever the reasons are, the above figures 2-9 and 2-10 also reveal that the folds thicken in the hinge areas and thin on the limbs. The $\phi \alpha$ vs α plots, also demonstrate that the curves are sometimes not smooth and these irregularities may be the result of (i) measurement bias or errors, (ii) to the nature of those parameters reputably very sensitive to slight changes in curvature. From these graphs $\phi \alpha$ vs α, the majority of isogon patterns plot

Figure 2.9. (a) Pattern of dip isogons for F_{3}-folds in Moinian Psammites.
(b) Diagram of $\phi \alpha$ vs α showing the different field classes.

Figure 2.10. (a) Pattern of dip isogons for F_{3}-folds in the domain of Moinain Psammites.
(b) The obtained ϕ / α curves. See text for explanation.

within the 1 C field while some less competent layers with less rounded crests plot directly in the class 3 field, in general very near to the boundary line of class 2.

Figures 2-11 and 2-12 illustrate some of the isogon patterns for the F_{3}-folds in the domain of the Lewisian mylonites. For instance in 2-11-b the ϕ / α curves plot dominantly in the 1 C field. Fold layers are characterised by more or less homogeneous layers that exhibit straight limbs and reasonably constant thickness. In the hinge regions the pattern varies from showing almost parallel isogon (inner layers) to those of Class 1C. Figure 2-12-a shows layers in a less tight fold and the corresponding $\phi \alpha$ vs α plot (fig. 2-12-b) exhibits a more irregular pattern which is due to irregularities in the curvature of the fold. Again, the dominant Class is 1C. The sane pattern applies for figure 2.13 and its corresponding $\phi \alpha$ vs α plot (figure 2-13-b) which shows some Class 3 layers in the core of the fold.

Figure 2-14 comprises a sequence with different lithologic characters. The inner layers neither acquire the characteristics of thickened crests nor the almost cuspate forms of some previous examples. This is due to the presence of two layers which have a more quartzfeldspathic composition and this makes them contrastingly more competent than the surrounding pelitic members. The anisotropy is reflected by the isogon patterns and the position of the ϕ / α curves (figure 2-14-b) is ruled by differences in layer thickness and composition. There is a complete spectrum between fold Classes 1C, 2 and 3.

Figure 2-15 illustrates an F_{2}-fold from the psammitic layers of the Moinian sequence. The folds exhibit a distinctive tightness with proportionally longer 1 imbs and thicker crests. The corresponding ϕ / α curves show the predominant $1 C$ and 3 Classes with the

Figure 2.11. (a) Isogon patterns of F_{3}-folds affecting rocks of the Lewisian mylonites.
(b) The corresponding ϕ / α curves. See text for comments and explanations.

Figure 2.12. (a) Isogon patterns for F_{3}-folds in the Lewisian rocks.
(b) Refers to some of the corresponding ϕ / α curves. See text for details.

Figure 2.13. (a) Isogons of F_{3}-folds in the Lewisian mylonites.
(b) The corresponding ϕ / α curves. See explanation in text.

Figure 2.14, (a) Pattern of isogons for F_{3}-folds in mylonitic rocks of the Lewisian gneisses, Eriboll.
(b) The corresponding ϕ / α curves. See details in text.

Figure 2.15. (a) Isogon pattern for F_{2}-fold in the psammitic layers of the Moinain sequence, Eriboll. (b) The corresponding ϕ / α curves. See text for explanation.

difference that in this example the curves are smoother and longer. This is due not only to the relative homogeneity in the layers but also to a higher degree of fold tightness.

2.3.4.3 Fold Shape

As stated earlier, fold shape can be quantitatively specified using the trace of the surface form in profile. The rates of change in inclination of these lines can be studied using the type of Fourier analysis proposed by Hudleston (1973-a). The method consists in dividing the folded surface in quarter wavelength segments and then fitting the Fourier function:

$$
\begin{equation*}
f(x)=0.5 a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} n^{\infty} \sin n x \tag{2-1}
\end{equation*}
$$

The above expression can be further simplified when all a constants, all cosine terms and even numbered sine terms are equal to zero (see Stabler 1968, p. 345; Hudleston 1973-a, pp.18-19), so the shape of the curve can be obtained only in terms of the odd coefficients b_{1}, b_{3}, b_{5} etc. Stabler $(1968, p .346)$ points out that further simplification eliminates the high harmonics (greater or equal to 5) because in terms of a numerical contribution these become neglibible. Therefore, the shape of the form line can be fully defined in terms of b_{1} and b_{3}.

Both Stabler (1968, p.345) and Hudleston (1973-a, p.19)
preferred a quarter-wavelength unit ("W/4 unit"), as the former points out, this can avoid problems of asymmetry. The $W / 4$ unit is obtained by establishing the Y-reference axis normal to the tangent line to the hinge and X as the normal to the Y-line passing through the inflexion
point (see Hudleston 1973-a, pp.19-20). The coefficients b_{1} and b_{3} were obtained here using Hudleston's (1969) original programme which makes use of the IBM-subroutine FORIT for the summation of the Fourier series.

Figure 2-16 plots b_{3} vs b_{1} values of the analysed 78
units. These points tend to be constrained mainly along a relatively narrow strip bounded by $0.1>b_{3}>-0.1$ and b_{1} up to 9.5. This undoubtedly defines a plot within the field of the sinusoidal type of waves.

Hudleston (1973-c) pointed out that b_{1} values closely reflect the ratio amplitude/wavelength of fold tightness. Results for. the first harmonic reveal that for F_{2} and F_{3}-data the mean value is approximately 2.97 , while for the b_{3} coefficients, the mean is -0.011. A negative result in this second harmonic implies folds with sharp hinges and relatively straight limbs.

For F_{2}-folds, an average value for the b_{1}-coefficient is in the order of 5.1. This is nearly twice the corresponding average for the F_{3}-folds (where $\mathrm{b}_{1} \simeq 2.58$).

Figure 2-17 plots the b_{3} / b_{1} ratio vs b_{1} values. The parameter of the ordinates is very sensitive to changesin the fold shape. The mean b_{3} / b_{1} ratio for the whole population is around $\mathbf{- 0 . 0 0 2 8}$ while for F_{2} folds this is approximately equal to $\mathbf{- 0 . 0 0 0 2 \text { , which means }}$ that the F_{2}-folds tend to present more rounded hinges than the average.

The variances of the calculated b_{3} / b_{1} ratios for both F_{2} and the average fold are very close (4×10^{-4} and 6×10^{-4} respectively) which confirms that there is little to no change in type of fold shape. This can be seen in the b_{3} / b_{1} vs b_{1} plot, where the points are practically confined to a narrow strip bounded by ordinate values ± 0.5

Figure 2-18 used Hudleston's (1973-a) pictorial diagram for summarising and characterising the fold types found in the area. The

Figure 2.16. plot of b_{3} vs b_{1} values of 78 units. Fold shapes tend to be confined to the sine wave type which presents different amplitudes. Circles refer to F_{3}-folds while 'diamonds' represent F_{2}-fold forms.

Figure 2.17. Diagram plotting $\left(b_{3} / b_{1}\right)$ ratio vs b_{1} values. Full circles correspond to $F_{3}-f o l d s$ while diamonds refer to F_{2}-folds. See text for explanation.

SHAPE

Figure 2.18. Hudleston's (1973-a) visual diagram of fold shapes.

The area depicted by the dotted line represents the domain of the analysed folds in the mapped area.

Figure 2.19. Frequency-histogram grouping 50 of the obtained slopes of the best fit lines with data values of $\tan (\phi-\alpha)$ vs $\tan \alpha . \quad$ See details in text.
figures given in the last two paragraphs also indicate that the amplitude of F_{2}-folds is considerably higher than that of the F_{3}-folds. There seems to be a change in fold shape with increasing amplitude to forms exhibiting more rounded crests (cf. Chapple 1968, Hudleston 1973-b). A change is represented here by a slight increase in the b_{3} / b_{1} ratio followed by a large increase in b_{1}. This also supports Hudleston's (1973-a, p.119) comments that folds produced by buckiling have a sinusoidal form but with an increase in the amount of flattening (parallel to the axial-plane) there is an increase in the amplitude but the shape remains unchanged.

2.3.4.4 Strain Superimposition and Comments

The results of fold classification show that similar (ie Class 2) folds are rare. This suggests that folding did not operate by simple shear parallel to the axial surfaces and it is reasonable to assume that at least a significant component of buckling was present during the fold formation. Another indication that buckling played an important role in the fold formation is that the folded lineations are not contained in a plane. Thus the idea of folds formed by heterogeneous simple shear alone cannot be applied in this area.

As the harmonic analysis suggests that the fold shape initially formed a low amplitude sine wave which then changed to a high amplitude sine wave with progressive deformation, it was decided to apply Hudleston's (1973-a, pp.35-39) technique that evaluates the amount of flattening by comparing isogon curves with theoretical models that have their isogons modified by effects of superimposed homogeneous strain. There are however some limitations to these models and also some conditions to be met (see Hudleston 1973-a, p.35, for full details).

Strictly speaking, flattening can only be invoked if at least one of the principal axes of stain is parallel to the fold axis (see Mukhopadyay 1965, Hudleston 1973-b). While this condition is not strictly true here, it must be pointed out that most of the illustrated F_{3}-folds have their hinges contained in a plane trending NNE-SSE, which should correspond (roughly) to the interpreted position of the principal plane of the strain ellipsoid formed by the least and intermediate principal axes. The F_{2}-fold of figure 2-15-a, however, is directed with its hinge line nearly parallel with the 'statistical' position of the X-principal axis of the ellipsoid while the axial plane of this fold is flat lying in the foliation planes. Therefore the F_{2} fold profiles probably lie close to the $X Z$ plane while the F_{2} profiles are very close to parallelism with the $Y Z$ plane.

Two graphs are available for calculating the amount of superimposed flattening:

(i) The first uses the original ϕ / α curves and compares those which occur within the field of Class 1 C , with a family of curves that are generated by the function:

$$
\begin{equation*}
\phi=\tan ^{-1}\left[\frac{\tan \alpha\left(1-R^{2}\right)}{R^{\prime 2} \cdot \tan ^{2} \alpha+1}\right] \tag{2-2}
\end{equation*}
$$

where $R_{1}^{\prime}=\sqrt{\lambda_{2} / \lambda_{1}}$ is the reciprocal of the amount of flattening (see Hudleston 1973-a fig. 19).
(ii) The second graph is given by Hudleston (1973-a, fig. 21). This represents a fold by mean of a single parameter; the slope of the straight line on a graph relating $\tan (\phi-\alpha)$ vs $\tan \alpha$. This slope is obtained from data by a simple best fit method.

The first method was not used because the ϕ / α curves obtained here do not strictly follow the contours set by [2-2]. Therefore the second technique was applied using the linear regression expressions [4-62] and [4-63] to 50 of the ϕ / α curves. In each fitting, a minimum of five pairs of $\tan (\phi-\alpha)$ and $\tan \alpha-$ values were used, and the amount of flattening $R=\sqrt{\lambda_{1} / \lambda_{2}}$ was assessed using:

$$
\begin{equation*}
R=[\tan (\Delta)]^{-\frac{1}{2}} \tag{2-3}
\end{equation*}
$$

where Δ corresponds to the slope of the best fitted line.
The results for F_{3}-folds are grouped in the frequency histogram of fig. 2-19. The calculated amount of flattening range from 1.11 to 6.83 while the mean of the values is roughly equal to 2.6 . For the F_{2} fold, the range is between 2.4 and 4.2 and the mean is 2.8 which apparently does not differ too much from the F_{3}-mean, except for the fact that this latter relates to profiles that lie near the YZprincipal plane of strain while the former is closer to the $X Z$ section.

2.3.5 Structure in Macro-Scale

2.3.5.1 Cross-Sections Description

Having already described the statistic distribution of the various elements of the Caledonian fabric, it is now possible to present some inferences and comments about the general geometry of the structure (or macro-scale) of the studied area by means of a few selected cross sections.

Figures 2-20 (a to i) display 9 such sections. These were drawn from the Geology and Structural Maps (figs. 2-1, 2-2), transverse to the length of the deformation belt.

Section $A A^{\prime}$ (fig. 2-20-a) is the most southerly of the presented traverses. It comprises the thickest part of the mylonitic Lewisian domain which is bounded eastwards by a fault line (the a-thrust) that brought the Moinian succession on top of the Lewisian mylonites. In the middle of the Lewisian domain there are shown traces of the S-shaped and overturned (view downplunge, towards the NNE) F_{3}-folds.

The folded.Lewisian may be bounded by a fault as the mesoscopic folds stop abruptly at this boundary (see locality c, in fig. 2-20-a). To the west, the topography is controlled by the orientation of the foliation planes (dip-slope) which are extremely parallel and show a restricted number of folds. There are a few folds on the summit of Creag na Faollinn which constitutes the domain of sub-area 5. The west face of Creag na Faollinn exhibits an intricate pattern of thrust planes that isolates a folded block which includes:asuccession of relatively undeformed Lewisian, Basal Quartzites and Pipe-Rock. This is the domain of sub-area 4.

Beneath the lower thrust there appear Eucoid Beds and PipeRock and these are interpreted as making part of the imbricate zone. However, 200 m NE of this zone there is a good example of an associated parallel thrust beneath the lowermost thrust shown in this $A A^{\prime}$ section. (see plates 2-10 and 2-11, where Basal Quartzite rests on top of PipeRock) ,

It is believed that the front face of Creag na Faolinn characterizes a domain of rocks with rheologic properties quite different from those located eastwards. This difference stems from the fact that in the west the thrust surfaces are clearly identifyable [Johnson's (1960) type of 'clean-cut-thrusts' see plate 2-12]. and also show the existeqce of rock shattering and other brittle structures such as the cataclasis in the vicinity of thrusts (plates 2-6 and 2-5) and the

Lewisian	$L 1$ Upper	Proterozoic	Lower Paleozoic		STRUC
ILD \square MYL.	IMG	IMP \square OR		$\square F S$	\square - 1 C
BD		AS			- 5 FT

LD = Less Deformed
MYL $=$ Mylonitic
BD = Basic Dyke

MG $=$ Moinian Gneiss
MP = Moine Psammite
OR = Oystershell Rock
AS $=$ Amphibolitic Sheet
$\mathrm{BQ}=$ Basal Quartzite
PR = Pipe Rock
FS = Fucoid \& Serpulite beds
DL $=$ Durness Limestone
$\mathrm{TT}=$ Thrust Trace (arrow points in the sense of movement)
$\mathrm{LC}=\mathrm{Li}$ thologic Contact FT $=$ Foliation Trace.
 and supplementary legend (thrust naming). The horizontal scale, in all sections, is identical to that on the geological map (ie $\simeq 1: 10,560)$.
. a

2.10

$2 \cdot 11$

Plate 2.10. Illustrates stacking of thrusts on the Western face of Creag-na-Faollinn. From top to bottom: Lewisian Gneiss (LG), Basal Quartzite (BQ), Pipe-Rock (PR).

Plate 2.11. Detail of Plate 2.10. It shows the Basal Quartzite ($B Q$) thrusted over the Pipe-Rock (PR).

Plate 2.12. Basic rock of the Lewisian Domain thrusted over Paleozoic quartzites ('clean-cut-thrust'). Creag-na-Faollinn area, SE end of Loch Eriboll.
formation of imbricate faults.

Section $A A^{\prime}$ cuts across the thickest part of the mylonitic zone and this thins both to the south and north as it will be shown by the next section.

Cross section B^{\prime} ' (fig. 2-20-b) runs approximately SE-NW. In the east it comprises Moinian rocks of sub-areas 8 and 9 . This is the section showing the more extensive and perhaps the thickest domain of the Oystershell rocks which show the variations in the pelitic and psammitic content as described in section 2-2. This variation was only noticed in this particular region.

As in section $A A^{\prime}$, there seems to be an association between the topographic slope change with the proximity of the a-thrust zone, which here shows no discordance in structures between hanging wall and footwall. In fact the very existence of a thrust in this zone has been a disputable subject since the days of Peach and Horne. Under conditions of intense deformation the rocks look very much alike, so the thrust is difficult to locate accurately. The existence of the fault is evident by the fact that some meters away (in both directions) the rocks prove to be definitely distinct, Moine and Lewisian.

The Lewisian and the fine laminated Moine psammites, located between the thrusts, show intense F_{3}-folding with overturned structural patcerns. This is the section where it is possible to see the thickest pack of mylonitic Moinian psammites (below the a-thrust) interbedded within the Lewisian mylonites. This Moinian domain is the extension of another strip depicted in section $A A^{\prime}$ and it will be shown that the same pattern of interfingering of these rocks persists in the next two cross sections.

The Moinian psammite is truncated beneath by a fault that brings it into direct contact with the Paleozoic quartzitic rocks (see

Geologic Map of figs. 2-1) which are represented in this point by the 'Pipe-Rock'. These are inverted by folding.

Section CC' (figure 2-20-c) trends $315 \% 135^{\circ}$. The Moinian rocks above the a-thrust are mainly the psammites of sub-area 15 which show the effects of an F_{3}-fold verging towards the WNW. The thickness of the Oystershell rock has diminished considerably from the previous section and on the western slope, the lower Moinian quartzite is in contact with the Lewisian mylonites through a fault (the a-thrust).

The Lewisian beneath the a-thrust is interfingered with Moinian psammites and to the west this occurs again and it is inferred that they are in thrust contact (b-thrust) with the Paleozoic rocks.

Section D^{\prime} (fig. 2-20-d) is almost parallel to the previous one. The Mointan sequence at this point shows additional displacements due to vertical faults.

This section runs through the region which was called the 'zone of complication' by Soper and Wilkinson (1975). The upper thrust zone (a-thrust) still has a mylonitic character but the contact with the Lewisian mylonites is much more complicated than to the south. It is difficult to map; in some places this contact is concealed by peat and therefore has to be inferred. It is quite probable that there are several associated thrusts like those associated with the allochthonous limestone cropping out just north of this section. (see geologic map).

The Lewisian mylonites do not crop out continuously and some zones are entirely covered with peat. The interbedded Moinian rocks crop out in two separated horizons. the westernmost being the one which comes directly into contact (through the b-thrust) with the large overturned structure consisting of Paleozoic rocks.

The Precambrian rocks here show evidence of intense mylonitization but the underlying Paleozoic rocks clearly exhibit primary structures, such as cross bedding, at only a small distance (less than 10 m vertically) from the b-thrust (plate 2-4). This suggests that the Moinian and Lewisian domains have experienced a more prolonged deformation history than the adjacent Paleozoic rocks.

The section EE' (see fig. 2-20-e) trends SSE/NNW and shows the gneissic rock overlying the upper Moinian psammites. The Lewisian mylonites are devoid of Moinian psammites but show interbedded Paleozoic quartzites very near the edge of the b-thrust contact with the (underlying) truncated Paleozoic sequence. The overturned fold illustrates the structure of the An-t-Sron syncline.

Cross section FF' $^{\prime}$ (fig. 2-20-f) exhibits a considerable reduction in the thickness of the Moinian sequence. The Lewisian mylonites do not include any of the Moinian psammites in this section, and the mylonite zone seems to be affected by presumably vertical-horizontal displacements possibly not related to Caledonian movements. The mylonites are in direct contact with the Basal Quartzite which belongs to a block that also shows Lewisian gneiss,much less affected by deformation, and its contact with the Cambrian rocks is the original unconformity.

The subsequent section (GG', see fig. 2-20-g) has an orientation parallel to the ESE/WNW trend and shows in the eastern side that the Moinian sequence is warped synformically and this group together with the Lewisian mylonite zone might have been affected by the vertical faults.

It must be noticed that the thickness of the Lewisjan mylonites, bounded by the a and b-thrusts, decreases significantly from

Abstract

the south, while the block of the 'less deformed' Lewisian occupies the greatest area in this section. The contact with the Paleozoic rocks is presumably the continuation of the unconformity mentioned in section FF.

Cross section HH' (fig. 2-20-h) trends $296 / 116^{\circ}$ and crosses the top of the Arnaboll Hill. The Moinian sequence has been completely eroded away from the easternmost part of the section; therefore only the underlying Lewisian mylonite can be seen overlying the previously lowermost b-thrust. Beneath, there is another thrust, carrying Lewisian rocks, known as the Upper Arnaboll Thrust (Coward 1980). The name b-thrust, used throughout the present description, was taken from Coward's (1980, fig. 5) work, which explains the structural evolution of this very region. However it is necessary to emphasise that apart from the b-thrust trace illustrated in section HH', its use elsewhere is entirely the responsibility of the author. Rathbone et al. (in press) consider the Upper Arnaboll Thrust and the b-thrust to merge on the Arnaboll Hill, and call the southern continuation of both, the Upper Arnaboll Thrust. However the present study considers that the Upper Arnaboll Thrust branches-off laterally, to ithe NE, and this explains the geometry seen on the geologic map of fig. 2-1.

The present section also. presents another speculative view and that is the backlimb thrusting benaath the trace of the Upper Arnaboll Thrust and the faulting of the trace of the Arnaboll Thrust. These interpretations are based on structures shown in the northernmost edge of the mapped area.

The cross section $I^{\prime}(11 g, 2-20-1)$ is located on the NE side of Loch Hope and runs oblique to the previous section. It shows in the east, Moinian psammites on top of the Moinian Gneiss. The structure is characterised by an overturned S-shaped (plunge towards

NNE) F_{3}-fold. Amphibolites are represented in this section as occurring within the Moinian Gneisses. The 'Oystershell' rocks occur only at one locality north of section II' and the reasonfor them not being represented along this section is due to probable concealment by peat cover.

The Moinian sequence is in thrust contact with the Cambrian quartzites, similarly to the a-thrustin the Eriboll sections. The mylonitic Lewisian in this region shows numerous lenses of Cambrian Basal-Quartzite, and presents a pattern of mylonitic banding comparatively more heterogeneous than the corresponding domain at Eriboll. This heterogeneity will be discussed in studies of Grain Shape and Paleopiezometry in chapters 4 and 7. The western edge of these mylonites shows highly deformed rocks exhibiting characteristics of closely spaced foliated planes. This zone is in direct contact with the domain of the less deformed Lewisian gneiss. This is a situation very similar to that occurring in sub-areas 28 and 29 or as in the area between section $F F^{\prime}$ and GG'. The contact is interpreted as being similar to the b-thrust (type) as in Eriboll. This is supported by the fact that the 'less deformed' Lewisian gneiss also resembles that in sub-areas 28 and 29 and is similarly heavily impregnated by feldspathicpegmatites. The less deformed Lewisian rocks are underlain by Paleozoic quartzite rocks. This situation is similar to that for the Upper Arnaboll Thrust in the Eriboll area.

2.3.5.2 Thrust Emplacement Mechanisms

As in all the matters connected with thrust faults, the mechanics of thrust-emplacement is also a controversial subject. The available models vary according to the original approach which could be essentially analytical (Elliott 1976-a, b; Chapple 1978), experimental
(Ramberg 1980) or even empiric-analogic (R. Price and Mountjoy 1970; Dahlstrom 1970).

The exact forces governing the development of thrusts and nappes are not known. However, gravity forces are presently considered to play a leading role in the motion of thrust sheets, as applied lateral stresses would probably deform the sheet rather than solely transport it (Hubert and Rubey 1959). Among the gravity-types of mechanisms that could be related to the development of thrust movements (see discussion Elliott and Johnson vs N. Price et al. 1978), Gravity Spreading seems to be favoured by some that advocate the sequential development of thrusts in the direction of transport (R. Price and Mountjoy 1970; Dahlstrom 1970; Elliott 19764 , b; Ramberg 1980), while Gravity Gliding (N. Price 1977, Blay et al, 1977) may cause faults to propogate opposite to the movement direction.

Elliott (1976-a) applied concepts of motion in glaciers (Nye 1952) when he derived his model for the motion of thrust sheets. He pointed out that the surface slope controls the gravitational forces, and formulated that

$$
\begin{equation*}
\tau=\rho \mathrm{gH} \alpha \tag{2-4}
\end{equation*}
$$

where τ is the basal sheanstress, ρ is the rock density, g the gravitational constant, H the nappe thickness and α is the surface slope. Chapple's (1978) model conflicts in many aspects with that by Elliott(1976-a), principally by the fact that he envisages the topographic slope as a negligible factor and places more importance in the horizontal compressive stress. His model also takes into account the Internal deformation of the slab which moves also because of the existence of a weak basal layer.

Ramberg (1980) approached the problem using experimental models. In his view of gravity spreading, the forward movement is due to the vertical shortening of the nappe and this not only implies a lowering of the centre of gravity (ie gravity potential) but also the lengthening of the horizontal plane.

Ramberg (1980, figs. 3 - 5) considered two models: (i) one where there is a free slip along the base of the sheet. Pure shear may occur both on the top and bottom of the model, while in the middle zone there is a combination of pure and simple shear. (ii) The second model has a complete coherence at the base. The top of the model is analogous to the previous one but towards the base simple shear becomes important due to the welded nature of the rock.

In Ramberg's opinion, the operational mechanism of a nappe is a combination of pure and simple shear, represented by a vertical shortening and shear along the shear direction in a quasihorizontal plane.

This problem of strain in a thrust sheet will be returned to in later chapters.
2.3.5.3 Discussion

So far in this study, the thrusts have not been named. This
is due to the fact that naming and correlation of thrusts can be a matter of personal interpretation and this has been a problem in the NW Highlands since the days of Peach and Horne.

One reason for disagreement stems from the fact that it is not always possible to follow a particular thrust line throughout an area; the trace may be lost by simple concealment or die out or yet anastomose with another fault.

Soper and Wilkinson (1975) conceived the existence of an
upper Thrust in the Eriboll area and they termed it the Eriboll thrust. This bounded the Lewisian and Moinian mylonites and it was restricted to the area, roughly, between present cross sections CC' and FF'. This thrust trace corresponds exactly with the present a-thrust. However, what is not understood is why these authors did not extend this thrust line to the south and north of this area as it is quite clear in the field that the mylonitic zone persistently bounds the Moinian sequence and this is one of the most consistent boundaries in the whole area. It seems reasonable to extend the thrust trace as seen in the present maps (figs. 2-1 and 2-2).

The problem connected with the location of the Moine Thrust (s.s.) in fact dates from the days of Peach and Horne. Their original maps (IGS-Edinburgh) reveal that there were two conflicting positions for the MTP:

In the first interpretation, the Moine Thrust (s.s.) matches the position of present study's b-thrust. In this case they use the denomination $3 M T P$?, and along the thrust trace there are always interrogation marks.

In the second interpretation the Moine Thrust (s.s.) lies more eastwards, beneath the Moinian sequence, near or along the present position of the a-thrust. Along this fault line the word Moine (in Moine Thrust Plane) is clearly crossed out and replaced by the initials B.N.P.

Soper and Wilkinson (1975) pointed out that Peach and Horne were in disagreement on the above issue. Soper and Wilkinson also conceived the Moine Thrust as (i) underlying the thick mylonites, and (ii) forming a clean-cut, brittle type of thrust surface which developed during the last deformation (D_{4}). Thus Soper and Wilkinson clearly put the Moine Thrust with this study's b-thrust.

In the model suggested by Coward (1980, fig. 5) the sequence of faults develops from an initial movement along the MTP and then follows displacements in the direction of transport (Dahlstrom 1970) branching off from the lower thrust zone. Adopting Coward's model for the general development of the area, the MTP in this study would correspond exactly to the upper or the a-thrust and this is in agreement with B.N. Peach's opinion for this fault's position and is contrary to Soper and Wilkinson's view. McClay and Coward (1981) and Rathbone et al (in press) also placed the MTP in the position of the present a-thrust.

The age of the mylonites has been a problem in the past. Peach et al. (1907) attribute all the structures observed in the area of the thrust zone to the effects of thrusting movements. This seems to follow the original view of Lapworth (1885). Clough (in Peach et al..1907, p.46) postulates that folding of rock in the domains above and below the thrust preceded the formation of the latter. Bailey (1955, p.162) pointed out that folding, dislocation metamorphism in the thrust belt and the general metamorphism of the Moines dated from the Moine Thrust formation. Christie (1955) stated that the main transport of rock in the thrust zone of Assynt relates to an early phase of movement, developing mylonites and plastic folds. Christie (1963) was in the opinion that the thrusting eventa culmin* ated in the formation of a mylonitic foliation and the ESE plunging folds.

Johnson's (1957) early view favoured the idea of mylonites preceding folding and recrystallisation and these were followed by brecciation indicating a time gap between the mylonite formation and the main thrust phase. Johnson (1960) modified his first opinion by
stating that the events were discontinuous and there exists ... " no obvious relations betwen mylonites and the Moine Thrust fault, of which there is no evidence prior to the latest movement phase ...". In his opinion the mylonites of Loch Alsh contain two sets of folds unrelated to the thrust movements.

Barber (1965) studied the Thrust zone of Loch Alsh and Loch Carron and he emphasised that the thrusts and mylonites formed were completely different events. His sequence of evolution includes: mylonite formation, isoclinal folding (ESE-axes), recrystallisation constituting the dominant foliation and lineation, asymmetric folds (NS-axes), monoclinal folding and then thrusting.

Soper and Wilkinson (1975) considered a sequence of thrusting from W to E and attribute the Moine Thrust formation to a D_{4} age because it is post D_{2} and produces brecciation. It must be remembered, however, that they refer to a thrust that corresponds to this study's b-thrust which bounds rocks with contrasting intensities of deformation. If a "D $4^{-a g e " ~ i s ~ a s s i g n e d ~ t o ~ t h i s ~ s u r f a c e ~ s i n c e ~(i) ~}$ it does not represent this study's Moine Thrust (s.s.), and (ii) adopting Dahlstrom's (1970) view for the sequence of thrusting, it might be considered that the Moine Thrust (ie the a-thrust) developed earlier than the more 'brittle D_{4} age' thrust of Soper and Wilkinson.

Elliottcand Johnson (1978) were in the opinion that the thrusts formed progressively younger westwards while Soper and Barbe: (1979) doubted that the Moine Thrast was the earliest to be emplaced. Their objection was based on the argument that contrary to the evolution for the Canadian Rockies (Dahlstrom 1970) and Appalachians (Barton 1978), the tectonic style of the Moine thrust region was different because it involved both the Basement and Cover. Soper and Barber's (1979) sequence of events is:
(i) $\quad D_{1}$-folding, with NNE trend and vergence towards the foreland and in the lower nappes.
(ii) D_{2}-emplacement of major nappes (Arnaboli). Formation of Duplex, Imbricates and Sole zone.
(iii) D_{3}-open folds co-axial with D_{1}
(iv) Emplacement of the Moine Nappe.
(v) Box folding.

It must be realised, however, that the American literature (eg Hatcher 1981) gives as clear indication that the Appalachians contain large basement thrust slices so the argument of Soper and Barber (1979) is difficult to accept.

McClay and Coward (1981) considered that the tectonic style in the Eriboll area is geometrically and structurally similar to that of the Appalachians and Canadian Rocky Mountains. They pointed out that the thrust style and strain patterns are controlled by the position of the Sole Thrust and although adopting the sequence of fault stacking taking place in the direction of tectonic transport, they admit the possibility of reactivation of some thrusts causing reversals in that stacking order.

The data from the Eriboll-Hope areas, from this study, can be generally subdivided into 4 main zones corresponding to the major nappes (or Sheets, Elliottand Johnson 1980) which are delimited by 3 major thrusts. It will be shown that the stacking order fits well with mechanical and rheologic changes in the rocks, as seen in the textural studies of Chapters 5 and 7.

The westernmost zone comprises the domain of the imbricated Cambrian rocks. These generally occur west of the present area. This

Abstract

is however, an important zone which shows characteristic mechanics of brittle deformation. The present study has shown that the imbricates developed beneath the Arnaboll Thrust (section HH'). In the south of the area, in Alt-na-Craoibhe-Caoruinn, there is also the development of imbricated faults in the lowermost outcrops of Paleozoic rocks.

The second zone is a longitudinal domain bounded by rocks with overall characteristics of comparatively more ductile deformation with mylonitization practically restricted to the neighbourhood of the thrusts. There are associated overturned folds such as at Creag na Faollinn (section AA') or at An-t-Sron syncline (Sections $D D^{\prime}$ and EE'). Generally the rocks beneath the thrust bounding this second domain are of Paleozoic origin but there are exceptions as in the case of the unmylonitized Lewisian in areas 28, 29, north of Hope and in the western face of Creag-na-Faollinn. Signs of cataclasis and brecciation (plates 2.5 and 2.6) are associated with the faults in this zone. These discontinuity surfaces also exhibit Johnson's (1960) characteristics of 'clean-cut-surfaces' (see plate 2-12). This is clearly a transitional domain because in some areas the lowermost thrusts acted as 'roofs' for the development of the underlying imbricates in the Paleozoic rocks, while in others the uppermost thrust bounds ductile folds.
The third zone is bounded to the west by the b-thrust. It
must be stressed that the b-thrust is not used here in the strict
sense, but instead it is used to characterise a thrust type which forms
the lower boundary of a heavily mylonitized upper sheet. Most of the
mylonites are mainly of Lewisian origin but there are domains where
the rocks involved are Moinian and others where they are Paleozoic.
In general the Moine mylonites are more abundant in the southern half
of the area while the Paleozoic mylonites occur predominantly but not
exclusively) north of Creagan Road. This is a domain with clearly ductile deformation.

The fourth sheet is delimited underneath by the Moine Thrust (sensu stricto) or the a-thrust, which separates the last zone from the upper Moinian sequence. There appears to be a clear deformation gradient eastwards away from this junction, as the effects of mylonitization, although persisting in the Moine sequence, tend to decrease in that direction. The Moine Thrust differs from the lower thrusts in that it does not have the brittle characteristics of a cleancut surface.

No imbricated structures have been recognised in the upper zones. They may exist but due to the relative homogeneity of the mylonites they may be inconspicuous. Alternatively, the absence of zones of contrasting weakness in the Precambrian sequence prevents imbricate fault formation. It is known that incompetent layers can act as gathering zones (Douglas 1950).

From the characteristics described in the present section it seems that the above 4 zones show a transition from brittle to ductile shear zones, in the sense defined by Ramsay (1980). The brittle clean-cut-thrusts differ from the a-thrust type because the latter comprises a domain of fault(s) where the displacement is continuous, without showing the sharp rupture surface and this explains why there is a perfect continuity in the attitude of the foliation planes across the a-fault zone. As it will be shown in the next chapter, the a-thrust zone presents the most intense strain magnitudes.

It is now the intention of this study to summarise the evolution of the deformation zone by correlating the mechanical and rheological characteristics of the zone. Firstly, there is no reason to believe that the mylonites are not related to the Moine Thrust
(sensu stricto). Apparently, the intermediate thrusts were affected by the second phase (F_{3}) of folding, therefore preceded it (section HH').

Following a thin skinned model, with the sequential development in the direction of transport (Dahlstrom, 1970), the main movement plane could have first developed in an environment of plastic deformation (ie deeper level). There followed a climb up (cf. Rich 1934) to a transitional environment no more dominated by mylonite forming effects and finally reached the upper levels characterised by the brittle behaviour of the rocks. This would clearly conform with Ramsay's (1980, fig. 22) view of the relationships between brittle and ductile zones in an environment of crustal contraction. Evidence that the mylonitic rocks were affected by a superimposed phase of brittle deformation (cf. Sibson 1977) will be given by the description and analysis of microtextures of Chapter 5. This sequence of development would also explain why, in terms of intensity of deformation, the rocks above and below the b-thrust are clearly discrepant and this is due to the fact that the former was first developed or formed completely dissociated from the latter.

Another aspect of the Moine Thrust Zone is the formation of bulges, the biggest occuring in the Assynt area. In the mapped area there appears to be one such lunate shaped structure, which seems to have been formed where the traces of the main thrusts (a and b) do not run parallel. The mylonite zone exhibits a reasonably homogeneous thickness from the Arnaboll Hill southwards to the vicinity of Creagan Road, south of which the distance between the traces widens. This width is abruptly increased in the area of cross section BB^{\prime}, being widest near section $A A^{\prime}$. To the south the thrust traces are closer again.

There is a strong connection between the increase in the frequency of folding and this widening of the mylonite zone. Large folds could be responsible for the thickening of the zone and would give rise to the observed bulge in analogy to Barton's (1978) explanation for the existence of the Assynt bulge. Field evidence suggests, for instance, that the frequency of F_{3}-folds (meso-scale) is high in sub-areas $12,10,11$ but these clearly form large fold structures in sub areas 6, 3 but grade again to small scale folds in the adjacent subareas 7,3 and 1 . One could treat the bounding thrusts a and b respectively as the 'roof' and 'floor' structures, the 'horse' being the folding domain just described.

Johnson (1957, p.262) also pointed out the relationship of the intensity of folding relative to the thickening and thinning of nappes. This variation in thickness must have some effects in the adjacent nappes. As reported earlier, the F_{3}-fold hinges in the Moinian sequence above the Moine Thrust suffer a progressive deflection in their hinge direction, which changes from 180° in sub-areas 17,16 to approximately 145° in sub-area 8 . These changes seem to coincide with the widening of the underlying mylonitic zone.

There must be some reason for the increase in fold frequency. Could this mean that their existence is related to some differential rate of displacement along the strike of the thrust? Talbot (1979) points out that a moving sheet only forms folds when it accelerates or decelerates: Could it mean that sub-area 8 and 15 gradually decelerated relative to sub-areas 17,23 and $24 ?$

CIAPTER 3

FOLD HINGES AS STRAIN MARKERS

An aspect of thrust tectonics which has received considerable attention during the recent years is the problem of fold orientation within thrust zones (Bryant and Reed 1969, Sanderson 1973, Roberts and Sanderson 1974, Hobbs et al. 1976, Carreras et al. 1977, Williams 1978, Bell 1978, Coward and Kim 1980). The present chapter deals with some quantitative aspects of fold orientations. It investigates the tendency for folds and lineations to attain a constant orientation nearly parallel to the thrust movement direction. This pattern described in Chapter 2 is here interpreted as due to fold hinges being reorientated during progressive deformation. It deals with numerical methods and problems related with quantification of strains using fold hinges as markers. It also analyses and discusses the strain results and possible mechanisms in the context of geology and structural setting of the south of Eriboll area.
3.1-a Review of the Literature

There are two-central themes to be dealt with in this chapter. The first deals with the angular relationship between fold hinges and the direction of movement in the thrust zone. The second theme deals with the strain mechanisms - pure shear, simple shear or the combiaation(s) of these in the thrust zone.

Peach et al. (1907) referred to the ESE plunging lineation of the Moine Thrust Belt as the stretching direction-lineation. They considered it to show the thrust movement direction. This view was critdcised by some authors such as Phillips (1937, 1940, 1955), McIntyre (1954) and Christie (1955) who claimed that such lineations constituted
a b-linear fabric (rather than an a-lineation) because of their parallelism to fold hinge directions. The views of Peach et al (1907) however, had the support of Anderson (1948) and Kvale (1948, 1953).

It seems that this controversy was an unfruitful discussion generated by the use (or misuse, see Weiss 1955, Whitten 1966, p.106) of Sander's (1930) concept of kinematic axes. It is considered that in progressive simple shear the a-axis is defined as being parallel to the movement or slip direction, while the b-axis is orthogonal to a but pertinent to this shear plane, the ab-plane. If these concepts are applied to folds, on the condition that their fabrics have a monoclinic symmetry, the b-axis is considered to be normal to the monoclinic plane of symmetry, thus parallel to the fold axis, whereas the a-axis is located in this symmetry plane parallel to the direction of movement (see Whitten 1966, pp.105-111; Hobbs et al. 1976 p.194).

Kvale (1953) clearly stated that Sander's (1930) theory of movement and fold formation need not to be applied in the Norwegian Caledonides. He criticised McIntyre's (see Kvale 1953, p.51) views and stressed that in E and W Norway there is a lineation in the thrusts which is parallel to fold axes and also to the direction of movement. Bryant and Reed (1969) reported similar relationships for the Blue Ridge, S Appalachians and they supported Lindstrom's (1961) ideas of fold rotation towards the direction of thrusting. There followed a number of examples showing the same tehaviour of folds and lineations in different thrust belts. Escher and Watterson (1974) gave examples from Greenland, Nicholas and Boudier (1975), Minnigh (1979) presented examples from the Alps. Carreras et al. (1977) showed examples from NE Spain while Oleson (1971), Rhodes. and Gayer (1977) and Williams (1978) gave examples from Scandinavia. Bell (1978) showed examples of fold hinges parallel to the transport direction for
the Woodroffe Thrust Zone, Australia and Quinquis et al. (1978) described them for Brittany.

There were some studies which considered the geometry of folds which have their hinge distorted. Hansen (1971, figs.. 20, p.43) illustrated the curvature of such hinges in the Trollheimen rocks, Norway. Carreras et al (1977) introduced the name of 'sheath-folds'. Other studies dealt with parameter quantification: Sanderson (1973) developed an analytical model for strain quantification with the conditions that the folds (either normal or oblique to the stretching direction) were deformed by a co-axial strain. In a subsequent paper, Roberts and Sanderson (1974) applied the model to folds from the SW Highlands of Scotland. Williams (1978) produced a contour map of the angular distribution of fold hinges, relative to the direction of movement of thrusts from East Lakesfjord, Finnmark. Cobbold and Quinquis (1980) produced sheath folds experimentally and also studied some of their theoretical aspects.

Ramsay (1981, fig. 15) has illustrated diagramatically the formation of curvilinear folds during simple shear. Minnigh (1981, fig. 11) also showed a scheme for the development of such folds. The present study also found examples of these folds with curved hinges within the mapped area (see plates 3-1 to 3-6) and the interpretation of these curvilinear folds forms the basis of this chapter. The present study's analogy for the formation of these arcuate-hinge folds is illustrated in plate 3-7.

There are two fundamental mechanisms: which may produce the rotation of such fold axes in thrust belts. The first involves pure shear where the fold axes are passively rotated towards the direction of maximum elongation (Johnson 1967, Sanderson 1973, Roberts and Sanderson 1974). Other studies clearly advocate the development

Plates 3.1 and 3.2. These illustrate incipient curvilinear folds (F_{3}) in the Moinian Psammites cropping out north of Creagan Road. Notice the curved hinges which are flat lying in (or near) the foliation planes.

Plate 3.3. Curved hinge in the Moinian psammitic rocks of Loch Eriboll area.

Plate 3.4. Curved hinge in the Oystershell Rocks above the Moine Thrust Zone of Church Creag, Loch Eriboll. The yellow pencils (see arrows) were placed parallel to the curved hinge in 3 different locations.

Plate 3.5. Illustrates curved hinges with obliquely

folded lineations (L_{1}).

Plate 3.7. Laminar flow showing the formation of curved and 'refolded' folds. Stream of the Alt-na-CraoibheCaoroinn.

Plates 3.6-a and b. Two different views from the same outcrop constituted of folded Jewisian mylonites, east of Alt-na-Eisgill, Loch Eriboll. Notice the pencils parallel to the curved hinges of F_{3}-folds.

of such folds in a shear zone (cf. Ramsay and Graham 1970) by means of a simple shear mechanism. Escher and Watterson (1974) used the term 'comtemporary folds' for these folds generated in this regime. Hobbs et al. (1976, fig. 6-15) showed diagrammatically the reorientation of fold hinges, while Ramsay (1980, fig. 16) illustrated the formation of curvilinear hinge folds using a simple shear mechanism.

The deformation with thrust and shear zones which causes the re-orientation of fold hinges should be largely that of simple shear, although some authors (Nicholas and Boudier 1975; Escher et al. 1975; Hobbs et al. 1976; Williams 1978; Bell 1978; Minnigh 1979; Ramberg 1981) assume combinations of irrotational (pure shear) and simple shear.

The models by Ramberg (1981) suggested that there is pure shear associated with simple shear leading to extension of the belt. Hossack $(1968,1978)$ has described extensional strains given by deformed conglomerates extended almost parallel to the shear plane in Norway. The analysis developed in this chapter considers essentially co-axial deformation. This is obviously an oversimplified assumption but to admit a rotational deformation such as simple shear can also lead to innaccuracies as will be discussed in the end of this chapter.

3.1-b The Organization and Contents of this Chapter

The sectionsthat follow in this chapter are mainly devoted to the quantification of deformation using curvilinear fold hinges as strain markers. The subdivided sections are organised as follows:

[^1]- Section 3.3 contains the derivation of a model proposed in this study.
- Section 3.4 describes in detail the techniques of optimization that were used or tried in the estimation of the parameters of the models.described in sections 3.2 and 3.3. It also describes the structure of this study's computer programmes which were devised in conjunction with the investigated methods of optimization. Tests of these programmes are also discussed.
- Section 3.5 is devoted to data treatment. An analytical solution is here introduced, which selects data by weighting procedure.
- Section 3.6 deals with the results obtained using data from the study area.
- Section 3.7 presents a discussion of the hinge orientations in the context of the geology and structure of the area.
- Section 3.8 comments on the possibilities of using other models involving other mechanisms.
3.2 The Model Devised by D. Sanderson

The idea of estimating the strain using the distribution of fold hinges as markers was put forward by Sanderson (1973) and subsequently applied for a wide area in the $S W$ of Scotland by Roberts and Sanderson (1974). It is suggested that folds are modified by tightening, flattening and passive rotation of limbs andihinges which formed at high angles to the movement direction of the thrust sheets. The assumption was that a population of fold axes, initially distributed around a mean as a Gaussian (or Normal) distribution, would give rise to a modified distribution as a result of superimposed strain (cf. Roberts and Sanderson 1974).

Sanderson (1973, pp.55-56) based his model on Dewey's
(1969) assumption of parallelism between the finite strain ellipsoid axes, $X, Y, Z(w h e r e ~ X>Y>X)$ and the fold geometric axes α, β and γ where $\alpha \beta$ determines the axial plane and β is the fold axis. The analysis was restricted to two dimensions to changes within the XY-plane of the strain ellipsoid. Sanderson (1973) initially considered the case where the initial mean of fold axes was parallel to the Y-axis of the finite strain ellipsoid so the fold axes population was strained orthogonally to this mean direction. He then considered a more generalised model where the stretching (pure-strain) is oblique to the 'mean α-axis' (cf. Sanderson 1973, p.56).

During deformation, fold axes should have their lengths altered and axes rotated towards the X-direction of the strain ellipsoid. This change in length may be important because it will determine the probability of an axis being sampled. However, no acitual measurements of fold axes lengths are normally made during the field routine, and from the practical point of view this factor presents some problems, as will be shown later.

Sanderson (1973, p.62, eg.10) derived an expression for his model involving stretching oblique to the mean of the original distribution of fold axes:

$$
\begin{equation*}
Y_{\theta}=\frac{N}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left[\frac{90-\theta}{\sigma}\right]^{2}\right]\left[\frac{\left.X / Y)^{2} \cdot \cos ^{2}(\theta-\phi)+\sin ^{2}(\theta-\phi)\right]^{3 / 2}}{X / Y}\right. \tag{3-1}
\end{equation*}
$$

where N is the population size, σ is the standard deviation from the mean fold axis ϕ, which is the angular distance from the Y-axis of the strain ellipsoid. θ_{i} is the angle between the i-fold axis and the X-strain axis.

Using the Sanderson technique, structural data are collected In the field according to criteria of homogeneity (cf.Turner and Weiss 1963) and fold generation. The reference frame (ie the XY-plane of the strain ellipsoid) is obtained for cases where poles of well defined (ie single) maximum of planar fabric define the mean axial plane (XY) while the X-direction is given by the maximum of the stretching direction lineations. A series of planes regularly spaced and orthogonal to the $X Y-p l a n e$ is used to divide (and group) the population of fold axes into different class intervals, forming thus a frequency histogram.

The assessment of the unknown parameters ϕ, θ and the X / Y ratio is made, according to Sanderson's technique, by computing a series of distribution diagrams and then choosing the one with the closest correspondence with the frequency histogram (cf Roberts and Sanderson 1974).
3.3-a The Model Used in this Study

Experience gained during the early strain calculations using Sanderson's (1973) technique showed it to be very lengthy and CPU-time consuming. There were two solutions for this problem: (i) to try a more efficient method for parameter calculation, and/or (ii) to derive a more simplified model. Both solutions were tried here. The former is discussed in section 3.4 , the latter is the object of the present section.

A model similar to that of Sanderson (1973) was devised. The basic idea developed from observations of what happened to data grouped in frequency histograms, subjected to a pure shear transformation (seefigs. 3-1-a and b). It was seen that there was a change in the shape of the transformed histogram (fig. 3-1-b) but no alteration

Figure 3.1-a. See text for explanation.
Figure 3.1-b. See text for explanation.

Figure 3.2-b. See text for explanation

in the original area.

If instead of a histogram we deal directly with the best fitted curve $Y=f(\theta)$ (see fig. 3-2-a and b) it is reasonable to expect the same sort of shape change. Let a sector S_{θ}, under such acarve, be determined by its abscissae values θ_{1} and θ_{2}. There will be a corresponding sector S_{θ}, in the transformed curve, and by simply asking for the area in the new sector S_{θ} to be the same as S_{θ}, we come across with a trivial problem of finding areas under a curve.

$$
\mathbf{S}_{\theta}=Y_{\theta}-\left(\theta_{1}-\theta_{2}\right) \quad \text { and } \quad S_{\theta^{\prime}}=Y_{\theta}\left(\theta_{1}^{\prime}-\theta_{2}^{\prime}\right)
$$

and

$$
\begin{equation*}
S_{\theta}=Y_{\theta}\left(\theta_{1}-\theta_{2}\right)=Y_{\theta} \cdot\left(\theta_{1}^{\prime}-\theta_{2}^{\prime}\right)=S_{\theta} \tag{3-2}
\end{equation*}
$$

By making $\Delta_{\theta}=\theta_{1}-\theta_{2}$ and $\Delta_{\theta^{\prime}}=\theta_{1}^{\prime}-\theta_{2}^{\prime}$ and substituting these in $[3-2]$ we get $Y_{\theta}, \Delta \theta=Y_{\theta}, \cdot \Delta_{\theta}$,

Hence

$$
\begin{equation*}
Y_{\theta^{\prime}}=Y_{\theta} \quad \frac{1}{\Delta_{\theta^{\prime /}}^{\prime / \Delta_{\theta}}} \tag{3-3}
\end{equation*}
$$

By taking the limit when $\Delta_{\theta} \rightarrow 0$

$$
\begin{equation*}
\lim _{\Delta_{\theta} \rightarrow 0} \frac{\Delta \theta^{\prime}}{\Delta_{\theta}}=\frac{d\left[\theta^{\prime}\right]}{d \theta} \tag{3-4}
\end{equation*}
$$

which substitutes in [3-3] giving

$$
\begin{equation*}
\mathbf{Y}_{\theta}=\mathbf{Y}_{\theta} \quad \frac{1}{\mathbf{d}\left[\theta^{\prime}\right] / \mathbf{d} \theta} \tag{3-5}
\end{equation*}
$$

Equation [3-5] gives the height of the ordinate in the transformed curve, in the condition of no area change.

By taking the derivative $d\left[\theta^{\prime}\right] / d \theta$ where θ^{\prime} is given by the well known strain transformation (Ramsay 1967)

$$
\begin{equation*}
\theta^{\prime}=\tan ^{-1}[\tan \theta / R] \tag{3-6}
\end{equation*}
$$

where R corresponds to the X / Y ratio of the finite strain ellipsoid, then

$$
\begin{equation*}
Y_{\theta},=Y_{\theta} \cdot \frac{1+\cos ^{2} \theta(R-1)}{R} \tag{3-7}
\end{equation*}
$$

The final step is the choice of the initial curve $Y=f(\theta)$ which gave the ordinate Y_{θ} in the fig. 3-2-a. As the specific model assumes a population of fold axes initially formed with a symmetric distribution. This may be expressed by the Gaussian function:

$$
\begin{equation*}
\mathbf{Y}_{\theta},=\frac{\mathrm{N} \cdot \ell}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left[\frac{\theta-\mu}{\sigma}\right]^{2}\right] \tag{3-8}
\end{equation*}
$$

where $N=$ population size
$\ell=$ histogram class interval
$\sigma=$ standard deviation about the original mean
$\mu=$ the original mean direction (measured from the X-axis).
The rest of the elements are as defined previously.
Remembering that $\theta=\tan ^{-1}[\tan \theta, \mathrm{R}]$
and substituting $[3-9],[3-8]$ in $[3-7]$, we can get $Y_{\theta}^{\prime}=\frac{N \cdot l}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left[\frac{\tan ^{-1}(R . \tan \theta)-\mu}{\sigma}\right]^{2}\right] \cdot \frac{1+\cos ^{2}\left[\tan ^{-1}\left(R . \tan \theta^{\prime}\right)\right]\left(R^{2}-1\right)}{R}$ [3-10]

Equation [3-10] produces some different results from that of [3-1] and for this reason both models were here used in parallel, with the same input data. Sanderson's (1973) model will thereafter be simply termed Mod. I, while the variation just derived will be referred to as Mod. II.
3.3-b Method of Parameter Estimation

It is appropriate to describe some of the difficulties faced during the course of this investigation. Firstly it is necessary to define the problems associated with the calculations using the describedmodels. It is clear that we are dealing with a histogram to which an appropriate curve should give a fair representation of it (it applies for both Mod I and II). A statistical population is a representation concept that an individual can take in terms of probabilities, while a histogram is a concrete realisation of the variation in the sample in question. The shape of the histogram is dependent on the particular set of finite observations, but to some extent it should reflect the main characteristics of the universe sampled. Secondly, the choice of the shape of the curve that fits (or represents) a particular histogram is perhaps not unique but it should fulfil all the necessary conditions of the model. Thus there are two aspects which we need to consider in this section: (i) A model which is expressed by a mathematical relation, and (ii) A technique which makes possible the parameter estimation.

These two aspects are completely independent since there could be more than one particular method for parameter estimation. A problem envisaged here is one of curve-fitting to frequency histograms, with the added difficulty that such a histogram is generally skewed.

The models, Mod I and Mod II, are expressed by simple equations containing three unknowns. The curve-fitting may be done by a method that iteratively estimates the values of the unknowns. An Iterative solution is the one which tends towards the Optimum (ie a Minimum or a Maximum, it depends on the sign) by successive approximations. In general, it requires an initial guess, or a starting point x_{0}, and then proceeds by generating a sequence of points $x_{1, j} ; i=1,2, \ldots m$, $j=1,2, \ldots n$, according to information gained previously.

Figure 3-3 illustrates an hypothetical iterative path
towards the Optimum where progress is made in the direction of movement d_{J} according to the iterative rule:

$$
\begin{equation*}
x_{i, j+1}=x_{i, j}+d_{i, j} \tag{3-11}
\end{equation*}
$$

3.4

Optimization Procedures

In this section we describe the techniques that were used with both Mod I and Mod II. Section 3.4.3 applies only to Mod II.

3.4.1 The Objective Function

As described before, Roberts and Sanderson (1974) handled the parameter estimation by the computation of a series of distribution diagrams from which they chose the one with the closest correspondence to the frequency histogram. There is apparently no indication on how the choice was made and for this reason, it is interpreted here that such a choice was performed by visual means rather than by a mathematical mode.

Initially in this study, data were treated by this visual method but it was considered that manual process of plotting diagrams for visual comparison was too ambiguous, not safe and above all, very laborious. It was felt that there should be a mathematical algorithm for this choice of parameters, as human judgement alone is often unable to optimize systems with only three variables (see Adby et al, 1974). (Optimize means finding the best solution or the closest correspondence). The first step in the search for an optimization method in the present case, is to create the mathematical condition of 'choice' and this means that we need to find the correspondence between a curve and the histogram, that is to say, we find the best possible approximation

Figure 3.3
Hypothetical iterative path towards the optimum where progress is made in the direction of movement d_{j}.
or the one which produces the smallest error. This error could simply mean a condition such as:

$$
\begin{equation*}
\text { Error }=\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right| \tag{3-12}
\end{equation*}
$$

which is true for the case of deviation between f and g at the point x_{0}. However the problem here concerns an approximation over an entire interval - say a, b - and not a single point. Intuitively the simplest method is to choose the approximation $g(x)$ with the least overall error satisfying the condition:

$$
\begin{equation*}
\text { Error }=\int_{a}^{b}|f(x)-g(x)| d x \tag{3-13}
\end{equation*}
$$

While [3-13] is the straightforward theoretical condition, for practical purposes (ie numerical procedures) the following algorithm is widely used:

$$
\begin{equation*}
\text { Error }=\sum_{i=1}^{n}\left[f\left(x_{i}\right)-g\left(x_{i}\right)\right]^{2} \tag{3-14}
\end{equation*}
$$

Thus the application of the above condition [3-14] to the present problem means that the closest approximation is the one which produces the least error between an i-fitted curve and a given histogram. Relation [3-14] can also be called the OBJECTIVE FUNCTION and is expressed here as:

$$
\begin{equation*}
Z_{\min }=\sum_{k=1}^{n}\left[Y\left(\theta^{\prime}\right) k-H t\left(\theta^{\prime}\right) k\right]^{2} \tag{3-15}
\end{equation*}
$$

where $Y\left(\theta^{\prime}\right)_{k}=f\left(x_{i} \mid \theta^{\prime}\right)_{k} \quad$ or . more simply Y_{k} and $H t_{k}$ are respectively the ordinates of the fitted curve and the heightsof the histogram columns for \mathbf{x}-class intervals.

Methods of finding the minimum (or maximum) of a function of n-variables have been devised (see Dixon, 1972) that involve:
(1) only the function and variable values themselves
(ii) only the first partial derivatives
(iii) the first and second partial derivatives.

There are many factors to be considered in each problem and these can make one of the above methods more convenient than the others. This study initially applied the first of the above 3 methods, for both Mod I and Mod II. This method constitutes the Direct Search Method and will be described in section 3.4.2. For reasons to be explained later it was decided also to make use of the second and third methods (1st and 2nd derivatives) with Mod II and these constitute the Gradient Method which is described in section 3.4.3.

These methods of Optimization are only beginning to find applications in Structural Geology. It is hoped that the following discussion of the different methods will be of use not only in work on strain analysis but also in other branches of geology.
3.4.2 The Direct Search Method

3.4.2-a Introduction

The 'simplest' technique of finding the Optimum value of a function $f(x)$ of n-variables, x, all bounded between an upper and lower interval would be to divide the entire range of each x_{i} into a set of r_{i} grid points and then evaluate $f(x)$ at each of the $\Pi_{i}^{n}=1 r_{i}$ combinations of variables x lying on the grid.

This was the initial idea in this study. However it was not carried out, as the appropriate grid requires a large number of combinations and this makes the particular method prohibitive. Consider for
instance the situation where it is required to search for the maximum of the present objective function [3-15] using different values for the Mod II parameters μ, σ and R, in a grid defined by successive increments of 0.1 , in the following range (also referred to as upper and lower bounds):
(i) The mean- μ in the range between 45° and 135° in increments of 0.1°, comprising exactly 900 different values.
(ii) For the standard deviation, σ in the limited range between 1^{0} and 31°, in increments of 0.1°, comprising 300 different values.
(iii) The parameter, R in the range between 1 and 21 at 0.1 increments comprising 200 values.

Thus, constraining the search to the above limits will require a number of combinations; $900 \times 300 \times 200$, that is, equal to 54×10^{6}. Such a solution is clearly out of the question. However it is possible to overcome this difficulty by changing the search mode and this is the aim of the next section.

3.4.2-b The Multivariate Constained Method

Direct Search Methods are usually the initilal step in an Optimization investigation and preferable especially for cases where the exact behaviour of the function is not known (see Beveridge, 1970). For cases where it is suspected that the function is non-unimodal, thereis a chance for the solution to converge to a local optimum rather than the global one. This situation is illustrated geometrically in fig. 3-4.

Text books on Optimization techniques describe several Direct-Search-Methods, but the one to be described here has no particular name simply because it was intuitively developed, directly from

Figure 3.4. Hypothetical representation of a function. A, B, C and C^{\prime} are points which satisfy the equation

$$
\frac{\partial \mathbf{f}}{\partial x_{i}}=0
$$

A is the Global Optimum, B is the Local Optimum, C and C^{\prime} represent points along a narrow valley (Saddle Point). The anrows (in CC') show the gradi-.: ient direction of movement, orthogonal to the contours. Notice that progress along this region is minimal.
the situation just described in 3.4.2-a.
Consider the initial situation, as set in 3.4.2-a, where there are 3 parameters in the range limited by their upper and lower boundaries. Now, suppose that we start the search for the least error using initially a much coarser grid of increments (say 10 , instead of 0.1) and then reduce the size of this increment substantially as we move towards the Optimum. This would eliminate most of the unnecessary operations of the situation described in 3.4.2-a.

This method is in essence an interval elimination routine, where the region, in which the Optimum lies, is sequentially reduced by the search procedure. The next section examines this method in more detail.

3.4.2-c Description and Routine

The problem consists of minimizing the Objective Function set up by [3-15].

$$
Z_{\min }=\sum_{k=1}^{n}\left[Y_{\left(\theta^{\prime}\right) k}-H t\left(\theta^{\prime}\right) k\right]^{2}, k=c l a s s \text { interval number, }
$$

$$
\text { here taken as } 1 \text { to } 18 \text {, and } Y_{\left(\theta^{\prime}\right) k}=f\left(x_{i j}, \theta_{k j}^{\prime}\right) ; \text { subject to the }
$$

$$
\text { inequality constraints } a_{1 j}<x_{1 j}<b_{1 j} \text {, for } i=1,2,3 \text {, or } x_{1 j}=\mu_{j}
$$ $x_{2 j}=\sigma_{j}$ and $x_{3 j}=R_{j}$ and $\theta_{k j}^{\prime}=$ mid point of the k class interval. $a_{1 j}$ and $b_{1 j}$ are respectively the lower and upper bounds of the (j) cycle of combinations.

The search for the minimum [3-15] is carried out by the elimination of intervalg and if this routine is the only method of Minimization, the interval, in which the Optimum value of the function occurs, is subsequently reduced to some final figure, the magnitude of which depends on the desired accuracy. Thus the desired accuracy
will determine the number of function evaluations and consequently the consumed processor time.

For reasons that will be apparent later, this routine initiates the search covering a broad range of intervals which need not be the same in number or in magnitude, for each variable. The algorithm proceeds as follows:
(i) Determine the initial search interval for each variable x_{1}, with boundaries a_{i} and b_{i}.
(ii) Set the initial sum of squared differences to a very large number, much larger (eg 10^{20}) than any possible value that the Objective Function [3-15] can take.
(iii) Evaluate the Objective function at $x_{1 j}$ compare the sum of squared differences (with the previous Optimum). Stcire the best value (here the minimum) as the temporary Optimum and save the corresponding parameters $X_{i j}$, as X_{i}, best ${ }^{\text {b }}$

The routine proceeds through the whole specified interval and then comes to a decision:

- If the programme is used alone, at the end of the first of the \boldsymbol{j} cycles of iterations, new boundaries $a_{i, j+1}$ and $b_{i, j+1}$ are assigned in a new range covering a large proportion of the previous interval (see fig. 3.5). In general these are arranged half symmetrically around each $x_{i, b e s t}$. As the number of intervals remain as defined initially, their length will be sequentially reduced in each cycle. The routine ends at the specified number of cycles.
- Alternatively, we can make use of another method to finalize the

Figure 3．5．It illustrates schematically the search for the mean（ 1 ）． At every cycle－i $(i=1,2 \ldots n)$ a length I_{i} is searched in intervals Δ_{i} ．Both the length I_{i} and the interval Δ_{i} are sequentially reduced in each iteration．Notice the magnitudes of I_{13} and Δ_{13} 。 M_{i} are the optima of each iteration．

Sヨาコ기
minimization. This method and the reasons for its choice are explained in the next section.

3.4.3 Unconstrained Gradient Methods

3.4.3-a General

The Gradient Methods are based on the Taylor expansion series with terms involving first and second derivatives (higher orders are neglected). Optimization methods which neglect the second derivatives are termed first order methods while those using first and second derivatives are termed here second order methods (see Adby and Dempster, 1974).

According to the objective function, the required derivatives can be obtained either analytically or numerically. In the present study, use was made of the second order method in which the first derivatives were taken analytically while the second ones were derived numerically.

There are, however, situations where analytical derivatives are not possible to obtain (or not worth obtaining) so numerical estimates must be used instead. The efficiency in these cases can be seriously compromised because of the errors introduced in the computations (see Box, Davies and Swann 1969).

The Gradient Direction at any point is the direction whose components are proportional to the first partial derivatives of the objective function at the point in question (see Wismer and Chattergy, 1978, p.139).

This method is distinguished from the Direct Search technique in three fundamental ways: (i) it selects the direction of
search, (ii) it optimizes the step length of movement in the chosen direction of search, and (iii) there are no boundary constraints, so the search is free to take any appropriate value. This method also profits by information gained from earlier iterations. For full details on the method and its innumerable variations see: Box et al. (1969), Beveridge and Schechter (1970), Dixon (1972), Adby and Dempster (1974), Wismer and Chattergy (1978).

The algorithm is perhaps best illustrated using fig. 3-3 in which we could introduce a variation, or update the concept expressed in [3-11] by writing instead

$$
\begin{equation*}
x_{i, j+1}=x_{i, j}+h_{j} d_{i, j} \tag{3-16}
\end{equation*}
$$

Where h_{j} is the length of movement in the d_{i} direction.
Figures 3-6 and 3-7 illustrate the geometry of the gradient path towards the optimum region in two hypothetical cases. It can be observed that the process is initiated at points $x_{i, 0}$ and subsequent movement is orthogonal to the contours.
3.4.3-b Description and Routine

The method consists of determining the partial derivatives of the objective function [3-15] in order to establish the gradient direction as follows:

[3-17]
$k=1,2, \ldots \ldots n$, are numbered of class intervals and $i=1,2,3$ as defined already.

Figure 3.6. Graph illustrating the gradient path, towards the optimum, starting from an initial guess ($\left.x_{i}\right)_{0}$. The $\because \quad$ contours approximate to a quadratic function. Notice that the hypothetical steps (1-4) are in a direction orthogonal to each contour.

Figure 3.7. This illustrates an hypothetical situation for the gradient path where the contours are elliptical. Notice that the steps are orthogonal to each contour.

The normalized Gradient Vector at the current point, or iteration L, is defined as:

$$
\begin{equation*}
g_{i, L}=\frac{\frac{\partial Z}{\partial x_{i}}}{\left[\sum_{i=1}^{n}\left(\frac{\partial Z}{\partial x_{i}}\right)^{2}\right]^{\frac{1}{2}}} \tag{3-18}
\end{equation*}
$$

If conditions are such that only the first derivatives are required, then all elements necessary to the routine are met here and the method is called Steepest Descent (see Box et al. 1969) or First Order Method (cf Adby and Dempster, 1974), or condition number two, in section 3.4.1. The algorithm proceeds as follows:
i) Set the Optimum value to a very large number, for the reasons already explained in (ii) of section 2.4.2-c.
ii) Input the so called initial 'guesses' $x_{1,0}$, for each variable and set the value of the function as the new optimum.
iii) Calculate the components of the Gradient vector $g_{i, ل}$ using [3-17] and [3-18].
iv) Generate new points $x_{i, L+1}$ according to the iterative rule

$$
\begin{equation*}
x_{1, L+1}=x_{i, L}-h_{L} \cdot g_{i, L} \tag{3-19}
\end{equation*}
$$

which is an updated version of the general expression [3-16], where h_{L} is the appropriate step length for the L iteration, and is found by a direct search procedure using the following algorithm.

$$
\begin{equation*}
h_{L}=h_{L-1}+\frac{\Delta h}{p} \tag{3-20}
\end{equation*}
$$

where $p=$ constant (it can be any number, here it was equal to 10.0).
v)

The objective function is then compared with the previous (stored) value, subject to a convergence limit

$$
\begin{equation*}
\left|Z_{L}-Z_{L-1}\right| \leqslant \text { Limit } \tag{3-21}
\end{equation*}
$$

where Limit is the desired accuracy of search, and fixed a priori in the Programme. The actual value of Limit is determined empirically according to the formulated problem. In the present case Limit is dependent on the type of frequency histogram. For cases of relative frequency, Limit amounts to a lower. figure than for cases of absolute frequency.

If the condition [3-21] is satisfied, the procedure stops.
Otherwise store new parameters as the Optimum values and the process returns to step number three. However, if conditions are such that progress can be made using the Second Order Method (the programme tests it), the algorithm of [3-19] changes (once more) by the inclusion of the second partial derivatives:-

$$
\begin{equation*}
H_{1 J}=\frac{\partial^{2} Z}{\partial x_{i} \partial x_{J}} \quad \text { for } 1, j=1,2,3 \tag{3-22}
\end{equation*}
$$

and remembering that $\frac{\partial^{2} z}{\partial x_{i} \partial x_{j j}}=\frac{\partial^{2} z}{\partial x_{j} \partial x_{i}}$

The matrix formed by elements

$$
\left[H_{i j]}\right]=\left[\begin{array}{lll}
\partial^{2} Z / \partial x_{1}^{2} & \partial^{2} Z / \partial x_{1} \partial x_{2} & \partial^{2} Z / \partial x_{1} \partial x_{3} \\
\partial^{2} Z / \partial x_{2} \partial x_{1} & \partial^{2} Z / \partial x_{2}^{2} & \partial^{2} Z / \partial x_{2} \partial x_{3} \\
\partial^{2} Z / \partial x_{3} \partial x_{4} & \partial^{2} Z / \partial x_{3} \partial x_{2} & \partial^{2} Z / \partial x_{3}^{2}
\end{array}\right][3-24]
$$

is referred to as the Hessian Matrix and the method which makes use of
it, is frequently referred to as Newton's Method (Box et al 1969) or as the Second Order Method (Adby and Dempster, 1974).

The basic algorithm proceeds as follows:
i), ii) and iii) - Same as for the Steepest Descent Method
iv) Define the Hessian Matrix [$\left.\mathrm{H}_{\mathrm{if}}\right]_{\mathrm{L}}$ of [3-24] bearing in mind [3-23] for programme economy. Find the inverse $[H]_{L}^{-1}$ of the Hessian Matrix.
v) Generate new points $x_{1, L+1}$, according to the iterative rule:

$$
\begin{equation*}
x_{i, L+1}=x_{i, L}-h_{L}[H]_{L}^{-1} g_{i, L} \tag{3-25}
\end{equation*}
$$

where h_{L} is as defined before in [3-20].
vi) Same as (v) for the Steepest Descent Method.

The flow chart of fig. 4-5 (Chapter 4) illustrates the Newton-Raphson Routine, which in essence is the basis of Newton's Method just described here.
3.4.3-c

Preliminary Comments

It seems advisable at this stage to comment on the methods described above:
a. Second Order or Newton's Method: This method has some drawbacks and cannot always be used. The advantages will be listed later in the discussion, whereas in the present section we are directly concerned with the disadvantages, these are:
(i) The matrix of the second derivatives must be evaluated at each iteration, either by analytical differentiation or by

Abstract

numerical techniques. If processor time is not in consideration, then this is a minimum disadvantage. In the case of second derivatives found by a numerical method, the round off errors or the approximation errors normally affect the efficiency of the technique, especially if $f(x)$ is small.

ii) There is a subsequent matrix inversion operation. Again if processor time is not the main concern, then this is a minor disadvantage.
iii) Caution must be taken because if [$H_{i j}$] is singular, the inversion is impossible. Return to Steep Discent if it happens.
iv) Progress towards the Minimum is only ensured if [H_{ij}] is Positive Definite.

The method is particularly useful (or ideal) for cases when the Objective Function is Quadratic, so the Minimum can be reached in a single iteration (see Wismer and Chattergy, 1978, p.51). However even with functions not truly quadratic, but near the Optimum region, the method can still particularly be useful, as in the neighbourhood of the Optimum most objective functions behave near quadratically. Otherwise if conditions are adverse, the direction $-h_{L}[H]_{L}^{-1} \cdot g_{i L}$ is unhelpfull and the Steepest Descent Method is then preferable.

Thus, what are the advantages or reasons for persisting in using this method? The answer to this is simply that if conditions can be arranged for this method to be operative, it will prove far superior not only in convergence rate (ie time involved) but will also give an accuracy unmatched by the Direct Search Method.
b. Steepest Descent or First Order Method - This work has made an extensive use of this routine. Although progress towards the Optimum proved to be continuous, the pace was too slow to an extent that the method was considered inefficient if used alone. For this reason the change was made towards Newton's Method.

There are some variants of the Steepest Descent technique which can produce good results. One variant consists of scaling the variables x_{i} (see Box et al, 1969, p.36) so the net effect is to transform the contours shown in fig. 3-4 to become more circular (ie quadratic) and this produces a faster convergence. With suitable scaling, ellipses can be transformed into circles and ellipsoids into spheres. Because the direction of steepest descent is orthogonal to the contours of constant function value, it follows that for circular contours the direction of steepest descent must pass through the centre of the system of circles (see fig. 3-6) that is, through the Optimum of the objective function.

The present study attempted firstly a scaling for the mean (μ) and then for both μ and σ. This was done because it was noticed that the magnitude and sign of the first derivatives changed constantly in every iteration, and this was accompanied by a very slow progress towards the optimum. This situation was interpreted as analogous to that shown in fig. 3-4 at CC'. This scaling technique worked successfully in some cases but failed in many others. The scaling of variable was thus abandoned. This unsuccessful attempt, however, does not invalidate the technique, it only means that suitable scaling was not found.

3.4.3-d
 The Partial Derivatives

evaluation of partial derivatives of the Objective Function and their analytical expressions are listed in this section. Let inftially transcribe[3-17].

$$
\begin{align*}
& \frac{\partial Z}{\partial x_{i}}=2 \sum_{k=1}^{n}\left[\left(Y_{\left(\theta^{\prime}\right) k}-H t\left(\theta^{\prime}\right) k\right) \frac{\partial Y\left(\theta^{\prime}\right) k}{\partial x_{i}}\right] \quad \text { where } \\
& x_{i}=\mu, \quad x_{2}=\sigma \text { and. } x_{3}=R, \text { so: } \\
& \frac{\partial Y\left(\theta^{\prime}\right) k}{\partial \mu}=\frac{N \cdot \ell}{\sqrt{2} \pi} \frac{1}{\sigma} \cdot \frac{1+\left(R^{2}+1\right) \cos ^{2}\left[\tan ^{-1}\left(R \cdot \tan \theta^{\prime}\right)\right]}{R} \cdot\left[\frac{\left.\tan ^{-1}\left(R \tan \theta^{\prime}\right)-\mu\right]}{\sigma^{2}} \cdot\right. \\
& \exp \left[-\frac{1}{2}\left[\frac{\tan ^{-1}\left(R \tan \theta^{\prime}\right)-\mu}{\sigma}\right]^{2}\right] \tag{3-26}\\
& \frac{\partial^{Y} \cdot\left(\theta^{\prime}\right) k}{\partial \sigma}=\frac{N \cdot \ell}{\sqrt{2 \pi}} \cdot \frac{1+\left(R^{2}-1\right) \cos ^{2}\left[\tan ^{-1}\left(R \cdot \tan \theta^{\prime}\right)\right]}{R} \cdot \frac{\left[\left[\tan ^{-1}\left(R \cdot \tan \theta^{\prime}\right)-\mu\right]^{2}-\sigma^{2}\right]}{\sigma^{4}} \cdot \\
& \exp \left[-\frac{1}{2}\left[\frac{\tan ^{-1}\left(\text { R. } \tan \theta^{\prime}\right)-\mu}{\sigma}\right]^{2}\right] \tag{3-27}
\end{align*}
$$

$$
\begin{aligned}
& \text { and } \\
& \frac{\partial Y \cdot\left(\theta^{\prime}\right) l^{k}}{\partial R}=\frac{N \cdot \ell}{\sqrt{2 \pi}} \cdot \frac{1}{\sigma}\left[\frac{1}{R}\left[2 \cos ^{2}\left[\tan ^{-1}\left(R \cdot \tan \theta^{\prime}\right)\right]_{-} \frac{\left(R^{2}-1\right) \sin 2\left[\tan ^{-1}\left(R \cdot \tan \theta^{\prime}\right)\right] \cdot \tan \theta^{\prime}}{1+\left(R \cdot \tan \theta^{\prime}\right)^{2}}\right]\right. \\
& \left.-\left[\frac{1+\left(R^{2}-1\right) \cos ^{2}\left[\tan ^{-1}\left(R \cdot \tan \theta^{\prime}\right)\right]}{R^{2}}\right]\right]- \\
& \begin{array}{c}
{\left[\frac{\left.\left[\tan ^{-1}\left(R \cdot \tan \theta^{\prime}\right)-\mu\right] \cdot\left[\frac{\left.1+\left(R^{2}-1\right) \cos ^{2}\left[\tan ^{-1}\left(R \cdot \tan \theta^{\prime}\right)\right]\left(\tan \theta^{\prime}\right)\right]}{\sigma^{2}\left[1+\left(R \cdot \tan \theta^{\prime}\right)^{2}\right] R}\right]\right]}{} \exp \left[-\frac{1}{2}\left[\frac{\tan ^{-1}\left(R \cdot \tan \theta^{\prime}\right)-\mu}{\sigma}\right]^{2}\right]\right.} \\
{[3-28]}
\end{array}
\end{aligned}
$$

During the step number (iii) of section 3.4.3-b - in both First or Second Order Methods - equations [3-26], [3-27] and [3-28] are evaluated and substituted in [3-17] which in turn allows for the calculation of the normalized gradient vector $g_{i, L}$ given by $[3-18]$.

If the position is favourable for the Newton Method to work, then the elements of the Hessian matrix could be set up as follows:

$$
\frac{\partial^{2} Z}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} Z}{\partial x_{j} \partial x_{i}} \cong \sum_{k=1}^{n}\left(Y_{\left(\theta^{\prime}\right) k}-H t_{\left(\theta^{\prime}\right) k^{\prime}} \frac{\partial^{2} Y^{\prime}\left(\theta^{\prime}\right) k}{\partial x_{i} \partial x_{j}} \quad i, j=1,2,3\right.
$$

and in terms of the higher order are neglected.
However due to the excessive length of the expressions [3-26],[3-17] and[3-28] it was decided not to try to obtain the analytical expressions of the second derivatives and instead to estimate them numerically, by a finite difference method, using the first partial derivative routines in the process, as follows:

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{f^{\prime}\left(x_{i}+h_{i}\right)_{i}-f^{\prime}(x) i}{h_{j}} \tag{3-29}
\end{equation*}
$$

where i, $j=1,2,3$

$$
f^{\prime}(x) i=\frac{\partial \mathbf{I}}{\partial X_{i}}
$$

$h_{j}=x_{j} \cdot \Delta$, and $\Delta \simeq$ small increment (eg here taken as 10^{-3}).
3.4 .4

Tests

Some tests were performed in order to evaluate and compare the capabilities of the modelis in estimating the three parameters. One way of testing a model is to produce stochastic variables (see footnote) characterised by a statistical behaviour which parallels or simulates the actual variable. In these simulations it is necessary to combine

[^2]deterministic and random components (cf Harbaugh and Boham-Carter 1970).
The technique which makes use of random numbers to simulate a sample population with determined characteristics is called a Monte Carlo simulation (see Harbaugh and Boham-Carter, 1970, p.74). Usually the routine consists of generating pseudo-random numbers forming an initially uniform distribution (or a rectangular frequency distribution) and then using these in order to obtain a random sample from a known distribution (see full details in Harbaugh and Boham-Carter, 1970, p.74).

In the present test there was a need for numbers to be drawn from a population of fold axes having a normal distribution, characterised by its mean and standard deviation.

There are many ways of generating these numbers on a computer. Some of the usual methods are known as the Congruential Methods (Harbaugh, etał 1970). These require such small amounts of computer memory that they can be performed by modern pocket calculators. The methods vary according to the computer installation and most computer libraries include subroutines for the purpose.

In the present test, use was made of the NAG subroutine GO5DD5 which can draw a random sample from a normal distribution having specified its mean and standard deviation. This population of fold axes, was subjected to the angular rotation, due to a specified strain and finally grouped into frequency histograms. These histograms constituted the input data for the early versions of programme SAND (Mod I) and MODEL2 (Mod II proposed here). Both programmes are fully listed in the Appendices.

Figure 3-8 illustrates one such simulation and the results obtained with programmes SAND and MODEL2. It can be seen that Mod I slightly underestimated the true X / Y-value, while Mod II produced an overestimation. Both models gave underestimates for the standard

Figure 3.8. Illustrate a Monte Carlo simulation. Population of 500 axes drawn from an originally normally distributed population ($\mu=85, \sigma=10^{\circ}$). that subsequently was subjected to a pure shear transformation ($R=5$). The graph also shows the results for the fitted curves for both models:

- True values: $\mu=85^{\circ}\left(0 \overline{\mathrm{r}} \phi=+5^{\circ}\right), \quad \sigma=1 \dot{0}^{\circ}, . R=5$
- Mod I results: $\phi=3.96^{\circ}, \sigma=9.01^{\circ}, R=4.444$
- Mod II results: $\mu=85.84^{\circ}, \sigma=8.12^{\circ}, R=5.510$
deviations, Mod II gave a closer estimation of the mean.

Although these results are similar and not unreasonable, the methods used and the programme versions were far from efficient. For instance, the parameter estimation of Mod II required 180 secs of CPU-time while for Mod I to perform the same operation it required three times (CPU) this. However different and independent aspects were being treated at the time: (i) the two models, (ii) the method of estimation, and finally (iii) the two computer programmes which were constantly changed, due to experience gained with both models and methods.

Both programmes (SAND and MODEL2); have the same structure and the differences (both in estimates and CPU-time) stem from the fact that Mod I includes in its equation a sampling-factor (see Sanderson, 1973, pp.57-58) which alters the area of the curve to be fitted. Consequently at every curve fitting, normalization is required and this implies a numerical integration and other additional Operations that are non-existent in the simpler formulation of Mod II. This normalization operation, done by summing frequencies, can give innaccurate results, especially with high strains (Sanderson, 1977, pers comm.). For these reasons it was decided to make use of Mod II thereafter.

Another type of test was sought and this gave a measure of the programme capability to converge to the right solution. This type of test - a convergence or curve fitting test - was carried out by generating a series of theoretical curves, simply by inputing different values of σ, μ and R in expression [3-11] and then submitting the ordinates to the available programme and verifying if the estimated $\bar{\mu}$, $\bar{\sigma}$ and \bar{R} values departed from the true ones. Table [3-1] 1ists five of these trials using a Direct Search Method for Mod II.

Table 3.1

Params. True Values	$\begin{aligned} & \mathbf{T} \\ & \mathbf{R} \\ & \mathbf{I} \\ & \mathbf{A} \\ & \mathbf{L} \\ & \text { No. } \end{aligned}$	BOUNDARIES OF SEARCH						No. of C Y C L ES	ReSULTS				total CPU TIME (SECS)
		INPUT							ESTIMATES			Minimized Error or Final Value of The Least Sum of Squared Diffs.	
		μ Lower	$\Delta \mu$	$\begin{gathered} \sigma \\ \text { Lower } \end{gathered}$	$\Delta \sigma$	$\begin{gathered} \text { R } \\ \text { Lower } \end{gathered}$	$\Delta \mathrm{R}$		$\bar{\mu}$	$\bar{\sigma}$	$\overline{\mathbf{R}}$		
$\mu=75$	A	5-175	10	1-76	15	1-16	3	17	74.783	10.054	4.947	0.02234045	129
$\sigma=10$	B	5-175	10	1-51	10	1-16	3	17	74.837	10.096	4.942	0.01355647	129
$\mathrm{R}=5$	C	5-175	10	5-55	10	2.5-17.5	3	17	¢75.666	9.666	5.225	0.07364522	129
$\mu=85$	A	5-175	10	1-51	10	1-16	3	17	85.527	9.046	5.555	0.63703251	129
$\sigma=10$	B	5-175	10	5-55	10	2.5-17.5	3	17	84.286	11.330	4.404	0.651433952	120
$\mathrm{R}=5$													
$\mu=95.5$	A	5-175	10	5-55	10	1-16	3	17	95.967	24.505	2.112	0.0201466212	120
$\sigma=23$	B	5-175	10	5-55	10	2.5-17.5	3	15	95.06	21.36	2.400	0.01213815	110
$\mathrm{R}=2.23$													
$\mu=106$	A	5-175	10	5-55	10	2.5-17.5	3	17	108.078	18.590	2.006	0.0719753291	120
$\sigma=17$	B	5-175	10	1-76	15	1-16	3	17	106.419	17.111	2.226	0.0097095333	120
$\mathrm{R}=2.27$	C	5-175	10	5-55	10	1-16	3	15	105.83	16.84	2.29	0.0005308924	110
$\mu=115$	A	5-175	10	1-76	5	1-16	3	17	130.711	39.361	1.125	0.476201200	120
$\sigma=33$	B	5-175	10	1-56	15	2.5-17.5	3	17.	111.629	29.361	1.754	0.0664935393	120
$\mathrm{R}=1.56$	C	5-175	10	5-55	10	2.5-17.5	3	17	114.720	32.200	1.580	0.007995710	120

Table 3.1 (continued)

This table displays some results for parameter estimation using only the Direct Search method in a programme for Mod II. Parameters μ, σ and R are as defined previously in [3-10], while $\bar{\mu}, \bar{\sigma}$ and $\overline{\mathrm{R}}$ are the obtained estimates, $\Delta \mu, \Delta \sigma$ and R are the initial increments of search. In the input column are specified the initial boundaries of search (lower and upper) for each parameter. In each case, the first column gives the true parameters, while the second column specified the number of trials. All experimental runs had 17 cycles of iterations. The columns of results specify the different estimates in each trial and the final or the minimized error. The last column reports the necessary CPU time (in seconds) for the LEEDS' ICL 1906-A computer.

Compare results of this table with that of Table 3.2. The simulated data for parameter estimation (ie the histogram) is common to both these tests. Notice the results obtained for Table 3.2, which consumed generally between $1 / 6$ and $1 / 10$ of the present table's average CPU time.

A first consequence of this type of test was the confirmation that results could be greatly improved if the appropriate number and intervals of search for each parameter were used. Many of the earlier tests were carried out using 10 intervals of search for σ, μ and R, giving a total of 1000 combinations in every cycle of interations. Better results were obtained when numbers of intervals for the mean increased from 10 to 15 , and decreased from 10 to 5 for both σ and μ. This not only improved the final results but alsa gave a total of 375 combinations per cycle, a little more than a:third of the previous amount.

These tests also reveal that in this direct search technique it is important that the increments (relative to each parameter) are sequentially and proportionately reduced in every cycle of iterations. In other words, the range and the number of intervals for each parameter and the number of cycles of iterations must balance in such a way that at the end, the magnitude of these increments for each parameter must be roughly the same. In other words, in the last cycle, all the parameters μ, σ and R are searched in increments of say approximately 0.1 .

One specially valuable piece of information obtained from these tests is the fact that a lot of care must be taken with the search for the mean. Compared to σ and R, there should be a greater number of intervals of search, allocated to finding μ, because this parameter governs the success in finding the right convergence direction. The Mod II function relies on the mean and neglecting this could give spurious results.

The results of the type of the Monte Carlo simulation shown in fig. 3-8 showed improwements with the change in the intervals of search for the mean:-

- Mod I, \oint changed from 20 to 30 intervals; and the estimated R is 4.8, while Mod II changed fromi 10 to 33 intervals and the estimated
R is 5.3. Therefore both results came closer to the desired value 5.0.

Another important observation is the fact that the models' function are very sensitive. Minor differences in the values of the minimised errors can lead to many different estimates of μ, σ and R. This fact is shown in table 3.1.

Experience gained with the use of the Direct Search Method showed that it loses its efficiency as the iterations progress. In other words, the method is quite efficient in the early iterations as it eliminates intervals and locates the most likely region where the optimum lies. Thereafter, the progress towards the optimum becomes less efficient and requires too many iterations. This showed the necessity of finding another solution, and the investigated method was the Gradient Method described in section 3.4.3. Section 3.4.3-c describes the disadvantages of the Gradient Method, while table 3-2 illustrates the advantages in terms of accuracy and time necessary to reach the optimum, using data listed in table 3-1. In both tables 3-1 and 3-2 it is important to compare not only the values of the estimates but also the final values of the minimised error, (ie the final value yielded by the objective function). Compare the columns of the minimised errors in both tables 3-1 and 3-2. The analysed data is the same for both tables.

Table 3-2 also gives an idea about the direction towards which there is a convergence. It can be seen that in each trial there were different initial guesses, as shown in the input columns, but the results, both the estimated parameters and obviously the minimised errors, are nearly the same. It is clear that the method shown in table 3-2 leads more accurately to an Optimum solution than the Direct Search Method of table 3-1. It must be reported that the input 'guesses' in table 3-2 were taken from results of the early three iterations using

Table 3.2

Direct Search Method Cycle No.	INPUT			RESULTS			
	INITIAL GUESSES			ESTIMATES			Minimal error or Final Value of The Sum of Squared Diffs.
	μ	σ	R	μ	σ	R	
1st	75	16	4	74.988	9.985	5.002	0.42875×10^{-2}
1st	75	11	4	74.911	10.026	4.975	0.37143×10^{-2}
1st	85	15	2.5	74.916	10.023	4.976	$0.37490 \times 10_{-2}^{-2}$
2nd	78.705	6.700	6.940	74.921	10.021	4.978	0.37048×10^{-2}
3rd	78.84	7.498	7.494	74.921	10.021	4.978	0.37051×10^{-2}
TRUE VALUES				7510		5	
1st	85	16	4	84.995	10.006	4.995	0.19431×10^{-2}
1st	85	15	2.5	84.996	10.004	4.997	$0.15309 \times 10_{-2}^{-2}$
2nd	82.825	18.10	2.98	84.996	10.054	4.970	0.45560×10^{-2}
3rd	83.965	12.799	3.613	85.002	9.993	5.002	0.89724×10^{-3}
	TRUE VALUES			85	10	5	
1st	105.00	41.00	1.00	95.499	22.997	2.230	0.25266×10^{-6}
1st	95	15	4.00	95.499	22.997	2.230	$0.25282 \times 10_{-6}^{-6}$
2nd	91.058	10.00	4.960	95.499	22.997	2.230	0.25271×10^{-6}
3rd	95.66	17.695	2.900	95.499	22.997	2.230	0.25266×10^{-6}
TRUE VALUES				95.5	23	2.23	

Table 3.2 continued

This table displays the results of the Gradient Method, which used Mod II formulation. The input data (ie initial guesses) were originated from the 1 st, 2 nd and 3 rd results or cycles of the Direct Search routine. Notice:
(i) The similarity in values of the estimates (ie consistency) in each case.
(ii) Similarity between the estimates and the true values.
(iii) The accuracy of search in the errors column.
(iv) No matter what the input, the convergence is to the $\boldsymbol{t a m e}$ point.
the Direct Search Method.

This study also found that the Gradient Method proved to be unhelpfull when the initial guesses were far away from the Optimum region. It cannot be defined here what is the appropriate range for the Gradient routine to function properly, because it varied accordingly the tested case. The Steepest Descent method always operates (in all tested circumstances) but the rate of its convergence towards the optimum can be infinitely slow. This is a clear indication that these methods (either 1st or 2nd order method) show that their weaknesses lie in those circumstances where the initial steps are far away from the optimum. This contrasts very much with the Direct Search Method which proved to be more efficient exactly in this region-ie it locates and approximates very quickly to the optimum region.

An all purpose, error-free and globally-convergent method is not yet available, due to the fact that the objective functions may vary considerably according to the formulation of each problem. Functions can have more than one optimum. There could be a saddle-point (see CC' in fig. 3-4) or narrow valley, where progress is very slow. In these situations it is important to search in another direction and see if there is an improvement in the value of the Objective Function. An alternative method is to generate various initial guesses using a random number generation routine, but a successful convergence cannot be guaranteed.

Based on experiences gained in the innumerable simulated estimations it was decided not to try yet another method, or any variation on the methods already available. This was due to two reasons:
(i) The problem of having to deal with local minima would persist, no matter which method was chosen.

(ii) The methods already tested have complementary characteristics on efficiency, as explained above.

Thus the chosen strategy was to use the Direct Search Method to initiate the Optimization process and eliminate intervals where the optimum is less likely to occur. The Gradient routine was then activated and on average it locates the Optimum in less (generally) than 10 iterations, with great accuracy and at a fraction of the time that would be spent by the Direct Search alone (usually at $1 / 6$ to $1 / 10$ of that time).

Programme ISTRAES (see appendix, for listing and instructions of use) was devised incorporating the version of the Direct Search Method (Mod II) under a subroutine named MODEL2. The Gradient MethodProgramme was modified to subroutine GRADIT. Thus ISTRAES initiates the cycles of iterations by activating subroutine MODEL2, in a range as broad as possible, restricting this range at every cycle. The output results are submitted to the subroutine GRADIT which finalises the whole operation. Table 3-2 shows different runs in which the initial guesses for GRADIT were taken from MODEL2 !s cycles numbers 1,2 and 3. It can be seen that there was convergence towards the correct solution in every single test. Theoretically, using the results of the second and third cycles of MODEL2 increased the safety of search and also the processor time. It does mean that good results could be achieved only using the first cycle results. The running times for the LEEDS' 1906-A ICL computer, amounted on average to 32 seconds, and this includes inpúting data, 3 cycles with MODEL2, finalization with GRADIT and then printing (line printer) the fitted curve on the analysed histogram.

Many of the earlier results were obtained by treating data in the way described by Roberts and Sanderson (1974). That is manually as explained in section 3-2 (see diagram in figs. 3-11 and 3-12). This is a reasonable procedure if the number of estimations is relatively small, otherwise there is a need for a quicker process, and this is the aim of the present section.

The method here is based on the technique introduced by Loudon (1964, see also Whitten 1966, pp.582-585) and subsequently simplified by Ramsay (1967,pp.18-19).

Loudon (1964) applied the least squares fitting method in order to find the fold axis of conical and cylindroidal folds. While his method required matrix inversion for solving three simultaneous equations, Ramsay (1967) approached the problem by introducing a constraint which reduced the unknowns to two simple expressions. The method used here introduces another constraint thus restricting the problem to a simple expression.

Geometrically what is required is a plane that best fits the normal to the S-planes, with the condition that such a plane contains the resultant vector of the stretching direction, that is the statistical X-direction, of the finite strain epplisoid. The normal of such plane constitutes the Y-axis and as explained in section 3-2, the XY-plane is used in order to group data into frequency histograms.

The conditions that a line, given by its direction cosines $1, m, n$, should lie in a plane are

$$
\begin{gather*}
\text { and }+\operatorname{ad}_{j 1}+b_{j 2}+c d_{j 3}=0 \tag{3-30}\\
\text { (see Bell, } 1937, \text { p.43) } \tag{3-31}
\end{gather*}
$$

An S-pole ($\mathrm{di}_{\mathrm{ji}}$) lying on this plane should be perpendicular to the plane's normal. This condition of orthogonality can be expressed by the fact that the product of their cosines equals to zero. (Ramsay, op. cit., p.18). By making $A=a / c$

$$
\begin{equation*}
\text { and } \quad B=b / c \tag{3-32}
\end{equation*}
$$

and substituting these in the former expressions, we get

$$
\begin{array}{ll}
& \dot{A} 1+B m+n \tag{3-34}\\
\text { and } & A d_{j 1}+B d_{j 2}+d_{j 3}=0
\end{array}
$$

Taking the value of B in [3-34] and substituting in [3-35], yields

$$
\begin{gather*}
B=-\frac{A 1-n}{m} \tag{3-36}\\
\text { and } \quad A d_{j 1}+d_{j 2}\left[\frac{-A 1-n}{m}\right]+d_{j 3}=0 \tag{3-37}
\end{gather*}
$$

Now, the minimization of errors using the Least Squares Method is carried out (see Dixon, 1972, p.42) by creating an Objective Function $\quad Z=f(A)$

$$
\begin{equation*}
z_{\min }=\sum_{j=1}^{n} e_{J}^{2}=\sum_{j=1}^{n}\left[d_{j 3}+A d_{j 1}+d_{j 2}\left[\frac{-A 1-n}{m}\right]\right]^{2} \tag{3-38}
\end{equation*}
$$

This gives the condition of optimum at

$$
\begin{equation*}
\frac{\partial Z}{\partial A}=2 \sum_{j=1}^{n} e_{j} \cdot \frac{\partial e j}{\partial A}=0 \tag{3-39}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial e_{j}}{\partial A}=\frac{d j 1 m-d j{ }^{1} 1}{m} \tag{3-40}
\end{equation*}
$$

so

$$
\begin{equation*}
\left.\frac{\partial Z}{\partial A}=2 \sum_{j=1}^{n}\left[\frac{m^{d}{ }_{j 3}+m A d_{j 1}-A 1 d_{j 2}-n d_{j 2}}{m}\right] \cdot\left[\frac{\mathrm{md}_{j 1}-1 d_{j 2}}{m}\right]\right]=0 \tag{3-41}
\end{equation*}
$$

which simplifies, after expanding and collecting the terms, to

and therefore

$$
\begin{equation*}
A=-\frac{\sum_{j=1}^{n}\left[\left(l_{j 2}-m d_{j 1}\right)\left(n_{j 2}-m d_{j 3}\right)\right]}{\sum_{j=1}^{n}\left(1 d_{j 2}-\mathrm{md}_{j 1}\right)^{2}} \tag{3-42}
\end{equation*}
$$

Back substitution of [3-42] in [3-36] yields the value of
B. The fitting plane is given by the direction cosines of its normal (the Y-axis) which are assessed by means of Ramsay's (1967) expression no. 1-13.

$$
\begin{equation*}
C=\left(1+A^{2}+B^{2}\right)^{-\frac{1}{2}} \tag{3-45}
\end{equation*}
$$

which substitutes in [3-32] and [3-33] giving $a=A c$ and $b=B C$.
Having established the ellipsoid axes, X and Y, the task is now to find the θ_{i}^{\prime} angles that each vector projection makes with the X-direction in the XY-plane. Figure 3-9 illustrates the situation. In a cartesian system (U, V, W), a unity vector $\overline{O P}_{i}$ makes angles α and β with two orthogonal axes $O X$ and $O Y$. The projections of this vector on each of the axes is given by the lengths of $\overline{o x}$ ' and $\overline{o y}$ ' respectively. The angle θ^{\prime} in the $X Y$ plane is assessed as follows:

$$
\overline{O P}, 2=\overline{O x}, 2+\overline{O y}, 2
$$

Figure 3.9. See text for explanation.

$$
2
$$

XYZ-Sample co-ordinates UVW-Geographical co-ordinates
OP - Unity vector
θ^{\prime} - Projection angle on $X Y$-Plane
lane

$$
\overline{O P}^{2}=\left(\cos ^{2} \alpha+\cos ^{2} \beta\right)^{\frac{1}{2}} \text {, but } \overline{O X^{\prime}}=\overline{O P} \cdot \cos \theta^{\prime}
$$

therefore

$$
\begin{equation*}
\theta^{\prime}=\cos ^{-1}\left[\frac{\cos \theta}{\left(\cos ^{2} \alpha+\cos ^{2} \beta\right)^{\frac{1}{2}}}\right] \tag{3-46}
\end{equation*}
$$

The angles α and β can be easily calculated by remembering that two straight lines make an angle λ according to the relationship (see Kindle, 1972).

$$
\begin{equation*}
\cos \lambda=\frac{x_{1} P_{1}+x_{2} p_{2}+x_{3} P_{3}}{\rho_{1} \rho_{2}} \quad \text {, where } \tag{3-47}
\end{equation*}
$$

P_{i} are the co-ordinates of each vector, and ρ_{1} are the lengths of each vector (here taken as unity).

The operation is easily carried out by matrices

$$
\left[\begin{array}{c}
\cos \alpha \tag{3-48}\\
\cos \beta
\end{array}\right]=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right] \cdot\left[\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right] \quad \text { or }\left[\cos \lambda_{j}\right]=\left[E_{j k}\right]^{t}\left[P_{k i}\right]
$$

for $1=1,2, \ldots n ; j=1,2$, and $k=1,2,3 .\left[E_{j k}\right]^{t}$ are the co-ordinates for the X and Y axes in a transposed disposition.

Subroutine HISTGM (listed in Programme ISTRAES) was devised to group data into frequency histograms. Data are dealt with in terms of azimuth and plunge, in the following steps:
(i) Input data come from subroutine READAT and comprises the poles of the $S-p l a n e s$ and the resultant vector of the stretching direction lineation, the X-axis. These are used in the described Least Squares routine, in order to find the XY-plane.
(11) Each fold axis is projected onto the $X Y$-plane using [3-46] and the angle θ^{\prime}, is recorded.
(iii) The frequency histogram is formed by grouping the obtained angular projections according to the class intervals.

3.5.1 Data Weighing

Some comments are necessary at this stage, because the algorithm described in the previous section produces perfect results only in ideal conditions. Where conditions depart from the ideal, some unwanted results may come out. It is believed, however, that there is nothing wrong with the method, and the results are a direct consequence of the type of input data. The method, as explained in the last section, takes into account all the entered data without any sorting (or 'cleaning') criteria.

Data treatment by the manual construction of the frequency histogram allows one to take field criteria into consideration and thus individually evaluate each entered datum. However, even after the most careful handling of data the resultant histogram may contain some subjectivity. The routine explained in the last section does not take into consideration any criteria of data selection and every measurement no matter how discrepant, has the same weight. It is believed that it is possible to partially overcome, or at least to lessen the problems of sampling, by using a modified routine of the least squares technique which weights each S-pole according to its proximity to the resultant pole-distribution vector. The axes which depart too much from the centre of gravity of the poles distribution will be given less weight.

The degree of clustering of each distribution of S-poles can be assessed and used in the weighting process. Here, use was made
of Fisher's (1953) k-parameter as a measure of the degree of clustering. Thus the situation in $[3-38]$ is changed to

$$
\begin{equation*}
Z_{\min }=\sum_{j=1}^{n} w_{j} e_{j}^{2}=\sum_{j=1}^{n} w_{j}\left[d_{j 3}+A d_{j 1}+d_{j 2}-\left(\frac{-A 1-n}{m}\right)^{2}\right] \tag{3-49}
\end{equation*}
$$

and also in [3-42] which becomes

$$
\begin{equation*}
A=-\frac{\sum_{j=1}^{n} w j\left[\left(1 d_{j 2}-m_{j 1}\right)\left(n_{j 2}-m d_{j 3}\right)\right]}{\sum_{j=1}^{n} w j\left[\left(l d_{j 2}-m d_{j 1}\right)^{2}\right]} \tag{3-50}
\end{equation*}
$$

for $j=1,2, \ldots n$; where w_{j} are weighting factors which could be chosen arbitrarily from the following standard approaches (remembering that $j=1,2, \ldots n$ are data numbers):-
(i) the sum of squares of the errors is minimised if $w_{j}=1$
(ii) the sum of squares of the percentage errors is minimised if $w_{j}=\left(1 / e_{j}\right)^{2}$
(iii)the probability of a set of errors occurring can be minimised if σ_{j} is the expected error in the measurement $\sigma_{\mathcal{j}}$ (ie if this is possible to determine) so $w_{j}=\left(1 / \sigma_{j}\right)^{2}$.

The tests carried out in this study lead us to choose (more or less intuitively) the results relative to σ_{j}, the closest angular distance between each S-pole and the distribution-resultant in one of the following relationships:-
(1) $\quad w_{j}=\cos \left|\alpha_{j}\right| \quad$ (ii) $\quad w_{j}=\cos \left|\alpha_{j}\right| /\left[1-\cos \left|\alpha_{j}\right|\right]$ (iii) $w_{j}=k \cos \left|\alpha_{j}\right|$, or (iv) $w_{. j}=1 /\left[k \cdot \tan \left|\alpha_{j}\right|\right]$, where k is the well known Fisher (1953) concentration parameter, only used on the constraint that $k \geqslant 1$.

The more satisfactory results were obtained with the fourth expression above. Figures 3-10-a and b are stereoplots of two solutions using the above described methods. It can be observed that for 3-10-a,

Figure 3.10-a
Hypothetical ('ideal') case of poles of S-planes clustered at a resultant direction which constitutes the pole of the best fit plane containing the X-axis.

Figure 3.10-b
Data from sub-area 6, $221 \pi s-p l a n e s, 111 u s t r a t e s$ the chosen
the ideal case, the fit is perfect. Figure 3-10-b is made from data of sub-area 6 (see fig. 2-3) and it is displayed here for comparative judgement.
3.6 Parameter Estimation
3.6.1 General

Figures 3-11 and 3-12 contain the resultant parameter estimations using both Mod I (Sanderson's) and Mod II (present study) using a Direct Search Method, for two fold generations, F_{2} and F_{3} in the studied area. The sub-area numbering, as indicated in every diagrain corresponds exactly to that described previously for Chapter 2. It must be stressed that such sub area division fits better for the $F_{3}-$ folds, than for the F_{2}-generation. The estimations are restricted to the southern part of the mapped area (fig. 2-1) simply because data are more abundant in this domain. The estimated parameters, for both models and fold generations, are displayed in the sequence of figs. 3-13-3-17.

Figure 3-13 compares the means estimated by Mod I and Mod II, using data for F_{2} and F_{3} fold axes. The best fit regression line, given by relation [4-62] (see next chapter), for F_{2}-folds has a slope of 42.1° while that for F_{3} is 45.4°. The linear correlation coefficients r μ (see Chapter 4, relation 4-63) present values very close to unity. It is quite clear that the estimates were almost identical, no matter which model was used. The existent differences are certainly due to the low accuracy of search-programmes that only used the Direct Search Method. Figure 3-13 also shows that 85% of the estimated means are located within the range of $85^{\circ}-115^{\circ}$ from the finite X-direction,

Figures 3.11. Refers to F_{2} folds. Best fit curves to frequency histograms. Dashed lines correspond to curves for Mod I (Sanderson's) and full lines refer to Mod II.

Numerals beneath each diagram refer to sub-area location (described in Chapter 2). Results for both models were obtained from programme using a Direct Search method (see text for details).

Figures
3-12

Figures

3-12 (cont'd)

Figure 3.12. There refer to F_{3}-folds, showing the best fit curves to frequency histograms. Dashed lines correspond to curves for Mod I (Sanderson's) and full lines refer to Mod II. Numerals beneath each diagram refer to sub-area location (described in Chapter 2). Results for both models were obtained from programmes using a Direct Search method (see text for details).

Figure 3.13
Correlates the estimated means obtained from the two models used. Dashed lines correspond to the best fit regression lines as indicated. This full line has a 45°-slope. See text for full details.
'that is, with high obliquity to the thrust movement direction. The position of the original mean directions are plotted in figs. 3-23 and 3-24, and a further discussion is given later.

Figure 3-14 compares estimates of original standard deviation o. This diagram clearly shows that the regression lines for both populations, F_{2} and F_{3}-folds, departed slightly from the ideal 45 slope line. Compared to fig. 3-13 the scattering of this plot is larger and a measure of this scatter is given by the calculated linear correlation coefficients, ro (see fig. 3-14). The estimates for σ are in the range up to 30°, and this range should constitute a constraint for the following reasons:
(i) Both models, Mod I and Mod II, make use of the Gaussian function of [3-8]. This relation is appropriate for linear measures (cf Mardia 1972, p.18) whereas the present cases (ie both models) require a circular function such as the von Mises function (see Mardia 1972, p. 42 for detalls). However for values of σ less than 30°, both functions, Gaussian and von Mises, tend to approximate one another (Agterberg 1973).
(ii) Also, measurements made by the author on photographs of experimentally produced folds (Dubey, 1976) show that the standard deviation of fold axes is in the range of 6° to 12°. Folds being formed with standard deviation values greater than 12° are perhaps due to inhomogeneities that were not present in Dubey's (1976) experiments.

The results given in fig. $3-14$ plot within the $10^{\circ}-30^{\circ}$ range. It is suggested that all results in which $\sigma>30^{\circ}$ are geologically meaningless.

Figure 3.14
This correlates the values of the estimates for the Standard Deviations using the two models. Notice the range up to 30°. Dashed lines are the best fit regression lines as specified. The full line has a 45°-slope. See text for full details.

The estimates of the strain ratio, R, both for Mod I and Mod II and F_{2} and F_{3}-folds, are compared in fig. 3-15. It can be seen that such diagrams exhibit a plot with strong departure from the 45°-slope line. The slope for both regression lines have very close values around a 35° slope. Thus, Mod II overestimates the ratios obtained by Mod I. The scattering for F_{2}-folds on this graph is comparatively greater than for F_{3} estimates, as this is measured by the correlation coefficients in fig. 3-15. Also from this diagram is the indication that \mathbf{F}_{2}-folds show a much higher strain ratio than do F_{3}-folds. The latter range from 1.0 to 5.5 while the former reach ratios as high as 18.0.

It is apparent from figs. 3-13-3-15 that the differences in models tend to:
(i) Produce no discrepancies in the location of the means (μ or ϕ) of the original fold distributions.
(ii) Give higher estimates of standard deviation for Mod I than for Mod II.
(iii) Assign higher estimated values for strain in Mod II than in Mod I.

It is also clear that both models tend to produce practically the same ordinate values for the fitted curves. This is obvious and is due to the fact that both programmes (SAND for MOd I and MODEL2 for Mod II) make use of the same objective function [3-15]. Thus the differences in the results of σ and R are due to the differences in the original formulation of each model.

Figures 3-16 and 3-17 constitute a visualisation of the magnitude and orientation of.strain estimates for the southern part of the mapped area.

Figure 3.15
This correlates the strain ratio estimates using the two models. Dashed lines refer to best fit regression lines as indicated. This full line has a 45°-slope. See text for full explanation.

Figure 3.16. The different ellipses illustrate the magnitudes and orientations of the X / Y ratios determined using F_{3}-fold axes orientations with Mod I, in a Direct Search Method. See diagrams of figures 3.12 and text for full explanation.

Figure 3.17. The different ellipses illustrate the magnitudes and orientations of the X / Y ratios determined using F_{3}-folds axes orientations with Mod II, in a Direct Search Method. See diagrams of figures 3.12 and text for full explanation.

Multiple Cells Sub-division

The results based on a sub area division as given in figures 3-16 and 3-17 can be considered subjective, no matter what criteria were used to obtain the best sub-area division. A different approach is introduced here which tries to reduce this subjectivity. The analysed area is subdivided into overlapping 'cells' and data input from each 'cell' are submitted for parameter estimation using programme ISTRAES (ie Direct Search and Gradient Methods). Each cell covers an area in which part of its data have been used in the neighbouring cell. This kind of overlap is taken both laterally and longitudinally to a particular frame or reference orientation.

The idea behind this procedure is that, if subjectivity is introduced by a particular choice of sub-area, this should be eliminated by this gradual coverage, provided sampling is ideally perfect.
3.6.3 Procedure

Mapping was originally carried out by measuring field structures and numbering stations. The density of such measurements amounted to roughly 500 per km^{2}. However the distribution of the collected data is far from homogeneous as it is dependent upon factors such as accessibility, availability of outcrops etc.... For example the present analysis is constrained to the southern half of the mapped area as data are more readily available there. A great effort was made to establish a sampling net as homogeneous as possible (see structural map, figs. 2-2 for an idea on density of measurements and outcrop availability) and this proved to be a time consuming task.

The geographical coordinates of each station were calculated and each datum was filed (computer input) according to its co-ordinates.

The whole set of measurements formed initially a huge matrix of
approximately $4,000 \times 4$, in which the columns included: azimuth direction, angle of plunge, vertical and horizontal (map) co-ordinates.

The actual calculations were carried out by the programme (ISTRAES) not in azimuth and plunge but in terms of direction cosines. However the subroutine READAT can cope with both situations provided that the input mode is specified in the main programme by CONTRL (3) (see appendix for details). If data are to be used intensively, as in the present case, it is more efficient to transform the whole set to direction cosines.

Sorting data from the above matrix was carried out by an auxiliary routine that selected those in which the co-ordinates were within the limits of the frame of each individual cell. However, another modification proved to: be necessary soon after the early estimations were carried out. It can be seen from the maps of figs. 2-2 that structural control is important in the mapped area. The thrusts, foliations and other structures trend approximately NE-SW. Field observations showed that changes in the structural pattern is done preferentially along zones more or less parallel to this direction. For this reason the whole set of data had its co-ordinates rotated by 45°, so that scanning could be performed parallel to these structural zones and thrust traces. Both the size of each cell and the amount of data it contained varied in these determinations as data are not homogeneously distributed throughout the area.

Over 200 estimations were carried out using programme
ISTRAES, which stands for Irrotational STrain RAtio EStimation. This outputs not only the numerical results but also a graphic plot (line printer-type) of the fitted curve and histogram.

Figure 3.18. Strain results using programme
ISTRAES using the multiple cell subdivision. See details in text.
displays hand constructed contours of these values. From the above maps it is possible to draw some preliminary geological conclusions.
(1) The R-estimates have higher values near the Upper Thrust (the MTP) and decrease with increasing distance from the thrust trace .
(ii) Within thrusts there are domains where deformation values are different and this confirms field observations that there are zones with different intensities of deformation.
(iii) Variations in the Means of the original distribution confirm the sub area division displayed in figures 3-11 and 3-12.
(iv) From figure 3-20 it is clear that the distribution of the original Means is as follows:

- 70% within the range $90^{\circ} \pm 10^{\circ}$
- 20% within $100-110^{\circ}$ and $70-80^{\circ}$
- approximately 10% in the limits of $60-70^{\circ}$ and $110^{\circ}-120^{\circ}$
- The modal class is not at 90° but in general it is shifted to approximately 5° from this.
(v) From fig. 3-21 which deals with the variations in estimates of the original Standard Deviation, we can draw the following conclusions:
- 45% are localised within the range of $\sigma \leqslant 10^{\circ}$
- 33% are between 10° and 20°
- 22% are in the range $20-30^{\circ}$
(vi) There was not a single example where the estimated Mean was greater than 135 or less than 45°.
(vii) Far less than 5% of the results gave estimated Standard Deviations greater than 30° and none less or equal to 1 . The values of σ greater than 30° are geologically meaningless and also inappropriate with the used function (Agterberg 1963, Sanderson 1973)

Figure 3.20. Diagram of the frequency of the estimated original means, prior to the deformation. Inset, grouped histogram, featuring relative percentages. See details in text.

Figure 3.21. Diagram of the frequency of the original standard deviations. Inset, grouped histogram, featuring relative percentages. Full details in text.

Thus in conclusion:
1 - Over 200 estimations were obtained from Eriboll area and the results are within the geological limits of acceptance.

2 - If we accept the initial proposition of the model, folds formed in the Eriboll area are initially formed with hinges at very high angles to the direction of movement.

3 - The estimates for the Standard Deviation around the mean do not follow strictly the theoretical limits taken from the measurements made on experimental models of folds made by Dubey (1976).

4 - Results of the 'Multiple Cell Subdivision' corroborates the values found earlier by the Direct Search Method. These are displayed in figs. 3-11, 3-12, 3-16 and 3-17.

5 - The Multiple Cell Subdivision reveals the existence of high values of strain near the upper Thrust trace (the MTP) and also in the zones within the mylonitic belt.

3.7 Discussion

Figure 3-22 displays three strain profiles across the deformation belt. The indications are that the Upper Thrust Zone (the MT) constitutes a ductile shear zone with a progressive increase of deformation towards the thrust trace. In profiles AA' and CC' strain also increases westwards but near the b-thrust the strain intensities drop. However it must be remembered that there are considerably less data available in vicinity of this b-thrust than near the upper MTP, so these results must be taken cautiously.

Figure 3.22.
Strain profiles taken from the map of figure 3.19. Horizontal scale is approximately 1:10,560. Arrows indicate the positions of the Moine Thrust (MT) and the b-thrust along the considered sections.
 of the information already contained in the structural maps of figs. 2-2 and the stereoplots of figs. 2-5 and 2-6. That is, they show the preferential distribution of fold axes maxima in the sub areas covered by the strain determinations dealt with in this Chapter (ie the area of figs. 3-16 and 3-17).

Figures 3-23 and 3-24 plot the directions of the dominant maxima in each sub-area, taken from the histograms of figs. 3-11 and 3-12. The length of the arrows is proportional to their relative frequency, as read directly from the ordinate of each histogram.

Figure 3-23 concerns the F_{2}-folds and there are clearly two different asymmetrical patterns. Throughout most of this area the dominant maxima lies to the left of the X-direction (view downplunge of X). However the opposite asymmetry is seen for sub areas 8 and 9. The original means (μ) of the fold axes, previous to the superimposed strain, are also plotted in each diagram. With the exception of data in sub-areas 17 and 8 , all the μ-directions plot to the NE or SW, normal to the movement direction in the thrust belt. The two exceptions trend respectively 083° (sub area 17) and 150° (sub area 8) which clearly conflict with the neighbouring results. It is more likely that these two results for parameter estimation should not be taken into account as they reveal contrastingly low strain estimates, if compared with the other diagrams.

Figure 3-24 show the plots of the enhanced maxima taken from the F_{3} histograms of figs. 3-12. For this fold phase the analysis is more complex as the histograms may exhibit more than one sub-maxima. Grouping of diagrams according to similarity in maxima directions reveals 3 main domains: In domain (1) the dominant maxima is directed towards the east (sub areas 3, 6, 7 and 12). In domain (2) the dominant maxima is towards south (sub areas 8, 9, 13, 14, 15, 16 and 18). In

domain (3) the dominant maxima is directed to the NE quadrant
(sub areas 10 and 11). However most of these diagrams include one Or more sub maxima that might be parallel to the dominant maxima of another domain. For example the diagrams of sub-areas 2, 3, 6, 7, 9, 12, 13, 18 and 17 contain elements oriented to the NE quadrant (of the third domain). Diagrams classified in the first and third types, contain sub-maxima directed to the SSW. As it will be shown later, there could be factors influencing in the sampling collections and this can cause the predominance of one trend.

There could be several possible interpretations for the distribution of fold axis orientations shown in fig. 3-24.

1 - The discrepancies between the directions of the maxima in sub-areas 3,6 (domain 1) and $8,15,16$ (domain 2) may lead us to the conclusion that these two directions had completely independent development with non-coeval structures as the trends of their dominant maxima are at high angles. This would be corroborated by the fact that the western domain $1(3,6,7)$ contains mainly Lewisian rocks while that to the east (subareas $8,15,16$ in domain 2) is made up of Moinian rocks. If this is true, it would invalidate most of the strain determinations along the a-thrust trace (ie the MTP) as shown by figs. 3-18 and 3-19. The results that would be valid are those which were plotted away from this fault zone.

- However it is believed that the F_{3}-structures of the Lewisian and Moinian sub-areas are coeval because of the following reasons:

(i) These discrepancies in orientations are not observed northwards where there is a reasonable similarity between the diagrams plotted for sub areas 13, 18 and 17.
Field observations clearly do not corroborate the non-coeval
(iii) The F_{3}-folds in both nappes (ie above and below the $M T$ zone) have the same relationships to the F_{2}-folds, L_{2}-lineations and S_{1}-foliation.
(iv) North of the area of fig. 3-24 where the thickness of the mylonitic domain is reasonably constant there are no such discrepancies in the orientations of fold maxima, as observed for the southern sub areas $3,6,1$ and $8,15,16$. It seems that there is a relationship between the widening of the mylonitic zone and the development of oblique fold orientations.
(v) The diagram for sub area 9 refers almost entirely to : structures of the Moinian Nappe. This diagram seems to exhibit the directional elements of the both contrasting sub areas (ie $3,6,7$ and $8,15,16$).

2 - Another possible explanation for the existence of such discrepancies in orientations between domains 1 and 2 , is the possibility that the two nappes had initially (previous to folding) different regional attitudes: the foliation in the lower nappe dipping perhaps to the NE quadrant while in the Moinian Nappe the dip was to the $S E$. In the event of folding, with movement towards the WNW direction, this would produce mostly NE plunging folds in the Lower Nappe while the hinges in the Upper Sheet should plunge towards the south. At the junction of the two sheets the fabrics would develop elements of the two zones and that is why it is difficult to differentiate the structures and lithologies along the a-thrust zone.

The hypothesis of different initial tilts to the foliation and consequently different plunge directions towards the NE and $S E$
quadrants seems reasonable. These plunge directions are also confirmed by plotting the azimuth of the original means (μ) as deduced from diagrams of figs 3-11 and 3-12 (see dashed arrows in figs. 3-23 and 3-24). For F_{2}-folds most of the means are oriented towards the NE. For the F_{3}-phase the azimuth of the original means (μ) are towards SSW (200°) for sub areas $13,18,17$ and 16. In the domain of sub area 15 it was oriented towards 180° and for sub-area 8 the indications are that it was towards 150°. In the rest of the sub-areas the original means plot in the $N E$ quadrant ranging between directions 025° and 050° (see fig. 3-23), and these accord very well with the folds being formed at high angle to the wNW direction of movement of the thrust belt.

3 - Another possible reason is due to differential movement of the thrusts. The discrepancies in preferred orientations become enhanced in the zone where the nappe above the b-thrust thickens and this thickening might be connected with the deflection of the directions of the structures of the upper Moinian Nappe. Perhaps this thickening is related to the differential flow in the rocks of the Moinian Nappe and the observed effects are the gradual deflections in the directions of fold hinges from SSW plunge (sub area 17 and northwards) to SSW (sub area 15 and 16) and finally to the SW $\left(150^{\circ}\right)$ as in sub area 8. The effects of this thickening in the rocks (sub areas $3,6,7$) below the $a-t h r u s t$, would be analogous to the creation of a vertical (ductile) shear zone with sinistral displacement, in the Moinian Nappe. This would gradually deflect the hinge directions as explained before. Measurements of the orientation of the finite X-axis in this area (fig. 3-24) reveals that in sub-area 8 it plunges towards the 109° direction while in the neighbouring sub-areas 9 and 12 it is directed towards 129°. The

Abstract

azimuth of the X-axis in sub-areas $15,10,6$ and $21 s$ towards 118°. This reveals that the ellipsoid X-axis for sub-area 8 is deflected (anticlockwise) relative to the surrounding sub-areas by $10-20^{\circ}$.

A sinistral relative displacement for sub-area 8 may also explain the pattern of F_{2}-folds in figs. 3-23. However this fold generation seems not to have developed the same pattern of different maxima orientations as observed for the F_{3}-phase. This apparent more uniform maxima orientation for F_{2}-hinges, as observed in fig. 3-22, supports the idea of the coeval nature of the fold structures across the two nappes, at least in the limits of this study area.

3.8 Comments on Other Possible Models

The model described in this chapter may appear unsatisfactory to some geologists especially to those who advocate a simple shear mechanism as the only strain mechanism in a thrust or shear zone. Let us first consider the difficulties in devising a simple shear model and then discuss the possibilities of more complex situations which make use of composite mechanisms.

The first difficulty that one faces in simple shear is the problem of finding a reference frame and co-ordinate system. In the co-axial model of Sanderson (1973), this was tackled by finding the position of the XY-principal plane of the finite strain ellipsoid, defined statistically by the best fit plane which contained the resultant direction of L_{1} (cf sections 3.2 and 3.5). However if one accepts the parallelism between the above structures and the principal XY-plane for the simple shear case (eg Escher et al. 1975, p.163, fig. 4) then there is an additional difficulty in that the position of this XY-plane changes at each strain increment (see Ramsay 1981, fig. 15). It would be helpful if we knew the accurate attitude of shear plane. It may be possible to find this where the boundaries of the zones are
shown on vertical cliffs (see Escher et al 1975) but in the great majority of the thrust zones the only available information is the field location of the thrust trace and not its overall attitude. Sometimes the thrust dip is obtained from structural contour lines but in many areas thrusts are not constant in dip and warp around bulges (cf Elliott and Johnson 1980). However many shear and thrust zones contain strains which are not just due to simple shear. In some areas there is evidence for variations along the longitudinal direction of the deformation zone (ie along the supposed Y-axis). This is incompatible with a simple shear model. The grain shape analysis (Chapter 4) suggests that there may be variations along the longitudinal direction of the thrust zone at Eriboll.

A further complication is the relationship between two fold phases (F_{2} and F_{3}) and the shear zone. Would these be considered 'contemporary folds' (cf Escher and Waterson 1974, p.224)? If the strain pattern in shear belts followed the model by Ramsay and Graham (1970) no folds should form (Carreras et al 1977). Perhaps this simple shear condition could be invoked here in order to explain the early phase of mylonite formation (S_{1}) which could be marked by flowage and may not necessarily include folding.

Ramsay (1981, p. 92 figs. 13) has shown that for buckling of planar structures to occur it is necessary that the angle between the shear direction and the surface to be folded be obtuse. This is considered unlikely in this thrust zone. The folds studied here are mainly in 1C Class (see Chapter 2) and this suggests a component of layer parallel shortening present in the zone.

It might be argued therefore, that if a model involving only a simple shear mechanism was readily available, the nature of its results and its applicability would be perhaps as much debatable as the co-axial model presented here. The two fundamental mechanisms, pure
and simple shear, are perhaps too simplistic to account for the Observed structures in such zones of complex deformation history.

Perhaps it is possible to obtain a better approximation of the real deformation if we include a combination of strain mechanisms. One way to explain the orientation of fold axes with axes plunging towards the stretching direction would be by admiting the existence of two simple shears in which the shear planes are at high angles to each other. The hypothesis of the existence of such mechanisms in shear belts has been advanced previously by Escher et al (1975), Grocott (1977). Another possibility would be to allow the operation of pure and simple shears in varied proportions (cf Ramberg 1981, see also chapter 2). This combination would allow one to explain fold initiation of buckling by a layer parallel shortening component and a further tightening and reorientation by the rotational strain. Bell (1978) considered that this mechanism operated in Woodroffe Thrust Zone, Australia. Still another way to combine mechanisms is by reversing the order of these two last strains, though this fails to produce folds. Perhaps if we allow another mechanism to actuate in conjunction with this combination (eg horizontal shortening \pm subhorizontal simple shear \pm flattening component) we might obtain a better analogy to observed geology and structures in thrust zones.

It is worth pointing out that curvilinear folds used in the way explainedin this chapter give strain results that must be Considered poor estimates if compared with other markers such as deformed particles. These limitations are inherent to the nature of the original formulations of the models (Mod I and II). These two models can only take into account the modification in hinge orientations during deformation, and were compelied to neglect the changes in length which occured during this event. We should envisage this type
of strain analysis as giving a comparison of deformation intensity rather than absolute strain values. In this respectit is believed that both the basic mechanisms, simple or pure shear, will yield relatively the same qualitative results.

CHAPTER 4

GRAIN SHAPE ANALYSIS

4.1
 Purposes

This work is based on fabric analysis made from the shape of quartz grains in Cambro-Ordovician rocks. The early intention was to quantify the variation in deformation intensity in the quartzitic rocks from an area which shows a complex deformation history. Rock samples of quartzites were collected from the Thrust Zone so it was possible to investigate if there was any systematic variation in the pattern of deformation throughout the area. This could perhaps confirm field evidence that the deformation intensities appeared to vary along the mylonitic zones.

The Paleozoic Quartzites are suitable for this kind of study and they crop out as strips within the domain of mylonitic rocks (ie above the b-thrust, figs. 2-1) of the northern part of the mapped area. This simplified map of fig. 4-1 shows the limits of this area. The distribution of the quartzitic rocks in the mylonitic zone is irregular. For this reason, sampling could not obey an ideal or systematic grid-pattern as it depended solely on the availability of the quartzites within the mylonites. Some samples were collected from below the b-thrust, to compare the results from these with the ones found for the quartzites from the above mylonites.

In general the quartzites above the b-thrust form isolated, elongated and anastomosed lenses with thickness ranging from centimetres up to metres. Above the Church Creag (Kempie Bay) there extends a discontinuous fringe of basal quartzites, for nearly 1 km , very near the b-thrust surface. In the area to the NE of Loch Hope there are numerous bands of quartzite within the Lewisian mylonites. In the region of the Arnaboll Hill the samples come from below the b-thrust and most of them are from Pipe-Rock.

Altogether 50 samples were selected from domains shown in
fig. 4-1. These will be referred to after their geographical location

as the Kempie, Arnaboll and Hope sub-areas. However, only 14 samples provided reasonable clasts for measurement. The microtextures in the other samples exhibited a very high proportion of recrystalifzation which made them unsuitable for shape evaluation. These recrystallized grains proved to be very useful for Paleopiezometric determinations, discussed in Chapter 6.

The distribution of the 14 remaining samples, in the context of the 3 sub-areas, is also far from ideal; for example in Kempie sub-area the determinations do not come from quartzites within the main mylonitic zone (ie above the b-thrust) but from the edgezone of basal quartzites. The sub-area of the Arnaboll Hill provided only two suitable specimens while the rest of the samples were from the mylonitic domain of the Hope sub-area.

It is the aim of this chapter firstly to describe in detail an analytical method of determining the ellipsoid using data collected from 3 orthogonal planes, and also to introduce an alternative solution for the case where the fitted conic is not an ellipsoid. Secondly the results from Eriboll-Hope quartzites using this method are compared with those obtained from previously existent routines. There follows a discussion on the 'strain' determinations relative to the geology and structure of the area.
4.2 Two and Three Dimensional Strain Determination
4.2.1 Comments on Some of the Available Methods

Strain measurements with initially non circular objects seem to be the most commonly encountered situation and there is an extensive record of such examples for geographically different tectonic
environments (Flinn 1956, Staufer 1967, Hossack 1968, Dunnet 1969, Gay 1969, Mukhopdyay 1973, Hutton 1979). Usually the strain is evaluated from two dimensional surfaces and eventually these are combined in order to give a three dimensional ellipsoidal surface. The evaluation of the shape of the ellipsoid is a problem that might be handled geometrically in different ways, but in general the three most common situations are:
(i) Data may be coliected on the principal planes of the strain ellipsoid. This presents a great advantage in terms of simplicity and speed of computation for it needs data in only two of the principal planes to perform the determination (Ramsay 1967, Dunnett 1969), the third plane being used as a check for the internal inconsistencies originated during routines of data collection, sectioning and measuring.
(ii) Commonly, measurements may be taken from any three perpendicular planes and the resultant ellipses are combined in order to best fit an ellipsoid (Ramsay 1967, pp.142-147).
(iii) In some cases data must be gathered from any three planes which are neither orthogonal nor parallel. Situations such as these could arise in cases where the samples cannot give three orthogonal surfaces or in the case of particle measurement being performed directly in the field, where the conditions of 3 orthogonal surfaces are seldomly found.

Depending on the method used and the availability of strain markers, there are always conditions or assumptions to be met. Assumptions frequently involve the correlation between the position of the finite strain axes and rock structures such as lineations, cleavage or foliation. Sometimes where the available deformed markers cannot be considered as having had a predeformational spherical shape, there
are assumptions on their initial orientation fabric.

In the present study data were not collected on the principal planes. Due to the poor content of pelitic material in the quartzites, many rocks did not exhibit a well developed cleavage and had instead a massive appearance. In many cases it was very difficult to identify the stretching lineation. It was also this study's intention to make use of a method which was free, as possible, from the assumptions mentioned above.

Usually the two dimensional evaluations are made in terms of shape (ie ratio of: particle dimensions) rather than in terms of absolute dimensions (size). The commonly used two dimensional strain methods are listed as follows:

1. Means of Final Particle Ratios (Rf) - Cloos (1947) used the arithmetic mean (\bar{R}) of particle ratios as an estimate of the 2D-strain. Dunnett (1969) considered the geometric mean (G) of the ratios (Rf) as a better estimate, while more recently Lisle (1977) introduced the use of the Harmonic mean (H). Lisle (1977) also confirmed the relationship.

$$
\vec{R} \geqslant G \geqslant H \quad[4-1]
$$

which is in fact Cauchy's Theorem (see Bartch 1974, p.39). The above inequalities should increase with the increase in the dispersion of particle ratios $(R f)_{i}, i=1,2, \ldots n$.

All the above means do in fact overestimate the strain ellipse ratio, R (see Lisle 1977).
2. Non Spherical Markers - Ramsay (1967, pp.207-211) dealt with strain determination from a group of elliptical and passively deformed markers. He correlated the final ratio (Rf) and orientation (ϕ) to the initial orientation (θ) and ratio $\left(R_{1}\right)$ and strain (R). Subsequently Dunnet (1969) devised a method based on mathematically
derived curves. The condition of this model is that there is a pre-deformation random distribution of the particles longest axes orientation (θ). Dunnet's method used the visual best fit of $R f / \phi$ data to the curves and this procedure carries a great deal of subjectivity.

The Rf/ ϕ-method was subsequently modified (Dunnet and Siddans 1971) to deal with primary structures (planar or imbricated) and adapted as FORTRAN IV computer programme named STRANE, listed in Siddans (1971). This method, also referred to here as the DS method, assumes a knowledge of the strain principal axes, and the strain estimation is carried out by an unstraining routine using co-axial deformation.
3. Elliott (1970) suggested a method where finite strain is determined by means of a shape factor grid which allows for the estimation of the orientation and magnitude of the strain ellipse. The method does not require any assumption of initial spherical forms of particles nor an initial random distribution of their elongated axes.
4. Matthews et al (1974) derived a numerical technique which requires the data to be collected on the principal planes of the strain ellipseid. This method relates the axial ratios and orientations of particles to the finite strain transformations. The method only requires an initial symmetric distribution (either random or nonrandom) of the markers relative to bedding.

The method has been adapted, by the same authors, for a computer programme under the name X.ROT. This method does not require an unstraining operation, and is also capable of dealing with error estimation as a function of sample size.
5. Ramsay's (1967, p.195) centre-to-centre method is useful for rocks
that have suffered effects of pressure solution. The method assumes distances between particles' centres to be independent of direction and considers that, by strain, these centres will be relatively displaced.
6. Fry (1979) has recently proposed a centre-to-centre technique which assumes an initially strictly isotropic distribution. The method requires a minimum sample of 300 objects and is limited to strain ratios up to 6:1. A computer programme points is fully documented in Milton (1980).
7. Mukhopadhyay (1980) has also presented a simple refinement of Ramsay's centre-to-centre technique for the case of adjacent particles with constant distance between grain centres.
8. Shimamoto and Ikeda (1976) derived a very simple technique which makes only the assumption that the elliptical particles may initially have had varied shapes and sizes but their overall distribution of axes was uniform.

They derived a set of equations which are extremely simple for a unumerical method. Data are handled in terms of $R f$ and ϕ meas-. urements (cf. Dunnet and Siddans 1971). The method is also valid for two and three dimensional strain analyses. This method will be thereafter referred as the SI-method.
9. The Rf/ θ-method by Lisle (1977) involves a test of goodness of fit and the input data do not depend on any fixed reference direction. The principle of the method consists of unstraining the distribution of deformed ellipses by applying a co-axial progressive strain, orthogonal to the ellipse preferred orientation (ie the vector mean) and then testing the distribution with the Chi-squared test ($X^{\mathbf{2}}$)

Abstract

The lowest value in the x^{2}-test is chosen as the inverse of the imposed strain, R. The value of \dot{X}^{2} at the best-fit is in itself the goodness of fit of data to the model. A FORTRAN IV computer programme names THETA, based on Lisle's (1977) method is fully documented in Peach and Lisle (1979).

Among the listed methods, the Rf / ϕ method of Dunnet (1969) seems to have had a wide acceptance and usage over the years. Seymour and Boulter (1979) have performed comparative tests using programmes STRANE (Dunnet and Siddans 1971) and X.ROT (Matthews et al 1974), and they showed the importance of following each model's restrictions in order to avoid errors. De Paor (1980) extended the range of Seymour and Boulter's (1979) limitations to include problems of ductility contrast. He also doubted some of the alleged capabilities of the Rf/ ϕ model (see Siddans 1981, DePaor 1981). Hanna and Fry (1979) and Siddans (1980) have performed comparative strain evaluations using some of the above listed techniques and their best results pointed towards Dunnet's method.

It is the opinion of the present study that the tests by Hanna and Fry (1979) and Siddans (1980) are restricted because of their limited range of tested values. Their quoted differences and/or magnitudes may be not valid in another range. However the results of these tests give an indication of the magnitude of the differences In the final values of strain ratio. For oolitic limestone, a compariSon between the DS and the $S I$ methods shows an average overestimation for the former of less than 1% (see table I in Hanna et al 1979, p.156).

Siddans' (1980) test involves a simulation using randomly oriented ellipsoids prior to deformation. It compares results from methods of Dunnet and Siddans (1971) against:
(i) The SI method, where contrary to the test of Hanna and Fry (1979)
the overestimation is for the SI method and the magnitude is 1.5\%
(1i) The method of Matthews et al (1974) which also overestimates the results of the DS method by approximately 1.23%

Whether or not these differences can be generalized for all ranges of strain values is not the concern here. What can be readily concluded is that the magnitude of the quoted differences is less than the errors introduced during procedures of sampling, sectioning, measuring, etc...

Siddans (1980), contrary to Seymour and Boulter (1978), also concluded that the $S I, D S$ and $R f / \theta$-methods are equally valid when data are not sampled from the principal planes of the strain ellipsoid.

In view of what is described above, the best choice for a two dimensional strain method should be towards the one which produces the best results at the expense of the least effort. There can be no doubt that the $S I$ method fulfils the requisites. Indeed this technique is so simple that its programme is restricted to only a few lines (compared with the hundreds of lines requires both by STRANE and THETA programmes) and can be easily performed by a pocket programmable calculator.

Comparisons, made by the author, between the SI and Rf/ θ methods clearly reveal a tendency for the $R f / \theta$ method to present Overestimated values (see tables 4-2, 4ㅍㅇ also fig. 4-7-a). If we reaall that the $R f / \theta$ method uses the harmonic mean, and that Lisle (1977-b) showed it to overestimate the strain ratio, R (at least in the range $1<R<10$), it is therefore concluded that the $S I$-method holds the best characteristics of simplicity and also precision. For these reasons the SI-method was fully inoorporated in the present routine and programme of strain evaluation.

As was shown in the previous sections of this chapter, thereare many methods of estimating the strain based on particle shape. However what has been largely neglected in many previous papers is that it is equally possible to perform grain measurements in many different ways, and this influences the final results.

In the present study the shape measurements were carried Out by means of a Shadowmaster (with cross polars) which projects the 1mage of a transparent section onto a frosty surface. The details of each grain boundary were carefully transferred onto a transparent perspex sheet which could be used for direct measurement or copied on tracing paper. Some of the possible errors involved in this routine are listed below:
(i) Errors in the measuring device - every instrument carries errors inherent to its characteristics and scale.
(ii) Errors due to distortions of the projected image. These increase with the distance from the centre of the field.
(iii) Errors due to copying. These could be avoided if photomicrographs were used instead of the shadowmaster projection.
(iv) Errors due to sectioning effects. It would not be guaranteed that perfectly orthogoral sections were cut from each sample. The present sections were cut at approximately $90 \pm 5^{\circ}$ to each other.
(v) Errors due to resolution of the equipment. Errors due to diffusiveness of the particle boundaries are inherent to the shadowmaster routine, due to the projection on a translucid surface. Pickering (1976, p.11) gives a relationship for error due to microscope resolution and this can be useful perhaps when measuring from photomicrographs.
(vi) Errors due to irregularities in particle shape. As expected the shapes of quartz clasts departed from an ideal ellipse especially in the less deformed specimens.

Measurements of the longest and shortest axes of particles can pose some difficulties as it is sometimes difficult to locate these positions. The more circular the particle the more difficult to determine the axes locations. On the other hand if the grain boundaries are too irregular, due to recrystallization or pressure solution effects, then the availability of a clear preferred elongation of the grain might not help, because the location of the orthogonal axes poses some problems. Consider for instance, the situations illustrated by figure 4-2. These were based on examples found in this study. In the case (i), the position of the (a) and (b) axes reasonably satisfy the requirements of an elliptical section, where the axes are respectively parallel and orthogonal to the elongation direction and the intersection is midway along their lengths. In case (ii), the above conditions are hardly met; the (a) axis is easily located but the position of the shortest b-axis must be chosen, for instance, between chords b_{1}, b_{2} and b_{3}. The situation in particle (iii) is one in which neither of the chosen (a) and (b) axes satisfy the ideal conditions of an intersection midway along each axis.

In view of these numerous difficulties it was decided to measure the shape by inscribing the grain in a rectangle (case IV) and then taking axes (a) and (b) as the projections of length and width. This arrangement in practical terms is very convenient because it can be performedusing a cheap and commercially available measuring device which consists of two dislocating orthogonal rulers (quadrograph nr.7010), and it also combines the advantage of speed and guarantees Orthogonal axes during measurement because the readings from (a) and (b) axes are made in one position. The measurement of ϕ, the angle

Figure 4.2. Illustrates particle ratios and some problems in locating their axes. See text for explanation. .

Figure 4.3. Scaling of 3 orthogonal ellipses. The previous positions of the ellipses in $z x$ and $y z$ planes are given by dashed lines. The ellipse in the xy plane remains : unchanged because scaling is made on the other two planes (full lines) by minimizing the $\Delta_{\text {f }}$ differences between adjacent chords. See text for details.
between the a-axis and the co-ordinate axis, is taken separately.

The chosen way of particle measurement is clearly open to criticism, but then so are many other possible ways. Underwood (1970, p.195) has shown that the quantitative description of shape or form of particles is the most difficult and indeterminate of the stereologic aspects. He (see Underwood 1970, p.228) also lists 10 such shape indices, which may vary according to the scope of the subject in question. It is believed that these errors should decrease with the increase in the number of measurements (see Chapter 6), provided that the sample was deformed homogeneously. There have been some attempts to estimate the minimum number of particles necessary for shape analysis, but the quoted figures seem to vary. For pebbles Flinn (1956) measured up to 33 particles, while Hossack (1968) has shown that 30 is a sufficient number for accurate results. Gay (1969) took samples with populations varying from 4 up to 63, while Dunnet (1969) considered populations between 60 and 100.

In cases where the particles were oolites: Cloos (1947) used population size of 35 ; for Dunnet (1969) 40 is a number large enough. Tan (1976) found 30 sufficient, while Elliott(1970) considered that the measurements should be carried out until they became reproducible.

For deformed quartz grains Mukhopadhyay(1973) found reproducible results with sample sizes of 70 grains. In a study of elliptical markers Matthews et al (1974, eq32) derived the expression

$$
\begin{equation*}
n_{m}=4 \nu\left(\gamma_{i}\right) /\left(E_{R s}\right)^{2} \tag{4-2}
\end{equation*}
$$

[^3]
Abstract

elliptical and circular markers exhibiting random orientation. Matthews et al (1974) also pointed out that error decreases with the increase in the number of markers and they show that 53 particles produce an error in the magnitude of around 10% while 212 should give errors of 5\%.

Probably, Elliott (1970) is correct in saying that there is not a unique sample size and reproducibility is the limit (ie the convergence) of measurements. Presumably the number of measurements is influenced by the availability of strain markers during data collection. For example, sampling from pebbles in the field poses far more problems and restrictions than measurements on oriented thin sections.

In the present study, the average size is around 110 grains per section and the effective range is $70-212$ grains (quite similar to that of Mukhopadhyay; 1973). The routine is very laborious and time consuming. It is estimated that the average time per sample determination is around 20 hours and this includes image transfer measurements of axes dimensions and finally data input for computer calculation. The computation itself required only 4 seconds (ICL-1906-A) of CPU-time.

4.2.3 Determination of the Ellipsoid from Orthogonal Sections

4.2.3.1 General

Ramsay (1967) has shown that it is possible to combine data from 2D-strain analyses and obtain the 3D ellipsoid in two different situations:
(i) When the 2 data are collected on 3 mutually perpendicular planes and,
(ii)

For cases where 2D data are collected in any three non parallel planes. The latter makes use of a projection of the results on to 3 mutually perpendicular planes - using a stereonet and Mohr circle - and then the process reverts to the first case. The procedure for determining the length of each axis of the resultant ellipsoid relies on the solution of a cubic equation and further manipulation can give the attitude of each axis. Roberts and Siddans (1971) approached the problem of combining 2D data in 3 perpendicular planes using eigenvalues and eigenvectors in order to derive the magnitudes and orientations of the ellipsoid axes. The programme in FORTRAN IV is named PASE5 and is listed in Siddan's (1971). The method makes one of the tensor relationship derived by W. Owens (in Siddans 1971) in which the scaling ratios are used to combine results in 6 different ways. The final result is obtained by an average of the 6 results (see details in Siddans 1971).

Shimamoto and Ikeda (1976) also dealt with the problem of fitting the ellipsoid from 2 D -data and their method resembled that of Roberts and Siddans' (see Siddans 1980, p.11).

Oertel (1978) and Miller and Oertel (1979) approached the problem of adjusting the 3 perpendicular strain ellipses using techniques of weighted least squares for scaling.

Casey and Powell (TSG-meeting, Nottingham, Univ. 1979)
presented a solution for 2 D data collected in any 3 non-parallel planes. Also recently Milton (1980-a) presented a solution for measurements in any 3 non-parallel planes, and the programme, TRISEC, is fully listed in Milton (1980-b).
4.2.3.2 The Proposed Method of Fitting the Ellipsoid from Three
$\quad \begin{aligned} & \text { Perpendicular Planes }\end{aligned}$

The method to be introduced here, consists in adjusting the
proportional magnitude of the three intersecting ellipses by an algebraic operation and then obtaining the fitting of the ellipsoid by means of a Least Squares Method. Clearly, the existence of 3 elliptical sections over-specifies the problem and it is appropriate to solve it by means of a best fit procedure (see Rogers and Adams, 1976 , p.80).

Another reason for opting for the followed routine stems from the fact that a perfect adjustment of intersecting ellipses is not always expected and then a procedure which minimizes the remaining discrepancies would appear to be very appropriate.

Let the equation of a Quadratic surface be written as

$$
\begin{equation*}
a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z-1=0 \tag{4-3}
\end{equation*}
$$

or in matricial form $\tilde{x} \tilde{A} \tilde{x}-1=0$
where

$$
\tilde{x}_{\mathrm{x}}=\left[\begin{array}{lll}
\mathrm{x} & \mathrm{y} & \mathrm{z} \tag{4-4}
\end{array}\right]
$$

and

$$
\tilde{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{4-6}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

for $a_{21}=a_{12}, a_{13}=a_{31}$ and $a_{32}=a_{23}$
It is possible to rotate the $x y z-c o-o r d i n a t e ~ a x e s ~ s o ~$
that the equation of the conic in the new system $x^{\prime} y^{\prime} z$ ' has no cross produci term. This is carried out by finding a matrix

$$
\underset{p}{\sim}=\left[\begin{array}{lll}
p_{11} & p_{12} & p_{13} \tag{4-7}\\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right]
$$

which orthodiagonalizes \tilde{A} and ensures the transformation (rotation)

$$
\tilde{x}=\tilde{P}, \quad \text { or }\left[\begin{array}{l}
x \tag{4-8}\\
y \\
z
\end{array}\right]=[\tilde{P}] \cdot\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Substitution of [4-8] in [4-4] yields }
\end{aligned}
$$

$$
\begin{align*}
& \text { Since Porthogonally diagonalizes A } \\
& \tilde{P}^{t} \tilde{A P}=\left[\begin{array}{lll}
\bar{\lambda}_{1} & 0 & 0 \\
0 & \bar{\lambda}_{2} & 0 \\
0 & 0 & \bar{\lambda}_{3}
\end{array}\right]=\tilde{B} \tag{4-10}
\end{align*}
$$

where $\bar{\lambda}_{1}, \bar{\lambda}_{2}$ and $\bar{\lambda}_{3}$ are eigenvalues of \tilde{A}, the rotation being accomplished by [4-7]. Thus [4-9] can be written as

$$
\left[x^{\prime} y^{\prime} z^{\prime}\right] \cdot\left[\begin{array}{ccc}
\bar{\lambda}_{1} & 0 & 0 \tag{4-11}\\
0 & \bar{\lambda}_{2} & 0 \\
0 & 0 & \bar{\lambda}_{3}
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]-1=0
$$

or

$$
\begin{equation*}
\bar{\lambda}_{1} x^{\prime 2}+\bar{\lambda}_{2} y_{1}^{2}+\bar{\lambda}_{3} z^{\prime 2}-1=0 \tag{4-12}
\end{equation*}
$$

which means that the conic is in the standard position.

Data input for each perpendicular plane is in axial ratios. This means that the absolute magnitudes of the axes are not known. In order to make 3 perpendicular ellipses part of the same elifpsoid it is necessary to make them mutually compatible and this means scaling them.

In the present routine, scaling is attained by minimizing the differences between adjacent chords of the intersecting ellipses (see figure 4-3) using the Newton-Raphson Technique.

It is required to minimise the sum of differences Δ_{i} between chords $C_{i j}(i=1,2,3 ; j=1,2)$, which are parallel to the co-ordinate axes (see figure 4-3). An objective function is set as

$$
D_{m}=\sum_{i=1}^{3} \Delta_{i}^{2}=\Delta_{1}^{2}+\Delta_{2}^{2}+\Delta_{3}^{2}
$$

Figure 4-4 is a representation of the ellipse in terms of its polar equation

$$
\begin{equation*}
r_{i}^{2}=\frac{b^{2}}{1-\varepsilon_{x}^{2} \cos ^{2} \theta} \tag{4-14}
\end{equation*}
$$

where ε_{x} is the excentricity $\left(\varepsilon_{x}<1\right)$ andis given by

$$
\begin{equation*}
\varepsilon_{x}=\sqrt{a^{2}-b^{2}} / a \tag{4-15}
\end{equation*}
$$

in which (a) and (b) are respectively the major and minor semi-axes of the ellipse, r and θ are chord lengths and angleswith the major axis (a) of the ellipse.

It is possible to alter the absolute magnitude of a chord, without changing the ellipse-ratio by simple modifying the length of its shortest axis (see eqn. [4-14]). Therefore, by substituting $C_{i j}$ by $F_{i} C_{1 j}$, where F_{i} is a multiplier, in each of the co-ordinate planes on figure 4-3, we obtain an appropriate scaling of ellipses. It is also necessary to alter the objective function [4-13] firstly to:

$$
\begin{equation*}
D_{\min }=\sum_{i=1}^{3} \Delta_{i}^{2}=\left[F_{1} c_{11}-F_{3} C_{32}\right]^{2}+\left[F_{2} C_{21}-F_{2} C_{32}\right]^{2}+\left[F_{3} C_{31}-F_{2} C_{32}\right]^{2} \tag{4-16}
\end{equation*}
$$

However, as scaling is made proportionately among the 3 intersecting ellipses, which means that their absolute magnitudes are not important (or even known), this allows us to set F_{1}, arbitrarily, as equal to 1 and the above expression becomes:

$$
\begin{equation*}
D_{\min }=\sum_{i=1}^{3} \Delta_{i}^{2}=\left[C_{11}-F_{3} C_{32}\right]^{2}+\left[F_{2} C_{21}-C_{32}\right]^{2}+\left[F_{3} C_{31}-F_{2} C_{32}\right]^{2} \tag{4-17}
\end{equation*}
$$

This is the case for the Newton-Raphson technique, which makes use of the algorithm represented by the flow-chart (single

$$
\begin{aligned}
& E_{x}=\frac{\sqrt{a^{2}-b^{2}}}{a} \\
& r^{2}=\frac{b^{2}}{1-E_{x}^{2} \cos ^{2} \theta}, E_{x}<1
\end{aligned}
$$

Figure 4.4 Representation of an ellipse in terms of its polar equation. ε_{x} is the eccentricity.

Figure 4.6. Sequence of chords obtained in each co-ordinate plane using polar equation of Figure 4.4.
variable for ease of explanation) in figure 4-5:

$$
x_{i+1}=x_{1}-\frac{f^{\prime}(x)_{i}}{f^{\prime!}(x)_{i}}
$$

where $i=1,2, \ldots n$ is the iteration number, $x_{i}, f^{\prime}(x)_{i}$ and $f^{\prime \prime}(x)_{i}$ the values of the variable, the first and second derivatives respectively, in the i-iteration.

In the present case (two variables, F_{2} and F_{3}), the required analytical expressions are:
$\frac{\partial D_{m}}{\partial F_{2}}=2 F_{2}\left(C_{21}^{2}+C_{22}^{2}\right)-2 F_{3} C_{31} C_{22}-2 C_{12} C_{21}=0$
$\frac{\partial D_{m}}{\partial F_{3}}=2 F_{3}\left(C_{31}^{2}+C_{32}^{2}\right)-2 F_{2} C_{31} C_{22}-2 C_{11} C_{32}=0$
$\frac{\partial^{2} D m}{\partial F_{2}^{2}}=2\left(C_{21}^{2}+C_{22}^{2}\right)$
$\frac{\partial^{2} D_{m}}{\partial F_{3}^{2}}=2\left(C_{31}^{2}+C_{32}^{2}\right.$
$\frac{\partial^{2} D_{m}}{\partial F_{2} \partial F_{3}}=\frac{\partial D_{D m}}{\partial F_{3} \partial F_{2}}=-2 C_{22} C_{31}$
[4-19-e]

The elements of equations [4-19] form a symmetric matrix, termed the Hessian Matrix $\left[\mathrm{H}_{\mathrm{ij}}\right]$, so the algorithm of [4-18] becomes:

$$
\begin{equation*}
F_{i+1}=F_{i}-\left[H_{i j}\right]^{-1} \frac{\partial D_{m}}{\partial F_{i}} \tag{4-20}
\end{equation*}
$$

for $j=1,2$ and $i=2,3$.

This is an iterative process which requires an initial
guess. For this particular case, this could be any value as the convergence is assured due to the quadratic character of the present objective function (see Wismer and Chattergy, 1978 p. 51 for details).

THE NEWTON-RAPHSON ROUTINE

Figure 4.5. The scheme of iteration of the Newton-Raphson routine. (one variable).

At first sight this method might appear lengthy and complex but there are real advantages in terms of programming which make this technique convenient. The matrix (2 $\mathbf{x} 2$) inversion and the whole iterative process has to be performed only once, as the convergence is immediately achieved due to the quadratic character of the objective function.

Abstract

The scaling operation tends to minimise the differences between the adjacent chords of the intersecting ellipses, but does not eliminate them completely, because these discrepancies are thought to be due to cumulative errors generated during sampling procedures, as explained before, and perhaps also due to possible deformation inhomogeneities that might exist. Therefore before obtaining the best fitting ellipsoid it seems useful to derive a measure of the compatibility of the 3 ellipses. This is useful in judging the reliability of a strain estimation result.

So using the elements of fig. 4-3, we expect that

$$
\begin{equation*}
c_{11} C_{21} c_{31}-k\left(C_{12} c_{22} c_{32}\right)=0 \tag{4-21}
\end{equation*}
$$

where k is a necessary factor in order to satisfy the above equality. The value of k approaches unity as the differences between ellipses decrease. A measure of the percentage of incompatibility between intersecting ellipses is given by the expression

Perc. Incompatibility $=\left|\frac{C_{12} C_{22} C_{32}-C_{11} C_{21} C_{31}}{C_{11} C_{21} C_{31}}\right| \times 100$

After the scaling operation we need to obtain the attitude of the ellipsoid through the Least Squares fitting. The conditions for determining the coefficients $\left[V_{j}\right]^{t}=\left[a_{11} a_{23} a_{33} a_{12}{ }^{a}{ }_{13}{ }^{a}{ }_{23}\right]$ [4-23] are the existence of a number of a number of data sets (n) equal or

Or greater than the number of parameters (j) to be determined. In the present case the data sets are obtained by means of the polar equation of $[4-14]$, according the scheme illustrated in figure 4-6. The required objective function is set as follows:

$$
E r_{i}=a_{11} x_{i}^{2}+a_{22} y_{i}^{2}+a_{33} z_{i}^{2}+2 a_{12} x_{i} y_{i}+2 a_{13} x_{i} z_{i}+2 a_{23} y_{i} z_{i}-1=0 \quad[4-24]
$$

for $i=1,2, \ldots$, ie admitting that there is an error $E r_{1}$ between the theoretical and the obtained values. It is required that we minimise the squares of these deviations so we first define (s) as the objective function:
$s_{\min }=\sum_{i=1}^{n} E r_{i}^{2}=\sum_{i=1}^{n}\left(a_{11} x^{2}+a_{22} y^{2}+a_{33^{2}} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z-1\right)_{i}^{2} \cdot[4-25]$

The conditions for (s), a function of (j) variables, to attain an extremum, are $\partial s / \partial V_{j}=0$, in which case this equation can be generalised as;

$$
\begin{equation*}
\frac{\partial s}{\partial v_{j}}=2 \sum_{i=1}^{n} E r_{i} \cdot \frac{\partial E r_{i}}{\partial V_{j}}=0 \tag{4-26}
\end{equation*}
$$

where V_{j} is the transpose of [4-23]. After expanding [4-26] and collecting the terms, this gives the following system of equations:
or in matrical representation $[U][V]=[W]$
The solution of the above system leads to $[V]=[U]^{-1}[W]$, which contains the coefficients of equation [4-4]. These can be arranged to give the real and symmetric 3×3 matrix of \tilde{A} (see [4-6]).

The characteristic equation of \tilde{A} is

$$
|A-\bar{\lambda} I|=\left|\begin{array}{lll}
a_{11}-\bar{\lambda}_{1} & a_{12} & a_{13} \tag{4-29}\\
a_{21} & a_{22}-\bar{\lambda}_{2} & a_{23} \\
a_{31} & a_{32} & a_{33}-\bar{\lambda}_{3}
\end{array}\right|=0
$$

where I is the 3×3 identity matrix, and the roots $\bar{\lambda}_{1}, \bar{\lambda}_{2}$ and $\bar{\lambda}_{3}$ are the eigenvalues of \tilde{A}. The solution of the 3 equations

$$
\begin{equation*}
\left|A-\bar{\lambda}_{1} I\right| \cdot\left|p_{11}\right|=0,\left|A-\bar{\lambda}_{2} I\right| \cdot\left|p_{i 2}\right|=0 \text { and }\left|A-\bar{\lambda}_{3} I\right| \cdot\left|p_{i 3}\right|=0 \tag{4-30}
\end{equation*}
$$

for $i=1,2,3$ allows the calculation of the matrix of eigenvalues defined by \tilde{B} in [4-10].

The magnitudes of the semi-axes X, Y, Z (for $X \geqslant Y>Z$) of
the ellipsoid are obtained from

$$
\begin{equation*}
X=\left(\bar{\lambda}_{1}\right)^{-\frac{1}{2}}, \quad Y=\left(\bar{\lambda}_{2}\right)^{-\frac{1}{2}} \text { and } z=\left(\bar{\lambda}_{3}\right)^{-\frac{1}{2}} \tag{4-31}
\end{equation*}
$$

where $\bar{\lambda}_{3} \geqslant \bar{\lambda}_{2} \geqslant \bar{\lambda}_{1}$. The attitude of each axis is given by its corresponding vector column in the matrix of eigenvectors \widetilde{P} (see [4-8]). The eigenvalue-eigenvectors programming routine was devised by the author using the Jacobi Method following the scheme and equations proposed by Greenstadt (1960; see also Gourlay and Watson, 1973; Hornbeck, 1975 pp.236-241). This programme was subsequently incorporated in programme FITELI as subroutine EICOBI.

The routine calculation is restricted to the following steps (for data input and output and also for full details see listing afi the FORTRAN IV programme FITELI in appendix).
A. First Mode: Programme performs 2D strain estimation in 3 orthogonal planes, then obtains the ellipsoid-fitting by the Least Squares Method:

1) Input data from each plane for the calculation of the 2 D strain ellipse using the equations of Shimamoto and Ikeda (1976).
2) Use the Newton-Raphson routine for scaling the mutually perpendicular strain ellipses.
3) Calculate the amount of incompatibility (lack of fit) between the intersecting ellipses using [4-22].
4) Compute the chords in each ellipse using the sequence of figure 4-6.
5) Form the matrix of the sum of cross products [U] and the vector of the sum of products [W] according to [4-27].
6) Invert and find the solutions of [4-27], which is the vector column of [4-23], and form the symmetric matrix of $\tilde{\sim}$ [4-6].
7) Call subroutine EICOBI to obtain the eigenvalues and eigenvectors of matrix $\underset{A}{ }$ by the Jacobi Method.
8) Compute ellipsoid axes using [4-31].
9) Normalise axes X, Y, Z to the equivalence of sphere of unit ratio by
$t=(X Y Z)^{1 / 3}$ so $: X^{\prime}=X / t, Y^{\prime}=Y / t$ and $Z^{\prime}=Z / t$
10)Calculate the Amount of Distortion, (Flattening and Stretching)
in each axis by: Distortion $=($ Axis -1$) \times 100$
11)Calculate the following parameters:
(i) Flinn's (1962) parameter $K_{(f)}=a-1 / b-1$
where $a=X / Y ; b=Y / Z$,
(ii) Ramsay's (1967) parameter $K_{(r)}=\operatorname{lna/lnb}, \quad[4-35]$
(iii) Lode's (see Hossack, 1968) parameter

$$
\begin{equation*}
v=\frac{2 E_{2}-E_{1}-E_{3}}{E_{1}-E_{3}} \tag{4-36}
\end{equation*}
$$

where E_{1}, E_{2} and E_{3} are the natural logarithms of X^{\prime}, Y^{\prime} and Z^{\prime} respectively. For constant volume ($E_{1}+E_{2}+E_{3}=0$) the above expression reduces to $\nu=3\left(E_{1}+E_{3}\right) /\left(E_{3}-E_{1}\right)$.
(iv) Nadai's (1963) natural Octahedric Strain
$\gamma_{0}=2 / 3\left[\left(E_{1}-E_{2}\right)^{2}+\left(E_{1}-E_{3}\right)^{2}+\left(E_{3}-E_{1}\right)^{2}\right]^{\frac{1}{2}} \quad[4-37]$ Again, which reduces to $\gamma_{0}=(8 / 3)^{\frac{1}{2}}\left[E_{1}{ }^{2}+E_{1} E_{3}+E_{3}{ }^{2}\right]^{\frac{1}{2}}$ at constant volume.
(v) And also Nadai's (1963) effective strain $\varepsilon_{s}=(3 / 4)^{\frac{1}{2}} \cdot \gamma_{o}$
which constitutes a very useful representation of the three dimensional strain in that it is independent of the shape of the ellipsoid.
12) Finally obtain the attitude of the ellipsoid using the correspondent vectors of matrix $\underset{\sim}{\sim}$ in [4-7]. Output the results in terms of Azimuth and Plunge of each axis.
B. Second Mode: Programme only performs ellipsoids fitting (any number) by the Least Square Method:

1) Input data such as ellipses' Rf/ ϕ in the following order of measurements: $\mathrm{Rf}_{\mathrm{xy}}, \mathrm{Rf}_{\mathrm{yz}}, \mathrm{Rf}_{\mathrm{zx}}, \phi_{\mathrm{xy}}, \phi_{\mathrm{yz}}, \phi_{\mathrm{zy}}$. It is very important to observe the SENSE of angular measurements given by the ORDER of the subscripts. Otherwise there will be spurious results.

Steps 2 to 12 as explained in the First Mode.
4.3

Possibility of Fitting a Non-Ellipsoidal Surface
4.3.1

Introduction

Sometimes the fitted surface of [4-25] results in other than an ellipsoid. This can occur because the general form of a conicoid
(eg eqn. [4-3]) also represents other distinct surfaces such as the Hyperboloid of one and two sheets (see Kindle 1950, p.131). The result in such acase is the appearance of at least one negative eigenvalue (ie the matrix \tilde{A} is not Positive-Definite, see Cohn 1961 p.63) and for the present purposes this is considered 'geologically meaningless' (cf Mittlefehldt and Oertel 1980).

Milton (1980-a, b) has recently reported to have found such negative eigenvalues especially when using 2 D -strain estimation by the Shimamoto and Ikeda (1976) method. In one locality the frequency of these negative roots occurred in the proportion of $7: 9$ (see Milton $1980-\mathrm{b}, \mathrm{p} .98$) and this made him to opt for Lisle's Rf / θ method, because it produced negative results, using the same data, only in the proportion of 2:9.

Mittlefehldt and Oertel (1979) however reported to have overcome this difficulty by performing adjustments and rotations in all three planes, thus removing the negative principal length.

In this section will be introduced a new technique for overcoming the problem of negative eigenvalues. An experimental version of this method was incorporated to the previous routines of programme FITELI described in the last section. The main programme of this experimental version (the subroutines were excluded because they are exactly the same as in FITELI) was named FTELAM and is listed in the Appendix.
4.3.2 The Constraint Method

Clearly, what is required is a method which constraints the choice of the quadratic surface to that of an ellipsoid. A possible solution is to use the method of the Langrange Multipliers in order to impose certain conditions during the fitting operation.

We shall complement the explanation of section 4.2.3.2
by defining the Invariants of the surface of second order (cf Brohnstein and Semandaiev 1971, p.268). Let us expand the general equation of the second degree given by [4-3]:
$a_{11} x^{2}+a_{22^{\prime}} y^{2}+a_{33^{2}} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23^{\prime}}^{y z+2 a_{14}}{ }^{x+2 a} 24^{y+2 a} 34^{z+a} 44=0$

The Invariants of the surface of the second order are:

$$
\begin{aligned}
& \underset{\mathrm{D}}{\sim}=\left[\begin{array}{llll}
a_{11} & a_{12} & 1_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \\
& \tilde{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& T=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right]+\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{23} & a_{33}
\end{array}\right]+\left[\begin{array}{ll}
a_{33} & a_{31} \\
a_{31} & a_{11}
\end{array}\right] \quad{ }^{\prime} \quad \text { and } \quad a_{t 1}+a_{22}+a_{33}
\end{aligned}
$$

The conditions for a conicoid to represent an ellipse are:

$$
\tilde{A} . S_{t}>0, \quad T>0 \quad \text { and } \quad \tilde{D}<0 \quad[4-39]
$$

In the above determinants the relation $a_{i j}=a_{j i}$ holds (Bartsh 1974, p.277), and for the present conditions we have

$$
\begin{equation*}
a_{14}=a_{41}=a_{24}=a_{42}=a_{34}=a_{43}=0 \tag{4-40}
\end{equation*}
$$

and $a_{44}=-1$.
Therefore it is possible to simplify the above invariants (except the Trace of \tilde{A}, s_{t}) to the form of:

$$
\tilde{D}=(+1) 4+4\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right] \quad \stackrel{\sim}{A}=a_{11} a_{22} a_{33}+2 a_{12} a_{13} a_{23}-a_{13}^{2} a_{22}-a_{23}^{2} a_{11}
$$

and $T=a_{22^{\prime}}{ }_{33}+a_{11} a_{33}{ }^{+a_{11}} a_{22^{-a}}{ }_{12}{ }^{-a_{13}}{ }_{13} a_{23}^{2}$

The general procedure when dealing with a problem which includes an inequality constraint of the form

$$
h_{j}\left(a_{i j}\right) \geqslant 0 \quad i, j=1,2, \ldots \ldots n
$$

is firstly to convert the inequalities to equality constraints and then to solve by the Lagrange Multipliers Method (see Wismer and Chattergy 1978).

Thus we define a Slack Variable b_{j} for each inequality $h_{j}\left(a_{i j}\right)$, then if

$$
\begin{equation*}
b_{j}^{2}=h_{j}\left(a_{i j}\right) \geqslant 0 \tag{4-44}
\end{equation*}
$$

we satisfy the inequality by satisfying the above equality in b. The inequality constraints of [4-39] are defined respectively as:

$$
\begin{align*}
& \text { [4-45] } \\
& \left(a_{22^{2}}{ }_{33}+a_{11} a_{33}+a_{11} a_{22^{-a}}{ }_{12}{ }^{-a_{13}}{ }^{-a_{23}}\right) \geqslant 0 \tag{4-46}
\end{align*}
$$

and

$$
\begin{equation*}
\left(a_{11} a_{22^{a}} 33^{+2 a_{12}}{ }^{a} 13^{a} 23^{-a_{13}} a_{22^{-a}}^{2}{ }_{23}{ }_{11^{-a_{12}}}{ }^{a_{33}}\right) \leqslant 0 \tag{4-47}
\end{equation*}
$$

However, as $\tilde{A} . s_{t}>0$ and $\tilde{D}<0$, but $D \equiv \tilde{A}$, hence $s_{t}<0$, therefore $\tilde{D}=\tilde{A}<0$ and $\left(a_{11}+a_{22}+a_{33}\right)<0$ or $-\left(a_{11}+a_{22}+a_{33}\right)>0$.

Now using the above slack variables $b_{j}, j=1,2,3$ we get $b_{1}^{2}=-\left(a_{11}+a_{22}+a_{33}\right) \geqslant 0$, therefore $b_{1}^{2}+a_{11}+a_{22}+a_{33}=0$ $b_{2}^{2}=\left(a_{22} a_{33}+a_{33}{ }_{11}+a_{11} a_{22}-a_{23}^{2}-a_{31}^{2}-a_{12}^{2}\right) \geqslant 0 \quad$ or

$$
\begin{equation*}
a_{22} a_{33^{+a}}{ }_{33^{a}}{ }_{11}^{+a_{11}} a_{22}-a_{23}^{2}-a_{31}^{2}-a_{12}^{2}-b_{2}^{2}=0 \tag{4-50}
\end{equation*}
$$

and finally

$$
b_{3}^{2}=-\left(a_{11} a_{22}{ }_{33}+2 a_{12} a_{13^{a}}{ }_{23^{-a}}{ }_{13} a_{22^{-a}}^{2}{ }_{23} a_{11}-a_{12}^{2} a_{33}\right) \geqslant 0
$$

which gives

$$
b_{3}^{2}+a_{11^{a}} 22^{a} 33^{+2 a} 12^{a} 13^{a_{23}}{ }^{-a_{13} a_{22}}{ }^{-a_{23}^{2}} a_{11^{-a}}{ }_{12}^{2}{ }^{a} 33=0 \quad[4-51]
$$

We then define and apply the Lagrangian (see Wismer and Chattergy, 1978,pp.55, 66).

$$
\begin{equation*}
L\left(a_{i j}, l_{j}, b_{j}\right)=f\left(a_{i j}\right)+\sum_{j=1}^{m} 1_{j}\left[\underline{h}_{j}\left(a_{i j}\right)-b_{j}^{2}\right] \tag{4-52}
\end{equation*}
$$

where l_{j} are Lagrange Multipliers. The necessary conditions are

$$
\frac{\partial L}{\partial a_{i j}}=0, \quad \frac{\partial L}{\partial 1_{j}}=0 \quad \text { and } \quad \frac{\partial L}{\partial b_{j}}=0 \quad[4-53]
$$

again, for $1, j=1,2,3$.
In the present case the Lagrangian conditions are specifically:

$$
L\left(a_{i j}, \tilde{A}, s_{t}, T, \tilde{D}\right)=L\left(a_{i j}, 1_{j}, b_{j}\right)=\sum_{k=1}^{n} E_{k}^{2}+1_{1}\left(b_{1}^{2}+s_{t}\right)+1_{2}\left(-b_{2}^{2}+T\right)+1_{3}\left(b_{3}^{2}+\tilde{D}\right)
$$

$$
[4-54]
$$

substituting $[4-25],[4-49],[4-50],[4-51]$ in $[4-54]$ yields $L=\sum_{k=1}^{n}\left(a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z-1\right)_{k}^{2}+1_{1}\left(b_{1}^{2}+a_{11}+a_{22}+a_{33}\right)+$

Applying the necessary conditions of (5-50) we must first form and then solve the following system of equations:

$$
\begin{align*}
& \left.a_{23}^{2} a_{11}-a_{12}^{2} a_{33}\right) \quad . \tag{4-55}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial a_{22}}=2 \sum_{k=1}^{n}\left(a_{11} x^{2} y^{2}+a_{22} y^{4}+a_{33} y^{2} z^{2}+2 a_{12} x^{3}+2 a_{13} x^{2}{ }^{2}+2 a_{23} y^{3} z-y^{2}\right)_{k}+1_{1}+1_{2}\left(a_{33}+a_{11}\right)+1_{3}\left(a_{11} a_{33}-a_{13}^{2}\right)=0 \\
& \frac{\partial L}{\partial a_{33}}=2 \sum_{k=1}^{n}\left(a_{11} x^{2} z^{2}+a_{22} y^{2} z^{2}+a_{33} z^{4}+2 a_{12} x^{x y} z^{2}+2 a_{13} x^{3}+2 a_{23} y^{3}{ }^{3}-z^{2}\right)_{k}+1_{1}+1_{2}\left(a_{22}+a_{11}\right)+1_{3}\left(a_{11}{ }^{\mathrm{a}} 22^{-a_{12}}{ }^{2}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial 1_{1}}=b_{1}^{2}+a_{11}+a_{22}+a_{33}=0 \\
& \frac{\partial L}{\partial 1_{2}}=a_{22^{a}}{ }_{33}+a_{33}{ }_{11}{ }_{11}+a_{11}{ }^{\mathrm{a}}{ }_{22}-\mathrm{a}_{23}^{2}-a_{13}^{2}-a_{12}^{2}-b_{2}^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \mathrm{L}}{\partial \mathrm{~b}_{1}}=21_{1} \mathrm{~b}_{1}=0 \\
& \frac{\partial L}{\partial b_{2}}=-21_{2} b_{2}=0 \quad \text { equations [4-56-a to e] } \\
& \frac{\partial \mathrm{L}}{\partial \mathrm{~b}_{3}}=21_{3} \mathrm{~b}_{3}=0
\end{aligned}
$$

From the last 3 equations we can have, either
$\begin{array}{lll}\overline{1}_{j}=0 \quad \text { and/or } \quad \bar{b}_{j}=0 & {[4-57]}\end{array}$
(where \bar{l}_{j} and \bar{b}_{j} are estimates of l_{j} and b_{j}). For the above, if $\bar{i}_{j}=0$ and $\bar{b}_{j} \neq 0$, then the constraint of [4-43] is ignored and [4-44] becomes

$$
\begin{equation*}
\bar{b}_{j}^{2}=h_{j}\left(\bar{a}_{i j}\right)>0 \tag{4-58}
\end{equation*}
$$

(where $\bar{a}_{i j}$ are estimates of $a_{i j}$) and this satisfies the conditions of [4-39].

Confronted with the systems of equations of [4-27] and [4-56-a to 1] one readily concludes that the price paid for including the conditions [4-39] is higher dimensionality and also a non-linear character of the set of equations of [4-56]. The Augmented Function [4-55] leads to a significant computational problem, because what is required is the solution of 12 simultaneous equations in 12 unknowns, resulting from the necessary conditions of [4-53]. The Gauss-Seidel iterative method is a widely used technique for solving nonlinear sets of simultaneous equations (cf Hornbeck 1975, p.106). However, we make use (once more) of the already defined Newton-Raphson technique (cf [4-18], see fig 4-5), although this method could give some problems or convergence, depending on the character of the function. It is expected, however, that the initial guesses will be close enough to the optimum region so convergence can be achieved. Once more the algorithm of [4-18] yields

$$
\begin{equation*}
a_{i j}^{(m+1)}=a_{i j}^{(m)}-[H]^{-1} \cdot \frac{\partial L}{\partial a_{i j}} \tag{4-59}
\end{equation*}
$$

$$
\begin{equation*}
1_{j}^{(m+1)}=1_{j}^{(m)}-[H]^{-1} \cdot \frac{\partial L_{1}}{\partial 1_{j}} \tag{4-60}
\end{equation*}
$$

and

where the Hessian Matrix [H] of $L\left(a_{i j}, l_{j}, b_{j}\right)$ is displayed in table 4-1.

In terms of computation, the routine described in 4.2.3.2 is modified in step number 8 , where there is a check for possible negative eigenvalues. In case there is a negative argument in [4-31], the programme branches to:
8. (i) - Save the values of elements $a_{i j}(i, j=1,2,3)$ of matrix $\tilde{A^{\prime}}$ and these will constitute the initial guesses $a_{i j}^{(0)}$ or [4-59].
(1i) - Set initial guesses of $b_{j}^{0}=1$, and variable SUMIN to 10^{10}.
(iii) - Recall elements of matrix [U] and column vector [W] and incorporate them bothin the Hessian [H] and vector column of first derivatives of $[4-56-a-1]$.
(iv) - Update elements of matrix [U] and vector [W] by performing an iteration of the algorithm or [4-59]. Also update values of Slack Variables by using [4-61].
(v) - Compare the sum of the squares SUMIN ${ }^{(m+1)}=\sum^{6}\left(\partial L / \partial a_{i j}\right)_{k}^{2}$ $\mathrm{k}=1$
[4-62]
with the previous result (m). Check for any negligible improvement (less than 10^{-3}) or divergence. In either case this will interrupt the iterative process. In case of slow improvement, enter the updated matrix \tilde{A} in step number 8. However in case of divergence, try to confirm it with some additional iterations. Abandon the solution if divergence persists.

In case there is a considerable improvement towards minimization (ie convergence) revert to step 8(iii) until improvement

The Hessian Matrix of [4-61]

in SUMIN becomes negligible.

The above steps were fully incorporated to programme FITELI, thus constituting the experimental version of a programme named fTELAM, which worked very well with the available examples. The process aims towards rapid convergence. However, there was little opportunity to gain experience with this modified programme because of lack of suitable input data (ie data that provided negative eigenvalues).
4.4

Results and Interpretations
4.4.1 Correlation Between Methods and Programmes

Both Oertel (1978) and Milton (1980) placed great importance on the ellipses-scaling down operation. Milton (1980) not only introduced a scaling factor F_{i} but also adjustment factors, in order to get compatibility between ellipses.

In the method used here, scaling is restricted to the minimization process described above and the other 'adjustments' are implicit in the fitting operation, the Least Squares Fitting, which minimizes errors but does not impose any further deformation of the 2D strain ellipses.

Two-dimensional data for fitting ellipsoids in 6 different
Standard Positions (ie ellipsoids' axes coincident with the co-ordinate axes) were given to both FITELI and PASE5 programmes for comparison purposes and the output results of the ratios and orientations of all axes were perfectly coincident.

Tables 4-2 and 4-3 contain the results obtained by both FITELI and PASE5, when using data input from sampled quartzites. As mentioned before, this study also made use of the Lisle's Rf/ θ method,

SPECIMEN IDENTIF.		ELLIPSOID PRINCIPAL AXES(NON VOLUME CHANGE)PROGRAMME		PERCENTAGE OF distortion						Characterization parameters						INCOMPATIBILITY IN THE 2D-STRAIN ELLIPSES	
$\begin{aligned} & \mathbf{O} \\ & \mathbf{R} \\ & \mathbf{D} \\ & \mathbf{E} \\ & \mathbf{R} \end{aligned}$				PROGRAMME													
		FITELI	PASE5	FITELI			PASE5			FLINN'S k		NADAI'S ε_{s}		LODE'S v		PERCENTAGE	
		$\sqrt{ } \lambda_{1}: \sqrt{ } \lambda_{2}: \sqrt{ } \lambda_{3}$	$\sqrt{ } \lambda_{1}: \sqrt{ } \lambda_{2}: \sqrt{ } \lambda_{3}$	$\begin{aligned} & \text { STRET- } \\ & \text { CHING } \\ & \mathbf{X} \end{aligned}$	\mathbf{Y}	$\begin{array}{\|c\|} \hline \text { SHORTE- } \\ \text { NING } \\ Z \\ \hline \end{array}$	$\begin{aligned} & \text { STRET- } \\ & \text { CHING } \\ & \quad \mathrm{X} \end{aligned}$	Y	$\begin{array}{\|c} \hline \text { SHORTE- } \\ \text { NING } \\ z \\ \hline \end{array}$	FITELI	PASE 5	FITELI	PASE5	FITELI	PASE 5	FITELI	PASE 5
1	41481 860	2. 34:1.18:0.36	2.32:1.21:0.36	134	17.9	-63.8	132.0	21.0	-64.0	0.437	0.381	1.336	1.337	0.265	0.301	6.66\%	6.87\%
2	$\begin{aligned} & 41482 \\ & 868-A \end{aligned}$	1.60:0.96:0.65	1.56:0.98:0.65	60	-3.6	-35.2	56.0	-2.0	-35.0	1.353	1.193	0.641	0.619	-0.121	-0.062	7.38	7.64
3	41483 $868-B$	1.53:1.40:0.47	1.58:1.33:0.47	53.2	40.0	-53.4	58.0	33.0	-53.0	0.047	0.102	0.936	0.927	0.848	0.562	19.19	21.02
4	41484 925	1.82:0.93:0.59	1.48:1.01:0.67	82.2	-7.0	-41.0	48.0	1.0	-33.0	1.664	0.914	0.802	0.560	-0.193	0.036	24.73	27.67
5	$\begin{aligned} & 41494 \\ & 1084 \end{aligned}$	1.96:0.96:0.53	1.74:1.07:0.53	96.5	-3.8	-47.1	74.0	7.0	-47.0	1.274	0.624	0.929	0.845	-0.089	0.182	27.30	30.85
6	$\begin{aligned} & 41495 \\ & 1046 \end{aligned}$	2.05:1.09:0.45	2.03:1.10:0.45	108.8	9.0	-55.2	103.0	10.0	-55.0	0.613	0.584	1.080	1.071	0.170	0.187	15.29	16.45
7	$\begin{aligned} & 41501 \\ & 1185 \end{aligned}$	1.80:1.13:0.49	1.83:1.10:0.50	80.1	12.9	-50.8	83.0	10.0	-50.0	0.459	0.561	0.930	0.924	0.281	0.215	18.13	19.74
8	$\begin{aligned} & 41502 \\ & 1189 \end{aligned}$	1.48:1.22:0.56	1.54:1.18:0.55	47.7	21.8	-44.4	54.0	18.0	-45.0	0.179	0.273	0.732	0.755	0.604	0.483	15.80	17.04
9	$\begin{aligned} & 41504 \\ & 1206 \end{aligned}$	1.58:1.28:0.49	1.59:1.28:0.49	58.3	28.1	-50.7	59.0	28.0	-51.0	0.147	0.148	0.878	0.885	0.637	0.632	12.19	12.93
10	$\begin{aligned} & 41505 \\ & 1207 \end{aligned}$	1.40:1.17:0.61	1.40:1.18:0.61	40.2	17.5	-39.3	40.0	18.0	-39.0	0.206	0.199	0.624	0.620	0.579	0.588	2.67	2.71
11	$\begin{aligned} & 41506 \\ & 1220 \end{aligned}$	2.61:1.05:0.36	2.22:1.10:0.41	160.9	5.2	-63.6	122.0	10.0	-59.0	0.782	0.592	1.394	1.200	0.153	0.169	7.72	8.00
12	$\begin{aligned} & 41507 \\ & 1223 \end{aligned}$	2.44:0.93:0.44	2.60:1.00:0.39	143.5	-7.2	-55.8	160.0	0	-61.0	1.479	1.018	1.210	1.341	-0.131	-0.007	43.29	51.34
13	$\begin{aligned} & 41513 \\ & 1250 \end{aligned}$	1.87:1.12:0.48	2.25:1.08:0.41	87.2	11.8	-52.2	125.0	8.0	-59.0	0.504	0.652	0.975	1.207	0.245	0.138	29.64	33.77
14	$\begin{aligned} & 41514 \\ & 1293 \end{aligned}$	2.06:1.36:0.36	2.05:1.36:0.36	105.6	35.8	-64.2	105.0	36.0	-64.0	0.184	0.182	1.295	1.285	0.525	0.528	0.58	0.58

Table 4.2 - Results by Programmes FITELI and PASE5 with input data by Shimamoto and Ikeda (1976) method.

SPECIMEN IDENTIF.		ELLIPSOID PRINCIPAL AXES (NON VOLUME CHANGE)		PERCENTAGE OF DISTRIBUTION						CHARACTERIZATION PARAMETERS						INCOMPATIBILITY IN THE 2D-STRAIN ELLIPSES	
0	DEPT.	PROGRAMME		PROGRAMME													
D		FITELI	PASE5	FITELI			PASE5			FLINN'S k		NADAI'S ε_{s}		LODE'S v		(PERCENTAGE)	
,	NUMBER	$\sqrt{ } \lambda_{1}: \sqrt{ } \lambda_{2}: \sqrt{ } \lambda_{3}$	$\sqrt{ } \lambda_{1}: \sqrt{ } \lambda_{2}: \sqrt{ } \lambda_{3}$	$\begin{aligned} & \text { STRET- } \\ & \text { CHING } \\ & \mathrm{X} \end{aligned}$	Y	$\begin{array}{\|c\|} \hline \text { SHORTE- } \\ \text { NING } \\ \text { Z } \end{array}$	STRET- CHING X	\mathbf{Y}	$\begin{aligned} & \text { SHORTE- } \\ & \text { NING } \\ & \text { Z } \end{aligned}$	FITELI	PASE 5	FITELI	PASE5	FITELI	PASE5	FITELI	PASE 5
1	$\begin{aligned} & 41481 \\ & 860 \end{aligned}$	2.55:1,16:0.34	2.55:1.16:0.34	155.1	15.5	66.1	155	16	-66.2	0.503	0.491	1.436	1.436	0.214	0.218	1.38\%	1.41\%
2.	$\begin{aligned} & 41482 \\ & 868-A \end{aligned}$	1.67:0.96:0.63	1.62:0.99:0.63	66.7	-4.2	-37.4	60.1	-1.00	-36.9	1.392	1.096	0.695	0.668	-0.130	-0.042	15.40	15.58
3	41483 $868-\mathrm{B}$	1.57:1.39:0.46	1.61:1.34:0.46	57.3	38.7	-54.2	60.8	34	-53.5	0.066	0.107	0.959	0.957	0.795	0.706	18.31	19.95
4	$\begin{aligned} & 41484 \\ & 925 \end{aligned}$	1.76:0.96:0.60	1.47:1.02:0.66	76.6	-3.5	-40.3	46.9	2.0	-33.6	1.291	0.798	0.757	0.567	-0.099	0.087	23.74	26.46
5	41494 1084	2.06:0.97:0.50	1.79:1.09:0.51	105.9	-3.0	-49.9	79.2	9.0	-48.8	1.198	0.567	1.000	0.894	-0.065	0.209	24.61	27.52
6	$\begin{aligned} & 41495 \\ & 1046 \end{aligned}$	2.30:1.04:0.42	2.30:1.05:0.42	129.5	4.3	-58.2	129.5	5.0	-58.4	0.802	0.787	1.206	1.204	0.074	0.077	16.10	17.34
7	$\begin{aligned} & 41501 \\ & 1185 \end{aligned}$	1.85:1.17:0.46	1.89:1.13:0.47	85.1	16.6	-53.7	85.4	13.0	-53.1	0.386	0.486	0.997	0.995	0.334	0:260	18.90	20.55
8	$\begin{aligned} & 41502 \\ & 1189 \end{aligned}$	1.53:1.20:0.55	1.57:1.17:0.54	52.5	19.8	-45.3	56.8	17.0	-45.5	0.229	0.296	0.758	0.780	0.529	0.448	8.34	8.73
9	$\begin{aligned} & 41504 \\ & 1206 \end{aligned}$	1.55:1.30:0.49	1.55:1.31:0.49	55.3	30.2	-50.5	54.8	31.0	-50.6	0.118	0.111	0.871	0.880	0.692	0.708	2.44	2.49
10	$\begin{aligned} & 41505 \\ & 1207 \end{aligned}$	1.46:1.20:0.57	1.45:1.20:0.57	46.4	20.3	-43.2	45.4	20.1	-43.0	0.194	0.187	0.706	0.696	0.585	0.594	4.4	4.40
11	$\begin{aligned} & 41506 \\ & 1220 \end{aligned}$	2.18:1.14:0.40	2.55:1.05:0.37	118.2	14.7	-60.1	155.26	5.0	-62.7	0.481	0.792	1.212	1.366	0.243	0.081	11.97	12.67
12	$\begin{aligned} & 41507 \\ & 1223 \end{aligned}$	2.48:0.93:0.43	2.76:0.96:0.38	148.1	-6.7	-56.8	175.6	-4.0	-62.2	1.433	1.219	1.239	1.403	-0.120	-0.065	36.9	42.92
13	$\begin{aligned} & 41513 \\ & 1250 \end{aligned}$	1.93:1.10:0.47	2.49:1.05:0.38	92.7	10.6	-53.1	148.6	5.0	-61.7	0.549	0.789	1.006	1.331	0.213	0.081	32.6	37.46
14	$\begin{aligned} & 41514 \\ & 1293 \end{aligned}$	1.06:1.37:0.35	2.11:1.35:0.35	105.5	37.5	-64.6	111.2	35.0	-65.1	0.172	0.195	1:303	1.323	0.524	0.502	9.43	9.88

Table 4.3 - Results by programmes FITELI and PASES with input data by program THETA. (Peach and Lisle 1979).
through programme THETA by Peach and Lisle(1979). For 2 D strain estimation the results of THETA generally overestimate the values found by the SI-method (see figure 4-7-a).

In order to analyse the variationsin results with the above methods and programmes it was decided to correlate linearly the values Obtained with both models (see Wonnacott and Wonnacott 1977, p.407412) :

$$
\begin{equation*}
\hat{\beta}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}} \tag{4-62}
\end{equation*}
$$

and $\quad r=\frac{\sum x_{i} y_{i}}{\left[\sum x_{i}^{2} \sum y_{i}^{2}\right]^{\frac{1}{2}}}, \quad 1=1,2, \ldots \ldots n$

Where x and y are respectively the correlated methods. The angle of $\hat{\beta}$ is the slope of the straight line of best-fit through the origin (regression of y on x) while r is the linear correlation coefficient. The more the absolute value of r approaches to unity the closest the correlation between x and y. For the present case $\hat{\beta}$ values also reach their optimum condition towards 1.

As programme FITELI has one option which allows it to perform only ellipsoid fitting using the second mode of 4.2.3.2, it was decided to check whether or not the discrepancies between the SI and $\operatorname{Rf} / \theta$-methods would affect the resultant ellipsoids.

Figures 4-7-b. and 4-7-c correlate Flinn's - k and Nadais' ε_{s} parameters. For the ε_{g}-values, PASE5 presents a slightly petter regression line. However the k-parameter presents" nearly the same value for r but contrasting positions for the regression lines.

Figure. 4.7-a. This correlates 2D-strain estimates obtained by two different methods. In the abscissae are strain ratios $\left(R_{s}\right)$ obtained using the Shimamoto and Ikeda (1976) method while the ordinates contain strain ratio values $\left(R_{1}\right)$ obtained by the $R f / \theta$ method of Lisle (1977).

The position of the regression line clearly shows that the latter method overestimates the results of the former (R_{s}).

Figure 4.7-b. Diagram of linear correlation (using Programme PASE5) of values of F1inn's (1962) k (e) and Nadai's $\varepsilon_{s}(\odot)$ parameters. The X-axis refers to 2 D results from the Shimamoto and Ikeda (1976) method, while for the Y-axis the 2D results were obtained from Lisle's (1977) Rf/ θ method.

Figure 4.7-c. Diagram of linear correlation (using Programme FITELI) of values of Flinn's (1962) k (-) and Nadai's $\varepsilon_{s}(t)$ parameters. The X-axis refers to 2D results from the Shimamoto and Ikeda (1976) method while for the Y-axis the 2 D results were obtained from Lisle's (1977) Rf/ θ method.

Figure 4-7-d plots k and ε_{s}-values obtained (input data using the SI-method) with PASE5 and FITELI programmes. Here again, the ε_{s} results give very good regression line and have a good correlation coefficient while the k-parameter showed a scattered plot and its regression line produces a slope which is shifted by approximately 10° off the ideal 45° position.
4.4.2 The Shape of the Ellipsoids

The results obtained (fig. 4-8) reveal that the dominant pattern in the area is for ellipsoids which occupy the flattening field of Flinn's (1956) diagram. Some fabrics plot within the constrictional field, 2 D strains given by the SI-method (see table 4-2). Three of the prolate ellipsoids show high levels of incompatibility of their conjugate ellipses and for this reason these must be considered as of low reliability.

Other strain estimates have been carried out in the northern part of the Moine Thrust. McLeish (1971) has used data from the PipeRock around Kempie Bay and he found X / Y ratios in the range between 2:1 to approximately 10.3:1, the mean being around 5:1. His model, however, makes the assumption that pipes lie in the $\lambda_{1} \lambda_{3}-$ plane of the strain ellipsoid which deforms by plane strain. This is the condition to be expected in shear zones.

Nadir (1980)estimated the $3 D$ strain within erains for rocks of the lower Eriboll Nappes, using rutile needles. These gave mainly oblate strains. He also performed 2 D strain determinations using elliptical sections of 'pipes' on bedding surfaces, and by measuring the shape of quartz grains. The former reveal low values of R in this area - 1.5:1 to 3:1 - while the latter show greater ratios ($\simeq 4.3: 1$).

Figure 4.7-d. Correlates Flinn's $k(\bullet)$ and Nadai's $\varepsilon_{s}(\uparrow)$ values, obtained with FITELI and PASE5 programmes: the X-axis refers to values from programme FITELI while the Y-axis refers to values from PASE5. Full line has a 45° slope while dashed lines refer to regression lines (see text for full details) as indicated. Note that the discrepancies are greater for k-values than for ε_{s}.

Figure 4.8. Logarithmic plot of Flinn's (1962) diagram showing results of strain measurements in the Eriboll area using programme FITELI (ब) and PASE5 (■). Numbers - refer to data from Table 4.2. M_{1} and M_{2} are the ' means of the plotted k-values. Dashed lines refer to volume change (see text for details).

Mendun (1976) performed strain evaluation using pebbles of the Strathan Conglomerate of Melness, west of Tonge. He obtained very low k-values, all oblate and ranging between 0.012 to 0.0013 . He estimates X / Z ratios to be in the proportion of 51:1.

In the present study the X / Z ratios range between 2.5:1 to 6.5:1 for the Eriboll area while those specimens from Loch Hope were in the range of 2.3:1 to 7.2:1.

These shape values may be compared with others determined elsewhere within thrust zones. Chapman et al (1979) reported the predominance of oblate shape fabrics for pebbles deformed in Ifjord region, N Norway. They noticed the existence of isolated domains which show the constrictional type of ellipsoids. Hossack's (1968; 1978, fig. 5) results also show a predominance of oblate pebble fabrics for the Bygdin area, S Norway.

Among the 4 prolate values found by the present study, 3 are known to be in the vicinity of major fold hinges (see fig. 4-1 localities for diagrams nos. 41482,41484 and 41494). Could this be correlated in some way with Ramsay's (1967, p.220) explanation that a prolate fabric might develop a hinge region provided that there was an earlier compactional fabric present in the rock? However the non-plane strain oblate fabrics also need to be explained.

One way to explain the oblate fabrics obtained in the rocks is to invoke volume change. Ramsay and Wood (1973) discussed the effects and implications of volume reduction during conditions of plane strain deformation. They illustrated the case in which the tectonic strain is of $k=1$, but with volume change the finite strain plotsin the oblate domain of Flinn's (1956) plot. Slate might well lose 10-20\% volume during lithification from mudstones and even greater volume losses from unconsolidated sediment. However it is unlikely that quartzites would
suffer such large volume loss due to compaction processes. The fabrics from Eriboll would plot in field suggesting volume losses up to 65\%, according to the model of Ramsay and Wood (1973, p.274). Probably the deformed sandstones experienced some volume loss during the whole period of their history, but the amount required (up to 65\%) is far too great.

The mean of all ellipsoids, including the prolate ones, plots within the flattening field as M_{1} (see fig. 4-8) while the mean of the oblate ellipsoids plot as M_{2}. The former would give Flinn's k-parameter a value of 0.514 while the latter gives $k=0.340$. If these means are considered as representative of the studied population they would plot along lines of 20% and 40% of volume loss respectively.

Another possibility is that this apparent flattening may be interpreted as a result of reduction of the volume of individual grains due to effects of polygonization and recrystallisation processes at their grain boundaries (see Chapter 5 and 6 for details). This may occur when there is no bulk volume change during deformation. Let us consider some situations which are based on microstructural observations (Chapter 5):
(i) Consider the partition of clasts along preferential directions in the grain (see Chapter 5, plate 5.33). The increase in the amount of recrystallization along the parting surfaces leads to the isolation of the remaining parts of the original clast and these can be easily mistaken as completely unrelated clasts (see plate 4.1). The outer parts of the grains form a rim of recrystallized new grains commonly referred to as mantle (cf Gifkins 1975; White 1976-a) around the remaining clast, termed , the core (see fig. 5-10).

Photomicrograph (cross polars) magnified 38 times.

Plate 4.1. Illustrates the partition of a quartz grain with new grains having recrystallized along the parting surfaces. The progressive increase in the thickness of these recrystallized mantles leads to complete separation of the remaining cores and they could easily be mistaken for separate clasts. Notice in the diagram, made from the photomicrograph, the outlined new cores present a clear, preferred orientation and shape ratio ranging from $2.5: 1$ to 6.7:1. The mean ratio of these cores is 4.6:1.
(ii) Consider for instance the situation illustrated by fig 4-9. The development of preferential recrystallization in a particular direction in a clast can lead to a deceptive strain estimation.
(iii) Another example of the effects of the recrystallization on the grain shape is given by figs. 4-10 and 4-11 which examines mantles around particles of different shape ratios. These show no preferential.recrystallization. It can be seen that for the perfectly circular grain the ratios are always equal to unity, no matter what the amount of the recrystallization of the surrounding rim. With an elliptical grain section, the shape ratio of the core increases as the amount of recrystallization (measured as the area of the mantle) increases. Figure 4-11 plots the shape ratios given by cores with different initial ratios. It is clear from this diagram that the initial excentricity of the grain will determine the relative increase in the shape ratio of the remaining core. A corollary of this is, if the initial particles are well rounded in such a way that their initial dimensions do not exceed ratios of nearly 1.5:1, the amount of recrystallization does not add too many errors to the shape measurements of the cores.
(iv) A more reàlistic situation, combines (ii) and (iii) above, where there are unequal increases in the thickness of the mantles, according to preferential directions of recrystallization coupled with intracrystalline deformation of the core.

The above discussion deals only with 2D ratios. In 3D
there may be preferential recrystallization parallel to particular strain axes and this could influence the $3 D$ shape ratio.

It is also possible that the tectonic strains may not
have been of $k=1$ and may have involved extension in the Y-directions

Figure 4.9. Illustrates the preferential development of newly recrystallized grains. The previous axes ratio, a_{1} / b_{1}, is modified to a greater $\left(a_{2} / b_{2}\right)$ value and this could give a false impression that the shape of the particle was a product of intracrystalline deformation.

Figure 4.10. Illustrated diagramatically three particles with different external shapes. These particles suffer homogeneous regression of their external boundaries thus reducing their areas respectively to: $\mathbf{8 0 \%}, \mathbf{5 0 \%}$ and 20% of the initial area. This is represented only in the quadrants of each diagram, in which the dashed lines refer to the regressed external boundary and the figures indicate the modified axes ratio.

Figure 4.11. This correlates the change of the particle ratio with homogeneous area reduction, according to the initial shape of the particle.
or the strain ellipsoids. Hossack (1978, p.232) calculated the elongation along the Y-direction for the Bygdin area which ranges from 11 to 15%. Chapman et al (1979) also reported an average extension of 17% along the Y-direction for the Ifjord area, Norway. The means found in this study, M_{1} and M_{2}, correspond respectively to ellipsoid ratios 1.93:1.12:0.46 and 1.89:1.19:0.44 (no volume change) in which the extension along the Y-axis corresponds respectively to 12% and 19\% while shortening along the Z-directions are of magnitued of -53.5\% and $\mathbf{- 5 5 . 5 \%}$. From the individual ellipsoids (see tables 4-2 and 4-3) the extensions along the Y-direction are up to 40% while shortening along Z-axes ranges from 35% to 64%. We shall see however that we cannot judge extension along a deformation belt based solely on figures from the ellipsoid axes, because there could be a lack of parallelism in the orientation of these axes, throughout the belt.

Another way of interpreting ellipsoid fabrics is by superposition of strains. Sanderson (1976) has investigated cases where the total strain results from plane strain superposed on compactional strains. An oblate final fabric could result where a coaxial superposed strain has its least principal axis normal to bedding while the extensional direction is nearly parallel to bedding. The superposition of non-coaxial irrotational strain (see Sanderson 1976, p.46) such as simple shear parallel to an oblate (compactional) type of fabric would also produce a fabric that plots in the flattening field.

The domain of the present mapping does not include undeformed quartzitic rocks. However the quartzites from the foreland away from the thrust belt yield a very weak or no fabric at all (G. Potts, Pers. Comm. 1981). The absence of such an initial fabric, excludes:the fabric interpretation based on the mechanisms suggested
by Sanderson (1976).
Grocott (1979) interprets shape fabrics from quartzgrains, sampled from the Ikertoq Belt in W Greenland, as due to the superposition of two simple shear strains and the majority of his results plot in the oblate field. Coward and Kim (1981) presented a range of possible ellipsoids that can result from the combination of irrotational and rotational strains, which might be expected in a thrust zone. None of these strains involved length changes of the belt normal to the transport direction. They showed (op. cit. pp.268-288) that the field where the final ellipsoid plots depends whether or not there is a shortening (oblate) or an extension (prolate) along the displacement direction.

As many of the rocks in the mapping area are folded and it is argued (Chapters 2 and 3) that there is layer parallel shortening or compressional flow (cf Nye 1952) forming these folds, then it is not surprising that many of the strain ellipsoids are in the oblate field.

It must be concluded that the interpretation of deformation based solely on shape fabrics of quartz grains proves to be no simple matter.
4.4.3 Orientation of the Ellipsoid Axes

It is important to take into account the orientations of the semi-axes of the obtained ellipsoids and relate them to the regional structure of the belt. Figure 4-1 shows the stereoplots of the ellipsoid axes at each locality and it can be seen that there are some variations in the attitudes of these axes.

It is possible to group and describe orientations as follows:
(i) In the Kempie sub-area, the orientations of the 2 closest samples underneath the lower thrust (nos. 41481 and 41483) bear some resemblence in that both are Qblate and the differences between their $\lambda_{1} \lambda_{2}$ planes appears to exhibit only a relative tilt, which if it is eliminated, would practically restore analogous axes in both ellipsoids to nearly parallelism. The other two samples (41482, 41484) however are prolate. They are further from the thrust surface and underwent less deformation. These two samples have their λ_{1} and λ_{2} axes trending parallel and concordantly with the expected Caledonian trend (ie λ_{1} plunging towards ESE and λ_{2} oriented to NNE/SSW).
(ii) The two samples from Arnaboll Hill probably have been influenced by the antiformal hinge in this area (see structural map of figs. 2-2). Oneof the samples is prolate (41494), while the oblate one presents a subvertical λ_{1}-direction and λ_{2} plunging gently to the NNE.
(iii) The samples in the Hope sub-area, show a spread of their λ_{1} axes which describe a precession arc of nearly 180°.

Samples 41501 and 41502 show similar orientations of their principal axes, the $\lambda_{1} \lambda_{2}$-plane being subhorizontal and λ_{1} directed towards the SE.

The orientations of the λ_{1}-principal axes in samples 41504 41505 and 41506 show some similarity, while sub-parallelism of λ_{3} axes occurs in specimens 41505 and 41506.

Specimen 41507 shows a curious orientation of the $\lambda_{3}-$ principal axis, being subhorizontal towards the ENE, while λ_{1} plunges gently towards the SSE. This specimen presents a prolate shape (both by FITELI and PASE5) and the highest lack
of fit (nearly 40%) for the intersecting ellipses. This result should be considered as unreliable,as the amount of recrystallization is also considerably higher than in the rest of the samples.

Samples 41513 and 41514 are those with clearly similar principal axes, parallel to the expected positions of a Caledonoid fabric. . Specimen 41513 is the nearest to the calculated mean \bar{M}_{1} in the diagram of figure 4-8.

A general plot of the axes (see fig. 4-12) reveals that there is a tendency for the λ_{1} and λ_{2} principal axes to be. at subhorizontal while λ_{3} is generally steeply plunging. The positions of the λ_{1} and λ_{2}-principal axes seem to resemble many of the orientations of the F_{2} and F_{3} hinge directions, described In Chapters 2 and 3.

This study also compared the attitude of ellipsoid axes for programmes FITELI and PASE5, in 34 different determinations. The results correlate very well. It was observed that the differences In the attitudes of the axes civen by these two programmes increased proportionately to the amount of incompatibility (see section 4.2.3.2, also the last column of tables 4-2 and 4-3) that is, the lack of fit between the 3 orthogonal ellipses. Therefore, in conditions of poor lack of fit, the input data is unreliable for both methods. However, both tests converged to exactly the same answers in a series of 6 tests in which the simulated input data had levels of incompatibility equal to zero.
4.4.4. The Estimated Strain Intensities

The strain intensities vary throughout the area. At Kempie

Figure 4.12. Stereoplot of the principal axes of the obtained ellipsoids. $\bullet-\lambda_{1}, X-\lambda_{2}$ and $\bullet-\lambda_{3}$ directions. See text for full explanation.

Figure 4.13. Relates the amount of strain with sample proximity (metres) to the b-thrust at Kempie. Sample order numbers and E_{g} values are given in Table 4.2.
there eeems to be eradual increase in the ,amount of deformation with the proximity of the thrust belt (ie atrain gradient, aee lid. 4-13). Due to large amounts of recryatallization, $1 t$ was not posaible to estmate the shape factor within the Kempie mylonitic belt. Compared with other strain studies (see Kohlstedt ot al 1979) the ratios given here are low. The maximum measured particie ratio 1s 26:1 while the $\varepsilon_{\text {g }}$ estimates range from 0.64 to 1.39 (see tables 4-2 and 4-3). It is believed however, that the values for Nadal's-E parameter in the mionite zone of Kempie would reach ifgures considerably greater than 1.4, as there were some samples from this zone showing individual particles with ratios in the proportion of 62:1.

Perhaps only pebbles can provide good strain estimations in these conditions of more severe deformation. In fact, deformation estimates using pebbles very often reach $\varepsilon_{\text {-value around 3.0. Hoseack }}$ (1978, 1ig. 5) has shown that cs in the Bygdin area varies between 1.0 and 2.6, while Chapman et al (1979) reports ε_{s}-estimations in the range of 0.8 and 3.9 for Ifjord area, Norway. The calculation of Es-values for the strain results reported by Hutton (1979, table I) in Horn Head, N Ireland, also range between 1.56 and 2.87.

On the other hand, the ε values for strained quartz grains in siates from the Ardennea (Mukhopadyay, 1973) range from 0.42 up to 1.0. Perhaps the strain values obtained from the Eriboll and Hope areas should be considered as minimun values. Querte generally allows a limited amount of intracryatalidne deformation before recryetallization processes interfere. As will. be illustrated in chapter 5 , recryatallization takes place early during deformation events almost concomitantly with clast diatortion. Recryetallizetion then progresees rapidly towarda grain deatruction.

One espect neglected in the preceeding sectione relatea to the role of grain boundary aliding during deformation. In Chapter 7
it will be shown that grain boundary sliding affects the creep rate in rocks (Gifkins, 1976, Etheridge and Wilkie 1979). Some of the deformation could have taken place by sliding or rolling effects instead of strictly intracrystalline deformation of grains, and this could account for any discrepancies between the bulk strain and the strain given by shape of individual grains. Borradaile (1981) has defined three different flow regimes, relating the role of grain boundary sliding to intracrystalline processes. He showed that during deformation there could be a change from one of these three schemes to another.

It is possible that the deformation exhibited by the less deformed specimens began by dominantly intracrystalline processes but as deformation progressed by size reduction of the clasts, newly recrystallized grains were formed along the boundaries so there could be some grain sliding contribution to the bulk rock deformation. Perhaps in the stage of ultramylonite formation (see Chapter 5, plate 5.20) where grains are finely reduced (sizes range 70-30 m), grain boundary sliding process may be quite important.

Finally I give some concluding remarks concerning the possibility of strain variations with deformation phases present in the area:
(i) The fabric results were obtained from samples measured not in the principal planes of the ellipsoid thus removing an additional assumption and therefore a possible bias.
(ii) Much of the observed fabric seems to be connected with the early phase of ductile deformation which gave rise to the Caledonian foliation. This is interpreted as being the peak of deformation intensity. Subsequent ductile phases may also have been responsible
for additional strains, as shown for instance, by bent fold hinges. However these did not transpose completely the earlier foliation.
(iii) The positions of the least principal axes λ_{3} tend be approximately parallel to the Z-finite ellipsoid axes determined in the fold hinge analysis of Chapter 3.
(iv) The discrepancies in the positions of the intermediate and longest axes of the obtained ellipsoids could be due to strains produced during the later ductile phases and it is possible that some differential rotations developed.
(v) Any argument that the oblate shape of the 3 D ellipsoid might be due to extension along the Y-direction, normal to the transport direction of the belt, might not be valid because some λ_{2} directions are not even nearly parallel to this Y-direction.

CHAPTER 5

MICROTEXTURAL ANALYSIS

The aim of this chapter is to describe and comment on the microstructures and the deformation mechanisms of the quartzitic rocks of the Eriboll and Hope areas as shown in fig. 4-1. This follows on from the study of grain shape (Chapter 4) when it was observed that the thin sections of the measured grains exhibited a great variety of microstructures. It is believed that the rock textures can be used to indicate not only different strain magnitudes (Chapter 4) but also different conditions of temperatures, strain rate and deformation mechanisms.

In the present study, deformation mechanisms will be divided into three main groups: (i) Cataclastic, (ii) Intracrystaline, and (iii) Diffusional Processes (see McClay 1977, p.58, Kerrich and Allison 1978, p.109).

Cataclastic flow involves rupture of particles, frictional sliding and rotation of these grains (Sibson 1977). It may correspond to an overall dominant process during a tectonic regime or can constitute a mechanism only operative in one of the phases (eg quartz may deform by a ductile process while feldspar porphyroclasts behave in a brittie manner, see plate 5.35). Intracrystalline processes are those in which most of the strain is achieyed by deformation within grains, eg by the gliding and climb of dislocations (Nicolas and Poirier, 1976). An intracrystalline process that particularly concerns the present study is that of Dislocation Creep which allows extensive plastic flow by glide motion of dislocations, the velocity of these dislocations being controlled by their rate of climb (see Ashby, 1972, p.887).

The last group of deformation mechanisms are by Diffusional
Processes which occur where strain is accomplished by the transfer of matter within the grains or along their boundaries (Ashby 1972). Diffusive
fluxes can be caused by the deviatoric stresses (Stocker and Ashby, 1973) so ions are removed from domains under high compressive stress to such places where low or tensile stress conditions occur. There is the implicit constraint that grain boundary sliding is also involved in the diffusion creep, thus preventing voids from forming and consequently preventing volume increases (Stocker and Ashby, 1973, McClay 1977, p. 59 fig. Ic). If the diffusion path is intragranular, ie lattice diffusion, the deformation is termed Nabarro-Herring creep (Nabarro, 1948, Herring 1950). This kind of material transfer is important in metals at high temperatures and low stresses and occurs by the movement of point defects. However, if the diffusion path is along grainboundaries, the process is termed Coble Creep (Coble 1963). Other deformation mechanisms may contribute to the overall rock flow, under certain conditions, and these include: Twinning, Defect-Less Flow (Ashby 1972), Grain Boundary Sliding (Gifkins 1975, Etheridge and Wilkie 1979), Superplastic Flow (Boullier and Gueguen 1975). Details of the constitutive equations of some of these mechanisms and also the problems of their usage will be dealt with in Chapter 7.

There are several studies where microfabrics and strains have been interrelated in zones of progressive deformation (White 1973-a, b, 1976-a; Wilson 1973; Bell and Etheridge 1973, 1976; Marjoribanks 1976; Bouchez 1977; Kerrich and Allison 1978). For the Eriboll area, Allison (1974, 1979) investigated the microfabric of the quartzitic rocks of Ben Heilam while more recently Nadir (1980) studied microstructures in the Cambro-Ordovician sequence of the Lower Nappes (below the b-thrust) north of the Kempie Area. Other contributions from the Eriboll area are specifically discussed in Chapter 6.

Recent studies (White 1973-a, b; Bell and Etheridge 1973;

Majoribanks 1974; Nicolas and Poirier 1976; Hobbs et al, 1976) have indicated that there are a number of microstructural changes which accompany deformation by dislocation processes in which undulatory extinction is usually the first optical indication, as this represents small lattice distortions (White 1973-a) and appears before any visual grain-elongation takes place. Deformation Jamellae and deformation bands constitute domains of equal extinction (ie same sense of tilt), developing either parallel or perpendicular to the active slip plane (Wilson 1975, White 1976-a). The presence of deformation lamellae and bands are indicative that further deformation within the grains has taken place, while the formation of subgrains and newly recrystalized grains marks the extreme limits of this microstructural evolution (see White 1976-a).

Most of the specimens analysed in this study, were collected from the Cambrian quartzites located within the Lewisian rocks as shown in figs. 6-4-a, b and c. The samples analysed for the grain shape analysis (Chapter 4) clearly indicate that there are no undeformed rocks among the collected specimens. This is certainly due to the fact that rock-sampling was performed from the vicinity of thrust surfaces and from within the mylonitic zones. However, towards the west (on the foreland), away from the faulting zones, the rocks exhibit characteristics of less deformation.

The descriptions of microscrutures in this chapter's thin sections are restricted to the optical microscopy of the Paleozoic quartzites. It will be shown that there is a sequence of microfabrics exhibiting the characteristics of progressive deformation. The systematic observations of this study led to a division of the analysed specimens into two main categories based on the phyllosilicate content. Further subdivisions, within each group are possible, based on the
intensity of deformation. There follows, in this chapter, a discussion of the textural types in the context of the geology and structure of the area. The last part of the chapter is given to numerical correlations between the amount of recrystallization and the deformation experienced by some samples.
5.2 Textural Types
5.2.1 General

In order to give a systematic account of the existing. textures, the selected specimens were divided into two groups according to the amount of phyllosilicates present in the section. Group A comprises those samples with very low phyllosilicate content (1-2\%). Group B includes those specimens where the phyllosilicate contents reach proportions from 2 to 10\%

It will be shown that Group A includes textures in which the grains show evidence of ductile deformation processes (Group A1) while some specimens show signs of a cataclastic flow (Group A2). A further subdivision, within Subgroup A1 can be made and as will be explained in section 5.2.2., this is based on combined criteria of an increase in the amount of clast elongation and grain recrystalifation. Four classes of microtextures are presented here: (i) comparatively low to moderately deformed specimens, (ii) moderately to highly deformed fabrics, (iii) highly to extremely highly strained fabrics, and (iv) completely recrystallized fabrics, due to high mylonitization.
5.2.2 Group A1

The textures to be described in this section apply to samples with up to 2% phyllosilicate content. It will be shown that the
microstructures characterize a progressive increase in the amount of deformation towards the mylonitic zone (bounded by UAT, b and MT planes). This is evidenced by sections exhibiting progressive elongation of clasts, accompanied by an increase in the amount of grain recrystalization. The totally recrystalifzed section is the predominant textural type within the highly deformed domains of the above defined mylonitic zone.
5.2.2.1 Comparatively Low to Moderate Deformation Fabrics

The least deformed specimens of the present collection are those in which the detrital grains have length/width ratios of less than 2.5:1 and were sampled at vertical distance of approximately $60-80 \mathrm{~m}$ from below the b-thrust (see localities of samples 41482 and 41484 in fig. 4-1). Such specimens (plates 5.1 and 5.2) have a preferred orientation of clast long axes and contain a number of microstructures indicative of slight intracrystalline deformation. These are: (i) undulose extinctions, (ii) incipient deformation bands and (iii) zones of sub grains and newly crystallized grains along clast boundaries and deformation band walls. Clasts, characteristic of the present deformation stage, shown an increase in the misorientation associated with undulatory extinction, giving rise to the formation of deformation bands, which in many cases lie at high angles to the boundaries of the slightly elongated grains. Detrital grains can have clast-to-clast contact but there is a tendency for some recrystallization to be present along the clasts': boundaries and for these newly recrystallized grains to form a thin film. In some cases this recrystallization concentrates along isolated domains or in those areas with greater misorientations such as deformation band boundaries (see plates 5.1, 5.2 and 5.3). In many cases the clasts show effects of deformation by exhibiting 'trails'

Plate 5.1. Texture of the least deformed of the sampled specimens. Sample collected at 85 m (vertical distance) of the b-thrust at Kempie, Loch Eriboll. Notice that grains show signs of deformation by exhibiting undulatory extinction, incipient deformation bands (diffuse) and some elongation. Photomicrograph (cross polars) magnified 38 times. Grid reference NC 45145752.

Plate 5.2. Section with characteristics of low deformation. Development of deformation bands and recrystallized grains along the boundaries. Photomicrograph (cross polars) magnifired 38 times. GR. NC 45345760.
of subgrains which very often do not cut entirely across the grain.

The microstructures at this stage indicate that recovery processes have taken place, even though the shape change of the clasts is relatively low. The development of serrated grain boundaries (see plate 5.3) with the size of the serration being equivalent to the sizes of the newly recrystallized grains, indicates that the clasts' boundary regression may be associated with the recrystallization processes along grain boundaries. The formation of this migration interlock (see plate 5.12) of grains with increasing misorientation along these boundaries, leading ultimately to the detachment and formation of a new individual grain, can be driven by a change in the dislocation density on each side of the grain boundary. This stage is known as dynamic recovery in order to differentiate it from static recrystallization (White 1976-a), where recrystallization takes place after deformation. As pointed out by White (1976-a), the increase in misorientation with the transition from undulose extinction to subgrain formation is governed by strain rather than temperature. He also mentioned that this transition is an indication that grains are ductile features.

At these comparatively low strain intensities the clast grains are continuous and exhibit domains with slight optical misorientation, characteristic of subgrain formation. As the process of deformation continues, the misorientation increases and the result is a complete isolation of that domain, forming a new grain. Another characteristic feature of this process is the narrow width of this mantle of new grains surrounding the clast. Very often such mantles are only one grain wide and this is important because as deformation increases that mantle of new grains gradually widens (compare plates 5.1 and 5.2 with 5.8) and leads to the complete isolation of each clast.

Plate 5.3. Illustrating microstructures in a regime of low deformation intensity. Large clast (A) shows serrated grain boundaries, and develop a core and mantle structure. Photomicrograph. (cross polars) magnified 90 times. Grid reference NC 45145720.

Plate 5.4. This section has developed bands of extinction at high angles to the elongation direction of the grain (A). Notice the increased amount of subgrains and new grains within the bottom quartz grain (B). Photomicrograph (cross polars) magnified 38 times.

Also present in the specimens of this subgroup, are narrow zones with parallel boundaries cutting across the microfabric of the sections. The grains within these zones have extremely constant sizes and are much finer than the detrital clasts. These zones, will be referred thereafter as bands of recrystallization, increase their width in the more deformed textural-types.
5.2.2.2 Moderately to Highly Deformed Fabrics

Two microstructural features are characteristic of this group of specimens: (i) the clastic grains are progressively more elongated than the previousiy described type (see plates $5^{\text {. }} \mathbf{H}^{\text {, }}$ 5.5 , 5.6 and 5.7) Ratios of clasts length/width in the proportion of 10:1 are not uncommon (see plate 5.14) and in the present study there are records of 26:1. It is clear that the textures, at this stage, also show a well defined preferred orientation of these particle long axes (see plate 5.6).
(ii) The percentage of the newly formed grains (size in the range 30-70 $\mu \mathrm{m}$) is also higher than in the previously described type. Proportions of $20-30 \%$ in volume, of recrystallized new grains, are usually common at this stage.

The localities where the present section's specimens were collected also:shows characteristics of higher deformation, if compared with last described type. For example, the sample illustrated by plate 5.5 was collected at 20 m from below the b-thrust, at Kempie, while the samples of plates 5.6., 5.7 and 5.10 come from within the mylonitic zone of the $N E$ side of Loch Hope.

Other characteristics readily observed in these textures are the omnipresence of undulatory extinction within relic grains and the increased proportion of deformation bands (compare plates 5.8 , 5.9 and 5.10) \quad Subgrains change their shape from nearly

Plate 5.5. Basal Quartzite of Eriboll area, collected at 20 m (vertical distance) from the b-thrust. It shows a grain (A) stretched in the proportion of 7:1. The calculated amount of deformation for this sample is $\varepsilon=0.95$. Photomicrograph (cross polars) magnified to 38 times. Grid reference NC 45005740.

Plate 5.6. Texture of highly deformed clastic grains forming 'ribbon' type structures. Photomicrograph
(cross polars) magnified 38 times. Grid reference NC 47675910.

Plate 5.7. Quartzitic rock showing elongated clasts in 'ribbon' type of structure. The central clast (A) has a ratio $\simeq 10: 1$. The percentage of recrystallized grains is approximately 30% in volume of the sample. Specimen collected within the mylonitic zone of the NE border of Loch Hope. Photomicrograph (cross polars) magnified 12. times. Grid reference NC 47825976.

Plate 5.8. Illustrates the deformation bands orthogonal to the boundaries of clasts (A). Notice the amount of recrystallization between clasts A and B (mantle formation). Photomicrograph (cross polars) magnified 38 times. Grid reference NC 47825976.

Plate 5.9. Illustrates deformation bands and new grain development within old grains. Notice effects of partitioning of grains by increased recrystallization. Photomicrograph (cross polars) magnified 38 times. Grid reference NC 47825976.

Plate 5.10. Quartz 'ribbon' structures with deformation bands at a high angle to the elongation direction. Notice the percentage of recrystallized grains. Photomicrograph (cross polars) magnified 38 times. Grid reference NC 47675908.
rectangular to a more equidimensional polygons as strain increases. However due to the poor resolution of the optical microscope it is difficult to conduct subgrain and size determinations as this equipment might not reveal that aggregates of smaller subgrains may be present in the observed microstructures (Tullis 1979).

In this textural stage, 'trails' of subgrains and new grains cutting across the relic clast, are more frequent than in the microstructures of section 5.2.2.1. In some cases this process leads to the complete partition of the grain (plates 4.1, 5.31). However there are cases where polygonization spreads over the entire clast, so that its physical continuity can only be inferred by rotating the microscope stage (see plates 5.11-a and 5.11-b) and/or with the help of a tint plate. In this stage the 'grain' is in fact an aggregate of a mosaic of finer and differently orientated new grains.

The increase in deformation is also accommodated by:an increaseinmisorientation of subgrains which tend to form along the grain boundaries. Continuity of this process leads to the formation into new grains by development of high angle boundaries (plate 5.12). This sequence repeats itself by exposing anew gralin boundary to the same effects, provided the operative stresses continue to build up dislacations and recovery is not capable of absorbing them (White 1976-a). It will be noted that such a mechanism gives rise to the formation of rims. of recrystallized grains (size in the range $30 \mu \mathrm{~m}-70 \mu \mathrm{~m}$) that progresisively isolate the remaining clasts as their boundaries suffer regression towards the inner parts. This type of structure is currently termed mantle and core structure (Gifkins 1975, White 1976-a, see plates 5.3 and 5.8 , and has been referred to previously in Chapter 4. The boundaries of the clasts are rarely straight, but are invariably serrated (subgrained, see plate 5.13), following new grain boundaries.

Plates 5.11-a and 5.11-b. Illustrates the effects of polygonization, which is verified by (microscope) stage rotation. The same grain (A) is in both plates, and it can be seen that it constitutes an aggregate on smaller oriented domains. Both micrographs (cross polars) are magnified 38 times. Grid reference NC 45385716.

Plate 5.12. Illustrates grain boundary regression by the effects of recrystallization. Notice the 'detachment' of grains, (eg. B) in the boundary of grain (A), Photomicrograph (cross polars) magnified 363 times. Grid reference NC 47825976.

Plate 5.13. Illustrates the serrated grain boundaries. Notice the polygonal shape of the newly formed grains. Photomicrograph (cross polars) magnified 90 times.

Grid reference NC 47825976.

The narrow zones, constituted entirely of recrystallized grains (bands of recrystallization, referred to in the previously described textural type), are more frequent and also wider in this stage. However, the diameter of the newly formed grains, in both textural types, may show little change and this will be discussed in more detail in the next chapter. The edges of such zones can still exhibit parallel sided. boundaries approximating to straight lines (see plate 5.15).
5.2.2.3 High to Extremely High Strained Fabrics

Deformation features characteristic of this group are
(i) a strict parallelism of the extremely elongated clasts which have not been destroyed by (ii) extensive recrystallization (see plates 5.16, 5.17).

The specimens in the present category were invariably collected from within the mylonitic zone of the nappe which is bounded underneath by the b-thust . The number of thin sections still exhibiting clasts is limited, but when these do appear, the ratios length/width of these grains can reach proportions up to 62:1. The amount of recrystallized mrains in this: stage, is far more than 60% in volume. It is worth mentioning that these specimens were totally unsuitable for the grain shape analysis of Chapter 4 , due to this high percentage of newly recrystallized grains and also because of the difficulties in determining clast boundaries.

The textures of the samples in the present section fill the gap in the evolution from a texture described for the previous type: (see 5.2.2.2) and the contrasting different textural-type to be described in section 5.2 .2 .4 . Microscopic observations clearly indicate that this process of progressive deformation by clast celongation and area

Plate 5.14. Illustrates the general aspect of the stretched clasts. Photomicrograph (cross polars) magnified 12 times. Grid reference NC 47825976.

Plate 5.16. Specimen with a highly deformed fabric showing very elongated quartz grains. Photomicrograph (cross polars) magnified 90 times. Grid reference NC 45585717.

Plate 5.17.
Texture characteristic of
a heavily mylonitized specimen. Notice the extreme elongation of quartz grains and the rounding effects of the grains of feldspar.

Photomicrograph (cross polars) magnified 38 times. Grid reference NC 45705720.
reduction (ie volume reduction) by recrystallization can have another concomitant contribution to the already described bands of recrystallization. In the present fabrics, theselattermicrostructural features are clearly widespread and predominate over the amount of remaining clasts.

5.2.2.4 Completely Recrystallized Fabric

The characteristic microtextures of the present class is that of almost complete recrystallization ($>95 \%$). Possible grain relics (see plate 5.20) account for a minute proportion of the total slide area and are a few times the average recrystallized grain size. The reason for the existence of some relics can be perhaps explained by their orientations. Those most ûnfavourably oriented to slip or those perfectly oriented to it are likely to be more resistant to recrystallization (Carreras et al, 1977, Bouchez 1977).

The majority of the specimens of the present group are pertinent to the mylonitic nappe, bounded underneath by the b-thrust. The slides of the present type always show an extremely fine grained texture. A strong alignment of the phyllosilicates is occasionally seen and this defines a very close spaced foliation in which some feldspar grains with rounded boundaries are also distinguishable. A rock with such characteristics may be termed ultramylonite (Sibson 1977) and therefore comprises the end product of the present picture of progressive deformation (see plates 5.18 , 5.19 and 5-21):

The ultramylonitic texture may appear at first gight to exhibit a pattern of extremely fine grains with a constant size. However, a close inspection in some of the sections revealed that the

Plate 5.18. Ultramylonitic foliation. Specimen from within the Eriboll mylonite. Photomicrograph (cross polars) magnified 38 times. Grid reference NC 48196048.

Plate 5.19
Ultramylonitic folation exhibiting a weak transposition (see sketch) by alignment of grain boundaries oblique to the dominant (vertical) foliation. See sketch below. Photomicrograph (cross polars) magnified 38 times. Grid reference NC 47575975.
(

Plate 5.20. Recrystallized domain showing some small relic grains (A). Photomicrograph (cross polars) magnified 90 times. Grid reference NC 46045870.

Plate 5.21. Ultramylonitic foliation showing alignment of phyllosilicates which are intersected by grain growth (tabular shape) of quartz, at an oblique angle of approximately 30°. Notice rounded feldspar grains. Photomicrograph (cross polars) magnified 38 times. Grid reference NC 47766047.
grains are equidimensional and there are fine disseminated phyllosilicates (see plate 5.26), while other sections show signs of coarsening with aggregates having changed size and developed a tabular shape , parallel to the axial planes of microfolds which are superimposed on the mylonitic foliation (see plate 5.32).

Another equally important aspect,observed in some of these ultramylonites, is the development of an incipient late foliation, clearly cutting through the trace of the still dominantly ultramylonitic fabric, as shown by plates 5.21 and 5.19 . From the observations made in the sections it appears that:
(i) The incipient transposition of fabric takes place at low angles (around 30°) to the early foliation.
(ii) The effects of this new fabric alignment develops both by mineral re-orientation (phyllosilicates) and shape change, with quartz grains becoming clearly rectangular and this is accompanied by some coarsening.
(iii) This new fabric development occurs in different locations of the studied zones of mylonitization.
(iv) The continuation of this process would lead to the complete destruction of the previous mylonitic foliation. Thus some of the textures observed in the present study may not have evolved directly from primary structures and instead might be the result of the last transposition.

Another important question concerns the reason(s) for the rectangular shape in the newly formed grains. Exner (1972, p.36) gives a useful explanation why grains present a habit-shape, in that the reason for a group or a domain of grains to grow with a determined habit must be linked with features of minimum suface energy of a particular shape. This means that the grains will be spherical, or
equidimensional, only if the specific surface is isotropic. In the case of antisotropy, those crystal planes having the lowest energy, the habit planes, are preferentially developed,forming a crystal of higher symmetry.
5.2.3 Group A2
5.2.3.1 Cataclastic Textures

Only three specimens were found to belong to this textural group and all were collected in the area located in the $N E$ border of Loch Hope. Morphologically they are characterized by a clear cataclastic or microbrecciated texture, superimposed on a ductile type, such as those described in Group A1.

In the studied specimens it is clear that the quartz grains are broken into angular particles with a range of sizes, thus contrasting with the previously described textures in which the common characteristics are coarser clasts with finer and more uniform recrystallized new grain size. Quartz grains in the present group show microstructures with characteristics analogous to the brittle behaviour exhibited by feldspar grains in some of the section belonging to Group AI. Particles comprise a variety of different sizes and their grain boundaries do not show the characteriatics of intense serration already described for the previous Group A1.

Although polygonization and bulging of the newly formed grains are ubiquitous, the deformation appears to involve different processes, as the presence of an early ductile fabric is clearly overprinted by a brittle deformation episode. White (1976-a) points out that cataclastic processes may take place in conjunction with the ductile mechanism and both are capable of producing steady flow
(Bell and Etheridge 1973).

Due to the restricted occurence of this textural type in the studied area, the significance of the brittle deformation must be interpreted with caution. For example, a cataclastic texture was not observed in the rocks of the Eriboll areas, Kempie and Arnaboll, which are very near to the Hope domain. The brittle fabric could perhaps be correlated with the late faulting events that took place in the area, but that argument is speculative due to the restricted number of samples.

Sibson (1977) uses a conceptual model where a brittie texture superimposed on a previously ductile microfabric (Quasi-Plastic zone cf Sibson, 1977, p.191) could indicate that the rocks were subject to a further deformational regime (Elastico-Frictional, cf. Sibson, op. cited) in which the rheologic characteristics of the rocks have changed.

There is also an alternative explanation where the presence of fluids in the 'pores' have the effect of reducing the mechanical resistence of the rock by lowering the frictional resistence to slip (cf Verhoogen et al 1970, p.464). This leads to the rock fragmentation and rotation (cataclastic-flow) under conditions where it would be normally ductile. However this condition is considered unlikely in the present case because the existence of an early ductile fabric would imply in a previous 'dry' condition for the rocks, thus the fluids would have to beinserted (by veins?) in the structure after the ductile deformation stage in order to induce it to a cataclastic flow.

[^4]completely different microstructures. The rocks analysed in the present chapter constitute quartzites containing up to 10% of phyllosilicates. However, the composition of these rocks is far from homogeneous, or at least there seems to be some modification in the textural pattern that can be correlated with the increased proportion of phyllosilicate present in the sample. Rocks from the previous Group A have some phyllosilicates present but in a very small percentage (around 2% is the estimated average) while the amount for Group B is between 4 and 8\%. This seems to be enough to cause modifications in the microstructures, at least in the less advanced stages of recrystallization. Relatively less deformed rocks, which still exhibit some clastic grains, have a texture where grains have not deformed by progressive elongation accompanied by a process of polygonization, but instead there appears to have been a continuous reduction of grain size without extensive stretching of the remaining clast (plate 5.22) and also the formation of anastomosing or lenticular quartz domains showing intense polygonization (see plate 5.23).

In the whole area of sampling (fig. 4-1), the phyllosilicates are present:
(i) Along grain boundaries of larger clasts, causing some interference as illustrated by plate 5.24.
(ii) Forming localized concentrations (ie aggregates) in some less deformed types (see plate 5.25):
(iii) In parallel alignment, associated with the mylonitic and ultramylonitic fabric, especially in such specimens where the transformation to new grains was almost complete (see plates 5.26 , 5.27).
(iv) Forming a phase with minute diameter, uniformly disseminated along the boundaries of the newly formed quartz grains.

Plate 5.22. Illustrates quartz clasts reduced in size by effects of recrystallization but no signs of extreme elongation within the 'cores'. Photomicrograph (cross polars) magnified 90 times. Grid reference NC 46255884.

Plate 5.23. Shows the presence of phyllosilicates forming anastomosed lenticular domains of quartz recrystallized grains. Photomicrograph (cross polars) magnified 38 times. Grid reference NC 47706010.

Plate 5.24. Phyllosilicates along quartz grain boundaries (arrows) giving stylolitic appearance. Photomicrograph (cross polars) magnified 90 times. Grid reference NC 47825976.

Plate 5.25
Illustrates aggregates
(arrows)of plyllosili-
cates. Photomicrograph
(cross polars) magnified 38 times. Grid reference NC 48386058.

Plate 5.26
Shows the parallel align-
ment of micas within
recrystallized quartz
grains. Photomicro-
graph (cross polars)
magnified 363 times.
Grid reference
NC 45515718.

Plate 5.27. Mylonitic foliation given by parallelism of phyllosilicates suffer interference of quartz recrystallization obliquely to the dominant foliation direction. Photomicrograph (cross polars) magnified 90 times. Grid reference NC 47760047.

Wilson (1973) noticed that micas can interfere by inhibiting
clast deformation. He pointed out that grains retained their detrital shape and there was little evidence of new grain development. Bell and Etheridge (1976) studied an area of granulites ($0.2 \% \mathrm{HOH}$) and amphibolites ($1 \% \mathrm{HOH}$) and concluded that for the same degree of recrystallization the rocks with granulitic composition contained sub-grains and new grains smaller in diameter than those of the amphibolite side. Etheridge and Wilkie (1979) suggested the importance of phyllosilicates in the recrystallized grain size (hydrolitic control) as the key factor controlling the diameter of the newly formed grains. In a given mylonite zone the presence of a 'hydrous phase' can produce coareer sizes, independently of the position with respect to the thrust (Woodroffe and Davenport Thrusts, Australia, see Etheridge and Wilkie 1979, p.458).

The systematic measurement of recrystalized grain size, described in Chapter 6, reveals that for rocks where deformation was less severe, the specimens with phyllosilicates presented new grains only slightly bigger than those with comparatively the same deformation, but devoid of phyllosilicates. However in the case of the heavier mylonitized specimens, there was apparently no noticeable differences in the recrystallized grain sizes in those sections richer and poorer In phyllosilicates. It was noticed that some comparatively mica-rich specimens exhibited sub-grains and recrystallized grains with polygonal shape (see plate 5.30).

It may be argued that the amount of phyllosilicates present in the rocks of the study area may not be directly comparable to that in the rocks studied by Bell and Etheridge (1976). The observations by Etheridge and Wilkie (1979) can be confirmed in some of the studied specimens but cannot be applied as a general rule for the whole of the Eriboll-Hope area. The preceeding descriptions in this chapter also do
not conform with Wilson's (1973) observations.
The present interpretation for the study area is that the effects of hydrolitic weakening may be present but the pattern was not clearly differentiated.
5.3 Discussion

The descriptions of section 5.2 reflects this study's interpretation that Group A1 represents a structural evolution developed during the progressive deformation, while Group B shows comparable rocks in the same regime influenced by an additional phase. Group A2, the cataclastic rocks, may indicate a complete change in the value of the state variables as the rock responseto the imposed regime was different.

With the exception of the deformation lamellae the present study made use and illustrated the occurence and modes of most of the microstructural indicators discussed section 5.1. Considerable attention has been given to these deformation lamellae (Christie et al 1954, McLaren et al 1970, Tullis et al 1973, White 1973-a, b and c). Nicolas and Poirier (1976) define them simply as domains within the crystal with different refractive index, but there is some controversy about the nature and origin(s) of these microstructures (White 1976-a, p.72; Bouchez 1977).

The present study reports that these lamellae are not
abundant. These observations cannot be generalized for the whole of the Eriboll area, as Allison (1974, p.74) has reported their occurence In the imbricate zone of Ben Heilam. More recently Nadir (1980) has photographed well defined deformation lamellae but referred to them as rare. Therefore it is suggested that the occurance of these microstructures may be more restricted to the nappes beneath (lower nappes)
the ones mapped by this study. The presence or absence of these microstructures could characterize a certain deformation level or regime. If it is true that deformation lamellae decrease in frequency with strain (Bouchez, 1977), the upper nappes of Eriboll experienced a greater amount of deformation than the lower imbricated zones.

In the present section it is necessary to comment on some aspects characteristic.of the studied rocks irrespective of their morphologic classification. The first aspect is related to the contrast of the boundaries between clasts and the newly formed particles. To the limit of the resolution of the optical microscope, the new grains appear to have sharp boundaries (see plate 5.28), and exhibit a misorientation relative to the host grains. It is possible to correlate the recrystallized grains to their hosts, in the following modes:-
(i) As small, individuals along boundaries of the hosts as shown in plates 5.9 and 5.29.
(ii) As 'isolated' grains within the domain of the host (see plate 5.30.
(iii) As an aggregate of small new grains occuring in a localized domain of the host grain or in that portion of the host particle exhibiting concentrated misorientation (White 1976-a). (iv) Forming 'trails' of new grains, transecting the host (plate 5.31). The progress of this process can lead to the complete sectioning, or partitioning of the old grain (cf Ciapter 4, plate 4.1), thus forming several smaller 'host' grains.

The mode firstly described may occur in all stages of the deformation process, in which there are still remanent clasts. The second mode may also appear in more than one particular stage of the deformation process. It is useful to comment on the possible causes of

Plate 5.28. Polygonal recrytallized grains. Modal class of grain size is around $33 \mu \mathrm{~m}$. Photomicrograph (cross polars) magnified 363 times. Grid reference NC 46255884.

Plate 5.29. Clasts exhibiting only a limited amount of recrystallized grains along the boundaries.
Photomicrograph (cross polars) magnified 90 times.
NC 45145752 .

Plate 5.30. Illustrates the formation of isolated new grains within the clasts. Notice the presence of phyllosilicates along the boundaries. Photomicrograph (cross polars) magnified 90 times. Grid reference NC 47706010.

Plate 5.31. Shows the partitioning of clasts with recrystallization along the parting surfaces. See text for explanation. Photomicrograph (cross polars) magnified 38 times. Grid reference NC 47825976.
the different modes of occurence of recrystallized grains. Consider, for instance, the case of a grain under effects of increasing deformation being distorted by heterogeneous strain so that the crystal becomes subdivided into sectors of different lattice orientations. Much of White's (1977) fig. 3 was used here as an analogue of such a hypothetical grain (see fig. 5.1). As recrystallization is an effective way of lowering the stored strain energy (Nicolas and Poirier 1976) this could take place selectively. It could be that there are domains more favourably oriented for recrystallization processes than other parts of the clast. The net result could be the situation described for mode number 3. The fourth mode was already explained in Chapter 4.

Another important aspect of recrystallization deals with its mechanisms rather than mode of occurence. Dynamic recrystallization is a recovery process which should occur in the grain when it is not possible to deal with the increase in strain energy (White 1973-a, 1976-a). The result is that new grains form along deformation bands by establishing high angle boundaries (cf White 1977, p.152). Kohlstedt et al (1979, figs. 2 and 3) illustrate the mechanism of 'bulging' (see plate 5.13) as strain induced grain boundary migration. The progressive subgrain rotation (see White 1973-b, Nicolas and Poirier 1976) is a way of absorbing the free dislocations thus causing reduction in the dislocation density. In the case of subgrain rotation the misorientation of subgrains increases (with strain) and when it exceeds $10-15^{\circ}$ (see Tullis 1979) this implies that high angle boundaries have been established; thus a new grain is formed. White (1976-a, quoting Hull 1965, p.182) gives an interesting explanation for sub-grain rotation during a dynamic recovery process which is based in the increase of the angle of misorientation (θ):

Figure 5.1. Schematic evolution of a grain in which there are distortions at different locations (by effects of progressive deformation) so the crystal becomes subdivided into sectors of lattice orientations. Recrystallization could take place selectively, thus firstly along those sectors more favourable oriented. For that reason, it is possible to observe new grains occurring in localized sectors within a host grain. Diagram based on White's (1977) Figure 3.

$$
\begin{equation*}
2 \sin \frac{\theta}{2}=\frac{b}{h} \tag{5-1}
\end{equation*}
$$

where $b=$ Burger's vectors and $h=$ spacing between dislocations. Thus the misorientation increases as the dislocation density in the wall, increases. Mercier et al (1977) and more recently Poirier et al. (1979) presented a critical discussion on modes of nucleation.

In the present study the recrystallized grains show (ie at the resolution of the optical microscope) sharp boundaries but their morphological aspect can be grouped into:
(i) Grains with apparent equidimensional sections (plates 5.28: , 5.26).
(ii) Elongated grains (plates 5.32 and, 5.33-b .). Under conditions of annealing (static recrystallization) new grains should be strain free and with polygonal boundaries, while dynamic processes may produce elongated particles containing sub-grains and undulatory extinction. Nicolas and Poirier (1976) pointed out that it is difficult to distinguish between recrystallization due to a syntectonic process and that which originated by a post deformation (annealing) condition.

It is also important to comment on the characteristics of those zones exhibiting grains with uniform diameters (ie bands of recrystallization). Such zones are common in most of the studied sections where clasts are still the dominant phase. In the low to moderately deformed specimens they appear as discrete parallel sided bands of recrystallized new grains, bound by relatively straight edges. Their frequency and width increase with the degree of deformation to an extent that they include practically the whole of the area of the

Plate 5.32. Phyllosilicates being microfolded. Quartz grains adjust their shape by coarsening and elongation parallel to the axial plane direction. Photomicrograph (cross polars) magnified 90 times. Grid reference NC 47625979.

Plate 5.35. Feldspar (F) grains flows by fragmentation and rotation of the angulose particles. In contrast notice the ductile deformed quartz grain (Q). Photomicrograph (cross polars) magnified 38 times. Grid reference NC 45855731.
thin section. The recrystallized grains exhibit those two morphologic types - polygonal and elongated grains - which might indicate possibly different regimes.

These bands of recrystallization are here correlated to shear zones or zones of strain localization (see Poirier et al (1979) as they seem to indicate that once the deformation regime is installed in this domain, it is preferable to continue to deform this already deformed zone (weakness?) rather than to initiate the process of deformation elsewhere (Poirier et al. 1979). Plate 5.34 illustrates one such zone of strain localization (although not essentially a recrystallized zone). It can be inferred that zones such as these can also occur both on meso and macroscopic scales (cf Turner and Weiss 1963), which might mean that such deformation processes are quite independent of the scale and density of the rocks, but silely dependent on the mechanical conditions of the deforming domain.

Despite the great amount of recent research, the genesis of these zones is not fully understood. Analogy with laboratory experiments suggests that such zones cause a stress reduction (White et al. 1980). This fact can be illustrated with the diagrams of figs. 7-3 by following a contour of strain-rate as grain size is progressively reduced. However the gradient of reduction can be very small, under the dominant conditions of dislocation creep. The gradient may change more rapidly if the mechanism of deformation changes to diffusional creep (see discussion in Chapter 7, and maps of figs. 7-3).

Shear zones are often planar domains that allow strain to be accommodated by ductile processes, which limit their width so as to balance stress build up and the capacity of accommodating that energy. It is interesting to notice that various thin sections exhibited bands of recrystalifation in which there were

Plate 5.34. Non-homogeneous deformation shown by a narrow zone of differential stretching developed in a domain of localized strain. There is the development of a new penetrative fabric (top left-bottom right) obliquely to the trace boundaries of the clasts. Photomicrograph (cross polars) magnified 38 times. Grid reference NC 45385716.
clearly differentiated two zones of quite distinct grain sizes (see plated 5.33-a and b). The pattern is always the same; the edge of the recrystallization zone forms a narrow rim of smaller grains while the centre shows alarger grain diameter (cf zones B and C in plates 5.33).

A possible explanation for the formation of this bimodal grain size is that as the boundary of this band of recrystallization migrates, by clast-recrystallization, it could be necessary to re-distribute the grain boundary surface area, by a grain growth, hence the very uniform size for the whole of this inner zone (see plate 5.33-a). This could mean that there is an energy gradient (stress build up?) not only between the margin of the band of recrystalization and the outer clasts (regions A and B in plates 5.33) but also between this edge and the inner part of the band of recrystallization (regions B and C in plates 5.33). There should be some energy concentration along the margin (A-B in plates 5.33) in order to produce the widening of this zone.

It is also important to comment on the behaviour of the heavily twinned feldspar grains, which comprise the secondary phase (up to 10%) in many of the studied sections.

Firstly it is quite clear that no matter what the strain intensity is, the feldspars deform characteristically by brittle rupture and rotation, rather than by ductile elongation typical of the quartz grains. Plates 5.35 , 5.36 , and 5.17 , show this mineral in different textural types. For example in the low-moderate level of deformation of plate 5.35., , the feldspar grains are broken apart, and the rotated fragments retain the angular shape, in contrast to the quartz grains which show signs of stretching. In the

Plate 5.33-a
Illustrates the varia-
tion in the grain sizes, across a band of recrystallization (ie zones
B. and C). Photomicrograph (cross polars)
magnified 38 times.
Grid reference
NC 45855731.

Plate 5.33-b
Detail of the above
plate 5.33-a. It
illustrates the grain
diameters of the 3
zones, according to
the relationship
$\mathrm{A} \gg \mathrm{C}$.
Photomicrograph
(cross polars) magni-
fied 363 times.
Grid reference
NC 45855731.

Plate 5.36. Ultramylinitic foliation showing signs of
incipient transposition. Feldspar grains retain their angular or polygonal shape. Photomicrograph (cross
polars) magnified 38 times. Grid reference NC 48060054.
heavily mylonitized samples some feldspar fragments still have angular shapes (plate 5.36), while in others this mineral exhibits rounded shapes, which may indicate that grinding effects by roliing action may have taken place (see plates 5.19 and 5.21).

Etheridge and Wiłkie (1979) have reported that the recrystallized grain sizes for feldspar grains in shear zones is $1 / 3$ to $1 / 5$ times that of the neighbouring quartz grains. No attempt was made in this study in establishing systematically any such comparisons because of the obvious problems of optical resolution of the minute size of those particles.

The present study also confirms Kohlstedt et al's (1979)
observations that feldspar grains interact differently with quartz than do quartz with quartz grains. Quartz-feldspar contacts invariably do not show the characteristic serrated boundaries but instead a sharp line defines the two mineralogic domains.

It was noticed that feldspars appear more abundant in the less deformed specimens while, contrarily, phyllosilicates seem more predominant in the domain of the increasingly recrystallized rocks. There are however some points to be considered:
(i) There was not a systematic evaluation that could confirm these observations in a more quantitative way.
(ii) The proportions of both feldspar and phyllosilicates is in a sense restricted (less than 10% either) and this not only poses some problems of accurate measurements but also shows the necessity of a rigorous percentage evaluation of these minerals.
(iii) If feldspar recrystallizedinsizes, $1 / 3$ to $1 / 5$ of neighbouring quartz grains (Etheridge and Wilkie, 1979), it would be very difficult to estimate the percentage of feldspars in a recrystallized sample, by optical means, because the range of recrystallized
size for quartz grains (Chapter 7) is between 10 and $30 \mu \mathrm{~m}$.

The textures described in groups A1 and A2 might indicate that the mylonitic zones of Eriboll and Hope areas were formed during a QP-type regime (cf Sibson 1977) with some evidence that an EF-regime (Sibson 1977) might have operated later, at least in the Joch Hope domain.

Microstructures in the studied quartzites of Eriboll and Hope areas cannot give any clue on the relative ages between the mylonitic zones of these areas. However the microstructural pattern for Eriboll seems to be more homogeneous than that for the Loch Hope domain. The microscopic study confirms field evidence that the strain gradient is relatively simple for the Eriboll area. The microtextural pattern changes gradually with the proximity of a single mylonitic zone, whereas the Hope area shows a more varied pattern of different strain intensities and textures which confirms the field evidence that in such domains there developed more than one such mylonite zone.
5.4 Correlation Between the Dynamic Recrystallization Phase,
and Relative Amount of Progressive Deformation

5.4.1 Preliminary Considerations and Methods

So far this study has shown that the pattern of progressive deformation is also reflected in the microstructures, either (i) by analysis of the shape factor measurements of clastic grains, or (ii) by the description of textural modifications that are associated with different amounts of clast elongation and proportions of newly recrystallized grains. This section aims to correlate quantitatively these two indicators of progressive deformation. The calculation of the
three dimensional shape of particles has been explained in detail in Chapter 4. The present section deals with the estimation of the relative percentage of the recrystallized phase present in the samples analysed for shape factor.

The assessment of the volume phase in a sample is not new in geology and the basic mathematical framework seems to have been set up more than a century ago by Delesse (1848). Subsequent research was carried out by Rosiwal (1898, in Underwood 1970, Pickering 1976), Shand (1916) and many others since then. There are other approaches which originated in other branches of science that also deal with three dimensional solids (eg serial sectioning in medical and biological sciences). estimations.

In the present case it is necessary to evaluate the volume of a phase using information from a thin section. Therefore there is the implicit condition of a correlation between two-dimensional data and spatial distributions. The basic principle states that the volume fraction of a phase is equal to the area fraction. This is the Delesse's principle (see Underwood 1970, p. 25 for full description). Rosiwal (1898) extended the principle to include the equivalence between volume and linear fractions. Today it is commonly accepted to obtain the proportion of a volume phase by a convenient technique of point counting (Underwood 1970, p.15) which extends the above principle to include an equivalent fraction of randomly distributed points.

Comparatively, point counting is to be preferred because it requires the least amount of effort and provides good precision. Pickering (1976, p.14) illustrates the efficiency of the method by comparing the following relative errors: Areal analysis $=\mathbf{1 2 . 5 \%}$ relative error

$$
\text { Linear analysis }=12.5 \% \text { relative error }
$$

Point counting:

- systematic $=10.5 \%$ relative error
- random $\quad=16.6 \%$ relative error

Systematid point counting seems to have a good acceptance both in petrography (Chayes, 1956) and metallurgy. The usual procedure is to superimpose a counting grid over the image (projection or photo) of the elements to be measured and to estimate the proportion of a phase by simply counting the number of points laid on the elements of the phase evaluation. The estimated is given by working out the sum of those points out of the total number in the grid (see figs. 5-2-a). The grid spacing should be greater than the maximum intercept length of the phase being measured. Ideally this should mean that no element of the phase should be big enough to include two such counting points and it is also implicit in the above principle and figure, that the position and orientation of the counting net, relative to the sampled population is invariant, simply because the spatial distribution of the elements of the phase is a random one.

The pattern of the last paragraph changes completely if the elements of the sample have a partially oriented structure. In analogy to the explanation given for fig.6-2c, the length of the traverse in a lineal analysis (section 6.4.2) or the spacing of points in point analysis, will depend on the direction in which the test is being taken, relative to the orientation of the structure. This means that the results will vary when for instance an analysis in a section parallel to the sample's preferred orientation is compared to an analysis performed obliquely or perpendicularly to the oriented structure. The situation becomes even more complex if the structure exhibits (apart from preferred orientation) segregated or lamelae domains because the position of the counting grid also will determine the probability of phase elements being sampled (the diagram in fig. 5-3 clearly illustrates

-a

Point counting grid for a phase with the characteristics of random distribution of its elements.

Point counting grid adapted to conditions of phase anisotropy (ie orientation and shape) present in that section.

Plate 5.37. It shows the apparent 'equilibrium' of two distinct sizes of quartz grains. Grid reference NC 45605740. Photomicrograph (cross polars) magnified 90 times.

Figure 5.3. Block diagram illustrating rock with banded domains. The estimated phase measurements will depend very much on the position of the counting sections. It is clear that neither sectionl nor section 4 produces representative estimates of the phase proportions. Sections 2 and 3 should give a more reasonable result note that shape of particle relative to the orientation of the counting section (grid) should very much influence the final results.
this point).
Microstructural anisotropy given by elements with preferential parallelism of certain. dimensions and forming stratified domains is a common feature in geology. Therefore these conditions invalidate completely the use of the grid shown by fig. 5-2-a (see explanation in fig. 5-3). Unfortunately there is not a simple and definitive method that would overcome these problems brought about by the presence of preferred orientation and/or segregation bands. It is not surprising to note that most of the texts, dealing with techniques of phase estimation, avoid the present problems, precisely because each case must be analysed separately.

There are many errors involved in this kind of phase estimation (ie 2 D measurements to infer a 3 D phase) and these in general arise from different sources: such as: sampling, sectioning, equipment resolution and many others, depending on the particular case. It is however very difficult to try to evaluate how these quantities, if properly assessed, will interact (ie summing up, or can some of them anhilate each other) and affect the final result.

No mathematical expression for error evaluation will be produced here,simply because the technique used in the present study does not follow any of the usual methods and instead it comes from an intuitive variation of the ideas put forward by Chayes (1956), Hutchinson (1974) and Pickering (1976, p.14). To compensate this lack of an expression for error estimation, two different sections (here orthogonally oriented) were analysed for each sample and the differences in results used in order to check the internal consistency level.

The problem of choosing section planes has been discussed by Chayes (1956) and Hutchinson (1974). The latter also deals with the 'anisotrophy problem'without providing any specific mathematical

Abstract

formulation. Hutchinson (1974, p.49) advises the selection of thin sections made perpendicular to banding and/or the preferred oriented structure and also the avoidance of sections which are close to the foliation plane. Chayes (1956) dealt with this problem of anisotropy and considered that banding could be an advantage rather than a handicap. He pointed out that the best section for measurement could be a plane normal to barding, in order to obtain maximum information (ie measurements) in that area. Chayes (1956) is of the opinion that in case of anisotropy the technique of measurement should include a rectangular-measuring grid, rather than a square one.

Thus the simple technique used here included preliminarly, an inspection of the three orthogonal sections of each rock specimen, to eliminate the one close to bedding or foliation. A counting grid was then made compatible with the anisotropy present in each section. The results of the grain shape analysis (Chapter 4) were used here in order to constrüct for each section, its measuring grid. The followed method consists simply:
(i) The point spacing followed the anisotropy or the shape ratio (the Rf, cf Siddans, 1971) present in each section. For the present case use was made of the results of the SI-method (cf Chapter 4). This gives a rectangular grid, with 100 points, as shown by fig. 5-2-b.
(ii) The orientation of the longest dimension of each rectangular counting grid was parallel to the preferred grain direction (ie the ϕ-angle, cf Siddans 1971) determined for each section (Chapter 4), as illustrated in fig. 5-2-a.
(iii) Counting was performed in at least 10 different and parallel positions throughout the section. Therefore the total number
of points per section came at least to 1000 .
Figures 5-2-a and b illustrate the general idea behind this simple method. Notice that ideally, the grid should be made in such a proportion that no two (or more) counting points should pertain to the same grain.
5.4.2 Results

The estimated volumes of the recrystallized grains present in the rocks used for grain shape analysis of Chapter 4, are plotted as abscissa values in fig. 5-4. The results of the calculated Nadai's ε_{s} parameter (table 4.2) were plotted as ordinate values of fig. 5-4, in order to correlate the volume of recrystallized new grains with the intensity of the 3 D strain present in each sample. These results require the following comments:
(i) With the exception of three specimens all the measurements were made in two perpendicular thin sections. The results from those samples that could provide two orthogonal thin sections, rarely showed differences greater than 10%. This indicates the validity of the 'made-to-measure' rectangular counting grid.
(ii) The calculated percentages of recrystallized grains are interpreted here as underestimated values, because as it is explained in section 6.4.2, the diameter of the particle will determine the probability of a grain being sampled. Therefore the smaller fraction in those cases are always underestimated.
(iii) The counting operation was performed on an apparatus which projects the thin section image onto a translucent screen (Leeds Baty-Shadowmaster Junior 500 Projector). The net result is a poor resolution image which causes some details of the boundaries between grains to be missed. This introduces a false continuity

Figure 5.4. See Text for full explanation.

of non-existent domains and is also another contribution to the underestimation of the finer phase.

For the above reasons the obtained results are to be considered as the minimum estimates of the percentage of recrystallized new grains present in each sample. The correlated values in fig. 5-4 were plotted with different symbols, according to geographic domains. The samples from Kempie constitute a more reliable and homogeneous domain. These rocks were collected from an almost continuous outcrop, at distances of approximately 80,6045 and 5 m below the b-thrust surface (cf Chapter 2, or fig 4-1). The specimens from the Hope area exhibit a greater scatter in the graph, and these rocks were sampled from different outcrops scattered over a wide area.

It is interesting to note that the results for the Kempie area indicate that the correlation between (i) volume of recrystallized grains, and (ii) the relative strain intensity, gives a plot obeying to a certain extent, a power-law of the form $y=a x^{\frac{1}{2}}$. The value of a for Kempie is approximately equal to 0.263 while for the Hope area it is 0.201. For Kempie results, an attempt was made to fit (by least squares) a curve of the form $y=a x^{p}$, for (p) to assume any real value (see dashed line in fig. 5-4). The obtained results are: $a \simeq 0.301$ and $p \simeq 0.448$, which are not toodifferent from the previously imposed parabolic fitting.

It could be very significant that a more homogeneous domain such as Kempie should produce a plot that almost fits perfectly on a parabolic curve. The existence of different fitted curves for each area should be expected because this reflects that there are many factors and conditions affecting the mapped domains of Kempie and Hope areas. The interaction between internal and external agents (eg P, T, HOH, Phases etc) affecting these rocks might have.influenced the
production of recrystallized new grains (eg inhibiting or accelerating) and also interfering in the capabilities of the rocks in accommodating strain by grain elongation.

Weathers et al (1979-a) also observed a change in the proportion of the recrystallized grains with distance from Moine Thrust Plane. They reported that at 100 m from the Thrust plane, at Glencoul, 5% of the quartzite is recrystallized while at 0.01 m (of the thrust) that proportion increased up to 100%. Figure 5-5 correlates some data of percentages of recrystallized grains, for Eriboll and Glencoul areas, with the appropriate distance from the a thrust plane. The traced lines are an attempt to show that the increase in the recrystallization with the proximity of a fault has a relatively constant gradient up to nearly 10 m of the fault. This gradient seems to change abruptly in these last $5-10 \mathrm{~m}$ from the fault, becoming less inclined, but the percentage of recrystallization very rapidly reaches the level of 100%.

Abstract

It has been reported previously (Chapter 4, also in section 5.2.2.2) that there are some stages of the evolution of the microstructure in which the grains develop rims or mantles of newly recrystallized grains as the core becomes progressively elongated. White (1976-a) points out that the mantle protects the core (buffer?), but the observed textures of this study indicate that the process of mantle formation vontinues, and there seems to be competition between what it is interpreted here as two different processes: (i) the first which 'consumes' the existing clast by sequentially reducing its volume through a dynamic recrystallization process and (ii) the second which accommodates strain by grain elongation, presumably by intracryatalline deformation of the individual grains. This will cause some grain boundary sliding in the mantle and the result'is called the 'ribbon-like' structure.

This study has also shown that there are occasions where the internal deformation of the clasts does not fully develop and instead the dynamic recrystallization of grains is the dominant process (compare plates 5-8, 5-10, 5-14 and 5-22).

Excluding all the mentioned external influences on the recrystallization processes (eg second phase impurities, etc...) we could correlate the stored strain energy with:sthe available surface area of grain during deformation. During recrystallization, a new surface of the 'core' is generated during the regression and grain refinement process, according to the density dislocation levels (White 1976-a). The remaining surface area of the clast is continuously reduced due to volume loss of each clast. However if the strain energy does not decrease during that process, or in other words, if the necessary surface area required by the deformation process remains constant, the rate of core reduction will be continuously increased.

Perhaps the explanation given by the preceeding paragraph plays a part in the deformation process. It could justify, the continuous and sharp increase in the percentage of the recrystallized grains that can be observed (especially in the limits of $0-10 \mathrm{~m}$) in fig . 5-5.

Figure 5.5. See text for full details.

CHAPTER 6

PALEOPIEZOMETRY
6.1

General

This chapter concerns the applications of Paleostress Estimates in the context of the geology and structural evolution of the northern part of the mapped area.

- Section 6.2 introduces the parameters and equations currently used in the determination of differential stresses.
- Section 6.3 describes briefly the current problems in applying the concepts and equations described in section 6-2. It also reviews briefly the recent literature of paleostress estimates.
- Section 6.4 is entirely concerned with geometrical problems and methodologymf grain size estimation.
- Section 6.5 comprises the discussion of the results obtained in this study and the comparison with other studies in the mapped area. It also illustrates some of the problems introduced in section 6.3. Finally there is a brief discussion of the presentresults in the context of the geology and structure of the studied area.
6.2 Introduction

In the recent years there has been some attention to the study of microstructures in order to assess the magnitude of the differential stress operating during deformation. This chapter attempts to use quartz microstructural features in order to estimate paleostresses in the zone of mylonitization of the Moine Thrust Zone of the Eriboll and Hope areas. (fig. 4-1, see details of the 3 areas in figs. 6-4-a to c).

Both experimental and theoretical studies (eg Raleigh and Kirby 1970; Post 1973; Goetze, 1975; Kohlstedt et al 1976; Mercier et al,

1977; Twiss 1977) show the validity of using steady state microstructure such as dislocation densities, subgrain size and recrystallized grain size to estimate the paleostress. The basic assumption is that these microstructures are generated during deformation and are thought to be solely dependent on the level of the differential stress.

Estimates of stress based on measurements of dislocation
densities and?subgrain sizes are calibrated by laboratory experiments: (Mercier et al. 1977); but the measurements require the use of the Transmission Electron Microscope (TEM). This restricts the use of these two microstructures and makes the estimations more expensive when compared to the estimates made using the syntectonic recrystallized grain size, whichareeasily made using the ordinary petrographic microscope. In fact the measurements of the recrystallized grain size can even prescind from photomicrographs.

The relationships between the differential stress ($\sigma_{1}-\sigma_{3}$) and the three microstructural parameters listed above are considered separatedly in more detail below:

1) Dislocation density (DD) - Is correlated to the differential stress (Kohlstedt et al 1974; Takeuchi and Argon, 1976 in Weathers et al 1979-a, White 1979-a, b) by

$$
\begin{equation*}
\sigma_{1}-\sigma_{3}=k \mu b \rho^{\frac{1}{2}} \tag{6-1}
\end{equation*}
$$

where k is constant, μ is the shear modulus compensated for temperature and pressure, b is the Burgers vector and ρ is the Disidcation Density.
2) Subgrain size (SS) - The adopted relationship is given by Raleigh and Kirby (1970, in Weathers et al 1979-a, White 1979-a, b).

$$
\begin{equation*}
\sigma_{1}-\sigma_{3}=1 \mu \mathrm{~b} / \mathrm{Sg} \tag{6-2}
\end{equation*}
$$

where 1 is a constant and $S g$ is dimensioned to the Burger's vector b. There appearsto be some disagreement in the value of (1). Raleigh and Kirby (1970) derived the value of (1) based on optical observations while White (1976-a, b) using a TEM suggests a different value. The discussion of section 6.5.2-a will deal in more detail with the problems in dealing with subgrain size.
3) Recrystallized grain size (RGS) - This is related to stress by a simple relationship of the form (Mercier et al 1977; Twiss 1977):

$$
\begin{equation*}
\left(\sigma_{1}-\sigma_{3}\right)=m D^{-p} \tag{6-3}
\end{equation*}
$$

where (m) and (p) are constants and (D) is the newly recrystaliized grain size.

In the preceeding equations, the values of $k, 1$ and m can be determined experimentally for each mineral. In the case of quartz, the observations were calibrated at $900^{\circ} \mathrm{C}$ and a stress of approximately 100 MPa (see White 1979-b)..

The present study is concerned with the estimation of the differential stress using the recrystallized grain size (RGS) of quartz grains measured from thin sections using the petrographic microscope.

Relation [6-3] has both experimental (Mercier et al, 1977; Kohlstedt et al, 1976 in Zeuch and Green, 1979) and theoretical (Twiss 1977) justifications. There is however, a range in the values of the parameters m and p for each mineral. This accounts in part for the possible discrepancies in the stress estimation. Mercier et al. (1977) characterized their study for quartz in a condition termed 'wet' quartzite, ie'wet' means a hydrolytically weakened state. Twiss (1977)
arrived at the same expression by means of a regression analysis (see 1977; fig. (p.212):

$$
\begin{array}{rlrl}
\sigma / \Gamma & =k(D / b)^{-p} & & {[6-4]} \\
\Gamma & =\mu / 1-\nu & {[6-5]} \tag{6-5}
\end{array}
$$

where v is the Poisson ratio, k is a constant, μ is the shear modulus. Twiss (op. cited) used.the best fit of two groups of relevant data and obtained the following values for the above parameters:
$p=0.68 \pm 0.02, \log _{10} k=0.38 \pm 0.01$. Relation [6-4] can easily be applied provided the values of the elastic parameters and the Burger's vector of the analysed material are known. Data for quartz can be taken from Birch (in Clark 1966, table 7-16) as follows: $\mu=4.2 \times 10^{4} \mathrm{MPa}$ $\nu=0.15, b=5 \times 10^{-7} \mathrm{~mm}$, therefore $\Gamma \simeq 4.9 \times 10^{4} \mathrm{MPa}$, so relation [6-4] becomes:

$$
\begin{array}{rlrl}
\sigma_{1}-\sigma_{3} & \equiv \sigma \simeq 2.4 \times 4.94 \times 10^{4}(\mathrm{D})^{-0.68} \text { or } \mathrm{simply} \\
\sigma & \simeq 6.157(\mathrm{D})^{-0.68} & {[6-6]} \tag{6-6}
\end{array}
$$

This relation will be referred to in the present chapter as the Twiss Model or simply as the Twiss equation for quartz-RGS. Mercier et al (1977 p.125) established the relation between the quartz-RGS (mm) and the differential stress (MPa) as:

$$
\begin{equation*}
\mathrm{D}=6.5 \cdot(\sigma)^{-1.4} \tag{6-7}
\end{equation*}
$$

which gives in the form of $[6-3] ; \sigma=3.808$ (D) ${ }^{-0.71}$. [6-8] This relation will thereafter be referred to as the Mercier model or simply as the Mercier equation for quartz-RGS for wet-quartzite.

The present study uses both relations $[6-6]$ and $[6-8]$ for the reasons to be explained in the next section. Figure 6-1 is a graph comparing the magnitudes (MPa) for recrystallized quarts grains ($\mu \mathrm{m}$)

Figure 6.1. Graph relating particle grain size, in the range up to $100 \mu \mathrm{~m}$, to differential stress in MPa, for models by Twiss (eqn 6-6) and Mercier et al (eqn 6-8). See text for explanation.
using Twiss and Mercier models.
6.3 Problems and Use of Microstructures for Paleopiezometry

The first part of this section described briefly some of the factors affecting the use of microstructures to estimate the paleostress. A more detailed and specific treatment of some of these factors is dealt with in the sections dealing with the results and discussion (see also White 1976-a).

The second part of this section is a review of previous work on Paleopiezometry.
6.3.1 Problems and Difficulties in the Paleostress Calculations There are seven important problems associated with

Paleo-stress Estimations; each is discussed briefly below:

1) The described equations [6-1] to [6-3] are only applicable in the constraint of a steady state deformation (cf Stocker and Ashby 1973) during disolcation creep mechanisms (cf White 1979-b, p.222).
2) White (1979-a, p.211) points out that there is no theoretical basis for equation [6-2], nor is there a perfect accordance in the values of the parameters $k, 1$ and m, used in equations [6-1], [6-2] and [6-3].
3) A model of the general form of [6-3] is only valid on the condition that the origin of the RGS is due to migration by 'bulging' type of migration boundaries (cf Kohlstedt et al 1979). This arises
simply because this was the only type of mechanism of dynamic recrystallization observed in the experiment by Mercier et al (1977), as pointed out by Tullis (1979) (cf Poirier et al. 1979).
4) Equations [6-1] to [6-3] are clearly temperature independent and perhaps this is an oversimplified assumption. Recently Ross et al (1980) have reported experimental results from a study made for Olivines under both 'wet' and 'dry' conditions. They concluded that with 'wet' olivines the RGS are slightly temperature dependent, while for the 'dry' dunite the size is only stress dependent.
5) Another important aspect not taken into account by equations [6-1] to [6-3] is the influence of impurity phases or elements, which could influence the recrystalized grain and thus the stress estimate. Mercier et al (1977) invoked conditions of 'wet' quartzite for their model, as implying the presence of $0 H$. Ross et al (1980) also referred to 'wet' conditions for deformation of olivines. Other studies considered that the presence of a second mineral phase, such as micas, interfered in the growth of quartz grains (Hobbs et al 1976). Knipe (1980) pointed out that impurity atoms are present in deformed quartzites. He also argued that the segregations present at sub-grain boundaries and dislocations may affect the size and shape of these two microstructures. It is known that in metals, the impurity content affects the subgrain size and the disolcation density (see Knipe 1980, T15). It is possible, therefore, that the shape and size of the RGS may have been influenced by these impurities and other phases present in quartz rocks.
6) Another factor to be taken into account is the behaviour of the three
microstructures, $D D, S S$ and RGS with variationsin the stress level. Recently Ross et al (1980) has noted that the subgrain size (SS) decreases with the stress increase, but if a subsequent reduction in the stress occurs, this causes no alteration in the previous subgrain size. It means that the $S S$ records the maximum attained stress level. However we cannot expect a similar behaviour for both the dislocation density (DD) and the recrystallized grain size (RGS) (Tullis, 1979).
7) There are other equally important factors associated with measurements which are here classified as 'stereologic factors'. White (1979-b) points out that SS and RGS determined by the optical microscope are larger than those measured by Electron Microscopy. However, what has been neglected in most of the papers dealing with Paleopiezometry is the specification of the method used for size (SS or RGS) measurements (eg White 1979-a, b, c; Weathers et al 1979-a). With the exception of a few papers, such as Etheridge and Wilkie (1979), most of the papers restrict their discussion of the validity of the stress estimates to the arguments given in the 6 previous paragraphs in this section and. they do not care to mention the necessity of having a standard method of size measurement. The implication of this last observation is obvious; if there is not a standard procedure of size evaluation, there is not a common basis for comparison and discussion of the results in the different works. This problem will be illustrated quantitatively in section 6.5.2-b of the present chapter.

The present study goes further and questions the validity of applying models both by Twiss (1977) and Mercier et al (1977) on stereologic grounds only. In other words, if we do not perform the

Abstract

size evaluation in the same way as each of these two studies did, it is even more irrealistic to try to apply these. It is unfortunate that these two papers (Twiss 1977 and Mercier et al 1977) neglected completely this important aspect, which restricts much of the application of their models.

On the other hand we can adopt a more pragmatic attitude and consider for instance that the size, (D) in [6-6] and [6-8], corresponds to a true spatial size of the RGS. In this case it is also the aim of the present chapter to describe and suggest the methodology used here for size of particle measurement (see section 6.4).
6.3.2 Brief Review on Previous Work on Paleopiezometry

The overall number of papers on Paleopiezometry is relatively limited. We shall briefly mention some of these, grouping the different papers firstly according to their nature: (i) Theoretical studies such as by Twiss (1977), Poirier and Guillope (1979). (ii) Experimental studies as in the case of Mercier et al (1977), Zeuch and Green (1979), Ross et al (1980-a, b) and (iii) studies which are concerned only with the applicability to natural examples in some particular areas (White 1979-a, b, c, Weathers et al, 1979-a, Kohlstedt et al 1979, Etheridge and Wilkie 1979, Ross et al 1980-b).

Another way of grouping the previous work is according to the particular mineral used for the stress estimation. Two minerals account for the majority of the published results and these are olivine and quartz. Poirier and Guillopé (1979 p.73, fig. 5) dealt with halite. Tullis (1979, p.1144) lists references for other minerals. For olivine there are many experimental results (Mercier et al, 1977, Zeuch and Green 1979, Ross et al 1980-a, b) and also some attempts to use this mineral for natural stress estimates; Mercier et al (1977)
used xenoliths of kimberlites, Ross et al(1980-b), applied the concepts to rocks of the Vourinos complex in Greece.

The present study is concerned only with the use of quartz, and that is why we reserve the final part of this section for a more detailed explanation of a few selected papers which used information from naturally deformed quartz rocks.

White (1976-b) estimated paleostress for Loch Eriboll, though the exact locations of specimens are not reported. Subsequently White (1979-a) made some stress determinations using what are here interpreted as Moinian Psammites, from the south of Creag-na-Faolifnn. White (1979-b) published results for samples taken from two distinct localities in Eriboll: (i) at Alt Oldhrsgaradaidh, south of Creag na Faollinn, presumably from rocks of the Moinian Schists, and (ii) at Ben Heilam from Cambrian Pipe-Rocks, in the imbricate zone (see Peach and Horne 1907, Soper and Wilkinson 1975). White (1979-c) further described optical and TEM studies of Pipe Rock sampled from a mylonite Of the Heilam Nappe at Ben Heilam, Eriboll.

Weathers et al (1979-a) studied rocks from three different localities in the Moine Thrust Zone: (i) at the stack of Glencoul, in Assynt District, (ii) at Knockan Creag, and also (iii) at Eriboll with no clear specification for the exact locality but the indications on their map (see Weather's et al 1979-a, fig. 2) suggest some place in the vicinity of Kempie Bay. Kohlstedt et al (1979) published comparative analyses of the Moine Thrust rocks and the Iquertoq shear zone, Western Greenland.

Another important study using quartz, is given by the paper Etheridge and Wilkie (1979) in which they re-analysed much of the microstructural relations for various different zones of thrusts in Australia. The present study profited from the information contained
in the Etheridge and Wilkie (1979) paper as we shall be referring to it in the next section.

We shall be dealing with the above papers that used quartz-rocks of the Moine Thrust Zone, when we compare the paleostress estimates found in the present study (ie section 6.5).
6.4 Stereology

6.4.1 Preliminary Considerations

Before describing the methods of size of particle measurement it is appropriate to comment and also to justify the reasons for choosing here some particular stereologic methods. This study aims to emphasize the importance that the method of size measurement plays in the final result of the paleostress estimate.

The models by Twiss (1977) and Mersier et al (1977) require the determination of the recrystallized grain size (RGS) and this can be performed in several ways, depending on many factors such as: size of the particles, time to be spent and available equipment for measurements etc It is necessary to take into account those factors before choosing a method. However the final selection aims at a method which can produce the most reasonable results with the least effort (ie an Optimized method, ss). That last condition implies that the chosen method should not only be compatible with the available equipment but also that the amount of time to be spent in each determination should be taken into account. As we shall see, time can ultimately determine the accuracy of the size-estimation.

The study of grain or particle distribution is a long, and sometimes controversial subject which has many applications in
many branches of science. For that reason similar problems seemed to have been handled and solved independently many times.

The present study requires that the measurement of data transmitted from a two dimensional image is used to estimate the spatial (statistic) behaviour of each population (phase) by means of their characterizing distributions. The most convenient approaches, for the present conditions, are those developed for quantitative metallographic studies which may be performed with an ordinary petrographic microscope, equipped with a micrometric ocular. It is important to characterize the above conditions because there are other suitable methods, for example, for reflected light or for observations made with the Transmission Electron Microscope (TEM) and these are not covered by the present study.

For cases where grain size measurements constitute a
frequent routine,it is advisable to make use of a more sophisticated system which integrates recording and calculating devices in such a manner that it enables very accurate measurements to be made and also allows a vast quantity of data to be handled in a quick and effective way (see Exner 1972). Usually the comonly measurable parameters for most microstructuressare: (1) the estimation of the proportion or the volume fraction of each of the component phases, (ii) the mean grain size, and (iii) the determination of particle size distribution.

The Iast two parameters are the particular concern of the present section while the first one was dealt with in more detail in section 5.4 of the previous Chapter 5.

In the geological literature there are some excellent texts dealing with the determination of particle size distributions (Krumbein 1935, Chayes 1956, Pettijohn 1957, Griffiths 1967). As a result of continuous research in the field of statistical-sedimentology; the current
reference list is vast. However, for the present work it was decided to follow a 'stereologic' approach, which treats such problems from the purely geometric (solid) point of view. The excellent book by Underwood (1970) presents a comprehensive study in a very accessible text. The paper by Exner (1972) is an outstanding review of the particle and size distributions from metallurgic point of view. More recently, Pickering (1976) published a monograph which has an essentially practical viewpoint and he describes most readily applicable stereological methods, leaving little room for lengthy considerations of a theoretical or purely conceptual nature. The methods used throughout the present chapter are primarily those to be found in these last three references.

6.4.2 The Grain Size Estimation

This constitutes a particular difficult problem because in nature the grains may not have ideally spherical forms but instead have polyhedrical shapes and very different sizes. This poses some difficulties, from the mathematical point of view, because the obtained measurements must be corrected for effects such as particle overlapping and surface truncation (cf Figs. 6-2-d, e).

Two main methods can be employed in these circumstances: (i) areal analysis, (ii) linear-intercept-length method. In general the latter is to be preferred not only because the areal analysis may demand sophisticated equipment for area estimation (apart from being a rather time consuming method) but also because the latter usually allows greater accuracy.

It must be pointed out that the spatial shape of the grains greatly influences a two dimensional analysis of size, and that for most of the natural cases it seems very difficult to derive a definite
and precise analytical solution.

The linear-intercept or the intercept-length method is a very convenient technique when sizing is an occasional procedure. It consists in counting the number of grains intercepted by a traverse line of known absolute length, L (cf Fig. 6-2-a). Therefore the mean-1inear-intercept (m.1.i) $\overline{1}$, can be obtained by:-

$$
\begin{equation*}
\overline{\mathrm{I}}=\frac{\mathrm{L}}{\mathrm{~N}_{\mathrm{g}}}=\frac{\dot{L}}{N_{b}}=\frac{L}{N} \tag{6-9}
\end{equation*}
$$

where N_{g} is the number of intercepted grains, N_{b} is the number of intercepted boundaries. The above relationship only holds for a microstructure where there is only one phase, as shown in fig. 6-2-a. For such cases where the traverse line intercepts more than one phase (see fig. 6-2-b for comparison) relation [6-9] does not apply and it is necessary to take into account the proper relation of (N) as depicted in figs. 6-2-a and b.

The complexity increases, however, because the condition explained in the last paragraph is true for cases of particles with the same size, randomly distributed through the sample and ideally spherical in shape. These conditions are seldomly met in nature. For such cases where there is a preferred orientation of particles, the number of intersections should vary according to the direction of measurement (see fig. 6-2-c). Underwood (1970, Chapter 3) gives a comprehensive treatment and derives simple expressions for dealing with such cases. However the measuring procedure becomes more complicated because it is first necessary to locate the preferred direction of particle-orientation and then to perform the counting routine along two orthogonal grids of parallel lines, the spacing of which is chosen according to particle-size criteria (see Underwood 1970, pp.48-71, for full details).

-b

- C

Figures 6.2

$\mathbf{N}_{\mathbf{g}}=$ No. of intercepted grains
$N_{b}=$ No. of intercepted boundaries.
$L=$ Absolute length of thetraverse line.

$$
\begin{aligned}
& N_{b}=N_{g}=N=6 \\
& \text { m.1.1. }=\overline{1}=\frac{L}{N}
\end{aligned}
$$

$$
\begin{aligned}
N_{g} & =3 \\
N_{b} & =6 \\
\therefore 2 N_{g} & =N_{b}=N \\
\text { m.l.i. } & =\bar{I}=\frac{L}{N}
\end{aligned}
$$

$$
\begin{gathered}
\overline{A A}^{\prime}=\mathrm{L}-\overline{a a}, \quad N_{g}=3 \\
\therefore \overline{1} \overline{\mathbf{a a}}=\frac{L}{3}
\end{gathered}
$$

$$
\overline{\mathrm{BB}}^{\prime}=\mathrm{L}_{\overline{\mathrm{bb}}},=\mathrm{L}, \quad \mathrm{~N}_{\mathrm{g}}=20
$$

$$
\therefore \overline{\mathrm{i}}_{\overline{\mathrm{bb}}},=\frac{\mathrm{L}}{20}
$$

Illustrates the results variations according to the measurement direction.

To satisfy the conditions explained in the last paragraph, using an ordinary petrographic microscope equiped with a micrometric ocular, seems quite difficult. However the above measurements can be more easily performed on photomicrographs. Care is needed for correction of distortion and also for the determination of the absolute lengths of the grid. However, this method was not used here, and there are two main reasons for this:
(i) The great majority of the section measured initially exhibited textures which seemed to approach conditions of very weak to no preferred orientation of grain shape. In such circumstances the usual procedure is to admit (ie for practical purposes) that the conditions illustrated in figure 6-2-a are acceptable. However there were a few cases when these conditions were not met and the most convenient solution was to exclude these sections from the measurement scheme.
(ii) Mercier et al (1977) and also White (1979-a) mentioned that they measured in a direction perpendicular to the preferred orientation of grain long axes and this procedure was followed here only in very few occasions mainly to fulfil an indication of one of the used models (Mercier's) and also to compare the result with these of White's (1979).

Abstract

Another problem to be subsequently solved was related to the conversion between two dimensional into three dimensional distributions of elements. This situation is particularly complex but the approach here was to simplify the problem by considering the following: (i) The truncation or sectioning effects of particles can be clearly observed and analysed from the scheme in fig. 6-2-d, where the plane ABCD contains circles in which the diameters are probably

smaller than the true particle diameters. Therefore a mean-Iinear-intercept (m.l.i.) directly taken from this sample does not correspond directly. to a particle-size. It is most probably an underestimate of it and therefore should be corrected for spatial size equivalence. Another equally important aspect is that the probability of cutting a particle as in fig. 6-2-d, increases with the particle diameter. This means that the smaller phases are always underestimated. This can be called a sampling effect, which tends to diminish with the uniformity of the size of the particle and also as grain size approaches the thin"section thickness.
(iii) For the present case of projected images there are additional effects of overlapping (see fig. 6-2-e). This effect also diminishes if the thickness of the section approaches the size of the phase that contains it.

These are some of the innumerable 'difficulties' encountered in this study. They were here described in order to highlight a few of the more important problems that one faces before 'judging' and deciding on a particular method of size estimation. It must be stressed that the above described effects are thought to be additive and that the above treatment only applies if the particles have a simple shape. Underwood (1970) describes, but in many cases only mentions, methods using a more rigorous approach and these invariably end in very complicated problems of differential geometry. For the present study it was decided to follow a more simplistic approach mainly because of compatibility with the models by Twiss and Mercier.

Based on the distribution of probabilities, Exner (1972, p.32) was able to show that the diameter for perfect and equalized

```
Figures 6.2. (cont'd)
```

.d

Illustrates trunctation of particles by sectioning effects. Note that the intersected-diameters ($d_{i}{ }^{\prime}$) are, in general; underestimated values of the particle-diameters (d_{i}). Note also the differences between $\left(d_{i}\right)$ and $\left(l_{i}\right)$.

Illustrates effects of particle-overlapping relative to size and section thickness (t). It is clear that such effects are attenuated as particle-size approaches the thickness (t).
spheres which present a random distribution, can be estimated if the average mean (arithmetic) intercept diameter (\bar{d} ') is known (see fig. 6-2-d for definition of this diameter), by using:

$$
\begin{equation*}
\mathrm{D}=\frac{4}{\pi} \overline{\mathrm{~d}} \tag{6-10}
\end{equation*}
$$

the above conditions, however, are hardly met in this study. For cases of a spatial-size distribution (D) and the mean-intercept-length (\bar{d} or m.l.i.), the relation is also found to be based on a probability function of sampling a linear-intercept (see some details in Exner 1972, p.33. Full details are in Exner 1967) as follows:

$$
\begin{equation*}
D=\frac{3}{2} \quad \bar{d} \tag{6-11}
\end{equation*}
$$

where (\bar{d}) corresponds to a mean of numerous ($\overline{1}$) measurements in a section (see [6-14] to [6-17]). There are many other approaches which are listed in Underwood (1970, p.129). The method by Hilliard (1962), for example, is reputed to be the best but it is difficult to apply because, apart from requiring the measurement of the linear intercept, it is also necessary to have the distribution of the projected equi-valent-circular area of the particles. Both Exner and Underwood mention Spektor's (1950) chord analysis as one of the best approaches for size estimation, but this will not be applied here because it may depart too much from the original method used by Twiss (1977), in constructing his empirical method.

In view of so many difficulties and constraints it was decided in this study to follow Pickering's (1976) practical approach, which defines the average particle size as:

$$
\begin{equation*}
\mathrm{D} \simeq 1.75 \overline{\mathrm{~d}} \tag{6-12}
\end{equation*}
$$

According to Pickering's treatment, the relative error of
the m.l.i. can be assessed by

$$
\begin{equation*}
\frac{s(\bar{d})}{\bar{d}} \simeq \frac{0.7}{\sqrt{2 N_{i}}} \tag{6-13}
\end{equation*}
$$

where, $\left[N_{i}\right.$ is the population size, and $s(\bar{d})$ is the standard deviation of the m.1.i. (\bar{d}). Figure 6-3 plots the relative error as a function of the sample.size.. Thisis aparticularly useful graph especially when planning an experiment'in terms of the cost of the results. It can be seen that the difference between the relative errors of $\mathbf{7 \%}$ and 1% could imply a difference between approximately one hour and one week of continuous work (ie $\simeq 4900$ grains, roughly measured at. 120 grains/h). The final step in the grain size determination concerns the construction of the curve of size-distrubution. However the choice of the appropriate distribution function is also an intricate problem as it depends heavily on the shape of the elements being measured. Exner (1972, p.32) points out that the shape of the phase is so important that he constrains the possibility of determining the true spatial size distribution on the condition that the shape factor of the phase is known. Otherwise it is virtually impossible to establish the spatial size distribution by means of measurements on a plane thin section. In addition, the 'known' shape of the particles must be of simple geometry, otherwise it will make the mathematical treatment too complicated. There are some attempts to establish relationships between 2 D measurements and the 3 D particle shapes such as: ellipsoids, platy and rodlike cylinders, cubes and spheres. DeHoff (1962) developed a technique for ellipsoidal-spatial particles but this method is limited by the fact that it considers the whole population as particles with the same axial ratio and with the same shape type (ie Prolate or oblates, there can be no mixture).

Figure 6.3. Curve estimating the error of the method (m.1.i.) in function of the amount of measurements performed.

If the described difficulties are supposedly overcome, the rigorous mathematical approach will require the constuction of the distribution curve for characterizing the sizes of the elements in question. However this is not the procedure chosen here, and in view of the existent difficulties it was decided to adopt a simple solution which employs simple parameters such as the average particle size (D), the standard deviation $[s(\bar{d})]$ of the m.l.i. the population size $\left[N_{i}\right.$, etc.... Data can be grouped in finite class intervals, either with arithmetic (equidistant) or geometric (log equidistant) scale. In general, size distributions are skewed (Mitra 1978) and for this reason the geometric scaling is to be preferred. The best results using this geometric scaling are shown in figs. 6-4. It must be pointed out that some samples did not obey a log-normal law, so that their plots give asymmetrical patterns. There can be several reasons for this:
(1) The population size is insufficient, therefore the available population did not achieve the necessary reproducibility level.
(ii) Perhaps different class interval division could produce a symmetrical pattern.
(iii) The population may be heterogeneous and present grains that may have originated by mechanisms other than Bulging. For example the RGS may be due to subgrain rotation in polygonized domains [cf Mercier et al (1977); Poirier and Guiloppé (1979); Kohlstedt et al(1979); White (1979-a)]. and this could produce a characteristic particle size distribution and hence there is a possibility of bimodal population, depending on the contribution of each mechanism.
(iv) Perhaps the particle shape interferes to such an extent as to make the chosen method totally incompatible, hence the discrepancies.

Figures 6.4. Distribution of grain-sizes in Logarithmic scale. Ordinates refer to absolute frequencies in all diagrams.

The systematics followed in the present study are listed below, and presented in tables 6-1-a to c.

1) The calculated mean (linear) intercept length (columns 7-11 in tables 6-1).
(i) Arithmetic

$$
\begin{equation*}
\overline{\mathrm{d}}_{\mathrm{a}}=\frac{\sum \mathrm{Na}_{\mathrm{I}}^{1} 1}{\sum \mathrm{~N}_{1}} \tag{6-14}
\end{equation*}
$$

(ii) Geometric

$$
\begin{equation*}
\bar{d}_{g}=\left(\Pi \bar{I}_{i}\right)\left(\sum N_{i}\right)^{-1} \tag{6-15}
\end{equation*}
$$

or taking logarithms

$$
\begin{equation*}
\log _{10} \overline{\mathrm{~d}}=\frac{\sum\left(\mathrm{N}_{\mathrm{i}} \log _{10} \overline{\bar{l}}_{i}\right)}{\sum N_{i}} \tag{6-16}
\end{equation*}
$$

(iii) Harmonic

$$
\begin{equation*}
\bar{d}_{h}=\left[\frac{1}{\sum N_{i}} \sum \frac{N_{i}}{\bar{I}_{i}}\right]^{-1} \tag{6-17}
\end{equation*}
$$

The geometric mean represents the value with the greatest frequency if the distribution confirms with the log-normal law. The harmonic mean is mainly used for cases when it is necessary to correlate specific surface areas. The magnitudes of the above means relate to each other (following Cauchy's theorem) as $\bar{d}_{a} \geqslant \overline{\mathbf{d}}_{\mathbf{g}} \geqslant \overline{\mathbf{d}}_{\mathrm{h}}$, the inequalities increasing with the degree of dispersion of diameters.
2) The estimated errors (columns 10-11,tables 6-1).
(i) The standard deviation $s\left(\bar{d}_{a}\right)$ of the arithmetic mean may be expressed as the root mean square deviation (see Underwood 1970) as follows:

$$
\begin{equation*}
s\left(\bar{d}_{a}\right)=\left[\frac{1}{\sum N_{i}}\left[\left(N \bar{l}^{2}\right)_{i}-\left[\frac{1}{\sum N_{i}} \sum N_{i} \bar{I}_{i}\right]^{2}\right]^{\frac{1}{2}}\right. \tag{6-18}
\end{equation*}
$$

and
(ii) the relative error is given by:

$$
\begin{equation*}
s\left(\overline{\mathrm{~d}}_{a}\right) / \overline{\mathrm{d}}_{a} \tag{6-19}
\end{equation*}
$$

3) The 'corrected' grain size estimates, are obtained using both [6-14] and [6-16] in [6-12] (columns 12-13 in tables 6-1).
4) The paleostress estimations (columns 14-17, tables 6-1). These are worked out, for the Arithmetic and Geometric Mean grain sizes (\bar{D}_{a} and \bar{D}_{g}), using the models by Twiss [6-6] and Mercier et al [6-8] (see columns 16-17 in tables 6-1).

Tables 6-1-a, 6-1-b and 6-1-c represent respectively the domains of Eriboll (at Kempie and Arnaboll Hill) and Hope areas, as defined previously for Chapter 4. Altogether there were 57 sections representing 31 different localities in these three areas. Where a sample presented more than one thin section, the calculations were performed in both, in order to check for the consistency of the measurements. In general the discrepancies were below 10% and these samples have their results characterized by their means and are listed as rows of sample average (SA) in tables 6-1-a to c. The maps of figs. 6-5-a to c, contain the geographic locations (scale $1: 10,560$) of the estimates of tables 6-1.
6.5 Results and Discussion
6.5.1 From the Present Study

The following consistent relationships between the recrystallized grain sizesiand the related microstructures have been obtained in the present study:-

Table 6-1-a

Table 6-I-a continued

Thin Sect. No.	Dept. Refer. No.	Grid Reference	$\begin{aligned} & \text { Sec- } \\ & \text { tion } \end{aligned}$	Pop size $\sum \mathrm{ni}$	M.L.I. Standard $\%$	Arimeth da f	Intercep Geometric $\overrightarrow{\mathrm{d}} \mathrm{g}$ $\mu \mathrm{m}$	Length Harmonic d̄n $\mu \mathrm{m}$	$\begin{gathered} \text { Error } \\ \text { St. Dev. } \\ \text { s(da) } \\ (\mu, m) \end{gathered}$	stimation Rel. Error. $s(\bar{d} a) / \bar{d} a$	Grain Size Arithmetic $\overline{\mathrm{D}} \mathrm{a}$ ($\mu \mathrm{m}$)	```(Corrected) Geometric \| Dg (\mum)```	Paleost Based (19 for Da	ress De n Twiss 77) for \bar{D}_{g}	erminat Based cier for $\overline{\mathrm{D}} \mathrm{a}$	on (MPa) Mer1977) for $\bar{D} g$
23	41482	NC46165758	A	107	6.77	21.028	20.834	20.656	2.964	0.14096	36.799	36.460	58.153	58.519	40.28	38.65
24			C	101	6.97	22.277	22.145	22.013	2.417	0. 10850	38.985	38.754	55.195	56.141	40.54	38.61
						21.65	21.49	24.29			37.89	37.61	57.03	57.33		
25	41483	NC46035742	A	102	6.93	26.960	26.449	25.967	5.371	0.19925	47.181	46.286	49.110	49.754	33.73	34.19
26			B	129	6.16	25.193	24.229	23.454	7.740	0.30724	44.089	42.400	51.427	52.811	35.40	36.40
						26.08	25.34	24.71			45.64	44.34	50.27	51.28		
27	41484	NC46385767	B	117	6.47	23.504	23.203	22.905	3.753	0.15971	41.132	40.605	53.913	54.388	37.07	37.54
28			C	121	6.36	22.727	22.623	22.524	2.226	0.97960	39.772	39.590	55.159	55.332	38.10	38.23
						23.12	22.91	22.71			40.45	42.82	54.54	54.86		
29	41486	NC46675741	B	136	6.00	18.38	18.28	18.18	1.897	0.10324	32.17	31.99	63.72	63.95	44.34	44.51
30	41487	NC46675744	C	108	6.74	27.77	27.50	27.22	3.893	0.14015	48.17	48.13	48.12	48.45	33.01	33.25
31	41488	NC4662547	A	127	6.21	19.69	19.52	19.35	2.589	0.13155	34.45	34.15	60.82	61.18	42.22	42.48
				3739												
Average for Kempie area				120.61	6.37	21.53	21.22	21.09	0.16614		37.67	37.28	58.17	58.72	40.35	40.76

SA
= sample average
MLI $=$ mean intercept length (method)

Thin Sect No	Dept. Refer. No	Grid Reference	$\begin{aligned} & \text { Sec- } \\ & \text { tion } \end{aligned}$	Pop size Eni	M.L.I. standard \%	$\begin{aligned} & \text { Mean } \\ & \text { Arithm. } \\ & \text { da } \\ & (\mu \mathrm{m}) \end{aligned}$	```Intercept Geom. dg (fim)```	$\begin{aligned} & \text { Length } \\ & \left\lvert\, \begin{array}{c} \text { Harmpnic } \\ \text { dh } \\ (\mu \mathrm{m}) \end{array}\right. \end{aligned}$	```Error St. Dev. s(da) (1,m)```	Estimation Rel. Error. $s(\bar{d} a) / \bar{d} a$	Grain Size Arithm. Da (- m)	(Corrected) Geomet . $\bar{D}_{\mathbf{g}}$ (μ III)	Paleostress Determination (MPa) Based on Twiss Based on Merc(1977) ier (1977) for $\overline{\mathrm{D}} \mathrm{a} \mid$ for $\overline{\mathrm{D}} \mathrm{g} \mid$ for $\overline{\mathrm{D}} \mathrm{a} \mid$ for $\overline{\mathrm{D}} \mathrm{g}$			
32	41477	NC46175890	A	133	6.07	30.10	29.92	29.77	3.006	0.9997	52.63	52.36	45.59	45.75	31.19	31.31
33	41490	NC45975868	B	123	6.19	21.484	21.363	21.248	2.000	0.10846	37.597	37.386	57.310	57.529	39.66	39.82
34			C	116	6.50	21.551	21.435	21.323	2.275	0.10556	37.715	37.512	57.188	57.399	39.58	39.73
			SA			21.58	21.40	21.29			37.66	37.45	57.25	57.46		
35	41491	NC46035870	A	134	6.05	22.39	22.21	22.04	2.787	0.12450	39.18	38.87	55.73	56.02	38.51	38.73
36	41492	NC46025872	A	122	6.34	22.54	22.33	22.11	3.203	0.14210	39.45	39.08	55.47	55.83	38.33	38.59
37	41493	NC46035891	A	199	6.42	29.41	29.09	28.80	4.687	0.15936	51.47	50.90	46.29	46.44	31.69	31.95
38	41494	NC46285894	A	109	6.70	22.935	22.666	22.427	3.732	0.16273	40.137	39.666	54.818	55.260	37.85	38.18
39			C	129	6.16	23.255	23.026	22.791	3.224	0.13867	40.697	40.295	54.304	54.672	37.48	37.75
			SA			23.10	22.85	22.61			40.42	39.98	54.56	54.97		
40	41495	NC46055878	A	108	6.74	25.462	25.369	25.280	2.239	0.8797	44.560	44.396	51.057	51.184	35.13	35.22
41			B SA	107	6.77	25.700 25.58	25.274 25.32	24.837 25.06	4.594	0.17876	$\begin{aligned} & 44.976 \\ & 44.77 \end{aligned}$	44.229 44.31	50.735 50.90	$\begin{aligned} & 51.316 \\ & 55.25 \end{aligned}$	34.90	35.32
42	41496		E	$\begin{array}{r} 123 \\ 1328 \end{array}$	6.31	23.36	22.21	22.07	2.573	0.11511	39.13	38.87	55.78	56.02	38.55	38.73

Average values for the
upper part of the Arnaboll Hill

| 120.73 | 6.37 | 24.76 | 24.41 | 24.22 | | 0.12940 | 43.09 | 42.73 | 52.70 | 52.99 | 36.62 | 36.85 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Thin Sect. no.	Dept. Refer no.	Grid Reference	$\begin{aligned} & \text { Sec- } \\ & \text { tion } \end{aligned}$	Pop size [n1	M.L.I. Standard \%	$\begin{gathered} \text { Mean } \\ \text { Arithm. } \\ \substack{\text { da } \\ (\mu m)} \end{gathered}$	$\begin{gathered} \text { Intercept } \\ \text { Geometric } \\ \mathbf{d g} \\ (\mu, m) \end{gathered}$	$\begin{aligned} & \text { Length } \\ & \text { Harmonic } \\ & \begin{array}{c} \text { dh } \\ (1, \mathrm{~m}) \end{array} \end{aligned}$	Error E St. Dev. s (da) (, m)	Estimation Rel. Error $s(\bar{d} a) / \bar{d} a$	$\begin{gathered} \text { Grain Size } \\ \text { Arithmetic } \\ \overline{\mathrm{D} a} \\ (1-m) \end{gathered}$	```(Corrected) Geometric Dg (}\mu\textrm{m```	$\begin{array}{r} \text { Paleo: } \\ \text { Based od } \\ \text { (197 } \\ \text { for } \end{array}$	tress Twiss) for S_{g}	etermina Based cier for $\overline{\text { Da }}$	$\begin{aligned} & \text { tion } \\ & \text { n Mer- } \\ & (1977) \\ & \text { for } \cdot \bar{D}_{g} \end{aligned}$
43	41497	NC47866052	A	123	6.31	20.32	20.20	20.08	2.235	0.1100	35.57	35.36	59.51	59.76	40.46	41.44
44	41498	NC48076061	A	126	6.24	19.84	19.53	19.25	3.636	0.18329	34.72	34.19	60.50	61.14	41.98	42.45
45	41499	NC48156068	A	120	6.39	20.83	20.80	20.78	1.101	0.52890	36.46	36.41	58.52	58.58	40.55	40.59
46	41501	NC48426066	A	106	6.80	33.018	32.276	31.622	7.421	0.22475	57.783	56.483	42.787	43.454	29.18	29.66
47			B	108	6.74	32.407	31.655	30.963	7.214	0.22263	56.712	55.397	43.334	44.032	29.57	30.07
			SA			32.71	31.97	31.29			57.25	55.94	43.06	43.74		
48	41502	NC48296040	A	119	6.42	25.210	24.628	24.128	5.820	0.23086	44.117	43.100	51.404	52.226	35.58	35.98
49 -			B	113	6.59	22.123	21.791	21.482	3.971	0.17949	38.716	38.134	56.178	56.760	38.84	39.26
			SA			23.67	23.21	22.81			41.42	40.62	53.79	54.49		
50	41505	NC47886028	A	104	6.86	28.85	28.09	27.43	6.921	0.23993	50.48	49.17	46.90	47.75	32.14	32.75
51	41506	NC47836017	A	113	6.59	22.123	21.495	20.972	5.757	0.26024	38.716	37.617	56.178	57.289	38.84	39.65
52			C	114	6.56	30.701	30.351	30.000	4.628	0.15075	53.728	53.115	44.957	45.309	30.74	30.99
			SA			26.41	25.92	25.49			46.22	45.37	50.57	51.30		
53	41507	NC47796010	B	99	7.04	37.88	37.24	36.67	7.368	0.9453	66.29	65.17	38.94	39.43	26.45	26.78
54	41509	NC47615991	A	125	6.26	20.00	19.93	19.87	1.738	0.8692	35.00	34.88	60.17	60.31	41.74	41.85
55	41512	NC47585952	B	90	7.38	30.55	30.07	29.61	5.582	0.18270	53.47	52.62	45.10	41.60	30.84	31.20
56	41513	NC47925984	C	122	6.34	34.84	34.34	33.89	6.107	0.17532	60.96	60.10	41.26	41.66	28.08	28.37
57	41514	NC47765910	C	123	6.31	36.58	35.69	34.90	8.566	0.23415	64.02	62.46	39.90	40.58	27.12	27.60
			[1705													

Average values for Loch Hope

113.67	6.57	27.71	27.25	26.84

0.1819
48.49
47.69

49.85	50.36	34.13	34.57

Average values for all three areas
$\{6772$ grains

118.81	6.42	24.23	23.87	23.52	0.16319	42.35	41.84	54.29	54.76	37.99	38.37

(i) Within a sample and to a certain extent within a homogeneous domain (more than one shape) and RGS can be considered constant (compare the results of tables 6-1 which are plotted in the maps of figs. 6-5-a - c).
(ii). The sizessof the recrystallized new grains seem to be constant no matter what was the size of the original clasts in that sample.
(iii) The general pattern is that of a decrease in the size of the newly recrystallized grains within the mylonite-ultramylonite zones, although there can be exceptions to this 'rule'.
(iv) In the more advanced stages of recrystallization (ultramylonitic textures) the presence of phyllosilicates did not interfere (apparently) with size of the grain refinement process. This seems to contrast with those samples exhibiting a less advanced stage of recrystallization where, the new grains, in the specimens richer in phyllosilicates, are coarser than the RGS in samples poorer in phyllosilicates (see Chapter 5).

Etheridge and Wilkie (1979) have studied several thrust zones in Australia and correlated the measured RGS with the strain variation. (measured in terms of grain stretching) in these zones. For each of the analysed nappes they found a remarkable constant modal class which does not change with the increasing strain. However, this patterr. changed totally when the samples are totally recrystallized because the RGS becomes coarser (see op. cit.,fig.6). In the present study it has been demonstrated (Chapter 5) that strains can be easily correlated with the proximity to the mylonitic zones and it seems to be directly related to the production of the recrystallized grains. However, the general pattern for the studied area is as follows:

Figure 6.5-b. Area of the Arnaboll Hill, Loch Eriboll. Maps at a scale $1: 10,560$, showing the sampling localities for the collection of psammitic Paleozoic rocks used for paleostress estimates.

Values for each locality are in MPa, following the models by Twiss (1977) and Mercier et al. (1977). The results following Mercier et al are s hown here in brackets.

(1) In Loch Hope a greater variation in sizes of the recrystallized grains is present. This distribution is less homogeneous than that at Eriboll (see fig. 6-6).

For the samples with totally recrystallized grains there are no measurements of the intensity of deformation, such as Nadai's ε_{s}-parameter, because of the obvious lack of original clasts. However, there can be no doubt that these samples come from domains more deformed than the specimens used in grain shape analysis. Therefore, these totally recrystallized specimens would certainly plot in the graph of fig. 6-6 with abscissae values greater than 1.4. With one exception, the general trend for these totally recrystallized sections from the Kempie area, is for smaller RGS with increasing strain. This contrasts with Etheridge and Wilkie's (1979, fig.6) observations.

The magnitudes of the estimated differential stress have been tabulated in 6-1-a to c. However, in order to group and analyse these results according to specimen location, use was made of a LogLog graph relating ratios σ / Γ and d / b (see fig. 6-7). It seems that each one of the three geographic sampling domains (Kempie, Arnaboll and Hope) occupy different locations in the graph. This may reflect the different conditions that operated in the three areas. The rocks sampled above Kempie Bay occupy mainly one end of the graph line, while specimens from the Arnaboll Hill fall within the Kempie range but clearly occupy the lower part of it. These differences may be related to the following factors:
(1) The specimens in Eriboll area come from two distinct nappe domains which are separated by the b-type or the UAT thrusts (cf Chapter 2). Arnaboll and Kempie specimens are separated by distances

Figure 6.6. See text for explanation.

$\log _{10} \frac{d}{b}$

Figure 6.7. See text for explanation.
which vary from 1.5 to nearly 3.0 km , so stress could vary in this distance.
(ii) The specimens from Kempie which lie in the basal quartzites beneath the b-thrust, plot in the graph of fig. 6-7 in a range very similar to that for the Arnaboll Hill (see fig. 6-7, plots as open circles).
(iii) The rocks above and below the b-type (or the UAT) thrust may have different stress distributions. Kempie rocks above the b-thrust come from slabs of quartzites emplaced in a suite of mylonitic rocks which include the phyllonitic Lewisian rocks. Comparatively, the domain from the Arnaboll Hill constitutes a much thicker pile of Paleozoic Quartzites which are more competent and therefore stress propagation in these should be distinct.

The mean differential stress (eg Twiss Model) for all the 31 specimens at Kempie amounts to 58.5 MPa , while the four samples beneath the thrust (at Kempie) present a mean estimate of 53.97 MPa . The 11 estimates for the Arnaboll rocks place their mean at a level of approximately 52.8 MPa . Finally, samples from Loch Hope area occupy the other extreme of the graph line in fig. 6-7, and exhibit a wide range of values. This correlates with field evidence, that the Loch Hope deformation zones present characteristics of varied strain intensities, when compared with Eriboll Zones. The mean of the fifteen sections is approximately 50 MPa, which is precisely 5.3% and 15.6% below the Arnaboll and Kempie means, respectively.

The present geographic distribution of paleostress estimates together with the geologic and structural descriptions of Chapter 2, leads to the suggestion that there is a stress gradation towards the upper zone of the b-type of thrust. Etheridge and Wilkie (1979)
generally found higher values of stress at upper thrust levels. They believed this to be inconsistent with their concept of stressincreasingwith depth, along a narrow zone, towards the proximity of the 'root' zone. They justify this discrepancy by the possible presence of a higher fluid pressure at depth or possibly due to hydrolytic weakning. This study presents an alternative interpretation which accords with the tectonic evolution explained in Chapter 2, and also conforms with Etheridge and Wilkie's (1979) concept of increasing stress towards 'a deeper root zone'; the rocks of the upper nappe were deformed at high stress in deeper levels and then carried out to higher levels (climb-up westwards) where the stress was reduced.

From the last paragraph, it is implicit that there is some correlation between the variability of stress and strain. The plot of stress intensities can present some inconsistensies for reasons to be discussed elsewhere in this chapter, but apart from this there seems to be an intrinsic relationship between the estimated relative stress and strain, in that the former generally appears to increase in those zones of more intense ductile deformation. It seems very significant in that context, that the Kempie mylonitic (above the b-thrust) zone could not provide a single suitable sample for grain shape evaluation while the lower stress zone of the Loch Hope mylonites provided 7 samples. Therefore, this study cannot agree with Weather's et al (1979) observations that for the Moine Thrust Zone, only strain (and not stress) increases towards the Thrust surface. Perhaps this is a mere coincidence, but the highest recorded stress estimate for the whole studied area of fig. 6-4, was sampled from the b-thrust (ss) plane - ie the slip surface of Pipe Rock in direct contact with the above Lewisian Gneiss, in locality HD-833 and this exhibits the characteristics of higher deformation levels. The position of this estimate in.fig. 6-7 is the uppermost plotted point,
and this contrasts with the rest of plotted estimates (see the geographic location in fig. 6-4-a).

It is important to know that there are some factors influencing the stress estimates but it is difficult to establish the appropriate weight of these influences:
(i) Errors in the measurements. The average number of grains per section in this study is nearly 120. The estimated standard error (m.l.i.) in such cases varies from 5 to 10%, which is likely to cause a difference in the estimated differential stress of the order of magnitude of less than 10%. Thus within the analysed area, the stress variation can be considered within the limits of the standard error or close to it. Between areas the differences in the estimates can reach values of nearly 85%.
(ii) The second aspect is related to temperature. As mentioned before temperature is not taken into account in the used models. Mercier et al (1977) proposed a relation for the case of grain size dependence on temperature variation:

$$
\sigma=m D^{-p} \exp (A / R T) \quad[6-20]
$$

where A is the stress sensitivity, R is the universal gas constant, T is the absolute temperature and the rest of the elements are as defined previously. White (1979-a, b) suggests that both D and S_{g} have temperature dependence. Perhaps, in the future the relation between stress and the RGS will include factors such as temperature.
(iii) Another important factor is the nature of the mechanism which produces the new recrystallized grains. White (1979-a) and Kohlstedt et al (1979) adopt the classification for polygonization taking
place either by Bulging mechanisms or by subgrain rotation establishing high angle boundaries, hence a new grain (cf Chapter 5).

An unanswered question at the present is: does the type of the mechanism of RGS formation affect the size of the grain and consequently the stress estimation? Metallurgists have shown that the relation between differential stress and the RGS only applies for the mechanism of 'Bulging' by grain boundary migration (see Tullis 1979, pp.144). White (1979-a) goes even further by pointing out that both the Twiss and Mercier models are appropriate for 'Bulging' simply because in the event of RGS by rotation of subgrains this would imply in production of new grains of the same size as the subgrains. This means that the appropriate relation to be used in subgrain rotation is that of $[6-2]$ rather than [6-3].

Etheridge and Wilkie (1979 p.461) pointed out that their Paleopiezometric study indicates that the RGS originated from rotation of subgrains. Poirier and Guillopé (1979, p.67) stressed the importance of recognizing the regime of grain recrystallization. Their observation for halite indicates that if the nature of the recrystallization is neglected there could be an error of an order of magnitude in the results. However one cannot be sure of the origin of the grains in the case of sections showing grains completely recrystallized. plate 6-1 is the only sample where it was observed that two markedly different RGS(s) were present. The rest of the sections showed a much more constant size distribution. This size difference in plate 6-1 can be interpreted as: (i) due to the presence of phyllosilicates, (ii) as a result of superimposed deformation events in which it was not possible to reset completely the size range of the new grains, or (iii) due to different mechanisms of the production of the recrystallized grains.

Another aspect to be discussed relates to the presence of second phases (phyllosilicates and/or feldspars) and their influence on the RGS, and this appears to be a controversial issue. Bell and Etheridge (1976) reported an inhibition on quartz refinement due to the presence of micas. White (1979-a, b, c) pointed that there is grain reduction in the mica rich layers of quartzitic rocks in two localities at Loch Eriboll. In Chapter 5 of this study it was reported that the presence of phyllosilicates could be correlated with the observed coarser RGS provided the quartz-porphyroclasts accounted for at least 50% of the section. When recrystallization was complete, or very near that limit, there was no noticable difference between samples richer and poorer in phyllosilicates.

6.5.2 From Other Studies in the Mapped Area

6.5.2-a The Microstructural Parameters, Other than the RGS

The first topic to be discussed in this section relates to the interaction between the microstructural parameters defined earlier in this chapter and the possibilities of interference and overprinting effects. Care must be taken when applying paleopiezometric techniques because of the possible post-deformation recovery effects which may alter the deformation induced microstructures and this invalidates the use of relations [6-1] to [6-3]. In other words, it must be assured that the dynamic induced microstructures have not suffered any significant modifications after the stresses have been removed.

The analysed fabrics lead us to believe that the studied sections clearly exhibit quite different microtextures, characterizing the evolution of a zone of progressive deformation. There seems to be little evidence of annealing effects häving taken place which means that
the records of the deformation conditions might well be still 'frozen in'. The reason for this could be perhaps due to (i) the driving forces at low stresses (and temperatures) were insufficient to cause grain growth in the post deformation regime. That is, the grain growth kinetics become too slow to allow any significant grain size increase (cf Twiss 1977, p.235)..(ii) The presence of a second mineral-phase may interfere causing an inhibition on grain growth (Hobbs et al 1976).

As explained in the first two sections of this chapter, the dislocation density (ρ) and the subgrain size (Sg) also bear definite relationships with the differential stress but these two microstructural parameters require the use of the TEM. Twiss (1977) points out that optically measured (ρ) are unreliable and this restricts the use of such parameters. The present study did not include measurements of (ρ) and (Sg) but these have been estimated for some of the rocks within the studied area, and therefore it is worthwhile to use the results as a complement of the present study.

As stated in section 6-2 the recorded dislocation density (ρ) in the rocks is liable to further changes due to recovery or any other stresses that might have operated on these rocks which may not be directly connected with the episode of interest. Weathers et al (1979-a, figs. 9, 10) report that for the analysed quartz-rocks of Glencoul and Knockan. Creag areas, the dislocation density was indepundent of the distance from the Moine Thrust Fault. For Eriboll they reported that there were only a 'few' samples but their estimations indicated that the (ρ) remained the same on both sides of the fault (in the zone of the Moine Thrust?). Compared to Knockan Creag the dislocation density decreased by a factor of 4 but the estimate differential stress is in the order of 100 MPa (see Weathers et al 1979-a, Table I). which is

Abstract

approximately 41% higher than the highest RGS-estimate of the present study.

As pointed out by Kohlstedt et al (1979, p.404) the above discrepancy in the value of the estimates could result from the slow response to stress change by the recrystallized grains, compared with the dislocation density, or there could be some errors due to the reduced amount of data: The last argument is the one favoured by Kohlstedt et al (1979).

The relevant information in the present case, is the existence of large densities of dislocations, which make it less probable that the recrystallized grain size (RGS) is a structure due to an annealing phase but favours an origin due to syntectonic deformation of the measured new grains.

Subgrain size.can be assessed using the optical microscope. However, Mercier et al (1977) pointed out that the optical measurements overestimate the subgrain size. White (1973) warns that a TEM gives smaller figures for (Sg) because it reveals that optical subgrains are constituted of a clustering of even smaller subgrains. The same seems to apply to the recrystallized grains and the reason for the nondetection of such 'grain in grain' structure (ie by optical means) is possibly due to the similarity in orientations of those domains (see White 1973).

White (1979-b) measured subgrain sizes in both Moinian and Paleozoic quartzitic rocks at Eriboll. The values decreased into the mylonitic zones (Ben Heilan and Alt Oldhrsgaraidh) and then remained constant. For the Pipe-Rock of Ben Heilam these sizes range from $13.7 \mu \mathrm{~m}$ to $3.7 \mu \mathrm{~m}$ while for the Moinian Mylonites the decrease was from $13.6 \mu \mathrm{~m}$ to $2.6 \mu \mathrm{~m}$. The estimated differential stresses indicate 37 MPa outside the mylonite of Ben Heilam, increasing up to 130 MPa . For the Moine

Mylonite the increased reached 180 MPa . White (1979-c, table 2) used subgrains to estimate the differential stress across Pipe-Rock mylonite from a shear zone of the imbricates of the Heilam Nappe at Ben Heilam. He used equations derived by Ardell et al (1973) and Twiss (1977) in which the former overestimate the latter by a factor of approximately 2.65. However, both equations reveal that stress increases across $20-25 \mathrm{~cm}$ (maximum) of Pipe-Rock mylonite, by a factor of exactly 3.5.

Subgrains, which are structures of low angle boundaries, do not restore or change with stress relief (cf section 6.2). These are low energy structures and are more stable than the other two microstructural parameters, whose behaviour has been described before. These three distinct 'behaviours' are very convenient in that they work as different sensors, recording more information about the deformation history of a study zone. Subgrains record the maximum stress intensity, while recrystallized grains reveal more about the latest intense deformation event and the dislocation density can tell us about the post deformation conditions (see Ross et al 1980). The difference in the behaviour between the last two microstructural parameters is that the former require comparatively greater strain intensities to be totally reset (and for that reason they may show the existence of two distinct stress phases) while the latter are liable to bemodified or partially readjusted by a change to new stresses and-or temperature regimes.

Comparing White's (1979-b, c) paleostress estimates using subgrains with the RGS estimates of the present study we can observe that: (i) White's lower estimates are in excellent agreement with this study's results for Arnaboll, Hope or even Kempie's samples below the b-thrust. (ii) However, White's highest stress values exceed by a
factor of nearly 3 the highest paleostress estimate for the whole studied zone. White (1979-b) associates these high localized stresses recorded by (Sg) with the mylonite formation, while the results using (D) he suggests, tend to approximate to the regional background stresses.

6.5.2-b Comparison of Results Using RGS

The comparison with other estimations related to the present study area is aimed not only to complement the information contained in tables 6.1 but also to give some idea of the reliability of the estimates obtained by the present work. This section also intends to highlight some of the difficulties discussed in section 6.3-b.

The paleostress determinations, using RGS, for Eriboll area
are listed as follows:

1) White (1979-a, Table II) measured RGS both optically and with the TEM. Results relate (from sampling, at grid ref. 399516 , which is outside the limits of the present mapping) with distance of the Moine Thrust as follows:

Lithology	Optical	TEM	Distance from the Fault
a - Mica-rich Quartz Mylonite	$42.9 \mu \mathrm{~m}$	-	far
b" Mica-rich Quartz Mylonite	$12.8 \mu \mathrm{~m}$	-	20 m
C-Mica-free Quartz Mylonite	$14.0 \mu \mathrm{~m}$	$9.8 \mu \mathrm{~m}$	10
d - Mica-free Quartz Mylonite	$18.6 \mu \mathrm{~m}$	11.8	0.5

White (1979-b) reported a decrease in RGS towards the studied mylonitic zones, and then a stabilization of the measured grain size. Results refer to samples from the Pipe-Rock of Ben Heilam and to Moine Mylonites of Alt Odhsgaradaidh and have the following range:
(i) Pipe-Rock (PR): 24.6-14.6 $\mu \mathrm{m}$; (ii) Moine Mylonites (MM) 42.9$18.6 \mu \mathrm{~m}$. White also concluded that the estimates of the differential stress range from 50 to 100 MPa . The above measurements, if used directly in the 2 models, give the following stress estimates: Model by Twiss: (PR) 75.8-108.1 MPa; (MM) 52.0-91.7 MPa, or Model by Mercier: (PR) 52.7-76.4 MPa; (MM) 35.5-64.3 MPa.

From the above stress estimations it is difficult to guess which model was used to determine the mentioned range of 50-100 MPa. It is not known if the quoted sizes of White: (i) represent the mean of the measurements taken directly from the planar sections, or (ii) have been corrected for truncation and overlapping effects, in analogy to that explained in section 6.4. In case the first possibility is correct, there should be a correction factor. For instance if we use [6-12] for the reasons explained in section 6.4.2 we obtain:-

Model by Twiss: (PR) 51.8-73.9 MPa; (MM) 35.5-62.7 MPa or Model by Mercier (PR) 35.4-53.3 MPa; (MM) 23.9-43.2 MPa.

These estimates are now very similar to the range of results displayed in tables 6-1. This also illustrates some of the difficulties in tnterpreting and comparing results which have not been described in detail.
3) White (1079-c, table 2) describes the measurements (both optical and TEM) across a narrow Mylonitic Zone of Pipe-Rock of the Ben Heilam Nappe.

TABLE $6.2-a$				
Sample	Optical	TEM	Stress (MPa)	
	$\mu \mathrm{m}$	$\mu \mathrm{m}$	Twiss	Mercier
PR	24.6	-	68	39
PRM1	22.2	-	73	42
PRM2	18.2	-	84	49
PRM3	16.0	7.8	91	53
PRM4	14.6	6.0	97	57
PRM5	-	2.8	300	183

TABLE $6.2-\mathrm{b}$	
Stress (MPa)	
Twiss	Mercier
51.8	35.5
55.6	38.1
63.6	43.9
69.4	48.1
73.9	51.3
-	-

Table 6.2-a refers to White's (1979-c, Tables 1 and 2) observations. It can be seen that the Optically measured RGS overestimates the TEM estimates.by more than 100%. The range or stress estimates in this table do not conform with those found in the present study.

Table 6.2-b represents this study's stress estimates using the optical sizes of table 6.2-a.; ie the optical sizes quoted in White (1979) are interpreted here as correspondent to (\bar{d}) and therefore require correction to (D) using [6-12]. The stress values in table 6.2-b accord extremely well with those in tables 6.1.
4) Finally we deal with the related work in the papers by Weathers et al (1979-a) and Kohlstedt et al (1979). It is unfortunate that these two papers do not give precise information about: (i) the exact location of sampling in Eriboll, (ii) the method of measurements, and (iii) the exact number of samples used.

Kohlstedt et al (1979, pp.402-403) reports that grains were measured optically for the Glencoul area and that the estimations (for Gilencoul, Knockan Creag and Eriboll) involved 30 samples.

It is clear that they used Mercier's Model for the stress estimation. However there seems to be a contradiction in some of the quoted values (see Weathers et al 1979-a, p.7506, table I results in the last two columns) because if the RGS for Eriboll is $20 \mu \mathrm{~m}$, we obtain approximately 63.23 MPa (for Mercier et al, 1977) or 88.03 MPa (using Twiss 1977), instead of their quoted value of 45 MPa (Mercier Model). An estimate of 45 MPa corresponds (see fig. 6-1, for Mercier's curve) to $31.507 \mu \mathrm{~m}$ using the appropriate relation [6-7],

Once more, their only indication of the sampling size(s), in both papers, points to some place above Kempie Bay, Eriboll. If their specimens come from the same rocks used in the present study, their size measurement does not coincide with that listed in table 6.1-a. However we cannot exclude two possibilities:
(i) again, if corrections:for truncation and overlapping effects are applied for the quoted figure (ie $\bar{d} \simeq 20 \mu \mathrm{~m}$) we obtain $D \simeq 35 \mu \mathrm{~m}$ which gives 41 MPa (Mercier) and 59.6 MPa (Twiss). These are well within the present study's results for Kempie area. (see bottom.line of table 6.1-a).
(1i) On the other hand if $20 \mu \mathrm{~m}$ does correspond to this study's (\bar{d}), we might conclude that they used a correction factor for spatial distribution of nearly 1.575, in order to give $D \cong 31.507 \mu \mathrm{~m}$, thus $\sigma=45 \mathrm{MPa}$. This correction factor is closer to relation [6-11] derived from Exner (1972).

The above comments and speculations on these five works on Paleostress estimates at Eriboll should justify some of the comments On the difficulties mentioned in section 6.3 and emphasize the need for standardization in the methods used. White (1979-b) warned about

Abstract

the problem of standardization and mentioned that he measured 100 grains in every sample, in a direction perpendicular to grain elongation. From this it was concluded that he used an intercept length estimation procedure, rather than for instance, an area equivalence method. That is the only clue to the method used for size measurement, contained in White's (1979-b) paper.

Another important question is how do the results presented in this section compare with those found by the present study? Weathers et al (1979-a) report variations in stress estimates in order of 100% between Glencoul and Eriboll areas, which are separated by 50 km : The stress estimates for the analysed 57 sections of tables 6.1 also show variations of nearly 85% in a much shorter distance. However, if the means of the estimates in each area do represent the real 'gradient' between locations, the difference then reduces to approximately 15% as can be shown by the synoptic results of tables 6.1.

In White's (1979-c) case, the reported results produced differences of 460% in a mere $20-25 \mathrm{~cm}$. Perhaps this is only a localized result, but it is quite clear that both White's and this study's results, cannot share the views by Kohlstedt et al (1979) and Weather's et al (1979-a) fin that formeriboll the stress was independent. Of the distance of the (unspecified) fault.

6.6 Concluding Remarks

Poirier and: Guillopé (1979) considered that the RGS is best piezometer, even better than dislocation density or subgrainsize, although this latter is the more reliable (White 1979-a, Ross et al 1980-a) in that it is not affected by stress relief.. Ross et al (1980-a)
emphasised the usefulness of the RGS in recording both the increase and decrease in stress levels occuring during the deformation history of an area. They point out the possibility of the existance of more than one modal class of RGS present in the section being due to the interference of more than one deformation event.

There are still some matters not fully understood and for this reason the technique of paleostress estimation should improve in the coming years. However the existence of some discrepancies and the lack of standardization neither discourages nor invalidates the actual use of those measurements. On the contrary, the estimates for the studied area show very coherent correlations with field observations. The variation in the recrystallized grain size, in the broad sense, reflects the stress-gradient that should be present during the development of the zones (Nappes) in the studidd area. The mylonitic microstructures are here interpreted as being developed by recrystallization accompanied by decrease of the RGS towards the sheared domain and this seems to follow a pattern of increase in the amount of the finite strain.

The present study was unable to reach a definite conclusion on the role of the presence of phyllosilicates. It relies on an analysis based solely on textural descriptions and RGS measurements didnot give the necessary arguments for firm conclusions. Therefore this matter deserves a closer scruting by other methods.

The results obtained with paleostresses estimators should not be crudely utilized but instead carefully analysed and correlated with field and texturalobservations. In this way paleostress estimators do help to develop an overall interpretative view.

CHAPTER 7

RHEOLOGIC CONSIDERATIONS
7.1

Introduction

The ultimate aim in a study of deformation of a zone is to determine or at least to correlate the stress and the strain history in a domain during a certain period and to explain the existence of some of the observed microstructures.

To deal with the various rates and mechanisms of deformation that would lead to steady flow (cf Stocker and Ashby 1973) in a deformation zone it is necessary firstly to know the conditions under which these mechanisms are dominant. The main difficulty is, however, to establish the correct flow-laws governing the relation between stress-strain at the time of deformation. One difficulty stems from the fact that flow laws are generally extrapolated from laboratory experiments in which only one phase is the object of the analysis. However, the natural geological examples involve polycrystaline aggregates in which the components (phases) may have different dimensions and were submitted to deformation conditions not exactly matched by laboratory simulations.

The theoretical knowledge about isolated mechanisms responsible for deformations come mainly from metallurgical studies and have been initally proposed by Nabarro (1948), Herring (1950), Weeterman (1955) and Coble (1963). However, the confirmation of their operation dates only from the early sixties (Squires et al 1963; in Elliott, 1973). For non-metallic crystalife aggregates the situation is more speculative due the the greater complexity of these substances and also the comparatively lower amount of research on these materials.

A few years ago, Ashby (1972) developed the concept of
deformation maps based on the idea of the creep diagrams introduced by Weeterman (1968, see Atkinson 1976-a). Ashby's (1972) maps are systems of stress - temperature co-ordinates displaying the dominant mechanism
of flow. The field is divided into three independent mechanisms and a point in that plane indicates not only which is the dominant process but also the amount of strain-rate corresponding to the stresstemperature co-ordinate. That concept was subsequently applied to olivine, by Stocker and Ashby (1973) in a rheological study of the upper mantle. It was then extended to other minerals such as quartz (White 1976-a; Rutter 1976), galena (Atkinson 1976-a, 1977; McClay 1977), calcite (Rutter 1976).

From a study of deformation of pure aluminium, Mohamed and Langdon (1974) modified Ashby's (1972) original approach by introducing deformation maps based on a co-ordinate system of stress-grain size. They also simplified much of Ashby's original mathematical treatment. From the engineering point of view the approach by Mohamed and Langdon (1974) seems to be more realistic because it is quite probable that temperature is specified (or can be controlled), thus allowing stress and grain size as the variables.

More recently, a slightly different idea was put forward by Etheridge and Wilkie (1979) in that they used the Evans and Langdon (1976) treatment which, takes into account the effects of grain boundary sliding and this was not included in any of the previously mentioned maps. Evans and Langdon (1976) used Gifkin's (1975) constitutive equations in their work.

In the present study we shall deal with both types of maps: (i) Ashby's (1972) and (ii) Mohamed and Langdon's (1974), as it will be shown these two types prove to be useful in different situations, thus allowing complementary views in the same study.

7.2 Flow Mechanisms and Equations

As defined previously for section 5.1 the deformation

Abstract

mechanisms are divided into three groups (cataclastic, intracrystalline and diffusional). Particular attention will be given in the present section to the constitutive equations of the last two groups of : mechanisms: (i) intracrystalline flow by dislocation creep (DC) mechanism, and (ii) diffusional transfer of matter which can be accomplished either via bulk [Nabarro-Herring (NH) mechanism] or boundary [Coble Creep (CC) mechanism] of the matter.

7.2-a The Constitutive Equations

Each of the defined deformation mechanisms are described by rate equations that are functions of stress, temperature and some structural parameters characteristic of each material. These constitutive equations are presented below:

1. Dislocation Creep (DC) - The equation used here is the one given by Ashby (1972) and it is widely adopted in the geological literature (see White (1976-a, Atkinson 1976-a, 1977).

$$
\begin{equation*}
\dot{e}=\dot{e}_{D C}=\frac{D_{\mathbf{v}} G_{b}}{k T}\left[\frac{\sigma}{G}\right]^{\mathbf{n}} \tag{7.1}
\end{equation*}
$$

where \dot{e} is the strain rate and the following parameters' values are here for quartz: G is the shear modulus ($\simeq 4.2 \times 10^{11}$ dyn. cm^{-2}); b is the Burger's vector $(\sim 5 \AA) ; k$ is Boltzmann's constant $\left[\simeq 1.38 \times 10^{-16}\right.$ eng. $\left.\operatorname{mol}^{-1}\left({ }_{\mathrm{o}}^{\mathrm{k}}\right)^{-1}\right]$, T is the absolute temperature; σ is the stress either differential or deviatoric (bar). D_{v} is the bulk diffusion coefficient, defined by the relationship:

$$
\begin{equation*}
D_{v}=D_{0} \exp \left[-H_{v} / R T\right] \tag{7-2}
\end{equation*}
$$

where the following parameters' values are defined for quartz: D_{0} is the absolute diffusivity ($\because 5 \times 10^{-14} \mathrm{~cm}^{2} \cdot \mathrm{~s}^{-1}$, cf White 1976-a);
R is the Universal Gas Constant [$\sim 8.31434 \times 10^{7}$ eng. mol $^{-1}\left({ }^{0} k\right)^{-1}$]; H_{v} is the activation energy for volume diffusion ($\approx 84 \mathrm{KJ}$. mol ${ }^{-1}$, cf White 1976-a, see also Rutter 1976) and finally the Dorn-parameters (n) and (A) which proved to be dependent (cf Stocker and Ashby 1973, pp.402-403) on the following empirical relationship:

$$
\begin{equation*}
\mathrm{n}=3.07+0.29 \log _{10} \mathrm{~A} \tag{7-3}
\end{equation*}
$$

The value of (n) varies from substance to substance. For quartz, a value of 4 has been used (cf Rutter 1976, White 1976-a, p.80) which makes Dorn's (A) parameter equal to 1610.263 (dimensionless).
2) Diffusional Creep (DF) - The representation for the two mechanisms Nabarro-Herring (NHC) and Coble Creep (CC) is based on combined equations (see Raj and Ashby 1971, Ashby 1972). Adopting White's (1976-a, 1977) notation, constants and values of parameters for quartz:

$$
\begin{equation*}
\dot{e}=\dot{e}_{d f}=21 \frac{D_{v} v \sigma}{k T d^{2}} \cdot\left[1+\frac{\pi \delta}{d} \cdot \frac{D_{b}}{D_{v}}\right] \tag{7-4}
\end{equation*}
$$

where V is the atomic volume ($\sim 23.6 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$, see Robie et al 1966); d is the particle grain size; δ is the grain boundary width ($\sim 2 \times \mathrm{x} \simeq$ $10^{-7} \mathrm{~cm}$). D_{b} is the boundary diffusion coefficient, defined by an analogous relationship to that of [7-2].

$$
\begin{equation*}
D_{b}=D_{0} \exp [-H b / R T] \tag{7-5}
\end{equation*}
$$

where H_{b} is the activation energy for boundary diffusion. Usually the followed relationship is $H_{b}=2 / 3 H_{v}$ (cf Rutter 1976), but for the deformation maps constructed in this chapter; use was made of White's (1976-a) value, as: $H_{b}=\frac{1}{2} H_{v}=42 \mathrm{KJ} \mathrm{mol}^{-1}$. The other parameters in [7-4] are as defined previously fór [7-1].

The combined equation [7-4]yields two processes: NabarroHerring Creep (NHC) when $\left[\pi \delta D_{b} / d D\right]>1$ and Coble Creep (CC) in the limit that $\left[\pi \delta D_{b} / d D_{v}\right] \ll 1$.

It has been shown that the above constitutive equations require a great deal of information about rheologic parameters and state variables such as P-T (cf Stocker and Ashby, 1973), many of which have been obtained by combinations of experimental work and experimental observation. In this study the values for the different parameters were listed together with their definition in order to avoid possible confusion. It must be pointed out, however, that there are currently some disagreements about relationships and values for some parameters, not to mention the fact that the original constitutive equations were derived for metals, which are significantly less complex than silicates. The following comments on the construction of maps are noteworthy:
(1) Equations in papers such as Stocker and Ashby (1973), Mohamed and Langdon (1974) and White (1976-a), differ in some aspects, and thus diversity can lead to some confusion, apart from preventing direct comparisons.
(1i) It is clear that diffisivity data for quartz is rather poor (White 1976-a, 1977) and this is due to the fact that the available values are solely based on experiments conducted by Tullis et al (1973). This could possibly mean that the subsequent extrapolations do not correspond to the real values just described and referred to in many studies. Published maps for quartz have only corrected Tullis et al's (1973) data for temperature variation. Pressure effects (see Atkinson 1976-a) on diffusivity of quartz have been ignored. R. Knipe (pers. Comm. Sep' 80) has attempted a correction for pressure - which gives an increased diffusivity at lower temperatures. The result
is a relative increase in the strain rate at lower temperatures.
(iii)

Shear modulus (G) is most certainly affected both by (P) and (T). For studies using quartz, there is no expression for a P-T correction. It seems that the correction could consist of a simple linear interpolation. Stocker and Ashby (1973) took into account $P-T$ variationsin their study for olivine, using:
$G(T, P)=G_{0}\left[1+\frac{1}{G_{0}}\left[\frac{\partial G}{\partial T}\right]\left(T-T_{0}\right)+\frac{1}{G_{0}}\left[\frac{\partial G}{\partial P}\right]\left(P-P_{0}\right)\right] \quad[7-6]$ where G_{0} and G correspond to the shear modulus at (T_{0}) and (P-T) respectively, while ($1 / G_{0}$) ($\partial G / \partial T$) and ($1 / G_{0}$) ($\partial G / \partial P$) are the temperature and pressure dependent shear moduli respectively. Atkinson's (1976-a) work for galena derived a shear modulus expression taking into consideration only temperature corrections:
$G_{t}=G_{293}[1-(T-293)(1 / 293)(d G / d T)]$
where the subscript stands for $t=20^{\circ} \mathrm{C}$ and the rest are as defined in [7-6].
(iv) The molar volume has also temperature dependence and this is neglected here.

The boundary width (δ) was taken here as equal to $2 \mathrm{~b}\left(\sim 10^{-7} \mathrm{~cm}\right.$), a procedure used for metals (Rutter 1976, White 1976-a, 1977). However, McClay (1977) gives us an indication that for non metallic materials, δ could well be as high as 100 b.

Deformation Maps

The prime aim of this section is to deal with deformation
mechanism(s) responsible for the achievement of large strains. This can be done by using simple plots such as the deformation maps (cf Ashby 1972) which are diagrams having their areas divided into three fields, each one characterizing the domain in which a deformation mechanism becomes dominant. However the fact that a deformation mechanism is dominant does not exclude the possibility of contributions by other mechanisms. This is particularly important especially in region of the boundaries which limit the three mentioned fields. The balance of contributions for different mechanisms increases with the proximity of the junction line.

The deformation maps showstrain ratecontours and these maps give information about the range and conditions where the contribution of each mechanism is important. There seems to be more than one way of obtaining the strain-rate contours: (i) using Ashby's (1972) original method in which for each specific field we completely ignore the contributions of other mechanisms (Atkinson 1976-a), or (ii) as in Mohamed and Langdon's (1974) simplified approach, which is suitable wherecomputer facilities are not to be used. (iii) An idea put forward by Stocker and Ashby (1974, p.401-407) is to consider that the total strain takes into account compatible contributions such as:

$$
\dot{e}_{\text {total }}=\dot{e}_{\substack{\text { dislocation }}}+\dot{e}_{\underset{\text { diffeep }}{ }} \quad[7-8]
$$

This makes use of relations [7-1] and [7-4] which are substituted in [7-8] and then solved either for one of the variables σ or T. The boundaries between the fields of the deformation mechanisms can be determined by finding the loci of points where contributions of pairs of mechanisms are equal. Boundaries between dislocation and diffusional creep can be obtained by equalizing equations [7-1] and [7-4], while in order to delimit the junction between Nabarro-Herring and Coble

Creeps, this study equalized Hertzberg's (1976) equations:

$$
\begin{equation*}
\dot{e}_{N H C}=\frac{7 \sigma D_{v} b^{3}}{k T d^{3}} \tag{7-9}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{e}_{C C}=\frac{50_{\sigma} D_{b} b^{4}}{k T d^{3}} \tag{7-10}
\end{equation*}
$$

where subscripts NHC, CC stand for Nabarro-Herring Creep and Coble Creep respectively, and the elements of each equation are as defined previously in section 7.2 .

Equations 7-9 and 7-10 emphasize the importance of the grain size in a grain boundary diffusion mechanism, while for dislocation creep this parameter is non existent. It can also be seen that the strain rate is inversely proportional to the square of the grain size if the field is for Nabarro-Herring Creep (higher temperature) while for Coble Creep this relation is inversely proportional to the cube of the grain size.

The deformation maps, for quartz, constructed in the present study are displayed in figs. 7-1-a to h. The co-ordinate axes in these diagrams are Stress (bar) in logarithmic scale and Temperature (${ }^{\circ} \mathrm{C}$). Many papers also make use of log-normalized scales of σ / G (eg Ashby 1972, Stocker and Ashby 1973) or $\sigma / \sqrt{3}$ G (eg Atkinson 1976-a) versus homologous temperature ratio $T / T m$, where $T m$ is the absolute temperature at the melting point of the substance. The purpose of these normalized ratios is mainly to allow comparisons between different materials (Atkinson 1976-a). In the present study only one mineral is analysed and for that reason no other scales are provided in the diagrams of figs. 7-1.

In order to fulfil the most probable range of meaningful geological conditions, the co-ordinate axes were calibrated as follows:

Figures 7.1. Deformation maps for quartz according to grain sizes. Strain rates contours are shown in diagrams from a to h. See text for explanation.
-a

a

- 9

(1) The ordinates, with the differential stress (σ) are up to 10^{3} bar or 100 MPa , following (White 1976-a, 1977), Rutter (1976) and also based on the range of paleostress estimates (using Twiss 1977 and Mercier et al 1977) which were listed and discussed in Chapter 6.
(ii) Temperatures are up to $1000^{\circ} \mathrm{C}$, mainly because some experiments were carried out at values around $600^{\circ} \mathrm{C}-900^{\circ} \mathrm{C}$ (eg Tullis et al 1973).
(iii) Each map corresponds to particular grain size, (D), specified in the lower right corner). The range of the grain sizes is from 10 cm to $10 \mu \mathrm{~m}$, because microstructural observations, given in the description of textures in Chapter 5 on grain size (D) evaluations, in Chapter 6 , place the size distribution for quartz, well within the mentioned range.
(iv) Finally, the strain rate contours have a lower limit of $10^{-20} . \mathrm{s}^{-1}$ which is in itself an exaggerated slow value (see Price 1975). Perhaps a more meaningful limit would be 10^{-16} (see also White 1975).

7.

Discussion

In this section we discuss the application of the deformation maps for the conditions of the studied area. The microstructures and the mineralogy of these quartzitic rocks can be used in conjunction with the stress estimates and the deformation maps, for pure quartz, in order to gain further insight into the deformation conditions that operated in the area (eg.probable range of temperature and strain rate).

It is difficult to stipulate the precise temperature of a
deformation belt such as the one of Eriboll-Hope areas. The present study believes that the Quartz-Muscovite-Chlorite mineral suite, which
is present in the quartzitic rocks of the studied zone, is characteristic of low grade of (P-T) metamorphism (Cf Winkler, 1974). This mineral assemblage could indicate an upper range of temperatures inthe region of lower greenschist facies, while the observed textures in these rocks indicate that the lower boundary of this range is certianly above the diagenesis field. Therefore, this study places the extremes of the probable range of temperatures for the conditions. in the EribollHope areas in the region of $300 \pm 100^{\circ} \mathrm{C}$ (see explanations in Miyashiro 1973, p.439; also Winkler's 1974 figs. 7-1, 7-2).

Before we discuss the conditions of deformation in the area, a brief description of the deformation maps, their uses and limitations will be given. Each of the $\sigma-T$ diagram of figs. 7-1 can give limited information because it is limited to a particular grain size, and as we saw previously, (Chapters 5 and 6), many of the studied thin sections exhibit more than one modal class. It is possible to combine all the maps of figs. 7-1 in the three dimensional block diagram of the type sketched in fig. 7-2 but this type of diagram is rather difficult to handle. Perhaps the range of temperatures in the studied deformation zone does not vary as much as the observed grain sizes and this could lead to consider the case where the plotting space is in terms of stress and grain size (ie at constant temperature as in figs. 7-3).

It is possible to observe in figs. 7-1 the effects of grain size reduction on changes in strain rates and deformation mechanisms. Suppose we establish, for Eriboll-Hope areas, the most probable range of values for the three co-ordinate parameters as follows:

$$
5<\sigma<100 \mathrm{MPa} ; 200<\mathrm{t}<400^{\circ} \mathrm{C} \text { and } 10<\mathrm{D}<0.001 \mathrm{~cm}
$$

This corresponds to an area limited, in each diagram of fig. 7-1 by the polygon ABCD (see figs. 7-1). It can be seen that for the coarser

Figure 7.2. Block diagram combining the maps displayed by figures 7.1-a to 7.1-h.

Figure 7.3-a. Deformation map for quartz relating differential stress (MPa) and grain size (cm). Strain rate contours and the dominant type of mechanisms are shown at $t=300^{\circ} \mathrm{C}$. The range of the measured Recrystallized Grain Size (RGS, 70-30 $\mu \mathrm{m}$) is also indicated in this diagram.

Figure 7.3-b. Deformation map for quartz relating differential stress (MPa) and grain size (cm). Strain rate contours and the dominant type of mechanisms are shown at $t=400^{\circ} \mathrm{C}$. The range of the measured Recrystallized Grain Size (RGS, 70$30 \mu \mathrm{~m}$) is also indicated in this diagram.
grain sizes (eg range $10 \mathrm{~cm}-100 \mu \mathrm{~m}$) the most effective deformation mechanism is by dislocation creep (DC), while the strain rate (range $10^{-19}-10^{-9} \cdot s^{-1}$) changes approximately by one order of magnitude (see figs. 7-1-a to d). The boundary between DC and the diffusion process (either CC or NHC) approaches the lower limits of the polygon $A B C D$ in fig. $7-1-d$ (or $D=0.01 \mathrm{~cm}$). Here the contribution of these diffusional processes might be relevant but only for stresses below the stipulated range (ie $\sigma<5 \mathrm{MPa}$). This means that for greater stresses the DC still makes an important contribution.

With the progress in grain refinement, by effects of deformation, the area of the static points $A B C D$ (ie constant $\sigma-T$) encounters the junction line separating DC and DF processes and this is accompanied by an increase in the strain rate. Thus for the finer grain size fractions, the most effective process of deformation is by a diffusional mass transfer (for lower stresses, see the lower part of the areas limited by the polygon $A B C D$ in figs. 7-1-e to h).

Figure 7-4 is. a logarithmic graph correlating strain rate to differential stress, which allows the ready visualization of the range where each one of the deformation mechanisms, dislocation or diffusional is dominant. It can be seen from this graph that each grain size is represented by a line presenting a curved domain linking two straight lines. It is clear that along these straight lines, dislocation or diffusional mechanisms are dominant, whereas, where the lines become curved represents the domain where there is a significant contribution of these two deformation mechanisms (see fig. 7-4). The accurate position of the boundary line which separates the dislocation and diffusional fields in figs. 7-1-a to h, could be represented in fig. 7-4 by the intersection between the straight:lines. Compared with figs. 7-1, fig- 7-4 shows a more realistic view of the change of the

Figure 7.4. Log-Log graph relating strain rate to differential stress, for quartz, at the temperatures 300 and $400^{\circ} \mathrm{C}$. It illustrates the clear transition (curved) between two main dominant mechanisms of deformation (straight lines) for each of the above particle sizes ($\mu \mathrm{m}$). .
deformation mechanism . While in the figs. 7-1 there are sharp boundary lines separating the diffusional and the dislocation fields, in fig. 7-4 we can see instead, that the curved domains indicated that there is a gradual increase in the contribution of one mechanism followed by decrease of the other. This also represents more fairly the idea behind equation [7-8].

Other valuable information that can be drawn from fig. 7-4 is related to temperature variations. The net effect from a change of $100^{\circ} \mathrm{C}$ is a shift between the set of curves (see fig. 7-4), which shows that there is an acceleration in the strain as the temperature increases. This can be observed by comparing figs. 7-3-a and b, however in fig. 7-4 these differences are enhanced. It can be also seen that for a given stress, there is a decrease in the rate of acceleration as the sizes of the particle decrease.

The effects of heating due to mechanic energy conversion are presently drawing some attention (Brun and Cobbold, 1980; Fleitout and Froidevaux, 1980) with inferences about the amount and the extent of heat dissipation (see white et al 1980). However, it is not yet possible to evaluate the role of shear heating accurately. It must be remembered that temperature variations can cause strong softening effects (cf White et al 1980), that might in turn allow variations in the strain rate.

There are still some important aspects not directly covered in the preceeding graphs and constitutive equations. One of these is the role of grain boundary sliding, GBS (cf Gifkins 1976, 1977; Etheridge and Wilkie 1979-b). As mentioned in section 5.1 ,grain boundary sliding is an implicit condition operating in conjunction with the diffusional mechanisms, otherwise this deformation would require an impossible volume change. However, GBS is not represented in the constitutive
equations of section 7-3 and the deformation maps of figs. 7-1. Etheridge and Wilkie (1979-b) investigated the effects of GBS in conjunction with the deformation mechanisms, using relationships derived by Gifkins (1976, 1977). They constructed logarithmic graphs (log-log) relating stress to grain size (D) and plotted strain rate contours for temperatures in the range 400,500 and $600^{\circ} \mathrm{C}$. The area in these log-log diagrams.is divided in three different regimes, which are defined as follows:
(i) Regime IIa, is characterized by GBS accommodated by grain boundary diffusion. This field would include the whole diffusional field in a comparable temperature diagram given by fig. 7-3-b.
(ii) Regime IIb intends to include GBS accommodated by glide and climb of dislocations at the grain margins only;
(iii) Regime III comprises GBS accommodated by dislocation giide and climb throughout the grains.

Etheridge and Wilkie (1979-b) also claimed that the effects of GBS are to accelerate creep rates by one order of magnitude. Their diagram number 4 resembles this study's fig. 7-3-b, in that there are areas with comparable magnitudes of strain rates. The differences between these two diagrams are of course due to their different constitutive equations. It must be remembered that the deformation maps are not accurate, for at least two reasons: (i) due to contouring errors which involve interpolation of values (for obtaining the iso-strain rates of contours) in the logarithmic space.. (ii) Due to poor diffusional.data, as discussed earlier. Perhaps we should consider the accuracy of those maps, within a factor of 10 (cf Etheridge and Wilkie 1979-c).

It is also necessary to speculate about the influence of grain size reduction on deformation processes (see White 1976-a). Again, figs. 7-3-a and b will prove very useful, as it can be seen that within the field of feasible strain rates - ie ultimately faster than $10^{-20} . s^{-1}$ (cf Price 1975), but most probably within the range 10^{-16} and $10^{-10} \cdot s^{-1}$ - the reduction in grain size does not alter the strain rate provided that the boundary condition limiting the different mechandsms is not in the proximity. In other words, the grain size reduction by recrystallization, at constant T and σ, shows an extremely constant strain rate while the deformation operates well within the domain of the dislocation creep. However with continued grain size reduction, the mechanism of deformation may eventually approach the zone where diffusional creep becomes important and this can cause the strainrate to accelerate dramatically: eg. reduction in grain size from $10 \mu \mathrm{~m}$ to $1 \mu \mathrm{~m}$ at 100 bar (see fig. 7-3-b) can change the rate from $\dot{e}=10^{-14} \cdot \mathrm{~s}^{-1}$ (dominantly dislocation creep regime) to almost $\dot{e}=10^{-11}$ in conditions of dominant diffusional flow. As deformation progresses by grain refinement, and if the state variables σ and T are held constant, the strain rate will remain relatively constant as long as dislocation creep is the dominant mechanism of deformation (see figs. 7-3). It also implies that even with the most uniform distribution of σ and T, there will be strain rate differences due to grain size variations.

Another speculative view, based on the studied microstructures (Chapter 5) is that the rock can be reduced in grain size by dynamic recovery and recrystallization processes, and the end product is a rock with a uniform particle size, in equilibrium with T and the applied stress. By Twiss's (1977) theory, reduction in grain size, for a certain stress level, reaches an equilibrium as Twiss's line is approached.

This is because it solely relates size to stress. That line defines a strain rate for a particular level (cf Etheridge and Wilkie 1979-b) and figs. 7-3 shows it is in the dislocation creep field.

It is also possible to conclude that under conditions of constant strain rate, the development of localized deformation zones (ié grain reduction processes) causes an overall stress reduction (cf White et al 1980). Again, this stress reduction gradient increases sharply if the deformation mechanism changes to diffusion, otherwise it is negligible (see figs. 7-3). The conditions for strain softening (cf White et al 1980) must be invoked, ie softening must occur during some stage of the deformation period, otherwise there would be an indefinite migration of the boundaries of the deformation zones. (ie indefinite increase in thickness of such zones) and this is highly improbable.

Using the information of the preceding Chapters 5 and 6, It is possible to estimate some of the deformation variables which will allow an inference of the strain rate during deformation. The recrystallized:grain sizes (cf Table 6.1) arein the range 26-66 $\mu \mathrm{m}$, indicating that the magnitudes of the differential stress have values between: 26-51 MPa (Mercier model) or 39-73 MPa (Twiss model). Taken with the expected temperature conditions (300-400 ${ }^{\circ} \mathrm{C}$), the grain size and stress estimates, when plotted on the deformation maps, indicate that dislocation creep is the dominant deformation mechanism. The differences between deformation at 300 and $400^{\circ} \mathrm{C}$ (see figs. 7-3-a, b) do not affect this conclusion. Figures 7-3 show that at conditions of low stress and temperature the diffusion mechanisms are indeed too slow to account for any of the observed strains found in the studied area (notice the magnitude of these rates in figs. 7-3). Diffusional
processes may play an important role in conditions where particle size is around $10 \mu \mathrm{~m}$ or less. The maps of figs. 7-3 clearly show that the strain-rates under conditions of formation of recrystallized quartz grains are roughly in the range: 10^{-13} to $10^{-12} . s^{-1}\left(300^{\circ} \mathrm{C}\right.$) and 10^{-12} to $10^{-11} \cdot \mathrm{~s}^{-1}\left(400^{\circ} \mathrm{C}\right)$.

So far in this discussion we did not take into account the effects of other phase(s) being present, thus interfering with the rheology of quartz. Second phase effects were not taken into account in the described constitutive equations, consequently they do not appear in any of the displayed deformation maps. In this study we observed that phyllosilicates might have influenced the microstructures (cf Chapters 5 and 6) in some domains of the studied area, as their proportional increase can be correlated with textural changes associated with increasing deformation. The evidence presented in Chapter 5 includes the increase in the amount of the recrystaliized grains and also.certain increases in the size of these new grains, where phyllosilicate content is relatively higher. These characteristics might indicate induced recrystallization and softening effects. However as pointed out in Chapters 5 and 6, not only the frequency of these increases in the amount of recrystallization but also the variation In the sizes of the new grains did not reveal any clear pattern that would lead to the conclusion that effects of pressure solution played an important role during period(s) and process(es) of deformation in the mapped area. There are a few isolated microstructures which could be interpreted as being indicative of pressure solution effects (see plate 5-24), but these may have other explanations.

To summarise, the data and the interpretations in the
present discussion lead us to the following conclusions:

1. The deformation of the analysed rocks operated dominantly by a dislocation creep mechanism.
2. Assuming that σ and T are held constant during a certain period, the existence of different grain sizes in a sample implies that these grains deformed at different rates.
3. The deformation conditions in the mylonites of Eriboll and Hope areas could have operated at temperatures around $300^{\circ} \mathrm{C}$ and differential stresses in the approximate ranges: 40-75 MPa (using Twiss model), or a 25-50 MPa (Mercier).
4. The inference of the probable range of $\sigma-T$ conditions, together with the measured recrystallized grain sizes (for quartz) place the operative strain rate for this deformation zone, in the ranges: 10^{-11} to $7 \times 10^{-13} . s^{-1}$, (following Twiss' model for stress calculation) and 1.2×10^{-13} to $2 \times 10^{-12} \cdot s^{-1}$ (following Mercier's model for stress estimation).

CHAPTER 8

CONCLUSIONS AND INFERENCES

Abstract

The data collected in this study are based on two main scales of observation: (i) mesoscopic measurements of structures in the field using normal mapping routines, and (ii) microscopic observations of microstructural parameters and fabrics. The analysis of the collected data allows us to infer the characteristics of this deformation zone in (iii) a macroscopic scale, keeping in mind the context of the regional geological setting. Some of the main points to come out in this study are summarised below.

1. The rocks of the eastern side of Loch Eriboll are here subdivided into four main zones, each with different rifeologic and deformation intensities. These are as follows: (i) the westernmost imbricate zone of brittle deformation which is bounded eastwards by (ii) more ductilely deformed, but unmylonitized blocks of either Lewisian and/or Cambro-Ordovician rocks. This second domain is bounded eastwards by (iii) the b-thrust, which is the lower limit of a nappe composed mainly of Lewisian mylonites, exhibiting slabs of Moinian Psammites and Paleozoic rocks. This third zone is bounded eastwards by the Moine Thrust (ss), which brings a thick sequence of Moinian rocks on top of this third nappe.
2. There is a clear gradient of deformation towards the mylonitic nappe. This gradient is less abrupt on the eastern margin of the mylonites than on the western margin. Below the b-thrust there is a clear indication of a strain gradient as ε_{s} values increase progressively towards the mylonitic zone.
3. Another way of illustrating the differences in the deformation is given by the characteristics of the thrust faults. In the western

Abstract

imbricate faults, the predominance is for brittle deformation. There are no indications that this zone suffered ductile deformation, due to thrusting effects. The imbricate zone is also characterized by abrupt lithological changes. In contrast, in the second nappe, there are clearly signs of progressive brecciation (up to 1 m thick) and/or mylonitization (up to 10 cm from the thrust surface). The b-thrust separates this second zone from the third which is entirely made up of heavily mylonitic rocks. The b-thrust discontinuity surface is easy to identify because of the contrasting intensities of deformation across the fault. The Moine Thrust however separates domains with similar intensities of deformation and thus is less conspicuous than this lower thrust.

4. The main component of the mylonitic nappe, below the Moine Thrust (ss), is the Lewisian Gneiss. Within this mylonitic Lewisian domain there are slivers or lenses of mylonitic Moinian and Cambrian quartzitic rocks; the former predominate south of Creagan Road while the latter are more abundant north of this road. This mylonitic zone is also composed of blocks of moderately deformed rocks, separated by zones of much more intensely deformed rocks. This strain-localization can be observed on different scales, from outcrops to microscopic scale.
5. The mylonitic foliation produced a homogeneization in the rocks. This is given by a closely spaced lamination which is present in the rocks independent of their mineral composition. However the presence of phyllosilicates tends to produce a more clearly defined planar fabric than a rock sample composed massively of quartz-grains. The stereoplots of this foliation confirm field observations that
later deformation episodes do not obliterate this early planar fabric. It is believed that the formation of the mylonitic fabric corresponds to the peak of the deformation intensity because it clearly obliterated and re-oriented any previously formed fabrics.
6. The development of structures (thrusts and faults) is interpreted to be from east to. west, in the direction of the tectonic transport. The strains and textures of the rocks in the area indicate that this deformation zone developed in an environment of greater confinement (deeper level?) characterized by plastic deformation. The structures become more brittle westwards which implies that the structures climbed to shallower levels and thus show a transition from ductile to brittle shear zones (cf Ramsay 1981).
7. With the exception of the Moine Thrust (ss), it is not possible to trace continuously from NE to $S W$, any thrust fault as they branch-off, merge or even die out.
8. The homogeneity of a fabric in the studied zone is connected with strong and persistent deformation. The older the lineation, the closer it lies to the ESE direction ($\because 115^{\circ}$). The older the foliation, the closer, its parallelism with the mylonitic foliation containing the stretching direction. Thus the tendency is for the re-orientation of structures (due to increase in strain) towards a plane dipping approximately 15° in the direction 115°.
9. There were two ductile fold phases after the mylonitic foliation formation. The early phase has hinges which lie closer to the stretching direction, but folds of this phase are irregularly

Abstract

distributed across the studied area. The second phase is more abundant, showing folds of varied amplitudes (cm to tens of metres) and more varied hinges directions. The multi-directional orientation of hinges, together with the existence of brittle and ductile folds of the same generation, may indicate a spasmodic of polyphasic nature of this folding event.

Abstract

10. Fold shape analyses indicate that there was a strong component of buckling in the formation of these F_{2} and F_{3} folds. The dominant fold Class is in the $1 C$ field, although some examples belong to Class 3. Very few folds belong to Class 2.. The folds belong mainly to the sine-wave type and this supports their initiation by buckling (cf Hudleston, 1973-a, p.119).

11. There is a llocal thickening of the mylonite zone, south of the Creagan Road, and this appears to be associated with an increase in the frequence of folds in the area. This local thickenning might be due to differential displacements along the strike of the thrust.
12. The strain estimations, using the curved hinges of folds as strain markers, confirms that the $M T$ zone presents characteristics of a ductile deformation zone in which there is a gradual decrease in strain intensity zway from the trace of the fault.
13. The majority of the mean directions of fold axes previous to imposed strain, were distributed at high angle to the X-direction, nearly parallel to the longitudinal direction of the thrust belt. Most of these axes, were in range of up to 20°.
14. The use of a pure-shear mechanism to explain deformation in the thrust belt is debatable. However the simple shear mechanism advocated by many geologists may also generate as much criticism as that of pure-shear, in that neither of these mechanisms can wholly account for the structures observed in this deformation belt. A combination of pure and simple shears could better explain the structures met. in this study area.
15. The models for strain estimation using curved fold hinges have rather limited or simplistic formulations. Therefore the strain results must be considered more as qualitative estimates.
16. It is the view of this study that the efficiency of some iterative methods for function-optimisation depend on the type of the objectivefunction formulated for the problem. For example the Direct Search method, developed during the course of this study, can be relatively simple to program, but apart from consuming excessive time of computer calculation, the results may.-lack the necessary accuracy. If an extensive use of the routine is required, the method is rather inefficient. The variations of the Newton-Method extensively applied in Chapters 3 and 4 , however, can produce far more accurate results in a shorter time. However these methods have a drawback that convergence to the correct solution is not guaranteed in every case. The Gradient Method needs a more sophisticated set of equations than the Direct Search technique, apart from requiring a more elaborate programing.

In the present case the two investigated methods of optimisation, the Direct Search and the Gradient Methods, presented complementary characteristics of efficiency and in this situation

Abstract

it is valid to make use of both methods to solve for the unknowns. This study also made use of the method of the Lagrange Multipliers as a mean of imposing a choice of a particular surface on a Least Squares fitting routine. Although the method is valid, this type of solution increased the complexity of the equations, originated from the augmented function and also resulted in the solution of a set of non-linear simultaneous equations.

17. The strain estimates using the shape of quartz grains provided only a limited range of values, because at high strains, dynamic recrystallization interfered, causing grain destruction. In some cases it is possible to observe extensive intracrystalline deformation of clastic grains accompanied by progressive recrystallization (ie $\simeq 30 \%$ in volume). However no general rule should be made as there may be other influences.such as different mineral phases which might interfere with the process of intracrystalline deformation.
18. Quartz grain shape analyses in this study must be considered as minimum strain estimates, because of the effects of grain destruction by recrystalifation processes. The ε_{s} values found in this study range up to 1.4 and it is believed that the effective strain in more deformed zones reaches much greater values.
19. Most of the $3 D$ strains, provided by the analyses of quartz grain shapes, plot in the oblate field of the Finn-diagram. There are several explanations for this, one of which is to invoke volume reduction. It is believed that volume reduction could have taken place in the formation of these rocks but the amount (up to 65\%) indicated by the nearly oblate shape (cf Ramsay-Wood, 1973) is far
too great. One of the reasons for obtaining oblate fabrics could be that there was differential displacement of layers along the transport direction (cf Coward and Kim, 1981). Such differential movement could also account for the origin of some folds which are found throughout the whole area, with axes parallel to the NNE/SSW direction.
20. The orientations of the axes of the various ellipsoids, given by the quartz shape analyses are not constant throughout the area. In general the least principal axes have a steeply plunging attitude, while the intermediate principal axes occupy various positions within the 180° precession arc from NNE to SSE. This may be due to interfering strains produced during subsequent deformation phases and/or possible differential rotations due to differential movement along the deformation zone. The discrepancies, between some λ_{2}-directions and the Y-direction of the deformation belt, invalidates the hypothesis of extension normal to the transport direction of the belt.
21. Microtextural investigations attest the existence of progressive intracrystalline deformation of clasts, accompanied by grain recrystallization with proximity of the deformation zones. The existence of cataclastic textures affecting early ductile micro-structures may confirm that the rocks of this deformation belt were subject to deformation events during a regime where the Fheologic characteristics have changed from ductile to brittle conditions.
22. The presence of phyllosilicates (from 2-10\%) apparently (i) causes the increase in the amount of the recrystallized quartz grains and (ii) in those samples where there are clastic grains, the newly
formed quartz grains are coarser than in rocks devoid of phyllosilicates. (iii) In those samples totally recrystallized, the presence of phyllosilicates seems not to influence the size of the new grains. (iv) The amount of phyllosilicates is greater in samples which showed lower proportions of feldspars, so perhaps there was a chemical breakdown of feldspars to quartz and micas.
23. An argument based in field observations, that the mylonitic domain of Eriboll (at Kempie) exhibits characteristics of more homogeneity of deformation than the mylonitic zone at the $N E$ side of Loch Hope, is corroborated by microscopic textural evaluations.

-

Abstract

24. The paleostress estimations seem to characterise different stress domains which have also distinct geographic and structural positions in the analysed area. The stress estimates above the b-thrust at Kempie are higher than in the rest of the area. Strain intensities also seem to achieve higher magnitudes in the Kempie mylonites than for example, at Hope and Arnaboll areas. It is believed that there is a close correspondence between the estimated increases of stress and strain.

25. This study also emphasises that stereologic considerations on grain size measuring routines are not a matter to be neglected. On the contrary, the lack of standardization on measuring techniques for grain size evaluation, for paleopiezometric studies, not only prevents any correlation between different studies but also questions the validity of using an experimentally derived model such as that of Mercier et al (1977) if there are no clear indications on size evaluation technique(s) used by this work.

26. The evidence deduced from the deformation maps used in this study leads to the conclusion that the dominant mechanism of deformation for the study area is that of Dislocation Creep. The operative strain rate for temperatures around $300^{\circ} \mathrm{C}$, is between $10^{-13} \cdot \mathrm{~s}^{-1}$ and $10^{-12}, \tilde{s}^{-1}$. However the existence of different particle sizes in the same sample leads to the conclusion that in these grains, deformation may operate at different rates.

27. The deformation maps show that if the strain rate and the temperature are held constant, during a process of grain size reduction, this causes an overall stress reduction. The gradient of this reduction is negligible in the field of the Dislocation Creep, but should increase if the mechanism of deformation changes to diffusion. However for the conditions in the study area (ie temperatures around $300^{\circ} \mathrm{C}$, recrystallised grain size greater than $30 \mu \mathrm{~m}$) there can have been very little contribution of deformation by diffusional processes.

```
    SD= S. PAC
    IP(S.EO.C) 30 Th 100
    O 100 TP=1,NXY
    E=ry0+(IE-1)* DYY
    SU*y=C
    00 20 J=9.37
    T=J-9
    TETTTY(J)= ATAN( & - TrHETA(J))
    IP(TETLTN(J) .LT. 0.) TETIIN(J) = TETLIN(J) + PI
    AOX= ( PI/2. -(TETLIN(J) + PHI))
    IF(AUX . ET. ). ) U X= P. F-G
    FXPN= EYP( - .5 - (( AUX / SO )**2))
    AUX)= 1. + ((COS(IETLTN(J))**2)*(E*E-1))
    PUNC= (SOPT(4)\2*3))/E
`
    Y(J) = IS THQ CATNATFS OP FTITMNG CJBVE
        Y(J)=TEMP* EXPN*F!NN
    SUVY=S!\YY+Y(J)
    CCNTTNT:
c
z
    SuपY - 0.l 21,21,2
        PNJP=1.E30
        ~CTO 30
    22 PNJP=STMA* 2/SUNY
    D\cap 3) J=1,37
    Y(J)=&(J)* SMOR
    30 conttvue
    SUMSママ=コ.
c
    CALCUTMTE THE SUY OF SOUARFD DTFPS. BETQEEN HISTJGRAM
    AND NJPYTLTZED PREQUENCIFS
        D) ro K=2.35,?
    50 SU4 52R=5п4 32R+(4(k)-4IS(k/2))*2
~
COMPAPR KITH PREVINUS RESULTS , STCRE TYE EEST ONES
    IF(SINSOR.GE.STMMIN) &OTO 100
    SUMNIN = SUM SOR
    PNORY= ENC5
    PHI* = PHI - RADES
            S"-5
            FN=%
            M2 >0 K=1,37
    O YM(K)=Y(K
900
~
c ourput resulms
    WFITE(5,1012)
    WRITE(5,1020)PMIM,PIO,PI9,DFT
            WETTE(5,1033)3M.SIG?,STG1, DSTO
            WRTTP(6,1^42)EM,XYO, XY1,DYY
            WFITE(5,905%)N
            WaITP(5,1060)SUMMTN
c
C
STOP ITERATION CYCLE IP THF REQU IRED NUMBER IS こJMPLETED
OO Tכ ग1, TTHERWTSF AILL SUBFUNTIVE OPTTY TO SET U?
NEW INTERVALS JP SEARこH
    WRTTE(5,3001) NOTRL1
    TP(NCMRT9 .?C. NCOPI2, תoTO 39
    CNLL OPPIMIPIIM, ;M, FM, FTO, PIM, DPI, SIGO, SIG1, DSIG, XYC,
        \ XY (, D%Y )
    OOT\cap 11
c
AFTER COMPIETING T叹 RFCOIREL NO. OF CYCLES
O!TPUT FINAL RPSULTS
3) WTTTP(5,1070)
    D) 12ก J=9,37
    T=(J-1)
    IF(J/2.ES.J/2.) GOTO 110
c
CUTPUT : CLASS INTRRVAL, CURVF CRDINATE AND CORRES PONDING
PREOUPNCY YISTOGRAN
    WETTE(6,1033) T,qM(J)
    G)+5 120
110 K=J/2
    WPTTE(6,109J)I,YM(J), I, HIS(K)
120 cOvTINDE
    Suvu= Su va-1?
    HRTTE(5,2007 ISUM4, PNORM
    WATTE(6,30\cap1) U~T2L?
000 PORMAT(?I5)
O9n FOPVAT(2F10.5)
920 PORMATL GFO (1)
```

SANJ0910
SAN 0092 C
SA NOO930
SANCO94C
SAN00950
SANOO950
SAN 00970
SA N00930
SAN 0099 C
SAN 0100 C
SANO1C1O
SANC102C
SANO 1030
SANO104C
SANO105C
SA NO 1050
SAN0107C
SAN 31080
SA NO1090
SAN 01100
SANC 1110
SANO1120
SANO113C
SANO1140
SANO115C
SANC116C
SANO117C
SANO1180
SANO1190
SAN 01200
SANO 1210
SA N01220
SANC 123 C
SANO124C
SANO125C
SANO126C
SAN 0127 C
SANO128C
SANO129C
SANO 130 C
SA NO 1310
SAN01320
SANO 1330
SANJ1340
SaN 01356
SAN01350
SAN0137C
SANO 1330
SANO1390
SANC140C
SANO 1410
SANO142C
SANO 143 C
SANO1440
SAN 0145 C
SANO1460
SANO1470
SANO148C
SANO1490
SANO1500
SANU 1510
SANO1520
SANO 1530
SA N01540
SANO1550
SANO1560
SAN 0157 C
SAN0158C
SAN01590
SAN 0150 C
SA NO 1510
SAN01620
SAN 0163 C
SA N0164C
SAN01650
SANO 160 C
SANO1670
SAN 0168 C
SANC169C
SAN0170 C
SAN 01710
SA NO1720
SAN 01730
SAN 01740
SA N01750
SAN 01760
SA NO 1770
SANO1730
SAN 01790


```
        POEQUENCIFS') SAVO1Q2O
```



```
    2 OF',D`., \1, SANU1950
ICTC FORVATI STM OF ORIGINAL DOLTAXIS CTSTRYEUTION='SANUIRSO
```



```
    OF:.F马.3) SANO1980
```



```
1050 FOPMAT(1H,'POPTLLITON STZF=, L5) SANC1व1O
```



```
1090 FORNAT(1H,5v,I5,5Y,DO.2, 'CY,I 5,5Y,FQ.?) SANU194O
20OC FCDMAT(14,' SUM'H', 「1C.7.5y,'DNOP=',F20.1) ) SANO195C
30N1 PODMAT(1H,'NC. OFCYCLES=',I5) SANU196C
    STJP SAV91970
    ENn}\mathrm{ SANOTOQC
    SURRIUTIVF JPTIV( PHIN, SN, FM, PIO, PII, DPI, STGC, SIT1, DSIT, SANO19FO
    1 XYC, YYY, DYY) SAM02000
Z
SURPNUTTNE TC ב4CCFO NFA ROUNIARTES IF SFARCH
SANU2030
    FIC=PHTM-(DFI* 2.1) STM SNONCTO
```



```
    DFT=(FIT - FIO), 12. SNANO2O8O
    AUY2=ABS(DNI)
    IFT FTO .LE. O., ANT. VTY . NF. O.I DFT= AUXZ
```



```
    IFI FIO.LE.,AND.PIT.TF.O., CALLAUXIL(FIO,FIY,NFI) SAVO213C
    STC^= SN- ( TST% * ? )
    IF(SICO .LT. 1. ) ST:C=1.
    SINT= S* + ( +3T- * 2.1)
```



```
    DSIC= (SIG1 - SIT? )/ 1C.
    XYO= EY-1 DXY - 2.)
    IP( XYO.LT. 1.) XYO= 1.
    XY^-EM + (DXY * 2.1)
    TDIXY1 . TT. 1. ) XYY= 1.
    DXY=( XYY- XYC)/10.
    ENTUSN
    END
    SURPOUTINE A|YTT(VT^,FTG,IFT )
    IP(PIO .IT. FIT) DFT=ABS(TFI)
    TF(FI^ .GT. FI1) ,PT=-ABS(DFI)
    RFTUQN
    FVD
SANu2C10
C
    SANO2C2C
SURPNUTTNE TC E4CCBO NFW ENTNIARTES OF SFAKCY
    SANJ204C
    SANO2O5C
    SAN22050
    SANOTCTO
    3A NO2C90
    SANU2100
    SAvO211C
    SAN2214C
    SANO2150
    SANO215O
    SANC216C
    SAN02170
    SANC2.18C
    SANO2190
    SANC220C
    SANO221C
    SA NO2220
    SAV02230
    SANO224C
    SA NO2250
    SAN 22260
    SA NO2270
    SANC22RO
    SNNC229C
    SANC229C
    SA NO2300
```



```
        WPTTE(6,1400) FTJ, FT1, RFT
    ODOOO2C
    MOD00930
    MODOO94C
    MOD 00950
    MO DOO950
    MODC0O70
    MCDOU990
    MODOO99C
    MODO1000
    MODO1C10
    MODO102C
    NOD01030
    MOD0104 C
    MOD1050
    MODO1050
    MODO107C
    MOD01090
    Mכ D0109C
    MOD0110C
    MOD1110
    MODO112C
    MODO1130
    MCDO1146
    MODO115C
    N0D01160
    MODJ11.70
    MODC118C
    MOD01190
    * DO1200
    MODO1210
    MNDO1220
    MODO123C
    MNODO1240
    v0DO1250
    MODO126C
    *ODO1270
    MOD01280
    MODO129C
    MOD0170C
    MODO1310
    MODO132C
    NODC1330
    MODO134C
    NOD01350
    MODO1360
    Y0DO137C
    NOD01380
    MODO1390
    *CDO1400
    MODO1410
    MODC142O
    MODO1430
    MODO1440
    MODO1450
    MODO146C
    MODJ1470
    MODO1490
    NODO1490
    MODO1500
    MODO151 C
    MODO152C
    MCD01530
    * DO154C
    MODO }155
    MODO1560
    MODO957C
    NODO159O
    MODO1590
    MODO1500
    MOD0161 C
    MODO1620
    MOD01630
    MODC164C
    MODC }955
    MODC1660
    MODO1670
    MODC1580
    MJDO169C
    MODO1700
    MOD01710
    MOD01720
    MODO173C
    MOD0174 C
    ODO1750
    MODO176C
    MODO177C
    MCDU178C
    MOD01790
    MODO1800
```

```
    SUOTT=SUMYM_MODO1R1O
    PHITT=PYIM MODO1R2C
    SOT=SM MODO1R3C
    EJT=EM
    104 CONTINUE
    MODO1840
    MODO1R50
z
SFT UP NEM BOUNDARIES AND INTPPVALS OF SEARC4:
    A-FOR ST. [EV.
        TF(OST:.LT. 1.P-T) OCTO 120
        STG^=SOT-(DSI; • 1.5)
        IP(SI<0.IT.1.) ST:O = 1.
        SIGI=SIGO + (DSIG•2.85)
        DENSTG= VSIG - 1
        IF( DENSI`.LT. 1.) DENSI"= 1.
        DSIG= (SIC^1 - SI3`) / DENSIG
    B-FOR STPAIV OATIO
    120 TP( DXY .LT. 1. n-3) ¢CTO 130
    XYO=ETT-(DXY * 1.7)
    IF(XYO.IT.1.) XYO= 1.
    XY1=XYO +(DYY - 3.3)
    DEMJXY=NYY - 1
    TF( DENCXY .IT. 1.) DENOXY= 1.
    DXY=(XY ( - YYO) / DENOYY
c
    70 TP(NSIG .IE. 1.F-3 .ANT. [YY .LE. 1E-3) GOTO 1J4
    C-FODTHE VFAN
        FIC=R号I-T-(DPI * 5.1)
        IP(FIO.IT.0.) FTO= 0.
        FT1= FIO +(DPI - 10.)
        TV(FT1 .7T. 190.) DT1= 190.
        NENOPI = NFI - 1
        IF( DENOFI .LT. 1.) DENOFI= 1.
        CPT=(FIT - PIO)/ DENOFI
    104 continue
        TF(SUNYY .GT. SUNTI) GOTO 106
    105 SUNTT = SUMYM
    puIרT=P品M
    S\capT=S*
    ECT=EN
C
C OUTDUT PINAL RFSULIS
106 WETTE(F, 1230)
    WETTE(6,1199) SUORT
    QRITE(6,1201) PHIJT,SOT,EOT
    WDTTE(5,1205)
C
C CALL SUROUTTNE PRINE TC OUTPOT :
SUROUTTNE PRINE TC OUTPOT : MODO22RC
CLASS INTERV..HIST. PREOS., こURVE ABSCISSAE AND ORDINPTES VALUES MODO2290
~
    CALL PRTNT(PHIOT,SOT,FOT,N,SUNR, HIS,ORD,ABSC)
    400 FOPMAT(19H0 FTVAL DESULTS)
1205 FODMAT(9H0.2X,' CLASS TMF. ', 2X,'PREQ. HIST.'.4X,' ABSC.',4X,' ORD MODC2330
    'INATES')
1206 PODMAT(1HO,' SJMYM=',F20.9C)
1199 FORMAT (9HO STOTT=,P70.10) MODC2360
1201 PJRUAT(1H,' MEAN=',P20.10,2X,' ST.DEV.=',P2).1),2X,' STRAIN FALIOMODO2370
    1='.P20.10 ) MODO2380
1202 FJQMAT(1HO.' CYZLSS NO.=',I 5, 2X,' SUMYM=',F20.10) MODO2390
1203 PORYAT( 'H ,'[MEAN=',F20.10.2X,' EST.DEV. =', P2).1), 2X,'DSTRAIN FATIOMJDO24OC
        1=1,0>C.10;
        MODO2410
    ONO FORMAT(315,F1).7) NODO2420
    910 POPNAT(PF1O.O) NODC2430
    920 FJRYAT(9Fa.0) MODO244O
1300 PORMAT(1H1,5X,NJMBER OF CLASSES=', I5, 5X,'?2EETSAO=',P15.8) NODO245C
1400 FORMAT(1HO," SEAPZ4 FOR THE NEAN FROM=',F10.5, 2X, 'TC',P10.5,2X,'RY MCDO2460
    A INTTIAT, INTERVALS OF=',F\C.5) MODC247C
    1500 PORMAT\9HO.'SEARCH FOF THF STC. DEVTATION FRJM=',F10.5.2X,'TO', NCD02490
    1F90.5, 2X,'SY INITIAL, TNTEFVALS OP=',F1J.5) MJDC249C
1600 PORMAT(1H), 'SEARCH FOF THE RATIO JF STRAIN PZJM=',P10.5.2X, 'TO', MODO2500
    1F1C.5.2X,'BY INIIIAL INTERVALS OP= ',P10.51 MODC2510
        STJP
        FND
        SUBRJUTIYE PRINT(AMEAN,SIGMA,RAT,N,SUMH,HIS,ORD, AESC)
C
    SUBROUTINE TO JUTPUT RPSULTS OP SRARCH
C
DIMENSION पIS(100), OFD(100), AESC(100) M
```

TETLTN = (SPAC • J) • PATOB MODO2710
TFTA = ATAN(RAT - TAN(TFTLIN)
NODO272C
IF (TETA.LT. こ.) TETA= TETA + PI
EXP $=\operatorname{EXP}(-.5$ * ($(\mathrm{TP} T \mathrm{~A}-\mathrm{AM}) / \operatorname{STDV}) * 2$)
MOD

SRD(I) =T * EXPJ PUNC MODU2760
ABSC(I) $=$ TETLTN/ DATOR MODO277C
500 CONTINU
DJ $500 \mathrm{~J}=1, \mathrm{NCL}$
$T=(J-1) \cdot 5$
IF $1 \mathrm{~J} / 2$. EQ. J/2.) $\operatorname{TOTO} 550$
MODO2780
MJ D02 790
MOD 02800
MODO2890
MODO 2820
MODO 2930

$550 \mathrm{~K}=\mathrm{J} / 2$
WPTTE(5,4001) T, पIS(K), ABSC(J), CFD(J)
600 CONTINOF
4000 FORMAT(1H, 30X,P5.0.5 X, F 10.5)
4001 PODMAT 1 H , $5 \mathrm{X}, \mathrm{T} 5,5 \mathrm{X}, \mathrm{P} 10.5,5 \mathrm{X}, \mathrm{P} 5,0,5 \mathrm{X}, \mathrm{P} 10.5$)
EFTURN
END
M) DO2850
rOD02860
MOD02 070
MODO2R7C
$M O D 02880$
MODO299C
MODO290C

DIMFNS ICN XS P (103)), YSP(1000), ZSP (1000), SZ (3)
DIMENSION XLY(1000), VIM(1OCC), ZLM(1000),SX(3)
ISTOOQ4C
DTMENSICN XPA(10Jう),YTA(1COC), ZFA(1000),SP(2)
I STOO950
DIMENSIDN HIS(72), S*(4), तCI(aC), AK(3$)$
IST00960
DTMPNSICN F(72), TL, (72),Y(72), CONTRL(9)
IST 00970
TIMENSI ~N DCUNES (3.2), CELTAS(3), PARS(3)
IST00390
Cכッッフリ/SCALA1/ PI,DUPI,DESPAD.RADEG
COMMON/SCALAZ/ Cr D, NCL
TST00990
COMYOV/ARRAYY/ YSP,YSF,ZSF,YLM,YLM,ZLM,XFA,YロA,ZFA,SX,SZ
ISTOIOUC
CCNMOY/ARPAY2/ 5, TL,Y, HIS
DATA BLANK, CROSS,AST/iH, 1HX,1H*/
ISTO101C
$D T=3.141592554$
IST0102C
ISTO103C
DEGRAD $=P I$ / 1 PO.
I.3T01040
DEGRAD $=$ PI 1 RO
RADET $=1.1 D E$ CRAD
QADET = 1 ISTOIC50
DUPT $=D I+P I$
HETGHT=0.
READ COVGTRAINES OP SFARC:
READ (1, 2OC) ((BJUV)SI, J), J=1,2), DELTAS(I), T=1,3)
ISTO 1 C60
IST01070
ISTC108C
Tsro109C
IST01100
ISTC 1110
TSTC1120
IST01130
BFAD(1,201) CONTRI.
NCL = TPIX(C)NTRL(1))
ISTC1130
TSTC194C
ISIC1150
TSTC194C
ISIC1150
IF (NCL.FC. O) NCI $=10$
ISTO116C
ISTい1170
$\begin{aligned} & \\ & V C V C L E \\ & \text { TPI Y(CONTRL(2) } \text { ISTO1180 }\end{aligned}$
ISTい1170
INDTC= TFTX(CCNTRI(2))
IPRTVT= IFIX(CONRRL(4)) + 1
NOP $=\operatorname{IPIX}(\operatorname{COV} \operatorname{TRL}(5))+1$
ISTO119C
TSTO1200
IN $=\operatorname{TPIX}(\operatorname{CONTRL}(5))+1$
$\operatorname{TN} 2=\operatorname{IPIX}(C J N T R L(7))+1$
IST01210
IN3 = IPTX(CCNTRL(a)) +
जoro (7.6), [n3
ISTC 1220
$\operatorname{TN} 2=\operatorname{IPIX}(C O N T R L(7))+1$
ISTO1230
6 RFAD(1,205 (HIS(T), $=1$ N~L)
6 READ(1.205) (HIS(T) , I =1, NCL)
GOTO 15
7 IF (INDIC) 9.3 .9
8 TNDIC=
$\because 0 \mathrm{O} 10$
a INDIC $=3$
QEAD(5.202) (CCL(T), T=1.20)
WRITE (6.204) COL $\begin{aligned} & \text { ISTC1330 }\end{aligned}$
c
$10 \mathrm{SEH}=0$.
SUV $=0$.
$\mathrm{S} P=$?
$\mathrm{CD}=\mathrm{o}$
ISTO1250
ISTO1250
ISr 01260
IST0127C
ISTO128C
ISTO1286
IST01290
ISTO1290
IST01300
ISTO1300
IST01316
ISTO1320
ISTC 1330
14
CALT PEADAT (INITC,XSP,YSP,ZSP,NP,SEH,SUV,SZ,PK)
$\mathrm{AR}(1)=\mathrm{PK}$
$\mathrm{N} \mathrm{I}=\mathrm{J}$
INDIC = INDIC + 1
CALL FEMCAT (TNITC, XLM,YLM,ZLM,NL,SEH,SUV,SX, PK)
$A K(2)=P K$
$\begin{array}{ll}\text { TFY SFH .FP. O. OR. SUV.ER. O.) GOTO } 11 & \text { ISTO } 1440 \\ \text { AUX }=\text { FLCAT }(N E+N L) & \text { ISTO } 1450\end{array}$

SFH= SEH/AUX
$\begin{array}{ll}\text { SUV }=\text { SUV/AJX } & \text { ISTO } 1470\end{array}$
WRITE (6.204) COL $\begin{aligned} & \text { ISTC1330 }\end{aligned}$
ISTO 0134 C
ISTO 1350
IST01350
IST01360
ISTO1360
TSTO 1370
TST01370
TST01390
ISTO1390
ISTO1390
TSTO1400
TSTO1400
ISTO 141 C
TSTV 141 C
TSTO 1420
IST0143C
$\begin{array}{ll}\text { TPY SFH FP. O. .OR. SUV.ER. O.1 GOTO } 19 & \text { ISTO } 1440 \\ \text { AUX }=\text { FLCAT }(N E+N L) & \text { ISTO1450 }\end{array}$

ISTOT
14 WFITE (5, 202) SEH, SUV
IST01470
IST01490
$11 \mathrm{SFH}=\mathrm{C}$.
ISTO 949 C
$\operatorname{SUV}=0$.
IST01500
$\begin{array}{ll}\mathrm{NF}=0 & \text { ISTO1500 } \\ \text { IST01590 }\end{array}$
CATL. REATAT (TNDTC, XFA,YFA, $\angle \mathrm{FA}, \mathrm{NF}, \mathrm{SE} \mathrm{E}, \mathrm{SUV}, \mathrm{SF}, \mathrm{FK}$)
$\operatorname{AK}(7)=P K$
ISTO1520
TFY SEY.ES. O. .OR. SUV .EQ. O.) GOTO 15 ISTC154C
TST01530
IST01530
SEH= SEY/FLOAT (NF)
ISTC 154 C
ISTC154 C
SEH $=$ SEq/FLOAT (NF)
SUV $=$ SUV/PLJAT(NP)
WPITE (5.202) SFU, SDV
ISIO1550
WPITE(5.202) SEV.3DV
IST 21560
PCEM PFEQUFNCY FISIOGRAM ISTO15RC
ISTO1580
ISTO
ISTOC
ISIO159 C

- 5 CALL HISTTM(NP,NL, NP, AK)
ISTO1600
IST01600
$16 \mathrm{AC}^{\top}=\mathrm{FLCAT}$ (NCL)
IST0151C
I STO1620
$\begin{array}{ll}R C T=F L C A T(N C L) & \text { ISTO1620 } \\ \text { TEYD }=\text { SPRT(DUPI) } & \text { ISTO1630 }\end{array}$
SUMHIS = 010
ISTO1E30
ISTO 1540
DC $20 \mathrm{I}=1$. NCL
ISTO 1640
IST01550
SUMHIS= SOM4IS + HIS(I)
SUMHIS = SMy4IS + HIS(I) ISTC166C

20 CJNTINUE
IST0 167 C
ISI01680
$\begin{array}{ll}\text { CTE }=(190 . / A C L) / \Gamma \text { PMP } & \text { ISI01680 } \\ \text { IST01690 }\end{array}$
CHOJSE BETVEEN RFIATI VE FREQUFNCY(OORO 3)) ,
ISTO1700
IST01710
ISTC1110
READ CONTROL PARAMETERS
IST61180
ISTO1240
TSTO 1460
ISTO149C
t ST01570
ISTO1580
OF ABSCLITE FRFCII ENCY (GOTO 50)
ISTO1710
TST01720
ISTO1730
$25 \operatorname{TOTO}(50.30)$, TN1
ISTO1730
ISTO 174 C
$30 \mathrm{DD} 4 \mathrm{~J} \mathrm{I}=1, \mathrm{NCL}$
ISTO 174 C
IST01750
DO 4) $I=1, N C L$
IF(4IS(T) .EQ. 0.1 TO TO 40
IST01750
$F(T)=4 I S(I)$ SUMHIS
IST 01760
TST01770
40 CONTINOP
ISTO1770
ISI 01780
Goto 50
IST 01780
TST 01790
50 DJ $55 \quad \mathrm{I}=1$, NCL
IST01900

```
55 F(I)= HIS(T) TST01810
    CTE= SUMHIS*CTE ISTO182O
60 DO 70 I = 1,NCL
    TTT=(I-.5)*EI/ ACL
    IP(TTL .FQ. PI/2.) TTL= TTL-1.E-6
    TI(T) = TAN(TTL)
    70 CONTINU
    GכTכ( 90, 100),IN2
        CALL SUBRJOTTNE MODEI2 TO PERPCRM INTERVALS
        EUTMINATTON ANT TO LOCATE THE FEASIBTP REGION
90 CALL MODEL 2(NCYZTZ.TPRINT,BCUNDS.DELTAS,EARSI
        TP QETVIRED :
        *TNALTEE OPTIMI 7ATION BY THE GRADIENT AND/OR
        STPEPEST DFjCENT MFTHOR(S)...( OTO aOl
        j THERMISE PPINT YISTOGRAM AND PITTED CJRVF..(GCTO Q5)
    GOTO(00,05),NJP
    OC CaLL Gratit(Pars,SUOTI)
        MPITE AND P२INT THE HISTOGRAM AND ITS PITIED CURVE
    95 NCL=NCL + NCI
        ACL = FLOAT(NCL)
        TN2= 2
        DJ OG I I 1,NCL
    95 P(I) = 1. P-6
    GOTJ 50
    ION CALL YPSLON( 1,PA3S.SM)
    DO 105 I=1.NCI
    IF(Y(I).GT. HEIGHT) HFIG星= Y(I)
1}0
    CONTINJE
    FAOP2=(HEITHE* 100.)/(SUMHIS*.R)
    PROP1 = PROP2/2.
    WRITE(6,303)
    WDITE(6.004) PBCP1, FECP2
    MRITEE(6.305)
    AUX=0.
    M= c
    DO 130 T=1,N\subsetI
    MO 130T=1,NCI
    nO 110 J=1.90
110 COL(J) = BLAVK
    IF(T/?.Nए. I/2.) SCr C 115
    K=Y(I) * SCALE + 1
    CCL(K)=AST
    NRTTE(6.301) AUX,Y(I),COL
    * TT 13C
115M=M+1
    K= HIS(y)* SCALF + 1
    IF(k) 122,122,120
120 DS 121 J=1.K
12, COL(J) = CRJSS
122 K= Y(T)*SCALE + 1
    IF(K-OO) 125,125,127
125 IP(K) 127,127,125
125 COL(k)= AST
127 VRITE(5,302) HIS(M),AUX,Y(T),COI
130 CONTINOS
    WRITE(5,305)
200 FORMAT(3F15.10)
201 FJRMAT(aF5.0)
202 FORMAT(14^,' CENTRE OF GRAVITY GIVEN BY GRID REFS. :', 2F10.0)
203 FORMAT (9OA1)
204 FJOMAT(1HO,2041)
205 FORUAT(OFQ.4)
30, FJPMAT1 1H,13X,F5.0,6x,PR.3,' I',80A1, 'I!1
302 PORVAT(1H,1X,PO.5,3X,F5.C, XX,PO,3,' +',R)A1,'I'1
303 FORMAT\HO,' PREZJENCY ABSCIS. PITTED CURVE', 29X,'S CALLE D
    1 R EO U EN C Y!।
304 PORNATMH1, IST0254C
304 PORVAT(1H';' HTSIOGRAMVALUES ORDINATES 0.0.,35X,P4.1.**'.35ISTO255O
```



```
305 FODMAT(14, 35X,14+.39(1 H-),1H+.39(1H-),1 H+) IST0257(C
    STOP
    END
    SURPOUTTNE REALAL(ITO,XC,YC,ZC,KT, SUMEH, SUYDV,S,FK)
O
MO2,
IST02520
    IST02580
    SURPOUTTNE REALAR (ITO,XC,YC,ZC,KT,SUMEH, SUQ UY,S,FK) IST0259C
THIS SUBROUTIN: READS LATA IN THO MOLES: 
    I ST02600
    IST02610
    - AZTMUTH AND PLJNTE(GEAL VARS. AZ,PL) ISTO264C
        JR
    - DIPPCTTON CCSTNDS(RFAL VARS, X,Y,Z)
AN BOTH USER'S STS PRCNISTON ,AS MALE POR READING GYID CO-ORDINATES IST0269O
ANLUSER'S STATION NUMBER. CONTROL OF THE FEADING MOLE IS DCNE ISTO2G9C
IN THE MAIN PRGGRAM BY THE REAL VARIAELE CONTRL(3)
IST02700
```

-

$\stackrel{\rightharpoonup}{c}$
$\stackrel{c}{c}$
\approx
$\stackrel{c}{\mathrm{C}}$
z
C

DIMENSION XC(10J)),YC(1000), 2C(1000),STA(10), S(3)
CJMMON/SCALA 1/ PT,DUPI,DEGRAD,RADEG
$A=0$.
$B=0$.
$c=0$.
4 GכT0($5,5,7,7)$, IG

5 RFAD(5, 50) AZ, DTP, ET, IV, STA, I STOP
IP(ISTOD.NE.O) GORC 10
$K T=K T+1$
зото ($5,9,7,7), 1$ ©
IST02710
IST 02720
I ST02730
IST 0274 C
I ST02750
ISTO2
IST
ISIO2760
TSTC277C
IST02780
ISTO279C
I ST02900
IST02810
IST02920
ISTO283C
TSIC2R40
ISI02850
ISTC286C
TSTU2970
ISTO2980
TSTO2990
ISTC2900
ISTO291C
I ST02920
IST02930
ISTO2940
IST 02950
TSTO296C
T ST02970
IST 0298 C
IST02990
IST 03000
TSTO3010
IST0302C
ISTO3C3C
ISTO3046
IST 0305 C
ISTO305C
ISTC3070
TSIO3090
IST03090
ISTO310C
IST03110
ISTO312C
IST03 13 C
IST03140
ISTO 3150
IST03160
IST0317C
ISIC3180
ISTO3190
ISTO3200
ISP 0321 C
TSTU3 220
ISTO323C
ISTC324C
IST03250
I3T03260
IST03270
ISTO3280
IST03290
IST03300
ISTO3310
IST03320
IST03330
IST03340
IST03350
ISTO336C
ISTU3770
ISTO338C
IST0339C
IST03400
ISF03490
IST03420
ISTO3430
ISTC344C
TST0345
TSTO 03460
IST03470
IST03480
ISTO349C
IST03500
ISTO3510
istu3520
IST 03530
IST03540
ISTO 3550
IST03560
ISTO357C
ISTC3580
IST0359C
IST03600
MtNTMtZe by lfast s@UARfS . fiND THE BEST
FIT PLANE,EJNTATNING THE X-AXIS.
A= -(ANTMM/DENOM)
AUX= -(A*F(1,1))-F(1,3)
B= AUX/E(1.2)
ST0394C
*
I5TC395C
IST03960
IST 03070
IST03990
AUX=A*A + B*B + 1. ISTU399C
AOX=1./SQRT(AUX) ISTC400C
x(1) = A* AUX
X(2) = B.AUX
x(3) = AUX
D) 21 I= 1,3
E(2.I)= X(I)
CALL ATITU(X,AZY,DIPY)
CALCULATE POLD AXIS PROJECTICNS
D7 25 I= 1,NP
F(1)=XFA(I)
P(2)= YFA(I)
P(3) = ZFA(I)
CALPA= ?
CBETA = 0.
CO 24 K=1.3
CALPA= CALPA + E(1,K)*P(K)
CBFTA=CEETA + E(2,K)*F(K)
AUX= CALFA*CALPA
CBETA= CBFTA* CBEPA
calculateryera-2 (Xy-plane projecti)n)

```
```

TEMD= AUX + CBPTA

```
TEMD= AUX + CBPTA
TEMP= 1./SZRT (TEMP)
TEMP= 1./SZRT (TEMP)
TEMP= CALFA*TEMP
TEMP= CALFA*TEMP
TH(T)= \COS (TEMP)
TH(T)= \COS (TEMP)
CONTINUE
CONTINUE
FATOR= 190./FLCAR(NCL)
FATOR= 190./FLCAR(NCL)
PORY YREQUENEY HISTOSRAM
PORY YREQUENEY HISTOSRAM
DJ 30 I= 1, VCL
DJ 30 I= 1, VCL
* HIS(I)=0.
* HIS(I)=0.
DO 35 I=1,NP
DO 35 I=1,NP
AUX = TH(I) *RADEG
AUX = TH(I) *RADEG
X(1) = XPA(I)
X(1) = XPA(I)
X(2) = YFA(I)
X(2) = YFA(I)
X(3)= 2FA(T)
X(3)= 2FA(T)
CALL ATITU( X,AZP,DIPF)
CALL ATITU( X,AZP,DIPF)
IF( AZF. IE. AZX) AITX= 18C. - AUX
IF( AZF. IE. AZX) AITX= 18C. - AUX
IP( AUX .GF. 180.) AUX= AUX - 190.
IP( AUX .GF. 180.) AUX= AUX - 190.
AUX= AUY/FATOR
AUX= AUY/FATOR
J= IPIX(AUX) + 1
J= IPIX(AUX) + 1
HIS(J)=HIS(J) + 1.
HIS(J)=HIS(J) + 1.
35 continu*
35 continu*
MRITE(5, 100)
MRITE(5, 100)
WFITE(5,101) AZX,DIPX,AZY, DIPY
WFITE(5,101) AZX,DIPX,AZY, DIPY
#RITE(6.102)
```

\#RITE(6.102)

```

WRITE（5，103）（HIS（I），I＝1，NC I）
ISTO4b10
100 PORMAT（1HC，ATTPJDE CF SLKILN ELLTPSJIE Dq TVCIPAL AXES＇）

102 FORMAT（ 1HO，＇，THETA－2＝POLD AYIS PRCJPCTICN ON XY－RIANE＇）ISTO454C
103 PCRMAT（ \(0(2 \mathrm{X}, \mathrm{F} 10.3)\) ）
ISTO4550
 1P20．10）
PETURN
END
SUBROUTINF MOEEL2（ NCY，TND，ED，DE，POT）
ISTO456C
IST 04570
I STO4500
ISTC4590
ISTO4600

MINIMITATION , TO INTTIATE THE CFTL MI ZATION fROCEJURE ant to lCCatf
THE FEASI PLE RECICN(TT TATENES, AT EVERY CY CLE Jf ItERATIJNS, TO
PESTDTCT THE IVTERVALS OP SEARCH).
IF USEO AS THE ONLY MPTHCD OF MINIMIZATTON SEE IV THE MAIN PROGRAM:
    - CONTRL(2) : MUST BE AT LFAST JREATFR JR EJUAL TO 12
    - contrl(5) : vust be equal to 1 .
    - CONTRL(7): mUST be ECUAL TO 0. OR LEFT bLANK
    DIMENSIN P(72),TL(72),Y(72)
    DIMFNSION BD \((3,2), R 7(2,2), 2 S T(3,2)\)
    DTMENSTCN EA(3),NI(3), DE(3), POT (3), PAM(3), DEN(3) , YL (72)
    COMMON/SCALA 1/ RI.DTPT,DEGEAD,RADEG
    COMMON/SCALA二 CTF,NCL
    COMMON/ARRAY?/ P, TL,Y,HIS
    DATARZ/1*5.1,1*1.5.1*1.7,1*10..1*2.93.1*3.31
    DATA CST/1*0...1*1., 1*1.,1*180.. 1*180..1*102.1
    DOJBLE PRFCISION A 3
    WPTTE( 6,100\()\)
    WPTTE(5, 101)
    WRITE(6, 102 )
    WDI TE \((5,102)\) AD \((1,1), B D(1,2), D B(1)\)
    WRITE(6, 1C4) BD(2, 1), BD (2,2), D3(2)
    WVTTE(5, 125) BT \((3,1), B D(3,2)\), DB( 3\()\)
    IFI IVD.EQ. 1) WRITE (E,1(6)
    SUMIN \(=1\). P4)
    SOOTI \(=\) SUMIN
        START CYCLE(S) CP COMEINATIONS
    D0 \(3.5 \mathrm{~N}-1 . \mathrm{VCV}\)
    D) \(10 \quad \mathrm{I}=1,3\)
    \(A \cup X=B O(I, 2)-B D(T, 1)\)
    \(A U Y=A U Y / D B(I)\)
    \(A \cup X=A B S\) ( \(10 X\) )
    \(\mathrm{NI}(\mathrm{I})=\operatorname{IFIX(AUX)}+1\)
10 CONTINUF
    \(\mathrm{NF}=\mathrm{V} I(1)\)
    NS = NT (2)
    \(N P=N I(3)\)
    D) 20 IR = 9, VR
    \(P A(3)=P[(3,1)+(T R-1) * D B(3)\)
    D \(20 \mathrm{IS}=1, \mathrm{NS}\)
    \(P A(2)=E[(2,1)+(I S-1) \cdot D E(2)\)
    DC 20 IPI=1,NF
    \(P A(1)=B D(1,1)+(I P I-1) * D B(1)\)
        COMPUTE THE SUM OF IHE SQUARED DEVIATIOVS
        bFTWEEN PITTIN: \(\sim\) URVE ANJ HISTCGRAN
    SUW \(=0\).
    no \(15 \mathrm{I}=1\), NCL
    IF(P(I) . ©O. O.) GOTO 15
    \(\mathrm{A} 1=\mathrm{TL}(\mathrm{T}) \cdot \mathrm{PA}(3)\)
    THD \(=\operatorname{ATAN(A1)}\)
    IF(THR .LT. O.) THR \(=T H R+F I\)
    THD \(=\) THR 2 PADEG
    \(A O X=C O S\) (THR)
    \(\operatorname{COST}=\mathrm{AUX} * \mathrm{AUX}\)
    \(A_{2}=T H D-P A(1)\)
    \(A U X=A 2 / P A(2)\)
    \(A U X=A U X * A J X\)
    \(A^{2}=\operatorname{EXP}\left(-.5 \cdot A^{\text {O }}\right.\) ( \()\)
    \(A 4=P A(3)+P A(3)-1\).
    \(\mathrm{A}_{4}=1 .+\cos 2 * A_{4}\)
    ANOM= CTE* AU*AT
    DENOY = PA (2)*PA(3)
    \(\mathrm{YL}(\mathrm{I})=\) ANJH/DENCM
    \(A U X=Y L(I)-F(T)\)
    \(A \cup X=A U Y * A U X\)
    SUM \(=\) SUM + AUX
15 continae
    IF( SNY .LT. SUMIN) GOTO 18
    TOTO 20
18 SUM IN = Som
    DO \(17 \mathrm{I}=1,3\)
ISTO461 C
19
\(P A M(I)=P A(I)\)
ISTC5410
20
ПTF = SUMIN - SUORI
ISTC5420
TSTO5430
IF IND.NE. 11 GOTO 24
IST 0544 C
HPITE(6.1C7) N.SUMIN
ISTO545
WRITE \(\left.(5,1)^{2}\right)\) PAM(1),Bn(1, 1),BD(1, 2), OB( 1\()\)
IST05460
WRITE(5,109) PAM(2),RD(2,1),BD(2,2),DB(2) ISTO547C
\(W\) WTTE \((5,110)\) FAM \((3), \operatorname{BC}(3,1), B C(3,2)\), D3 (3) ISTC5480
SUOTT SU
IST 05490
SU~TT \(=T U^{N}{ }^{\text {D }} 26\)
TST05500
\(\operatorname{POT}(T)=\operatorname{PAM}(T)\)
30
CONTINUF
IF(N .EQ. NCY) GJTO 35
I AUX=4
D) \(34 \quad \mathrm{~J}=1,3\)
\(I D=I A U X-J\)
IF( DR (ID).IF. 1.E-3) soro 35
\(A U X=\) DB(ID) \(\mathrm{AZ} \mathrm{Z}(\mathrm{ID}, 1)\)
\(B D(I D, 1)=P C T(I \Gamma)-A T X\)
\(\operatorname{IF}(B D(I D, 1) \quad . L T . \operatorname{ST}(I D, 1)) \quad B D(I D, 1)=\operatorname{csT}(I D, 1)\)
\(A U X=D B\left(I^{n}\right) \cdot B Z(T \cap, 2)\)
RD(ID,2) \(=3 D(I D, 1)+A U X\)
NAUX \(=\) NI(TD) - 1
AUX= FLCAT(NAJX)
IF( AUX .LT. 1.) AUX=1.
DEN(TC) = AUX
\(A U X=B D(I D, 2)-B)(T D, 1)\)
\(A \cup X=4 U X /\) CEN(IT)
\(E R(T D)=A \Pi X\)
34
35
CONTINTF
IFI SUMTN • FT. SJOT T) SCTO 40
SUOTI= SUMIN
DO \(36 \mathrm{I}=1,3\)
\(36 \operatorname{PCT}(I)=\operatorname{EAN}(I)\)
40 CONTINUE
IST05510
ISTC5520
I ST05530
ISTO554C
ISTU5 550
TSTU5550
IST 05570
TST05590
IST05590
IST05600
IST05610 TSIO5620 TSTO5630 IST05640
I ST05550
IST 0565 C JST05570 IST0568C ISTO5690 IST 0570 C IST05710 IST05710
IST05720 IST 05730 T 5705740 ISTO575C ISTC5750

100 FOOMAT(140, RFSJLTS FECM SUBROTTINE (MOLEL ग) UHICH MADE USE OF THI


\(\left.1 \mathrm{ALS} \mathrm{F}^{\prime}\right)\)
ISTO582 C

\(1 \cap 4\) FOPMAT(1H,1X,'STANDARD DEVTATON \(=1, F 10.5,5 X, F 10,5,7 X, F 10.5) \quad\) ISTO584


107 FJQNAT(1HO,' IN TUE ENO OP THE', IS,' CYCLE,IHE MTNIMUN SUM CF THEISTOSATC
1 SOUARES IS= , 天14. 7) ISTO5R90

15, RV INTFRVALS JP: 'F10.51
ISTO590C

15.' RY INTEQVALS フP: ', F10.5) ISTC5920

15. RY INTERVALS OF:', F10.5) \(\quad\) ISTC5940
RETURN ISTO595C

OUSTC5960
SUBRJUTINE GQADIT( PAFMS.SUNOET) ISTO597C

THIS SUBPOUTTNF WAS DERTVED FOF FINAT.IZING THE JPTIYI7A ITON
PROCEDURE BY MEAVS JP THF GRADTPNT TECNIQUE (IP IT TYE CASE) , ISTU6OOO
THE \(\operatorname{HBJECTIVEFONTITN~EVALUATICNIS~SIVEN~BY~SUBROUIINE~YPSILON~}\)
AND MATRIX INVERSION BY SUBROUTINE MATINV •

DTMFNTON PA(3), ISTO607C
DIMENSION D1 (3.3), D2(3.3), HV(3, 3), SCH(4), [? (4) ISTO6ORO
DIMENSION B( 3\(), \mathrm{H}(2), \mathrm{PF}(3), \mathrm{T} N \mathrm{D}(3), \operatorname{SUM}(+) \quad\) ISTO5090
DIMENSION F(72), FL. 172 ), Y(72) ISTC6 100
COMYON/SCALA1/ PI,DUPI,DEGRAD.RADEG TSTO6110
COMMON/SCALA2/ CTF,NCL \(\quad\) ISTO612C
HRITE(5,20C) ISTO513C
WRITP(5.201) PARMS ISTO6140
SUM IV \(=1\). F4 \(\quad\) TSTO6 150
KOUNT \(=\) ? \(\quad\) ISTO6160
DC \(5 \mathrm{I}=1.3\)
IST 0617 C IST06190
IN \(D(I)=?\)
\(D A(T)=\operatorname{PapN}(T)\) IST0619C ISTO5200 I ST05210
START ITERATIONS

10 KOUNT \(=\) KOUNT +1
RETAIN \(=\) SUMTN
```

 2C DER(I)= SUN(I)
 SUNTV= SUN(4)
 NAUX= INE(1) + TNN(2)
 IF(NAUX .NE. O) GJTJ }2
 DIP= AES(RFTAIN - SUMIN)
 IF(KOJVT .GE. 10) GOTO 25
 #OTO 26
 5 IP(ADIF .IP. 1. E-3) GOIO 170
 26 RRITE(6,202) KOUNT,SUMTN
 WFITE(5,203) FA
 C
THE GRADIENT VECTORS
DEN=0.
no 30 I=1.3
30 [EN = DEV + (DER(I)*DER(I))
DEN= SOPT([EN)
D5 4) I=1,3
40 GRAD(I) = - DER(T)/DEN
C
Z
z
C
IF REQUIREO SUTTEH TO TH SIEEPEST DPSCENT NFTYCD
IF(IND(1) .NE. J) coro ac
IND(2)=0
DELTA=.001
DC 50 I = 1,3
50 P1(I)= PA(I)
D5 50 I= 1.3
DX(I)= PA(T) * DRLTA
P1(I)= EA(I) + DX(I)
CALL YPSION(z.P1,DR)
DO 55 J=1.3
55 D1(I,J) = \GammaR(J)
P!(I)= PA(T)
6n CONTINIEE
DO >0 I=1.3
D) 70 J=1,3
IF(I . ST. J) GORC 65
AUX= Di(I,J) - ner(J)
D2(I,J)=, NUX/EX(I)
GaT5 70
55 D2(I,J) = D2(J,I)
70 CONTINUF
PINC THE TNV ERSF OF I मE HESSIAN MATRIX
CMLL matINV([2,3,3.4V)
DC OO I= 1,3
80 B(I)=0.
DS 25 I=1,3
D0 95 I I=1,3
B(I)= B(I) + HV (T,J) * GRAD(J)
85 CONTINUE
\#OTO 10?
O IND(1) = NND(1) -
DO 95. I=1.3
95 B(I) = GRAD(I)
WRITE(6.204) KCUNT
C
c
THF SFCONT DERTVAT IV ES MATRIX(HESSIAV YATRIX)
100 CON TINUF
SUREST= SUMTN
ASUYIV = SUMIN
SMIN= SUMTN
ALEAST = SUMIN
NQUN= 0
L AP=O
H(1)=0.
H(2)=0.
HBEST= H(2)
SEED=1.EP
AL I*IT= 1.E-10
105 OH= SEEC
106 H(2) = H(1) + DH
DO 110 I=1.3
AUX = B(I) ! H(2)
110 PE(I) = PA(I) + AJX
CALL YPSLON(1,PE,SCH)
SEARCH= SCH(4)
IF(SEARCH.IT. SJBEST) SJBEST= SEARCH
LAP = LAP + 1
IF(ASUMIN - SEARCH) 115,115.120
115 IF(NRUN.EQ.O) ALTMTT = 1.P-40
H(1)=H(1)-DH
SPED= SFEN, 10.
IP(H(1) .LT. 0.) स(1)=0.

```

ISTUK31C
ISTO6320
ISTO6330
ISTO6340
IST06350
ISIC6360
IST 06370
IST06390
ISI 06790
ISTO640 C
IST06410
IST 06420
TST06430
I. T 0644 C

ISI06450
IS P 0646 C
ISTO647C
ISIOG480
IST 06490
I STO550C
ISI 0651 C
TSTC6520
ISTO6530
IST 06540
ISTC6550
IST 0656 C
IST06570
ISTU5590
IST 05590
I ST05600
ISI 06510
IST06520
ISI06630
IST0664 C
I ST06650
ISTO6660
TST06570
ISTC6580
I SI 05690
IST 0670 C
ISI06710
ISTO672
TSTO5730
I ST05740
IS 506750
IST06760
ISI 0677 C
I ST 06790
IST 06790
ISTC6900
ISTC681C
IST06a20
ISTC583
ISTC6840
T ST06850
ISI 0686 C
I ST06970
IST0698C
I ST06890
IST 05900
I ST05910
ISI06920
IST 06930
I ST06040
IST06950
I ST06950
IST 06970
TST06980
IST 0699 C
ISr 0700 C
ISTU7010
IST 07020
TSTu7030
Is r 0704 C
I ST07050
IST 0705 C
IST07070
IST0708C
I ST07090
ISTO7100
IST 07110
IST07120
IST 07130
IST07140
ISTO715 O
ISF07160
IST07170
ISTC7180
I STOT190
IST07200

TP（ ALIMIT．ER．1．E－4O AND．SPED．LF．AIIMTT） \(\operatorname{SOTC} 130\) ISTO7210
IF（ SEEC．LP．ALIMTT）GCRO 131 ISTOT220
ASUMIN＝SMIV \(\quad\) ISTOT23C
GOTO 105
TST07240
120 NRUN \(=1\)
IST07250
ALIMIT \(=1 . E-10\)
IST07260
SMIN＝ASUMIN
I ST07270
ASUMIN＝SEARCH
ISTC7280
TF（ SEAQCH．TT．ALEAST）GOTO 125 ISTCT290
ALEAST＝SEARCH ISIC7300
HBEST＝ \(\mathrm{H}(2)\)
ISIC7300
IST07310
\(125 \mathrm{AB}=\mathrm{H}(2)-\mathrm{H}(1)\)
ISTC7320
\(A B=A B S(A B)\)
ISTO733C
IF（AB ．LT．ALIMIF）soro 131
ISIO7340
\(\mathrm{H}(1)=\mathrm{H}(2)\)
ISTO735 C
3OTO 106
130 HBEST＝ \(4(3)\)
131 TF（H（2）LLE．1．E－37）GOTO 135 IST07360

〒OTO 140 TST07370

135 IF（IND（1）•EQ• O）GวTO 136
テOTก 155
IST 07380
TSI07390
\(6 \operatorname{IND}(1)=10\)
IST0740 C
\(\operatorname{INH}(2)=1\)
эото 90
TST07410

I3「ก7430

JBTAIN THE NEW CO－CPDTNATPS
SIC7440
IST 07450
IST07450
IST 0747 C
IST0748
```

 DO 150 I=9,3
 IST07490

```
    \(A \cup X=B(T) *\) HBEST
        \(P A(I)=P A(I)+A U X\)
ISTO7500
I5rC751C
    50 CONTTNUF
    \(\begin{array}{ll}150 \text { CONT } 10 & \text { ISTC7520 } \\ \text { GOTO } 10 & \text { TSTOT530 }\end{array}\)
    155 WIT TE 5.209 )
    170 [ 171 I=1.3
    171 PAR*S(I) \(=\mathrm{PA}(\mathrm{I})\)
        WQITB(5.205) DTF ISTC7570
        SUMTPT= SIMMI
        WET TE (5.207)
        WFITE (5.209) SUVOPT
        HRITR(6.203) PARMS ISTMOT690
        ISTC7520
    70 [n 171 .
    TSTO754C
        IST. 0758 C
    TST07590

    -•******'1) IST0763C

    95X, 'STRAIN RATIN=', \({ }^{\circ} 11.71\) IST0765C
    2 (2 FORMAT(1HO,' IN TME ', [5,' ITERATION THE SMY JF SQUARED DEVIATIONTSTC76GC
    1S TS', E14.7.' WITH PARAMFIERS : ') IST07670

    \(1=1\). P11.7) IST07690

    1 ROUTINE USED CNLY PHE STEEREST [ESCENT METHDD') ISTUフ710


206 FORMAT(1HO,' CCNVFRGENCF IIMIT (', E14.7.') ATTAINED. END OF THE GTSTOT740
    1RADIENTMINTMISATION') ISTO7750

200 FODMAT(1H, FINALSUM OF S (VARED [EVIATIOVS=., E14.7) ISTOT770
209 FJR*4T(4日ク." ***REMARK : SEARCH IS OUT OP RANGE•) IST07780
    FETURN IST07790
    END IST07800
    SURROUTINE YPSION(NCT BL, PAM.SOMA) IST07810
C
this SUbROTTINE EVALJATES NOT only THE OBJECTIVE fUNCTION,BUT ALSO
    DTMENSION F(72),TL(72),Y(72)
    DTMEMSION P2(3), DTP(72),SOMA(4),DEP(3)
    - ISTO7900
    CJMYON/SCALAI/ PI.DUPI,DEGRAD,RADEG ISTUTO10
    COMMJN/SCALA2/ CTR, NCL ISTO7920
    COMMON/ARRAY2/ P, CL,Y,HIS ISTOTQ30
    D) \(10 \quad \mathrm{I}=1,2\)
    IST07940
    \(D A D(T)=P M M(I) \quad\) IST07950
\(10 \mathrm{P} 2(\mathrm{I})=\operatorname{PaR}(\mathrm{I}) \cdot \operatorname{PAR}(I)\)
    \(\operatorname{PAD}(3)=\operatorname{PM}(7)\)
    P2 (3) = PAN (3). PAM(3)
    DO \(15 I=1,4\) IST07980
\(15 \begin{aligned} & \text { SOMA }(I)=0 .\end{aligned}\)
IST 07990
IST09000
    D) \(21 \mathrm{I}=1, \mathrm{~N} \subset \mathrm{~L}\)
    IFPF(I). SO. O.) Toro 21
    \(A 1=\operatorname{PAR}(3) \cdot \operatorname{TL}(\mathrm{I})\)
    \(A_{2}=A 1 * A 1\)
    THR = MTAN(A))
    IF(THR .LT. O.) THR = THR + EI ISTO3C5O
    \(\begin{array}{ll}\text { IF (THR . LT. O.) THR }=\text { THR } & \text { FI } \\ \text { TUD } & \text { ISTOROSC }\end{array}\)
    TYD \(=\) THR*ロADES
    cos2 \(=\cos (T H R)\)
    \(\cos 2=\cos 2 \cdot \cos 2\)
    I STcs070
    ISTO908O
    \(A 3=\) THD-FAB(1)

\(A N=A Y\) * RADES
IST 0904 C
IV(OM - 9C.) 13.13 .12

```

 RADET= 1./CEGRAD FITOO910
 LUPI= PI + PI FITOO92O
 CB=1.13. FITO093C
 IND=0
 REAL AND \RITE SAMFLE RECORDS (TO CJLUMNS)
 PEAD(5,1007) ICPR,(TITLE(I),I=1,70)
 WRITE(5,1009) TIFLE
 IF(IOPT .EQ. O) GJTO 90
 5 READ(5.2000) (TTTLE(I),I= 1,72)
 ISAFE= 0
 WRITB(6,2001) TTTLE
 DEAD(5,20C2) (R(I),T=1, 3),(THTD(I), I=1,3), ISENT
 c) a I=1,3
 AMAX(I)= R(I)
 AXA(I) = SORT(R(I))
 AXP(I)= 1./AXA(T)
 TH(I)=THTD (I)*DESRAD
 TEMP= P(I) - AXB(I) *AYB(I)
 EX2(I)= TEMP/R(I)
 - conTINUE
 OTO 5a
 OUTINE TO FVALIGTE THE 2D-STKAIN AT FACH OP THE THREE
 PERPENDTCUIAR PLANFS . MFT HOD EY SHIMAMOTJ AND IKEDA, 1976
(TECTONJPHYSIC5,12: 293-306).
10 READ(5,1000) I,CORECT
TND= INT + 1
KOUNT=?
RAMAX=1.
P(I)=0
G(I)=0
H(T)=0
2^ READ(5,1001) A1,4?,THEIA,ISTOE
TF(TSTOP.NE. O) GJTO 30
KOUNT= ROUNT +1
IF(THETA .LT. 360..AND. A1 .GE. A2) GOTO 21
HPITE(6,1007) TND
MRITE(6,1001) A 1,4 2,THETA, KOUNT
〒 OT\cap 20
21 IF(CORECT . NE. 7).) GOTO 25
TF(CORECT - THETA) 22,23.23
2) THETA=270. - THPIA
GOTO 26
23 THETA = CORECT - -HETA
GOT^?6
25 THETA= THETA + CJPPCT
26 PO= 41/12
If(THETA .LT. O.) THETA = 180. + TMETA
TF(RO .GT. RAMAY) RAMAX= RO
THT= T4ETA* DEGRAD
CT= COS(THT)
CT2 = CT*CT
ST2 = 1. - CT2
ST= SVRT(ST2)
F(I)=P(I) +(CT2/RO) +(FO*Sr2)
G(I) =G(I) +(SI2/RO) +(RO* ST2)
H(I) =H(I) +(1./RO-RC) *ST*CT
GJTJ 20
30 AN= KOUNT
KTT(I)= KCUNT
F(I)=P(I)/AN
G(I)=G(I)/AN
H(I)= H(I)/AN
B= -(F(I)+G(I))
AUX=(P(I)*F(I))-(H(T)*H(I))
DS= (B*B)-(4.*AUX)
IF(DS.LT.O.) GCTO 190
DS= SORT(TS)
05T1=(-B+DS)/2.
ROOT2 = (-R-DS)/2.
IF(ROOT1.FT.ROOT2) GOTO 40
AUX = ROCT1
ROOT2= ADX
40 AXA(I)=1./SQRT (ROOT 1)
AXB(I) = 1./SQRT(RJOT2)
TEMP= AXA(I) *AXA(I)
FX2(I)=(TENP - AXB(T)*AXB(T))/TEMF
R(I)=AXA(I)/AXB(I)
MMAX(I)= RAMAX
AUX=H(I) +H(I)
BUX=F(I)-G(I)
END OF SHIMAMOTO AND IKEEA RJUTINE
IF(BUX) 43.48,44
43 PC= PI

```

GOTา 47
44 IF（AUX） 45.49 .45
FIF0181C FITC1？20
\(145 \mathrm{FC}=\mathrm{DUPI}\)
FOTO 47
\(46 \mathrm{FC}=0\) ．
FITO1830
FIT01840
\(47 \mathrm{AT}=\mathrm{ATAN}(\mathrm{AUX} / \mathrm{BUX})+P C\)
PITO1950
\(\mathrm{TH} \mathrm{T}=.5^{*} \mathrm{AT}\)
GOT2 50
\(48 \mathrm{THT}=\mathrm{PI} / 4\) ．
GつTつ 5.5
40 THT＝PT／2．
3OTO 55
50 IFI THT－PI／2．1 51．51．52
\(59 \mathrm{THT}=\mathrm{T} 4 \mathrm{~T}+(\mathrm{PI} / 2\).
GOTO 55
52 THT \(=\) THT \(-(E I / 2\).
\(55 \mathrm{TH}(\mathrm{T})=\mathrm{THT}\)
THTD \((I)=\) THT＊RADE \(\mathcal{I}\)
    \(\mathrm{D} 2(1,2)=-\hat{c}_{0} \cdot \operatorname{CP}(3,1) \cdot \operatorname{CE}(2,2)\)
    त2 \((2,1)=r 2(1,2)\)
    \(A \cup X=-2 \cdot \operatorname{CP}(1,2) \cdot \subset P(2,1)\)
    \(A \cup X=-2 \cdot \operatorname{CP}(1,2) * C P(2,1)\)
\(B U X=-2 \cdot \operatorname{CP}(1,1) \cdot=P(3,2)\)
    \(D 1(1)=\operatorname{FT}(2) * D 2(1,1)+\operatorname{Fr}(3) * D 2(1,2)+A U X\)
    \(\mathrm{D} 1(2)=F T(3) * D 2(2,2)+F T(2) * D 2(1,2)+\operatorname{HUX}\)
                    INVFRT THF 2NE. PARTIAL DERIVATIVES YATRIX
    CALL INVMBT (2, ח2, HINV)
    D) \(65 \quad I=1,2\)
    \(65 \quad \mathrm{~V}(\mathrm{~T})=0\).
    DO \(55 \quad I=1.2\)
    D) \(\mathrm{Fa} \mathrm{J}=1,2\)
    \(66 \mathrm{~V}(\mathrm{I})=V(I)+\operatorname{HINV}(\mathrm{I}, \mathrm{J}) * D 1(J)\)
                    OETATN ANE NORMALTZE THE SCALING FACTJマJ
    SMALL \(=\nabla T(1)\)
    Dロくの \(T=1.2\)
    FT( \(I+1)=F T(I+1)-V(I)\)
    TF(FT(T+1). TT. SMALL) GOTO 69
    SMALL \(=\operatorname{FT}(I+1)\)
    GA CONTINUE
    DO \(70 \quad \mathrm{I}=1.3\)
    \(F T(I)=F T(I) / S M A L L\)
    \(70 \mathrm{AXR}(I)=\mathrm{AXE}(I) * \operatorname{Dr}(I)\)
    D) \(71 \mathrm{I}=1,3\)
    \(C P(I, 1)=A X B(T) / E C L(E X 2(I), T H(I))\)
    \(\mathrm{FI}=\mathrm{TH}(\mathrm{I})-\mathrm{HAI} \mathrm{I}^{\mathrm{F}} \mathrm{T}^{\top}\)
    \(\operatorname{CP}(I, 2)=A X B(I) / P O L(E X 2(I), F I)\)
    71 CONTINTE
    AUX \(=C P(1,1) * C P(2,1) * C P(3,1)\)
    \(B U X=C P(1,2) * C P(2,2) * C P(3,2)\)
    CHFCK= AUX/ BIX
    IF(CHECK .GT. 1.) CHFCK=1. CYECK
    AVELAC= \(100 . *(1 .-C H E C K * C E)\)
    FITLAC \(=100 .{ }^{*}(1 .-C H E C K)\)
    WRITE(6.1021) CYRZK, FITLAC, AVEIAC
COMPUTE CHORDS FROM FACH OP THE SCALED
FLIIPSES, USING FCLAB EQUATION
    NCHOR \(D=6\)
    DIV \(=2 . * N C H O R D\)
    \(D E L T A=P I / D I V\)
    \(I=1\)
    \(I A=1\)
FIT 21850
FITC1970
FITc1 880
PITC189C
FI 101900
FITC1910
FITO1920
FIT 0193 C
FITC194C
FITC1950
FITO1960
FITO1970
FITC1900
FITC1990
FITU200C
FIT 02016
FI TC2 220
FITO2030
    IF(IND . IT. 3) \(50=010\)
    WRITE(5.1005)
    WRITE (6.1006) KTT
    59 CONTINUE
    D) \(60 \quad \mathrm{I}=1,3\)
    FI(I) \(=1\).
    WRITE(5,1004) A KM (I), AYR(T), R(T), THTD(I), AMAX(I)
    \(C P(I, 1)=A X^{7}(I) / P O L\left(E Y_{2}(T), T H(I)\right)\)
    \(C P(I, 1)=A X^{7}(I) / P O L\)
\(\mathrm{FI}=\mathrm{TH}(\mathrm{I})-4 \mathrm{HI} \mathrm{PPT}\)
    \(\mathrm{FI}=\mathrm{TH}(\mathrm{I})-4 A I \square P T\)
\(\mathrm{CP}(\mathrm{I}, 2)=\mathrm{A} \times 3(I) / \mathrm{P}) \mathrm{L}(\mathrm{EX} \times(\mathrm{I}), \mathrm{PI})\)
    60 CONTINU:
                    CALCULATE TYE FARTIAL LERTVATIVES
FITC 2040
FITO205C
FTTO206C
FITC2070
FITO2090
FITO209C
FITC21)
FITO2110
FITU2 120
FITC2130
FIFC214
FTT02150
FITC216C
FITO2170
FITC2190
FITO219C
FIT 22200
FIIO 2210
FIIO2210
FITO2220
FIT02230
FIT 02240
PIT022.50
FIT 0226 C
PI T02270
FIT02290
FITO229C
FTTU2300
FITC2310
FIT02320
FITC2330
FITC2330
FIT 0234 C
FITO234C
FITC2350
FITC2360
FITO2370
FITO2370
FITO2380
FIT02380
FITO239C
FI IO2400
FITU2400
FITO2490
FTIO2490
FIT02420
FITO2430
FITO2440
FITO2450
FIT 02460
FITC2476
FIT 0248 C
FI TO 2490
FITO2500
FITC251C
PITC2520
FIT 02530
USE NEWTON-RAPESON RCUTI NE FOR AXES SCALING
    \(D 2(I, T)=2 *(C P(T+1,1) * * 2+C P(I+1,2) * * 2)\)

OETATN ANE NORMALTZE THE SCALING FACTJマJ
IT02390
FITU2400
FITO2490
SMALL \(=\) PT（1）
FIT02420
\(F T(I+1)=F T(I+1)-V(I)\)
FITO2440
FITO2450
\(\begin{array}{ll}\text { SMALL }=\text { FT }(I+1) & \text { FITO245 } \\ \text { CONTINUE } & \text { FITC } 2460\end{array}\)
DO \(70 \quad \mathrm{I}=1.3\)
\(\mathrm{FT}(\mathrm{I})=\mathrm{FT}(\mathrm{I}) /\) SMALL
FITO243C
FITC 2490
FIIO250
\(C P(I, 1)=A X B(T) / E C L(E X 2(I), T H(I))\)
PI TC2520
FIT 02530

AUX \(=C P(1,1) * C P(2,1) * C P(3,1)\)
FITO2540
FITU2550
FITO2560
FIT02570
FITC2580
FIT 0259 C
PI 102.600
FIT \(0261^{\circ} \mathrm{C}\)
FIT02620
FIT 0263 C
PITO264C
PITU2650
```

 JA=2
 KI= 0
 DO 75 K=1,6
 O\cap 75 M=1.5
 SUMx(K)=0.
 75 SCP (K,M)=0.
 7% DT 77 K=1,6
 77 X(K)=0.
 AUX= - (TH(I) +DEITA)
 DO 95 L=1,NCMCRD
 AL= L - 9
 FI= AUX [FITA
 FID= FI*RADEG
 AUX=PI
 RL=AXB(I)/P)L(FX2(T),PI)
 AD=AL* [ELTA
 UX= 2L*CCS(AT)
 VX= RL-GIN(AD)
 CX=UX* VX
 C
C
X(IA) = UX*UX
X(Ja) = vX* vX
MIX= IA+ Jn+1
X(*IX) = CX
kT= KT T 1
DO O4 KA=9,5
SUMX(KA)=SUMX(KA) + X(KA)
DO 94 M M=1.5
SCP(KA,YA) = SCP(KA,MA) + X(KA)* X(MA)
Qu CONTTNIT
R5 CONTIVUE
TA= JA
3\cap TO(90.01,92),T
O JA=3
I= 2
GOTO 75
91 JA= 1
I=?
\#OTO 76
92 AXX= NCHORE
D) }05k=1,
P(K)=0.
SUYx(K)= 500 X(R)/4 x %
nO aj L=1.5
SCP(K,L)=SCP(K,L)/ANV
95 CONTINUD
INVERI CRGSS pronucrs marhit
CALL TYVMAT(5,SCP,SPT)
DO 100 T=1,5
D) 100, J=1,6
P(I)= P(I) + SPI(T,J)*SUMX(J)
10n CONTINTE
DO 110 I= 1.3
DO 109 J=1.3
k= I + J +
IF(I . EO. J) GCro 105
E(I,J)=P(K),2.
VAL(I,J)=E(I,j)
`OT^1)の 105 E(I,J) = P(I) VAT(I,J)= P(I) 109 CJNTINUR 190 CONTINOE bTAIV EIGEVVALUES AND ETGFNVECTORS RY THF JACOBI MPTHOD, AND THPN COMPUTE EL.LIPSOID RATIDS CALT EICOBI(VAL,VEC) nO 115 T=1.3 IF(VAT.(I,I) LLE. 0.1 GOTO 175 115 AX(T)= 1./SORT (VAL(I,T)) WPITE(6, 10O2) WRTTE(5,101n) DO 120 I= . .3 QFITE(6,1O11) (E(I,J),J=1,3),(VAL(I,J),J=1,3),(VEC(T,J),J=1,3) 120 CONTINUF D) 125 I=1,3 125RT9(I) = A M(I)/A X(3) AUX=AX(1)*AX(2)*AX(3) VOL = 19`.*(AUX-1.1
AUX= AUX**CB
D) 130 I= 1,3
MXTS(I)=AX(T)/ATX
930 DIST(I) = (AXIS(I) - ..).100.
IPI IOPT.EE. OI WRITE(5,10 12) VOL
WRITE(5,1013) Ax
VRITE(6, 1\cap24) PTT

```

FITC2716
FITC2720
FITO273C
FIT0274u
FITO275C
PIT62760
FIr 02770
FITC278C
FIT \(\mathrm{C}^{2} \mathrm{~F}^{\circ} \mathrm{C}\)
FITv2860 FIT02810 FITU292C FIT 02930 FITO2940 FITC295 C FIT C286C FITU2970
FITC28RC
FITC2990
FITC2900 PITC2010 FITU2920 FITC293C FITC2940 FITC2950
FITL2950
FIT02970
FITC2980
FITO2990
FIT 03006
FITO 7010
FITC302C
FIT03030
FITO3040
FITO3C50
FITO3060
FITO2070
FITO308C
\(\square 120300^{\circ}\)
FITj3100
FITC3110
FIFO3120
Fir03130
FITC3140
FIT03150
FITC3150
PITO3170
FITC3190
PIT:3190
FT 103200
FITC 3216
FITO 3220
FITC 3230
PITO3240
FITC3250
FIIC 326 C
FITO3270
FIT 03290
PIT07290
Fttozano
FITO 3310
PITO3320
FIT 03330
PITO3340
FIT0335C
FIT 0336 C
PIT03376
FIT 03780
FITO339C
FITOR40
FIFO3410
PITO342C
FITC343C
FITO3440
FI 103450
FIT 0346
PI 103470
FIF 0348 C
FIPJ3490
FIT03500
FITC3510
FTTO3520
FIT 03536
FITC354 C
FITC 3550
PITO3560
FIT03570
FITO 358
PITC3590
FITO 360 C

WRTTP（5．1014）
PITU361u
WRTTE（5，1013）AXIS FTTO 3620
WATTE（5，1022）ETSI
FITか362

PITU3630
PTTO3640
FIT 0365 C
AUX＝ \(\operatorname{AXIS}(1) / \operatorname{AXIS}(2)\)
FIT03550
\(\mathrm{BUX}=\mathrm{AXIS}(2) / 4 \times \mathrm{TS}(3)\)
FIT 03670
D） \(135 \quad \mathrm{I}=1\) ． 3
FITU3680
FITU3690
\(135 \mathrm{~PB}(\mathrm{~T})=4 \mathrm{LOG}(\mathrm{AXTS}(\mathrm{T}))\)
FITO 03700
FLIVN＇S PARAMETER（K）
GAMA＝（EE（1）－EB（つ））＊2＋（EE（2）－EE（3））＊2＋（EЗ（3）－EB（1））＊2
FITO3710
\(E S=.5-\operatorname{SoRT}(3.) \cdot 69 \mathrm{MA}\)
FIT 0373
FITO

FIT03740
\(P K=(A U X-1) /.(P U X-1\).
FITC375C
PITO377C
RAMSAY＇S PARAMETER（K）
\(A U X L J C=A L J G\left(A D^{2}\right)\)
BUXLOF \(=\) ALOG（BITX）
FIT03730
\(\nabla K=A U X I O G / B U X I C\) ；
FIT03790
FITC3quc
FITE3010
LODESS PYOMMETER（NT）
\(X X=\left(2 .{ }^{*} E B(2)\right)-F R(1)-P Q(3)\)
FITU3220
FITC3830
AIODE \(=X X /(E B(1)-E B(3))\)
FITO3940
WRT TE（6．015）
WRITE（5，10151 FK．1UV，BUX，RK，AUXLOG，BUXLOG，A！ODE
WRTTE（5，1023）CAMA．TS
FITC3850
FIT0385c
FTr0287C
FITO328C
FIT03990
COMPUT ORTENTATION OF FLLIPSOID AXES
FIT 03900
FITC3910
FITU3920
WDTTE（6，1017）
D \(170 \quad \mathrm{I}=1.3\)
IF（ VEC（3，I））150，152， 152
150 DO \(151 \mathrm{k}=1.3\)
151 VEC（x，I）\(=-\operatorname{VFC}(\mathrm{K}, \mathrm{I})\)
152 \(C=V E C(1.1)\)
\(S=V E C(2, I)\)
\(D=\operatorname{VEC}(3.1)\)
IF（ C ）153，150，154
\(153 \mathrm{FAC}=\mathrm{PI}\)
GOTノ 157
154 TPC S 1 155，159． 156
155 FAC＝DUPI
G2T） 157
\(156 \mathrm{FAC}=\mathrm{C}\) ．
\(157 \mathrm{AZT}=\mathrm{ATAN}(\mathrm{S} C \mathrm{C})+\mathrm{PAC}\)
－OTO 150
159
\(\mathrm{AZZ}=\mathrm{PI} / 2\) ．
BOT
\(\mathrm{AZZ}=0\).
\(150 \mathrm{DP}(\mathrm{I})=\) ASIN（ D\()\)＊RADEG
\(A Z(I)=A Z Z * A C E=\)
IFI DP（I）－20．）162，162，161
161 DP（T）\(=\) 1RC．- DE（T）
\(A Z(T)=A Z(I)+132\).
IF（ AZ（I）．GT．350．）AZII）＝AZ（I）－ 350 ．
162 WTITE（ 6.1019 ）T，AZ（I），DP（I）
－TC CONTIVUE
〒отO 190
FITC 3934
FITO3940
FTTO3950
FIT03960
FIT 03970
EITU3980
FITC399C
FITuルOV
FITO401 C
PITO4C2C
FITO4030
FITO404C
FITC4O5
FITC4060
FIT04076
FIT 04090
PITOUOQ
FITC4 120
FITCH110
EITC4120
PITO413C
FITU4 140
FITC4150
FTTO4160
FITC4170
FITC4 \(9^{\circ} \mathrm{C}\) FITO4190
F：TC4200
FITC4210
175 WVITE（5．1022）
190 CONTINOE
IP（IOPT ．EQ．O）？OTC 190
IF（ ISENT ．NE．a）GOTO 5
1T04220
FITC4230
FITJ424
PITO425
190 CONTINUF
1000 FORMAT（IS，F10．5）
FTTO 425 C
1001 FORMAT（ 3F10．5，I5）
1002 FOPMAT（1HO， \(43 X\), RFSULTS BY LEAST－SQUARES PTTTIVG1）FITO4290 FITC4270

1005 FOPMAT（ 1 HO \(0^{\circ}\) FCPULATICN IN FACH PLANE＇）FITOU32U

1007 FODPMAT（T2．73 A1）
1OOR FJRYAT（1HO，7）A1）PITC4 550


1．YATRIX OF EIGENVECTORS＇।
FITC4380


1014 FCOMAT（1HO，FIITPSCTE ASSUMTNS NO VOLUNE CHAVGE：）FITOU42C

（16）F




PIT04480
1020 FOPMAT（1HO．＊＊RFMARK ：BAD RESULTS ！EITTTVG IS NOT OF AN EILIPSFITO4 40 C
```

 TOID : CHECK THE JRIENTAIICN OP TAE ANGLES IN THE XY,YZ,ZX-PIANES'IEITOUSIC
 10フ9 FJPNAT(1HO,7H CHPこR=,F10.7.374 OVFPALL ELIITPSES. INCOMFATIFTITTYFITC4520
{=,F10.3.2Q4% NVERACPLACK OF FIT OF=,F7.3,14H% PER SECTIONS FITC45 Z (
4027 FORNAT(1H,' PEPCENTAGF OF DI STORTION IN EACH AXIS: X=, FF.3.' FIIO4540
15 Y=', "8.3,'% "=',F8.3., %')
FITC4550
1023 FOPMAT(14,4UH NATAI'S (NATURAL OCTAHEDRAL TN IT OF SHEAR)=,F6.3,5XFTTCH5SO
1., AND EFFECTIVE STRAIN (FS)=!,F5.3) FIPC457C
1074 FORMAT(1H,' OR NORMTLTZED TO FHE SMALLER AXIS =',2(F10.3,': :),F4FITO45RC
1.11
FIT04590
2nOn FORMAT(72A 1)
2.CO1 FOFMAT(141,72A1) FITC4610
2O\cap2 FJRMAT(3.F7.3,3F7.3,I2) FITO462C
STOP
FUNCTION POL(EX,PHI)
P\capL= (1. - (FX*((Cos(FHI))**2)))*.5
RETURN FITC4670
END
SUBPOUTINE EICCEI (VL,VC)
RJUTINE TO EVALUATE THE FTGENVALUPS AND EIGFNVFCTORS CF
A.SYMNPTRIC 3 X 3 YATRTY., VAY WHICH IS LOST DIPING: FITO473C
TNDOT NATRTX TS TMFOIOH ARFAY VL WHICH IS LOST DIRING
COMPUTATION. OUTPUT AY ARRAYS :
COMPUTATION.OUTPUT AY ARRAYS :
- VC = NATRIX OF EITFNN ECTORS

```

```

OF THE CYAFACTERISITC ROCFS OF A MAFRIX BY THE JACJBI METHOD.
N : MATFEMATTCAL METHOJS DOR OTGT TAL COMPUTPFS , ENITFD
AY PALSTON AND WILY,NTLFY,VOL T,1960. FITU4\1C
DIMENSION VL(?, 2), VC(2,?)
N}=
V}=0
D) 15 I=1,3
CO 15 J=1.3 FTTU4QQC
JF(I . EQ. J) GOTO 5 FITCUROC

```

```

 V=V+VL(I,J)*VL(I,J) FIT04910
 %OTO }1
 5 vC(T.J)= 1.
 45 CONTTVUE
 A v= v
 V}=\mp@subsup{S}{2 RT(V)}{N
 VF=(V*1.V-O)/AN
 1f V'= V/AV
 DO 50 T=1,?
 JA=I + 1
 mO 50 J=JN,N
 IF(ABS(VY(I.J)) .L.T. V1) 3CTO 50
 AN%N= - VI(T,J)
 ANWN= -VI(I,J)
 DENOV= (VI(I,T)-VLL(I,G))
 TP(EENCN.LT. O.) W=-R
 x= 9. + S2? (|. - W*W)
 x= s2qT(2.*x)
 ST=W/X
 S2= ST\cdotST
 -T=SORT(1. - S?)
 2?= CT*CT
 PROD= CT*ST
 DJ 20 K=1,3 M, AND. K.VF. J) KAXIS=K FITC594C
 TPI K,NN.I AND. K,VF.J) KAXIS = K FITO5 45_
 BUX = V\dot{C}(K,I)*CT - V\simeq(K,J)*ST
 VC(k,J)=V\subset(K,I)*ST +VC(K,J)*CT
 VC(K.I) = BOX
 20 CONTTVUP
K= KAXIS
ANX=VT,(K,T)*CT - VL(K,J)*ST
AUR K,J)=VL(K,I)*ST + VL(K,J)*CT
VL(x,T)= ANX
DIF=VL(I,I) - VL(J,J)
PD = VL(\tau,'J)*FRCD*2.
PD= VL(I'S,I)
VU(I,T)=4UX*C2+VL(J,J):S5-PD

```

```

 VL(I,J)= NTPPDRTD + VI(I,J)*(C2 - S2)
 VL(I,J)= DTP(DR)
 D) 25 k=1,3
 VL(I,K)= VL(K,T)
 25VL(I,K)=VI(K,J)
 50 covTINUE
V= V1
V=V\
IF(V OGE. VF
JA= I + !
D) KO J=JA, 3
IP(ABS(VLII,T)).LT. AES(VL(J,J))) GTO 50
FITC463C
FITC464C
FITO465C
FITO4550
RETURN FITC4670
FITC467%
FITC46RC
FITC4690
FITC4700
FIr 0460
FIIC4710
EITC472C
FITO4730
EIT0474C
FITC475 C
FITO4750
FITC4700
TN : YATFEVATTCAL. MESMOO, ENTFFD FTTCUROC
FITU491C
FITCUR2C
FITC4R3C
FITO4840
FIT0485C
FITC4950
FITC407C
FITO4OLO
FITC4920
FITCO92
FTTC404C
FITC495c
FIIC495,
FIT0407
FTT04080
PTTC409C
PITC409
FFTTS5C90
FITO5020
FTT05030
FIT05040
FTV504
FIT05050
Y=, +S2吾(1.- - M*W) F[TO5060

```

```

 FITC5080
 FIT050a
 FIT05000
 S2=ST\cdotST
 FITC510 C
 FIT05110
 FTTO542
 FIT05120
 FITO5 45
 FITC5160
 FITC5,7C
FIF5:17
FIT05190
FITO5990
PITU5200
FITC5210
FITC5220
FITC522
V\L(J.J)
FITC5236
FITC524C
FIT05250
FIT05250
FITC526C
FIT05270
FITO5290
DJ 25 k=1,3}(k,T
PITC529C
FITC529C
FIT05310
FTTC532C
FTTO53*
FITC5?4
erT
PTPO535
FITC537C
FFIT053\&C
FIT0537
FIT0539C
FITOS400

```
\(\stackrel{C}{C}\)
```

 AUX= VL(I,T)
 VI(I,T)= VI(J,J)
 VL(J,J)= AJY
 DO 55 K}=1\mathrm{ , ,
 RUX=VC(R,I)
 VC(k,I) = VC(K,J)
 vc(k,J)= Bux
 C5 CONTINUE
60 CONTINU:
7 0 ~ C O N T I N U E ~
10 CONTINUB
RETIRN
FNT
SURPOUTINF INVMAT (N1, A, F
DIMENSION A(N1,N1), B(N1,N1)
N= M1
D) 100 T= 1,N
NO 101 J=1,N
B(I,J)= 0.
0 1 ~ C O N T I N J E ~
B(I, I) = %.
OO CONTTMT
DET= 1.
n) 102 T=1,N
DIV=A(I,T)
DET= nET• DIV
DO 103 J=1.N
A(I,J)=A(I,J) / OIV
B(I,J)=B(I,J) / JIV
03 CONTINUP
DJ 104 J=1,v
TF(T-J) 1,104,1
1 RATTJ= A (J,I)
O) 105
A(J,K)=A(J,K) - RATIO * A(I,K)
P(J,K)=B(J,K) - PATIO* B(I,K)
-05 CONTINUE
104 CONTTNUP
102 contINUE
FFTURN
END

```

FIT05410
FITC542C
PIT05430
FTT 0544 C
FITC54bC
FITC5450
FITO5470
FITO549C
FIT05490
PITO5500
PI TO 5510
FIT 05520
FIT05530
FIT05540
PITO 5550
FITO5550
FITO557C
FIT05580
FITO5590
FITC5600
FITU5610
FITO562C
FIT0563
FITC564 C
FIT05650
FTTO566C
FIT05670
IT TO5680
FIT 0569 C
it T05700
FIT0571 C
ITO5720
FIT05730
FTT 05740
FITO 575 C
FIT05760
FIT05770
Fito5780
FIT 05790
FiT05800
FIT05810


पATVDT＝ \(\mathrm{CT} / 2\) ．
DEGPAD＝PI／100．
RADFG \(=1 . / D E\) TRAD
FTEC091C
\(D U P T=P I+P T \quad\) FTE．OO93C
ISAFE＝
\(C B=1 . / 3\).
IN \(D=0\)
1EOUS4
FTEOO95C
FTEC0960
FTE0097C
FTECOQ90
FTEOO99C
FTEO100C
FTEOTしIO
FTEO 1020
FTEC1030
FTEO1C4 0
PTEO 050
FTE01060
FTEO9076
FTEしIORO
FTE01090
FTEC1 100
FTEO1110
FTEC1120
FTEO113C
FTEC 1.14 C
FTEO 1150
FTFC1160
FTEO1970
PTEO1180
FTEO1190
FTEO 1200
FTEO1216
FTEO 1220
FTE01236
FTEO 124 C
FTEC125C
FTEO 126 C
PTEO 1270
FTEO1230
FTEO129 C
FTE01300
FTEO131C
PTEO1320
FTEC1330
FTEC 1340
FTEC 1350
FTEC1350
FTEO 137 C
PTEし1780
FTEO 1390
FIECTGUC
FTEO1410
FTEO 1420
FTE 0.1430
FTEO 9446
PTE09450
FTEU1460
FTEO 1470
FTEC1490
FTEC1490
FTE01500
FTE0151C
FTEC 1520
FTEO1530
FTEO154C
FIE 01550
FTEC 956 C
PTEO 1570
FTE01590
FTEO 9590
FTE01600
FIEO 961 C
FTEC152C
FTE01530
FTEO164C
FTEJ 165 C
FTEO1660
FTEO 1670
FTE01600
FTE0169C
PTE01700
\(40 \mathrm{AXA}(\mathrm{I})=1.1 \mathrm{SQRT(R)3T1)}\)
FTEO179C
FTEO 1720
FTE01730
FTEC 1740
FTEO1750
FTE0 1760
FTEU1770
FTEC178C
FTE 01790
FTEO1800
```

 IF(RUV) 43.48.44
 43 FC= PT
 #OTO47
 4 IF(AIIX) 45,4a,45
 45 FC= DUDI
 GOT7 47
 46 FC= 0.
 47 AT= ATAN(AUX/ BOX) +FC
 THT}=.5\cdotA
 3OT\cap 50
 4 THT= PI/4.
 フロT^55
 4 9 ~ T H T = ~ D I / 2 . ~
 GOTO 55
 50 IF(THT - PI/2.) 51.51.52
 51 TFT= THT + (PI/2.)
 GOTO 55
 52 THT= THT - (PI/2.)
 55 TH(I) = THT
 THTD(I)= THT*RADFG
 ObTAIN SCLJPION BY THE LEAST SQUARES YETHOD
 IF(IVD .LT. 2) GJTO 10
 WPITE(6,1005)
 WPTTP(6,1005) KIT
 USF NEWTON-RAPYSON FOJTINE FOR AXES SCALING
 5a continum
 D\cap }60\quadI=1.
 FT(T) = 1.
 YFTTE(6,1004) AXA(I), AXB(T),R(T),THTD(I),AYAX(I)
 CP(I, 1)= A XB(T)/P)L(FX2(I),TH(I))
 PT= TH(T) - HALPPI
 CP(I,?)= AXR(I)/POL(EX2(I),FT)
 60 CONTINUE
 CALCULATE [YE PARTIAL DPRIVATIVES
 DO 5% T=1,2
 62 D2(I,I) = 2.*(~P(I+1,1)**2 + 2P(I+1,2)**2)
 #2(1,2)=-2.*CP(3,1)*CP(2,2)
 D2(2,1)= 02(1,2)
 AOY= -2.*CP(1,2)*2P(2.1)
 BUX= -2.*CP(1,1)*CP(3,2)
 D1(1)=FT(2)*D2(1,1) + PT(3)*D2(1,2) + AUX
 D1(2)= PT(3)* C2(2.2) + FT (2)* [2(1.2) + BUX
 INVERT TMS 2ND. PARTTAL DRRIVATIVES MARRIX
 c
CALL INVMAT(2,D2,HINV)
OO 55 T=1,2
65 v(T)=0
DO 65 I=1,2
DO 55 J=1,?
65V(I)=V(I) + पINV(T,J)*D1(J)
z
C
JBTAIN AND NORMALIZE IHE SCAIING FACTORS
SMALL= PT(1)
D5 59 I=1,2
FT(I+1)= PT(T+1) - V(T)
IP(FT(I+1) .GT. SMALL) GOTO 58
SMALL = FT(I+1)
6 8
CONTINUE
D) 70 I=1,3
PT(I)= PT(I)/SMALL
70 AXB(I) = AXB(I)*FT(I)
DO 71 T=1,3
CP(I,1)=AXR(I) / POL(EX2(I),TH(I))
FI= TH(I), - HALFPI
CP(T.2)=AXB(I) / POL(EX2(I),FI)
74 continde
AUX=CD(1,1)*CP(2,1)*CP(3,1)
BUX=CP(1,2)*CP(2,2)*CP(3,2)
CHECR= AUY / BUX
IVICHECK . IF. 1.1 CMECK= 1./CHECK
AVFLAC= 100.*(1.- -HECR**CB)
FITIAC= 100.*(1. - CHFCK)
WRITE(6.1021) CHECK, FTTLAC, AV ELAC
COMPUTE CHORDS PROM EACH JE THE SCALED
ELLIPSES , USING FOLAR EQUATION
NCHORD=6
DTV = 2.*NCHORD

```

PTEO1810
FTE0182C
FTEC183C
FTE01240
FTEO1 85 C
Fre01860
FTE 01970
FTE0.1880
PTEC1890
FTEO 1900
FTEC1910
FTEU1O20
FTEC1930
FTEC1940
FTEC 1950
PTEC 1960
FTE01970
FTEC1980
FTEO1900
FTEC2000
FTEO20 10
PTE0202C
FTEO203C
FTE0204
FTEC2050
FTE 02060
F1202070
FTEC2080
FTE02090
FTEO2100
PTEC2110
FTE021<0
FTEO213C
FTE0214C
FTE0215C
PIEC215C
FTEC2170
FTEC2180
FIEU2190
FTE022J0
PTEO2210
PTEC2220
FTE0223C
FTEC2240
FTE02250
PTEO2260
PTE02270
FTEO229C
FTEC2290
FTEC 230 C
FTEO2310
FTEO2320
FTEC 2330
FTEC2340
FTEC2350
FTE02360
FTE02370
FTEO2380
PTEU2390
FTEO240C
FTEO249C
FTEO2420
FTEO2430
FTEC2440
FTE02450
PTEO2460
FTEC2470
FTE02480
FTE 02.490
FTFO2500
FTE 02510
FTE02520
FTEU 2530
FTE02540
FTEC 2550
FTE 02560
FTEU2570
FTEO25RC
FTE02590
FTEO 250 C
FTEO 2610
FTE0252C
FTE0253C
FTE 02640
FTEO265C
FTEC 2650
FTE02670
FTEO258C
FTEC2690
FTEC2700
            DELTA= PI/IIV PTRC2710
            \(T=\uparrow\)
            \(T A=1\)
            \(J A=2\)
            \(\times \mathrm{T}=\) ?
            \(\begin{array}{ll}\mathrm{K}=75 & \mathrm{~K}=1.5\end{array}\)
    FTEO275C
            \(\begin{array}{ll}\text { DO } 75 & k=1.5 \\ \text { D } & M=1.6\end{array}\)
            DO \(75=1.6\)
\(S U M X(K)=0\).
\(75 \operatorname{SCP}(K, M)=0\).
FIEC2750
FTF0277C
PTEO2780
76 กO \(77 \mathrm{~K}=1.6\)
FTEO279C
กO \(77 \mathrm{k}=1\)
FIEO2906
\(X(K)=?\)
\(A U X=-(T H(I)+E F L I A)\)
FTEO281
D) \(25 \mathrm{~L}=1\), NCHORD
FTEO2920
DO RF \(L=1\), NCHOR
PTPC293C
\(A L=L-1\)
\(\begin{array}{ll}\mathrm{FI}=\mathrm{ATX} X \mathrm{DEITA} & \text { FTE02950 }\end{array}\)
FTEO2940
FID \(=F I * R A D E G\)
\(A U X=P T\)
FTE02360
FT E0287
\(R L=A X B(I) / P O L(E X 2(I), F I)\)
FTE0287C
FTEU2390
\(A D=A T \cdot D E L T A\)
\(U X=R L * C C S(A C)\)
\(V X=R L \cdot S I N(A D)\)
FTEO2990
FIEO29JO
\(C X=U X * V X\)
FTEO2910
PTE02920
FTEU 2930
    (Iם) CONETIE THE \(3 \| M\) OF IHE CROSS-PRODUCTS yATRIX
    \(x(I \Delta)=\pi X * U X\)
    FTBO 2940
    FTE 2950
    \(X(J A)=V X \cdot V X\)
    FTEO2950
    \(X(J A)=V X \cdot V X\)
\(M T X=T A+J Y+1\)
    \(Y(N I X)=C K\)
    \(K T=K T+1\)
    D) \(a 4\) \& \(A=1,6\)
    \(\operatorname{SUMX(KA)}=\operatorname{SUMX(KA)+X(KA)}\)
    D) \(24 \quad M A=1.5\)
    \(S C P(K A, M A)=S C P(K A, M A)+Y(K A) * X(M A)\)
    au CONTINUE
Q5 COVTINUE
    \(I A=J A\)
    \(\because 0 \mathrm{~T} 9(90.91 .92) . \mathrm{T} \quad\) FTEO3070
FTEO2950
- TE 02970
FTEO2980
FTEO2990
FTEU 2990
FTEO 3000
FTEO 3020
FTEO 301 C
FTEO 3010
PTE03020
FTEO3030
FTEO 3030
FTEO 3040
FTEO3040
DTEO3050
\(\square \mathrm{TE} 0305 \mathrm{C}\)
FTEJ 3060
    \(90 \mathrm{JA}=3\)
    \(T=2\)
    G2Tว 75
FTE03070
FTEO 308 C
FTE0309C
    FTE031 UC
    Q1 JA=1
    \(I=?\)
    -3T5 75
    PTEO311C
    FTE03120
    FTEC3130
    \(92 \mathrm{AXX}=\mathrm{NCHCRD}\)
    D) \(\cap 5 \mathrm{~K}=1.5\)
    FTEO3140
    \(P(K)=0\).
\(S X(K)=-2 . \operatorname{son} \times(K)\)
    FTEO 3150
    PTEC3160
    \(\operatorname{sx}(\mathrm{K})=-2 \cdot \operatorname{sun} x(k)\)
    \(\operatorname{SUMX}(V)=\) SUYX \((K) / \not \subset X \quad\) FTEO 317 Cl
    D) \(05 \mathrm{t}_{\mathrm{L}}=1.5\)
    \(S F(K, L)=2 . \operatorname{SCP}(K, L)\)
    \(\operatorname{SCP}(K, T)=\operatorname{SCP}(K, L) / A \vee X\)
    FTEO317C
    FIEO3190
    FTEO 319 C
    PTEU320し
    fTEO3210
    as CONTINUE
FTEO 3220
PTE03230
FTEO 3240
FTEO2250
FTE 03250
FTEO 326 C
FTEO326C
FTE03270
PTEO3230
PTEO3230
FTEO 329 C
05
INVERT CROSS PRODUETS MATRTX
    CALI. INVMAT(5,SこP, SPI)
    DO \(100 \quad \mathrm{r}=1.5\)
    D) \(100 \mathrm{~J}=1.6\)
    \(P(I)=P(I)+\operatorname{SPI}(I \cdot J) * S U M X(J)\)
    FTEO 329 C
FTEO3300
    100 CONTTNUD
FTE 23300
FTEC3310
    104 CJNTINUE
    FTEC3310
    तO \(110 \mathrm{~T}=1.3\)
    FTRO3320
    D) \(100 \mathrm{~J}=1\).
    \(x=I+J+1\)
FTEO3330
    \(\mathrm{K}=\mathrm{I}+\mathrm{J}+1\)
\(\mathrm{IF}(\mathrm{I}\)-EO. J) \(\operatorname{SCTO} 105\)
FTE03340

    \(E(I, J)=P(K) / 2\).
    \(\operatorname{VAT}(I, J)=E(I, J)\)
    FTE03360
    GวTว 109
    FTEO337C
    GつTJ 109
\(E(I, J)=P(I)\)
    \(105 \mathrm{E}(\mathrm{I}, \mathrm{J})=P(I)\)
FTEO3380
    VAL(I,J)=P(T)
FTEO 3390
    - 09 CJNTINUE
PTEO3400

110 CONTTNUE
FTRO3410
PTRO
```

 JBTATN FTGPNVALUES A NO EICFNVECTORS RY THE JACORI METHOD,
 ANLIHEN COMPUIE ELLIPSOID GATIOS
    ```
PTEO 3420
FTE 03430
FTEC 344 C
PTEO 3450
PTEC 3460
    CALI EICCRI (VAL,VFC)
PTEO 3460
PTE 03470
    D) \(115 \mathrm{I}=1,3\)
FIEO3470
FTE0348C
    IF(VAL(I,I) •IF. J.) GOTO 175
FTEO 3480
FTE0349
\(195 \mathrm{AX}(\mathrm{T})=1 . /\) S2RT(VAL(I,I))
PTEU3500
PTEO 3510
    WPI TE (6, 1002)
    WRITE(6,1010)
PTEO 3510
FTE03520
    D) \(120 \quad[=1,3\)

    WRTTE(6,1011)(E(T,J),J=1,3).(VAL,(I,J),J=1,3),(VEC(I,J),J=1,3) PTEO7540
120 CONTMUE
    กก \(425 \mathrm{~T}=1.3\)
FTEO3550
FTEO 3560
\(125 \mathrm{RI}_{\mathrm{I}}(\mathrm{I})=\mathrm{AX}(\mathrm{I}) / \mathrm{AX}(3)\)
FTEO 3560
PTE. 03570
PTEO 03570
FTFO 0350
    \(\mathrm{AUX}=A \times(1) * A \times(2)=A \times(3)\)
\(\mathrm{VOL}=1000^{*}(A U X-1\).
FTEO 35 R
FIE 03590
    VOI \(=1000^{*}(\operatorname{AJX} X-1.1\)
    \(\mathrm{ADX}=\mathrm{ADX**CA}\)
FIE 03590
FTE 03600

DO \(130 \quad \mathrm{t}=1.3\)
FTE03510
AXIS(T) \(=A X(I) / A U X\)
FTEC 362 C
130 DIST(T) \(=(\operatorname{AXIS}([)-1) * 1 C 0\).
IF( IJPT. EO. N) WRITE \((6,1012)\) VOL
GFTTE(6.1093) AY
VITTE(5.1024) RT1
P'TE0363C
FTEU3640
FTE0365C
FTE 03660
FTEO367C
Pre0368C
PTEC3690
FTE03 700
PTEC371C
FTE 03720
FTEC 3730
TEC3740
FTEO 375 C
PTE07760
FTEC377C
FTEO378C
FEC07730
FTEO 38 CO
FTEC3210
FTEO 3820
FTE0383C
FTEO3840
FTE 03950
FTEして860
FTEC387C
FTEU3880
FTEO 3890
FTE 03900
FTEO391C
FTEC3920
FTPC393
FTEC 394 C
FTEO3050
FTE0396C
PTP 03970
FTEC399C
TEU39C
FTEO4OUO
FTE04010
FTEO4 02 C
FTEO4O3
FTEU4040
FTEO4050
FTEOLOSO
FTEO4070
FTEO4030
FTEO4090
FTEO4 10 C
FTPU4110
FTEO412C
FTE04130
FTEO4146
FTE04150
FTEC4150
FTE04170
PEO418C
FTEO4190
FTEO420 C
FTEO42.10
FTEO4220
FTEO4230
FTEO4240
FTEC4250
PTE 04260
FTEC 4270
FTEO4280
FTRO4290
FTEC4300
FTBC4310
FTEC4320
175 ISAPE = ISAPE + 1
IF(ISAPE .E2. 1) YRITE \((6,1020)\)
190 CJNTIVएE1
\(k T=0\)
PTEO4340
D) \(200 \quad \tau=1,3\)

DO \(200 \mathrm{~J}=4.5\)
\(\operatorname{SP}(I, J)=2 . * \operatorname{SP}(I, J)\)
\(S P(J, I)=S P(I, J)\)
200 CONTINUE
D) \(211 \mathrm{I}=4,6\)
\(K=T-3\)
\(B 1(K)=1\).
\(S X(I)=2 \cdot * S(I)\)
\(P(I)=P(I) / 2\).
[O \(210 \mathrm{~J}=4.5\)
\(\operatorname{SP}(T, J)=4 . * \operatorname{SP}(I, J)\)
210 CONTINUE
211 CONTINUE
FTEO435C
FTEO4360
FTEO437C
FTEU438
FTE04390
PTEO4400
FTE 04410
FTEC4420
PTEO4430
FTEO4440
FTEU445C
FTEO4460
FTEO4470
FTEO4490
PTE04490
FTEO4500

FTEC4510
PTRO4520
FTFC453u
FTE0454C
FIEC4550
FTEC456C
FTE04570
FTEO458C
FTEC4590
FTEO460C
FTEC4510
FTEO4520
FTEC463C
FTEU4640
FTEO465C
FTEC4550
FTEC4670
FTEO46 AC
FTEO4690
FTEU4700
FTPC4710
FTE0472C
FTEO4730
FTEC4740
PTEC4750
FTEC4760
PTEしム77C
FTEC4780
FTE 04790
FTEU4ROC
PTEO4910
FTEO4®2C
PTRC483C
PTEC434
FREC4850
FTEC4950
FRE04870
PTEC4990
FTEC4990
FTEC496
FTEO4910
FTEO492C
PTEO4230
FTEO494C
FTEU495C
FTEO4960
PTEO4970
FTE04930
FTE04990
FTEU5000
FTEC50 10
PTE05020
FTE05030
FTEO504C
FTEC5C50
FTECSO50
FIEC5070
FTEO508C
PTEO5090
PTEU5100
FTEO5110
FTE05 120
FTE05130
FTEO5940
FTEC5150
FTE05960
- TR U 517 C

FTEC5190
FTEC519C
FTEU5200
PTE0521 C
FTEC522C
FTE05230
FTEO524C
PTE05250
FTE0526C
PTE05270
FTE 05280
FTE05290
PTE053UO
FTE0531 C
FTEO5320
PTEC5330
PTEO5340
PTEO5 350
FTE05360
FTEC537C
FTEO5386
FTEO539C
PTE 05400
```

1002 FORMAT(1HO,43X,' 2RSULTS BY T.EAST-SQUARES PTTTTNG') FTEO541O
1004 FORMAT(1H,' MAJOR SFMT-AXIS=1,F1O.3.2X,' YIVJR SPMT-AXTJ=1,F9C. 3. FTEO542C
12X,' RAITN=',P10.3.2X,' THETA=',F10.3,' MAX. RATTO=',P10.3) FTEO5430
4005 FORMAT(1H2.' POPULATTON IN EACG PLANE') FTEC544C
1006 FORMAT(1H,' XY-PI.ANF=', T5, 5X,' YZ-PLANE=', 55,5X,' ZX-PLANE=',I5) FTEO545U
1007 FJRMAT(II2,721 1)
1008 FORMAT(140.70411
FTEC5470
1000 FORMAT(1HO," *.MESSACE : EFROR IN INPUT DATA. CHECK DEZK NO.',I3)PTEC5490
9010 PJRMATI 1HO,' ', 12%,'INPUT MATREX'.24X,'MATRTX OF EIGENVALUES', 19X, FTEOS49C
1, mataix o" etgenvectoks')
PTE0550C
1011 FJRMAT(1H, 3E13.4,1X,3R13.4.1X,3E13.4,/) FTE05510
10'2 FORMAT(1H , FLIIPSOTT WTTH CHANGE IN VCLUME OP',F9. 2,' EFRCENT') PTEO552O
1013 PORMAT(1H ,' AXES RAT 10 =',2(P10.?.' :'),F10.3) FTEU5536
1044 FORMAT(1HO,' ELLIPSOTD ASSUMING NO VOLUMF CHANGE') FTEOS54U
1015 FOPMAT(1HO,' CHARACTERILATION PARAMETERS ACCJRDIN; TO :') FTEC555C

```

```

 A RAMSAY'S K=,F5.3,'(A=',F5.3,2X,'B=',F5.3,')',16H LCDE'S (NO)FTEOS57C
 2=.p6.3)
    ```

```

1019 FORVAT(1H,', AXTS=',T5,2X,' AZTMUTH=',F7.2,jX,' PLUNGF=',F7.2) FFEO560C
019 POQMAT(?H),' CHECK=', E2C.10) PTE05610
10つ0 FOR*AT(1HO,' ***RFMARV : RAD RZSULTS ! FITTTVG IS NOT OF AN ELIIPS PTEO552C
IOTD : CYECK THE ORTENTAITON OF THE ANGLES IN THE XY,YZ,ZX-PLANFS'IPTEU563C

```

```

 1=,F1^.3,29H% AVERAGE LACK OF FIT CF=,F7.3,14% % FFR 3ECTICNS FTEC565C
 1022 PORMAT\1H,' PFRCENPARE OF DISTORTION IN EAZH AXIS : X='.PR.3,' FTEN56GC
%% Y=',F2.3,'% Z=, Fa.2,'%'! F
1023 FORMAT(1H, 444 NITAI'S (NATURAL OCTAHFDRAL UNTT OF S मPAP)=, F6. 3, 5X FTEO5G8C
1.' AND PFFECTIVESTRAIN (ES)=1,F6.3) FTEC5590
1024 FJRYAT(1H,' OR NORMIITZRD TO THE SMALLER MXT3 = ', 2(F90.3,' :'), F4FTEO5700
1.1) FM, MOEO5710
1025 FORMAT(1H),' **MPSSACF : NO SJLUT ION WAS FJUND FOR THE NON LINEARFTEOST2O
4 E{IIATIONS(SOLUTTON BY LAGRANBE MUITLPLIERS)') FTEC573C
1025 FORMAT(1H),' ***MESSACE : DTV ERGENCE .') PTEO574C
1027 FJRMAT(1H2.' **REMARK : IT WAS NECESSAFY TO USE THE LAGRANCE MUITFTEO5750
APTTERS'1 FTEO5760
2COO FORMAT(72A1)
2091 FORYAT(1H1.7241) FTEO578C
2002 FORMAT (3F7.3.3F7.3.T2)
STJP
FND
FND
FOI= (1.-(EX*((COS(FHI))**2)))**5
RETURN
EVD
SUBPOUTTNE FICOBT(VT.,VC)
C
ROUTINE TO EVALUATE THE EIGENVALUES AND EIGENVECIORS GF
A SYNMFTFIC 3 X 2 MAIRTX. NTY PTEO5900
C INPUT MATRIX IS THPJUGB ARFAY VI WHICH IS LOST DURING FTEO591C
COMPUTATTON. OITPUT RY ARRAYS:
- VL = YATRIX OP ETGENNALUES
- VC = YATRTX OF EIGENVEZTORS
VETHCD BASFD ON THF EAFFF EY J.GREENSTALT, 1960-THE DETERMINATION
OP THF CHARACTERISTIZ ROOTS OF A MATRTX RY THE JACOBT MPTHOD.

```

```

EY RALSTON AND WILF,WTLPY,VOL I,9 950.
DIYENSION VL(3,3), V: (3,3)
N=?
V}=0
DO 15 I= 1,3
D) 15 J}=1,
IFI I EO. J) GCIO 5
VC(I,J) = 0.
VC(I,J) VI(I,J)*VL(I,J) F
GOTJ 15
5VC(T,J)=1.
15 CONTINUE
AN=V
V=S07T (V)
VF=(V•1.E-9)/AN
16 VI= V/AN
no 50 I=1,2
JA=I}+
no 50 J=JA,N
IF(ABS(VY,(I,J)).LT.VI) 3OTO 50 F
DFNOM= (VL(T,T)-VL(J,J))*. 5
H=ANOM/SJRI(ANTM*ANUN + DENOM*DENOM)

```

```

 X=1.+S⿰又T (1. - U*W)
 x=S2&T(2.*X)
 ST=W/X
 S2=ST*ST
 CT=SORT(1. - S2)
 C2 = CT*CT
 PROD = CT*ST
 ^PTTERS'1) FTEO5760
COO FORMAT(72A1) FTEC5770
FTEO578C
FN
FT FO580
FTEO580C
\#TEO5010
FUNCTTON POE(EX,P4I)
RETURN
END
FTEC5日3C
FTE0584C
FTEO585C
FTE0586C
FTEU587C
FTE058RO
FE EOS91C
COMPOTATTON. VT - MAMTIX OP ETOENVMIGES
PTEO592C
FIEO503C
PTEC504C
FTEC5950
FTEO596C
FTE05970
FTE05980
FTE^5990
FTE05000
FTEOSO1C
PTR06020
FTE0603C
FTEU6040
FTEO605C
FTE06060
FTFC5070
FTE06000
contINUE
FTEO5100
PTEC6110
PTEC5120
FTE06130
FTE0644C
PTRC695C
PTE 06160
IFIABS(VT,(I,J)),LT, V1) =OTO 50 FPTECG18O
FTEC62vC
PTEO5210
TFODENOM.LT.O.1 V = -W DENOM*DENOMI PTEC622C
FTEC622C
X=1. + S2RT(1. - 㫙) PTEC623C
PTEC623C
FIEC6240
FTEO5250
FTEO6260
C2=CT*CT}\cdot-S2
FTFO627C
FTE0627C
FTE05290
FTEC6290
FTE06300

```

DJ \(2^{n} k=1,3\)
FTE06310
IPI K.NE. I . AND. K. VI. J) KAXIS \(=K\)
BUV - VCIK,I) CT - VC(R,J) \(\operatorname{ST}\)
\(V C(K, J)=V C(K, I) * j r+V C(K, J) * C T\)
vC(k,T) \(=R U X\)
C6320
FT E0633C
FTE 06340
rTE06350
FTEC5350
FIEC637C
FTE0638C
PTE06390
FTECG4OC
FTE0641C
PTEU6420
FTE05420
FTEO644C
FTE 06450
FTE0646C
PTE 0547 C
FIE05480
FTEO6490
FTEU5500
FTE06510
FIEU65 20
FTEC553C
FTEO6540
FTE0555
Freju 560
FIE 06570
FTE. 05590
FTECO590
FTEU6 60
FTEC6610
FTE06620
FTED6630
FTEO5540
FT. 0665 C
PIE06660
FTEC6670
PTEC65 0
FTE06690
FIE05700
FTECO710
FTEC5720
FTEU5730
FTEO6740
FTE 0675 C
FTEC6760
FTE 06770
FTE06780
FTE \(0670^{\circ} \mathrm{C}\)
FTECGROO
- 15069 10

FTE0582
FTEO6930
PTECS 940
FTE06850
PTE05960
FTE05R7C
-TE0689C
FIEC6R90
PTEU690
FTEC591 C
PRE06920
FTEC5030
FTEC594C
PTR 06950
PT EO596C
FTE 06970
FTEO698C

Adby, P.R. and Dempster, M.A.H. (1974). Introduction to Optimization Methods. Chapman and Hall mathematics series. London 216pp.

Agterberg, F.P. and Briggs, G. (1973). Statistical analysis of the ripple marks in Atokan and Desmoinesian rocks in the Arkoma Basin and east-central Oklahoma: J. Sedim. Petrol., v.33, pp.393-410.

Agterberg, F.P. (1974). Geomathematics: Mathematical background and Geo-science Applications (Development in Geomathematics, 1). Elsevier. 596pp.

Allison, \(I\) (1979). Variations of strain and microstructure in folded pipe rock in the Moine Thrust Zone at Loch Eriboll and their bearing on the deformational history. Scott. J. Geol. 15 (4), pp.263-269.

Allison, J.W. (1974). A petrofabric investigation of shear zones from the Swiss Alps and North-West Scotland. PhD Thesis, Univ. London.

Anderson, E.M. (1948). On lineation and petrofabric structure and the shearing movement by which they have been produced. Geol. Soc. London, Quart. J. 104, pp.99-132.

Ardell, A.J., Christie, J.M. and Tullis, J.A. (1973). Dislocation structures in deformed quartz rocks. Cryst. Lattice Defects, v.4, pp.275-285.

Ashby, M.F. (1972). A first report on deformation-mechanism maps. Acta Metallurgica, v.20, pp.887-897.

Atkinson, B.K. (1976). Deformation mechanism maps for polycrystalline galena. Earth and Planetary Science Letters, v.29, pp.210-218.

Atkinson, B.K. (1977). The kinetics of ore deformation: Its illustration and analysis by means of deformation-mechanism maps. Geologiska Founingens i Stockholm Förhandlingan. v.99, pp.186-197.

Bailey, E.B. (1955). Moine Tectonics and metamorphism in Skye. Trans. Edin. Geol. Sci., v.16, pp.93-166.

Barber, A.J. (1965). The history of the Moine Thrust Zone, Lochcarron and Lochalsh, Scotland. Proc. Geol. Assoc., v. 76 (3), pp.215-242.

Barber, A.J. and Soper, N.J. (1973). Summer field meeting in the NorthWest Highlands of Scotland. Proc. Geol. Ass., v. 84 (2), pp.207-235.

Barton, C.M. (1978). An Appalachian: view of the Moine..Thrust. Scott. J. Geol. 14 (3), pp.247-257.

Bartsch, H.J. (1974). Handbook of Mathematical Formulas. Academic Press Inc. N. York. and London. pp. 527.

Bell, T.H. and Etheridge, M.A. (1973). Microstructure of mylonites and their descriptive terminology. Lithos 6, pp.337-48.

Bell, T.H. and Etheridge, M.A. (1976). The deformation and recrystallization of quartz in a mylonite zone, Central Australia. Tectonophysics, v.32, pp.235-267.

Bell, T.H. (1978). Progressive deformation and reorientation of fold axes in a ductile mylonite zone: The Woodroffe Thrust. Tectonophysics, 44, pp.285-320.

Berthé, D. and Brun, J.P. (1980). Evolution of folds during progressive shear in the south Armorican Shear Zone (France). J. Structr. Geol., v.2, no.1-2, pp.127-134.

Beveridge, G.S.G. and Schechter, R.S. (1970). Optimization: Theory and Practice. MacGraw Hill chemical engineering series. pp. 773 .

Bilby, B.A., Eshelby, J.D. and Kundu, A.M. (1975). The change in shape of a viscous ellipsoidal region embedded in a slowly deforming matrix having a different viscosity. Tectonophysics, v.28, pp.265-274.

Birch, \(F\) (1960). The velocity of compressional waves in rocks to 10 kilobars. J. Geophys. Res., v.66, pp.2199-2224.

Blay, P., Cosgrove, J.W. and Summers, J.M. (1977). An experimental investigation of the development of structures in multilayers under the influence of gravity. J. Geol. Soc. Lond., v.133, pp.329-342.

Borradaile, G.J. (1981). Particulate flow of rock and the formation of cleavage. Tectonophysics, 72, pp.305-321.

Bouchez, J.L. (1977). Plastic deformation of quartzites at low temperature in an area of natural strain gradient. Tectonophysics, 39, (1-3), pp.25-50.

Boullier, A.M. and Guegen, Y. (1975). SP-Mylonites: origin of some mylonites by superplastic flow. Contrib. Mineral. Petrol., v.50, pp.93-104.

Bowes, D.R. (1968). The absolute time scale and the subdivision of Precambrian rocks in Scotland. Geol. Für Stockholm Fbrh. v.90, pp.175-188.

Bowes, D.R. (1969). The Lewisian of Northwest Highlands of Scotland. In Kay, M. (ed), North Atlantic - Geology and continental drift, a symposium. Mem. Amer, Assoc, Petrol. Geol. v.12, pp.575-594.

Box, H.J., Davies, D. and Swann, W.H. (1969). Non-Linear Optimization Techniques. Monograph No.5. Oliver and Boyd. pp. 60.

Brohnstein, I. and Semandaiev, K. (1971). Manual de Matemáticas para Ingenieros y Estudiantes. Editorial Mir, Moscú, pp. 696.

Bryant, B. and Reed, J.C.,Jr. (1969). Significance of lineation and minor folds near major thrust faults in the southern Appalachians and the British and Norwegian Caledonides. Geol. Mag., v. 106 (5), pp.412-429.

Burns, K.L. and Spry, A.H. (1969). Analysis of the shape of deformed pebbles. Tectonophysics, v.7, no.3, pp.177-196.

Cadell, H.M. (1888). Experimental Researches in Mountain Building. Trans. Roy. Soc: Edin., vol. xxxv, p. 337.

Carreras, J., Estrada, A., and..White, S. (1977). The effect of folding on the c-axis fabrics of a quartz mylonite. In G.S. Lister, P.F. Williams, H.J. Zwart and R.J. Lisle (eds). Fabrics, Microstructures and Microtectonics. Tectonophysics, v.39, pp.3-24.

Chapman, T.J., Milton, N.J. and Williams, G.D. (1979). Shape fabric variations and deformed conglomerates at the base of the Laksefjord Nappe, Norway. J. Geol. Soc. Lond., vol.136, pp.683-691.

Chapple, W.M. (1968). A mathematical theory of finite amplitude folding. Geol. Soc. Am. Bull., v.79, pp.47-68.

Chapple, W.M. (1978). Mechanics of thin;skinned fold- and thrustbelts. Geol. Soc. of America Bulletin, v.89, pp.1189-1198.

Chayes, F. (1956). Petrographic modal analysis. J. Wiley and Sons Inc. 113pp.

Christie, J.M., McIntyre, D.B. and Weiss, L.E. (1954). Appendix to McIntyre, D.B. The Moine Thrust. Proc. Geol. Assoc. v.65, pp.219-220.

Christie, J.M. (1955). Tectonic Phenomena Associated with the PostCambrian Movements in Assynt. Advancement of Science, v.12, pp.572-573.

Christie, J.M. (1963). The Moine Thrust zone in the Assynt region, Northwest Scotland. Univ. California pub. Geol. Sci: 40, pp.345-419.

Clark, S.P. (ed) (1966). Handbook of Physical Constants, rev. edn. Geol. Soc. Amer. Memoir 97.

Cloos, E. (1947). Lineation. Geol. Soc:.Amer. Memoir, 18, 122pp.
Cobbold, P.R. and Quinquis, H. (1980). Development of sheath folds in shear regimes. J. Struct. Geol. v.2, nal/2 pp.119-126.

Coble, R.L. (1963). A model for boundary diffusion controlled creep in polycrystaliine materials. J. Appl. Phys. v.34, pp.1679-1682.

Coward, M.P. (1980). The Caledonian Thrust and Shear Zones of NW Scotland. J. Struct. Geol. v.2, no.1-2, pp.11-18.

Coward, M.P. and Kim. J.H. (1981). Strain within Thrust Sheets. Thrust and Nappe Tectonics. 1981 (Ed by McClay, K.R. and Price, N.J.) The Geological Society of London, pp.275-292.

Dahlstrom, C.D.A. (1970). Structural Geology in the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, v. 18 (3), pp.332-406.

DeHoff, R.T. (1962). The determination of the size distribution of ellipsoidal particles from measurements made on ramdom plane sections. Transactions of the Metallurgical Society of AIME, v.224, pp.474-477.

Delesse, A. (1848). Pour determiner la composition des roches. Ann. des Mines, v.13, fourth series, pp.379-388.

DePaor, D.G. (1980). Some limitations of the \(R f / \phi\) technique of strain analysis. Tectonophysics, v.64, T29-T31.

DePaor, D.G. (1981). Strain analysis using deformed line distributions. Tectonophysics 73, T9-T14.

Dewey, J.F. (1969). Structure and sequence in paratectonic British Caledonides. In M. Kay, (Editor), North Atlantic, Geology and Continental Drift. Am. Assoc. Pet. Geol. Memoir 12, pp.309-335.

Dixon, L.C.W. (1972). Non-Linear Optimization. The English Univ. Press Ltd. pp.213.

Douglas, R.J.W. (1950) Callum Creek, Langford Creek, and Gap map areas Alberta. Geological Survey of Canada Menoir 255, pp.1-93. (no. 2493).

Dubey, A.K. (1977). An experimental and geological field study of flexural slip folds in multilayered materials. Unpublished PhD Thesis, University of Leeds.

Dunnet, D. (1969). A technique of finite strain analysis using elliptical particles. Tectonophysics 7, (2), pp.117-136.

Dunnet, D and Siddans, A.W.B. (1971). Non-random sedimentary fabrics and their modification by strain. Tectonophysics 12, pp. 307-325.

Elliott, D. (1965). The Quantitative Mapping of Directional Minor Structures. J. Geol., v.73, pp.865-880.

Elliott, \(D_{a} .(1970) . \therefore\) Determination of finite strain and initial shape from deformed elliptical objects. Geol. Soc. of America Bulletin, v.81, p.2221-2236.

Elliott, D. (1973). Diffusion Flow Laws in Metamorphic Rocks. Geol. Soc. of America:Bulletin, v.84, pp.2645-2644.

Elliott, D. (1976-a) The Motion of Thrust Sheets. Journal of Geophysical Research, v.81 (5), pp.949-963.

Elliott, D. (1976-b) The energy balance and deformation mechanism of thrust sheets. Phil. Trans. R. Soc. Lond. A. v.283, pp.289-312.

Elliott, D. and Johnson, M.R.W. vs Price, N., Cosgrove. J.W. and Summers, J.M. (1978). Discussion on structures found in Thrust belts. J. Geol. Soc. Lond. v.135, pp.259-260.

Elliott, D. and Johmson, M.R.W. (1980). Structural Evolution in the Northern Part of the Moine Thrust Belt. Trans. Roy. Soc. Edin.

Escher, A. and Watterson, J. (1974). Stretching fabrics, fold and crustalshortening. Tectonophysics, 22, pp.223-231.

Escher, A., Escher, J.C. and Watterson, J. (1975). The Reorientation of the Kangamint Dyke Swarm, West Greenland. Can. J. Earth. Sci., 12, pp.158-173.

Etheridge, M.A. and Wilkie, J.C. (1979-a). The Geometry and Microstructure of a range of QP-mylonite zones - a field test of the recrystallized grainsize palaeopiezometer. Proceedings of Conference VIII. Analysis of actual fault zones in Bedrock. US Geol. Survey, Menlo Park, California, pp.448-504.

Etheridge, M.A. and Wilkie, J.C. (1979-b). Grainsize reduction, grain boundary sliding and the flow strength of mylonites. In: T.H. Bell and R.H. Vernon (Eds), Microstructural Processes during deformation and metamorphism. Tectonophysics 58 pp.159-178.

Evans, A.G. and Langdon, T.G. (1976). Structural Ceramics Prog. Mater. Sci. v.21, pp.171-441.

Exner, H.E. (1972). Analysis of grain and particle size distributions in metallic materials. International Metallurgical Reviews, v.17, pp.25-42.

Fisher, R.A. (1953). Dispersion on a sphere. Proc. Roy. Soc. Lond. A217, pp.295-305.

Fleitout, L. and Froidevaux, C. (1980). Thermal and mechanical evolution of shear zones. J. Struct. Geol. v.2, no.1-2, pp.165-173.

Flinn, D. (1956). On the deformation of the Funzie Conglomerate, Fetlar, Shetland. J. Geol. v.64, pp.480-505.

Flinn, D. (1962). On folding during three-dimensional progressive deformation. Geol. Soc. London, Quart. J., v.118, pp.385-433.

Fry, N. (1979). Ramdom point distributions and strain measurement in rocks. Tectonophysics, 60, pp.89-105.

Fry, N. (1979). Density distribution techniques and strained length methods for determination of finite strains. J. of Struct. Geol, v.1 (3), pp.221-229.

Gay, N.C. (1968 a). The motion of rigid particles embedded in a viscous fluid during pure shear deformation of the fluid. Tectonophysics, 5 (2), pp.81-88.

Gay, N.C. (1968 b). Pure shear and simple shear deformation in inhomogeneous viscous fluids. 1. Theory. Tectonophysics, 5 (3), pp.211-234.

Gay, N.C. (1968 c). Pure shear and simple shear deformation in inhomogeneous viscous fluids. 2. The determination of the total finite strain in a rock from objects such as deformed pebbles. Tectonophysics. 5 (4), pp.295-302.

Gay, N.C. (1969). The analysis of strain in the Barberton Mountain Land, Eastern Transvaal, using deformed pebbles, J. Geol. v.77, pp.377-396.

Geikie, A. (1884). The Crystaline Rocks of the Scottish Highlands. Nature, pp.29-31. (Nov 13, 1884).

Gifkins, R.C. (1975). A theory for creep involving grain-boundary sliding. Acta metall.

Gifkins, R.C. (1976). Grain-Boundary Sliding and its accommodation furing creep and superplasticity. Metallurgical Transactions, A, v.7A, pp.1225-1232.

Gifkins, R.C. (1977). The effect of Grain size and Stress upon grainboundary sliding. Metallurgical Transactions; A, v.8A, pp.1507-1516.

Goetze, C. (1975). Sheared Lherzolites: From the point of view of rock mechanics. Geology, v.3, p..172-173.

Gray, D.R. (1979). Geometry of crenulation-folds and their relationship to crenulation cleavage. J. Structural Geology, v.1, pp.187-206.

Grifiths, J.C. (1967). Scientific method in analysis of sediments: McGraw-Hill Inc., New York, 508p.

Griggs, D.T., (1967). Hydrolitic weakening of quartz and other silicates. Geophys. J. R. Astron. Soc. 14, pp.19-31.

Grocott. J. (1977). The relationship between Precambrian shear belts and modern fault systems. J. Geol. Soc. Lond., vol.133, pp.257-262.

Grocott, J. (1979). Shape fabrics and superimposed simple shear strain in a precambrian shear belt, W Greenland... J. Geol. Soc. Lond. v.136, pp.471-488.

Hallam, A. and Swett, K. (1966). Trace fossils from the Lower Cambrian Pipe Rock of the north-west Highlands. Scott. J. Geol. 2 (1), pp.101-106.

Hanna, S.S. and Fry, N. (1979). A comparison of methods of strain determination in rocks from southwest Dyfed (Pembrokeshire) and adjacent areas. J. of Struc. Geo. v.1 (2), pp.155-162.

Hansen, E. (1971). Strain Facies, Springer-Verlag, New York, 207pp.
Harbaugh, J.W. and Boham-Carter, G. (1970). Computer Simulation in Geology: J. Wiley and Sons Inc., New York, pp. 575.

Herring, C. (1950), Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. v.21, pp.437-445.

Hertzberg, R. (1976). Deformation and Fracture Mechanics, John Wiley and Sons, 604pp.

Hilliard, J.E. (1962). The counting and sizing of particles in transmission microscopy. Trans. AIME., v.224, p.906.

Hobbs, E., Means, W.D. and Williams, P.F. (1976). An Outline of Structural Geology. J. Wiley and Sons Inc., pp.571.

Hossack, J.R. (1968). Pebble deformation and thrusting in the Bygdin area (Southern Norway). Tectonophysics 5 (4), pp.315-339.

Hossack, J.R. (1978). The correction of stratigraphic sections for tectonic finite strain in the Bygdin area, Norway. J. Geol. Soc. Lond. v.135, pp.229-241.

Hubert, N.K. and Rubey,W.W. (1959). Role of fluid pressure in mechanics or overthrust faulting. Geol. Soc. Amer. Bull. v.70, pp.115-206.

Hudleston, P.T. (1969). The Morphology and Development of Folds. Unpublished PhD Thesis, University of London, 356pp.

Hudeston, P.J. (1973 a). The analysis and interpretations of minor folds developed in the Moine Rocks of Monar, Scotland. Tectonophysics 17, pp.89-132.

Hudleston, P.J. (1973 b). Fold morphology and some geometrical implications of theories of fold development. Tectonophysics 16, pp.1-46.

Huddleston, P.J. (1973.c). An analysis of 'single+layer' folds developed experimentally in.viscous media. Tectonophysics 16 , pp.189-214.

Hull, D. (1965). Introduction to dislocations. Oxford: Pergamon.
Hutchinson, C.S. (1974). Laboratory handbook of petropraphic techniques. Wiley, New York. 527pp.

Hutton, D.H.W. (1979). The strain history of a Dalradian slide: using pebbles with low fluctuations in axis orientation. Tectonophysics 55, pp.261-273.

Johnson, M.R.W. (1957). The structural geology of the Moine Thrust zone in Coulin forest, Western Ross. Quant. J. Geol. Soc. Lond. 113, pp.241-270.

Johnson, M.R.W. (1960). The structural history of the Moine Thrust Zone at Lochcarron, Western Ross. Trans. Roy. Soc. Edin. v.LXIV (7), 1960, pp.139-168.

Johnson, M.R.W. (1967). Mylonite Zones and Mylonite Banding. Nature pp.246-247.

Kerrich, R. and Allison, I. (1978). Flow mechanisms in rocks: Microscopic and mesoscopic structures, and their relation to physical conditions of deformation in the crust. Geoscience Canada, v. 5 (3), pp.109-118.

Knipe, R. (1980). Distribution of impurities in deformed quartz and its implications for deformation studies. Tectonophysics v.64, T11-T18.

Kohlstedt, D.L. and Goetze, C. (1974). Low stress, high temperature creep in olivine single crystals. J. Geophys. Res., v.79, pp.2045-2051.

Kohlstedt, D.L., Goetze, C. and Durham. W.B. (1976). Experimental deformation of single crystal olivine with application to flow in the mantle, in The Physics and Chemistry of Minerals and Rocks, (ed. R.G.H. Sorens), J. Wiley and Sons Ltd, London, pp.35-49.

Kohlstedt, D.L., Cooper, R.F., Weathers, M.S. and Bird, J.M. (1979). Paleostress analysis of deformation - induced microstructures: Moine Thrust Zone and Ikertog Shear Zone. Proceedings of Conference VIII. Analysis of actual fault zones in Bedrock. US Geol. Survey, Menlo Park, California, pp.394-425.

Krumbein, W.C. (1935). Thin section Mechanical Analysis of Indurated Sediments. J. Geol. v.43, pp.482-496.

Kvale, A. (1948). Petrologic and structural studies in the Bergsdalen Quadrangle, Western Norway, Part II: Structural Geology. Bergens Mus. Arb., 1946-7. Naturn. Rekke 1, pp.1-255.

Kvale, A. (1963). Linear structures and their relation to the movement in the caledonides of Scandinavia and Scotland. Geol. Soc. Lond. Quart. J. 109, pp.51-73.

Lapworth, C. (1883 a). The Secret of the Highlands. Geol. Mag. 10, pp.120-128.

Lapworth, C. (1883'b). The Secret of the Highlands. Geol. Mag. v. 5 (10), pp.191-199.

Lapworth, C. (1883 c). The Secret of the Highlands. Geol. Mag. v. 10 (8). pp.337-343.

Lapworth, C. (1884). On the stratigraphy and metamorphism of the rocks of the Durness-Eriboll district. Proc. Geol. Ass. v.8, pp.438-442.

Lapworth, C. (1885 a). On the close of the Highland Controversy. Geological Magazine, v. 2 (3), pp.97-106.

Lapworth, C. (1885 b). The Highland Controversy in British Geology: its causes, course and consequences. Nature, Oct.8, 1885. pp.558-559.

Lindstrom, M. (1961). Beziehungen zwischen Klein faltenurgenzen und andenn Gefugemertanalen in den Kaledoniden Skandinaviens. Geol. Rdssh., v.51, pp.144-180.

Lisle, R.J. (1977). Estimation of the tectonic strain ratio from the mean skape of deformed elliptical markers. Geol. Mijnbouw. 56, pp.140-144.

Loudon, T.V.(1964). Computer Analysis of Orientation Data in Structural Geology: Tech. Report. Geog. Branch. Off. Naval Res., O.N.R.Task No.389-135, Contr. No. 1228 (26), No.13, pp.1-130.

McClay, K.R. (1977). Pressure solution and coble creep in rocks and minerals: a review. J. Geol. Soc. Lond. v.134, pp.57-70.

McClay, K.R. and Coward, M.P. (1981). The Moine Thrust Zone. An overview. Thrust and Nappe Tectonics 1981. The Geological Society of London. pp.241-260.

McIntyre, D.B. (1954). The Moine Thrust - its discovery, age and tectonic significance.. Proc. Geol. Assoc., v. 65 (3), pp.203-223.

McLaren;, A.C., Turner, R.G., Boland, J.N. and Hobbs, B.E. (1970). Dislocation structure of the deformation lamellae in synthetic quartz: a study by electron and optical microscopy. Contr. Min. and Petr. 29, pp.104-115.

McLeish, A. (1969). Strain analysis of deformed pipe rock in the Moine Thrust Zone, Northwest Scotland. Tectonophysics, v.12, pp.469-503.

McLeish, A.J. (1971).- Strain analysis of deformed Pipe Rock in the Moine Thrust Zone, Northwest Scotland. Tectonophysics, 12, pp.469-503.

Mardia, K.V. (1972). Statistics of Directional Data. Academic Press Inc. (London) Ltd. pp. 357.

Marjoribanks, R.W. (1976). The relation between microfabric and strain in a progressively deformed quartzite sequence from central Australia. Tectonophysics, 32, pp.269-293.

Matthews, P.E., Bond, R.A.B. and Van den Berg, J.J. (1974). An algebraic method of strain analysis using elliptical markers. Tectonophysics, 24, pp.31-67.

Mendum, J.R. (1976). A strain study of the Strathan Conglomerate, Northwest Sutherland, Scott. J. Geol. v.12, no.2, pp.135-146.

Mercier, J.C.C., Anderson, D.A. and Carter, N.L. (1977). Stress in the lithosphere: Inferences from steady state flow of rocks. Pageogh, v.115, pp.199-226.

Miller, D.M. and Oertel, G. (1979). Strain determination from the measurement of pebble shapes: a modification. Tectonophysics, 55, T11-T13.

Minnigh, L.D. (1979). Structural analysis of sheath-folds in a metachert from the Western Italian Alps. J. of Struct. Geo1. v.1 (4), pp.275-282.

Milton, N.J. (1980-a). Determination of the strain ellipsoid from measurements on any three sections: Tectonophysics, 64, T19-T27.

Milton, N.J. (1980-b). Thrusts and related structures in the Scandanavian Caledonides. PhD Thesis; University of Wales, Cardiff.

Mitra, S. (1978). Microscopic deformation mechanisms and flow laws in quartzites within the South Mountain Anticline. Journal of Geology, v.86, pp.129-152.

Mitra, G. (1978). Ductile deformation zones and mylonites: the mechanical processes involved in deformation of crystalline basement rocks. American Journal of Science, v.278, pp.1057-1084.

Mittlefehldt, N.H. and Oertel, G. (1980). Strain determination from measurement of pebble shapes: the special case of a bent foliation. Tectonophysics, v.67, T1-T7.

Miyashiro, A. (1965). Metamorphism and metamorphic belts. George Allen and Unwin Ltd, 492p.

Mohamed, F.A. and Langdon, T.G. (1974). Deformation mechanism maps based on grain size. Metallurgical Transactions, v.5, pp.2339-2344.

Mukhopadhyay, D. (1965). Effects of compression on Concentric Folds and mechanism of similar folding. J. Geol. Soc. India, v.6, pp.27-41.

Mukhopadhyay, D. (1973). Strain measurements from deformed quartz grains in the slaty rocks from the Ardennes and the northern Eifel. Tectonophysics, 16, pp.279-296.

Mukhopadhyay, D. (1980). Determination of finite strain from grain. centre measurements. Tectonophysics, 67-T9-T12.

Nabarro, F.R.N. (1948). Deformation of crystals by the motion of single ions. In Report of a conference on the strength of solids. Phys. Soc. Lond. pp.75-90.

Nadai, A. (1963). Theory of Flow and Fracture of Solids. McGrawHill book company, New York, 1950.

Nadir, P.Y.,(1980). The Structure and Deformation History of the Cambro-Ordovician Sediments of the Moine Thrust Zone near Loch Eriboll, Northwest Scotland. PhD Thesis, University of Leeds (unpublished).

Nicol (1856). Quartzites, etc. of NW Scotland. Proceedings of the Geological Society, VXIII (part 1), pp.17-39.

Nicol (1860). NW Highlands. Proceedings of the Geological Society XVII (part 1) pp.85-113.

Nicolas, A. and Boudier, F. (1975). Kinematic interpretation of folds in alpine-type peridotites. Tectonophysics, 25, pp.233-260.

Nicolas, A. and Poirier, J.P. (1976). Crystalline placticity and solid state flow in metamorphic rocks. J. Wiley and Sons, Ltd 444p.

Nye, J.F. (1952). A comparison between the theoretical and the measured long profile of the Unteraar glacier. J. Glaciol. 2, pp.103-107.

Oertel, G. (1978). Strain determination from the measurement of pebble shapes. Tectonophysics, 50, T1-T7.

Oleson, N.O. (1971). The relative chronology of folds phases, metamorphism and Thrust movements in the Caledonian Troms, North Norway. Nor. Geol. Tidsskr., v.51, pp.355-377.

Park, R.G. (1970). Observations on Lewisian Chronology. Scott. J. Geol. 6 (4), pp.379-399.

Peach, B.N. and Horne, J. (1884). Report on the Geology of the NorthWest of Sutherland. Nature: Nov 13, 1994, pp.31-35.

Peach, B.N. and Horne, J.(1885). The geology of Durness and Eriboll with special reference to the Highland Controversy. Nature, Oct. 8, 1885, p.558.

Peach, B.N., Horne, J., Gunn, W., Clough, C.T., Hinxmann,. L.W. and Teale, J.J.H. (1907). The geological structure of the Northwest Highlands of Scotland. Mem. Geol. Surv. UK.

Peach, B.N. and Horne,.J. (1930). Chapters on the geology of Scotland. Oxford.

Peach, C.J. and Lisle, R.J. (1979). A FORTRAN IV program for the analysis of tectonic strain using deformed elliptical markers. Computers and Geosciences, v.5, pp.325-334.

Pettijohn, F.J. (1957). Sedimentary Rocks (2nd edit) Harper and Brothers, New York, 718pp.

Phemister, J.C. (1960). British Regional Geology: The Northern Highlands (3rd Edn.) H.M.S.O., London, p. 104.

Phillips, F.C. (1937). A fabric study of some Moine Schists and associated rocks. Geol. Soc. Lond., Quart. J. v.93, pp.581-620.

Phillips, F.C. (1955). Structural Petrology and Problems of the Caledonides. Introduction Advancement of Science. pp.511-572.

Phillips, F.C. (1945). The micro-fabric of the Moine Schists. Geol. Mag., v.82, pp.205-220.

Pickering, F.B. (1976). The Basis of Quantitative Metallography. Institute of Metallurgical Technicians, Monograph no. 1. pp.1-55.

Poirier, J.P. and Guillopé, M. (1979). Deformation induced recrystallization of minerals. Bull. Minerál, 102, pp.67-74.

Post, R.L. (1973). The Flow Laws of Mt Burnett Dunite. PhD Thesis University of California, Los Angeles, 272p.

Price, N.J. (1975). Rates of deformation. J. Geol. Soc. Lond. v.131. pp.553-575.

Price, N.J. (1977). Aspects of gravity tectonics and the development of listric faults. J. Geol. Soc. Lond., v.133, pp.311-327.

Price, R.A. and Mountjoy, E.W. (1970). Geologic structure of the Canadian Mountains between Bow and Athabasca Rivers: progress report, Geol. Ass. Can. Spec. Pap. 6, pp.7-25.

Quinquis, H., Andress, C.L., Brunn; J.P. and Cobbold, P.R. (1978). Intensive progressive shear in Ile and Groix blueschists and compatibility with subduction or obduction. Nature, v.273, pp.43-45.

Raj, \(R\) and Ashby, M.F...(1971). On grain boundary sliding and diffusional creep. Metallurgical Transactions, v.2, pp.1113-1127.

Raleigh, C.B. and Kirby, S.H. (1970). Creep in the Upper Mantle. Min. Soc. Am. Spec. Pap. v.3, pp.113-121.

Ramberg, H. (1980). Diapirism and gravity collapse in the Scandinavian Caledonides. J.r.Geol. Soc. London. v.137, pp.261-270.

Ramberg, \(H\). (1981). The role of gravity in orogenic belts. In McClay and Price (ed). Thrust and Nappe Tectonics. The geolocical Society of London. pp.125-140.

Ramsay, J.G. (1967). Folding and Fracturing of rocks. McGraw Hill, Inc. 568 p .

Ramsay, J.G. and Graham, R.H. (1970). Strain variation in shear belts. Canadian Journal of Earth Sciences, 7, pp.786-813.

Ramsay, J.G. and Wood, D.S. (1973). The geometric effects of volume change during deformation processes. Tectonophysics 13, pp.263-277.

Ramsay, J.G. (1980). Shear zone geometry: a review. J. Struct. Geol. v.2, no.1-2, pp.83-100.

Rathbone, P.A., Coward, M.P. and Harris, A.L. (in press). Cover and basement: a contrast in style and fabrics.

Rhodes, S. and Gayer, R.A. (1977). Non-cylindrical folds, linear structures in the X direction adn mylonite developed during translation of the Caledonian Kalak Nappe Complex of Finmark. Geol. Mag. v. 114 (5), pp.329-341.

Rich, J.L. (1934). Mechanics of low-angle overthrust faulting as illustrated by Cumberland Thrust block, Virginia, Kentucky and Tennessee. Bulletin of the American Assoc. of Petroleum Geologists, v. 18 (12), pp.1684-1596.

Roberts, J.L. and Sanderson, D.J. (1974). Oblique fold axes in the Dalradian rocks of the Southwest Highlands. Scott. J. Geol. v. 9 (4), pp.281-296.

Roberts, B. and Siddans, A.W.B. (1971). Fabric studies in the Lewyd Mawr Ignimbrite, Caernarvonshire, North Wales. Tectonophysics, 12, pp.283-306.

Roble, R.A., Betehke, P.M., Toulmin, M.S., Edwards, J.L. (1966). Handbook of Physical Constants. The Geol. Soc. of Am. 97pp.

Rodgers, D.F. and Adams, J.A. (1976). Mathematical Elements for Computer Graphics. McGraw Hill book company. 240p.

Rosiwal, A. (1898). Uber geometrische Gesteinrsanalysen, usw, Verhaudl. der K.K. gerlogischem Reischanstalt, 5/6, p. 143.

Ross, J.V., Avelallement, H.G. and Carter, N.L. (1980). Stress dependence of recrystallized-grain and subgrain size in olivine. Tectonophysics, 70, pp.39-61.

Ross, J.V., Mercier, J.C.C., Avelallement, H.G., Carter, N.L. and Zimmerman, J. (1980). The Vourinos Ophiolite Complex, Greece: The Tectonite suite. Tectonophysics. 70, pp.63-83.

Rutter, E.H. (1976). The kinetics of suck deformation by pressure solution. Phil. Trans. R. Soc. Lond. A. 283, pp.203-219.

Sander, B. (1930). Gefugekùnde der Gesteine: Springer, Vienna, 352pp.
Sanderson, D.J. (1973). The development of fold axes oblique to the regional trend. Tectonophysics, v.16, pp.55-70.

Sanderson, D.J. (1976). The superposition of compaction and plane strain. Tectonophysics. 30, pp.35-54.

Sanderson, D.J. (1977). The analysis of finite strain using lines with an initial random orientation. Tectonophysics 43, pp.199-211.

Seymour, D.B. and Boulter, C.A. (1979). Tests of computerised strain analysis methods by the analysis of simulated deformation of natural unstrained sedimentary fabrics. Tectonophysics 58, pp.221-235.

Shand, S.J. (1916). A recording micrometer for rock analysis. J. Geol. v.24, pp394-403.

Shimamoto, T. and Ikeda. Y. (1976). A simple algebraic method for strain estimation from deformed ellipsoidal objects. 1. Basic Theory. Tectonophysics 36, pp.315-337.

Sibson, R.H. (1977). Fault rocks and fault mechanisms. J. Geol. Soc. Lond. Vol. 133, pp.191-213.

Siddans, A.W.B. (1971). The origin of Slaty Cleavage. PhD Thesis University of London, 555p.

Siddans, A.w.B. (1980'a). Analysis of three-dimensional homogeneous, finite strain using ellipsoidal objects. Tectonophysics 64, T1-16.

Siddans, A.W.B. (1980 b). Elliptical markers and non-coaxial strain increments. Tectonophysics 67, T21-T25.

Siddans, A.W.B. (1981). Some limitations of the Rf/ \(\phi\) technique of strain analysis - discussion. Tectonophysics 72, pp.155-158.

Soper, N.J. (1971). The earliest Caledonian structures in the Moine Thrust belt. Scott. J. Geol. v.7, pp.241-247.

Soper, N.J. and Barber, A.J. (1979). Proterozoic folds on the Northwest Caledonian Foreland. Scott. J. Geol., v. 15 (1) pp.1-11.

Soper, N.J. and Brown, P.E. (1971). Relationship between metamorphism and migmatization in the northern part of the Moine Nappe. Scott. J. Geol. v.7.(4), pp.305-325.

Soper, N.J. and Wilkinson, P. (1975). The Moine Thrust and Moine Nappe at Loch Eriboll, Sutherland. Scott.. J. Geol. 11 (4), pp.339-359.

Spektor, A.G. (1950). Distribution Analysis of Spherical Particles. in Non-Transparent Structures. Zavod. Lab. v.16, no.2, p. 173 .

Squires, R.L., Weiner, R.T. and Phillips, M (1963). Grain boundary denuded zones in a magnesium - \(\frac{1}{2}\) wt\% zirconium alloy: Hour. Nuclear. Materials, v.8, pp.77-80.

Stabler, C.L. (1968). Simplified Fourier analysis of fold shapes. Tectonophysics \(\underline{6}\), pp.343-350.

Stauffer, M.R. (1967). Tectonic strain:in some volcanic sedimentary and intrusive rocks near Camberra, Australia: a comparative study in deformation fabrics. New Zealand. J..Geol. and Geophys. v.10, pp.1079-1108.

Stocker, R.L. and Ashby, M.F. (1973). On the Rheology of the Upper Mantle. Reviews of Geophysics and Space Physics, v. 11 (2) pp. 391-426.

Sutton, J. and Watson, J. (1951). The pre-torridonian metamorphic history of the Loch Torridon and Scourie areas in the North-West Highlands, and its bearing on the chronological classification of the Lewisian: Q. J. Geol. Soc. Lond. v. 106 (for 1950), pp.241-307.

Sutton, J. and Watson, J. (1953). The supposed Lewisian inlier of Scardroy, Central Rosshire, and its relations with the Surrounding Moine rocks. Q. J. Geol. Soc. Lond. v.108, (for 1952), pp.99-126.

Sutton, J. and Watson, J. (1962). An Interpretation of Moine-Lewisian Relations in Central Rosshire. Geol. Mag. v.XCIX (6), pp.527-541.

Takeuchi, S. and Argon, A.S. (1976). Steady state creep of single phase crystalline matter at high temperature. J. Mater. Sci. II, pp.1542-1566.

Talbot, C.J. (1979). Fold trains in a glacier of salt in southern Iran. J. Struct. Geol. v.1, no.1, pp.5-18.

Tan, B.K. (1976). Oolite deformation in Windgällen, Canton, Uri, Switzerland. Tectonophysics, 31, pp.157-174.

Tullis, J., Christie, J.H. and Griggs, D.T. (1973). Microstructures and preferred orientations of experimentally deformed quartzites. Geol. Soc. of America Bulletin, v.84, pp.297-314.

Tullis, J.A. (1979). High Temperature Deformation of Rocks and Minerals. Reviews of Geophysics and Space Physics, v.17.(6), pp.1137-1154.

Turner, F.J. and Wiess, L.E. (1963). Structural Analysis of Metamorphic Tectonites. McGraw Hill book company. Inc. pp. 545.

Twiss, R.J. (1977). Theory and Applicability of Recrystallized Grain Size Paleopiézometer.Pageoph., v.115, pp.227-244.

Underwood, E.E. (1970). Quantitative Stereology. Addison-Wesley Publishing Comp. 274-p.
van Breemen, O., Aftalion, M. and Johnson, M.R.W. (1979). Age of the Loch Borrolan complex, Assynt, and late movements along the Moine Thrust Zone. J. Geol. Soc. Lond. 136, pp.489-495.

Vauchez, A (1980). Ribbon texture and deformation mechanisms of quartz in a mylonitized granite of Great Kabylia (Algeria). Tectonophysics. 67, pp.1-12.

Vehoogen, J., Turner, J., Weiss, L.E., Wahrhaftig, C. and Fyfe, W.S. (1970). The Earth. An introduction to physical Geology. Holt, Rinehalt, and Winston, Inc. 750 pp .

Weathers, M.S., Bird, J.M., Cooper, R.F. and Kohlstedt, D.L. (1979) Differential stress determined'from deformation-induced microstructures of the Moine Thrust Zone. J. of Geophys. Research, v. 84 (B13), pp.7495-7509.

Weathers, M.S., Bird, J.M., Cooper, R.F. and Kohlstedt, D.L. (1979-b). Microstructure and stress analysis of the Mullen CreekNash Fork shear zone, Wyoming. Proceedings of conference VIII. Analysis of actual fault zones in Bedrock. US Geol. Survey, Menlo Park, California. pp.426-447.

Weeterman, J. (1957). Steady state creep of crystals. J. Appl. Phys. v.28, p. 1185.

Weiss, L.E. (1955). Fabric Analysis of a triclinic tectonite and its bearing on the geometry of flow in rocks. Am. J. Sci., v.253. pp.225-236.

Weiss, L.E. and McIntyre, D.B. (1957). Structural geometry of Dalradian rocks at Loch Leven, Scottish Highlands. J. Geol. 65, pp.575-602.

White, S. (1973a). Syntectonic recrystallization and texture development in quartz. Nature, v.2-4, pp.276-278.

White, S. (1973 b). The dislocation structures responsible for the optical effects in some naturally-deformed quartzes. Journal of Materials Sciencs 8, pp.490-499.

White, \(S\). (1973:c). Deformation lamellae in naturally deformed quartz. Nature Phys. Sci. 245, pp.26-28.

White, S. (1975). Estimation of strain rates from microstructures. J. Geol. Soc. Lond. v.131, pp.577-583.

White, S. (1976:a). The determination of deformation parameters from dislocation sub-structures in naturally deformed quartz. In: J.A. Venables (ed), Developments in electron microscopy and analysis. Academic Press, London, pp.505-509.

White, \(S\). (1976 b). The effects of strain on the microstructures, fabrics and deformation mechanisms in quartzites. Phil. Trans. R. Soc. Lond. A. 283, pp.69-86.

White, S. (1976, c). The role of dislocation processes during tectonic deformations, with particular reference to quartz. "The Physics and Chemistry of Minerals and rocks" - London, Wiley, pp.75-91.

White, S. (1977). Geological significance of recovery and recrystal1ization processes in quartz. Tectonophysics 39, pp.143-170.

White, S. (1979-a). Difficulties associated with paleo-stress estimates. Bu-1. Mineral, 102, pp.210-215.

White, \(S\) (1979-b). Paleo-stress estimates in the Moine Thrust Zone, Eriboll, Scotland. Nature, 280, pp.222-223.



Fig. 2.1b Eriboll Area


```


[^0]: 2.2.3-a.2 The 'Pipe-Rock'

 This lithology has its name (from Nicol 1856) derived from the vertical tubes which are mostly interpreted as infilifing of worm burrows - Skolithos and Monócraterion (Hallam and Swett, 1966). Apart from having cylinders normal to bedding, this sandstone contrasts with that previously described by presenting a better sorting, finer grain size and an absence of coarser feldspar grains. In thin section,

[^1]: - Section 3.2 briefly describes a model proposed by Sanderson (1973). It explains how data are collected, treated and the results obtained using this techinque.

[^2]: Deterministic variable is the one which contains no element of chance (eg a sine function). A Stochastic variable is that whose behaviour can be described statistically (eg Theoretical Distribution: Poisson

 Distribution of grain sizes etc ...).

[^3]: where $n_{m}=$ minimum sample size, $E_{R S}=$ fractional error of strain determination, γ_{i} is the angular deflection in the undeformed state and $\nu\left(\gamma_{i}\right)$, the variance of γ_{i}. They give an example where 39 markers are required on the condition that the fabric was derived from initially

[^4]: 5.2.4 Group B

 Samples belonging to this group are less numerous compared with those in the previous Group A, but they proved to contain

