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Abstract

Managing shared resources in multiprocessor real-time systems can often lead

to considerable schedulability sacrifice, and currently there exist no optimal

multiprocessor resource sharing solutions. In addition, the choice of task map-

ping and priority ordering algorithms also has a direct impact on the efficiency

of multiprocessor resource sharing. This thesis argues that instead of adopting

a single resource sharing protocol with the traditional task mapping (e.g., the

task allocation schemes that are based on utilisation only) and priority order-

ing (e.g., the Deadline Monotonic Priority Ordering) algorithms, the schedula-

bility loss for managing shared resources on multiprocessors can be effectively

reduced by applying a combination of appropriately chosen resource sharing

protocols with new resource-oriented task allocation schemes and a new search-

based priority ordering algorithm (which are independent from multiprocessor

resource sharing protocols and the corresponding schedulability tests).

In this thesis, a Flexible Multiprocessor Resource Sharing (FMRS) frame-

work is proposed that aims to provide feasible resource sharing, task allocation

and priority assignment solutions to fully-partitioned systems with shared re-

sources, where each resource is controlled by a designated locking protocol.

To achieve this, the candidate resource sharing protocols for this framework

are firstly determined with a new schedulability test developed to support the

analysis of systems with multiple locking protocols in use. Then, besides the

existing algorithms, three new resource-orientated task allocation schemes and

a search-based priority ordering algorithm are developed for the FMRS frame-

work as the task mapping and priority ordering solutions. The choices of which

locking protocols, task allocation and priority ordering algorithm should be

adopted to a given system are determined off-line via a genetic algorithm.

As demonstrated by evaluations, the FMRS framework can facilitate multi-

processor resource sharing and has a better performance than the traditional

resource control and task scheduling techniques for fully-partitioned systems.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, embedded systems can be found almost everywhere in life, from

portable household and consumer electronics, to heavy machinery in trans-

portation and manufacturing, and to large and complex control or commu-

nication systems in medical imaging, aircrafts and spaceships. According to

Burns and Wellings [26], approximately 99% of microprocessors are produced

for the use in embedded systems. A key characteristic of embedded systems

is the guaranteed timing constraints, where the correctness of the system de-

pends not only on the correctness of logical results being generated but also

on the time at which the results are delivered. Such systems are referred to

real-time systems.

As described in [26], “a real-time system is a system that is required to react

to stimuli from the environment (including the passage of physical time) within

time intervals dictated by the environment”. Failing to deliver the required

operation in time is recognised as a deadline miss, which could cause huge

economic loss or even casualties. For instance, when performing emergency

braking in a rapid moving vehicle, the anti-lock braking system (ABS) should

be activated within 30 milliseconds so that the vehicle is stable and under

control [5]. A typical ABS will apply and release the break pressure alternately

to prevent the wheels from locking up, where each operation must be finished

within a pre-defined time interval [92]. However, failing to do so within the

required period (i.e., deadline miss) can result in uncontrolled slipping and

prolonged braking distance, which directly jeopardise the safety of the driver

and passengers in the vehicle.
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Based on the sensitivity to the timing constrains, real-time systems are

categorised as either hard real-time or soft real-time systems. Hard real-time

systems are the ones where no deadline misses will be tolerated, that is, one

single deadline miss can directly lead to a total system failure and cause a

huge damage to the surrounding environment. The ABS equipped in modern

vehicles described above is a typical hard-real time system and is safety crit-

ical, where system failures endanger safety and health. In comparison, soft

real-time systems are able to cope with occasional deadline misses (but usually

with a maximum limit of misses within a specific period) while still functioning

correctly, for example multi-media systems or communication systems [25]. In

such systems, deadline misses can degrade the value of the results being gener-

ated, and hence, undermine the quality of the service. However, continuously

missing deadlines can still cause the failure of the system.

To satisfy such strict timing requirements, many real-time facilities and

techniques have been proposed to coordinate the concurrent executions of

tasks so that each task is able to meet its deadline i.e., it is schedulable.

In a real-time system, each task (i.e., a single thread of control) is assigned

with a priority to denote its level of urgency. During execution, a scheduling

algorithm is applied to designate the task that is allowed to execute at a given

time either based on the statically assigned priorities or dynamically assigned

ones according to the urgency of tasks (e.g., schedule the task with the closest

deadline). To obtain predictability of the system, which is a key characteristic

of real-time systems, schedulability tests are supported to provide a safe upper

bound of the response time for each task in the system during the worst-case

execution scenario. With the presence of shared resources, resource sharing

protocols must be adopted to provide mutually exclusive access as well as

safely bounded blocking time of each resource-accessing task.

The real-time technology for uniprocessor systems is reasonably matured

and has been well-practised for decades, and there exist multiple optimal al-

gorithms and techniques [37]. A scheduling algorithm is said to be optimal

if it can schedule all task sets that are schedulable by other algorithms [25].

Deadline Monotonic Priority Ordering [65] assigns static priorities (from high-

est to lowest) to tasks based on the non-decreasing order of deadlines and is

proved to be optimal, even with the presence of blocking [16]. Audsley’s Algo-

rithm [9] proposes a sophisticated approach for priority ordering and is optimal

in a wider range of application semantics, such as systems with offset release
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times [38]. As for the scheduling algorithm, Fixed Priority Scheduling [72]

and Earliest Deadline First scheduling [71] provide static (with predictions

before execution) and dynamic (by run-time decisions) scheduling approach

respectively and are well-understood. For schedulability test, Response Time

Analysis developed in [7] is a sufficient and necessary schedulability test for

uniprocessors that provides the worst-case response time of each task in a

given system, and is the fundamental work that inspires the development

of many advanced schedulability tests for more complex application seman-

tics [25]. The term sufficient and necessary indicates that passing the test

can guarantee that all deadlines will always be met, yet failing the test can

indeed result into deadline misses at certain point during execution [26]. In

addition, the Priority Ceiling Protocol [93] and the Stack Resource Proto-

col [11] are proved to be optimal resource sharing protocols for uniprocessor

systems that minimise the waiting time for resources and are supported with

matured schedulability analysis [25]. A comprehensive review of the real-time

technology in uniprocessor systems is presented in Section 2.1.

1.1.1 Transition from Uniprocessors to Multiprocessors

Over the last few years, the increasing demand of computation power has

led to a trend of the transition from uniprocessor to multiprocessor real-time

systems [23]. With more computing units i.e., processors, it is possible to con-

struct large and complex real-time systems, where multiple tasks can execute

in parallel, performing one complex computation or multiple independent op-

erations [103]. Moving to multiprocessor platforms is a significant advance in

the development of real-time systems. However, while obtaining more compu-

tation power and widening real-time applications, open issues and new chal-

lenges are raised with multiprocessor real-time systems. Due to the simple

fact that tasks now can execute in parallel, such a transition directly causes

the matured uniprocessor techniques to be inapplicable or breaks the optimal-

ity. Although huge progress has been made, the technology in multiprocessors

real-time systems is not as matured as that of uniprocessors [37].

With multiprocessors, scheduling tasks becomes significantly more compli-

cated than that of the uniprocessor platforms. The first problem encountered

is to map tasks into processors, where two fundamental approaches are avail-

able: global and partitioned schemes [107]. The global scheduling approach

dynamically assigns tasks to available processors when they become runnable
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during the execution of the system, and tasks are allowed to migrate between

processors during run-time. In contrast, a partitioned algorithm statically

allocates tasks into each processor before run-time, and migrations are not

allowed so that tasks will spend their entire lifetime in their designated pro-

cessors. The partitioned scheduling approach can be attractive as it divides the

multiprocessor systems into multiple uniprocessor systems to a certain extent

so that matured technology on uniprocessors can be applied. However, allocat-

ing tasks in partitioned systems is proved to be a typical NP-hard bin-packing

problem [66], where optimal solutions are infeasible. Later, more scheduling

schemes are proposed that combine the two fundamental approaches, such as

the semi-partitioned scheduling [24,59] and the clustered (i.e., hybrid) schedul-

ing [95]. Yet none of the existing algorithms can dominate others and each

approach has its own advantages and drawbacks. A detailed review of the

scheduling algorithms for multiprocessors is presented in Section 2.2.

Another major concern is to provide predictable mutually exclusive access

to shared objects. Resource sharing technology in multiprocessors is still de-

veloping with many open issues, and there exists no optimal solutions as the

agreed best practice [41]. This is due to the fact that multiple tasks can now is-

sue requests to a resource from more than one processors (i.e., global resource)

at the same time, which leads to prolonged blocking time as well as various

blocking effects. Matured uniprocessor locking protocols cannot be applied

directly as they can only manage local resources, which are accessed from one

processor. In addition, the essential differences of the dispatching schemes

for multiprocessor systems (e.g. global and partitioned schemes) increase the

difficulty of the development of a general-purpose protocol. Although various

multiprocessor resource sharing protocols have been proposed, each protocol

has its own advantages, drawbacks and limitations [3, 22]. Meanwhile, the

research towards the schedulability tests for multiprocessor locking protocols

is still in progress, where some of the multiprocessor locking protocols either

lack efficient schedulability analysis support or have analysis with considerable

pessimism [37]. In addition, the schedulability, availability and run-time over-

heads of the existing protocols in practice require further investigations [19].

Section 2.3 to 2.6 provide a detailed description of real-time resource sharing

technology for both uniprocessor and multiprocessor systems.

Summarising the above, this section provides a brief background of real-

time systems; introduces general terms and algorithms in both uniprocessor
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and multiprocessor real-time systems; and briefly presents the state of art in

multiprocessor systems with shared objects. The next section presents the aim

of this thesis with the description of the challenges and open issues in resource

control of multiprocessor real-time systems.

1.2 Thesis Aim

With the presence of shared objects, many factors can affect the performance

of a multiprocessor system. From the underlying hardware platform and the

processor architecture to the choice of scheduling algorithms, priority ordering

algorithms and resource sharing protocols, each factor can have an impact on

the schedulability of multiprocessor systems. The overall aim of this thesis is

to investigate the impact of the major factors to the schedulability of multi-

processor real-time systems with shared objects, and to propose solutions that

can effectively reduce the schedulability loss due to shared resources control

and to improve resource sharing performance on multiprocessors.

The resource sharing protocols specify the behaviours of tasks while ac-

cessing resources and can directly affect the schedulability of the system. Op-

timal solutions of resource sharing for multiprocessors may not be achievable,

where each protocol demonstrates varied performance with different applica-

tion semantics, such as the critical section length and the degree of resource

contention. For instance, the spin-based protocols can demonstrate better per-

formance than that of the suspension-based approaches if the length of critical

sections is no more than 20% of that of the total computation time [22]. Thus,

for an application with both short and long critical sections, applying either

approach can lead to certain degree of pessimism as some resources in the sys-

tem cannot be managed by their favourable synchronisation approach. How-

ever, with both approaches adopted, where each protocol only manages the

resources that it can benefit, such pessimism can be minimised with improved

schedulability.

With more than one resource sharing protocols adopted into a single sys-

tem, the schedulability tests must be modified to support the analysis with

the presence of multiple protocols. However, the existing schedulability tests

can only support the analysis of systems with one protocol adopted [37]. In

addition, as mentioned in Section 1.1.1, the research of schedulability analysis

with the presence of blocking is still under development. Although advanced
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analysis techniques have been proposed for some protocols, which can provide

less pessimistic results than that of the original tests [15, 106], some of the

existing protocols still either lack sufficient schedulability analysis support or

have an analysis with considerable pessimism, which can make the protocols

less preferable or even inapplicable in practice even with attractive character-

istics. In addition, the run-time overheads (e.g., the costs of context switch

from the underlying operating system and the overheads due to the proto-

col implementations) are often not taken into account in schedulability tests

as such costs varies with different run-time environments and is difficult to

bound. However, ignoring the run-time costs can lead to inaccurate schedu-

lability analysis, where an application that passes the schedulability test can

become unschedulable during execution, or a resource sharing protocol that is

favourable in theory but is much less attractive in practise due to its unanal-

ysed run-time overheads.

Besides the resource sharing protocols and the corresponding analysis, dif-

ferent choices of the scheduling approaches can result into various execution

scenarios of a given application, and hence, lead to varied performance while

managing shared resources. With the globally scheduled schemes, results de-

rived for uniprocessors are not applicable due to frequent task migrations.

Most importantly, the Response Time Analysis is difficult to apply in a global

scheme due to the lack of a precisely measured critical instant for an given

task set, which specifies the worst-case alignment of task releases and repre-

sents the maximum load of the system [25]. As for the partitioned approach,

the major challenge is to allocate tasks into each processor, which is a bin-

packing NP-hard problem so that heuristic approaches must be applied [25].

The traditional task allocation schemes assign tasks based on the task utili-

sation, such as the Worst-Fit and the First-Fit algorithms [12, 32]. However,

such task mapping approaches can not benefit resource sharing as tasks are

allocated without the knowledge of resource usage, which can lead to a large

number of global resources with prolonged waiting time. Recently, several

resource-aware task allocation schemes have been proposed, which attempt to

reduce the number of global resources so that the impact of resource sharing

can be reduced [62, 81]. Yet many of the resource-aware algorithms can only

be applied to their designated protocols, which limit the range of applica-

tions. Therefore, generic resource-orientated task allocation algorithms that

are independent from resource sharing protocols (i.e., can be adopted with any
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resource sharing protocol assumed) are more desirable in general.

Another major impact on the performance of resource control is the priority

ordering. As indicated in [25], optimal priority assignment algorithms are not

available for multiprocessor schedulability analysis. The Deadline Monotonic

Priority Ordering (DMPO) is optimal for uniprocessors, but its optimality is

not extended to the multiprocessor case. In Section 4.2.1, a formal proof is

presented to prove that the DMPO is not optimal in multiprocessor systems

with the presence of shared resources. On the other hand, the Optimality

Priority Assignment (OPA) by Audsley [9] is available, which is able to search

for a feasible solution as long as there exists one. However, this algorithm

can only be applied to its compatible analysis, such as the original analysis

of resource sharing protocols [11, 27]. For the schedulability tests where the

response time of a given task depends on the response time of potentially all

other tasks in the system (e.g., the analysis in [106]), Audsley’s algorithm is

not applicable due to its limitations in nature [38]. Therefore, a new search-

based priority ordering that is compatible with the schedulability analysis

where DMPO is not optimal and OPA is inapplicable could also improve the

schedulability of multiprocessor real-time systems with shared resources.

Combining the discussions above, this thesis aims to propose a Flexible

Multiprocessor Resource Sharing framework (FMRS) that provides feasible

solutions (if they exist) to resource sharing, task allocating and priority order-

ing issues for partitioned multiprocessor systems with shared resources under

the new schedulability analysis, which supports systems with the presence of

multiprocessor resource sharing protocols. For a given system, this framework

aims to designate an appropriately chosen resource sharing protocol for each

shared resource and to assign an allocation and a priority to each task that

can lead to a schedulable system (if achievable).

1.3 Thesis Hypothesis

This thesis addresses the hypothesis that:

With shared resources, the schedulability of a multiprocessor real-

time system can be undermined due to the considerable amount of

blocking time. Such schedulability penalty can be reduced by adopt-

ing (i) a combination of appropriately chosen resource sharing

protocols, where each protocol only controls certain resources; (ii)
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new resource-orientated task allocation schemes with full knowl-

edge of the usage and characteristics of each resource; and (iii)

a search-based priority assignment that is compatible with schedu-

lability tests where the Deadline Monotonic Priority Ordering is

not optimal and Audsley’s Optimal Algorithm cannot be applied.

The decisions of which resource sharing protocols, task allocation

scheme and priority ordering algorithm that can lead to a schedu-

lable system are made off-line by a genetic algorithm.

1.4 Success Criteria and Contributions

To facilitate the assessment of the work proposed in this thesis, a set of success

criteria (SC) are given. In order to support the thesis hypothesis given in

Section 1.3, the following need to be developed:

SC-1 A new schedulability analysis framework that can be applied to systems

with the presence of multiple resource sharing protocols, which includes

a response time analysis that can provide more accurate results than that

of their original analysis, and a pluggable run-time overheads analysis

that takes the run-time costs from both the underlying operating system

and the resource sharing protocols into account.

SC-2 Resource-oriented task allocation schemes that are independent from

the resource sharing protocols, where each task allocation scheme as-

signs tasks to processors based on certain characteristics of the shared

resources, such as the length of critical sections and the degree of re-

source contention.

SC-3 A new priority ordering algorithm that inherits the philosophy of the

OPA algorithm i.e., search-based, but is fully compatible with the schedu-

lability tests where DMPO is not optimal and OPA cannot be applied,

such as the one in [106] and the new analysis framework in SC-1.

SC-4 A flexible multiprocessor resource sharing framework that takes a sys-

tem as the input, and aims to search for a schedulable solution (with

the new schedulability analysis in SC-1) of resource sharing, priority or-

dering and task allocating issues to the given system, which include a

combination of locking protocols to control each resource in the system,
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a task allocation scheme that can benefit resource sharing and a feasi-

ble priority ordering decided via examining all the candidate solutions

provided by this framework.

SC-5 An evaluation with evidence that the resource sharing framework pro-

posed in SC-4 demonstrates at least equal or better schedulability than

that of the typical real-time resource control approaches, where one re-

source sharing protocol is adopted to manage all shared resources in a

system with the existing task allocation and priority ordering approaches

applied.

In addition to the success criteria listed above, additional contributions

have been made during the work of this thesis, listed below:

1. A genetic algorithm-based approach to search for feasible solutions among

the candidate resource sharing, task allocation and priority ordering so-

lutions of the multiprocessor resource sharing framework in SC-4.

2. A formal proof that the DMPO is not optimal in multiprocessor systems

with the presence of blocking.

3. A performance comparison of the candidate multiprocessor resource shar-

ing protocols [27, 48, 100] of the resource control framework. The can-

didate protocols are determined in Section 3.1 with the schedulability

analysis supported in Section 3.2.

4. An extension to the new schedulability analysis framework in SC-1 with

the support of the heterogeneous and nested resource accesses.

5. An investigation towards the correctness and efficiency of a helping-

based multiprocessor resource sharing protocol [27] in fully partitioned

systems. This protocol is one of the candidate protocols of the resource

control framework with details presented in Section 2.5.9.

6. An implementation of the candidate multiprocessor resource sharing pro-

tocols in a real-time operating system named LitmusRT [19, 30].

7. An evaluation of the run-time overheads of the candidate resource shar-

ing protocols under LitmusRT.
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1.5 Thesis Outline

The rest of the thesis is organised as follows:

Chapter 2 Presents a detailed review of the concepts and facilities of both

uniprocessor and multiprocessor real-time systems, including the real-

time system model, task scheduling approaches, resource control tech-

nology and schedulability analysis.

Chapter 3 Determines the candidate resource sharing protocols of the re-

source control framework and introduces a new schedulability test frame-

work that supports systems with potentially all candidate resource shar-

ing protocols working in collaboration. The materials provided in this

chapter demonstrates that the thesis meets SC-1.

Chapter 4 Proposes three new resource-orientated task allocation schemes

and a new search-based priority ordering algorithm that can benefit

resource sharing in multiprocessor real-time systems and are indepen-

dent from the resource sharing protocols and their schedulability tests.

The materials provided in this chapter demonstrates that the thesis

meets SC-2 and SC-3.

Chapter 5 Proposes the genetic algorithm-based Multiprocessor Resource

Sharing Framework (i.e., the FMRS framework) that aims to provide

feasible solutions of resource sharing, task allocating and priority or-

dering to multiprocessor real-time systems with shared resources. The

materials provided in this chapter satisfies SC-4.

Chapter 6 Investigates the performance of the typical resource control ap-

proach and the new resource control framework on fully-partitioned sys-

tems with shared resources, and presents evidence that the FMRS frame-

work developed in this thesis can outperform the typical multiprocessor

resource sharing and task scheduling approaches. The materials pro-

vided in this chapter demonstrates that the thesis meets SC-5.

Chapter 7 Summarises the thesis, reviews the contributions of this work and

presents the future work.
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Chapter 2

Literature Review

This chapter provides a review of the basic concepts and previous works related

to the research proposed in this thesis. The review firstly describes charac-

teristics of the real-time task and system model, and explains the scheduling

technology for both uniprocessor and multiprocessor systems. Then, the re-

source model and previous works on the resource sharing technology in real-

time systems are discussed. Finally, the scope of the research proposed in this

thesis is presented based on this review.

The literature related to the materials presented in this thesis can be broad.

In the interest of brevity, this chapter focuses on presenting a top-level view

that describes the context of our work. Detailed descriptions of a particular

technique will be given later on when it is adopted in this thesis. In addition,

as there exist many multiprocessor resource sharing protocols [25, 27, 106], it

is not possible to review each of the existing protocols. This thesis provides

descriptions of the major multiprocessor resource sharing protocols and then

focuses on the FIFO spin-based ones (a major approach for managing shared

resources in multiprocessor real-time systems [106]). The rationale of this

decision is given later in Section 3.1 in details.

2.1 Real-time Task and System Model

This section describes the characteristics of real-time tasks and presents the

system model assumed in the research of this thesis. In addition, the back-

ground materials and the fundamental concepts for real-time systems that are

related to this thesis are explained.
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2.1.1 Real-time Tasks

A real-time task refers to a single thread of control that is required to be

finished within a pre-defined time interval in each release with predictable

behaviour. To guarantee this property, a set of parameters are introduced to

facilitate the release, execution and analysis of real-time tasks.

In this thesis, τx represents a real-time task with index x. For a given real-

time task, say τx, it has a worst-case computation time Cx, a period Tx that

indicates its release interval, a relative deadline Dx that represents the time

that the task must be finished after being release, an unique priority Pri(τx)

that can be assigned either statically before run-time or dynamically during

execution, and a worst-case response time Rx that represents the time passed

from the release of the task to the time that the task finishes its execution

of the release. The utilisation of τx (denoted as Ux) is calculated by Cx
Tx

. A

deadline miss is identified where Rx > Dx while meeting a deadline requires

Rx ≤ Dx. Table 2.1 summarised the notations of real-time tasks. Note, the

above task model is presented without the presence of shared resources i.e.,

Cx is the pure worst-case computation time of τx without accessing any shared

resources. The system model with shared resource is presented in Section 2.3.

Table 2.1: Notions for Real-time Tasks

τx A given real-time task with index x.

Cx Worst-case computation time of τx without ac-

cessing any shared resources.

Tx Period of τx.

Dx Deadline of τx.

Rx Response time of τx.

Pri(τx) Priority of τx.

Ux = Cx
Tx

Utilisation of τx without shared resources.

Real-time tasks can have various activation patterns, where tasks can be

released at a fixed time interval (i.e., periodically), or with a minimum interval

(i.e., sporadically), or within an arbitrary interval of time (i.e., aperiodically).

As the most generic and the domaint activation model [25], the general spo-

radic task model is assumed in this thesis, where tasks cannot be released

within a minimum interval of time.

In addition, various constraints exist for deadlines, where the deadlines of
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tasks can (1) be equal to their periods (i.e., implicit deadlines), (2) be less than

or equal to their periods (i.e., constrained deadlines) or (3) be arbitrary. To

facilitate the schedulability analysis, deadlines are assumed to be constrained,

where a task can generate a bounded set of sequential jobs during its lifetime

but only one job can be executable at a time (i.e., Rx ≤ Dx ≤ Tx).

Finally, in this thesis, the index of a task represents its priority, where

a higher priority value indicates a higher execution eligibility. For instance.

Pri(τ1) = 1 < Pri(τ2) = 2 so that τ2 will execute in preference to τ1.

2.1.2 Scheduling in Uniprocessors

In real-time systems, the term scheduling represents a scheme that contains an

algorithm to order the usage of the processor or processors in the system via co-

ordinating the concurrent executions of tasks in the system in order to meet the

temporal requirements [26]. In addition, scheduling algorithms usually work

in collaboration with resource control protocols to manage tasks’ behaviours

when accessing shared resources to achieve bounded resource-accessing time.

In this section, the scheduling policies for uniprocessor systems are summarised

with those features most relevant to this thesis described in detail.

2.1.2.1 Non-Preemption, Preemptions and Deferred Preemptions

A scheduling scheme can be categorised as non-preemptive, preemptive or de-

ferred preemption [50]. During run-time, a high priority task can be released

while a lower priority task is executing. With the preemptive scheduling ap-

proach, the system will immediately switch to the high priority task, and the

low priority task is preempted. However, with a non-preemptive scheduling

policy adopted, the high priority task has to wait for the low priority task to

finish before it can start executing. As for the deferred preemption, the low

priority task can still execute for a specific period of time before it is switched

by the system.

Compared to the non-preemptive and deferred preemption schemes, the

preemptive approach is more responsive in the context of real-time systems.

With the preemptive scheme, high priority tasks (which usually have a close

deadline) are more likely to meet their deadlines as they can execute im-

mediately in each release without the need to cope with the interference of

low priority tasks. Therefore, this thesis focuses on the systems with the

preemption-based scheduling schemes.
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2.1.2.2 Uniprocessor Scheduling Algorithms

In real-time uniprocessor systems, various scheduling schemes exist to achieve

schedulable systems (i.e., all tasks in the system are guaranteed to meet their

deadlines), as summarised below:

Fixed Priority Scheduling : Fixed Priority Scheduling (FPS) is the most

widely adopted scheduling policy for uniprocessor systems [63]. Under

this policy, priorities of each task are statically assigned before run-time

and are fixed during the entire lifetime of tasks. During execution, tasks

are scheduled based on the order of their priorities and the current ex-

ecuting task is always the task that has the highest priority among all

the executable tasks.

Earliest Deadline First : Earliest Deadline First (EDF) scheme is a dynamic

scheduling approach, where the priorities of the tasks are determined

based on their absolute deadlines during run-time [28]. With EDF

adopted, the task with the closest deadline will be assigned with the

highest priority. However, since EDF needs to compute priorities for

all tasks at each scheduling point during run-time, this algorithm can

lead to a complicated system with high run-time overheads. In addition,

the priorities of tasks under EDF can only reflect the absolute dead-

lines of tasks. In contrast, the priorities in FPS can represent other task

properties, such as the criticality of tasks.

Value Based Scheduling : To cope with the case where overload can occur

(e.g., the total utilisation of tasks is too high so that the system can-

not be schedulable), Value-based Scheduling (VBS) proposes an on-line

scheduling scheme [52] that provides guaranteed execution opportunity

to certain tasks. Under VBS, each task is assigned with a value that

indicates the task’s importance level. When overload occurs, the system

will only allow the critical tasks to execute according to the assigned

importance level with EDF scheduling. By adopting VBS, overloaded

systems can generate a more valuable output than simply applying either

FPS or EDF.

Least Laxity : The Least Laxity First (LLF) scheduling policy [64] proposes a

dynamic scheduling approach where tasks are scheduled by their laxities,

which denotes the workload of tasks or the slack of Dx −Cx for a given
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task τx, assuming without shared resources. Under LLF, the task with

the least laxity will be scheduled to execute. For instance, a system

contains two tasks τ1 and τ2, where C1 = 20 and D1 = 30 while C2 = 5

and D2 = 30 respectively. Let Lx denote the laxity of τx. Accordingly

to LL, τ1 will execute first as it has less slack than that of τ2 (L1 = 10

while L2 = 25 at time 0). Then the system dynamically computes the

laxities of these two tasks with the passage of time. After 15 units of

time, the laxities of the tasks become identical (L1 = L2 = 10 at time

15). Thus, after this point τ2’s laxity is less than that of τ1 so that

the system will switch to τ2. This procedure repeats until all the tasks

finish their executions. As with EDF, LLF can incur considerable run-

time overheads as it needs to compute the laxities of all the tasks in

the system during each scheduling point. In addition, such overheads

can become significant in the case where there are two or more tasks

with similar laxities so that system needs to switch between these tasks

frequently [83].

The above briefly reviews the major scheduling approaches in uniprocessor

real-time systems. Among these scheduling schemes, FPS is the most com-

monly adopted approach and the dominant scheduling scheme for real-time

systems [26]. In addition, most of the existing resource sharing protocols can

be directly applied to FPS [37]. Accordingly, this thesis aims at systems where

the Fixed Priority Preemptive Scheduling (FPPS) is adopted.

2.1.3 Priority Assignments

With FPPS assumed, the priorities of tasks must be assigned prior to run-

time. Based on the survey conducted in [38], this section provides a review of

the priority assignment rules for various application characteristics.

2.1.3.1 Rate Monotonic Priority Ordering

The Rate Monotonic Priority Ordering (RMPO) proposed in [73] is an op-

timal priority ordering algorithm for FPPS with sporadic tasks and implicit

deadlines (i.e., D = T ). As defined in [38], a priority ordering P is said to be

optimal with respect to a task model, a fixed priority scheduling algorithm,

and a schedulability test, if and only if every set of tasks that is compliant with

the task model and is deemed schedulable with the scheduling algorithm G by

15



schedulability test S with some priority assignments is also deemed schedula-

ble under algorithm G by test S using policy P .

With RMPO adopted, tasks are assigned with a priority in the inverse

order of the periods, where the task with the shortest period is assigned with

the highest priority. The intuition of this approach is that the tasks that have

frequent demands on the processor should be regarded as more urgent and

thus have higher priorities. However, this assignment is only optimal for tasks

with periods that are equal to their deadlines.

2.1.3.2 Deadline Monotonic Priority Ordering

Deadline Monotonic Priority Ordering (DMPO) is proposed in [65] via general-

ising RMPO to provide an optimal priority assignment for sporadic tasks with

constrained deadlines (i.e., D ≤ T ). The DMPO is similar with RMPO but it

assigns priorities to tasks in the inverse order of deadlines rather than periods,

where the task with shortest deadline has the highest priority. Notably, DMPO

remains optimal with the presence of shared resources managed by either the

Stack Resource Policy or the Priority Ceiling Protocol on uniprocessors [16]

while the Deadline Minus Release Jitter Monotonic Priority Ordering is op-

timal with the presence of release jitters [112]. However, the optimality of

DMPO can be undermined with minor changes to the system, such as with

the presence of offset release times or arbitrary deadlines [63,65]. In addition,

whether its optimality remains for multiprocessor systems with the presence

of shared resources is unproved [16].

2.1.3.3 Audsley’s Optimal Priority Assignment

The Audsley’s Optimal Priority Assignment (OPA) developed in [9] proposes

a sophisticated priority assignment approach. This algorithm is proved to

be optimal for a wider range of application semantics than that of DMPO,

such as systems with offset release times [8], arbitrary deadlines [101] and

non-preemptive scheduling [50]. The pseudo code cited from [38] for OPA’s

algorithm is described below.

By giving a set of tasks with priorities unassigned and a compatible schedu-

lability analysis (say S) that is applicable to OPA, this algorithm guarantees

that a schedulable priority ordering (if there exist one) can be found according

to analysis S. The algorithm starts from the lowest priority level and tests

each unassigned task (say τx) to check whether τx is schedulable by assuming
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all other unassigned tasks have a higher priority. If τx can be schedulable at

a given priority level, it is assigned with this priority. The algorithm then

moves on to the next priority level and tests the rest of the unassigned tasks.

The algorithm returns a schedulable solutions if each task is assigned with a

priority. If no tasks can be schedulable at a given priority level, the algorithm

is finished with no schedulable solution being found. The order that which

unassigned task should be checked first at each priority level is not specified.

for each priority level Pri, lowest first {

for each unassigned task τx {

if ( τx is schedulable at priority Pri according to a compatible

schedulability test S with all unassigned tasks assumed to

have a priority higher than Pri ) {

assign τx with priority Pri;

break (continue outer loop);

}

}

return unschedulable;

}

return schedulable;

Compared to searching through all possible priority orderings (For n tasks,

it requires n! calculations to test S), OPA can significantly reduce the number

of calculations required, which is n(n + 1)/2. However, applying OPA incurs

the limitation that a compatible schedulability test must be supported. In [36],

three conditions that are both necessary and sufficient for OPA to deliver opti-

mal priority ordering with a given schedulability analysis S are presented with

detailed proof, while violating any of the conditions can break the optimality

of OPA or even cause this algorithm to be inapplicable. The conditions are

cited from [36], as shown below. The term independent properties here refers

to the task properties that are independent from priority (i.e., properties that

cannot be affected by changes of priority), such as C, T and D.

Condition 1: “The schedulability of a task τx may, according to test S, de-

pend on any independent properties of tasks with priorities higher than

Pri(τx), but not on any properties of those tasks that depend on their

relative priority ordering.”

Condition 2: “The schedulability of a task τx may, according to test S, de-

pend on any independent properties of tasks with priorities lower than
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Pri(τx), but not on any properties of those tasks that depend on their

relative priority ordering.”

Condition 3: “When the priorities of any two tasks of adjacent priority are

swapped, the task being assigned the higher priority cannot become un-

schedulable according to test S, if it was previously schedulable at the

lower priority. (As a corollary, the task being assigned the lower prior-

ity cannot become schedulable according to test S, if it was previously

unschedulable at the higher priority).”

With the development of OPA, several modifications to this algorithm

are developed to provide further optimized priority ordering with the basic

rationale of OPA but from different metrics, such as minimising the number

of priority levels [9], or minimising the lexicographical distance [34]. However,

the discussion towards these algorithms is out of the scope of this thesis as

none of them assumed the presence of multiprocessor with shared resources.

In [36], a detailed description and discussion of the modifications to OPA are

provided.

2.1.3.4 Robust Priority Assignment

Despite that OPA can provide an optimal priority ordering solution in a wide

range of application semantics, it has a disadvantage that the algorithm does

not specify which task should be assigned at a given priority level, assuming

there exist more than one schedulable tasks with that priority. Such an ap-

proach can result into a system that is merely schedulable, which is fragile to

minor changes of task parameters, unexpected interrupts or execution budgets

overrun [36]. To address this concern, the Robust Priority Assignment (RPA)

was developed in [35] with an approach to specify the exact task that should

be assigned with the priority at each priority level.

In RPA, an interference function E(α,w, i) is introduced to model the

amount of potential interference at each priority level, where α is a scaling

factor to reflect the variability of interference, w indicates the time interval

that the interrupts can occur and i denotes the priority level that is affected

by the interference. Assuming a given system with an interrupt that can

occur only once during the release of any task in the system, which causes

an interrupt handler to execute for a certain amount of time, the additional

interference for this system is simply E(α,w, i) = α, where α represents the
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indeterminate execution time of the interrupt handler. For such a system,

the RPA algorithm aims to produce a priority ordering that can tolerate the

maximum amount of the additional interference (i.e., the largest value of α

that the system can cope with).

The RPA algorithm starts with the lowest priority level and requires n(n+

1)/2 binary searches to find the maximum α for all priority levels. At each

priority level, RPA checks the schedulability of all the unassigned tasks and

calculates the maximum α value that each schedulable task can tolerate with.

The starting value of the binary search is bounded by a lower limit of 0 and

a higher limit of certain reasonable value based on the interference function,

where the upper limit is doubled on each iteration of the binary search, if

found to be schedulable.

At a given priority level and among the schedulable tasks, the task with

the maximum α value will be assigned with the priority. The algorithm then

iterates to the next priority level until all tasks are assigned with a priority,

and then returns the robust priority assignment for the given system. If a

schedulable priority ordering can be found, this priority assignment is able

to cope with the amount of additional interference of the minimum α among

all the assigned tasks while remains schedulable. The pseudo code of RPA’s

algorithm cited from [38] is described as follows:

for each priority level Pri, lowest first {

for each unassigned task τx {

determine the largest α among schedulable tasks at priority Pri

by assuming that all unassigned tasks have higher priorities;

if ( no tasks are schedulable at priority Pri) {

return unschedulable;

} else{

assign the schedulable task with the max α with Pri;

}

}

}

return schedulable;

This algorithm is developed based on OPA so that it is also subject to the

three conditions presented in Section 2.1.3.3. With a compatible schedulability

test, RPA is proved to be optimal and can produce robust priority assignments
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that can tolerate more additional interference than that of DMPO [35]. How-

ever, as a search-based priority assignment algorithm (where priorities are as-

signed via testing the response time of tasks through each priority level), RPA

is only applicable to its compatible schedulability tests while DMPO does not

carry such a limitation due to its static priority assignment approach. In Sec-

tion 2.6.2, a schedulability test that is not compatible with either OPA or RPA

is presented with reasons described in details.

2.1.4 Schedulability Analysis

As mentioned in Section 1.1, real-time systems have a strict temporal require-

ment, where all the tasks in the system must meet their deadlines. To testify

whether a given task set can be schedulable under a certain scheduling policy,

schedulability analysis techniques are developed to provide a mathematical ap-

proach (i.e., by applying a set of equations) for calculating the schedulability

of that system. In uniprocessor systems, two major approaches to analyse the

schedulability of real-time systems are available for FPS or EDF systems in the

form of utilisation-based schedulability test [73] or Response Time Analysis

(RTA) [7].

According to [37], there are two important characteristics of a schedula-

bility test: sufficient and necessary. The term sufficient indicates a system

which passes the schedulability test is guaranteed that all deadlines will al-

ways be met while a necessary schedulability test means that failure of the test

will eventually lead to deadline misses, at certain point during execution. A

sufficient and necessary test is termed as the exact schedulability test, which

is optimal. As stated in [25], the utilisation-based analysis is not an exact

test and can only produce the “yes or no” answer to the schedulability of a

given system while RTA is proved to be exact and is able to calculate the

worst-case response time of each task. Therefore, as the commonly adopted

and the dominant schedulability test [25], this thesis focuses on the Response

Time Analysis and its modifications for analysing systems with shared re-

sources. This section describes the techniques of the simplest form of RTA for

uniprocessor systems with FPPS assumed and no shared resources.

The Response Time Analysis contains two stages: (1) calculates the worst-

case response time of each task via an analytical approach and (2) compares

the response time of each task with its deadline. With RTA applied, the

worst-case response time is calculated by Equation (2.1), where Bi is the total
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blocking time incurred by τi and hp(i) returns a set of tasks with a priority

higher than that of τi.

Ri = Ci +Bi +
∑

τh∈hp(i)

¢
Ri
Th

•
Ch (2.1)

Assuming that each task in the system is assigned with an unique priority,

the response time of a given task τi is determined by the worst-case execution

time, the total blocking time and the interference from higher priority tasks.

Even without the presence of shared resources, a task can incur blocking due

to the non-preemptive (NP) sections of the underlying RTOS, where a task

is prevent from executing due to the system executing a NP section. As such

blocking can occur only once during the release of a real-time task, the blocking

variable can be simply bounded by the maximum length of the non-preemptive

sections of the underlying RTOS, as shown in Equation (2.2), where b̂ denotes

such maximum length of the NP sections of the RTOS.

Bi = b̂ (2.2)

Function
∑
τh∈hp(i)

¢
Ri
Th

•
Ch calculates the total interference that τi can in-

cur from high priority tasks due to preemptions. For each high priority task,

the number of times it can be released during the release of τi is determined

iteratively via

¢
Ri
Th

•
. With an initial response time of Ci, this equation com-

putes the total amount of interference and updates the response time of τi

until a fixed point is reached.

This simple RTA provides the fundamental technique for analysing a real-

time system and derives various forms of schedulability tests to support the

analysis of more complicated scenarios, such as systems with the presence of

blocking or abitrary deadlines [25]. In Sections 2.4 to 2.6, the RTA-based anal-

ysis with the collaboration of resource sharing protocols for both uniprocessor

and multiprocessor systems are described in detail.

2.1.5 Summary

This section describes the basic characteristics of real-time tasks, and presents

the fundamental concepts and techniques in uniprocessor real-time systems,

which includes the real-time system model, scheduling schemes, priority as-

signments and the schedulability analysis. As described, each of the reviewed
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techniques is supported by various approaches with different features. Based

on the discussion in this section, the research scope of this thesis is narrowed

down to the real-time systems with:

• Sporadic task model with constrained deadlines.

• Fixed priority preemptive scheduling.

• RTA-based schedulability analysis.

2.2 Multiprocessor Real-time Systems

As described in Section 1.1.1, in multiprocessor real-time systems, one major

challenge is to schedule tasks on multiple processors. This section provides a

review of the basic concepts of multiprocessor architectures and the scheduling

techniques for real-time multiprocessor systems.

2.2.1 Multiprocessor Architecture

On multiprocessor platforms, several multiprocessing architectures exist ac-

cording to the features of processors and their memory access model, where

each of the multiprocessing architectures is suitable for certain scenarios, cat-

egorised as follows [58]:

Symmetric Multiprocessing : Symmetric Multiprocessing (SMP) refers to a

multiprocessor architecture where all the processors are homogeneous

and share a single main memory under the control of a single operating

system. In SMP, each of the processors has full access to all the shared

resources via a system bus, such as network and input/output (I/O) de-

vices. From the viewpoint of the memory access model, this architecture

is also termed as the Uniform Memory Access (UMA) model, where all

the processors use the same memory (i.e., the main memory) and have

an identical memory-accessing time. Nowadays, SMP is the most com-

monly adopted architecture for multiprocessor real-time systems.

Asymmetric Multiprocessing : An Asymmetric Multiprocessing (AMP) sys-

tem can contain heterogeneous processors with various execution rates,

where a task may needs 12 units of time of finish on processor 0 while

only requires 10 units of time on processor 2. In AMP systems, each

processor can be treated differently with specified duties assigned (e.g.
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a processor may be required to only run the operating system while an-

other processor is for manipulating I/O devices only). In addition, a

group of processors in AMP usually have its designated memory space,

which indicates the non-identical memory-accessing time to all memories.

Such a memory access model is referred as the Non-Uniform Memory Ac-

cess (NUMA) model. Typically, the AMP architecture are adopted in

servers.

Clustered Multiprocessing : Clustered Multiprocessing is usually applied in

large supercomputers with distributed systems. In such a system, pro-

cessors are assigned with their local memory and not all memories are ac-

cessible by all processors. The communication between processors from

different clusters is performed via a network.

As the most commonly applied real-time architecture, the SMP systems is

usually assumed in the research of real-time systems while the AMP systems

suffer from the analysis issue and the clustered Multiprocessing is barely con-

sidered in the real-time resource sharing domain [25]. Therefore, this thesis

focuses on systems with the SMP architecture adopted, where all the proces-

sors are identical and have the same accessing time to a single shared memory.

2.2.2 Multiprocessor Scheduling Algorithms

Besides the issues considered by the scheduling policies on uniprocessor sys-

tems, scheduling schemes on multiprocessor systems also need to address the

task dispatching issue, which is the problem of the placement of tasks to pro-

cessors during execution (i.e., the decisions of which task should execute on

which processor at a given time). To address this concern, various scheduling

schemes for multiprocessors are proposed with different strategies to dispatch

tasks to processors during the execution of the system, summarised as follows:

Global Scheduling : Global scheduling applies a dynamic task allocation ap-

proach, where the decisions of task mapping are made during run-time

and can be changed dynamically [13]. With global scheduling, the sys-

tem maintains a single logical global run queue that contains all the

executable tasks in the system. When a task becomes executable, it is

dispatched immediately to an idle processor (if there exist any). Other-

wise, the task still has the chance to execute via preemptions if it has
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a higher priority than any of the currently executing tasks (assuming

FPPS is applied). The unique feature of global scheduling is that it al-

lows tasks to migrate between all the processors in the system so that a

waiting task can migrate to an idle processor (if any) or a processor with

a lower priority task executing on, instead of waiting for the executing

task to finish in the current processor. However, with global scheduling,

most of the matured uniprocessor real-time techniques cannot be applied

as they do not consider task migrations.

Fully-Partitioned Scheduling : With fully-partitioned scheduling, each task in

the system is statically allocated to a processor before run-time and is

fixed into the designated processor during its entire lifetime [45]. Unlike

global scheduling, migrations are strictly forbidden in this scheduling

policy. With fully-partitioned scheduling, a multiprocessor system can

be divided into several uniprocessor systems to a certain extent so that

matured uniprocessor real-time techniques can be applied, such as the

RTA equations. However, adopting this approach requires additional

task allocation solutions to statically assign tasks into each processor

before run-time.

Semi-partitioned Scheduling Compared to global scheduling, the total utili-

sation of a system under fully-partitioned scheduling can be relatively

low due to the static task allocation approach. Thus, to preserve the

advantage of fully paritioned system and to further increase the system

utilisation, the semi-partitioned scheduling is proposed [24, 59], which

also requires task allocations prior to run-time. However, unlike the

fully-partitioned approach, the semi-partitioned scheduling allows some

tasks to migrate to a pre-determined processor under certain situation

(e.g., running out of budget on the current processor).

Clustered Scheduling The clustered scheduling [95] is proposed as trade-off be-

tween the global and partitioned scheduling schemes. With this schedul-

ing policy, processors are divided into several groups (i.e., clusters), and

tasks in each cluster is scheduled by the global approach so that a task

can migrate to any of the processors in its cluster. In addition, the fully-

partitioned approach is applied to clusters, where tasks are not allowed

to migrate to processors belonging to other clusters.
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Compared to other multiprocessor scheduling schemes, the fully-partitioned

scheduling is supported by more matured schedulability tests (i.e., is fully com-

patible with RTA) and supports the majority of the existing resource shar-

ing protocols [37]. Therefore, this thesis aims at fully-partitioned scheduling

schemes, where each partition only contains one processor. However, as we

shall see some limited forms of migration may be supported during a resource

control protocol.

2.2.3 Task Allocation Schemes

With fully-partitioned dispatching policy assumed, a task allocation scheme

must be applied before run-time to statically allocate tasks into each processors

without overloading any processor, which is proved to be a bin-packing NP-

hard problem with no optimal solutions available [66]. Thus, the heuristic

approaches for the bin-packing problem are usually applied to map tasks into

processors [37], summarised as below.

• Worst Fit (WF): The WF scheme considers all partitions and allocate

a task to the partition with the minimum total utilisation.

• Best Fit (BF): In contrast to the WF scheme, the BF scheme considers

all partitions and allocates a task to the processor that will have the

minimal remaining capability (i.e., the maximum utilisation) after this

allocation.

• First Fit (FF): The FF scheme considers each partition in the index

order while allocating each task and assigns the task to the first processor

where it can be fitted into.

• Next Fit (NF): For the first task, the Next Fit starts searching from

the first processor. Then this algorithm searches from the last allocated

processor to find the feasible processor for each unallocated task.

In addition, to facilitate allocating, tasks are usually sorted by their utilisa-

tions before being mapped into processors by any of the above schemes. Thus,

a complete task allocation approach also specifies the task ordering approach.

For instance, the WFD approach indicates that tasks are sorted by utilisation

non-increasingly and are allocated by the WF method while the NFI algorithm

orders the tasks by utilisation non-decreasingly and are mapped via the NF

approach.
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The heuristic approaches are well-practised with independent tasks, where

the response time of a given task is not affected by remote tasks (i.e., tasks

on other processors). While allocating a given task τx, the RTA equation can

be applied to testify whether this and other assigned tasks on the examined

partition can be schedulable. If yes, τx is assigned to that partition. Other-

wise, the algorithm will try to find the next feasible partition based on one

of the above approaches. With all tasks assigned with a partition, the heuris-

tic approaches can return a schedulable system. According to [25], with the

precondition that the utilisation of each task is lower than 0.5, the utilisation

of each partition can reach to 0.63 while remaining schedulable by using the

First-Fit task allocation scheme in FPPS systems with RMPO adopted.

2.2.4 Summary

This section presents the basic knowledge of multiprocessor platforms and

the concepts for scheduling multiprocessor real-time systems. Based on the

discussion, this thesis focuses on the systems with:

• Symmetric multiprocessor architecture.

• Fully partitioned scheduling scheme.

Combining the reviews given in Sections 2.1 and 2.2, the background knowl-

edge and the basic concepts of real-time systems on both the uniprocessor

and multiprocessor platforms are presented. From Section 2.3, the concepts,

techniques and the related works of resource sharing in real-time domain will

be described.

2.3 Resource Sharing Model

In this section, the basic concepts in resource sharing and the fundamental

synchronisation approaches are described. Then, reasons are given for the

targeted synchronisation approach in this thesis with its issues and concerns

described in detail.

2.3.1 Shared Resources

The term resource can refer to both the hardware resources such as an I/O

device or a processor; and the software resources, such as a single variable,
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an array or more complicated data structures. With multi-tasking, two or

more tasks may request exclusive access to the same resource (i.e., a shared

resource) simultaneously. The code related to a shared resource is referred

as a critical section, where the executions must be protected to guarantee

the data consistency. Shared resources that are accessed from one processor

(e.g., the ones in a uniprocessor system) are referred as local resources. In

multiprocessor platforms, resources can be accessed from multiple processors

in parallel, and are termed global resources.

Without proper protections of critical sections, concurrent requests to a

shared resource can cause race conditions due to unexpected data updates,

and hence, results in corrupted data. For instance, two tasks (τ1 and τ2) are

performing incremental operations concurrently to a single integer variable

with an initial value of 0, where each task will perform the operation 5 times

so that the expected output should be 10. However, without synchronisation

to the critical section (i.e., the increment operation to the variable), the actual

outcome can be less than 10. This is because at the same time, both tasks

read the value of the variable (say 5 at this time) and perform the increment

operation so that the value 6 is written back in memory by both tasks. Thus,

the variable is only incremented once by two incremental operations, which is

a typical race condition.

In this thesis, the notation rk denotes a shared resource with the index

k. A task τx can issue Nk
x number of requests to rk during one release. For

each resource rk, ckx denotes the worst-case execution time when τx accesses

rk. In this thesis, the worst-case execution time of rk is assumed to be iden-

tical for each task i.e., homogeneous cost for executing each resource. Thus,

ck is applied to denote the critical section length of rk. This assumption is

not fundamental but eases presentation. The influence of considering hetero-

geneous access cost to shared resources is addressed Appendix A. In addition,

two functions that describe the resource-usage of tasks introduced in [27] are

applied to facilitate analysing systems with shared resources, where function

F (τx) gives a set of resources that are used by τx while function G(rk) returns

a set of tasks that access rk. Table 2.2 summarises the notations described in

this section.

In addition, with the presence of shared resources, the total worst-case

computation time of a task τx must be extended to also include the time that

τx spends on executing each shared resources in F (τx). Therefore, with the
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Table 2.2: Notions of Shared Resources

rk A given shared resource with index k.

ck Critical section length of rk.

Nk
x The number of requests issued from τx to rk in

one release.

F (τx) The set of resources that are accessed by τx.

G(rk) The set of tasks that request rk.

presence of shared resources, the total worst-case computation time of τx is

bounded by Cx +
∑
rk∈F (τx)N

k
x · ck, where Cx denotes the pure computation

time of τx without accessing any shared resources and
∑
rk∈F (τx)N

k
x ·ck denotes

the time that τx spends on executing each required resource. Accordingly, the

utilisation of τx now should be calculated by Ux =
Cx+

∑
rk∈F (τx)

Nk
x ·ck

Tx
. This

utilisation calculation will be assumed for the rest of the thesis.

2.3.2 Synchronisation Approach

In real-time systems, various synchronisation approaches can be adopted to

eliminate race conditions so that the data integrity can be guaranteed, such

as the classic lock-based approach and non-blocking methods.

With the lock-base approach, each critical section is protected by a desig-

nated lock, where the access to a critical section is only permitted with the

corresponding lock acquired. If the lock is occupied, then the requesting task

is blocked until the lock is available.

As a major synchronisation approach, various locking primitives are avail-

able, such as mutex locks, monitors and semaphores [104]. These locking

primitives can be categorised as either being suspension-based or spin-based

locks according to the task behaviours while waiting for the lock [22], as sum-

marised below:

Suspension-base locks: If a task requests a lock that is already occupied,

the task will give up the processor and become idle until the lock is

available. Typically, the waiting tasks are placed into a priority-ordered

queue during the period of blocking. Once the lock is released, the task

at the head of the queue (i.e., with the highest priority) can become

active and acquire the lock.
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Spin locks: Tasks with the spin-based locks will busy-wait (spin) instead of

becoming idle when the required lock is not available. While spinning,

the task keeps executing and continuously checks whether the requested

lock is available. Tasks with spin locks are usually served by the First

Come First Serve (FCFS) order, but can also be served by the priority

order. Spin locks are largely adopted at the kernel level.

In addition, the alternative non-blocking methods including the wait-free

and lock-free algorithms are also available, which can prevent race conditions

in concurrent executions without using locks [37].

A lock-free algorithm [2] allows tasks to access a resource immediately but

requires a copy of the original data before performing any operations. After

all the operations associated with the critical section are performed, the task

checks whether there exist any conflicts during this access (e.g. unexpected

data updates by other tasks). If yes, then the calculations of this access is

discarded and the task will re-access the resource with a new copy of the

data. By doing so, this algorithms can prevent race conditions, but involves

looping due to unsuccessful resource accesses. The wait-free algorithm is an

enhanced form of the lock-free algorithm, where neither locks or retry loops

are required [99]. However, the wait-free algorithm requires multiple copies of

the original data, such as the four-slot mechanism, where four copies of the

original data are required to provide independent executions of a single reader

and writer [96].

Although there exist researches towards the non-blocking methods for real-

time systems [53], such approaches lack effective schedulability analysis [68]

and usually require extra memory space, which is usually limited in embedded

real-time systems [105]. In addition, as stated in [37], the locking-based proto-

cols are well-accepted and are the dominant approaches for controlling shared

resources in real-time systems. For example, protocols such as the Priority

Ceiling Protocol and the Stack Resource Policy provide the most appropriate

mutual exclusive access to shared resources and are analysable by the RTA

equations. These matured lock-based protocols are well-practised and origi-

nated the researches for resource sharing solutions in multiprocessor real-time

systems.

Based on the above discussion, this thesis focuses on the lock-based ap-

proach and aims to propose a generic resource control solution for multipro-

cessor real-time systems.
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2.3.3 Deadlocks and Livelocks

With the lock-based synchronisation approach assumed, the well-known issue

of the deadlock must be avoided to guarantee the correctness of the system.

Deadlocks can occur when tasks require multiple shared resources in a nested

fashion (i.e., nested resource accesses), where two or more tasks are blocked

since they both require the resource that is held by each other. Thus, these

tasks will never make progress as none of them can get the requested resource.

In real-time system, avoiding deadlocks is an essential requirement of the re-

source sharing protocols.

Another concern with locks is the livelock problem, where each task is wait-

ing (e.g., spinning) for the other to acquire the lock so that none of them gets

the lock with no progress being made. In real-time systems, locks are usually

served with a strict serving order, such as the priority order and the FCFS

order. In addition, the resource-accessing time of each task must be bounded

to achieve predictable systems. Thus, the livelock and deadlock problems

are prevented in real-time systems by the pre-defined resource serving order.

Assuming a schedulable system, each task is guaranteed with the chance to

acquire the lock within a bounded period of time.

2.3.4 Priority Inversion

Merely protecting the data integrity and preventing the locking problems

are not sufficient to meet the requirements of real-time systems, where the

tasks’ behaviours while accessing shared resources must be predictable within

a bounded resource-accessing time during each resource access. With resource

locks adopted, tasks can incur additional delay due to accessing shared re-

sources, which can cause priority inversions through various blocking effects.

The term priority inversion indicates the situation where a high priority

task is waiting while a low priority task is executing. Consider an uniprocessor

system that contains two tasks τ1 and τ10, where both tasks request the same

shared resource r1. Note that in this thesis, the priority of a task equals to

its index and a higher index indicates a higher execution eligibility. If τ1 is

released first and acquires r1, τ10 will be prevented from executing at the time

where it request the resource (even if it can preempt τ1 when being released).

Under this case, τ10 suffers from priority inversion as it is blocked by a low

priority task for accessing an unavailable resource with the blocking period of
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c1.

The priority inversion can become unbounded and can lead to unpre-

dictable amount of blocking time. Consider the same example above, while

τ10 is being blocked, another task τ3 is released and preempts τ1, which is

allowed as τ3 does not request r1. Under this case, the blocking time of τ10

is increased to cope with the execution time of τ3. In addition, if more tasks

with such an intermediate priority are released during the blocking period of

τ10, the blocking time of τ10 can be further prolonged and can become un-

predictable. Under this situation, τ10 is said to suffers from the unbounded

priority inversion.

The priority inversion phenomenon cannot be completely eliminated due

to the difficulty of controlling the time at which a given task can access a

shared resource. However, the priority inversion must be bounded to achieve

predictable blocking time of each resource access.

2.3.5 Blocking Effects

The real-time resource sharing techniques bound the priority inversion by ex-

amining each of the blocking effect that can occurred during the access to

shared resources. Typically, there exist four types of blocking effects, as sum-

marised below:

Local blocking : The local blocking occurs when a low priority task blocks a

higher priority task on the same processor for accessing a resource. This

blocking can occur due to both tasks requesting the same resource, or

because the low priority task is executing with another resource non-

preemptively or has its active priority boosted to a certain priority level

to prevent preemptions [93]. With non-preemptive or the priority boost-

ing approach, the high priority task is blocked at its arrival as preemp-

tions are not allowed. Thus, this blocking is also refereed as the arrival

blocking.

Transitive blocking : A task, say τx, can incur the transitive blocking when

being blocked by a resource-holding low priority task, which in turn is

preempted by a task with an intermediate priority. Th example used to

illustrate the unbounded priority inversion in Section 2.3.4 is a typical

form of the transitive blocking. In addition, transitive blocking can also

occur with the presence of nested resources. A task, say τ10, can incur
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transitive blocking if it is blocked by τ5 due to resource accessing, which

is in turn, being blocked by another task τ1 as τ5 is trying to access an

nested resource that is held by τ1. Thus, τ10 is blocked transitively by

τ1.

Push-through blocking : The push-through blocking occurs when an unrelated

intermediate priority task becomes an “innocent victims” due to the

competition of locks by other tasks, where a low priority task has its

priority boosted to certain priority level due to accessing a resource. This

blocking usually happens in systems where a priority boosting technique

is applied.

Remote blocking : A task can incur the remote blocking in multiprocessor

systems, where it is blocked by remote tasks for resource accessing. The

remote blocking can also be in the form of any other blocking effects. A

task can incur the direct remote blocking when being blocked directly by

remote tasks for accessing a global resource; or be blocked indirectly by a

local high priority task that is accessing a global resource, which in turn

is blocked by remote tasks directly. In addition, the remote blocking can

also occur in the arrival blocking, where a high priority task is blocked

by a low priority task that is accessing a global resource.

To achieve predictable tasks’ behaviours while accessing shared resources,

the above blocking effects must be eliminated or at least bounded (and hence,

the unbounded priority inversion can be addressed) to provide the predictable

resource-accessing time in each resource access.

2.3.6 Summary

In this section, the basic concepts of resource sharing and the primitive syn-

chronisation approaches for critical sections have been described. Based on

the discussion in Section 2.3.2, this thesis focuses on the system with

• Homogeneous cost for executing a resource.

• The lock-based synchronisation approach.

With locks assumed, issues of applying locks to real-time systems are ex-

plained, such as the deadlocks, the priority inversion phenomenon and the

various blocking effects. In the next section, the resource sharing protocols
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for uniprocessor real-time systems will be described, which address the above

issues and can provide predictable resource-accessing behaviours.

2.4 Uniprocessor Resource Sharing Protocols

Resource sharing in uniprocessor systems is successfully managed by the ma-

tured uniprocessor resource sharing technology, which are well-accepted and

practised for decades with several optimal resource sharing policies avail-

able [25]. In addition, the RTA equations were extended to support the analy-

sis of FPPS systems with the resource sharing protocols adopted. This section

reviews the major approaches of the resource sharing protocols for uniproces-

sor FPPS systems and the corresponding schedulability test.

2.4.1 Priority Inheritance Protocol

Although adopting the typical non-preemptive sections (i.e., simply disal-

low preemptions during the critical sections) can provide direct protection

to resource-accessing tasks, this approach imposes extra blocking time to the

unrelated high priority tasks. To address this concern, the Priority Inheritance

Protocol (PIP) [93] was developed to propose a preemption-allowed approach

for managing shared resources. PIP is summarised as follows:

• Each task in the system has a base priority and an active priority. The

base priority is the priority that is assigned statically to the task while

the active priority is the current priority level that the task is executing

with.

• When a high priority task (say τ2) requests a resource that is held by

a low priority task (τ1), τ1 then inherits the priority of τ2 and keeps

executing until it releases the lock.

• Later on, if τ3 is released and also requests the resource, τ1 will update

its active priority again to inherits τ3’s priority, which is the highest

priority among all the tasks it blocks.

• If a task has its priority boosted for executing with a resource, its priority

will be set back to its previous priority immediately when it releases the

resource. The previous priority could either be a priority value inherited
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from another task due to resource accessing (in nested accesses) or its

base priority.
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Figure 2.1: Example of the Priority Inheritance Protocol

The example shown in Figure 2.1 demonstrates tasks’ behaviours while

accessing shared resources with PIP applied, where notation t denotes the

units of time. For the ease of presentation, we assume that multiple events can

occur at the same time. For instance, a task can lock a resource immediately

when being released at the same time. As shown in the figure, τ1 is released

at time t = 0 and then acquires r1 at t = 1. However, it is preempted by τ2

immediately as τ1 now is executing with its based priority (i.e., Pri(τ1) = 1).

At t = 2, τ2 acquires r2 but is then being preempted by τ3, which requires

both resources in non-nested sequential fashion. However, τ3 incurs blocking

after being released as it requests r1 immediately, which is held by τ1. Hence,

τ1 now inherits the priority of τ3 and resumes its execution with r1. Note that

at this time, τ1 also blocks τ2 as it is executing with the highest priority level

(now Pri(τ1) = Pri(τ3) = 3) in the system. After τ1 releases r1, its priority

is restored so that it is preempted by τ3 at t = 4. At t = 6, τ3 finishes its

execution with r1, but is blocked again for requesting r2 so that τ2 raises its

priority and starts executing the critical section. τ2 releases r2 at t = 7 so

that τ3 is resumed and starts executing with r2. τ3 releases r2 at t = 8 and

is then finished at t = 9. Then, τ2 and τ1 are finished at t = 10 and t = 11

respectively.
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With PIP adopted, the low priority tasks can execute with a boosted

priority when they blocks high priority tasks so that the high priority tasks

will not suffer from the prolonged blocking due to preemptions from tasks with

a intermediate priority (i.e., the unbounded priority inversion is prevented).

In addition, the unrelated high priority tasks do not need to incur unnecessary

arrival blocking due to the preemptive resource-accessing approach.

However, as illustrated by the example, a task under PIP can incur block-

ing more than once if it requests more than one resources held by different low

priority tasks (see τ3 in this example). In addition, this protocol cannot elim-

inate deadlocks as a task that holds a resource (say r1) and requests an inner

resource (say r2) can be preempted by another task with a higher priority,

which then locks r2 but then request r1.

2.4.2 Priority Ceiling Protocol

As described in Section 2.4.1, PIP has the issue of deadlocks and can cause

several blocking to a resource-accessing task. These remaining issues moti-

vated the development of the Priority Ceiling Protocol (PCP) [93]. In [90],

two approaches for realising PCP are described, named as the Original Pri-

ority Ceiling Protocol (OPCP) and the Immediate Priority Ceiling Protocol

(IPCP).

In OPCP, the notions of resource ceiling priority and system ceiling priority

are introduced, where the resource ceiling for rk (denoted as Pri(rk)) indicates

the highest base priority among all the tasks that require rk while the system

ceiling is the highest resource ceiling priority among all the resources that are

currently being accessed. During execution, the system keeps tracking the

system ceiling priority and updates its value during each lock acquisition and

release. With OPCP adopted, a task can execute normally (according to FPS),

but is allowed to acquire a lock only if it has an active priority higher than

the current system ceiling. Otherwise, the task is blocked until it is eligible to

acquire the resource.

In IPCP, the need to maintain the dynamic ceiling priority is removed.

Instead, a task raises its active priority immediately to the corresponding

resource ceiling priority each time it acquires a resource, and then executes the

critical section with the boosted priority. After the task releases the resource,

it restores its priority to the previous priority level. As stated in [90], both

OPCP and IPCP have the identical worst-case behaviour. However, IPCP
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proposes a more elegant solution and can effectively reduce the implementation

complexity and the number of context switches.
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Figure 2.2: Example of the Immediate Priority Ceiling Protocol

To demonstrate that PCP can prevent the issue of multiple blocking in

PIP, the example in Figure 2.1 for PIP is applied here with IPCP adopted, as

shown in Figure 2.2. With IPCP adopted, the resource ceiling of both r1 and

r2 is 3 as they are requested by τ3 (i.e., Pri(r1) = Pri(r2) = 3). At t = 0, τ1

is released and then acquires r1 at time t = 1. Accordingly, it boosts its active

priority immediately to the ceiling priority of r1 so that its active priority now

is 3. Thus, τ1 blocks τ2 at t = 1 and also blocks τ3 at t = 2 as it is executing

with the highest priority. At t = 3, τ1 releases r1 and restores its priority so

that τ3 is eligible to execute. Thus, it uses r1 and r2 and is finished at t = 7.

Then τ2 can acquire r2 and execute. At last, τ2 and τ1 are finished at t = 10

and t = 11 respectively.

Compared to PIP, tasks with PCP can only incur one blocking in each

release. Therefore, tasks under PCP can have a shorter response time than

that of the tasks with PIP adopted. As shown in the examples, the response

time of τ3 with IPCP adopted (Figure 2.2) is 2 units of time shorter than that

of τ3 under PIP (Figure 2.1) due to the decreased blocking time.

In addition, PCP is a deadlock-free protocol by preventing the forma-

tion of the circular resource-requesting chain, where a task that is accessing

shared resources cannot be preempted by another task that requests the same

resources. Therefore, by addressing the issues with the lock-based synchroni-

sation approach and by limiting the blocking time to only one critical section,
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PCP is an asymptotically optimal resource sharing solution in uniprocessor

FPPS systems [19].

2.4.3 Stack Resource Policy

The Stack Resource Policy [11] (SRP) is proposed as an extension of PCP

and can be adopted to both fixed-priority and dynamic priority scheduling

schemes, such as FPS and EDF.

As with PCP, the system ceiling and resource ceiling priories are applied

in SRP. However, this protocol introduces the notion preemption level to each

task in the system based on the deadline monotonic scheme, where a task

with a shorter relative deadline is assigned with a higher preemption level.

With this static metric, SRP is able to work with dynamic scheduling policies.

Accordingly, the value of the resource ceiling for each resource and the sys-

tem ceiling are decided by the static preemption levels rather than dynamic

priories.

In SRP, a task is allowed to execute only if it has a preemption level that

is higher than the current system ceiling. With this approach, SRP postpones

the executions of tasks that can be blocked later so that the tasks can share a

same run-time stack. This is because the newly-arrived tasks at the top of the

stack has a higher preemption level so that it can preempt the tasks in the lower

level of the stack. Thus, with SRP, a task will either be blocked immediately

after being released (i.e., arrival blocking) or incurs no blocking at all. Once a

task starts executing, the resources required by the task are guaranteed to be

available. Due to this property, SRP also successfully prevents the formation

of deadlocks.

SRP can achieve the identical worst-case behaviour as that of PCP, where

a task can be blocked only once during each release. In FPPS systems, the

executions of tasks under SRP are similar to those of tasks with IPCP adopted.

For instance, both protocols can lead to the same task executions in the system

illustrated in Figure 2.2. At t = 1, τ2 is released but cannot execute as its

preemption level is not higher than the current system ceiling, where τ1 is

executing with r1 and has the highest preemption level in the system. The

same situation also occurs at t = 2, where τ3 is blocked immediately after

being released. At t = 3, τ1 releases r1 so that its preemption level is restored

to the original value (i.e., the lowest level in the system) and is preempted by

τ3. Finally, all tasks are finished at the same time with that of IPCP adopted.
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2.4.4 Schedulability Analysis of Uniprocessor Resource Shar-

ing Protocols

As reviewed in Sections 2.4.2 and 2.4.3, PCP and SRP demonstrate identical

worst-case behaviour and can bound the blocking time to one critical section.

Therefore, these protocols can be analysed by the same RTA-based schedula-

bility test, assuming the FPPS systems.

Recall Section 2.1.4, the response time of a given task τi is computed by

Equation (2.1) with the assumption that tasks are running independently (i.e.,

without shared resources). However, as described in Section 2.3.1, with the

presence of shared resources, the total worst-case computation time of τi must

be extended to also reflect the time it spent on executing each shared resource,

which is bounded by Ci +
∑
rk∈F (τi)N

k
i c
k.

Equation (2.3) gives the bounding of Ri for τi with the presence of shared

resources, where function F (τi) gives a set of resources that are required by τi

and Nk
i represents the number of requests issued from τi to rk in each release

(recall notations in Table 2.2).

Ri = (Ci +
∑

rk∈F (τi)

Nk
i c
k) +Bi +

∑
τh∈hp(i)

¢
Ri
Th

•
(Ch +

∑
rk∈F (τh)

Nk
h c
k) (2.3)

In addition, with the presence of shared resources, variable Bi must be

extended to reflect the potential arrival locking incurred by each task. With

either PCP or SRP adopted, τi can incur arrival blocking if there exits a lower

priority task requesting a resource with a ceiling priority that is equal to or

higher than Pri(τi). If there exist multiple such resources, in the worst case,

τi will incur blocking from the resource with the maximum critical section

length as the arrival blocking can occur only once. Let ĉi denotes the blocking

that τi can incur during each release and τl denotes a lower priority task,

Equation (2.4) gives the blocking time that τi can incur in each release due to

resource sharing.

ĉi = max{ck|Nk
l > 0 ∧ Pri(rk) ≥ Pri(τi)} (2.4)

Further, as a task can only be blocked once upon arrival, it is blocked either

by ĉi or by the non-preepmitve section from the underlying real-time operating

system (b̂ in Equation (2.2)). Thus, the total blocking time τi can incur with

the presence of shared resources in uniprocessor systems can bounded, as given

in Equation (2.5).
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Bi = max{ĉi, b̂} (2.5)

This concludes the schedulability test of uniprocessor systems with re-

sources managed by either PCP or SRP. As stated in [25], this analysis is

proved to be an exact schedulability test for uniprocessor systems. The nota-

tions applied in this analysis is summarised in Table 2.3. Note, for the ease

of presentation, the word “schedulability test” or “schedulability analysis” for

a given real-time resource sharing protocol in this thesis indicates the analy-

sis of the blocking time of the given protocol based on the RTA equations (see

Section 2.1.4) under the FPPS systems.

Table 2.3: Notations Applied in the Analysis of PCP and SRP

τi A task that is currently been studied by the schedula-

bility analysis.

τl A task with a priority lower than that of τi.

ĉi The arrival blocking incurred by τi.

hp(i) The set of tasks with a priority higher than that of τi.

Pri(rk) The resource ceiling priority of rk.

2.4.5 Summary

This section provides a review of the major resource sharing protocols in

uniprocessor FPPS systems. Among them, PCP and SRP provide the optimal

resource sharing solutions with effective schedulability analysis supported. In

addition, these protocols directly inspired the development of resource control

protocols for multiprocessor systems, described in Section 2.5.

2.5 Multiprocessor Resource Sharing Protocols

In multiprocessor systems, resources can be accessed from multiple processors

simultaneously (i.e., global resources), which cannot be managed by the ma-

tured uniprocessor resource sharing protocols. To bound the remote blocking

for accessing global resources and to prevent deadlocks, many multiprocessor

resource sharing protocols have been proposed with various synchronisation

approaches. This section reviews the major resource sharing protocols on

multiprocessors with their advantages, drawbacks and limitations.
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2.5.1 Multiprocessor Priority Ceiling Protocol

The Multiprocessor Priority Ceiling Protocol (MPCP) derived from PCP was

the first resource sharing protocol proposed for fully-partitioned multiproces-

sor systems with fixed priority scheduling [88].

As the forerunner of multiprocessor protocols, the initial approach of MPCP

is to turn the multiprocessor resource sharing model into the uniprocessor case

by designating a synchronisation processor among all application processors,

where tasks can either execute with local resources or run independently on

application processors, but must execute the global resources on the synchro-

nisation processor. Note the tasks that do not require global resources can

also execute on the synchronisation processor.

During each access to a global resource, the task is considered to “migrate

to” the synchronization processor. However, in reality, tasks can be statically

bounded to their designated processors while a thread for executing the critical

section of each global resource (i.e., a remote helper that executes on behalf of

other tasks) is created on the synchronization processor. While executing with

a global resource, the host processor of the task is free so that a local lower

priority task can start executing (if it does not request a global resource).

With this approach, the global resources can only be accessed from one

processor (i.e., are converted to local resources) so that the system can be re-

garded as multiple independent uniprocessor systems, where IPCP is adopted

in each processor. If multiple tasks issue requests to a global resource simulta-

neously, they are served in the decreasing order of the base priority, assuming

each task has an unique priority. In addition, a priority-boosting mechanism

is introduced for global resources to prevent the delay caused by the accesses

to local resources, as follows:

• The base priority of a global resource must be higher than the highest

based priority of all the tasks in the system (usually plus one).

• The ceiling priority of a global resource is the sum of the highest priority

among all tasks in the system plus the highest priority of tasks that use

it.

The intuition of this priority boosting mechanism is to give the highest

execution eligibility to tasks accessing global resources so that the remote

blocking can be bounded. As stated in [88], a task can incur blocking only

once for accessing global resources. Once being blocked, the task is suspended
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on its host processor (i.e., the suspension-based approach) and is added into

a priority-ordered queue until it is eligible to acquire the resource (i.e., has

the highest priority among tasks in the waiting queue). Meanwhile, nested

resource accesses (between either global to global resources, or local to local

resources) is allowed in the initial version of MPCP with deadlocks avoided,

as accessing an inner-nested resource can only lead to a non-decreasing active

priority and a higher execution eligibility.

Figure 2.3 illustrates MPCP with a three-processor system, where tasks

are pre-allocated to application processors P1 and P2 while Ps is reserved as

the synchronization processor. For the ease of presentation, we assume that no

tasks are allocated to Ps. The system contains 4 tasks with 4 shared resources,

as given in Table 2.4, where resources are accessed in non-nested fashion with

the given order by each task. r3 and r4 are global resources accessed by all

tasks. According to the priority-boosting mechanism, the base priority of r3

and r4 should be 5 (i.e., the highest priority plus one) and Table 2.5 gives the

ceiling priorities of the resources in Table 2.4. Note that the accessing cost of a

resources is not forced to be identical in the example. This statement remains

for the following examples of resource sharing protocols. However, as claimed

in Section 2.3.1, homogeneous access cost is assumed for all schedulability tests

presented in this thesis for the ease of presentation.

Table 2.4: Tasks in the Example System of MPCP

Task Resource Usage Partition

τ1 r1, r3 P1

τ2 r3, r2 P2

τ3 r4, r1 P1

τ4 r4, r2 P2

Table 2.5: Ceiling Priorities of Resources in the Example System of MPCP

Resource Ceiling Priority

r1 3

r2 4

r3 7

r4 9

41



0 1 2 3 4 5 6 7 8 9 10t 11

P"

P#

P$

𝜏$

𝜏&

𝜏#

𝜏'

𝑟&

𝜏$, 𝑟&

𝑟&

12 13

𝑟$

𝑟$

𝑟'

𝑟'

𝑟$

𝑟$

𝑟'

𝑟'

𝑟# 𝑟#

𝑟#

𝜏&, 𝑟'

𝜏', 𝑟'

𝑟#

𝑟#

𝑟&

𝑟&

𝜏#, 𝑟&

Release Acquire
Resource

Release 
Resource

Finish

Blocked Time 
Instance

Preempted

Local Blocking

Remote Blocking

Execute Other Tasks’ Critical Section

Executing without Locks

Executing in Critical Section

Figure 2.3: Example of the Multiprocessor Priority Ceiling Protocol

• At t = 0, τ1 and τ2 start to execute on P1 and P2 respectively. At t = 1,

τ2 requests r3 so that it executes on Ps and locks r3 with an active

priority of 7.

• Meanwhile, τ3 is released on P1 and then requests r4 at t = 2. As τ3 has

a higher active priority (i.e., 9) than that of τ2, it preempts τ2 on Ps and

starts executing with r4. While τ3 is executing on Ps, τ1 can resumes its

execution on P1 and locks r1.

• At t = 3, τ4 is released and then requests r4 at t = 5. However, it

incurs remote blocking as τ3 is currently executing with r4. Hence, τ4 is

suspended and is placed into the prioritised queue.

• τ3 releases r4 at t = 6 so that τ4 starts its execution with the resource.

Meanwhile, τ3 incurs local blocking by 1 unit of time on P1 due to

requesting r1, which is held by τ1.

• At t = 8, τ4 releases r4 and resumes it execution on P2 so that τ2

continues with r3 on Ps. τ2 returns to P2 at t = 9 after released r3.

• At t = 11, both τ4 and τ3 finish their executions after the accesses to

local resources. Meanwhile, τ1 requests r3 so it executes on Ps with an

active priority of 7.
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• Finally, τ1 and τ2 finish their executions at t = 13.

As illustrated by Figure 2.3, tasks can only incur one blocking from lower

priority tasks when accessing a global resource on the synchronization pro-

cessor (see τ4 in the duration from t = 5 to t = 6), which is achieved by the

priority-boosting mechanism and the prioritised resource serving order. This is

an important property from the viewpoint of schedulability tests as the remote

blocking can be bounded so that response time of each task can be calculated.

However, adopting MPCP can lead to a relatively complicated system with

considerable run-time overheads either by adopting the remote helpers on the

synchronisation processor or forcing tasks to truly migrate during each access

to a global resource.

There exist several variants of MPCP. To increase the processor utilisation,

the initial MPCP approach was extended to support multiple synchronisation

processors (i.e., the extended MPCP), where each synchronisation processor

is assigned with one or more global resources [88, 91]. However, the extended

MPCP does not support nested accesses between global resources as they can

now be accessed from multiple processors simultaneously. In addition, [89] de-

scribed a generalised version of MPCP (i.e., the generalised MPCP) for shared

memory systems, where the need for local agents is removed and tasks on any

processor can access a global resource. Later on, the generalised MPCP is

supported by the schedulability test proposed in [62]. Another MPCP variant

for distrubuted systems (DPCP) is described in [91] and [89], where the re-

mote accessing approach is clarified and the notion of local agent is introduced.

Typically, a local agent indicates a task that runs in a cluster and has access

to the global resources in its own cluster. If a task from another cluster re-

quires the resource, it issues a request to the corresponding local agent, which

will execute with the resource on behalf of the requesting task with highest

priority on that processor.

Summarising the above, MPCP is a suspension-based multiprocessor re-

source sharing protocol with resources served in the priority order. However,

the initial version of MPCP only allow one synchronisation processor while

the extended and the generalised versions can not support nested resource

accesses that involve any global resources. In addition, adopting the notion

of synchronisation processors requires either remote helpers or migrations for

each global resource access. However, despite that each task can only be

blocked once from the analytical viewpoint, serving resources in priority order
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can lead to a long waiting queue for low priority tasks, as they are often be

placed at the end of the prioritised queue while the newly-arrived high priority

tasks can always get the resource prior to the low priority tasks. These disad-

vantages and limintations impose strong limitations towards the usability and

run-time efficacy of this protocol, and can lead to highly complicated systems.

2.5.2 Multiprocessor Stack Resource Protocol

While PCP is extended as MPCP for managing global resources, the well-

known SRP described in Section 2.4.3 is also revised to support multipro-

cessor resource sharing, namely the Multiprocessor Stack Resource Protocol

(MSRP) [47]. However, even with the name MSRP, SRP is only adopted to

manage the accesses to local resources in each partition while a simple and

effective approach is proposed to control the requests to global resources.

Instead of suspending unsatisfied resource-requesting tasks, tasks under

MSRP perform busy-waiting (i.e., spinning) when contending for a global re-

source and are non-preemptive during the period of waiting for and executing

with a global resource. The following summarises the definitions of this pro-

tocol:

• SRP is applied to manage local resources on each processor.

• Each global resource is associated with a FIFO waiting queue.

• If a task requests a global resource, it becomes effectively non-preemptive

and begins spinning for the resource. Meanwhile, it is placed at the end

of the FIFO queue of the requested resource.

• Once the task becomes the head of the FIFO queue, it is allowed to

acquire the resource. During the execution with the global resource, the

task remains non-preemptive until the resource is released.

• Limited nested resource accesses are supported, where accesses between

local resources and accesses from local resources to global resources on

the same processor are allowed. However, accesses from local resource to

global resources on different processors, accesses from global resources to

local resources and accesses between global resources are not supported

due to deadlock concern.

Figure 2.4 illustrates tasks’ behaviours when accessing shared resources

under MSRP with a two-processor system, which contains four tasks and one
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Figure 2.4: Example of the Multiprocessor Stack Resource Protocol

global resource that is required by all tasks. The following describes the exe-

cution of the given system.

• τ1 and τ2 are released on both processors at t = 0 and then both request

r1 at t = 1. Assuming τ1 gets r1 ahead of τ2, τ1 then becomes non-

preemptive and executes with r1 while τ2 is spinning non-preemtpively

(i.e., incurs direct remote blocking).

• At the same time (t = 1), τ3 and τ4 are also released but they incur

arrival blocking immediately as τ1 and τ2 are running non-preemptively.

• At t = 4, τ1 releases r1 so that it is preempted by τ3 while τ2 starts

executing with r1 on P2. τ3 requests r1 at t = 5 but is not satisfied so

that it incurs direct remote blocking and starts spinning. Accordingly,

τ1 also has to cope with this delay as the indirect spin delay from τ3.

• At t = 6, τ2 releases r1 so that it is preempted by τ4 while τ3 can acquire

r1 and starts executing.

• At t = 7, τ4 requests r1, which is held by τ3. Hence, τ4 incurs direct

remote blocking and is spinning for the resource. Meanwhile, τ2 (which

is preempted by τ4) also incurs this delay as the indirect remote blocking

from τ4 due to accessing r1.
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• τ3 releases r1 at t = 10 so that τ4 can lock r1 and continues. Meanwhile,

the indirect remote blocking period of τ2 is finished.

• τ4 releases r1 at t = 11, and then both τ3 and τ4 are finished at t = 12.

Finally, τ1 and τ2 are finished at t = 13.

As illustrated by the example, tasks under MSRP can incur three types of

blocking: direct spin delay, indirect spin delay and arrival blocking, described

as follows:

• A task τx can incur direct spin delay when being blocked directly by

remote tasks for accessing a resource.

• A task τx can incur indirect spin delay if it is preempted by a local higher

priority task, which in turn is blocked directly by a remote task for

accessing an unavailable global resources (i.e., incurs direct spin delay).

• A task τx can incur arrival blocking upon its arrival if a local lower

priority task (denote as τll) is accessing a resource rk with its priority

boosted. rk can be either global or local. In the case of global resource,

τx has to cope with the potential direct spin delay incurred by τll due to

accessing rk.

With the blocking effects of MSRP identified, these blocking can be effec-

tively bounded by the RTA equations described in Section 2.4.4 with minor

modifications to reflect the parallel accesses to shared resources. With non-

preemptive FIFO spin locks, MSRP guarantees that while accessing a resource,

the task can only incur one blocking from each of the remote processors that

has tasks requesting the same resource. Thus, the blocking incurred by a task

for accessing a resource once can be bounded by the number of processors with

tasks requesting the resource.

The following analysis of MSRP is cited from [47] but with the notation

style applied in this thesis for consistency. The response time of τi under

MSRP is bounded by Equation (2.6), where function lhp indicates the set

of local tasks with a priority higher than Pri(τi) and a new notation Ĉi is

introduced.

Ri = Ĉi +Bi +
∑

τh∈lhp(i)

¢
Ri
Th

•”Ch (2.6)

Differentiated with Ci given in Table 2.1 (which denotes the pure com-

putation time of τi without accessing any resources), Ĉi denotes the pure

46



worst-case computation time of τi (i.e., Ci) and the time τi spends on each

requested resource with potential delay, as given in Equation (2.7).

Ĉi = Ci +
∑

rk∈F (τi)

Nk
i e

k (2.7)

Compared to Equation (2.3), ck is replaced by ek in Equation (2.7) to de-

note the total execution cost for rk, including the potential delay for accessing

the resource from each remote processor. ek is bounded by Equation (2.8),

where function map takes a set of tasks and returns a set of processors that

those tasks are allocated on and || gives the size of a given set. As shown

in Equation (2.8), under MSRP, the blocking time incurred by τi for one re-

source access is bounded by the number of processors with tasks requesting

the resource.

ek = |map(G(rk))|ck (2.8)

With ek and Ĉi calculated, the direct spin delay and indirect spin delay

incurred by τi in one release can be safely bounded. The arrival blocking of τi

under MSRP can be bounded via revising Equations (2.4) and (2.5), as shown

in Equations (2.9) and (2.10), where êi is used to denote the arrival blocking

τi can incur with potential remote delay and τll denotes a local task with a

priority lower than τi.

êi = max{ek|Nk
ll > 0 ∧ (rk is global ∨ Pri(rk) ≥ Pri(τi))} (2.9)

Bi = max{êi, b̂} (2.10)

With MSRP, both local and global resources can cause a task to incur

arrival blocking. If rk is a global resource, the duration of the arrival blocking is

bounded by ek. Otherwise (rk is local), it can block τi only if the ceiling priority

of rk is equal to or higher than Pri(τi), and ek = ck as |map(G(rk))|= 1 for

local resources.

This concludes the description of MSRP and its schedulability analysis.

The new notations adopted in this analysis is summarised in Table 2.6. Note

that differentiated with Ci (which denotes the pure worst-case computation

time of τi without accessing any resources), Ĉi also includes the time τi spends

on waiting for and executing with each required resource.

Compared to MPCP (which has various versions with complicated ap-

proaches i.e., the initial version with migrations, the distributed version with

remote agents and the generalised version with global priority ceilings), MSRP
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Table 2.6: Notations Applied in the Analysis of MSRP

τll A local task with a priority lower than that of the task

that is currently being studied (i.e., τi).

Ĉi The pure computation time of τi (i.e., Ci in Table 2.1)

plus the time τi spends on waiting for and executing

with each requested resource (i.e., with the potential

delay for accessing shared resources).

ek The total accessing cost of rk, including the pure exe-

cution cost of rk and the potential delay for accessing

this resource.

êi The arrival blocking incurred by τi with the potential

remote blocking included.

lhp(i) The set of local tasks with a priority higher than that

of τi.

effectively bounds the blocking time for accessing global resources with a sim-

ple and elegant non-preemptive FIFO spin approach. Unlike the priority-

ordered methods, MSRP guarantees that the blocking time of each access is

limited to the number of processors that request the resource. Due to this rea-

son, MSRP can be effectively analysed by a simple schedulability test while

analysing MPCP systems is much more complicated [106].

This attractive property led to many subsequent studies towards the MSRP

systems. In [19], a holistic analysis was proposed to provide a less pessimistic

schedulability test than that of the original MSRP analysis (the one described

above). Later, [106] presented another analysis based on the Integer Linear

Programming technique that further reduces the degree of pessimism when

analysing MSRP systems. Detailed descriptions of these schedulability tests

are presented in Section 2.6.2.

However, the non-preemptive resource accessing model can be too strong in

certain situations. For instance, an unrelated task has to cope with the arrival

blocking as long as a task is executing with a global resource on its processor,

which also includes the potential delay from remote processors. Therefore,

compared to the preemptive approach, high priority tasks (which are usually

assigned with a short deadline) are more likely to miss their deadlines in MSRP

systems. A detailed discussion towards the preemptive and non-preemptive
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resource sharing methods is given in Section 3.1.

2.5.3 Flexible Multiprocessor Locking Protocol

The Flexible Multiprocessor Locking Protocol (FMLP) developed in [17] can

be applied to either global or fully-partitioned systems, and was the first mul-

tiprocessor resource sharing protocol that proposes the idea of managing re-

sources based on their different characteristics, with more than one synchro-

nisation approaches.

In FMLP, resources are classified as either long resources or short re-

sources based on the length of critical sections, where suspension-based locks

are adopted to manage long resources and spin locks are used for short re-

sources. Whether a resource should be regarded as a long or short resource

is decided by users. Yet each short resource should has a shorter critical sec-

tion than that of any long resource. Unlike MPCP and MSRP, FMLP can

support nested resource accesses between global resources via resource groups

and group locks. The following summarised the definitions of this protocol.

• A resource group may contains one or more shared resources. However,

each group can only contain resources with a same type i.e. either short

resources or long resources.

• Each resource group is protected by a designated group lock, and access-

ing any resource in a resource group must acquire the associated group

lock a priori.

• Short resources groups are managed by non-preemptive spin locks and

are served in FIFO order. Once a task gets the lock, it remains non-

preemptive until it releases the lock.

• Long resource groups are guarded by suspension-based locks, where

blocked tasks are suspended and are inserted into a FIFO queue. Once

a task locks the resource, the task boosts its active priority to maximum

priority among all the tasks that are blocked on the group lock until it

releases the lock.

• Non-nested resources are grouped individually while the resources re-

quired by nested accesses are placed into the same group.
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• A long resource request can contain nested accesses to short resources.

However, a short resource request cannot contain any nested requests to

long resources.

According to the definitions of FMLP, a task that holds a lock of a short

resource group can only issue nested accesses to other short resources, and

remains non-preemptive until it releases the group lock. As for a task with a

long resource group lock, it can request either long or short resources in nested

fashion. When accessing a long resource via nested access, this request will

be satisfied immediately as the resource are placed into the same group. If

the task issues a nested access to a short resource, the associated spin lock

must be acquired so that the task becomes non-preemptive while accessing

the short resource. By doing so, FMLP supports the nested resource accesses

between global resources and prevents the formation of the circular resource

requesting chain i.e., deadlocks are avoided.

Table 2.7: Tasks in the Example System of FMLP

Task Resource Usage Partition

τ1 r1s(r
2
s) P1

τ2 r2s P2

τ3 (r2s , r
1
l ) P1

τ4 r1l (r
2
s) P2

Table 2.8: Resources in the Example System of FMLP

Group Lock Resource Group

GLs r1s , r
2
s

GLl r1l

To illustrate FMLP, an example system is provided in Table 2.7 and re-

sources in the system are described in Table 2.8, where GL indicates a group

lock, rs denotes a short resource and rl represents a long resource. The re-

source access r1s(r
2
s) indicates r1s access r2s in the nested fashion while the

access (r2s , r
1
l ) indicates a sequential resource-accessing order without nesting.

Figure 2.5 presents the execution of this system under FMLP, as described

below.
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Figure 2.5: Example of the Flexible Multiprocessor Locking Protocol

• At t = 0, τ1 and τ2 are released on both processors and then request

GLs for accessing r1s and r2s respectively.

• Suppose that τ1 gets GLs first, it becomes non-preemtive and acquires r1s

while τ2 starts spinning for GLs. Thus, τ3 and τ4 incur arrival blocking

immediately after being released at t = 2 and t = 1 respectively.

• At t = 2, τ1 issues a nested access to r2s and is satisfied immediately as it

holds GLs so that it acquires r2s and keeps executing non-preemptively.

It releases r2s at t = 3 and then releases r1s with GLs at t = 4.

• After τ1 released GLs, τ2 gets this lock and then accesses r2s . At the

same time, τ1 is preempted by τ3 on P1.

• At t = 5, τ3 requests GLs for accessing r2s so that it starts spinning.

Meanwhile, τ1 also incur this delay as the indirect spin delay form τ3.

τ3’s request is satisfied until τ2 is finished with r2s and releases GLs at

t = 6.

• At t = 6, τ4 locks GLl and access r1l , but is blocked at t = 7 for accessing

r2s . Thus, it spins non-preemptively for r2s . Accordingly, τ2 also incurs

this blocking as the indirect spin delay.

• At t = 9, τ3 releases GLs so that τ4’s request is satisfied. However, τ3 is
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blocked for requesting GLl so that it is suspended while τ1 resumes its

execution.

• τ4 releases GLs at t = 10 and unlocks GLl at t = 11 so that τ3 is resumed

with GLl and r1l acquired.

• At t = 12, τ3 releases r1l and GLl, and then τ3 and τ4 are finished. At

t = 13, τ1 and τ2 are finished as well.

As shown in the example, FMLP supports nested accesses from long re-

sources to short resources, where both types resources can be either local or

global resources. According to [22], by adopting the appropriate locks to re-

sources with different critical section length, the impact of resource sharing on

schedulability can be reduced. In FMLP, non-preemptive FIFO spin locks are

adopted for short resources so that a strong progress of resource execution is

guaranteed without incurring extra overheads due to context switches while

long resources are managed by suspension-based locks, where waiting tasks

can give up the processor and provide the execution opportunities to other

tasks.

However, adopting FMLP can lead to a relatively complicated system as

both suspension-based and spin-based locking primitives must be available

(or be implemented), and the resource serving mechanism for each lock must

be realised for the use of this protocol. In addition, tasks under FMLP can

incur limitations of both locks, where suspension-based locks can impose fre-

quent context switches while non-preemptive spin locks can lead to prolonged

blocking to high priority tasks. Further, with group locks, the degree of par-

allelism is reduced as the group lock must be acquired before accessing any of

resources in a resource group, which serialises the accesses to resources in the

same group.

2.5.4 Preemptable Waiting Locking Protocol

As described in Sections 2.5.2 and 2.5.3, despite that non-preemptive spin locks

guarantee strong progress of resource execution with bounded blocking time

for each resource access, this approach also imposes a considerable amount of

blocking time to high priority tasks so that the schedulability of the system

can be undermined if critical sections are long. In addition, suspension-based

locks introduce frequent context switches with non-negligible run-time over-
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heads, which is a significant cost if critical sections are short. Thus, to min-

imise the blocking incurred by high priority tasks with non-preemptive spin

locks and to avoid the overheads imposed by suspension-based locks, the Pre-

emptable Waiting Locking Protocol (PWLP) is developed in [1] to propose a

preemptable spin-based locking approach for both global and fully-partitioned

systems.

Ready

Parking

Running

Polling

Satisfy Request

Schedule

Preempted

Satisfy Request Deny Request

Preempted

Figure 2.6: Task States with the Preemptable Waiting Locking Protocol

In [1], the execution states of tasks under multiprocessor systems with

shared resources are specified, as given in Figure 2.6. When a task is released,

it is defined as Ready and becomes runnable. Once it is scheduled, its state

is changed to Running and the task can start its execution. While executing,

the task can either be blocked for accessing a shared resource or be preemtped

by a local higher priority task. While being preempted, the task sets it states

back to Ready and waits to be scheduled again. If being blocked for accessing

resources, the task performs busy-waiting and enters into the polling state.

The task can return to Running state later if the request is satisfied. However,

while spinning, it can also be preemtped (i.e., with the preemptive spinning

approach) by a newly-arrived high priority task so that it enters into the

Parking state. Once the preemptor is finished, the task becomes Ready and

continues to compete for the resource. Based on this state machine, PWLP

defines a set of rules to control accesses to shared resources, summarised below.

• A task τx that requests a resource rk will be added into the FIFO-

ordered queue associated with rk and busy-waits (i.e., spins) with its
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base priority until its request is satisfied.

• Once rk is granted, τx becomes non-preemptable immediately during the

execution with rk. τx restores its base priority after it releases rk.

• If τx is preempted while spinning for rk (i.e., in Polling state), τx cancels

its request, removes itself from the FIFO waiting queue, and enters into

Parking state, where it waits for the high priority task to finish.

• Once the preemptor is finished, τx changes its state from Parking to

Ready and becomes runnable again. When τx is scheduled again, it will

re-issue the request to rk and is placed at the end of the FIFO queue.

As described above, tasks under PWLP should become non-preemptable

only when executing with a resource so that the resource execution is pro-

tected and cannot be interfered by other tasks. In addition, by spinning at

the base priority (i.e., preemptable), the arrival blocking incurred by PWLP

tasks is reduced as they can preempt the spinning task immediately instead of

incurring blocking with potential remote delay. With this approach, PWLP

guarantees the resource execution progress while minimising the arrival block-

ing of all tasks in the system to one critical section only, which is identical

with the uniprocessor case. However, the cancellation mechanism can lead

to increased resource waiting time, which results into prolonged direct and

indirect spin delay for PWLP tasks. To illustrate the differences between the

non-preemptive spin locks and the preemptable spinning approach, the exam-

ple for MSRP in Figure 2.4 is used here with PWLP applied, as shown in

Figure 2.7 and described below.

• τ1 and τ2 are released at t = 0, and both request r1 at t = 1.

• Assuming τ1 gets the lock first so that τ2 is blocked. However, τ2 is not

spinning as it is preempted immediately by τ4. Meanwhile, τ3 is released

but incurs arrival blocking as τ1 is executing with r1 non-preemptively.

• At t = 2, τ4 requests r1 so that it is placed into the FIFO queue and

starts spinning with its base priority.

• τ1 releases r1 at t = 4 so that τ4 can lock r1 and executes. Meanwhile,

τ1 is preemtped by τ3 as it is now executing with its base priority.

• τ4 releases r1 at t = 5 and then τ3 locks r1.
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Figure 2.7: Example System of the Preemptable Waiting Locking Protocol

• At t = 6, τ4 is finished and τ2 is resumes and starts spinning for r1.

• τ3 releases r1 at t = 9 so that τ2’s request is satisfied.

• At t = 11, τ2 releases r1 while τ3 is finished. Finally, τ1 is finished at

t = 13.

As shown in the example, the response time of τ3 (and τ4) under PWLP

is 6 (and 1) units of time shorter than that of the task with MSRP adopted

due to the minimised arrival blocking. However, favouring high priority tasks

can result into prolonged response time of low priority tasks, where they can

be preempted frequently while waiting for a resource, and hence, incurs more

blocking than the non-preemptive spinning approach due to the cancellation

mechanism. PWLP was developed assuming resources are accessed in non-

nested fashion. Supporting nested resources is not discussed in [1] but group

locks are recommended by PWLP’s authors to allow nested resource accesses.

2.5.5 Parallel Priority Ceiling Protocol

The Parallel Priority Ceiling Protocol (PPCP) is a suspension-based protocol

proposed in [41] for globally scheduled systems with fixed priorities. As de-

scribed in Section 2.4.2, any low priority tasks under PCP are prevented from

executing (and of course, requesting any resources) when a task has locked
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a resource with a higher ceiling priority. However, this approach can not be

adopted to global systems directly due to the presence of multiple processors.

By extending PCP, PPCP proposes a sophisticated resource control ap-

proach for global systems, where a configurable number of low priority tasks

are allowed to execute and to lock resources under certain situations. To

achieve this, PPCP introduces a tuneable parameter α to offer a trade-off be-

tween the number of low priority tasks that can execute with shared resources

and the blocking incurred by a high priority task due to resource sharing. The

following summarises the definitions of this protocol.

• Each priority level in the system is assigned with a tuneable parameter

α. The value of α for each priority level is assigned artificially, followed

by the rule that the value of α for a low priority level should not be

higher than that of α for a high priority level.

• For a given task with a priority level Pri (which has an associated pa-

rameter αPri ), it is allowed to lock a shared resource only if the number

of the released tasks (including the task itself) with a lower base priority

than Pri but have or will have a higher active priority due to resource

accessing, is at most αPri for all Pris.

• If αPri = 1 for all Pris, the behaviour of PPCP is identical with PCP. In

contrast, it behaves like PIP if α of each Pri is set to the total number

of tasks in the system.

• If a task does not require any resources while there exist an unassigned

processor in the system, this task is dispatched to that processor imme-

diately.

• PIP is applied if a task requests an unavailable resource, where the

resource-holding task will updates its active priority to the highest pri-

ority among all tasks that are blocked on the resource.

• The system keeps tracking the number of tasks with a lower base priority

but have or will have a higher active priority for each priority level, and

checks whether such a number is larger than the α parameter of the

corresponding priority level during each task release, resource access,

resource release and task completion.
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Table 2.9: Resources in the Example System of PPCP

Resource Accessing Tasks Ceiling Priority

r1 τ1, τ6 6

r2 τ2, τ5 5

r3 τ3, τ4, τ7 7
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Figure 2.8: Example System of the Parallel Priority Ceiling Protocol

Figure 2.8 provides an example of applying PPCP to a dual-processor

system with 7 tasks and 3 shared resources, as described below. The resource

usage and ceiling priorities of the shared resources in the system are given in

Table 2.9. In addition, the α value for the priority levels that are higher than

4 is set to 3 while α of other priority levels (i.e., priority level 1 to 4) are set

to 2. The example provided in Figure 2.8 focuses on the execution status of

tasks regardless which processor it is dispatched to, and two tasks can execute

at the same time as two processors are available.

• τ1 is released at t = 0 and locks r1 at t = 1. This is allowed as it is the

only executing task at this time.

• At t = 1, both τ2 and τ3 are released and require r2 and r3 respectively.

At this time, the system detects that r1, r2 and r3 are also requested

by τ6, τ5 and τ7 respectively, and each of the tasks has a priority higher

than 4. Therefore, for priority level 4, there will be three tasks (τ1, τ2
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and τ3) that have a lower base priority, but have or will have an active

priority higher than 4 due to resource accessing. However, α4 = 2 so

that only two tasks can lock resources. As τ1 is already executing with

r1, τ3 is allowed to lock r3 while τ2 is prevented from executing (i.e.,

being blocked upon its arrival).

• At t = 2, τ4, τ5 and τ6 are released and request r3, r2 and r1 respectively.

These tasks are all eligible to lock resources but r1 and r3 are unavailable

at this moment. Accordingly, τ1 and τ3 raise their priority to 6 and 5

respectively according to PIP. Thus, only τ5 can execute and acquire r2

via preempting τ3, which has the lowest active priority in the system.

As a result, τ4 incurs indirect blocking while τ6 is blocked directly.

• At t = 5 τ1 releases r1 and is finished so that τ6 can lock r1 and starts

executing. Meanwhile, τ5 releases r2 and the arrival blocking period of τ2

is finished but it cannot execute according to fixed-priority scheduling.

• At t = 6, τ5 is finished so that τ3 resumes its execution with r3. However,

τ4 still cannot execute as it is now blocked directly by τ3 for accessing

r3.

• τ3 releases r3 at t = 7 and is finished. Thus, τ4 starts its execution and

locks r3.

• τ6 is finished at t = 9 after released r1 so that τ2 can start executing as

there is only one task (i.e., τ4) that is executing now.

• At t = 10, τ4 releases r3 and is finished. τ7 is then released at t = 11

and locks r3 directly.

• Finally, τ2 and τ7 are finished at t = 13.

As illustrated by this example, τ4 incurs blocking for 5 units of time in

total. However, with PIP only, τ2 will get r2 at t = 1 with an active priority

of 5 while τ3 is prevented from executing. Thus, τ3 has to wait for τ2 to

release r2 firstly and then wait for τ5 to finish before it can execute r3. In

this case, τ4 will incur blocking for 9 units of time (by adding the execution

time of τ2 with r2) so that the system will finish at t = 14. Therefore, PPCP

improves the average performance of the system by 1 unit of time in this

example via allowing a tunable number of low priority tasks to lock resources
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(τ1 and τ3 in this case). In addition, PPCP guarantees that the blocking of

high priority task is bounded since the number of low priority tasks that can

acquire resources is fixed. Due to the same reason, PPCP achieves a deeper

parallelism compared to either PIP or PCP.

Unfortunately, PPCP does not support nested resource accesses at all. In

addition, applying either PIP (with α set to the total number of tasks for

all Pris) or PCP (with α = 1 for all Pris) implies this protocol suffers from

the same limitations in PCP and PIP. More importantly, although with an

interesting resource sharing approach, this protocol is developed explicitly for

global scheduling scheme, and hence, cannot be adopted into fully-partitioned

systems.

2.5.6 O(m) Locking Protocol

The O(m) Locking Protocol (OMLP) proposed in [20] is a suspension-based

protocol and guarantees that each task can incur at most M times of priority

inversions for accessing a global resource, where M denotes the number of

processors in the system. In OMLP, resources are managed by m-exclusion

locks (a locking structure that supports mutual exclusive access of at most M

tasks at a given time) and are severed by both priority and FIFO ordering.

Basically, tasks contending for a global resource are separated into two queues

according to the number of these tasks. If this number is less than M , then

all the competing tasks can be directly placed into a global FIFO queue,

where tasks are satisfied according to their arrival order. However, if there

exist more completing tasks, the lately arrived tasks will be inserted into the

priority-ordered queue (assuming that M competing tasks have been inserted

into the FIFO queue), where these tasks can join into the FIFO queue later

based on priority order if spaces in the FIFO queue becomes available.

This protocol can be adopted to either global or fully-partitioned systems,

yet with different definitions due to the differences of these scheduling schemes

in nature. For global systems, each resource is associated with a global FIFO

queue (Fq) and a priority queue Pq, where the length of the Fq is set to M .

The resource will always be granted to the task at the head of the FIFO queue.

Once the task acquires a resource, it boosts its active priority to the maximum

priority level among all tasks in both Fq and Pq. Upon each resource release,

the task at the head of Pq (if it exists) is dispatched to the end of FQ and is

suspended if necessary according to FPS.
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As for fully-partitioned systems, OLMP introduces the notion of contention

token (i.e., a binary semaphore) and assigns a token to each processor. Unlike

global OMLP, each global resource is controlled by a FIFO queue with length of

M while each contention token is assigned with a priority queue (Pq). A task

is allowed to request a global resource only if it acquires the local contention

token. If the token is unavailable, the task is suspended and is placed into Pq.

After the token is acquired, the task boosts its active priority to the highest

priority on its processor, joins into the FIFO queue and is then suspended (if

Fq is not empty before adding the task) until the resource is granted. After

the resource is released, the task is removed from the FIFO queue, releases

the local token and restores its priority to the previous level.
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Figure 2.9: Example System of the O(m) Locking Protocol

To illustrate the features of OMLP, a dual-processor globally scheduled

system with 5 tasks is given as an example, where all tasks request the same

global resource r1, as shown in Figure 2.9 and described below.

• τ1 is released at t = 0 and then locks r1 at t = 1. This is allowed

because the Fq of r1 is empty before τ1 is added. Meanwhile, τ2 is

blocked immediately after being released for requesting r1 so that it is

also added into the Fq.

• τ3 is released at t = 2 and then requests r1 at t = 3. However, it

cannot join into the Fq as the maximum length is 2 i.e., the number of
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processors. So that it is inserted into the Pq instead and is suspended.

• Later on, τ4 and τ5 are also placed into Pq due to requesting r1 so that

Pq = {τ5, τ4, τ3} at t = 4.

• At t = 5, τ1 releases r1 so that it is removed from Fq. Thus, τ2 gets the

lock while τ5 is dispatched from Pq to Fq.

• At t = 7, τ2 releases r1 so that τ5 can acquire the resource after being

blocked two times (by τ1 and τ2). In addition, τ4 is moved from Pq to

Fq. At this time, Pq = {τ3} and Fq = {τ5, τ4}.

• τ5 releases r1 at t = 8 so that τ4 becomes the head of Fq and locks r1.

Consequently, τ3 now is moved from Pq to Fq.

• At t = 10, τ4 releases r1 and is finished while τ3 can finally execute with

r1, which is then finished at t = 11.

As shown in the example, each task under OMLP can incur at most M

blocking when accessing a global resource. This is achieved by the combination

of Fq and Pq. Compared to the suspension-based approach with prioritised

ordering (e.g., MPCP), OMLP can provide bounded blocking time for each

task in the system under the suspension-based locks. In addition, as stated

in [20], nested resource accesses can be supported via group locks. However,

compared to MSRP, which also bounds the blocking time to M , OMLP can

be less favourable due to high implementation complexity, specially for parti-

tioned OMLP, which requires contention tokens with a set of priority ordering

queues. Further, adopting this protocol can also lead to considerable amount

of run-time overheads due to frequent context switches and the sophisticated

resource sharing techniques.

Later on, an extension of OMLP was proposed in [21] for clustered sys-

tems (Clustered OMLP) with a novel approach named priority donation. In

Clustered OMLP, an one to one donor relationship is established when a pri-

ority inversion will occur, where the donor (a newly-arrived high priority task)

donates its priority to a task that can cause blocking due to executing with a

global resource. This approach is similar with PCP but the priority donation

is performed only when a task can actually cause a priority inversion. With

this approach, the protocols guarantees that each task in the system can be

preemtped only once. However, by favouring low priority tasks, higher prior-

ity tasks in Clustered OMLP can have prolonged response time as they may
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need to donate their priorities due to resource sharing. For the sake of brevity,

the details of the Clustered OMLP is not provided here as this thesis focuses

on the shared memory systems. A detailed description of this protocols is

presented in [21].

2.5.7 Spinning Processor Executes for Preempted Processor

The non-preemptive spin locks (i.e., waiting for and executing with resources

non-preemptively) have the advantage of low scheduling cost by delaying the

preemptions from high priority tasks, which is an expensive operation [84].

However, this approach can impose considerable amount blocking time to high

priority tasks as they must wait for the current resource access to finish before

they can start executing. On the other hand, the preemptable spinning ap-

proach benefits high priority tasks as they can preempt a spinning low priority

task directly. However, the approach (i.e., PWLP in Section 2.5.4) requires

that a task must cancel its current request while being preempted and re-

request the resource later on when being resumed, which prolongs the waiting

time for accessing resources. Under this context, an alternative preemptable

spinning approach is proposed in [100] to minimise the arrival blocking in-

curred by high priority tasks while not interfering the progress of resource

accessing, namely the Spinning Processor Executes for Preempted Processor

(SPEPP).

SPEPP focuses on the low-level resource sharing i.e., the kernel level so

that it can support both global and partitioned scheduling. Notably, a helping

mechanism is introduced to decrease the prolonged resource waiting time im-

posed by the preemptable spinning approach. Under SPEPP, tasks request a

shared resource are inserted into a FIFO queue along with an operation block,

which stores the operations to be performed with the resource. If a task’s turn

to acquire a lock comes while being preempted, another task that is spinning

on the same lock will execute the operations on behalf of the preempted task.

Thus, under SPEPP, the progress of resource execution is guaranteed unless all

tasks waiting for the lock are preempted. Once the preempted task is resumed,

it will find out that the required operations are already performed so that it

can proceed with the output. The definitions of SPEPP are summarised as

below:

• A SPEPP resource contains a spin lock with two FIFO queues to store

waiting tasks and their operation blocks.

62



• A task that requests a shared resource will be placed into a FIFO queue

along with the associated operation block, which is a memory block that

contains all the memory space to store the input and output values of

the operations.

• The atomic test and set primitive is used to update the shared resource

to indicate the preemption status of waiting tasks.

• Tasks are spinning with their base priorities when waiting for the ac-

cess to a shared resource. However, critical sections are executed non-

preemptively.

• Once a task acquires a resource, it will firstly execute the operations of

tasks ahead of it in the FIFO queue and then execute its own operations.

The task will not release the lock until its operation is finished.

• The resource-holding task must check whether an interrupt is pending

after serving a request to the resource. If so, the task executes the

corresponding interrupt handler within a bounded time before executing

the operations of the next task.

Unlike the resource sharing protocols reviewed above, which mainly define

tasks’ behaviours while accessing shared resources (and propose conceptual

mechanisms to facilitate resource sharing, such as the tuneable α in PPCP),

SPEPP relies on special memory blocks called the operation blocks. To illus-

trate the key idea of this protocol, the pseudo code of the SPEPP algorithm

cited from [100] is presented below.

shared var OpQueue; // The operation block queue;

shared var SpinLock; // Spin Lock

var opblock; // operation block

var op; // pointer to an operation block

/* main routine */

enqueue_tail(&opblock, OpQueue);

while (the operations in opblock has not been executed)

do

acquire_lock(SpinLock);

op = dequeue_top(OpQueue);
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execute(op);

release_lock(SpinLock);

end;

The resource-holding task will follow the main routine (i.e., the while

loop) to execute the operations in OpQueue based on FIFO order until the

opblock (i.e., the operations of the task itself) is executed. After a critical

section is executed on behalf of a preempted waiting task, the resource-holding

task updates the corresponding shared variable of that waiting task, which will

leave the resource-accessing routine later on after being resumed.
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Figure 2.10: Example System of the Spinning Processor Executes for Pre-

empted Processor

Figure 2.10 illustrates the execution of a system with SPEPP adopted,

where τ1, τ2 and τ4 request r1, as described below.

• τ1 and τ4 are released at t = 0 and both request r1 at t = 1. Suppose

that τ4 gets the lock first so that τ1 is spinning with its base priority

while τ4 is executing with r1 non-preemptively.

• At t = 1, τ2 is released but cannot execute as it cannot preempt τ4.

• At t = 2, τ3 is released and can preempt τ1 as τ1 is spinning with its base

priority. Thus, τ1 adds its requests and operations (i.e., the opblock) to

r1 into the corresponding opQueue.
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• τ4 releases r1 at t = 3 and is finished at t = 4. Thus, τ2 can start its

execution and requests r1 immediately, where it finds that τ1’s opblock

is in the queue. Then, τ2 firstly executes the operations of τ1 to r1.

• τ2 finishes the operations of τ1 at t = 5 and then starts executing its own

operations on r1.

• At the same time, τ3 is finished so that τ1 is resumed, where it finds that

its operations on r1 are finished. Thus, it keeps executing and is finished

at t = 6.

• At t = 7, τ2 releases r1 and is then finished at t = 8.

SPEPP is significant due to the helping mechanism, where a waiting task

can execute the operations on behalf of the preempted spinning tasks. Com-

pared to PWLP, the blocking time for accessing shared resources under SPEPP

can be reduced as tasks remain in the resource-accessing routine even being

preempted. However, practising SPEPP can lead to complicated spin lock

data structures and has a high demand to memory space due to the need of

operation blocks. In addition, adopting this protocol imposes considerable

amount of run-time overheads as each operation of each resource-requesting

task must be recorded into the corresponding operation block when request-

ing the resource. Finally, nested resource accesses are not allowed under this

protocol.

2.5.8 Multiprocessor BandWidth Inheritance protocol

The Multiprocessor BandWidth Inheritance Protocol (M-BWI) is an execution-

time server-based resource sharing protocol aims at soft real-time multipro-

cessor systems with the reservation-based scheduling [44]. This protocol is

relevant to this thesis as it proposes a fully preemptive spin-based synchro-

nisation approach with a migration-based helping mechanism that deals with

the situation where a task runs out of budgets or is preempted while holding

a shared resource.

M-BWI is extended from the BandWidth Inheritance Protocol (BWI) [70],

which is a reservation-based protocol for soft or open uniprocessor real-time

system. In BWI, the processing time for each task is determined and reserved

before run-time so that each task is guaranteed with a specific amount of

time to execute via an execution-time server. Typically, a server represents an
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abstraction that stores the scheduling parameters of a task, including a budget

that specifies the maximum processor time allocated to the corresponding task.

When a server is scheduled, its corresponding tasks can start executing.

In M-BWI, features in BWI are preserved while new mechanisms are pro-

posed to manage global resources. Under this protocol, tasks perform busy-

waits (using its own budget) when requesting a shared resource and are served

in FIFO order. If a task is preempted or runs out of budget while holding a

resource, it can migrate to a remote sever that has a task waiting for the same

resource, and keeps executing by consuming the budget of the remote server

until it is preempted again or releases the resource. M-BWI allows nested

resource accesses via ordered locks (i.e., each shared resource is assigned with

an order), where an access to an inner resource (say ri) is allowed only if ri

has a greater order number than that of the currently holding resource [69].

Although M-BWI is for open or soft system, the significance of this proto-

col is that it introduces a novel approach to multiprocessor resource sharing

technology that allows a task to use the processor time of another task. By

doing so, a resource-holding task that is preempted or runs out its budget can

still execute instead of causing a long blocking period to tasks that are waiting

for the resource. In addition, compared to the preemptable spinning approach

(e.g., PWLP in Section 2.5.4), unrelated high priority tasks under M-BWI

incurs no arrival blocking at all as they can preempt lower priority tasks di-

rectly even if they are executing with shared resources. Later on, this protocol

inspired the development of the Multiprocessor resource sharing Protocol [27]

for hard real-time multiprocessor systems, as describe in Section 2.5.9.

2.5.9 Multiprocessor resource sharing Protocol

The Multiprocessor resource sharing protocol (MrsP) proposed in [27] aims

at fully-partitioned systems with fixed priorities. The basic features of MrsP

are similar to that of MSRP and PWLP, where spin locks are adopted and re-

sources are served in FIFO order. However, MrsP holds a significant property

where a helping mechanism is employed to help the resource-holding tasks to

keep making progress while being preempted.

Before presenting the protocol, [27] states that on multiprocessor systems,

there is a need to serialise the execution of resources due to parallel accesses

to a shared resource. Thus, if rk is served in FIFO order in a system with M

processors, the accessing time of the resource for a task is at most M × ck in
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the worst case, as given in Equation (2.8). The suspension-based approaches

cannot achieve such a bounding with either prioritised or FIFO order, as more

than one task from the same processor can be inserted into the queue. In

addition, extra blocking terms must be included to bound the potential priority

inversion when a task is suspended while a low priority task is executing with

a resource. Therefore, [27] concludes that the bounding of M × ck can only

be achieved by some forms of the FIFO spin approach.

The non-preemptive FIFO spin locks (e.g., MSRP) does produce the de-

sired bounding, but high priority tasks under this approach could be blocked

upon each arrival, and are highly likely to miss their deadlines if critical sec-

tions are long. On the other hand, despite that spinning at base priority (e.g.,

PWLP) minimises the duration of arrival blocking to only one critical sec-

tion, this approach leads to a prolonged resource-accessing time as tasks that

are waiting for a shared resource can be preempted. Therefore, the authors of

MrsP focus on the resource ceiling facility to limit the arrival blocking incurred

by high priority tasks while minimising the resource-accessing time that can

lead to Equation (2.8). The basic features of MrsP is summarised as below.

• Local resources are managed by SRP.

• Global resources are managed by spin locks and are served in FIFO order,

where task at the head of the FIFO queue is always the resource-holding

task.

• Each global resource is assigned with a set of resource ceiling priorities,

one for each processor that contains task that uses the resource. The

ceiling priority of a resource for a given processor is the highest priority

level of tasks that use the resource on that processor.

• A task boosts its active priority to the corresponding local resource ceil-

ing immediately when it requests a resource. It keeps executing with the

ceiling priority during the entire access to the resource.

• After releases the resource, the task restores its priority to the previous

priority level.

It is clear that the above definitions cannot lead to the desired bounding

as resource-accessing tasks can be preempted when waiting for or executing

with the resource. To achieve the blocking bounding, a helping mechanism

67



is adopted in MrsP, where a task waiting to access a resource should be able

to undertake the associated computations (i.e., critical section) on behalf of

any other tasks accessing the same resource. The objective is that once a

resource-accessing task is preempted, it can be helped by other waiting tasks

with the wasted spin cycles to keep making progress rather than being held by

the scheduler. In the worst case, a task needs to undertake the computations

on behalf of all other tasks in the FIFO queue (according to the FIFO order)

each time it tries to access a resource, which leads to the bounding of M × ck

for each resource access. The helping mechanism in MrsP can be summarised

as below.

• A task that is waiting for a resource should be able to execute the com-

putations of critical sections for any other tasks that are accessing the

same resource.

• A helping task (i.e., a spinning task that helps other tasks to execute)

should undertake the computations of other tasks according to the orig-

inal FIFO order.

In [27], two approaches to realise the helping mechanism are presented.

A duplicated execution approach can be adopted in which the access to a

resource is independent, that is, given a certain state and input, the crit-

ical section produces the same output irrespective of how many times the

operation is applied. However, this approach imposes strong restrictions to

shared resources and limits the use scenario. A more realistic and commonly

adopted approach is to migrate the locally preempted resource-accessing task

to a processor where a task is actively spin-waiting to access the resource.

After migration, the task is assigned the priority of the helping task and then

resumes its execution with the resource on that processor. In practice, the

migrated task is usually assigned a priority which is slightly higher than the

priority of the helping task so that it can preempt the helping task. After

the task releases the resource, it migrates back to its original processor (if

necessary).

Combing the preemptive FIFO spin approach and the helping mechanism,

MrsP achieves the minimised blocking bound in Equation (2.8) and can be fit-

ted into the RTA-based analysis for MSRP systems (Equations (2.6) to (2.9))

with a minor modification to reflect the limited arrival blocking. Thus, Equa-

tion (2.9) is revised to Equation (2.11) as a task in MrsP systems can incur
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arrival blocking only if there exists a local lower priority task that is accessing

a resource with a higher priority ceiling, where Pri(rk, Pm) gives the local

ceiling priority of rk on Pm and P (τi) returns the processor designated to τi.

êi = max{ek|Nk
ll > 0 ∧ Pri(rk, P (τi)) ≥ Pri(τi)} (2.11)

Figure 2.11 illustrates the working mechanism of MrsP by a dual-processor

system with four tasks, as described below. The system used in the example is

described in Table 2.10 with Pri(r1, P1) = 1 and , Pri(r1, P2) = 4 according

to the resource usage.

Table 2.10: Tasks in the Example System of MrsP

Tasks Required Resource Partition

τ1 r1 1

τ2 r1 2

τ3 - 1

τ4 r1 2
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𝝉𝟏 migrates to 𝑷𝟐
with help from 𝝉𝟐

Critical section 
finished

Direct Remote Blocking

Arrival Blocking

Release Acquire
Resource

Release 
Resource

Finish

Blocked Time 
Instance

Preempted

Executing without Locks

Executing in Critical Section

Spinning

Figure 2.11: Example System of the Multiprocessor resource sharing Protocol

• At t = 0, τ1 and τ2 are released on both processor and request r1 at

t = 1. Suppose that τ1 gets the lock first so that τ2 starts spinning with

a boosted priority of 4. Meanwhile, τ4 is released on P2 but incurs arrival

blocking immediately.
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• At t = 2, τ3 is released on P1 and then preempts τ1 as it has a higher

priority. At this point, τ1 migrates to P2 and is helped by τ2 according

to the helping mechanism. Thus, τ1 resumes executing on P2 with a

priority slightly higher than τ2’s active priority (e.g., 5).

• τ1 releases r1 at t = 4 so that is migrates back to P1, but still subject to

preemption as τ3 is not finished. Meanwhile, τ2 can lock r1 and starts

executing.

• τ3 is finished at t = 5 so that τ1 can resume it execution, which is then

finished at t = 6. At the same time, τ2 releases r1 so that it is preempted

by τ4.

• τ4 locks r1 at t = 7 and is then finished at t = 12. Then, τ2 is resumed

and is finally finished at t = 13.

As illustrated by the example, with MrsP, the unrelated high priority tasks

do not need to incur arrival blocking upon its release (see τ3 in this example)

while the preempted resource-holding task can keep making progress with the

help of remote spinning tasks (i.e., τ2 in this example). Thus, τ3 and τ1 in this

example can both have a short response time. If MSRP is adopted, τ3 will

be blocked at t = 2 so that its response time is 2 units of time longer than

the case with MrsP applied while the response time of other tasks remains

the same. In addition, with PWLP adopted, τ3 still incurs arrival blocking as

tasks are executing non-preemptively with resources. However, τ4 in this case

can have a shorter response time as it can preempt τ2 and then gets r1 after

τ1 releases the resource.

In [27], the preliminary approaches to support nested resource accesses are

described, where either group locks or ordered locks can be adopted. Ordered

locks are recommended to avoid the decrease of parallelism. In addition, the

analysis that bounds the execution time cost for accessing nested resources

are supported, as given in Equation (2.12), where function V (rk) returns a

set of resources that access rk. As the accesses to rk in the nested fashion is

serialised by the outer resource (only one task can hold a resource at a time),

|V (rk)| can safely bound the number of requests that can cause blocking for

accessing rk.

ek = (|V (rk)|+|map(G(rk))|)ck (2.12)
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However, as the accessing cost of rk’s inner resources are not studied, this

analysis fails to bound the transitively blocking where rk also requests an inner

resource, but in turn, is blocked as that resource is currently being accessed

by another resource [49]. In addition, with nested resource accesses allowed, a

task can access inner resources while being helped (i.e., on a remote processor),

which could lead to a further priority boosting. With the boosted priority,

the task could block the currently executing task on its host processor while

migrating back with the resource (i.e., incurs preemption again while being

helped), which breaks the property of PCP that a task can incur local blocking

only once. Therefore, as stated in [49], the current version of MrsP (and its

analysis) is insufficient to be adopted in systems with nested resources due to

extra local blocking and unbounded transitive blocking time when accessing

inner resources.

MrsP is significant due to its preemptive FIFO spin approach with the

helping mechanism, which is attractive to systems where the unrelated high

priority tasks are assigned with a short deadline. However, as a relatively

new protocol, the current version of MrsP contains certain issues in its defini-

tions, which can lead to inaccurate results by the current schedulability test

and poor run-time efficiency [109, 110]. In theory, MrsP can achieve the min-

imised blocking bound due to the helping mechanism. However, introducing

migrations can impose considerable amount of run-time overheads to resource-

accessing tasks, which leads to longer resource-accessing time than the theo-

retical value (i.e., |map(G(rk))|) [109]. In addition, with the migration-based

helping mechanism, a resource-holding task can be preempted (and hence, can

migrate) frequently so that the task can spend more time migrating rather than

executing with the resource [110]. Therefore, to guarantee the correctness and

to improve the efficiency of resource accessing behaviours in MrsP, the above

issues must be addressed before practising this protocol.

2.5.10 Summary and Discussion

This section provided a detailed review of the major multiprocessor resource

sharing protocols for real-time systems, and summarised their advantages,

drawbacks and limitations with illustrations. Based on the review, the re-

source sharing protocols on multiprocessors can be classified as two families:

the suspension-based family and spin-based family, as shown in figure 2.12,

where each protocol has an unique combination of resource classification,
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Suspension-based family

MPCP PPCP

M-BWI OMLP
FMLP

Spin-based family

MSRP PWLP

SPEPP MrsP

Figure 2.12: Reviewed Protocols in Spin and Suspension-based Families

queueing techniques and resource-accessing priority rules. In addition, some

newly-developed protocols (e.g., PWLP, SPEPP and MrsP) also contain an

additional mechanism (e.g., the cancellation mechanism and the helping mech-

anism) to reduce certain blocking terms. Note that as FMLP adopts both spin

and suspension-based locks, this protocol belongs to both families.

Table 2.11: Features of Suspension-based Multiprocessor Locking Protocols

Protocol Resources
Accessing

Priority

Queuing

Technique

Additional

Facility

Nested

Resources

MPCP

(generalised)

Global &

Local

Priority

Ceiling

Priority

Ordered
- -

FMLP
Short &

Long

Priority

Inheritance for

Long Resources

FIFO -
Group

Locks

PPCP -
Priority

Inheritance

Priority

Ordered
Tunable α -

OMLP
Global &

Local

Priority

Inheritance or

Non-Preemptive

FIFO &

Priority

Ordered

-
Group

Locks

M-BWI -
Base Priority

of Servers
FIFO

Migration-

based

Helping

Ordered

Locks

Table 2.11 summarises the properties of the multiprocessor locking proto-

cols in the suspension-based family. These protocols classify shared resources

as either local and global or long and short resources, or treat them equally. In

addition, various resource-accessing priority rules and queuing techniques are

adopted in these protocols to manage resource accesses. Among the resource-
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accessing priority rules, resource ceiling facility and non-preemptive sections

are straightforward and effective with low costs while the priority inheritance

facility imposes more run-time overheads due to the need of updating the ac-

tive priority of the resource-holding task frequently. As for queuing techniques,

the prioritised ordering benefits high priority tasks but prolongs the waiting

time for low priority tasks while the FIFO ordering achieves a less bounding

in general but still cannot achieve a bounded waiting queue, as more than

one task in the same processor can join into the queue with suspension-based

locks. The bounded blocking time can be achieved by combining both queuing

techniques (i.e, FMLP, which provides a bounding of M in systems with M

processors), but can lead to a highly-complicated system with considerable

run-time overheads compared to the non-preemptive spin locks (i.e., MSRP),

which guarantees a shorter blocking bound of M − 1. In addition, PPCP and

M-BWI propose addition facilities that can reduce certain blocking terms.

However, the α facility used by PPCP imposes significant run-time overheads

while M-BWI is for soft real-time systems, which is not the focus of this the-

sis. At last, nested accesses between global resources are supported by FMLP,

OMLP and M-BWI via either group locks or order locks.

Resources under spin-based protocols have the same classifications as the

suspension-based approach, but are typically served in FIFO order to pro-

vide strong progress of resource execution, with various accessing priority

rules that benefit certain tasks and resources. Features of the spin-based

protocols reviewed in this section are summarised in Table 2.12. The non-

preemptive spin locks (i.e., tasks are waiting for and executing with resources

non-preemptively) guarantees the bounded blocking for each task but is less

favourable for high priority tasks with long critical sections. Spinning at base

priority level can benefit high priority tasks but prolongs the blocking time

of low priority tasks due to preemptions. Spin locks with a resource ceil-

ing facility (i.e., MrsP) provides a trade-off between the amount of arrival

blocking incurred by high priority tasks and the number of tasks that can

incur preemptions while accessing resources. In addition, to reduce the im-

pact of preemptions to resource-accessing tasks with preemptable spin locks,

additional facilities are proposed in PWLP, SPEPP and MrsP, where the can-

cellation mechanism avoids the delay for tasks that are waiting behind the pre-

empted task while the helping mechanism (with either the operation blocks or

the migration-based approach) can reduce of the prolonged delay due to pre-
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Table 2.12: Features of Spin-based Multiprocessor Locking Protocols

Protocol Resources
Accessing

Priority

Queuing

Technique

Additional

Facility

Nested

Resource

MSRP
Global &

Local
Non-Preemptive FIFO - -

FMLP
Short &

Long

Non-Preemptive

for Short

Resources

FIFO - Group Locks

PWLP
Global &

Local

Base Priority

for Waiting;

Non-Preemptive

for Holding

FIFO Cancel
Group Locks

(Recommends)

SPEPP
Global &

Local

Base Priority

for Waiting;

Non-Preemptive

for Holding

FIFO
Operation

Blocks
-

MrsP
Global &

Local

Priority

Ceiling
FIFO

Migration-

based

Helping

Ordered Locks or

Group Locks

(Preliminary)

emptions incurred by all resource-accessing tasks. As for supporting nested

resources, PWLP recommends group locks with no further details given while

MrsP lacks of a complete approach to support nested resource access and an

effective schedulability test to bound the potential blocking terms for accessing

nested resources.

As stated in [37], there exists no optimal resource sharing solution for

multiprocessors, where the performance of each protocol varies under different

application semantics and resources characteristics. Thus, it is not possible

to achieve the best performance by adopting any of the protocols as a generic

resource sharing solution for all multiprocessor systems. One obvious metric

of choosing an appropriate resource sharing protocol is reported in [22], where

the spin locks are preferable for resources with short critical sections while the

suspension-based approach can benefit long critical sections. This observation

directly motivates the development FMLP. However, this protocol is relatively

complicated and can impose considerable amount of run-time overheads due to

the combined locking approaches. In addition, the fact that the performance

of a locking protocol may also be affected by other factors that have not
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been studied in previous studies of resource sharing on multiprocessors further

complicates the problem of deciding appropriate resource sharing protocols

for systems with certain characteristics. For instance, resources with strong

contention (where there exist many tasks that request a resource multiple times

on different processors) can have a huge impact to the schedulability of PWLP

systems as a task can incur prolong blocking due to newly-arrived resource

requests each time it re-joins into the resource-accessing routine, after being

resumed from preemptions. However, adopting MSRP may provide better

schedulability in this case due to the non-preemptive approach.

The discussion above reflects the first two aims of this thesis (as given

in Section 1.2), which are the need of a combination of appropriately chosen

protocols to reduce the scheduling penalty of managing shared resources with

various characteristics and the need for a schedulability test that supports

systems with multiple protocols working in collaboration simultaneously. In

Chapter 3, the candidate resource sharing protocols for the proposed multipro-

cessor resource control framework are determined from the reviewed protocols

by examining the major factors that can affect the performance of resource

sharing protocols and by comparing the locking approaches proposed by above

protocols. In addition, a schedulability test framework is also developed to

support the analysis of systems that adopt a combination of resource sharing

protocols.

2.6 Further Results in Resource Sharing on Multi-

processors

Besides the development of resource sharing protocols, other works had been

proposed to facilitate multiprocessor resource sharing by reducing the schedu-

lability penalty for managing shared resources while allocating tasks and by

improving schedulability tests for resource sharing protocols. This section de-

scribes the previous results that also lead to the aim of this thesis given in

Section 1.2, including (1) the need for new resource-oriented task allocation

schemes; (2) the need of addressing underlying issues that can undermine the

schedulability analysis for the proposed resource control framework; and (3)

the need for testifying the optimality and availability of the optimal priority

ordering algorithms (i.e., DMPO, OPA and RPA in Section 2.1.3) for the new

schedulability test framework.
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2.6.1 Resource-aware Task Allocation Schemes

The heuristic approaches are usually adopted to solve the NP-hard bin-packing

problem when mapping tasks on multiprocessors and are effective with inde-

pendent tasks [37] i.e., without the presence of shared resources. Besides the

traditional heuristic approaches described in Section 2.2.3 (e.g., the Worst-Fit

and Best-Fit schemes), several search-based algorithms are also proposed to

facilitate task mapping with improved robustness, flexibility and extensibil-

ity of multiprocessor systems [42, 43, 111]. For instance, [43] proposes a task

allocation algorithm based on the simulated annealing technique [85] that op-

timises the extensibility of multiprocessor systems and minimises the changes

required for future system upgrading e.g., changes of task priorities and exe-

cution times.

However, with shared resources, adopting these task allocation schemes

can lead to strong resource completion from multiple processors as shared re-

sources are not taken into account in these algorithms, where tasks requesting

the same resource could be allocated to different processors, and hence, incur

prolonged blocking. To reduce the overall blocking of systems with shared re-

sources, several task allocation schemes are developed that also take resources

into account when grouping tasks into processors [55, 62, 81]. However, some

of the algorithms rely on task migrations and uniprocessor locking protocols,

such as the algorithms proposed in [55], where tasks that request a resource

must migrate to a designated processor during each access while resources are

managed by either PCP or NPP. As this thesis focuses on the multiproces-

sor resource sharing protocols, this section reviews the resource-oriented task

allocation schemes that are applicable to the multiprocessor resource sharing

protocols reviewed in Section 2.5.

2.6.1.1 Synchronisation-aware Partitioning Algorithm

The Synchronisation-aware Partitioning Algorithm (SPA) proposed in [62] is

extended from the Best-Fit scheme with tasks ordered by utilisation non-

increasingly (i.e., BFD), which aims to reduce the blocking time due to resource-

accessing in multiprocessor systems via localising the globally shared resources.

In SPA, the notion of task bundling is proposed to facilitate task allocating,

where tasks that share the same set of resources are grouped as a task bundle,

as described below with a given task set that shares a set of resources R.
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1. Starts from the first resource (say r1) in R and inserts the tasks that re-

quest this resource (i.e., G(r1)) into the first task bundle. The resources

can be ordered by any metrics (e.g., by their indexes), which will not

affect the task bundling outcomes as the algorithm aims to bundle tasks

that shared the same resources.

2. Gets all the resources required by the tasks in that bundle, and places all

the tasks that also require those resources into the same bundle. That is,

the task bundling considers the transitive resource sharing. For instance,

if G(r1) = {τ1, τ2} while τ2 and τ3 require r2, τ3 will also be grouped to

that bundle.

3. Repeats step 2 until a constant task bundle is obtained.

4. Generates task bundles for the resources that do not appear in the ex-

isting bundles via above strategy.

5. The independent tasks (i.e., the tasks that do not require any resources)

will not be placed into any task bundles.

With the task bundles generated, the SPA algorithm starts to allocate

these bundles and the independent tasks via the BFD scheme, as described

below. The allocation starts with M processors, which can allocate the total

utilisation (i.e., Utotal) of the system (e.g., if Utotal = 900% then M = 9)

theoretically.

1. Firstly, the task bundles are ordered by utilisation non-increasingly and

are allocated via the BF approach (i.e., BFD), where a task bundle that

cannot fit into a single processor will be examined later on.

2. Then, the independent tasks are allocated via the BFD approach. If a

task cannot be mapped to any of the existing processors, a new processor

will be added.

3. If a new processor is added, the unallocated task bundles are checked

again to see whether a bundle can be mapped to that processor, accord-

ing to the BFD approach.

After the above steps, only the task bundles that cannot fit into a single

processor is left un-allocated, which need to be broken in order to obtain a fea-

sible allocation. As stated in [62], breaking a task bundle indicates transform-

ing its resources into global resources, which imposes the penalty of additional
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processor utilisation from the viewpoint of utilisation. Then, [62] presents a

set of rules specifying the ordering of these task bundles and the approach for

breaking them, as described below.

1. Tasks in each bundle are ordered by utilisation non-increasingly.

2. Each task bundle that requires breaking has a cost, which is the sum of

the maximum utilisation penalty of all its resources for breaking the bun-

dle into two pieces i.e., Costtb =
∑
rk∈F (tb) c

k/minτx∈G(rk){T x}, where

tb denotes a task bundle and F (tb) returns a set of shared resources that

are required by the bundle tb.

3. Tasks bundles are ordered by their costs in a non-decreasing fashion, and

the bundle with the smallest cost is selected to be broken.

4. The selected bundle is broken into two pieces so that the utilisation of

one piece is as close as the largest utilisation available among the exist-

ing processors, in accordance with the BFD approach. This procedure

repeats until this task bundle is allocated.

5. If this allocation is not feasible, a new processor is added and the whole

allocation strategy is repeated again, where each unallocated bundles

are examined to check where a whole bundle can be fitted into the new

processor.

The above described the detailed task grouping and allocating approaches

in SPA algorithm. As proved in [62], compared to the traditional task allo-

cation schemes (e.g., the WF heuristic), the total number of globally shared

resources can be effectively reduced with SPA adopted so that a higher schedu-

lability can be obtained.

However, SPA aims at localising as many resources as possible despite the

characteristics of the resources. Consider the case where MSRP is the only

available protocol, and short resources are all localised while long resources

are still accessed from many processors, such a system may still contain cer-

tain degree of pessimism as MSRP is less favourable for long resources. Such

a situation could happen if task bundles that request long resources have a

utilisation higher than 100% while each bundle that wants short resources can

be allocated into a single processor. In contrast, if localising long resources

instead of the short ones, the schedulability penalty for managing shared re-

sources with MSRP could be further minimised as the global resources (i.e.,
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the short ones) are now managed by an appropriate protocol. Therefore, par-

titioning schemes that minimise the blocking due to certain types of resources

via localisation could also benefit resource sharing and could outperform al-

gorithms that merely reduce the number of global resources (assuming an

appropriate resource sharing protocol is adopted), and hence, are also desir-

able.

2.6.1.2 Blocking-aware Partitioning Algorithm

The Blocking-aware Partitioning Algorithm (BPA) proposed in [81] is also

extended from BFD, but works explicitly with MPCP. With BPA adopted,

each task is assigned with a weight, which denotes its utilisation plus the

amount of potential remote blocking that the task can incur for accessing

shared resources under MPCP. For brevity, details of calculating the weight

are not described in this thesis and are referred to [81]. Similar to BPA, SPA

puts the tasks that directly or indirectly share a same set of resources into the

same group, which is denoted as a macrotask. If a macrotask cannot be fitted

into a single processor, it is marked as breakable. Otherwise, it is set to be

unbroken. The unbroken marotasks and independent tasks are inserted into a

same list and are sorted by their weights in non-increasing order.

After the above steps, SPA performs task allocating in two rounds and

selects the partitioning result with less processors required among the out-

puts generated by both rounds. Both rounds allocate independent tasks and

unbroken macrotasks according to BFD, but map breakable macrotasks by

different strategies based on an attraction value between tasks in the same

macrotask. The attraction value of τ1 to τ2 denotes the remote blocking that

τ1 can introduce to τ2 (with MPCP adopted) if they are allocated into different

processors, where a larger value represents more blocking time.

Assuming τx is the currently to-be-allocated task from a breakable macro-

task, the first round of BPA orders other tasks in that macrotask based on the

attraction values of those tasks to τx in non-increasing order, where τx is at

the head of the attraction list. Then, the algorithm selects the processor that

can fit the most tasks in that attraction list and repeats this procedure until

all tasks are allocated.

The second round creates a processor list and identifies the most appropri-

ate processors for τx in two steps. First, it inserts the processors that contain

tasks from τx’s macrotask and sorts them by processors attraction to τx in
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non-increasing order. The processor attraction of a given processor Pm to

τx is the sum of the attraction of tasks on Pm to τx. Second, the algorithm

orders the processors that do not contain tasks from τx’s macrotask by utili-

sation non-increasingly and then places them at the end of the same processor

list. Followed by this order, τx is allocated to the first processor that it can

be fitted into from the processor list. The rationale of this approach is to

minimise the blocking incurred by τx from tasks in its macrotask as much as

possible by finding the processor with the highest attraction that can fit τx.

If not feasible, the algorithm then checks the following processors in the list.

As shown in [81], systems with BPA adopted demonstrate better schedu-

lability and require less processors than that of under SPA and the traditional

task allocation schemes. Compared to SPA, which reduces the number of glob-

ally shared resources, BPA is more advanced due to the awareness of blocking

and the sophisticated two-round partitioning approach. However, the cur-

rent version of BPA can only be applied with MPCP assumed. To support

other protocols, the corresponding weight and attraction functions must be

developed.

As for the resource control framework proposed in this thesis, applying

BPA requires extremely complicated weight and attraction functions due to

the use of multiple resource sharing protocols. In addition, adding a new

candidate resource sharing protocol also requires modifications to BPA’s func-

tions, which greatly undermines the usability of this algorithm as well as the

proposed framework. Thus, resource-oriented task allocation schemes that

are independent from the locking protocols (i.e., can be adopted with any

locking protocols assumed) are more desirable for the flexible resource control

framework. In future work, we aim to extend the BPA algorithm to support

other multiprocessor resource sharing protocols and to support to use of mul-

tiple protocols simultaneously in one system. Then, the performance of this

algorithm will be investigated with the presence of multiple locking protocols.

2.6.2 Improved Schedulability Tests for Multiprocessor Re-

source Sharing Protocols

As described in Sections 2.5.2 and 2.5.9, both MSRP and MrsP are supported

by the RTA-based schedulability tests, where the cost for accessing a resource

(say rk) is bounded by |map(G(rk))|×ck (i.e., the number of processors with

tasks requesting rk). The rationale of this bounding is that in the worst case,
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a task can be blocked by each remote processor that requests the resource once

in each access. In addition, the interference from high priority tasks incurred

by a task is determined by the total worst-case computation time of each

higher priority task (”Ch), which includes the potential blocking for accessing

each shared resource. Such techniques are effective and can surely capture the

worst-case scenario. However, recently studies toward the schedulability tests

of resource sharing protocols have revealed issues underlying these analysing

techniques, which can introduce pessimism and undermine the accuracy of the

schedulability results.

2.6.2.1 Holistic Analysis

As stated in [19], the blocking bound |map(G(rk))|×ck applied in the original

tests of both MSRP and MrsP can be pessimistic due to the assumption that

each time a task requests rk, there will always be a task waiting for rk on each

processor that wants the resource.

Figure 2.13 illustrates the scenario where a critical section is accounted for

more than once due to the adoption of this assumption. In the given system,

each task requests the same resource, say r1, a number of times during each

release, there τ1, τ3 and τ4 access r1 3 times while τ2 and τ5 request r1 2 times

during each release. As shown in the figure, one arrow indicates one resource

access to r1.

P3

𝜏5 1 2

P2

𝜏3

𝜏4

1 2 3

1 2 3

P1

𝜏1

𝜏2

1 2 3

1 2

Figure 2.13: Issues of the Original RTA-based Schedulability Tests.

Suppose that during the release of τ3 or τ4, other tasks will only be released

once (i.e.,
†
R3
Tx

£
=
†
R4
Tx

£
= 1 for any given τx in the system). For τ3 itself, it

can be blocked 3 times from P1 and 2 times from P3 for accessing r1, as there

are only 2 requests issued from P3 to r1 during τ3’s release. However, with the

original analysis of either MRSP or MrsP, τ3 incurs 6 blocking in total as the

analysis assumes that each time τ3 accesses the resource it incurs blocking from

both P1 and P3 i.e., the processors with tasks requesting the same resource,

81



which accounts for one more critical section into the blocking time. Due to the

same reason, τ4 also incurs 6 times of blocking for accessing the resource with

the original analysis adopted. However, in reality, τ4 will be blocked twice

from P1 while accessing r1 and its third request will not be blocked at all as

other remote requests delay τ3 directly (thus can only block τ4 indirectly) and

should be accounted for as part of the high priority task interference of τ4.

This issue is addressed by the holistic analysis proposed in [19], where the

blocking time of a task for accessing a resource is bounded via calculating the

exact number of critical sections that can be issued from each remote processor

during the release of that task. In this analysis, the blocking time incurred

by a task τx for accessing a resource rk is analysed by checking whether there

exist any remote requests to rk that are not yet accounted for on each remote

processor for each τx’s access to rk.

By computing the exact number of requests that each task can issue to

each resource, this approach breaks the assumption described above and can

provide less pessimistic results than that of the original tests. However, unlike

the original tests, applying such an analysis requires full knowledge of the

system, including the exact number of requests issued by each task to each

resource. In the interest of brevity, the detailed analytical expression and the

formal proof of the holistic analysis are not given in this thesis and are referred

to [19].

2.6.2.2 Integer Linear Programming-based Analysis

Later on, [106] stated that even if the blocking time can be precisely bounded

without over-calculating any critical sections, the original tests still subject to

certain degree of pessimism due to the approach of inflating tasks’ computation

time with blocking (see notation Ĉi in Section 2.5.2, which denotes the worst-

case execution time of τi plus the cost for accessing each resource with potential

delay).

Consider the same example in Figure 2.13, we now focus on τ4 and assume

that during τ4’s release τ3 can be released (and preempt τ4) 3 times so that†
R4
T3

£
= 3 while other tasks are released once. Even with the techniques

of the holistic analysis adopted (i.e., the blocking is bounded precisely), the

interference of τ4 is 3×”C3, where ”C3 = C3 + 3c1 + 5c1 as τ3 can only incur 5

times of blocking during 3 accesses to the resource. By doing so, the analysis

assumes that each time when τ3 is released in the context of τ4, it can be
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blocked 5 times from P1 and P2, which is 15 blockings in total during 3 releases.

However, as other tasks are released only once during the release of τ4, there

are at most 7 remote requests that can block τ3’s requests so that 8 critical

sections are over-calculated.

To address this issue, [106] proposed a schedulability test framework for

spin locks on multiprocessors based on the Integer Linear Programming (ILP)

technique. This analysis separates the blocking time from the task’s execu-

tion time and accounts for this blocking in parameter Bi, which now reflects

the total blocking a task can incur during one release, including all poten-

tial blocking time due to resource-accessing on multiprocessors (i.e., direct

remote blocking, indirect remote blocking and arrival blocking). With a set

of constraints applied, this blocking variable Bi can be calculated and safely

bounded via a ILP solver with the principle that one remote request can only

cause one blocking.

τ1 :

τ2 :

Hit once Hit twice

Request  Resource

Figure 2.14: The Back to Back Hit Phenomenon.

In addition, [106] pointed out that to accurately account for the number

of requests that are issued during the release of a given task, the back-to-back

hit must be accounted for. This phenomenon is demonstrated in Figure 2.14,

where τ1 can be released only once during the release of τ2 (i.e.,
†
R1
T2

£
= 1) yet

can cause one more blocking period (i.e., the black lines in τ2’s execution) due

to the resource access in its last release (
†
R1+R2
T1

£
= 2). To account for the po-

tential blocking from this additional access, the ILP-based analysis computes

the number of requests to a given resource by the response time of both the

resource requesting task and the task that is currently being calculated, which

guarantees the blocking time can be safely bounded.

With the above issues addressed, the ILP-based analysis can provide less

pessimistic as well as more accurate schedulability results than both the orig-

inal tests and the holistic analysis. In [106], 30 constraints are developed

to support a wide range of spin locks. With the corresponding constraints
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adopted, this ILP-based analysis framework can provide schedulability tests

to 8 spin-based resource sharing protocols, including MSRP and PLWP de-

scribed in Section 2.5.

However, due to the use of the ILP technique, this analysis is considerable

complicated in its analytical expression and is expensive during practice due

to the need for a ILP solver. Section 3.4.4 provides evidence that compared

to the original analysis techniques, the use of the ILP solver can take massive

computation time while calculating the response time, which could greatly

undermine the usability of the analysis even if such computations are usually

performed off-line.

In addition, although supporting a wide range of spin-based protocols,

this analysis does not consider any helping-based protocols (e.g., SPEPP and

MrsP), which are equally important compared to other protocols and have

their unique advantages. Thus, applying such an analysis to the resource con-

trol framework imposes a strong restriction to the range of available protocols

when determining the candidate resource sharing solutions. More importantly,

the nature of the resource control framework (where multiple protocols are

working together simultaneously) also makes this analysis inapplicable, which

can only support the analysis of one protocol at a time.

Combining the discussion above, this thesis aims to develop a new schedu-

lability analysis explicitly for the resource control framework rather than com-

bining or modifying any of the existing tests. The new schedulability test must

directly support the analysis of all candidate resource sharing protocols and

be able to analyse systems with multiple protocols in use. In addition, the new

schedulability analysis must address the above issues to avoid the pessimism

as well as to provide accurate results, but should do so without the need for

any expensive techniques (e.g., the ILP technique) to avoid massive (or even

impractical) computation time when searching for a feasible locking protocol

for each resource.

In addition, considering the back-to-back hits could raise new issues to

priority ordering algorithms. As described above, with the back-to-back hits

taken into account, the response time of a task depends on the response times

of potentially all other tasks in the system, including its local lower priority

tasks. With such a schedulability test, whether DMPO remains optimal be-

comes uncertain and whether OPA and RPA can be applied are unknown.

Therefore, an investigation should be conducted towards the optimality of
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DMPO and the available of OPA and RPA under such a new schedulability

test. If DMPO is not optimal (i.e., there exist better priority ordering that

cannot be found by DMPO) while OPA and RPA are not compatible with

this new schedulability test, a search-based priority ordering algorithm that is

independent from the schedulability tests can also facilitate resource sharing

on multiprocessors, and hence, is also desirable.

2.7 Summary

This chapter firstly provided the background knowledge and basic concepts

of real-time systems that are related to the research proposed in this thesis.

Then, the real-time resource sharing model and resource sharing technology

for both uniprocessor and multiprocessor systems are discussed in detail, which

includes a wide range of resource sharing protocols, resource-aware task alloca-

tion schemes and the analysing techniques for systems with shared resources.

While presenting this literature review, the task and system model of the

research in this thesis is formed with rationales presented, where this thesis

focuses on multiprocessor real-time systems with:

• Sporadic task model with constrained deadlines.

• Fixed priority preemptive scheduling.

• Symmetric multiprocessor architecture.

• Fully partitioned scheduling scheme.

• RTA-based schedulability analysis.

• Lock-based synchronisation approach.

• Homogeneous cost for executing a resource.

Note that assuming homogeneous cost for executing a resource is only for the

ease of presentation of the new schedulability test proposed in this thesis. The

resource control framework can work with heterogeneous resource accesses

with materials given in Appendix A.

As described, managing shared resources on multiprocessors can often lead

to considerable schedulability penalty due to the prolonged blocking for ac-

cessing global resources. Although there exist various multiprocessor locking

85



protocols, each protocol can demonstrate better schedulability than others

with certain application semantics and resource characteristics. Therefore,

using any of the protocols as a generic resource sharing solution can intro-

duce certain degree of pessimism to the system. In addition, the traditional

utilisation-based task allocation schemes could further magnify such schedu-

lability loss due to the unawareness of shared resources. Further, the issues

in the original schedulability tests can lead to pessimistic as well as inaccu-

rate schedulability results. Although research efforts have emerged to provide

resource-aware task allocation schemes and improved schedulability analysis

for certain locking protocols, these newly-proposed techniques either impose

strong application restrictions (e.g., can only be used with certain protocols)

or has complicated expressions with massive computation time (e.g., by using

the ILP techniques).

The above summarises the challenges and issues for managing shared re-

sources on multiprocessor platforms and directly reflects the aim and the hy-

pothesis of this thesis, where the schedulability sacrifice for managing shared

resource in multiprocessor systems can be minimised by adopting:

• A combination of appropriately chosen protocols, where each protocol

only control certain resources that it can benefit.

• Resource-orientated task allocation schemes with full knowledge of the

usage and characteristics of each shared resource and are independent

from the multiprocessor resource sharing protocols.

In addition, to provide analysable systems with the use of multiple resource

sharing protocols, a schedulability analysis must be supported, which should:

• Directly supports the analysis of each resource sharing protocol that are

in use.

• Be able to analysis systems with more than one protocols working si-

multaneously.

• Addresses the issues identified in [106] for less pessimistic as well as more

accurate schedulability results than that of the original schedulability

tests.

The requirement of addressing the issues identified in [106] in the new

schedulability analysis implies that the back-to-back hit phenomenon must
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be considered to guarantee accurate analysing results. Thus, the optimality

of DMPO and the availability of OPA and RPA must be examined due to

the nature of such schedulability tests, where the response time of a task

depends on potentially the response time of all other tasks in the system.

If DMPO is proved to be not optimal while other searching-based priority

ordering algorithms are either inapplicable or not optimal, a new search-based

priority assignment algorithm should be proposed to provide feasible priority

ordering where the existing priority ordering algorithms cannot. Of course,

this priority assignment algorithm must be fully compatible with the new

schedulability analysis.

Based on the above discussion, the following chapters propose a Flexible

Multiprocessor Resource Sharing (FMRS) framework that can effectively re-

duce the schedulability loss (i.e., the increase of the response times of tasks due

to accessing shared resources) when managing shared resources via integrat-

ing the above techniques. First, the candidate resource sharing protocols are

determined and the schedulability analysis that meets the above requirements

is derived in Section 3. Then, new resource-orientated task allocation schemes

based on both the resource-usage and the resource characteristics are devel-

oped in Section 4, which are compatible with all locking protocols. In addition,

the optimality and availability of the existing optimal priority ordering algo-

rithms are examined under the new schedulability test in this section.Then,

a new search-based priority ordering algorithm is developed to facilitate task

priority ordering with the presence of shared resources on multiprocessors. Fi-

nally, the working mechanism of the complete FMRS framework is presented

in Section 5, including the approach for searching the resource sharing, task

allocation and priority ordering solutions to achieve a schedulable system.
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Chapter 3

Candidate Locking Protocols

and Schedulability Tests

This chapter aims to determine the candidate resource sharing protocols and

to provide new schedulability analysis for the multiprocessor resource con-

trol framework. With the candidate resource sharing protocols determined,

new schedulability analysis for each candidate protocol is firstly developed.

Then, these tests are combined to form a complete run-time overheads-aware

schedulability analysis framework that supports systems with potentially all

the candidate protocols working simultaneously. Finally, a set of evaluations

are conducted to investigate the schedulability of each candidate locking pro-

tocol and to provide evidence that supports the decisions made in this chapter.

Materials provided in this chapter directly satisfies the Success Criteria SC-1

given in Section 1.4.

3.1 Deciding the Candidate Multiprocessor Resource

Sharing Protocols

Section 2.5 has provided a detailed review for a wide range of multiproces-

sor resource sharing protocols, and each of them can be a potential candi-

date resource sharing protocol for the proposed resource sharing framework

(namely FMRS). While deciding the candidate resource sharing protocols, a

set of problems are encountered, as given below. Via step-by-step reasoning,

this section discusses each of the questions and then determines the candidate

locking protocols based on the conclusions.
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1. Should the resource control framework contains as many candidate re-

source sharing protocols as possible?

In theory, containing as many candidate resource sharing solutions as pos-

sible could provide strong schedulability for a wide range of application se-

mantics with various resource characteristics, given the fact that no locking

protocol can dominate others. However, in practice, considering all the re-

viewed protocols as the candidate resource sharing solutions is impractical as

this can result in an extremely complicated run-time system with significant

overheads and a highly complicated schedulability analysis framework. To

achieve high run-time efficiency and high usability of the proposed resource

control framework (i.e., relatively easy to implement and analyse), only a lim-

ited number of protocols should be adopted as the candidate resource sharing

solutions in FMRS for reducing the schedulability penalty while managing

shared resources on multiprocessors.

2. Should the resource control framework employs both the suspension-

based and the spin-based locking?

Admittedly, the framework with both locking approaches adopted can

demonstrate stronger schedulability with a wider range of critical section

length than that of only adopting one locking approach, where the spin locks

mainly control short resources while the suspension-based locks focus on long

resources. However, adopting both synchronisation approaches can lead to a

considerably complicated system with high run-time overheads, where each

type of lock could require unique queueing techniques and resource-accessing

priority rules. In addition, adopting both approaches also requires the sup-

port of both locking primitives from the underlying operating system. If not,

users must implement all the locking and queuing primitives before realising

the candidate resource sharing protocols, which can undermine the usability

of the proposed framework. Thus, to reduce the implementation complexity

and run-time costs, either spin locks or the suspension-based locking should

be employed in the proposed FMRS framework.

3. Which synchronisation approach should the framework employ?

According to the review given in Section 2.5, it is obvious that neither

spinning nor suspension can dominant the other and their performance varies
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with different resource characteristics, especially with resources that have var-

ious critical section length. Compared to spin locks, suspension-based locking

is more favourable with long resources, where tasks waiting for a resource

is suspended so that other tasks can keeping executing. However, if critical

sections are short, the frequent context switches introduced by the suspension-

based locks can lead to considerable run-time overheads, which could be even

larger than the cost for executing the resource. In contrast, spin locks carry

low run-time overheads without the need for switching the resource-requesting

tasks and are preferable with short resources. Therefore, as stated in [22], the

suspension-based locking approach is never favourable to spin locks with short

resources assumed.

The suspension-based locks can cause prolonged resource-waiting queue as

more than one task can request the same resource (i.e., joins into the resource-

waiting queue) on a processor at a given time, which leads to complicated

blocking time bounding from the viewpoint of schedulability analysis. In con-

trast, due to the nature of spinning, spin locks can guarantee a strong progress

of resource execution and can effectively bound the resource-accessing queue.

With FIFO queuing and non-preemptive resource accessing assumed (e.g.,

MSRP), the blocking time of tasks for accessing a resource can be effectively

bounded to M −1 by the original analysis on a multiprocessor system with M

processors. Even with the preemptive approach (e.g., MrsP), spin locks can

still achieve such a bounding in theory due to the helping mechanism.

In addition, the preemptive spinning approach (e.g., PWLP and MrsP)

can improve the performance of spin locks under long critical sections to a

certain extent. This is because tasks spinning for a resource can be preempted

by local higher priority tasks, and hence, offer valuable processor time to tasks

that are more urgent to execute. Section 3.4.1 provides a detailed discussion

of spin locks with long resources and presents experimental evidence showing

that the preemptive spin locks can demonstrate strong schedulability with long

critical sections.

Furthermore, the fact that spin locks are widely available at the kernel level

and are largely employed in practice also reflects the superior of this locking

approach [25, 37]. For instance, the Automotive Open System Architecture

(i.e., AUTOSAR) for automotive electronic control units has explicitly man-

dated the use of spin locks for managing shared resources [40, 46]. According

to [22], the suspension-based locking should be avoided for global resources
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under fully-partitioned systems. As demonstrated in [22], with the current

analysing techniques (e.g., the RTA-based analysis), the suspension-based ap-

proach is never preferable to spin locks from the viewpoint of schedulability

and schedulability test.

Summarising the above discussion, the candidate resource sharing proto-

cols should be based on spinning only, but should with various features (e.g.,

resource accessing priority rules) to provide a generic resource sharing solu-

tion for a wide range of application semantics and resource characteristics in

multiprocessor systems.

4. With Spin-based locking decided, should the spin locks served in the

FIFO order, or the priority order, or both?

In addition to the FIFO spin-based protocols reviewed in Section 2.5, there

also exist several spin-based protocols with priority ordering employed [106].

However, adopting the prioritised ordered spin locks can prolong the waiting

time of low priority tasks, and hence, can jeopardise their timing requirements.

Therefore, to further reduce the implementation complexity (i.e., one queueing

techniques only) and to achieve a shorter bounding of the resource-accessing

queue in general (where low priority tasks can be benefitted while the blocking

time of high priority tasks is also safely bounded), the FMRS framework pro-

posed in this thesis focuses on spin-based protocols with FIFO order assumed.

The Candidate FIFO Spin-based Resource Sharing Protocol

Combing the conclusions above, the scope of the candidate resource sharing

protocols is narrowed down to the FIFO spin-based protocols. From the re-

viewed protocols in Section 2.5, three protocols are decided as the candidate

resource sharing protocols for the proposed resource control framework, which

are MSRP, PWLP and MrsP. These three protocols basically cover all the

features in the reviewed spin-based protocols (see Table 2.12), which include

various resource accessing priority rules (i.e., non-preemptive in MSRP, base

priorities in PWLP, and ceiling priorities in MrsP) and additional facilities

(i.e., the cancellation mechanism and the helping mechanism).

Among these candidate protocols, the non-preemptive spinning approach

(i.e., MSRP) can provide strong schedulability with short critical sections

while the preemptive approaches (i.e., PWLP and MrsP) can demonstrate

better schedulability with long critical sections. In addition, as discussed in
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Section 2.5.10, PWLP is preferable with low degree of either the parallelism

or resource contention while the schedulability of MSRP systems can be less

affected with the increase of the number of processors or the frequency of

resource access. Section 3.4.1 provides experimental evidence that verifies the

above statements.

With these three protocols working together simultaneously, the frame-

work should be able to provide a strong schedulability to a wide range of

application semantics and resource characteristics, assuming an appropriate

candidate locking protocol is applied to each resource. In Chapter 5, the cri-

teria and techniques of deciding the appropriate resource sharing protocol for

each shared resource are presented. Note that although only MSRP, PWLP

and MrsP are adopted in the resource control framework in this thesis, other

protocols can be easily integrated into the resource control framework as long

as a RTA-based schedulability test is supported and is integrated into the

schedulability analysis framework. Section 3.3 demonstrates how a schedula-

bility test of a protocol can be easily integrated into the schedulability analysis

framework of the resource control framework proposed in this thesis.

3.2 New Schedulability Tests for MSRP, PWLP and

MrsP

With the candidate resource sharing protocols determined, each of the pro-

tocols must be supported by a schedulability test so that a schedulability

analysis framework can be developed for systems with potentially all the can-

didate locking protocols in use. In addition, as stated in Section 2.7, the

schedulability test of each candidate locking protocols must address the is-

sues identified in [106] to achieve less pessimistic as well as more accurate

schedulability results than that of its original test (if it exists).

According to the discussion given in Section 2.6.2.2, it is clear that the

ILP-based analysis contains the most advanced analysing techniques among

all the existing schedulability tests and directly supports the analysis of MSRP

and PWLP systems (with the corresponding constraints applied). However,

the use of the ILP technique is considerably expensive from viewpoint of both

implementing the analysis and computing the response times in practice. In

addition, the ILP-based analysis does not take any run-time costs into account,

which can undermine the accuracy of the analysis, where tasks that have
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passed the test can miss their deadlines in practice due to the unexpected run-

time costs incurred from either the underlying operating system or the locking

protocol in use. Such a case is most likely to happen with MrsP adopted, where

migrations are required but the cost of migrations is not analysed and safely

bounded.

Combing the discussion in Section 2.6.2 and above, new schedulability tests

for each of the candidate locking protocols are developed in this section, which

should satisfy the following requirements:

R-1 The new schedulability tests must not rely on the assumption that a task

that requests a resource can incur blocking from each remote processor

that requires the resource during each access to that resource.

R-2 The new schedulability tests must not rely on the analysing technique

that inflates the execution time of tasks with their blocking time.

R-3 The new schedulability tests should take the potential blocking due to

the back-to-back hit phenomenon into account.

R-4 The new schedulability tests should take the run-time overheads from

both the underlying operating systems and the locking protocol into

account, especially the cost of potential migrations in MrsP systems.

Note, the term “run-time overheads” used throughout this thesis does not

include the costs due to the underlying RTOS (e.g., the costs of reloading

cache and accessing memory). This thesis focuses on analysing the costs

for adopting real-time resource sharing protocols.

R-5 The new analysis for each candidate protocol should satisfy the above

requirement without the use of any analysing techniques that are expen-

sive and time-consuming (e.g., the ILP technique) .

In Section 3.4, evaluations are presented to verify the necessity of the re-

quirements given above, which should be satisfied by the new schedulability

tests. In addition, as described in Section 2.5.10, all the candidate protocols

impose certain limitations when supporting nested resources, where MSRP

does not support nested resource accesses between global resources at all,

PWLP recommends the use of group locks but with no further details given,

and MrsP lacks a complete approach to bound all potential blocking for ac-

cessing nested resources. For the ease of presentation and in the interest of
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brevity, we assume that a task can only access one resource at a time. That

is, we will focus on non-nested resource accesses in the following chapters.

However, we acknowledge that nested resource access is highly relevant. In

Appendix A, the resource control framework is extended to support the use

of nested resources via group locks and the analysis for nested resource access

is developed.

3.2.1 Analysing MSRP Systems

We start with the most straightforward protocol among all the candidate lock-

ing protocols (i.e., MSRP) and set the format of the schedulability tests that

the following protocols should comply with to facilitate the integration of all

the schedulability tests. The analysis keeps the philosophy of the original

RTA-based equations of MSRP (see Section 2.5.2), but with new techniques

to precisely bound the blocking terms with the implementation overheads of

MSRP and the run-time costs from the underlying operating system accounted

for. In contrast to the ILP-based analysis, which bounds all the blocking terms

by the blocking variable B, we aim to precisely bound the three blocking effects

identified in Section 2.5.2 separately (i.e., the direct spin delay, the indirect

spin delay and the arrival blocking), and then fit them into the RTA equations

without inflating the task’s execution time while avoiding the use of the poten-

tially expensive techniques (e.g., the ILP technique) to meet the requirements

listed above.

Equation (3.1) gives the response time of task τi, where the blocking effects

are reflected by three parameter: Ei is the total resource accessing time of τi

with direct spin delay accounted for; Ii,h indicates the indirect spin delay

incurred by τi from a local high priority task τh; and the arrival blocking is

accounted for in Bi. Note that in our new analysis, Ci is the pure computation

time of τi without accessing any resource and function
†
Ri
Th

£
·Ch gives the pure

computation interference from a local high priority task τh without accessing

resources. In addition, this analysis separates the direct spin delay Ei and

the indirect spin delay Ii,h from the task’s execution time, where function†
Ri
Th

£
· Ch + Ii,h is adopted when calculating the total interference (i.e., with

blocking accounted for) form a local high priority task τh rather than the

function
†
Ri
Th

£
·”Ch adopted in the original MSRP test.

Ri = Ci + Ei +Bi +
∑

τh∈hpl(i)
(

°
Ri
Th

§
· Ch + Ii,h) (3.1)
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Direct and Indirect Spin Delay

We start by bounding the total resource-accessing time with direct spin delay

E and the indirect spin delay I incurred by τi. The following two equations

share a similar format but take different inputs, as shown in Equations (3.2)

and (3.3), where ekx(l, µ) gives the accessing time (with direct spin delay)

to resource rk that task τx can incur within the duration l and a release

jitter µ. By given different duration and jitter length, the function gives

a different bounding as τx can be released a different number of times (so

that a different number of requests) within the given period. Therefore, with

the blocking variables E and I separated from the task’s execution time and

calculated independently via different inputs, our analysis does not rely on

inflating execution time so that the requirement R-2 given in Section 3.2 is

satisfied.

Ei =
∑

rk∈F (τi)

eki (Ri, 0) (3.2)

Ii,h =
∑

rk∈F (τh)

ekh(Ri, Rh) (3.3)

Equation (3.2) gives the total resource accessing time of τi. For τi itself,

l = Ri and µ = 0 so that we will only account for resource requests in one

release. As for the indirect spin delay (see Equation (3.3)), l = Ri and µ = Rh

so that the back-to-back hit can be accounted for when computing the total

number of requests issued from a high priority task τh to rk in the context of

τi (i.e., during τi’s release). To achieve a fine-grained schedulability test, we

analyse the resource accessing time of a task in each individual access so that

ekx(l, µ) is further expanded as:

ekx(l, µ) =

Nk
x (l,µ)∑
n=1

ekx(l)(n) (3.4)

where Nk
x (l, µ) =

†
l+µ
Tx

£
· Nk

x gives the number of requests τx can issue to

resource rk with the back-to-back hit included and ekx(l)(n) gives the time of

τx’s n-th access to rk within a duration l. With the back-back hit phenomenon

accounted for by introducing the duration l and the jitter µ, the requirement R-

3 can be satisfied.

To reflect the worst-case scenario, a higher priority task should incur block-

ing before any local low priority tasks do, as the spin delay incurred by high

priority tasks is propagated to all local lower priority tasks as interference.
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Thus, when computing the direct spin delay that τx can incur for accessing

rk, the requests from a remote processor should delay τx’s local higher priority

tasks prior to τx (if they request rk). This discussion leads to the following

observations, where Nhkx(l) =
∑
τh∈hpl(x)N

k
h (l, Rh) gives the number of re-

quests issued by local high priority tasks, Npkm(l) =
∑
τj∈τ(Pm)N

k
j (l, Rj) gives

the number of requests issued from a remote processor m, τ(Pm) gives a set

of tasks allocated on processor m and (f(x))a denotes max{f(x), a} for the

ease of presentation.

Theorem 1. The maximum number of requests on a remote processor m that

may block τx directly for accessing rk within the duration l is bounded by

NSkx,m(l) = (Npkm(l)−Nhkx(l))0.

Proof. Let Nmay
S denote the number of requests from a remote processor that

may block τx. If Nmay
S > NSkx,m(l), then there exist remote requests that

can block both τx and a higher priority task on τx’s processor that requests

rk directly, which is not possible as one request can only cause one blocking.

Otherwise (where Nmay
S < NSkx,m(l)), certain requests that may block τx are

not accounted for. �

Theorem 2. The number of direct spin delays that τx can incur for ac-

cessing rk from a remote processor m within the duration l and jitter µ is

min{NSkx,m(l), Nk
x (l, µ)}.

Proof. Let N can
S denote the number of spin delay that τx can incur. If N can

S =

NSkx,m(l) ∧NSkx,m(l) > Nk
x (l, µ), there exists a remote request that can block

τx multiple times. In contrast, where N can
S = Nk

x (l, µ) ∧Nk
x (l, µ) > NSkx,m(l),

there exist more than one requests on a remote processor that can block the

same access of τx. Under MSRP, neither case is possible. �

To examine the blocking time in each resource access, we assume that

the first access to a resource incurs as much spin delay as possible. This

assumption will not introduce any pessimism as the total spin delay a task can

incur remains identical. Accordingly, equation ekx(l)(n) can be constructed to

compute the time for each access (see Equation (3.5)), where n is bounded to

[1, Nk
x (l, µ)] by Equation( 3.4) and one extra ck is accounted for the access by

τx itself. Let (f(x))ba denote min{max{f(x), a}, b}, where a and b are positive

integers with a ≤ b.

ekx(l)(n) =
∑

Pm 6=P (τx)

(NSkx,m(l)− n+ 1)10 · ck + ck (3.5)
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In τx’s n-th access, requests from a remote processor m can block τx only if

there still exists unaccounted requests on m i.e., (NSkx,m(l) − n + 1)0 ≥ 1.

Upon one access, there can be at most one request on a remote processor that

can cause the spin delay and hence (NSkx,m(l)− n+ 1)10.

With Equations (3.4) and (3.5), the direct spin delay in E and the indirect

spin delay I can be computed. As proved, our approach guarantees that each

critical section will only be accounted for once and does not rely on inflating

task’s computation time. In addition, with the back-to-back hit considered,

the new equations can provide less pessimism and more accurate spin delay

bounding than that of the original MSRP analysis. Therefore, the issues

discussed in Section 2.6.2.2 are addressed (i.e., has met the requirements R-1

to R-3).

Compared to the ILP-based analysis (which only gives the total amount

of spin delay for each task), we provide a fine-grained analysing technique

that is able to give the spin delay incurred for each individual resource access.

Further, in contrast to the ILP-based analysis, the new equations keep the

philosophy of the original MSRP analysis and can be much less expensive

when either implementing or practising this analysis without the need for an

ILP solver (i.e., requirement R-5). The above statements are confirmed later

on by experiments given in Section 3.4.

Arrival Blocking

The arrival blocking is accounted for by parameter Bi, as given in Equa-

tion (3.6), where êi gives the maximum arrival blocking that τi can incur and

is calculated by Equation (3.7).

Bi = max{êi, b̂} (3.6)

êi = max{|αki |·ck|rk ∈ FA(τi)} (3.7)

Equation (3.7) firstly identifies resources that can cause τi to incur arrival

blocking (i.e., FA(τi)) and then gives the maximum blocking time among the

resources in FA(τi). Under MSRP, a resource rk can cause arrival blocking to

τi if (1) rk is a global resource and will be accessed by a local lower priority

task (i.e., τll) or (2) rk is a local resource that is required by τll with a ceiling

priority equal to or higher than τi’s priority, as given by Equation (3.8). Note

that for a local resource rk on Pm, Pri(rk, Pm) = Pri(rk).

FA(τi) , {rk|Nk
ll > 0 ∧ (rk is global ∨ Pri(rk, P (τi)) ≥ Pri(τi))} (3.8)
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The arrival blocking can be computed without the knowledge of the exact

task that causes such a blocking. For any resource (either local or global) in

FA(τi), it can cause a local blocking of ck. For a global resource rk, there

can be at most one request from each remote processor that can cause τi to

incur arrival blocking transitively. Therefore, by identifying the number of

such processors, the arrival blocking can be computed. Let P (τi) denotes τi’s

processor and αki be the set of processors with requests to rk that cause arrival

blocking to τi (including P (τi)), where

αki , {Pm|NSki,m(Ri)−Nk
i > 0 ∧ Pm 6= P (τi)} ∪ P (τi) (3.9)

Similar to Equation (3.5), a request to rk from a remote processor that can

block a lower priority task on τi’s processor only if the remote request does

not cause any delay yet (including τi) i.e., NSkx,m(l) − Nk
i > 0. Otherwise

(where NSkx,m(l)−Nk
i ≤ 0), this remote request (if exists) will be calculated

more than once because it is already accounted for in the spin delay of τi. In

addition, P (τi) should also be accounted for in αki to include the local blocking

issued by τll to rk. For a local resource rk in FA(τi), α
k
i = {P (τi)}. With αki

computed for each resource in FA(τi), the arrival blocking of τi is obtained,

as shown in Equation (3.7).

The above equations can provide precise bounding of the blocking variables

E, I and B of a given task τi so the the response time of τi can be computed.

Note that in our analysis, we account for the spin delay before computing

arrival blocking while in practice a task will incur arrival blocking firstly.

However, our approach does not break any statements above as the total

number of requests that can block τi is fixed and our approach provides an

easier way to account for all the blocking effects. With the new analysing

techniques for bounding the blocking variables, our analysis addresses the

issues reported by the ILP-based analysis1.

This analysis is independent of the priority assignment scheme and is

not fixed to any specific hardware architecture. Similar to ILP-based anal-

ysis [106], the blocking time of a given task in our analysis depends on the

response time of potentially all tasks in the system. With an initial response

time, say Ci, the analysis computes all the blocking variables and updates

the response times of all tasks in the system iteratively and alternately until

1The experiment IdenticalTest in the testing program https://github.com/RTSYork/

SchedulabilityTestEvaluation shows that our new MSRP test achieves the identical re-

sponse time for each task as the ILP-based analysis does with MSRP constraints adopted.
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a fixed-point is reached.(i.e., the response time and the blocking variables re-

main the same after further calculations). As proved, the new analysis satisfies

the requirements R-1 to R-3 and R-5.

Incorporating the Run-time Overheads

The above presents the theoretical response time analysis of MSRP systems.

In practice, the response time can be larger than the theoretical value due

to the overheads incurred from both the protocol implementation and the

underlying operating system. To guarantee the accuracy of the schedulability

results, such costs should be taken into account in the analysis.

Admittedly, the actual run-time cost that a task can incur largely depends

on the real hardware platforms and operating systems. Yet by treating each

of the costs as a constant upper bound, the maximum run-time overheads

a task incur during run-time can safely bounded. This section presents the

techniques of incorporating the run-time overheads of MSRP systems into the

newly-proposed schedulability test.

Clock Handler

A A’B

Context 
Switch

C

Task Execution

D E

Context 
Switch

Figure 3.1: Events from the Operating System During a Task’s Release [25].

In MSRP systems, the run-time overheads that incurred by tasks mainly

include the cost of obtaining and releasing a lock, and the context switches

due to task releases and preemptions. Figure 3.1 cited from [25] illustrates the

major events occurred in the underlying operating system during the lifetime

of a task’s release (say τi).

When τi’s turn to release arrives, the corresponding clock interrupt will

be fired and the interrupt handler will move τi from the sleeping queue to the

ready queue, where it waits to be scheduled (i.e., event A). Assuming τi has
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the highest priority among all the ready tasks, the scheduler will be invoked

to schedule τi to execute (i.e., event B). If there is an executing task, this

task will be cleaned up and switched away. τi starts its execution at event C

and finishes at event D, where it could be preempted several times by newly-

released higher priority tasks. When τi is finished, it will be cleaned up and be

switched away by the scheduler (event E). Then the system schedules the next

ready task to execute (if any) and keeps waiting for the next clock interrupt

(i.e., event A’). Once τi is preempted during the point C to D, it incurs the

overheads from all events given in Figure 3.1.

According to the description above, to account for the cost due to the

potential context switches τi can incur during each release, Equation (3.1) is

extended to Equation (3.10), as given below.

Ri = CX1 + Ci + Ei +Bi +
∑

τh∈hpl(i)

Ä °Ri
Th

§
· (CX2 + Ch) + Ii,h

ä
(3.10)

where CX1 denotes the cost of events A and B (i.e., releases the task and

schedules it to execute), which will occur before the real execution of τi. If τi

is preempted while executing, it will incur extra overheads caused by the event

A, B and E, which is denoted as CX2. With these two variables determined,

the run-time overheads incurred by τi due to major scheduling events from

the underlying system can be bounded.

The cost for obtaining and releasing a MSRP lock mainly includes the

overheads for raising and restoring the priorities of the resource accessing

tasks, and manipulating the FIFO queues, which are performed in the func-

tion lock() and unlock(). Such costs are denoted as C lockMSRP and CunlockMSRP

respectively, where they can be easily integrated into the cost for accessing a

resource via a new notation Ck, as given below.

Ck = C lockMSRP + ck + CunlockMSRP (3.11)

Accordingly, Equations (3.5) and (3.7) are revised as the following to in-

corporate with the overheads of the locking protocol.

ekx(l)(n) =
∑

Pm 6=P (τx)

(NSkx,m(l)− n+ 1)10 · Ck + Ck (3.12)

êi = max{|αki |·Ck|rk ∈ FA(τi)} (3.13)

With the above equations, the run-time overheads incurred by tasks in

MSRP systems can be bounded so that requirement R-5 can be satisfied. Note

101



that the above equations only provide an overall approach for incorporating

the run-time overheads.

To practice this analysis, the underlying hardware and a real-world oper-

ating system must be provided and the cost for each event in the worst case

should be measured. The exact measuring approach of CX1 and CX2 largely

depends on the scheduling structure of the given operating system while the

Table 3.1: Notations Introduced in the New MSRP Analysis

τj A remote task.

τh A high priority task.

τ(Pm) Tasks allocated to Pm.

P (τx) Partition of τx.

Ck The cost for executing resource rk with implementation

overheads.

CX1, CX2 The cost of context switches of the operating system.

Ex Total resource-accessing time of τx to all resources.

Ix,h Indirect spin delay incurred by τx from a local high pri-

ority task.

ekx(l, µ) Total resource-accessing time of τx accessing rk during

the time l with a jitter µ.

ekx(l)(n) Resource-accessing time of τx’s n-th access to rk during

the time l.

αki A set of partitions with requests that can cause τi to incur

arrival blocking.

Nk
x (l, µ) Number of requests of τx to rk during the time l with a

jitter µ.

Nhkx(l) Number of requests of τx’s higher priority tasks to rk

during the time l.

Npkm(l) Number of requests issued from tasks on Pm to rk during

the time l.

NSkx,m(l) The maximum number of requests on a remote processor

m that could block τx directly for accessing rk within the

duration l.

(f(x))0 Function f(x) >= 0.

(f(x))ba Function min{max{f(x), a}, b}.
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costs of lock() and unlock() depends on the real implementation of the

protocol. In Appendix B, the above run-time cost variables are measured un-

der the LitmusRT Real-Time Operating System [19,30] based on the protocol

implementations given in Appendixes C and D.

Summary

This concludes the new run-time overheads-aware schedulability test for MSRP,

where the new notations introduced in this analysis are summarised in Ta-

ble 3.1. As discussed before, this analysis satisfies all the requirements listed

in Section 3.2, and is able to provide less pessimistic as well as more accurate

schedulability results than that of its original analysis without the need for

any expensive and time-consuming analysing techniques.

In addition, this analysis provides the basic techniques for analysing sys-

tems with FIFO spin locks, which can be directly applied when analysing

certain blocking terms in PWLP and MrsP systems. Finally, a complete tem-

plate for bounding the blocking variables under the FIFO spin-based protocols

is presented. To guarantee the analysing correctness and to facilitate the in-

tegration of the analysis framework, the schedulability tests developed for the

following candidate locking protocols should comply with the theorems and

the schedulability test format proposed in this section.

3.2.2 Analysing PWLP Systems

For PWLP systems, the above MSRP analysis can be adopted with certain

modifications to reflect the preemptive spinning approach and the cancellation

mechanism. With PWLP applied, the resource-waiting queue is prolonged as

a task that is spinning for a resource can be preempted so that it is removed

from the FIFO queue. Once the task is resumed, it re-requests the resource

and re-joins into the end of the FIFO queue.

In addition, by spinning with base priorities, tasks in PWLP systems can

incur arrival blocking for one critical section only, which is identical with the

uniprocessor case. This section firstly bounds the additional resource-waiting

time in PWLP and then computes the arrival blocking via extending the new

MSRP analysis. In addition, the run-time overheads incurred by tasks in

PWLP systems are discussed.
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Costs of the Cancellation Mechanism

As proved by Theorems 1 and 2 in Section 3.2.1, if a task incurs no preemp-

tions while waiting for a PWLP resource, its worst-case resource-accessing

time is identical with that of MSRP due to the FIFO spinning approach,

where Equations (3.1) to (3.5) can be directly applied for bounding the spin

delay. However, by spinning with base priorities, additional blocking time

must be taken into account to cope with the cancellation mechanism, where

Equation (3.1) is extended as follows with Si being introduced to represent

such additional blocking.

Ri = Ci + Ei +Bi +
∑

τh∈hpl(i)
(

°
Ri
Th

§
· Ch + Ii,h) + Si (3.14)

As the cancellation mechanism is triggered by preemptions, a helper func-

tion NoPi is firstly introduced to provide a safe bounding of the number

of preemptions that can occur during the release of τi, denoted as NoPi =∑
τh∈hpl(i)

†
Ri
Th

£
, where each release of τh in hpl(i) can cause a preemption to

either τi or a τi’s local higher priority task in the worst-case. Thus, the max-

imum number of the re-requests to shared resources (due to preemptions) of

τi and its local higher priority tasks can be bounded, where each preemption

in NoPi can cause a retry in the worst case. The reason to consider the pre-

emptions (so that the potential re-requests) to τi’s local higher priority tasks

when computing τi’s Si is because this blocking can propagate to τi, where

τi has to wait for such a high priority task (which is preempted by a higher

priority task, and hence, triggers the cancellation mechanism) to finish before

it can be resumed.

Once a preemption occurrs during the release of τi while the preempted

task (either τi or a task in hpl(i)) is waiting for a resource (say rk), the

amount of blocking time for re-requesting rk depends not only on the number

of remote requests to rk that is not being accounted for in the analysis (i.e.,

not being considered as the direct spin delay or indirect spin delay of τi yet)

but also the critical section length of rk. If there exist no unaccounted remote

requests to rk, this preemption will not cause any additional blocking to τi.

To reflect the worst-case scenario, this analysis searches for the resources

that can cause the most amount of blocking to τi by each preemption. Let Lki

denotes a list of extra blocking incurred by τi for tasks (τi itself or its higher

priority tasks) re-accessing rk due to each preemption that can occur during
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the release of τi, where

Lki = {
∑

Pm 6=P (τi)

(NSki,m(Ri)−Nk
i − n+ 1)10 · ck|1 ≤ n ≤ NoPi} (3.15)

For the n-th preemption during τi’s release that preempts a task waiting for rk,

the amount of blocking incurred by τi due to re-requesting rk from a remote

processor Pm is bounded by (NSki,m(Ri)−Nk
i −n+1)10 ·ck, where NSki,m(Ri)−

Nk
i represents the remote requests on Pm that have not being accounted into

either the direct or the indirect blocking of τi, as proved in Section 3.2.1. Note

that such a value can be 0 if there exist no more unaccounted remote requests

on Pm upon a given preemption.

The above presents the approach for computing the additional blocking

caused by all preemptions due to accessing one resource. As briefly described

before, τi can incur such additional blocking not only when accessing a global

resource itself, but also by a local high priority task (say τh) that preempts

τi and requests a global resource, which in turn, is preempted by another

higher priority task. In this case, the additional blocking incurred by τh will

transitively block τi as well. Such blocking can also be accounted for by the

above equation as preemptions to τi’s local higher priority tasks can also be

reviewed as preemptions to τi. However, resources that are neither requested

by τi nor τi’s local higher priority tasks will not cause any additional blocking

to τi. Accordingly, the resources that can cause τi to incur the additional

blocking under PWLP can be identified, as given below, where FS(τi) denotes

such resources and τlh represents the local tasks that have a higher priority

than τi.

FS(τi) ,
¶
rk|(Nk

i > 0 ∨Nk
lh > 0) ∧ rk is global

©
(3.16)

To capture the maximum additional blocking time that τi can incur, the

blocking times caused by each resource in FS(τi) are computed with the as-

sumption that all preemptions have occurred while τi or τlh is waiting for the

resource (i.e., Lki ). Then, the blocking values from each Lki list are merged into

a single list and are sorted by the non-increasing order to facilitate bounding

such retry cost under this protocols, as shown in Equation (3.17), where LSi

gives the list of blocking due to re-requesting each of the resource in FS(τi)

upon all preemptions and {}dList denotes a list with its elements ordered non-

increasingly.

LSi = {Lki | rk ∈ FS(τi)}dList (3.17)
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Accordingly, the total amount of the additional blocking that τi can incur

under PWLP in the worst-case can be safely bounded via summing up the

first NoPi values in the LSi list, as given in Equation (3.18), where LSi(n)

gives the n-th element in the list LSi.

Si =
NoPi∑
n=1

LSi(n) (3.18)

Via extending the response time equation with a new notation Si, the above

equations provide a complete approach for bounding the additional blocking

incurred by tasks due to the cancellation mechanism with PWLP adopted.

Arrival Blocking

Another difference between MSRP and PWLP is the amount of arrival block-

ing that a task can incur. Both protocols share the same set of resources

that can cause the arrival blocking (see Equation (3.8)) as they require non-

preemptive execution while holding a resource. However, as tasks are spinning

with base priorities under PWLP, they will not incur any remote blocking when

being blocked upon their arrival, where they can directly preempt an execut-

ing low priority task even if they are waiting for a global resource. Hence, the

arrival blocking can be easily bounded by the Equation (3.19), where a task

can be blocked by the longest critical section among resources in FA(τi).

êi = max{ck|rk ∈ FA(τi)} (3.19)

The above presents an approach for calculating the theoretical response

time (i.e., without the run-time costs) of tasks in a PWLP system, including

the blocking due to the cancellation mechanism. Similar with the new MSRP

analysis, this test gives the identical response time for each task as that of the

ILP-based analysis with PWLP constraints adopted (i.e., the testing program

IdenticalTest mentioned in Section 3.2.1). Yet, the new tests avoids the use

of the expensive ILP technique, which ease the implementation of the analysis

and require less computation time to deliver the schedulability results. Such

features are curial for the usability of the proposed FMRS framework (see

Chapter 5 for explanations). In Section 3.4.4, the time consumption of the

newly-proposed analysis and the ILP-based tests will be investigated.
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Run-time Overheads

The approach to bound the overheads of context switches and locking is the

same with that of MSRP, where CX1 and CX2 are introduced to Equa-

tion (3.14) while Ck is adopted instead of ck in Equations (3.5), (3.15) and (3.19).

However, Ck under PWLP should be revised as Equation (3.20) to cope with

the overheads from PWLP’s lock() and unlock() functions.

Ck = C lockPWLP + ck + CunlockPWLP (3.20)

In addition, with PWLP adopted, preemptions can trigger the cancellation

mechanism so that the preempted task is removed from the resource-waiting

queue. Once the preempted task is resumed, it should re-request the resource

(i.e., re-joins into the FIFO queue) so that additional run-time overheads are

imposed. The cost for these two operations can be denoted by one notation

Cretry and be bounded together via extending Equation (3.17), where a pre-

emption can cause the cancellation of the request and the subsequent retry.

LSi = {Cretry + Lki | rk ∈ FS(τi)}dList (3.21)

Note that although this analysis bounds the cost of cancelling a request

and the retry together as one notation, the cancellation operation is likely to

happen inside the scheduler before the preempted task is switched away, and

hence, could lead to a slightly higher cost of the context switch procedure in

theory (i.e., CX1 and CX2) even if this protocol is not in use. However, the

cancellation mechanism can be effectively modelled into an if statement with

a single variable to control whether a cancellation is required. Therefore, such

an intrusion can be trivial to the total cost of a context switch, and hence,

can be ignored without jeopardising the schedulability results. This concludes

the new schedulability test of PWLP. The notations introduced in this new

schedulability analysis are summarised in Table 3.2.

3.2.3 Analysing MrsP Systems

Unlike PWLP, tasks in a MrsP system share the identical FIFO queue with

that of MSRP due to the helping mechanism, where Equations (3.1) to (3.7)

and (3.9) can be directly applied to bound the theoretical response time of

MrsP tasks. However, as tasks in MrsP are accessing resources with the ceiling

priority, Equation (3.8) requires modifications to reflect the set of resources
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that can cause MrsP tasks to incur the arrival blocking, where τi can be blocked

upon its arrival by rk only if rk is required by local lower priority tasks with

a ceiling equal to or higher than Pri(τi).

FA(τi) , {rk|Nk
ll > 0 ∧ Pri(rk, P (τi)) ≥ Pri(τi)} (3.22)

With the equations mentioned above, a complete response time of MrsP

can be formed. In addition, the approach for incorporating the overheads of

context switches, and locking and unlocking resources is also similar to that of

the MSRP analysis, where Equations (3.10) to (3.13) can be directly applied

with the notation Ck revised to reflect to overhead of MrsP’s lock() and

unlock() functions, as given below.

Ck = C lockMrsP + ck + CunlockMrsP (3.23)

Migrations in MrsP

The current definition of the MrsP helping mechanism carries a certain degree

of pessimism under the situation where the resource holder is preempted and

Table 3.2: Notations Introduced in the New PWLP Analysis

Cretry The implementation overheads for cancelling a resource

request and re-accessing a resource.

Si The additional blocking of τi due to the cancellation

mechanism of PWLP.

NoPi The number of preemptions τi can incur during one re-

lease.

Lki A list of additional blocking times incurred by τi for re-

accessing rk due to each preemption.

LSi A list of additional blocking times (ordered decreasingly)

that τi can incur for re-accessing shared resources in

FS(τi).

FS(τi) The set of resources that can cause τi to incur the addi-

tional blocking under PWLP.

L(n) The n-th element in the given list L

{}dList A list with the elements ordered non-increasingly by their

values.
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there exist a large number of potential helpers each of which resides in proces-

sors where there is one or more high priority tasks with short periods. This

can result in the resource-holding task suffering frequent migrations. Under

such a situation, the task can spend more time migrating than it does execut-

ing with the resource so that the resource-accessing time can be significantly

prolonged with the efficiency of the protocol significantly undermined.

To avoid frequent migrations, we introduce a short non-preemptive section

into the MrsP helping mechanism so that upon each migration with a resource,

the holder is allowed to execute non-preemptively (NP) for a short time before

it inherits the corresponding resource ceiling priority. The NP-section can

provide guaranteed progress to resource holders and can reduce the number

of migrations effectively, especially when high priority tasks are released fre-

quently. The only side effect of this approach is that any newly released high

priority tasks have to cope with the cost of one NP-section before it can pre-

empt the holder and execute. However, the length of the NP-section (i.e.,

CNP ) can be configured so that the high priority tasks are still able to meet

their deadlines. As a default it can be the maximum time of the NP-sections

in the hosting operating system (i.e., b̂). Our analysis presented below bounds

the cost of the migration with this approach. In Section 3.4.3, evidence is given

to demonstrate improved efficiency of MrsP with the NP-section adopted.

Migration Cost Analysis

As described above, migrations are required in this protocol due to the helping

mechanism, which usually require updating data structures (e.g., run queues)

in the underlying operating system and reloading caches. Such operations can

impose non-negligible run-time overheads to MrsP systems and should not be

ignored by MrsP analysis. In addition, the implementation overheads of the

helping mechanism should also be accounted for to achieve a more accurate

and complete schedulability test for MrsP. In this section, a migration cost

analysis for MrsP is developed via treating the migration cost as a constant

upper bound (e.g., Cmig in this thesis) and bounding the maximum number

of migrations a task can perform during each release due to accessing shared

resources under MrsP.

To capture the worst-case scenario, we assume that a preempted resource

holder can migrate to any valid processor (i.e., a processor that has a task

spinning for the resource or the holder’s original processor). In addition, as
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shown in the above analysis, for any resource-requesting task τx, it can incur

a different amount of spin delay upon each access to a resource so that its

migration targets can also be different during each resource access. Thus, the

migration cost should be computed based on each individual access to each

resource. We firstly identify the set of migration targets for a given task τx.

Theorem 3. In τx’s n-th access to rk within a duration l, the set of migration

targets for τx is mtkx(l)(n) , {Pm|Pm 6= P (τx)∧NSkx,m(l)−n+1 > 0}∪P (τx).

Proof. A remote processor m is a valid migration target for τx’s n-th access

to rk only if there exists a request to rk from processor m that is not already

accounted for during l (i.e., NSkx,m(l) − n + 1 > 0 from Equation (3.5)). In

addition, τx’s original processor should be included as τx may migrate back to

P (τx) when it is preempted on a remote processor. �

In addition, when τx incurs arrival blocking by a low priority task, the

blocking task may also incur migration cost, which in turn delays τx. The

migration targets of the low priority task can be identified by the set αkx

(the set of remote processors with requests that can cause τx to incur arrival

blocking) in Equation (3.9).

As tasks inherit the resource ceiling when accessing a MrsP resource, the

potential preemptors on each migration target can be identified. With a given

set of migration targets (denoted by mt) and a resource rk, the migration

targets with preemptors mtp(mt, rk) is:

mtp(mt, rk) , {Pm|Pm ∈ mt ∧ hpt(rk, Pm) 6= ∅} (3.24)

where hpt(rk, Pm) gives a set of tasks on processor m that have a priority

higher than the resource ceiling of rk. Note that mtp(mt, rk) is a subset of

the given migration targets mt and can be empty.

As presented above, migration targets are identified based on whether there

will be a request from the remote processor. Thus, on each migration target,

there exists one request issued to the resource and they share the same set of

migration targets. To bound the migration cost that a task τx can incur when

accessing a resource, we examine the migration cost of each request issued from

the migration targets. Let Nmig be the number of potential migrations. We

summarise the following observations where a limited number of migrations

can be triggered when a request is issued from processor Pm to resource rk

with a given set of migration targets mt:
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Lemma 1. Nmig = 0 if Pm /∈ mtp(mt, rk).

Proof. The request issued from processor Pm incurs no migrations if there

exists no preemptors on that processor. �

Lemma 2. Nmig = 0 if {Pm} = mt.

Proof. No matter how many times the request from Pm can be preempted on

its processor, there will be no migrations if there exists no other migration

targets. �

Lemma 3. Nmig = 2 if {Pm} = mtp(mt, rk) ∧ |mt|> 1.

Proof. In the case where the request can only be preempted on its original pro-

cessor Pm, the requesting task can migrate to other migration targets without

further preemptions. Once the task releases the resource, it migrates back to

Pm. �

In a more general case where there exist more than one migration targets

with potential preemptors, the number of migrations have to be bounded by

the release of all potential preemptors. Unfortunately, we are not able to

track the state of the current processor of the resource holder constantly as

no assumption can be made about the migration destination in the worst

case. Thus, we have to assume that each release of the high priority task can

cause a preemption with a subsequent migration. Because of this, our analysis

provides a safe upper bound of the migration cost rather than a precise worst-

case bounding. However, by applying the NP-section and by identifying the

exact set of migration targets, the pessimism of the analysis can be effectively

reduced, as shown by experiments in Section 3.4.3.

In the case where the resource-requesting task’s processor Pm satisfies Pm ∈
mtp(mt, rk) ∧ |mt|> 1, the migration cost of that single request is bounded

by the releases of high priority tasks on each migration target, denoted by

Mhp(mt, rk), where Cmig represents the overheads of one migration.

Mhp(mt, rk) = Cmig ·
Ä ∑
Pm∈mtp(mt,rk)

(
∑

τh∈hpt(rk,Pm)

¢
ck +Mhp(mt, rk)

Th

•
) + 1

ä
(3.25)

The equation accounts for the total number of releases of all the poten-

tial preemptors on each migration target within the duration of one resource
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computation time with migration cost considered ck +Mhp(mt, rk). Through

iteration, the equation can give a fixed migration cost that the requesting task

can incur based on the given set of migration targets. To cope with the sit-

uation where the next holder needs to wait for the current holder to migrate

away before it can acquire the resource, one extra migration is included.

On the other hand, with the NP-section adopted, the migration cost in a

single access can also be bounded by the length of the NP-sections, denoted

by Mnpk, as given by Equation (3.26), where Cnp represents the length of the

NP-section. Note that in our analysis we assume the length of NP-section as

a positive integer value (by default Cnp = b̂).

Mnpk = Cmig · (
¢
ck

Cnp

•
+ 1) (3.26)

In the case where the holder can be preempted frequently, this equation

can give a more acceptable number of migrations that a MrsP resource holder

can incur. Unlike Equation (3.25), this equation does not rely on iterations as

the NP-section is for the resource execution only and does not include the cost

of migrations. Therefore,
⌈
ck

Cnp

⌉
can provide a safe bounding on the number

of migrations with NP section applied. Combing Equations (3.25) and (3.26)

we give the following lemma, where the request is issued from processor m:

Lemma 4. Nmig = min{Mhp(mt, rk),Mnpk} if Pm ∈ mtp(mt, rk) ∧ |mtp
(mt, rk)|> 1.

Proof. In the case where Mnpk < Mhp(mt, rk), the resource holder is pro-

tected by the NP section while some of the preemptions are delayed so that

Nmig = Mnpk. In contrast (where Mhp(mt, rk) ≤ Mnpk), the holder often

can execute for an amount of time longer than Cnp after migrations without

the effect of NP sections. Thus, Nmig = Mhp(mt, rk). �

In addition, note that ck is still in use instead of Ck (i.e., ck plus proto-

col implementation overheads) in Equations (3.25) and (3.26) as preemptions

should not be allowed during functions lock() and unlock() to guarantee the

correctness of tasks’ behaviours while requesting or releasing a MrsP resource

(e.g., manipulating FIFO queues, changing priorities and updating MrsP data

structures). Such NP-sections should be accounted for in b̂ as the blocking is

caused by the underlying operating system upon tasks’ arrival.

Combining Lemma 1 to 4, we give the total migration cost a task can

incur. In the worst case, the task has to cope with the migration cost of all
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the requests in the FIFO queue, including the migration cost of those resource

requests. Let Mig(mt, rk) be the total migration cost that a task can incur

for accessing rk with a given set of migration targets mt:

Mig(mt, rk) =
∑

Pm∈mt


0, if Pm /∈ mtp(mt, rk) ∨ {Pm} = mt

2 · Cmig, if {Pm} = mtp(mt, rk) ∧ |mt|> 1

min{Mhp(mt, rk),Mnpk}, otherwise

(3.27)

With the migration cost analysis constructed, we integrate this with the re-

sponse time analysis presented above to form a complete run-time overheads-

aware schedulability analysis for MrsP systems. Firstly, the migration cost

should be integrated into the equation that bounds the spin delay (see Equa-

tions (3.4) and (3.28)). The set of migration targets are identified previously

by mtkx(l)(n).

ekx(l, µ) =

Nk
x (l,µ)∑
n=1

(ekx(l)(n) +Mig(mtkx(l)(n), rk)) (3.28)

In addition, the migration cost also needs to be accounted for when bound-

ing the arrival blocking. The set of migration targets here are given by αki .

Equation (3.29) gives the arrival blocking with the migration cost integrated.

In the case where rk is a local resource, Mig(αki , r
k) = 0 as αki = {P (τi)}.

êi = max{|αki |·Ck +Mig(αki , r
k)|rk ∈ FA(τi)} (3.29)

Finally, as we adopt the NP-section for migrations, an extra blocking effect

should be accounted for. If the length of the NP-section is configured as the

maximum NP-section length in the hosting operating system (b̂), no further

modifications to the equations are required. Otherwise (where Cnp > b̂), for

any given task τi, it has the risk to incur such a blocking (denoted by n̂pi) as

long as it has a priority equal or higher than the lowest ceiling priority of the

global resources on its processor:

n̂pi =

Cnp, if Pri(τi) ≥ min{rk is global}Pri(r
k, P (τi))

0, otherwise
(3.30)

Same with the arrival blocking, such a blocking happens before the execution

of τi and can only happen once. Therefore, Equation (3.6) should be modified

to reflect this extra blocking.

Bi = max{êi, n̂pi, b̂} (3.31)
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This concludes the work of MrsP Schedulability Analysis. The notations

introduced by this analysis are summarised in Table 3.3. Combining the re-

sponse time analysis and the migration cost analysis together, we provide an

improved and more complete schedulability analysis tool for MrsP with the

awareness of implementation and run-time costs, especially the cost of migra-

tions.

Table 3.3: New Notations in the New MrsP Analysis

Cmig The cost of one migration.

Cnp The length of the NP section.

n̂pi The blocking that τi can incur due to the NP section.

mtkx(l)(n) The migration targets of τx’s nth access to rk within the

duration l.

mtp(mt, rk) A set of migration targets with tasks that can preempt

tasks that accessing resource rk in the given set of migra-

tion targets mt.

Mig(mt, rk) The total migration cost a task can incur for accessing rk

with the given set of migration targets mt.

Mhp(mt, rk) The migration cost of a single access to rk bounded by the

releases of high priority tasks on the given set of migration

targets mt.

Mnpk The migration cost of a single access to rk bounded by the

length of the NP section.

hpt(rk, Pm) tasks on partition m that have a higher priority than the

ceiling of rk.

3.2.4 Summary

This section presents new schedulability tests for the candidate resource shar-

ing protocols in the proposed multiprocessor resource control framework, where

each of the analysis is developed based on Theorems 1 and 2 in Section 3.2.1

with the back-to-back hit phenomenon accounted for. In addition, the new

schedulability tests include the major run-time overheads from both the un-

derlying operating system and the protocols. Finally, the new schedulability

analysis preserves the philosophy of the original schedulability tests of these

protocols and avoids the use of potentially expensive analysing techniques.
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Therefore, the proposed schedulability tests satisfy all the requirements listed

in Section 3.2.

3.3 A Flexible Schedulability Test Framework

With the schedulability tests for the candidate resource sharing protocol de-

veloped, a complete schedulability analysis framework for systems with poten-

tially all the candidate locking protocols in use can be formed via integrating

each of the schedulability test. As the schedulability tests is developed based

on the same format, merging these analysis is relatively straightforward, but

is essential to achieve analysable systems with the proposed FMRS framework

adopted.

3.3.1 The Response Time Equation

The response time of τi under such a system is given in Equation (3.32).

To achieve a simple analytical expression while bounding the spin delay, the

migration cost of τi in Ei and Ii,h due to MrsP resources is separated as an

independent variable, denoted by MCi.

Ri = CX1+Ci+Ei+Bi+
∑

τh∈hpl(i)

Ä °Ri
Th

§
·(CX2+Ch)+Ii,h

ä
+Si+MCi (3.32)

This is because by treating the additional costs incurred by PWLP and

MrsP as independent variables (i.e., Si and MCi respectively), the analytical

expression for bounding Ei and Ii,h can be identical with any of the protocols

adopted, where PWLP and MrsP can have the same resource-accessing queue

with that of MSRP if ignoring the additional costs due to the preemptive

spinning approach.

In addition, note that with all three protocols in use, the overheads of

context switches (i.e., CX1 and CX2) can be higher than that of only adopt-

ing one protocol, especially with the helping mechanism in MrsP. The exact

bounding of CX1 and CX2 in this analysis is measured in Appendix B.2 by

considering the underlying hardware platform, a real-world operating system

and implementations of all the candidate locking protocols.

3.3.2 The Direct and Indirect Spin Delay

We start with bounding the blocking variables Ei and Ii,h with the presence of

potentially more than one locking protocols. As described above, the spin de-
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lay incurred due to each protocol is identical if the additional cost is separated

away. Thus, Ei and Ii can be simply bounded via Equations (3.2) to (3.4)

and (3.12), as proved in the above sections.

As the protocols can carry different implementation overheads in their own

lock() and unlock() functions, the notation Ck is in Equation (3.12) now

denote the cost for executing rk with the overheads incurred from its desig-

nated locking protocol. With the proposed FMRS framework adopted, each

resource in a given system will be controlled by one of the candidate locking

protocols; depending on the decisions made by the framework. Accordingly,

Ck is now bounded by Equation (3.33), where function Rp returns a set of

resources that are managed by a given locking protocol p.

Ck = ck +


C lockMrsP + CunlockMrsP , if ck ∈ RMrsP

C lockPWLP + CunlockPWLP , if ck ∈ RPWLP

C lockMSRP + CunlockMSRP , otherwise

(3.33)

Note that the sets RMSRP , RPWLP and RMrsP will never intersect with

each other (i.e., an element in a given set will never belongs to other sets), but

should be equal to the total resources in the system (i.e., R) when these sets

are combined, where

R , RMSRP ∪RPWLP ∪RMrsP (3.34)

In addition, If not all protocols are in use (say PWLP is not applied) based on

the decisions from the resource control framework, then R , RMSRP ∪RMrsP .

However, the framework should guarantee that each resource in the system is

managed by a designated locking protocol.

3.3.3 Spin Delay from the Additional Facilities

Besides the direct spin delay and the indirect spin delay, tasks with PWLP

and MrsP adopted can also incur additional blocking due to the cancellation

mechanism and the migration-based helping mechanism, denoted as Si and

MCi respectively in Equation (3.32).

We firstly present the bounding of variable Si. As with the equations given

in Section 3.2.2, Si is bounded via Equation (3.18) while FS(τi) is given by

Equation (3.16). However, the equation that computes the list LSi is revised

to consider PWLP resources only, as given in Equation (3.35).

LSi = {Cretry + Lki | rk ∈ RPWLP ∧ rk ∈ FS(τi)}dList (3.35)
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In addition, Ck in Eequation (3.33) is applied to Equation (3.15) to incor-

porate the overheads of lock() and unlock() functions in PWLP, as given

below. This is feasible because rk in this equation belongs to the set RPWLP

(i.e., rk ∈ RPWLP ).

Lki = {
∑

Pm 6=P (τi)

(NSki,m(Ri)−Nk
i − n+ 1)10 · Ck|1 ≤ n ≤ NoPi} (3.36)

As for the variable MCi, it can be formed via separating the migration

cost from Equation (3.28), where the notation MIGkx(l, µ) is introduced to

denote the amount of migration cost caused by τx (which can be either τi, i.e.,

the task that is being studied, or a local higher priority task τh) for accessing

rk within the given duration l and jitter µ.

MCi = MIGki (Ri, 0) +
∑

τh∈hpl(i)
MIGkh(Ri, Rh) (3.37)

The equation for bounding MIGkx(l, µ) is formed via extracting the migra-

tion cost bounding given in Equation (3.28), where Mig gives the migration

cost for one access to a resource. In this equation, resource rk is specified to

be a resource that is controlled by MrsP and is required by τx to guarantee

the correctness of the analysis.

MIGkx =
∑

rk∈RMrsP∧rk∈F (τx)

Nk
i (l,µ)∑
n=1

Mig(mtki (l)(n), rk) (3.38)

With the above equations established, the equations given in Section 3.2.3

can be applied to calculate variable Mig directly without any modifications,

and hence, the migration cost MCi can be safely bounded.

3.3.4 The Arrival Blocking

As a task can only be blocked once upon each arrival, there will be only one

factor (a resource managed by a designated locking protocol, the NP-section in

MrsP, or the NP-section in the underlying operating system) that can actually

cause the arrival blocking to τi. To capture the worst-case scenario, the arrival

blocking that incurred by τi should be the maximum value among all these

factors, as given in Equation (3.39).

Bi = max{BMSRP
i , BPWLP

i , BMrsP
i , n̂pi, b̂} (3.39)
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where Bp
i gives the maximum blocking time τi can incur with resources that are

managed by protocol p and n̂pi denotes the blocking due to the NP-section

with MrsP adopted. As described in Section 3.2.3, the variable n̂pi can be

bounded by Equation (3.40), but should specify that the resource is under

MrsP’s control, revised as follow.

n̂pi =

Cnp, if rk ∈ RMrsP ∧ Pri(τi) ≥ min{rk is global}Pri(r
k, P (τi))

0, otherwise

(3.40)

As for Bp
i , this variable is computed independently for each protocol be-

cause the analysing techniques vary with different protocols adopted. For

MSRP resources, BMSRP
i can be bounded by the following equation, which is

similar with Equation (3.13) but with MRSP resources specified.

BMRSP
i = max{|αki |·Ck|rk ∈ RMSRP ∧ rk ∈ FANP (τi)} (3.41)

To simplify the analytical expression, function FANP (τi) is introduced to

denote the set of resources that can cause arrival blocking to τi under proto-

cols where resources are accessed or executed non-preemptively (i.e., MSRP

and PWLP), as given in Equation (3.42), where αki can be bounded via Equa-

tion (3.9) directly.

FANP (τi) , {rk|Nk
ll > 0 ∧ (Pri(rk, P (τi)) ≥ Pri(τi) ∨ rk is global)} (3.42)

With FANP (τi) defined, the arrival blocking caused by PWLP resource can

be simply bounded via the following equation.

BPWLP
i = max{Ck|rk ∈ RPWLP ∧ rk ∈ FANP (τi)} (3.43)

As described in Section 3.2.3, The set of resources that can cause τi to

incur arrival blocking with MrsP adopted is different from that of MSRP and

PWLP due to the ceiling facility. In addition, tasks with this protocol can

incur prolonged blocking due to the migration cost, and hence, should also be

accounted for in variable BMrsP
i , as given below.

BMrsP
i = max{|αki |·Ck +Mig(αki , r

k)|rk ∈ RMrsP ∧ rk ∈ FACeiling(τi)} (3.44)

where αki can be computed via Equation (3.9) while Mig(αki , r
k) can be

bounded by Equation (3.27) directly. The notation FACeiling(τi) is introduced

to denote the set of resources that can cause τi to incur arrival blocking with
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the ceiling priority resource accessing rule applied (i.e., MSRP in this frame-

work), which is identical with Equation (3.22), as given below.

FACeiling(τi) , {rk|Nk
ll > 0 ∧ Pri(rk, P (τi)) ≥ Pri(τi)} (3.45)

With all the variables in Bi computed, the arrival blocking that τi can

incur with potentially all the candidate locking protocols in use can be safely

bounded.

3.3.5 Summary

Table 3.4: Notations in the New Analysis Framework

MCi The total migration cost incurred by τi in the spin delay.

MIGki (l, µ) The amount of migration cost caused by τx for accessing

rk within the given duration l and jitter µ.

R The shared resources in the given system.

RMSRP The resources that are controlled by MSRP.

RPWLP The resources that are managed by PWLP.

RMrsP The resources that are controlled by MrsP.

BMSRP
i The arrival blocking caused by the MSRP resources.

BPWLP
i The arrival blocking caused by the PWLP resources.

BMrsP
i The arrival blocking caused by the MrsP resources.

FANP (τi) The set of resources that can cause τi to incur arrival block-

ing with the non-preemptive resource-accessing rule.

FACeiling(τi) The set of resources that can cause τi to incur arrival block-

ing with the ceiling priority resource accessing rule applied.

The above has presented a complete run-time overheads-aware schedu-

lability test framework for systems with multiple locking protocols in use.

The notations introduced in the new schedulability analysis framework are

summarised in Table 3.4. This analysis is developed via integrating the new

schedulability test of each candidate locking protocol developed in Sections 3.2.1

to 3.2.3, where each of the analysis is developed based on Theorems 1 and 2

in Section 3.2.1 with the back to back hit phenomenon accounted for. In

addition, the new analysis framework includes the major run-time overheads

from both the underlying operating system and the protocols, especially the
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cost of migrations with MrsP adopted. Finally, the new schedulability pre-

serves the philosophy of the original schedulability tests of these protocols and

avoids the use of potentially expensive analysing techniques. Therefore, the

proposed schedulability test framework developed in this section satisfies all

the requirements listed in Section 3.2.

This schedulability framework provides the foundation of the proposed re-

source control framework. While determining the appropriate locking protocol

for each resource in a given system, this schedulability test must be adopted to

verify whether such decisions can lead to a schedulable system. In Chapter 5,

the techniques for determining the resource sharing solutions are presented.

In Chapter 6, a set of experiments are conducted to investigate the efficiency

and the performance of the flexible multiprocessor resource sharing framework

based on the schedulability analysis framework developed in this section.

3.4 Investigating the Schedulability of the Candi-

date Resource Sharing Protocols

With the new schedulability tests developed for each candidate resource shar-

ing protocol in Section 3.2, a set of experiments are conducted to inves-

tigate (1) the schedulability between the original tests and the new tests;

(2) the schedulability of the candidate locking protocols; (3) the impact of

the run-time overheads to the schedulability results and (4) the time con-

sumption of the new schedulability tests and the ILP-based analysis. The

evaluations performed in this section provide evidence that directly demon-

strates the necessity of the requirements R-1 to R-5 given in Section 3.2. The

code for the evaluations performed in this section can be accessed via https:

//github.com/RTSYork/SchedulabilityTestEvaluation. To conduct this

evaluation, the following schedulability tests are implemented:

• The original schedulability tests of MSRP and MrsP.

• The new response time analysis of MSRP, PWLP and MrsP without any

run-time overheads.

• The complete run-time overheads-aware schedulability tests of MSRP,

PWLP and MrsP with scheduling and locking overheads accounted for.

• A pluggable migration cost analysis for MrsP.
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To compare the time consumption of the schedulability tests developed in

Section 3.2 and the ILP-based analysis proposed in [106], the implementa-

tion of the ILP-based analysis from the SchedCAT project [18] is integrated

into the testing program via JNI. To provide randomly generated systems

for analysing, a system generation tool is developed to generate systems with

different application semantics and resource characteristics configurations.

The experimental setup for investigating the schedulability tests in this

thesis is similar with that of the ILP-based analysis work [106], which covers

a wide range of system settings in real-time automotive applications. In this

thesis, we consider platforms with M = [2, 24] processors, where systems with

M ≤ 8 are radially available now while M > 8 gives the forward-looking

scenario. The system contains n tasks with a total utilisation U and U =

0.1n. Tasks are allocated to each processor via the WF algorithm described in

Section 2.2.3. Periods of tasks on each processor are randomly chosen between

[1ms, 1000ms] in a log-uniform distribution fashion. In this evaluation, we

assume that the deadline of the tasks are equal to their periods (D = T ). The

utilisation of each task is computed based on the UUnifast-Discard algorithm

proposed by Bini and Buttazzo [14] and hence the total computation time for

each task (including the time it spends on executing each required resource,

denoted as C ′x for τx) can be computed. The system supports 1000 priority

levels. The priorities of the tasks in a given system is assigned via the DMPO

algorithm prior to allocation.

In addition, as with the settings adopted in [106], tasks in each system

share either M/2, M or 2M resources. A wide range of critical section length

(L): [1µs, 15µs], [15µs, 50µs], [50µs, 100µs], [100µs, 200µs], [200µs, 300µs] and

[1µs, 300µs] is supported. A real value parameter κ is introduced to specify the

number of tasks on each processor that can access to resources (i.e., bκ · nc),
where κ ∈ [0.0,1.0]. A task will issue requests to a number of randomly chosen

resources, but limited by [1,M ]. The number of requests is randomly decided

between [1, A], where A = [1, 41]. Let Crx be the total resource computation

time of τx. For a given task τx, with its resource usage generated, the pure

computation time Cx can be computed, where Cx = C ′x−Crx. We enforce that

C ′x − Crx ≥ 0. Note, unless specified, the word “random” in this evaluation

indicates the values are generated randomly with an uniform distribution.

At last, the statistical significance of the experimental results presented

in this section is illustrated via an ANOVA analysis, which demonstrates a
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confidence level of 95% of the observations (and claims) made based on the

experiments. The detailed approach of conducting the ANOVA analysis is

presented in Appendix E.

3.4.1 Schedulability Comparison

We first investigate the theoretical response time of the candidate resource

sharing protocols under systems with various application semantics and re-

source characteristics, including (a) work load of the system U (i.e., 0.1n); (b)

parallelism m; (c) critical section length L and (d) resource contention A (i.e.,

the frequency of resource access). The schedulability tests adopted in this eval-

uation includes the original MSRP analysis [48] (MSRP-original); the original

MrsP analysis [27] (MrsP-original); the new MSRP analysis (MSRP-new); the

new PWLP analysis (PWLP-new); and the new MrsP analysis (MrsP-new)

developed in Section 3.2. In this evaluation, the schedulability of the above

analysis is examined by testing 1000 system produced by the task generation

tool with the system settings given below.

Note, there exist a large amount of possible combinations of the system

settings given above (e.g., n, M , L and A). In the interest of brevity, we

only present the results under certain system settings, which can effectively

demonstrate the schedulability difference of the evaluated schedulability tests.

This remains in the following thesis.
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Figure 3.2: Schedulability for M = 16, U = 0.1n, κ = 0.4, A = 2, L =

[15µs, 50µs], and M Shared Resources.

(a) Varying n and M: With a low resource contention (A = 2 and κ = 0.4)

and short critical section length (L = [15µs, 50µs]), MrsP demonstrates a
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Figure 3.3: Schedulability for n = 4M , U = 0.1n, κ = 0.4, A = 3, L =

[15µs, 50µs], and M Shared Resources.

better schedulability in theory than other spin locks, as shown in Figure 3.2,

where the Y axis gives the percentage of the schedulable systems among the

1000 systems generated based on the system setting given in the X axis. By

further incrementing n, the original analysis of both MSRP and MrsP gives

a much lower schedulability than that of our new analysis, which shows the

reduced pessimism of our new schedulability tests. Another interesting obser-

vation is that PWLP shows similar schedulability with that of MSRP when

n ≤ 64, but is outperformed by MSRP with n ≥ 80. This is because with more

tasks, tasks have a higher chance to be preempted while waiting for a PWLP

resource so that more additional blocking is imposed due to the cancellation

mechanism.

A similar trend between MrsP and MSRP is observed when increasing M

(see Figure 3.3). However, PWLP in this experiment offers the best schedula-

bility when M ≤ 12 due its relatively low arrival blocking. Yet with a further

increasing of M , both MrsP and MSRP give a better schedulability than that

of PWLP (when m ≥ 14) as the spin delay can be bounded to M in theory.

(b) Varying A: As shown in Figure 3.4, PWLP has the best schedulability

and MSRP is worse than both MrsP and PWLP in the case where A = 1,

as tasks incur limited preemptions within a short resource-accessing time and

such a cost is more likely to be less than the arrival blocking that tasks can

suffer under MSRP or MrsP. However, with a further increment of A (and an

increased risk to preempt resource-accessing tasks), PWLP becomes the worst

with an observable difference compared to the other two protocols.
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Figure 3.4: Schedulability for M = 16, n = 64, U = 0.1n, κ = 0.4, L =

[15µs, 50µs], and M Shared Resources.
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Figure 3.5: Schedulability for M = 16, n = 48, U = 0.1n, κ = 0.4, A = 2 and

M Shared Resources.

(c) Varying L: With an increasing length of critical sections, we observed

the schedulability of MSRP locks decreases dramatically while MrsP provides

the best schedulability among all tested locks (see Figure 3.5). With MSRP,

the highest priority tasks have to cope with the largest arrival blocking, and

hence, can easily miss their deadlines if long critical sections are adopted. In

contrast, although with a longer spin delay, PWLP locks only incur a local

blocking so that it can offer a higher schedulability than that of MSRP. Under

MrsP, tasks can incur a limited amount of arrival blocking due to the ceiling

facility and can have a shorter spin delay than that of PWLP. Thus, MrsP

can offer a better schedulability with long critical sections than both MSRP
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and PWLP can achieve. Due to the same reason, MrsP can also demonstrate

the best schedulability among all examined protocols in a more realistic case

(i.e., L = [1µs, 300µs]), where a system could contain both short and long

resources.

From the experiments we observed that the newly-developed schedulability

tests can demonstrate much better schedulability than that of the original

tests. Such observation directly supports the necessity of the requirements R-

1 to R-2 given in Section 3.2, which aim to reduce the degree of the pessimism

of the schedulability results, as described in [106].

Theoretically, MrsP offers a better (at least identical) schedulability than

MSRP in all cases because both protocols have an identical spin delay but

MrsP can guarantee a shorter arrival blocking at most times. In addition,

as observed, both MSRP and MrsP are less efficient than PWLP in systems

with low resource contention or less partitions due to adopting either the

non-preemptive accessing or the resource ceiling facility approach. More im-

portantly, for long resources, the preemptive spinning approaches are able to

provide a much better schedulability than the non-preemptive approach. Ad-

mittedly, one can argue that for long critical sections, the suspension-based

locks should be applied rather than spin locks. However, as revealed by the

experiments, both the PWLP and MrsP can be considered applicable to long

critical sections by offering an acceptable schedulability ratio, where MrsP

gives a better schedulability in theory. As described before, the confidence

level of such observations is 95% (see Appendix E for proof).

3.4.2 The Back-to-Back Hits

This section provides an experiment demonstrating the necessity of the re-

quirement R-3 in Section 3.2, where the back-to-back hits should be accounted

for to increase the accuracy of the proposed schedulability tests. The exper-

iment is conducted by varying A with the same system settings adopted in

Figure 3.4, as given in Figure 3.6. The schedulability tests that are exam-

ined in this experiment including the proposed schedulability tests for the

candidate locking protocols (i.e., MSRP, PWLP and MrsP) and the modified

schedulability tests that do not take the back-to-back hits into account, de-

noted as MSRPˆ, PWLPˆ and MrsPˆ, where the parameter µ in equation

Nk
x (l, µ) =

†
l+µ
Tx

£
·Nk

x is always 0.

As shown in the figure, the schedulability tests with the back-to-back hits
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Figure 3.6: Schedulability for M = 16, n = 64, U = 0.1n, κ = 0.4, L =

[15µs, 50µs], and M Shared Resources.

accounted for demonstrate non-trivial schedulability differential (i.e., more ac-

curate schedulability results) than that of the tests without the back-to-back

hits in all cases. In addition, by incrementing A, such differential between

these two types of analysis is further increased. As described in Section 2.6.2.2,

the back-to-back phenomenon can cause a task to incur extra blocking. This

section provides experimental evidence that illustrates this phenomenon and

proves the necessity of the requirement R-3 in Section 3.2, which mandates

the calculation of the blocking due to the back-to-back hits in the new schedu-

lability tests proposed in this thesis. The statistical significance of the results

in this experiment is given in Appendix E via the ANOVA analysis with a

confidence level of 95%.

3.4.3 Run-time Overheads

Now we study the impact of the run-time overheads to the schedulability re-

sults with the analysis developed in Section 3.2. The experiment is conducted

by varying the critical section length L. In addition, we present evidence of an

improved efficiency of MrsP by the controlled migration behaviours due to the

NP-section. The approaches for bounding the run-time overheads due to both

the operating system and locking protocols are illustrated in Appendix B under

LitmusRT with all candidate locking protocols implemented (see Appendixes C

and D for the implementation details). Table 3.5 summarises the worst-case

bounding of the run-time cost variables introduced in the newly-developed

schedulability tests measured from Appendix B, and will be adopted in this
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experiment.

Table 3.5: The Run-time Costs of the Candidate Protocols under LitmusRT

Variables Worst-case Cost Variables Worst-case Cost

CX1 5606 ns CunlockMSRP 602 ns

CX2 10,240 ns C lockPWLP 1255 ns

Cretry 1663 ns CunlockPWLP 602 ns

Cmig 8378 ns C lockMrsP 1272 ns

C lockMSRP 979 ns CunlockMrsP 1642 ns

The schedulability analysis examined in this experiment includes (1) new

MSRP test without run-time overheads (MSRP); (2) new MSRP test with

run-time overheads (MSRP*); (3) new PWLP test without run-time over-

heads (PWLP); (4) new PWLP test with run-time overheads (PWLP*); (5)

new MrsP analysis without run-time overheads (MrsP); (6) new MrsP analysis

with run-time overheads, including the cost of migrations but without the pro-

tection of the NP-section (MrsP*); and (7) new MrsP analysis with NP section

adopted, including run-time overheads and the NP-section adopted (MrsP-

np*). The analysis “MrsP*” is modified from the analysis in Section 3.2.3

by taking the functions Mnpk and n̂pi out of Equations (3.27) and (3.31) re-

spectively. When “MrsP-np” is in use, the length of the NP sections are set

differently based on a given generated system to achieve the best schedulabil-

ity, and hence is not presented. As described in Section 3.2.3, this length can

be tuned for each individual system to achieve the best schedulability.

From the experiment in Figure 3.7, we firstly observed that the schedula-

bility tests with the run-time overheads accounted for can demonstrate more

accurate schedulability results than the theoretical response time analysis

do (e.g., MSRP vs. MSRP* and PWLP vs. PWLP*), especially MrsP,

where the cost of migrations leads to the protocol barely impractical with-

out the NP-sections. Such an observation reveals the necessity of incorporat-

ing the run-time overheads into schedulability tests. However, with the NP-

section adopted (i.e., MrsP-np*), the efficiency of the helping mechanism is

significantly improved, where the schedulability of MrsP* is much lower than

MrsP-np* in all cases. Compared to PWLP*, MrsP-np* is less favourable

when applied to short critical sections as one single migration has a cost of

8.378µs in this experiment, where MrsP-np* provides a low schedulability
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Figure 3.7: Schedulability for M = 16, n = 48, U = 0.1n, κ = 0.4, A = 3 and

M Shared Resources.

with L = [1µs, 50µs]. However, when L ≥ 100µs, MrsP with the NP-section

adopted shows a better schedulability than both MSRP* and PWLP*, in-

cluding the case of L = [1µs, 300µs], which again proves that MrsP works

better with long critical sections. By taking the run-time overheads into ac-

count while analysing all candidate locking protocols, we have revealed the

real schedulability of these protocols (with a confidence level of 95%). The

above discussion and evaluation demonstrate the necessity of requirement R-4

given in Section 3.2.

3.4.4 Time Consumption

The last experiment conducted in this section is to investigate and to compare

the time consumption of our newly-developed schedulability tests and the

ILP-based analysis. As the computing time of a given test largely depends

on the exact system being generated, there can be huge differences between

the computation times under a same system setting. To illustrate the overall

time consumption of the schedulability tests in general, 1000 systems will

be generated by each system setting and an average computing time of each

analysis under each system setting is reported, as given in Tables 3.6 and 3.7,

where “MSRP-ilp” denotes the ILP-based analysis with MSRP constraints

adopted and “PWLP-ilp” denotes the ILP-based analysis for PWLP. Table 3.6

gives the time consumption by varying n while Table 3.7 shows the results with

varied M .
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As given in both tables, the time consumption of all schedulability tests

increases while incrementing either n or M . Among the newly-developed tests

in this thesis, MrsP-new requires more time to compute the response times

due to the additional migration cost analysis while MSRP-new and PWLP-

new require similar computation time to deliver the results. In contrast, the

ILP-based MSRP and PWLP analysis takes much more time to deliver the

schedulability results, where the ILP-based tests require more than 1 second

to finish while the newly-developed tests only require about 13 milliseconds

to compute the responses times of all tasks under systems with M = 16 in

Table 3.7. One interesting observation is that with a shorter L, all tests re-

quire larger computation time to deliver the schedulability results, see n = 80

in Table 3.6 and M = 16 in Table 3.7 (with L = [15µs, 50µs] and [1µs, 15µs]

respectively). This is because that with a shorter critical section length, the

response time of tasks will have a smaller increment under each recursion cal-

culation so that more recursions could be required to either get fixed response

times or reach the deadlines of tasks (i.e., where the test are finished).

Table 3.6: The Time Consumption for Analysing Systems with M = 16,

U = 0.1n, κ = 0.4, A = 2, L = [15µs, 50µs], and M Shared Resources.

n MSRP-new PWLP-new MrsP-new MSRP-ilp PWLP-ilp

48 1.24 ms 0.96 ms 3.33 ms 139.6 ms 137.9 ms

64 1.92 ms 1.59 ms 5.69 ms 228.6 ms 233.9 ms

80 1.37 ms 0.87 ms 2.21 ms 252.8 ms 328.9 ms

96 1.85 ms 0.99 ms 3.16 ms 318.6 ms 441.9 ms

112 1.98 ms 1.01 ms 3.35 ms 347.4 ms 618.2 ms

Table 3.7: The Time Consumption for Analysing Systems with n = 5M ,

U = 0.1n, κ = 0.4, A = 2, L = [1µs, 15µs], and M Shared Resources.

M MSRP-new PWLP-new MrsP-new MSRP-ilp PWLP-ilp

4 0.19 ms 0.17 ms 1.98 ms 37.1 ms 28.7 ms

8 1.72 ms 1.22 ms 13.3 ms 361.8 ms 359.5 ms

12 4.86 ms 3.42 ms 11.0 ms 972.7 ms 1168 ms

16 6.83 ms 4.72 ms 13.3 ms 1299 ms 1700 ms

Tables 3.8 and 3.9 present the increase rate of the computation cost of each

analysis given in Tables 3.6 and 3.7. As shown in both tables, the computation

129



Table 3.8: The Increase Rate of the Time Consumption in Table 3.6.

n MSRP-new PWLP-new MrsP-new MSRP-ilp PWLP-ilp

48 → 64 155 % 166 % 171 % 164 % 170 %

64 → 80 71 % 55 % 39 % 111 % 141 %

80 → 96 135 % 114 % 143 % 126 % 134 %

96 → 112 107 % 102 % 106 % 109 % 140 %

Table 3.9: The Increase Rate of the Time Consumption in Table 3.7.

M MSRP-new PWLP-new MrsP-new MSRP-ilp PWLP-ilp

4 → 8 905 % 718 % 672 % 975 % 1253 %

8 → 12 283 % 280 % 83 % 267 % 325 %

12 → 16 141 % 138 % 121 % 134 % 146 %

cost of each analysis does not follow the linear pattern (i.e., positive propor-

tional) when incrementing either n or M . In general, the computation cost of

the ILP-based analysis demonstrates a slightly higher increase rate compared

to that of the newly-developed analysis (the first three analysis). Based on

these tables, the new analysis proposed in this thesis requires less computation

cost (and has lower increase rates by giving higher systems setting parameters)

than the ILP-based analysis.

In addition, we observe that the computation cost of the new analysis does

not increase monotonically with the increase of the system parameter settings

(see n from 64→ 80 in Table 3.8). This is because the systems being analysed

are generated randomly (including the resource usage, see the experimental

setup described at the beginning of Section 3.4). Thus, systems with low

resource contention (i.e., systems with limited number of tasks accessing re-

sources just a few times) could be generated under high system setting param-

eters, which could require less cost to analyse than the ones generated under

low system setting parameters but with a strong resource contention. How-

ever, even under such case, the costs of the ILP-based analysis keep increasing

due to its computation approach (i.e., the use of the ILP solver), which needs

to establish the constraints (e.g., 8 constraints for analysing MSRP systems)

for each task and each resource access, and hence, requires a large amount of

calculations.

The similar trend can also be observed in Table 3.9, where the computa-

130



tion costs of the new MrsP analysis decrease when increasing M from 8 to 12

while other analysis has increased computation time. Unlike the new MSRP

and PWLP analysis, the new MrsP schedulability analysis contains a migra-

tion cost analysis, which relies on recursive calculations, but only requires a

few computations in each recursion (each recursion can add additional mi-

gration costs to the response time of that task, see Equations 3.25 to 3.29

in Section 3.2.3). Therefore, there could be the case that a given task fails

to meet its deadline after a few recursions in these equations above so that

the analysis of the whole system is terminated. Such computations usually

require less costs than the recursive calculation in Equation 3.1, which has a

more complicated computation mechanism and requires more time to finish.

Therefore, the costs of the new MrsP analysis decrease while increasing M in

this experiment.

The above explains the decreased trend observed in these experiments.

Note, the computation costs and the increase rate presented above are by no

means absolute values. This experiment aims only to illustrate that the new

schedulability analysis developed in this thesis requires less costs than the ILP-

based analysis in general. When increasing certain system setting parameters,

there is no guarantee that the cost of the new analysis will follow a fixed trend

as (1) the systems are generated randomly (including the resource usage) and

(2) several termination mechanisms are added into the implementations of the

analysis for improved run-time efficiency, which can terminate the analysis

immediately as long as a a deadline miss is found (see implementation details

in https://github.com/RTSYork/SchedulabilityTestEvaluation). Thus,

there could be the case that the computation costs of certain analysis (es-

pecially the new ones, which does not reply on a ILP solver) decreases when

increasing system setting parameters. However, as discussed, the above exper-

iment is sufficient to illustrate that the ILP-based analysis is more expensive

than the new analysis in a general case.

Admittedly, the time consumed by the ILP-based analysis for executing

once is definitely acceptable. For systems with a locking protocol pre-defined,

the ILP-based analysis provides a valuable analysing tool that can be adopted

to analyse a wide-range of protocols (i.e., 8 types of spin locks in total). How-

ever, as for the proposed FMRS framework, where the resource sharing pro-

tocol for each resource can be different, adopting this analysis can lead to

significant or even unacceptable time consumption as searching for a feasible
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resource control solution usually requires the schedulability test to execute

many times (see Chapter 5 for the mechanism of searching feasible resource

control solutions), even if such calculations are performed off-line (i.e., before

the execution of the system).

For instance, for a typical system with 16 processors and 16 shared re-

sources, there exist 316 ≈ 4.3 × 107 possible resource control solutions with

the three candidate locking protocols, where a large number of possible solu-

tions will be tested to search for a feasible solution, assuming no candidate

protocols in FMRS can schedule this system. Accordingly, adopting the ILP

technique as the schedulability test in such a search-based approach can lead to

tremendous time consumption while the expenses of the schedulability analysis

framework proposed in Section 3.3 are more acceptable. The experiment and

discussion given in this section demonstrate the necessity of requirement R-5

given in Section 3.2.

From the experiments and the discussions give above, the necessity of the

5 requirements listed in Section 3.2 are certified. With all the requirements

satisfied, the proposed run-time overheads-aware schedulability tests for the

candidate resource sharing protocols are less pessimistic as well as more ac-

curate than that of their original schedulability tests. In addition, with the

NP-section adopted, the efficiency of the helping mechanism in MrsP is sig-

nificantly improved. More importantly, we have proved that the preemptive

spinning approach (especially MrsP) can demonstrate strong schedulability

with long critical sections. Finally, by avoiding the use of any complicated

and time-consuming analysing techniques, our new schedulability tests can be

practised without incurring massive computation expenses. As illustrated by

the ANOVA analysis, the above claims are made with a confidence level of

95%.

By building upon these schedulability tests, the schedulability analysis

framework developed in Section 3.3 also carries the above features and provides

the analysing tool for the FMRS framework proposed in this thesis with high

usability.

3.5 Summary

This chapter firstly decided the candidate resource sharing protocols for the

resource control framework proposed in this thesis via step-by-step reasoning,
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which is supported by experimental results. Then, new schedulability tests are

developed for each candidate locking protocol with new analysing techniques

that reduce the pessimism and improve the accuracy of the schedulability re-

sults. With the new schedulability tests, a complete run-time overheads-aware

schedulability analysis framework is created for systems with potentially all

the candidate locking protocols in use, which is crucial to achieve analysable

systems with the proposed framework adopted. With the materials given in

this chapter, the success criteria SC-1 in Section 1.4 is satisfied. The contri-

butions presented in this chapter is summarised as below.

• New analysing techniques for systems with MSRP, PWLP or MrsP

adopted.

• The NP-section for MrsP’s helping mechanism and a pluggable migration

cost analysis for the migration-based helping mechanism in MrsP.

• A complete run-time overheads-aware schedulability analysis framework

for systems with multiple protocols in use.

• An investigation towards the schedulability of the MSRP, PWLP and

MrsP; the impact of run-time overheads; and the expenses for using the

proposed schedulability tests.

In addition, in the interest of brevity, additional contributions that are re-

lated to the multiprocessor resource sharing protocols are not presented in

this chapter and are referred to Appendixes, as summarised below.

• Analysing techniques for heterogeneous and nested resource accesses

(Appendix A).

• The techniques for bounding the run-time overheads incurred from both

the underlying operating systems and the implementations of the candi-

date locking protocols (Appendix B).

• Fully functional MSRP, PWLP and MrsP implementations in the P-FP

scheduler under LitmusRT (Appendix C).

• An investigation towards the correctness and efficiency of the MrsP in

fully-partitioned systems (Appendix D).
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Chapter 4

Task Allocation and

Prioritisation

In addition to the multiprocessor resource sharing protocols and schedulabil-

ity tests studied in Chapter 3, the task allocation schemes can also have a

significant impact to the schedulability of multiprocessor systems with shared

resources (see discussion in Section 2.6.1). In this chapter, new resource-

oriented task allocation algorithms are proposed to facilitate resource sharing

on multiprocessors and to provide candidate task allocation solutions for the

resource control framework proposed in this thesis. In addition, as described in

Section 1.2, another major factor that can affect the performance of resource

sharing on multiprocessor systems is task priority ordering. In this chapter,

a formal proof is presented to demonstrate that the DMPO algorithm is not

optimal with the new schedulability tests developed in Chapter 3. Then, a

new search-based priority ordering algorithm that is fully compatible with the

new schedulability tests in Chapter 3 is proposed and is evaluated with the

priority ordering algorithms reviewed in Section 2.1.3. Materials provided in

this section satisfies the success criteria SC-2 and SC-3 given in Section 1.4.

4.1 Resource-Oriented Task Allocation Schemes

As discussed in Section 2.6.1, the traditional task utilisation-based allocation

schemes (e.g., the WF algorithm adopted in the experiments in Section 3.4)

cannot benefit resource sharing as tasks are mapped without the knowledge of

shared resources, where tasks accessing the same resource could be allocated

to different processors so that a significant amount of remote blocking can be
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imposed. In Section 2.6.1, the SPA and BPA resource-oriented task alloca-

tion schemes are reviewed, where the BPA algorithm is an analysis specific

approach (i.e., requires the weight and attraction functions of the locking pro-

tocol adopted) while the SPA algorithm attempts to localise shared resources

based on the utilisation of task bundles.

As illustrated in Section 3.4, the schedulability of a system with the candi-

date resource sharing protocols adopted can vary under different application

semantics and resource characteristics, where MSRP is favourable with short

resources; MrsP demonstrates the best schedulability with long resources; and

PWLP is more favourable with a low degree of parallelism and low resource

contention. Therefore, compared to the SPA algorithm, which simply de-

creases the number of globally shared resources, localising the resources that

are less favourable for a given candidate locking protocol could further increase

the schedulability of the system. For instance, the schedulability of a MSRP

system can be further increased with the long resources localised (i.e., with

the blocking from long resources reduced) while localising the competitive re-

sources (i.e., the resources that are requested most frequently) can benefit

PWLP systems.

In this section, three new resource-oriented task allocation schemes are

developed based on the heuristic task mapping approaches described in Sec-

tion 2.2.3. The new task allocation algorithms aim to not only reduce the num-

ber of remote requests to globally shared resources but also take the resource

characteristics into account, where each proposed task mapping algorithm can

benefit certain candidate resource sharing protocols via reducing the remote

blocking of the resources that the protocol is less favourable with. Then, a set

of experiments are conducted (1) to investigate the schedulability of systems

with the proposed task allocation schemes and each of the candidate locking

protocols adopted and (2) to compare the performance of the newly-developed

task allocation schemes and the existing task mapping algorithms.

For the flexible multiprocessor resource sharing framework proposed in this

thesis (where multiple locking protocols are working together simultaneously),

the task mapping algorithms proposed for this FMRS framework should be

independent from the resource sharing protocols i.e., algorithms such as BPA

should not be adopted in this particular work. That is, each of the task alloca-

tion schemes proposed in this thesis should be applicable to systems regardless

of the locking protocols adopted (although it may favour one protocol more
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than another). Such a requirement also provides convenience when adding

more candidate locking protocols to the resource control framework in the

future.

4.1.1 Resource Contention Fit

The first resource-orientated task allocation scheme proposed in this thesis

aims to minimise the blocking from the competitive resources (i.e., the re-

sources that are accessed most frequently) among all the shared resources,

named as the Resource Contention Fit (RCF). Unlike the SPA algorithm

(which relies on the notion of task bundles and the Best-Fit Decreasing (BFD)

mapping approach), new mechanisms are proposed in the RCF algorithm to

facilitate localising the shared resources in a given system.

In the SPA algorithm, the resource-requesting tasks are placed into a set

of task bundles, where tasks that share the same set of resources are bundled

together, including the transitive resource sharing (i.e., if τ1 and τ2 want r1

while τ2 and τ3 request r2, these three tasks will be bundled together). How-

ever, for a system with many tasks requesting multiple resources (i.e., a high

value of κ introduced in Section 3.4), adopting such an approach can lead to

extremely heavy task bundles (i.e., with a high utilisation), which need to be

split into many pieces so that the whole bundle can be allocated into pro-

cessors. However, with task bundles with extremely high utilisations, many

processors could be required to allocate one single bundle. Therefore, a high

remote blocking time can be imposed to tasks in these bundles, and hence,

can jeopardise the schedulability of the whole system.

Based on the discussion above, in the RCF algorithm, a task grouping

approach is firstly proposed to generated lighter task groups than that of the

task bundling method in the SPA algorithm, as described below.

1. Each resource (say rk) has a total number of requests issued by each

task in one release, denoted as Nk =
∑
τx∈G(rk)N

k
x .

2. Resources are ordered by Nk in a non-increasing order. If the Nk values

are equal, the algorithm then checks the resource utilisations and the

index values (i.e., resource id) sequentially to break ties.

3. Tasks are grouped via each shared resource. The grouping starts from

the first resource (i.e., the one with the biggest Nk among all shared re-
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sources), and all tasks that request this resource will be grouped together

as a task group.

4. A task that already belongs to a task group will not be grouped again

when examining the subsequent shared resource.

5. The tasks that do not require any resources belong to no task groups

and will be allocated independently after all task groups are allocated.

With the above steps, the task group of each shared resource can be identified,

where a task group of a resource can be empty if no tasks require that resource

or all its requesting tasks are already grouped by other resources.

Compared to the task bundling in SPA, this task grouping approach does

not consider the transitive resource sharing so that lighter task groups (i.e.,

with a lower amount of total task utilisation) could be generated in general

(see Section 2.6.1.1 for the task bundling approach in SPA). This is obvious

as each task group in the RCF algorithm contains the tasks that require only

one resource while a task bundle in the SPA algorithm contains tasks that

share the same set of resources. The rationale of starting from the resource

with the largest Nk and grouping all tasks that request this resource (no

matter whether these tasks request other resources) is to facilitate reducing

the blocking from the most competitive resources, as described in detail after

the allocating approaches are presented.

The following explains the mechanism of allocating the task groups and

independent tasks (i.e., tasks that do not require resources) to a system with

M processors under the RCF algorithm.

1. The tasks in each task group are ordered by their utilisations in a non-

decreasing order (ties broken by deadlines).

2. Staring from the resource group of the first resource (i.e., the one with

the biggest Nk) and P0, the tasks in each task group are mapped to

processors according to the Next-Fit Increasing (NFI) algorithm, where

tasks are ordered by utilisation non-decreasingly and are mapped by the

NF approach described in Section 2.2.3.

3. Finally, the independent tasks are allocated by the Worst-Fit Decreasing

(WFD) algorithm, where ties are broken by task id.

4. If a task cannot be fitted into any processor, the algorithm is finished

with no allocation solutions being found.
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The above presents the complete approach of allocating tasks in the RCF

algorithm. Note that although a fixed number of processors is assumed in the

above description, this algorithm can also take an initial number of processors

(usually dUtote processors, where Utot is the total utilisation of all tasks) and

adds extra processors later on if a task cannot be allocated to any existing

processors.

The intuition of allocating the task groups via the NFI heuristic is that,

compared to other heuristic approaches (i.e., the WF, BF and FF algorithms),

the NFI algorithm is more likely to allocate tasks in a group into a limited num-

ber of processors, as this algorithm always starts from the previously-allocated

processor and then checks the next processor if the given task cannot be allo-

cated. Further, with tasks ordered by utilisation non-decreasingly, more tasks

in a task group could be allocated to a single processor. In addition, the inde-

pendent tasks are mapped via the WFD algorithm. Such an approach could

require less processors (or could increase the success rate of this algorithm

with a fixed number of processors assumed), as the independent task with the

biggest utilisation is allocated first so that other tasks (with a smaller utili-

sation) are more likely to be fitted into the remaining spaces (if any) of the

existing processors under the WF heuristic.

With the RCF algorithm adopted, the blocking imposed by the compet-

itive resources can be reduced as the requesting tasks can be allocated to a

limited number of processor, or even into a single processor. This algorithm

is fully independent from the resource sharing protocols i.e., can be adopted

with any locking protocols assumed. In general, this algorithm could benefit

all the multiprocessor locking protocols as the blocking from certain shared

resources can be reduced. Especially, this algorithm is favourable with PWLP

adopted, which performs better than other candidate locking protocols with

low remote resource contention (see Section 3.4). In Section 4.1.3, experiments

are conducted to investigate the schedulability of systems with this algorithm

and each of the candidate locking protocols adopted.

4.1.2 Resource Length Fit

In Section 3.4, the experiments have showed that the length of the critical

sections has a significant impact to the schedulability of the candidate locking

protocols. As observed, MSRP is better than other candidate locking proto-

cols with short resources, but has a poor schedulability when managing long
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resources due to its non-preemptive FIFO spinning approach. In addition,

MrsP is favourable with long resources but demonstrates the worst schedu-

lability among all the candidate locking protocols if the resources are short.

According to this observation, two resource-oriented task allocation algorithms

are proposed in this section, which aim to localise shared resources based on

the length of critical sections, named as the Resource Length Fit-Long (RLF-

L) and the Resource Length Fit-Short (RLF-S) respectively.

Both algorithms aim to minimise the blocking due to certain resources,

where the RLF-L aims to reduce the blocking from long resources while the

RLF-S attempts to decrease the blocking due to resources with short critical

sections. The intuition is that, although these allocation algorithms are in-

dependent from resource sharing protocols, the RLF-L could benefit MSRP

while the RLF-S should be more favourable with MrsP adopted based on the

experiments given in Section 3.4. In these two task mapping algorithms, the

notion of task groups in Section 4.1.1 is adopted for grouping the resource-

requesting tasks. Thus, the number of processors required to allocate a task

group could be less than that of a task bundle, and hence, leads to less block-

ing time. In these two algorithms, resources are ordered by the length of their

critical sections, as described below.

• RLF-L: Resources are ordered by their length of critical sections (i.e.,

ck) in a non-increasing order, where ties are broken by resource utilisa-

tions and resource id sequentially.

• RLF-S: Resources are ordered by their length of critical sections (i.e.,

ck) in a non-decreasing order, where ties are broken by resource utilisa-

tions and resource id sequentially.

The rest of the task grouping and allocating mechanisms in the RLF-L and

RLF-S algorithms are identical with that of the RCF algorithm, where the

tasks are grouped from the first resource and all the tasks that require this

resource are grouped. Then, tasks are mapped into each processor by the same

approach proposed in the RCF algorithm, where the task groups are allocated

via the NFI algorithm and then, the independent tasks are mapped by the

WFD algorithm.

The above presents the approaches of the RLF-L and RLF-S algorithms.

With these task allocation schemes adopted, the blocking due to long (or

short) resources can be reduced. Similar with the RCF scheme, both algo-
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rithms are independent from the locking protocols and could benefit resource

sharing in general as the blocking due to certain resources can be reduced.

Especially, based on the observation from the experiments in Section 3.4, the

RLF-L and RLF-S algorithms could benefit MSRP and MrsP respectively. In

Section 4.1.3, experiments are conducted to investigate the performance of

the newly-developed resource-oriented task allocation algorithms under each

candidate locking protocol.

4.1.3 The Impact of Task Allocation on Multiprocessor Sys-

tems with Shared Resources

In this section, a set of experiments are conducted to (1) compare the perfor-

mance of the newly-developed resource-oriented task allocation schemes with

the existing task mapping algorithm; and to (2) compare the schedulability of

systems with the new task mapping algorithms under each candidate locking

protocol. In total, 8 task allocations are examined in this evaluation, including

the traditional task utilisation-based allocation schemes in Section 2.2.3 (the

WF, BF, FF, NF algorithms), the SPA algorithm reviewed in Section 2.6.1.1

and the newly-proposed resource-oriented task mapping algorithms in this

chapter (i.e., the RCF, RLF-L and RLF-S algorithm).

The experiments are conducted via varying L and A respectively (i.e., the

range of critical section length and the frequency of resource accesses). In

the following experiments, the schedulability of each candidate locking pro-

tocol is investigated with the above task allocation schemes adopted. In ad-

dition, the system generation tool described in Section 3.4 is adopted in the

experiments and the DMPO algorithm is adopted for assigning task prior-

ities. The test program of the experiments in this section can be accessed

via https://github.com/RTSYork/SchedulabilityTestEvaluation. Simi-

lar to the experiments given in Section 3.4, the statistical significance of the

experimental results in this section demonstrates a confidence level of 95%, as

calculated in Appendix E.

For the allocation schemes that involve the BF, FF and NF algorithms, a

maximum utilisation bound (i.e., Umax) is applied to avoid overloading pro-

cessors. Without this bounding, a processor could be assigned with a high

utilisation (although less than 1), which might lead to deadline misses of the

tasks in that processor. As described in [25], a task set with a combined utili-

sation lower than 0.693% is always schedulable on a single processor under the
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FPPS scheduling policy and the DMPO algorithm with no shared resources.

Based on the discussion above, this bounding is set to Umax = 0.6 initially

(see Figure 3.2, where most systems are unschedulable when Utot
M > 0.6) and

is raised to Umax = Utot
M if Utot

M > 0.6 in the following experiments. However,

for a task that has an utilisation higher than the given Umax, the bounding

is ignored for this task to achieve a feasible allocation (but the total utilisa-

tion of that processor must not exceed 1). To facilitate experimenting, we

enforce that each generated task set can be successfully allocated by each of

the examined allocation scheme.

Varying Critical Section Length L
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Figure 4.1: Schedulability of MSRP for M = 16, n = 64, U = 0.1n, κ = 0.3,

A = 3 and M Shared Resources.

Figure 4.1 illustrates the schedulability of MSRP systems with each of the

above allocation schemes adopted via varying L. Firstly, among the traditional

task allocation schemes (i.e., the WF, BF, FF, NF), the MSRP system with

the WF algorithm adopted demonstrates better schedulability in most cases.

The reason is that with the WF algorithm adopted, tasks are always allocated

to the processor with the least utilisation. Accordingly, processors are less

likely to be overloaded so that a high schedulability can be achieved. However,
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when L = [200µs, 300µs], where blocking can be significant due to long critical

sections, the efficiency of the WF algorithm is decreased and is similar to other

traditional heuristic approaches. In addition, among the commonly adopted

heuristic approaches for localising shared resources in the resource-oriented

task allocations described in this thesis (e.g., the BF algorithm in SPA and the

NF algorithm in our task allocation schemes), the NF algorithm demonstrates

better performance in general as a group of task can be allocated to a limited

number of processors. Such an observation certifies the decision of adopting

the NF algorithm in our resource-oriented task allocation schemes.

Now we focus on the performance of the resource-oriented task mapping al-

gorithms under MSRP, also shown in Figure 4.1. Firstly, we observed that sys-

tems with the resource-oriented task allocation schemes adopted demonstrate

better schedulability than that of under the traditional allocation algorithms.

Among the resource-oriented schemes, the SPA algorithm is outperformed by

our newly-proposed algorithms in all cases. In addition, we observed that with

MSRP, the RLF-L algorithm can outperform the RLF-S algorithm in general,

which again proves that MSRP is more favourable with short critical section

length. Another interesting finding is that MSRP systems under the RCF and

RLF-S algorithms can demonstrate better schedulability than that of with

RLF-L adopted when L = [1µs, 15µs]. Such an observation indicates that

neither algorithm can dominate others with MSRP systems. Nonetheless, the

experimental results clearly indicate that our newly-proposed task allocation

schemes can benefit resource sharing in MSRP systems and can outperform

the existing task mapping algorithms in general.

Figures 4.2 and 4.3 give the schedulability of PWLP and MrsP with each of

the task allocation schemes adopted by increasing the range of critical section

length. As with the above experiment, the WF algorithm has the best perfor-

mance among the traditional schemes in most cases while the NF scheme is

more favourable compared to the BF and FF algorithms with either PWLP

or MrsP adopted in general. In addition, the SPA algorithm is outperformed

by our new schemes with either protocol adopted in all cases. Surprisingly, in

PWLP systems, the RCF algorithm is better than other algorithms in many

cases but is outperformed by the RLF-L algorithm under L = [1µs, 300µs] with

an observable difference (see Figure 4.2). The intuition is that the RLF-L al-

gorithm aims to localise long resources, which can cause considerable amount

of blocking time. With a wide range of critical section length (where there
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Figure 4.2: Schedulability of PWLP for M = 16, n = 64, U = 0.1n, κ = 0.3,

A = 3 and M Shared Resources.

exist both short and long resources), some of the competitive resources could

be short resources, which impose less blocking compared to the long resources.

Thus, although RCF is more favourable with PWLP systems in general, the

RLF-L scheme can provide better performance with L = [1µs, 300µs] under

the above system setting.

A similar observation is obtained in the experiment with MrsP adopted

(Figure 4.3), where systems have better schedulability with the RLF-L al-

gorithm than systems with other allocation schemes under L = [1µs, 300µs]

due to the same reason discussed above. Yet, with L = [100µs, 200µs] and

[200µs, 300µs], where all the resources are assigned with a relatively long crit-

ical section, the RLF-S algorithm demonstrates the best performance among

the newly-developed algorithms, which supports the hypothesis that the RLF-

S algorithm is favourable with MrsP adopted. In addition, another interesting

result is observed, where the RCF algorithm demonstrates the best schedu-

lability under L = [15µs, 50µs] and [50µs, 100µs]. This is because the RCF

algorithm allocates the most competitive resources into a limited number of

processors so that the number of migration targets of a MrsP task for access-
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Figure 4.3: Schedulability of MrsP for M = 16, n = 64, U = 0.1n, κ = 0.3,

A = 3 and M Shared Resources.

ing such resources can be decreased. Accordingly, the migration cost incurred

by these tasks are effectively reduced, and hence, a higher schedulability can

be achieved.

Varying Resource Access Frequency A

Figure 4.4 presents the schedulability of the candidate locking protocols under

each task allocation scheme via varying A. As with the experiments above

(which are conducted with varied critical section length), the resource-oriented

task allocation algorithms perform better than the traditional task mapping

algorithms while the SPA algorithm is outperformed by the new task allocation

schemes proposed in this thesis under each protocol in all cases.

By cross comparing Figures 4.4a, 4.4b and 4.4c, we observed that with the

traditional allocation algorithms adopted (e.g., the WF and BF schemes), the

candidate locking protocols demonstrate similar schedulability as the experi-

ments conducted in Section 3.4, where MSRP is less favourable with long crit-

ical sections (L = [100µs, 200µs] in this experiment) while MrsP can demon-

strate the best schedulability with long resources under each of the traditional
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Figure 4.4: Schedulability of Systems for M = 16, n = 64, U = 0.1n, κ = 0.3,

L = [100µs, 200µs] and M Shared Resources.
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task allocation scheme.

In addition, although PWLP can outperform MSRP under resources with

low competitive (i.e., where A = 1 and A = 6), by further incrementing A,

the schedulability of PWLP is decreased significantly and is outperformed by

MSRP when A > 21 under all examined task allocation schemes in most cases.

Compared to PWLP, the schedulability of both MSRP and MrsP under the

tested allocation schemes are less affected by increasing the frequency of re-

source accesses. Further, we observed that the WF and NF algorithms perform

better than other traditional schemes in most cases with each candidate lock-

ing protocol, which again supports the decision of adopting the NF algorithm

in our new resource-oriented algorithms.

Now we focus on the resource-oriented task mapping algorithms by cross

comparing their performance under each protocol. With A = 1 (i.e., a low

resource contention), the RLF-L or RLF-S algorithm performs better than

the RCF algorithm, where the RLF-L algorithm provide best schedulability for

MSRP and PWLP while the RLF-S algorithm outperforms other task mapping

approach with MrsP adopted. However, by further incrementing A ( where

A > 1), the performance of the RCF algorithm can outperform other task

mapping schemes in most cases. The reason is that, with L = [100µs, 200µs]

(where the minimum critical section length is 100 µs), increasing the number

of resource access can impose considerable amount of blocking to the system,

where the blocking due to a resource r1 with c1 = 100µs and a high contention

can easily exceeds the blocking from a resource with a length of 200µs and a

low contention. Therefore, reducing the blocking time (i.e., adopting the RCF

algorithm) due to competitive resources under the given system setting can

lead to better performance in general than other task mapping algorithms.

Interestingly, we observed that compared to the traditional task allocation

schemes, MSRP can demonstrate better tolerance with long critical sections

while PWLP can be less affected with a high resource-accessing frequency un-

der the resource-oriented task mapping approaches, especially with the new

task allocation schemes developed in this thesis. For instance, MSRP pro-

vides the best schedulability while MrsP is the worst under long resources

with strong contention in general (see cases where A > 11 in Figure 4.4 for all

protocols). In addition, by cross comparing the schedulability of the evaluated

protocols in Figures 4.1, 4.2 and 4.3 with L = [1µs, 15µs], we also observed

that MrsP demonstrates the largest schedulability boost by replacing the tradi-
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tional task allocation schemes to the resource-oriented ones. Such observations

show that the resource-oriented task allocation schemes can facilitate multi-

processor resource sharing under the candidate locking protocols in general,

and can benefit each candidate resource sharing protocol with resources that

it is less favourable with.

Summary and Discussion

Summarising the above, the experimental results presented in this section

have showed that resource-oriented task allocation schemes developed in this

section can benefit resource sharing in multiprocessor systems with the candi-

date locking protocols adopted. In general, systems under the newly-developed

schemes can demonstrate better performance than that with the existing task

allocation schemes adopted. As revealed by the experiments, even though

each newly-developed allocation scheme is favourable with certain candidate

protocols, neither scheme can dominate others under all situation (even for

a single locking protocol). In addition, compared to our task mapping algo-

rithms, the SPA algorithm is less favourable under each experiment presented

in this section.

However, it is insufficient to claim that the SPA algorithm is dominated by

the new ones. Consider, in the case where each task bundle can be allocated

into a processor, SPA can outperform the new algorithms as our algorithms

mainly focus on minimising the blocking due to certain resources rather than

localising all the shared resources. Further, although the traditional task al-

location schemes are outperformed by the resource-oriented ones in general,

there can be the situation where a traditional mapping algorithm can lead to

a schedulable system while the resource-oriented schemes cannot even provide

a feasible task allocation. For instance, for a system where all tasks require

the same resource (which is also the most competitive resource among all the

shared resources), the RCF algorithms will behave exactly the same as the

NFI algorithm, which allocates the tasks with a small utilisation prior to the

heavy ones (i.e., tasks with a high utilisation) via the NF approach. However,

compared to the WFD algorithm, mapping the heavy tasks at the end of the

allocation is more likely to cause an allocation failure, as tasks with a high

utilisation are more difficult to fit into the remaining space of processors (after

all other tasks are allocated) than the ones with a low utilisation. Therefore,

with such a task set, the WFD algorithm could return a feasible task alloca-
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tion and lead to a schedulable system while the RFC algorithm cannot even

allocate the given tasks successfully. In addition, such situations can also hap-

pen with the RLF-L and RLF-S algorithms adopted, assuming that resource

(the one that is requested by all tasks) has the longest (or shortest) critical

section among all the shared resources in the above example.

Accordingly, as there exists no task allocation scheme that can dominate

other task mapping approaches examined in this evaluation (with the can-

didate locking protocols assumed), all the task allocation schemes studied

in this section will be considered as the candidate task allocation schemes

for the proposed resource control framework, including four traditional task

utilisation-based allocation schemes and four resource-oriented task mapping

approaches, as described in Chapter 5 in detail.

4.2 Priority Ordering for Fully-Partitioned Systems

with Shared Resources

In addition to the resource sharing protocols and the task allocation schemes,

the priority ordering algorithms specify the execution order of tasks in each

processor, and hence, can also have a huge impact to the schedulability of mul-

tiprocessor systems with shared resources. As reviewed in Section 2.1.3, the

DMPO is well-practised and can provide optimal priority ordering solutions

for sporadic tasks with constrained deadlines while the OPA and RPA algo-

rithms are search-based and can provide optimal priority ordering solutions

for wider application semantics (e.g., tasks with release offsets and arbitrary

deadlines).

However, as described in [38], the optimality of a given priority ordering

algorithm holds only for a given schedulability analysis. For the DMPO algo-

rithm, it has been proved to be optimal with the RTA equations in Section 2.1.4

for uniprocessor systems without the presence of shared resources [38]. In ad-

dition, with the schedulability test of PCP and SRP (i.e., the blocking analysis

of PCP and SRP based on the RTA equations under FPPS systems) assumed,

it has been proved in [16] that DMPO remains optimal for uniprocessor sys-

tems with shared resources managed by either PCP or SRP. However, with

the schedulability tests for multiprocessor locking protocols assumed (e.g., the

original analysis of MSRP in Section 2.5.2 and the new MSRP test developed

in Section 3.2.1), whether the DMPO algorithm remains optimal has not been
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studied yet. As for the OPA and RPA algorithms, whether these search-based

priority ordering algorithms are compatible with our new schedulability tests

also requires investigation.

In this section, the optimality of the DMPO algorithm for fully-partitioned

systems with shared resources is investigated under both the original and

the new schedulability tests of the candidate multiprocessor resource sharing

protocols determined in Chapter 3. In addition, we demonstrate that the

existing search-based priority ordering algorithms are not compatible with

the new schedulability tests developed in Section 3.2. Then, a new search-

based priority ordering algorithm is proposed that is fully compatible with

the new schedulability analysis. Finally, the schedulability of systems with the

new search-based priority ordering algorithm is investigated and is compared

with the existing compatible priority ordering algorithms (e.g., DMPO) under

the new analysis. The material presented in this section satisfies the success

criteria SC-4 in Section 1.4.

4.2.1 The Optimality of DMPO in Multiprocessor Systems

with Shared Resources

This section investigates the optimality of DMPO for fully-partitioned systems

with shared resources managed by the candidate locking protocols. As with

the proof given in [38], the standard technique for proving the optimality of a

priority ordering algorithm P is adopted in this section, where the algorithm

P is said to be optimal with a given schedulability test S if any task sets that

are deemed to be schedulable with some priority assignment policy W under

test S are also schedulable with algorithm P and test S adopted. The proof is

conducted by induction, where a schedulable task set with priority ordering W

is transformed to the priority ordering of P while guaranteeing that each task

remains schedulable during the transformation. The following gives the base

case and inductive step [38] for proving the optimality of the priority ordering

algorithm P on a fully-partitioned system with M processors and n tasks.

Base Case: The priority ordering algorithm W is assumed to be schedulable

for a given task set τ (where |τ |= n) with M processors under schedu-

lability test S, where W x denotes the schedulable priority order for the

task set τ .

Inductive step: In the priority ordering W x, a pair of adjacent tasks are

150



chosen with their priorities swapped to form a new priority ordering,

denoted as W x−1 (see Figure 4.5). Then, proof is presented to demon-

strate that no tasks have missed their deadlines under test S due to this

priority swapping. For a task set with n tasks, at most x = n(n+ 1)/2

priority swapping (i.e., as with the OPA algorithm) are required to trans-

fer the priority ordering from W x to P (i.e., W 1 = P ). If no tasks have

missed their deadlines under S during the entire priority reordering pro-

cess, there will be no task sets that are schedulable with W but are not

schedulable with P adopted, and hence, proves the optimality of the

priority ordering algorithm P under S with the task model of the given

task set τ .

Pm

Wx Wx-1

𝜏top

𝜏y

𝜏z

𝜏bottom

𝜏top

𝜏′z

𝜏′y

𝜏bottom

P0,…,m-1 Pm+1,…,M

Figure 4.5: A Priority Swap.

The system given in Figure 4.5 will be adopted to conduct the proof below.

The system contains M processors and each processor is assigned with a set

of tasks. A priority transfer is performed between τy and τz, where τtop and

τbottom denote a set of local higher and lower priority tasks respectively. To

differentiate the response times of τy and τz under priority ordering W x and

W x−1, R′y and R′z are used to denote the response times of these tasks after

the priority swapping (i.e., the priority ordering W x−1).

In addition, the system contains a set of shared resources that are man-

aged by a given resource sharing protocol with a schedulability test S, where

functions F (τx) and G(rk) given in Section 2.5.9 are adopted here to describe

the usage of shared resources, where F (τx) gives a set of resources required

by τx while G(rk) returns a set of tasks that access rk. That is, our proof is

conducted with a generalised resource usage of the above system (i.e., without

any exact resource usage assumed).
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Note that the priority ordering policy W does not comply with the DMPO

algorithm. With DMPO adopted, increasing priorities are assigned in the

reverse ordering of deadlines, which indicates that for any given pair of tasks

(say τ1 and τ2) in the given system, D1 < D2 so that Pri(τ1) > Pri(τ2).

However, with the priority ordering policy P adopted, there exists at least

one pair of tasks (say τ1 and τ2) that D1 < D2 and Pri(τ1) < Pri(τ2). In

this proof, we assume that Dy > Dz and Pri(τy) > Pri(τz) under the priority

ordering W x. In addition, no assumptions are made between the relationship

of the priority and deadline for any other tasks in the system.

4.2.1.1 Investigating the Optimality of DMPO with the Original

MSRP and MrsP Analysis

As MSRP and MrsP are developed with original schedulability tests pro-

vided [27,47], we investigate the optimality of the DMPO algorithm on fully-

partitioned systems with either MSRP or MrsP adopted under their original

schedulability tests given in Sections 2.5.2 and 2.5.9, as given in the theorem

below.

Theorem 4. The Deadline Monotonic Priority Ordering is optimal in fully

partitioned multiprocessors with shared resources under the original schedula-

bility test of either MSRP or MrsP.

Proof. We prove that DMPO is optimal under the original analysis of MSRP

and MrsP individually.

(1) Under MSRP:

The complete original analysis of MSRP is given in Section 2.5.2. With

MSRP’s original analysis assumed, the response time of a given task is deter-

mined by the independent task properties only and the cost for accessing a

resource rk is always |map(G(rk))|×ck, as shown in Equation (2.8).

We firstly prove that R′z ≤ Dz after the priority swap. Under W x, τz incurs

the interference of τy, including the indirect spin delay due to τy’s resource

accessing, which is
⌈
Rz
Ty

⌉”Cy and is equal to¢
Rz
Ty

•
(Cy +

∑
rk∈F (τy)

Nk
y × |map(G(rk))|×ck) (4.1)

according to Equations (2.7) and (2.8). After the priority swap (i.e., in W x−1),

τz will not incur such interference as it now has a higher priority. Thus, the
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interference of τz is reduced after the priority swap, where it can only be

preempted by τtop under W x−1.

However, after the priority swap, τz could incur an increased arrival block-

ing. As described in Section 2.5.2, a resource rk can cause task τx to incur

arrival blocking if rk is requested by τx’s local lower priority tasks and rk is

either a global resource or a local resource with a ceiling priority at least equals

to Pri(τx). According to Equation (2.9), the resources that can cause τz to

incur arrival blocking (i.e., FA(τz)) under W x can be identified as

FA(τz) , {rk|rk ∈ F (τbottom) ∧
Ä
rk is global ∨ Pri(rk) ≥ Pri(τz)

ä
} (4.2)

where rk ∈ F (τbottom) indicates that rk is requested by τz’s local lower priority

tasks under W x. In addition, the condition Pri(rk) ≥ Pri(τz) (for the case

where rk is a local resource) can be further specified as rk ∈ F (τtop)∪F (τy)∪
F (τz). Thus, the resources that can cause τz to incur arrival blocking under

W x in the system given in Figure 4.5 are

{rk|rk ∈ F (τbottom) ∧
Ä
rk is global ∨ rk ∈ F (τtop) ∪ F (τy) ∪ F (τz)

ä
} (4.3)

Accordingly, in the priority ordering W x−1, the resources that can cause

τz to incur arrival blocking can also be identified by the following function.

{rk|rk ∈ F (τy) ∪ F (τbottom) ∧
Ä
rk is global ∨ rk ∈ F (τtop) ∪ F (τz)

ä
} (4.4)

The calculations in Equations (4.3) and (4.4) demonstrate that the re-

sources that can cause τz to incur arrival blocking can be different under

these two priority orderings. For global resources, it is clear that the number

of global resources that can cause arrival blocking to τz after the swapping

can be increased, where such resources are rk ∈ F (τbottom) in W x and are

rk ∈ F (τy) ∪ F (τbottom) under W x−1, assuming rk is a global resource.

In addition, as shown in Equations (4.3) and (4.4), the local resources that

can block τz upon its arrival under W x can be identified by

rk ∈ F (τbottom) ∧ rk ∈ F (τtop) ∪ F (τy) ∪ F (τz) ∧ rk is local (4.5)

while such resources under W x−1 are

rk ∈ F (τy) ∪ F (τbottom) ∧ rk ∈ F (τtop) ∪ F (τz) ∧ rk is local (4.6)

By comparing the Equations (4.5) and (4.6), the local resources that are

only required by τy and τbottom cannot cause τz to incur arrival blocking under
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W x−1. However, the local resources that are requested by τy and tasks with

a priority equal to or higher than Pri(τz) (e.g., G(rk) = {τtop, τy}, G(rk) =

{τy, τz} or G(rk) = {τtop, τy, τz}) can now block τz upon its arrival under W x−1

while cannot cause such blocking to τz under W x.

Based on the above discussion, in the worst case, τz’s arrival blocking can

increase after the priority swap. Further, if the arrival blocking of τz does

increased in W x−1, such a resource (either global or local) that causes the

blocking must be a resource that is requested by τy. Therefore, according to

Equation (2.9), in the worst case (i.e., the arrival blocking of τz under W x−1

is increased), τz’s arrival blocking can be calculated as

max
¶
|map(G(rk))|×ck|rk ∈ F (τy) ∧

Ä
rk is global ∨G(rk) 6= {τy, τbottom}

ä©
(4.7)

where
Ä
rk is global∨G(rk) 6= {τy, τbottom}

ä
indicates that rk is either a global

resource or a local resource that is not shared only by τy and τbottom. In

addition, |map(G(rk))|= 1 if rk is a local resource.

Now, recall the decreased indirect spin delay of τz after the priority swap

in Equation (4.1) (which is
⌈
Rz
Ty

⌉
· (∑rk∈F (τy)N

k
y · |map(G(rk))|·ck)), it is clear

that the potential increase of the arrival blocking of τz after the swap is at

most equal to the decrease of its indirect spin delay, where the arrival blocking

can occur only once while τy could access that resource multiple times during

each release. In addition, as τz will not incur the interference of τy’s pure

computation time (i.e., Cy) after the priority swap, the increase of the arrival

blocking of τz is always less than the decrease of its interference after the

priority swap i.e., R′z < Rz ≤ Dz.

On the other side, if τz’s arrival blocking is not increased after the priority

swap, it is still schedulable as it incurs less interference while has the same

amount of direct spin delay and a non-increased arrival blocking. Therefore,

we can conclude that R′z < Rz ≤ Dz (i.e., τz is schedulable under W x−1) in

the system given in Figure 4.5 regardless of the exact resource usage.

Now we prove that R′y ≤ Dy. This can be achieved by examining Rz and

R′y. By applying Equation (2.6), the response time of τz under W x and τy

under W x−1 is given below.

Rz =”Cz +Bz +

¢
Rz
Ty

•”Cy +
∑

τh∈τtop

°
Rz
Th

§”Ch (4.8)
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R′y = ”Cy +By +

¢
R′y
Tz

•”Cz +
∑

τh∈τtop

¢
R′y
Th

•”Ch (4.9)

where ”Cy, ”Cz and ”Ch are constant values under the original analysis of MSRP

(for τx, ”Cx = Cx +
∑
rk∈F (τx)N

k
x × |map(Gk)|×ck).

Firstly, according to Equation (2.9), under W x−1, the resources that can

cause τy to incur arrival blocking can be identified by the following equation.

FA(τy) , {rk|rk ∈ F (τbottom) ∧
Ä
rk is global ∨ rk ∈ F (τtop) ∪ F (τz) ∪ F (τy)

ä
}

(4.10)

Compared to the resources that cause τz to incur arrival blocking under

W x (see Equation (4.5)), it is clear that τz in W x and τy in W x−1 can be

blocked upon their arrival by the same set of resources, and hence, leads to

the same amount of arrival blocking (i.e., Bz in W x equals to By in W x−1) by

Equation (2.9), denote as B below.

To facilitate the comparison, we firstly ignore the interference from the

tasks in τtop and will consider this interference later on. Such an approach

is valid because the amount of interference from high priority tasks increases

monotonically with the response time, where R1 ≥ R2 then
†
R1
Tx

£”Cx ≥ †R2
Tx

£”Cx
for τx, which further proves that R1 ≥ R2. With the interference due to the

tasks in τtop ignored, the following calculations are obtained:

Rz =”Cz +B +

¢
Rz
Ty

•”Cy
=”Cz +B +Np ×”Cy (4.11)

For τz in W x, as no assumption can be made between Rz and Ty so that τy

could preempt τz more than once, where Np denotes the number of preemp-

tions τz can incur from τy under W x and Np =
⌈
Rz
Ty

⌉
≥ 1.

Now we calculate R′y with an initial value of R′y = ”Cy + B by iterative

calculations, where

R′y =”Cy +B +

¢
R′y
Tz

•”Cz
=”Cy +B +

⌈”Cy +B

Tz

⌉
×”Cz

=”Cy +B + 1×”Cz (4.12)

Firstly, recall the value of Rz computed in Equation (4.11), it is clear that”Cy + B < Rz ≤ Dz ≤ Tz so that

°
Ĉy+B
Tz

§
= 1. With further iterations, R′y is
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at most equal to Rz (i.e., R′y ≤ Rz), as τy can preempt τz at least once under

priority ordering W x. Thus, the calculation of R′y is finished with a fixed value

of ”Cy +B+”Cz, assuming no interference from tasks in τtop is imposed. Thus,

Rz −R′y =”Cz +B +Np ×”Cy −”Cy −B −”Cz
=(Np − 1)×”Cy ≥ 0

(4.13)

From the calculation, it is clear that R′y ≤ Rz with the the interference

from τtop ignored. Now we consider such interference incurred by τz in W x and

τy in W x−1. As R′y ≤ Rz in above calculations, for each τh in τtop,
⌈
R′
y

Th

⌉”Ch
is at most equal to

†
Rz
Th

£”Ch, which further proves that R′y ≤ Rz with the

interference of tasks in τtop accounted for. Therefore,
⌈
R′
y

Tz

⌉
will always be 1

as R′y ≤ Rz ≤ Tz. Accordingly, τy is schedulable after the priority swap as

R′y ≤ Rz ≤ Dz < Dy with any resource usage assmed.

The above proof is conducted by the same strategy of the proof for DMPO

in the uniprocessor case given in [38]. In this proof, we provide evidence

that swapping the priorities of two adjacent tasks that are schedulable under

priority W x can also be schedulable (i.e., in W x−1) under the original MSRP

analysis. By swapping all the adjacent tasks with the incorrect priority order

in each processor in Figure 4.5 according to DMPO, a schedulable system with

the DMPO algorithm can be obtained under the original MSRP analysis.

(2) Under MrsP:

Now we prove that DMPO is also optimal under the original analysis of

MrsP described in Section 2.5.9, which is similar with the analysis of MSRP

in Section 2.5.2. The only difference is that under MrsP, the resources that

can cause tasks to incur arrival blocking is determined by the ceiling priority

of shared resources, where

FA(τi) , {rk|Nk
ll > 0 ∧ Pri(rk, P (τi)) ≥ Pri(τi)} (4.14)

according to Equation (2.11). However, such a difference in the analysis will

not undermine the optimality of DMPO under the MrsP’s original analysis.

According to the above equation, the set of resources that can cause arrival

blocking to τy and τz under both priority orderings with MrsP adopted can

be identified, where in the priority ordering W x

FA(τy) , {rk|rk ∈ F (τbottom) ∪ F (τz) ∧ rk ∈ F (τtop) ∪ F (τy)} (4.15)

FA(τz) , {rk|rk ∈ F (τbottom) ∧ rk ∈ F (τtop) ∪ F (τy) ∪ F (τz)} (4.16)
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while under priority ordering W x−1

FA(τy) , {rk|rk ∈ F (τbottom) ∧ rk ∈ F (τtop) ∪ F (τy) ∪ F (τz)} (4.17)

FA(τz) , {rk|rk ∈ F (τbottom) ∪ F (τy) ∧ rk ∈ F (τtop) ∪ F (τz)} (4.18)

Similar with the MSRP case, τz could incur an increased arrival blocking

due to a resource that is requested by τy (i.e., in F (τy)) after the priority swap

(see Equations (4.16) and (4.18)). Therefore, as proved before, the increase of

τz’s arrival blocking will always be less than the decrease of its interference in

W x−1. Thus, τz remains schedulable after the priority swap i.e., R′z < Rz ≤ Dz

under the original schedulability test of MrsP.

In addition, as shown by Equations (4.16) and (4.17), the set of resources

that can cause τz in W x and τy in W x−1 to incur arrival blocking under MrsP

are identical. Thus, the calculations of Rz and R′y under MrsP’s original

analysis are identical with the MSRP case. Therefore, it is also clear that R′y ≤
Rz ≤ Dz < Dy after the priority swap. Accordingly, the DMPO algorithm is

optimal under the original analysis of MrsP in fully-partitioned systems.

This concludes the proof of the optimality of the DMPO algorithm under

the original schedulability tests of either MSRP or MrsP in fully-partitioned

FPPS systems. �

4.2.1.2 Investigating the Optimality of DMPO with the New MSRP,

PWLP and MrsP Analysis

Now we investigate the optimality of DMPO under the new schedulability

tests of the candidate locking protocols developed in Section 3.2. From the

viewpoint of analytical expression, a major difference between the original and

new schedulability tests is that in the new tests, the response time of a given

task depends potentially on the response times of all the tasks in the system.

In this work, we prove that the DMPO algorithm is not optimal with new

schedulability tests adopted by providing a counterexample, as described in

the following theorem and proof.

Theorem 5. The Deadline Monotonic Priority Ordering is not optimal in

fully partitioned multiprocessors with shared resources under the new schedu-

lability tests of MSRP, PWLP and MrsP developed in Chapter 3.

Proof. It is sufficient to prove the above theorem if DMPO is not optimal under

the new schedulability test of MSRP (see Section 3.2.1), as the new analysis of
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other candidate locking protocols are developed based on this schedulability

test. To conduct the proof, a three-processor system is presented with a spe-

cific resource usage, where a priority swap is occurred between τ2 and τ3 on P1,

as given in Figure 4.6. In this example, Pri(τ3) > Pri(τ2) > Pri(τ1) under

priority ordering W x while Pri(τ2) > Pri(τ3) > Pri(τ1) in W x−1. Table 4.1

gives the task property and resource usage in processor P1 of the system. In

addition, there exist sufficient requests to r1 and r2 from both P0 and P2 that

can block each resource access issued from P1, which implies that the cost of

accessing a resource rk from P1 is always 3 · ck.

P1

Wx Wx-1

𝜏3

𝜏2

𝜏1

𝜏′2

𝜏′3

𝜏1

P0 P2

𝑟$
𝑟%

𝑟%
𝑟$

Figure 4.6: A Priority Swap with Shared Resources.

Table 4.1: Task Property and Resource Usage in P1 of the System in Figure 4.6

Task (τx) Cx Tx Dx

τ3 1 27 27

τ2 1 17 17

Resource (rk) ck G(rk) Nk
x

r1 1 {τ1, τ3} N1
1 = 1, N1

3 = 1

r2 2 {τ1, τ2} N2
1 = 1, N2

2 = 1

In this proof, we focus on τ2 and τ3 and demonstrate that τ3 can miss its

deadline due to the priority swap in the system given in Figure 4.6, which

provide direct evidence that supports the theorem. As shown in Figure 4.6,

F (τ2) , {r2} and F (τ3) , {r1}. In addition, with MSRP adopted, τ2 and τ3

under both priority orderings can incur arrival blocking from the same set of

resources (i.e., FA(τ2) = FA(τ3) , {r1, r2}).

We first give the response time of τ3 and τ2 under priority ordering W x

158



based on Equation (3.1), where

R3 =C3 + E3 +B3

=C3 + e13(R3, 0) +max{|α1
3|·c1, |α2

3|·c2}

=1 + 3× 1 + 3× 2

=10

R2 =C2 + E2 +B2 +

°
R2

T3

§
· C3 + I2,3

=C2 + e22(R2, 0) +max{|α1
2|·c1, |α2

2|·c2}+

°
R2

T3

§
· C3 + e13(R2, R3)

=1 + 3× 2 + 3× 2 +

°
R2

27

§
· 1 +

°
R2 + 10

27

§
· (3× 1)

=17

As the cost for accessing a resource rk from P1 always 3× ck, e22(R2, 0) =

3×c1 and e13(R2, R3) =
†
R2+R3
T3

£
3×c2 while |α1

3| = |α2
3| = |α1

2| = |α2
2| = 3 (see

Equations (3.2), (3.3) and (3.9) in Section 3.2.1). From the above calculations,

both τ3 and τ2 can meet their deadlines under priority ordering W x, where

R3 = 10 and R2 = 17 while D3 = 27 and D2 = 17.

We now present the calculations of the response times of τ2 and τ3 under

priority ordering W x−1, where

R′2 =C2 + E2 +B2

=C2 + e22(R
′
2, 0) +max{|α1

2|·c1, |α2
2|·c2}

=1 + 3× 2 + 3× 2

=13

R′3 =C3 + E3 +B3 +

¢
R′3
T2

•
· C2 + I3,2

=C3 + e13(R
′
3, 0) +max{|α1

3|·c1, |α2
3|·c2}+

¢
R′3
T2

•
· C2 + e22(R

′
3, R

′
2)

=1 + 3× 1 + 3× 2 +

¢
R′3
17

•
· 1 +

¢
R′3 + 13

17

•
· (3× 2)

=30

As shown by the above calculations, R′3 = 30 under W x−1 but D3 = 27.

Therefore, τ3 has missed its deadline after the priority swap, and hence, breaks

the optimality of the DMPO algorithm under new MSRP test.

Similarly, as the new schedulability tests of other candidate locking proto-

cols are developed based on the new MSRP test and have the same approach
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for calculating response times (i.e., the back-back hit computing mechanism),

the DMPO algorithm is not optimal under these schedulability tests as well

due to the proof given above. Under the new schedulability tests of either

PWLP or MrsP (see Sections 3.2.2 and 3.2.3), a high priority task that expe-

rienced the priority swap (has its priority swapped with a low priority task)

also incurs the additional blocking from either the cancellation mechanism or

the migration-based helping mechanism due to the increased number of pre-

emptions incurred after the swap, and hence, results in a further increased

response time.

Summarising the above, we conclude that the DMPO algorithm is not

optimal on fully partitioned FPPS systems under the new schedulability tests

of MSRP, PWLP and MrsP developed in Chapter 3, including the analysis

framework proposed in Section 3.3. �

In this section, we have investigated the optimality of DMPO under both

the original and newly-developed schedulability tests of the candidate lock-

ing protocols in the proposed multiprocessor resource sharing framework. As

given by Theorem 4, the DMPO algorithm remains to be optimal under the

original analysis of either MSRP or MrsP. However, according to the theo-

rem 5, the optimality of DMPO is undermined under the new schedulability

tests, which will be adopted in the FMRS framework. Section 4.2.4 provides

experimental evidence that again demonstrates that there exist systems that

are not schedulable with DMPO adopted but are feasible under other priority

ordering algorithms.

4.2.2 The Compatibility of OPA and RPA with New Schedu-

lability Tests

For the search-based algorithms reviewed in Section 2.1.3 (i.e., OPA and RPA,

where RPA is developed based on the OPA algorithm), their optimality holds

as long as the given schedulability test is compatible (i.e., meets the three

conditions described in Section 2.1.3.3). This is because such algorithms search

through all the possible priority ordering solutions via n(n+ 1)/2 calculations

for each processor and can guarantee to deliver a schedulable priority ordering

solution, assuming there exists one. Thus, it is clear that the OPA and RPA

are optimal with the original schedulability tests for the candidate locking

protocols (e.g., the analysis for MSRP and MrsP in Sections 2.5.2 and 2.5.9),
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which are compatible with OPA and RPA as the response time of each task

under the original tests depends only on the independent task properties (e.g.,

Cx and Tx of τx).

Unfortunately, these search-based priority algorithms cannot be applied

to our new schedulability tests proposed in Section 3.2. The major reason

is that, with the newly-proposed schedulability tests, the response time of

each task depends potentially on the response times of all other tasks in the

system. Recall the new analysis of MSRP in Section 3.2.1, where the function

Nk
x (l, µ) =

†
l+µ
Tx

£
·Nk

x is introduced to account for the back-to-back hits from

local higher priority tasks and remote tasks during the release of the task that

is currently being studied (say τi). The jitter parameter µ in this function is

either 0 (for τi itself) or Rx (for a local higher priority task or a remote task).

With the back-to-back hits calculation mechanism, the response time of tasks

in a system must be calculated iteratively and alternatively until the fixed

response times of all tasks are obtained, assuming the system is schedulable.

Therefore, such a mechanism violates the conditions of adopting the OPA and

RTA algorithms, where the response time of a given task must depend only

on the independent task properties.

In addition, to apply our new schedulability tests, each task in the sys-

tem must be explicitly assigned with a priority. This is because our analysis

provides a fine-grained analysing approach, where the indirect spin delay of

a given task is calculated via examining the blocking time incurred by each

local higher priority task (starting from the highest priority task) during the

release of the currently-studied task. Therefore, as the new schedulability

analysis is assumed in the proposed resource control framework, the OPA and

RPA algorithms cannot be directly applied in this work.

Nonetheless, with the jitter parameter µ replaced by an independent task

property when µ 6= 0 (such as Dx) and with each task assigned with an initial

priority (which can be achieved via the static priority ordering algorithms,

such as DMPO), these search-based algorithms can be applied as the analysis

now satisfies the conditions of use for both the OPA and RPA algorithms.

However, the concern with such an approach is that by replacing Rx with Dx,

the degree of pessimism of the schedulability tests will increase as Rx ≤ Dx in

a schedulable system, which could produce unschedulable results for systems

that are actually feasible. We denote such approach as OPA-D and RPA-D. As

compromises must be made to the new analysis, the optimality of these priority
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ordering algorithms can be undermined. In Section 4.2.4, evaluations are

conducted to investigate the performance of OPA-D and RPA-D and to provide

experimental evidence that these compromised priority ordering approaches

under the new schedulability tests are not optimal.

4.2.3 The Slack-based Priority Ordering (SBPO)

As proved in Section 4.2.1, the DMPO algorithm is not optimal with our new

schedulability tests assumed, which implies that there could exists a priority

ordering that is able to schedule a task set while the DMPO algorithm cannot.

As for the OPA and RPA algorithms, the pessimism of the new schedulability

tests is increased to be compatible with these search-based priority ordering

algorithms (see OPA-D and RPA-D in Section 4.2.2) so that their optimality

can be undermined. Thus, with the new schedulability tests assumed, there

can be the case where a system that is actually schedulable with certain pri-

ority ordering, but cannot be scheduled by either the static (i.e., DMPO) or

search-based (i.e., OPA-D and RPA-D) priority ordering algorithms reviewed

in Section 2.1.3.

Based on the above discussion, this section presents a new search-based

priority ordering algorithm as a candidate priority ordering solution for the

FMRS framework proposed in this thesis, named as the Slack-based Priority

Ordering (SBPO) algorithm. This search-based priority ordering algorithm

shares the similar philosophy with that of the OPA and RPA algorithms, but

with a different realising approach (1) to be fully compatible with the new

schedulability tests of the candidate locking protocols; and (2) to decrease the

pessimism introduced for adopting the OPA and RPA algorithms to the new

schedulability tests (i.e., the OPA-D and RPA-D approaches). Below gives

the pseudo code for the SBPO algorithm with the new schedulability test in

Section 3.2 assumed, denoted as S.

Initialise priorities of tasks on each processor by DMPO;

For each processor Pm, starting from P0{

For each priority level Pri, lowest first {

For each unexamined task τx on Pm {

Assign τx with priority Pri;

Rx = Get_Response_Time(task τx);

Get the additional slack of τx by Dx −Rx;
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Restore the initial priority of τx;

}

Assign priority Pri to the task with biggest slack1;

}

Get response times of all tasks in Pm with the new priority

ordering by test S, where R = D for all the unexamined tasks and

R = D if R > D for all tasks on Pm;

}

Get response times of all tasks in the system with the priority

ordering via test S;

if (the system is schedulable)

return true;

else

return false;

where function Get_Response_Time() is introduced to provide a special re-

sponse time calculation approach for obtaining the remaining slack of τx, as

given below.

long Get_Response_Time(task τx){

Assuming R = D for each unexamined remote task;

Computing the response times of all tasks in Pm iteratively and

alternately via test S, the calculation ends when R has reached to

η ·D2 (in case where R > D) or R is fixed for each task in Pm

expect τx;

return Rx;

}

Similar to the RPA algorithm with E(α,w, i) = α (see in Section 2.1.3.4),

for a processor Pm and a given priority level Pri, the SBPO algorithm checks

the response times of all the unexamined tasks on Pm with priority Pri

(while the priorities of other unexamined tasks in the system are initialised by

DMPO) and assigns the priority Pri to the task with the largest remaining

slack (i.e., Dx − Rx for τx). However, unlike the RPA-D approach, where

1If tasks have the same slack, the task with biggest deadline is assigned with the priority.
2The extension parameter η is introduced to extend to response time calculation to η ·Dx

for a task τx.
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the response times of all other tasks are assumed to be their deadlines while

examining the response time of a given task, the SBPO algorithm holds such

an assumption only for the unexamined remote tasks.

For instance, when assigning priorities to tasks in P5, the updated response

times of tasks in P0 to P4 are used when computing the response times of tasks

in P5 rather than the deadlines. By doing so, more accurate response times of

tasks in P5 could be obtained as higher input values can only lead to an equal

or higher response time in our analysis (i.e., increasing monotonically, as our

analysis is based on the RTA analysis in Section 2.1.4). Such an approach is

safe, as the response time of tasks from P0 to P4 are computed by assuming

the response times of the unexamined tasks as their deadlines, which indicates

that the response times of tasks from P0 to P4 computed are at least equal

to their actual response times under the given priority ordering and our new

schedulability tests.

In addition, with the RPA-D approach adopted, the algorithm returns with

no feasible priority ordering solutions being found if no tasks can be scheduled

for a given priority level. In contrast, the SBPO algorithm allows the situa-

tion where all tasks miss their deadlines for a given priority level and can still

obtain their remaining slacks via function Get_Response_Time(), which pro-

vides a special approach to calculate response times of tasks in τx’s processor

for obtaining their remaining slacks. Firstly, to increase the accuracy of the

response time calculation of a given task τx, the response times of all tasks

in τx’s processor are calculated (with their currently assigned priorities) itera-

tively and alternately in function Get_Response_Time(), and will be applied

in the calculations of Rx instead of the deadlines.

Calculating Remaining Slacks

Arguably, examining the remaining slacks of tasks that have missed their dead-

lines is somewhat meaningless. However, as the response times of the unex-

amined tasks are assumed to be their deadlines, there can be the case where

the response times of all the examined tasks are higher than their deadlines

under a given priority level, but some of the tasks are actually schedulable.

Recall the mechanism for calculating the back-to-back hits, where the num-

ber of requests issued from a remote task τj to rk during the release of τi is

Nk
j (Ri, Rj) =

⌈
Ri+Rj
Tj

⌉
·Nk

j . Now, assume that both tasks are schedulable (i.e.,

fixed response times are obtained for both τi and τj), where Ri+Rj < Tj while
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Ri = Di, replacing Rj to Dj in this function will introduce the back-to-back

hits from τj . Such a phenomenon can block the requests of τi to rk so that

more blocking can be imposed to τi. Accordingly, Ri > Di in this response

time calculation due to the pessimism introduced by replacing Rj by Dj .

Under such a situation, the SBPO algorithm aims to assign appropriate pri-

orities to these tasks (i.e., the tasks that have missed their deadlines according

to the calculations) and to increase the possibility of obtaining a schedulable

priority ordering for the system. However, with response times higher than

deadlines, the remaining slack D −R is difficult to reflect the robustness of a

task under a priority level. For instance, for a given priority level Pri, both τ1

and τ2 have missed their deadlines after one iterative calculation, where the

slack (i.e., D1 − R1) of τ1 is slightly higher than that of τ2. However, with

further iterations, the slack of τ1 becomes much lower than that of τ2. In this

example, if the slacks are obtained by the calculation where both tasks have

just missed their deadlines, τ1 will be assigned with priority Pri so that the

system is likely to be unschedulable as the slacks obtained could not reflect

the robustness of the tasks.

To obtain the remaining slacks of tasks under this situation, an extension

parameter η is introduced to extend the iterative response time calculations

for tasks on Pm when they missed their deadlines, where the calculation ends

when the response times have reached to η · D for all the deadline-missed

tasks except τx. The intuition is that for a given priority level, there could

be several tasks where their response times are just slightly higher than their

deadlines after one iteration. However, with further iterative calculations, huge

variances could appear between the slacks of tasks, where the task with the

highest slack is relatively strong at this priority level compared to other tasks.

Such an approach is also adopted in [87], where the response time calculation

of tasks is extended to n × D for tasks that have missed their deadlines to

determine the system that is closest to be schedulable among a set of given

systems, where n is a positive integer.

Admittedly, there can be the case where the slacks of two tasks are higher

than each other alternatively under each iterative calculation. However, in a

general case, extending the iterative response time calculations to a certain

extent is more likely to reveal or magnify the differences between the slacks

of tasks that has already missed their deadlines. Therefore, by this approach,

tasks are more likely to be assigned with appropriate priorities so that the
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possibility for obtaining a feasible priority ordering solution could be increased.

The value of η must be a positive integer and can be decided by users, where

a higher η could lead to more accurate remaining slacks of tasks that have

missed their deadlines but requires more computation time in a general case.

As with the setting adopted in [87], the extension parameter η in this work is

set to 5.

With the above approach, the priorities for tasks in each processor can be

assigned via comparing the remaining slacks for all tasks under each priority

level. With each task assigned with a priority by the SBPO algorithm, the

response time of all the tasks in the system based on the new priority ordering

are calculated under the schedulability test S to check whether the priority

ordering is feasible. If the system is schedulable with the assigned priority

ordering, the SBPO algorithm obtains a feasible priority ordering for the given

system. Otherwise, the algorithm returns with no priority ordering soliton

being found.

Processor Ordering

Note that in this work, the processors are ordered by their indexes and the

SBPO algorithm always starts from the first processor (i.e., processor P0).

We acknowledge that other processor orderings are also possible, such as by

the total utilisation or the number of tasks on each processor. However, the

accuracy of the response times of tasks in a given processor largely depends

on the response times of the remote tasks that share the same set of resources.

Such a response time dependency is two-way, which implies that among a

set of processors that share the same resources, starting the response time

calculations from either processor has to assume that the response times of

the resource-requesting tasks on other processors are their deadlines.

Therefore, it is difficult to specify an efficient processor ordering merely

based on the application semantics and resource usage (i.e., the independent

properties of the given system). In addition, no guaranteed benefits can be

obtained by ordering processors based on either the utilisation or the number

of tasks. Therefore, similar with the existing search-based priority ordering

algorithms, we start the priority assignment from the first processor i.e., P0.

In this work, we focus on presenting a practicable SBPO algorithm that is fully

compatible with the new schedulability tests. Further optimisation towards

this priority ordering algorithm is subject to future work.
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Summary

This section presents a new search-based priority ordering algorithm that is

fully compatible with the schedulability tests proposed in Chapter 3.2. As dis-

cussed above, compared to the OPA-D and RPA-D approaches, the pessimism

of our new algorithm could be reduced due to the modified response time cal-

culation approach. In Section 4.2.4, the schedulability of systems with the

SBPO algorithm adopted is investigated and is compared with other priority

ordering algorithms discussed in this chapter.

4.2.4 The Impact of Task Prioritising on Multiprocessor Sys-

tems with Shared Resources

The above sections has discussed the major existing priority ordering ap-

proaches (i.e., the DMPO, OPA-D and RPA-D algorithms) and has devel-

oped a new search-based priority ordering algorithm that is fully compati-

ble with the schedulability tests developed in Section 3.2. In this section,

experiments are conducted with these priority ordering algorithms to (1) in-

vestigate the schedulability of systems with the candidate locking protocols

under each of the priority ordering algorithms and to (2) compare the per-

formance between these priority assignment algorithms. The experiments are

conducted with the WF algorithm adopted. The test program can be ac-

cessed by https://github.com/RTSYork/SchedulabilityTestEvaluation.

The statistical significance of the experimental results presented in this sec-

tion is given in Appendix E, demonstrating a confidence level of 95%.

Figure 4.7 illustrates the schedulability of systems with each priority or-

dering algorithm adopted under the new schedulability test of each candidate

locking protocol via varying L (the range of critical section length). As ob-

served, the performance of DMPO is better than both the OPA-D and RPA-D

approaches (where the performance of OPA-D and RPA-D is similar) under

each protocol, but is outperformed by SBPO in most cases. This observation

indicates that (1) the DMPO algorithm is not optimal under the new schedu-

lability tests, where there exist systems that SBPO can schedule but DMPO

cannot; (2) the compromises made in the new analysis for the OPA-D and

RPA-D approaches in Section 4.2.2 introduce considerable pessimism and can

significantly affect the performance of these searching-based priority ordering

algorithms; and (3) the SBPO approach effectively reduces the pessimism due
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Figure 4.7: Schedulability of Systems for M = 16, n = 48, U = 0.1n, κ = 0.4,

A = 2 and M Shared Resources.

to the compromises made to the new schedulability tests and can demonstrate

the best performance among all the evaluated priority ordering algorithm in
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general under any of the candidate locking protocols.

However, although the performance of SBPO is better than DMPO in

general with each candidate locking protocols adopted, the schedulability

differential of systems under these priority ordering algorithms is relatively

small or even unobservable under some cases (e.g., the MSRP systems with

L = [15µs, 50µs] and the PWLP systems with L = [200µs, 300µs]). In addi-

tion, although the SBPO algorithm demonstrates equal or better performance

compared to other priority ordering algorithms under each candidate locking

protocol, whether SBPO can schedule all the systems that other algorithms

can also achieve (i.e., the dominance of SBPO) remains unanswered.

Therefore, to further investigate the performance of these priority order-

ing algorithms, an experiment is conducted under the new MrsP analysis to

obtain the exact percentage of systems where the priority ordering A (e.g.,

SBPO) can find a schedulable system but another algorithm B (e.g., DMPO)

cannot in 10,000 systems, as given in Table 4.2, where A & !B indicates the

systems that are schedulable under algorithm A but are unfeasible with algo-

rithm B adopted. The priority ordering algorithms that are examined in this

experiment include the DMPO, RPA-D and SBPO algorithms. In addition,

the performance of OPA-D is similar with that of RPA-D in most cases in

our experiments, and thus, is not presented in this experiment to ease the

presentation.

Table 4.2: The Percentage of Schedulable MrsP Systems with M = 16, n = 48,

U = 0.1n, κ = 0.4, A = 2 and M Shared Resources.

L in µs
DMPO

& !RPA-D

!DMPO

& RPA-D

DMPO

& !SBPO

!DMPO

& SBPO

RPA-D &

!SBPO

!RPA-D &

SBPO

[1, 15] 7.1 0 0.1 0 0 7

[15, 50] 11.3 0.3 0.1 0.7 0 11.6

[50, 100] 10 0.9 0.3 1.8 0 10.6

[100, 200] 10.3 0.3 0.5 1.1 0 10.6

[200, 300] 10.4 0.8 0.3 1.9 0 11.2

[1, 300] 12.6 0.4 0.3 1.6 0 13.5

Similar to the results in Figure 4.7, the DMPO and SBPO algorithms per-

form better than that of the RPA-D algorithm, and SBPO can schedule more

systems than that of DMPO in most cases. However, as revealed by Table 4.2,
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no priority algorithm can dominate all other algorithms among the examined

priority ordering algorithms, which illustrates that all the examined priority

ordering algorithms are not optimal for the new schedulability tests developed

in this thesis. Note that although there exist no systems where the RPA algo-

rithm can schedule while the SBPO cannot in this experiment, it is insufficient

to claim that SBPO can dominate RPA in all cases. However, based on the

experimental results, the RPA algorithm is highly unlikely to provide feasible

priority ordering to a system where both the DMPO and SBPO algorithms

cannot schedule. Based on the above discussions, only the DMPO and SBPO

algorithms will be adopted into the proposed resource control framework as

the candidate task priority ordering solutions (see Chapter 5 for details).

4.3 Summary

This chapter has investigated the impact of task allocation and priority order-

ing on multiprocessor systems with shared resources managed by the candidate

resource sharing protocols determined in Chapter 3.

For task allocation, three new resource-oriented task allocation schemes

(i.e., RCF, RLF-L and RLF-S) are proposed that can reduce the blocking due

to certain shared resources, where each new task mapping algorithm could

benefit certain candidate resource sharing protocols. Accordingly to the exper-

iments given in Section 4.1.3, as there exist no optimal task mapping solutions,

each of the evaluated task allocation schemes is included as a candidate task

allocation scheme for the proposed resource control framework, as described

in Chapter 5 in detail.

As for task priority ordering, we proved that the DMPO algorithm is not

optimal under the newly-developed analysis due to the back-to-back hits calcu-

lation mechanism. In addition, we showed that the OPA and RPA algorithms

are not applicable to the new schedulability analysis unless comprises are made

to the schedulability tests, which however, introduce considerable pessimism

and can largely affect the performance of both the OPA and RPA algorithms.

Then, a new search-based priority ordering algorithm that is fully compatible

with the new schedulability tests is developed. The experiments given in Sec-

tion 4.2.4 demonstrates that the SBPO algorithm has a better performance in

general than other examined priority ordering approaches, but there exists no

optimal priority ordering algorithm for the new analysis.
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With the new resource-oriented task allocation schemes and the new search-

based priority ordering algorithm developed, this chapter provides the candi-

date task allocation and priority ordering solutions for the resource control

framework proposed in Chapter 5 and have satisfied the success criteria SC-2

and SC-3 given in Section 1.4. Below summarises the major contributions

made in this chapter:

• New resource-oriented task allocation schemes that take resource char-

acteristics into account and are independent from the resource sharing

protocols.

• A formal proof that demonstrates the DMPO algorithm is optimal in

fully-partitioned FPPS systems with shared resources under the original

schedulability tests of MSRP and MrsP.

• A proof by a counterexample that demonstrates the DMPO algorithm

is not optimal in fully-partitioned FPPS systems with shared resources

under the new schedulability tests of MSRP, PWLP and MrsP proposed

in this thesis.

• A new search-based priority ordering algorithm that is fully compatible

with the new schedulability tests for the candidate locking protocols of

the proposed resource control framework.

• An investigation towards the impact of task allocation and priority or-

dering on fully-partitioned systems with shared resources managed by

each of the candidate locking protocols.
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Chapter 5

FMRS - A Framework for

Scheduling Resource-Sharing

Tasks in Fully-Partitioned

Systems with Fixed Priorities

Combining the outcomes of Chapters 3 and 4, a Flexible Multiprocessor Re-

source Sharing framework (FMRS) is proposed in this chapter to provide

generic resource control and task scheduling solutions for fully-partitioned

systems with shared resources. A discussion of the flexibility of the pro-

posed framework is given in Section 5.4 after the compete FMRS framework

is presented. The framework is based on Genetic Algorithm (GA) technol-

ogy [79] and aims to provide a combination of feasible resource sharing, task

allocation and priority ordering solutions to any given systems with shared

resources under the fully-partitioned platform with the FPPS scheme. No-

tably, a novel technique for managing shared resources on multiprocessors is

proposed in FMRS, where each resource in the system is controlled by an

appropriately chosen resource sharing protocol designated by the framework

so that the blocking time due to resource-accessing can be less than that of

adopting a single protocol for all the shared resources.

This chapter firstly summarises the candidate resource sharing, task allo-

cation and priority ordering solutions for the proposed resource control frame-

work. Then, the motivation and objective of the new resource control tech-

nique for fully-partitioned systems is presented. In addition, a brief description
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of the GA technology for optimisation and complex search problems is pre-

sented and the rationale of adopting this heuristic approach for multiprocessor

resource sharing issue is discussed. With the above described, we present the

detailed approaches of the genetic algorithm-based FMRS framework, includ-

ing the new resource control technique. Finally, the complete working process

of this GA-based multiprocessor resource sharing framework is described with

the GA parameter settings summarised based on the suggestions from the

literature and the discussions presented in this section.

5.1 Motivation

In Chapters 3 and 4, we have demonstrated that a significant impact can

be imposed to the schedulability of multiprocessor systems due to resource

sharing via the typical resource control and task scheduling approach, where

a single resource sharing protocol is adopted to managed all the resources in

the system with traditional task allocation schemes (e.g., the WF scheme) and

priority ordering algorithms (e.g., the DMPO algorithm). To investigate the

performance of managing shared resources on multiprocessors, three major

factors that can directly affect the schedulability of multiprocessor systems

with shared resources have been examined, which are multiprocessor resource

sharing protocols, task allocation schemes and priority ordering algorithms.

Summarising the conclusions in the above chapters, the candidate resource

sharing protocols, task allocation schemes and the priority ordering algorithms

for the proposed resource control framework for fully-partitioned systems with

fixed priorities are given below.

• Resource sharing: MSRP, PWLP, MrsP.

• Task allocating: WF, BF, FF, NF, SPA, RCF, RLF-S, RLF-L.

• Task prioritising: DMPO, SBPO.

Unlike the task allocation and priority ordering solutions (which aim at

the whole system), the resource sharing protocols are determined for each

individual shared resource in the FMRS framework, where a resource can be

managed by any of the candidate locking protocols. Such an approach is

motivated by the observations obtained from the experiments in Section 3.4,

where each candidate resource sharing protocol can benefit resources with

certain characteristics under a given system setting. The intuition is that
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with each resource managed by the favourable resource sharing protocol, the

blocking time of the system can be reduced compared to using a single locking

protocol to control all the resources that have various characteristics in a given

system.

For instance, as shown in Figure 3.7, under the given system setting,

MSRP (i.e., MSRP* in the experiment) can demonstrate better schedulability

with L = [1µs, 15µs] than others, PWLP (i.e., PWLP*) can provide the best

schedulability with L = [15µs, 100µs] and MrsP (i.e., MrsP-NP*) is the bet-

ter with L = [100µs, 300µs]. Accordingly, with this particular system setting

and shared resources with L = [1µs, 300µs], even though MrsP demonstrates

the best schedulability in Figure 3.7, a better schedulability could be achieved

by managing the resources with L = [1µs, 15µs] by MSRP, resources with

L = [15µs, 100µs] by PWLP and the resources with L = [100µs, 300µs] by

MrsP respectively. The schedulability analysis framework developed in Sec-

tion 3.3 will be adopted in this framework to analyse system with multiple

candidate locking protocols in use.

In addition, as demonstrated in Chapter 4, there exist no optimal solu-

tions among the candidate task allocation and priority ordering algorithms

for fully-partitioned applications under the new schedulability analysis, where

the performance of a task allocation scheme or a priority ordering algorithm

largely depends on the application semantics, resource characteristics and the

exact resource usage. Accordingly, with the appropriate task allocation and

priority ordering algorithms chosen among all the candidate solutions (which

include the new task allocation and priority ordering algorithms proposed in

this thesis) for a given system, better schedulability of the fully-partitioned

applications with shared resources could be obtained than that of with the

existing task allocation and priority ordering algorithms adopted.

Therefore, the overall motivation of this multiprocessor resource sharing

framework is to provide feasible resource sharing, task allocation and task pri-

oritisation solutions to any given systems, where each resource in the given sys-

tem is managed by a designated resource sharing protocol. More specifically,

with the new resource control technique, task allocation and priority ordering

algorithms proposed in this thesis, this framework aims to provide schedula-

ble solutions to systems where the traditional resource control approach with

the existing task allocation and priority ordering algorithms cannot. In the

following sections, the detailed approach of realising FMRS is presented.
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5.2 Heuristic Searching

The above section presents the motivation of the FMRS framework. How-

ever, as discussed above, there exist no optimal resource sharing protocols,

task allocation schemes and priority ordering algorithms for multiprocessor

systems with shared resources under the newly-developed schedulability tests.

In addition, as shown by the experiments in Chapter 4, the performance of a

candidate algorithm (e.g., a locking protocol) depends not only on the char-

acteristics of the given system, but also on other candidate solutions (e.g., a

task allocation scheme and a priority ordering algorithm) that are adopted to

that system.

Therefore, to guarantee that feasible resource sharing, task allocation and

task prioritisation for a given system can be obtained (assuming they exist),

the system has to be analysed by the schedulability analysis framework in

Section 3.3 under each possible combination of the resource sharing, task al-

location and priority ordering solutions in the worst case, which is unrealistic

from the viewpoint of computation expenses as there could exist a significant

number of such combinations for a system (i.e., 3|R|×8×2, where |R| denotes

the number of shared resources in a given system) . For instance, there exist

316 × 8× 2 = 688, 747, 536 possible combinations of the resource sharing, task

allocation and priority ordering solutions for a system with 16 resources. In

addition, as the performance of a given candidate algorithm depends on many

variables (e.g., the application semantics, resource characteristics, resource us-

age and other algorithms that are adopted to the system), it is impossible to

develop a set of static rules that can specify the appropriate resource sharing,

task allocation and task prioritisation solutions for a given system.

Based on the above discussion, to provide generic resource control and task

scheduling solutions for fully-partitioned systems with shared resources, the

heuristic approaches that aim at the optimisation and complex search prob-

lems should be adopted. In this work, the genetic algorithm (GA) technology

is employed.

5.2.1 The Genetic Algorithm

The genetic algorithm is a meta-heuristic search-based approach inspired by

the progress of natural selection, which reflects the principle of “survival of

the fitness” [79]. The genetic algorithm belongs to the evolutionary computa-
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tion methods and is commonly adopted to address the optimisation, dynamic

planning and complex search problems e.g., the bin packing problem. The

basic approach of the genetic algorithm is to simulate the natural evolution

progress, where strong species (i.e., better solutions) can emerge and survive

during the process of the selection, evolution and elimination.

A typical genetic algorithm starts with a set of randomly generated solu-

tions (i.e., the first generation) to a particular problem, where each solution

(i.e., a gene) consists of a set of chromosomes representing the detailed ap-

proach of that solution. Each gene has a fitness value computed by the fitness

function, which provides the metric of the performance of a given solution for

the targeted problem. The fitness value represents the likelihood of a given

solution for achieving the objective.

The Given 
Problem

First 
Generation Selection Evolution

Check
Fitness

Child 
Generation

Solution

Figure 5.1: The Basic Workflow of a Genetic Algorithm.

With the first generation, iterative calculations are performed to produce

further generations via a set of selection and evolution operations, where each

iterative calculation produces one generation that contains a set of potential

solutions to the given problem. Figure 5.1 illustrates the basic workflow of

a genetic algorithm. According to the fitness values of each gene, the best

individuals among the current generation are selected as the parents for gen-

erating the child population by the crossover mating and mutation operators.

With crossover mating, each individual from the child populations shares the

chromosomes of both their parents, which are the best individuals selected

from the parent generation. Thus, the children are also likely to be good so-

lutions for the targeted problem. By continuous evolving the best solutions of

the last generation, better solutions could emerge compared to their parents.

In addition, while generating new populations, the mutation operator is usu-

ally applied to change certain chromosomes of randomly chosen individuals in

the new generation so that the neighbour solutions with different features can
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also be explored. Finally, the genetic algorithm can be finished either with a

maximum generation limit specified or when a feasible solution is obtained for

the given problem.

The above presents the basic rationale and workflow of the genetic algo-

rithm. In practice, the detailed mechanisms for practising this search-based

technique (e.g., the approach for generating the first population, and the

methods for selection, evolution and mutation) usually vary depend on the

actual given problems. The detailed approaches of the GA method adopted in

our FMRS framework (which aims at the resource sharing and task scheduling

issues on fully-partitioned systems with shared resources) are presented in the

following sections.

5.2.2 Rationale

Besides the genetic algorithm, there also exist other heuristic-based searching

algorithms for optimisation problems, such as the Simulated Annealing (SA)

algorithm [60]. The SA algorithm is a probabilistic technique that searches

for an approximate global optimal solution among a significant amount of

candidate solutions. Unlike the genetic algorithm (which is an adaptive ap-

proach and can generate better solutions through iterative calculations [79]),

the SA algorithm is based on the discrete searching technique rather than the

evolutionary methods.

Both the GA and SA algorithms have been successfully practised in ad-

dressing practical issues in real-time systems. In [6,77,87], the GA technique is

adopted to search for feasible task allocation and priority ordering solutions for

real-time systems with the presence of network communications while the SA

algorithm has also been employed to facilitate allocating tasks while improv-

ing the robustness, flexibility and extensibility of real-time systems [42,43]. In

addition, in [87], the effectiveness of the GA with various parameter settings

(e.g., the population size and the crossover rate) was investigated and the pa-

rameter setting that can demonstrate a high performance was reported and

was suggested for readers.

As for FMRS, we do not enforce that a designated heuristic approach

must be adopted i.e., either the SA technique or the GA approach can be

adopted in this framework. However, as reported in [31,80,86], although both

approaches can address the problem, the GA approach could lead to better

results with less computation time required than the SA algorithm in their
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experiments. Therefore, the GA technique is adopted to FMRS in this work.

The investigation of the effectiveness of the SA technique for the proposed

flexible multiprocessor resource sharing framework is subject to future work.

5.3 Framework Design

This section presents the detailed design of the GA-based Flexible Multipro-

cessor Resource Sharing framework, including the chromosome representa-

tion, the fitness functions, the selection approach and the evolution meth-

ods required by the GA technique. The framework takes a task set with

the exact resource usage known a priori as the input, and aims to return

a schedulable system (if achievable) with each resource managed by a lock-

ing protocol and each task assigned with an allocation and a priority. A

fully-functional implementation of the FMRS framework can be accessed via

https://github.com/RTSYork/FIFOSpinLockFramework, which contains the

implementations of the analysis framework in Section 3.3, the candidate task

allocation and priority ordering algorithms, and a typical GA solver. For

brevity, the implementation details will not be presented in this thesis.

Note that unlike the works proposed in [43, 87], where the task allocation

and priority ordering solutions of a system are obtained via examining a sig-

nificant number of possible allocations and priorities for each individual task

in the system, this work aims to identify feasible task allocations and prior-

ity ordering algorithms among the candidate solutions for the whole system,

as the FMRS framework mainly focuses on the resource sharing issues for

fully-partitioned FPPS systems.

5.3.1 Fitness Functions

As presented in Section 5.2.1, a fitness function is required to measure the

quality of the generated solutions so that good solutions in a given generation

can be identified. Similar to the GA-based task mapping approach in [87],

two fitness functions are adopted in our resource control framework to mea-

sure the quality of a given solution, which contains a set of resource sharing

protocols, a task allocation scheme and a priority ordering algorithm. Both

fitness functions are derived from the schedulability analysis framework pro-

posed in Section 3.3, but with different calculation approaches for measuring

the solutions from different metrics.
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Function FD

The first fitness function aims to identify the tasks that miss their deadlines

with the given solution. With this function adopted, the response time calcu-

lation of a given task finishes immediately if it misses its deadline. The whole

function returns when the response time of each task is fixed (less or equal to

its deadline) or is higher than its deadline. This function checks through all

the tasks in the system and then returns the number of the deadline-missed

tasks under the given solution. We denote this function as FD. Among a set

of solutions generated by the GA solver for a given system, the solutions with

a lower FD value (i.e., with less tasks that missed their deadlines) are better

solutions in general by intuition and will be selected for further evolution. In

the case where FD = 0, the feasible resource sharing, task allocation and pri-

ority ordering solutions for the given system are obtained and the search is

finished immediately.

Function F ηD

However, in the case where two or more solutions have the same value (higher

than 0) under the function FD, it is not possible to tell which solution is bet-

ter. Therefore, the second fitness function is introduced, which has a response

time calculation approach similar to that of the SBPO algorithm presented

in Section 4.2.3. The second fitness function extends the response time cal-

culation of the analysis framework to η ·D, where the function returns if the

response time of each task τx is either fixed in further iterations or higher

than η · Dx. Hence, the second fitness function is denoted as F ηD. As with

the setting adopted in [87], η is set to 5 in this work. With a given solution

adopted, this function returns the sum of Rx−Dx of each unschedulable task

τx in the system. The intuition is that with the same FD value, the solutions

with a lower value of F ηD could has a better performance (i.e., is closer to the

objective) in a general case. Accordingly, FD = 0 implies that F ηD = 0 as all

tasks in the system are schedulable.

Given a set of solutions, the function FD is adopted firstly, where the

solution with the least FD value is considered as the best solution. In the case

where multiple solutions have the same FD value, the second fitness function

is then applied to these solutions, where a lower F ηD value represents a better

performance. Note that the metric from the function FD overwhelms the
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function F ηD. For instance, a solution S1 is better than S2 as long as FD(S1) <

FD(S2) regardless the values computed by F ηD of these two solutions.

5.3.2 Chromosome Representation

In order to perform the genetic algorithm, the candidate resource sharing,

task allocation and priority ordering algorithms should be encoded as a set of

chromosomes to facilitate the evolution. Before presenting the chromosome

encoding for the candidate algorithms, we firstly decide the issues that should

be addressed by the adaptive searching approach. As described in Section 5.1,

there exist 3 locking protocols, 8 task allocation schemes and 2 priority or-

dering algorithms as the candidate solutions for a given system, where the

locking protocols aim at each individual resource while the task allocation

and the priority ordering algorithms target at the whole system.

Firstly, it is clear that the resource sharing issue should be addressed by

the adaptive evolutionary method, as there could exist a significant number

of possible resource sharing solutions for a given system (see discussion in

Section 5.2). For the task allocation issue (where there exist 8 candidate solu-

tions), it is considerably expensive to analyse the system under each resource

sharing solution generated by the GA solver and each candidate task allocation

algorithm, assuming a given priority ordering algorithm is adopted. There-

fore, to reduce the computation expenses, the task allocation problem is also

addressed by the GA approach in this framework. However, as for the prior-

ity ordering issue (where there only exist 2 candidate algorithms), we decide

that the priority ordering issue will not be addressed by the GA technique,

where each solution generated by the GA solver (i.e., a locking protocol for

each resource and a task allocation scheme for the system) is analysed under

both candidate priority ordering algorithms. Such an approach can improve

the efficiency of the proposed framework as the searching range is reduced.

However, the fitness functions are adopted with only one priority algorithm

assumed in order to be able to correctly compare each combination of resource

sharing and task allocation solutions. In this work, the priority ordering al-

gorithm adopted for computing the fitness values is set to the first candidate

priority ordering algorithm by the index values i.e., the DMPO algorithm in

this work. In practice, this setting can be configured by users conveniently.

For this framework, the candidate solutions can be effectively encoded by a

set of integer values. The chromosome values of the candidate resource sharing
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Table 5.1: Chromosome Values of the Candidate Resource Sharing Protocols

Resource Sharing Protocol Value

MSRP 1

PWLP 2

MrsP 3

Table 5.2: Chromosome Values of the Candidate Task Allocation Schemes

Task Allocation Scheme Value Task Allocation Scheme Value

WF 1 SPA 5

BF 2 RCF 6

FF 3 RLF-L 7

NF 4 RLF-S 8

protocol and the task allocation schemes are given in Tables 5.1 and 5.2. Note

that the traditional task allocation schemes are performed with tasks ordered

by utilisation non-increasingly. The intuition is that with the heavy tasks (i.e.,

tasks with a high utilisation) allocated first, the tasks with a low utilisation can

have a higher chance to be fitted into the remaining spaces of the processors so

that a higher success ratio of these task mapping algorithms can be obtained,

compared to the approach that starts the allocation from the low utilisation

tasks.

1 3 2 2 3 1 3 2 6

Resource Sharing Solutions

Task Allocation Solution

Locking   
Protocol Value

1: 2: 3: 4: 5: 6: 7: 8:Resource Index

Allocation 
Scheme Value

Figure 5.2: The Chromosome Representation for the Candidate Solutions.

An example of the chromosome representation for a combination of the

resource sharing and task allocation algorithms (i.e., a solution generated by

GA) for a system with 8 resources is shown in Figure 5.2, which is an array

with 9 integers. As shown in the figure, the first 8 integers in the array

indicate the resource sharing solutions of that system, where the nth integer

represents the chromosome value of the resource sharing protocol adopted to
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the resource rn+1 (the resource indexing starts from 1). In addition, the last

integer in the array indicates the chromosome value of the task allocation

scheme. Note that although the candidate resource sharing protocols and

some of the candidate task allocation schemes share the same index values,

this will not cause any issue as the task allocation solution is always placed at

the end of the chromosome queue.

Such a chromosome encoding approach is simple, but is effective according

to the discussion in [87] and is sufficient for the FMRS framework proposed in

this thesis. For a system with 16 shared resources, an array with 17 integers

will be generated for each solution produced by the framework. As described

in Section 3.4, this thesis considers systems with up to M ×2 shared resources

and the maximum value of M is set to 24, which indicates a maximum chromo-

somes array size of 49. The system settings adopted in this thesis are similar

with the settings employed in [106] for investigating the resource sharing in

the AUTOSAR profile [46] for automotive electronic control units so that a

wide range of application semantics in real-world applications can be covered

in the system settings of this thesis.

5.3.3 Generation and Population

As an evolutionary computation method, the GA technique relies on a set of

iterative calculations, where each iterative calculation can produces a child

generation that contains a set of potential solutions to the given problem. By

providing the first generation, the GA can produce future generations via a

set of selection and evolution operations described in Section 5.2.1, where the

size of a given generation is specified by users via the parameter population

size.

The First Generation

To start the evolution process, the first generation must be provided for evolv-

ing future generations. Typically, the first generation is usually a set of ran-

domly generated solutions to the given problem [54]. In our framework, the

initial generation is produced by two steps, as described below.

• Firstly, each solution that contains a single resource sharing protocol

(i.e., the traditional resource sharing technique) and a task allocation

scheme that can allocate the given task set is encoded as a gene in the
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first generation e.g., {1, 1, 1, 1, 3} for a system with 4 resources. For

any given systems, there exist at most 3×8 such solutions, assuming the

given task set can be allocated by each candidate task allocation scheme.

• Then, the rest of the individuals in the first generation is produced

randomly, where the resource sharing solution of each resource is ran-

domly decided by Random.nextInt(Integer.MAX_VALUE) % 3 + 1 and

the task allocation solution is randomly determined between the candi-

date task allocation schemes that can allocate the given task set. For in-

stance, if a task set can be mapped by allocations={1,2,5,6,7,8}, the

task allocation solution is then decided by allocations.get(Random.

nextInt(Integer.MAX_VALUE) % allocations.size()).

Considering the traditional resource sharing technique in this framework

is worthwhile. If a system can be schedulable with only one locking protocol

adopted, this approach is more preferable than the new resource control tech-

nique (where multiple locking protocols are in use), as a simpler system can be

obtained with an easier analysing technique required. In addition, compared

to the randomly generated solutions, such resource sharing solutions could

have a better fitness under certain situations, and hence, are valuable for

the evolution process. Furthermore, adopting the traditional resource control

approach as the solutions of the first generation guarantees that the perfor-

mance of the best solution in each generation in the framework is equal to

or higher than the traditional resource sharing solutions. This is because the

best solution of the current generation will be passed to the next generation

directly in our framework to guarantee the quality of each generation being

produced. The detailed selection and evolution approaches are presented later

on in Section 5.3.4.

Population Sizing

For each generation (including the first generation produced above), the pop-

ulation size must be specified to provide a searching range for the GA solver,

where a small population size cannot explore enough potential solutions so

that the efficiency of the resource control framework is undermined while a

huge population size can significantly increase the computation expenses (es-

pecially with expensive fitness functions adopted), and hence, can lead to a

poor usability. As reported in [61], decreasing the population size can in-
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crease the speed of optimisation to a certain point. However, after that point,

the optimisation speed is slowed down due to the pre-matured convergence,

where the solutions in a given generation becomes identical after only a few

evolutions even with a randomly generated initial population due to a low

population size (i.e., a poor population diversity).

In [87], the population size is tested with a value of 400 and 1000 respec-

tively. With no doubt, the GA with a higher population size is more likely to

obtain the feasible solution to the given problem as a wider range of potential

solutions can be explored. However, from the viewpoint of run-time efficiency,

increasing the population size is a tradeoff between

• increasing the possibility of obtaining a feasible solution

• decreasing of the computation time efficiency.

Compared to the fitness functions employed in the GA in [87], the fitness

functions adopted in the FMRS framework is relatively complicated and time-

consuming. As described in Section 5.3.1, the fitness functions adopted in the

this GA-based framework is an extension of the schedulability analysis frame-

work proposed in Section 3.3, which integrates each individual schedulability

test in Section 3.2. Therefore, the population size is set to 500 in this work due

to the concern of computation expenses. Such a setting may not be optimal

but is sufficient to demonstrate the performance differences between this new

resource control framework and the traditional resource control and resource

sharing techniques for fully-partitioned systems with shared resources.

The above discussion also verifies the rational for developing the new

schedulability analysis framework presented in Section 3.3 as the fitness func-

tions of this GA-based framework rather than modifying the existing ILP-

based analysis in [106] to support the analysis of systems with multiple pro-

tocols in use. As shown in the experiments of the time consumption for the

new schedulability tests and the ILP-based analysis presented in Section 3.4.4,

the ILP-based analysis is considerably expensive compared to our new anal-

ysis. In addition, such a time consumption can become significant with the

response time calculation extended to η ·D, where η is set to 5 in this work and

can be further increased by users in practice. Thus, if the ILP-based analysis

was assumed in FMRS framework, the fitness functions can be much more

time consuming than that of our analysis, which can greatly undermine the

usability of the framework.
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The Maximum Generation Limit

In addition, with the GA technique adopted, a set of generations will be pro-

duced to obtain the feasible solutions for the given system. As described above,

the search is finished either with a feasible solution obtained for the given sys-

tem or it has reached the pre-defined maximum generation limit. As suggested

in [87], the maximum generation limit (i.e., the parameter specifies the ending

point of the GA-based framework when no feasible solution is found) in this

work is set to 500, which offers a reasonable searching range of the potential

solutions for a given problem.

5.3.4 Selection

With the first generation obtained, individuals in this population will be se-

lected for producing the next generation. As stated in [82], the selection

method determines by how much the knowledge of the current generation can

be utilised, where a high selection pressure can facilitate the selection of solu-

tions with a high fitness value while a low pressure can maintain the diversity

of the next generation. Figure 5.3 illustrates the whole selection and evolution

procedure in our GA-based framework, where the green blocks represent the

selection methods and the red blocks denote the evaluation approaches. A

detailed description of the evolution approaches is presented in Section 5.3.5.

Parent 
Generation

Tournament 
Selection of 2

Tournament 
Selection of 5

Crossover 
Mating Mutation

Elitism 
Selection of 2

Child 
Generation

Figure 5.3: The Selection and Evolution Methods in the GA-based Multipro-

cessor Resource Sharing Framework.

In [29] and [4], the tournament selection method is described, where a

given number (say n) of individuals are randomly selected from the current

generation and the individual with the highest fitness will be passed directly

to the next generation, where n reflects the selection pressure. In [87], two

tournament selections are adopted to select the parents for generating the child
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solutions via the crossover operation, where the first tournament selection

has a low pressure so that the population diversity can be guaranteed and

the second selection applies a high pressure to obtain the individuals with a

high fitness. In FMRS, the selection approach described in [87] is applied.

As investigated and suggested in [10, 78, 87], in this framework, the size of

the first tournament selection is set to 2 (i.e., a low selection pressure for

diversity) while the second tournament selection has a selection size of 5 (i.e.,

a high selection pressure for quality).

Besides the tournament selection, the elitism selection approach [39] is

also adopted in the selection process in our framework, which directly ad-

vance n individuals with the highest fitness in the current generation into the

next generation. This approach prevents the situation where the newly pro-

duced generations have a lower quality than the previous generations via the

crossover or mutation process, which can undermine the efficiency of the GA

searching. With the elitism selection approach adopted, it guarantees that the

quality of a child generation is always at least equal to that of the previous

generations (recall the discussion for considering the traditional resource shar-

ing technique in Section 5.3.3). However, as observed from the experiments

in [87], a high elitism size (i.e., many elites are passed directly to the next

generation) can lead to the situation where the elites dominate other solu-

tions in further evolution so that the optimisation process is converged too

early. Therefore, as suggested in [87], the size of the elitism selection in our

framework is set to 2.

5.3.5 Crossover and Mutation

This section discusses the crossover and mutation operators in genetic algo-

rithms, which are the major approaches for evolution [54]. As stated in [97],

these operations have a significant impact to the diversity and convergence of

the generations being produced and can reduce the premature convergence to

a local-optimal instead of the global-optimal solutions.

The Crossover Operator

As shown in Figure 5.3, the crossover operator is applied after two individuals

are selected from the parent generation for producing a child. In [98], two

crossover approaches are described, which are the one-point crossover and the

two-point crossover operations, as illustrated in Figure 5.4.
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Random Points

One-Point Crossover Two-Point Crossover

Figure 5.4: The One-Point and Two-Point Crossover Operations.

With the one-point crossover method adopted, a random point is deter-

mined in the chromosome array of the parents and two children are generated

by exchanging the chromosomes after the given point. As for the two-point

crossover, two random points are determined in the parent’s gene and the

children is generated by exchanging their chromosomes between the given two

points.

As shown in the figure, both crossover operations can generate two chil-

dren, where the one with a higher fitness value will be evolved to the next

generation in our framework. As reported in [87], the two-point crossover

operation can demonstrate better efficiency than the one-point crossover op-

eration in most cases. Therefore, the two-point crossover operation is adopted

in the proposed resource control framework.

In addition, it is not necessary that each pair of selected individuals must

be processed by the crossover operation. This is controlled by the crossover

rate parameter, which has a range of [0, 1.0]. As stated in [51], this parameter

is curial to the effectiveness of the GA solver, where a higher crossover rate

provides a higher diversity but slows down the speed of convergence (i.e., more

potential solutions can be explored).

With a low crossover rate adopted, the individuals from the parent gen-

eration are more likely to be advanced into the child generation directly, and

hence, undermines the efficiency of evolution to a certain degree. In [87],

the effectiveness of the GA is tested with the crossover rate of 0.5 and 0.8,

and a better performance is observed with the crossover rate of 0.8 assigned.

Therefore, as suggested in [87], the crossover rate in the propose GA-based

framework is assigned to 0.8 for a high efficiency in general.
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The Mutation Operator

The mutation operation is conducted after the entire child generation is ob-

tained via the selection and crossover operations, where each individual in

that generation has a chance to mutate according to the mutation rate. As

described in [51], the mutation rate should be assigned with a small value as

a high mutation rate can cause the GA more likely to be a purely random

approach. As investigated and suggested in [51], the mutation rate is set to

0.01 in the FMRS framework.

In addition, giving an individual selected to mutate, a certain number

of the chromosomes in that individual will be updated (i.e., mutated) with

random values generated by the approach for producing random solutions in

Section 5.3.3. The number of chromosomes that can mutate in an individual

is set to d0.1× (|R|+1)e, where |R| gives the number of shared resources in

the given system. That is, only one chromosome will be chosen to mutate

for a gene with a size less than or equal to 10. By doing so, the individuals

will not be changed too much due to the mutation operator while the similar

solutions of a given individual can be explored.

5.3.6 Complete Working Process and Parameter Settings

With the detailed approaches for adopting the genetic algorithm in the pro-

posed resource control framework described in the above section, this section

describes the complete working process of the GA-based FMRS framework

for solving the resource sharing, task allocation and priority ordering issues in

fully-partitioned FPPS systems with shared resources. In addition, the GA

parameter settings for the proposed FMRS framework are summarised based

on both the suggestions from the literature and the discussions given in the

above section.

With a given task set that shares a set of resources and the candidate solu-

tions specified, the framework firstly identifies the task allocation schemes that

can provide feasible task allocations for the given task set among the provided

solutions. Then, the first generation is produced, which contains the tradi-

tional resource control solutions (i.e., with one locking protocol only) and a set

of randomly generated solutions via the approach in Section 5.3.3. Among the

resource sharing, task allocation and priority ordering issues targeted by the

proposed framework, only the resource sharing and task allocation issues are
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addressed by the GA-based searching approach, and each solution produced by

GA will be examined under both candidate priority ordering algorithms i.e.,

DMPO and SBPO. However, the fitness values of the solutions are computed

with the DMPO algorithm assumed in this work for comparability.
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Figure 5.5: A Successful Run of the GA-based Resource Control Framework.

Then, a set of iterative calculations are performed to produce the descen-

dant generations via a set of selection and evolution operations, where each

iterative calculation produces a generation with a quality that is at least equal

to that of its ancestors due to the adoption of the elitism selection method.

Thus, with further iterations, better solutions that are closer to the feasible

solutions could emerge via the GA-based searching technique. Finally, the

framework returns if the feasible resource sharing, task allocation and priority

ordering solutions for the given system are obtained or the pre-defined max-

imum generation limit has been reached. Figure 5.5 provides an example of

a successful run of the GA-based framework with a given system that cannot
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be schedulable with the traditional resource control approach (also the rea-

son that the GA begins to evolve). Through selecting and evolving, better

solutions are produced in each generation (except the 4th generation), and a

feasible solution (i.e., with FD = 0 and F 5
D = 0) is obtained eventually in the

8th generation with the WF and DMPO algorithms pre-defined as the task

allocation and priority ordering solutions.

Table 5.3: The GA Parameter Settings of the Resource Control Framework

GA Parameters Settings

Population Size 500

Max Generation 500

Chromosome Encoding index

Crossover
Rate

Method

0.8

two-point

Mutation
Rate

Bound

0.01

d0.1× (|R|+1)e
Fitness Functions FD, F 5

D

The above presented the complete working process of the GA-based mul-

tiprocessor resource sharing framework. To practice this framework, the GA

parameters must be assigned. In this section, each GA parameter is assigned

with a value either based on the suggestions from the literature e.g., the elitism

size and the mutation rate or by the discussions presented in the above section

i.e., the population size. Table 5.3 summarised the GA parameter settings that

are assigned to the GA-based framework. In Chapter 6, the experiments that

investigate the performance of this new FMRS framework is conducted with

these settings adopted.

Admittedly, the GA parameter settings adopted in the FMRS framework

in this thesis may not be optimal e.g., the population size of 1000 is found

to be better than 500 in [87]. However, as discussed above, such parame-

ter settings are sufficient to demonstrate the performance differences between

our resource control framework and the traditional resource control and task

scheduling technique for fully-partitioned FPPS systems with shared resources

(see Chapter 6), where a single locking protocol is adopted for all resources

with the existing priority ordering and task allocation algorithms employed.

Investigating the performance of the FMRS framework under various GA pa-
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rameter settings is interesting, but is not objective of this thesis, which focuses

on a new resource control technique for fully-partitioned systems. The inves-

tigation towards the optimisation of the GA parameters in this framework is

subject to the future work.

5.4 Summary

In this chapter, a resource control framework for the fully-partitioned platform

was presented, namely the Flexible Multiprocessor Resource Sharing frame-

work. The FMRS aims to provide feasible resource sharing, task allocating

and priority ordering solutions to any given task sets with shared resources.

Besides the traditional resource control technique and the existing task alloca-

tion and priority ordering algorithms, this framework provides new solutions

to the resource sharing, task allocation and priority ordering issues for multi-

processors systems. Notably, with FMRS adopted, each resource in the system

is managed by a resource sharing protocol designated by the framework. To

provide such solutions, the genetic algorithm is adopted in FMRS to facilitate

the searching process. The schedulability analysis developed in Section 3.3

is adopted to analyse the schedulability of systems with multiple resource

sharing protocols working in collaboration simultaneously. In Chapter 6, the

performance of FMRS is investigated and is compared with the traditional

resource control and task scheduling technique for fully-partitioned systems

with shared resources under various system settings.

This framework is flexible. First, during practice, users can specify a given

task allocation and/or priority ordering algorithm to the framework so that

the framework will only focus on the unsolved issue (or issues). For instance,

if the SPA task allocation algorithm is mandated for a given work, FMRS can

be configured to focus on addressing the resource sharing and priority ordering

issues only with the SPA algorithm assumed as the task allocation solution.

In addition, the candidate algorithms in FMRS can be changed easily. The

existing candidate algorithms can be directly removed without further actions

required. Meanwhile, new candidate multiprocessor resource sharing proto-

cols, task allocation schemes and priority ordering algorithms can be added

into the resource control framework conveniently, as long as the new locking

protocols are supported with a schedulability test, and new the task allo-

cation and priority ordering algorithms are independent from the resource
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sharing protocols and schedulability analysis. Section 3.3 has demonstrated

that a schedulability test of a locking protocol can be easily integrated into

the analysis framework.

Finally, although the current version of this framework aims to find feasi-

ble resource control and task scheduling solutions, it can be extended to fur-

ther optimise the system (assuming that feasible solutions are obtained) for

improved robustness and scalability. The work proposed in [43] has demon-

strated the approach for optimising the task allocation of a given system for

improved robustness and extensibility via a heuristic-based search algorithm.

In addition, as proved in Section 4, there exist no optimal task allocation and

priority ordering algorithms on multiprocessors with the new schedulability

tests adopted. Therefore, this framework can be further extended to compute

the task allocation and priority ordering solutions by heuristic searching (sim-

ilar to the approaches proposed by [43,87]) instead of via the candidate algo-

rithms, which could provide better performance for managing shared resources

on multiprocessors. However, as the first version, the FMRS framework aims

to provide feasible resource control solutions via the novel resource control

and task scheduling approaches. The investigation of the above discussion is

subject to future work.

Summarising the above, the material provided in this chapter has satisfied

the success criteria SC-4 given in Section 1.4 with the contributions given

below.

• A novel resource control technique for managing shared resources in

fully-partitioned systems, where each shared resource can be controlled

by a designated multiprocessor resource sharing protocol.

• A Flexible Multiprocessor Resource Sharing framework for the fully-

partitioned FPPS systems that takes a task set with shared resources

as the input, and aims to searche for a schedulable system (via the new

schedulability analysis in Section 3.3) with each resource controlled by

a designated resource sharing protocol and each task assigned with a

priority and a processor.

• A GA-based approach to search for feasible resource sharing solutions

for multiprocessor systems with shared resources.
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Chapter 6

Evaluating the Multiprocessor

Resource Sharing Framework

In Chapter 5, the FMRS framework for scheduling resource-sharing tasks un-

der fully-partitioned systems with fixed priorities was proposed, which aims

to provide feasible resource sharing, task allocation and priority ordering solu-

tions (under the run-time overheads-aware schedulability analysis framework

in Section 3.3) for any given task sets via a genetic algorithm. This frame-

work uses a new technique for managing shared resources on multiprocessors,

where multiple resource sharing protocols (i.e., MSRP, PWLP and MrsP) can

work in collaboration, and each of the protocols only manage certain shared

resources designated by the GA-based framework.

In addition, with FMRS adopted, the allocations of the tasks in the given

system are generated by one of the task allocation schemes among the WF,

BF, FF, NF, SPA, RCF, RLF-L and RLF-S algorithms, and the priorities of

the tasks are assigned via the DMPO or the SBPO algorithms. The decisions

of which task allocation and priority ordering algorithms should be adopted to

a given system are made by the GA-based framework. Among the candidate

solutions, the RCF, RLF-L, RLF-S and SBPO algorithms are developed in

Chapter 4 and are illustrated to be better than the existing algorithms (e.g.,

the WF, SPA and DMPO algorithms respectively) in the general case.

In this chapter, the performance of this multiprocessor resource control

framework is investigated and is compared with the typical resource sharing

and task scheduling approaches on multiprocessors, where only one locking

protocol is adopted for a system with the existing algorithms for task alloca-
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tion and priority ordering. Firstly, we investigate the efficiency of the newly-

proposed resource control approach, where more than one resource sharing

protocols are adopted to managed the shared resources in a given system.

Then, we evaluate the performance of the complete FMRS framework, where

the resource sharing, task allocation and priority ordering solutions are all

decided by the GA-based framework.

The experimental setup is similar to the one adopted in Chapters 3 and 4,

where the experiments are conducted under a set of systems generated with

various settings (e.g., critical section length and the frequency of resource ac-

cesses) via the system generation tool described in Section 3.4. For each system

setting, 1000 systems will be generated and their schedulability is examined

under the evaluated algorithms (i.e., the traditional and the new approaches

for managing shared resources and scheduling resource-sharing tasks in fully-

partitioned systems). This evaluation method is also adopted in [106] to in-

vestigate the performance of the spin locks in the AUTOSAR profile with the

ILP-based analysis adopted. In addition, the GA parameters in the resource

control framework are configured as the settings given in Table 5.3.

The test programs of the experiments presented in this chapter can be

accessed via https://github.com/RTSYork/FIFOSpinLockFramework, which

contains the implementations of

• The schedulability analysis framework that supports analysing systems

with multiple resource sharing protocols (i.e., MSRP, PWLP and MrsP)

in use.

• The candidate task allocation schemes (i.e., the WF, BF, FF, NF, SPA,

RCF, RLF-L and RLF-S algorithms) and the priority ordering algo-

rithms (i.e., the DMPO and SBPO algorithms).

• The GA-based FMRS framework that takes a task set with shared re-

sources as the input, and aims to provide feasible resource sharing, task

allocation and priority ordering solutions (if achievable) to the given task

set.

• A system generator that can produce a set of tasks and shared resources

with detailed resource usage based on the given system settings.

In addition, there exist a large number of combinations of different system

settings (e.g., various number of tasks, processors and the resource-accessing
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behaviours). In the interest of brevity, we present the experimental results

with the system settings that can effectively demonstrate the performance

difference between the evaluated algorithms. In Appendix E, the statistical

significance of the experimental results presented in this chapter is analysed,

which demonstrates a confidence level of at least 95%. The material provided

in this section satisfies the success criteria SC-5 given in Section 1.4.

6.1 Investigating the Performance of the New Re-

source Control Technique

In this section, we focus on investigating the performance of the new resource

control technique proposed in Chapter 5. The resource control approaches

evaluated in this section include the typical resource control approach (where

only one protocol i.e., either MSRP, PWLP or MrsP is adopted to a given sys-

tem) and the newly-proposed technique, which uses a combination of protocols

to manage the shared resources in one system. We will firstly compare the

schedulability of systems with either the traditional or the FMRS framework

adopted. Then, we investigate the success rate of this new resource control

technique on systems that are not schedulable with a single locking protocol

adopted.

To provide fair comparison, the WF and DMPO algorithms are adopted to

all the generated systems as the task allocation and priority ordering solutions.

This applies to the FMRS framework as well (which contains the new resource

control approach), where the WF and DMPO algorithms are pre-assigned to

the framework so that it focuses on searching for the feasible resource sharing

solutions only. The schedulability of systems with a single locking protocol

adopted is obtained via the schedulability analysis developed in Section 3.2,

and the analysis framework proposed in Section 3.3 is employed for analysing

systems with the new resource control technique employed. All these tests

take the run-time overheads of both the operating system (in this case, the

Litmus overheads presented in Appendix B) and the protocol implementations

into account.

6.1.1 Schedulability Comparison

Figures 6.1 to 6.4 present the percentage of schedulable systems among the

generated systems with the traditional and new resource control techniques
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adopted, where the stack of the “brown” and “yellow” bars represent the

total percentage of schedulable systems by using the FMRS framework. The

brown bar denotes the systems that are schedulable with a single locking

protocol (i.e., any of the candidate locking protocols adopted in FMRS) while

the yellow bar indicates the systems that are unschedulable by each of the

candidate locking protocols (i.e., the typical single locking protocol approach)

but are feasible under the new resource control technique in FMRS.

For each system setting, 1000 systems are generated and tested by each

resource sharing approach. In Figures 6.1 to 6.3, the critical section range

L = [1µs, 300µs] is assumed to simulate applications that are more realistic,

where a system can have resources with both short and long critical sections.

The experiment for investigating systems with varied range of critical section

length is presented in Figure 6.4.

Varying n and M
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Figure 6.1: Schedulability of Systems for M = 16, U = 0.1n, κ = 0.3, A = 3,

L = [1µs, 300µs] and M Shared Resources.

The first experiment is conducted via varying the number of tasks in the

system (i.e., n) on a 16-processors platform, as given in Figure 6.1, and it

presents the percentage of schedulable systems under the single protocol ap-

proach (i.e., with MSRP, PWLP and MrsP respectively) and the FMRS (i.e.,

the stacked bars) adopted respectively.
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From the figure we firstly observed that by increasing n, there exists a de-

creasing trend in the schedulability of systems under each examined resource

control approach (including our new framework), where all the resource control

approaches can hardly schedule any systems with n ≥ 96. Among them, the

schedulability of systems with MSRP adopted decreased dramatically com-

pared to other approaches and can hardly schedule any systems with n ≥ 80.

Such an observation provides evidence again that the performance of MSRP

can be undermined greatly with the presence of long critical sections. Among

the candidate locking protocols, PWLP demonsrates the best schedulability

with n = 32 due to its fully-preemptable mechanism and MrsP outperforms

others with n = 64 as this protocol is favourable with long critical section.

Such phenomenon is investigated and is explained in details in Section 3.4.

In addition, the schedulability of each candidate resource sharing protocols

shown in the following figures is also as expected (see Section 3.4 for detailed

explanations).

With n = 16 and n = 32, the performance of the FMRS framework is simi-

lar with that of the single protocol approach. This is because with a low system

utilisation, the penalty for accessing shared resources cannot cause a signifi-

cant impact to the schedulability of the systems, and hence, adopting any of

the examined approaches will not lead to an obvious schedulability difference.

However, by further increasing n (i.e., with n = {48, 64, 80}), FMRS demon-

strates better performance (i.e., the stacked “brown” and “yellow” bars com-

bined) than the single protocol approach. This phenomenon is caused by the

following two reasons:

1. Accessing shared resources under these system settings now has a direct

impact on the schedulability of the generated systems, where there exist

systems that can only be schedulable with certain resource sharing pro-

tocols. For instance, some systems are only schedulable by MSRP while

there also exist systems that are feasible only with MrsP adopted. Thus,

as FMRS also considers the single protocol approach (i.e., will check

whether the given system is schedulable under each candidate locking

protocol), it can have a higher percentage of schedulable systems (i.e.,

the “brown” bar) than that of each candidate locking protocol (i.e., the

first three bars) via including the systems that can be schedulable with

any of the protocols adopted. However, this observation cannot lead to

any general conclusions.
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2. There exist systems that cannot be schedulable with any of the candidate

locking protocols, but are schedulable by using the new resource control

technique (i.e., the yellow bar), where multiple locking protocols are

adopted to manage certain shared resources designated by FMRS . This

is the key observation that demonstrates the combined resource control

technique employed in the FMRS framework is effective and has a better

performance than the single protocol approach.

The above discussions can be observed in Figure 6.1 with n = 48 (where

there exist systems that can be schedulable only with a certain locking pro-

tocol adopted), n = 64 and n = 80 (where there exist systems that cannot

be schedulable with a single locking protocol, but is feasible under the new

resource control technique). However, with n ≥ 96, each examined resource

control approach can hardly schedule any systems under the given system

settings due to the high system utilisation.

This experiments provides evidence that the new resource control tech-

nique has a performance at least equal to or better than the traditional re-

source control techniques under the tested system settings. Especially, with

n = 64 and n = 80, where the blocking time is a major factor that can af-

fect the schedulability of systems, and the new approach becomes effective

and can schedule systems that are not feasible with the traditional resource

sharing technique adopted.
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Figure 6.2: Schedulability of Systems for n = 4M , U = 0.1n, κ = 0.3, A = 3,

L = [1µs, 300µs] and M Shared Resources.
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The observation given above can also be obtained in Figure 6.2, where

each resource control approach is evaluated with varied M (i.e., the number of

processors) and n = 4M . With M = {4, 6, 8}, the remote blocking is relatively

low so that there exists no obvious difference between the traditional and new

resource control approaches. As described above, the reason that the “brown”

bar is slightly higher than the first three bars (i.e., with each candidate locking

protocol adopted) is that the FMRS framework also considers this resource

control approach.

By further increasing M , the remote blocking time becomes higher and has

a direct impact on the schedulability of the generated systems, where the per-

formance of each evaluated resource control approach decreases continuously.

However, in such cases, the new resource control technique becomes effective

(i.e., the yellow bar) and can schedule systems where each of the candidate

resource sharing protocols cannot. Such an observation becomes obvious with

M ≥ 14. With M = 18, the new resource control technique has a percentage

of schedulable systems similar to that of MSRP.

However, with M > 18, the performance of the new resource control tech-

nique begins to decrease. The reason is that under such system settings,

MSRP can hardly schedule any systems and is basically dominated by PWLP

and MrsP. Therefore, adopting the new resource control approach under such

cases could not obtain a high efficiency as systems that are not feasible with

either PWLP or MrsP adopted also has a small chance to be schedulable by

other resource control approaches (i.e., MSRP or the new resource control

approach).

Varying A and L

Now we investigate the performance of the new resource control technique

by varying the frequency of resource access (i.e., A) and the range of critical

section length (i.e., L). Figure 6.3 presents the evaluation results under varied

frequency of resource access with n = 64 and M = 16. In this experiment,

the new resource control technique demonstrates a high performance (i.e., the

yellow bar) in most cases. However, unlike the results given in Figures 6.1

and 6.2, there exists no obvious relationship between the performance of the

new resource control technique and the value of A. The reason is that although

MSRP is the worst among all candidate locking protocols under the most cases

(given that L = [1µs, 300µs]), the performance of this protocol is less affected
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Figure 6.3: Schedulability of Systems for M = 16, n = 64, U = 0.1n, κ = 0.3,

L = [1µs, 300µs] and M Shared Resources.

by increasing the frequency of resource access, where all the candidate locking

protocols demonstrate similar performance with A ≥ 36. Therefore, each of

the candidate locking protocols is effective with certain resources under the

given system settings i.e., neither protocol is dominated by others. Thus, the

new resource control approach can demonstrate a more effective performance

in each A tested in this figure.

Figure 6.4 presents the experimental results by varying L. Firstly, we

observed that the new resource control approach is not effective with L =

[1µs, 15µs], L = {15µs, 50µs} and L = {200µs, 300µs}. The reason of such

a phenomenon is that with L = [1µs, 15µs] and L = {15µs, 50µs}, MSRP

and PWLP basically dominate MrsP under the given system settings while

the systems that are schedulable under either MSRP or PWLP are similar.

Therefore, systems that are not feasible with either MSRP or PWLP adopted

are highly unlikely to be schedulable by other resource control approaches

(i..e, MrsP and the new resource control approach). Similarly, with L =

{200µs, 300µs}, MSRP and PWLP can hardly schedule any given systems

if they cannot be schedulable by MrsP, and hence, makes the new resource

control technique less favourable as only one protocol is effective among all

the candidate locking protocols.

Table 6.1 provides evidence that supports the above discussion, where the

value of A & !B indicates the percentage of systems that are schedulable
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Figure 6.4: Schedulability of Systems for M = 16, n = 64, U = 0.1n, A = 3,

κ = 0.3 and M Shared Resources.

with locking protocol A adopted but are not feasible under protocol B among

1000 systems generated for each L setting. With L = [1µs, 15µs] and L =

[15µs, 50µs], the systems that can be schedulable by either MSRP and PWLP

are similar (e.g., MSRP & !PWLP = 0.2% and !MSRP & PWLP = 0.7% in

L = [1µs, 15µs]) while both protocols completely dominate MrsP i.e., !MSRP

& MrsP = !PWLP & MrsP = 0%. Similarly, with L = [200µs, 300µs], MrsP

almost dominate both MSRP and PWLP (i.e., MSRP & !MrsP = 0.5% and

PWLP & !MrsP = 0.7%).

However, with L = [100µs, 200µs], although MrsP has the best perfor-

mance, both MSRP and PWLP can schedule certain systems that other pro-

tocols cannot, which indicates that all the candidate locking protocols are

effective under the given system settings. Therefore, the new resource control

technique has a better performance with L = [100µs, 200µs] (see Figure 6.4)

than with the L settings discussed above (e.g., L = [1µs, 15µs]).

Finally, with L = [1µs, 300µs], although MrsP and PWLP almost dom-

inant MSRP in Table 6.1, adopting a combination of the candidate locking

protocols to manage resources with various critical section can benefit the

resource-accessing tasks, where MSRP is favourable with short resources while

MrsP can benefit resources with a long critical section. Therefore, as shown

in Figure 6.4, the new resource control technique demonstrates the best per-

formance with L = [1µs, 300µs] among all the settings.

203



Table 6.1: Schedulability of Systems with M = 16, n = 64, U = 0.1n, κ = 0.3,

A = 3 and M Shared Resources.

L in

microseconds

MSRP

& !PWLP

!MSRP

& PWLP

MSRP

& !MrsP

!MSRP

& MrsP

PWLP &

!MrsP

!PWLP &

MrsP

[1, 15] 0.2 % 0.7% 24.6% 0% 25.1% 0%

[15, 50] 1.7 % 1.2% 17.2% 0% 16.7% 0%

[50, 100] 3.3 % 11.8% 8% 10% 7.4% 0.9%

[100, 200] 2.8 % 24% 2.3% 25.8% 2.4% 4.7%

[200, 300] 0.7 % 16.5% 0.5% 24.5% 0.7% 8.9%

[1, 300] 0.9 % 26.9% 0.9% 30.1% 2.3% 5.5%

Summarising the above, this section has investigated the performance of

the new resource control approach under various application semantics and

resource characteristics. As demonstrated, systems under the resource con-

trol framework has a better schedulability than those with a single protocol

adopted in most cases. Based on the discussions presented above, the new

resource control approach can effectively reduce the schedulability loss due to

managing shared resources that have various characteristics (e.g., the critical

section length and the frequency of resource access). However, with resources

that have similar characteristics, the effectiveness of the proposed resource

control technique can be undermined. With such systems, a certain locking

protocol could overwhelm others so that there is no need to adopt multiple

resource sharing protocols.

Note, this resource sharing approach (i.e., applying a combination of re-

source sharing protocols to one system) does not necessary reduce the blocking

time of the system. By searching for a feasible resource sharing solution, this

approach aims to guarantee that each task in the system can meet its dead-

line rather than focusing on reducing the blocking time of the system. Al-

though the blocking time of certain tasks does decrease with FMRS adopted,

this is usually achieved by imposing additional blocking to other tasks (i.e.,

the ones that have met their deadlines). Thus, with FMRS adopted, there

can be the case that the total blocking incurred by the system is increased

(compared to the system with only one protocol applied), yet the system can

become schedulable. This is also the main reason for the evaluation approach,

which investigates the schedulability of the randomly generated systems rather
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than examining their blocking time directly. This evaluation approach is also

adopted in [15,106] for investigating and comparing the performance of several

spin-based resource sharing protocols on multiprocessors.

6.1.2 Success Rate

The above experiments have compared the performance of the traditional

and new resource control techniques, and have illustrated the efficiency of

the FMRS framework. However, such experiments cannot reveal the full ex-

pressive power of the new resource control approach. In this section, we in-

vestigate the percentage of the systems that are schedulable with the new

resource control technique adopted among the systems that are deemed to be

infeasible with the traditional resource control techniques. For each system

setting, 1000 systems that cannot be schedulable with any of the candidate

locking protocols are generated and are tested under the new resource control

technique.

Table 6.2: Success Rates of Systems with M = 16, n = 64, U = 0.1n, κ = 0.3,

A = 3 and M Shared Resources.

Critical Section

Length
Success Rate

L = [1µs, 15µs] 0.1%

L = [15µs, 50µs] 0.3%

L = [50µs, 100µs] 4.7%

L = [100µs, 200µs] 5.0%

L = [200µs, 300µs] 3.6%

L = [1µs, 300µs] 8.3%

Tables 6.2 presents the success rates of the new resource sharing technique

with varied L. Firstly, as shown in the table, the new resource control tech-

nique is not effective with L = [1µs, 15µs] and L = [15µs, 50µs], where few

systems that are not feasible under the traditional resource control technique

can become schedulable with the new technique adopted. Such results are

not surprising due to the discussion given in Section 6.1.1, where MSRP and

PWLP dominant MrsP under these L settings while systems that are schedu-

lable with either MSRP or PWLP adopted are similar (see Table 6.1).

However, the new resource control approach becomes effective with L =
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[50µs, 100µs] and [100µs, 200µs], where 4.7% and 5% of the unschedulable

systems can become feasible with the resource control framework adopted

under the corresponding L setting. The reason for this phenomenon is that

with the given L settings, each candidate locking protocol is effective with

certain resources (see Table 6.1) so that adopting them into a system can

reduce the schedulability sacrifice effectively. In addition, this experiment

also reveals that even with L = [200µs, 300µs] (where MrsP almost dominates

other candidate locking protocols), the new resource control approach can still

schedule 3.6% of the given systems. Finally, with resources that have a critical

section length across [1µs, 300µs], the proposed resource control technique

demonsrates the best efficiency among all the settings and can schedule 8.3%

of the given systems, which are deemed to be unschedulable with any of the

candidate locking protocols adopted.

Table 6.3: Success Rates of Systems with M = 16, n = 64, U = 0.1n, κ = 0.3,

L = [1µs, 300µs] and M Shared Resources.

Frequency of

Resource Access
Success Rate

Frequency of

Resource Access
Success Rate

A = 1 5.5% A = 26 4.5%

A = 6 7.9% A = 31 5.6%

A = 11 7.4% A = 36 4.3%

A = 16 5.4% A = 41 4.4%

A = 21 5.7%

Table 6.3 provides results with varied frequency of resource accesses. As

shown in the table, the new resource control technique are effective under each

tested A, where up to 7.9% of the infeasible systems can become schedulable

with the new approach adopted. The reason behind this phenomenon is also

discussed in Section 6.1.1, where each candidate locking protocol is effective

with certain resources under the given system settings.

With the experiments given above, we have revealed the full expressive

power of the new resource control framework, where up to 8.3% of the un-

schedulable systems under the single locking protocol approach can because

feasible with our resource control technique adopted under the evaluated sys-

tem settings. The experiments again demonsrates that this new technique is

effective and is better than the traditional resource sharing techniques.
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6.2 Investigating the Performance of the Complete

Resource Control Framework

Now we investigate the performance of the complete FMRS framework, which

searches for feasible resource sharing, task allocation and priority ordering so-

lutions for scheduling a given task set with shared resources in fully-partitioned

systems under the FPPS scheme. In the experiments presented below, the per-

formance of this new multiprocessor resource sharing framework is compared

with the typical multiprocessor resource sharing and task scheduling (i.e., task

allocation and priority ordering) approaches for tasks with shared resources

under the fully-partitioned platform, where a single locking protocol (either

MSRP, PWLP or MrsP) with the existing task allocation (i.e., WF, BF, FF,

NF or SPA) and priority ordering (i.e., DMPO) algorithms are adopted. Then,

we investigate the success rate of the complete FMRS framework for systems

are not schedulable by any of the traditional multiprocessor resource sharing

and task scheduling approaches.

In this evaluation, we do not enforce that the generated systems must be

allocatable by all the candidate task allocation schemes so that the impact of

the success rate of these task mapping algorithms is also considered. However,

the success rate of the task allocations is not a major factor that affects the

results. Under the system settings tested in this section, all the candidate

task allocation schemes demonstrate a high success rate (a success rate of 1)

except the SPA algorithm, which has a success rate of 95.8%, 94.1%, 92.0%

and 91.4% respectively among 1000 generated tasks under the system settings

in Figure 6.5 with n ≥ 6. Note, the word “success” used for the task allocation

schemes here merely indicates that a given task set can be successfully allo-

cated rather than the task set can be schedulable under a given task allocation

scheme.

6.2.1 Schedulability Comparison

Figures 6.5 to 6.8 present the percentage of the schedulable systems among

1000 systems generated for each system setting. In these figures, the first three

bars represent the percentage of the schedulable systems with each candidate

locking protocol adopted under any of the existing task allocation schemes

(i.e., WF, BF, FF, NF, SPA) and priority ordering (DMPO) algorithms while

the last bar (i.e., the stacked bars) gives the percentage of the schedulable
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systems with the FMRS framework adopted, where the “brown” bar denotes

the schedulable systems with the typical resource-sharing task scheduling ap-

proaches (FMRS also considers these approaches) and the “yellow” bar in-

dicates the systems that are infeasible under the traditional approaches but

are schedulable with the new resource control and (or) the new scheduling

techniques (i.e., the RCF, RLF-L, RLF-S and SBPO algorithms) in FMRS.
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Figure 6.5: Schedulability of Systems for M = 16, U = 0.1n, κ = 0.3, A = 3,

L = [1µs, 300µs] and M Shared Resources.
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Figure 6.6: Schedulability of Systems for n = 4M , U = 0.1n, κ = 0.3, A = 3,

L = [1µs, 300µs] and M Shared Resources.
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The performance of the complete FMRS framework under varied number

of tasks n and processors M is illustrated in Figures 6.5 and 6.6 respectively.

Firstly, by cross comparing these two figures with Figures 6.1 and 6.2 (the ex-

periments with only the WF and the DMPO algorithms assumed), we observed

that the performance of each candidate locking protocol is improved by consid-

ering all the existing task allocation schemes, specially the SPA scheme. Then,

with the newly-proposed task allocation and priority ordering algorithms in-

cluded, the performance of the FMRS framework is further boosted, where a

large number of systems that are not schedulable with the typical approaches

become feasible under FMRS (i.e., the yellow bar) in most cases. Especially,

in the cases where any of the resource control approaches can hardly schedule

any given systems or has a low performance (e.g., n = 96 in Figure 6.1 and

M = 22 in Figure 6.2), systems with the complete FMRS framework adopted

can still achieve a strong schedulability due to the high effectiveness of the

new task allocation and priority ordering algorithms proposed in this thesis.
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Figure 6.7: Schedulability of Systems for M = 16, n = 64, U = 0.1n, κ = 0.3,

L = [1µs, 300µs] and M Shared Resources.

Figure 6.7 again illustrates the efficiency of the FMRS framework, where

the framework is evaluated under various frequency of resource accesses. As

shown in this figure, this newly-proposed resource control framework demon-

strates a high performance under each tested resource-accessing frequency,

where systems with the new framework adopted have a much better schedu-

lability than the ones with the typical approaches adopted in all cases. With
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the new task allocation and priority ordering algorithms, the impact of the

increased frequency of resource access to the schedulability is effectively re-

duced (especially the RCF algorithm, see Sections 4.1.1 and 4.1.3 for details)

so that each protocol can remain effective under most cases, especially PWLP,

which is relatively vulnerable with a high resource-accessing frequency com-

pared to both MSRP and MrsP. In addition, the fact that there exist both

short and long resources in the given systems also makes MSRP and MrsP

valuable candidate resource sharing solutions for these systems. Therefore, a

high performance of resource sharing in the evaluated systems is achieved as

each issue (i.e., resource sharing, task allocation and priority ordering) can be

effectively addressed with the FMRS framework adopted.
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Figure 6.8: Schedulability of Systems for M = 16, n = 64, U = 0.1n, A = 3,

κ = 0.3 and M Shared Resources.

Figure 6.8 gives the experimental results under various range of critical

section length L. As observed, although each candidate locking protocol

demonsrates a strong schedulability under the given test setting by consid-

ering all the existing task allocation schemes (especially the SPA algorithm),

adopting the complete FMRS framework can still achieve a better perfor-

mance in most cases. Firstly, similar to Figure 6.4, with L = [1µs, 15µs] and

L = [15µs, 50µs], the new resource control and task scheduling approaches

in FMRS do not demonstrate a huge performance difference compared to the

typical approaches. Under such system settings, the blocking time for access-

ing shared resources can be effectively reduced by the typical multiprocessor
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resource-sharing task scheduling approaches so that the systems can demon-

strate a high schedulability under each of the examined typical approaches,

where almost all the given systems can be schedulable by each evaluated re-

source control with task scheduling approaches. However, by further increasing

L i.e., with more blocking time imposed, the FMRS framework becomes effec-

tive and demonstrates a better performance than the traditional approaches,

where a large amount of systems that are infeasible under the traditional ap-

proaches are schedulable with the newly resource control and task scheduling

approaches adopted.

In addition, unlike the results given in Figure 6.4 (where the new re-

source control technique does not demonsrates a high effectiveness under

L = [50µs, 100µs] and [200µs, 300µs]), a high performance is achieved under

the these settings with the complete FMRS framework adopted mainly due

to the new resource-oriented task allocation schemes proposed in this thesis,

which (1) reduces the blocking time in general and (2) maintains the effective-

ness of each candidate locking protocol with resources that it is not favourable

with (see discussions in Section 4.1.3 and evidence in Section 6.2.2). Accord-

ingly, the new resource sharing technique remains effective under the com-

plete FMRS framework as each candidate locking protocol is a valid resource

sharing solution to certain shared resources in the given systems. Evidence

that supports this discussion is presented in Section 6.2.2.

Summarising the above, this section provides clear evidence that the FMRS

framework can effectively reduce the schedulability penalty for managing shared

resources on multiprocessors due to the new resource sharing, task allocation

and priority ordering solutions proposed in this thesis. As demonstrated,

the FMRS framework has a better performance than the typical resource

control (i.e., the single protocol approach) and task scheduling (i.e., the ex-

isting task allocation and priority ordering algorithms) techniques for fully-

partitioned systems with shared resources in most cases.

6.2.2 Success Rate

Now we investigate the success rate of the complete FMRS framework with

systems that cannot be schedulable by the typical multiprocessor resource

control and task scheduling approaches. For each system setting, 1000 systems

that cannot be schedulable by any of the candidate locking protocol under the

existing task allocation and priority ordering algorithms will be generated and
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analysed with FMRS adopted.

Table 6.4 presents the success rate of FMRS under varied L and the per-

centage of the schedulable systems (among the 1000 given systems for each L)

with the new resource control, task allocation and priority ordering techniques

adopted. As shown in this table, the complete FMRS framework achieves a

high success rate under all the tested settings, where up to 50.8% (and at least

31.4%) of the systems that are not feasible with the traditional approaches

adopted can become schedulable under FMRS. Compared to Table 6.2 (which

only adopts the new resource control approach), the success rates shown in

this experiment are significant higher by employing the new task allocation

and priority ordering algorithms, and reveals the full expressive power of the

complete FMRS framework.

Table 6.4: Success Rates of Systems M = 16, n = 64, U = 0.1n, κ = 0.3,

A = 3 and M Shared Resources.

L in

microseconds

Success

Rate

New Resource

Control

New Task

Allocation

New Priority

Ordering

[1, 15] 50.8% 1.1% 48.7% 2.3%

[15, 50] 46.5% 1.5% 45.5% 1.9%

[50, 100] 43.2% 6.7% 38.1% 2.7%

[100, 200] 36.9% 8.3% 33.9% 2.2%

[200, 300] 31.4% 5.4% 29.2% 2.5%

[1, 300] 37.0% 11.9% 31.3% 3.1%

In addition as shown in the table, each of the newly-proposed resource

sharing, task allocation and priority ordering solutions in FMRS is effective,

especially the candidate task allocation schemes, which can schedule up to

48.7% of the given systems. Notably, by cross comparing Tables 6.4 and 6.2,

we observed that the new resource control technique has a better performance

under the complete FMRS framework, especially with L = [1µs, 300µs], where

up to 11.9% of the given systems (i.e., the unschedulable systems with the

traditional approaches) are feasible with the new resource control technique

adopted. The reason for this phenomenon is that with the new task allocation

and priority ordering algorithms adopted, the blocking time due to resource-

sharing can be effectively decreased so that the impact of the resource charac-

teristics to the performance of the resource sharing protocols are also reduced.
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Accordingly, as each of the candidate locking protocols is an effective solution

under most cases, a high performance of the new resource control technique

can be achieved.

Table 6.5 provides evidence that supports the above discussion by investi-

gating the dominance of each candidate locking protocols under all the candi-

date task allocation schemes in FMRS, where A & !B indicates the percentage

of systems (among 1000 generated systems) that can be schedulable by pro-

tocol A while are infeasible with protocol B adopted under any of these task

allocation schemes adopted, which include the newly-proposed RCF, RLF-L

and RLF-S algorithms.

Table 6.5: Schedulability of Systems with M = 16, n = 64, U = 0.1n, κ = 0.3,

A = 3 and M Shared Resources.

L in

microseconds

MSRP

& !PWLP

!MSRP

& PWLP

MSRP

& !MrsP

!MSRP

& MrsP

PWLP

& !MrsP

!PWLP

& MrsP

[1, 15] 0.2 % 0.1% 4.8% 0% 4.7% 0%

[15, 50] 0.3% 0.5% 5.3% 0% 5.5% 0%

[50, 100] 1.3 % 1.2% 4.5% 0.1% 4.3% 0.3%

[100, 200] 2.2 % 4.0% 2.8% 4.4% 2.5% 2.3%

[200, 300] 4.1 % 3.5% 2.5% 6.1% 1.8% 6.0%

[1, 300] 2.8 % 5.9% 3.3% 6.0% 2.9% 2.5%

Firstly, under L = [1µs, 15µs] and [15µs, 50µs], although both MSRP and

PWLP basically dominate MrsP, the percentage of both MSRP & !MrsP and

PWLP & !MrsP is largely reduced compared the results shown in Table 6.1,

which is conducted with the WF scheme only. This phenomenon indicates that

with the new allocation schemes, MrsP demonsrates a better performance with

short resources (resources that MrsP is not favourable with) compared to this

protocol under the WF scheme.

By further increasing L, we observed that each of the candidate locking

protocol cannot dominate another, and all these resource sharing solutions

are effective (i.e., can schedule certain systems where others cannot) when

managing certain resources under each tested L. Compared to the results

in Table 6.1, the dominance of MrsP is reduced while the performance of

MSRP and PWLP is increased under systems with either long resources (e.g.,

L = [200µs, 300µs]) or resources that have varied critical section length (i.e.,
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L = [1µs, 300µs]) by considering all the candidate resource allocation schemes.

Therefore, a high effectiveness of the new resource control technique can be

achieved in the complete FMRS framework as each of the candidate resource

control solution remains effective in most cases.

Table 6.6: Success Rates of Systems M = 16, n = 64, U = 0.1n, κ = 0.3,

L = [1µs, 300µs] and M Shared Resources.

Frequency of

Resource Access
Success Rate

Frequency of

Resource Access
Success Rate

A = 1 54.9% A = 26 16.2%

A = 6 34.7% A = 31 13.9%

A = 11 29.1% A = 36 10.4%

A = 16 20.0% A = 41 9.4%

A = 21 18.5%

Table 6.7: Success Rates of Systems n = 4M , U = 0.1n, κ = 0.3, A = 3,

L = [1µs, 300µs] and M Shared Resources.

Number of

Processors
Success Rate

Number of

Processors
Success Rate

M = 4 79.7% M = 14 43.2%

M = 6 62.8% M = 16 37.4%

M = 8 52.1% M = 18 34.1%

M = 10 45.4% M = 20 27.6%

M = 12 48.3% M = 22 23.2%

Finally, Tables 6.6 and 6.7 present the success rates of the complete FMRS

framework (with the new resource control, task allocation and priority or-

dering techniques only) under varied resource-accessing frequency and degree

of parallelism. The results given in these two figures again demonstrate a

high effectiveness of FMRS under the tested system settings in most cases,

where up to 54.9% and 79.7% systems that are infeasible under the tradi-

tional approaches can become schedulable with FMRS adopted in these two

experiments. The reasons for this phenomenon have been discussed in above

sections. Notably, even in the cases where each of the resource sharing proto-

col has a low performance (e.g., M = 22 and A = 41 in Figures 6.6 and 6.7
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respectively), the FMRS framework is still effective and can schedulable up to

9.4% and 23.2% of the given systems (the unschedulable systems under the

traditional approaches) in the above experiments.

6.3 Summary

This chapter has presented a comprehensive investigation towards the perfor-

mance of the Flexible Multiprocessor Resource Sharing framework proposed

in this thesis and has satifised the success criteria SC-5 given in Section 1.4.

Firstly, Section 6.1 has evaluated the effectiveness of the new resource control

technique for multiprocessor systems under various application semantics and

resource characteristics, where a combination of resource sharing protocols

are adopted into a single system for managing shared resources. Then in Sec-

tion 6.2, the performance of the complete FMRS framework is investigated,

which also provides the task allocation and priority ordering solutions to the

given systems with the newly-proposed resource-oriented task allocation and

the search-based priority ordering algorithms included.

As illustrated by the experiments, the new resource control and new task

scheduling approaches adopted in the FMRS framework can effectively re-

duce the schedulability penalty due to accessing shared resources in fully-

partitioned systems, and has a better performance than the traditional re-

source control and task scheduling approaches for multiprocessor systems

with shared resources. In addition, with FMRS adopted (especially the com-

plete FMRS framework), a significant amount of systems that are deemed to

be unschedulable under the traditional multiprocessor resource control and

task scheduling approaches are feasible due to the minimised schedulability

loss for accessing shared resources.

Further, although the FMRS framework only considers the spin-based syn-

chronisation approach (recall the decisions made in Section 3.1), this resource

control framework can demonstrate strong performance with long critical sec-

tions assumed (see Figures 6.4 and 6.8) by (1) including the preemptable

spin-based protocols (i.e., PWLP and MrsP) as the candidate resource control

solutions and (2) adopting the new resource-oriented task allocation schemes

and the search-based priority ordering algorithm as the candidate task map-

ping and priority ordering solutions. A detailed discussion of spin-based syn-

chronisation approach with long critical sections is presented in Section 3.4
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with evidence demonstrating that the preemptable spin-based locking ap-

proach has a strong performance under long critical sections. In addition,

with the new resource-oriented task allocation schemes (especially the RLF-L

scheme, which aims to reduce the blocking due to long critical sections) and

the new search-based priority ordering algorithm adopted, a further perfor-

mance boost of FMRS can be achieved in general (so that better support for

long resources as well). Therefore, this FIFO spin-based multiprocessor re-

source control framework can provide a strong support for resources with a

long critical section.

Based on this evaluation, we confirm that the newly-proposed FMRS frame-

work is effective and is better than the typical resource control and task

scheduling approaches for fully-partitioned systems with the presence of shared

resources in the general case.
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Chapter 7

Conclusion

In this thesis, we have investigated three major factors (i.e., multiprocessor

resource sharing protocols, task allocation schemes and priority ordering al-

gorithms) that can directly affect the schedulability of multiprocessor systems

in the presence of shared resources. Then, a Flexible Multiprocessor Resource

Sharing framework (namely FMRS) is proposed for scheduling the resource-

sharing tasks in fully-partitioned systems under the FPPS scheme, which aims

to provide a combination of feasible (i.e., schedulable) resource sharing, task

allocation and priority ordering solutions to any given task sets under the

fully-partitioned platforms.

In Chapter 2, a detailed review of the works related to this thesis was

firstly presented, which includes the descriptions of the background of real-

time systems, the major resource sharing protocols for multiprocessor plat-

forms, the schedulability tests for multiprocessor resource sharing protocols,

the utilisation-based and resource-oriented task allocation schemes, and the

major priority ordering algorithms. Based on this review, the objective of this

thesis is given in Section 1.4 as a set of success criteria (which form the com-

plete Flexible Multiprocessor Resource Sharing framework that can facilitate

resource sharing in fully-partitioned systems), as restated below.

SC-1 A new schedulability analysis framework that can be applied to systems

with the presence of multiple resource sharing protocols, which includes

a response time analysis that can provide more accurate results than that

of their original analysis, and a pluggable run-time overheads analysis

that takes the run-time costs from both the underlying operating system

and the resource sharing protocols into account.
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The success criterion SC-1 is satisfied in Chapter 3. In this chapter, the

candidate resource sharing protocols for the proposed resource control

framework were firstly determined (i.e., MSRP, PWLP and MrsP). Then,

new schedulability tests for each candidate resource sharing protocols

were developed with novel techniques for analysing the blocking time

due to accessing shared resources. In addition, a run-time overheads

analysis was developed for each locking protocol and can be integrated

into the new schedulability tests effectively, which includes the costs of

context switches, protocol implementations and the additional facilities

carried in PWLP and MrsP (i.e., the cancellation mechanism and the

helping mechanism).

Finally, Section 3.3 integrated the new schedulability tests (combined

with the run-time overheads analysis) and developed a schedulability

analysis framework that supports analysing systems with the presence of

multiple candidate locking protocols. This analysis framework is flexible

as it does not mandate the presence of all the supported protocols while

new protocols can be effectively integrated into this framework as long

as an RTA-based analysis is presented.

SC-2 Resource-oriented task allocation schemes that are independent from the

resource sharing protocols, where each task allocation scheme assigns

tasks to processors based on certain characteristics of the shared re-

sources, such as the length of critical sections and the degree of resource

contention.

This success criterion is satisfied in Chapter 4. In this Section 4.1, three

new resource-oriented task allocation schemes were developed, namely

RCF, RLF-L and RLF-S, where each allocation scheme aims to reduce

the blocking time due to accessing resources with certain characteristics

(i.e., the frequency of resource accesses and the length of critical sec-

tions). The new allocation schemes map tasks based on the resource

characteristics and task utilisations, and are not subject to any specific

resource sharing protocols (i.e., can be adopted with any locking proto-

cols assumed).

SC-3 A new priority ordering algorithm that inherits the philosophy of the

OPA algorithm i.e., search-based, but is fully compatible with the schedu-

lability tests where DMPO is not optimal and OPA cannot be applied,
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such as the one in [106] and the new analysis framework in SC-1.

Chapter 4 also satisfies the success criterion SC-3. In Section 4.2.3, the

Slack-Based Priority Ordering Algorithm was developed based on phi-

losophy of OPA and its variant RPA to provide a search-based priority

assignment approach. To be compatible with the schedulability tests

that have response time dependency (e.g., the new schedulability tests

in Chapter 3 and the ILP-based analysis in [106], where the response

time of a task depends on the response times of potentially all other

tasks in the system), such dependency is removed by SBPO while ex-

amining the remaining slack of each task, and is reconsidered later on

when computing the response time of each task in the given system.

SC-4 A flexible multiprocessor resource sharing framework that takes a system

as the input, and aims to search for a schedulable solution (with the new

schedulability analysis in SC-1) of resource sharing, priority ordering

and task allocating issues to the given system, which include a combina-

tion of locking protocols to control each resource in the system, a task

allocation scheme that can benefit resource sharing and a feasible prior-

ity ordering decided via examining all the candidate solutions provided

by this framework.

This is satisfied in Chapter 5. With the candidate resource sharing,

task allocation and priority ordering solutions determined in Chapters 3

and 4, a complete framework (i.e., FMRS) for scheduling resource-sharing

tasks in fully-partitioned systems with fixed priorities was developed.

By giving a set of tasks and resources with detailed resource-usage, the

framework aims to search for a schedulable system with each task as-

signed with an allocation and a priority, and each resource managed

by a designated candidate locking protocol. The decisions of which re-

source sharing protocols, task allocation scheme and priority ordering

algorithm should be adopted to a given system is computed off-line (i.e.,

before run-time) by the genetic algorithm technique with the analysis

framework in Section 3.3 as the fitness functions.

SC-5 An evaluation with evidence that the resource sharing framework pro-

posed in SC-4 demonstrates at least equal or better schedulability than

that of the typical real-time resource control approaches, where one re-

source sharing protocol is adopted to manage all shared resources in a
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system with the existing task allocation and priority ordering approaches

applied.

The success criterion SC-5 is satisfied in Chapter 6. In this chapter,

the newly-proposed resource control framework is evaluated under sys-

tems with various application semantics and resource characteristics. In

Section 6.1, the performance of the new resource control technique was

investigated and compared with the typical resource control technique,

where a single resource sharing protocol is adopted to manage all the

shared resources in a system. The investigation demonstrates that the

new resource control technique is effective and can lead to better schedu-

lability compared to the single protocol approach in most cases.

In Section 6.2, the performance of the complete Flexible Multiprocessor

Resource Sharing framework was investigated, where the framework also

provides task allocation and priority ordering solutions with the newly-

proposed task allocation and priority ordering algorithms included. The

experiments provide clear evidence that the schedulability sacrifice due

to accessing shared resources on the fully-partitioned platform can be

effectively reduced with the new resource control framework adopted

in most cases so that better schedulability can be obtained compared

to the typical approach for scheduling resource-sharing tasks in fully-

partitioned systems, which adopts only one locking protocol with the

traditional task allocation and priority ordering algorithms to the sys-

tems.

Based on the discussion above, the materials presented in this thesis have

met each of the success criteria given above, which demonstrated the thesis

hypothesis given in Section 1.3, as restated below.

With shared resources, the schedulability of a multiprocessor real-

time system can be undermined due to the considerable amount of

blocking time. Such schedulability penalty can be reduced by adopt-

ing (i) a combination of appropriately chosen resource sharing

protocols, where each protocol only controls certain resources; (ii)

new resource-orientated task allocation schemes with full knowl-

edge of the usage and characteristics of each resource; and (iii)

a search-based priority assignment that is compatible with schedu-

lability tests where the Deadline Monotonic Priority Ordering is
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not optimal and Audsley’s Optimal Algorithm cannot be applied.

The decisions of which resource sharing protocols, task allocation

scheme and priority ordering algorithm that can lead to a schedu-

lable system are made off-line by a genetic algorithm.

7.1 Major Contributions and Key Findings

To investigate the performance of multiprocessor resource sharing, the im-

pact of shared resource control, task allocation and priority ordering to the

schedulability of multiprocessor systems with shared resources has been stud-

ied and a generic FMRS framework that can facilitate resource sharing for

fully-partitioned systems has been developed in this thesis. During this re-

search, improvements, new algorithms and novel approaches for scheduling

tasks with shared resources have been proposed to improve the efficiency of

resource sharing on multiprocessors. This section summarises and reviews the

major contributions and key findings of this thesis.

Multiprocessor Resource Sharing Protocols

The multiprocessor resource sharing protocols define the behaviours of tasks

when accessing shared resources and have a direct impact to the schedulability

of systems with shared resources. To determine the appropriate resource shar-

ing protocols for the proposed resource control framework, a comprehensive

review of the resource sharing protocols for multiprocessor systems is firstly

presented in Section 2.5, which contains detailed descriptions of 9 major mul-

tiprocessor locking protocols. Based on this review and the rational presented

in Section 3.1, we decided to focus on the protocols with FIFO spin locks as

the candidate resource sharing solutions for the FMRS framework, which are

MSRP, PWLP and MrsP. Then, these candidate resource sharing protocols

were studied with the following contributions.

• New analysing techniques for systems with MSRP, PWLP or MrsP

adopted, which are less pessimistic and more accurate compared to their

original analysis and require less computation expenses compared to

the tests (e.g., the ILP-based analysis in [106]) with relatively expen-

sive analysing techniques. In addition, the new schedulability tests are

extended to support analysing the heterogeneous and nested resource

accesses (via group locks) for a wider use scenario.
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• The NP-section for MrsP’s helping mechanism and a pluggable migra-

tion cost analysis for MrsP’s new analysis, which provides more efficient

migration behaviours and bounds the cost of migrations for more accu-

rate schedulability results respectively.

• A complete run-time overheads-aware schedulability analysis framework

for systems with multiple protocols in use, which contains the techniques

for bounding the run-time overheads incurred from both the underlying

operating systems and the protocol implemenations.

• Fully functional MSRP, PWLP and MrsP implementations under the

P-FP scheduler in LitmusRT.

• An investigation towards the correctness and efficiency of the MrsP in

fully-partitioned systems.

• An investigation towards the schedulability of MSRP, PWLP and MrsP,

including the impact of the run-time overheads and the expenses for

using the proposed schedulability tests.

With above studies, we have revealed the performance of the examined

resource sharing protocols (via increasing the accuracy of schedulability re-

sults and accounting for the run-time overheads), where no resource sharing

protocol can dominate other candidate protocols and the performance of each

locking protocol largely depends on the given application semantics, resources

characteristics and the resource usage.

As observed, MSRP is favourable with short resources while MrsP can

benefit resources with a long critical section. As for PWLP, its performance

can be less affected with various critical section length, but is sensitive to the

degree of parallelism and the frequency of resource access, where it can demon-

strate strong performance with a low degree of parallelism and a low frequency

of resource access. In addition, we observed that with short resources, MSRP

basically dominates MrsP while MSRP can hardly schedule any systems where

MrsP cannot under resources with a long critical section. However, with re-

sources that have varied critical section length, MrsP is clearly the best choice

based on the experiments given in this thesis.

Such observations directly motivated the development of the new resource

control technique and the new resource-oriented task allocation schemes em-

ployed in the FMRS framework.
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Resource-Oriented Task Allocation Schemes

According to the literature review, allocating tasks into a fully partitioned

system is a bin-packing NP-hard problem and is usually addressed by heuris-

tic approaches, such as the Worst-Fit and the Best-Fit allocation schemes.

However, these algorithms allocate tasks merely based on utilisations and do

not consider the usage of shared resources, which can lead to high remote

blocking as tasks that share a same resource can be mapped into multiple

processors. In addition, there exist several task allocations (i.e., the SPA

and BPA algorithms) that take shared resources into account when allocating

tasks. However, BPA is an analysis specific algorithm (i.e., requires the weight

and attraction functions of the locking protocol adopted) and currently only

supports MPCP while SPA is subject to a certain degree of pessimism as it

only considers the total utilisation of each shared resource. This discussion

leads to the following contribution:

• Three new resource-oriented task allocation schemes (i.e., the RCF,

RLF-L and RLF-S algorithms) that aim to reduce the remote blocking

due to certain type of resources by taking the resource characteristics

into account and are fully independent from resource sharing protocols.

As demonstrated by the evaluation, these newly-proposed task allocation

schemes demonstrate better performance (with the candidate locking protocols

and the DMPO algorithm assumed) than the existing task allocation schemes

(including the SPA algorithm) in all cases. In addition, we observed that

although these algorithms are developed as generic task allocation solutions,

each of them can benefit certain locking protocols. With an appropriate task

allocation scheme adopted, the resource sharing protocols can demonstrate a

strong performance even with the shared resources that are less favourable

for that locking protocol. For instance, the RLF-L reduces the blocking time

caused by resources with a long critical section so that the performance of

MSRP is boosted with RLF-L adopted even being applied to systems with the

presence of such resources.

Priority Ordering for Multiprocessors Resource-Sharing Tasks

The priority ordering of tasks in systems with shared resources defines the

execution eligibility of each resource-accessing task so that it can directly

affect the performance of multiprocessor resource sharing. During the research
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towards the priority assignments for multiprocessor resource-sharing tasks, the

following were observed.

• The DMPO algorithm is optimal in fully-partitioned FPPS systems with

shared resources under the original schedulability tests of MSRP and

MrsP.

• The DMPO algorithm is not optimal in fully-partitioned FPPS sys-

tems with shared resources under the new schedulability tests of MSRP,

PWLP and MrsP proposed in this thesis.

• The existing search-based algorithms (e.g., the OPA and RPA algo-

rithms) are not applicable to the new schedulability tests, where com-

promises must be made for compatibility. However, such comprises in-

troduce considerable amount of pessimism and significantly undermine

the performance of these priority ordering algorithms.

Based on the above findings, this thesis proposes:

• A search-based priority ordering algorithm named the Slack-based Pri-

ority Ordering algorithm that is fully compatible with the schedulability

tests where the response time of a task depends on the response times

of potentially all other tasks in the system.

According to the evaluation, there exist no optimal priority ordering al-

gorithms (including the SBPO algorithm) in fully-partitioned systems with

shared resources under the new schedulability tests. However, as observed,

the SBPO algorithm demonsrates a better performance than other priority

ordering algorithms in most cases.

New Approach for Scheduling Resource-Sharing Tasks in Fully-

Partitioned Systems

With the above findings and contributions, a complete framework for schedul-

ing resource-sharing tasks in fully-partitioned systems is developed in this the-

sis and is named as the Flexible Multiprocessor Resource Sharing framework.

In FMRS, 3 locking protocols (MSRP, PWLP and MrsP), 8 task allocation

schemes (the WF, BF, FF, NF, SPA, RCF, RLF-L and RLF-S algorithms) and

2 priority ordering algorithms (the DMPO and SBPO algorithms) are used as

the candidate resource sharing, task allocation and priority ordering solutions
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scheduling any given task sets with shared resources on fully-partitioned plat-

form with FPPS scheme.

Notably, with the observations obtained in the research of multiprocessor

resource sharing protocols, a novel resource control approach for multiproces-

sors is proposed in this framework, where each resource in this system can be

controlled by one of the candidate locking protocols designated by the frame-

work. In addition, as there exist no optimal solutions for resource control, task

allocation and priority ordering issues in multiprocessor systems with shared

resources, a genetic algorithm is adopted to provide a heuristic-based approach

for searching for the feasible solutions to these issues for any given systems.

As demonstrated in Chapter 6, the schedulability penalty for managing

shared resources in fully-partitioned systems can be reduced effectively un-

der FMRS in most cases so that better schedulability could be achieved com-

pared to the typical resource control and task scheduling approaches. With

the FMRS framework adopted, systems that are deemed to be unschedulable

under the typical resource control and task scheduling approaches could be-

come feasible due to the new approaches for scheduling resource-sharing tasks

on multiprocessors.

7.2 Future Work

This section describes possible future research towards the work presented in

this thesis, as described below.

Analysing Nested Resource Accesses with Ordered Locks

In Section 3.2, new schedulability tests of MSRP, PWLP and MrsP are de-

veloped based on the assumption of homogeneous and non-nested accesses.

Later on, this restriction is removed in Appendix A, where the new tests are

extended to support heterogeneous and nested resource accesses. To manage

nested resources, the group locks are adopted instead of the ordered locks as

they are more schedulability test friendly (i.e., only requires minor modifica-

tions to the schedulability tests).

However, considering the ordered locks is worthwhile, especially in multi-

processor systems, as managing a group of shared resources by one lock (i.e.,

a group lock) serialises the accesses to nested resources so that the degree of

parallelism can be undermined. In [49], the preliminary approach for analysing
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MrsP systems with the presence of nested resources under the ordered locks

are proposed, which demonstrates the feasibility of supporting the analysis of

ordered nested resources in our new schedulability tests. In future, we aim to

extend the schedulability analysis of MSRP and PWLP to also support the

accesses to ordered nested resources for a wider use scenario.

Extending the BPA Algorithm

As described in Section 2.6.1.2, the BPA task allocation scheme is an analysis-

specific algorithm, where the weight and attraction functions of the resource

sharing protocol must be provided if this scheme is adopted to a system with

that protocol assumed. The current version of the BPA algorithms supports

the use of MPCP [81]. As the FMRS framework contains multiple resource

sharing protocols that are not yet supported by the current version of BPA,

the allocation schemes that are independent from the locking protocols are

adopted in current version of FMRS.

However, by examining the exact blocking time (via the weight and at-

traction functions) of the unallocated tasks with a given allocation, this algo-

rithm can effectively reduce the remote blocking time due to accessing shared

resources and can provide better performance than the SPA algorithm [81].

Thus, it is worthwhile to compare the performance of the BPA algorithm with

the new task allocation schemes proposed in this thesis by extending BPA to

support other locking protocols (e.g., MSRP PWLP and MrsP studied in this

thesis). As the schedulability analysis of these resource sharing protocols are

available, developing the weight and attraction functions is not challenging.

Then, if the BPA algorithm can demonstrate a strong performance (compared

to the algorithms examined in this thesis), this algorithm will also be included

into the candidate task allocation solutions in FMRS.

Optimising the SBPO Algorithm

In Section 4.2.3, the SBPO algorithm is proposed to provide a search-based

priority ordering algorithm that is fully compatible with the new schedulability

tests developed in this thesis. As a newly-developed algorithm with compli-

cated approaches (e.g., the extended response time calculation approach and

the facilities to minimise the pessimism due to the compromises made for com-

patibility), we mainly focus on the functionality of this algorithm and aim to

deliver a practicable SBPO algorithm in this work.
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However, this algorithm could be further optimised to achieve a better

performance. For instance, similar to the OPA and RPA algorithms, the

current version of SBPO orders the processors by their indexes and starts

the priority assignment from the first processor (i.e., P0). However, as the

response times of all the unexamined tasks are assumed to be their deadlines,

the calculations of the remaining slacks of the tasks in the first processor

is more pessimistic (i.e., less accurate) than that of the remaining slacks of

tasks in other processors. Thus, there could exists a relationship between the

performance of this algorithm and ordering of processors. In future, we aim

to investigate such a relationship and to propose a more efficient processor

ordering for a better performance.

In addition, as suggested in [87], the response time calculation is extended

to 5 × D (i.e., η = 5) in this algorithm. Although this setting is proved to

be effective in Section 4.2.4, there could exist other settings for this parame-

ter that can lead to more accurate remaining slack calculations and is worth

investigation.

Optimising the GA parameter Settings for FMRS

In Chapter 5, the GA-based FMRS framework is proposed and the settings of

the GA parameters are decided mainly based on the research and suggestions

in [87], where a set of experiments are conducted to investigate the efficiency

of various GA parameter settings when addressing a task allocation issue in

real-time systems with networks. As demonstrated in Chapter 6, the current

settings of the GA parameters in FMRS are effective. However, whether there

exist better (or optimal) GA parameter settings that can lead to higher ef-

ficiency of the proposed framework remains unknown. Thus, an evaluation

that investigates the efficiency of various GA parameter settings for FMRS is

desirable and could lead to further performance improvement.

Extending FMRS for Improved Robustness and Scalability

As described in Chapter 5, the current version of the FMRS framework aims

to provide feasible (i.e., schedulable) resource sharing, task allocation and

priority ordering solutions to fully-partitioned systems with shared resources,

where the genetic algorithm is finished as long as a feasible solution is found

for the given system. However, as discussed in Section 5.4, this framework can

be easily extended to further improve the robustness and scalability of a given
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fully-partitioned system with shared resources, assuming feasible solutions for

that system have been found.

To achieve this, the fitness functions should be modified first to also take

the remaining slacks of the schedulable tasks into account. For the solutions

with a FD value of 0 (i.e., where each task in the system has met its deadline),

the F ηD function then returns the sum of R − D of all tasks and a smaller

F ηD value represents a better solution. For the solutions with FD > 0, the

calculation of F ηD remains identical to the approach given in Section 5.3.1.

In addition, if feasible solutions are found, the GA-based search will be

not be finished immediately. Instead, the framework will focus on these fea-

sible solutions and attempt to evolve better solutions (which can lead to im-

proved robustness and scalability of the given system) within the pre-defined

computation expenses (i.e., the maximum generation limit). The detailed ap-

proaches for measuring the robustness and scalability of a given system is

referred to [43], which proposes a search-based task allocation algorithm for

similar purpose via the simulated annealing technique, but without the pres-

ence of shared resources.

Heuristic Searching for Priorities and Allocations in FMRS

In the current version of FMRS, the resource sharing solutions are obtained

by examining each individual resource via the heuristic-based searching ap-

proach while the allocations and priorities of all tasks are assigned by one

of the candidate task allocation and priority ordering solutions. However, as

demonstrated in Chapter 4, there exists no optimal task allocation and prior-

ity ordering solutions in multiprocessor systems with shared resources. Thus,

by intuition, adopting the heuristic-based approaches to search for the alloca-

tion and priority for each individual task (similar to the algorithms proposed

in [87] and [43]) could lead to better results and is worth investigation.

To achieve this, the chromosome encoding should be updated to also con-

sider the allocation and priority of each task in the system. Then, the candi-

date task allocation and priority ordering algorithms in FMRS can be removed,

as the allocation and priority of each task are now obtained via the selection

and evolution process. However, these candidate solutions can be used as

guidance for producing the first generation with better quality than assign-

ing the allocations and priorities randomly. However, one major concern of

this approach is the computation expenses, where there could exist a signifi-
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cant number of possible solutions so that adopting such a framework can be

considerably expensive.

Investigating the Efficiency of Simulated Annealing for Multi-

processor Resource Sharing Issues

As discussed in Section 5.2.1, both the genetic algorithm and the simulated

annealing technique have been successfully practised in addressing the task

allocation and priority ordering issues in real-time systems [42, 43, 87]. How-

ever, no discussion towards the comparison between these two algorithms is

presented in the above studies. Admittedly, the research towards the efficiency

of these heuristic-based searching approaches is out of the research scope of

our and the above works. However, it is interesting to investigate whether

there exist performance differences between the GA and SA algorithms and

to understand the rational of such difference (if exist) when addressing the

resource sharing, task allocating and priority ordering issues in real-time sys-

tems in a general case. Such a research can provide valuable suggestions when

a heuristic-based searching approach is required in future work.

7.3 Closing Remarks

Managing shared resources on multiprocessor platforms often causes consider-

able schedulability loss due to the prolonged blocking time, and hence, leads

to poor schedulability of multiprocessor real-time systems with tasks access-

ing shared resources. In addition, there exist no optimal resource sharing

protocols, task allocation schemes and priority ordering algorithms for multi-

processor systems with shared resources, where different choices of the resource

sharing protocols, the task allocation schemes and the priority ordering algo-

rithms can have various impact on the efficiency of multiprocessor resource

sharing under different system semantics, resource characteristics and the us-

age of shared resources.

This thesis contends that, compared to the typical resource control, task

allocation and priority ordering approaches (where only one resource sharing

protocol is employed to manage all the resources in a system with the existing

task allocation and priority ordering algorithms adopted), the schedulability

sacrifice due to resource sharing in multiprocessors systems can be reduced by

adopting (1) a combination of resource sharing protocols, where each protocol
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only manage certain resources in the system; (2) a resource-oriented task allo-

cation scheme with full knowledge of the characteristics and usage of the shared

resources; and (3) a search-based priority ordering algorithm that is indepen-

dent from the resource sharing protocols and the corresponding schedulability

tests.

In this thesis, a Flexible Multiprocessor Resource Sharing framework for

scheduling resource-sharing tasks in fully-partitioned systems under the fixed-

priority preemptive scheduling scheme is proposed with new approaches for

managing shared resources and assigning allocations as well as priorities to

resource-sharing tasks. By giving a set of tasks with detailed resource-usage,

this framework aims to provide feasible resource sharing, task allocating and

priority ordering solutions via a genetic algorithm based on the new schedula-

bility analysis framework developed in this thesis, which supports the analysis

of systems with multiple candidate resource sharing protocols in the FMRS-

framework working in collaboration simultaneously .

The evaluation shows that the FMRS framework can effectively reduce

the schedulability sacrifice due to multiprocessor resource sharing compared

to the typical resource control and the tasks scheduling (i.e., task allocation

and priority ordering) approaches for the fully-partitioned platform with the

FPPS scheme. As demonstrated by experiments, systems that are deemed

to be infeasible under the typical multiprocessor resource sharing and the

traditional task scheduling approaches can become schedulable due to the

improved efficiency of multiprocessor resource sharing with FMRS adopted.
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Appendix A

Supporting Heterogeneous

and Nested Resource Accesses

In Section 3.2, new schedulability tests for MSRP, PWLP and MrsP were

developed, which aim to provide less pessimistic as well as more accurate re-

sponse time bounding for each task in a given system than that of their original

analysis (if they exist) described in Sections 2.5. However, for the ease of pre-

sentation, the new schedulability tests are developed based on the assumptions

of (1) the homogeneous resource accesses (i.e., the cost for executing a resource

is identical for any task in any access) and (2) the non-nested resource accesses

(i.e., each task can lock at most one resource at any given time). However,

such assumptions can undermine the usability of the newly-proposed schedu-

lability tests due to the restricted resource-accessing model. In this appendix,

these limitations are removed and the new schedulability tests are extended

to support both the heterogeneous and the nested resource accesses.

A.1 Analysing Heterogeneous Resource Accesses

We first extend the new schedulability tests to support the heterogeneous re-

source accesses. In the ILP-based analysis [106], each task can have a different

execution cost on each resource. However, for a given task, the cost for ex-

ecuting a resource is identical in each access. In this work, a more flexible

resource-accessing model is assumed, where the cost of executing a resource

can vary in each access of a given task. To facilitate the analysis of such a

resource-accessing model, the notation ckx(n) is introduced to denote the pure

execution cost (without any delay) of τx’s nth access to rk, where 1 ≤ n ≤ Nk
x .
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In addition, the notion Lcskx is introduced to denote a list of execution

costs of the requests issued by τx to rk in one release, where the execution

costs are ordering in a non-increasing fashion. For instance, τa requests r1

3 times during each release and the access costs are c1a(1) = 3, c1a(2) = 5

and c1a(3) = 7 units of time respectively, then Lcs1a = {7, 5, 3}dList. With a

duration l and a jitter µ specified, a new notation Lcskx(l, µ) is introduced,

which is a decreasing ordered list of the pure execution costs of the requests

to rk issued by τx within the given duration and jitter. Recall the example

above, if τa is released two times during a given duration 10 and a jitter 5,

then Lcs1a(10, 5) = {7, 7, 5, 5, 3, 3}dList.
Equations (A.1) and (A.2) demonstrate the approaches for bounding Lcskx

and Lcskx(l, µ), where a % b denotes the remainder of a ÷ b. For the function

Lcskx(l, µ), the execution costs are obtained by the index n%Nk
x +1. Consider

the same example above, where N1
a (10, 5) = 6, N1

a = 3 and 1 ≤ n ≤ 6,

the value of n % N1
a + 1 is {2, 3, 1, 2, 3, 1} with n ={1, 2, 3, 4, 5, 6} so that

Lcs1a(10, 5) ={5, 7, 3, 5, 7, 3}. In addition, as the elements in Lcskx(l, µ) will

be ordered decreasingly at last (i.e., becomes {7, 7, 5, 5, 3, 3}dList eventually),

such an approach will not undermine the correctness of the analysis but can

ease the analytical expression.

Lcskx = {ckx(n)|1 ≤ n ≤ Nk
x}dList (A.1)

Lcskx(l, µ) = {ckx(n%Nk
x + 1)|1 ≤ n ≤ Nk

x (l, µ)}dList (A.2)

In addition, a new notation Lcspkm(l) is introduced, which denotes those

costs belonging to the accesses to rk from the tasks executing on a given

processor Pm within a duration l, where

Lcspkm(l) = {Lcskj (l, Rj)|τj ∈ G(rk) ∧ P (τj) = Pm}dList (A.3)

For each list described above, Lcskx(n), Lcskx(l, µ)(n) and Lcspkm(l)(n) re-

turns the value on the nth position of the list. If the list is empty or the nth

position does not exist, then a value of 0 will be returned. The list begins

(has the greatest value stored) on position 1. For a given list L, its size can be

obtained by function |L|. Accordingly, |Lcskx|= Nk
x and |Lcskx(l, µ)|= Nk

x (l, µ).

Table A.1 summarised the above notations introduced for analysing the het-

erogeneous resource accesses.
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Table A.1: Notations for Analysis the Heterogeneous Resource Accesses

ckx(n) The pure execution cost of τx’s nth access to rk.

L = {}dList A given list L with a set of positive values ordered by a

non-increasing fashion.

L(n) The nth element from a given list L. A value of 0 is returned

if the nth element does not exist.

|L| The size of a given list L.

Lcskx A list of execution costs of τx for accessing rk during one

release.

Lcskx(l, µ) A list of execution costs of τx for accessing rk within a

duration l and a jitter µ.

Lcspkm(l) A list of execution costs from tasks on Pm to rk within a

given duration l.

A.1.1 MSRP

We start the extension from the new schedulability test of MSRP presented

in Section 3.2.1, which provides the basis for analysing PWLP and MrsP

systems. As described in Equation (3.1), the blocking incurred by τi under

MSRP is bounded by Ei, Bi and Ii,h, where Ei and Ii,h are calculated by

Equation (3.4) and Bi is determined by Equation (3.7). With the presence of

the heterogeneous accesses, these equations should be modified to the capture

the worst-case blocking time that a task can incur during each resource access

(i.e., in the worst case, the task can be blocked by the request with the highest

execution cost on each remote processor).

Recall Equation (3.5), with requests that have an identical execution cost

assumed, the spin delay incurred by τx for accessing rk can be effectively

bounded by examining whether there exist any requests to rk that have not

been accounted into the blocking time on each remote processor. However,

to capture the worst-case scenario with heterogeneous accesses, the blocking

time incurred by τx for one resource access from a remote processor should be

the request with the highest execution cost among the unaccounted requests

on that processor, assuming there exists any.

ekx(l, µ)(n) = Lcskx(l, µ)(n) +
∑

Pm 6=P (τx)

Lcspkm(l)(Nhkx(l) + n) (A.4)

Equation (A.4) gives the total resource-accessing cost of the nth access to
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rk issued by τx within a given duration l and a jitter µ, where Lcskx(l, µ)(n)

denotes the pure execution cost of τx’s nth access to rk and Lcspkm(l)(Nhkx(l)+

n) denotes the worst-case blocking time that τx can incur in this access due to

the unaccounted request that has the highest execution cost from Pm. Note

that the execution costs before the index Nhkx(l) +n is already accounted into

the blocking time calculation as the analysis starts from the highest priority

task. In addition, the execution cost Lcspkm(l)(Nhkx(l) + n) is higher than the

costs after the index Nhkx(l) + n due to the decreasing order. Therefore, the

worst-case blocking time of τx in the nth access can be obtained.

The above analysing technique is similar with the blocking time calculation

given in Equation (3.5), where a resource access can be blocked from a remote

processor only if there exist unaccounted requests in that processor. If such an

element does not exist in the execution cost list, then a value of 0 is returned.

In addition, as with the schedulability tests for homogeneous accesses, this

analysis relies on the assumption that the first access to a resource will incur

as much spin delay as possible. As described in Section 3.2.1, this assumption

will not affect the schedulability results but can ease the analysing process.

With the above equations, the direct spin delay Ei and the indirect spin delay

Ii,h of τi can be obtained.

As for the arrival blocking Bi for τi, this variable can be safely bounded

by the following steps:

1. identify the set of local lower priority tasks (i.e., τll) that can cause τi to

incur arrival blocking i.e., the τlls that request the resources in FA(τi).

2. obtain the total resource-accessing time of the first access issued by each

τll identified above to each resource in FA(τi) within the duration of Ri.

3. get the largest value among the above resource-accessing times.

Recall the notation Lcskx, as we ordered the execution costs in a non-increasing

order, the first access to a resource issued from a task will always have the

highest execution cost. In addition, due to the assumption described above,

the first access to a resource will incur the largest amount of spin delay in

this analysis. Therefore, the maximum arrival blocking that τi can incur is

the largest value among the total resource-accessing times of the first access

issued by each τll to each resource in FA(τi).

By doing so, the worst-case arrival blocking of τi can be bounded, as shown

in Equation (A.5), where Lcskll(1) gives the maximum execution cost of τll on
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a given resource rk that belongs to FA(τi) and Lcspkm(Ri)(Nh
k
i (Ri) +Nk

i + 1)

returns the largest execution cost among the requests to rk on each remote

processor Pm that can block this access (i.e., the requests that have not been

accounted for in the calculations of Ei and Ii,h).

êi = max
¶
Lcskll(1) +

∑
Pm 6=P (τi)

Lcspkm(Ri)(Nh
k
i (Ri) +Nk

i + 1)

∣∣∣rk ∈ FA(τi) ∧Nk
ll > 0

© (A.5)

The above presents the approach for analysing the heterogeneous resource

accesses in MSRP systems. By replacing Equations (3.5) and (3.7) to Equa-

tions (A.4) and (A.5), the new schedulability test of MSRP proposed in Sec-

tion 3.2.1 can capture the worst-case blocking time with resources that have

various execution costs.

A.1.2 PWLP

As described in Section 3.2.2, the approach for bounding the direct and indi-

rect spin delay in PWLP systems is the same with that of the MSRP systems

i.e., Equation (A.4) can be directly adopted to PWLP systems for accounting

the spin delay. However, the approaches for accounting the arrival blocking

and the additional blocking time due to the cancellation mechanism under

PWLP should be modified to support the analysis of the heterogeneous re-

source accesses.

Recall Equation (3.19), under PWLP systems, a task can only be blocked

upon its arrival by one critical section as tasks are spinning for a PWLP

resource with its base priority. Thus, this equation can be modified to support

resource with various execution costs with minor changes, where

êi = max{Lcskll(1)|rk ∈ FA(τi) ∧Nk
ll > 0} (A.6)

For all the local lower priority tasks that can cause τi to incur arrival blocking,

the task that has the highest execution cost on rk will be the task that causes τi

to incur arrival blocking in the worst case, and the amount of arrival blocking

is the highest execution cost of that task on rk i.e., Lcskll(1).

As for the additional blocking caused by the cancellation mechanism, Equa-

tion (3.15) should be modified to reflect the worst-case blocking time under

heterogeneous resource accesses, as given below.

Lki = {
∑

Pm 6=P (τi)

Lcspkm(Ri)(Nh
k
i (Ri) +Nk

i + n)|1 ≤ n ≤ NoPi}dList (A.7)
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Similar with the approach adopted in Equation (A.4), for a given remote

processor Pm, the highest execution cost of the unaccounted requests to rk in

that processor can be obtained by Lcspkm(Ri)(Nh
k
i (Ri) +Nk

i + n), where the

execution costs before the index Nhki (Ri) +Nk
i + 1 (if they exist) has already

been accounted into either the spin delay or the arrival blocking.

The above presents the approach for analysing the heterogeneous resource

accesses in PWLP systems. With the Equations (A.6) and (A.7) adopted to

replace the Equations (3.19) and (3.15) respectively, the schedulability test of

PWLP can support the analysis of the heterogeneous resource accesses.

A.1.3 MrsP

As described in Section 3.2.3, MrsP has the identical spin delay accounting

approach as that of both MSRP and PWLP. Thus, Equation (A.4) can be

directly applied into the MrsP schedulability test for bounding the spin delay.

In addition, the arrival blocking under both MSRP and MrsP can be calculated

by Equation (A.5) (although with different approaches for determining FA(τi),

see Equations (3.8) and (3.22) for MSRP and MrsP respectively). However, the

bounding for the migration cost due to the helping mechanism in Section 3.2.3

should be modified to capture the worst-case scenario with resources that have

various execution costs.

Firstly, equation mtkx(l)(n) developed in the Theorem 3 in Section 3.2.3 is

modified to Equation (A.8) below. Note, the equation in the Theorem 3 can

be directly applied here without any changes, as the objective of this function

is to identify the remote processors that contain unaccounted requests to the

given resource. Such a modification is for the analytical expression consistency

in the extended analysis for heterogeneous accesses.

mtkx(l)(n) , {Pm|Pm 6= P (τx) ∧ Lpkm(l)(Nhkx(l) + n) > 0} ∪ P (τx) (A.8)

Then, to reflect various execution costs of one resource, Equation (3.27) is

modified with an additional parameter C added (see Equation (A.9)), which

takes the execution cost of rk for a given access.

Mig(mt, rk, C) = C +
∑

Pm∈mt


0, if Pm /∈ mtp(mt, rk) ∨ {Pm} = mt

2 · Cmig, if {Pm} = mtp(mt, rk) ∧ |mt|> 1

min{Mhp(mt, rk, C),Mnp(C)}, otherwise

(A.9)
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Accordingly, Equations (3.25) and (3.26) should be modified to the follow-

ing ones to cope with the newly introduced parameter C, which replaces the

notation ck in the homogeneous resource accesses case.

Mhp(mt, rk, C) = Cmig ·
Ä ∑
Pm∈mtp(mt,rk)

(
∑

τh∈hpt(rk,Pm)¢
C +Mhp(mt, rk, C)

Th

•
) + 1

ä (A.10)

Mnp(C) = Cmig · (
¢
C

Cnp

•
+ 1) (A.11)

With the above equations, Equation (A.4) can be extended to take the

migration cost into account, where

ekx(l, µ)(n) =
∑

Pm 6=P (τx)

Mig
Ä
mtkx(l)(n), rk, Lcspkm(l)(Nhkx(l) + n)

ä
+

Mig
Ä
mtkx(l)(n), rk, Lcskx(l, µ)(n)

ä (A.12)

For τx’s nth access to rk within the given duration l and the jitter µ, Equa-

tion (A.8) (i.e., mtkx(l)(n)) gives the migration targets for this access (i.e., the

processors that contain unaccounted requests to rk) within the given dura-

tion and jitter. Then, with the highest cost among the unaccounted execu-

tion costs in a given migration target (i.e., a processor) assigned to function

Mig(mt, rk, C), the worst-case migration cost can be obtained with the pres-

ence of heterogeneous resource accesses.

As for the migration cost in the arrival blocking, Equation (3.29) is modi-

fied to reflect various execution costs of rk, where

êi = max
¶ ∑
Pm 6=P (τi)

Mig
Ä
mtkll(Ri)(1), rk, Lcspkm(Ri)(Nh

k
i (Ri) +Nk

i + 1)
ä

+Mig
Ä
mtkll(Ri)(1), rk, Lcskll(1)

ä∣∣∣rk ∈ FA(τi) ∧Nk
ll > 0

©
(A.13)

Equation (A.13) presents the arrival blocking of τi with the migration cost

bounded under MrsP with heterogeneous resource accesses, where the function

Mig
Ä
mtkll(Ri)(1), rk, Lcskll(1)

ä
gives the execution cost and the migration cost

of τll’s first access to rk while Mig
Ä
mtkll(Ri)(1), rk, Lcspkm(Ri)(Nh

k
i (Ri)+Nk

i +

1)
ä

returns the cost of a remote request that can block τll on a remote processor

Pm.
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With the above equations adopted, the new schedulability test for MrsP

can support the analysis of heterogeneous resource accesses, where Equa-

tion (3.28) is modified as

ekx(l, µ) =

Nk
x (l,µ)∑
n=1

ekx(l, µ)(n) (A.14)

and Equation (A.12) is adopted to calculate each ekx(l, µ)(n) in Equation (A.14).

As for the arrival blocking, Equation (3.29) is replaced by Equation (A.13) to

capture the worst-case scenario with resources that have various execution

costs.

Summarising the above, this section presents an extension to the new

schedulability tests proposed in Section 3.2 to support the heterogeneous re-

source accesses. In addition, the analysis of run-time overheads (i.e., the

notations CX1, CX2, Cretry, C
lock and Cunlcok) can be effectively integrated

into the extended schedulability tests by the same approach described in Sec-

tion 3.2. In next section, the approach for supporting nested resource accesses

will be presented.

A.2 Analysing Nested Resource Accesses

As described in Section 2.5.9, nested resource accessed are usually controlled

by either group locks or ordered locks, where group locks can decrease the

degree of parallelism while ordered locks impose restrictions to the resource-

accessing model (i.e., the accesses to nested resources must comply with a pre-

defined order). As described in [106], supporting the analysis of the ordered

locks can cause severe analytical challenges and requires huge modifications

to the newly-proposed schedulability tests. In contrast, although group locks

serialise the access to nested resources and can decrease the parallelism, this

locking approach is schedulability test friendly and is adopted to a large num-

ber of resource sharing protocols (e.g., FLMP and M-BWI). In this work, we

support the nested resource accesses via group locks. The topic towards sup-

porting the nested resource accesses via the ordered locks (which is currently

under investigating with preliminary results presented in [49]) is postponed to

future work.

With group locks assumed, a group lock is employed to control a set of

resources that are accessed in a nested fashion, where the access to any of

the resources managed by a group lock can be granted only if that lock is
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acquired. For instance, if r1, r2 and r3 are managed by a given group lock

and r1 → r2 → r3 (where → describes the nested level), accesses to any of

these resources should obtain the lock a priori. Thus, from the viewpoint of

schedulability test, the resources that are managed by a same lock can be

viewed as one resource with various execution costs.

Consider the same example given above with c1 = 1, c2 = 2 and c3 = 3,

the nested accesses to either r2 and r3 can be viewed as accessing r1 with an

execution cost of 3 and 6 respectively. For instance, during one release, if τa

accesses r1 only (without accessing r2 and r3) first and then accesses r2 and

r3 sequentially in a nested fashion, such resource accesses can be modelled as

c1a(1) = 1, c1a(2) = 3 and c1a(3) = 6 in one release. In addition, if τb access r2

and r3 in a non-nested way, then c1b(1) = 2 and c1b(2) = 3.

Therefore, with such an approach, the nested resource-accessing model

with the group locks adopted can naturally fit into the newly-developed schedu-

lability tests for heterogeneous resource accesses in Section A.1 with only a

few modifications required, where the nested resources are removed from the

resource list and the functions F (τi), G(rk) and FA(τi) now only consider the

outer-most resources e.g., function F (τi) now only returns the resources that

τi can access directly.

In addition, such an approach is also valid even if these resources have

varied execution costs. Now we assume that for τa, L
1
a = {1, 5, 9}, L2

a =

{2, 6} and L3
a = {3} while L2

b = {2} and L3
b = {3} for τb. Thus, with the

above resource-accessing behaviours, L1
a = {1, (5 + 2), (9 + 6 + 3)} and L1

b =

{2, 3}. Accordingly, the extended schedulability tests in Section A.1 can still

be adopted directly to analysing such resource accesses, which contain both

the heterogeneous and nested resource accesses.

A.3 Summary

Summarising the above, in this appendix, the schedulability tests for MSRP,

PWLP and MrsP proposed in Section 3.2 are firstly extended to support the

analysis for the heterogeneous resource accesses. Then, we demonstrated the

approach to support nested resources via group locks and the techniques for

analysing such resource accesses, which can be achieved with minor modi-

fications to the newly-developed analysis in Section A.1. Based on the de-

scription above, we have demonstrated that the extended schedulability tests
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can be directly adopted to analyse the systems with the presence of both the

heterogeneous and the nested resource accesses.
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Appendix B

Case Study: Determining the

Overheads for LitmusRT

As described in Section 3.2, the notations CX1 and CX2 are introduced to

provide an overall approach to bound the run-time overheads from the un-

derlying operating system. However, to precisely bound these two variables,

a real-world operating system must be provided as the scheduling structure

varies with different operating systems, which can lead to different behaviours

and costs of context switches. In addition, the overheads in Ck, the cost of

migrations Cmig and the overheads of the cancellation mechanism Cretry can

be bounded only if the implementations of these protocols are provided.

In this section, a case study is presented to illustrate the approach for

bounding the overheads incurred by LitmusRT and the locking protocols. Sim-

ilar works have been proposed to collect the run-time overheads of locking pro-

tocols under real-world systems [33, 94]. However, these works mainly focus

on the cost of the locking protocols themselves and do not consider the over-

heads from the underlying operating systems. In this work, the run-time cost

from both the operating system and the candidate locking protocols will be

measured. To measure such costs, the candidate locking protocols are imple-

mented in Litmus first. The description and discussion towards implementing

the candidate resource sharing protocols are not given here and are referred

to Appendixes D and C. With the run-time overheads measured, these values

are assumed in the newly-proposed schedulability tests and are used in the ex-

periments presented in Section 3.4.3 for investigating the impact of run-time

overheads to the schedulability results of the newly-developed schedulability

243



tests in Section 3.2.

B.1 LitmusRT

LitmusRT [19, 30] is a real-time patch for Linux and is developed to provide

an experimental platform for investigating various scheduling schemes and

synchronisation algorithms in real-time systems. Litmus is mainly built up

with four components: a core infrastructure, scheduler plugins, a user-space

API, user-space library and tools. The core infrastructure provides a way

to connect to the scheduling algorithm of the Linux kernel and overrides the

Linux scheduling decisions with the scheduling routine provided in Litmus. In

Litmus, various scheduling schemes are supported, including the FPS and EDF

with fully partitioned, global and clustered scheduling. As this thesis focuses

on the preemptive fixed-priority scheduling with fully-partitioned systems, the

P-FP scheduler in Litmus is assumed and the protocols are implemented in

this scheduling scheme. In addition, a set of user-space tools are provided to

facilitate the research towards this system, such as the feather-trace tool for

tracing and measuring the run-time overheads of the major events occurred

in scheduling and locking via a set of timestamps.

B.2 Costs of the Major Scheduling Events in LitmusRT

To precisely bound the cost of the context switch under Litmus, the scheduling

routine in Litmus is firstly explained. Recall Figure 3.1, the major scheduling

events described in this figure can be directly mapped to functions in Litmus

(or the underlying Linux system), as shown in Figure B.1.

Under Litmus, the clock that monitors the release time of tasks in event

A is realised by a high-resolution timer. Once a release is due, the cor-

responding handler will be fired and the function hrtimer_wakeup() will

be invoked. Then, the function try_to_wake_up() is invoked to insert the

ready-to-released task into the corresponding ready queue via calling func-

tion enqueue_task(). In Litmus, the task is inserted into the ready-queue of

the task’s host processor via function task_wake_up() provided by the Lit-

mus infrastructure. The cost of this whole procedure is denoted as C litmusrelease

and is collected via the timestamp TS_RELEASE provided by the Litmus time-

collecting facility.
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Figure B.1: Major Scheduling Events and Related Functions in LitmusRT.

As for event B, once a task is eligible to execute, the schedule() function

in Linux is invoked to schedule this task to execute. This is achieved via in-

voking a set of functions sequentially. Firstly, function pick_next_task() is

called to get the task that is eligible to execute. Under Litmus, this function

is revised so that it is hooked by the Litmus infrastructure, where function

litmus_schedule() is called. As the P-FP scheduling is assumed, the func-

tion pfp_schedule() is invoked and the ready-to-execute task can be picked

up, which is the highest priority task in the ready queue. Then, function

context_switch() is called to switch away the previously-executing task (if

it exists), where the function finish_switch() in Litmus is executed finally

to handle the potential migration required by the previously-scheduled task

due to resource sharing (with the P-FP scheduler assumed).

The overheads incurred by the above functions are collected via timestamps

TS_SCHED, TS_SCHED2, TS_CXS and TS_PLUGIN_SCHED. As described in [19],

the cost of schedule() is measured in two parts by TS_SCHED and TS_SCHED2

respectively. This is because the Linux scheduler has to execute certain post

scheduling code after the function context_switch() has being invoked inside

schedule().

To bound the overheads caused by these functions in context switches,

new notations are introduced, where C linuxsched denotes the overheads of the first

part in schedule() before pfp_schedule() is invoked, C linuxpost denotes the

cost of the second part in schedule (i.e., after context_switch() is exe-

cuted), Cpfpsched denotes the overheads incurred by Litmus with P-FP scheduling

adopted, C linuxswitch represents the cost of function context_switch(), including
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the cost of finish_switch() in the P-FP scheduler. Accordingly, the cost of

one complete context switch (i.e., Ccxs) in Litmus can be bounded, where

Ccxs = C linuxsched + Cpfpsched + C linuxswitch + C linuxpost (B.1)

With the overheads incurred by events A and B bounded, CX1 (the over-

heads a task can incur from the underlying system before it can execute) is

formed, as shown in Equation (B.2).

CX1 = Cpfprelease + Ccxs (B.2)

The event E requires the similar functions with that of event B. However,

as the current release is finished, the next release time of the task should

be re-computed, and then the task should be put to sleep. This is achieved

via function complete_job() in the Litmus infrastructure, where C litmuscomplete is

adopted to denote such cost.

Table B.1: Overheads in Litmus (and Linux) Scheduling Routine

Variables Worst-case Cost

C linuxsched 845 ns

C linuxswitch 965 ns

C linuxpost 736 ns

C litmusrelease 1383 ns

C litmuscomplete 411 ns

With the cost of events A, B and E formed, the total overheads from

Litmus (and the underlying Linux) scheduling during the entire lifetime of a

task’s release (i.e., CX2) can also be bounded via summing up the costs from

all the scheduling events given in Figure B.1, as given in Equation (B.3), where

the cost of event E equals to the cost of event B plus C litmuscomplete.

CX2 = C litmusrelease + 2 · Ccxs + C litmuscomplete (B.3)

Table B.1 gives the worst-case cost for each of the variables given above,

which are collected from 100,000 executions via the feather-trace tool. The

overheads are collected on a Intel CoreTM i7-6700K with a base frequency of

4.0 GHz. During evaluation, hyper-threading on each core is disabled; core 0

is preserved to handle interrupts; core 1, 2, 3 are isolated from the system for

overheads collection and the network is disabled.
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As for the bounding of Cpfpsched, it is obtained via examining the overheads

of each major event in P-FP scheduler, as given below. Figure B.2 illustrates

the scheduling sequence of the original P-FP scheduler in Litmus.

PFP scheduler 
start

Check 
previous task 

status

Yes

No

Requeue in 
RQ or SQ

Take next 
task from RQ

Yes

No

Set next task

PFP scheduler 
end

Need 
reschedule?

Need 
requeue?

Figure B.2: The Original P-FP Scheduler in Litmus.

Once the P-FP scheduler is invoked, it firstly checks the current status

of the previously-scheduled task (i.e., τprev) to decide wether a re-schedule is

required. If not, the scheduler is finished directly and τprev can keep executing.

Otherwise, the scheduler firstly checks whether the task should be re-queued

into the run queue (or the sleeping queue when the task’s current release is

finished). If the task is blocked or requires migration, it will not be re-queued

and will be handled in the finish_switch() function. Then, the highest

priority task is taken from the run queue and is set to be the next running

task (if there exist any). With the to-be-scheduled task (i.e., τnext) determined,

the scheduler is finished and the result is returned to the Linux infrastructure,

where the function context switch() is performance to switch τprev away

and to load the cache for τnext.

To facilitate the bounding of Cmig, C
pfp
check demotes the costs for check-
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ing τprev’s status and whether a re-schedule and re-queue are required, the

overheads for re-queueing τprev is denoted as Cpfprequeue, C
pfp
take denotes the over-

heads for taking the highest priority task in the run-queue, and Cpfpset rep-

resents the overheads for setting the to-be-scheduled task. Accordingly, the

worst-case cost of Cpfpschedule can be bounded by the above events, as given in

Equation (B.4). The overheads of the events in Equation (B.4) are collected

on the same machine described before by the feather-trace tool, as reported in

Table B.2. Accordingly, with Cpfpschedule bounded, the worst-case cost of Ccxs,

CX1 and CX2 can also be calculated, as listed in Table B.3

Cpfpschedule = Cpfpcheck + Cpfprequeue + Cpfptake + Cpfpset (B.4)

Table B.2: Overheads of the P-FP scheduler in Litmus

Variables Worst-case Cost

Cpfpcheck 492 ns

Cpfprequeue 603 ns

Cpfptake 308 ns

Cpfpset 274 ns

Cpfpschedule 1677 ns

Table B.3: The Scheduling Overheads Incurred by Tasks under Litmus

Variables Worst-case Cost

Ccxs 4223 ns

CX1 5606 ns

CX2 10,240 ns

B.3 Run-time Costs Incurred From Locking Proto-

cols

For the cost due to locking protocols, we firstly form the bounding of Cmig and

Cretry in MrsP and PWLP respectively. As both the helping and the cancella-

tion mechanisms requires the modifications in the scheduler, the structure of

the P-FP scheduler with these mechanisms integrated should be examined, as
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given in Figure B.3, where the red blocks indicates the helping facility while

the blue blocks denotes the helping mechanism.

P-FP with MrsP 
and WPLP start

Yes

No

Need 
requeue?

Requeue in 
RQ or SQ

Find next 
task

Yes

No

Set next task

P-FP with MrsP 
and WPLP end

Preempt 
with 

MrsP?

No

Yes

Insert into 
MrsP queue

Check 
previous task 

status

Preempt 
with 

FIFO-P?

Remove form 
FQ; set 

preempt flag

Yes

No

Need 
reschedule?

Figure B.3: The Modified P-FP Scheduler with MrsP and PWLP Imple-

mented.

With MrsP and PWLP adopted, the scheduler has to check whether τprev

is preempted while accessing a MrsP or PWLP resource. As for a task that

is preempted while waiting for a PWLP resource, before it is re-queued to the

run-queue, it will be removed from the corresponding resource-waiting queue

and its preemption flag is set to indicate an re-request is required. While such a

task is preempted, it must be stuck in the while loop in function pwlp_lock()

(see Appendix C for the implementation details) as it is waiting for the re-

source. In this while loop, the task keeps checking whether the re-request

flag is set. If so, the task will go to the beginning of the pwlp_lock() and
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will re-request the resource. To facilitate bounding Cretry, notation CPWLP
de−queue

denotes the cost for removing a preempted task waiting for a PWLP resource

from the FIFO queue and setting the re-requesting flag, and CPWLP
re−request de-

notes that cost for re-joining into the resource accessing routine. Thus, the

cost due to PWLP’s cancellation mechanism Cretry can be formed, as given

in Equation (B.5). Table B.4 gives the worst-case cost of the cancellation

mechanism in PWLP.

Cretry = CPWLP
de−queue + CPWLP

re−request (B.5)

Table B.4: Overheads by the Cancellation Mechanism in PWLP

Variables Worst-case Cost

CPWLP
de−queue 703 ns

CPWLP
re−request 960 ns

Cretry 1663 ns

If τprev is preempted while accessing a MrsP resource, it will be inserted

into a pre-defined slot of a preemption queue introduced to guarantee the

correctness of migrations in MrsP (see Appendix D for details). In addition,

an executing task that is spinning for a MrsP resource can call schedule()

explicitly to enters into the helping mechanism if it detects that the current

resource holder is preempted. To facilitate bonding Cmig, notation CMrsP
insert

is introduced to denote the cost for queueing a preempted MrsP resource-

accessing task into the preemption queue.

With τprev handled, the scheduler now takes the next task to execute (i.e.,

the block “find next task”), which can be further extended as Figure B.4. The

scheduler will first peak into the run queue and gets the priority of the next

task that is eligible to execute. Then it looks into its local preemption queue

and checks whether there exists any task that has a higher priority. If yes, the

preempted task that is waiting for or holding with a MrsP resource is selected

to execute. Otherwise, the scheduler checks that whether the next task in the

run-queue is waiting for a MrsP resource that is held by a preempted task.

If so, the preempted resource holder is taken from the preemption queue and

is scheduled instead of the task in the run queue. If the above conditions

are not met, the scheduler will simplify take the next task in the run queue

to execute. With MrsP in use, the cost of a migration should be accounted
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Figure B.4: The Event “Find next task” in the Modified P-FP Scheduler

for from the point that a resource-accessing task is preempted to the point

that it is resumed on a remote processor, which is the longest route of the

helping mechanism. Let CMrsP
help denotes the cost of helping a preempted MrsP

resource holder in the P-FP scheduler (i.e., the block “Take preempted MrsP

task”).

Thus, once a task accessing a MrsP resource is preempted, it will incur

the overheads by C linuxsched, Cpfpcheck, C
MrsP
insert for adding itself into the preemption

queue so that a spinning task on a remote processor can detect such an event.

Then, the spinning task calls schedule() to invoke the scheduler to enters

into the helping mechanism, the cost of C linuxsched and Cpfpcheck is imposed again.

After this, the scheduler re-queues the spinning task and takes the preempted

resource holder as the to-be-scheduled task, which impose the overheads of

Cpfprequeue, C
MrsP
help and Cpfpset in function pfp_schedule(). Finally, the func-

tion context_switch() and the second part in schedule() are performed to

switch away the spinning task and to load the cache for to to-be-scheduled

task, which impose the overheads of C linuxswitch and C linuxpost . Therefore, Cmig can

be bounded, where

Cmig = 2·C linuxsched+2·Cpfpcheck+CMrsP
insert +Cpfprequeue+C

MrsP
help +Cpfpset +C linuxswitch+C linuxpost

(B.6)
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Table B.5: Overheads of the Helping Mechanism in MrsP

Variables Worst-case Cost

CMrsP
insert 2347 ns

CMrsP
help 745 ns

Cmig 8378 ns

Table B.5 firstly reports the overheads of inserting a preempted MrsP

resource holder and helping a preempted holder. Then, based on Equation B.6,

the worst-case cost of a migration is computed, as given in Table B.5 as well.

Finally, the cost in Ck should also be measured under each candidate

locking protocol. In the interest of brevity, the implementation details and the

execution sequence of the lock() and unlock() function for each protocol are

not given in the main text of this thesis and is provided in Appendix C. The

overheads for locking and releasing a resource under each candidate protocol

are collected via the feather-trace tool and are reported in Table B.6.

Table B.6: Overheads of the Locking and Releasing Resources

Variables Worst-case Cost

C lockMSRP 979 ns

CunlockMSRP 602 ns

C lockPWLP 1255 ns

CunlockPWLP 602 ns

C lockMrsP 1272 ns

CunlockMrsP 1642 ns

The above presents the approach for bounding the worst-case run-time

overheads a task can incur in a given operating system (i.e., Litmus in this

work) with the candidate locking protocols implemented under a given hard-

ware platform. In this thesis, these values will be assumed in the schedulability

tests and will be adopted in experiments.
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Appendix C

Implementing MSRP, PWLP

and MrsP in LitmusRT

In Appendix B, the run-time overheads of the systems with MSRP, PWLP

and MrsP adopted respectively are measured, which include the overheads of

the context switches from the underlying operating systems (i.e., LimtusRT

with the P-FP scheduler adopted) and the implementation costs of the re-

source sharing protocols. The measured overheads are then adopted into the

experiments conducted in Section 3.4. In this appendix, the implementation

details of MSRP, PWLP and MrsP in the P-FP scheduler of LitmusRT are de-

scribed. The fully functional MSRP, PWLP and MrsP implementations can

be accessed via https://github.com/RTSYork/Litmus_MSRP_PWLP_MrsP.

Compared to MSRP and PWLP, implementing MrsP is relatively compli-

cated due to the migration-based helping mechanism. In this appendix, we

present the implementation details of MRSP and PWLP, which also include

the approach for realising the basic facilities in MrsP e.g., the FIFO resource-

accessing order. However, the discussion towards the correctness and efficiency

of implementing the helping mechanism of MrsP in fully-partitioned systems

is postponed to Appendix D.

C.1 MSRP

We start from implementing MSRP under the P-FP scheduler in LitmusRT.

The description of the P-FP scheduler is presented in Section B. MSRP is

realised via two functions mrsp_lock() and mrsp_unlock(), which can be

invoked from the user space via the interfaces sys_litmus_lock() and sys_
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litmus_unlock() provided by LitmusRT. Before presenting the implemen-

tations of the lock() and unlock() functions, the data structure of MSRP

locks should be described, as given below.

struct mrsp_semaphore {

int lock_id;

/* a spin lock in kernel */

spinlock_t lock;

/* The FIFO resource-accessing queue */

struct task_list *tasks_queue;

};

A MSRP lock contains an id, a kernel-level spin lock spinlock_t for pro-

tecting the data consistency of the FIFO resource-accessing queue when ac-

quiring and releasing MSRP locks, and a linked list struct task_list* for

realising the FIFO order. Implementing MSRP is relatively straightforward,

which mainly contains the implementations the FIFO resource-accessing or-

der, the non-preemptive resource-accessing priority rule and the spin-waiting

approach. Below we present the code of the mrsp_lock() function.

int msrp_lock(struct litmus_lock* l) {

struct task_struct* t = current;

struct msrp_semaphore *sem = msrp_from_lock(l);

struct task_list *taskPtr = (struct task_list *) kmalloc(

sizeof(struct task_list), GFP_KERNEL);

struct task_list *next;

int err = 0;

if (t->rt_param.task_params.lock != NULL) {

err = -EINVAL;

goto out;

}

/* joins into the FIFO resource-accessing queue and priority

boosting */

preempt_disable();

spin_lock_irqsave(&sem->lock, flags);

add_task(taskPtr, t, &(sem->tasks_queue->next));
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t->rt_param.task_params.priority = 0;

spin_unlock_irqrestore(&sem->lock, flags);

preempt_enable();

/* spinning for the lock */

while (1) {

preempt_disable();

spin_lock_irqsave(&sem->lock, flags);

next = list_entry((sem->tasks_queue->next.next), struct

task_list, next);

if (next->task == t) {

/* gets the lock */

t->rt_param.task_params.lock = l;

break;

}

spin_unlock_irqrestore(&sem->lock, flags);

preempt_enable();

}

out: return err;

}

With the msrp_lock() function invoked, the calling task and the requested

MSRP lock are firstly obtained. Then, the calling thread enters into a non-

preemptable critical section to join into the FIFO resource-accessing queue

and to raise its priority to 0, which is a priority level preserved by LitmusRT

for priority boosting. Under LitmusRT, tasks with a priority of 0 becomes

effectively non-preemptive [19]. In addition, the FIFO resource-accessing or-

der is realised via a linked list struct task_list*, where a node can be

dynamically added into or removed from the list. Once a task requests a

MSRP lock, it adds itself at the end of the list via add_task(taskPtr, t,

&(sem->tasks_queue->next)).

As shown in the code given above, inserting the resource-requesting task

into the FIFO queue is conducted in the critical section (i.e., under the protec-

tion of spinlock_t) with preemptions and interruptions disabled to prevent

race conditions when manipulating the queue. In addition, the task becomes
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preemptable in this critical section so that it will not be preempted after the

preemptions are enabled (i.e., the function preempt_enable()). After the

task exits the critical section, it enters into the while loop and begins spin-

ning (i.e., busy-waiting) until the task becomes the head of the FIFO queue,

where list_entry((sem->tasks_queue->next.next), struct task_list,

next) returns the head of the queue. Once the task is granted with the lock,

it stores the reference of the lock into the task structure.

After a task finishes executing with a MSRP resource, the task releases the

corresponding MSRP lock via the function msrp_unlock(). Below presents

the code of the msrp_unlock() function.

int msrp_unlock(struct litmus_lock* l) {

int err = 0;

struct task_struct *t = current;

struct msrp_semaphore *sem = msrp_from_lock(l);

struct task_list *my_obj = NULL;

if (t->rt_param.task_params.lock != l) {

err = -EINVAL;

goto out;

}

/* set our status to "has nothing to do with the lock". */

preempt_disable();

spin_lock_irqsave(&sem->lock, flags);

t->rt_param.task_params.lock = NULL;

t->rt_param.task_params.priority = t->original_priority;

my_obj = task_remove(t, &(sem->tasks_queue->next));

spin_unlock_irqrestore(&sem->lock, flags);

preempt_enable();

kfree(my_obj);

out: return err;

}

With function msrp_unlock() invoked, the calling task and the to-be-

released MSRP lock are obtained first. Then, the task enters into the non-
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preemptive critical section to (1) removes the reference of the MSRP lock, (2)

restores the task’s priority and (3) removes itself (i.e., the head) from the linked

list via task_remove(t, &(sem->tasks_queue->next)). After this critical

section, the task releases the lock and the exits the function msrp_unlock().

C.2 PWLP

As PWLP shares many similar features with MSRP (e.g., the FIFO order-

ing and busy-waiting), the implementations of these facilities under PWLP

are identical with that of in MSRP. However, differentiated with MSRP,

tasks under PWLP wait for a PWLP lock with their base priorities and

execute non-preemptively only with the lock granted. Therefore, the code

t->rt_param.task_params.priority = 0 is moved into the while loop and

is executed only if the requesting task becomes the head of the FIFO resource-

accessing queue (i.e., the lock holder). In addition, the major difference be-

tween MSRP and PWLP is that tasks under PWLP can be preempted while

waiting for a PWLP lock. Once being preempted, the task cancels the cur-

rent resource request and will re-request this resource later on when being

resumed by the scheduler (i.e., the cancellation mechanism). Below presents

the implementation of the cancellation mechanism.

enter:

/* joins into the resource-accessing routine */

t->rt_param.task_params.pwlp_lock = sem;

joins into the FIFO queue...

int goout = 0;

while (!goout) {

if (t->rt_param.task_params.need_re_request) {

t->rt_param.task_params.need_re_request = 0;

goto enter;

}

checks the head of the FIFO queue...

if (next->task == t) {

t->rt_param.task_params.priority = 0;

t->rt_param.task_params.lock = l;

goout = 1;

}
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}

With the function pwlp_lock() invoked, the calling task joins into the

resource-accessing routine. Firstly, it joins into the FIFO queue and then

enters into the while loop to wait for the PWLP lock. During spinning, the

task could be preempted by a newly-released local higher priority task. Thus,

the scheduler is invoked to switch this task away, where the current request of

this task is cancelled. The code for cancelling a request is given below.

if (prev && prev->rt_param.task_params.pwlp_lock != NULL && preempt) {

spin_lock(&prev->rt_param.task_params.pwlp_lock->lock);

prev->rt_param.task_params.need_re_request = 1;

prev->rt_param.task_params.pwlp_lock = NULL;

list_del(prev->rt_param.task_params.next);

spin_unlock(&prev->rt_param.task_params.pwlp_lock->lock);

}

If the scheduler identifies that the prev task (i.e., the currently scheduled

task) is preempted while waiting for a PWLP resource (i.e., prev->rt_param.

task_params.pwlp_lock != NULL && preempt), it sets the re-requesting flag

need_re_request for the task and then removes it from the FIFO queue

so that the next waiting task (if it exists) can proceed to obtain to lock.

Once this task is resumed, it is still waiting in the while loop, but with the

need_re_request flag outstanding. Thus, the function will redirect the task

to the enter block to start the resource requesting routine again. Once the

task is granted with the lock, it becomes effectively non-preemptive with the

priority level 0 assigned and then exits this function.

The procedure for releasing a PWLP lock is similar with that of MSRP

locks, where the function firstly removes the task from the FIFO queue and

then restores the priority of the calling task. For brevity, the implementation

details of the pwlp_unlock() function is not presented.

C.3 MrsP

As for MrsP, the implementation for realising the FIFO resource-accessing or-

der and the spin-waiting approach is identical with that of MSRP and PWLP,
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where a linked list is adopted for the FIFO resource-accessing queue and a

while loop is used to model the busy-waits. However, under MrsP, a prior-

ity ceiling facility is adopted, where tasks wait for and execute with a MrsP

resource with the ceiling priorities of the resource on their processors.

In this implementation, the ceiling priorities of a MrsP lock is assigned by

users before run-time via a pointer prio_per_cpu in the data structure of the

MrsP lock. In function mrsp_lock(), the priority of the calling task is raised

if necessary (i.e., if its current priority is less than the ceiling) via the following

code. Note that different from the task model adopted in our thesis, under

LitmusRT, a lower priority value indicates a higher execution eligibility.

int partition = get_partition(t);

int prio = get_priority(t);

int ceiling = sem->prio_per_cpu[partition];

t->rt_param.task_params.priority = ceiling < prio ? ceiling : prio;

In addition, a major difference between MrsP with MSRP and PWLP is

the migration-based helping mechanism. Supporting such a facility in fully-

partitioned systems (where a task is fixed on a processor during its entire

lifetime) is complicated and can cause issues that undermine the correctness

and efficiency of the protocol. Thus, the details for releasing this helping

mechanism are not presented in this appendix and are referred to Appendix D.
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Appendix D

Investigating the Correctness

and Efficiency of MrsP in

Fully Partitioned Systems

As described in Section 2.5.9, MrsP relies on a migration-based helping mech-

anism, where a preempted resource-holding task can migrate to a processor

with a task spinning for that processor. As described, such a migration-based

helping mechanism is favourable in theory as high priority tasks can incur less

arrival blocking while the resource-accessing tasks can have a less interference

from high priority tasks.

However, in practice, the realisation of the helping mechanism can be prob-

lematic. The migration targets for a resource-holding task are not constant

as remote spinning tasks can also be preempted. Thus, the migration target

decision made by the protocol may conflict with the scheduling decisions, and

thereby results in incorrect and useless migration behaviours. This issues can

cause unpredictable task behaviours with considerable run-time overheads,

which directly undermine the efficiency of the protocol. In addition, as de-

scribed in Section 3.2.3, practising this helping mechanism also has the issue of

frequent migrations. To address this issue, a tuneable NP-section is introduced

to MrsP to address the frequent migration issue.

In this appendix, we firstly describe the issue for allowing migrations in

fully-partitioned systems. Then, we present the approach that addresses the

migration issue and describe the realising approach of the NP-sections. For

brevity, we focus on presenting the design of the realising approach for the
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migration-based helping mechanism rather than presenting the code of the

implementation. The implementation details are referred to [108] and https:

//github.com/RTSYork/Litmus_MSRP_PWLP_MrsP.

D.1 False Migrations

With the generic Linux kernel, task migrations are handled by a set of push

and pull operations, as part of the scheduling routine. The push operation is

triggered after a scheduling decision to migrate the previous scheduled task

(i.e., the task that was executing before this scheduled task) to a remote pro-

cessor. The pull operation is preformed before a scheduling decision to migrate

a remote task to the local processor. According to [19], the fact that both push

and pull operations need to manipulate multiple run queues can cause concur-

rent state changes and it is not possible to have a consistent snapshot without

locking all the run queues. Thus, the migration facility in Linux may either

trigger superfluous migrations or fail to trigger required migrations due to

such race conditions, resulting in unbounded priority inversion. Similar mi-

gration failures can occur when adopting MrsP into such a partitioned run

queue structure. We identify two major migration problems of MrsP with

such push and pull migration operations.

The first migration problem is caused by race conditions between run

queues and can happen in both push and pull operations. Once a resource

holder is preempted and a migration target is identified, the holder will be

placed into the remote run queue. However, before the next scheduling point,

a higher priority task can be released immediately so that the migrated task

is not considered by the scheduler at all. Such migration can be regarded as

a futile attempt as it only provides extra overheads with the need for further

migrations rather than offering the task a real chance to execute.

Figure D.1 illustrates this problem with a four core system, where task

1 to 4 request the same resource with low priorities while task 5 to 7 are

irrelevant high priority tasks. In Figure D.1a, task 1 (τ1) is preempted at

processor 0 (P0) while holding the resource so that it migrates to P1, where

τ2 is spinning for the resource. However, after τ1 is inserted into the run

queue of P1 (Rq1), τ6 is released and is then scheduled to execute. Thus, τ1

remains inRq1 without any chance to execute so that it seeks another processor

(Figure D.1b). In Figure D.1c, the same issue occurs when τ1 migrates to P2
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Figure D.1: False Migrations Due to Race Condition.

so that τ1 is placed in Rq2 with no chance to execute. Finally, it migrates to

P3 (Figure D.1d), where it preempts the spinning task and executes. In this

example, 3 migrations are preformed in order to migrate τ1 to a valid processor,

yet two of them are invalid due to immediate updates of run queues.

The second issue is caused by the push operation, which is usually con-
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Figure D.2: Missing Necessary Migration due to Limited Attempts.

figured with a fixed number of attempts to control overheads. Figure D.2

demonstrates this issue with a system of five processors and 3 push attempts.

As shown in Figure D.2a, after τ1 is preempted, the push operation firstly at-

tempts to migrate τ1 to P1. However, due to the release of τ7 in Figure D.2b,

the first attempt fails. In Figure D.2c and D.2d, the second and third attempts

fail as well due to the same reason. Thus, the push operation finishes without

checking P4, which is a valid migration target. Such failure can cause a longer
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resource accessing time of the holder and in consequence, a longer blocking

time of all waiting tasks.

Admittedly, a migrated resource holder can be preempted again just after

being scheduled, which also requires further migrations. However, false mi-

grations impose extra incorrect behaviours and extra run-time overheads to

tasks rather than offering tasks a real chance to execute. In Section D.4 we

demonstrate the impact of this issue with experiments.

D.2 The False-migration-free Mechanism

To avoid false migrations, we propose that (1) the helping mechanism should

be realised by pull operations only and (2) the migration decisions of the

protocol should be made as a part of the scheduling decisions.

With a partitioned run queue structure, the push operation suffers from

inescapable race conditions unless obtaining all run-queue locks. As schedul-

ing decisions are made independently on each processor, it is not possible to

guarantee that there will not be any release of high priority tasks on the tar-

get processor during the migrations by push. In addition, as explained in D.1,

necessary migrations can be omitted due to a limited number of attempts.

Therefore, push operations should not be adopted for the MrsP implementa-

tion to prevent race conditions.

In addition, to prevent race conditions in pull operations, we require that

the pull operation needs to be modelled inside the scheduler and as a part

of scheduling decisions. During each scheduling point, the pull operation will

be triggered if the to-be-scheduled task is spinning for a resource while the

resource holder is being preempted on a remote processor. The scheduler then

replaces the to-be-scheduled task with the preempted resource holder as the

next task to schedule. Thus, the migrated task is always eligible to execute

while any newly released high priority tasks need to invoke the scheduler to

preempt.

To realise the false-migration-free mechanism, a preemption queue (Pq)

and a Pq lock are introduced for each processor. Once a resource-accessing

task (either holding or waiting for a resource) is preempted, it will be placed

into the Pq of its original processor rather than the Rq of the current processor.

Upon a scheduling point, the scheduler looks into its local Pq and Rq and takes

the highest priority task to execute. By doing so, the resource accessing task
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is able to resume on its original processor even though it is preempted on

a remote processor. In addition, if the to-be-scheduled task is waiting for a

resource while the resource-holding task is preempted (i.e., being placed into

Pq), the pull operation removes the task from the Pq and migrates it to the

resource-waiting task’s processor to execute. To avoid race conditions, the Pq

lock must be obtained in order to access that Pq.

By adopting such a facility, we realise the required functionalities defined

in the helping mechanism. Meanwhile, we can avoid accessing multiple run

queues with the nested access of Rq locks. As the lock of the Pq needs to

be acquired inside the scheduler, i.e., after obtaining the Rq lock, deadlocks

are prevented because no circular access can be formed. Yet it seems that

the cost for a scheduling decision can be increased as the scheduler may need

to compete for the Pq locks. However, such competition only occurs if a

scheduler is trying to pull a preempted holder (i.e., the to-be-scheduled task is

waiting for a resource). Hence, in the viewpoint of cost, there is no difference

between spinning for the resource or spinning for a Pq lock to offer help.

With the support of the false-migration-free mechanism, we eliminate possible

race conditions between processors while migrating so that each migration

is a valid migration: the resource holder is guaranteed a chance to execute

after migrated. In Section D.4, the evaluation result demonstrates that such

a “false-migration-free” implementation is important to the usability of the

protocol.

D.3 Realising the NP-sections

As described in Section 3.2.3, to avoid frequent migrations of a resource holder

and to improve the efficiency of the helping mechanism, we integrate MrsP

with a short non-preemptive section to offer a trade off between the maximum

number of migrations a holder can suffer and bounding the resulting blocking

time on high priority tasks. Upon each migration, the resource holder is

allowed to execute non-preemptively for a short period before it inherits the

ceiling priority on the current partition. Accordingly, any newly released high

priority tasks have to cope with the cost of one NP section before it can

preempt the holder and execute.

With NP sections, a migrated resource-accessing task will be assigned with

the priority 0 (the priority preserved by LitmusRT for priority boosting) so
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that it can execute effectively non-preemptively. To restore the corresponding

ceiling priority of the task after the NP section, one high resolution timer

(hrtimer) is introduced for each processor. The hrtimer will be set each time

a resource-accessing task is migrated to its processor. When the timer triggers,

it sets the task’s priority to the corresponding ceiling priority and invokes the

scheduler to check whether a higher priority task is ready to execute. If the

holder releases the resource during its NP section, the timer is then cancelled.

D.4 Investigating the Efficiency of the False Migra-

tion Free Mechanism

In Section 3.4.3, the performance of the NP-sections are investigated by a set

of experiments. In this section, the efficiency of the newly-proposed false-

migration-free mechanism is investigated. The experiments are performed by

the implementations in [108] on a Intel CoreTM i7-6700K with a base frequency

of 4.0 GHz. During evaluation, hyper-threading on each core is disabled; core

0 is preserved to handle interrupts; core 1, 2, 3 are isolated from the system

and the network is disabled.

To investigate the frequency of false migrations, pressure testing is con-

ducted. The testing program contains three resource requesting tasks on each

core as well as three high priority tasks with very short periods (500 µs).

Table D.1 gives the total number of migrations triggered by the helping mech-

anism and the number of false migrations occurred in 100,000 jobs. The test

is conducted by a MrsP implementation with generic pull and push operations

(MrsP-generic) and the new MrsP implementation (MrsP-new). As shown in

the table, the generic implementation has a failure rate of 2.14%. In addition,

the number of false migrations is theoretically unbounded and can increase

with the increase of parallelism and the number of releases of high priority

tasks on each core. However, no false migration occurred in the new MrsP

implementation and fewer migrations are triggered as no further migrations

are needed to recover from the false ones.

Table D.1: False Migrations in 100,000 executions

Implementation Total Migrations False Migrations Failure Rate

MrsP-Generic 598,107 12,813 2.14%

MrsP-New 428,618 0 0%
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Figure D.3: The Impact of False Migrations on the Critical Section Execution

Time

The following experiment demonstrates the impact of false migrations on

the execution time. As the false migration is caused by race conditions and

is difficult to reproduce on each release, we simulate its affects by preventing

the migrated holder from being scheduled. In this test, the length of critical

section is 3 ms and the computation time of the preemptor is 10 µs. As shown

in Figure D.3, the execution time under MrsP-new (3.007 ms) is not affected

by false migrations. As for MrsP-generic, although it has a lower cost for each

migration, the execution time is prolonged by false migrations and is higher

than that of MrsP-new with more than 2 false migrations. In addition, its

execution time exceeds the time with the helping mechanism disabled (MrsP-

noHelp) with more than 3 false migrations. Under such situations, MrsP has

a poor efficiency and can be outperformed by protocols with a simple ceiling

priority facility.

D.5 Summary

In this appendix, we conducted an investigation towards the correctness and

efficiency of implementing MrsP in fully partitioned systems. We identified the

false migration issues due to its migration-based helping mechanism when ap-

plied in fully partitioned systems and demonstrated that this issue can cause

incorrect migration behaviours, which can impose additional run-time over-

heads and undermine the efficiency of the protocol. Then, a false-migration-

free facility is then introduced to prevent this issue to guarantee the correctness
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and efficiency of the migration-based helping mechanism. In addition, the re-

alising approach of the NP-sections is also presented. Our evaluation results

demonstrate that the false migrations are successfully addressed by the pro-

posed mechanism, which require less migrations when accessing resources so

that an improved performance of the protocol can be achieved in practice.
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Appendix E

One-Way ANOVA Analysis

and Confidence Level

The analysis of variance (ANOVA) [67] is a statistical analysis technique for

comparing the statistical significance difference between several data groups.

As stated in [75], this statistical technique can isolate the variation that can

cause the real differences and the variation that introduces the measurement

noise among the total variation in a set of measurements. This analysis is

commonly adopted to reveal the impact of certain variables to a given data

set [57,75,76].

In this thesis, we have investigated the performance of various resource

sharing techniques (i.e., MSRP, PWLP, MrsP and the combined techniques),

task allocation schemes (the WF, BF, FF, NF, SPA, RCF, RLF-L and RLF-

S algorithms) and priority ordering algorithms (the DMPO, OPA-D, RPA-D

and SBPO algorithms) under fully-partitioned systems with shared resources

under various system settings. For each system setting in a given experiment

in this thesis, 1000 systems are generated and are tested to demonstrate the

performance of the above algorithms.

In this appendix, the ANOVA analysis is adopted to reveal the statisti-

cal significance between the performance among the above algorithms (i.e., to

demonstrate that there exists a performance difference between the evaluated

algorithms). For each experiment, as there exists only one independent vari-

able (i.e., either the resource control techniques, the task allocation schemes or

the priority ordering algorithms), the one-way ANOVA analysis [56] is adopted

to investigate whether adopting different algorithms have a significant impact
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to the schedulability of fully-partitioned systems with shared resources.

The approach for conducting such an analysis is similar with the work

proposed in [75]. Firstly, to adopted the ANOVA analysis, a null hypothesis

is proposed that no impact (i.e., performance difference) is imposed to the

schedulability of fully-partitioned systems with (1) various resource sharing

approaches (MSRP, PWLP, MrsP and the approach with multiple protocols),

(2) different task allocation schemes (WF, BF, FF, NF, SPA, RCF, RLF-L

and RLF-S) and (3) different priority ordering algorithms (DMPO, OPA-D,

RPA-D and SBPO) adopted.

As with the settings adopted in [75], the α value is set to 0.05 i.e., a statis-

tical significance level of 95%. In addition, the sample size in this test is set to

1000, which means that each experiment is repeated 1000 times for conduct-

ing the ANOVA analysis, where in each run, 1000 systems is examined under

each system setting in a given experiment. However, due to the computation

expenses concern, the experiments with the GA-based framework is sampled

100 times (which is still sufficient to perform the ANOVA analysis [76]). The

notations in the ANOVA analysis is described in Table E.1 (cited from [75]).

Table E.1: Notations of the ANOVA analysis

SS the sum of squares due to each source.

df the degrees of freedom associated with each source.

MS the mean squares, which equals to SS
df .

F the ratio of the variance calculated among the means to the

variance within the samples.

Prob > F the computed probability that the null hypothesis can hold.

We firstly present the detailed approach for investigating the performance

difference via the one-way ANOVA analysis with n = 64 and n = 96 in the

experiment given in Figure 3.2. The results are given in Tables E.2 and E.3,

where we compare the performance difference between each pair of MSRP,

PWLP and MrsP under the new schedulability tests (i.e., the blue to green

bars in the figure).

With the above results obtained, the F value can be obtained based on the

table of F probability distribution for a given level of statistically significance

(i.e., α = 0.05) [102], where FProtocols(1999 − 2) = 254.3144 for both n = 64

and n = 96. Compared to the F values calculated by the ANOVA test (see Ta-
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Table E.2: The One-Way ANOVA Test Results for n = 64 in Figure 3.2

Source SS df MS F Prob > F

MSRP & PWLP 80212.5 1 899390.5 275.12 1.58×10−58

Total 497118.8 1999

PWLP & MrsP 103219.7 1 103219.7 462.29 2.055×10−92

Total 549329.1 1999

MSRP & MrsP 272284.4 1 272284.4 1214.19 2.9×10−208

Total 720340.4 1999

Table E.3: The One-Way ANOVA Test Results for n = 96 in Figure 3.2

Source SS df MS F Prob > F

MSRP & PWLP 299390.5 1 299390.5 1413.12 2.36×10−234

Total 722695.3 1999

PWLP & MrsP 1295710.4 1 1295710 5963.23 0

Total 1729842.5 1999

MSRP & MrsP 349431 1 349431 1588.81 3.71×10−256

Total 788856.9 1999

bles E.2 and E.3), the value of FProtocols obtained in the F distribution table is

smaller than the computed F values, which indicates the hypothesis is rejected

with a confidence level of at least 95% i.e., there exist significant performance

difference between each pair of the studied resource sharing protocols. There-

fore, as shown in Figure 3.2, we can draw the conclusion that MrsP has the

best performance among the examined protocols with both n = 64 and n = 96

under the given system setting with a confidence level of 95%.

In addition, one major assumption for adopting the ANOVA test is that

the data of the analysed variables must be independent (i.e., normally dis-

tributed). The data distribution of the tested variable (i.e., the number of

schedulable systems under each protocol) in this appendix is examined via

the kstest() function in the MATLAB tool (see detailed description of this

test in [74]), which returns a decision for the null hypothesis that the data

in the given vector comes from a standard normal distribution [74]. Taking

the test in Table E.2 as an example, below gives the approach for examining

the distribution of the tested data. As the kstest() function is for standard

normal distribution, each element in the tested vector is scaled by the mean
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value and the standard deviation [74]. Table E.4 gives the mean value and the

standard deviation of the tested data of each protocol. For instance, to exam-

ine the distribution of the data vector of MSRP, each element in this vector,

say x, should be scaled by (x − 639.3) ÷ 15.2. Then, the kstest() func-

tion is invoked to examine whether each data vector complies the standard

normal distribution (see Figure E.1, the data in each vector can be accessed

via https://github.com/RTSYork/FIFOSpinLockFramework/blob/master/

ConfidenceTest.xlsx). As shown in the figure, the data in each tested vec-

tor comes from a normal distribution (i.e., the kstest() function returns 0,

which fails to reject the null hypothesis above), and hence, the ANOVA test

is valid to apply in this thesis to obtain the statistical significance level of the

performance of each tested algorithm stated above.

Table E.4: Mean and Standard Devision of the Tested Vector in Table E.2

Protocol Mean Value Standard Devision

MSRP 639.3 15.2

PWLP 648.2 15.1

MrsP 662.6 14.8

Figure E.1: Results from the kstest() Functions
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With the approach described above, we have investigated the statistical

significance of the performance difference of the evaluated algorithms in each

experiment presented in this thesis via the MATLAB tool. However, as a

large amount of experiments are presented in this thesis, in the interest of

brevity, this section only presents the analysis results (the F values) of the

evaluated algorithms in two system settings of certain experiments presented

in Chapter 3, 4 and 5 as the examples showing that there exist significant

performance difference between the evaluated algorithms. The results are

summarised in Table E.5, where each F value obtained by the ANOVA analysis

is much higher than the value (i.e., 254.3144) obtained from the F distribution

tables in [102].

In addition, although we do not present the results between each pair of the

tested algorithms in these experiments, the results presented are sufficient to

demonstrate a statistical significance level of 95% of the performance difference

of the studied resource sharing techniques (i.e., MSRP, PWLP, MrsP and the

combined approach), task allocation schemes (i.e., the WF, BF, FF, NF, SPA,

RCF, RLF-L and RLF-S algorithms) and the priority ordering algorithms (i.e.,

the DMPO, OPA-D, RPA-D and SBPO algorithms) (i.e., confirms that there

indeed exists performance difference between the evaluated algorithms). For

the ease of the presentation, let L = {1, 2, 3, 4, 5, 6} denotes L = {[1µs, 15µs],

[15µs, 50µs], [50µs, 100µs], [100µs, 200µs], [200µs, 300µs], [1µs, 300µs]} in the

tables given below.

Table E.5: The F Values Computed by the ANOVA Test.

Experiments F Values Experiments F Values

Figure 3.3
M = 8

M = 12

17454.48

60333.57
Figure 3.5

L = 3

L = 5

37428.87

187469.8

Figure 3.6
A = 11

A = 26

11974.93

18010.53
Figure 3.7

L = 2

L = 4

2992.24

2984.64

Figure 4.1
L = 3

L = 5

198599.54

336446.76
Figure 4.4a

A = 6

A = 16

297220.21

95161.15

Figure 4.7a
L = 1

L = 6

2838.28

1210.17
Figure 4.7b

L = 2

L = 5

3444.43

36888.78

Figure 6.3
A = 1

A = 26

1839.49

845.43
Figure 6.4

L = 2

L = 4

408.35

925.68

Figure 6.6
M = 14

M = 18

2035.05

9766.1
Figure 6.8

L = 3

L = 5

569.59

3540.27

275



276



Bibliography

[1] M. Alfranseder, M. Deubzer, B. Justus, J. Mottok, and C. Siemers. An

efficient spin-lock based multi-core resource sharing protocol. In Per-

formance Computing and Communications Conference (IPCCC), 2014

IEEE International, pages 1–7. IEEE, 2014.

[2] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing

with lock-free shared objects. ACM Transactions on Computer Systems

(TOCS), 15(2):134–165, 1997.

[3] B. Andersson and J. Jonsson. Fixed-priority preemptive multiprocessor

scheduling: to partition or not to partition. In Real-Time Comput-

ing Systems and Applications, 2000. Proceedings. Seventh International

Conference on, pages 337–346. IEEE, 2000.

[4] D. Andre. The evolution of agents that build mental models and create

simple plans using genetic programming. In Proceedings of the 6th In-

ternational Conference on Genetic Algorithms, pages 248–255. Morgan

Kaufmann Publishers Inc., 1995.
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