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Abstract 

Palladium mediated C-H bond activation has become a popular tool used by many organic 

chemists. Whilst there are many different types of C-H activation processes, the methods used for 

biologically relevant molecules is relatively low, with most catalysis on biological molecules being 

on cysteine residues (thiol functionalisation), and lysine residues (amine functionalisation). 

The work presented in this thesis continues the use of tryptophan as the residue of choice for 

functionalisation. Tryptophan contains an indole ring lending itself to C-H bond activation, due to 

its intrinsic reactivity. A big question regarding peptide and protein modification is whether 

modification is feasible for more complex peptides, where selectivity (site of functionalisation) 

becomes a challenge. The aim of the project is to explore the scope of tryptophan arylation using 

Pd catalysis and aryl diazonium salts, to determine whether the arylation procedure caused any 

erosion of the chiral information at tryptophan through racemisation, and to what extent does the 

procedure work on peptides and what effect it has on the conformation. 

The procedure used is typically used on L-tryptophan due to the biological usability, but does the 

procedure arylate both enantiomers? Using chiral HPLC, it can be seen that di-protected racemic 

tryptophan can be arylated and that two peaks will be observed next to each other. Overlaying the 

L-enantiomer onto the graph shows that the procedure works for both enantiomers meaning that it 

is not enantiomerically selective. The procedure worked on peptides and the conformational 

changes were monitored using ROESY NMR spectroscopy. 
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Chapter 1: Introduction 
 

1.1. Protein Modification Challenges and Uses 

Protein modification is found within nature and it increases the diversity of protein structures and 

function by up to two orders of magnitude.1 Yet our ability to mimic nature in regard to synthetic 

protein modification has been limited due to the available synthetic tools. In addition to limited 

chemistry, there are several challenges with protein modification. Chemo- and regio- site-selectivity 

is difficult due to the presence of a sea of reactive functional groups; carboxylic acids, alcohols, 

amides, amines, and thiols, which makes modification around a single amino acid difficult. The 

reaction conditions are another challenge as proteins typically require biologically-ambient 

conditions (<37 oC, pH 6-8, aqueous solvent and salt buffer) to keep its structure and functionality. 

Any given reaction should ideally proceed to near total conversion to generate homogenous 

constructs.2,3 

1.2. Classic Methods for Protein Modification 

Protein bioconjugation is the formation of a stable covalent bond between two molecules, where one 

is a biological molecule. This involves using second-order reactions that selectively target a 

functional group present in the side chains of the proteogenic amino acids.5 The two most commonly 

modified residues are cysteine and lysine.2 The thiol group of cysteine can form mixed disulfides as 

well as alkylation with alkyl halides or reacting with α,β-unsaturated carbonyl compounds to yield 

thioethers via Michael addition.5 Cysteine is relatively rare as an amino acid meaning it can more 

commonly be used for single-site modifications, this however can be on the proteins functional site 

resulting in loss of function.2 Lysine is a popular target for modification due to the large amounts of 

methods to modify primary amines.5 Lysine can react with activated esters, sulfonyl chlorides, 

isocyanates, or isothiocyanates to afford amides, sulfonamides, ureas, or thioureas respectively as 

well as with aldehydes to undergo reductive amination.2 
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Entry Residue Reagent Product 

1 Cys 
 

 

2 Cys 

  

3 Cys 

  

4 Lys 

 
 

5 Lys 

  

6 Lys  

 

7 Lys  

 

 

Table 1:  Modification of cysteine and lysine that have historically been used for protein modification.2 Adapted with 

permission from Angew. Chem. Int. Ed Engl., 2009, 48, 6974–6998. Copyright of Wiley. 

The remaining 18 proteogenic amino acids have not been exploited for residue-selective 

modification. Tyrosine has been modified through electrophilic aromatic substitution of the phenol 

moiety with aryl diazonium salts, iodine, or nitrous acid. Glutamate and aspartate residues have been 

targeted for bioconjugation to form carbodiimides by coupling with amines; although the possibility 

of cross linking proteins limits the utility of this method. Histidine residues have also been 

successfully modified using pyrocarbonates.6 Through the use of these methods, conjugation of 
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small-molecule probes; biotin and fluorophores, to proteins has become routine and allows for a wide 

variety of products to be made, ranging from soluble polymers to microarray chips. 

1.3. Modern Methods for protein modification 

New methods have been developed for the modification of cysteine, lysine, tyrosine, and tryptophan 

especially through metal-mediated transformations.7 Furthermore, the N-terminus has emerged as a 

popular target for protein modification (Table 2). Methods for the selective modification of amines 

and thiols of cysteine and lysine continue to be developed and optimized. McFarland and Francis 

reported a lysine-specific reductive alkylation that proceeds through an iridium-catalyzed transfer 

hydrogenation. Unlike the classic reaction based on sodium cyanoborohydride, the iridium-mediated 

process proceeds in high yield at pH 7.4 (Table 2, entry 1)11 when compared to the original acidic 

conditions. 

Davis and co-workers recently developed a two-step method for cysteine modification (Table 2 entry 

2).12 The first step is the transformation of cysteine into dehydroalanine by treatment with O-

mesitylenesulfonylhydroxylamine under basic conditions which are non-ideal. The dehydroalanine 

residues then undergo a Michael addition with a thiol reagent to yield a thioether linkage. The 

Michael addition is not stereospecific resulting in a diastereomeric mixture of modified proteins.12 

The N-terminus of a protein has unique pH-dependent reactivity and is thus an attractive target for 

single-site modification as shown by Dixon in 1984.8 Its decreased pKa value relative to amino groups 

on lysine side chains allows for selective acylation or alkylation. If there are many competing lysine 

side chains, it is difficult for this process to be selective. In 1964, Dixon performed a transamination 

at room temperature by using glyoxylate, catalytic base, and copper(I), which facilitated imine 

formation between the N terminus and the glyoxylate group (Table 2 entry 1 b).9 This had previously 

been performed at 100 oC by Bonetti and Co-workers in 1956.43 

Even with these improvements made by Dixon, the transamination reaction did not receive 

considerable attention until Francis and co-workers reported transamination that proceeds under 

ambient conditions without the need for metal or base additives (Table 2, entry 1 c).10 The method 

involves condensation of the N-terminal amine with pyridoxal-5-phosphate and subsequent 

hydrolysis to result in a pyruvamide. The protein can then be further modified through the ketone. 
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Extensive screening revealed that the transamination reaction proceeded best when Ala, Gly, Asp, 

Glu, or Asn occupied the N-terminal position. 

 

 

Table 2: Modern bioconjugate reactions for protein modifications involving particularly cysteine, tyrosine and 

tryptophan.2Adapted with permission from Angew. Chem. Int. Ed Engl., 2009, 48, 6974–6998. Copyright of Wiley. 

There has been a lot of focus on the modification of tyrosine and tryptophan residues which often 

use transition-metal-mediated processes (see also section 1.4). These residues are relatively 

uncommon in proteins, whilst being present in the majority of proteins, presenting opportunities for 

single-site modifications. Kodadek and co-workers reported the first example of metal-mediated 

modification of tyrosine in 2005. This involves oxidative coupling of two phenol rings using a 

nickel(II) catalyst and co-oxidant to cross-link two peptides (Table 2, entry 4).13 Additionally, Antos 

and Francis have developed a bioconjugation reaction for tryptophan, in which they used a rhodium 

carbenoid that was generated in situ from [Rh2(OAc)4] and a diazo compound (Table 2, entry 7) 

which functionalised the C-2 position on the indole as well as the indole nitrogen atom.14 However, 
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this reaction requires acidic conditions (pH≈2), which may affect the structure of some protein 

targets. 

There are several other modification strategies that can be undertaken, as collated in Figure 1: 1) 

copper-catalysed azide alkyne cycloaddition (CuAAC); 2) Staudinger reaction; 3) strained-promoted 

azide alkyne cycloaddition (SPAAC); and, 4) inverse electron demand Diels–Alder (IEDDA) 

cycloaddition. Whilst each of these reactions allow for protein modification using mild, biologically-

friendly, conditions, they each have separate issues. CuAAC requires Cu(I) salts which have a high 

toxicity as well as the issue that the terminal alkyne could possible react within a cell, particularly 

oxidative enzymes and cysteine residues in the active site of a protein.16,19 There is an added 

limitation of lower stability in biological conditions, this is most likely due to the slightly acidic 

alkyne proton,17 which can lead to alkyne homocoupling.18 Limitations of SPAAC include side 

reactions between thiols and the alkyne, same as for CuAAC, but with the added issue that the large 

size of the strained alkyne is not as suitable for metabolic labelling.20 The main limitation of the 

Staudinger reaction is that it is relatively slow compared to the other reactions in this section, and the 

synthesis of the components for the IEDDA reactions limits its application in the area. 

 

 

Figure 1: Different methods of adding a tag to a peptide. 1) CuAAC 2) Staudinger Reaction 3) SPAAC 4) IEDDA 
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1.4: Solid Phase Peptide Synthesis 
 

Solid Phase Peptide Synthesis (SPPS) was pioneered by Robert Merrifield, receiving the Nobel prize 

in 1984, which is the method of choice for synthesising peptides. This is a particularly useful method 

for peptides which are difficult for bacteria to express, the incorporation of unnatural amino acids, 

peptide backbone modification and the synthesis of D-proteins.34 

 

Figure 2: The process of SPPS 

 

The solid phase support is usually one of three resins; polystyrene, polyamide or PEG-based. Each 

have their own benefits and issues. Polystyrene or the ‘Merrifield resin’ was the original support used 

and is still used today for its versatility, ease of use in automated peptide synthesis and minimum 

swelling in DCM. It is made up polystyrene cross-linked with 2% divinylbenzene, this produces a 

hydrophobic bead that is solvated by a nonpolar solvent such as DCM or DMF.35 In recent years, 

new resins have been designed to be more chemically-inert or enhance swelling and rigidity. One 

example is cross-linked (50%) polystyrene, which allows for rapid reactions, better filtration of waste 

reagents and increased mechanistic stability. 

Polyamide resin is also versatile, but it is known to swell much more than polystyrene making it 

unsuitable for automated synthesis and if the wells are too small.36 The PEG-based resin is a modern 
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improvement to the previous resins and allows it to withstand repeated use of TFA during the 

deprotection stage.36 It also allows for the C-terminus to be altered by introducing additional resins 

such as PAM and pMBHA resins. PAM produces a C-terminus carboxylic acid whilst pMBHA 

produces an amide.  

1.4: Palladium Mediated Isolated Protein Modification  
 

The use of palladium in modifying proteins is appealing due to how well studied palladium catalysis 

is, and its versatility as a catalytic metal. An early example, reported by Kodadek, was oxidative 

crosslinking which used palladium(II)/tetrakis-(4-methylpyridyl)-porphyrin complex (PdIITMPyP) 

with ammonium persulfate (APS) to undergo photo-redox upon irradiation with visible light. The 

reaction occurs due to the electron transferring from the palladium species to APS, acting as an 

electron acceptor, to form a radical which extracts an electron from tyrosine to form a tyrosine radical 

which can couple with electron-rich residues such as those found in protein active sites. This did 

however have flaws, cysteine and tryptophan were found to trap tyrosine radicals reducing 

crosslinking capabilities. The sustainability of this reaction in a cell would be low due to the toxicity 

of the palladium catalyst, as well as the fact that making radicals inside a cell would fuel unwanted 

side reactions and could be potentially fatal to the cell.21 

 

Figure 3: Reaction scheme for oxidative crosslinking reported by Kodadek 21 
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Work conducted in 2006 by Tilley and Francis, based on the Tsuji-Trost reaction, allowed for site-

specific tyrosine modification using an electrophilic π-allyl species and a palladium catalyst, 

prepared from allylic chloride and carbamate precursors then activated with palladium acetate in the 

presence of triphenylphosphine tris(sulfonate) (TPPTS) to aid water solubility. Conversions of 50-

65% were seen in selective incorporation of lipophilic and dye molecules. 22 

 

Figure 4: Site-selective alkylation using π-allylpalladium complexes 22 

 

There has been work done on modifying cysteine residues by several different groups worth noting. 

Buchwald and Pentelute reported cysteine-modificaiton with an aryl group in an unprotected peptide 

chain.23 This was done using an organopalladium catalyst prepared using palladium chloride with an 

aryl halide and the 2-dicyclohexylphosphino-2,6-diisopropoxybiphenyl (RuPhos) ligand.23 The 

reductive elimination gives a C-S bond which is efficient to form and allows the reaction to be done 

at low temperatures. Messaoudi and co-workers developed a third generation aminobiphenyl 

palladacycle precatalyst which in organic and aqueous solvents, allows cysteine to conjugate with 

either aryl or alkyne halides. This worked in large polypeptides and allowed tags to be attached in 

excellent yields (80-99%).24 These two methods require that there is a solvent-exposed or single 

active residue to allow for the modification to occur in the correct way. When there are multiple 

active residues present, a heterogenous mixture is observed making these methods less favourable. 

In 2016, Davis found a way to bypass this issue by developing a method which binds the catalyst to 

a certain site, in this case aspartic acid, and allowing the nearby cysteine to be successfully modified. 

The catalyst for this method is prepared by using palladium acetate, aryl iodide and N,N-dimethyl-



23 
 

2-amino-4,6-dihydroxypyrimidine (DMADHP) as a ligand. The reaction conditions are not as 

biologically friendly, 65 oC, but with the ability to selectively pick which residue to target, the 

benefits are certainly useful25.  

1)23 

 
2)24 

 

3)25  
Figure 5: Palladium mediated modification method with cysteine 3) Reprinted with permission from J. Willwacher, R. 

Raj, S. Mohammed and B. G. Davis, J. Am. Chem. Soc., 2016, 138, 8678–8681. Copyright 2016 American Chemical 

Society. 
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In 2017, Buchwald and Pentelute managed to make a water stable palladium catalyst using a 

sulfonated biarylphosphine ligand and used this to modify an unprotected protein on a cysteine site. 

The catalyst activity was compared to other ligand, RuPhos and SPhos, and was found to get a 99% 

yield compared to the 20% from the other ligands. The reaction was completed in 5 minutes at room 

temperature in water with a TRIS additive.44 The reaction scheme is below. (Figure 6)  

 

Figure 6: Pd mediated modification of unprotected peptides using a sSPhos ligand 

1.5: Palladium mediated modified peptides within cell structures 
 

Using the methods in the previous section on an isolated peptide/protein is one thing, to be able to 

do this inside a cell brings a whole host of additional problems but would allow for the selective 

modulation of cellular processes by modification of enzymes and proteins. The problems of using 

palladium species intracellularly include possible toxicity issues, the permeability/solubility of the 

palladium complex, a suitable bio-orthogonal handle and dealing with the chemically-rich 

environment inside the cell.37,38 Despite these challenges, there have been studies that have shown 

selective modification of site specific proteins.  

Davis in 2013 successfully demonstrated the first Suzuki-Miyaura coupling reaction on the 

membrane protein OmpC which required pre-modification via genetic incorporation of a para-

iodophenol group for the selective modification to take place.39 The reaction employed Pd(OAc)2 
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and ADHP, which labelled the bacteria surface.40 This work prompted other research groups to try 

different methods, e.g. Chen in 2014 reported NHC/palladium complexes that are efficient catalysts 

for Suzuki-Miyaura cross couplings and have allowed for two proteins to be labelled with aryl 

boronic acid derivatives on mammalian cell surfaces.41 

 

Figure 7: Interaction of fluorescein-lectin conjugate with E. coli with labelled boronic acids40 Reproduced from Ref. 40 with 

permission from The Royal Society of Chemistry. 
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In 2011, Lin successfully conducted a Heck alkynylation using Pd(OAc)2 and DM-ADHP, aryl 

iodides and alkyne-containing proteins. This was conducted using a modified amino acid with a 

propargyl group. The alkyne modified protein is found on the surface of the mammalian cell41.This 

was further optimised to allow for specific labelling of the extracelluar domain of the cell, which is 

the epidermal growth factor for live mammalian cells.  

 

Figure 8: Heck alkynylation as reported by Lin in 2011.41 Reprinted with permission from N. Li, R. K. V. Lim, S. 

Edwardraja and Q. Lin, J. Am. Chem. Soc., 2011, 133, 15316–15319. Copyright 2011 American Chemical Society. 

In 2016, Hamachi reported a method for allosteric activation to modify protein function using 

palladium complexes with specifically inserted histidine residues. It works by replacing two 

specific amino acid in the protein sequence with histidine residues near the binding pocket in 

membrane receptor proteins. The histidine acts as a ligand with the Pd(NO3)2(bipy). When the 

palladium binds together to form the complex the protein adopts the required orientation for 

enhanced binding. The fact that the allosteric sites are artificially inserted and that a metal chelator 

residue in certain positions are an issue.42 
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1.6: Palladium Mediated Arylation of Tryptophan 
 

 

Figure 9: A tryptophan molecule showing the C2 hydrogen atom 

 

Tryptophan is an amino acid which has displayed a high suitability for modification, especially via 

arylation. The structure of tryptophan is shown in Figure 9; with the indole side chain, intermolecular 

interactions, such as hydrogen bonds and aromatic π stacking to name a few, with biologically 

relevant molecules. The presence of tryptophan also endows fluorescence on the molecule with 

modification on the indole ring changing the wavelength of fluorescence of the molecule. With the 

use of a fluorescence detector, the modification of tryptophan can be determined whether to be 

successful or not by if the fluorescence has changed. By using tryptophan, which has a low abundance 

in natural proteins, estimated roughly at 1.1% in natural proteins and peptides. As well as tryptophan 

having a low abundance, about 90% of proteins contain tryptophan hence making this a viable way 

of modifying proteins. In recent years, numerous methodologies have been developed for selective 

C2 arylation of tryptophan and tryptophan derivatives whilst in ‘free’ form and in structures such as 

proteins and peptides. 

There are several terms found in literature, these are ‘C-H bond activation’ and ‘C-H bond 

functionalisation’. Often these terms have been interchangeable but for this review C-H activation 

refers to the formation of an organometallic species from activation of an initial C-H bond. C-H 

functionalisation refers to the formation of a functionalised C-R species from an initial C-H species 

which proceeds via an organometallic species. Whilst the idea of direct arylation is promising, it is 

not without its pitfalls, often the reactions do not have good green metrics, table 3 compares the work 

of the Fairlamb26,27, Ackermann28 and Albericio29 groups in this area.  
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Table 3: Pd-Mediated C-H bond functionalisation of tryptophan 

 

 

Entry Ref. R Groups Cat.* 
Arylating 

agent 
Conditions 

Yield / 

% 

1 Fairlamb et al26 1.Ac- 

2.-OMe 

Pd(OAc)2, 

Cu(OAc)2 

PhB(OH)2 

5 eq. 

AcOH, 16 h, 

40 oC, air 
93 

2 Fairlamb et al27 1.Ac- 

2.-OMe 
Pd(OAc)2 

[MesPhI]OTf 

2 eq. 

EtOAc, 16 h, 

25 oC 

85 (91 

conv.) 

3 
Ackermann et 

al28 

1.Ac-

Ala- 

2.-O-Et 

Pd(OAc)2 
[Ph2I]OTs 

1.5 eq. 

AcOH, 17 h, 

23 oC 
99 

4 
Ackermann et 

al28 

1.Ac-

Ala- 

2.-O-Et 

Pd(OAc)2 
[Ph2I]OTs 

1.5 eq. 

H2O, 24 h, 23 
oC 

70 

5 
Ackermann et 

al28 

1.Ac-

Ala- 

2.-O-Et 

Pd(OAc)2 
[Ph2I]OTs 

1.5 eq. 

H2O, 24 h, 23 
oC 

60 

6 
Albericio/Lavilla 

et al29 

1.Ac- 

2.-O-Me 
Pd(OAc)2 

PhI 

4 eq. 

2-NO2Bz 

 (1.5 eq.), 

AgBF4 

(1 eq.), 

DMF, 5 min, 

150 oC 

MW 

89 

*Catalyst loading was 5 mol% for Pd(OAc)2 and 10 mol% for Cu(OAc)2 

 

Whilst there are issues, the advantages are that it removes the need for substrate pre-activation and 

has moderate to good yields. There are still changes being made to the procedures to make the 

reaction more environmentally friendly and still produce good yields. The type of catalyst typically 

used is Pd(OAc)2 although alternatives such as Pd(MeCN)2(OTs)2 can be used to similar effect (in 

the correct solvent). When using Pd(OAc)2, ethyl acetate is the solvent of choice, but it should be 

noted that the solvent does have an effect on the reaction rate as well as if an acid has been used in 

the system or not. The use of tosic and tetrafluoroboric acid reduces the catalyst induction period of 

the reaction which indicates that either the acids increase the rate of formation of the active catalyst 
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or the mechanism is different from the standard conditions. In a master's thesis from the Fairlamb 

group, an investigation into the role of acid additives was done.30 When 5 mol% tosic acid was 

employed, a short induction period was found, which was then followed by a fast kobs reaction. A 

similar trend was seen with tetrafluoroboric acid but with a longer induction time. This could be due 

to the acids having different pKa values, (TsOH -2.8, HBF4 -0.4) which could mean the acid would 

need to form the corresponding anion to form the active catalytic compound. Whilst the induction 

period changes with the different acids, the kobs value does not change when compared with the 

standard conditions which indicates that the active catalysts in all these reactions could be the same 

or have a similar structure.30 The water content is also an important factor as reactions done using 

dry conditions had less yield than the reaction using ‘wet’ solvents. 

 

Figure 10: The peptides which were arylated by the Fairlamb group 

 

Work has been done by the Fairlamb group which involves the arylation of peptides through 

palladium acetate and a copper acetate co-catalyst at ambient temperature in methanol. The peptide 

chains of different sequence and length, shown in Figure 10, from Trp-Lys-Leu-Val-Gly-Ala-OH to 

AcHN-Ala-Trp-Ala. The reaction of one peptide in particular, Ac-Ser-Gly-Trp-Ala-OH produced 
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the desired arylated product but also similar dihydroxylation byproducts, with a selectivity ratio of 

1:1.4. The involvement of the copper(II) for the oxidation process was critical.   The experiment was 

repeated using diaryliodonium salts and in acetic acid with no copper(II) acetate and the desired 

arylated product was isolated in a yield of 65%, meaning that using a diazonium salt negates the need 

for copper(II) in this reaction. This also brought about a byproduct of mesitylated product at a ratio 

of 10:1; this ratio is due the sterically hindered mesityl group. Use of more sterically hindered groups 

on the iodonium salt resulted in a lower reactivity in the system with a higher ratio of byproduct at 

5:1. When using small peptides which contain tryptophan, a protection/deprotection strategy was 

chosen. The use of the N-Ac protecting group previously used on a singular tryptophan molecule 

proved difficult to synthesise on the peptide chains, so the use of N-Boc was evaluated. The N-Boc 

group allowed only a trace amount of desired product to be produced along with unreacted starting 

material and expected side products from the iodonium salt. The use of N-TFA, TFA protected N 

terminus, removed this issue and delivered the desired arylated product in a isolated yield of 82% 

(with 17% of the mesityl product). This procedure of using aryl iodonium salts without copper acetate 

was applied to the peptides with terminal alanine residues, which previously afforded 

dihydroxylation byproducts, now provides the desired arylated product, although the solvent for this 

reaction was changed from ethyl acetate to isopropanol due to the polar nature of the molecules. 

The reactions of indoles via this methodology usually give the arylated product at the C-3 position. 

This is due to the nitrogen in the ring directing the aryl group onto the least hindered location. From 

work done by Stuart and Fagnou (2007), 31 it can be seen that the groups present on the indole group 

and on the aryl group effect the conversion and yield, as well as ratio of products made. The 

protecting groups always include an acetate group on the nitrogen but can be anything from a chlorine 

atom to an ester group on a carbon on the adjacent benzene ring. The products prepared include 

arylation on the C-3 position (major product), C-2 position and double arylation (undesired side 

product). Due to the fact tryptophan has an R group on the indole which allows for easier C-2 

arylation, we do not need to concern ourselves with these issues but it should be noted that these 

protecting groups present in Stuart and Fagnou’s paper could bring about positive benefits in similar 

work in regards to tryptophan.  
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Table 4:Catalytic Cross Coupling of unactivated arenes31 

 

 
R1 R2 Ar Yield(%) 

 

H H Ph 87 

OMe H Ph 84 

H OMe Ph 74 

 

Another interesting study on the subject of C-H bond activation of indoles was reported by Gaunt et 

al (2008)32 which proposed different directing groups for indole arylation, using the directing group 

pyrimidine, with the only product formed the C-2 arylated product. This procedure by Gaunt however 

cannot be used in biologically systems due to possible formation of triflic acid from the copper 

catalyst which is dangerous in itself and then can racemise to increase toxicity. Again, this may not 

affect most of work being done on tryptophan at the current time, the main aim of Yang’s 2016 paper 

showed how to arylate indoles at the C-7 position and if this was ever used on tryptophan, there could 

be a generation of C-7 modification of tryptophan.33 

 

Figure 11: 1) C3 and C2 arylation of unactivated indoles32 2) C7 arylation of unactivated indoles33 

 

When evaluating catalyst loadings, work reported by Lane and Sames in 2004 showed that the lower 

the catalyst loading for the Pd(OAc)2, the higher the product yield is, at the expense of biphenyl 
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formation. This study was done using a high temperature, use of PPh3, DMA as solvent and CsOAc 

as an additive. The palladium loadings were from 5mol% to almost trace amounts of catalyst. The 

loading with the best product formation was 0.5 mol %. The difference between 0.5 and 5 mol % 

loading in terms of product was about 10-15% while the bi-phenyl formation goes up to about 85%. 
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1.7: Project Aims 
 

Research in the field of tryptophan arylation has been limited. So far it has been limited to smaller 

peptides. The aim for this study are therefore as follows: 

1) To use the procedure with aryl-diazonium salts as used in the group (Thomas Sheridan’s 

Thesis)30, to assess if it is possible to modify peptides of different lengths with an aryl groups. 

2) To monitor if there is a change in peptide conformation following arylation, this will be done 

using ROESY NMR spectroscopic analysis. 

3) To develop a purification technique for the modified peptide that does not involve prep TLC 

or a column. 

4) Determine whether the kinetics for the peptide arylations are the same as a simple tryptophan 

derivative. 

The work herein attempts to address these aims, to gain an understanding of how this method affects 

longer-chain peptides. 
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Chapter 2: Results and Discussion 
 

2.1: Arylation of Tryptophan and showing non-stereospecificity 
 

To synthesise the starting material for the arylation, tryptophan is protected as a methyl 

ester to give compound 1 and then converted into an aceto-amide to form compound 2. The 

protection is done to ensure that the C-H activation does not interact with either of the 

amino groups.  This was done in two high-yielding steps, as shown in Figure 12. 

 

Figure 12: Protection procedure for tryptophan 

Once the tryptophan was di-protected, the use of pre-synthesised aryl diazonium salts 

allowed for the C-2 selective arylation, in the presence of Pd(OAc)2, in ethyl acetate. This 

was shown to give excellent conversion with all three of the aryl diazonium salts used, as 

shown in Figure 13.  
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Figure 13: Different arylated products using different aryl diazonium salts 

The synthetic methodology was tested using racemic and enantiomerically pure L-

tryptophan to assess whether there was an erosion of enantioselectivity. This was tested via 

the use of chiral HPLC as it can show whether both enantiomers have been modified, and 

whether racemization has occurred for non-racemic starting material. From the data shown 

in Figures 14, 15 and 16, both enantiomers were modified for the different aryl groups. 

From the HPLC traces, it can be seen that both enantiomers of the tryptophan are arylated 

as the peaks are close together and the L-enantiomer is overlaid to show that retention times 

match. 
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Figure 14: Chiral HPLC data for phenyl products 3 

 

 

Figure 15: Chiral HPLC data for para-methoxy products 4 
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Figure 16: Chiral HPLC data for para-fluoro products 6 
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2.2: Arylation of peptides 
 

Using the same reagents shown in Figure 13, it was applied to tryptophan containing peptides, 6-9, 

shown in Figure 17. These peptides were made using SPPS, a method discussed in the experimental 

section. The method was modified to run the reactions in methanol due to solubility issues and to 

increase the Pd catalyst loading to push the conversion higher. The peptides were chosen to contain 

different groups, specifically tyrosine, lysine and asparagine due to possible interactions with 

palladium, and to test the functional group tolerance. The peptides have a free carboxylic acid C-

terminus to maintain comparability to other reported synthetic methodologies. Esterification to the 

methyl ester (reaction solvent) is a potential implication in the context of the current arylation 

technology. 

 

Figure 17: Peptides used in this work 
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2.3: NMR conformational study of the peptides 
 

The conformation of a protein is an important factor to whether the protein will remain active or not. 

To assess this, the peptides modified previously were used with the phenyl diazonium salt to assess 

if there were any conformational changes. To discover the conformation, ROESY NMR 

spectroscopy was used to see what protons were within 5 angstroms of each other. To confirm the 

allocations of the atoms in the molecule, COSY, TOCSY, HSQC and HMBC NMR spectroscopy 

was used. COSY NMR spectroscopy shows interactions between adjacent protons, whilst TOCSY 

shows interactions with all the protons on consecutive atoms, as long as the proton chain is not broken 

the interactions will continue throughout the entire molecule. HSQC NMR spectroscopy shows 

which carbon peak corresponds to which proton peak by correlating a 1H spectrum with a 13C 

spectrum. HMBC NMR spectroscopy shows interactions between adjacent protons within a few 

bonds on carbon atoms.  

The unmodified peptides were analysed first to have something to compare against. The tri-peptide, 

AcNH-Ala-Trp-Ala-OH was the first peptide looked at due to simplicity of the molecule. Using other 

NMR techniques such as COSY, TOCSY, HSQC, HMBC as well as the standard one-dimensional 

proton and carbon, each atom in the molecule is assigned and shown below. 
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AcNH-Ala-Trp-Ala-OH (6) 

 

Figure 18: Molecule of AcNH-Ala-Trp-Ala-OH (6) 

NMR spectrum data for 6 

 

 

 

 

 

 

1H NMR (700 MHz, DMSO) δ 10.81 (s, 1H), 8.14 (d, J = 7.2 Hz, 1H), 7.98 (d, J = 7.2 Hz, 

1H), 7.84 (d, J = 8.2 Hz, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 7.13 (d, J 

= 2.1 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.96 (t, J = 7.3 Hz, 1H), 4.51 (td, J = 8.6, 4.4 Hz, 

1H), 4.24 – 4.15 (m, 2H), 3.15 (dd, J = 14.8, 4.3 Hz, 1H), 2.95 (dd, J = 14.9, 9.0 Hz, 1H), 

1.78 (s, 3H), 1.26 (d, J = 7.3 Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H). 

 

13C NMR (176 MHz, DMSO) δ 174.21, 172.37, 171.36, 169.44, 136.23, 127.64, 123.90, 

121.02, 118.67, 118.39, 111.44, 110.12, 53.13, 48.52, 47.79, 27.61, 22.69, 18.11, 17.39. 
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Figure 19: 1H NMR spectrum of 6, showing 1H assignments between δ 6.95 – 8.15 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 20: 1H NMR spectrum of 6, 1H assignments between δ 4.10 – 4.65 ppm (DMSO, 700 MHz, 300 K) 
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Figure 22: 1H NMR spectrum of 6, 1H assignments between δ 0.25 – 0.95 ppm (DMSO, 700 MHz, 300 K) 

5 16 

Figure 21: 1H NMR spectrum of 6, 1H assignments between δ 2.07 – 2.33 ppm (DMSO, 700 MHz, 300 K) 
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Figure 23: ROESY Spectrum of aromatic region of 6 – examination of the indole region (DMSO, 700 MHz, 300 K) 

From the ROESY spectrum, the indole nitrogen proton is close in proximity to the C-2’ proton, which 

is to be expected, but also close to the C-8’ proton, which is interesting due to it being on the a few 

bonds away. It can also be seen that the remaining aromatic protons are close to the adjacent proton. 
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Figure 24: ROESY Spectrum of 6 – examination of the peptide chain region (DMSO, 700 MHz, 300 K) 

Looking at the spectra above, proton 2 on the N terminus alanine is close to the methyl group on 

atom 8. This can be explained by rotation around C1 and C8 allowing the methyl group to be closer 

to the amide proton. The amide proton on the tryptophan residue, atom 6, is close to the protons on 

either atom 3 or 14. Atom 3 or 14 would be interesting as it is perceived to be further away from 

the proton on, it is more likely to be 3 due to the distance away from position 14. The amide proton 

on atom 12 can be seen to be close to atom 14 which is expected and atom 10 which is somewhat 

unexpected but could be due to the atom at 11 rotating. 
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Figure 25: ROESY Spectrum of aliphatic region of 6 – examination of the peptide backbone (DMSO, 700 MHz, 300 K) 

From the above spectra, the amide proton on atom 2 is close in proximity to atom 5, this requires 

that the molecule is somewhat contorted due to no interaction between the proton on atom 3, which 

is adjacent to the amide at position 2. The two diastereomeric protons on the β-carbon on the 

tryptophan residue are coupled together. The proton on atom 10, the α-carbon on the tryptophan 

residue is close in proximity to one of the diastereomeric protons but not the other. There is also 

coupling between the protons on atoms 3 to 5 and 14 to 16, this was to be expected for adjacent 

atoms. 
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Figure 26: TOCSY (Blue) and COSY (Red) spectrum of aromatic region of 6 – examination of nitrogen ring of the indole 

(DMSO, 700 MHz, 300 K) 

In the figure above, an interaction can be seen between the 1’ position proton and 2’ position 

proton. This is to be expected from adjacent protons. 
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Figure 27: TOCSY (Blue) and COSY (Red) spectrum of aromatic region of 6 – examination of the remaining indole group 

(DMSO, 700 MHz, 300 K) 

The NMR spectrum in Figure 27 contains the overlay of the COSY over the TOCSY. The TOCSY 

shows that the aromatic protons are all in series with no breaks in the proton chain. The COSY allows 

for the comparison of adjacent protons with the protons connected in the series.  
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Figure 28: TOCSY (Blue) and COSY (Red) spectrum of 6 – examination of the peptide backbone (DMSO, 700 MHz, 300 

K) 

The use of the TOCSY and COSY shows the protons in series in certain parts of the molecule. It 

can be seen that the amide proton on position 6 correlates with the α-carbon proton at position 10 

and then to the 2 diastereomeric protons on the β-carbon at position 19. Similarly, the series can be 

seen for the amide protons at position 2 and 12 and that the series continues to 5 and 16 

respectively. 
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Figure 29: HSQC and HMBC spectrum of the aromatic region of 6  - examination of the indole ring (DMSO, for 1H -700 

MHz,  for `13C - 176 MHz, 300 K) 

By using the HMBC and 13C HSQC, the links to nearby carbon atoms can be determined. The 

connections show interactions such as position 5’ on the aromatic ring interacts with positions 

3’,7’,4’ and 9’ on the aromatic ring. The proton at position 2’ shows that the interactions can go 

past heteroatoms such as nitrogen. 
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Figure 30: HSQC and HMBC spectrum of the aliphatic region of  6  - examination of the peptide backbone (DMSO, for 

1H -700 MHz,  for 13C - 176 MHz, 300 K) 

The use of the HMQC and HSBC show distinct differences between diastereomeric protons and the 

α-carbon at position 10. Through this, it can be seen that each proton interacts with the α-carbon on 

the tryptophan residue. 
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Figure 31: 13C NMR spectrum of 6, 13C assignments between δ  110.0 – 180.0 ppm (DMSO, 176 MHz, 300K) 

 

Figure 32: 13C NMR spectrum of 6, 13C assignments between δ 15.0 – 54.0 ppm (DMSO, 176 MHz, 300K) 
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AcNH-Ala-Trp-Ala-Tyr-Ala-OH (8) 

 

Figure 33: Reference molecule for Ala-Trp-Ala-Tyr-Ala (8) 

NMR spectrum data for 8 

 

 

 

 

 

 

 

1H NMR (700 MHz, DMSO) δ 10.80 (s, 1H), 9.12 (s, 1H), 8.13 (d, J = 7.1 Hz, 1H), 8.01 (d, J 

= 7.0 Hz, 1H), 7.89 (d, J = 7.4 Hz, 2H), 7.76 (d, J = 8.2 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.30 

(d, J = 8.1 Hz, 1H), 7.12 (s, 1H), 7.03 (dd, J = 11.5, 8.0 Hz, 3H), 6.92 (t, J = 7.4 Hz, 1H), 6.62 

(d, J = 8.3 Hz, 2H), 4.46 (td, J = 8.4, 4.5 Hz, 1H), 4.40 (td, J = 8.7, 4.5 Hz, 1H), 4.18 (dp, J = 

14.1, 7.0 Hz, 3H), 3.12 (dd, J = 14.9, 4.0 Hz, 1H), 2.98 – 2.91 (m, 2H), 2.68 (dd, J = 14.0, 9.3 

Hz, 1H), 1.91 (s, 1H), 1.78 (s, 3H), 1.27 (t, J = 9.0 Hz, 4H), 1.11 (t, J = 6.9 Hz, 7H). 

 

13C NMR (176 MHz, DMSO) δ 173.93, 172.46, 172.04, 171.79, 171.14, 170.71, 169.27, 

155.73, 136.00, 130.17, 127.72, 127.26, 123.56, 120.75, 118.43, 118.14, 114.81, 111.12, 

109.81, 53.84, 53.20, 48.45, 48.33, 47.45, 36.50, 27.13, 22.42, 21.05, 18.00, 17.79, 17.15. 
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Figure 34: 1H NMR spectrum of 8, showing 1H assignments between δ 9.1 – 10.8 ppm (DMSO, 700 MHz, 300 K) 

 

 

 

Figure 35: 1H NMR spectrum of 8, showing 1H assignments between δ 6.6 – 8.15 ppm (DMSO, 700 MHz, 300 K) 
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Figure 36: 1H NMR spectrum of 8, showing 1H assignments between δ 2.6 – 4.5 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 37: 1H NMR spectrum of 8, showing 1H assignments between δ 1.00 – 1.95 ppm (DMSO, 700 MHz, 300 K) 
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Figure 38: ROESY Spectrum of aromatic region of 8 – examination of the indole region (DMSO, 700 MHz, 300 K) 

Looking at the ROESY spectrum in Figure 38, the interactions between the aromatic protons 

become clear. In the indole, there are interactions between position 6’ and 7’, to be expected. As 

are the interactions between 5’ and 6’, and 7’ and 8’. In the tyrosine ring, interactions with the 

protons in positions 11’ and 12’ are seen, as well as an interaction between 12’ and 14’. The latter 

interaction is more interesting due to the oxygen present in the alcohol group. The bent angle from 

the lone pairs on the oxygen could have meant that there were no interactions with the other 

protons or interactions with just one.  
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Figure 39: ROESY Spectrum of aromatic region of 8 – examination of the peptide chain region (DMSO, 700 MHz, 300 K) 

The spectrum above shows interactions with the amide proton at position 14 with the methyl 

protons on the β-carbon at position 16, which is expected. There is an additional interaction 

between 14 and 10 which is slightly unusual due to the perceived distance but if the bond between 

10 and 11 rotates, then 14 is near 10. The amide protons at positions 9 and 1 have interactions with 

positions 4 and 26 which are several bonds away, this is an indicator that the molecule is bending 

and allowing for unusual interactions. There are interactions between positions 2, 15,25 to 4, 16 

and 26 respectively. These interactions are expected. There are 2 sets of diastereomeric protons in 

this molecule, one being on the tryptophan β-carbon and the other of the tyrosine β-carbon, they 

interact internally. 
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Figure 40: ROESY Spectrum of aromatic region of 8 – examination of the peptide backbone (DMSO, 700 MHz, 300 K) 

From the spectrum above, interactions can be seen between either the 5’-position proton on the 

indole aromatic ring or the 11’ position on the tyrosine aromatic ring with one of the diastereomeric 

protons. This is quite unusual due to the position of both of these protons in relation to the β-carbon 

proton on the tryptophan. Due to the sheer size of the indole ring, it would be predicted that the 

interaction is with the 11’ position proton on the tyrosine indicating the molecule bending. There 

are interactions between the amide protons at position 9 and 19 with one of the diastereomeric 

protons on the nearby β-carbon protons, positions 12 and 21 respectively. Rotation of the protons 

around the nitrogen at position 9 explains the interactions with only one of the diastereomeric 

protons. 
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Figure 41: TOCSY (Blue) and COSY (Red) spectrum of 8 – examination of the indole ring (DMSO, 700 MHz, 300 K) 

From the spectrum above, it can be seen that there is an interaction between protons 1’ and 2’ 

which is to be expected. 
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Figure 42: TOCSY (Blue) and COSY (Red) spectrum of 8 – examination of the aromatic rings (DMSO, 700 MHz, 300 K) 

Through the TOCSY and COSY, it can be seen that there are 2 different aromatic rings present. 



60 
 

 

 

 

 

 

 

Figure 43: TOCSY (Blue) and COSY (Red) spectrum of 8 – examination of the peptide backbone (DMSO, 700 MHz, 300 

K) 

Through the spectrum above, it can be seen that the amide protons at 9 and 19 are in series with the 

diastereomeric protons on the β-carbons of the tryptophan and tyrosine residues. This indicates that 

the assignment of the protons is correct. 
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Figure 44: TOCSY (Blue) and COSY (Red) spectrum of 8 – examination of the diastereomeric protons (DMSO, 700 MHz, 

300 K) 
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*7-5+6 

 

 

 

 

Figure 45: HSQC and HMBC spectrum of the aliphatic region of  8  - examination of the aromatic region (DMSO, for 1H 

-700 MHz,  for `13C - 176 MHz, 300 K) 
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Figure 46: HSQC and HMBC spectrum of the aliphatic region of  8  - examination of the aliphatic region (DMSO, for 1H 

-700 MHz,  for `13C - 176 MHz, 300 K) 
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Figure 47: 13C NMR spectrum of 8, 13C assignments between δ 169.5 – 174.0 ppm (DMSO, 176 MHz, 300K) 

 

 

 

Figure 48: 13C NMR spectrum of 8, 13C assignments between δ 110.0 – 157.0 ppm (DMSO, 176 MHz, 300K) 
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Figure 49: 13C NMR spectrum of 8, 13C assignments between δ 16.0 – 55.0 ppm (DMSO, 176 MHz, 300K) 
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AcNH-Ser-Gly-Trp-Ala-OH (7) 

 

Figure 50: Reference molecule for Ser-Gly-Trp-Ala 7 

NMR spectrum data for 7 

 

 

 

 

 

1H NMR (700 MHz, DMSO) δ 12.49 (s, 1H), 10.79 (s, 1H), 8.26 (d, J = 7.1 Hz, 1H), 8.14 

(t, J = 5.5 Hz, 1H), 7.97 (dd, J = 12.5, 8.0 Hz, 2H), 7.61 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 

8.0 Hz, 1H), 7.14 (s, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 4.98 (s, 1H), 

4.56 (td, J = 9.0, 4.1 Hz, 1H), 4.21 (dd, J = 13.6, 6.7 Hz, 2H), 3.71 (dd, J = 16.8, 5.9 Hz, 

1H), 3.62 – 3.53 (m, 3H), 3.15 (dd, J = 14.7, 3.7 Hz, 1H), 2.90 (dd, J = 14.7, 9.7 Hz, 1H), 

1.86 (s, 3H), 1.30 (d, J = 7.3 Hz, 3H). 

 

13C NMR (176 MHz, DMSO) δ 173.95, 171.27, 170.73, 169.67, 168.48, 136.01, 127.22, 

123.67, 120.72, 118.30, 118.16, 111.23, 110.00, 61.63, 55.40, 52.97, 47.55, 42.12, 27.67, 

22.53, 17.05. 
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Figure 51: 1H NMR spectrum of 7, showing 1H assignments between δ 10.7 – 12.7 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 52: 1H NMR spectrum of 7, showing 1H assignments between δ 6.9 – 8.3 ppm (DMSO, 700 MHz, 300 K) 
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Figure 53:  1H NMR spectrum of 7, showing 1H assignments between δ 3.5 – 5.0 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 54: 1H NMR spectrum of 7, showing 1H assignments between δ 2.86 – 3.16 ppm (DMSO, 700 MHz, 300 K) 
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Figure 55: 1H NMR spectrum of 7, showing 1H assignments between δ 1.25 – 1.9 ppm (DMSO, 700 MHz, 300 K) 
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Figure 56: ROESY Spectrum of aromatic region of 7 – examination of the indole region (DMSO, 700 MHz, 300 K) 

From the spectra in Figure 56, the usual interactions between the aromatic protons can be seen with 

additional interaction between the indole nitrogen proton and the position 8’ proton on the aromatic 

ring, which is the same as Ala-Trp-Ala but not Ala-Trp-Ala-Tyr-Ala, this could be due to low steric 

bulk of the other amino acids in the peptide compared to the Tyrosine. Another unusual set of 

interactions involving the amide protons, the position 12 proton has an interaction with position 15 

and position 9 has an interaction with position 3. From the molecule, it can be assumed that the 

molecule is bending which causes the molecule to fold back in on itself. If this is the case, it can be 

assumed that proton 9 interacts with 3 and 12 interacts with 15. 
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Figure 57: ROESY Spectrum of 7 – examination of the peptide backbone (DMSO, 700 MHz, 300 K 

There are several interesting interactions in the spectrum above, the amide proton at position 9 

interacts with the diastereomeric protons at position 10 but so does the proton at position 12 or 3, 

but with the closer proximity of 12, it is assumed to be proton 12 which is close to both the 

diastereomeric protons. The amide proton at position 3 is close to the methyl proton at position 1, 

which is to be expected. Proton 15 is close to the protons at position 17 which is expected. The 

amide proton at position 3 or 12 is close to one of the diastereomeric protons on atom 21. This is 

unusual but can be explained by the molecule curving on itself therefore it is likely to be the 

position 12 proton. 
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Figure 58: TOCSY (Blue) and COSY (Red) spectrum of 7 – examination of the indole ring on the nitrogen (DMSO, 700 

MHz, 300 K) 
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Figure 59: TOCSY (Blue) and COSY (Red) spectrum of 7 – examination of the indole ring (DMSO, 700 MHz, 300 K) 
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Figure 60: TOCSY (Blue) and COSY (Red) spectrum of 7 – examination of the peptide backbone (DMSO, 700 MHz, 300 

K) 
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Figure 61: TOCSY (Blue) and COSY (Red) spectrum of 7 – examination of the aliphatic region (DMSO, 700 MHz, 300 

K) 

There are several positions that overlap therefore they need qualifying. Position 6 is overlapped 

with 10b. Through the spectrum above, it can be seen that proton 7 is interacting with position 6 

and proton 6 interacts with position 5.  
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Figure 62: HSQC and HMBC spectrum of the aromatic region of 7  - examination of the indole ring (DMSO, for 1H -700 

MHz,  for `13C - 176 MHz, 300 K) 
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Figure 63: HSQC and HMBC spectrum of the aromatic region of 7  - examination of the aliphatic region (DMSO, for 1H 

-700 MHz,  for `13C - 176 MHz, 300 K) 

 



78 
 

 

Figure 64:  13C NMR spectrum of 7, 13C assignments between δ 156 - 188 ppm (DMSO, 176 MHz, 300K) 

 

Figure 65:  13C NMR spectrum of 7, 13C assignments between δ 110 - 138 ppm (DMSO, 176 MHz, 300K) 
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Figure 66: 13C NMR spectrum of 7, 13C assignments between δ 15 – 65 ppm (DMSO, 176 MHz, 300K) 
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AcNH-Val-Trp-Asn-Asn-Lys-Thr-Ala-OH (9) 

 

Figure 67: One half of the Val-Trp-Asn-Asn-Lys-Thr-Ala molecule (9)

 

Figure 68: The other half of the Val-Trp-Asn-Asn-Lys-Thr-Ala molecule (9) 
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NMR spectrum data for 9 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69: 1H NMR spectrum of 9, showing 1H assignments between δ 10.70 – 10.80 ppm (DMSO, 700 MHz, 300 K) 

1’
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1H NMR (700 MHz, DMSO) δ 10.77 (s, 1H), 8.11 (t, J = 8.6 Hz, 2H), 7.98 (d, J = 7.4 Hz, 2H), 

7.93 (d, J = 7.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.62 – 7.55 (m, 4H), 

7.45 (d, J = 14.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 1H), 7.11 (s, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.96 

(dd, J = 14.1, 6.6 Hz, 3H), 4.76 (s, 1H), 4.53 (td, J = 13.7, 6.5 Hz, 3H), 4.26 (dd, J = 13.3, 8.7 

Hz, 1H), 4.21 – 4.15 (m, 2H), 4.09 (t, J = 7.7 Hz, 1H), 3.98 – 3.92 (m, 1H), 3.12 (dd, J = 14.8, 

4.2 Hz, 1H), 2.94 (dd, J = 14.9, 9.4 Hz, 1H), 2.76 (dt, J = 21.2, 10.6 Hz, 2H), 2.59 (dd, J = 15.6, 

6.9 Hz, 1H), 2.46 – 2.37 (m, 1H), 1.91 (s, 2H), 1.88 (dd, J = 13.6, 6.8 Hz, 1H), 1.84 (s, 3H), 

1.74 (d, J = 7.2 Hz, 1H), 1.63 – 1.56 (m, 1H), 1.51 (td, J = 14.9, 7.3 Hz, 3H), 1.38 – 1.29 (m, 

3H), 1.27 (d, J = 7.3 Hz, 4H), 1.06 (d, J = 6.3 Hz, 4H), 0.76 (dd, J = 6.6, 3.1 Hz, 7H). 

 

13C NMR (176 MHz, DMSO) δ 173.70, 171.77, 171.59, 171.22, 171.10, 170.95, 170.64, 

170.53, 169.40, 169.32, 135.76, 127.04, 123.28, 120.61, 118.14, 117.95, 110.98, 109.69, 66.34, 

57.86, 57.80, 52.95, 52.33, 49.62, 49.46, 47.31, 38.52, 36.68, 36.37, 30.45, 29.89, 27.12, 26.20, 

22.24, 21.80, 20.82, 19.48, 18.98, 17.88, 17.05. 
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Figure 70: 1H NMR spectrum of 9, showing 1H assignments between δ 7.56 – 8.16 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 71: 1H NMR spectrum of 9, showing 1H assignments between δ 6.90 – 7.46 ppm (DMSO, 700 MHz, 300 K) 
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Figure 72: 1H NMR spectrum of 9, showing 1H assignments between δ 3.90 – 4.80 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 73: 1H NMR spectrum of 9, showing 1H assignments between δ 2.4 – 3.15 ppm (DMSO, 700 MHz, 300 K) 
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Figure 74: 1H NMR spectrum of 9, showing 1H assignments between δ 1.25 – 1.90 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 75: 1H NMR spectrum of 9, showing 1H assignments between δ 0.72 – 1.08 ppm (DMSO, 700 MHz, 300 K) 
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Figure 76: ROESY Spectrum of aromatic region of 9 – examination of the indole region (DMSO, 700 MHz, 300 K) 

The spectra above show the usual interactions of the aromatic protons but with the additional 

interaction of the indole nitrogen proton and position 8’ proton, similar to the interactions seen in 

Ala-Trp-Ala and Ser-Gly-Trp-Ala. Similar to Ser-Gly-Trp-Ala, there are interactions between 

several of the amide protons, mainly 25 to 39 and 25 to 33 or 9. These interactions are unusual due 

to the distance between the atoms but this indicates that there is a folding effect in molecule. There 

is an interaction between 9 or 33 to 19 or 12 , in regards to this the interaction must be between 9 

and 12. 
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Figure 77: ROESY Spectrum of aromatic region of 9 – examination of the peptide chain (DMSO, 700 MHz, 300 K) 

The interactions in this molecule are plentiful, there are interactions between position 19 and 20 

and 12 and 14, this is to be expected from adjacent atoms. The amide proton at position 9 is 

interacting with the diastereomeric protons on the tryptophan residue at position 13 but only with 

one of the protons. The remaining interactions are between adjacent atoms which you would expect 

to see. 
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Figure 78: ROESY Spectrum of aromatic region of 9 – examination of the peptide backbone (DMSO, 700 MHz, 300 K) 
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Figure 79: ROESY Spectrum of aromatic region of 9 – examination of the peptide backbone 2 (DMSO, 700 MHz, 300 K) 

There is an interaction between the proton at position 10 and one of the diastereomeric protons on 

the tryptophan residue, 13. There is also an interaction between 14 and one of the diastereomeric 

protons on the asparagine residue, 15, and one between 20 and one of the diastereomeric protons on 

21. The proton at position 5 links to the protons at position 6 and 7 as well as position 4. The 

diastereomeric protons at position 27 interact with themselves as well as with the proton on the α-

carbon of the lysine at position 26. There is also interaction between 27, 28, 29 and 30 which 

indicates a contorted lysine residue. The amide protons at position 19 and 12 interact with both of 

the diastereomeric protons on position 15 and 21. There is an interaction with 21 and 23 which is 

unusual due to the positions. The proton at position 36 is close to the protons at 35 and 34, this is 

expected but the lack of interaction between position 37 with any other proton is interesting, with 

possible hydrogen bonding between the proton and the carboxyl group at 32. 
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Figure 80: TOCSY (Blue) and COSY (Red) spectrum of 9 – examination of the indole ring on the nitrogen (DMSO, 700 

MHz, 300 K) 
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Figure 81: TOCSY (Blue) and COSY (Red) spectrum of 9 – examination of the indole group (DMSO, 700 MHz, 300 K) 
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Figure 82: TOCSY (Blue) and COSY (Red) spectrum of 9 – examination of the peptide chain (DMSO, 700 MHz, 300 K) 
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Figure 83: TOCSY (Blue) and COSY (Red) spectrum of 9 – examination of the aliphatic region (DMSO, 700 MHz, 300 

K) 
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Figure 84: HSQC and HMBC spectrum of the aromatic region of  9  - examination of the indole group (DMSO, for 1H -

700 MHz,  for `13C - 176 MHz, 300 K) 
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*15b,a and 21b,a 

**15b,a/21b,a-14/20 

 

 

 

 

Figure 85: HSQC and HMBC spectrum of the aliphatic region of 9 - examination of the aliphatic region (DMSO, for 1H -

700 MHz,  for `13C - 176 MHz, 300 K) 
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Figure 86: 13C NMR spectrum of 9, 13C assignments between δ 168.8 – 174.0 ppm (DMSO, 176 MHz, 300K) 

 

 

Figure 87: 13C NMR spectrum of 9, 13C assignments between δ 105.0 – 138.0 ppm (DMSO, 176 MHz, 300K) 
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Figure 88: 13C NMR spectrum of 9, 13C assignments between δ 45 - 67 ppm (DMSO, 176 MHz, 300K) 

 

Figure 89: 13C NMR spectrum of 9, 13C assignments between δ 17 -40 ppm (DMSO, 176 MHz, 300K) 
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AcNH-Ala-Trp(Ph)-Ala-OMe (10) 

 

Figure 90: Reference molecule for Ala-Trp(Ph)-Ala (10) 

NMR spectrum data for 10 

 

 

 

 

 

 

 

1H NMR (700 MHz, DMSO) δ 11.16 (s, 1H), 8.02 – 7.98 (m, 2H), 7.88 (d, J = 8.4 Hz, 1H), 

7.68 (d, J = 7.7 Hz, 3H), 7.48 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 8.0 

Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 4.61 (dd, J = 14.9, 7.6 Hz, 1H), 

4.23 – 4.17 (m, 1H), 4.10 (dt, J = 13.8, 7.0 Hz, 2H), 3.48 (s, 3H), 3.33 (dd, J = 14.6, 6.5 Hz, 

1H), 3.10 (dd, J = 14.5, 7.8 Hz, 1H), 1.79 (s, 3H), 1.19 (d, J = 7.3 Hz, 4H), 1.01 (d, J = 7.1 

Hz, 3H). 

 

13C NMR (176 MHz, DMSO) δ 172.53, 171.96, 170.90, 169.51, 135.93, 135.27, 132.75, 

128.99, 128.59, 128.11, 127.29, 121.38, 119.29, 118.65, 110.94, 107.62, 53.72, 51.74, 

48.59, 47.63, 27.45, 22.48, 17.51, 16.98. 
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Figure 91: 1H NMR spectrum of 10, showing 1H assignments between δ 11.1 – 11.2 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 92: 1H NMR spectrum of 10, showing 1H assignments between δ 6.95- 8.05 ppm (DMSO, 700 MHz, 300 K) 
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Figure 93: 1H NMR spectrum of 10, showing 1H assignments between δ 3.0 – 4.7 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 94: 1H NMR spectrum of 10, showing 1H assignments between δ 0.95 – 1.85 ppm (DMSO, 700 MHz, 300 K) 
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Figure 95: ROESY Spectrum of aromatic region of 10 – examination of the indole region (DMSO, 700 MHz, 300 K) 

There are interactions between the indole nitrogen proton at position 1’ and the newly inserted 

aromatic ring on position 11’ or the proton at position 5’, and there is also an interaction between 

position 1’ and position 8’. This is similar to the unarylated version but could be due to the proton 

being slightly positioned away from the new aromatic ring and towards the 8 proton. 
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Figure 96: ROESY Spectrum of aromatic region of 10 – examination of the indole region part 2(DMSO, 700 MHz, 300 K) 

The interactions between the aromatic protons show interaction between the indole protons at 

position 6’ and 7’, 8’ and 7’ and 5’ and 6’. The newly added aryl protons show interactions 

between themselves at position 11’ to 12’, and 12’ to 13’. All these interactions are to be expected. 
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Figure 97: ROESY Spectrum of 10 – examination of the peptide chain (DMSO, 700 MHz, 300 K) 

There are some interesting interactions in the spectra above, the proton at position 5 on the indole 

ring or 11 on the added aryl ring interacts with both of the diastereomeric protons at position 14 

meaning that one of the protons is most likely positioned directly between the diastereomeric 

protons. There is also an interaction between 5 or 11 with the α-carbon proton at position 8. With 

these sets of interactions, it is likely that one interacts with the diastereomeric protons and the other 

with the α-carbon proton. The amide protons at position 3 and 10 have interactions with the α-

carbon proton at position 4 and 11 respectively which is expected. The proton at position 3 also has 

an interaction at position 1. There is an interaction between the amide proton. The amide proton at 

position 3 or 10 interacts with the α-carbon proton at position 8, it is more likely position 10 than 3. 

The amide proton at position 7 interacts with the α-carbon proton at position 11. 
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Figure 98: ROESY Spectrum of aliphatic region of 10 – examination of the peptide chain (DMSO, 700 MHz, 300 K) 

From the spectra above, interactions can be seen between the tryptophan residue α-carbon proton at 

position 8 and one of the diastereomeric protons on the tryptophan residue β-carbon at position 14. 

There are interactions between the adjacent protons at positions 4 to 5 and 11 to 12 which is to be 

expected. 
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Figure 99: TOCSY (Blue) and COSY (Red) spectrum of 10 – examination of the indole ring (DMSO, 700 MHz, 300 K) 
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Figure 100: TOCSY (Blue) and COSY (Red) spectrum of 10 – examination of the peptide chain(DMSO, 700 MHz, 300 

K) 
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Figure 101: TOCSY (Blue) and COSY (Red) spectrum of 10 – examination of the peptide backbone (DMSO, 700 MHz, 

300 K) 
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Figure 102: HSQC and HMBC spectrum of the aromatic region of 10 - examination of the indole ring (DMSO, for 1H -

700 MHz,  for `13C - 176 MHz, 300 K) 
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Figure 103: HSQC and HMBC spectrum of the aliphatic region of 10 - examination of the peptide backbone (DMSO, for 

1H -700 MHz,  for `13C - 176 MHz, 300 K) 



109 
 

 

Figure 104: 13C NMR spectrum of 10, 13C assignments between δ 169 - 173 ppm (DMSO, 176 MHz, 300K) 

 

Figure 105: 13C NMR spectrum of 10, 13C assignments between δ 107 - 137 ppm (DMSO, 176 MHz, 300K) 
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Figure 106: 13C NMR spectrum of 13C spectrum of 10, 13C assignments between δ 16 - 54 ppm (DMSO, 176 MHz, 300K) 
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AcNH-Ala-Trp-Ala-OH vs. AcNH-Ala-Trp(Ph)-Ala-OMe 

 

 

Figure 107: Ala-Trp-Ala (left) and Ala-Trp(Ph)-Ala (right) 

Comparing the two molecules, the main differences would be in the aromatic region and low in the 

aliphatic region due to the methyl ester formation.  When comparing the aromatic region, in Figure 

23, the ROESY spectrum shows interactions between all adjacent protons including the 2’ proton. 

Once arylated, the 2’ proton peak is removed and included the extra aromatic protons 11’, 12’ 13’ 

with an additional interaction between 1’ and 11’ which indicates that the aromatic ring is 90o from 

the indole ring, spectra shown in Figures 95 and 96. Using the TOCSY and COSY spectra in 

Figures 27 and 99, it can be seen that there is only one aromatic cycle in Ala-Trp-Ala whilst there 

are two in the arylated product. When comparing the chemical shifts for the aromatic protons, the 

indole proton in Ala-Trp-Ala is at 10.81 ppm whilst in the arylated product the indole proton shifts 

to 11.16 ppm meaning that the aromatic ring deshields the indole proton. The remaining aromatic 

protons did not change too much except for 5’ which moved from 7.58 to 7.68.  

Looking at the backbone of the peptide, for Ala-Trp-Ala the amide proton 2 had interactions with 

the protons at the acetyl protection group 8 and the adjacent proton on the α-carbon 3. The 

interactions of 2 changes to include the β-carbon protons as well as the other protons after 

arylation. The amide proton 12 has interactions with 10 and 16 but not with the adjacent proton on 

the α-carbon 13. The arylated product has interactions between 12, 13 and 16 but no longer with 

10. The amide proton 6 showed interactions between positions 3 and 5 in Ala -Trp-Ala., whilst in 

the arylated product the proton at 6 only interacts with the adjacent proton 10. In both the arylated 
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and unarylated molecule, there are interactions between the α-carbon protons and the β-carbon 

protons in the peptide backbone which was expected.  

The final area which had some difference was the low shift aliphatic region (<2 ppm). In the 

starting material, there were only two peaks of integral 3 showing the two methyl sidechains of the 

alanine residues. In the arylated product, there were three peaks with integrals of 3 which 

represents the two methyl sidechains of the alanine residues and the methyl ester formed in the 

product.  
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AcNH-Ala-Trp(Ph)-Ala-Tyr-Ala-OMe (12) 

 

 

Figure 108: Reference molecule for Ala-Trp(Ph)-Ala-Tyr-Ala (12) 

NMR spectrum data for 12 

 1H NMR (700 MHz, DMSO) δ 11.17 (s, 1H), 8.16 (d, J = 6.2 Hz, 2H), 8.00 (d, J = 23.1 Hz, 

3H), 7.80 (d, J = 7.8 Hz, 1H), 7.68 – 7.63 (m, 5H), 7.46 (t, J = 7.5 Hz, 4H), 7.36 (t, J = 7.3 

Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 7.5 Hz, 2H), 6.99 (d, J = 8.0 Hz, 3H), 6.96 (t, 

J = 7.4 Hz, 2H), 6.62 (d, J = 7.9 Hz, 4H), 4.52 (dd, J = 13.9, 7.3 Hz, 2H), 4.33 (dd, J = 13.2, 

8.6 Hz, 2H), 4.24 – 4.18 (m, 2H), 4.07 (dd, J = 14.5, 7.1 Hz, 4H), 3.59 (s, 5H), 2.90 (dd, J = 

14.0, 4.3 Hz, 2H), 2.65 (dd, J = 13.9, 9.4 Hz, 2H), 2.58 (d, J = 15.5 Hz, 1H), 1.76 (s, 5H), 

1.24 (d, J = 7.2 Hz, 8H), 1.10 – 1.06 (m, 7H), 1.01 (q, J = 7.5 Hz, 7H). 
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Figure 109: 1H NMR spectrum of 12, showing 1H assignments between δ 11.1 – 11.2 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 1101H NMR spectrum of 12, showing 1H assignments between δ 7.3 – 8.2 ppm (DMSO, 700 MHz, 300 K) 
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Figure 111: 1H NMR spectrum of 12, showing 1H assignments between δ 6.58 – 7.1 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 112: 1H NMR spectrum of 12, showing 1H assignments between δ 4.0 – 4.6 ppm (DMSO, 700 MHz, 300 K) 

7’ 

15’ 

6’ 

16’ 

8 15 
11 

4/19 



116 
 

 

Figure 113: 1H NMR spectrum of 12, showing 1H assignments between δ 2.6 – 3.6 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 114: 1H NMR spectrum of 12, showing 1H assignments between δ 1.0 – 1.75 ppm (DMSO, 700 MHz, 300 K) 
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Figure 115: ROESY Spectrum of aromatic region of 12 – examination of the indole region (DMSO, 700 MHz, 300 K) 

From the spectra above, interactions between the indole nitrogen proton at position 1’ and the 

protons on the new aryl group at position 11’ or the indole proton at position 5’ and interactions 

with position 8’. This interaction wasn’t seen in the starting material, this interaction could be due 

to repulsion from the new aryl group. 
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Figure 116: ROESY Spectrum of aromatic region of 12 – examination of the aromatic region (DMSO, 700 MHz, 300 K) 

The new aryl protons can be seen interacting, 11’ to 12’ and 12’ to 13’ which is expected. The 

other aromatic protons all interact with each other in the expected manner. 
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Figure 117: TOCSY (Blue) and COSY (Red) spectrum of 12 – examination of the aromatic area (DMSO, 700 MHz, 300 

K) 
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Figure 118: TOCSY (Blue) and COSY (Red) spectrum of 12 – examination of the peptide backbone (DMSO, 700 MHz, 

300 K) 
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AcNH-Ser-Gly-Trp(Ph)-Ala-OMe (11) 

 

 

Figure 119: Reference Molecule for Ser-Gly-Trp(Ph)-Ala (11) 

NMR spectrum data for 11  

 

 

 

 

 

 

 

 

1H NMR (700 MHz, DMSO) δ 11.16 (s, 1H), 8.20 (d, J = 6.9 Hz, 1H), 8.16 (t, J = 4.9 Hz, 1H), 

8.14 – 8.09 (m, 2H), 7.69 (d, J = 7.6 Hz, 3H), 7.49 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 

7.32 (d, J = 8.0 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 5.16 (s, 1H), 4.74 – 

4.65 (m, 1H), 4.25 – 4.17 (m, 2H), 3.68 (dt, J = 15.0, 7.5 Hz, 1H), 3.55 (dd, J = 16.6, 10.3 Hz, 

3H), 3.49 (d, J = 5.0 Hz, 1H), 3.47 (s, 3H), 3.02 (dd, J = 14.4, 7.7 Hz, 1H), 1.86 (s, 3H), 1.21 (d, J 

= 7.2 Hz, 3H). 

 

13C NMR (176 MHz, DMSO) δ 172.98, 171.30, 170.19, 168.76, 136.37, 135.70, 133.21, 129.47, 

129.07, 128.57, 127.73, 121.71, 119.70, 119.13, 111.35, 108.05, 62.07, 55.97, 54.25, 52.25, 48.06, 

42.61, 28.56, 23.03, 17.42. 
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Figure 120: 1H NMR spectrum of 11, showing 1H assignments between δ 11.12 – 11.2 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 121: 1H NMR spectrum of 11, showing 1H assignments between δ 6.9 – 8.2 ppm (DMSO, 700 MHz, 300 K)) 
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Figure 122: 1H NMR spectrum of 11, showing 1H assignments between δ 2.9 – 5.2 ppm (DMSO, 700 MHz, 300 K) 

 

Figure 123: 1H NMR spectrum of 11, showing 1H assignments between δ 1.1 – 1.9 ppm (DMSO, 700 MHz, 300 K) 
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Figure 124: ROESY Spectrum of aromatic region of 11 – examination of the indole region with respect to the nitrogen 

(DMSO, 700 MHz, 300 K) 

The spectrum above shows the interactions between the indole nitrogen proton at position 1’ and 

position 8’ on the indole ring and position 11’ on the new aryl ring or the 5’ position on the indole 

ring. 
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Figure 125: ROESY Spectrum of aromatic region of 11 – examination of the indole region (DMSO, 700 MHz, 300 K) 

The spectra above indicates that the aromatic rings don’t interact with each other, except for the 

indole proton and position 11’ on the aryl ring. All the other interactions are as expected in the 

aromatic area. 



126 
 

 

 

 

 

 

 

Figure 126: ROESY Spectrum of 11 – examination of the peptide chain (DMSO, 700 MHz, 300 K) 

The interactions shown in the spectra above shows that the aromatic proton at either position 11’ or 

5’ interact with the diastereomeric protons on the β-carbon of the tryptophan residues at position 

19. There is an interaction between the amide protons at position 3 and 14 and position 1 and 16. 

The amide proton at position 11 interacts with the α-carbon proton of the tryptophan residue at 

position 12. The amide protons at positions 3 and 14 also interact with the protons at position 4 and 

15 which is to be expected from adjacent atoms. 
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Figure 127: ROESY Spectrum of 11 – examination of the peptide backbone (DMSO, 700 MHz, 300 K) 

There is an interaction between the proton 5 and proton 4 which is to be expected. There is also an 

interaction between positions 15 and 16 which, again, to be expected. There is an unusual 

interaction between position 5 and one of the diastereomeric protons at position 19. This might 

indicate that the molecule is bending and possibly folding in on itself. 
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Figure 128: TOCSY (Blue) and COSY (Red) spectrum of 11 – examination of the aromatic rings(DMSO, 700 MHz, 300 

K) 
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Figure 129: TOCSY (Blue) and COSY (Red) spectrum of 11 – examination of the peptide chain (DMSO, 700 MHz, 300 

K) 
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Figure 130: TOCSY (Blue) and COSY (Red) spectrum of 11 – examination of the backbone  (DMSO, 700 MHz, 300 K) 
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Figure 131: HSQC and HMBC spectrum of the aromatic region of 11 - examination of the indole group (DMSO, for 1H -

700 MHz,  for `13C - 176 MHz, 300 K) 
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Figure 132: HSQC and HMBC spectrum of the aliphatic region of 11 - examination of the peptide chain (DMSO, for 1H -

700 MHz,  for `13C - 176 MHz, 300 K) 
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Figure 133: 13C spectrum of 11, 13C assignments between δ 168.5 – 173.5 ppm (DMSO, 176 MHz, 300K) 

 

Figure 134: 13C NMR spectrum of 11, 13C assignments between δ 108 – 136.5 ppm (DMSO, 176 MHz, 300K) 
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Figure 135: 13C NMR spectrum of 11, 13C assignments between δ 15.0 – 65 ppm (DMSO, 176 MHz, 300K) 
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AcNH-Val-Trp(Ph)-Asn-Asn-Lys-Thr-Ala-OMe (13) 

 

 

Figure 136: Reference molecule for Val-Trp(Ph)-Asn-Asn-Lys-Thr-Ala (13) 

The spectrum from the NMR for this molecule is not of a high resolution due to the amount of the 

product isolated. Looking at the COSY, the C-2’ proton can be seen meaning the arylation either 

didn’t work or did not go to full conversion. 
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Figure 137: ROESY Spectrum of 13 showing C-2 proton present (DMSO, 700 MHz, 300 K) 

The mass spectrum of 13 showed the product pseudo molecular ion. Using MS-MS, the alanine 

cleaves to form a fragment at m/z 861.4259. The threonine, lysine and an asparagine residue 

cleaves to form a fragment at m/z 518.2395. Finally, the asparagine cleaves to give the fragment at 

m/z at 404.1964, which is an indicator that the arylation went onto the tryptophan residue.  Below 

is the fragmentation pattern for the peptide. 
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Figure 138: MSMS of product peak for 13 and fragmentation pattern 
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2.4: NMR Monitoring of the arylation reaction mediated by Pd 

Using Ala-Trp-Ala reaction and Ser-Gly-Trp-Ala reaction, NMR monitoring was conducted to 

evaluate the kinetics. The monitoring looked at two particular peaks which are easily identified, 

one within the starting material, C-2, and one within the product, C-12.  

For Ser-Gly-Trp-Ala, the graph and spectra below shows how the reaction progressed. The 

difference in height from the C-2 proton to the C-12 proton is due to the C-12 proton being an 

integral of 2 compared to the integral of 1 for the C2 proton. The initial time of the reaction was 

removed due to shimmy issues on the spectrometer.  

The curve of the C-2 proton going down is different to the kinetic runs done by Thomas Sheridan 

in his MChem thesis on di-protected tryptophan. Whilst both results show sigmoidal kinetics, 

which has an induction period where no conversion is seen followed by a sharp increase in 

conversion and then plateau off, the reactions in this experiment are quicker to start than the simple 

tryptophan derivative. Without the starting data, from 0 to 30 minutes, it is impossible to say for 

certain what the induction period is.  

 

Figure 139: Kinetic plot for Ser-Gly-Trp-Ala reaction 
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Figure 140: Stacked spectra from Ser-Gly-Trp-Ala 7 reaction - Aromatic region (MeOD-d4, 500 Mhz, 297K) -  The arrow 
represents the flow of time with the bottom representing the starting scan. 

 

Figure 141: Stacked spectra from Ser-Gly-Trp-Ala 7 reaction - Aliphatic region (MeOD-d4, 500 MHz, 297 K) - The arrow 
represents the flow of time with the bottom representing the starting scan. 
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With this reaction, there are two possible pathways that could achieve the product. There are two 

reactions that take place, the arylation, which the procedure is designed for, and esterification 

which is a side product. It was not certain if these two reactions occur at the same time or not. From 

the data collected, it can be seen the arylated product is formed with no methyl ester formation, 

which should be in the area of δ 3.0 – 3.6 ppm, this suggests that the methyl ester occurs later than 

the arylation meaning that is could be possible to isolate the unprotected peptide before the 

protection occurs. 

 

Figure 142: Ser-Gly-Trp-Ala (7) arylation reaction 

For Ala-Trp-Ala, the graph and spectra below show how the reaction progressed. The data in this 

reaction is somewhat confusing, with the height of the C-12 proton being the same as the C-2 

proton. This should not be the case as there are two C-12 protons and one C-2 proton. 

The reaction itself progressed faster than Ser-Gly-Trp-Ala, with a sharper decrease seen. The initial 

few runs are also included therefore the lack of induction period can be seen. The speed of the 

reaction appears to be considerable faster than Ser-Gly-Trp-Ala, this could be due to the alcohol 

group on the serine group interacting with the aromatic ring or palladium species. From the 

reaction below, the reaction has achieved 50% completion by the third scan which is roughly 20 
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minutes into the experiment. Figure 143: Kinetic plot for Ala-Trp-Ala reaction

 

 

Figure 144: Stacked spectra from Ala-Trp-Ala 6 reaction - Aromatic region (MeOD-d4, 500 Mhz, 297K) The arrow 
represents the flow of time with the bottom representing the starting scan. 
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Figure 145: Stacked Spectra from Ala-Trp-Ala 6 reaction - Aliphatic region (MeOD-d4, 500 MHz, 297 K).  The arrow 
represents the flow of time with the bottom representing the starting scan. 

 

Figure 146: Ala-Trp-Ala (6) arylation reaction 
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Chapter 3: Conclusions 
From the results presented in the previous chapter, the following conclusion can be made. 

3.1: Arylation procedure – Assessment of impact on chiral centre  

From arylating di-protected tryptophan with several different aryl groups (phenyl, mesityl and 

naphthalene), the chirality is not affected as seen in the chiral HPLC work. The racemic tryptophan 

produced racemic product and it could be seen that the L-tryptophan product has the same retention 

time as the appropriate enantiomer in the racemic product. 

This also shows that the procedure is compatible with L or D tryptophan, showing that racemistion 

does not occur. 

3.2: Arylation of peptides 
The procedure had been shown to work on peptides in previous papers from the Fairlamb group, and 

in this work this list of peptides was expanded. Using Ala-Trp-Ala-Tyr-Ala (8), in an attempt to use 

the second aromatic ring to possible interact with the palladium catalyst, and Val-Trp-Asn-Asn-Lys-

Thr-Ala (9), which is part of the active site of an enzyme in a certain bacteria species. Ala-Trp-Ala-

Tyr-Ala (8) worked to full completion with no arylation occurring on the tyrosine aromatic ring. For 

Val-Trp-Asn-Asn-Lys-Thr-Ala (9), arylation was shown to occur but full conversion from starting 

material to product was not seen meaning that a higher amount of aryl diazonium salt was needed. 

From doing MSMS, the arylated tryptophan product can be seen.  

This is a significant result as it is possible for arylation to occur at the lysine amine group, which is 

a big issue as lysine is common in proteins and peptides. Since it did not, this shows the robustness 

of the procedure. 

 

  



144 
 

3.3: NMR conformation study of the peptides 
By using ROESY NMR, it was possible to determine which protons are close in proximity to each 

other. The main point of this was to see if the conformation changes when arylated. It can be seen in 

the peptides that once arylated, there are definitely changes in the proton interactions. One change in 

interaction is between the amide proton on the glycine residue and tryptophan residue in Ser-Gly-

Trp-Ala (7) (11) and the diastereomeric protons. In the unmodified peptide (7), the interaction can 

be seen whilst it cannot be seen in the modified peptide (11). Therefore, it can be assumed that if this 

methodology was used in a functional enzyme or a protein, the structure would change and this could 

possibly affect the activity of the molecule. 

The newly added aryl ring interacts unusually in the molecule, allowing for interactions that wouldn’t 

be associated with it normally, such as the interaction with the 11’ protons or the 5’ proton with the 

α and β-carbon on the tryptophan residue when there wasn’t an interaction before. This is just an 

example of some of the changes in interactions when using the methodology. 

 

  



145 
 

 

3.4: NMR monitored reactions 
By monitoring the reactions using NMR, the decrease in the C-2 indole proton can be seen and the 

increase of the product peaks can be seen. From this, we can see that the reaction with peptides has 

very little to no induction time, which the deprotected tryptophan does. The reaction is also seen to 

go quickly for both peptides but particularly the Ala-Trp-Ala. There are two different pathways for 

the product to be made, arylation followed by esterification or vice versa, through the work done 

here, it can be seen that the arylation occurs before the esterification meaning that it should be 

possible to isolate the monoprotected peptide. 
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Chapter 4: Future Work 
 

It is clear that there is still much work to be done in this area with constant effort to expand the uses 

of tryptophan modification in peptide modification. 

Firstly, it would be useful to produce a range of peptides which consist of three amino acids, 

alanine, tryptophan and another varying amino acid, shown in Figure 146. This should show if any 

amino acids, most likely cysteine, can interfere with the procedure. 

 

Figure 147: The structure of the peptide that finds interfering residues 

Next, it is worth investigating if any amino acids have a promoting effect for the arylation reaction. 

Possible by using phenyl alanine on either side of the tryptophan residue, the arylation could be 

enhanced. If there are promoting effects being seen, competition reactions could be done with two 

tryptophan residues in the same molecule next to the promoting residues.  

 

Figure 148: The proposed structure of a peptide that could promote the rate of reaction 

It can be seen the methodology works for the benzene diazonium salt but would it be possible to use 

other aryl groups, such as a mesityl group, or would the size of alternative aryl groups be hindered 

by structure of the peptide. 

Further work needs to be done to try and use water as a solvent for the reaction instead of methanol 

as to make it suitable for cell use. Once this is done, an attempt to modify a protein should be made. 
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Finally, computational studies should be done to determine the most likely conformation of the 

peptides and then compared to the data presented in this report.  
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Chapter 5: Experimental 
 

Commercially available reagents were purchased from Sigma Aldrich, Fluorochem, Fisher 

Scientific, VWR, Alfa Aesar, Acros Organics or TCI and used as received unless otherwise 

noted. Room temperature (rt) refers to reactions where no thermostatic control was applied 

and was recorded as 16 – 22 °C. Petrol refers to the fraction of petroleum ether boiling in 

the range of 40 – 60 °C. Triethylamine were distilled from potassium hydroxide and stored 

under nitrogen. Air sensitive procedures were performed using standard Schlenk 

techniques and carried out in oven- or flame-dried glassware. Nitrogen gas was oxygen 

free and dried immediately prior to use by passing through a column of potassium 

hydroxide pellets and silica. 

Thin layer chromatography (TLC) analysis was performed using Merck 5554 or 

Fluorochem aluminium backed silica plates and visualised using UV light (λmax = 254 

nm). All flash column chromatography was performed using Fluorochem silica gel 60 

(particle size 40 – 63 μm) and a solvent system as stated in the text. Retardation factors are 

quoted to two decimal places. Melting points were recorded using a Stuart digital SMP3 

machine and are quoted to the nearest whole number. Where applicable, decomposition 

(dec) was noted. All NMR spectra were recorded on either a Jeol ECS400, Jeol ECX400 

or 700 spectrometer and processed using MestReNova and TopSpin. Spectra were typically 

recorded at 298K, unless otherwise specified. Chemical shifts are reported in parts per 

million (ppm). Coupling constants are reported in Hz and quoted to ±0.5 Hz. Multiplicities 

are described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin), sextet, (sext), 

heptet (hept), multiplet (m), apparent (app) and broad (br). 

1H NMR spectra were typically recorded at 400 MHz. All the NMR spectra for the peptides 

were done at 700 MHz. Chemical shifts are internally referenced to residual undeuterated 

solvent and given to two decimal places. 

13C NMR spectra were recorded at 101 MHz. Chemical shifts are internally referenced to 

residual undeuterated solvent and given to one decimal place. 
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19F NMR spectra were recorded at 376 MHz and obtained with 1H decoupling. Chemical 

shifts are externally referenced to CFCl3 and given to one decimal place. 

Mass spectrometry was performed using a Bruker Daltronics micrOTOF spectrometer 

using electrospray ionization (ESI). Mass to charge ratios (m/z) are reported in Daltons 

with percentage abundance in parentheses along with the corresponding fragment ion, 

where known. Where complex isotope patterns were observed, the most abundant ion was 

reported. High resolution mass spectra are reported with <5 ppm error (ESI). 

IR spectrometry was performed using a Bruker Alpha FT-IR spectrometer. Signals are 

reported in wavenumbers (cm-1) to the nearest whole number. 

UV-visible spectroscopy was performed using a Jasco V-560 spectrometer. A baseline in 

the appropriate solvent was obtained prior to recording spectra. 

General Procedure: 

General Procedure 1: Arylation of Tryptophan Residue 

To a microwave tube was added tryptophan 1 (50 mg, 0.192 mmol, 1 eq.), the appropriate 

aryldiazonium salt (0.192 mmol, 1 eq.), Pd(OAc)2 (2 mg, 9.6 μmol, 5 mol%) and EtOAc 

(5 mL). The reaction mixture was stirred at RT for 16 h. After 16 h the resulting brown 

reaction mixture was filtered through Celite then washed with sat. aq. NaHCO3. The 

organic layer was collected and dried over MgSO4, filtered and evaporated to give a brown 

solid. When purification was required, it was performed using dry-loaded flash column 

chromatography with a SiO2 stationary phase and the solvent system specified for each 

compound. 

General Procedure 2: Synthesis of Peptides via SPPS 

To a specialized syringe, alanine-2-chlorotrityl resin was added with DMF and rotated for 

30 minutes to swell the resin up. It was then filtered into the manifold. 5 equivalents of 

DIPEA was added to a solution of 5 equivalents of amino acid and 5 equivalents of HCTU 

dissolved in minimum volume of DMF and then added to the resin. The mixture was then 

rotated for 60 minutes, and then the resin was filtered and washed with DMF (3 x 2 minutes 
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with rotation). Between each coupling, the fmoc of the latest amino acid was removed using 

20% piperdine in DMF being added to the resin. The mixture was rotated for 2 minutes 

then filtered, this was done 5 times. The resin was then washed with DMF (5 x 2 minutes 

with rotation) ready for the next coupling. Once the peptide has been synthesized and the 

fmoc has been cleaved, the resin was washed with DCM (3 x 2 minutes with rotation), and 

methanol (3 x 2 minutes with rotation). The resin was dried on a vacuum manifold and 

further dried on a high vacuum line overnight. A cleavage solution, 38:1:1 TFA: H2O: TIS, 

was added to the resin and rotated for 60 minutes. The reaction mixture was drained into -

78 oC diethyl ether and centrifuged at 5000 rpm for 5 minutes at 4 oC. The supernatant was 

carefully decanted and subsequently resuspended, centrifuged and supernatant decanted 

three more times. The precipitated pellet was dissolved in water and acetonitrile and 

lyophilized.  

General Procedure 3: Arylation of Peptides 

To a microwave tube was added peptide (20 mg, 1 eq.), benzenediazonium tetrafluoroborate (1.1 

eq.), Pd(OAc)2 (20 mol%) and MeOH (2 mL), which was stirred at room temperature for 24 hours. 

The resulting brown reaction mixture was filtered through Celite with MeOH (5 mL) and then added 

dropwise to diethyl ether at -78 oC. The peptide crashes out and it then centrifuged 3 times at 5000 

rpm for 5 minutes, draining off ether after each centrifuge, and then fill it back up with more ether 

for next centrifuge. Once done, drain off the ether, retaining as much peptide as possible, and leave 

to dry. Once dry, add water and acetonitrile to dissolve the peptide for freeze drying. Leave in the 

freeze dryer until dry. 
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Methyl (2R)-2-amino-3-(1H-indol-3-yl)propanoate hydrochloride (1) 

 

150 mL of MeOH was placed into a 500 mL round bottom flask which was cooled to −15 

°C, addition of thionyl chloride (12.9 mL, 21.06 g, 177 mmol, 2.4 eq.) was then made 

dropwise. After complete addition, ʟ-Tryptophan 73 (14.9994 g, 73.5 mmol, 1 eq.) was 

added in three portions, resulting in a white suspension. The mixture was then warmed to 

RT and stirred for 24 h, during which time a clear yellow solution was formed. 5 mL of 

deionised water was added to the reaction mixture and the solvent evaporated to afford the 

title compound as an off-white solid (18.11 g, 97%). 

DRT 1 006 

M.P. 212-213 °C (lit. 214 °C); 1H NMR (400 MHz, CD3OD, δ): 7.51 (d , J= 8.0 Hz, 1H), 

7.36 (d, J=8 Hz, 1H), 7.18 (s, 1H), 7.11 (t , J= 16.0, 8.0 Hz, 1H), 7.03 (t , J= 16.0, 8.0 Hz, 

1H), 4.29 (t , J= 12.0, 8.0 Hz, 1H), 3.76 (s, 3H),  3.43 (dd , J= 12.0, 8.0, 4.0 Hz, 1H), 3.34 

(dd , J= 12.0, 8.0, 4.0 Hz, 1H); 13C NMR (101 MHz, CD3OD, δ), 170.8, 138.3, 128.1, 125.7, 

122.9, 120.3, 118.8, 112.7, 107.4, 54.6, 53.7, 27.5; ESI–MS m/z (ion, rel. %): 219 

([C12H15N2O2]+, 100); ESI–HRMS m/z: 219.1125 [C12H15N2O2]+ (C12H15N2O2 requires 

219.1128); Elemental anal.: C 56.08, H 5.90, N 10.78 (C12H15ClN2O2 requires C 56.58, H 

5.94, N 11.00). 
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Methyl (2R)-2-acetamido-3-(1H-indol-3-yl)propanoate (2) 

 

Mono-Protected tryptophan (2.9996 g, 13.7 mmol, 1 eq.) was added to a 2-necked round-

bottom flask. To the flask, distilled Et3N (2 mL, 1.45 g, 14.3 mmol, 1.05 eq.) and THF (150 

mL) was added and stirred to give a white suspension before being cooled to 0 °C. Acetic 

anhydride (1.4 mL, 1.5 g, 15.1 mmol, 1.1 eq.) was then added in one portion. The reaction 

was then stirred for 2 hours under reflux to give a white suspension. After 2 hours, the 

mixture was left until it reached ambient temperature and then 150 mL of water was added. 

The mixture was then extracted with EtOAc (3 x 150 mL). The organic layers were 

combined and then washed sequentially with 1 M aq. HCl (100 mL), sat. aq. NaHCO3 (100 

mL) and brine (100 mL). The organic layer was collected, dried over MgSO4, filtered and 

evaporated to afford a clear brown oil. Upon trituration with ether, an offish white powder 

was afforded (2.1798g, 60%). 

DRT 1 013 

M.P. 152 °C (lit. 155-156 °C); 1H NMR (400 MHz, Chloroform-d) δ 8.26 (s, 1H), 7.57 – 

7.48 (m, 5H), 7.36 (dt, J = 8.1, 0.9 Hz, 2H), 7.19 (ddd, J = 8.2, 7.2, 1.1 Hz, 2H), 7.12 (ddd, 

J = 8.0, 7.1, 1.1 Hz, 1H), 6.97 (d, J = 2.3 Hz, 1H), 6.03 (d, J = 7.6 Hz, 1H), 4.96 (dt, J = 

7.9, 5.3 Hz, 1H), 3.70 (s, 3H), 3.41 – 3.24 (m, 3H), 1.96 (s, 3H); 13C NMR (101 MHz, 

Choroform-d) δ 172.6, 169.9, 136.2, 127.9, 122.8, 122.4, 119.8, 118.6, 111.4, 110.1, 77.2, 

53.2, 52.5, 27.7, 23.4; ESI–HRMS m/z: 283.1055 [M+Na]+ (C14H16N2O3Na requires 

283.1053); Elemental Anal.: C 64.6, H 6.3, N, 9.9 (C14H16N2O3 requires C 64.60, H 6.20, 

N 10.76) 
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Methyl (2R)-2-acetamido-3-(2-phenyl-1H-indol-3-yl)propanoate hydrochloride (3) 

 

Synthesised using general procedure C with phenyl aryldiazonium salt (37 mg, 0.192 mmol, 1 eq.) 

to afford the title compound as an off-white solid (65 mg, quant.). 

DRT 2 151 

Rf 0.25 (EtOAc/petrol, 1:1, v/v); M.P. 82–83 °C (lit.45 85–86 °C); 1H NMR (400 MHz, CDCl3, δ): 

8.43 (s, 1H), 7.59–7.52 (m, 3H), 7.45 (d, J = 15.1 Hz, 2H), 7.39–7.32 (m, 2H), 7.22–7.17 (m, 1H), 

7.13 (t, J = 8.0 Hz, 1H), 5.81 (d, J = 8 Hz, 1H), 4.89– 4.76 (dt, J = 8.0, 5.0 Hz,  1H), 3.54 (d, J = 5.5 

Hz, 2H), 3.29 (s, 3H), 1.64 (s, 3H). 13C NMR (101 MHz, (CDCl3, δ): 172.3, 169.8, 136.1, 135.8, 

133.3, 129.5, 129.3, 128.4, 128.2, 122.6, 120.1, 119.0, 111.1, 106.8, 52.9, 52.1, 26.7, 23.0; ESI–

HRMS m/z: 337.1547 [M+H]+ (C20H21N2O3
+

 requires 337.1507) 

Methyl (2S)-2-acetamido-3-[2-(4-methoxyphenyl)-1H-indol-3-yl]propanoate (4) 

 

Synthesised using general procedure 1 (with a reaction time of 24 h) with Para-methyoxy 

aryldiazonium salt  (43 mg, 0.192 mmol, 1 eq.) to afford the title compound as a brown solid (70 mg, 

quant.). 

DRT 2 152 

Rf 0.15 (petrol/EtOAc, 1:1, v/v); M.P. 200–203 °C; 1H NMR (400 MHz, CDCl3, δ): 8.41 (br s, 1H), 

7.54 (d, J = 8.0 Hz, 1H), 7.50–7.40 (m, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.17 (ddd, J = 8.0, 7.0, 1.0 Hz, 

1H), 7.12 (ddd, J = 8.5, 8.0, 1.0 Hz, 1H), 7.01– 6.91 (m, 2H), 5.85 (d, J = 8.0 Hz, 1H), 4.82 (dt, J = 
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8.0, 5.5 Hz, 1H), 3.83 (s, 3H), 3.49 (d, J = 5.5 Hz, 2H), 3.34 (s, 3H), 1.68 (s, 3H); 13C NMR (101 

MHz, (CDCl3, δ): 172.4, 169.8, 159.5, 136.1, 135.7, 129.7, 129.5, 125.6, 122.3, 120.0, 118.7, 114.6, 

111.0, 106.0, 55.5, 53.0, 52.2, 26.8, 23.0; ESI–HRMS m/z: 367.1646 [M+H]+ (C21H22N2O4
+ requires 

367.1613) 

Methyl (2S)-3-[2-(4-fluorophenyl)-1H-indol-3-yl]-2-acetamidopropanoate (5) 

 

Synthesised using general procedure 1 with para-fluoro aryldiazonium salt  (40 mg, 0.192 mmol, 1 

eq.) to afford the title compound as a brown solid (68 mg, quant.). 

DRT 2 153 

Rf 0.23 (petrol/EtOAc, 1:1, v/v); 1H NMR (400 MHz, CDCl3, δ): 8.17 (br s, 1H), 7.59–7.50 (m, 3H), 

7.36 (d, J = 8.0 Hz, 1H), 7.24–7.12 (m, 4H), 5.82 (d, J = 8.0 Hz, 1H), 4.84 (dt, J = 8.0, 5.5 Hz, 1H), 

3.50 (m, 2H), 3.33 (s, 3H), 1.72 (s, 3H); 13C NMR (101 MHz, (CDCl3, δ): 172.3, 169.7, 162.6 (d, 

1JC–F = 249.0 Hz), 135.8, 135.1, 130.2 (d, 3JC–F = 8.0 Hz), 129.5, 129.4 (d, 4JC–F = 3.5 Hz), 

122.8, 120.3, 119.0, 116.3 (d, 2JC– F = 21.5 Hz), 111.1, 107.0, 52.9, 52.2, 26.8, 23.1; 19F NMR (376 

MHz, CDCl3, δ): −112.8–−112.9 (m); ESI–HRMS m/z: 355.1449 [M+H]+ (C20H20FN2O3
+ requires 

355.1413) 

  



155 
 

Ac-AlaTrpAla-OH (6) 

 

Using general procedure 2, with an acetyl protection at the N-terminus (30 mg). 

DRT 2 AWA 

1H NMR (700 MHz, DMSO) δ 10.81 (s, 1H), 8.14 (d, J = 7.2 Hz, 1H), 7.98 (d, J = 7.2 Hz, 1H), 

7.84 (d, J = 8.2 Hz, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 7.13 (d, J = 2.1 Hz, 

1H), 7.04 (t, J = 7.5 Hz, 1H), 6.96 (t, J = 7.3 Hz, 1H), 4.51 (td, J = 8.6, 4.4 Hz, 1H), 4.24 – 4.15 (m, 

2H), 3.15 (dd, J = 14.8, 4.3 Hz, 1H), 2.95 (dd, J = 14.9, 9.0 Hz, 1H), 1.78 (s, 3H), 1.26 (d, J = 7.3 

Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H). 13C NMR (176 MHz, DMSO) δ 174.21, 172.37, 171.36, 169.44, 

136.23, 127.64, 123.90, 121.02, 118.67, 118.39, 111.44, 110.12, 53.13, 48.52, 47.79, 27.61, 22.69, 

18.11, 17.39. ESI–HRMS m/z: 389.1819 [M+H]+ (C19H25N4O5
+ requires 389.1780), 411.146 

[M+Na]+
 (C19H24N4O5Na+ requires 411.1644), 433.1458 [M+2Na]+

  (C19H23N4O5Na2
+ requires 

433.1464) 
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Ac-AlaTrp(Ph)Ala-OMe (10) 

 

Synthesized using general procedure 3, using 15.4 mg peptide 1 (0.04 mmol, 1 eq.), 9.2 mg 

benzenediazonium tetrafluoroborate (0.047. 1.2 eq.) and  2 mg Pd(OAc)2 (0.0089 mmol, 20 mol%). 

(19 mg, quant.) 

DRT 2  160 

To a sample vial was added peptide 1 (5 mg, 0.013 mmol, 1 eq.), benzenediazonium tetrafluoroborate 

(4.9 mg, 0.028 mmol, 2 eq.), Pd(OAc)2 (0.75 mg, 0.0026mmol, 30 mol%) and d4-MeOD (0.5 mL), 

which was then monitored using NMR for 6 hours. 

DRT 2 176 

1H NMR (700 MHz, DMSO) δ 11.16 (s, 1H), 8.02 – 7.98 (m, 2H), 7.88 (d, J = 8.4 Hz, 1H), 7.68 (d, 

J = 7.7 Hz, 3H), 7.48 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.08 (t, J 

= 7.5 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 4.61 (dd, J = 14.9, 7.6 Hz, 1H), 4.23 – 4.17 (m, 1H), 4.10 (dt, 

J = 13.8, 7.0 Hz, 2H), 3.48 (s, 3H), 3.33 (dd, J = 14.6, 6.5 Hz, 1H), 3.10 (dd, J = 14.5, 7.8 Hz, 1H), 

1.79 (s, 3H), 1.19 (d, J = 7.3 Hz, 4H), 1.01 (d, J = 7.1 Hz, 3H). 13C NMR (176 MHz, DMSO) δ 

172.53, 171.96, 170.90, 169.51, 135.93, 135.27, 132.75, 128.99, 128.59, 128.11, 127.29, 121.38, 

119.29, 118.65, 110.94, 107.62, 53.72, 51.74, 48.59, 47.63, 27.45, 22.48, 17.51, 16.98. ESI–MS m/z: 

479.11 [M+H+](C26H31N4O5
+ requires 479.2250), 501.11 [M+Na+] (C26H30N4NaO5

+ requires 

501.2069) 
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Ac-SerGlyTrp(Ph)Ala-OMe (11) 

 

To a microwave tube was added peptide 6 (20 mg, 0.0433 mmol, 1 eq.), benzenediazonium 

tetrafluoroborate 2a (9.2 mg, 0.0476 mmol, 1.1 eq.), Pd(OAc)2 (2 mg, 0.0087 mmol, 20 mol%) and 

MeOH (2 mL), which was stirred at 37 °C for 8 h. The resulting brown reaction mixture was filtered 

through Celite with MeOH (5 mL) and the solvent removed under reduced pressure. This crude 

mixture was purified by preparative TLC (6% MeOH/CH2Cl2) to give an off white solid (10.8 mg, 

45%). 

Made by Josh Bray, part of the ACS Catalysis paper: Mild and Regioselective Pd(OAc)2-Catalyzed 

C–H Arylation of Tryptophans by [ArN2]X, Promoted by Tosic Acid 

To a microwave tube was added peptide 2 (5 mg, 0.011 mmol, 1 eq.), benzenediazonium 

tetrafluoroborate (4.6 mg, 0.024 mmol, 2 eq.), Pd(OAc)2 (0.75 mg, 0.002 mmol, 30 mol%) and d4-

MeOD (0.5 mL), which was then monitored using NMR for 4 hours. 

DRT 2 177 

1H NMR (700 MHz, DMSO) δ 11.16 (s, 1H), 8.20 (d, J = 6.9 Hz, 1H), 8.16 (t, J = 4.9 Hz, 1H), 8.14 

– 8.09 (m, 2H), 7.69 (d, J = 7.6 Hz, 3H), 7.49 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.32 (d, J 

= 8.0 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 5.16 (s, 1H), 4.74 – 4.65 (m, 1H), 

4.25 – 4.17 (m, 2H), 3.68 (dt, J = 15.0, 7.5 Hz, 1H), 3.55 (dd, J = 16.6, 10.3 Hz, 3H), 3.49 (d, J = 5.0 

Hz, 1H), 3.47 (s, 3H), 3.02 (dd, J = 14.4, 7.7 Hz, 1H), 1.86 (s, 3H), 1.21 (d, J = 7.2 Hz, 3H). 13C 

NMR (176 MHz, DMSO) δ 172.98, 171.30, 170.19, 168.76, 136.37, 135.70, 133.21, 129.47, 129.07, 

128.57, 127.73, 121.71, 119.70, 119.13, 111.35, 108.05, 62.07, 55.97, 54.25, 52.25, 48.06, 42.61, 
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28.56, 23.03, 17.42. νmax/cm-1 (ATR) 3821.64, 1734.6, 1637.0, 1528.4, 1451.8, 1375.0, 1340.8, 

1305.3, 1222.1, 1154.4, 1057.8, 745.0, 697.4, ESI–MS m/z: 552.2476 [M+H+] (C28H34N5O7
+ requires 

552.2414), 574.2289 [M+Na+]( C28H33N5NaO7+
 requires 574.2233); Rf = 0.13 (6% 

MeOH/CH2Cl2). 

Ac-ValTrpAsnAsnLysThrAla-OH (9) 

 

Using general procedure 2, with an acetyl protection at the N-terminus (60 mg). 

DRT 2 VWNN 

1H NMR (700 MHz, DMSO) δ 10.77 (s, 1H), 8.11 (t, J = 8.6 Hz, 2H), 7.98 (d, J = 7.4 Hz, 2H), 7.93 

(d, J = 7.0 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.62 – 7.55 (m, 4H), 7.45 (d, 

J = 14.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 1H), 7.11 (s, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.96 (dd, J = 14.1, 

6.6 Hz, 3H), 4.76 (s, 1H), 4.53 (td, J = 13.7, 6.5 Hz, 3H), 4.26 (dd, J = 13.3, 8.7 Hz, 1H), 4.21 – 4.15 

(m, 2H), 4.09 (t, J = 7.7 Hz, 1H), 3.98 – 3.92 (m, 1H), 3.12 (dd, J = 14.8, 4.2 Hz, 1H), 2.94 (dd, J = 

14.9, 9.4 Hz, 1H), 2.76 (dt, J = 21.2, 10.6 Hz, 2H), 2.59 (dd, J = 15.6, 6.9 Hz, 1H), 2.46 – 2.37 (m, 

1H), 1.91 (s, 2H), 1.88 (dd, J = 13.6, 6.8 Hz, 1H), 1.84 (s, 3H), 1.74 (d, J = 7.2 Hz, 1H), 1.63 – 1.56 

(m, 1H), 1.51 (td, J = 14.9, 7.3 Hz, 3H), 1.38 – 1.29 (m, 3H), 1.27 (d, J = 7.3 Hz, 4H), 1.06 (d, J = 

6.3 Hz, 4H), 0.76 (dd, J = 6.6, 3.1 Hz, 7H). 13C NMR (176 MHz, DMSO) δ 173.70, 171.77, 171.59, 

171.22, 171.10, 170.95, 170.64, 170.53, 169.40, 169.32, 135.76, 127.04, 123.28, 120.61, 118.14, 

117.95, 110.98, 109.69, 66.34, 57.86, 57.80, 52.95, 52.33, 49.62, 49.46, 47.31, 38.52, 36.68, 36.37, 

30.45, 29.89, 27.12, 26.20, 22.24, 21.80, 20.82, 19.48, 18.98, 17.88, 17.05; ESI–MS m/z: 874.4417 

[M+H+] (C39H60N11O12
+ requires 874.4378), 896.4237 [M+Na+] (C39H59N11O12Na+ requires 

896.4198), 918.4086 [M+2Na+] (C39H58N11O12Na2
+ requires 918.4017) 
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Ac-ValTrp(Ph)AsnAsnLysThrAla-OMe (13) 

 

Using general procedure 3, 20 mg of peptide 3 (0.023 mmol, 1 eq.), 5.8 mg benzenediazonium 

tetrafluoroborate (0.025 mmol, 1.1 eq.) and 0.5 mg Pd(OAc)2 (0.0026 mmol, 20 mol%). 

DRT 2 164 

The NMR data obtained showed that the C-2 proton was still present in the sample meaning that it 

did not go to completion or did not work. Through looking at the mass spectra and using MSMS the 

fragmentation pattern can be seen of the product peak and this shows that the product was indeed 

made with the pattern shown below. 
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Ac-AlaTrpAlaTyrAla-OH (8) 

 

Using general procedure 2, with an acetyl protection at the N-terminus (25 mg). 

DRT 2 AWAYA 

1H NMR (700 MHz, DMSO) δ 10.80 (s, 1H), 9.12 (s, 1H), 8.13 (d, J = 7.1 Hz, 1H), 8.01 (d, J = 7.0 

Hz, 1H), 7.89 (d, J = 7.4 Hz, 2H), 7.76 (d, J = 8.2 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.30 (d, J = 8.1 

Hz, 1H), 7.12 (s, 1H), 7.03 (dd, J = 11.5, 8.0 Hz, 3H), 6.92 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 8.3 Hz, 

2H), 4.46 (td, J = 8.4, 4.5 Hz, 1H), 4.40 (td, J = 8.7, 4.5 Hz, 1H), 4.18 (dp, J = 14.1, 7.0 Hz, 3H), 

3.12 (dd, J = 14.9, 4.0 Hz, 1H), 2.98 – 2.91 (m, 2H), 2.68 (dd, J = 14.0, 9.3 Hz, 1H), 1.91 (s, 1H), 

1.78 (s, 3H), 1.27 (t, J = 9.0 Hz, 4H), 1.11 (t, J = 6.9 Hz, 7H). 13C NMR (176 MHz, DMSO) δ 173.93, 

172.46, 172.04, 171.79, 171.14, 170.71, 169.27, 155.73, 136.00, 130.17, 127.72, 127.26, 123.56, 

120.75, 118.43, 118.14, 114.81, 111.12, 109.81, 53.84, 53.20, 48.45, 48.33, 47.45, 36.50, 27.13, 

22.42, 21.05, 18.00, 17.79, 17.15. ESI–HRMS m/z: 623.1851 [M+H]+ (C31H39N6O6
+ requires 

623.2785) 
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Ac-AlaTrp(Ph)AlaTyrAla-OMe (12) 

 

Using general procedure 2, using 15 mg of peptide 4 (0.024 mmol, 1 eq.), 5 mg of 

benzenediazonium tetrafluoroborate (0.026 mmol, 1.1 eq.) and 1 mg Pd(OAc)2 (0.005 mmol, 20 

mol%). (17.2 mg, quant.) 

DRT 2 161 

1H NMR (700 MHz, DMSO) δ 11.17 (s, 1H), 8.16 (d, J = 6.2 Hz, 2H), 8.00 (d, J = 23.1 Hz, 3H), 

7.80 (d, J = 7.8 Hz, 1H), 7.68 – 7.63 (m, 5H), 7.46 (t, J = 7.5 Hz, 4H), 7.36 (t, J = 7.3 Hz, 2H), 7.32 

(d, J = 8.0 Hz, 2H), 7.07 (t, J = 7.5 Hz, 2H), 6.99 (d, J = 8.0 Hz, 3H), 6.96 (t, J = 7.4 Hz, 2H), 6.62 

(d, J = 7.9 Hz, 4H), 4.52 (dd, J = 13.9, 7.3 Hz, 2H), 4.33 (dd, J = 13.2, 8.6 Hz, 2H), 4.24 – 4.18 (m, 

2H), 4.07 (dd, J = 14.5, 7.1 Hz, 4H), 3.59 (s, 5H), 2.90 (dd, J = 14.0, 4.3 Hz, 2H), 2.65 (dd, J = 13.9, 

9.4 Hz, 2H), 2.58 (d, J = 15.5 Hz, 1H), 1.76 (s, 5H), 1.24 (d, J = 7.2 Hz, 8H), 1.10 – 1.06 (m, 7H), 

1.01 (q, J = 7.5 Hz, 7H). ESI–HRMS m/z: 735.3379 [M+Na]+ (C38H44N6O8Na+
 requires 735.3074) 
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Chapter 6: Appendices 

NMR Spectra 

 

Appendix 1: 1H NMR of compound 1 

 

Appendix 2: 13C NMR of compound 1 
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Appendix 3: 1H  NMR of compound 2 

 

Appendix 4: 13C NMR of compound 2 
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Appendix 5: 1H spectrum of compound 3 

 

 

Appendix 6: 13C spectrum of compound 3 
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Appendix 7: 1H spectrum of compound 4 

 

Appendix 8: 13C spectrum of compound 4 
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Appendix 9: 1H spectrum of compound 5 

 

Appendix 10: 13C spectrum of compound 5 
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Appendix 11: 19F spectrum of compound 5 

 

Appendix 12: 1H spectrum of compound 6 
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Appendix 13: 13C spectrum of compound 6 

 

 

Appendix 14: COSY spectrum of compound 6 
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Appendix 15: TOCSY spectrum of compound 6 

 

Appendix 16: ROESY spectrum of compound 6 
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Appendix 17: HMBC spectrum of compound 6 

 

Appendix 18: HSQC spectrum of compound 6 
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Appendix 19: 1H spectrum of compound 7 

 

Appendix 20: 13C spectrum of compound 7 
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Appendix 21: COSY spectrum of compound 7 

 

Appendix 22: TOCSY spectrum of compound 7 
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Appendix 23: ROESY spectrum of compound 7 

 

Appendix 24: HMBC spectrum of compound 7 
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Appendix 25: HSQC spectrum of compound 7 

 

Appendix 26: 1H spectrum of compound 8 



175 
 

 

Appendix 27: 13C spectrum of compound 8 

 

 

Appendix 28: COSY spectrum of compound 8 
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Appendix 29: TOCSY spectrum of compound 8 

 

Appendix 30: ROESY spectrum of compound 8 
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Appendix 31: HMBC spectrum of compound 8 

 

 

Appendix 32: HSQC spectrum of compound 8 
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Appendix 33: 1H spectrum of compound 9 

 

 

Appendix 34: 13C spectrum of compound 9 
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Appendix 35: COSY spectrum of compound 9 

 

Appendix 36: TOCSY spectrum of compound 9 
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Appendix 37: ROESY spectrum of compound 9 

 

Appendix 38: HMBC spectrum of compound 9 
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Appendix 39: HSQC spectrum of compound 9 

 

Appendix 40: 1H spectrum of compound 11 
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Appendix 41: 13C spectrum of compound 11 

 

Appendix 42: COSY spectrum of compound 11 
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Appendix 43: TOCSY spectrum of compound 11 

 

Appendix 44: ROESY spectrum of compound 11 
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Appendix 45: HMBC spectrum of compound 11 

 

Appendix 46: HSQC spectrum of compound 11 
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Appendix 47: 1H spectrum of compound 11 

 

Appendix 48: 13C spectrum of compound 11 
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Appendix 49: COSY spectrum of compound 11 

 

Appendix 50: TOCSY spectrum of compound 11 
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Appendix 51: ROESY spectrum of compound 11 

 

Appendix 52: HMBC spectrum of compound 11 
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Appendix 53: HSQC spectrum of compound 11 

 

Appendix 54: 1H spectrum of compound 12 
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Appendix 55: COSY spectrum of compound 12 

 

Appendix 56: TOCSY spectrum of compound 12 
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Appendix 57: ROESY spectrum of compound 12 

 

Appendix 58: ROESY spectrum of compound 13 
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Abbreviations  
Ac     Acetyl 

ADHP     2-amino-4,6-dihydroxy-pyrimidine 

Boc     Tert-Butyloxycarbonyl 

COSY     Correlation spectroscopy 

CsOAc     Caesium Acetate 

DCM     Dichloromethane  

DM-ADHP    N,N-dimethyl-2-amino-4,6dihydroxypyrimidine 

DMF     Dimethyl formamide  

DMSO     Dimethyl sulfoxide 

Et     Ethyl 

EtOAc     Ethyl Acetate 

HBF4     Tetrafluoroboric acid 

HMBC     Heteronuclear multiple-bond correlation spectroscopy 

HPLC     High-performance liquid chromatography 

HSQC     Heteronuclear single-quantum correlation spectroscopy 

Hz     Hertz 

Me     Methyl 

MeOH     Methanol 

MHz     Megahertz 

Mmol     Millimolar 

MSMS     Tandem mass spectrometry 

m/z     Mass to charge ratio 
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NHC     N-heterocyclic carbenes 

NMR     Nuclear magnetic resonance 

OEt     Ethyl ester 

OMe     Methyl ester 

PAM     Polyacrylamide 

PEG     Polyethylene glycol 

Ph     Phenyl 

p-MBHA    4-Methylbenzhydrylamine hydrochloride 

ROESY    Rotating frame nuclear Overhauser effect spectroscopy 

RT     Room Temperature  

TFA     Trifluoroacetic acid 

TLC     Thin-layer chromatography 

TOCSY    Total correlation spectroscopy 

TRIS     Tris(hydroxymethyl)aminomethane 

TsOH     Tosic acid  
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