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Abstract 

All above ground plant organs initiate or derive from stem cells at the shoot apical meristem. The 

activity of the shoot apical meristem determines the rate of leaf initiation, which is repressed by 

the ACTIN RELATED PROTEIN2/3 (ARP2/3) complex in the dark. The ARP2/3 complex is an 

ancient nucleator of actin filament branches, with roles in a variety of subcellular processes. 

However, the mechanism by which the ARP2/3 complex regulates shoot apical meristem activity 

is unknown.  

In this thesis I show that the increased shoot apical meristem activity of arp3 in prolonged 

darkness required the polar auxin efflux carrier PIN-FORMED1 (PIN1). Wild-type shoot apical 

meristem activity was largely unaffected by inhibitors of polar auxin transport in the dark, and a 

pin1 mutant had similar shoot apical meristem activity to wild-type. By stark contrast, the 

increased shoot apical meristem activity of arp3 was hypersensitive to inhibitors of polar auxin 

transport, and abolished in an arp3pin1 double mutant. Furthermore, multiple phenotypes of a 

brassinosteroid biosynthesis mutant det2, reported to have reduced PIN1 expression and polar 

auxin transport, were rescued in an arp3det2 double mutant grown in the light. These results 

indicate that the ARP2/3 complex regulates the activity of PIN1, possibly by facilitating PIN1 

endocytosis, and suggest that the ARP2/3 complex is a repressor of brassinosteroid responses. 

The auxin response factors ARF4 and ARF5 were found to be repressors of shoot apical meristem 

activity in the same pathway as the ARP2/3 complex. This result led to the proposal of a model 

where auxin minima, rather than auxin maxima (where ARF4 and ARF5 are active) are required 

to initiate new leaves at the shoot apical meristem.  

The increased shoot apical meristem activity of arp3 required sugar, the glucose sensor TOR 

kinase, and the initial steps of glycolysis which generate precursors for cell wall biosynthesis.  

In a candidate approach to identify novel transcriptional regulators of dark development, the IND 

transcription factor was found to repress shoot apical meristem activity redundantly with its 

homologue HEC2. IND was also found to interact genetically with the phytochrome interacting 

factors PIF3 and PIF4 to differentially regulate shoot apical meristem activity. Microarray 

analysis revealed that the primary target of IND is the sugar transporter SWEET15 (upregulated), 

which promoted shoot apical meristem activity. 

This research identifies potential avenues for generating crop varieties with increased shoot apical 

meristem activity in the dark, which might be advantageous in a mulched system, and for 

generating semi-dwarf crop varieties, by activating a subset of brassinosteroid responses in 

brassinosteroid deficient crops.  
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Chapter 1 - Introduction 

1.1 The shoot apical meristem in darkness 

1.1.1 Agronomic relevance of increased shoot apical meristem activity in the dark 

Within a growing season, the number of crop cycles achievable is limited by the length of the 

growing phase. The number of growing days in the crop cycle could be reduced by increasing the 

rate of shoot apical meristem (SAM) activity. Many significant crop plants germinate in darkness 

under organic, rubber or plastic mulches, which are advantageous in that they increase crop 

productivity by preserving soil moisture content, fertility and quality, regulating soil bed 

temperature, suppressing weed growth, and increasing the overall rate of development (Angima, 

2009; Kumar et al., 2005; Van der Westhuizen, 2017). However, initial SAM activity is repressed 

in the absence of light (Roldan et al., 1999). For Arabidopsis thaliana (Arabidopsis), a member 

of the Brassicaceae family, this delay amounts to about one week, even though plants are supplied 

with a sugar source (Roldan et al., 1999). If the initial stages of seedling development are also 

reduced when grown under mulch, or dense canopies etc. then modifying SAM development in 

the dark could expedite the growing phase of the crop cycle. 

 

1.1.2 The shoot apical meristem 

The SAM is the primary source of stem cells for all above-ground organs of the plant. A niche of 

approximately 35 stem cells is maintained in the central zone of the Arabidopsis SAM 

(Dodsworth, 2009) by homeodomain transcription factors including WUSCHEL (WUS) (Sarkar 

et al., 2007). WUS is expressed in the organising centre, buried between the stem cell niche and 

the rib zone (Sarkar et al., 2007). The rib zone provides multipotent cells for differentiating organ 

primordia (Barton, 2010). Lateral organs initiate from regions of auxin maxima at the peripheral 

zone (Benkova et al., 2003).   

Cells in the SAM are relatively small with dense cytoplasms and small vacuoles (Wyrzykowska 

et al., 2006). Proplastids in the SAM do not differentiate into chloroplasts, so are unable to 

photosynthesise (Wyrzykowska et al., 2006). Therefore, the SAM relies on sugar transport for 

carbon and energy.  

 

1.1.3 Shoot apical meristem activity 

The initiation of new organs from the SAM is a direct output of SAM activity. Organs initiate 

from the SAM following a transition from cell proliferation for stem cell maintenance to 

differentiation. WUS expression has been used as an early marker of shoot apical meristem 
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activity (Pfeiffer et al., 2016). In this thesis, SAM activity is used synonymously with rate of leaf 

initiation, which is a function of leaf appearance rate (Padilla and Otegui, 2005). And SAM 

activity in the dark is used synonymously with dark development.  

Light is a potent activator of SAM activity, activating photosynthesis to increase carbon 

availability for growing tissues, and increasing cytokinin levels in the SAM (Yoshida et al., 2011). 

In a diurnal cycle, starch synthesised during the day is metabolised to generate sugars for 

respiration at night (Lu et al., 2005). In prolonged darkness, after the depletion of starch reserves, 

the SAM becomes quiescent and leaf initiation is transiently arrested (Yoshida et al., 2011). SAM 

activity can be restored by light or by direct contact with exogenous sugars (Roldan et al., 1999; 

Yoshida et al., 2011). Roldan and colleagues found that 1% sucrose was sufficient to induce the 

same rate of leaf initiation in dark-grown Arabidopsis as light-grown Arabidopsis, although the 

onset of SAM activity was delayed by about 1 week. Yoshida and colleagues (2011) found that 

exogenous cytokinin was also sufficient to activate dark-adapted shoot apices, and required polar 

auxin transport. In a study by Richard and colleagues (2002), both sugar and cytokinin were 

shown to have similar effects on stimulating the expression of cell cycle genes, whereas auxin 

treatment alone had a limited effect. Combinations of sugar and cytokinin treatment typically did 

not further increase the expression of cell cycle genes; however, either treatment in combination 

with auxin led to additive or synergistic increases of cell cycle gene expression. A combination 

of sugar, cytokinin and auxin led to synergistic regulation of certain cell cycle genes. These 

observations were subsequently linked to SAM activity (Hartig and Beck, 2006). In contrast to 

light and cytokinins, which initiate photomorphogenic development (Chory et al., 1991a), sugars 

in the absence of light initiate skotomorphogenic development (Roldan et al., 1999). 

 

1.1.4 Skotomorphogenesis and photomorphogenesis 

Dark development is skotomorphogenic rather than photomorphogenic (Roldan et al., 1999), with 

the exception of constitutively photomorphogenic/de-etiolated mutants, which typically cause 

PIF1/3/4/5-dependent signalling to be repressed in some way. Such mutants are typically gain-

of-function photoreceptor mutants (Hu et al., 2009; Yang et al., 2000) which repress protein 

turnover (Hofmann, 2015; Yang et al., 2001), mutants of protein turnover (Castle and Meinke, 

1994; Chory et al., 1989a; Deng et al., 1991; Kwok et al., 1996; Laubinger et al., 2004; Osterlund 

et al., 1999; Wei et al., 1994; Yanagawa et al., 2005) which represses DELLAs (Dohmann et al., 

2010), gain-of-function mutants of DELLAs (Chory et al., 1991a; Li et al., 2015b) which repress 

PIF activity (de Lucas et al., 2008; Feng et al., 2008; Gallego-Bartolome et al., 2011), mutants of 

brassinosteroid biosynthesis/signalling (Azpiroz et al., 1998; Chory, 1992; Clouse et al., 1996; 

Kim et al., 2009; Szekeres et al., 1996), which promote PIF activity by dephosphorylation 
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(Bernardo-Garcia et al., 2014), gain-of-function mutants in brassinosteroid signalling repressors 

(Li et al., 2001b; Ryu et al., 2010) which repress PIF activity by phosphorylation (Bernardo-

Garcia et al., 2014), mutants of downstream PIF signalling (Cheng et al., 2000; Rohde et al., 2000; 

Rohde et al., 1999; Wang et al., 2015), or mutants of PIF1/3/4/5 themselves (Shin et al., 2009). 

Distinctive features of skotomorphogenesis include elongated hypocotyls and petioles, smaller 

slender leaves, and no chloroplast development, whilst photomorphogenesis is characterised by 

partial or full chloroplast development (observed as greening), shorter hypocotyls and petioles, 

and broader leaves. 

 

1.2 Genetic regulation of dark development 

1.2.1 Mutants with increased dark development (skotomorphogenic) 

Various mutants have been described that have increased dark development, but are distinctly 

etiolated and develop etioplasts, rather than chloroplasts, when dark-grown. Mutants with 

increased dark development are reviewed. 

 

1.2.1.1 ARP2/3 complex related 

Increased dark development has been reported for mutants of the ACTIN RELATED PROTEIN2/3 

(ARP2/3) complex subunits high sugar response4 (arp3/hsr4) and arpc2a/hsr3/dis2 (Baier et al., 

2004; Zhang et al., 2008), and upstream activators of the ARP2/3 complex scar2 (dis3), 

scar1scar3 (Zhang et al., 2008), nap, pir (Li et al., 2004b), and constitutively active ROP2 lines 

(Li et al., 2001a; Li et al., 2017). The ARP2/3 complex nucleates filamentous actin (F-actin) 

branching (see 1.5.3). As yet, there have not been any follow-up studies to show how these 

mutations lead to increased dark development, except that the high sugar response of arp3 and 

arpc2a was suppressed by a mutant of the Mediator complex, which is deficient in transcriptional 

responses to sugars (Seguela-Arnaud et al., 2015). The role of the ARP2/3 complex in shoot apical 

meristem activity is explored in this thesis. 

 

1.2.1.2 Cell wall related 

Increased dark development is also a trait of a cell wall integrity mutant with decreased cell wall 

fucose mur1, mutants deficient in arabinose synthesis mur3, mur4 (hsr8), and a cytochrome P450 

mutant involved in suberin biosynthesis, hsr2 (Baier et al., 2004; Li et al., 2007). However, other 

cell wall integrity mutants developed normally in the dark, including weaker mutants of fucose 

and arabinose synthesis mur2 and mur5, mur6, mur7, a mutant with reduced cell wall rhamnose 
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mur8, a mutant with reduced xylose and fucose mur9, mutants with reduced cellulose synthesis 

rsw1, ixr2, and a mutant with reduced lignin irx4 (Li et al., 2007). The increased dark development 

of mur4 could be rescued with exogenous L-arabinose. Whereas boric acid, which increases cell 

wall integrity, rescued the dark development of mur1, mur3 and mur4. Mutations in the Mediator 

complex subunits med25 and med8, which are required for transcriptional responses to sugar and 

changes in cell wall arabinose composition, also rescued the dark development of mur4. (Li et al., 

2007; Seguela-Arnaud et al., 2015). Therefore, cell wall integrity and downstream transcriptional 

responses, as well as transcriptional responses to sugar status, are important for increased dark 

development. 

 

1.2.1.3 Related to the repression of auxin signalling 

The increased dark development of hls1 (cop3), a mutant of the N-acetyltransferase HOOKLESS1, 

was attributed to ethylene insensitivity and altered auxin homeostasis (Hou et al., 1993), with 

reduced levels of IAA in leaves (Ohto et al., 2006) and increased expression of auxin response 

genes (including the repressor of auxin signalling IAA5 and SAUR15) at the shoot apical hook 

(Lehman et al., 1996). A later study revealed that the increased dark development of hls1 was 

caused by the stabilization of auxin response factor ARF2 protein levels which led to repression 

of auxin signalling (Li et al., 2004a). Mutations in arf2 suppressed the increased dark development 

of hls1. Repression of auxin signalling by gain of function mutations in other Aux/IAA auxin 

response genes, iaa3 (shy2-2), iaa7 (axr2) and iaa17 (axr3), also increased dark development 

(Kim et al., 1998; Kim et al., 1996; Nagpal et al., 2000). Additionally a gain-of-function mutant 

of LEAFY COTYLEDON1 (lec1-dtnp) had increased dark development and increased expression 

of IAA2 (Casson and Lindsey, 2006). The Aux/IAA gain of function mutants were shown to have 

increased activity from increased Aux/IAA protein stability (Colon-Carmona et al., 2000). These 

studies indicate that auxin signalling represses dark development. 

 

1.2.1.4 Related to the repression of sugar starvation responses 

The exordium-like1 (exl1) mutant had increased dark development in response to low levels of 

sugars (0.15% glucose or 0.2% sucrose, but not 1% sucrose) and had increased sensitivity to 

brassinosteroid-induced growth (Schroeder et al., 2011). EXL1 expression is induced during 

extended night and low carbon availability but its function remains unclear.  
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1.2.2 Mutants with increased dark development (constitutively photomorphogenic) 

Other mutants with increased development when dark-grown are described as de-etiolated or as 

constitutive photomorphogenic, and develop functional chloroplasts or intermediates between 

etioplasts and chloroplasts, as well as other traits resembling light-grown plants.  

 

1.2.2.1 Related to increased cytokinin 

The increased dark development of amp1 (cop2/hls2), a mutant of the glutamate carboxypeptidase 

ALTERED MERISTEM PROGRAM1, which also had an increased rate of leaf initiation in the 

light, was attributed to greatly elevated cytokinin biosynthesis in the light and dark (Chin-Atkins 

et al., 1996; Hou et al., 1993). Treatments with exogenous cytokinin also induced 

photomorphogenesis in the dark, indicating that cytokinin promotes dark development (Chory et 

al., 1991a). 

 

1.2.2.2 Related to abscisic acid insensitivity 

Dark grown mutants of ABSCISIC ACID INSENSITIVE3 (abi3) have increased leaf initiation rate 

in the dark (Rohde et al., 2000; Rohde et al., 1999) and around 10% of abi3 mutants develop leaf 

primordia in the seed (Nambara et al., 1995). abi3 mutants partially develop chloroplasts in dark-

grown cotyledons and leaves, and develop etioplasts in the shoot apical meristem where plastids 

are normally undifferentiated, indicating that ABI3 is a repressor of plastid differentiation (Rohde 

et al., 2000). 

abi8 (eld1/kob1), a putative glycosyltransferase mutant, is constitutively photomorphogenic and 

has rapid leaf production in the dark (Cheng et al., 2000). Its constitutive photomorphogenesis 

was shown to be caused by reduced cellulose (Wang et al., 2015); treatment with the cellulose 

biosynthesis inhibitor 2,6-dichlorobenzonitrile phenocopied the photomorphogenesis of dark-

grown abi8 mutants. abi8 mutants also accumulated ectopic cell wall components including 

suberin and lignin (Cheng et al., 2000; Pagant et al., 2002). In the light, ABI8 is targeted for 

degradation by the proteasome, placing it downstream of light signalling (Wang et al., 2015). The 

expression of HLS1/COP3 was ‘drastically reduced’ in abi8 mutants (Wang et al., 2015), 

suggesting that the increased dark development is partially due to stabilization of ARF2 (Li et al., 

2004a). Unlike the cell wall biosynthesis mutant high sugar response8 (see 1.2.1.2), abi8 has a 

low sugar response, and is photomorphogenic in the dark. abi8 has severely stunted growth, 

resulting from reduced cell elongation that is not rescued by exogenous hormones, but is partially 

alleviated by high concentrations (>1%) of glucose (Brocard-Gifford et al., 2004). abi8 is an 
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example of a cell wall biosynthesis mutant that also represses auxin signalling. The phenotypes 

of abi3 and abi8 potentially indicate that abscisic acid negatively regulates dark development.   

 

1.3 Regulation of SAM activity by sugars 

The SAM is not able to photosynthesise, so it requires sugars to be transported to the stem cells 

for activation (Roldan et al., 1999; Wyrzykowska et al., 2006). Little is known about the specific 

sugar transporters or downstream sugar responses required for SAM activity. Plants perceive 

sugars by glycolysis-dependent and independent sugar signalling pathways (Moore et al., 2003).  

Glycolysis is the first stage of respiration and produces energy in the form of ATP and NADP, as 

well as metabolites required for synthesising amino acids and other molecules necessary for 

cellular growth and maintenance. Glycolysis has been shown to activate the cell cycle in 

meristematic root and shoot tissues via the kinase TARGET OF RAPAMYCIN (TOR), which 

was important for root and shoot apical meristem activity (Pfeiffer et al., 2016; Xiong et al., 2013).  

The non-metabolizable glucose analog 2-Deoxy-D-glucose (2-DG) is a commonly used inhibitor 

of glycolysis and acts by inhibiting hexokinase (Klein and Stitt, 1998). 2-DG competes for the 

same binding site as glucose (Nakada and Wick, 1956). 

Glycolysis-independent sugar signalling has been shown to be important for promoting growth, 

inhibiting growth and greening on high concentrations of glucose, regulating sensitivity to sugars 

and phytohormones (Chen et al., 2006; Moore et al., 2003).  

In this section, the general and SAM-specific roles (if characterised) of glycolysis and sugar 

signalling pathways are introduced, with relevance to chapter 4. Two glycolytic enzymes were 

selected: aldolases because of their relationship with F-actin, and hexokinases for their dual roles 

in glycolysis and glycolysis-independent sugar signalling. 

 

1.3.1 Aldolases 

Fructose bisphosphate aldolases (aldolases / FBA) are glycolytic enzymes that catalyse the 

reversible conversion of fructose 1,6-bisphosphate into dihydroxyacetone phosphate and 

glyceraldehyde 3-phosphate, and also the reversible conversion of sedoheptulose 1,7-

bisphosphate into dihydroxyacetone phosphate and erythrose 4-phosphate (Mininno et al., 2012). 

In addition to their roles in glycolysis and the Calvin Cycle, glyceraldehyde 3-phosphate and 

erythrose 4-phosphate are precursors for isoprenoid biosynthesis, and aromatic amino acid 

biosynthesis, respectively (Flechner et al., 1999; Herrmann, 1995; Rohmer et al., 1996).  
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Arabidopsis has eight aldolases, FBA1-8 (Lu et al., 2012). FBA1-3 localise to plastids (Lu et al., 

2012; Mininno et al., 2012), and FBA4-8 localise to the cytosol (Lu et al., 2012). FBA6 and FBA8 

were also identified in association with mitochondria, and FBA8 participated in the glycolytic 

pathway associated with the outer or inner mitochondrial membrane (Giege et al., 2003). Plastidic 

aldolases are important for starch biosynthesis, but do not contribute to sucrose levels (Sonnewald 

et al., 1994). By contrast, cytosolic aldolases are important for sucrose biosynthesis (Barry et al., 

1998). Sucrose biosynthesis is activated by a threshold level of the FBA product/substrate 

dihydroxyacetone phosphate (Stitt et al., 1987), which is believed to stimulate the reverse 

(aldolase) reaction and gluconeogenesis, leading to an increase in sucrose and starch precursors. 

Aldolases in plants are also involved in abiotic stress responses, including responses to salinity, 

drought, ABA, gibberellic acid, and high sugar concentrations (Lu et al., 2012; Zhang et al., 2003). 

The SAM has undifferentiated plastids known as proplastids. Whether or not FBA1-3 localise to 

proplastids when expressed in the SAM is not known, however, glycolytic enzymes including 

aldolase have previously been identified in proplastids of castorbean (Simcox et al., 1977). 

Aldolases behave as tetramers and their activity is dependent on their association with the actin 

cytoskeleton (Arnold and Pette, 1970; Persson, 1988). Actin-association reduced the affinity of 

aldolase for fructose 1,6-bisphosphate by about an order of magnitude (Arnold and Pette, 1970). 

Thus in the literature, actin-bound aldolase is often considered inactive, whereas free aldolase is 

considered active. Aldolases associate with actin via conserved actin-binding sites, which 

resemble actin sequence (O'Reilly and Clarke, 1993).  

 

1.3.2 Hexokinases 

The hexose sugar glucose feeds directly into glycolysis through the catalytic activity of the 

receptor hexokinase, which converts glucose into glucose-6-phosphate. Arabidopsis has three 

HEXOKINASE (HXK) and HEXOKINASE-LIKE (HKL) proteins, the best studied HXK being 

HXK1, which also has glycolysis-independent sugar signalling activity, although HXK2 has 

equal catalytic activity (Jang et al., 1997; Karve et al., 2008; Moore et al., 2003). HXK1-3 and 

HXL1-2 are predicted or demonstrated to have glucose binding properties, but only HXK1-3 are 

catalytically active and involved in glycolysis (Karve et al., 2008). HXK1 and HXK2 localise to 

mitochondria, whereas HXK3 localises to the chloroplast (Balasubramanian et al., 2007; Karve 

et al., 2008). The sugar signalling activity of HXK1 has been shown to be important for a variety 

of responses including sensitivity to high concentrations of glucose, sensitivity to auxin and 

reducing sensitivity to cytokinin, promoting hypocotyl, leaf and root growth, and inhibiting 

growth in response to high concentrations of glucose (Moore et al., 2003).  
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1.3.3 RGS1 

REGULATOR OF G-PROTEIN SIGNALING1 (RGS1) is a glucose responsive G-protein-

coupled putative glucose receptor associated with the plasma membrane (Grigston et al., 2008). 

Glucose perception promoted RGS1 phosphorylation by WITH NO LYSINE (WNK) kinases, 

leading to disassociation from and activation of G-PROTEIN ALPHA SUBUNIT1 (GPA1) which 

promotes the RGS1-dependent removal of RGS1 from the plasma membrane by endocytosis 

(Grigston et al., 2008; Urano et al., 2012). RGS1 directly or indirectly promotes the expression 

of genes involved in autophagy, which reduces its recovery to the plasma membrane (Yan et al., 

2017). Endocytosis of RGS1 increases growth by activating cell division (Urano et al., 2012). 

Overexpression of RGS1 caused high sugar responses (Urano et al., 2012). 

RGS1 signalling is involved in responses to high concentrations of glucose, including the 

repression of germination, repression of root and hypocotyl growth, repression of greening, and 

sensitivity to ABA (Chen et al., 2006; Tunc-Ozdemir and Jones, 2017). 

 

1.3.4 TOR 

TOR kinase mediates sugar and auxin signalling downstream of primary metabolism and ROP2, 

respectively, to activate stem cells at the root and shoot apical meristems (Fritzsche et al., 2017; 

Pfeiffer et al., 2016; Schepetilnikov et al., 2017; Xiong et al., 2013). TOR promotes the cell cycle 

by directly phosphorylating and activating the E2Fa and E2Fb transcription factors (Li et al., 2017; 

Xiong et al., 2013), activates translation by upregulating the expression of ribosomal proteins and 

phosphorylation of the RIBOSOMAL PROTEIN S6 kinases S6K1 and S6K2 (Dobrenel et al., 

2016; Xiong et al., 2017; Xiong and Sheen, 2012), and represses autophagy (Zhang et al., 2016b). 

TOR is also an essential component of long term auxin signalling responses (Deng et al., 2016; 

Schepetilnikov et al., 2013; Schepetilnikov et al., 2017), and regulates brassinosteroid signalling 

(Xiong et al., 2017; Zhang et al., 2016b). In Arabidopsis, tor mutants are embryonic lethal 

(Menand et al., 2002), but TOR is not required for post-embryonic meristem development in roots 

(Xiong et al., 2013).  

 

1.4 Regulation of SAM activity by phytohormones 

A number of phytohormones are reported to affect SAM activity. In general, phytohormones are 

small molecule ligands that are differentially synthesised, transported and turned over to regulate 

a variety of signalling pathways and responses to stimuli. Stimuli can be environmental, such as 

light or drought perception, or developmental. Hormone responses are often context specific and 
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can lead to different outcomes in different or cells or tissues. Additionally, the precise outputs of 

a so-called hormone signalling pathway are complicated by the interaction and interdependency 

of different hormone signalling pathways.  

SAM activity is increased by cytokinin and requires polar auxin transport. Auxin signalling, on 

the other hand, has both positive and negative roles in SAM activity, while some reports indicate 

that ethylene and abscisic acid signalling repress SAM activity. These hormone signalling 

pathways interact with sugar signalling and are considered below, alongside gibberellic acid and 

brassinosteroid signalling, which also interact with sugar signalling. 

 

1.4.1 Cytokinin 

Cytokinin is required for normal shoot growth and meristem functions (Jasinski et al., 2005; Ko 

et al., 2014; Matsumoto-Kitano et al., 2008; Zhang et al., 2014b). Cytokinin deficiency or 

insensitivity leads to reduced SAM activity and reduced growth (Holst et al., 2011; Matsumoto-

Kitano et al., 2008; Riefler et al., 2006), whilst increased cytokinin levels and signalling causes 

constitutive photomorphogenesis, delayed senescence, and promotes rapid leaf initiation 

(Bartrina et al., 2017; Chin-Atkins et al., 1996; Hou et al., 1993; Yoshida et al., 2011), partially 

mediated by repression of CLV1 (Gordon et al., 2009; Lindsay et al., 2006; Yoshida et al., 2011). 

There has not been convincing evidence that cytokinin is synthesised in the SAM. The IPT genes, 

which catalyse the rate limiting step of cytokinin biosynthesis (Miyawaki et al., 2004), were not 

expressed in the SAM in GUS reporter assays, or microarray analysis of protoplasted SAM cell 

types (Miyawaki et al., 2004; Yadav et al., 2009). The main evidence suggesting that cytokinin is 

synthesised in the SAM comes from overexpression of the STM homeobox transcription factor, 

which is enriched in meristematic tissues. Induction of 35S::STM-GR led to the upregulation of 

IPT7 and increased cytokinin levels (Jasinski et al., 2005; Yanai et al., 2005). Moreover, 

expression of bacterial IPT from the STM promoter rescued stm shoot meristem defects (Yanai et 

al., 2005). However, STM is also expressed in procambial cells and is essential for xylem 

development (Liebsch et al., 2014), as is cytokinin biosynthesis (Matsumoto-Kitano et al., 2008). 

Therefore, pSTM::IPT might have rescued the phenotype of stm by restoring xylem development, 

since the SAM has been shown to receive root-derived cytokinins from the xylem (Aloni et al., 

2005).  

The root is the primary site of cytokinin biosynthesis (Matsumoto-Kitano et al., 2008). A 

cytokinin transporter ABCG14 was shown to be important for the root to shoot translocation of 

cytokinin (Ko et al., 2014; Zhang et al., 2014b). The cytokinin concentration in the xylem of 

abcg14 plants was reduced by around 90%, and resulted in significantly reduced shoot 
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development, similar to cytokinin biosynthesis mutants (Matsumoto-Kitano et al., 2008). 

Conversely, abcg14 roots had increased development caused by an accumulation of cytokinin. 

Grafting abcg14 shoots onto wild-type roots restored the abcg14 shoot growth, whereas wild-

type shoots grafted onto abcg14 root stocks phenocopied the abcg14 mutant. Exogenous 

application of cytokinin to the shoot was also sufficient to restore abcg14 shoot growth. These 

results demonstrate that the primary source of cytokinin in the shoot is delivered from the root 

through the xylem. 

Light or darkness had no significant effect on the levels of cytokinins (zeatin, dihydrozeatin, 

zeatin riboside, or isopentenyladenosine) in whole seedlings (Chin-Atkins et al., 1996; Chory et 

al., 1994). However, another study showed that total cytokinin levels are similar in light and dark 

grown plants (pea), but dark-grown plants had greater levels of cytokinin in the roots, and light-

grown plants had greater levels of cytokinin in the shoots (Kefeli and Kalevitch, 2013); light 

triggered the redistribution of cytokinin from roots to shoots within 4 hours of illumination. The 

light-dependent root shoot distribution of cytokinin is supported by gene expression data of 

cytokinin reporter genes (Brenner et al., 2005) in the SAM (Lopez-Juez et al., 2008) and 

expression of the cytokinin reporter TCS::GFP in the inflorescence SAM (Yoshida et al., 2011). 

The previously mentioned cytokinin transporter ABCG14 does not appear to be regulated by light 

(eFP Browser; Winter et al., 2007), however, grafting experiments have demonstrated that 

cytokinin uptake from the root is dependent on the shoot, not the root (Beveridge et al., 1997). 

Other studies have shown that transpiration rate controls the import of cytokinins from root to 

shoot (Aloni et al., 2005; Beck and Wagner, 1994), which is reduced in shaded leaves, so that 

senescence is promoted by lower cytokinin levels (Boonman et al., 2007). Therefore, in a dark 

development setting, where transpiration rates are minimal, the level of cytokinin in the shoot is 

much lower than in light-grown plants. 

 

1.4.2 Polar auxin transport 

The efficiency of auxin passage across plasma membranes is greatly increased by uptake and 

efflux carriers (Delbarre et al., 1996). The asymmetric localisation of auxin uptake and polar auxin 

efflux carriers enables directional auxin flux between cells, termed polar auxin transport. 

Arabidopsis has four known polar auxin uptake carriers, AUXIN RESISTANT1 (AUX1) and 

LIKE-AUX1 (LAX)1/2/3, and five known polar auxin efflux carriers, PIN-FORMED 

(PIN)1/2/3/4/7, involved in polar auxin transport across plasma membranes (Carrier et al., 2008; 

Peret et al., 2012; Yang et al., 2006; Zourelidou et al., 2014). The concerted action of these polar 

auxin transporters has been shown to be important for establishing auxin minima and maxima 

which regulate developmental events including root and shoot meristem activity, organ boundary 
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formation, phyllotaxis, and fruit dehiscence (Bilsborough et al., 2011; Dubrovsky et al., 2008; 

Friml et al., 2004; Hofmann, 2014; Sabatini et al., 1999; Sorefan et al., 2009; Vernoux et al., 2010) 

through the action of downstream transcription factors (Aida et al., 2004; Mahonen et al., 2014; 

Wu et al., 2015).  

PIN polarity is achieved in part by continuous polar endocytosis and recycling to the plasma 

membrane by a clathrin-dependent endocytosis pathway (Dhonukshe et al., 2007), whereas 

AUX1/LAX proteins are endocytosed by a separate and as yet undetermined pathway (Kleine-

Vehn et al., 2006). Polar localisation of PIN proteins is directed by phosphorylation signals from 

kinases including PINOID (PID), WAG1, and WAG2, which promote the endocytosis of PINs 

(Dhonukshe et al., 2010), and phosphatases including the SERINE/THREONINE PROTEIN 

PHOSPHATASE2A (PP2A) A complex, which stabilize the plasma membrane localisation of 

PINs (Michniewicz et al., 2007). Five conserved phosphorylated residues at the M3 site of the 

long hydrophilic loop of PINs are important for polar PIN localisation (Ganguly et al., 2012; Ki 

et al., 2016; Sasayama et al., 2013). Specific phosphorylation signals are also required for PIN 

efflux activity (Weller et al., 2017; Zourelidou et al., 2014). 

Polar auxin transport in the SAM is primarily mediated by AUX1, LAX1, and PIN1 (Bainbridge 

et al., 2008; Guenot et al., 2012). AUX1 and PIN1 oppositely polarly localise to generate a 

directional flow of auxin (Swarup et al., 2001). Defects in AUX1/LAX or PIN1 lead to altered 

phyllotaxis (Bainbridge et al., 2008; Deb et al., 2015; Guenot et al., 2012; Reinhardt et al., 2003), 

and decreased leaf initiation rate has been reported for a light-grown pin1 allele (Guenot et al., 

2012), while temporary periods of arrested leaf development were reported in the 

aux1lax1lax2lax3 quadruple mutant growing in short but not long days (Bainbridge et al., 2008). 

Additionally, pin1 mutants develop naked pin-like inflorescences, devoid of lateral organs, which 

gave rise to their name (Okada et al., 1991; Vernoux et al., 2000). Organ initiation can be rescued 

by microapplication of auxin to the meristem (Reinhardt et al., 2000), which also requires 

sufficient endogenous or exogenous cytokinin (Yoshida et al., 2011). A triple mutant of the SAM-

expressed polar auxin transporters pin1aux1lax1 had reduced rosette leaf initiation, but still 

produced leaves, indicating that polar auxin transport is important but not essential for leaf 

initiation, at least, in the light (Guenot et al., 2012). On the other hand, the yuc1yuc4pin1 triple 

mutant, which has severely impaired auxin biosynthesis in the SAM, as well defective polar auxin 

transport, completely abolished post-embryonic leaf initiation (Cheng et al., 2007). PIN1 is 

removed from the plasma membrane in response to prolonged darkness in the vegetative and 

inflorescence SAMs of Arabidopsis, and the vegetative SAM of tomato (Lauxmann et al., 2016; 

Sassi et al., 2013; Yoshida et al., 2011). 
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Several inhibitors of polar auxin transport have been identified, although the precise modes of 

action haven’t been fully characterised. The most widely used inhibitors of auxin efflux are 1-N-

naphthylphthalamic acid (NPA), 2,3,5-triiodobenzoic acid (TIBA), and brefeldin A (BFA). NPA 

affects protein trafficking at concentrations above 50μM (Geldner et al., 2001; Gil et al., 2001; 

Peer et al., 2009) through direct interaction with the trafficking chaperone TWISTED DWARF1 

(Zhu et al., 2016a) and is thought to inhibit PIN activity as well, as it is effectively inhibits polar 

auxin transport at 1-5μM (Casimiro et al., 2001; Teale and Palme, 2017; Zhu et al., 2016a). TIBA 

inhibits vesicle motility by indirectly stabilizing actin (Dhonukshe et al., 2008) and might also 

inhibit PIN activity (Teale and Palme, 2017). BFA is used as an inhibitor of vesicle trafficking to 

the plasma membrane by blocking the activity of ARF GEFs (Geldner et al., 2003; Geldner et al., 

2001; Steinmann et al., 1999). The effects of BFA are rapidly reversed upon removal (Geldner et 

al., 2001). TIBA and BFA treatment caused PIN1 to accumulate in endosomes (Geldner et al., 

2001), similar to the effect of prolonged darkness on PIN1 localisation (Lauxmann et al., 2016; 

Sassi et al., 2013; Yoshida et al., 2011).  

 

1.4.3 Auxin 

Auxin plays a role in almost every developmental process in plants (Leyser, 2017). Changes in 

auxin levels trigger responses that are context-specific and primarily determined by differential 

expression of the six TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX 

(TIR1/AFB) auxin receptors, twenty-nine Aux/IAA repressors, and twenty-three AUXIN 

RESPONSE FACTORS (ARFs) (Dharmasiri et al., 2005; Kepinski and Leyser, 2005; Leyser, 2017; 

Parry et al., 2009; Remington et al., 2004; Vernoux et al., 2011; Walsh et al., 2006). Auxin levels 

are regulated through biosynthesis, catabolism and through differential polar and non-polar auxin 

transport. In the SAM, auxin biosynthesis is primarily mediated by TRYPTOPHAN 

AMINOTRANSFERASE OF ARABIDOPSIS1/TAA-RELATED2 (TAA1/TAR2) and 

downstream YUCCA (YUC1/4) (Cheng et al., 2007; Lopez-Juez et al., 2008; Stepanova et al., 

2008; Stepanova et al., 2011). The GRETCHEN HAGEN3 (GH3) IAA-amido synthases are the 

main auxin catabolic enzymes, but DIOXYGENASE FOR AUXIN OXIDATION1/2 (DAO1/2) 

also mediate auxin catabolism (Mellor et al., 2016; Porco et al., 2016; Zhang et al., 2016a). The 

role of polar auxin transport in the SAM is discussed separately (1.4.2). 

ARFs are auxin-regulated transcription factors that positively or negatively regulate auxin 

signalling. Aux/IAAs bind and repress ARFs with different affinities (Piya et al., 2014; Vernoux 

et al., 2011). TIR1/AFBs target Aux/IAAs for proteolytic degradation upon binding auxin, 

relieving the repression of ARFs (Gray et al., 2001; Kepinski and Leyser, 2005; Weijers and 

Jurgens, 2004). ARF3 and ARF13 are exceptional in that they lack the C-terminal Phox/Bem1p 
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(PB1) domain required for interacting with Aux/IAAs (Piya et al., 2014). ARFs form homodimers 

and interact with each other and other transcription factors to regulate gene expression (Boer et 

al., 2014; Simonini et al., 2016). Recently it was shown that ARF3 responds to auxin levels 

directly, negatively affecting its ability to interact with a variety of transcription factors, and 

affecting its regulatory activity (Simonini et al., 2017; Simonini et al., 2016).  

A cascade of ARF expression in the SAM occurs upon transfer of dark-developed plants to the 

light, preceding the initiation of leaves (Lopez-Juez et al., 2008). One of the roles of ARFs is 

thought to be the regulation of class I KNOX transcription factors, including SHOOT 

MERISTEMLESS (STM), KNOTTED-LIKE FROM ARABIDOPSIS THALIANA (KNAT1/BP, 

KNAT2, KNAT6) and REPLUMLESS (RPL/BLR/PNY/VAN) (Schuetz et al., 2008; Tabata et al., 

2010), which repress SAM activity (Smith and Hake, 2003) and are locally downregulated 

preceding the initiation of new lateral organs in vegetative and inflorescence SAMs (Byrne et al., 

2003; Jackson et al., 1994; Lincoln et al., 1994). An ARF5/MP gain-of-function allele reduced 

the rate of leaf initiation (Garrett et al., 2012), indicating that ARF5 represses leaf initiation. 

However, a light-grown arf5 mutant did not significantly affect leaf initiation rate (Schuetz et al., 

2008), indicating that ARF5 acts redundantly.  

Auxin is required but not sufficient for the initiation of leaves (Reinhardt et al., 2000; Yoshida et 

al., 2011). Additionally, light or sugar and/or cytokinin and polar auxin transport are required for 

leaf initiation (Roldan et al., 1999; Yoshida et al., 2011). Auxin-responsive gene expression is 

particularly high in three-day old dark-developed shoot apices, and was repressed by light, 

indicating that auxin might repress leaf initiation in the dark (Lopez-Juez et al., 2008), although 

this was challenged by Yoshida and colleagues, who observed decreased expression of the 

DR5::GFP auxin reporter in dark adapted shoot apices after six days (Yoshida et al., 2011). 

However, since neither study applied exogenous sugars to the shoot apices, the longer-term 

downregulation of auxin signalling observed by Yoshida et al. (2011) could instead be a starvation 

response mediated by TOR kinase (Deng et al., 2016), whereas the three day old seedlings 

examined by Lopez-Juez et al. (2008) could still be utilising embryonic sugar reserves. Therefore, 

it is more likely, in a dark development scenario where exogenous sugars are also supplied, that 

auxin signalling, mediated by TOR, is maintained in the SAM, supporting the theory that auxin 

might repress leaf initiation in the dark (Lopez-Juez et al., 2008). Consistent with the hypothesis 

that auxin represses SAM activity in the dark, treatments with the auxins IAA (0.75 or 1.5µM) or  

2,4-D (1 or 2µM) inhibited the leaf initiation of an orchid (Novak and Whitehouse, 2013) and the 

auxins NAA (1µM) or 2,4-D (10µM) inhibited the leaf initiation of moss (Bennett et al., 2014). 

Moreover, gain-of-function alleles of Arabidopsis Aux/IAAs that stabilized Aux/IAA protein in 

the presence of auxin (Colon-Carmona et al., 2000) increased dark development (Kim et al., 1998; 

Kim et al., 1996; Nagpal et al., 2000), indicating that auxin signalling represses dark development.  
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1.4.4 Ethylene 

Studies indicate that ethylene represses leaf initiation. Ethylene biosynthesis and signalling is 

increased in dark-developed shoot apices, downstream of auxin signalling (Klee and Romano, 

1994; Lopez-Juez et al., 2008). Increased ethylene levels correlated with reduced rate of leaf 

initiation in response to NaCl (Albacete et al., 2008). Whereas the ethylene insensitive mutant 

ein2-1 increased leaf initiation under low light intensity (15µM m-2 s-1) (Vandenbussche et al., 

2003). Another ethylene-insensitive mutant hookless1 (hls1) increased dark development by 

stabilizing the auxin and brassinosteroid responsive transcription factor ARF2 (Hou et al., 1993; 

Lehman et al., 1996; Li et al., 2004a; Vert et al., 2008), which negatively regulates auxin and 

ABA signalling (Lim et al., 2010; Promchuea et al., 2017). Ethylene insensitive mutants have 

reduced apical hook curvature in the dark (Raz and Ecker, 1999), which is an indicator of 

increased dark development, whilst ethylene potentiated the formation of an apical hook (Guzman 

and Ecker, 1990).  

 

1.4.5 Abscisic acid 

ABA has been demonstrated to negatively regulate SAM activity. Extended periods of darkness 

caused substantial increases in endogenous ABA levels (Weatherwax et al., 1996), which 

correlated with a reduced rate of leaf initiation in tomato plants, where ABA levels were increased 

in response to NaCl treatment (Albacete et al., 2008). Dark development was increased by 

stabilization of ARF2 which negatively regulates ABA signalling (Li et al., 2004a; Promchuea et 

al., 2017); and two ABA-insensitive mutants, abi3 and abi8, had increased dark development (see 

1.2.2.2; Cheng et al., 2000; Rohde et al., 2000; Rohde et al., 1999). Furthermore, treatments with 

ABA biosynthesis inhibitors increased dark development, and exogenous ABA repressed dark 

development (Rohde et al., 1999). ABA response genes have been shown to be present in all cell 

types of the SAM (Malhan et al., 2015). 

 

1.4.6 Gibberellic acid 

Gibberellic acid (GA) is required for growth of Arabidopsis in the light and the dark (Griffiths et 

al., 2006; Roldan et al., 1999; Zeevaart and Talon, 1992). The expression of the GA receptor 

GIBBERELLIN INSENSITIVE DWARF1 (GID1) is regulated by the circadian clock and 

upregulated at night (Achard et al., 2007; Arana et al., 2011; Ueguchi-Tanaka et al., 2005). GID1 

expression was also increased in dark-developed shoot apices (Lopez-Juez et al., 2008). 

Consequently, GA responses are upregulated in the dark, promoting elongation of the hypocotyl 

and skotomorphogenesis (Achard et al., 2007; Roldan et al., 1999). A variety of basic helix-loop-
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helix (bHLH) transcription factors are inhibited by interaction with DELLA proteins (Arnaud et 

al., 2010; de Lucas et al., 2008; Feng et al., 2008; Gallego-Bartolome et al., 2011; Hong et al., 

2012), notably the PIFs, which repress photomorphogenesis (Leivar et al., 2008). GA-bound 

GID1 relieves the inhibition of DELLA-repressed transcription factors by binding DELLAs and 

promoting their degradation (Griffiths et al., 2006; Ueguchi-Tanaka et al., 2005).  

Microtubule dynamics are an important component of GA responses (Sambade et al., 2012). GA 

treatment promotes the formation of transverse arrangements microtubules in light-grown 

hypocotyls, which was accompanied by rapid growth (Lloyd, 2011; Sambade et al., 2012). 

Additionally, GA inhibited the highly ordered arrangement of cortical microtubules dynamics in 

root meristem cells (Ishida and Katsumi, 1991). The effect of GA on microtubule dynamics was 

shown to be downstream of DELLAs (Locascio et al., 2013).  

GA levels in the SAM are suppressed by KNOX homeobox transcription factors by inducing the 

GA catabolic genes GA2OX4/GA2OX6 in a cytokinin-dependent manner (Jasinski et al., 2005). 

Constitutive GA signalling coupled with low cytokinin levels was shown to be detrimental to 

SAM function, with the SAM being consumed by initiating primordia, unable to replenish its 

stem cell niche (Jasinski et al., 2005).  

 

1.4.7 Brassinosteroid 

Brassinosteroids promote cell growth through expansion and proliferation, accelerate senescence, 

and repress photomorphogenesis (Clouse et al., 1996; Mandava et al., 1981; Mitchell et al., 1970; 

Worley and Mitchell, 1971; Yopp et al., 1981). The brassinosteroids brassinolide and castasterone 

bind to the receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) (Wang et al., 2001), 

which phosphorylates the kinases BR-SIGNALLING KINASE (BSK) (Sreeramulu et al., 2013; 

Tang et al., 2008) and CONSTITUTIVE DIFFERENTIAL GROWTH1 CDG1 (Kim et al., 2011). 

CDG in turn phosphorylates and activates the phosphatase BRI1 SUPPRESSOR1 (BSU1) (Kim 

et al., 2011), which dephosphorylates and inactivates GSK3-like kinase repressors, notably 

BRASSINOSTEROID INSENSITIVE2 (BIN2) (Kim et al., 2009), named after the phenotype of 

a gain-of-function allele (Li et al., 2001b), and relieves the repression of the transcription factors 

including BRASSINAZOLE RESISTANT1 (BZR1), BES1, and PIF4 (Bai et al., 2012; Gampala 

et al., 2007; Kim et al., 2009), which promote brassinosteroid signal transduction (Oh et al., 2012; 

Wang et al., 2002; Yin et al., 2002). Dephosphorylation of BZR1 and BES1 is mediated by 

PROTEIN PHOSPHATASE2A (PP2A) (Tang et al., 2011). The phosphorylated BZR1 and BES1 

are stabilized in the inactive state by 14-3-3 proteins (Gampala et al., 2007). Once 

dephosphorylated, BZR1 and BES1 rapidly translocate to the nucleus (Gampala et al., 2007). 
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Dephosphorylated BZR1, BES1 and PIF4 are subject to repression by DELLA proteins, 

attenuating brassinosteroid responses in the light (Bernardo-Garcia et al., 2014; Li et al., 2012).  

In the SAM, nuclear localisation of the brassinosteroid-responsive transcription factor BZR1 

occurs in areas of high auxin levels (Gendron et al., 2012). Brassinosteroids are excluded from 

organ boundaries, where it is important for cells not to grow, to support growing organs (Gendron 

et al., 2012). Overexpression of brassinosteroid biosynthesis or signalling genes occasionally 

results in fused leaves, similar to mutants with defective polar auxin transport (Gendron et al., 

2012). Brassinosteroid-insensitive and deficient mutants are dwarfed and constitutively 

photomorphogenic (Chory et al., 1991b; Clouse et al., 1996). Brassinosteroid signalling is 

enhanced in the dark, as the repression of BZR1, BES1 and PIF4 by DELLA proteins is alleviated 

(Bai et al., 2012; Bernardo-Garcia et al., 2014; Li et al., 2012).  

The loss of BZR1/PIF stabilization in mutants of brassinosteroid biosynthesis det2 (cop7), dwf4, 

cpd (Azpiroz et al., 1998; Chory, 1992; Szekeres et al., 1996), perception bri1 (Clouse et al., 1996; 

Kim et al., 2009), signalling bsu-quad (Kim et al., 2009), gain of function mutants of 

brassinosteroid signalling repressors bes1, bin2 (Li et al., 2001b; Ryu et al., 2010), and an 

integrator of light and brassinosteroid signalling 35S::GATA2 (Luo et al., 2010), results in de-

etiolation in the dark. 

 

1.5 The Arp2/3 complex 

The actin-related protein2/3 (Arp2/3) complex is a protein complex composed of Arp2, Arp3, and 

five core Arp2/3 complex (ARPC) subunits, named 1-5 in decreasing order of size (Machesky et 

al., 1994; Machesky et al., 1997; Robinson et al., 2001). As their names suggest, Arp2 and Arp3 

are related to actin, which is in terms of sequence similarity (Frankel et al., 1994; Kelleher et al., 

1995; Leesmiller et al., 1992; Schwob and Martin, 1992), and belong to an ancient actin 

superfamily that also includes hexokinase, and evolutionarily precedes the divergence of 

eukaryotes from prokaryotes (Fyrberg et al., 1994; Kabsch and Holmes, 1995). Arabidopsis has 

orthologs of each ARP2/3 complex subunit, including two homologs of ARPC1 and ARPC2, each 

named A and B (McKinney et al., 2002; Szymanski, 2005).  

 

1.5.1 Upstream regulation of Arp2/3 complex activity 

The Arp2/3 complex is activated by direct phosphorylation of Arp2/3 subunits (LeClaire et al., 

2015; Serrels et al., 2007; Tunduguru et al., 2017), and by a nucleation promoting complex 

WAVE, comprising Wiskott-Aldrich syndrome protein (WASP, N-WASP) (Carlier et al., 1999; 
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Rohatgi et al., 1999), Suppressor of Cyclic AMP Receptor/WASP family verprolin-homologous 

(Scar/WAVE) (Machesky and Insall, 1998; Stovold et al., 2005), Abl-interactor (Abi) (Eden et 

al., 2002; Innocenti et al., 2004; Soderling et al., 2002), Nck-associated protein 

(Nap1/NAP125/kette) (Eden et al., 2002), Specifically Rac1-associated (Sra1/PIR121/CYFIP1) 

(Kobayashi et al., 1998), and HSPC300 (Eden et al., 2002). Arabidopsis lacks WASP and N-WASP 

(Uhrig et al., 2007), and several WAVE complex orthologs have alternative names in Arabidopsis, 

for instance, HSPC300 is BRICK1 (BRK1) (Le et al., 2006), Abi is ABI-1-LIKE (ABIL) (Basu et 

al., 2005), Sra1/PIR121/CYFIP1 is PIROGI (PIR) (Basu et al., 2004; Li et al., 2004b). ARP2/3 

activity in Arabidopsis requires at least one subunit of each WAVE component, as single mutants 

typically display phenotypes akin to ARP2/3 mutant phenotypes (Szymanski, 2005). However, 

Arabidopsis has four SCAR proteins, one SCAR-like protein (SCARL), and four ABIL proteins 

(Uhrig et al., 2007) with differing levels of functional redundancy within each family (Uhrig et 

al., 2007; Zhang et al., 2008). WAVE activates Arp2/3 complex activity by inducing 

conformational changes that relieve Arp2/3 autoinhibition by a conserved region at the Arp3 C-

terminus (Rodnick-Smith et al., 2016). 

WAVE activity is regulated by a variety of kinases including Rho GTPases (Miki et al., 1998), 

tyrosine kinases (Ardern et al., 2006; Leng et al., 2005; Sossey-Alaoui et al., 2007; Stuart et al., 

2006), cyclin-dependent kinases (Miyamoto et al., 2008), and MAP kinases (Danson et al., 2007). 

The phosphorylation of WAVE components in general has been demonstrated to activate WAVE 

and the Arp2/3 complex (Ardern et al., 2006; Leng et al., 2005; Miki et al., 1998; Sossey-Alaoui 

et al., 2007; Stuart et al., 2006). In Arabidopsis, the RHO-RELATED PROTEIN FROM 

PLANTS2 (ROP2) is believed to activate the ARP2/3 complex (Yanagisawa et al., 2013) through 

phosphorylation of PIR (Basu et al., 2005), and/or by interaction and presumed phosphorylation 

of SCAR2 (Uhrig et al., 2007), resulting in increased cortical fine F-actin (Fu et al., 2002). 

Additional ROPs are thought to regulate ARP2/3 complex activity, notably, ROP5/7/8/11 were 

shown to interact with WAVE proteins (Uhrig et al., 2007). Additionally, SCAR1 protein levels 

are regulated by COP1, which targets SCAR1 for proteolytic degradation (Dyachok et al., 2011). 

A receptor-like kinase CURVY1 (CVY1) was identified as a putative upstream regulator of the 

ARP2/3 complex (Gachomo et al., 2014). A cvy1 mutant had several phenotypes in common with 

ARP2/3 complex mutants including distorted trichomes, reduced pavement cell size and cell shape 

complexity, and reduced stomate area, indicating that CVY1 might positively regulate ARP2/3 

complex activity, although cvy1 and ARP2/3 mutants also had several conflicting phenotypes 

(Gachomo et al., 2014).  
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1.5.2 Expression and localisation of the ARP2/3 complex of plants 

In plants, the ARP2/3 and WAVE complexes are ubiquitously expressed in various tissues (Li et 

al., 2003; Li et al., 2004b). ARP3 is polarly localised in Tobacco cells (Maisch et al., 2009), and 

ARPC4:HA and endogenous ARP3 were strongly associated with membranes in Arabidopsis 

(Kotchoni et al., 2009), whereas, upstream WAVE components are specifically localised to cell 

corners in root cells, and to punctate structures in leaf pavement cells, at the plasma membrane 

and double membrane structures associated with the endoplasmic reticulum (Dyachok et al., 2008; 

Wang et al., 2016). 

 

1.5.3 Arp2/3 complex activities 

1.5.3.1 Actin branching mediated by the Arp2/3 complex 

The Arp2/3 complex binds to the sides of actin filaments with a regular periodicity of 

approximately 37nm and nucleates F-actin branching in association with active WAVE 

(Machesky et al., 1999; Mullins et al., 1998a; Mullins et al., 1998b; Mullins et al., 1997). Nascent 

actin branches extend at a fixed angle of 70° ± 7° and can form dense clouds of fine cortical actin 

(Mullins et al., 1998a), with regulatory activities, reviewed below. ARP3 has also been shown to 

associate with actin filaments and localise at the site of actin nucleation in plant cells (Maisch et 

al., 2009). 

 

1.5.3.2 Clathrin-mediated endocytosis mediated by the Arp2/3 complex 

The Arp2/3 complex plays a major role in the internalization step of endocytosis in some 

organisms (Moreau et al., 1997; Moreau et al., 1996), but in many organisms, the requirement for 

actin and the Arp2/3 complex for endocytosis is not obligatory and varies even between cell types 

(Epp et al., 2010; Fujimoto et al., 2000; Zou et al., 2016). The Arp2/3 complex is generally 

considered to promote clathrin-mediated endocytosis, although Arp2/3-independent endocytosis 

exists, which occasionally leads to confusion in the literature. For instance, endocytic uptake of 

the dye FM4-64 to the vacuole, was significantly delayed and ‘weaker’ in Arp2/3 mutants of 

Candida albicans, taking up to four times as long (Epp et al., 2010), but it was later shown that 

FM4-64 was also endocytosed by an Arp2/3 and clathrin-independent pathway (Epp et al., 2013). 

Several studies have also shown that certain plasma membrane proteins, including receptors and 

permeases, required Arp2/3, and were not endocytosed by Arp2/3-independent pathways (Epp et 

al., 2013; Leyton-Puig et al., 2017). In Arabidopsis, the endocytic uptake of FM4-64 and the 

endocytosis of PIN2, PIN3, and PIN7 auxin efflux carriers was significantly delayed in an arp3 

mutant (Zou et al., 2016). 
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Clathrin-mediated endocytosis occurs from the plasma membrane de novo (Henne et al., 2010; 

Stimpson et al., 2009), and from sustained clathrin plaques, which serve as dynamic hubs of actin 

polymerisation for the endocytosis of specific cell surface proteins (Grove et al., 2014; Leyton-

Puig et al., 2017). Association of cell surface proteins with clathrin plaques can be regulated 

through external cues such as ligand binding (Leyton-Puig et al., 2017). Actin promotes the 

formation and constriction of clathrin-coated pits for vesicle internalisation, as well as the budding 

and merging of clathrin-coated structures (Yarar et al., 2005), although, actin is not obligatory for 

endocytosis (Fujimoto et al., 2000). Treatments with the actin polymerisation inhibitor 

Latrunculin A (LatA) stabilized the plasma-membrane association of clathrin and associated 

proteins, and blocked the internalisation of clathrin-coated vesicles in the yeast S. cerevisiae 

(Kaksonen et al., 2003; Kaksonen et al., 2005; Newpher et al., 2005), and increased the formation 

of clathrin plaques in HeLa cells (Leyton-Puig et al., 2017), recapitulating phenotypes of Arp2/3 

complex mutants (Leyton-Puig et al., 2017; Martin et al., 2005). Therefore, in some cell types and 

scenarios, the maturation of clathrin-coated pits and the endocytosis of specific receptors is 

Arp2/3 dependent (Leyton-Puig et al., 2017; Martin et al., 2005). It has been suggested that the 

actin filament network drives the mechanical force behind the budding and scission of clathrin-

coated vesicles (Martin et al., 2005), however, actin might only accelerate endocytosis (Li et al., 

2015a). 

 

1.5.3.3 Phenotypes of ARP2/3 and WAVE mutants in plants 

In Arabidopsis, the ARP2/3 complex is famously involved in regulating the later stages of 

trichome development (Mathur et al., 1999). Several ARP2/3 complex components and activators 

of Arabidopsis were first identified and named based on their distorted trichomes (Hulskamp et 

al., 1994). These include DISTORTED TRICHOMES1-3 (ARP3, ARPC2A, SCAR2, respectively), 

WURM (ARP2), CROOKED (ARPC5), GNARLED (NAP1), KLUNKER/PIROGI (PIR), SPIKE1 

(SPK1) (Basu et al., 2005; El-Assal et al., 2004a; El-Assal et al., 2004b; Mathur et al., 2003a; 

Mathur et al., 2003b; Qiu et al., 2002; Saedler et al., 2004b). 

Intracellular phenotypes of Arabidopsis ARP2/3 and WAVE mutants include increased F-actin 

bundling (Li et al., 2004b; Mathur et al., 2003b; Mathur et al., 1999), delayed endocytosis (Zou 

et al., 2016), altered vacuole integrity, where instead of a single large vacuole; cells have multiple 

smaller vacuoles surrounding a larger vacuole (Mathur et al., 2003a), reduced cytoplasmic 

streaming (Mathur et al., 2003b), decreased chlorophyll levels (Li et al., 2004b), defective 

autophagosome formation and autophagy (Wang et al., 2016), and altered cell wall composition 

at cell corners, specifically, absent antibody labelling of de-arabinosylated rhamnogalacturonan 

and fucosylated xyloglucans (Dyachok et al., 2008). 
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Root and hypocotyl phenotypes include decreased root length in the light (Dyachok et al., 2008; 

Dyachok et al., 2011), increased root length in the dark (Dyachok et al., 2011; Li et al., 2004b), 

and reduced penetration strength resulting from altered cell wall composition at the root tip 

(Dyachok et al., 2008); reduced hypocotyl length (El-Assal et al., 2004b; Le et al., 2006; Mathur 

et al., 2003b; Zhang et al., 2008), and increased radial cell expansion of hypocotyls (Fu et al., 

2002; Li et al., 2004b). 

Stomatal phenotypes include increased stomatal density (Jiang et al., 2012), reduced stomatal 

development on the hypocotyl (Mathur et al., 2003b), reduced stomate area (Gachomo et al., 

2014), and insensitivity to ABA, CaCl2 and dark-induced stomatal closure, with constitutively 

intermediate stomatal aperture (Isner et al., 2017; Jiang et al., 2012). 

Other shoot phenotypes include, defective epidermal cell development, with curling of the ends 

of rapidly expanding hypocotyl epidermal cells (El-Assal et al., 2004a; Mathur et al., 2003a), and 

gaps between pavement cells of the leaf epidermis (Li et al., 2004b), as well as reduced pavement 

cell size and cell shape complexity (Basu et al., 2005; Gachomo et al., 2014; Li et al., 2003; Zhang 

et al., 2008), increased petiole elongation in the dark (Baier et al., 2004; Li et al., 2004b; Zhang 

et al., 2008), reduced leaf epinasty (Li et al., 2004b), and increased shoot apical meristem activity 

in the dark (Baier et al., 2004; Li et al., 2004b; Zhang et al., 2008). 

Additionally, ARP2/3 complex and WAVE mutants have enhanced responses to sugars (Baier et 

al., 2004; Li et al., 2004b), increased susceptibility to nitrogen starvation and decreased salt 

tolerance from defective autophagosome formation (Wang et al., 2016), reduced gravitropic 

responses caused by inhibition of amyloplast sedimentation by increased F-actin bundling in roots 

(Reboulet et al., 2010; Zou et al., 2016), and increased phototropic curvature responses of dark-

grown but not light-grown seedlings to blue and red light (Reboulet et al., 2010). 

 

1.5.3.4 Additional functions of the Arp2/3 complex 

Additionally, the Arp2/3 complex has been reported to promote phagocytosis (Linder, 2017; May 

et al., 2000), proteasome mobility (Cabrera et al., 2011), asymmetric cell division (Sun et al., 

2011), cell migration (Linder, 2017; Suraneni et al., 2012), cell membrane architecture, notably 

lamellipodia and filopodia (Suraneni et al., 2012; Wu et al., 2012), and the formation of neural 

dendrites (Zhang et al., 2017). 
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1.5.4 Inhibitors of the Arp2/3 complex and chemicals that phenocopy ARP2/3 mutants 

Two Arp2/3 complex inhibitors have been described, CK-666 and CK-869. CK-666 and CK-869 

are reported to inhibit the Arp2/3 complex in a wide range of organisms (Avasthi et al., 2014; 

Davison et al., 2016; Ilatovskaya et al., 2013; Nolen et al., 2009; Sun et al., 2011; Yang et al., 

2012), although CK-869 did not inhibit the Arp2/3 complex of fission yeast, while CK-666 did 

(Nolen et al., 2009). CK-869 also caused off-target effects including membrane blebbing (Rotty 

et al., 2013). CK-666 binds between the Arp2 and Arp3 subunits and CK-869 binds to a site within 

Arp3 (Hetrick et al., 2013; Nolen et al., 2009). Both chemicals block a conformational change 

required for Arp2/3 complex activity (Hetrick et al., 2013). It is not known whether CK-666 or 

CK-869 inhibit the ARP2/3 complex of plants. 

Plants treated with either actin stabilizing (Phalloidin, Jasplakinolide) or destabilizing 

(Cytochalasin D and Latrunculin B (LatB)) chemicals phenocopied the distorted trichomes of 

ARP2/3 and WAVE mutants (Mathur et al., 1999; Szymanski et al., 1999), indicating that dynamic 

actin filamentation is required for wild-type trichome development. LatB treatment led to the 

obliteration of F-actin, unlike ARP2/3 mutants (Mathur et al., 1999).  

 

1.6 Chapter summary  

The aim of this study was to investigate how ARP2/3 represses SAM activity in the dark (Baier 

et al., 2004). In the first results chapter (chapter 3) I describe the development of an assay for 

quantitatively measuring dark development. The dark development assay was then used to 

demonstrate the specificity of the ARP2/3 complex in regulation of dark development, 

investigated using a range of actin-related mutants and actin-disrupting chemicals. The role of the 

ARP2/3 complex in regulating SAM activity in the shade was also investigated, utilising the 

constitutive shade avoidance phenotype of phyB, since the regulation of SAM activity by the 

ARP2/3 complex is light-sensitive. Genetics and chemical genetics approaches were taken to 

assess the effect of sugar signalling mutants (chapter 4), and exogenous phytohormones (chapter 

5) on the dark development of arp3 mutants, as arp3 increased sugar responses (Baier et al., 2004), 

and several phytohormones are known to regulate SAM activity. A concurrent study utilised the 

dark development assay to screen for novel transcriptional regulators of SAM activity (chapter 

6). A candidate approach was taken, using mutants of transcription factors related to known 

regulators of SAM activity, in particular, the role of the HECATE-like transcription factor 

INDEHISCENT (IND) was examined, as it has previously been the subject of study in our lab 

(Arnaud et al., 2010; Girin et al., 2011; Simonini et al., 2016; Sorefan et al., 2009). Additionally, 

the potential role of ARF transcription factors in regulating SAM activity downstream of the 
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ARP2/3 complex was investigated (chapter 6), as polar auxin transport was found to be 

upregulated in arp3 (chapter 5).  

 

The following hypotheses were tested: 

Chapter 3 

The ARP2/3 complex specifically regulates dark development 

The ARP2/3 complex regulates dark development by reducing actin bundling 

CK-666 is an inhibitor of the Arabidopsis ARP2/3 complex 

The ARP2/3 complex increases SAM activity in a constitutive shade response 

 

Chapter 4 

The increased dark development of arp3 is caused by increased sugar signalling 

The ARP2/3 complex regulates glycolysis directly by repressing FBA activity 

 

Chapter 5 

The increased dark development of arp3 is caused by altered phytohormone signalling 

Brassinosteroids and auxins regulate dark development in the same pathway as ARP2/3 

The ARP2/3 complex is a negative regulator of brassinosteroid signalling 

The increased dark development of arp3 requires TIR1 

The ARP2/3 complex regulates polar auxin transport 

The increased dark development of arp3 requires PIN1 

 

Chapter 6 

The HECATE-like transcription factor IND regulates SAM activity 

IND regulates SAM activity through its primary target SWEET15 

IND regulates SAM activity redundantly with HECATEs 

IND regulates SAM activity with its interaction partners 

ARFs regulate SAM activity in the same pathway as ARP2/3 

The putative ARF-target RPL regulates SAM activity downstream of ARP2/3 
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Chapter 2 - Materials and methods 

2.1 Plant material and growth conditions 

2.1.1 Plant lines used: 

All plant lines were in the Columbia (Col) ecotype, unless specified Landsberg erecta (Ler). 

Details of the mutant and transgenic lines used in this study are presented in Tables 2.1 and 2.3; 

see acknowledgements for stock donors. Uncharacterised T-DNA insertion lines were obtained 

from the SALK (Alonso et al., 2003) and SAIL (Sessions et al., 2002) seed pools. With the 

exception of the gain-of-function allele axr5-1, the published T-DNA, ethylmethane sulfonate 

(ems), and X-ray induced mutants used in this study have been described as knockouts, loss-of-

function, or null/strong alleles.  

 

Table 2.1A Plant lines relating to multiple chapters  

Line Allele Gene name Gene ID Mutation Reference 

arp3 
dis1-2 

SALK_010045 

distorted 

trichomes1 
AT1G13180 

T-DNA 

insertion 

(Le et al., 2003; 

Mathur et al., 2003a) 

Ler arpc2a dis2-1 
distorted 

trichomes2 
AT1G30825 ems (Saedler et al., 2004a) 

 

Table 2.1B Plant lines relating to chapter 3 

Line Allele Gene name Gene ID Mutation Reference 

scar2 
scar2-2 

SALK_036419 

scar 

homolog2 
AT2G38440 

T-DNA 

insertion 
(Uhrig et al., 2007) 

vln1 
vln1-4 

SALK_133579 
villin1 AT2G29890 

T-DNA 

insertion 
(Khurana et al., 2010) 

fh1 
fh1-1 

SALK_032981 

formin 

homology1 
AT3G25500 

T-DNA 

insertion 
(Rosero et al., 2013) 

prf1 
prf1-2 

SALK_057718 
profilin1 AT2G19760 

T-DNA 

insertion 
(Cao et al., 2016) 

prf2 
prf2-1 

SALK_129071 
profilin2 AT4G29350 

T-DNA 

insertion 
(Mussar et al., 2015) 

35S::mTalin 
35S::GFP-

mTalin 

mouse 

talin 
#N/A Transgene (Kost et al., 1998) 

phyB 
phyB-9 

phyB-EMS142 

phytochro

me B 
AT2G18790 ems (Neff et al., 1998) 
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Table 2.1C Plant lines relating to chapter 4 

Line Allele Gene name Gene ID Mutation Reference 

hxk1 
hxk1-3 

SALK_070739 

hexokinase1 

AT4G29130 

 

T-DNA 

insertion 

(Aki et al., 

2007; Huang et 

al., 2015a) 

Ler hxk1 gin2-1 ems 
(Moore et al., 

2003) 

Ler hxk1 

35S::HXK1 
gin2-1 HXK1 Transgene 

(Moore et al., 

2003) 

Ler hxk1 

35S::HXK1S1

17A 

gin2-1 

HXK1S117A 

(catalytic 

mutant) 
Transgene 

(Moore et al., 

2003) 

Ler arpc2a 

hxk1 
dis2-1gin2-1 

distorted 

trichomes2, 

hexokinase1 

AT1G30825 

AT4G29130 
ems 

(Karim Sorefan, 

unpublished) 

rgs1 rgs1-1 regulator of  

g-protein 

signaling1 

AT3G26090 

T-DNA 

insertion 

(Chen et al., 

2003) 

35S::RGS1 
35S::AtRGS1-

YFP-HA 
Transgene 

(Urano et al., 

2012) 

XVE-TOR-

RNAi 
tor-es1 

target of 

rapamycin 
AT1G50030 

Estradiol-

inducible 

RNAi 

(Xiong and 

Sheen, 2012) 

fba1 
fba1-1 

SALK_063223 

fructose-

bisphosphate 

aldolase1 

AT2G21330 
T-DNA 

insertion 
(Lu et al., 2012) 

fba2-1 
fba2-1 

SALK_073444 
fructose-

bisphosphate 

aldolase2 

AT4G38970 

T-DNA 

insertion 
(Lu et al., 2012) 

fba2 
fba2-2 

SALK_000898 

T-DNA 

insertion 
This study 

fba4 
fba4-1 

SALK_124050 

fructose-

bisphosphate 

aldolase4 

AT5G03690 
T-DNA 

insertion 
(Lu et al., 2012) 

fba5 
fba5-1 

SALK_080758 

fructose-

bisphosphate 

aldolase5 

AT4G26530 
T-DNA 

insertion 
(Lu et al., 2012) 

fba6 
fba6-1 

SALK_014964 

fructose-

bisphosphate 

aldolase6 

AT2G36460 
T-DNA 

insertion 

(Lu et al., 2012; 

Tang, 2013) 

fba7 
fba7-1 

SAIL_870_A09 

fructose-

bisphosphate 

aldolase7 

AT4G26520 
T-DNA 

insertion 
This study 

fba8-1 
fba8-1 

SALK_124383 
fructose-

bisphosphate 

aldolase8 

AT3G52930 

T-DNA 

insertion 

(Lu et al., 2012; 

Tang, 2013) 

fba8-2 
fba8-2 

SALK_007216 

T-DNA 

insertion 
(Tang, 2013) 
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fba8-3 

fba8-3 

SAIL_1244_A0

8 

T-DNA 

insertion 
This study 

 

Table 2.1D Plant lines relating to chapter 5 

Line Allele Gene name Gene ID Mutation Reference 

det2 det2-1 de-etiolated2 AT2G38050 ems 
(Chory et al., 

1991b) 

bin2bil1bil2 

bin2-3bil1bil2/ 

Triple GSK3 

mutant 

FLAG_593C09, 

SALK_062147, 

SALK_060220 

brassinosteroid 

insensitive2, 

bin2-like1, 

bin2-like2 

AT4G18710 

AT1G06390 

AT2G30980 

T-DNA 

insertions 

(Vert and 

Chory, 2006) 

sob7 

cyp72c1-1/ 

sob7-1 

SALK_120416 

cyp72c1 AT1G17060 
T-DNA 

insertion 

(Takahashi et 

al., 2005; Turk 

et al., 2005) 

bas1 
bas1-2 

SALK_006781 
cyp734a1 AT2G26710 

T-DNA 

insertion 

(Turk et al., 

2005) 

taa1tar1 wei8-1tar1-1 

tryptophan 

aminotransfera

se of 

Arabidopsis1, 

tryptophan 

aminotransfera

se related1 

AT1G70560 

AT1G23320 

T-DNA 

insertions 

(Stepanova et 

al., 2008) 

tir1 tir1-1 

transport 

inhibitor 

response1 

AT3G62980 ems 
(Ruegger et al., 

1998) 

dao1 
dao1-1 

SALK_093162 

dioxygenase 

for auxin 

oxidation1 

AT1G14130 
T-DNA 

insertion 

(Porco et al., 

2016) 

aux1lax1lax2

lax3 
aux1 lax quad 

auxin 

resistant1, like 

aux1, like 

aux2, like 

aux3 

AT2G38120 

AT5G01240 

AT2G21050 

AT1G77690 

X-ray 

mutagene

sis; dSpm 

insertions 

(Bainbridge et 

al., 2008) 

pin1 
pin1-613 

SALK_047613 

pin-formed1 AT1G73590 

T-DNA 

insertion 

(Bennett et al., 

2006) 

35S::PIN1 35S::PIN1-GFP Transgene 
(Benkova et al., 

2003) 

pin1 

pPIN1::PIN1 

pin1-613 

ProPIN1::PIN1-

GFP 

T-DNA 

insertion; 

Transgene 

(Ki et al., 2016) 
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pin1 

pPIN1::PIN1
3m1A 

pin1-613 

ProPIN1::3m1A

PIN1-GFP 

(3m1 phospho-

mutant) 

T-DNA 

insertion; 

Transgene 

(Ki et al., 2016) 

pin1 

pPIN1::PIN1
M3A 

pin1-613 

ProPIN1::M3PI

N1-GFP 

(M3 phospho-

mutant) 

T-DNA 

insertion; 

Transgene 

(Ki et al., 2016) 

pid 
pid-14 

SALK_049736 
pinoid AT2G34650 

T-DNA 

insertion 

(Huang et al., 

2010) 

35S::PID 35S:PID-GFP Transgene 
(Henrichs et al., 

2012) 

 

Table 2.1E Plant lines relating to chapter 6 

Line Allele Gene name Gene ID Mutation Reference 

ind ind-2 

indehiscent AT4G00120 

ems 
(Liljegren et al., 

2004) 

Ler ind ind-6 

Ds gene 

trap 

insertion 

(Samuneva et 

al., 2008) 

35S::IND-

GR 
35S::IND:GR Transgene 

(Sorefan et al., 

2009) 

swt15-1 
sag29-2 

SALK_031720 
sweet15 AT5G13170 

T-DNA 

insertion 

(Seo et al., 

2011) 

swt15-2 
sweet15 

SM_3_14944 

T-DNA 

insertion 

(Chen et al., 

2015) 

ago10 
ago10-4 

SALK_138011 
argonaute10 AT5G43810 

T-DNA 

insertion 

(Zhu et al., 

2011) 

Ler ago10 zll-3 ems 
(Endrizzi et al., 

1996) 

Ler ind 

ago10 
ind-6 zll-3 

indehiscent, 

argonaute10 

AT4G00120 

AT5G43810 
ems 

(Karim Sorefan, 

unpublished) 

hec1 
hec1-2 

SALK_045764 
hecate1 AT5G67060 

T-DNA 

insertion 
This study 

hec2 
hec2-2 

SALK_071800 
hecate2 AT3G50330 

T-DNA 

insertion 
This study 

hec3 
hec3-1 

SALK_005294 
hecate3 AT5G09750 

T-DNA 

insertion 

(Gremski et al., 

2007) 

bhlh087 
bhlh087-1 

SALK_066339 

basic helix 

loop helix087 
AT3G21330 

T-DNA 

insertion 

(Khanna et al., 

2006) 

par1 
par1-1 

SALK_022002 

phy rapidly 

regulated1 
AT2G42870 

T-DNA 

insertion 
This study 

alc 
alc-3 

SALK_103763 
alcatraz AT5G67110 

T-DNA 

insertion 
This study 

spt 

spt-12 

WISCDSLOX3

86E06 

spatula AT4G36930 
T-DNA 

insertion 

(Ichihashi et al., 

2010) 
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pif3 
pif3 

SALK_081927 

phytochrome 

interacting 

factor3 

AT1G09530 
T-DNA 

insertion 

(Zhong et al., 

2012) 

pif4 
pif4-101 

Garlic_114_G06 

phytochrome 

interacting 

factor4 

AT2G43010 
T-DNA 

insertion 

(Lorrain et al., 

2008) 

myc2 
myc2-1/jin1-7 

SALK_040500 

jasmonate 

insensitive1 
AT1G32640 

T-DNA 

insertion 

(Boter et al., 

2004) 

arf2 
arf2-12 

SALK_035537 

auxin response 

factor2 
AT5G62000 

T-DNA 

insertion 
This study 

arf3 
ett-13 

SALK_040513 

auxin response 

factor3/ettin 
AT2G33860 

T-DNA 

insertion 

(Pekker et al., 

2005) 

arf4 
arf4-2 

SALK_070506 

auxin response 

factor4 

AT5G60450 

 

T-DNA 

insertion 

(Pekker et al., 

2005) 

arf5 
arf5-1/mp 

SALK_023812 

auxin response 

factor5 
AT1G19850 

T-DNA 

insertion 

(Okushima et 

al., 2005) 

arf7 
arf7-1 

SALK_040394 

auxin response 

factor7 
AT5G20730 

T-DNA 

insertion 

(Okushima et 

al., 2005) 

iaa1-D axr5-1 

indole-3-acetic 

acid 

inducible1 

AT4G14560 

not 

reported 

(SNP) 

(Yang et al., 

2004) 

rpl 
rpl-2 

SALK_040126 
replumless AT5G02030 

T-DNA 

insertion 

(Roeder et al., 

2003) 

  

 

2.1.2 Standard growth conditions and treatments 

Unless otherwise stated, seeds were sown on Levington®  Advance Seed and Modular F2+S 

compost plus horticultural grade sand mixture, pH 5.3-6.0 (ICL, Ipswich, UK), and stratified at 

4°C for three days. Square pots measuring 60mm top width by 80mm depth by 47mm bottom 

width were typically used. Plants were illuminated for 16 hours with 120µmol m-2 sec-1 light at 

23°C, followed by 8 hours darkness at 18°C in a Versatile Environmental Test Chamber MLR 

350-HT (Sanyo, Japan). Plants were watered with distilled water. 

For growth on agar, seeds were surface-sterilized with 70% ethanol for 10mins and 5% bleach, 

0.05% (v/v) TweenTM20 for 20mins, then washed three times with autoclaved distilled water. 

Following stratification at 4°C for three days, sterile seeds were sown on 0.8% (w/v) agar 

supplemented with ½  Murashige and Skoog salts (Murashige and Skoog, 1962) plus vitamins 

(MS; Duchefa Biochemie, The Netherlands #M0222) and 0.2% (w/v) glucose (D-(+)-Glucose, 

Sigma Aldrich #G7021) (or another sugar supplement, as specified) in sterile plates. Plates were 

sealed with micropore tape to maintain sterility whilst allowing gas exchange.  
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For dark development assays, sterilized and stratified seeds were sown in two rows of around 25-

30, on 10cm square plates containing 35mL of 0.8% (w/v) plant agar supplemented with ½  MS 

salts and vitamins (Duchefa Biochemie) and treatment (see Tables 2.2A, B), as specified. 0.2% 

(w/v) glucose was added unless specified otherwise. All genotypes (per experiment) were planted 

on the same plate; the position on the plate where each genotype was sown was randomised, and 

at least two plates were scored per treatment. For experiments analysing eight or more genotypes 

at a time, eight or nine replicate plates were typically used, whereas an experiment comparing 

two genotypes would use two or three plates per treatment. Plates were sealed with micropore 

tape for sterility, stacked vertically so that the developing shoot meristem maintained contact with 

the agar (Roldan et al., 1999), and triple wrapped in aluminium foil to exclude light (Fig. 2.1). 

Plants were incubated for 28 days at 23°C and then scored. 

 

 

 

 

 

 

 

 

 

Fig. 2.1. The dark development assay setup. Sterile seeds were sown in two rows of about 30, 

randomizing the positioning of the genotypes on each plate. Plates were sealed with micropore 

tape and stacked as shown. Stacked plates were rested on top of horizontal open plates to create 

a 1cm gap for drainage. The horizontal plates were placed onto a stack of absorbent tissue to soak 

up additional moisture arising from condensation. Plates were triple-wrapped in aluminium foil 

and incubated at 23°C for 28 days. 

 

For growth in liquid culture, 30 sterile seeds were sown per biological replicate in 50mL Falcon 

tubes containing 10mL ½  MS medium. Tubes were constantly illuminated at 120µmol m-2 sec-1 

light and a constant temperature of 23°C, and aerated by shaking upright at 60 rotations per minute 

(rpm). 
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2.2 Chemical stocks and storage 

General chemical stocks were ordered from Sigma Aldrich and stored as directed by the 

manufacturer. Additional chemicals were ordered and stored according to Table 2.2. DNA 

oligonucleotides were ordered from Sigma Aldrich, with the exception of oligos >40bp which 

were ordered from IDT Integrated DNA Technologies. All oligos were desalted, resuspended to 

100µM in ddH2O, and stored at -20°C; 10µM working stocks were made to reduce freeze-thaw 

related degradation. 

 

Table 2.2A Chemical treatments 

Abbreviation Chemical name Company name and 

product code 

Solvent Storage 

conditions 

Basta Glufosinate-

ammonium 

PureAmenity, U.K. 

(KURTAIL) 

dH2O 4°C 

(120mg/L 

w/v) 

CK-666 CK-666  

 

Insight 

Biotechnology, U.K. 

(361151) 

DMSO 4°C 

Chx Cycloheximide Acros Organics, 

China (AC35742) 

DMSO -20°C 

Dex Dexamethasone 

 

Alfa Aesar, U.K. 

(A17590) 

DMSO RT 

Est β-Estradiol Sigma Aldrich 

(E8875) 

DMSO -20°C 

(10mM 

stock) 

LatB Latrunculin B 

 

Fluorochem, U.K. 

(M02063) 

10% 

DMSO  

(v/v) 

-20°C 

(2mM 

stock) 

2-DG 2-Deoxy-D-

glucose 

Sigma (D-8375) N/A RT 

RT = room temperature. 

 

Table 2.2B Hormones and related chemicals 

Abbreviation Chemical name Company name and product 

code 

Solvent Storage 

conditions 

ABA Abscisic acid Scientific Laboratory Supplies 

(A1049) 

EtOH 70% 

(v/v) 

-20°C (1mM 

stock) 

ACC 1-Aminocyclopropane 

carboxylic acid 

Sigma Aldrich, China 

(A3903) 

dH2O 4°C 

BAP 6-Benzylaminopurine Duchefa, The Netherlands 

(B0904) 

DMSO RT 

eBL Epibrassinolide Sigma Aldrich (E1641) DMSO  -20°C (10mM 

stock) 
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GA3 Gibberellic acid Sigma, Switzerland (G7645) dH2O RT 

IAA Indole-3-acetic acid Duchefa, The Netherlands 

(I0901) 

DMSO RT 

NAA 1-Naphthaleneacetic 

acid 

Sigma Aldrich, China 

(N0240) 

DMSO RT 

NPA Naphthylphthalamic 

acid 

Duchefa, The Netherlands 

(N0926) 

DMSO -20°C 

TIBA 2,3,5-Triiodobenzoic 

acid 

Alfa Aesar, U.K. (L02679) DMSO 4°C 

2,4-D 2,4-

Dichlorophenoxyacetic 

acid 

Acros Organics (10617452) DMSO RT 

RT = room temperature. 

 

2.3 Creating new genetic tools 

2.3.1 Crossing of Arabidopsis accessions 

Single mutants were crossed to generate double mutants for addressing specific hypotheses. 

Stamens were stripped from the maternal flower using fine forceps, and the stigma allowed to 

mature for up to 24 hours. Pollen from the paternal flower was dusted onto the mature stigma to 

allow fertilization. Resulting F1 progeny were selected phenotypically or genotypically (see Table 

2.3), and double or triple homozygous mutants were isolated similarly in the F2-F4 generations. 

A sob7bas1 double mutant has been generated and described previously using the same alleles 

(Turk et al., 2005). 

In this study, the naming of double mutants follows the format of maternal genotype followed by 

paternal genotype. For instance, the double mutant arp3fba1 was generated from an arp3 mother 

fertilized with pollen carrying the fba1 allele. 

 

Table 2.3 Double mutants generated by crossing 

Line Selection of maternal allele Selection of paternal allele(s) 

arp3fba1 phenotype genotype 

arp3fba2 phenotype genotype 

arp3fba4 phenotype genotype 

arp3fba6 phenotype genotype 

arp3det2 phenotype phenotypic segregation 

sob7bas1 genotype genotype 

arp3tir1 phenotype sequencing 

arp3pin1 phenotype genotype or phenotypic 

segregation 

arp3pid1 phenotype genotype 
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arp3 35S::PIN1 phenotype GFP fluorescence 

arp3 35S::PID phenotype GFP fluorescence 

arp3ind phenotype phenotype 

arp3swt15-1 phenotype genotype 

ind ago10 phenotype genotype 

ind hec2 phenotype genotype 

ind hec3 phenotype genotype 

ind pif3 phenotype genotype 

pif4ind Basta resistance and 

genotype 

phenotype 

ind myc2 phenotype genotype 

arp3phyB phenotype phenotype 

 

 

2.3.2 DNA extraction 

DNA was extracted from young leaves or flowers according to a published method (Edwards et 

al., 1991) with modifications. Plant material was ground in DNA extraction buffer (200 mM Tris-

HCl (pH 7.5), 250 mM NaCl, 25 mM EDTA, 0.5% SDS) using a pestle and centrifuged at 

16,000×g for 5mins to pellet plant debris. The supernatant was transferred into a fresh tube 

containing an equal volume of isopropanol and 0.125% (v/v) GlycoBlueTM (Ambion® , Thermo 

Fisher Scientific, U.S.). After 5mins at room temperature, tubes were centrifuged for 5mins at 

16,000×g. The DNA pellet was washed briefly with 70% ethanol to remove residual isopropanol 

and allowed to air dry at room temperature. The dry DNA pellet was dissolved in TE buffer 

(10mM Tris, 1mM EDTA, pH8) by vortexing. 

 

2.3.3 Selection by genotyping 

Genotyping primers (Table 2.4) were designed either side of the predicted mutation site 

(https://seqviewer.arabidopsis.org/) using the SIGnAL T-DNA Express primer design tool 

(http://signal.salk.edu/tdnaprimers.2.html). Where suitable primers could not be generated using 

this tool, primers were designed using Primer3web (http://primer3.ut.ee/) (Koressaar and Remm, 

2007; Untergasser et al., 2012) and BLASTed against the Arabidopsis thaliana genome 

(taxid:3702) using BLAST®  (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to test for specificity.   

To identify homozygous insertion lines, DNA was extracted from individual plants (chapter 2.3.2) 

and added to three PCR reactions. The first reaction used the Forward (F) and Reverse (R) primers 

to amplify the wild-type gene; the second and third reactions utilized the F and R primers 
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respectively, together with the insert primer. Products were visualised by agarose gel 

electrophoresis. 

10µL PCR reactions consisting of 5µL 2×REDTaq®  readymix, 0.3µL 10µM Primer 1, 0.3µL 

10µM Primer 2, 0.8µL DNA, 3.6µL ddH2O, were setup on ice and subsequently incubated in a 

T100TM Thermal Cycler (BIO-RAD, Singapore) programmed accordingly: 

94°C 3min 

94°C 30sec 

52-58°C 30sec             30 cycles 

68-72°C 1min/kb 

 

68-72°C 3min 

 

Table 2.4A Insert primers used for genotyping 

Insert Primer 

name 

Sequence Reference 

SALK LBb1.3 ATTTTGCCGATTTCGGAAC http://signal.salk.edu/tdnaprim

ers.2.html 

Garlic/S

AIL 

LB1 GCCTTTTCAGAAATGGATAAATAGCC

TTGCTTCC 

(Sessions et al., 2002) 

SM Spm32 TACGAATAAGAGCGTCCATTTTAGAG

TGA 

http://signal.salk.edu/database/

T-DNA/SM.435.pdf 

 

Table 2.4B Genomic primers used for genotyping 

Allele 

name 

F Primer Sequence R Primer Sequence 

arp3 AATTGCTGGCAAAGATGTCAC AGCTCTTCGTGTGTCAATTGG 

fh1 GTCTCCGTCACTGTCGTTAGC TTGTTGTTTAACGACTTCGCC 

prf1 ACAAATGATGTTGCCTTCTGG GAAGAAGACCTTGCATCGATG 

prf2 GCAATTAGCTTCAACCGACTG GGCCATACTTCGATCTCTTTTC 

hxk1 TTGTTTTTGATTCCAAATCGG TCATCAAATGAGGAGGAATCG 

rgs1 TTCAGTGTGGATTGAAGGACC ATCTTCCGGGATTTTACCATG 

fba1 TTGTTGGGAATTGTCGATTTC CTTGTTGGTAGTAAGCAGCGG 

fba2 TCCATCCAACAAGATCTCTGG TGTTCTGTTTTGCCCTGTTTC 

fba4 TTTTCGAAAAAGGTGAAATGG TTACGAAACGTTTTCCGATTG 

fba5 AGTCCATGGCTTCAACACATC AACTATTGGGAAACGATTCGC 

fba6 CCATCAACAAGAATCTCAGGC GTAGTGAGGCCGAAGTCACAC 

fba7 TTCTTTGTTCAATCAGGCACC GTTTCTGTGCTCTCATCTGCC 

fba8-2/-3 AACCTCCGTGAGCTTCTCTTC TCCAGGAAGATGACAAACGTC 

tir1 GGAGGTTCCCGAAAGTGAGA CAGGAACAACGCAGCAAAAC 

pid CAGTCGGGAAACTCAACTGTC ATTTTGCGATGAAAGTTGTGG 

pin1 CAAAAACACCCCCAAAATTTC AATCATCACAGCCACTGATCC 
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dao1 TTCCCCACGGAATTAAGGTAC CTATGGGGAAAAAGGTTCCTG 

sob7 CCGACATGTGAAGTAAGCTGG AACAGAAAAAGCCAAAAAGGC 

bas1 CCGACAAGAGGGAATTTGAAG ACATTTTTCTTCCAAGTCCGG 

ago10 TTCTGGGTATTCCCAATTTCC ATCCTTGGTAGGCAAATCAGC 

swt15-1 CACCATGGGAGTCATGATCAATCA

CCATTTC 

TCAAACGGTTTCAGGACGAGTAGCC 

swt15-2 CGTTATCTAACTGACGGCGAC CAAGTCTCTGTACTCGGCTGG 

hec1 ACTCAATGACCAACGAACCAG TGTTACACAAAAGCAAAGGCC 

hec2 TTTGGTCAAATGGGAGATGAG ATATTTCATGTGGATGTGGGG 

hec3 CAAGTCTCAATGTGGGAGAGG TTCTCCTACTCCTCTTCCCCC 

bhlh087 TCCGGTTTCACTTTTTCATGTCCTG ACACTCTGGATGATGGATTTGATTAG

G 

par1 AAGAAACTCTAGCCACTCCCG ATAGCTGCATTGTTGTGGGTC 

pif3 AGTCTGTTGCTTCTGCTACGC AAGAACCGGCAAAGATACCAC 

pif4 CGACGGTTGTTGACTTTGCTG GCTTCAAGTGATGTGGATGG 

myc2 CACTTGCATTTCACTCTCTTGC AAAAACCATTCCGTATCCGTC 

 

 

2.3.4 Selection by phenotype 

Several homozygous lines were selected by their recessive phenotypes. The arp3, Ler arpc2a, 

and scar2 mutants have distorted trichomes (Le et al., 2003; Mathur et al., 2003a; Saedler et al., 

2004a; Uhrig et al., 2007); the mature siliques of ind and alc mutants do not release their seeds 

(Liljegren et al., 2004); light-grown phyB mutants (originally annotated hy3) have elongated 

petioles, resembling etiolated plants (Chory et al., 1989b); det2 is dwarfed (Chory et al., 1991b). 

 

2.3.5 Selection by antibiotic resistance 

Arabidopsis lines carrying the Basta-resistance bar gene were selected as compost-grown 

seedlings by spraying with 120mg/L (w/v) Basta and placing under high light. Basta is a herbicide 

that inhibits the enzyme glutamine synthetase, preventing the production of the amino acid 

glutamine. Susceptible seedlings show chlorosis and necrosis a few days after application. 

 

2.4 Measurement of gene expression 

2.4.1 RNA extraction and cDNA preparation 

Total nucleic acid (TNA) extraction was performed using a method adapted from White and 

Kaper (White and Kaper, 1989). Plant tissue was collected into 2mL tubes containing a 4mm steel 

ball bearing, and rapidly frozen in liquid nitrogen. Whilst keeping the samples frozen, tubes were 

vortexed in short bursts until the plant tissue was ground into a powder. Tubes were then 
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transferred to ice and to each sample, 600µL of extraction buffer (100mM Glycine, 10mM EDTA, 

100mM NaCl, 2% SDS, pH 9.5), freshly made from a 10× stock, was added. Homogenization 

was achieved by periodically vortexing each tube as the plant tissue thawed on ice.  

The homogenized material was transferred to a chilled microcentrifuge tube containing 600µL 

phenol (pH 4) and mixed immediately by vortexing for 10sec. Tubes were then centrifuged for 

10min at 16,000 × g, 4°C to separate plant debris from the supernatant. The upper phase was 

transferred to a fresh tube on ice, containing 600µL of 25:24:1 phenol:chloroform:isoamyl alcohol 

and centrifuged as before. The upper phase was transferred to a fresh tube containing 500µL 

chloroform:isoamyl alcohol, on ice. Tubes were vortexed for 10sec to mix and centrifuged for 5 

min 16,000 × g, 4°C. The upper phase was transferred to a sterile tube, where the total nucleic 

acid fraction was precipitated by the addition of 40µL 4M sodium acetate pH 5.2, 800µL absolute 

ethanol, and 1µL GlycoBlueTM. This was mixed by inversion and incubated for 15 min on ice or 

stored overnight at -20°C. The TNA was recovered from solution by centrifugation for 15 min at 

16,000 × g, 4°C. The supernatant was removed by aspiration. To remove residual salts, the pellet 

was rinsed with 80% ethanol and immediately centrifuged for 5min at 16,000 × g, 4°C. The 

ethanol was removed by aspiration and the pellet was allowed to dry at room temperature for 

10min. The TNA pellet was resuspended in 30-50µL RNase-free water, on ice, and stored at -

80°C.  

Total RNA yield was estimated by nanodrop. RNA quality was checked on a 1% TBE agarose 

gel. The gel was loaded with approximately 1µg TNA extract denatured for 5min at 65°C with an 

equal volume of 2× RNA loading buffer (formamide, 10mM EDTA, pH 8). 

To remove contaminating genomic DNA, TNA was treated with DNase using the Ambion DNA-

free™ kit. 1-2µg TNA was incubated at 37°C for 30 min with 2U rDNaseI in DNase I Buffer. 

The DNase was inactivated using a 1:5 volume of DNase Inactivation Reagent and incubating for 

2min at room temperature, mixing 2-3 times. To remove the DNase enzyme, the tubes were 

centrifuged at 10,000 × g for 1.5min. The supernatant containing the RNA was transferred to a 

fresh tube.  

cDNA was synthesised from RNA using the High Capacity cDNA Synthesis kit (Invitrogen). Kit 

components were thawed on ice. <2µg RNA was added to a PCR tube containing 1×RT buffer, 

4mM dNTPs, 1×Random primers, and 5U MultiScribe Reverse Transcriptase, on ice, and mixed 

by pipetting. A brief centrifuge collected the contents and then the tubes were transferred to a 

thermocycler. For reverse transcription, the thermocycler was set to 25°C for 10mins, 37°C for 

120mins, 85°C for 5mins. cDNA was diluted 10× in distilled deionised water.  

 



35 
 

2.4.2 Semi-quantitative Real-Time PCR (qRT-PCR) 

qRT-PCR was performed using SYBR Green Jump-startTM Taq Ready-MixTM (Sigma-Aldrich 

S5193). Primers were designed to span 80-150bp regions of DNA, preferably spanning intronic 

sequence (Table 2.5), using AtRTPrimer (http://pombe.kaist.ac.kr/blan/genoPP.pl) or 

Primer3web (http://primer3.ut.ee/). A 15µL solution of SYBR ready-mix containing 3.3µM 

forward and reverse primers and 0.01% ROX reference dye was pipetted onto 1µL cDNA or no 

DNA (control) in wells of a clear 96-well Non-Skirted PCR plate (STARLAB) on ice, and sealed 

with a Microseal ‘B’ Adhesive seal (Bio-Rad MSB-1001). 2-3 technical replicates using the same 

sample of cDNA were used to identify and negate pipetting error. The plate was spun briefly to 

2000rpm in a 3K15 centrifuge (Sigma, Germany) and placed inside a Mx3005PTM Multiplex 

Quantitative PCR System (Stratagene, U.S.A. #401455) qPCR machine running MxProTM 

software (Mx3005P v 4.10, Stratagene, U.S.A.). The thermocycler was set to 94°C for 2min, 

followed by 40 cycles of  94°C for 15sec, and X°C for 1min/kb. The annealing temperature X 

was 5°C below the lowest primer Tm as calculated using Sigma OligoEvaluator TM 

(http://www.oligoevaluator.com). 

 

Table 2.5 Primers used for qRT-PCR 

Target Target ID F primer sequence R primer sequence 

ACT2 AT3G18780 GGTAACATTGTGCTCAGTGG

TGG 

GGTGCAACGACCTTAATCTTC

AT 

UBQ5 AT3G62250 AATCGACGCTTCATCTCGTC

C 

GCTTGTGCTTGATCTTCTTCG

GC 

IND AT4G00120 GAACCGCCGTAACGTAAGG

A 

AAGCTGTGTCCATCTTCGCA 

SWT15 AT5G13170 CGTGGCTCGTGTGATAAAGA

CAAAG 

CCACCACGTTTGGAATCGCTA

TG 

SAG12 AT5G45890 GGCGGCTTGACAACTGAGTC

AAA 

GCCACTGCCTTCATCAGTGCT

T 

AtNAC3 AT3G15500 GCCACTGCCTTCATCAGTGC

TT 

GCCACTGCCTTCATCAGTGCT

T 

ORE1 AT5G39610 TTGAAAATCTTCCCCAAACA

GCT 

GAACCTTTGTACCATCGGCAC 

AGO10 AT5G43810 CCTTTGTAGCCATGCGGGTA

TTCA 

TGCACCGCGCATAGGTATAAC

AG 

 

2.4.3 qRT-PCR analysis 

Amplification plots and product melting curves were viewed in MxPro to identify and exclude 

from further analysis any reactions that might have amplified more than one product (confirmed 

by agarose gel electrophoresis). Threshold fluorescence was computed by the software, and was 
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consistent for each primer set. Cycles to threshold fluorescence (Ct) values were compared using 

Excel (Microsoft, U.S.A.). The change in Ct (ΔCt) was calculated for each biological replicate, 

averaging 2-3 technical replicates and subtracting the Ct value of reference genes (an average of 

ACT2 and UBQ5 Ct values) for the same cDNA sample. Statistical analyses were performed on 

untransformed ΔCt values by the stated statistical test. 

 

2.5 Light microscopy 

To score dark development phenotypes, a STEMI DV4 dissecting microscope (ZEISS, Germany) 

fitted with a 10W bulb, was used. 

Light microscopy for imaging and fluorescence microscopy for phenotypic selection were 

performed using a M165 FC Stereomicroscope (LEICA, Germany) fitted with a DFC450 C 

camera (LEICA, Germany), running Leica Application Suite X (LAS X) software version 

2.0.0.14332. 

 

2.6 Dataset analysis 

Transcriptome datasets were mined for gene expression in the SAM. Yadav et al., (2009) 

produced a microarray dataset from light-grown seedlings, where cells expressing cell-type 

specific fluorescent reporters were protoplasted and sorted to measure gene expression by cell 

type. Lopez-Juez et al., (2008) dissected SAMs grown in darkness as well as SAMs transferred 

to light, and measured gene expression by microarray. This dataset was used to search for gene 

expression in dark-grown SAMs.  

A phosphorylatome dataset (Hou et al., 2017) was used to identify phosphorylation changes 

following eBL treatment in rice. Phosphorylation intensities are averages of three biological 

replicates, as reported by the author.  

Where results are derived from published datasets, the author’s normalisation and statistical 

criteria are used, but the presentation of the results is new, and the specific analysis of ARP2/3 

and WAVE complex genes is original.  

 

2.7 Graphs and statistical analyses 

All data were initially collected in Microsoft Excel. Graphs and statistical analyses were generated 

using Graphpad Prism v7. All statistical analyses are noted in the figure legends. Where p values 

are given, *<0.05, **<0.01, ***<0.001. Heat maps were generated using Morpheus (Broad 
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Institute; software.broadinstitute.org/morpheus/). DNA sequencing results were visualised in 

SnapGene Viewer 4.1.9 (GSL Biotech LLC).  
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Chapter 3 - Actin signalling in dark development 

Mutants of the ARP2/3 complex and upstream WAVE complex were shown to have increased 

SAM activity in the dark (Baier et al., 2004; Li et al., 2004b; Zhang et al., 2008). The ARP2/3 

complex is known to nucleate actin branches in plants (Maisch et al., 2009), and has also been 

shown to mediate the dissipation of F-actin bundles, endocytosis and autophagy (Li et al., 2004b; 

Zou et al., 2016; Wang et al., 2016). But despite the strong dark development phenotype of 

ARP2/3 complex mutants, the role of the ARP2/3 complex in regulating SAM activity has not 

been investigated. Moreover, the role of other actin modifying genes in regulating dark 

development is not known, so the specificity of the ARP2/3 complex in regulating SAM activity, 

over other actin modifying proteins, should be investigated. Various mutants of the ARP2/3 

complex have been described, with characteristic distorted trichomes (El-Assal et al, 2004a; 

Mathur et al., 2003a; Mathur et al., 2003b). Additionally, chemical inhibitors of Arp2/3 

complexes of non-plant species are available, but whether these inhibitors also target plant 

ARP2/3 complexes remains to be studied. A specific inhibitor of the ARP2/3 complex would 

greatly facilitate studies of the ARP2/3 complex in plants, as existing genetic resources could be 

utilised without the timely crossing in of ARP2/3 complex mutants. 

The ARP2/3 complex is one of several actin modifying protein complexes/proteins in Arabidopsis. 

Formin homology and villin genes are two other classes of F-actin nucleators (Kovar and Pollard, 

2004; Zhai et al., 2001). Unlike the ARP2/3 complex which nucleates F-actin branches from 

existing filaments (Mullins et al., 1998a), formin homology proteins and villins nucleate F-actin 

de novo (Kovar and Pollard, 2004; Zhai et al., 2001). Villins have multiple actin modifying 

functions besides nucleation, including capping to limit the extension of F-actin (Walsh et al., 

1984b), severing (Walsh et al., 1984a; Kumar and Khurana, 2004), and bundling F-actin (George 

et al., 2007). The activity of villins depends on various factors including the relative 

concentrations of actin, villin, calcium, phosphatidylinositol 4,5-bisphosphate, and post 

translational modifications (Walsh et al., 1984a; Walsh et al., 1984b; Kumar and Khurana, 2004; 

Kumar et al., 2004). Profilins facilitate F-actin nucleation by catalysing the renewal of ATP-

bound globular actin monomers (ATP-G-actin) from expended ADP-G-actin for F-actin 

elongation (Goldschmidt-Clermont et al. 1992). Fimbrins cross-link actin filaments to generate 

dense actin bundles (Bretscher, 1981). THRUMIN1 is another actin bundling protein required for 

the light-responsive movement of chloroplasts (Whippo et al., 2011). By contrast, the family of 

actin depolymerisation factors, as their name suggests, in general promote cytoskeleton 

disassembly through the severing of actin filaments and bundles (Andrianantoandro and Pollard, 

2006). A targetted analysis of the expression of actin modifying genes in the SAM is lacking, 

although transcriptomic data is available for such an analysis (Yadav et al., 2009). An analysis of 

actin modifying gene expression in the SAM could provide insight into the actin-related genes 
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and processes important in SAM tissues. Additionally, the involvement of other actin modifying 

genes in dark development should be investigated to ascertain the specificity of ARP2/3 complex 

signalling in regulating leaf initiation. 

To study the role of the ARP2/3 complex in dark development ideally requires a robust assay that 

measures the output of the SAM, i.e. leaf initiation. Most assays of dark development only go as 

far as to measure the presence or absence of an apical hook (Hou et al., 1993), or first true leaves 

(Baier et al., 2004; Reed et al., 1998), after a timepoint of interest. This binary scoring system has 

the advantage of short growth periods (up to two weeks), but provides limited scope for measuring 

differences in SAM activity under different treatments. Quantitative assays of dark development 

have also been used to measure the rate of true leaf emergence in the dark between different 

Arabidopsis accessions (Chin-Atkins et al. 1996; Roldan et al., 1999). Roldan and colleagues 

averaged and plotted true leaf number to form a sigmoidal curve of development over time, 

providing a greater depth of resolution for measuring differences in leaf production between 

timepoints, accessions or treatments. A number of studies have also utilised a dim dark green 

“safe light” to avoid the activation of photoreceptors during dark development, allowing 

treatments or transfers to be performed during dark development (Nambara et al., 1995; Peters et 

al., 1998); however, the specific light filter is often not reported.  

Mutants of the ARP2/3 complex have increased development in the dark but not in the light (Baier 

et al., 2004), however, the reason for this light sensitivity is not known. Furthermore, whether 

ARP2/3 mutants have increased development in low light or shade has not been investigated. Dark 

morphogenesis has previously been likened to the morphogenesis of light-grown double and triple 

phytochrome mutants (Roldan et al., 1999). Phytochrome PhyB is the dominant red light receptor 

in Arabidopsis (Chory et al., 1989b; Reed et al., 1993), and phyB mutants have been described as 

having a constitutive shade avoidance response (Devlin et al., 1992), with reduced chlorophyll, 

elongated petioles, increased hyponastic growth, and early flowering (Chory et al., 1989b; 

Koornneef et al., 1980; Reed et al., 1993). One study demonstrated that the PhyA and PhyB and 

the cryptochrome Cry1 regulate the stability of the ARP2/3 activator SCAR1 in response to far 

red, red, and blue light, respectively (Dyachok et al., 2011). Another study showed that dark-

grown arp3 seedlings had enhanced phototropism responses to blue and red light (Reboulet et al., 

2010). This is the extent to the knowledge about the ARP2/3 complex and light signalling, 

therefore, the relationship between the ARP2/3 complex and light signalling pathways needs 

further investigation. 

This chapter aims to characterise the effect of an arp3 mutant on SAM activity in the dark utilising 

a modified dark development assay, and investigate whether the arp3 mutant also affects SAM 

activity during a constitutive shade response. The role of the ARP2/3 complex in dark 
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development over other actin modifying genes is also investigated, and chemical means of 

inhibiting the ARP2/3 complex are trialled to offer alternative means to study the role of the 

ARP2/3 complex (than time-consuming classical genetics approaches). In order to achieve these 

aims, this chapter also decribes the optimization of a quantitative assay of dark development, 

including a safe light filter for working in the dark (e.g. sterile dark transfers, in cases where seeds 

cannot be germinated on media containing a particular treatment).  

 

3.1 Measurement of SAM activity 

SAM activity can be measured by the developmental output of the SAM, i.e. the rate of organ 

initiation. Mutants of the ARP2/3 actin nucleating complex have increased SAM activity in the 

dark (Baier et al., 2004). To study the role of the actin in SAM activity, a dark development assay 

was developed. The dark development assay measures shoot development after four weeks in the 

dark, grown upright on media containing nutrients, sugar as a carbon and energy source, and 

relevant treatment, as detailed in chapter 2.1.2. Shoot development was measured using a 

quantitative scoring system, based primarily on the number of true leaves developed (Fig. 3.1). It 

was found that Col-0 plants consistently grew to stage 3-5 on average, whilst arp3 plants were 

typically two stages more advanced than Col-0 (see for example Fig. 3.3-3.4). Plants were able 

to reach developmental stages of 9-11 before clearly bolting (data not shown). To allow for 

decreases as well as increases in development, growth was factored in the scoring system at earlier 

stages of development, providing increased resolution on the earlier stages of shoot development 

(Fig. 3.1). 

 

 

 

 

 

 

 

 

Fig. 3.1. Dark development scoring system. Developmental stage in top left corner of each image. 

White triangles indicate true leaves. Stage 1: no true leaves, no extension of cotyledon petioles 

(1* shows a stage 1 plant grown without sugar; an apical hook remains). Stage 2: no true leaves, 

extension of one or both cotyledon petioles. Stage 3: the emergent SAM and/or first true leaves 

are visible, but not elongated. Stage 4: 2 true leaves, elongated. Stages 5 onwards: additional true 

leaves visible. Therefore, the differences observed between stages 1 and 2 and between 3 and 4 

are growth-related, but the differences between stages 2 and 3, and between 4 and higher are 

developmental. Scale bars = 1mm. 

1* 
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3.1.1 Development of a dark development assay 

In order to express developmental scores as averages, the developmental scoring system needed 

to produce data that were consistent with a Gaussian distribution. Of particular concern was the 

integration of growth and developmental criteria in the scoring system (see 3.1 above, Fig 3.1). 

To demonstrate that the developmental scoring system did not skew the data, the results of 178 

treatments or genotypes (most of the earlier work recorded in this thesis) were analysed for 

Gaussian distribution using the recommended test in GraphPad Prism v7, the D’Agostino-Pearson 

omnibus K2 test, which accounts for skewness.  

Seventy percent of results showed Gaussian distribution (Fig. 3.2), which was not dependent on 

genotype, or treatment, or average developmental scores greater than 2, indicating that the 

developmental scoring system is a valid method of measuring development. Over sixty percent 

of results that did not show Gaussian distribution were averages of predominantly one or two 

developmental scores, which was more of an indication that the average developmental scores 

had low deviation from the mean. Because the developmental scores showed Gaussian 

distribution, dark development could be represented as averages with standard error, and standard 

statistical analyses performed (Fig. 3.3).  

 

 

 

  

 

 

 

 

  

 

Fig. 3.2. Averaged developmental scores showed Gaussian distribution 70% of the time 

(unshaded area), except when developmental scores averaged below 2. Dark development data 

from 178 individual treatments or genotypes were analysed for Gaussian distribution by 

D’Agostino-Pearson omnibus K2 test; p values were plotted against average developmental score 

(binned) on a scatter and box plot, where whiskers indicate range. Average developmental scores 

with a Pearson’s p value <0.05 did not show Gaussian distribution (shaded area). 
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Fig. 3.3. The arp3 mutant has increased dark development. (A) Average developmental scores 

are shown with standard error. Statistical significance calculated by unpaired two-tailed t-test; n > 

50. (B) Representative photographs of Col-0 and arp3 seedlings after 28 days dark development 

on 1/2MS supplemented with 0.8% plant agar and 0.2% glucose. White triangles indicate true 

leaves corresponding to developmental scores of 4 (Col-0) and 6 (arp3). Scale bar = 1mm. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4. Distribution of data points between 5 independent experiments (reps). n is number of 

data points (diamonds) per experiment, corresponding to individual plants / biological replicates. 

Average developmental score and standard error are overlaid in black. There is significant 

variation between experiments (1.5%; p=0.01), and between genotypes (47%; p<0.0001), but no 

significant interaction between experimental and genotypic variation by 2way ANOVA; n 

numbers specified in figure. 

 

Col-0                   arp3 
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3.1.2 Optimization of sugar concentration 

In line with other literature (Li et al., 2017; Roldan et al., 1999), it was found that dark 

development required sugar (Fig. 3.5). Glucose or sucrose specifically stimulated true leaf 

development at concentrations above 0.02%. To control for changes in osmotic pressure, plants 

were also treated with the sugar analog mannitol, which did not stimulate dark development. In 

further dark development assays, 0.2% glucose was used to maximise the developmental stages 

between first true leaf development (developmental scores 3 and 4) and bolting (developmental 

scores 9-11). Col-0 and Ler had similar responses to sugars, but the dark development of Ler was 

slightly increased compared to Col-0, which was highly significant on 0.2% sucrose (Fig. 3.5). 

 

 

 

 

 

 

 

 

 

Fig. 3.5. Sugar is required for true leaf development in the dark. Seedlings were germinated on 

vertical 1/2MS agar plates supplemented with glucose (Glc), sucrose (Suc), or the non-

metabolizable sugar analog mannitol (Mtl) in the dark. True leaf development was scored after 

28 days at 23°C. Statistical significance was calculated by 2way ANOVA and Tukey multiple 

comparisons test; n > 14. 

 

3.1.3 Increasing assay robustness 

A germination control plate was included for each experiment, which was unwrapped three days 

after sowing. Seed stocks that germinated poorly were noted, fresh seed stocks were made, and 

the experiment repeated. Alternatively, germinated seedlings were marked under a dark green 

light (see chapter 3.1.4) 3 days post sowing.  

An effective drainage system was developed to collect excess liquid, presumed to be water 

produced by respiration, and prevent it from soaking back through the micropore tape, which 

often led to infection. Before foil-wrapping, stacks of vertical experimental plates were mounted 
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onto 1cm deep empty petri dishes on top of a stack of tissue paper. This markedly reduced the 

incidence of infection.  

To address concerns that humidity or the lack of air circulation caused a build-up of the plant 

hormones ABA and ethylene, plants were treated with ABA and ACC (an ethylene precursor). 

Plants were responsive to both hormones, suggesting that under these experimental conditions, 

ABA and ethylene are not saturating (Fig. 5.1A,C of chapter 5). 

 

3.1.4 Dark sterile plate transfers 

For certain treatments, to avoid inhibiting germination or early SAM development, or where 

germination frequency was low, it was necessary to germinate seeds days prior to treatment. Seeds 

were germinated on untreated media 3 days (in the case of germination frequency defective seed 

stocks) or 5 days (in the case of inhibiting treatments) prior to dark sterile transfer onto mock or 

treated media. To maintain darkness during seedling transfer, a light filter was selected, that 

transmitted a low fluence of light at wavelengths with low perception by plant phytochromes (Fig. 

3.6 A, B), and fitted to a laminar flow hood in a dark room. Brief exposure to the light filter 

(around 30 minutes) during dark development had no apparent effect on the morphology or 

development of 4 week old dark-grown seedlings (Fig. 3.6 C). 

 

3.2 ARP2/3 complex specific regulation of SAM activity 

3.2.1 ARP2/3 complex-related genes are expressed in the SAM 

To investigate the tissue specific expression of ARP2/3 related genes in the SAM, microarray 

data from protoplasted cells was analysed (Fig. 3.7). Expression was strongest in the rib meristem, 

however, the expression of different components was not equal. ARP3 and ARPC2A had the 

strongest expression, whilst ARPC3 and ARPC5 had relatively low expression. Mutant analyses 

have shown that ARP2/3 complex components are not redundant, such that a single mutant in any 

one component results in knockdown of the ARP2/3 complex as a whole (Mathur et al., 2003a). 

Therefore, ARPC3/ARPC5 expression might be limiting for ARP2/3 complex activity in the 

SAM, providing potential for dynamic regulation of the whole complex. Moreover, the upstream 

activators SCAR1-4, BRK1, NAP1, PIR, are also largely non-redundant (Deeks et al., 2004; Le 

et al., 2006; Li et al., 2004b; Zhang et al., 2008; Zhang et al., 2005). Other than SCAR1, each 

component of the WAVE complex was well expressed in the SAM. The expression of ARPC2B, 

ARPC4, SCAR3, ABIL2 was not measured, as the microarray did not have probes for these genes. 
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Fig. 3.6. Selection of filter for working by darkness. (A) Wavelengths of light absorbed by plant 

phytochromes (photobiology.info/). (B) Light transmitted by the filter 740 Aurora Borealis Green 

(LEE Filters, U.S.A.). (C) Representative images of four week old seedlings maintained in 

constant darkness, or exposed to approximately 30 minutes of dark green light at 5 days post 

sowing (dps; using the 740 Aurora Borealis Green filter), and transferred back to constant 

darkness. White triangles indicate true leaves; images to scale. 

 

A
m

o
u
n
t 
o
f 
lig

h
t 
tr

a
n
s
m

it
te

d
 

Wavelength of light (nm) 

A        B 

C 



46 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. Expression of ARP2/3 complex genes and upstream regulators from protoplasted cells, 

sorted by shoot apical meristem-specific cell type, adapted from Yadav et al., 2009. (A) Heat map 

showing gene expression in the central zone, rib meristem and peripheral zone of the shoot apical 

meristem (B). (A) The heat map was generated in Morpheus (Broad Institute; 

software.broadinstitute.org/morpheus/), showing GCOS/MAS5 normalised microarray data 

(Winter et al., 2007; Yadav et al., 2009) for genes of interest from a large dataset. Cells from the 

Central, Rib Meristem, and Peripheral Zones were sorted by the expression of fluorescent 

reporters expressed under the respective pCLV3, pWUS and pFIL cell-type specific promoters 

(Yadav et al., 2009). Images of corresponding SAM regions (B) were downloaded from eFP 

Browser (Winter et al., 2007). 
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3.2.2 Increased dark development is a specific trait of ARP2/3 complex-related mutants 

To assess the specificity of the ARP2/3 complex in regulating dark development, a screen was 

performed using a variety of actin-related mutants (Fig. 3.9). Mutants were chosen based on their 

expression in the SAM (Fig. 3.8) and reported phenotypes. Of the VILLIN family, VLN1 was the 

only gene to be expressed highly in the SAM, so the mutant would be unlikely to have redundant 

function. The vln1-4 mutant was demonstrated to be null for VLN1, but vln1 phenotypes have not 

been studied to date (Khurana et al., 2010). Other VILLIN mutants have reduced F-actin severing, 

reduced thick actin bundles, and reduced growth (Huang et al., 2015b). VLN1 protein promotes 

F-actin bundling and severing in vitro (Huang et al., 2005; Khurana et al., 2010). Arabidopsis has 

over twenty FORMIN HOMOLOGY genes and several were highly expressed in the SAM. The 

fh1-1 mutant was shown to have thicker and more frequent actin bundles, increased root diameter, 

and hypersensitivity to the effects of LatB on root growth (Rosero et al., 2013). Three PROFILIN 

genes were expressed highly in the SAM. PRF1 and PRF2 have partially redundant activity 

(Mussar et al., 2015), but the single prf1-2 mutant reduced actin nucleation, bundling, and rate of 

filament elongation, and reduced axial cell expansion (Cao et al., 2016), and the single prf2-1 

mutant reduced leaf size and plant height (Mussar et al., 2015). The constitutively expressed 

35S::GFP-mTalin line was included as it has been reported to disrupt the activity of actin 

depolymerising factors and increase actin bundling (Ketelaar et al., 2004; Sheahan et al., 2004).  

Mutants of the ARP2/3 complex, arp3 and arpc2a increased dark development, as did the ARP2/3 

complex activator mutant scar2 (Fig. 3.9), consistent with previous reports (Baier et al., 2004; 

Zhang et al., 2008). The actin bundling line 35S::GFP-mTalin also increased dark development, 

however other actin-related mutants vln1, fh1, prf1 and prf2 did not (Fig. 3.9). Despite previously 

reported phenotypes for each of these mutants, redundancy within the respective gene families 

cannot be excluded, except perhaps for vln1, as other VILLIN genes were not highly expressed in 

the SAM.  

 

3.3 Identification of Arabidopsis ARP2/3 complex inhibitors  

There are many genetic resources for Arabidopsis which could be utilized to study different 

biological signalling pathways involved in the increased dark development of ARP2/3 mutants. 

However, to cross each (or multiple) of these mutants into an ARP2/3 mutant background would 

be a time-expensive process. A chemical inhibitor of the ARP2/3 complex would circumvent this 

problem as it could be applied to existing genetic variants. Whilst a couple of chemical Arp2/3 

inhibitors have been described for other organisms, none have yet been described for the 

Arabidopsis ARP2/3 complex. Plants were treated with the Arp2/3 complex inhibitor CK-666 and  
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Fig. 3.8. Expression of actin-related genes in the shoot apical meristem (Yadav et al., 2009). VLN1 

was the most highly expressed VILLIN gene in the SAM; FH1, FH2, FH7 and FH9 were the most 

highly expressed FORMIN HOMOLOGY genes; PRF1, PRF2 and PRF3 were the most highly 

expressed PROFILIN genes; FIM2, FIM3 and FIM5 were the most highly expressed FIMBRIN 

genes, but were not as highly expressed as the other families. THRUMIN1 was not well expressed 

in the SAM. ADF1, ADF2, ADF3 were the most expressed ACTIN DEPOLYMERISATION 

FACTOR genes. Microarray analysis and heat map generation as Fig 3.7.
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Fig. 3.9. Actin-related mutants have unaffected dark development with the exception of ARP2/3 

complex related mutants (dark grey) and 35S::GFP-mTalin, indicating the specific function of 

the ARP2/3 complex in regulating dark development. Statistical significance was calculated using 

1way ANOVA and Dunnett’s multiple comparisons test; n ≥ 45 (A), or by unpaired two-tailed T-

Test; n ≥ 15 (B). 

 

 

 

the F-actin polymerisation inhibitor Latrunculin B (LatB) to test for arp3-like phenotype 

induction. 

 

3.3.1 Treatment of Arabidopsis with LatB increased dark development 

Latrunculin B treatment increased dark development at concentrations above 50nM (Fig. 3.10). 

Other studies have shown that 50nM LatB is sufficient to cause F-actin fragmentation in pollen 

tubes, reducing the F-actin levels in different regions of pollen tubes by 30-60% after 30 minutes 

(Chang and Huang, 2015), and is 25% effective at inhibiting root hair elongation (Bibikova et al., 

1999). Concentrations of LatB above 100nM increased the dark development of Col-0 plants to 

the same level as arp3 mutants, whereas arp3 was insensitive to LatB-induced dark development, 

suggesting that LatB and arp3 increase dark development via the same mechanism. Both Col-0 

and arp3 were sensitive to LatB-induced dwarfism, forming compact rosettes in the dark (Fig. 

3.10 B), a cell expansion defect resulting from the loss of F-actin (Baluska et al., 2001). 
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Fig. 3.10. The dark development of Col-0 plants was increased to the same level as arp3 plants 

by inhibiting actin polymerisation with >50nM LatB; arp3 dark development was insensitive to 

LatB treatment (A) but sensitive to LatB-induced dwarfism (B). A representative mock treatment 

is shown (0.001% v/v DMSO) which is the mock treatment for 200pM-200nM LatB. Mock 

treatments for 2µM (0.01% v/v DMSO) and 4µM (0.02% v/v DMSO) were not statistically 

different to the mock shown and do not affect the interpretation of the result (not shown). 

Statistical significance was calculated by 2way ANOVA and Tukey multiple comparisons test; 

n > 12. (B) Images were taken at different focal planes and rendered using Helicon Focus 6.1 

(Helicon Soft Ltd.). Triangles indicate true leaves. Inset - enlarged image of Col-0 grown on 

200nM LatB. Scale bar =  2mm. 

 

 

 

B 
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3.3.2 Treatment of Arabidopsis with CK-666 

CK-666 was shown to bind a pocket between Arp2 and Arp3 in the bovine Arp2/3 complex, 

blocking a conformational change required to activate the Arp2/3 complex (Baggett et al., 2012; 

Hetrick et al., 2013). To predict whether CK-666 could bind the equivalent region in the 

Arabidopsis ARP2/3 complex would require structural knowledge. Whilst the complete bovine 

ARP2/3 complex has been crystallised and its structure resolved (Baggett et al., 2012; Jurgenson 

and Pollard, 2015; Robinson et al., 2001), there is no crystal structure of the Arabidopsis ARP2/3 

complex, and the nature of the binding pocket for CK-666, between Arp2 and Arp3 subunits, 

makes homology modelling particularly difficult. Programs such as SwissDock (swissdock.ch) 

that predict the energetic favourability of a ligand binding to a site within a protein are not 

currently designed to also predict the interactions between two proteins (i.e. Arp2 and Arp3 

homology models) and give an accurate prediction of a ligand interaction at a binding site between 

them. Knockout mutants of the Arabidopsis ARP2/3 complex have distorted trichomes and 

increased dark development (as reviewed in chapter 1.5.3.3). Therefore, to test whether CK-666 

is an effective inhibitor of the Arabidopsis ARP2/3 complex, the effects of CK-666 on trichome 

development and dark development were analysed. 

To investigate whether CK-666 treatment distorted trichome development, Col-0 seedlings were 

grown on soil and treated by drop application onto the centre of the rosette with 20mM CK-666 

(in 100% DMSO), 2mM CK-666 (in 10% DMSO), 200µM CK-666 (in 1% DMSO), or relevant 

mock treatment. 0.1% Tween20 was used as a surfactant to spread the treatment across a leaf. 

Existing and developing trichomes were examined morning and evening over the next few days, 

and compared with untreated Col-0 and arp3 controls. Since no difference between mock and 

treated plants was seen, the experiment was repeated in liquid culture to increase the surface 

contact of the treatment. Liquid culture grown seedlings also failed to show distorted trichome 

phenotypes in response to 200µM CK-666 (1% DMSO), 20µM CK-666 (0.1% DMSO), 2µM 

CK-666 (0.01% DMSO) or 200nM CK-666 (0.001% DMSO). 

CK-666 treatments also did not increase dark development. Neither Col-0 or Ler plants had 

increased dark development when treated with CK-666 (Fig. 3.11). arp3 and LatB treatment were 

included as positive controls. Therefore CK-666 was not suitable as an ARP2/3 complex inhibitor 

for Arabidopsis studies. 
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Fig. 3.11. The yeast and mammalian Arp2/3 complex inhibitor CK-666 did not increase or affect 

the dark development of Arabidopsis, indicating that CK-666 does not inhibit the Arabidopsis 

ARP2/3 complex. LatB treatment was included as a positive control for increased dark 

development. Mock treatments A = 0.001% DMSO; B = 0.01% DMSO; C = 0.1% DMSO. 

Statistical significance was calculated by 2way ANOVA and Tukey multiple comparisons test; 

n > 6. 

 

 

3.4 ARP2/3 signalling in constitutive shade reponses 

To investigate the light sensitivity of the increased development of ARP2/3 mutants, arp3 was 

crossed with the photoreceptor mutant phyB to examine the effect of arp3 on the constitutive 

shade avoidance response of phyB.  

 

3.4.1 The arp3 mutant accelerated the early flowering of phyB in long days 

In long days, arp3 and phyB mutants bolted after producing a similar number of rosette leaves to 

wild type (Fig. 3.12), although phyB plants trended towards bolting after producing fewer leaves, 

in line with other reports (Blazquez and Weigel, 1999; Goto et al., 1991). Col-0 produced on 

average 8.8 ± 0.4 (standard error) leaves, arp3 produced 8.8 ± 0.3 leaves and phyB produced 7.8 

± 0.2 leaves. Strikingly, the arp3phyB double mutant bolted after producing only 4 ± 0.2 leaves. 

This was highly significant (p<0.001) and also observed in a second independent repeat.  
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Fig. 3.12. arp3 increased development in the light when phyB was also mutated. arp3 

development was indistinguishable from Col-0 when grown in long days; however, arp3phyB 

double mutants bolted after producing much fewer leaves. The phyB mutant trended towards 

bolting after fewer leaf production, consistent with other literature, but not to the extent of the 

double mutant. Statistical significance was calculated by 2way ANOVA and Tukey multiple 

comparisons test; the sample size for each genotype n = 10. 

 

 

3.5 Discussion 

3.5.1 A dark development assay was developed to study dark-dependent regulators of shoot apical 

meristem activity. A scoring system based primarily on true leaf development (Fig. 3.1) gave a 

highly reproducible representation of dark development with Gaussian distribution (Fig. 3.2-3.4), 

allowing data to be represented as mean developmental stage and standard statistical analyses to 

Col-0                    arp3                   phyB                   arp3phyB 

 arp3phyB      phyB 
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be used. Differences between average developmental stages between experiments might result 

from differences in incubation temperature; since the incubator lacked a cooling system, it was 

not possible to maintain a constant temperature of 23°C when the ambient room temperature 

increased above this level. Previously reported scoring systems for dark development have 

focussed more on growth and/or the presence or absence of true leaves (Baier et al., 2004; Reed 

et al., 1998), which provides less resolution of SAM activity, or measured the number of rosette 

leaves produced at bolting (Roldan et al., 1999), which is an indicator of a different kind of SAM 

activity. The scoring system used is most similar to a scoring system used by Roldan and 

colleagues (1999), who measured average true leaf number and standard error. 

SAM activity in the dark required a sugar source, and was markedly increased by mutations of 

the ARP2/3 complex, as previously reported (Baier et al., 2004; Roldan et al., 1999). ARP2/3 

genes as well as other actin-related genes are expressed in the SAM, but only mutants relating to 

ARP2/3 activity caused increased dark development (Fig. 3.7-3.9). An mTalin overexpressor was 

an exception, also causing increased dark development. Both 35S::GFP-mTalin and mutants of 

the ARP2/3 complex are reported to increase actin bundling (Mathur et al., 2003a; Sheahan et al., 

2004), whereas actin bundling was decreased in the prf1 mutant (Cao et al., 2016) and might be 

expected to decrease in the prf2 and vln1 mutants. Therefore, the increased dark development 

could be attributed to increased actin bundling. However, the fh1 mutant was also reported to 

have increased actin bundling (Rosero et al., 2013) but did not have increased dark development, 

and treatment with the actin-depolymerising drug LatB did not complement arp3 dark 

development, as would be expected if actin bundling led to increased development. Instead, LatB 

increased the dark development of Col-0 to the same level as arp3. Moreover, the arp3 mutant 

was insensitive to LatB-induced increased dark development, suggesting that arp3 and LatB 

increase dark development by a common mode of action or pathway. It therefore seems likely 

that the observed increases in dark development are because of a loss of or interference with F-

actin. Given that mutants of other actin nucleators (fh1, vln1) and nucleation facilitators (prf1, 

prf2) did not increase dark development, these data indicate that a specific subset of F-actin 

regulates dark development, mediated by the ARP2/3 complex. 

 

3.5.2 Further study of the role of the ARP2/3 complex in SAM development would be greatly 

facilitated by a chemical inhibitor of the ARP2/3 complex. LatB treatment phenocopied the dark 

development of arp3 but also caused unrelated effects owing to general loss of cellular F-actin, 

limiting its usefulness. Treatment with CK-666, reported to specifically inhibit the Arp2/3 

complex in diverse organisms including yeast, algae, mammals, amphibians, and molluscs 

(Avasthi et al., 2014; Davison et al., 2016; Nolen et al., 2009; Sun et al., 2011; Yang et al., 2012), 
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did not induce phenotypes akin to ARP2/3 mutants in Arabidopsis, suggesting that it does not 

inhibit the Arabidopsis ARP2/3 complex. Alternatively, CK-666 might be metabolised by the 

plant, or is not taken up to be sufficiently bioavailable. Therefore, in further analyses, a genetic 

approach was taken, where possible, to derive ARP2/3-specific functions. 

 

3.5.3.1 Regulation of the ARP2/3 complex by light 

Very little is known about the regulation of the ARP2/3 complex by light signalling. The stomatal 

aperture of arp3 and related mutants is unresponsive to light/darkness, although this phenotype 

was shown to be caused by increased actin bundling, as it was rescued by actin polymerisation 

inhibitors (Isner et al., 2017; Jiang et al., 2012). SCAR1 was shown to be degraded by the 

proteasome in the dark through direct interaction with COP1, which was disrupted by 

phytochrome and cryptochrome signalling (Dyachok et al., 2011). Dyachok and colleagues 

proposed a simple model whereby light promotes ARP2/3 complex activity by inhibiting the 

COP1-mediated degradation of SCAR through the photoreceptors PhyA, PhyB and Cry1, while 

in the dark, SCAR is degraded by the proteasome, and the ARP2/3 complex is inactive (Dyachok 

et al., 2011). This model fitted their observation that the ARP2/3 complex promoted root 

development in the light, but did not explain their observation that the ARP2/3 complex repressed 

root development in the dark, as it assumed that the ARP2/3 complex was inactive in the dark. 

For the same reason, it does not explain why the arp3 mutant has any phenotype in the dark. In 

their study, Dyachok and colleagues only tested the activity and COP1 association of SCAR1 in 

relation to light, therefore, since the ARP2/3 complex must be active in the dark, other SCARs 

must be able to compensate for the loss of SCAR1. Indeed SCAR1 was shown to have functional 

redundancy with SCAR3 (Zhang et al., 2008). Moreover, the scar1scar3 double mutant, but not 

the scar1 or scar3 single mutants had increased dark development (Zhang et al., 2008), 

demonstrating not only that SCAR3 can compensate for the loss of SCAR1 in the dark, but that 

SCAR1 is not completely degraded in the dark. Therefore, the regulation of ARP2/3 complex 

activity by light is clearly more complex than off or on. 

 

3.5.3.2 Co-regulation of flowering time by ARP3 and PHYB 

To investigate whether light signalling through PhyB interfered with arp3 developmental 

phenotypes, and to identify whether the ARP2/3 complex regulated development in the shade, 

arp3 was crossed with a mutant of PhyB, which is the dominant red-light receptor of Arabidopsis 

(Chory et al., 1989b; Reed et al., 1993). Strikingly, the arp3phyB double mutant bolted after 

producing half as many leaves  at wild-type (Fig. 3.12), making it a class I early flowering line 

(Glover, 2014), although chronologically, arp3phyB did not flower much earlier than the phyB 
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single mutant. Class I early flowering lines are distinct from class II early flowering lines, as they 

bolt after producing an average of 4 rosette leaves in long days, rather than 6 rosette leaves, and 

retain photoperiod-sensitivity (Glover, 2014). The requirement for both arp3 and phyB mutations 

to increase the rate of development indicates that PhyB and ARP3 dependent signalling interact 

to regulate rosette leaf number and bolting. This is important for allowing the plant to develop 

enough photosynthetic tissue before expending its resources on reproductive development 

(Glover, 2014).  

 

The arp3phyB double mutant resembled 35S::PIF4 lines, which also flower after producing just 

four rosette leaves, and have constitutive shade responses (Kumar et al., 2012). PIF4 is repressed 

by DELLA proteins in the light, but this repression is alleviated in the dark and in the red-light 

insensitive phyB mutant (Nozue et al., 2007). PIF4 is further stabilized by exogenous brassinolide 

in the dark, but not in the light (Bernardo-Garcia et al., 2014). Remarkably, the stabilization of 

PIF4 by brassinolide, caused by reduced phosphorylation, was shown to be mediated by the actin 

cytoskeleton (Bernardo-Garcia et al., 2014). It is conceivable then, that the combination of phyB, 

which alleviates repression by DELLAs, and arp3, which exhibits constitutive brassinosteroid 

responses (see chapter 5) could lead to synergistic stabilization of PIF4 in the arp3phyB double 

mutant, resulting in early flowering.  

 

The arp3phyB double mutation appeared to reduce the frequency of rosette leaf initiation, 

opposite to the phenotype of arp3 in the dark. A recent study showed that the rate of true leaf 

development stimulated by red light was compromised in the phyAphyB double mutant, while 

blue light-stimulated true leaf development was compromised in the cry1cry2 double mutant (Li 

et al., 2017). Therefore, to investigate the signalling pathways which antagonise the positive effect 

of arp3 on leaf initiation rate, it might be necessary to make arp3phyAphyB and arp3cry1cry2 

triple mutants. 
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Chapter 4 - Sugar signalling in dark development 

Mutants of the ARP2/3 complex were identified in a high sugar response (hsr) screen (Baier et 

al., 2004). Mutants of ARP3 and ARPC2A had increased sugar sensitivity compared to wild-type 

plants grown on low concentrations of sugars. Phenotypes included increased sugar-induced gene 

expression, and enhanced growth and development responses. For instance, ARP2/3 mutants had 

elevated expression of the sugar-induced genes ApL3 and β-Amy, reduced chlorophyll levels, 

increased anthocyanin accumulation, and increased dark development. Biochemical 

measurements of sugar levels showed that ARP2/3 mutants had comparable levels of glucose, 

fructose, sucrose, total sugar and starch to wild type plants. Moreover, the uptake of C14 labelled 

glucose was comparable between wildtype and ARP2/3 mutants, indicating that ARP2/3 mutants 

do not have elevated sugar uptake.  

Since the increased dark development of ARP2/3 mutants is an elevated sugar response, 

seemingly independent of endogenous sugar levels and uptake (Baier et al., 2004), it is possible 

that the increased dark development results from increased sugar signalling. Sugars are perceived 

through glycolysis-dependent and independent sugar-signalling pathways (hereafter referred to 

as glycolysis and sugar signalling). Various sugar signalling pathways exist in plants, including 

TOR, HXK, and RGS1 signalling. The relationship between the ARP2/3 complex and glycolysis 

or sugar signalling pathways has not been explored, so an investigation targetting each sugar 

signalling pathway is required. 

Glycolysis is the pathway in which sugars (glucose, and/or fructose) are converted into precursors 

for the biosynthesis of cell building materials, including polysaccharide, phospholipid and amino 

acid precursors, and provides pyruvate for downstream respiration, the primary energy production 

pathway in plants. Both the biosynthesis of cell wall building materials and the production of 

energy are important requirements for growth. Glycolysis has also been shown to activate plant 

meristems via the downstream kinase TARGET OF RAPAMYCIN (TOR) (Pfeiffer et al., 2016; 

Xiong et al., 2013; Xiong and Sheen, 2012), see chapter 1.3.4. Leaf initiation in the dark was 

blocked by estradiol (Est)-induced TOR knock-down using XVE-TOR-RNAi lines, and repression 

of TOR with the specific inhibitors rapamycin or torin2 (Li et al., 2017). Additionally leaf 

initiation was compromised in a double mutant of the TOR-targets E2Fa/E2Fb (Li et al., 2017). 

It is not known if the ARP2/3 complex regulates glycolysis or TOR kinase signalling, but the high 

sugar response and increased leaf initiation of ARP2/3 complex mutants (Baier et al., 2004) 

indicate that glycolysis and/or TOR might be upregulated in an ARP2/3 background. 

It is possible that the ARP2/3 complex regulates glycolysis directly, by inhibiting the activity of 

aldolases. Fructose bisphosphate aldolases (FBA) are essential glycolytic enzymes that are 

inhibited in association with F-actin (Arnold and Pette, 1970). Release from F-actin promotes 
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aldolase activity and glycolysis (Arnold and Pette, 1970; Pagliaro and Taylor, 1992). The actin 

polymerisation inhibitor cytochalasin D also promoted free aldolase (Pagliaro and Taylor, 1992). 

Therefore, an ARP2/3 mutant, which has reduced F-actin, could have increased aldolase activity 

and glycolysis. 

Analysis of gene expression data (Yadav et al., 2014) shows that FBA1/2/3/6/8 are highly 

expressed in the SAM, with FBA8 the most highly expressed by almost an order of magnitude. 

However, in dark developed shoot apices (Lopez-Juez et al., 2008), FBA2 had the highest 

expression, followed by FBA8 (half as expressed), and FBA1/3/6 were expressed at a sixth of the 

expression of FBA2. Therefore, if aldolases are important for leaf initiation, a fba2 mutant might 

be expected to have the most significant dark development phenotype. 

The best characterised sugar signalling pathway in Arabidopsis is mediated by HEXOKINASE1 

(HXK1), which contributes to glycolysis by its catalytic activity, and sugar signalling by an 

independent and separable pathway (Moore et al., 2003). Serine117 was shown to be important 

for the catalytic activity of HXK1 but not its sugar signalling activity (Moore et al., 2003).  

Consequently, a hxk1 mutant expressing HXK1S117A has been used to study the role of HXK1-

mediated sugar signalling uncoupled from its catalytic activity (Moore et al., 2003). Arabidopsis 

has three hexokinases (Jang et al, 1997). Gene expression data (Lopez-Juez et al., 2008; Yadav et 

al., 2009) show that HXK1 is the most highly expressed HXK in the SAM, although HXK2 is also 

highly expressed. The glycolysis inhibitor 2-DG is a hexokinase inhibitor and can be used to 

overcome redundancy between hexokinases in functional studies (Klein and Stitt, 1998; Nakada 

and Wick, 1956). HXK1 has been demonstrated to bind F-actin (Balasubramanian et al., 2007). 

Whilst the functional significance of this interaction is not clear, the F-actin binding of HXK1 

could provide a mechanism for interaction with ARP2/3 signalling.  

RGS1 is another regulator of sugar signalling and a putative glucose receptor (Grigston et al., 

2008), described in chapter 1.3.3. RGS1 activity is regulated by glucose and endocytosis 

(Grigston et al., 2008; Urano et al., 2012), and transcriptome data (Yadav et al., 2009) show that 

RGS1 is well expressed in all SAM tissues. Whether the ARP2/3 complex interacts with RGS1 is 

not known; however, there is potential for the ARP2/3 complex to regulate RGS1 activity by 

mediating its subcellular localisation, since the ARP2/3 complex has been implicated in 

regulating endocytosis (Zou et al., 2016). Alternatively, the ARP2/3 complex could interact with 

RGS1 through potential undiscovered roles in sugar uptake, the implication being that RGS1 is a 

downstream regulator of SAM activity in ARP2/3 signalling.  

This chapter aims to identify glycolysis or sugar signalling pathways involved in the high sugar 

response phenotype of arp3, which includes the increased dark development phenotype (Baier et 

al., 2004). Mutants in a broad range of known glycolysis and sugar signalling pathways were used 
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in conjunction with the arp3 mutation (classical genetics) or LatB treatment (chemical genetics) 

to screen for mutations that complement the associated increase in dark development. 

Complementation of the arp3 dark development response (relative to the control), could indicate 

that a particular sugar signalling pathway is upregulated in the arp3 background, causing the high 

sugar response (Baier et al., 2004). Dependence on the particular sugar signalling pathway could 

be direct or indirect, so follow-up studies would be required to investigate the precise relationship 

between the sugar signalling pathway and ARP2/3 complex signalling. 

 

4.1 The role of HXK1 

The role of HXK1 in dark development was tested using hxk1 mutants in the Col-0 and Ler 

ecotypes. hxk1 did not affect dark development in the Col-0 ecotype (Figure 4.1A), but was 

required for dark development in the Ler ecotype (Fig 4.1 B, C). Moreover, the Ler hxk1 mutant 

had a similar level of dark development to Col-0 (compare Fig. 4.1 A, C). hxk1 mutants reduced 

the LatB-induced dark development of both Col-0 and Ler (Fig. 4.1 A, D), and partially 

complemented the dark development of arcp2a (Fig. 4.1 B). To test whether the catalytic or sugar 

signalling function of HXK1 was required for its activity in dark development, transgenic lines 

expressing the wild-type or catalytic-inactive forms of HXK1 in the hxk1 background (Moore et 

al., 2003) were obtained. Both lines complemented mock-treated hxk1 in the Ler background 

(Figure 4.1 C), indicating that the sugar signalling function of HXK1 is important for the increased 

dark development of Ler, and potentially important for the increased dark development of Ler 

relative to Col-0. Interestingly, neither the wild-type or S117A catalytic mutant of HXK1 

complemented the dark development of LatB-treated hxk1 (Figure 4.1 D). Moreover, hxk1 plants 

overexpressing wild-type HXK1 were insensitive to the development-promoting effects of LatB, 

suggesting a balance of HXK1 activity is required for optimal dark development.  
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Fig. 4.1. The glycolysis and sugar signalling mutant hxk1 partially complemented LatB-induced 

(A, D) and arpc2a (B) dark development. Untreated mutants of hxk1 had reduced dark 

development in Ler (A, C) but not Col-0 (B). arpc2ahxk1 double mutants and LatB-treated hxk1 

plants were unable to increase dark development to the extent of LatB-treated plants (A, D), or 

arpc2a single mutants (B). Overexpression of HXK1 and the catalytic mutant HXK1S117A 

complemented the dark development of untreated hxk1 mutants (C) but not LatB-treated hxk1 (D). 

Fig. 4.1C and 4.1D shows the same mock treatment data. (B) Data was collected by Karim 

Sorefan (unpublished) and the scale adapted to be consistent with this thesis. (B) Plants were 

grown on media supplemented with 0.25% glucose for 21 days instead of 0.2% glucose for 28 

days. Statistical analysis was calculated by 2way ANOVA and Tukey multiple comparisons test 

(A, B, D), or by 1way ANOVA and Dunnett’s multiple comparisons test (C). (A) n > 18; (B) n > 

16; (C) n > 15; (D) n > 13. 

A       B 

C      D 



61 
 

* * *

* *

C
o
l-
0

a
rp

3

rg
s
1

3
5
S

::
R

G
S

1

0

2

4

6

8

1 0

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

M ock

1 00nM  La tB

0

2

3

4

5

6

7

8

4.2 The role of RGS1 

The role of the sugar-responsive sugar signalling protein RGS1 in dark development was also 

investigated. To investigate the role of RGS1 in ARP2/3-mediated dark development, the LatB 

responses of RGS1 mutant and overexpressor lines was tested in a dark development assay. Like 

the HXK1 overexpressor, RGS1 mutant and overexpressor lines were insensitive to LatB 

treatment (Fig. 4.2.). rgs1 and 35S::RGS1 both showed phenotypes that were intermediate 

between mock and LatB-treated Col-0. Apart from mock treated 35S::RGS1 (p=0.02), the dark 

development of rgs1 and 35S::RGS1 was also intermediate between mock treated Col-0 and arp3. 

This further supports a role for sugar signalling in dark development downstream of F-actin 

dynamics. 

 

 

 

 

 

 

 

 

Fig. 4.2. Mutation and overexpression of RGS1 led to LatB-insensitive, intermediate dark 

development. Statistical analysis was calculated by 2way ANOVA and Tukey multiple 

comparisons test; n > 10. 
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4.3 The role of glycolysis 

To clarify whether glycolysis is important for dark development, Col-0 and arp3 plants were 

treated with the glycolysis inhibitor 2-deoxyglucose (2-DG) in a dark development assay. 0.5mM 

2-DG reduced the dark development of arp3 but not Col-0, indicating that glycolysis is required 

for the increased dark development of arp3 mutants (Fig. 4.3). The effect of 5mM 2-DG was also 

tested, but post-germination growth and development was strongly inhibited (data not shown). 

 

 

 

 

 

 

 

 

Fig. 4.3. Glycolysis is required for the increased dark development of arp3 mutants. The 

glycolysis inhibitor 2-DG partially suppressed the dark development phenotype of arp3, but had 

no significant effect on Col-0 dark development at 0.5mM. Statistical significance was calculated 

by 2way ANOVA and Tukey multiple comparisons test; n > 26. 
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4.4 The role of TOR 

To investigate the relationship between ARP2/3 and TOR signalling in regulating leaf initiation 

in the dark, the dark development of Est-induced TOR-RNAi was investigated with and without 

LatB. Leaf initiation in the dark was severely compromised in XVE-TOR-RNAi seedlings treated 

with Est (Fig. 4.4).  By contrast, mock-treated XVE-TOR-RNAi seedlings resembled mock or Est-

treated Col-0 (Fig. 4.4 B), indicating that the XVE-TOR-RNAi phenotype was specifically caused 

by RNAi. Furthermore, there was no difference in the dark development of XVE-TOR-RNAi 

seedlings germinated on treated plates or transferred to treated media five days after sowing (not 

shown), indicating that TOR regulates shoot apical meristem activity post meristem establishment, 

consistent with the role of TOR in regulating root apical meristem activity post root apical 

meristem establishment (Xiong et al., 2013). LatB treatment was not able to rescue the loss of 

leaf initiation of Est-treated XVE-TOR-RNAi plants, indicating that F-actin-mediated dark 

development requires TOR. However, Est treatment interfered with the effect of LatB on Col-0 

dark development (Fig. 4.4 A and Suppl. Fig. S.1), so may have interfered with the effect of LatB 

on XVE-TOR-RNAi development; arp3 plants did not show Est sensitivity.  

 

 

 

  

 

 

 

 

 

Fig. 4.4. TOR-dependent dark development. (A) Statistical significance was calculated by 2way 

ANOVA and Tukey multiple comparisons test; n > 25. (B) XVE-TOR-RNAi was specifically 

inhibited by Est, however, true leaves still initiated at the SAM. Inset shows magnified seedling 

with cotyledons manually separated. Scale bar = 1mm. 

 

 

B    

   

A    

   



64 
 

4.5 The role of aldolases 

To investigate whether aldolases are important for dark development, aldolase mutants were 

screened for leaf initiation phenotypes in the dark, and crossed into the arp3 background to test 

for hypersensitivity to the loss of aldolase.  

 

4.5.1 Obtaining mutants of aldolases 

Mutants of FBA1,2,4,5,6,8, but not FBA3,7 have been described (Lu et al., 2012). Homozygous 

fba1-1, fba5-1, fba6-1, fba8-1 were ordered from NASC, and homozygous fba4-1 was isolated 

from a segregating population.  

A segregating stock of fba2-1 was ordered, but it was not possible to identify the T-DNA insert 

at the predicted insertion site by PCR. TAIR SeqViewer (seqviewer.arabidopsis.org) was used to 

identify a new allele of fba2. The mutant, named fba2-2, was ordered and isolated from a 

segregating population. fba2-2 plants grew slowly and flowered late.  

A putative fba7 allele was identified using TAIR SeqViewer, with a T-DNA insertion in the 5′ 

UTR. A segregating stock was ordered and screened for resistance to BASTA. All plants showed 

BASTA resistance but only one in eleven seedlings harboured the T-DNA insertion of interest, 

indicating that the line had a secondary T-DNA insertion. Most progeny of the fba7 heterozygote 

did not contain the T-DNA insertion of interest, so it was not possible to isolate the homozygous 

line. Therefore, the fba7 allele was not used in dark development assays. 

The fba8-1 mutant did not germinate on soil or on agar supplemented with 1/2MS, vitamins and 

0.5% glucose. A second stock of fba8-1, requested from ABRC by NASC, also failed to germinate. 

Two other fba8 T-DNA insertion lines were ordered: fba8-2, described in a thesis as a strong 

allele (Tang, 2013), and a new allele, named fba8-3, which has a T-DNA insertion at a similar 

position (Fig. 4.5). A single homozygous fba8-3 line was obtained from over 30 seedlings from a 

heterozygous parent; no homozygous fba8-2 lines were obtained from a similar number of 

seedlings from a segregating population. The homozygous fba8-3 line produced a few hundred 

seeds, but these seeds did not germinate. Since it was not possible to work with either homozygote, 

segregating fba8-2 and fba8-3 populations were screened for dark development phenotypes 

associated with the heterozygotes.  

The T-DNA insertions of the newly described alleles were sequence-verified using primers that 

anneal the left T-DNA border and adjacent sequence (Figure 4.5). fba2-2 (SALK_000898) has a 

T-DNA insertion in the second exon 603bp downstream of the start codon. fba7-1 

(SAIL_870_A09) has a T-DNA insertion in the 5′ UTR, 288bp upstream of the start codon. fba8-
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2 (SALK_007216) and fba8-3 (SAIL_1244_A08) have T-DNA insertions in the third exon, 

located 921bp and 1181bp downstream of the start codon, respectively. fba8-2 also contains a 

duplication of 15bp (ATTAGCTAGATACGC) either side of the T-DNA insert, which 

presumably arose from the T-DNA insertion; fba8-3 has a 35bp deletion (CAGCTGTTC 

CAGCCATTGTCTTCTTATCTGGAGGA) associated with the T-DNA insertion site.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. Sequence characterization of unpublished T-DNA insertion lines. All sequences are to 

scale and oriented 5′ to 3′. Exonic sequences are depicted as black boxes, intronic sequences as 

lines, 5′ and 3′ UTR sequences as white boxes. Triangles indicate the sequence-verified T-DNA 

insertion site; where a triangle is divided, the T-DNA has two left borders and the sites indicate 

the sequences flanking each left border. 

 

 

 

4.5.2 Dark development of aldolase mutants 

The aldolase mutant fba2 had decreased dark development which was complemented by arp3 

(Fig. 4.6). Other FBA mutants did not affect dark development in the Col-0 or arp3 background, 

which could be a result of redundancy within the FBA family. It was not possible to screen 

homozygous fba7 or fba8 mutants (for reasons described above), however, the distributions of 

the segregating fba8-2 and fba8-3 developmental scores were not different to wild type (1way 

ANOVA), indicating that there was no effect of the heterozygous mutations on dark development. 
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Fig. 4.6. Dark development of aldolase mutants. Where a double mutant was generated, statistics 

were calculated by 2way ANOVA and Tukey multiple comparisons test, otherwise a 1way 

ANOVA and Dunnett’s multiple comparisons test were used against the relevant Col-0 control. 

n >15; fba8-2seg n = 71; fba8-3seg n = 40. 

 

4.6 Discussion 

ARP2/3 mutants are hypersensitive to sugars (Baier et al., 2004), so the roles of sugar signalling 

pathways were investigated in dark development. Both glycolysis and sugar signalling were 

important for promoting dark development in response to LatB and the arp3 mutant. Interestingly, 

a balance of HXK1 and RGS1 expression was required for increased dark development (Fig. 4.1, 

4.2). Both mutants and overexpression of HXK1 and RGS1 conferred decreased sensitivity or 

insensitivity to LatB (Fig. 4.1D, 4.2). 

The dark development of hxk1 overexpressing the wild-type or catalytically inactive (S117A) 

forms of HXK1 was tested to differentiate between the dual activities of HXK1 in sugar signalling 

and glycolysis (Fig 4.1D). Both transgenes complemented the reduced dark development of the 

hxk1 mutant on mock-treated plates, indicating that the reduced dark development of hxk1 was 

caused by reduced sugar signalling, not glycolysis. Interestingly, the hxk1 mutant had a stronger 

phenotype in Ler than in Col-0, suggesting that Ler has increased sugar signalling, potentially 

explaining its increased dark development relative to Col-0.  

However, when treated with LatB, neither the wild-type or catalytically inactive HXK1 fully 

complemented hxk1 dark development, and overexpression of wild-type HXK1 in fact caused 

apparent insensitivity to LatB. The interpretation of this result should be treated with caution as 

Moore and colleagues showed that hxk1 35S::HXK1 had greatly increased HXK1 protein levels, 
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whereas hxk1 35S::HXK1S117A had comparable HXK1 levels to wild type (Moore et al., 2003). In 

light of the differences in protein expression, these data indicate that the catalytic activity but not 

the sugar signalling activity of HXK1 is required for the increased dark development of arp3, as 

the dark development of hxk1 35S::HXK1S117A was reduced compared to wild-type, to the same 

level as hxk1. But the catalytic activity of HXK1 was not in itself sufficient to increase dark 

development, as mock-treated hxk1 35S::HXK1 did not have increased dark development, unless 

the concurrent increase in sugar signalling suppressed the positive effect of increased catalytic 

activity. 

These results indicate that the sugar signalling activity, not the catalytic activity of HXK1 is 

important for wild-type dark development. However, the reverse was true for the increased dark 

development of arp3/acpc2a, since the catalytic activity of HXK1 was required for the increased 

dark development induced by LatB, indicating that the ARP2/3 complex upregulates 

glycolysis/glycolysis-dependent signalling downstream of HXK1. 

The glycolysis inhibitor 2-DG was used to clarify the role of glycolysis in dark development. Col-

0 was insensitive to 0.5mM 2-DG, but the arp3 mutant was hypersensitive, having an inhibitory 

effect on dark development (Fig. 4.3). Since glycolysis was important for the increased dark 

development of arp3, the effect of TOR-RNAi on LatB-induced dark development was also 

examined, as TOR is an important integrator of signalling from glycolysis to the cell cycle. 

Previous studies have shown that TOR-RNAi blocks leaf initiation (Li et al., 2017; Xiong and 

Sheen, 2012), but these were short term studies of up to nine days. In this 28-day assay, TOR-

RNAi also blocked development, and this could not be rescued by LatB treatment (Fig. 4.4), 

indicating that TOR is essential for shoot development, and may act downstream of F-actin 

dynamics. Interestingly, Est-treated XVE-TOR-RNAi resembled stage 1 developed plants (Fig. 

4.4 B), but manual opening of the cotyledons consistently revealed that the first true leaf primordia 

were apparent, but these did not grow (stage 3), indicating either that TOR was not entirely 

suppressed by the RNAi, or that TOR is not required for the initiation of the first true leaf 

primordia, but is required for growth. Nevertheless, XVE-TOR-RNAi showed insensitivity to 

LatB (Fig. 4.4 A), indicating that TOR is required for the promotion of development in response 

to LatB. 

The potential for ARP2/3 to regulate glycolysis directly, by promoting the F-actin-dependent 

inhibition of aldolase activity, was explored. Mutants of five out of eight Arabidopsis aldolases 

were screened for dark development phenotypes and complementation of arp3. Mutants of FBA8 

could not be used, as homozygosity conferred sterility (Lu et al., 2012; Tang, 2013). An allele of 

the plastidic aldolase FBA2, the most highly expressed aldolase in dark developed shoot apices 

(Lopez-Juez et al., 2008), was the only aldolase mutant with defective dark development (Fig. 
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4.6). fba2 had significantly decreased dark development, but did not complement arp3 dark 

development. This could indicate that FBA2 acts upstream of ARP2/3, leading to its repression 

and the promotion of leaf initiation. However, this is unlikely since the glycolysis inhibitor 

reduced arp3 development, indicating that glycolysis acts downstream of or in concert with 

ARP2/3 activity to regulate leaf initiation in the dark. Another possibility is that increased 

mobilization and activity of other aldolases compensated for the loss of FBA2 in the arp3 mutant, 

which supports the hypothesis that ARP2/3-nucleated F-actin represses aldolase activity.  

It was recently reported that inhibition of the Arp2/3 complex reduced aldolase mobilization and 

glycolysis in human breast cancer cell lines, which was thought to be a result of reduced F-actin 

turnover (Hu et al., 2016). If the ARP2/3 complex of Arabidopsis was also a positive regulator of 

aldolase mobilization, the arp3 mutant could be expected to have reduced development. Therefore, 

the role of the Arabidopsis ARP2/3 complex in promoting FBA activity is not consistent with 

phenotypic data. 

Setting aside a potential role of ARP2/3 in regulating FBA activity, these data also suggest that 

the increased dark development of arp3 requires factors downstream of HXK/HXK1 catalytic 

activity but not downstream of FBA2 (Fig. 4.7). In the glycolysis pathway, just two glycolytic 

enzymes, PHOSPHOGLUCOSE ISOMERASE (PGI) and PHOSPHOFRUCTOKINASE (PFK), 

and three metabolites (glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate) 

separate HXK and FBA. In plastids, where FBA2 is expressed (Lu et al., 2012; Mininno et al., 

2012), glucose 6-phosphate is also a substrate for the biosynthesis of starch, amylopectin, and 

precursors of cell wall polymers including rhamnose, galactose, xylose, apiose and arabinose 

(Caspar et al., 1985; Reiter and Vanzin, 2001), while fructose 6-phosphate is also a substrate for 

the biosynthesis of the cell wall polymer precursors mannose, fucose and galactose (Yin et al., 

2011). Notably, levels of glucose 6-phosphate and fructose 6-phosphate were not affected by 

inhibition of downstream glycolysis in Arabidopsis in the dark (Draborg et al., 2001). It is 

tempting to speculate that these metabolites, rather than the glycolytic pathway as a whole, are 

required for the increased dark development of arp3. Rhamnose, galactose, xylose, apiose, 

arabinose, mannose, and fucose are important substrates of cell wall modifying enzymes (Gille et 

al., 2013; Madson et al., 2003; O'Neill et al., 2004; Perrin et al., 2003; Strasser et al., 2006). 

Moreover, alterations of cell wall composition are a prerequisite and sufficient for promoting 

lateral organ initiation (Fleming et al., 1997; Li et al., 2007; Peaucelle et al., 2011). Furthermore, 

brk1 and arp2 mutants had wild-type levels of cell-wall associated rhamnose, galactose, xylose, 

arabinose, mannose, fucose and glucose, indicating that the biosynthesis of these cell wall 

components is not regulated by the ARP2/3 complex (Dyachok et al., 2008). Although, the brk1 

mutant had altered cell wall composition specifically at the cell corners of root cells where the 

ARP2/3 complex is considered active (Dyachok et al., 2008), indicating that the ARP2/3 complex 
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might regulate other processes during cell-wall assembly. In alignment, ARP2/3 and WAVE 

mutants have phenotypes associated with polar cell wall defects (Jarvis, 2011), including 

separation of elongating hypocotyl and leaf pavement cells (El-Assal et al., 2004a; Li et al., 2004b; 

Mathur et al., 2003a), and reduced root penetrance strength (Dyachok et al., 2008). Also, the F-

actin inhibitors LatB and cytochalasin D disrupted the intracellular trafficking of cell wall 

components (Chen et al., 2007; Geitmann et al., 1996). To summarise, this hypothesis suggests 

not only that the biosynthesis of substrates for cell wall modification is required for the increased 

dark development of arp3, but also that the ARP2/3 complex might regulate dark development 

by affecting cell wall composition.  

To explore the possibility that ARP2/3-dependent changes in cell wall composition regulate dark 

development, existing knowledge about the cell wall composition of ARP2/3 mutants and the 

effects of such changes on dark development were compared. Only one study on ARP2/3-

dependent changes in cell wall composition was found. The study, using a limited array of 

antibodies, showed that an arp2 mutant is deficient in de-arabinosylated rhamnogalacturonan and 

fucosylated xyloglucan sugars in the cell wall, proximal to sites of WAVE localisation (Dyachok 

et al., 2008). Since areas of the cell wall where the WAVE complex was not localised had 

uncompromised biosynthesis and incorporation of these cell wall sugars, the indication is that 

their trafficking at sites of WAVE localisation is dependent on ARP2/3 complex activity 

(Dyachok et al., 2008). A deficiency in de-arabinosylated rhamnogalacturonan might be expected 

to reduce dark development rather than increase dark development, since mutants of arabinose 

synthesis have increased dark development (Li et al., 2007). Therefore the increased dark 

development of arp3 is not likely to be caused by a deficiency in de-arabinosylated 

rhamnogalacturonan. A reduction in fucosylated xyloglucans might be associated with the 

increased dark development of the mur1 mutant, which is deficient in fucose biosynthesis 

(Freshour et al., 2003; Li et al., 2007). However the mur2 mutant, which specifically lacks 

fucosylated xyloglucans, owing to a mutation in the SAM-rich xyloglucan-specific fucosyl 

transferase FUT1 gene (Perrin et al., 2003; Vanzin et al., 2002; Yang et al., 2016), did not have 

increased dark development (Li et al., 2007), indicating that loss of fucosylated xyloglucans alone 

cannot account for the dark development phenotype of arp3. It is worth noting that the mur2 

mutant also had wild-type cell wall strength (Vanzin et al., 2002), whilst the increased dark 

development of mur1 and mur4, which are deficient in fucose and arabinose biosynthesis, 

respectively, was related to reduced cell wall integrity (Li et al., 2007). Given that various 

phenotypes of ARP2/3 mutants indicate reduced cell wall integrity (see above paragraph), and the 

current only analysis of cell wall composition of ARP2/3 mutants (Dyachok et al., 2008) was not 

comprehensive, it is possible that the increased dark development of arp3 results from reduced 

cell wall integrity through a reduction of other cell wall composites. 
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In summary, sugar signalling and glycolysis were shown to be important for the dark development 

response to LatB. Genetic analysis indicated that low level sugar signalling promoted dark 

development, whilst high level glycolysis and/or sugar signalling was repressive, consistent with 

the developmental effect of low and high levels of sugar on development (Jang et al., 1997). 

Glycolysis and downstream TOR signalling were required for leaf initiation, but the arp3 mutant 

showed greater sensitivity than Col-0 to the glycolysis inhibitor 2-DG. The mechanism by which 

the ARP2/3 complex regulates responses to glucose remains to be determined.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7. The increased dark development of arp3 was found to be dependent on glucose and the 

glycolytic activity of hexokinase (HXK), but independent of FBA2. These findings indicate that 

glycolysis downstream of FBA is (at least partially) dispensable for the increased dark 

development of arp3, but the question remains whether the intermediary steps between HXK and 

FBA, which are important steps for cell wall biosynthesis, are also required for the increased dark 

development of arp3. Further work is required to establish whether the ARP2/3 complex 

promotes the rate of cell wall biosynthesis by inactivating FBA, activating HXK, regulating sugar 

bioavailability, and/or acting on the cell wall biosynthesis pathway to inhibit dark development. 
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Chapter 5 - Phytohormone signalling in dark development 

Sugar and phytohormone signalling pathways interact to regulate plant development. For instance, 

mutants of positive effectors of the ethylene signalling pathway show glucose hypersensitivity 

(Rolland et al., 2006; Yanagisawa et al., 2003). The stability of the ethylene signalling 

transcription factor EIN3 was shown to be negatively regulated by glucose downstream of HXK1 

to promote developmental arrest (Yanagisawa et al., 2003). Sensitivity to high concentrations of 

glucose, including developmental arrest, involves a number of ABA biosynthesis and signalling 

genes (Dekkers 2006; Nambara et al., 2002; Rolland et al., 2006). Several ABA biosynthesis 

genes were shown to be upregulated by glucose (Cheng et al., 2002; Gonzalez-Guzman et al., 

2002). The auxin receptor TIR1 was also shown to be important for glucose-induced 

developmental arrest (Moore et al., 2003). Moreover, the hxk1 mutant showed insensitivity to 

auxin-induced root development, and hypersensitivity to cytokinin induced senescence and shoot 

development from hypocotyl explants (Moore et al., 2003). HXK1 is involved in the glucose-

induced upregulation of auxin biosynthesis (Sairanen et al., 2012). Cytokinin treatment 

antagonised the developmental arrest induced by high concentrations of glucose (Zhou et al. 

1998). Cytokinin and glucose activate a similar, broad, subset of cell cycle regulators (Richard et 

al., 2002). Brassinosteroid responses, potentially upstream of auxin signalling, increased the 

glucose-sensitive emergence of lateral roots in a pathway requiring HXK1 but not RGS1 (Gupta 

et al., 2015). The interactions between sugar and phytohormone signalling are complex and not 

fully understood, but the potential for crosstalk between the high sugar response mutant arp3 and 

hormonal signalling should be investigated. 

Hormones are also involved in regulating dark development, for instance, a number of studies 

have shown that cytokinin promotes leaf initiation and dark development. The amp1 mutant, 

which has increased endogenous cytokinin from elevated cytokinin biosynthesis, produced leaves 

more rapidly in the light and in the dark (Chin-Atkins et al., 1996; Hou et al., 1993). Additionally, 

exogenous cytokinin increased the rate of leaf initiation in dark development assays (Chin-Atkins 

et al., 1996; Chory et al., 1991a; Yoshida et al., 2011). The effect of cytokinin on leaf initiation 

in the dark was shown to require polar auxin transport (Yoshida et al., 2011), and in contrast to 

arp3, the increased dark development induced by cytokinin did not require exogenous sugar 

(Yoshida et al., 2011), and also promoted photomorphogenic development (Chin-Atkins et al., 

1996; Chory et al., 1991a). If the effect of cytokinins on leaf initiation is separable to its effect on 

photomorphogenesis, it could be possible that the ARP2/3 complex represses this part of the 

cytokinin response. 

In contrast to cytokinin, ABA has been shown to repress dark development (Rohde et al., 1999). 

Exogenous ABA repressed leaf initiation in a dark development assay, while treatments with 



72 
 

ABA biosynthesis inhibitors increased dark development (Rohde et al., 1999). Moreover, several 

ABA signalling mutants were shown to have increased dark development (Cheng et al., 2000; 

Rohde et al., 2000; Rohde et al., 1999). Therefore, the ARP2/3 complex could promote or mediate 

ABA signalling to repress leaf initiation in the dark. 

Limited evidence also points towards auxin and ethylene as negative regulators of dark 

development (see chapter 1.4). For instance, mutations that increase the stability or levels of 

Aux/IAAs or ARF2 (negative regulators of auxin signalling) in the presence of auxin increased 

dark development (Kim et al., 1998; Kim et al., 1996; Li et al., 2004a; Nagpal et al., 2000). 

Ethylene treatment potentiated the formation of an apical hook, indicative of reduced dark 

development (Guzman and Ecker, 1990), whilst ethylene insensitivity had the opposite effect, 

indicating increased dark development (Raz and Ecker, 1999). It is difficult to conclude the effect 

of ethylene on dark development since most studies have examined development prior to true leaf 

emergence. Further studies are needed to establish the effect of auxin and ethylene on dark 

development, as well as the effects of other hormones, which are lacking any reports. 

Hormone signalling pathways are also known to interact with actin dynamics. Auxins and 

brassinosteroids promote the formation of F-actin to facilitate growth (Holweg et al., 2004; Lanza 

et al., 2012), and brassinosteroids partially mediate their signalling through actin (Lanza et al., 

2012). Polar auxin transport was affected by inhibitors of actin polymerisation, which reduced 

the cycling of PIN proteins from the plasma membrane (Geldner et al., 2001). ABA treatment has 

been shown to rapidly and reversibly modulate actin dynamics, from a radial to fragmented and 

randomized arrangement in guard cells, accompanied by stomatal closure (Eun et al., 2001). 

Not a lot is known about the interactions between hormone signalling and the ARP2/3 complex 

specifically. Prior to the initial dark development screen (Fig. 5.1), mutants of the ARP2/3 

complex had been shown to have unaltered ethylene precursor-induced reduction of dark grown 

hypocotyl length (Baier et al., 2004), unaltered ABA-induced root elongation response (Baier et 

al., 2004), and insensitivity to ABA-induced stomatal closure (Jiang et al., 2012). Additionally, 

the localisation of ARP3 was shown to be a more persistent marker of cell polarity than the 

localisation of the PIN1 auxin efflux carrier, using a fluorescent reporter assay in tobacco BY-2 

cells (Maisch et al., 2009). Maisch and colleagues hypothesised that the ARP2/3 complex might 

be involved in the upstream regulation of PIN1 polarity. Further information about the 

relationship between the ARP2/3 complex and hormones such as auxin, cytokinin, gibberellic 

acid, or brassinosteroid signalling was lacking, warranting further investigation into the 

relationship between ARP2/3 complex and hormonal signalling. 

To investigate whether phytohormone responses are important for the arp3 dark development 

phenotype, the effects of exogenous phytohormones on arp3 dark development were tested. 
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Ethylene, ABA, cytokinin, auxin, and brassinosteroid were chosen based on their interactions 

with sugar signalling, the roles of ABA in repression of dark development (Rohde et al., 1999), 

and cytokinin in promoting dark development (Chory et al., 1991a; Yoshida et al., 2011), and the 

putative roles of ethylene and auxin as negative regulators of dark development (see chapter 1.4). 

Gibberellic acid was also included as a negative control, as GA is not known to play a role in 

shoot development. Instead, GA is involved in coordinating growth with carbon availability 

(Ribeiro et al., 2012). It is not expected, therefore, that GA would have an effect on dark 

development. 

 

5.1 Effects of exogenous phytohormones on arp3 dark development 

The dark development of Col-0 and arp3 responded similarly to the ethylene precursor 1-

aminocyclopropane-1-carboxylic acid (ACC; Fig. 5.1 A) and abscisic acid (ABA; Fig. 5.1 C), 

which repressed dark development, and also to the cytokinin 6-benzylaminopurine (BAP; Fig. 

5.1 B), which promoted dark development (Fig 5.1 A-C). Importantly to note, the response to 

cytokinin demonstrated that arp3 dark development can be increased, which has implications for 

other mutants or treatments that compare to arp3 levels of dark development. Cytokinin treated 

plants also had altered leaf morphology, with jagged leaf edges, affecting both Col-0 and arp3 

leaves (not shown).  

Col-0 dark development was also repressed by the auxin indole-3-acetic acid (IAA; Fig. 5.1 F) 

above 1µM, but was not significantly affected by gibberellic acid (GA3; Fig. 5.1 D) or brassinolide 

(eBL; Fig. 5.1 E, Suppl. Fig. S.3) by 2way ANOVA, although Col-0 showed a trend towards 

increased dark development between 10-20nM eBL, seen in two independent repeats, which at 

20nM was significant by 1way ANOVA (p=0.03). In contrast, arp3 mutants showed 

hypersensitivity to auxin, gibberellic acid, and brassinosteroid, which reduced dark development 

(Fig. 5.1 D-F). arp3 dark development was reduced to wild-type levels by 20nM eBL or 0.1µM 

IAA, and showed a trend towards decreased dark development at eBL concentrations as low as 

0.1nM (Suppl. Fig. S.3). This could suggest that arp3 mutants are deficient in or suppress aspects 

of auxin, gibberellic acid or brassinosteroid signalling. 

The phenotype of the auxin receptor mutant tir1 (Fig. 5.1 F) indicated that disruption of auxin 

signalling at the level of perception does not cause increased dark development. Because of the 

considerable cross-talk between the brassinosteroid and auxin signalling pathways, and the 

availability of genetic resources in our lab, further experiments focussed on the roles of auxin and 

brassinosteroid in arp3 dark development, although the potential roles of gibberellic acid 

signalling are discussed.  
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Fig. 5.1. Effects of phytohormones on arp3 dark development. (A) The ethylene precursor ACC 

had a similar inhibitory effect on the dark development of Col-0 and arp3. There was no 

significant interaction between the variation caused by ACC treatment and genotype, when 

compared by 2way ANOVA. (B) Treatment with the cytokinin 6-benzylaminopurine (BAP) had 

a similar promotory effect on the dark development of Col-0 and arp3. arp3 showed 

hypersensitivity to 1µM BAP but otherwise development increased proportionally to Col-0, as 

confirmed by 2way ANOVA. (C) ABA had a similar inhibitory effect on the dark development 

of Col-0 and arp3. As ABA is an inhibitor of germination, seeds were germinated without the 

hormone for 5 days before dark sterile transfer to plates containing ABA or mock, as indicated. 

(D) GA3 specifically reduced the dark development of arp3. (E) The synthetic brassinosteroid 

epibrassinolide (eBL) reduced arp3 dark development to wild-type levels. arp3 mutants had 

significantly reduced dark development in response to 10nM eBL. (F) 0.1µM IAA reduced arp3 

development to wild-type levels, indicating that the dark development of arp3 is hypersensitive 
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to auxin. The auxin signalling mutant tir1 was insensitive to IAA across the range of 

concentrations tested, indicating that the reduction in Col-0 dark development caused by 1-10µM 

IAA was an effect of auxin signalling. Statistical significance was calculated by 2way ANOVA 

and Tukey multiple comparisons test. Asterisks above individual bars denote statistical 

significance compared to the relevant mock treatment, whilst brackets indicate statistical 

significance between genotypes. (A) n >13, (B) n >49, 0.1µM n > 21, (C) n >41, (D) n >13, (E) 

n >24, (F) n >22. 

 

5.2 Effects of endogenous brassinosteroid and auxin on LatB-induced dark development 

To test whether altering endogenous auxin or brassinosteroid levels or signalling influenced dark 

development and LatB responses, a range of biosynthesis, signalling and catabolism mutants were 

screened for dark development phenotypes in the presence and absence of LatB. Dark 

development was affected by endogenous brassinosteroid levels, but not brassinosteroid 

signalling mediated by the BIN2/BIL1/BIL2 repressors (Fig. 5.2). The det2 mutant, deficient in 

brassinosteroid biosynthesis (Fujioka et al., 1997), had decreased dark development (p=0.02), 

which was complemented by LatB. The sob7bas1 double mutant, deficient in brassinosteroid 

catabolism and shown to have increased endogenous brassinosteroids (Turk et al., 2005), had 

increased dark development (mock p=0.01; LatB p<0.001), similarly to treatment with 20nM eBL 

(Fig. 5.1 E). Furthermore, LatB-treated sob7bas1 showed the same dark development as LatB-

treated arp3, indicating that the increased endogenous brassinosteroids and the arp3 mutation 

affect a common signalling pathway. Consistent with the role of auxin in repressing dark 

development (Fig. 5.1 F), the auxin biosynthesis mutant taa1tar1 (Stepanova et al., 2008) had 

increased dark development compared to Col-0, which was statistically significant between LatB 

treated Col-0 and taa1tar1 (p=0.04). However, the auxin catabolism mutant dao1 (Porco et al., 

2016) showed a wild-type response, although it had noticeably increased lateral root length as 

previously described (Porco et al., 2016; not shown). Surprisingly, given the auxin sensitivity of 

arp3 (Fig. 5.1 F), the auxin signalling mutant tir1 (Ruegger et al., 1998) did not affect the dark 

development of mock or LatB treated plants (Fig 5.1 F, 5.2).  

 

5.3 Effect of tir1 on arp3 dark development 

To confirm that TIR1 is not required for the increased dark development and auxin responsiveness 

of arp3 mutants, an arp3tir1 double mutant was made (Suppl. Fig. S.2B). In a dark development 

assay, mock-treated tir1 had slightly reduced dark development (p=0.04), but the dark 

development of arp3tir1 was the same as arp3 (Fig. 5.3). Moreover, the arp3tir1 double mutant 

showed the same level of auxin sensitivity as arp3, and had increased auxin sensitivity compared 

to the tir1 single mutant (p=0.03), which was insensitive to auxin. The auxin sensitivity of arp3 

is therefore not TIR1-dependent. 
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Fig. 5.2. Dark development of brassinosteroid and auxin-related mutants. det2 is deficient in 

brassinosteroid biosynthesis (Fujioka et al., 1997), bin2bil1bil2 has increased brassinosteroid 

signalling (Yan et al., 2009), sob7bas1 is deficient in brassinosteroid catabolism (Turk et al., 

2005), taa1tar1 is deficient in auxin biosynthesis (Stepanova et al., 2008), tir1 is deficient in 

auxin signalling (Ruegger et al., 1998), dao1 is deficient in auxin catabolism (Porco et al., 2016). 

Statistical significance was calculated by 1way ANOVA and Tukey multiple comparisons test on 

mock or LatB-treated plants. Asterisks indicate statistically significant differences to the 

respective Col-0 control. Germination was checked under a safe light 3dps; n >31, det2 n >5 (but 

repeated with similar results), taa1tar1 n >21. 

 

 

 

 

 

 

 

 

 

Fig. 5.3. The increased dark development and auxin sensitivity of arp3 is independent of TIR1-

mediated auxin signalling. tir1 did not affect arp3 development or sensitivity to IAA. Mutation 

of arp3 even caused a reduction in tir1 development in response to IAA, indicating that the IAA-

sensitivity of arp3 is independent of TIR1-mediated auxin signalling. Statistical significance was 

calculated by 2way ANOVA and Tukey multiple comparisons test; n >33.
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5.4 Effects of polar auxin transport inhibitors on arp3 dark development 

Auxin and brassinosteroid can affect and act via polar auxin transport (Bao et al., 2004; Nick et 

al., 2009). To test whether arp3 increased dark development by modulating polar auxin transport, 

the effects of two polar auxin transport inhibitors, 1-naphthylphthalamic acid (NPA) and 2,3,5-

triiodobenzoic acid (TIBA), on dark development were analysed. NPA and TIBA block auxin 

efflux by different modes of action affecting the actin cytoskeleton, vesicle trafficking, and auxin 

transport, and causing auxin to accumulate within cells (Dhonukshe et al., 2008; Maisch and Nick, 

2007; Zhu et al., 2016a).  

Polar auxin transport is primarily mediated by the asymmetrically localised PIN polar auxin efflux 

carriers and AUX1/LAX auxin influx carriers (Swarup and Peret, 2012). In the SAM, AUX1 and 

LAX1 are the primary auxin importers (Bainbridge et al., 2008), and PIN1 is the only expressed 

PIN protein (Guenot et al., 2012). In wild-type vegetative and floral SAMs, prolonged darkness 

stimulates the endocytosis and complete removal of PIN1 from the plasma membrane, causing 

PIN1 to localise to endosomal compartments, and inhibiting intercellular polar auxin transport 

(Lauxmann et al., 2016; Sassi et al., 2013; Yoshida et al., 2011). Consistent with the 

internalisation (and inactivity) of PINs in the dark, Col-0 dark development was insensitive to 

inhibitors of polar auxin transport (10µM NPA/10µM TIBA; Fig. 5.4) although dark development 

was reduced by 100µM NPA. In contrast, arp3 development showed hypersensitivity to inhibitors 

of PIN-mediated auxin efflux (Fig. 5.4) indicating that PIN-mediated auxin efflux is functional 

in dark grown arp3 mutants, and moreover, is important for the increased dark development of 

arp3. 100µM NPA or 25µM TIBA reduced arp3 dark development to wild-type levels. 

 

5.5 Effects of different auxins on arp3 dark development 

To dissect the roles of AUX1/LAX auxin influx and PIN auxin efflux in arp3 dark development, 

the effect of different auxins, which differentially utilise the influx and efflux transporters, was 

examined. IAA and 2,4-D, which require AUX1/LAX proteins for cell entry, both reduced the 

dark development of arp3 to wild-type levels (Fig. 5.5 A, B), whilst only a high concentration of 

IAA (100µM) also inhibited Col-0 dark development. By contrast, NAA, which diffuses into cells 

independently of AUX1/LAX import proteins, did not affect arp3 or wild-type dark development 

(Fig. 5.5 C). NAA was active, however, as antigravitropic growth was disrupted (Fig. 5.5 D).  



78 
 

C
o
l-
0

a
rp

3

0

2

4

6

8

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

M ock

0.01µ M

0.1µ M

1µM

10µ M

25µ M

0

2

3

4

5

6

n .s .

* * *

* * *

T IB A

 

 

 

 

 

 

 

Fig. 5.4. arp3 showed hypersensitivity to the polar auxin transport inhibitors NPA and TIBA. (A) 

10µM NPA had no effect on Col-0 dark development, but significantly reduced arp3 dark 

development. (B) TIBA reduced arp3 dark development to wild-type level, but had no effect on 

Col-0 dark development. In contrast to Col-0, arp3 showed a trend of increased development with 

concentrations of TIBA <1µM. 25µM TIBA or 100µM NPA reduced arp3 dark development to 

wild-type level. Statistical significance was calculated by 2way ANOVA and Tukey multiple 

comparisons test. (A) n >32, (B) n >37. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5. The auxins IAA and 2,4-D reduced arp3 dark development to wild-type level (A, B). 

NAA had no effect on dark development (C), although NAA destabilized antigravitropic growth 

(D). White arrows indicate plants not showing upright / antigravitropic growth. Statistical 

significance was calculated by 2way ANOVA and Tukey multiple comparisons test. (A) n >37, 

(B) n >47, (C, D) n >36. 

 Mock           1µM NAA 

C       D 

A       B 

A       B 

C
o
l-
0

a
rp

3

0

2

4

6

8

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

M ock

10µ M

0

2

3

4

5

6

* *

* * *
* * *

100µ M

N P A

C
o
l-
0

a
rp

3

0

2

4

6

8

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

M ock

0.01µ M

0.1µ M

1µM

0

2

3

4

5

6

n .s .

N A A

n .s .

C
o
l-
0

a
rp

3

0

2

4

6

8

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

M ock

0.1µ M

1µM

* * *

* * *
* *

0

2

3

4

5

6 IA A

C
o
l-
0

a
rp

3

0

2

4

6

8

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

M ock

0.01µ M

0.1µ M

1µM

0

2

3

4

5

6

* * *

* * *

2 ,4 -D

n .s .

C
o
l-
0

a
rp

3

0 %

5 0 %

1 0 0 %

P
la

n
ts

 g
ro

w
in

g
 u

p
ri

g
h

t

M ock

1µM

N A A



79 
 

5.6 Effects of polar auxin transport mutants on arp3 dark development 

To test the hypothesis that PIN1 is required for the dark development of arp3 mutants, and not 

AUX1/LAX proteins, the dark development of pin1 and an aux1lax1lax2lax3 quadruple mutant 

was tested. The homozygous pin1 allele used was infertile, so a segregating line was used (pin1seg); 

specifically, pin1seg seed were collected from a plant that was confirmed to be heterozygous for 

the pin1 allele by PCR (Suppl. Fig. S.2). The distribution of developmental scores of the mock-

treated pin1seg population was not significantly different to the wild-type developmental 

distribution (p=0.84 by χ2 analysis; Suppl. Fig. S.4 C). However, the pin1seg population segregated 

phenotypically in the presence of 100nM LatB, with bimodally distributed developmental scores 

consistent with a 3:1 ratio by χ2 analysis (Suppl. Fig. S.4 C, E). To calculate the 3:1 ratio, the 

seventyfive percent of plants which best fit the wild-type developmental distribution were 

separated from the remaining twentyfive percent. The distributions of these observed values were 

compared to the distributions of LatB and mock treated Col-0 (expected values) by χ2 analysis 

and were found to be not significantly different from each other (p>0.19; Suppl. Fig. S.4 C, E). 

Therefore, it became apparent that the pin1 mutant was completely insensitive to the dark 

development-promoting effects of 100nM LatB (Fig. 5.6 A). By contrast, the dark development 

of the aux1lax1lax2lax3 quadruple mutant resembled wild type, and did not affect the dark 

development response to LatB (Fig. 5.6 A). The mock-treated pin1 line also showed wild-type 

development (Fig. 5.6 A), indicating that PIN1 is not required for the dark development of wild-

type seedlings.  

To test whether PIN1 was required for the increased dark development of arp3, the pin1 allele 

was crossed into the arp3 background. arp3pin1 double mutants were also infertile, so an arp3 

line segregating for pin1 was used (arp3pin1seg). Similarly, arp3pin1seg seed were obtained from 

plants that were phenotypically homozygous for arp3, and heterozygous for pin1 by PCR (Suppl. 

Fig. S.2). The dark development of the segregating pin1 line was not significantly different to 

wild type (p=0.11 by χ2 analysis; Suppl. Fig. S.4 B, D), whilst the arp3pin1seg population showed 

a 3:1 phenotypic segregation, supported by χ2 analysis of difference (p>0.34; Suppl. Fig. S.4 D, 

F). pin1 completely suppressed the increased dark development of arp3, but did not affect Col-0 

dark development (Fig. 5.6 B), indicating that PIN1 is essential for the increased dark 

development of arp3 mutants, and supporting the hypothesis that PIN1 is not required in the dark 

developed wild type. 

 

5.7 Role of PIN1 expression and phosphorylation in arp3 dark development 

The targeting of PIN1 to the plasma membrane is directed by phosphorylation of residues on its 

hydrophilic loop at the M3 site, by kinases including PID (Ki et al., 2016). Several 
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Fig. 5.6. The increased dark development of arp3 requires PIN1. Homozygous pin1 and arp3pin1 

were identified by phenotypic segregation (Suppl. Fig. S.4). Statistical significance was 

calculated by 2way ANOVA and Tukey multiple comparisons test. (A) n >27, (B) n >23. 

 

 

phosphomutants of PIN1 that are unable to be phosphorylated at these sites have reduced 

apical/basal plasma membrane targeting (Ki et al., 2016). To test whether PIN phosphorylation is 

required for increased dark development, pid, pin1 and pin1 mutants complemented with wild-

type pPIN1::PIN1 or PIN1 phosphomutants pPIN1::PIN13M1A or pPIN1::PIN1M3A, which have 

three and five alanine-substituted phosphorylatable residues sites at the M3 site, respectively, 

were assayed with and without LatB. Each construct complemented the pin1 mutant phenotype, 

and had wild-type dark development responses to LatB, as did the pid mutant (Fig. 5.7 A). 

Different lines carrying the same transgene had slightly different average developmental scores, 

indicating that dark development is sensitive to subtle changes in PIN1 expression.  

To test whether PIN1 overexpression increased dark development, arp3 was crossed with 

35S::PIN1, and dark development was assayed. Additionally, arp3 was crossed with 35S::PID to 

indicate whether potential increases in PIN1 phosphorylation affected dark development. 

Surprisingly, 35S::PIN1 did not increase wild-type dark development, and partially suppressed 

the increased dark development of arp3 (p=0.002), whilst 35S::PID did not affect dark 

development (Fig. 5.7 B). 

Interestingly, when an arp3pid double mutant was made, the arp3 mutation increased the severity 

of the pid mutant, such that it resembled a strong pin1 mutant, producing very few flowers, and 

in many cases, no seed, although three seeds were eventually produced by one plant, indicating 

that ARP2/3 and PID interact genetically in the light to promote organ initiation from the floral 

SAM (data not shown). 

 A              B 

C
o
l-
0

p
in

1

a
rp

3

a
rp

3
p
in

1

0

2

4

6

8

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

0

2

3

4

5

6

* * *

C
o
l-
0

a
rp

3

a
u
x
1
la

x
1
la

x
2
la

x
3

p
in

1

0

2

4

6

8

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

M ock

1 00nM  La tB

0

2

3

4

5

6

* * *

* * *

n .s .



81 
 

 

 

 

 

 

 

 

 

 

Fig. 5.7. The role of PIN1 phosphorylation and expression in dark development. Statistical 

significance was calculated by 2way ANOVA and Tukey multiple comparisons test. (A) n > 40, 

pPIN1::PIN1M3A L3 n =12, (B) n >17. 

 

 

5.8 Role of the ARP2/3 complex in brassinosteroid signalling 

The data thus far suggest that polar auxin transport through PIN1 mediates its increased dark 

development, perhaps by stabilization of PIN1 plasma membrane localisation. Brassinosteroid 

also promotes polar auxin transport (Bao et al., 2004; Li et al., 2005), and both polar auxin 

transport and PIN1 expression are reduced in brassinosteroid biosynthesis mutants (Li et al., 2005). 

The results shown in Fig. 5.2 indicate that brassinosteroids promote dark development in the same 

pathway as arp3, and LatB treatment rescued the decreased dark development of the 

brassinosteroid biosynthesis mutant det2. Therefore, brassinosteroids might increase dark 

development through polar auxin transport. det2 has strong growth and developmental 

phenotypes in the light, although reduced leaf initiation is not one of them (Chory et al., 1991b). 

Since arp3 might increase polar auxin transport, arp3 was crossed with det2 to test whether any 

det2 phenotypes were mediated by the ARP2/3 complex. Strikingly, arp3 suppressed many of the 

developmental phenotypes of det2, including reduced petiole length, altered leaf morphology, 

delayed flowering time, decreased silique length, and delayed senescence, but did not complement 

the reduced leaf size of det2 (Fig. 5.8.). This suggests that much of brassinosteroid signalling acts 

by downregulating the action of the ARP2/3 complex to promote polar auxin transport.  

A              B 

C
o
l-
0

a
rp

3
p
id

p
in

1

p
P

IN
1
::
P

IN
1
 L

1

p
P

IN
1
::
P

IN
1
 L

2

p
P

IN
1
::
P

IN
1
3
m

1
A

 L
2

p
P

IN
1
::
P

IN
1
3
m

1
A

 L
5

p
P

IN
1
::
P

IN
1
M

3
A

 L
3

0

2

4

6

8

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

M ock

1 00nM  La tB

0

2

3

4

5

6

* * *

in p in1

* * *

C
o
l-
0

a
rp

3

3
5
S

::
P

IN
1

a
rp

3
 3

5
S

::
P

IN
1

3
5
S

::
P

ID

a
rp

3
 3

5
S

::
P

ID

0

2

4

6

8

D
e

v
e

lo
p

m
e

n
ta

l 
S

c
o

re

T
ru

e
 L

e
a

v
e

s

0

2

3

4

5

6

* *
* * *

* * *

* *



82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8. arp3 partially complements det2 developmental phenotypes. The brassinosteroid 

biosynthetic mutant det2 has reduced growth and development in the light (Chory et al., 1991b). 

(A, B) arp3 partially complemented the delayed flowering of det2 as well as the decreased petiole 

length, inflorescence height, silique length, altered leaf morphology, and delayed senescence. (C) 

The arp3det2 double mutant had more erect leaves compared to Col-0, det2, or arp3 (arp3 shown 

for comparison). 

 

Col-0                         arp3                     det2                  arp3det2 

 arp3det2                                arp3 
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Col-0                    arp3                       det2                  arp3det2 
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5.9 Regulation of the ARP2/3 complex by brassinosteroids 

To test whether the ARP2/3 complex is repressed by brassinosteroid signalling, published 

proteomic and transcriptomic data were analysed. A recent study reported the changes in 

phosphorylation of the rice proteome following brassinolide treatment (Hou et al., 2017). 

Analysis of this dataset revealed that several orthologs of ARP2/3 activating proteins are 

differentially phosphorylated in response to eBL at early and late timepoints (Fig 5.9 A). 

Treatment with 10µM eBL significantly reduced the phosphorylation of OsSCAR2 

(Os01g11040), OsABIL2, (Os01g13530) and OsNAP1 (Os08g43130) after three hours, similar 

to the response of the positive control OsBZR1 (Os07g39220). Sequence alignment of OsSCAR2 

and OsABIL2 to the orthologs in Arabidopsis revealed that the phosphorylated residues in rice 

were not conserved in Arabidopsis (not shown). By contrast, the two phosphorylated serines of 

NAP1 were conserved (Fig 5.9 B). S1316 and S1353 of OsNAP1 correspond to S1385 and S1416 

of AtNAP1, respectively. According to the Arabidopsis protein phosphorylation database 

PhosPhAt (Durek et al., 2010), S1385 and S1416 of AtNAP1 are predicted phosphorylation sites 

within a phosphorylation hotspot. Furthermore, S1385 was demonstrated to be phosphorylated in 

Arabidopsis (Wang et al., 2013), but upstream regulators of AtNAP1 phosphorylation remain to 

be determined. These results indicate that brassinosteroid signalling represses ARP2/3 activity by 

reducing the phosphorylation of ARP2/3 activating factors. 

 

Analysis of ChIP and transcriptome datasets revealed that ROP11, CVY1, SCAR4, ABIL1, and 

ARPC5 are high stringency BZR1 targets, while ROP5, ROP10, and ARPC2A are potential BZR1 

targets (Sun et al., 2010). ABIL1 expression was downregulated following BL treatment 

(Nemhauser et al., 2006; Nemhauser et al., 2004); ROP5, ROP10, ARPC2A and ARPC5 were 

downregulated by the constitutively active BZR1 mutant bzr1-1D, and upregulated in the BRI1 

mutant bri1-116 (Sun et al., 2010), indicating that these genes are repressed by BZR1. By contrast, 

expression of the putative ARP2/3 regulator CVY1 was upregulated in bzr1-1D and 

downregulated in bri1-116, indicating that BZR1 promotes CVY1 expression. The expression of 

ROP11 and SCAR4 was not affected by BL treatment or the bzr1-1D and bri1-116 mutations. 

Therefore, brassinosteroid signalling might repress the activity of the ARP2/3 complex by 

transcriptional repression of upstream activators and transcriptional repression of the ARP2/3 

complex itself. 
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Fig. 5.9. (A) Phosphorylation intensities of proteins in two week old rice seedlings following 

treatment with eBL (Hou et al., 2017). Average intensity and standard error of three biological 

replicates are shown for proteins of interest from a large phosphorylatome dataset. Proteins 

corresponding to the rice ARP2/3 and WAVE complexes were selected for study, and the positive 

control OsBZR1 is shown for comparison. All known ARP2/3 and WAVE complex genes that 

met the stastistical criteria (Hou et al., 2017) are shown. (B) Sequence alignment of OsNAP1 and 

AtNAP1 was performed in Clustal ω (Goujon et al., 2010). The two differentially phosphorylated 

serine residues in the OsNAP1 C-terminus are conserved in Arabidopsis. Blue boxes indicate 

differentially phosphorylated serine residues, * (asterisk) indicates conserved residue, : (colon) 

indicates conservation of strongly similar properties, . (period) indicates conservation of weakly 

similar properties. Biological replicates n = 3. 

 

 

5.10 Discussion 

5.10.1 Responses to ethylene, ABA and cytokinin 

The dark development of the arp3 mutant showed wild-type responses to exogenous ABA and 

ethylene precursor (Fig. 5.1 A, C), consistent with a report showing that arp3 and arpc2a mutants 

have wild-type responses to ethylene repression of hypocotyl elongation and abscisic acid 
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repression of root growth (Baier et al., 2004). The arp3 mutant also had a wild-type dark 

development response to cytokinin (Fig. 5.1 B), indicating that the increased dark development 

of arp3 does not result from increased cytokinin signalling.  

 

5.10.2 Interactions between ARP2/3 and brassinosteroid signalling 

Exogenous brassinosteroid inhibited the dark development of the arp3 mutant, but up to 20nM 

eBL slightly increased Col-0 dark development (Fig. 5.1 E). Consistently, the sob7bas1 double 

mutant, which has increased endogenous brassinosteroids (Turk et al., 2005), also had increased 

dark development, while the brassinosteroid biosynthesis mutant det2 had reduced dark 

development (Fig. 5.2). Interestingly, the bin2bil1bil2 triple mutant did not have increased dark 

development, indicating that these repressors of brassinosteroid signalling are not involved in 

regulating dark development. However, additional kinases are able to repress brassinosteroid 

signalling through phosphorylation in the bin2bil1bil2 background (Yan et al., 2009), so it is still 

possible that brassinosteroids promote dark development through the canonical brassinosteroid 

signalling pathway.  

A similar relationship between brassinosteroid levels and signalling with polar auxin transport 

and PIN1 expression has been demonstrated (Li et al., 2005). Li and colleagues measured 

basipetal and acropetal polar auxin transport in roots, finding that polar auxin transport was 

decreased in the brassinosteroid biosynthesis mutant dim1, and increased by eBL treatment, but 

only slightly reduced in the bri1 brassinosteroid receptor mutant (Li et al., 2005). Moreover, PIN1 

expression in shoots was reduced in dim1, det2, and bri1, and increased by eBL treatment (Li et 

al., 2005). These observations are consistent with the hypothesis that brassinosteroids regulate 

dark development through modulating polar auxin transport. Brassinosteroid signalling is not 

generally associated with regulating leaf initiation, rather, ectopic brassinosteroid signalling in 

rice occasionally arrested shoot meristem activity (Tsuda et al., 2014). It is possible that, like arp3, 

the effects of brassinosteroids on leaf initiation rate are only evident in the dark. 

Brassinosteroids and ARP2/3 regulate dark development in a common pathway (Fig. 5.10). The 

dark development of LatB-treated sob7bas1 was not significantly different to LatB-treated arp3. 

Moreover, LatB and arp3 complemented a variety of det2 developmental phenotypes, including 

altered leaf morphology, reduced petiole elongation, delayed flowering and delayed senescence 

(Fig. 5.2, 5.8), indicating that the repression of the ARP2/3 complex is important for 

brassinosteroid responses. Examination of phosphorylatome and transcriptome datasets identified 

a variety of mechanisms in which brassinosteroids and brassinosteroid signalling potentially 

repress the ARP2/3 complex (Fig. 5.9, and chapter 5.9). Interestingly, concentrations of eBL 

greater than 20nM did not promote dark development (Fig. 5.1 E), and 20nM eBL or increased 
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endogenous brassinosteroids in sob7bas1 were not sufficient to increase dark development to the 

levels achieved by the arp3 mutant (Fig. 5.1 E, 5.2), suggesting that brassinosteroids only cause 

partial repression of the ARP2/3 complex.  

The arp3det2 mutant had a semi-dwarf phenotype with erect leaves (Fig 5.8 C), recapitulating the 

phenotype of quadruple and quintuple BSK mutants (Sreeramulu et al., 2013). This phenotype is 

unusual among brassinosteroid related mutants in Arabidopsis (Sreeramulu et al., 2013), although 

more common in rice, where erect leaves are a feature of weak OsBRI1 alleles and several 

brassinosteroid biosynthesis mutants (Hong et al., 2002; Hong et al., 2003; Sakamoto et al., 2006; 

Yamamuro et al., 2000). However, it should be noted that rice lacks core components of the 

Arabidopsis brassinosteroid signalling pathway, including BSKs, BSU and PP2A (Zhang et al., 

2014a). The common phenotype between the quadruple BSK mutant and arp3det2, suggests that 

both are deficient in the same aspects of brassinosteroid signalling, apart from those downstream 

of ARP2/3 repression. The BSK quad showed reduced brassinosteroid sensitivity (Sreeramulu et 

al., 2013), and det2 and arp3 showed brassinosteroid hypersensitivity (Fujioka et al., 1997; Fig. 

5.1 E; Suppl. Fig. S.3). Altogether, these observations suggest that brassinosteroid signalling can 

be divided into two major pathways; the first, which is positively regulated by BSK3/4/6/7/8, 

primarily regulates growth, in particular, rosette size and hypocotyl elongation (Sreeramulu et al., 

2013), and the second, which is negatively regulated by the ARP2/3 complex, primarily regulates 

development, including the rate of leaf initiation, leaf morphology, flowering time, senescence, 

and seed production (Fig. 5.2, 5.8). It would be of great interest to identify the components of 

brassinosteroid signalling that negatively regulate the ARP2/3 complex. 

Brassinosteroids are known to regulate cytoskeletal dynamics, moreover, brassinosteroid and 

auxin have similar effects on F-actin configuration, which is important for aspects of their 

signalling (Lanza et al., 2012). Both high concentrations of brassinolide (200nM eBL for 2 hours) 

and low and high concentrations of auxin (100nM NAA for 24 hours; 5µM NAA/IAA/2,4-D for 

2 hours) have been reported to promote ROP2 expression and/or ROP2 activity, which stabilized 

the plasma membrane localisation of PIN1 (Li et al., 2005; Nagawa et al., 2012; Paciorek et al., 

2005), which is inconsistent with the proposed role of ROP2 as an upstream activator of the 

ARP2/3 complex (Yanagisawa et al., 2013), if the ARP2/3 complex is required for endocytosis. 

The complementation of det2 by arp3 (Fig. 5.8) indicates that arp3 shows constitutive 

brassinosteroid responses, albeit not all brassinosteroid responses, as arp3 did not complement 

certain phenotypes such as leaf size (Fig. 5.8). A gain-of-function allele of ACTIN2 (act2-5), 

which has a point mutation leading to the amino acid substitution R179C, also showed constitutive 

brassinosteroid responses, including wavy roots (Lanza et al., 2012), which is not a phenotype of 

arp3. The act2-5 mutation also eliminated the phosphorylation (and inactivation) of the 
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brassinosteroid-regulated transcription factor BZR1 (Lanza et al., 2012). It would be interesting 

to investigate whether the phosphorylation of BZR1 is also affected in arp3. 

 

 

 

 

 

 

 

 

 

Fig. 5.10. Model of the interactions between the ARP2/3 complex and hormone signalling to 

regulate BR-dependent development, and leaf initiation in the dark. Brassinosteroid signalling 

increases leaf initiation by repression of ARP2/3 complex activity through dephosphorylation (dp) 

of WAVE, and repression of transcription (tc).  

  

5.10.3 Interactions between ARP2/3 and auxin signalling 

Brassinosteroid and auxin signalling is also mediated by polar auxin transport (Friml, 2003; Li et 

al., 2005). To dissect the role of auxin transporters in arp3 dark development, Col-0 and arp3 

were treated with the auxins NAA, IAA and 2,4-D and inhibitors of polar auxin efflux NPA and 

TIBA. Col-0 was insensitive to all treatments except for concentrations of IAA above 1µM (Fig. 

5.5 A), and 100µM NPA (Fig. 5.4 A). In contrast, the arp3 mutant was hypersensitive to two 

inhibitors of polar auxin efflux (Fig. 5.4), and responded to the auxins IAA, 2,4-D, but not NAA 

(Fig. 5.5). Although the concentration of NAA used was sufficient to disturb gravitropism (Fig. 

5.5 D), it is possible that higher concentrations are required to affect dark development. 

To explain the responses to different auxins, it was assumed that NAA and IAA require PIN 

proteins for efflux, whereas 2,4-D is unable to be effluxed via PIN proteins, supported by 

measurements in tobacco cell suspensions (Delbarre et al., 1996). Supposing AUX1/LAX import 

was functional, 2,4-D, IAA and NAA would all be able to enter cells. In this scenario, all three 

auxins would accumulate in the absence of PIN auxin efflux, otherwise IAA and NAA would be 

effluxed if PIN auxin efflux was also functional. Therefore, if AUX1/LAX import was functional, 

it would be expected that the three auxins have a common inhibitory effect on arp3 dark 
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development, or that IAA and NAA, but not 2,4-D would have a common effect. Since this was 

not the case phenotypically (Fig. 5.5), it can be assumed that AUX1/LAX proteins are not 

functional in the dark-grown arp3 mutant. In this scenario, where AUX1/LAX influx is inactive, 

NAA, but not IAA or 2,4-D, is able to enter cells efficiently. Therefore, IAA and 2,4-D have a 

common effect, and NAA has a different effect (Fig. 5.11), as seen phenotypically (Fig. 5.5). This 

suggests that the increased dark development of arp3 mutants is mediated either by increased 

auxin biosynthesis, which might not require AUX1/LAX influx proteins, or by increased PIN 

auxin efflux. This analysis, together with the increased dark development of the taa1tar1 auxin 

biosynthesis mutant (Fig. 5.2) and the inhibition of dark development by inhibitors of polar auxin 

transport (Fig. 5.4) indicate that PIN1-mediated polar auxin efflux is mediating the increased dark 

development of arp3. Therefore, the dark development of a pin1 mutant was tested. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11. Model of the flow of auxins in Col-0 and arp3 based on differential phenotypic 

responses to exogenously supplied auxins in the dark. In Col-0, AUX1/LAX and PIN are 

internalized; exogenous IAA, 2,4-D and NAA accumulate outside the cell, and endogenous IAA 

(eIAA) and NAA also accumulate inside the cell. In the arp3 mutant, polar plasma membrane 

localisation of PIN proteins facilitates the directional transport of NAA (and eIAA), but 

exogenous IAA and 2,4-D accumulate outside the cell. 

 

Remarkably, pin1 completely suppressed the dark development of arp3 (Fig. 5.6), while a 

quadruple mutant of the auxin influx carriers AUX1/LAX1/2/3 had no significant effect on dark 

development (Fig. 5.6 A). In the wild-type SAM, PIN1 is internalised in prolonged darkness 

(Lauxmann et al., 2016; Sassi et al., 2013), and in line with this, the pin1 mutation had no effect 

on dark development (Fig. 5.6), indicating that PIN1-dependent polar auxin transport is not 
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functional in wild-type dark grown shoot apices. In contrast, polar auxin transport was required 

for the increased shoot apical meristem activity of arp3 in the dark, suggesting that the ARP2/3 

complex represses PIN1 activity, perhaps by mediating the internalisation of PIN1 in response to 

prolonged darkness, and maybe also in response to brassinosteroid deficiency.  

PIN1 expression in the SAM directs the efflux of auxin towards the site of incipient leaf primordia, 

forming a local auxin maximum (Benkova et al., 2003; Reinhardt et al., 2003). Localised auxin 

maxima are important for directing and initiating organ development from the floral meristem, 

although, disruption of PIN1 also occasionally leads to arrested organ initiation from the 

vegetative meristem (Guenot et al., 2012). Organ initiation defects from the pin1 vegetative SAM 

were enhanced in a pin1aux1lax1 triple mutant (Guenot et al., 2012), and an auxin-deficient 

yuc1yuc4pin1 triple mutant, which failed to produce true leaves altogether (Cheng et al., 2007). 

In the dark development assay, arrested meristem phenotypes were scored 2, and would be 

expected to significantly reduce the average developmental score compared to Col-0 if they were 

the main cause of reduced leaf initiation. However, the majority of pin1 and arp3pin1 mutants 

initiated two true leaves, resulting in wild type-like development. To my knowledge, only one 

other study has shown that PIN1 promotes the rate of leaf initiation from the vegetative SAM of 

Arabidopsis (Guenot et al., 2012). PIN1-directed auxin gradients in the vegetative SAM are 

mainly associated with the regulation of phyllotaxis (Deb et al., 2015; Reinhardt et al., 2003). 

However, in maize and tomato, the polar auxin transport inhibitor NPA blocked leaf initiation 

from the vegetative SAM (Reinhardt et al., 2000; Scanlon, 2003), suggesting that PIN-mediated 

polar auxin transport is more important for the development of these significant crop plants. 

PIN1-mediated polar auxin transport is important for the basipetal transport of auxin from the 

shoot to the root to promote root growth in the light (Sassi et al., 2013). Consequently, dark grown 

plants and light-grown pin1 mutants have reduced primary root length (Sassi et al., 2013). 

Consistent with the increased activity of PIN1 in the arp3 mutant, ARP2/3 mutants, including 

arp3, have increased root length in the dark (Dyachok et al., 2011). Interestingly, ARP2/3 mutants 

have decreased root length in the light (Dyachok et al., 2011), indicating that PIN1 activity, 

though increased in the dark, might be compromised in the light. 

The ARP2/3 complex might directly regulate the internalisation of PIN1 in response to prolonged 

darkness. The hypothesis that ARP2/3 might act upstream of PIN auxin efflux carriers was 

proposed by Maisch and colleagues in 2009, who observed that ARP3 was polarly localised at 

the plasma membrane at mutually exclusive sites to PIN1 accumulation, and that ARP3 polarity 

was more persistent than PIN1 polarity during cell division (Maisch et al., 2009). Previously, it 

had been shown that LatB inhibited the endocytosis of PIN1 induced by brefeldin A (BFA), and 

also inhibited the relocalisation of PIN1 to the plasma membrane following washout of BFA, and 
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the same effect was observed using the actin polymerisation inhibitor cytochalasin D (Geldner et 

al., 2001). PIN1-GFP colocalises with clathrin (Dhonukshe et al., 2007), and specific inhibition 

of clathrin-mediated endocytosis greatly reduced the internalisation of PIN1-GFP, suppressing 

the effect of dominant negative ROP2 which promoted PIN1 internalisation (Nagawa et al., 2012). 

Studies in other organisms have demonstrated that the ARP2/3 complex is a facilitator of clathrin-

mediated endocytosis (Martin et al., 2005; Moreau et al., 1997; Moreau et al., 1996) (chapter 

1.5.4). Therefore, it is highly conceivable that the arp3 mutation directly stabilizes the plasma 

membrane localisation of PIN1 in the SAM by inhibiting PIN1 endocytosis, promoting the 

formation of local auxin maxima required for leaf initiation in the dark. 

Recently, a study showed that the translocation of PIN2, PIN3 and PIN7 to and from the plasma 

membrane was decelerated in an arp3 mutant (Zou et al., 2016). arp3 affected the rate of PIN 

endocytosis and recycling to the plasma membrane, but did not affect PIN polarity. Zou and 

colleagues used BFA to block the recycling of PIN2, PIN3 and PIN7 to the plasma membrane of 

Col-0 and arp3. Because of the toxicity of BFA, the studies by Zou and colleagues were limited 

to two-hour treatments. Within two hours of BFA treatment, PIN2-GFP was substantially 

internalised in Col-0 and arp3, but the membrane localisation of PIN3-GFP and PIN7-GFP was 

barely affected, indicating that different PIN proteins have different responses to BFA. Zou and 

colleagues proposed that the delayed gravitropic root curvature response of arp3 and arpc2a 

resulted from their effects on polar auxin transport. However, in contrast to the PIN1-dependent 

phenotype presented in this thesis, the gravitropism phenotype was rescued rather than mimicked 

by LatB, indicating that ARP2/3 might regulate PIN1 activity by a different mechanism to these 

polar auxin transporters. Additionally, the ARPC2A allele dis2-1 did not affect the rate of 

endocytosis and PIN2 internalisation, although the same allele increased dark development (Fig. 

3.9 B). Although the authors were not able to identify a phenotype that was consistent with the 

role of ARP2/3 complex-mediated F-actin nucleation in endocytosis, their results did demonstrate 

that the ARP2/3 complex facilitates endocytosis in Arabidopsis, and to my knowledge, are the 

first to demonstrate ARP2/3 complex-mediated endocytosis in any plant.  

The effect of 35S::PIN1 on dark development was examined to test if dark development could be 

increased by overexpressing PIN1. PIN1 overexpression did not increase dark development in 

Col-0 or arp3 (Fig. 5.7 B), and even caused a significant reduction in arp3 dark development, 

consistent with previous reports that 35S::PIN1, like the pin1 mutant, was defective in 

establishing well-defined auxin maxima, and had reduced organ initiation rate (Benkova et al., 

2003). However, subtle differences in dark development were observed between pin1 lines 

complemented with PIN1 expressed under its own promoter (Fig. 5.7 A), indicating that subtle 

changes in PIN1 expression affect dark development. This observation also indicates that the dark 
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development assay is sensitive to differences in transgene expression, as hypothesised in chapter 

4.6, relating to Fig. 4.1 D.  

The effect of PIN1 phosphorylation on dark development was also investigated (Fig. 5.7), as PIN1 

phosphorylation is important for its polar localisation (Ki et al., 2016). Specifically, 

phosphorylation of the hydrophilic loop of PIN1, which is partially mediated by PID, promotes 

plasma membrane localisation (Sasayama et al., 2013) and apical/basal polarity (Ki et al., 2016). 

Substitution of 3m1 or M3 phosphorylation sites on the hydrophilic loop with alanine decreased 

the polarisation of PIN1 (Ki et al., 2016), but did not affect dark development (Fig. 5.7 A). 

Moreover, the pid mutation and 35S::PID, which respectively cause decreased or increased 

phosphorylation and apical targeting of PIN1 (Friml et al., 2004), did not affect dark development 

(Fig. 5.7 B). These results indicate that the phosphorylation status of PIN1 is not important for 

dark development. Whether the polar localisation of PIN1 is affected in these mutants under the 

conditions of the dark development assay remains to be determined. Interestingly, the arp3pid 

double mutant revealed a strong genetic interaction between ARP3 and PID in the light. arp3 

increased the severity of the pid-14 allele, which led to ‘pin-like’ inflorescences, and severely 

reduced floral development and seed production, as seen in strong pin1 alleles (Okada et al., 1991; 

Vernoux et al., 2000) and to a lesser extent in some pid alleles (Bennett et al., 1995). This indicates 

that PID-directed PIN1 localisation is required in light-grown arp3 floral meristems, but not in 

the dark developed arp3 vegetative SAM. 

Downstream of polar auxin transport, auxin maxima are believed to trigger canonical auxin 

signalling through the auxin receptor TIR1 (Kepinski and Leyser, 2005; Leyser, 2006). It was 

surprising then, that the increased dark development of arp3, and even the auxin sensitivity of 

arp3 dark development was not affected by the tir1 mutant (Fig. 5.3). TIR1 is one of six 

TIR1/AFB proteins, which have partially redundant activities (Dharmasiri et al., 2005; Vernoux 

and Robert, 2017), although, of the single mutants, tir1 has the strongest phenotypes (Dharmasiri 

et al., 2005). Because of the potential for functional redundancy, it cannot be concluded based on 

the tir1 phenotype alone, that other AFB proteins are not important for the increased dark 

development of arp3 mutants. Analysis of TIR1/AFB gene expression in the dataset from Lopez-

Juez et al. (2008) showed that TIR1/AFB1/2/3/5 were all highly expressed in dark developed shoot 

apices.  

 

5.10.4 Potential interactions between ARP2/3 and gibberellic acid signalling 

Exogenous GA3 suppressed the dark development of arp3, while Col-0 was unaffected (Fig. 5.1 

D). This result could suggest that GA inhibits factors causing the increased development of arp3 

in the dark, or promotes the activity of factors that inhibit dark development, but this would not 
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explain why Col-0 was not also affected. Perhaps the factors regulating arp3 dark development 

are not normally present in Col-0, such as PIN1. Exogenous GA3 has previously been shown to 

both stabilize the expression of pPIN1::PIN1-GFP and repress the expression of the pPIN1::GUS 

promoter reporter in the root apical meristem, whilst PIN1 promoter activity increased in response 

to genetic and chemical disruption of GA biosynthesis (Willige et al., 2011), although the 

transcriptional effect was not observed in microarray studies of the effect of GA biosynthesis 

inhibition and DELLA repression on whole seedlings (Cheminant et al., 2011; Gallego-Bartolome 

et al., 2012). Given that GA signalling is already very pronounced in the dark (Achard et al., 2007; 

Arana et al., 2011; Cowling and Harberd, 1999; Lopez-Juez et al., 2008; Roldan et al., 1999), and 

the concentrations of exogenous GA3 used in the dark development assay were high (for instance, 

the gibberellin biosynthesis mutant ga1-2 was sensitive to the effect of PIN1 GA3 on hypocotyl 

elongation in the range of 0.1-30µM (Jacobsen and Olszewski, 1993)), it is possible that the 

negative effect of exogenous GA3 on PIN1 expression outweighs the stabilization of PIN1 protein, 

resulting in reduced polar auxin transport and reduced dark development. 

Another possibility is that the arp3 mutant was hypersensitive to the effects of GA3 on 

microtubule dynamics (Ishida and Katsumi, 1991; Locascio et al., 2013; Sambade et al., 2012). 

Disruption of the microtubule-associated protein ZWICHEL, or treatment with microtubule-

disrupting chemicals had a synergistic effect on trichome development in mutants of arp3 and 

arp2 (Mathur et al., 1999; Schwab et al., 2003). 

An alternative hypothesis considers the detrimental effects of gibberellin on SAM function (see 

chapter 1.4.6). It is possible that GA3 restricts arp3 leaf initiation by repressing meristem 

propagation, since cytokinin levels in the SAM are very likely to be low under the conditions of 

the dark development assay (see chapter 1.4.1 and discussion below). The rapid initiation of 

leaves in the arp3 mutant would make it more susceptible to the effects of GA on SAM function, 

resulting in the loss of stem cells in the SAM and reduced capacity to initiate leaves. In this 

scenario, the insensitivity of Col-0 dark development to exogenous GA3 is also accounted for, as 

its development is not so rapid that it is able to renew its stem cell niche even in relatively high 

concentrations of GA3. 

For GA3 to repress arp3 development by inhibiting meristem propagation, requires cytokinin 

levels to be low in dark grown arp3 shoot apical meristems. Whilst this is true for wild-type SAMs 

grown in the dark (Lopez-Juez et al., 2008; Yoshida et al., 2011), it may not be true in arp3 plants. 

Cytokinin translocation to the SAM is dependent on transpiration rate, which is greatly influenced 

by stomatal aperture (Aloni et al., 2005; Beck and Wagner, 1994; Darwin, 1916). A mutant of the 

ARP2/3 complex arpc2a (hsr3) had increased transpiration rates because it was unable to regulate 

its stomatal aperture in response to light/darkness, with constitutive intermediate stomatal 
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aperture (Jiang et al., 2012). Mutants of ARP2, ARP3, NAP1 and PIR also had similar stomatal 

aperture phenotypes (Isner et al., 2017). Therefore, increased transpiration rates could contribute 

to the increased dark development of ARP2/3 complex mutants by increasing cytokinin 

translocation to the SAM. However, the actin polymerisation inhibitor cytochalasin D rescued the 

stomatal aperture phenotypes of arpc2a and pir, which was also rescued by LatB, suggesting that 

the aperture response defects resulted from increased actin bundling, not a loss of F-actin (Isner 

et al., 2017; Jiang et al., 2012). Since the dark development of arp3 was insensitive to actin 

depolymerisation by LatB (Figure 3.10), the increased dark development phenotype is not likely 

to be caused by increased levels of cytokinin in the shoot resulting from increased transpiration 

rate. Moreover, arp3 mutants had a wild-type cytokinin response (Fig. 5.1 B) and lack features of 

mutants with increased cytokinin levels/signalling in the shoot, which promotes 

photomorphogenesis (see chapter 1.1.4; 1.2). Therefore, cytokinin levels in the SAM are also 

likely to be low in dark-grown arp3 mutants, supporting the theory that GA3 represses arp3 dark 

development by repressing meristem propagation.  
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Chapter 6 - Transcriptional regulation of dark development 

Transcriptional responses are known to be important for the high sugar response (hsr) of ARP2/3 

complex mutants, because a mutation of the transcriptional Mediator complex, med25 (pft1), 

suppressed the sugar hypersensitivity of arpc2a (hsr3), arp3 (hsr4) and another high sugar 

response mutant hsr8 (Seguela-Arnaud et al., 2015). Two Mediator complex mutants, med25 and 

med8, also suppressed the increased dark development of hsr8 (Seguela-Arnaud et al., 2015). It 

was not tested if the mutations suppressed the increased dark development of arpc2a or arp3, but 

this seems likely since the dark development phenotype is a high sugar response phenotype (Baier 

et al., 2004). Therefore it is likely that transcriptional responses are important for the increased 

dark development of arp3. 

In the previous chapter, PIN1-mediated polar auxin transport was shown to be essential for the 

increased dark development of arp3. Polar auxin transport generates areas of auxin maxima and 

minima at the SAM, triggering a differential auxin response (Heisler et al., 2005; Vernoux et al., 

2010; Vernoux et al., 2011). The activity of several of the ARF family of transcription factors are 

responsive to high and low concentrations of auxin (Piya et al., 2014; Vernoux et al., 2011). In 

general, local auxin maxima (which are associated with leaf emergence; Benkova et al., 2003) 

cause the degradation of Aux/IAAs and concurrent derepression of ARFs leading to downstream 

transcriptional changes associated with the “auxin response” (Parry et al., 2009; Vernoux et al., 

2011). Conversely, auxin minima stabilize the repression of ARFs by Aux/IAAs, repressing the 

“auxin response” (Parry et al., 2009; Vernoux et al., 2011). Mutations stabilizing Aux/IAAs (and 

the repression of ARFs) in the presence of auxin have been shown to increase dark development 

(Colon-Carmona et al., 2000; Kim et al., 1998; Kim et al., 1996; Nagpal et al., 2000). Given the 

importance of PIN1 in the dark development response of arp3, it would be interesting to examine 

whether ARFs are required for the downstream transcriptional responses that lead to leaf initiation. 

The inactive SAM is maintained through the transcriptional control of homeobox transcription 

factors KNAT1, WUS, RPL and others in order to maintain a pool of undifferentiated stem cells. 

RPL and KNAT1 interact with each other and both repress leaf initiation (Byrne et al., 2003; 

Smith and Hake, 2003). Mutants of rpl have increased numbers of rosette and cauline leaves 

(Bhatt et al., 2004; Byrne et al., 2003), and KNAT1 overexpressors have decreased numbers of 

rosette leaves, while rpl knat1 double mutants develop ectopic aerial leaf rosettes (Smith and 

Hake, 2003). Additionally, RPL interacts with STM, a negative regulator of the differentiation of 

stem cells into organ primordia, and functions to maintain a pool of stem cells in the SAM in the 

absence of weak alleles of stm (Bhatt et al., 2004; Byrne et al., 2003; Smith and Hake, 2003). RPL 

and KNAT1 mRNA are excluded from sites of organ initiation at the time of, or immediately prior 

to organ initiation (Byrne et al., 2003; Jackson et al., 1994; Lincoln et al., 1994). 
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The HECATE (HEC) family of bHLH transcription factors are important for SAM function, 

antagonistically to SAM maintenance (Schuster et al., 2014), and promote polar auxin transport 

(Gremski et al., 2007), which is important for dark development (Yoshida et al., 2011; chapter 5). 

The HECATE transcription factors belong to group VIIIb of bHLH transcription factors (Heim 

et al., 2003), which includes HEC1, HEC2, HEC3, bHLH087 and INDEHISCENT (IND). Probes 

for HEC2, HEC3, bHLH087 and IND are not featured on the ATH1 microarray, so information 

about the expression of these genes is limited to alternative arrays and targeted qRT-PCR and 

promoter::reporter analyses.  

HEC1 promotes stem cell proliferation and antagonises the expression of CLV3 to reduce stem 

cell differentiation (Schuster et al., 2014). HEC1 also dampens cytokinin responses by 

upregulating the expression of type A ARR cytokinin metabolism genes (Schuster et al., 2014). 

HEC1 expression is under direct repression by WUS to prevent its expression (and cell 

proliferation) within the stem cell niche (Schuster et al., 2014). 

HEC1, HEC2 and HEC3 likely play redundant roles in promoting stem cell proliferation in the 

SAM, since a hec1/2/3 triple mutant had significantly reduced SAM size (Schuster et al., 2014). 

Furthermore, organ initiation patterns were aberrant in the hec1/2/3 triple mutant, indicating that 

SAM development, as well as growth, is regulated by HEC transcription factors (Schuster et al., 

2014). 

bHLH087 is a PhyA early repressed gene (Khanna et al., 2006). bHLH087 transcripts are 

expressed more highly in dark-grown seedlings, and depleted after only 1 hour of monochromatic 

red light (Khanna et al., 2006). A bhlh087 line exhibited no detectable hypocotyl length, 

cotyledon size or de-etiolation phenotype when examined (Khanna et al., 2006).  

IND has primarily been studied in the fruit valve margin, where it is an essential regulator of seed 

pod dehiscence (Liljegren et al., 2004). IND is closely related to HEC3 and regulates polar auxin 

transport by direct upregulation of WAG2 and repression of PID kinase expression, affecting PIN 

polarity (Sorefan et al., 2009). Our lab has shown that IND is also expressed in the SAM, under 

the control of AGO10, using pIND::GUS and pIND::IND-YFP reporter lines, as well as genetic 

and transcriptional analyses (Manoj Valluru and Karim Sorefan, unpublished). The role of IND 

in the SAM is not known, but its relatedness to the HEC genes might make IND a novel regulator 

of SAM functionality.  

Like other bHLH transcription factors, IND binds to DNA as a dimer (Girin et al., 2011; Murre 

et al., 1989). IND acts both as a homodimer and forms various heterodimers to differentially 

regulate gene expression (Simonini et al., 2016). IND has been shown to interact directly with 

SPATULA (SPT) to control auxin distribution and gynoecium development (Girin et al., 2011), 

ALCATRAZ (ALC) to direct valve margin development (Arnaud et al., 2010; Liljegren et al., 
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2004), and interacts with AUXIN RESPONSE FACTOR3 (ARF3/ETT) to regulate reproductive 

development in an auxin-sensitive manner (Simonini et al., 2016). IND has also been shown to 

interact directly with PHYTOCHROME INTERACTING FACTORs (PIF3, PIF4, PIF5) and 

PHYTOCHROME RAPIDLY REGULATED1 (PAR1) in a series of yeast two-hybrid screens 

(Braun et al., 2011; Gremski, 2006), but as yet, no functional information about the interactions 

between IND and PIF3-5 or PAR1 has been reported.  

This chapter aims firstly to identify novel transcriptional regulators of dark development, with 

particular attention to the bHLH transcription factor INDEHISCENT (IND) and its related 

transcription factors, and secondly to identify transcription factors acting in the same molecular 

pathway as the ARP2/3 complex to regulate dark development, with focus on the AUXIN 

RESPONSE FACTOR family which could act downstream of polar auxin transport.  

 

6.1 Regulation of dark development by IND 

6.1.1 IND regulation of SWT15 and dark development 

Microarray data from our lab was examined to identify the downstream targets of the IND. It was 

found that IND primarily upregulates the expression of a sugar transporter SWEET15 

(SWT15/SAG29) (Simonini et al., 2016). The same dexamethasone (DEX)-inducible 35S::IND-

GR system as used in the microarray was used to confirm the regulation of SWT15 by qRT-PCR. 

SWT15 was highly upregulated following DEX-induced translocation of IND-GR to the nucleus, 

even following co-treatment with cycloheximide (CHX), an inhibitor of protein synthesis (Fig. 

6.1 A). This indicates that the upregulation of SWT15 was not a secondary response of IND-

induction, but that SWT15 is an immediate target of IND. Because sugar is essential for dark 

development, we tested mutants of swt15 for dark development phenotypes, reasoning that 

SWT15 may regulate sugar transport at the SAM. The ind and swt15 mutants were also crossed 

with arp3 to identify genetic interactions. 

The ind mutant did not affect the dark development or Col-0 or arp3 plants, indicating that IND 

does not regulate dark development, or that its function is redundant (Fig. 6.1 B). By contrast, 

mutants of the IND-target SWT15 had consistently reduced dark development, but did not 

suppress the dark development of arp3 (Fig. 6.1 B), suggesting that SWT15 acts upstream of 

ARP3 to activate the SAM through sugar transport. 
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6.1.2 Testing the requirement for IND in SWT15 regulation 

To test the hypothesis that IND-regulation of SWT15 is redundant with other transcription factors, 

the expression of SWT15 was analysed in the ind mutant under conditions where SWT15 

expression is known to be upregulated, namely, during senescence, ABA or salt treatment, and 

high osmotic pressure (Goda et al., 2008; Kilian et al., 2007; Lackman et al., 2011; Quirino et al., 

1999). eFP Browser (Winter et al., 2007) was used to identify conditions where SWT15 is 

upregulated. There is limited knowledge about the expression of IND, as there is no IND probe 

on the Affymetrix ATH1 microarrays, so IND expression was also analysed under conditions 

where SWT15 is upregulated.  

One of the conditions in which SWT15 is upregulated is senescence (Quirino et al., 1999). 

Senescence assays are often performed over a timeseries, requiring many plants (and growth 

space) in order to measure gene expression from the same number leaf (e.g. leaf 5) with biological 

replicates (for example, see Breeze et al., 2011). To test senescence-induced expression, a new 

assay was developed that negates the need to harvest leaves over a timeseries, by comparing the 

expression of genes of interest with a well-known marker of senescence (SAG12 expression), 

allowing gene expression to be analysed from leaves at different stages of senescence from a 

single plant, and at a single timepoint (for a full description of the assay and its validation see Fig. 

6.2). There was no difference between the expression of SWT15 in Col-0 or the ind mutant (Fig. 

6.3 B), although both SWT15 and IND expression increased with senescence (Fig. 6.3 A, B). 

SWT15 is also strongly upregulated in response to ABA (Goda et al., 2008; Seo et al., 2011), salt 

stress and osmotic stress (Kilian et al., 2007; Lackman et al., 2011). Under all conditions tested, 

there were no differences in SWT15 expression between ind mutants and wild-type plants (Fig. 

6.3 B, D, F). IND expression was consistently low (Fig. 6.3 A, C, E).  

SWT15 expression was also analysed in an ago10 mutant which has defective SAM development 

caused partly by ectopic IND expression (Karim Sorefan, unpublished). SWT15 expression was 

not significantly increased in ago10 seedlings grown in constant light (Fig. 6.1 C), and neither 

did ago10 increase leaf initiation in the dark (Fig. 6.1 D). There was a trend towards upregulated 

SWT15 expression in ago10 (p=0.08), which was suppressed in the ind ago10 double mutant (Fig. 

6.1 C), suggesting that any increased SWT15 expression in ago10 was caused by upregulation of 

IND. Given that SWT15 expression was not decreased in the ind mutant, IND must either not 

normally be expressed, or its effects are different in the light and the dark. Alternatively, IND acts 

redundantly with other transcription factors to regulate SWT15 expression and dark development. 
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Fig. 6.1. SWT15 is an immediate target of IND (A) and is required for Col-0, but not arp3 dark 

development (B). SWT15 expression is not significantly altered in ind or ago10 seedlings (C); ind 

and ago10 mutants have wild-type dark development (B, D). (A) SWT15 expression following 

DEX-induced translocation of IND-GR to the nucleus. Col-0 plants with and without the 

35S::IND-GR transgene were treated with DEX, or DEX and CHX for six hours to compare 

indirect and immediate effects of IND induction. Plants were grown in liquid culture as described 

previously (Sorefan et al., 2009). (C) SWT15 expression in 8 day old seedlings germinated on ½  

MS agar, 0.5% Glc, in constant light; the first true leaves were apparent. 25 seedlings with ‘wild 

type’ development (see supplemental Fig. S.5) were pooled per biological replicate. Statistical 

significance was calculated by 2way ANOVA and Tukey multiple comparisons test (A-D) on ΔCt 

values (A, C). (B)  n >36; (D) n >42. 
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Fig. 6.2. Development of an assay to study the requirement for IND for the induction of SWT15 

expression during senescence. A novel method to analyse gene expression during senescence was 

developed to allow multiple leaves to be harvested from a single plant at a single timepoint, rather 

than harvesting the same leaf from multiple plants over a timeseries. In principle, gene expression 

can be compared between different genotypes at different stages of senescence, assuming that the 

reference genes (SAG12 and ACT2) are not differentially regulated between the genotypes of 

interest. The main limitation with this senescence assay over a timeseries, is that it does not 

provide data on senescence rate. 

Individual leaves of a similar size (approximately 3cm x 2.5cm, 170mg) and petioles, from 3 

month old (99 day) plants grown in compost in a long day regime, were harvested 5-6 hours after 

the start of the photoperiod, photographed, and immediately frozen in liquid nitrogen for RNA 

extraction and cDNA synthesis (see methods). Gene expression was measured by qRT-PCR and 

normalised to ACT2 expression (A-C) which is not regulated by senescence (E) or by IND (G), 

or normalised to UBQ5 expression (G, H); ACT2 has previously been used to normalise gene 

expression for senescence data (Breeze et al., 2011). Senescence was measured by SAG12 

expression, as SAG12 is specifically induced by senescence (Lohman et al., 1994), its expression 

does not vary with leaf number (E) (Schmid et al., 2005), visualised using ePlant (Waese et al., 

2017), and is not regulated by IND (H). Linear regression analysis can be used on log10 

transformed data to indicate differences in gene expression with senescence between genotypes. 

Photographs of representative leaf samples are shown at their approximate position on the X axes 

(D, F); scale bar (F) = 1cm.  

The senescence markers AtNAC3 and ORE1, but not the negative control AGO10, were 

upregulated with senescence (A-C), as expected, and the pattern of gene expression in (A-C) 

resembles a microarray dataset (D) (Breeze et al., 2011), where senescence was quantified as days 

after sowing (DAS). p values are given referring to significant differences between the slopes or 

intercepts, as calculated by linear regression analysis in Graphpad Prism. IND induction 

experiments (G, H) were performed as described in Fig. 6.1A, but normalised to UBQ5 

expression, testing the assumption that IND is not a regulator of the control genes ACT2 or SAG12. 

Statistical analysis was performed using unpaired two-tailed t-test on ΔCt values. 
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Fig. 6.3. Testing the requirement for IND for SWT15 expression under conditions where SWT15 

is induced (senescence, ABA, salt and osmotic stress). IND is not required to induce SWT15 

expression in response to (B) senescence, (D) ABA, or (E) osmotic stress. (A, B) IND and SWT15 

are induced by senescence (A, B), consistent with published data (Breeze et al., 2011). IND and 

SWT15 expression was measured from mature rosette leaves harvested from three-month old Col-

0 and ind plants, by qRT-PCR. Relative SAG12 expression was used as a quantitative measure of 

senescence as its expression depends on senescence and not leaf number (refer to Fig. 6.2). Linear 

regression showed that Col-0 (R2=0.43) and ind (R2=0.66) leaves equally induced SWT15 
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expression in response to senescence (slopes p=0.74; intercepts p=0.51). (C-F) SWT15 

expression was induced by ABA, NaCl and Mannitol (Mtl) treatment, as previously reported 

(Goda et al., 2008; Kilian et al., 2007; Lackman et al., 2011). There was no difference between 

Col-0 and ind indicating that IND is not required for the induction of SWT15 under these 

conditions. Col-0 and ind seedlings were grown in liquid culture (1/2 MS, 0.5% Glc, constant 

light, 100rpm) and treated with 10µM ABA or 0.07% ethanol (mock) for 3 hours (C, D) or media 

containing 150mM NaCl, 300mM Mtl or untreated media (mock; by media exchange) for 24 

hours (E, F) and flash frozen 8 days after sowing. Gene expression was normalized to the 

reference gene ACT2. All biological replicates are shown (circles). Statistical significance was 

calculated on ΔCt values by unpaired two-tailed t-test (C), 1way ANOVA with Dunnett’s multiple 

comparison test against the Col-0 control (E), or 2way ANOVA and Tukey multiple comparisons 

test (D, F).  

 

6.2 Regulation by IND- and SWT15-related transcription factors 

Continuing a candidate approach to identify regulators of dark development, a selection of 

transcription factors relating to IND, or the regulation of SWT15 expression, were chosen on the 

basis that they might regulate a similar subset of genes as IND. These candidates include members 

of the same clade of bHLH transcription factor as IND (HEC1-3, bHLH087), genes known to 

interact with IND (ALC, SPT, ARF3, PAR1, PIF3, PIF4) and a related bHLH transcription factor 

known to regulate SWT15 expression, since bHLH transcription factors form homo and 

heterodimers to coordinate gene expression (for more details including references, see Table 6.1). 

Mutants of these transcription factors were assayed for changes in dark development, along with 

several double mutants that were made, to identify genetic interactions with IND, including 

redundancy. 

Transcription 

Factor 

Transcription 

Factor Family 

Justification References 

HEC1 

bHLH group 

VIIIb 

IND-related (bHLH group VIIIb),  

partially overlapping and redundant 

functions; HEC1 represses SWT15 

expression; SWT15 expression is increased 

in a hec1/2/3 triple mutant 

(Gremski et al., 2007; 

Heim et al., 2003; 

Ogawa et al., 2009; 

Schuster et al., 2014) 
HEC2 

HEC3 

bHLH087 IND-related (bHLH group VIIIb), unstudied (Heim et al., 2003) 

ALC bHLH group 

VIIb 

Interacts directly with IND 

(Liljegren et al., 2004) 

SPT (Girin et al., 2011) 

ARF3/ETT B3 (Simonini et al., 2016) 

PAR1 atypical bHLH (Braun et al., 2011) 

PIF3 
bHLH group 

VIIa 

(Gremski, 2006) 

PIF4 
Interacts directly with IND, promotes 

SWT15 expression 

(Gremski, 2006; Oh et 

al., 2012) 

MYC2 
bHLH group 

IIIe  

Promotes SWT15 expression (Qi et al., 2015) 
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Table 6.1. Transcription factors selected for targeted mutant screen. Mutants relating to SWT15 

or the SWT15 and polar auxin transport regulator IND were chosen as candidate regulators of dark 

development. 

 

 

6.2.1 Characterization of new alleles 

Several alleles not previously published were used for this screen for differing reasons, described 

below. Predicted T-DNA insertion sites were identified using TAIR SeqViewer 

(seqviewer.arabidopsis.org) and verified by sequencing the left T-DNA border and adjacent 

sequence (Fig. 6.4). A hec1 allele exists from the GABI-Kat collection (Gremski et al., 2007). 

The putative hec1 allele used in this study (SALK_045764) has a 3′ UTR T-DNA insertion 178bp 

downstream of the stop codon. No hec2 alleles have been described in the literature, although 

there is a HEC2-RNAi line (Gremski et al., 2007). hec2 (SALK_071800) has a promoter T-DNA 

insertion 565bp upstream of the start codon. The bhlh087 (SALK_066339) allele has previously 

been described to produce a truncated transcript (Khanna et al., 2006), but the location of the T-

DNA insertion was not described; bhlh087 was found to have an exonic T-DNA insertion 482bp 

downstream of the start codon. The new allele of alc (SALK_103763) is the first to be described 

in Col-0; it has a T-DNA insertion in the first exon, 170bp downstream of the start codon, and 

produced indehiscent siliques, indicating that it is a strong allele (Liljegren et al., 2004). No 

mutant of par1 has been described in the literature. The putative par1 allele used here 

(SALK_022002) has a 3′ UTR T-DNA insertion 174bp downstream of the stop codon, associated 

with a 97bp deletion (TAATCTTTAATTTTAATGTTCTGATTTATTTATTAAGCCGTTTCA 

CGGTTATGAGAAGTGTTCATTAACGAAAATTAGCATTAATTAATGTAGTTAT).
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Fig. 6.4. Sequence characterization of unpublished T-DNA insertion lines. All sequences are to 

scale and oriented 5′ to 3′. Predicted exon sequences are depicted as black boxes, intron sequences 

as lines, 5′ and 3′ UTR sequences as white boxes, and promoter sequence as dashed lines, based 

on TAIR10 genome annotation (Berardini et al., 2015). Triangles indicate the sequence-verified 

T-DNA insertion site; where a triangle is divided, the T-DNA has two left borders and the sites 

indicate the sequences flanking each left border.  

 

 

 

 

 

 

 

 

 

 

Fig. 6.5. Dark development of IND-related transcription factor mutants (see Table 6.1). Mutants 

and double mutants of ind are shaded dark grey. Where a double mutant was generated, statistics 

were calculated by 2way ANOVA and Tukey multiple comparisons test, otherwise a 1way 

ANOVA and Dunnett’s multiple comparisons test were used against the Col-0 control. n > 33. 

 



105 
 

6.2.2 The role of HEC1 and PAR1 

Even though hec1 and par1 lacked dark development phenotypes (Fig. 6.5.), it cannot be assumed 

that these genes are not involved in regulating dark development because the alleles (both 3′ UTR 

insertions) are not verified knockouts. It is also possible that these alleles are true knockouts and 

the phenotype masked by redundancy. The gene expression of HEC1 and PAR1 should be 

measured in these mutants to verify the knockout or knockdown of expression. 

 

 

6.2.3 Regulation by IND, HEC2 and SPT 

The single ind and hec2 mutants did not have a dark development phenotype, but in combination, 

the ind hec2 mutations increased dark development (Fig. 6.5.), indicating that IND and HEC2 are 

redundant repressors of leaf initiation in the dark. However, HEC2 expression in the hec2 mutant 

should be analysed before drawing conclusions about the role of HEC2. The spt mutant also had 

increased dark development, and increased dark development to the same extent as the ind hec2 

double. 

 

6.2.4 Regulation by PIF3/4 and IND 

The phytochrome interacting factor mutants pif3 and pif4 had strong and opposite effects on dark 

development (Fig. 6.5.). The pif3 mutant had significantly reduced dark development, indicating 

that PIF3 promotes dark development, while the pif4 mutant had significantly increased dark 

development, indicating a repressive role of PIF4 in dark development. Remarkably, ind 

suppressed the phenotypes of pif3 and pif4, suggesting that these genes interact.  

 

6.2.5 Regulation by ARF3 

The auxin response factor mutant arf3 also had reduced dark development (Fig. 6.5.), indicating 

that ARF3 promotes leaf initiation. Since the increased dark development of arp3 is mediated by 

polar auxin transport (Fig. 5.4, 5.6), but independent of canonical auxin signalling through TIR1 

(Fig. 5.2, 5.3), ARF3 might regulate leaf initiation downstream of ARP2/3, since ARF3 responds 

to auxin directly (Simonini et al., 2016). Therefore, the involvement of ARF3 in regulating dark 

development downstream of ARP2/3 was investigated. 
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6.3 Regulation by AUXIN RESPONSE FACTORs 

ARF3 is one of several ARFs that are sequentially upregulated in the SAM preceding the 

development of leaf primordia, including ARF6, ARF8 and ARF4 (Lopez-Juez et al., 2008). ARF5 

and ARF10 are highly expressed in the SAM at the time of primordia development (Lopez-Juez 

et al., 2008). Therefore, ARF transcription factors might coordinately regulate leaf initiation. The 

activities of ARFs, except for ARF3/11/12/13, are regulated by auxin responsive Aux/IAA 

repressors (Piya et al., 2014; Weijers et al., 2005). Furthermore, gain of function mutants of 

Aux/IAAs have increased dark development (Kim et al., 1998; Kim et al., 1996; Nagpal et al., 

2000), suggesting that ARF repression might promote leaf initiation (see chapter 1.2.1.3). Given 

that the repression of ARFs by Aux/IAAs occurs mostly when auxin levels are minimal (Gray et 

al., 2001; Kepinski and Leyser, 2005; Weijers and Jurgens, 2004), for Aux/IAA activity to 

promote leaf initiation through the repression of ARFs would indicate that auxin minima are 

important for promoting leaf initiation, in contrast to the dogma of auxin maxima promoting leaf 

initiation from the SAM, as suggested by Benkova and colleagues (2004). 

To investigate the role of ARF signalling in SAM activity, a range of mutants associated with 

ARF function were assayed for dark development phenotypes. These included a gain-of-function 

mutant of Aux/IAA1 (iaa1-D), the arf2, arf3, arf4, arf5, arf7 mutants, and a mutant of the KNOX 

transcription factor RPL, which together with KNAT1, is thought to be repressed by ARFs at sites 

of incipient lateral organ primordia (Byrne et al., 2003; Jackson et al., 1994; Lincoln et al., 1994; 

Schuetz et al., 2008; Tabata et al., 2010) and interacts directly with ARF3 (Simonini et al., 2016). 

Additionally, the LatB responses of these mutants were tested to determine whether these factors 

might regulate the downstream response of arp3-mediated dark development (Fig.6.6). Mock-

treated iaa1-D had significantly increased dark development compared to Col-0 (p=0.04), as 

reported for other constitutively active Aux/IAA alleles (Kim et al., 1998; Kim et al., 1996; 

Nagpal et al., 2000), but was not significantly different to arp3 (p=0.83), indicating that these 

genes act on the same pathway to regulate dark development. arf4 and arf5 also showed 

significantly increased dark development relative to Col-0 (p=0.006; p<0.001), consistent with 

the repression of ARF4 and ARF5 by IAA1 (Piya et al., 2014; Tiwari et al., 2004). LatB-treated 

arf4 and arf5 developed as LatB-treated Col-0, indicating that these genes also act in the same 

pathway as LatB/arp3. The mutant of rpl also had increased dark development (p=0.02) and an 

enhanced LatB response, which was not significantly different to LatB-treated arp3 (p=0.88). In 

contrast to Fig. 6.6, arf3 did not have significantly reduced dark development in this experiment 

(p=0.36).
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Fig. 6.6. Role of ARF transcription factors in dark development. Statistical analysis was 

performed by 1way ANOVA and Tukey multiple comparisons test against the relevant Col-0 

control. Germination was checked under a safe light 3dps; n >16, iaa1-D n >5. 

 

6.4 Discussion 

The transcription factor IND, which was recently shown to be expressed at the SAM (Valluru and 

Sorefan, unpublished), was shown to primarily regulate the expression of a sugar transporter 

SWEET15. Single mutant analysis showed ind mutants had wild-type dark development, but 

mutants of SWT15 had significantly reduced dark development. Analysis of gene expression data 

showed that SWT15 is not expressed in the SAM or cotyledons in the dark (Lopez-Juez et al., 

2008), so it is unclear how SWT15 increases SAM activity. While SWT15 was regulated by IND, 

IND was not required for SWT15 expression in seedlings, or under several conditions known to 

upregulate SWT15 expression. That the ind mutant did not have decreased dark development like 

mutants of SWT15, and SWT15 expression appeared to be unaltered in ind mutants, indicated that 

SWT15 is redundantly regulated by IND and other transcription factors. 

To identify genes that redundantly regulate SWT15 expression (and therefore dark development) 

with IND, crosses were performed to generate double mutants of ind and close homologs, as well 

as known IND interactors. Various new alleles were used in the screen (Fig. 6.4), but, since these 

alleles were not confirmed to be knockouts by qRT-PCR, it cannot be assumed that the 

developmental phenotype (null or otherwise), represents a knockout or reduced expression 

phenotype. However, the alc allele had indehiscent seed pods in accordance with other literature 

(Liljegren et al., 2004), so is likely a null allele.  
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Potential genetic redundancy was identified between IND and HEC2, as negative regulators of 

dark development. Neither the ind or hec2 single mutants affected dark development, but the ind 

hec2 double mutant had increased dark development, similar to the spt mutant. IND and HEC2 

both interact with SPT to regulate gene expression (Girin et al., 2011; Gremski et al., 2007). 

Therefore, SPT-IND and SPT-HEC2 heterodimers might have redundant activities that repress 

dark development (Fig. 6.7). 

 

 

 

 

 

 

Fig. 6.7. Model of genetic redundancy between IND and HEC2. 

 

IND and PIF3/4 had striking genetic interaction. The pif3 mutant had significantly reduced dark 

development, while the pif4 mutant had significantly increased dark development (Fig. 6.5), 

indicating that PIF3 promotes dark development and PIF4 represses dark development. However, 

the ind mutant suppressed the dark development phenotypes of pif3 and pif4 (Fig. 6.5). One 

explanation for this phenomenon is that PIF4-IND act together to repress dark development and 

PIF3-IND act together to promote dark development. Loss of either PIF enriches the activity of 

the other; i.e. the repressing activity of PIF4-IND is revealed in the pif3 mutant background, and 

the promoting activity of PIF3-IND is revealed in the pif4 mutant background. In wild type plants, 

these two activities would balance out, whilst in the ind mutant the loss of PIF3-IND and PIF4-

IND activities also balance, to appear wild-type (Fig. 6.8). The significance of this interaction 

would be to differentially regulate leaf initiation based on specific contextual signals relayed by 

phytochromes. 
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Fig. 6.8. Model of IND interactions with PIF3 and PIF4 to regulate dark development. In Col-0, 

IND-PIF3 and IND-PIF4 activities cancel out, no net effect on dark development. In pif4, dark 

development is increased through IND-PIF3 activity. In pif3, dark development is reduced 

through IND-PIF4 activity. In ind, PIF3 and PIF4 are unable to regulate dark development.  

 

Recently PIFs were shown to form a negative feedback loop with HECs to fine-tune 

photomorphogenesis (Zhu et al., 2016b). HEC1/2 interacted directly with PIF1/3/4 to repress PIF 

activity. The dark development data do not support a similar model for PIF-IND interactions. 

However, HECs and IND have opposite activities on gene expression for genes such as SWT15, 

so might have evolved opposite regulatory roles for PIF interactions. Analysis of gene expression 

datasets showed that IND and PIF4 positively regulate SWT15 expression, whereas HEC1 

negatively regulates SWT15 expression (Oh et al., 2012; Schuster et al., 2014; Simonini et al., 

2016). Therefore, IND might act antagonistically to HECs in the regulation of PIF activities. 

The arf3 mutant also had decreased dark development (Fig. 6.5), but this was not apparent in a 

repeat where Col-0 dark development was lower (Fig. 6.6). However, characterisation of other 

ARF mutants revealed that mutants of ARF4/5 which are among the subset of ARFs repressed by 

Aux/IAAs (Piya et al., 2014), and a constitutively active allele of IAA1, which represses ARFs 

including ARF4 and ARF5 (Piya et al., 2014), increased dark development in the same pathway 

as LatB-treatment. This indicates that ARF4 and ARF5 repress SAM activity, following the 

establishment of auxin maxima. The finding that ARF4 and ARF5, which are repressed by 

Aux/IAAs, repress lateral organ initiation is quite significant, although I am not the first to show 

that gain-of-function Aux/IAA alleles have increased dark development (Kim et al., 1998; Kim 

et al., 1996; Nagpal et al., 2000). It goes against the current widely held view that lateral organ 
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initiation is triggered by auxin maxima, and indicates that organ initiation precedes the 

establishment of auxin maxima, suggesting that lateral organ initiation in fact begins by the 

establishment of auxin minima, which precede auxin maxima, and which cause the repression of 

ARF4/5 activity.  

I propose the following model for the initiation of lateral organs stimulated by light. In darkness, 

the closure of stomata and consequent reduction in transpiration (Caird et al., 2007), reduces the 

translocation of cytokinin from the roots to the SAM (Aloni et al., 2005; Beck and Wagner, 1994). 

The reduction in cytokinin and gradual decline in starch-derived sugars in the SAM reduces cell 

cycle gene expression throughout the night (Richard et al., 2002). In prolonged darkness without 

exogenous sugars, starvation responses trigger repression of auxin signalling (Yoshida et al., 2011) 

by TOR (Deng et al., 2016; Schepetilnikov et al., 2013). PIN1 is internalised leading to an initial 

accumulation of auxin in the SAM (Lauxmann et al., 2016; Lopez-Juez et al., 2008; Sassi et al., 

2013; Yoshida et al., 2011). Auxin accumulation antagonises the establishment of auxin minima 

in the dark, and ARF4/5 actively repress lateral organ initiation, such that lateral organ initiation 

effectively ceases (Yoshida et al., 2011; Roldan et al., 1999; Fig. 4.4) and the SAM enters a 

quiescent state which can be reactivated by perception of light (Yoshida et al., 2011). Light 

reactivates TOR downstream of photoreceptors, COP1 and ROP2 (Cai et al., 2017; Li et al., 2017), 

to repress starvation responses and reactivate auxin signalling (Schepetilnikov et al., 2017; Xiong 

and Sheen, 2012; Yoshida et al., 2011). Additionally, light stimulates transpiration and 

translocation of cytokinin to the SAM (Aloni et al., 2005; Beck and Wagner, 1994), which 

together with auxin and photosynthesis-derived sugars, stimulates the cell cycle (Hartig and Beck, 

2006; Richard et al., 2002). PIN1 is also targeted to the plasma membrane downstream of COP1, 

auxin and ROP2 (Cai et al., 2017; Nagawa et al., 2012), and excess PIN1 is targeted for 

degradation in the vacuole downstream of cytokinin and AHK4 (Marhavy et al., 2011). Note, 

overexpression of PIN1 prevents the establishment of functional auxin gradients (Benkova et al., 

2003). Under these conditions, PIN1 and auxin co-direct auxin gradients, leading to the formation 

unevenly distributed auxin levels, including auxin minima (Heisler et al., 2005), which cause 

ARF4/5 to be repressed by Aux/IAAs, promoting leaf initiation. I predict that these are the zones 

in which the expression of Class I KNOX transcription factors such as KNAT1 and RPL are 

repressed preceding lateral organ initiation (Byrne et al., 2003; Jackson et al., 1994; Lincoln et 

al., 1994) downstream of ARFs (Schuetz et al., 2008; Tabata et al., 2010). Auxin maxima, then, 

regulate later (albeit early) stages of lateral organ initiation, such as phyllotaxis (Reinhardt et al., 

2003), and the promotion of new auxin minima (Heisler et al., 2005; Reinhardt et al., 2003). 

The difference between this model and the currently established dogma, is that auxin maxima do 

not promote lateral organ initiation, as suggested by a couple of landmark papers (Benkova et al., 

2003; Heisler et al., 2005), and perpetuated on this assumption (Capua and Eshed, 2017; de 



111 
 

Reuille et al., 2006; Griffiths and Halliday, 2011; Vernoux et al., 2010), instead, leaf initiation 

begins with auxin minima. This model explains why auxin does not promote development in the 

dark. It also fits with the observation that the auxin-deficient taa1tar1 mutant more readily formed 

leaves in the dark, when stimulated with LatB (Fig 5.2). Very recently, a similar conclusion has 

been made for the transition between cell division and differentiation in root cells, which requires 

an auxin minimum (Di Mambro et al., 2017), except that ARFs were not studied specifically, 

whilst the requirement for an auxin minimum in axillary meristem initiation has been known for 

several years (Wang et al., 2014a; Wang et al., 2014b). Therefore, I propose that, contrary to the 

current dogma, leaf initiation begins with auxin minima. 

 

 

 

 

  

 

 

 

 

 

Fig. 6.9. Model of auxin levels and leaf initiation at the SAM. At auxin maxima, ARF4/5 

transcription factors are active, the growth of predefined leaf initials is promoted (observed leaf 

initiation). At auxin minima, ARF4/5 are repressed, the homeobox genes e.g. KNAT1/RPL are 

locally downregulated, and new leaf initiation sites are defined (leaf initiation).  

 

 



112 
 

Chapter 7 – General Discussion 

Classical and chemical genetics approaches were taken to elucidate signalling pathways involved 

in shoot apical meristem activity in the dark. The dark development assay had the advantage of 

high sensitivity (see, for instance, Suppl. Fig S.2), and consistency (Fig. 3.4), and facile 

manipulation of signalling pathways through a combination of classical and chemical genetics. 

The long-term nature of the assay meant that immediate effects of treatments could not be 

examined, and interpretation of the data should always consider that downstream effects could be 

being observed, so a comprehensive understanding of the signalling pathways involved is very 

beneficial. Shoot apical meristem activity is known to be repressed by the ACTIN RELATED 

PROTEIN2/3 (ARP2/3) complex in the dark (Baier et al., 2004), but the mechanism and 

signalling pathway were not known. LatB treatment was found to recapitulate the effect of the 

arp3 mutation on true leaf initiation in the dark, but LatB treatment did not affect the dark 

development of arp3 plants (Fig 3.10 A). One reason for the LatB insensitivity could be that the 

dark development of arp3 had already plateaued at maximum leaf initiation rate, but this was 

disproven by treatment with cytokinin, which increased the dark development of arp3 

substantially (Fig. 5.1 B). Therefore it was concluded that LatB and arp3 increase dark 

development in the same pathway. Subsequently, LatB treatment was often utilized to infer 

involvement in the ARP2/3 signalling pathway. However, as well as phenocopying arp3 dark 

development, LatB treatment had ARP2/3-independent effects on growth (Fig. 3.10 B). Therefore, 

because of the potential for non-specificity, classical genetics was used (i.e. stably integrating the 

arp3 mutation into a mutant background), where possible, to confirm results of the more 

convenient chemical genetics approach (utilizing LatB, in this case).   

LatB and the arp3 mutation are both known to adversely affect actin filamentation (Mathur et al., 

1999; Szymanski et al., 1999). Since the arp3 mutation was sufficient to mediate the maximal 

effect of LatB treatment on dark development (Fig 3.10 A), it is likely that ARP2/3-dependent F-

actin branching, and not F-actin more broadly, or other potential activities of the ARP2/3 complex, 

is specifically involved in the repression of dark development. It is assumed that LatB does not 

interfere with the integrity or action of the ARP2/3 complex or activating WAVE complex 

directly, but solely interacts with and interferes with actin polymerisation, consistent with gel 

filtration data indicating the integrity of the bovine Arp2/3 complex in the presence of LatA 

(Gaucher et al., 2012), which binds the same cleft of actin as LatB (Helal et al., 2013). Further 

evidence for ARP2/3 specificity came from the lack of dark development phenotypes of a 

selection of other actin-related mutants, however, redundancy within the FORMIN HOMOLOGY, 

VILLIN, and PROFILIN gene families could not be excluded. The precise role for ARP2/3-

dependent F-actin branching in dark development required further investigation. 
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This study identified several genetic interactions between the ARP2/3 complex and other 

signalling genes (PhyB, HXK1, FBA2, PIN1, PID, DET2, and by inference from LatB data, ARF4, 

ARF5, RPL). Arguably the most striking genetic interaction identified in this work was the 

complementation of det2 phenotypes by arp3 (Fig. 5.8). det2 is a mutant in the brassinosteroid 

biosynthesis pathway (Chory et al., 1991b). This strongly indicates that the ARP2/3 complex is 

repressed by brassinosteroid signalling, perhaps to promote development through polar auxin 

transport and downstream signalling (chapter 5). That the ARP2/3 complex is repressed by 

brassinosteroid signalling was partially demonstrated in chapter 5, from transcriptome datasets in 

Arabidopsis and a phosphorylatome dataset in rice. To provide further evidence that the ARP2/3 

complex is repressed by brassinosteroid signalling, a reporter assay that measured the change in 

transcript or protein levels of ARP2/3 and WAVE components could be utilized. Additionally, it 

would be useful to design an assay that measured the direct output of ARP2/3 complex activity, 

such as a BifC assay that revealed the interactions between ARP2/3 and nascent F-actin. It would 

also be interesting to determine whether the Arabidopsis WAVE complex is dephosphorylated in 

response to eBL, as the rice WAVE complex is (Fig 5.9; Hou et al., 2017). If so, the next step 

would be to determine which kinases and phosphatases interact with WAVE in an eBL dependent 

manner, as reported for other effectors of the brassinosteroid signalling pathway (He et al., 2002; 

Bernardo-Garcia et al., 2014). Moreover, to determine the effect of phosphorylation on WAVE 

activity and localisation, phosphomimics and phosphomutants of WAVE components could be 

introduced into the relevant mutant background, with a fluorescent reporter, and the effects on 

localisation and interaction with ARP2/3 complex, or simply the effects on dark development, as 

a measure of ARP2/3 complex activity, could be determined. 

Additionally, the interactions between arp3 and phyB (chapter 3) and arp3 and det2 (chapter 5) 

suggest that the ARP2/3 complex represses brassinosteroid signalling, including BZR1 and PIF4, 

as a PIF4 overexpression-like response was observed in the arp3phyB background, and a 

brassinosteroid-signalling-like response was observed in the brassinosteroid-deficient arp3det2 

background. Immunoblot analysis could be used to investigate whether the protein levels of 

BZR1/PIF4 are stabilized in arp3; additionally, calf intestinal phosphatase treatments could be 

used to identify levels of BZR1/PIF4 phosphorylation, which is another indicator of 

brassinosteroid signalling activity (Bai et al., 2012; Gendron et al., 2012). The phosphorylated 

(inactive) forms of BZR1 and PIF4 should be excluded from the nucleus (Bai et al., 2012; 

Gendron et al., 2012), so the nuclear or cytoplasmic localisation of these transcription factors 

could also be examined in Col-0 and arp3 using fluorescent reporters. A pBZR1::BZR1-CFP line 

(Wang et al., 2002) is available from NASC (N65991). Additionally, the expression of BZR1 and 

PIF4 target genes should be investigated in the arp3 background as another indicator of 

upregulated BZR1/PIF4 activity. 
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A couple of lines of evidence indicate that ARP2/3-dependent endocytosis might be mediating 

the dark development response. The Arp2/3 complex has been shown to be involved in 

endocytosis of a variety of organisms, including Arabidopsis (Epp et al., 2010; Leyton-Puig et al., 

2017; Moreau et al., 1997; Moreau et al., 1996; Zou et al., 2016). In Arabidopsis, an arp3 mutant 

was shown to have much delayed endocytosis of PIN2 and the dye FM4-64 (Zou et al., 2016). 

The requirement of PIN1 for the dark development response of arp3 (Fig. 5.6), indicates that 

PIN1 endocytosis might be defective in arp3, since PIN1 at the SAM is predominantly localised 

to endosomes during  prolonged darkness (Lauxmann et al., 2016; Sassi et al., 2013; Yoshida et 

al., 2011). If this is the case, it would be expected that PIN1 accumulates at the plasma membrane 

of dark developed arp3 shoot apices, relative to Col-0. This could be tested using a pPIN1::PIN1-

GFP reporter (Benkova et al., 2003) in the Col-0 and arp3 backgrounds.  

Another possible role of ARP2/3 complex-mediated endocytosis could be for regulating the 

assembly of cell walls during leaf initiation. Cell divisions require the polar loosening of cell wall 

structures (Yang et al., 2016), through auxin-mediated “acid growth” (Perrot-Rechenmann, 2010), 

the downstream action of wall-loosing factors including expansins (Cosgrove, 2016), and changes 

in cell wall composition (Yang et al., 2016). Cell wall composition has been shown to be 

important for leaf initiation, with mutants in fucose, arabinose, suberin and cellulose biosynthesis 

having reduced cell wall integrity (Li et al., 2007) and increased dark development (Baier et al., 

2004; Li et al., 2007; Wang et al., 2015). Cell wall components are transported to the plasma 

membrane by vesicular trafficking, where they are secreted for subsequent cell wall synthesis 

(Kim and Brandizzi, 2016). Additionally, cell wall materials including pectins and xyloglucans 

are recycled by an endocytic pathway (Baluška et al., 2005; Dhonukshe et al., 2006). Furthermore, 

cell wall modifying enzymes, such as the cellulose synthase complex, are transported to and from 

the plasma membrane by vesicle trafficking (Bashline et al., 2013). The potential for the ARP2/3 

complex to regulate cell wall composition through the trafficking of cell wall sugars or wall-

modifying enzymes should be investigated. The CESA6-YFP reporter (Ivakov et al., 2017) could 

be used to visualise ARP3-dependent trafficking of vesicles containing cell wall components from 

the golgi apparatus to the plasma membrane. Such a study is warranted since it has already been 

shown that an arp2 mutant has alterations in cell wall composition specifically at sites of WAVE 

localisation (Dyachok et al., 2008), and phenotypes associated with weakened cell walls (see 

chapter 4.6).  

For the ARP2/3 complex to repress dark development by promoting both cell wall strength and 

recycling of PIN1 (Fig. 7.1) makes sense biologically, since both cell wall strengthening and PIN1 

internalisation are associated with reduced cell division and development (Li et al., 2007; Yang 

et al., 2016; Yoshida et al., 2011). The endocytosis of PIN1, the cellulose synthase complex, and 

various cell wall materials is known to be mediated through a clathrin-dependent pathway 
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involving ARA7 and AP-2 (Dhonukshe et al., 2006; 2007; Fan et al., 2013; Kim and Brandizzi, 

2016; Nagawa et al., 2012). Moreover, LatB treatment inhibited the endocytosis of PIN1, causing 

PIN1 accumulation at the plasma membrane (Geldner et al., 2001), and recapitulated arp3 dark 

development in a PIN1-dependent manner (chapters 3, 5), indicating that the ARP2/3 complex is 

required for the endocytosis of PIN1 during prolonged darkness (Lauxmann et al., 2016; Sassi et 

al., 2013; Yoshida et al., 2011). It would be interesting to test whether mutants specifically 

defective in clathrin-mediated endocytosis such as chc2-1 (Kitakura et al., 2011) also have 

increased dark development. This would support a role of the ARP2/3 complex in clathrin-

mediated endocytosis, and the importance of endocytosis for dark development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1. The ARP2/3 complex plays a central role in a pathway in which light and brassinosteroid 

signalling promote leaf initiation by coordinately increasing local polar auxin transport and cell 

wall flexibility at the SAM. 

 

ARF4/5 and TOR were also important for dark development (chapters 4, 6). AUXIN RESPONSE 

FACTOR mutants (arf4, arf5) increased dark development in the same pathway as LatB, 

indicating that ARF4 and ARF5 repress SAM activity in the ARP2/3 pathway (Fig. 6.6). TOR 

was required for dark development and the arp3 dark development phenotype (Fig. 4.4). Both 

ARFs and TOR are important for mediating auxin responses (Deng et al., 2016; Schepetilnikov 

et al., 2013; Vernoux et al., 2011; Xiong et al., 2013; Xiong and Sheen, 2012), and therefore may 

act downstream of polar auxin transport in the dark development pathway. However, due to the 
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long term nature of the dark development assay, it could not be determined whether ARFs or TOR 

were regulated by arp3 or whether they were acting in concert to affect dark development. The 

ability of the arf4 and arf5 mutants to increase dark development (Fig. 6.6), demonstrates that 

auxin signalling is important for regulating dark development. The role of ARF4 and ARF5 in 

dark development is consistent with previous literature showing that dominant mutants of 

AuxIAAs have increased dark development (Kim et al., 1998; Kim et al., 1996; Nagpal et al., 

2000). In this study, when treated with LatB, iaa1-D, arf4 and arf5 all showed a wild-type dark 

development response (Fig. 6.6), indicating that auxin signalling acts in the same pathway as the 

ARP2/3 complex to regulate dark development. This is the first time that the two bodies of 

literature covering the ARP2/3 complex and auxin signalling in dark development have been 

connected.  

That negative regulators of auxin signalling promote dark development (Kim et al., 1998; Kim et 

al., 1996; Nagpal et al., 2000) contradicts the dogma that auxin maxima promote leaf initiation 

(Benkova et al., 2004; Reinhardt et al., 2000). Therefore, in chapter 6 I proposed that the auxin 

minima preceding auxin maxima are required for the initiation of leaves. One of the core concepts 

of this hypothesis is the transcriptional reprogramming at areas of auxin minima, which precedes 

the growth that follows subsequent auxin maxima formation. It would be interesting to investigate 

whether the transient local exclusion of KNAT1/RPL transcripts (Byrne et al., 2003; Jackson et 

al., 1994; Lincoln et al., 1994) occurs at auxin minima, rather than auxin maxima. This could be 

determined using fluorescent reporters to detect KNAT1/RPL transcripts and concurrently report 

auxin levels using DII-VENUS (Brunoud et al., 2012). This would provide insight into the 

hypothetical pathway that determines new leaf initials by transcriptional reprogramming at sites 

of auxin minima at the SAM. 

In summary, my data have highlighted several aspects of ARP2/3 signalling in Arabidopsis that 

have not been demonstrated before, including the regulation of brassinosteroid responses, the 

requirement for PIN1 activity, TOR kinase, and the initial stages of glycolysis, positioning the 

ARP2/3 complex as a central node of several pathways for the control of SAM activity. 

Additionally, I showed that CK-666 is not a useful inhibitor of the Arabidopsis ARP2/3 complex, 

at least for whole plant studies. My data have also revealed genetic redundancy between IND and 

HEC2, genetic interactions between IND and PIF3/4, novel roles of brassinosteroids and PIFs in 

the regulation of SAM activity, and has led to the generation of some interesting hypotheses that 

can be tested. 
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Fig. S.1. Estradiol compromised the effect of LatB on dark development. Statistical significance 

was calculated using 2way ANOVA and Tukey multiple comparisons test; n > 15. 
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A 

B 
Fig. S.2. Genotyping results. (A) Agarose gel 

images of PCR products using primers specified; 

L = left primer, R = right primer, T = T-DNA left 

border primer. DNA ladders used: 100bp ladder 

(Cleaver Scientific; CSL-MDNA-100BPH) or 

1kb ladder (NEB; Quick-Load®  Purple 1kb DNA 

Ladder). (B) Single nucleotide polymorphism 

genotyping by sequencing analysis; affected 

codons are highlighted in blue, and coding 

sequence is written above in black. The tir1-1 

mutation was previously reported (Ruegger et 

al., 1998). For details of plant lines and primers, 

consult tables 2.1 and 2.4. 
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Fig. S.3. arp3 shows a trend towards eBL sensitivity at 0.1nM. White bars Col-0, grey bars arp3. 

Statistical significance was calculated by 2way ANOVA and Tukey multiple comparisons test.
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Fig. S.4. Phenotypic segregation of pin1. The dark development of mock (A, C) and untreated (B, 

D) pin1 (seg) was not significantly different to wild type and showed a wild type frequency 

distribution. LatB-treated pin1 (seg) and arp3pin1 (seg) had bimodally distributed developmental 

scores (C, D), which was consistent with a 3:1 segregation of the pin1 allele (E, F). Purple dashed 

lines show the 75% of pin1 (seg) + LatB (C, E) or arp3pin1 (seg) (D, F) developmental scores 

that most closely match the frequency profile of the Col-0 + LatB/arp3 controls. The remaining 

25% of developmental scores are represented by purple dotted lines; these values were assumed 

to be representative of homozygous pin1/arp3pin1 development, and were used to generate 

average developmental scores in Fig. 5.6. Statistical significance was calculated by 2way 

ANOVA and Tukey multiple comparisons test (A, B), or χ2 test (C-F) comparing observed with 

observed, or observed with expected numbers of plants with 0-2, 3, 4, 5-6 true leaves. (A, C) n > 

67; pin1seg n = 109; (B, D) n > 30; pin1seg n = 134; arp3pin1seg n = 87. 
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Fig. S.5. Leaf polarity phenotypes of ago10 (zll-3) mutants. Approximately three quarters of 

ago10 (zll-3) mutants in the Ler ecotype (much fewer in the Col-0 ecotype) had developmental 

abnormalities ranging from ‘no apical meristem’ to a single central first true leaf ‘zwille’ (zwille 

is German for slingshot), as previously reported (Moussian et al., 1998). Seedlings were grown 

for 10 days on ½  MS agar in constant light. The zll-3 ‘wild type’ phenotype resembles the Ler 

control.  


