
Agent-based Pedestrian Simulation
on GPUs for use in Decision Support

Systems

By:

Twin Karmakharm

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

The University of Sheffield
Faculty of Engineering

Department of Computer Science

May 2018

Abstract

Agent-based simulation of pedestrian crowds in public spaces can give insights into
the potential congestion areas and space utilisation allowing new spaces to be better
designed and existing ones to be more efficiently managed. This thesis investigates
the components essential for a Graphics Processing Unit (GPU) based pedestrian
simulation system that has the potential to be integrated into a real-time Decision
Support System (DSS).

Two navigation approaches are presented. A novel agent-based navigation grid
approach uses a grid of agents to represent navigation information and for static
obstacle avoidance. A case study of an urban environment shows it is a straightforward
and efficient way of implementing navigation behaviour, allowing for the FLAME
GPU agent-based framework to handle the necessary GPU optimisation.

Then, a novel searchable and fully-resolved navigation graph approach is presented
that allows pedestrian agents to make branching decisions and minor route changes
in the case of congestion. Two cases of a shopping mall and a train station based on
real environments show that navigation access times are good and memory use is two
orders of magnitude less than the grid-based approach.

A prototype pedestrian simulation software Concoursia is presented which inte-
grates the searchable navigation graph approach and allows the authoring of environ-
ments, visualisation, and collection metrics. Support for public transport services,
queue agents and waiting behaviours are also implemented. The results show that the
system can be used to create and simulate complex environments where pedestrians
have a large number of navigation goals.

Finally, a pedestrian multi-simulation system is presented that manages the simu-
lation on multiple machines equipped with GPUs. Multiple simulation instances are
merged and run as a single simulation efficiently utilising the parallel architecture of
the GPU. An initial trial has shown that the system is able to dispatch and run multiple
simulations concurrently on multiple machines.

Acknowledgements

First, I would like to thank my wife Thanitta and my family for their motivation,
support and understanding, helping me get through the hardest times and made it all
possible. I would like to thank my previous supervisor Professor Daniela Romano for
the push to get started down this path and for her support as a supervisor and friend
over the years. I would like to thank my current supervisor Dr. Steve Maddock who
provided support and advice for the last crucial part of the PhD. I would like to thank
Dr. Paul Richmond for his support and guidance throughout a large part of my PhD.
I would like to thank Professor Mike Holcombe for his support and advice on both
the PhD and during my time in the Advanced Computing Research Centre. I would
like to thank Dr. Mark Burkitt for his collaboration on the Concoursia project and
for the advice and discussions about the PhD. I would like to thank my friends and
colleagues from the Computer Science Group and ACRC, in particular Laura Smith,
Lewis Gill and Mariam Kiran for providing support, advice and discussions about
different aspects of my project. I would like to thank the external partners, DSTL,
BAE Systems, Nottingham and Avon Fire and Rescue Services and Network Rail for
the funding, collaboration, case studies and data that provided essential contribution
to various parts of the project. Finally, I would like to thank all my friends for the
patience, understanding and motivation I’ve been given throughout the years.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text. This work has not been
submitted for any other degree or professional qualification except as specified.

Twin Karmakharm
May 2018

Table of contents

List of figures xiii

List of tables xxiii

1 Introduction 1
1.1 Research Outline . 3
1.2 Contribution to Knowledge . 4
1.3 Thesis Structure . 6

2 Related Work 9
2.1 Agent-based Modelling . 9
2.2 Pedestrian Modelling and Simulation 10

2.2.1 Local Motion . 13
2.2.2 Navigation . 17

2.3 Pedestrian Simulation Systems and Frameworks 20
2.4 Pedestrian Simulation and Decision Support Systems 23

2.4.1 Pedestrian Tracking Systems 24
2.5 Parallel Computing Architecture for Agent-based Modelling (ABM) . 25

2.5.1 GPU Architecture for ABM 26
2.5.2 High Performance Computing (HPC) Architecture for ABM . 30
2.5.3 A Summary of GPU and HPC Architectures 32

2.6 The FLAME Framework . 33
2.6.1 FLAME and FLAME GPU System Overview 33
2.6.2 FLAME for the HPC Architecture 36
2.6.3 FLAME for the GPU Architecture 39
2.6.4 FLAME HPC and GPU Performance Benchmarking 40

2.7 Summary . 41

3 Navigation for Pedestrian ABM 45
3.1 Agent-based Navigation Grid . 46

x Table of contents

3.1.1 Pedestrian Agents . 48
3.1.2 Navigation Agents . 50
3.1.3 Environment Editor . 58
3.1.4 Simulation & Results . 59

3.2 Searchable Navigation Graph . 67
3.2.1 The Environment Graph . 69
3.2.2 The Itinerary Graph . 70
3.2.3 Routes Generation . 72
3.2.4 The Navigation Graph . 72
3.2.5 Other Properties of the Navigation Graph 74
3.2.6 Implementation as a Navigation Module in FLAME GPU . . 75
3.2.7 Static Obstacles & Environment Bounds Detection 80
3.2.8 Evaluation and Discussion 80

3.3 On the Two Navigation Approaches 83
3.3.1 Memory Use . 83
3.3.2 Navigation Performance . 89
3.3.3 Discussion . 89

4 Concoursia, a prototype pedestrian simulation system 91
4.1 System Overview . 92
4.2 Creation of A Scenario . 93

4.2.1 Environment Objects & Environment Designer Mode 93
4.2.2 Environment Object Graph & Network Editor Mode 97
4.2.3 Event Schedule & Itinerary and Schedules Mode 97

4.3 Building the Simulation . 99
4.4 Simulator . 102

4.4.1 The Concoursia Agent Model 103
4.4.2 Navigation Module . 104
4.4.3 Simulation Mode . 105

4.5 Visualisation . 106
4.6 Metrics . 106
4.7 Quantitative Evaluation of Agent Navigation 109
4.8 Real World Environments in Concoursia 110

4.8.1 Shopping Mall . 113
4.8.2 Train Station . 122

4.9 Discussion . 131

Table of contents xi

5 A Prototype System for Multi-Simulation of Pedestrian Models 135
5.1 System Overview . 136

5.1.1 Simulation Manager . 136
5.1.2 Local Simulation Manager 136
5.1.3 Simulator . 138
5.1.4 GUI Client . 138

5.2 Simulation Batching . 138
5.3 Collection of Metrics . 140

5.3.1 Obtaining an Accurate Pedestrian Generated Count 143
5.3.2 Crowd Density and Flow . 143

5.4 The Scenario: Evacuation After a Dirty Bomb Incident 145
5.5 The Agent Model . 146

5.5.1 Pedestrian Agent . 146
5.5.2 Environment Agent . 147
5.5.3 Model Behaviour . 148

5.6 Collection of Zone and Disrobing Metric 149
5.6.1 Zone and Disrobing Metric 149

5.7 Results . 150
5.7.1 Environments . 150
5.7.2 Model performance . 151
5.7.3 Performance on multiple GPUs 152

5.8 Discussion . 153

6 Conclusions 175
6.1 Limitations and Future Work . 177

References 179

List of figures

2.1 CUDA programs are launched as grids of blocks. Each block contain
multiple worker threads. Threads in the same block are guaranteed to
run on the same GPU core. 28

2.2 The diagram shows the difference in GPU memory access patterns
for internal Array of Structures (AoS) and Structure of Arrays (SoA).
SoA leads to fewer memory fetches overall as one request obtains a
chunk of memory that can be used by multiple threads. 30

2.3 Process of transition between agent states and its use of the message
board. 34

2.4 Example agent model definition with two agents. Each agent has 3
states (AS# and BS#) and 2 transition functions (AF# and BF#) that
either send or receive a message. 35

2.5 Architecture of the FLAME and FLAME GPU frameworks. 36
2.6 Dependency graph generated for the example model in Fig. 2.4. . . . 38
2.7 An updated dependency graph with data granularity defined. In this

example, the transition functions AF1 and BF2 are independent and
hence can be executed concurrently. 38

2.8 Simulation times for various agent populations on different GPU
hardware. 42

3.1 Pedestrian agents exist on top of a grid of discrete space navigation
agents and their position can be transformed to a relevant navigation
agent cell. 47

3.2 Sequence diagram for function call of both agents and their utilization
of the message pool. 47

3.3 An example of a 6x6 environment with 2 exits and obstacles. Naviga-
tion agents are arranged in a grid as shown (top right) and the position
of the agent relates to a particular cell of the vector fields. 52

xiv List of figures

3.4 A vector representation of the environment is rasterised into a grid of
navigation agents. White cells are walkable terrain, black cells are
static obstacles and red cells are exits which also double as entrances. 54

3.5 Wavefront propagation performed on the obstacle areas. Black areas
are obstacles, white areas are walkable, light blue is the area covered
in the first iteration and dark blue areas are covered in the second
iteration. 55

3.6 Visibility rules for the wave propagation. Starting from origin (yellow),
the green areas will be included while the grey areas are not due to it
being blocked off by obstacles. 55

3.7 Rotation of navigation agent cell to pedestrian distance vector~dddiC to
align with the the frame of reference of vector~nnniW 56

3.8 Wavefront propgation performed on a destination cell (red) over 5
iterations. 56

3.9 Comparison of the generated force vector fields. (a) A Collision Vector
Field (CVF) with force influence distance of 2. (b) Shows an Navi-
gation Vector Field (NVF)s with simple propagation , with backflow
propagation but no limit (c) and the result of the final algorithm (d). . 57

3.10 Comparison of the simulation using un-optimised (a) and with back-
flow smoothed (b) navigation vector fields. 59

3.11 Illustration of backflow propagation in action. Take an environment
that has 8 iterations of propagation (a), each blue colour signify a
boundary of a wavefront propagation iteration. The colours are re-
peated at the 5th iteration. (b) Shows examples of backflow propa-
gation three locations. Backflow propagation limit is three iterations.
The backflow origin B1 is able to propagate the full three iterations
while B2 is stopped at one iteration as it encountered an obstacle. As
B3 is next to an obstacle the backflow algorithm does not run. 60

3.12 The plan editor software for generating the vector fields. The example
shows a 2-exit environment that was set to be a dimension of 64x64
with maximum backflow propagation iteration of 5. Exits are shown
as red squares and obstacles as black squares. The two NVFs and an
CVF generated are shown where red arrows are NVF and blue arrows
are CVF. 61

3.13 Performance benchmarking for square environments of width 64, 128,
256 and 512 measuring iteration time is measured when running with
1024, 4096, 16384, 65536 and 262144 pedestrian agents. 63

List of figures xv

3.14 Screenshot of the urban environment simulation running with 10,000
pedestrians. Red lines signify locations of entrances and exits. 65

3.15 Time utilization by different agent functions with increasing pedestrian
agent density . 66

3.16 a) For a given scenario, graph data structures are created for use in
the simulation. b) The Environment Graph is a representation of the
environment and how each part is connected. c) The Itinerary Graph
represents a high-level set of objectives. d) The Navigation Graph
contains the precise sequence of graph nodes that must be traversed in
order to reach an objective location. 68

3.17 The figure shows the process of creating the Environment Graph.
(a) The outline of the environment in black. (b) The environment
discretised to a binary grid where the white colour is a walkable area
and the gray colours are non walkable. (c) The distance transform
where deeper green indicates higher distance transform value. (d) The
nodes with cicular areas created for the Environment Graph. 70

3.18 Generation of an R-tree from the Environment Graph in Fig. 3.16(b). 71
3.19 The process of creating the Navigation Graph. (a) The Environment

graph for an example environment with an entrance, a shop and two
exits. (b) The Itinerary Graph. (c) The routing in the physical environ-
ment. (d, e & f) The exact sequence of nodes is found for each Route
in the Itinerary. Two Navigation Graphs are required for this Itinerary
as the nodes overlap in opposite directions. (g) The Navigation Graph
from Entrance 1 to the shop (green arrows). (h) The Navigation Graph
from the Shop and branches to either Exit 1 (yellow arrows) or Exit
2 (blue arrows). For both Navigation Graphs the brown arrows guide
pedestrians back to the itinerary routes. 73

3.20 A simplified information flow diagram of the Navigation Data struc-
ture. 77

3.21 The Navigation Data Structure Fig. 3.20 laid out as SoA objects for
use on the GPU. 78

3.22 An example of branching in the Navigation Node Connections Array.
The pedestrian is at node N1 and there are two routes with IDs 1 and
2 each having 2 branching possibilities. 78

xvi List of figures

3.23 During the simulation, a trapezoidal shape navigation area (red line) is
formed from the two diameter lines of the current and next node and
used as a navigation guide. Pedestrians outside of the navigation area
try to navigate towards it while ones inside the navigation area will try
to keep a proportional distance to the centre line between the current
and the next node (blue dotted line). 80

3.24 Comparison between the shape of corridors on pedestrian flow during
congestion. (a) During congestion, formation of an arch pattern when
moving from a wide passage to a narrow corridor or doorway is
shown which matches the results of Helbing et al. [22]. Solid circles
are pedestrians, black lines mark the environment boundary, grey
lines represent the Environment nodes used in the route, red lines
marks the gate/corridor and shows how the environment is bounded if
following the approach by Pettre et al. [47]. (b) A simulation when
the environment is bounded by corridors creating a funnel shape. The
exit corridor size is adjusted to be the same as the first case to provide
a fair comparison of the exit flow rate. 82

3.25 The shape of the corridor causes a large difference in flow rate. It can
be seen that the funnel shape allows for pedestrians to exit from the
environment much faster. 82

3.26 Non-walkable areas in black represent the walls and a set of turnstiles.
The pedestrian (red circle) has a desired route (a) but is forced to go
through another slot due to congestion (b). The pedestrian tries to go
back to the pre-specified route causing congestion (c). With dynamic
routing (d), the pedestrian is able to switch to using the alternate
turnstile without problem (e). 84

3.27 A subset of the Wedge environments used to compare memory usage
between the two navigation approaches (Tables 3.2 and 3.3). Green
capsules represents portals. The environment bounded by brown lines
is 10x10m and the environment bounded by blue lines is 25x25m. The
left side is fixed at 4m and the right side is the same length as the
environment. 86

List of figures xvii

3.28 A subset of the Corridor environments used to compare memory usage
between the two navigation approaches (Tables 3.2 and 3.3). The envi-
ronment is bounded by black lines and the green capsules represents
portals. The environments shown in (a)-(b) are of size 10x10m and
25x25m, respectively. For every 5m of the environment a 2m square
obstacles is added and evenly distributed to create a corridor layout so
that the complexity of the environment grows exponentially with its
size. 86

3.29 Memory usage comparison for the navigation types on a wedge shape
environment and corridor environment. For grid-based navigation
(solid line), the memory use is the same for both environments and in-
creases exponentially with environment size. For graph-based naviga-
tion (dashed lines), memory use is highly dependent on the complexity
of the environments rather than the size as can be seen by the disparity
for the Corridor environment (dashed line) and Wedge environment
(dash-dotted line). 87

4.1 A simplified data flow and interaction diagram of Concoursia’s differ-
ent components. 94

4.2 A simple bus station environment with two floors and a set of stairs
connecting them. The environment is bounded by the walkable area
within the black lines. It shows the Static Obstacles (red areas), Portals
(green areas), Waypoints (blue areas), Waiting area (grey areas) and
Queues (purple dots and lines). 95

4.3 Overlapping Walkable Objects are merged into a single walkable area
during the building of the simulation. 96

4.4 Environment objects of the same type can be grouped in the Network
Editor Mode. To the simulation they are seen as branches with equal
probability that a pedestrian can choose from. 97

4.5 The connections created for the simple bus station environment in
Fig. 4.2. Each orange dot represents a networkable Environment
object. They are connected with the yellow lines on the same floor
and a dotted grey line on different floors representing stairs. Waiting
areas and queues are special cases where association with a Portal or
Waypoint is set through object properties rather than in the network.
They are shown connected to the Portal or Waypoint object with dotted
purple lines. 98

xviii List of figures

4.6 The Portal, Activity, Services, Itinerary and Schedule pages in the
Itinerary and Schedules Mode. 100

4.7 The Itinerary Graph generated with the environment in Fig. 4.5 for the
example in Fig. 4.6. 101

4.8 Concoursia’s agent model showing the Pedestrian and Queue agent
functions and the messages used. 104

4.9 Simulation and 3D visualisation of the bus station model. The ‘Current
speed’ bar at the top allows for adjustment of simulation speed either to
gain increased simulation performance (speeding up) or easier visual
inspection (slowing down). 105

4.10 Screenshot of the pedestrian count metric showing number of pedestri-
ans in the simulation over time for all simulation instances. X axis is
time (hours and minutes) and Y axis is the pedestrian count. 106

4.11 The evacuation graph shows the number of people who have exited the
environment during a certain time period, which is used for analysing
the rate of exit. X axis is time (hours and minutes) and Y axis is the
number of pedestrians that exited during the period. 107

4.12 Origin and Destination matrix shown as a circular migration flow plot. 108
4.13 The four Tree environments used for testing branching probability

during pedestrian navigation. Environment 2 has been enlarged and
annotated to show the location of the entrance (green), waypoints
(blue) and exits (red). Yellow lines represent branching connections in
the itinerary. 110

4.14 Exit time and Distance travelled distribution for the Tree environment
with one level of branching. Distributions are separated by the pedes-
trians’ chosen exit. The distribution is obtained over 100 simulation
runs. 111

4.15 Exit time and Distance travelled distribution for the Tree environment
with two levels of branching. Distributions are separated by the pedes-
trians’ chosen exit. The distribution is obtained over 100 simulation
runs. 112

4.16 Exit time and Distance travelled distribution for the Tree environ-
ment with three levels of branching. Distributions are separated by
the pedestrians’ chosen exit. The distribution is obtained over 100
simulation runs. 112

List of figures xix

4.17 Exit time and Distance travelled distribution for the Tree environment
with four levels of branching. Distributions are separated by the pedes-
trians’ chosen exit. The distribution is obtained over 100 simulation
runs. 113

4.18 A shopping mall environment with four entrances and 12 shops. The
grey colour represent walkable areas, green capsules are portals, and
blue rectangles are shops. 116

4.19 Shopping mall normal scenario - a cumulative Level of Service (LoS)
map of the simulation run. 117

4.20 Shopping mall normal scenario - an iteration time over number of
pedestrian graph broken down by the agent functions specified in
Fig. 4.8 averaged over 100 simulation run. 118

4.21 Shopping mall evacuation scenario - a cumulative LoS map of the
simulation run. 119

4.22 Shopping mall evacuation scenario - an iteration time over number
of pedestrian graph broken down by the agent functions specified in
Fig. 4.8 averaged over 100 simulation runs. 120

4.23 Shopping mall evacuation scenario. A scatter plot of Exit time (time
to exit the environment) against Distance travelled over 100 simu-
lation runs. The red line represents the locally weighted scatterplot
smoothing (LOWESS) line. 121

4.24 A train station environment with three separate sections, 4 entrances,
1 bus service and 17 platforms. Gray colour represent walkable areas.
The sections are connected by stairs grouped by blue, orange, red and
green rectangles. Each platform is a group of portals representing each
set of train doors. The purple rectangle with black outline represent
ticket machines. 124

4.25 Train station normal scenario - a cumulative LoS map of the simulation
run. 125

4.26 Train station normal scenario - an iteration time over number of pedes-
trian graph broken down by the agent functions specified in Fig. 4.8
averaged over 100 simulation runs. 126

4.27 Train station evacuation scenario - a cumulative LoS map of the simu-
lation run. 127

4.28 Train station evacuation scenario - an iteration time over number of
pedestrian graph broken down by the agent functions specified in
Fig. 4.8 averaged over 100 simulation runs. 128

xx List of figures

4.29 Train station evacuation scenario - A scatter plot of Exit time (time to
exit the environment) against Distance travelled over 100 simulation
runs. The red line represents the LOWESS line. 129

4.30 Screenshot of the train station scenario (Fig. 4.24) running in Concour-
sia. The view shows the station’s Entrance 1. 130

4.31 Screenshot of the train station scenario (Fig. 4.24) running in Concour-
sia. The view focuses on one of the the station’s platform. The red
areas indicate train carriage entrance. 130

5.1 The network diagram shows how each of the application in the system
interact. 137

5.2 Multiple simulations can run concurrently in the global environment
and make use of the Global Pedestrian List. Coordinates transforma-
tion must be performed in order to move from local to global and
vice-versa. 141

5.3 Simulator visualising two simulation instances running side-by-side. 142
5.4 Parallel removal of pedestrian from the Global Pedestrian List. When

a simulation instance stops, pedestrians of the stopped instance are
removed from the simulation. 142

5.5 The colours green, orange, blue and red represent an individual sim-
ulation. (a) The grid of generated pedestrian counts. (b) These are
separated by row for each simulation instance. (c) A row-wise parallel
sum can then be performed and the counts can be obtained in the last
column. 144

5.6 Parallel generation of LoS grid for multiple simulation instances. Each
simulation instance is represented by a different colour. Local simula-
tion space is spatially divided into a custom LoS grid of 2x2 in this
example. 155

5.7 The different cordon zones that are set up in order to deal with mass
decontamination incidents. The size and layout of these zones can
change due to the nature of the threat and environmental factors such
as wind direction. The hot zone (red) is an area at high risk of contam-
ination or with active dangers such as fires. The warm zone (orange)
is an area where there are no immediate danger but it could also be
contaminated. Disrobing points (purple) contain kits to enable pedes-
trians to remove contaminated clothes modestly. The cold zone (blue)
is a safe, non-contaminated area. 156

List of figures xxi

5.8 The pedestrian agent and environment agent functions used in the
model. 156

5.9 This figure shows the different types of maps used to represent the
environment. (a) The CVF map is used in avoidance of static obstacles.
(b) The exit NVF map guides the pedestrians to the nearest exit in the
environment. (c) The disrobing NVF map guides the pedestrian to the
nearest disrobing points. (d) Other information such as emitter (green
blocks) , disrobing points (orange blocks). (e) The hot, warm and
cold cordon zones are represented in as red, orange and blue blocks
respectively. 157

5.10 (a) Pedestrians enters the environment. (b) They then follow the
evacuation map. (c) After a certain time, cordon zones are established,
red is hot, orange is warm and blue is cold. (d) After the cordon has
been established, pedestrian outside the warm zone carries on walking
to the exit. (e) Pedestrians inside the warm or hot zones walks to the
nearest disrobing point. 158

5.11 The colours orange and green represents separate simulations. Pedes-
trians keep track of the zones that they’re currently in and whether
they have obtained a disrobing kit. (a) An example of this pedestrian
list whereby H, W, C and D refers to hot zone, warm zone, cold zone
and disrobed respectively. (b) All of these properties are divided into
separate arrays. Different simulations are also separated. (c) A parallel
sum can be performed on all of these arrays in order to obtain the final
counts. 159

5.12 Nottingham shopping mall environment used for testing the multi-
simulation system. 160

5.13 Nottingham shopping mall evacuation plan 1 - the decontamination
tunnel is placed at the left most exit, with a disrobing point on the left
side of the large obstacle left of the mall. 161

5.14 Nottingham shopping mall evacuation plan 2 - the decontamination
tunnel is placed at one of the top exits, with a disrobing point on the
left side of the Shopping Mall before the large obstacle. 162

5.15 Sheffield town hall evacuation plan 1 - the decontamination tunnel is
placed at the bottom left exit. 163

5.16 Sheffield town hall evacuation plan 2 - the decontamination tunnel is
placed at the top left exit. 164

5.17 Sheffield city hall evacuation plan 1 - the decontamination tunnel is
placed at the bottom right exit. 165

xxii List of figures

5.18 Sheffield city hall evacuation plan 2 - the decontamination tunnel is
placed at a lower right exit. 166

5.19 Two concurrent running simulations. The scene shows pedestrians
gathering at the disrobing point. Nottingham shopping mall environ-
ment plan 1 (Fig. 5.13) is shown on the left and plan 2 (Fig. 5.14) is
shown on the right. 167

5.20 Four concurrent running simulations. The scene shows pedestrians
gathering at the disrobing point. The Sheffield town hall plan 1
(Fig. 5.15) is shown running at the top left, and plan 2 (Fig. 5.16)
is running at the top right. The Sheffield city hall plan 1 (Fig. 5.17) is
shown running at the bottom left and plan 2 (Fig. 5.18) at the bottom
right. 168

5.21 The three graphs shows how the real simulation speed (dt/rdt)
changes throughout a simulation in normal conditions. The value
dt stands for the dynamic time step and rdt stands for the amount
of real time taken to process that step of the simulation. Both these
values are averaged over 100 steps. Real simulation speed values over
1 (above the red line) means it is running faster than real time. The
line in blue, along with the right axis, shows the number of pedestrians
currently in the simulation. 169

5.22 Nottingham shopping mall - start of evacuation. Pedestrians are emit-
ted from the shopping mall (green lines) and walks to the nearest exit
(red lines). 170

5.23 Nottingham shopping mall plan 2 - zones as visualised in the simulator.
Green is the cold zone, orange is the warm zone and red is the hot zone. 170

5.24 Nottingham shopping mall evacuation plan 1 - pedestrians gathering
at the disrobing point. Pedestrians change colour according to their
LoS value. 171

5.25 Nottingham shopping mall - simulation visualised with 3D plan of the
town centre extracted from GIS data. 171

5.26 Nottingham shopping mall evacuation plan 2 - pedestrians gathering
at the disrobing point. The red pedestrians are injured and walk slower.
The pink pedestrians are not injured. 172

5.27 Comparison of running the Simulator running the Nottingham shop-
ping mall plan 1 over a single GPU and two GPUs. Each GPU is
running 4 instances of the scenario concurrently. 173

List of tables

3.1 The values that would be found in the Navigation Node Connections
Array for the example in Fig. 3.22. 79

3.2 Memory use for Grid-based navigation at various environment sizes. . 87
3.3 Memory use for Graph-based navigation at various environment sizes. 88

4.1 The LoS values used for measuring crowdedness of the environment. . 107
4.2 Exit count and percentage for the Tree environments from branching

number 1 to 4 over 100 simulations 111
4.3 Graph-based memory use for the Shopping mall environment. 114
4.4 Grid-based memory use for the Shopping mall environment. 114
4.5 Graph-based memory use for the Train station environment. 123
4.6 Grid-based memory use for the Train station environment. 123

Chapter 1

Introduction

Simulation of pedestrian crowds is used widely in planning of public spaces and
buildings [1–8]. It gives an insight into the potential congestion areas and space
utilisation allowing new spaces to be better designed and existing ones to be more
efficiently managed. These public spaces are often large, multi-leveled and complex
environments that contain large numbers of pedestrians exhibiting a wide range of
behaviour. Within such a simulation, a pedestrian’s journey is driven by their own set
of goals and objectives, which can be simple as an implicit need to reach a destination
or more complex cognitive models [9–14]. How this translates to behaviour can
depend on a number of internal and external factors such as emotion, social factors,
environment familiarity or congestion [15–20].

Many pedestrian models [21–37] are based on the Agent-based Modelling (ABM)
approach where the behaviour is modelled at the micro level, i.e. at the level of
individual pedestrians, in order to study systematic effects such as the flow that
pedestrians generate. In this thesis, the term pedestrian modelling and simulation
will refer to pedestrian models based on ABM principles. The simulation of many
individuals has a high computation cost compared to the traditional Equation-based
Modelling (EBM) approach [38]. In order to mitigate ABM’s high computational
cost, the models can be parallelised. This allows the ABM model to take advantage of
specialist parallel computing architecture such as the High Performance Computing
(HPC) and the Graphics Processing Unit (GPU) to accelerate computation [39, 40].

In order to create a pedestrian model for the prediction of systematic behaviours
such as pedestrian flow in real environments, pedestrian agents should be given abilities
and behaviours similar to their real-life counterparts. At the most basic level is the
ability for them to navigate through a complex environment in order to satisfy a set of
defined objectives or goals and to have a perception of their surroundings in order to
interact with or avoid other pedestrians and obstacles. The navigation system used with

2 Introduction

ABM must be able to scale up to the large number of thousands to tens of thousands
of pedestrians as would be expected in large public spaces such as high rises [3, 41],
train stations [1, 8, 42] or sections of a city [43, 44].

Many strategies can be used in the representation of a physical environment and for
indicating the directions where pedestrians must go. The use of a grid-based [45, 46]
dense data structure to hold vector fields is a common approach which is robust,
relatively simple to implement and fast to access, but not scalable with environment
size. Other approaches use a graph-based representation [47–56] that partitions the
environment into a set of nodes. These are more memory efficient and are scalable with
environment size. Some other approaches combine the two types of representation
[37, 57, 58] in order to take advantage of both systems but come with its own caveats
such as needing the environment to not be uniformly dense.

In addition to the pedestrian model, a pedestrian simulation system [26, 30, 59–61]
often includes a way to import environments created in design packages, a GUI to help
users easily create a scenario and manage the simulation, visualisation of the running
simulation and a way to collect of metrics about the simulation for further analysis.
These systems [26, 60, 61, 30] are designed for user-guided analysis. From their stated
features, they can offer help in the creation of scenarios, providing parameters for
pedestrian behaviour and helping with the analysis of the simulation. However, they
do not provide alternative solutions based on automated analysis of the simulation
results.

A Decision Support System (DSS) [62–67] goes further in helping with the
decision-making process by providing analysis of simulation results, exploring possi-
ble alternative solutions and suggesting optimal results according to specified criteria.
An integrated real-time DSS for crowd flow management would be composed of
many elements such as the prediction model based on historical and real-time data,
an intervention matrix for suggestion of alternative solutions for managing the crowd
flow, and an evaluation system for assessing and comparing the results of prediction
for both intervention and non-intervention. A facility is also required for collection of
new data (e.g. manual reporting from staff or with the use of sensors) to continuously
re-assess the current situation, and to update and validate the prediction model.

A pedestrian simulation system would fit within the prediction model and provide
outputs that could be used by the evaluation system. For a continuous real-time
system, this means it must be able to provide predictions and suggestions in a time
window that allows interventions to be carried out, which can be over a few minutes or
hours depending on the situation. It is hence necessary to run multiple simulations in
parallel at speeds much faster than real-time. The metrics that can be used to evaluate
the simulations must also be collected in a timely manner and automatically ranked

1.1 Research Outline 3

according to specified criteria. In addition, the system should provide a graphical
interface which allow users to create and configure the environment and potential
scenarios, similar to existing pedestrian simulation packages [26, 30, 60, 61].

1.1 Research Outline

This thesis investigates the use of GPUs for the creation of pedestrian ABM simulation
systems. The GPU is a high throughput computational device. Unlike CPUs which
have small number of threads and a high clock speed for running a small number of
operations quickly, GPUs run at a comparatively lower clock speed but use a large
number of threads to perform many operations in parallel.

While many ABM models and systems are available for the CPU, researchers are
also creating ABM systems that can take advantage of the parallel nature of the GPU
architecture. This is due to the fact that GPU has proven to be a good fit for the running
of ABM models where agents are independent and autonomous. The architectural
benefits are shown in [68, 69] where, in optimal conditions, models can run 300 times
faster when compared to serial implementation on the CPU. Chapter 2 provides further
discussions on the topic of ABM and its use on CPU, GPU and HPC platforms.

However, due to the nature of its parallel architecture, the optimal use of GPUs
present extra complexities in implementing these ABM systems and gives rise to many
considerations that must be accounted for. Programming for the parallel architecture
presents a paradigm shift when compared to the serial architecture. Strategies must be
used to hide latency, ensuring that data can be sent to the processing cores fast enough.
It is necessary to consider the memory access patterns of the GPU, how the memory is
allocated and the transfer of data between the CPU and GPU.

The use of GPUs presents an opportunity for accelerating pedestrian ABM simula-
tions in a fast, scalable and cost-effective way. This is especially important when there
are many simulations of various configurations to run. These simulation configurations,
for example, could be generated as part of the prediction and optimisation process in
a DSS or other automated analysis tools. Any stochasticity in the pedestrian model
compounds this problem as extra simulation runs of each configuration are needed in
order ensure that the result is statistically significant. As the simulation configurations
are independent, if each one can fit within GPU memory, each simulation can be run
on a different GPU device without the need for domain decomposition techniques.
However, a simulation configuration that is too small will essentially waste the compu-
tational capability of the GPU. A system is then required that can take advantage of

4 Introduction

available GPU resource for simulation whether it resides on the same machine or over
the network, a topic that is discussed in Chapter 5.

In order to explore these possibilities, a pedestrian simulation system needs to
be built. One of the key parts of the pedestrian simulation system is the navigation.
Having a navigation system allows pedestrians to exhibit complex flow resembling
real world patterns. Considerations must be made between different approaches to
navigation, whether the underlying data structure of each approach will affect the
scalability of the system and architectural issues that will be faced in implementing
the system on the GPU, a topic covered in Chapters 3 and 4.

The research questions in this thesis are as follows:

• Can a pedestrian ABM simulation system created for the GPU be made fast,
efficient and scalable?

– What are the essential components that are needed for a GPU based pedes-
trian simulation system?

– What are the complexities faced when developing the system for the GPU?

– What navigation system can be used in combination with the pedestrian
simulation system in order to achieve this goal?

• How can the pedestrian ABM system cope with the problem of needing to run
many simulation of various configurations?

– What are the complexities involved in creating such a system?

– How can the GPU be effectively utilised when running many small simula-
tions?

1.2 Contribution to Knowledge

The novel contributions of this thesis are as follows:

• An investigation in to the use of GPUs to create a fast, efficient and scalable
pedestrian simulation system. Chapters 3 to 5 highlights the complexity in the
development of pedestrian simulation systems and its components, optimised
for the GPU architecture.

• The use of discrete navigation agents to provide grid-based vector field nav-
igation for pedestrian simulation. The method described in Section 3.1 fully
adopts the ABM approach and so can be implemented in any generic ABM

1.2 Contribution to Knowledge 5

framework allowing it to take advantage of any parallel architecture supported
by the framework. The implementation on the FLAME GPU framework with
a real-world scenario and its benchmarking shows that the approach can be
applied to complex environments and runs efficiently. The work was published
at TPCG 2010 [70].

• The use of searchable graph-based navigation for pedestrian simulation based on
the work of Pettré et al. [47]. The method outlined in Section 3.2 addresses the
problem of a pedestrian’s possible route-change behaviour during congestion
by providing a searchable lookup graph for re-routing and also fully utilises the
whole environment. Examples are given to show that the approach is scalable
and can be efficiently applied to GPU architectures. The work is currently being
prepared for publication. It was developed and used in the following projects:

– “High Performance Pedestrian Simulation on the GPU” an EPSRC Path-
way to Impact grant by Prof. Daniela Romano and Dr. Paul Richmond in
2012.

– PACE, a prototype high-performance pedestrian simulation software as
part of an Early Career Researcher Grant for Dr. Paul Richmond in 2012.

– Concoursia, a protype high-performance pedestrian simulation software
developed as part of the Advanced Computing Research Centre headed by
Prof. Mike Holcombe and funded by HEFCE between 2014 and 2016.

• A description of how GPUs were used in the creation of Concoursia, a prototype
pedestrian simulation system that uses the searchable graph-based navigation
system proposed in Section 3.2 and provides a GUI making the system more
usable for general users. The software, described in Chapter 4 has been used to
model scenarios including a shopping mall and a train station, and metrics can
be collected to perform post-simulation analysis. The software was developed
in collaboration with Dr. Mark Burkitt for the Advanced Computing Research
Centre headed by Prof. Mike Holcombe, funded by HEFCE between 2014 and
2016.

• A description of how GPUs were used in the creation of a prototype pedestrian
multi-simulation system, covered in Chapter 5, that can perform multiple simu-
lations concurrently with differently seeded starting configurations on a network
of machines equipped with GPUs. Multiple simulation instances are batched
on a single GPU to provide higher efficiency and metrics are collected from
these batched simulation using a parallel GPU optimised process. The work was

6 Introduction

part of an externally funded project by BAE Systems to create a “Simulation
Decision Support Tool” headed by Dr. Paul Richmond in 2011. The work has
been published as a short paper at TPCG 2012 [71].

1.3 Thesis Structure

Chapter 2
Chapter 2 provides background literature on pedestrian simulation with the emphasis
on navigation and use of pedestrian simulation as a DSS. An overview of ABM is
given and how most modern day pedestrian simulations adopt the approach. The
different systems available for implementing pedestrian navigation behaviours are
discussed. The use of parallel computation architectures, HPC and GPU, are discussed
based on their importance for obtaining simulation results in acceptable time. The
chapter discusses the use of simulation software and frameworks for the purpose
of decision support, providing a detailed review of the FLAME and FLAME GPU
simulation framework which is used in all of the work throughout the thesis. An
overview of FLAME’s template based system is provided and how the frameworks
are implemented for the HPC and GPU platform. Comparisons with benchmarks are
made between the two platforms and the advantages and limitations of each platforms
are discussed.

Chapter 3
Chapter 3 describes the implementation of two navigation systems for pedestrian
simulation. The first approach uses a grid of agents to provide navigation functions
which integrates fully into the ABM approach. The second uses graph based navigation
which provides better scalability in larger environments with more complex pedestrian
agent goals. Benchmarks are provided for both approaches and a discussion outlines
advantages and limitations for each approach.

Chapter 4
Chapter 4 describes Concoursia, a prototype pedestrian simulation software for use as
a DSS. It is based on the FLAME GPU framework and provides users with a graphical
user interface for preparing and running the simulation. The different parts of the
software are discussed including the simulator, GUI interface, the agent model used
and the metrics that are collected for analysis. Two simulations based on real-world
environments are used to show suitability as a DSS and provide benchmarking for the
software.

1.3 Thesis Structure 7

Chapter 5
Chapter 5 describes a prototype pedestrian simulation system that is able to run
multiple simulations in parallel over a network of machines equipped with GPUs. The
system uses batching to group multiple small simulation together for more efficient
processing and manages simulation jobs over a network. The methods to collect
metrics efficiently from multiple simulation instances on a single GPU are explained.
An evacuation scenario is used as a basis for the model in the system and provides the
benchmarking.

Chapter 6
Chapter 6 provides the conclusions to the body of work in the thesis, outlines its
limitations and gives suggestions for future work.

Chapter 2

Related Work

This chapter provides an overview of pedestrian Agent-based Modelling (ABM). This
includes pedestrian ABM software and frameworks, Decision Support System (DSS)
for ABM and parallel hardware platform suitable for accelerating pedestrian ABM.
The chapter begins with an introduction to agent-based modelling and simulation in
Section 2.1. Then, Section 2.2 covers the background on modelling and simulation of
pedestrians with a particular focus on ABM including local motion (Section 2.2.1) and
navigation (Section 2.2.2). Section 2.3 then provides an overview of the applications
of pedestrian modelling simulation, including the tools and frameworks that provide
a better workflow for creating a simulation scenario and give results that makes it
easier to perform analysis. Section 2.4 discusses the use of pedestrian simulation in
a decision support system. It explains the need for multi-simulation to explore the
vast problem space when applying optimisation and the need for a pedestrian tracking
system (Section 2.4.1) for providing data about the system’s current and historical
states. Section 2.5 investigates the parallel computing architecture that can be used to
accelerate pedestrian simulation, namely the use of Graphics Processing Unit (GPU)s
(Section 2.5.1) and High Performance Computing (HPC) (Section 2.5.2). Section 2.6
explores the detail of the FLAME framework (in particular FLAME GPU) which has
been used extensively in this thesis as the base platform for the implementation of
the pedestrian models. Both HPC and GPU versions are covered. Finally, Section 2.7
provides a summary of the chapter.

2.1 Agent-based Modelling

ABM is a microscopic modelling approach that focuses on the simulation of many
interacting agents. Agents are heterogeneous individuals that can act independently
and autonomously using their own set of behavioural rules. They are given the ability

10 Related Work

to perceive and react to the environment and to also communicate with other agents. It
is the resulting emergent systematic behaviour from these interacting agents which is
often of interest to the modeller, for example the modelling of pedestrians to observe
flow and congestion patterns [1, 3, 4, 72] or the modelling of different financial
institutions to observe the effect on the economy [73]. ABM provides a bottom-up
alternative to the top-down Equation-based Modelling (EBM) [38] approach where
a simulation consists of sets of ordered differential equations. Its individualistic
representation makes many types of behaviour easier to formalise and construct [74].
Observed higher accuracy in simulation using the ABM approach is also due to its
finer level of representation when compared to the aggregate behaviours found in
EBM [38, 75]. ABM models are, however, much more computationally expensive
than EBM as real complex systems can involve the simulation of thousands or millions
of agents, e.g. pedestrians in a train station or cells in a small part of a human body.
It is the rapid improvement of computational power and, more recently, the use of
specific hardware with parallel computing architecture that allows the simulation of
these models in an acceptable time-frame (Section 2.5).

The earliest example of ABM is Cellular Automata (CA), a discrete model con-
sisting of a grid of cells with each one in a finite number of states where each cell
can interact with surrounding cells. An example of a well-known CA model is Con-
way’s game of life where each cell is “alive” or “dead” according to the state of their
neighbouring cells, producing different grown pattens over time depending on initial
conditions and propagation rules [76].

The seminal paper by Reynolds [77] on the flocking behaviour of birds is one of the
first models with social characteristics. The behaviour can be described as three simple
rules. An avoidance rule stops animals from colliding with each other by moving
away from individuals closer than a certain distance. An attraction rule keeps group
close together by having individuals move towards the centre of the flock. Finally,
an alignment rule averages out the group’s travel direction to make sure the flock
moves together. These bird agents only required local perception of the environment
to perform this coordinated movement. They also occupy 3D continuous (Euclidean)
space instead of the discrete space used by CA models.

2.2 Pedestrian Modelling and Simulation

The term pedestrian modelling in the context of this thesis refers to the representation
of human pedestrians using the ABM approach and pedestrian simulation refers to the
simulation of these pedestrian models. Each individual pedestrian is an agent that can

2.2 Pedestrian Modelling and Simulation 11

interact with other agents. Such agents exist within a shared physical environment
and can move around while constrained by it. In addition, each pedestrian is able
to navigate, routing around walls and obstacles, from one location of the environ-
ment to another. These two behaviours, local motion (Section 2.2.1), and navigation
(Section 2.2.2) form the basis of a pedestrian model. Pedestrian simulation has been
applied to various fields [78] and major uses can be found in architecture and urban
planning [5, 6, 9, 72, 79, 80], safety [3, 4, 8, 44, 81–86], and media and entertainment
[87–98].

The use of pedestrian simulation in architecture and urban planning is concerned
with the designing of an optimal space. In the context of pedestrian simulation, this
refers to spaces designed with enough capacity, good pedestrian flow and minimal
congestion. When a number of pedestrians are navigating and interacting, emergent
systematic behaviours such as flow patterns or congestion can be observed and unde-
sirable features can be negated with various interventions. These inventions can be
changes in the design of the physical space, introduction of barriers, usage of signs and
other means of communication or limiting the number of people that can enter in the
first place in order to ensure optimum flow rate and avoid blockages and congestion.
As an example, for predicting future capacity, Hoy et al. [72] used the MassMotion
[30] software to simulate the Union Station in Toronto. The model was calibrated by
undertaking two surveys in a similar period to count passengers at every entrance and
exit, using existing pedestrian volume data and train schedules. Their work predicted
that the station will be over-capacity when there is over 10% more passengers which
are the numbers projected for 2031. To improve flow and reduce congestion, Nana
et al. [5] applied simulation to form an optimal egress plan from the stadiums in the
2018 Beijing Olympic games. Lili Lu et al. [6] tackles the problem of flow capacity
by using simulation to find the optimal pedestrian signal crossing width in relation to
expected demand. Yue et al. [7] uses pedestrian simulation to analyse the pedestrian
flow and congestion for the Shanghai Expo 2010 to suggest re-location of entrances of
problematic exhibits away from the major corridor and removal of landscape structures,
e.g. fountains in busy areas in order to reduce the congestion. The pedestrians in
the models used in the field of architecture and urban planning are expected to be in
their normal behaviour. This means the behaviour can be observed directly, in other
similar environments or within a controlled study [21, 99–102]. In fact, algorithms
used within the pedestrian models are derived from these behavioural observations, for
example the individual’s behavioural rules such as interpersonal distance, grouping,
queueing and rushing. At the systematic level, emergent self-organisation behaviours
can be observed, such as lane formation when there’s pedestrian flow in opposite
directions or oscillation of passing direction at narrow doorways.

12 Related Work

In the field of safety, evacuation models are created to assess whether people are
able to evacuate from a space within reasonable time. Evacuation from fire is a major
topic of research and such fire evacuation models can also combine the simulation
of fire and smoke [8, 82, 83, 85, 86] to affect the movement and decision-making
of evacuees. Evacuation models are also used for investigating occurrences such as
terrorist attacks [3], and natural disasters such as flooding [44] or tsunami [84] where
an evacuation of a large portion or entire city needs to be considered [85]. These
evacuation models can then be used to feed into the design of architecture or in crisis
training and management where optimal strategies can devised. These strategies can
be in terms of evacuation timing, chosen route, gathering point, etc. [4].

As lives are concerned, pedestrian models related to safety must meet stringent
Verification and Validation (V&V) tests. One such test specification was created by
the National Institute of Standards and Technology (NIST) [103]. The verification
tests ensuring the model has the expected behaviours are broadly divided into five
categories which are pre-evacuation time, movement and navigation, exit choice and
usage, route availability, and flow constraints. The pre-evacuation time test involves
testing for the length of time until the pedestrian starts to evacuate. The movement
and navigation test checks for the speed in various situations such as walking through
a corridor or stairs. It also tests for things such as movement around a corner and
group behaviours. The exit choice and usage test checks that pedestrians can move to
the allocated exits, that social influence affects the choice of an exit route, and that a
pedestrian’s familiarity of the environment is taken into account. Route availability
checks that pedestrians are able to respond to exits closing dynamically and choosing
a different route. Lastly, the flow constraints test checks that slowdown caused by
congestion matches the expected pre-measured rate. The validation tests are then used
to compare the model’s evacuation times to various small and large scale evacuation
scenarios.

In media and entertainment, examples of pedestrian simulation can be seen in many
movies and games [104, 105]. Their uses range from simply populating the world
to give a scene a higher sense of believability or realism to being used as characters
in their own right by representing large gatherings or clashing armies [104–108].
Interactivity is also possible in the game media such as war games or god games
where players can control large armies or movements of large amount of people e.g.
the Total War franchise [109]. In this visual medium, instead of statical accuracy in
crowd behaviour, it is the visual quality or visual believability of the crowd that takes
precedence. One of the ways to improve the visual quality of the crowd is to introduce
variety to the human models [87–89]. This variety can come from appearance, such
as face, gender, body type, ethnicity, clothing, or accessory. A study by McDonnell

2.2 Pedestrian Modelling and Simulation 13

et al. [98] shows that the aspect of visual variety is the most important to focus
on. The other factor that can add variety is in the motion of a human such as walk
gait or gestures. Increasing visual fidelity of individual humans can also be applied,
such as approximating subsurface scattering for skin rendering [110]. For interactive
application such as video games, it is also necessary to render the crowds in real-time.
Techniques such as Level of Detail (LOD), billboarding, instancing or a combination
of these techniques can be used to reduce the amount of processing required to render
the crowd at the time it is presented [111–114]. There is also the interactive control of
crowds whether it be in the control of their appearance [115] or in their movement as
a group [90–97].

2.2.1 Local Motion

Pedestrian local motion consists of a set of rules or behaviour that applies to a pedes-
trian’s motion over a short distance or within their perception range. They can be
reactive rules such as a pedestrian avoiding other pedestrians and obstacles, or active
rules where individuals form groups and move together.

The way a pedestrian’s position in the environment is represented has an effect on
what local motion rules can be applied. Broadly speaking, there are three categories
for representing a pedestrian’s position: coarse, fine, and continuous network. The
network in this case refers to a network of inter-connected traversable areas.

With coarse network models [116, 117], multiple pedestrians can occupy a single
node, for example an entire room. The edges of the network then represent the
connectivity between the nodes, for example, which rooms are connected and thus
traversable. As no exact location is represented, it is not possible to apply local motion
rules.

Fine network models [27] are akin to cellular automata where the space is repre-
sented as a discrete grid where each cell is normally the size of a single pedestrian.
With fine network models, it is possible to apply local motion rules such as collision
avoidance or grouping. In models such as [24], where each cell can be occupied by
only a single pedestrian, should multiple pedestrian want to occupy the same cell at
the same time, an algorithm is needed which decides on which pedestrian has priority.
Burstede et al. [23] introduced the concept of ‘floor fields’, a grid of the same dimen-
sion but separate to the one that pedestrians occupy. The ‘floor field’ grid can exist in
discrete or continuous space. The field is informed by the location of pedestrians, and
has diffusion and decay effects creating a field of gradients. By following this field,
pedestrians are able to seek out the cell they can move to in order to achieve optimal
flow. It was observed that this approach shows similar self-organising behaviour as

14 Related Work

found in the social force model. Whereas Burstede et al. [23] stores probability within
the floor fields, Charibi et al. [29] records the repulsive influences of nearby objects.

Continuous network models [21, 25, 26, 118], where pedestrians exist in continu-
ous space, can allow for more accurate trajectory and velocity as movements do not
have to be discretised to grid cells. While the dimension of the pedestrian is limited
to the size of the cell in the fine network model, there are no such restrictions in the
continuous network models. Space utilisation by the pedestrians can be made more
realistic during congestion as Alonso-Marroquin et al. [119] showed by the use of
spheropolygons to map a pedestrian’s contours. These are used for collision detection
that more closely matches to the profile of a real human. The use of continuous space
however, means a more complex approach to local collision avoidance is required to
avoid overlapping of pedestrians.

It is also possible to combine the various network types [85, 120], for example using
a continuous network to represent areas with the highest congestion (e.g. doorways)
or more geometrically complex layouts, and a coarse network for a lower congestion
area or one with less complex geometry.

Continuous Network Models

While continuous network models presents a bigger challenge in the formalisation of
the local motion equations, the increased fidelity in the representation of pedestrian
movement and space occupied have proved attractive to researchers.

One of the earliest continuous network models is Helbing’s [21, 118] social force
model, which is a socio-psychological force based model where movements are
resolved through a set of force equations. It includes a goal directed force that varies
according to the time needed to arrive at the destination, e.g. a pedestrian in a rush will
have a higher desired speed. Each pedestrian has their own personal space, an ideal
distance away from other people, which is translated into a repulsive force inversely
proportional to the distance from others. The repulsive force stops pedestrians from
walking into each other. A separate repulsive force is also applied to the border of
buildings as pedestrians prefers to keep a certain distance from walls [100]. A similar
but opposite force attracts pedestrians to things of interest such as friends or a street
performer. This force can be used to keep groups of pedestrians together and may
diminish with time. The model has been shown to exhibit self-organising behaviour
observed in real pedestrian traffic such as lane formation and alternating flows at
congested doorways [118]. In order to prevent numerical instability from large forces
generated from the contact between pedestrians or obstacles, it is necessary to reduce
the time step of the simulation according to a maximum velocity change threshold.

2.2 Pedestrian Modelling and Simulation 15

The variable time step in practice means that simulations take longer to perform
the more congestion there is. The social force model was later extended to include
crushing forces experienced during congestion in emergency situations [22] with the
addition of a ‘body force’ for counteracting body compression on contact with other
pedestrians or obstacles and a ‘sliding friction force’ for impeding tangential motion
so that pedestrians don’t ‘slide’ between each other as congestion increases.

During times of high congestion when pedestrian movements are restricted by
others surrounding them, researchers have observed striking similarity to the movement
of fluids [121] and, while Helbing et al. [118] suggested that it is more flexible and
practical to model pedestrians as individuals, Hughes [122–124] shows that “thinking
fluids” can also be applied for simulating dense crowds such as the Hajj pilgrimage
and other scenarios.

Seer et al. [125] later on showed that while the social force model is good for
representing the macroscopic characteristics, e.g. flow-density relations, it does not
represent movement trajectories well at the individual level. An experimental study
by Moussaïd et al. [101] further expanded the social force model by applying the
observed avoidance behaviour where pedestrians simply adjust their motion for side-on
encounters, but with head-on encounters pedestrians make a binary decision to either
make an avoidance manoeuvre to one side or the other.

In Moussaïd et al. [126], perception information was used to provide additional
cognitive heuristics. For example, in pedestrian avoidance, a visual model is used to
provide distance to obstacles. The visual model works similarly to human perception
in that obstacles in the background can be occluded. This means instead of adding
on repulsion forces from every nearby obstacle in the social force model, a pedes-
trian agent is only reacting to the visually perceived obstacle. Moussaïd [127] later
elaborated on the cognitive heuristic model stating that while it solves the problem of
how to combine multiple simultaneous interaction, it is more difficult to formalise and
extend behaviours than force-based models.

Baglietto et al. [28] offers an alternative collision avoidance model that avoids the
force calculations by adding a contact rule that slows down or stops pedestrians should
their trajectories overlap. The approach avoids the calculation of force models and
allows for larger time steps to be used during simulation.

Velocity-based models that use the concept of velocity obstacles by Fiorini et al.
[128] offers another alternative to the forces based models. Originally envisioned for
local path-planning for robots, this approach has been adapted for many pedestrian
simulation models [31–35]. The approach works by finding the sets of velocities that,
if taken, will result in a collision with obstacles. This velocity-based approach allows

16 Related Work

the use of larger time steps but the avoidance calculations are more computationally
expensive compared to each step of the force-based approach.

Van den Berg et al. [33] extended the velocity obstacle model by presenting the
reciprocal velocity obstacle approach which takes into account the fact that other
pedestrians will be performing the same avoidance manoeuvre and so can avoid
oscillations in movement resulting from velocity re-adjustments when incorrectly
assuming that the other agent is a non-reactive dynamic obstacle. Van den Berg et
al. [129] later introduced Optimal Reciprocal Collision Avoidance (ORCA) which
reduces the problem to solving a low-dimensional linear program and uses a KD-tree
for storing static obstacles. Snape et al. [130] provided an example for the new
approach by using it for collision avoidance between characters in video games.

Wolinski et al. [36] presented a stochastic context-aware location motion prediction
model. It uses a collision probability field to represent future action of other pedestrians
where gradient descent can then be used on the field to find an optimal path. Unlike
Treuille’s [37] continuum crowd approach that operates at the macroscopic level, the
field is generated for each individual pedestrian and is applied only to the range of
local motion. The forward planning of motion, informed by other pedestrian’s motion
and the environment layout, allows the pedestrian’s trajectories to show higher levels
of self-organisation with less deadlock and backtracking as was compared to the social
force and ORCA model but at the cost of having the highest computational cost of all
the approaches mentioned.

Other Local Motion Behaviours

Other local motion behaviour has been observed. Some are relevant to specific case,
e.g. falling over during evacuation but many others are relevant to more general
pedestrian models, e.g. grouping and leading behaviours. Moussaïd observed that
pedestrian groups walk in a ‘V’ formation to maximise social communication [102].
HiDAC [131] have added features where pedestrians can fall over and become an
obstacle during evacuation. Qui et al. [132] and Murakami et al. [133] showed that
group formation by using a leader-follower model does affect the pedestrian flow.
Ondřej et al. [134] gave pedestrians a synthetic vision-based system for collision
avoidance which gave more natural collision avoidance behaviour than other methods
but at the cost of much higher computational cost as each pedestrian’s field of vision
has to be separately rendered and processed. Pedestrian simulation packages such as
Exodus [60] incorporate sociological factors such as age, sex and running speed. Other
dangers such as smoke, fire and heat, as simulated in STEPS [135] and EXODUS
[60] can restrict movements and block evacuation paths. Yuan et al. [136] explores

2.2 Pedestrian Modelling and Simulation 17

an integrated network approach which divides the evacuation spaces into different
zones consisting of coarse and fine environment nodes in order to increase simulation
performance. Lemercier et al. [137] added high-level behavioural rules for groups for
following and avoidance behaviour of groups of pedestrians.

2.2.2 Navigation

In addition to local motion behaviours, navigation is an essential component of a pedes-
trian model. Inter-pedestrian and environment interaction gives rise to the emergent
systematic behaviour that can be observed and analysed, such as flow or congestion
patterns, in order to inform the design and planning of an environment. To obtain the
correct systematic behaviour from the model, it stands to reason that pedestrians in the
model should be given goals and choose a path through the environment to achieve the
goal in a way that closely resembles their real-life counterpart. These goals can be as
simple as moving from one location to another or more complex such as “catching a
train”. The locations that pedestrians must travel are often obscured by walls or lie
far outside their range of perception and so they must be directed by a system with a
global view of the environment.

A navigation system turns pedestrian’s goals into a set of objectives with a destina-
tion location within the environment and provides routes for reaching the destination.
For example, should a pedestrian’s goal be to exit a building, the navigation system
would mark exit doors as destination locations and provide the routes for reaching
them. This routing information can then be shared between pedestrians with sim-
ilar objectives. Additionally, in circumstances such as high congestion or blocked
pathways, pedestrians may be required to make minor route alterations or choose a
different route altogether.

The systems for generating global paths have for a long time been an active
research are in Robotics and Artificial Intelligence [138–140] and more recently
applied to the planning of paths for virtual characters [141, 142]. Many algorithms
have emerged for finding an optimal path according to heuristics such as distance
[143]. Dijkstara’s algorithm, for example takes a greedy approach that finds an optimal
route by considering all routes possible to reach the destination. The A* algorithm on
the other hand reduces the search space by searching for what looks to be the most
‘optimal’ direction first, according to heuristics [144]. When compared to the motion
planning of robots [145], the pedestrian global path planning problem is limited to only
3 and sometimes even 2 degrees of freedom which simplifies the problem significantly.
The complexity introduced when used with a pedestrian ABM approach is the fact that
paths must be found for every pedestrian agent in the environment.

18 Related Work

Navigation systems can be broadly divided into grid and graph-based approaches.
The grid-based approach [45] discretises the environment into fixed sized cells which
can be encoded with navigation information such as obstacles occupying the cell
or terrain height. Most commonly the cells are used to hold a directional force. A
grid of these cells is called a vector field (also known as force fields or flow fields).
Multiple fields can be used for each group of pedestrians to represent differing goals
and introduce complex flows. The approach is very effective when combined with good
local collision avoidance and computationally very efficient as access to navigation
information such as the pedestrian’s location can be mapped directly to the grid
coordinates. The authoring of vector fields can either be done manually using software
that allows a user to ‘paint’ the field directions [146], or alternatively they can be
automatically generated using algorithms such as wavefront propagation where the
origins of the waves represent the destination(s) of the pedestrians [147]. The approach
requires a dense data-structure leading to exponential memory requirement with the
environment size. Each grid can only represent a single objective (e.g. go to the nearest
exit) so multiple grids are necessary to represent the full range of individual objectives
further increasing the memory requirement.

The flow tiles concept introduced by Chenney [148] makes the process more
scalable by re-using tiles of pre-defined vector fields to save on repetitious regions of
flow that are likely to occur within the environment. Work by Jin et al. [149] presents
the use of continuous vector fields constructed using radial basis functions. Anchor
points are used in order to define directional flows of pedestrian agents and can be
placed dynamically on the scene making crowd control interactive. Since the field is
continuous, performance is dependent on the number of anchor points rather than the
size of the environment and has been shown to scale well with increasing pedestrian
sizes. Jin et al. does not, however, discuss how well it would apply to more complex
environments and goal-based situations.

With the graph-based approach, areas of the environment can be represented by
a set of nodes in a graph while edges mean the connected areas are traversable [48].
Routes through the environment are represented as a sequence of nodes which can be
found by using path-finding algorithms such as A* or Dijkstra. Sparse representation
of the physical environment means memory consumption is not directly proportional
to the environment size but instead its complexity. Node sequences are also a memory
efficient form of representing each pedestrian’s individual objectives.

Instead of planning a path specific to each agent [49, 145, 150], modern approaches
use a strategy for space sub-division for creating a general collision-free route through
the environment. Wein et al. [50] creates a Voronoi graph of the physical environ-
ment with added visibility rules to generate more natural looking paths. Sud et al.

2.2 Pedestrian Modelling and Simulation 19

[51, 52] applied the Voronoi space subdivision concept to dynamic environments by
representing the environment as a series of points elastically connected to each other.
Connections bend and break as obstacles pass through these connections. Directly
integrating dynamic obstacles into the graph ensures optimal routing around them.
However, as the map could be constantly changing, paths must be recomputed which
may affect performance in very large environments or where there are large number of
pedestrians with different objectives.

The concept of navigation meshes [53] where the environment is divided into a
set of convex shapes has been widely used in gaming and other real-time applications.
The use of a bounded area rather exact paths means it can be used by more than one
character. It is also possible to pre-generate the navigation information [54].

Toll et al. [55] used a mesh-based approach for multi-level navigation by first
generating a medial axis [151–153] path for each of its levels each existing on its
own 2D plane. The medial axis is then modified with the connection between floors
added through the pre-annotated connection points. The advantage of the approach is
the fact that pedestrians can use the navigation mesh to bound their walkable areas.
The concept was extended further to provide real-time replanning [154] by adding a
pruning rule to the standard A* algorithm.

Barnett et al. [56] presents a method for the interactive control of crowds where
the Reeb graph [155] is used for representing the environment. Hilaga et al. [156]
showed that the use of Reeb graph has been shown to have lower computational cost
and is less sensitive to noise and small undulations than the medial axis approach.

Instead of generating navigation graphs straight from polygonal information, some
methods opted to voxelise the environment to simplify the process of boundary gen-
eration [47, 157, 158]. It is robust approach that works well for very complex envi-
ronments with many un-optimised polygons and non-convex obstacles. In the case of
Pettré et al. [47], OpenGL is used to quickly render slices of the environment.

In the work of Pettré et al. [47, 114], walkable area in the environment is covered
by connected circular areas, termed ’Disk Graphs’ or ’Circular Clearance Graphs’
[54]. Sequences of these areas form routes through the environment which are also
converted to rectangular corridors that serve to bound the space. The system is efficient
for its intended purpose of pedestrian navigation for visualisation purposes but the
rough bounding of the environment means the space is not accurately utilised during
heavy congestion. Additionally, pedestrians have fixed pre-calculated routes through
the environment which does not account for minor route-changes required to avoid
congestion. Yersin et al. [159] directly tagged the graph nodes with high-level semantic
information (e.g. the node is a park or a hotel) making it easier for users to specify
pedestrian objectives through the GUI.

20 Related Work

Gloor et al. [57] presented a hybrid approach where graphs are used to indicate
a general path combined with the use of potential fields in areas that require more
detailed navigation information. This concept is extended by Kneidl et al. [58] where
the graph is used to find alternative route choices to represent different pedestrian
behaviour according to the familiarity of the environment. The approach relies on the
fact that large sections of the environment are sparse enough to not require the use
of potential fields. Should the environment be uniformly dense the advantage of this
hybrid approach is negated.

Treuille et al. [37] presented an alternative approach, the continuum crowd model,
which is not based on ABM. Here, local collision avoidance and global navigation is
resolved together using grids of potential fields. The shortcoming of the approach is
similar to grid-based navigation in that it is not scalable to simulations with very large
environments or one that requires pedestrians to have a large number of navigational
objectives. Shopf et al. [46] dealt with the large environment problem by using a
lower-resolution field and augmenting the collision avoidance behaviour based on the
velocity obstacle model.

Navigation at its most fundamental level is a path-finding problem, a way to find
an ‘optimal’ route through an environment according to certain heuristics. Taking the
shortest route possible to a destination is certainly an important heuristic [160, 161]
and has been observed to create ‘desire lines’, worn trails resulting from pedestrian
taking short cuts outside of planned paths [100]. There are also many other heuristics
to consider such as safety factors, aesthetics, path-width, congestion, number of turns,
elevation, stairs, signage and whether a path goes back on itself [160–162]. Armeni et
al. [163] observed when tracking pedestrian journeys, that they often choose a route
which is longer but is able reach their destination with the same amount of time or
faster as there are fewer obstacles and traffic. Golledge [162] showed that even with
the same origin and destination specified, pedestrians may take different routes on the
return trip.

2.3 Pedestrian Simulation Systems and Frameworks

Many software systems specific to the domain of pedestrian simulation have been
created for the purposes of research and commercial use [59, 164]. Should the existing
systems not be suitable, generic ABM frameworks can be used as a basis for the
implementation of a pedestrian simulation system. This section gives an overview on
the available microscopic pedestrian simulation systems and ABM frameworks widely
used in research and commercial sectors.

2.3 Pedestrian Simulation Systems and Frameworks 21

A table listing a number of pedestrian simulation systems can be found in the
review of evacuation models by Kuligowski et al. [164]. While the table was compiled
from the perspective of pedestrian evacuation, many systems listed can be used for
wider range of scenarios, such as simulating the normal running of a facility [26].

In terms of availability, some systems are offered commercially either as a software
package or through consultation such as Exodus [60], Legion [26], MassMotion [30],
Urban Analytics Framework [61], Pathfinder [165], Simulex [166], Simwalk [167],
and STEPS [135]. Other systems are available as open source software or showcased
as part of scientific literature such as EPT [168], FDS+Evac [25], PEDFLOW [169],
Gridflow [170], or MASSEgress [171].

In addition to the basic pedestrian model, these systems often provide additional
pedestrian behaviours in addition to local collision avoidance and basic point-to-
point navigation. Some systems [25, 165–167] are partial behaviour models that
can include implicit behaviours such as unique occupant characteristics, overtaking
behaviour, and the introduction of smoke or smoke effects to the occupant. Other
systems [26, 30, 60, 61, 135, 168, 169] have behaviour models that explicitly simulate
behavioural actions and decision-making. The result of the decision-making can also
depend on the condition of the surrounding physical environment.

Various approaches are taken by these systems for representing the local move-
ments of the pedestrians. Some systems use fine network representation [135, 168]
while others use the continuous network approach [25, 26, 30, 165–167, 169, 171].
Systems such as buildingExodus [60] and Urban Analytics Framework [61] however,
uses a mixture of coarse, fine and continuous network models.

Other than the pedestrian simulation, the systems also provide additional features.
FDS+Evac [25] has a built-in fire simulator. All the aforementioned systems can
implicitly, or with the help of a plug-in, import environments from external authoring
tools (e.g. from a CAD file). The also offer visualisation of the running simulation
and output of metrics for evaluating the simulation.

It is also possible to use a generic ABM frameworks to implement a pedestrian
simulation system. Some of these frameworks can be found in a review by Railsback
et al. [172]. There are frameworks available that takes advantage of the HPC architec-
ture. Lohner et al. [2] used CPU-based HPC for faster than real-time simulation of
over a million pedestrians. It uses an optimised PEDFLOW model [173] where the
environment bounding areas (domains) that have been created by Delaunay triangula-
tion are used to effectively define the communication boundary. Other general ABM
frameworks that can utilise the HPC architecture can be seen in the survey by Rousset
et al. [174] and these can be adapted for the simulation of pedestrians. The survey also
provided benchmarking for D-MASON [175], RepastHPC [176], Pandora [177] and

22 Related Work

FLAME [39] frameworks. As the FLAME GPU framework is used extensively in this
PhD, a review of the precursor FLAME framework is provided in Section 2.6.2.

Case studies are available that show the wide range of uses for pedestrian simulation
and highlight the multitude of data sources that must be taken into account and the steps
taken to verify and calibrate a pedestrian model. Cao et al. [1] used the AnyLogic [178]
software for suggesting design optimisation of the Nanjing Rail station. A database of
passenger behaviours was created by on-site observation and video tracking. From
the simulation, the author identified various problems such as improper location of
VIP areas and that there were a lack of enquiry desks. Multiple design solutions were
suggested and implemented with success according to the author.

Galea et al. [3] investigated the evacuation of the World Trade centre using the
buildingEXODUS software the architect’s plan obtained from the National Institute
of Standards and Technology. The investigation was to try and identify the likely
outcome of ‘what if’ scenarios and suggests that most pedestrians that survived the
initial shock could have escaped should there be a set of stairways intact from top to
bottom.

Veeraswamy et al. [4] extended the model in buildingEXODUS and applied
it to a rural and urban evacuation by including road networks, buildings and open
spaces. When applied to the scenario of Swinley forest fire in 2011, with fire spread
information coming from the Prometheus tool [179], it suggested an optimal scenario
which was counter-intuitive in that it resulted in maximum assembly time and longest
distance travelled.

Hoy et al. [72] used MassMotion [30] to simulate the Union Station in Toronto.
The model was calibrated by undertaking two surveys in a similar period to count
passengers at every entrance and exit, using existing pedestrian volume data and train
schedules. The paper predicted that the station will be over-capacity when there is
over 10% more passengers which are the numbers projected for 2031.

Zia et al. [44] used Repast HPC software to model the evacuation of an entire
city with 200,000 pedestrian agents during flooding. It uses a combination of GIS
and other data to create a simplified CA grid of static agents that represent navigable
areas of the city and pedestrian agents are overlaid on top of the static environment
agents. The pedestrian agents are a combination of ones that can navigate with perfect
information and ones that navigate by relying only on local perception. They are also
social and will follow agents with better knowledge and can warn others about the
closing of evacuation points (depending on the model strategy).

There are also many other applications such as redesigning a pedestrian cross-walk
[6], modelling of World Expo 2010 in Shanghai [7], evacuation in the case of a subway

2.4 Pedestrian Simulation and Decision Support Systems 23

fire [8], optimise pedestrian flow at the the main stadium at the Beijing Olympic games
[5] and tsunami evacuation [84].

2.4 Pedestrian Simulation and Decision Support Sys-
tems

A DSS is a tool that facilitates the analysis and decision-making process. In particular,
it refers to a computer-based tool that can combine and analyse data from models,
documents, databases, knowledge systems, etc. in order to identify problems and
suggest possible solutions. These offered solutions can potentially be ranked according
to a specific criteria identified by the user. DSS are extensively used in business and
management [62–64] but the principles can be applied to any domain, for example
clinical [180], agriculture [65], forest management [66] and transport [67].

Pedestrian simulation packages as mentioned in Section 2.3 can, in a sense, be
classified as a form of decision support system, whereby reports according to a
specified criteria are generated from the results of simulations and can be used to
identify potential problems. The systems still require a degree of user-directed analysis
along with their expertise to create designs and scenarios that can solve the identified
problem.

It is this lack of automatic optimisation and exploration of the problem space
that is still lacking with current tools and is very much an ongoing research problem.
One of the difficulties lies in the range of optimisation problems involved to cover
all cases. For evacuation, the usual problem is in finding the route that is fastest or
safest for the pedestrian. Kneidl et al. [181] tackled the problem by using a dynamic
navigation graph to direct pedestrians in various scenarios and running the simulation
to test whether the evacuation time improved. Feng et al. [182] similarly used a
network based approach but for reconfiguring the environment for more efficient
crowd movement. Hoogendoorn et al. [183] in addition looks at shaping of pedestrian
flow and distributing agents between multiple exits to reduce congestion. Bish et al.
[184] looks at evacuation of a larger area at a more macroscopic level using different
staging (households are told to evacuate at different times) and routing (households
are told which route to follow).

At the design stage it may be that a change in the layout of the physical space is
practical and automatic design optimisation tools using genetic algorithms or artificial
intelligence could be incorporated. Multiple other intervention strategies could also
be used to shape crowd flow, for example the introduction of safety staff, erecting
and placement of barriers, use of dynamic signs, closing off an exit/hallway, delaying

24 Related Work

arrival or public transport. All the mentioned interventions have associated cost and
may have varying effectiveness depending on certain situations. Even if a way is found
to objectively measure and compare all types of intervention, it is still necessary to run
simulations of the scenario that explore the solution space and verify its efficacy. An
example of this can be found in [4, 185] where multiple evacuations from a building
and forest fire are generated, respectively, with each route evaluated by running a
simulation for each one. Various stochastic behaviour can be introduced into the
model which can include probabilistic route choice, probabilistic decision making,
probabilistic emission of pedestrians, or the addition of noise to pedestrian movements.
When stochasticity is introduced into the model, for each solution proposed, it is
essential to run multiple simulations of the same scenario to obtain a good statistical
distribution spread. It is then easy to see a need for a system that can perform these
multiple similar simulations in parallel, and combine, analyse and rank the results
within an acceptable time. The multi-simulation issue is a topic addressed in Chapter 5.

For a DSS to be able to run and continually forecast problems, it is also necessary
to collect data about the state of the current system. In the case of pedestrians models,
an ideal system would be one that can count pedestrians coming in to the environment,
the path that they take through the environment, their activities in the environment and
their ultimate destination.

2.4.1 Pedestrian Tracking Systems

As well as technical challenges of pedestrian tracking, there are also the addition of
privacy concerns, safety requirements and practicalities of deploying tracking devices
that can cover a large environment. Many public transport hubs in the UK employ a
rudimentary form of pedestrian monitoring in the form of CCTV that is used to identify
criminal activity but not for automated counting or tracking (to public knowledge). In
UK rail, companies are employed to perform manual counting of passengers [186]
and the count data is combined with Origin Destination Matrix (ODM) data obtained
from rail schedules, ticket sales and gate information to give a more complete picture
of station utilisation.

An autonomous pedestrian tracking system ideally requires that no special equip-
ment needs to be carried on persons being tracked, is able to uniquely distinguish each
pedestrian continuously through the environment and is able provide spatial coordi-
nates and heading information at a good constant rate. Current pedestrian tracking
research can be divided broadly into two categories, the type that uses RF signals
from mobile/smartphones which are now almost ubiquitously carried on person, or
vision-based systems.

2.5 Parallel Computing Architecture for ABM 25

The RF tracking approach can use one or a combination of mobile (e.g. GSM,
CDMA, LTE), Wifi or Bluetooth signal that can be obtained from a mobile phone
[187, 188] but, as the use of mobile signals requires the co-operation of service carriers,
many approaches are limited to using only Wifi and Bluetooth signals, which have a
low capture rate and are not suitable for precise localisation [189–194].

Computer vision-based tracking of pedestrian is an active area of research and,
with the rise of deep learning, especially the use of convolutional neural networks,
the algorithms can learn to recognise and classify images and videos more accurately
than humans [195, 196]. The premise is to use video images captured by visible
light or infrared camera to detect pedestrians and their movement in time through a
sequence of video frames [197–200]. The approach is attractive in that it does not
require pedestrians to be carrying any special devices and hence can potentially be
used to track all pedestrians visible within the image. However, vision-based tracking
does come with its own domain specific problems which are occlusion [197, 201, 202],
i.e. when pedestrians overlap each other, detection in extreme crowd density, lighting
conditions [203, 204] and continuity [205–207], i.e. re-identifying the same pedestrian
when he/she has walked out of frame.

2.5 Parallel Computing Architecture for ABM

Computability poses a challenge in many scientific endeavours. Modelling of com-
plex physical phenomena such as weather, fluid dynamics, molecular interactions,
astronomical calculations, and engineering design are well known to require vast
amounts of computational resource. Fortunately, the computation needed for running
these models can be divided up and parallelised to a certain extent depending on the
application. This has given rise to the field of HPC which is devoted to the use of
supercomputers (e.g. a cluster of machines) and parallel processing techniques for
solving complex computational problems. While the clock frequency of modern pro-
cessors has remained stable over the last few years, the trend has been to add additional
cores on a single chip thus increasing its ability to perform parallel computation. At
the same time processors specifically designed with parallel architecture such as the
GPU or the Xeon Phi have become commonplace in some of the largest HPC clusters
[208, 209].

The same computability challenge is faced when simulating microscopic pedestrian
models as simulating many individuals and their interactions requires a large amount
of processing power, even more so in a system that is to be used for continuous
monitoring and prediction where it is required to run multiple simulations concurrently

26 Related Work

at speeds faster than real-time. The independent nature of pedestrian agents makes
the models suitable for concurrent and distributed processing on the aforementioned
hardware architectures.

The use of parallel hardware presents its own challenges in implementing inter-
agent communication and synchronisation of agent states across multiple cores, de-
vices, or nodes. Efficient utilisation of these systems, through load balancing and
code optimisation is non-trivial, requiring expertise in the architectural constraints
for each system and of concurrent programming paradigms. In order to reduce this
complexity and need for architectural expertise, many generic ABM frameworks exist.
The FLAME GPU ABM framework which is extensively used in the thesis is described
in Section 2.6.

2.5.1 GPU Architecture for ABM

The GPU was originally designed to accelerate the real-time rendering of 2D and
3D graphics. With the introduction of a programmable pipeline and the CUDA
parallel programming language, the GPU has become more accessible for use within
research and industry. The use of GPUs can now be found in many research fields
such as Medical Imaging [210], Computer Vision [211, 212], Robotics [213, 214],
Machine Learning & Artificial Intelligence [215, 216], and in various types of physical
simulation [217–221].

Rendering of a 3D scene is particular throughput intensive. A large number of
independent matrix multiplication and floating point operations must be performed
in order to render images at 25-30 frames per second. To give a comparison on pure
arithmetic performance, it can be seen from [222] that the best GPU has a five to fifteen
fold margin over an equivalent range CPU for theoretical single-precision floating
point operation rates.

The need to perform highly parallel floating point operations is reflected in the
design of the GPU hardware. Using an Nvidia GPU as an example, to enable high
throughput each GPU contains multiple (tens to hundreds) Streaming Multiprocessor
(SM) units with each one in turn composed of many Streaming Processor (SP) units
for arithmetic operations, cache for data, texture and instruction, and warp schedulers.
The warp is specific to the Nvidia GPU architecture and simply means a group of 32
threads that gets executed together. This SM configuration allows each one to run
hundreds of threads concurrently. Single Program Multiple Data (SPMD) parallelism
is used whereby each thread in the same warp is always executing instructions of
a program in lock-step but with different register addresses so that the data being
processed in each thread may be different. Should the program diverge, e.g. loops or

2.5 Parallel Computing Architecture for ABM 27

branches, the thread outside of the diverged instruction simply freezes until the code
converges again.

In order to feed enough memory to the SMs, the GPU is equipped with fast on-
board DRAM memory and a high bandwidth bus (hundreds of GB/s as opposed to
tens of GB/s bandwidth between CPU and its own DRAM memory). The host (CPU)
and device (GPU) is traditionally connected via the PCIe bus that operates at roughly
similar bandwidth as the host CPU and memory. At the same time, the amount of
expensive on-board memory is fixed and often smaller than the host memory, e.g. while
the Nvidia Tesla P100 card has 16GB, it is not uncommon to see servers equipped
with hundreds of GB. Memory management on the GPU is then something that must
be taken into account. It is necessary to reduce the relatively slow transfers between
the host and device as much as possible. When working with a dataset that does not
fit on the GPU, it is necessary to plan an efficient way to stream data in and out of
the device. When working with multiple GPUs on a single host, the memory transfer
between GPUs must also be factored in. Since the Nvidia Pascal processor, with
the introduction of 49-bit virtual addressing and page migration, a unified virtual
memory feature allows a block of memory larger than the GPU’s RAM to be allocated.
The memory is automatically synchronised between CPU and multiple GPU devices.
When the GPU tries to fetch memory that’s not on-board, it can cause a page fault in
order to migrate data from the CPU automatically. While the unified memory feature
has alleviated some memory management problems, it is still necessary to understand
the underlying memory transfer patterns and apply techniques such as memory pre-
fetching to make the most efficient use of the GPU. To help solve the bandwidth issue,
it is possible to obtain servers like the DGX-1 [223] that’s equipped with NVLink
interconnect which is around an order of magnitude faster than the current PCIe bus
and can connect between GPUs and CPUs.

Ever since the introduction of the programmable graphics pipeline, researchers have
been using the GPU for general purpose computing. It was possible to input and output
data by way of geometry or texture and programming was done using the graphics
shader. The process for converting existing algorithms to this workflow was complex
and un-intuitive. The introduction of Compute Unified Device Architecture (CUDA), a
C based programming language (also C++ later on), provided a way to do programming
directly on the GPU. Along with CUDA, Nvidia also provided parallelised versions
of commonly used libraries like Basic Linear Algebra Subroutines (BLAS) or Fast
Fourier Transform (FFT) and, as of today, includes others such as parallel data structure
primitives (Thrust) or neural network primitives (cuDNN). In addition, the ability to
share CUDA memory with 3D graphics libraries (e.g. binding data to a texture) allows
results to be visualised in real-time at little additional computational cost.

28 Related Work

Figure 2.1 CUDA programs are launched as grids of blocks. Each block contain
multiple worker threads. Threads in the same block are guaranteed to run on the same
GPU core.

2.5 Parallel Computing Architecture for ABM 29

CUDA presents parallelism to users with the concept of launching a single program,
a kernel, multiple times concurrently on a number of threads (Fig. 2.1). It uses the
concept of blocks which contain multiple threads and the threads within each block
are ensured to run on the same SM with shared access to the cache memory. This
way, the execution of blocks can be divided up between all the available SMs and run
concurrently (Fig. 2.1). Threads within a block have access to small amounts (less
than 100KB) of cache memory which are the L1 cache, texture cache, and shared
memory. The shared memory is the only cache that is directly programmable from
within the kernel. Each thread, in addition, has access to local memory of 512KB, a
global constant memory cache of 64KB, and global memory, which is the data that
resides on the device’s RAM, although this data access is much slower than shared
memory.

The parallel memory access pattern on the GPU is different from a serial access
pattern and this should be reflected in the structure of data that will be used on the
device. When reading from memory, the GPU does not only read a single variable but
loads a chunk of memory (128 bytes) to be cached. For serial data access, the Array
of Structures (AoS) pattern is followed (Fig. 2.2 left), where the variables of the data
structure are stored next to each other in memory. When accessing data in parallel, the
use of the AoS pattern causes an interleaved memory access pattern as can be seen
on the left of Fig. 2.2. This interleaved memory access means that the chunk loading
strategy employed by the GPU is less effective as unnecessary data is read into the
cache leading to more memory reads overall. The proper way to structure the data is to
lay it out as Structure of Arrays (SoA) where there is only one object and the variables
are instead laid out as an array. As can be seen on the right of Fig. 2.2, the memory
read is coalesed. A single memory read will contain data from the same variable so
there is minimal redundant memory reads.

As memory allocation on the GPU is relatively expensive, it is good practice to
pre-allocate and re-use this memory. Also, as for CPU memory, it is more efficient to
allocate single large blocks of memory at a time instead of many small blocks multiple
times. The same applies when allocating memory in-kernel and by doing so (e.g. for
the purpose of implementing dynamic arrays) each thread essentially makes a small
memory allocation which can cause severe reduction in performance. This limitation
essentially means that algorithms that require dynamic memory should be modified so
that allocation and management of memory is performed outside of the kernel.

The ABM approach in simulating many heterogeneous individuals naturally fits
well with the parallel processing nature of the GPU and so has been used in simulation
such as representation of cancer growth [224, 225], tuberculosis [226], consumer
behaviour in the insurance industry [227], road networks [228] and, of course, pedes-

30 Related Work

Thread

Block

0 1 2 N 0 1 2 N 0 1 2 N

...

Multiple global memory fetches

Cache memory access

Array of Structures Structure of Arrays

Single global memory fetch

typedef struct agent{

 float variable_1;

 float variable_2;

} xm_memory_agent_list [N];

typedef struct agent{

 float variable_1[N];

 float variable_2[N];

} xm_memory_agent_list;

Cache BlockCache

Figure 2.2 The diagram shows the difference in GPU memory access patterns for
internal AoS and SoA. SoA leads to fewer memory fetches overall as one request
obtains a chunk of memory that can be used by multiple threads.

trians [46, 68, 70, 229–234]. By using GPU to accelerate the processing of simulation
in parallel, a gain in an order of magnitude is possible [218, 224].

An attempt has been made previously to create an ABM framework for the GPU
using the fixed rendering pipeline [235] but to date the only modern general ABM
framework that uses the GPU’s general computing capabilities by taking advantage of
CUDA is FLAME GPU [236, 237], which is further explored in Section 2.6.3.

2.5.2 HPC Architecture for ABM

Some computational tasks are infeasible to solve within acceptable time on a single
processor or are simply too large to fit on system memory for efficient processing.
HPC is a concept of splitting up the large task into smaller subtasks and distributing
them across multiple processors to be run concurrently. Processors can be connected
up through shared memory, i.e. by sharing the same physical RAM and bus. The
shared memory paradigm can in fact be seen in modern computers as they often
have more than one processor core. The advantage of shared memory is the fact that
it is not necessary to synchronise between different memory spaces and therefore
there is no communication cost involved with the synchronisation. As the number of
processors increases, however, the design of high speed RAM and a bus with large
enough bandwidth becomes an issue.

The other approach is the use of distributed memory where each processor has
its own physical RAM and communicates through the network connection. The

2.5 Parallel Computing Architecture for ABM 31

distributed memory approach is harder to program for as the inter-processor communi-
cation needs to be taken into account. The approach is, however, more modular in the
fact that each processor can be hosted within a separate machine, commonly referred
to as a node, and nodes can be added or removed from the network more easily.

In modern HPC it is common to find a mixture of this where there are many nodes
in the network with their memory distributed. Inside each node can be a number of
processor cores with shared memory that can perform further parallel processing at
the node level. Good examples of modern HPC with a mixed memory architecture
are China’s Sunway TaihuLight [238], that has 40,960 nodes with SW26010 RISC
processors containing 256 computing cores, and IBM’s Sequoia [239], which has
98,304 nodes equipped with 16-core PowerPC AC2 processors. Many researchers
have used HPC systems for simulating models with very large numbers of pedestrian
agents [240–245].

It is important to decide how the work is divided up across the nodes. While
the ideal is to have each node doing a similar amount of work, in reality it may not
be simple to do this division of labour. Large-scale pedestrian simulation, e.g. city
scale with millions of pedestrians, presents a good example where certain parts of
the environment may be busy, whereas other parts are less dense and hence require a
different amount of computation. If the domain, in this case the physical environment,
is decomposed into an even grid of subdomains and each subdomain distributed to
a node it can be easily seen that some nodes where there’s pedestrian congestion
will have more processing work than others. Performing domain partitioning and
decomposition in a way that takes into account the processing (e.g. split the congested
regions into smaller domains than non-congested regions) that will be performed in
the domain is necessary for running an efficient simulation on the HPC [41, 246, 247].
Another factor can include memory available in each node in that the size of any
subdomain should not have memory requirements larger than a single node in the
cluster.

Tasks distributed between nodes are often not independent from each other. With
distributed memory, the synchronisation of data between nodes becomes an issue.
In pedestrian simulation for example, a pedestrian agent requires local knowledge
of their pedestrian neighbours. If the pedestrian should happen to be on the edge
of a subdomain, its perception range can cross over to another subdomain. This
means the node must obtain information from other nodes that are responsible for
the neighbouring domains. More data sent across the network means extra cycles are
needed for the serialisation, deserialisation, sending and receiving of the data. It is then
necessary to ensure that only the necessary data is sent across. This can, for example,

32 Related Work

be that only the pedestrian information at the edge of a domain is sent. In fact, it is this
saturation in network bandwidth that causes bottlenecks in large simulations [39, 248].

HPCs are not limited to nodes with CPUs. Clusters such as Oak Ridge’s Titan [208]
or Swiss National Computing Centre’s Piz Daint [209] are equipped with GPUs to
take advantage of both architectures. They are being used in many fields such as fluid
dynamics for solving incompressible flow [249], seismic modelling [250], a billion
agent boids model [248] and pedestrian simulation [234, 251]. With GPU clusters,
the problem of network bandwidth becomes a much bigger issue as the processing
throughput of the GPUs means quicker simulation iterations and so requires much
more communication between nodes in the same period of time. In order to remedy
this, latency hiding techniques can be used such as overlapping data movement with
compute, or fast interconnects such as Infiniband of Intel Omnipath must be used.

It is important to note that multi-simulation, as used in this thesis, refers to the
running of small simulations that does not require the entire capacity of the GPU.
Although a lot of pedestrians may be simulated at the same time with multi-simulation,
unlike large-scale simulations [234, 251] where the pedestrians exist in the same
simulation domain, these smaller simulations run independently and hence does not
require communication between GPUs or different nodes.

2.5.3 A Summary of GPU and HPC Architectures

The GPU and HPC are prominent platforms for parallelising and accelerating scientific
computation. It has been shown in many cases that ABM models can be parallelised
for simulation on both GPU [46, 68, 70, 218, 224–234] and HPC [39, 234, 240–
245, 248, 251] platforms. Each platform, however, provides different advantages for
the running of ABM simulations.

For models that can run within GPU memory, GPU simulation can outperform
serial simulation on the CPU by an order of magnitude. As memory transfer to
and from the CPU is slow compared to the simulation process, it is recommended
for programs to limit communication between CPU and GPU. The GPU allows for
efficient 3D visualisation as agent memory is located on the same device that is used
for 3D rendering. The inefficiency in allocating memory dynamically within agent
functions can, however, make some models harder to implement.

Alternatively, HPC systems are suitable for extremely large models where the
memory requirements exceeds that of a single machine, for models with many parame-
ters and for models that require dynamic memory allocation. Models that perform less
inter-agent communication or ones that can apply spatial partitioning to their messages

2.6 The FLAME Framework 33

will perform better across a larger number of nodes due to the low communication
overhead.

2.6 The FLAME Framework

The FLAME GPU framework was used extensively for the work in this thesis as
it simplifies the development of pedestrian models optimised for Graphics Process-
ing Unit (GPU) hardware. This section details the concept of the FLAME system
(Section 2.6.1) and explains the two variants of the FLAME framework for High
Performance Computing (HPC) (Section 2.6.2) and GPU (Section 2.6.3) platform and
provides benchmarking using the Circles Model (Section 2.6.4).

The Flexible Large-Scale Agent Modelling Environment (FLAME) is an Agent-
based Modelling (ABM) framework designed for efficient multi agent simulation
using parallel computing architectures. It is designed so that architectural details are
abstracted away from end users who specify models using a high level description of
agents and their behaviours. Models are specified as a combination of an XML model
description file and functionality code written in C (Section 2.6.1). The framework
is robust and has been used in a wide range of agent modelling areas from biological
science [69] and biological systems [252–255] through to modelling of the European
economy [73].

Versions of FLAME for HPC and for the GPU utilise the same modelling format
but target different architectures by specifying different templates for code generation.
While both systems offer parallel computation, each has different advantages and
limitations which affect the type of simulations that are optimal to run on each platform
(as discussed in Section 2.5).

2.6.1 FLAME and FLAME GPU System Overview

FLAME agents are described as communicating stream X-machines [256, 257]. Simi-
lar to finite state machines, an X-machine has the addition of memory which is updated
according to some function during state transitions. Communication between agents
is performed by sending and receiving messages from each other through the use
of message boards. Each message board handles a single type of message and is
responsible for the efficient storing and retrieving of messages. Message boards are
only allowed to be written to or read from once within a transition function. This is in
order to ensure a stream like paradigm which prevents race conditions due to global
synchronisation being ensured after each transition function. The use of message
boards as an intermediary allows agents to be executed concurrently as they are not

34 Related Work

Figure 2.3 Process of transition between agent states and its use of the message board.

dependent on each other’s memory. Communication overhead for the simulation is
reduced for distributive systems as it is not necessary to communicate entire agents
across a network, instead only message boards require distribution. In cases where
agent interactions are spatially local, messages can be spatially partitioned to further
decrease communication of messages between computational nodes. The processes
of agent transitions between states and message board usage is shown in Fig. 2.3. An
example of a complete model with two agents is shown in Fig. 2.4. This illustrates
how all communication between agents is handled by the message boards and hence
shows that only message boards require synchronisation after transition functions that
write to them.

A FLAME model is specified using XML, governed by a schema in much the
same way as other common XML specification techniques such as SBML [258] or
CellML [259]. Model specification includes the definition of items such as global
constants, agents and memory, agent state transition functions and messages. In order
to generate simulation code, FLAME uses a parser and set of architecture specific
template files to generate compilable C code (Fig. 2.5). Agent transition functions
defined in the model are implemented as C scripts which link with simulation code
at compile time. Running a simulation requires the additional specification of an
XML seed file containing initial variables and agent instances. An XML model file is
comprised of the following information:

2.6 The FLAME Framework 35

Figure 2.4 Example agent model definition with two agents. Each agent has 3 states
(AS# and BS#) and 2 transition functions (AF# and BF#) that either send or receive a
message.

1. A set of environment, or constant variables, which may be set between simulation
steps. These are useful in controlling aspects of the model within a real time
simulation.

2. A set of X-Machine agents. As with the formal definition of an X-Machine
[260], each agent definition consists of a description of the agent’s internal
memory (the agent variables), a set of internal states (which may add a degree of
diversity to an agent population) and a set of function definitions (which define
the transition between any two states including any agent or message input or
output). Each agent may be either discrete, in which case it is non mobile and
part of a cellular automaton, or continuous, in which case it may be spatially
distributed or represent a more abstract non spatial entity.

3. A set of messages. Each message definition has a set of communicated informa-
tion (or variables) which may be input or output from within the agent function
scripts allowing indirect communication between agents. A message definition
also defines any restriction on message range or the type of agent which may
use it (discrete or continuous). This ensures the back end simulation uses the
most efficient communication algorithm for message iteration within the agent
functions.

36 Related Work

Figure 2.5 Architecture of the FLAME and FLAME GPU frameworks.

4. A set of function layers. This describes the sequential stepwise order of execution
of the agent functions within a single simulation step. A single layer may execute
more than one agent function in parallel if they share no dependencies, i.e. do
not share any common message input or output. While automatically defined
in the CPU version using dependency checking, the layers must be defined
manually for the GPU version.

2.6.2 FLAME for the HPC Architecture

Although the FLAME framework [261] is capable of running on single CPU systems,
it is optimised for running on HPC architectures. The HPC implementation of FLAME
is able to automatically distribute agent data across multiple nodes in order to run
extremely large models restricted only by the size of the memory of the nodes used
and type of partitioning employed. The message board approach is combined with par-

2.6 The FLAME Framework 37

titioning and filtering strategies in order to reduce the cost of network communication.
This avoids a bottleneck due to heavy inter-agent communication.

Internally within HPC FLAME, agent memory is implemented as a list of structures
which is made fully accessible to the current transition function. The message board is
implemented as a library for handling all inter-agent communication between different
network nodes. Simulation space can be internally partitioned for agents operating
in continuous (Cartesian) space. This partitioning is performed according to the
communication radius defined by the agent. Agent distribution across nodes complies
with this partitioning regime. As each node knows what space partition others are
responsible for, it is possible to filter messages by location and send them to the correct
node. Partitioning becomes non-trivial in the case where agents are location agnostic,
i.e. when the agent does not have spatial coordinates to limit potential interaction
range, the filtering of messages has to depend on a variety of factors. In this case, for
each message board, agent filter data is created for each node, i.e. the list of agents in
this particular node and the type of messages it receives. This data is amalgamated
and distributed to all the nodes. This filter data is then used within each node to filter
the number of outgoing messages across the network.

The execution order of agent transition functions and message synchronisation
are static and based on an automatically generated function dependency graph. The
function dependency graph, in the form of a directed acyclic graph, for all agents in
the model is generated by analysing the messages sent and received between agents.
As an example, consider the model in Fig. 2.4. A function dependency graph for this
is shown in Fig. 2.6. It can be seen that the function BF2 depends on the Y variable
output from the AF2 function and that the function AF1 depends on the X variable
output from the BF1 function.

Work is currently underway to create an updated version of FLAME which expands
upon the issue of data granularity in order to improve parallisation [39]. By extending
the dependency graph to account for agent memory variables, granularity can be
reduced from agent entity level to variable level. This means FLAME can partition
subsets of agent memory for each agent function and it is the execution of functions
that can be partitioned instead of whole agents. The execution of these functions can
then be best fit to any underlying architecture involving multi-core, multi-node CPUs
or multiple GPUs. The ability to perform dependency analysis at the variable level will
also help to create a broad dependency graph where functions which are not dependent
on the same variables can execute in parallel (Fig. 2.7) as opposed to the current tall
and narrow graph (Fig. 2.6) which leads to sequential execution. The variable-level
dependency graph will make it possible to implement a dynamic task scheduler which
can adapt to the different run-time conditions and communication loads.

38 Related Work

Figure 2.6 Dependency graph generated for the example model in Fig. 2.4.

Figure 2.7 An updated dependency graph with data granularity defined. In this
example, the transition functions AF1 and BF2 are independent and hence can be
executed concurrently.

2.6 The FLAME Framework 39

2.6.3 FLAME for the GPU Architecture

FLAME for the GPU (or the FLAME GPU framework) [40, 261] is an implementation
of FLAME which utilises GPU hardware. Rather than use the traditional FLAME
parser, FLAME XML models are translated to NVIDIA CUDA C code using an
XSLT parser and a set of XSLT templates. Agent functionalities for FLAME GPU are
written as CUDA C scripts. Dependency graphs are not generated to automatically
schedule agents. It is instead up to the modeller to specify the sequential order in
which transition functions are executed. This execution sequence is specified within
the XML model files and each entry in the sequence is referred to as a layer.

Internal agent lists and message boards are stored as Structure of Arrays (SoA)
(as opposed to Array of Structures (AoS)) to ensure memory access is coalesced
and reduce the number of required memory fetch operations (Fig. 2.2). Message
boards are bound to texture memory to provide locality based caching. User-defined
agent transition functions are called from a wrapper kernel which hides this memory
management process. Adding and iterating through messages is performed through a
set of device function calls.

There are two different types of agents in FLAME GPU. The first is discrete
agents, which are best used to represent a cellular automata. They are represented in
memory as a static list and their position in space corresponds to their position in the
list. The second is continuous spaced agents, used to represent agents in Cartesian
space. Their locations within the agent list do not correspond with their locations in
space. New agents can be created and old ones killed during simulation. However,
pre-allocated maximum number of agents must be specified. Agents are stored and
executed according to their current state. This ensures little divergence between code
executed on the GPU, a performance strategy which is particularly beneficial. The
agents can be created from within a transition function by calling the framework’s
agent creation device function specific to the agent name. These calls result in an entry
written to a sparse agent birth list which is then compacted and added to the actual
agent list. An agent can be killed from within its own transitional function by returning
a kill flag. This array of kill flags is used to filter and compact the current list of agents
which are still alive.

In order to optimise performance for common communication strategies a dis-
tinction is made between three common types of message communication: discrete,
brute-force and spatial partitioning. All types of messages are stored as a 1-dimensional
list in memory. Discrete messages are only available for 2D space and are stored
column-wise in the 1-dimensional message list. The descrete message’s location in
the list corresponds to the agent’s location in the 2D discrete grid. Due to this link

40 Related Work

between the agent and message’s location, only discrete agents can send discrete
messages. Brute-force messages are simply un-partitioned messages and the agent
that receives such a message must iterate through the entire message board (i.e. O(n2)

communication). Spatial partitioning applies 3D grid partitioning to messages based
on their x, y and z coordinates. After the transition function that outputs this message
type, the messages are sorted and hashed to a particular cell in the grid for efficient
access.

The simulation can be efficiently visualised with the use of compatible 3D graphics
libraries such as OpenGL or Direct3D. GPU data used by CUDA can be bound
to texture, vertex or other buffer memory to be used directly by these 3D libraries.
OpenGL is used as a standard in FLAME GPU and basic 3D visualisation is provided
by default. After every iteration, the x, y and z coordinates of all agents is copied to
a texture buffer object (TBO) where they are stored within the red, green and blue
colour components, respectively. Agents are rendered as spheres using a GLSL vertex
shader which uses an instancing technique to displace agents according to the positions
specified within the TBO. Global simulation variables can be defined within the model
file and can be manipulated during the running of the simulation. This provides a way
to interactively change parameters of the running model (e.g. changing a pedestrian’s
average speed distribution) or changing the state of the simulation (e.g. specifying that
a fire has occurred) or related to rendering (e.g. changing the Level of Detail (LOD)
distance).

2.6.4 FLAME HPC and GPU Performance Benchmarking

Two key measures of the performance of any computational simulation are time taken
in the modelling process and the quantitative measure of simulation performance (e.g.
simulation speed). A force-based model, the Circles model, has been used as a basis
for benchmarking performance across the different platforms. A single Circle agent
type has a position in a two-dimensional space with a radius of influence. Each agent
reacts to their neighbours by exerting a repulsive force. Given sufficient simulation
time, the agents will distribute themselves evenly within the environment. Each agent
has coordinates x, y and velocity (fx and fy) in its memory. Three state transition
functions are defined, of which the first outputs location information, the second cycles
the location information of other agents to influence its own velocity and the third
performs a movement operation by translation of its own location coordinates. The
agents use only location messages which contain x and y coordinates. Both FLAME
HPC and GPU utilise their respective message spatial partitioning techniques. The
reduction in time required for the modelling process can be difficult to quantify but

2.7 Summary 41

the modelling code required to create a complete simulation can provide an indication.
The Circles model can be described within 90 XML elements and fewer than 62 lines
of agent function script.

Coakley et al. [39] demonstrated the model on a 432 core Fujitsu PRIMEGERY
blade server with 36 dual-Intel Xeon X5670 nodes. The simulation uses from 10,000
to 500,000 agents and experiments were performed utilising up to 432 processors.
The results indicated that parallel efficiency increases following the increase of agent
population. Iteration time does, however, flatten out at around 120 cores whatever the
population size. This is the bottleneck that is incurred by the synchronisation of the
message boards.

Richmond et al. [262] tested the FLAME GPU version of the model (without
visualisation) on a single GPU core of the 9800GX2 and GTX480 graphics cards.
Single precision floating point was used for agent memory variables and arithmetic
operations throughout the 9800GX2 while double precision was used for the GTX 480.
Additionally, further benchmarking has been performed using the GTX 590 with both
single and double precision on a single GPU core. The result of the benchmarking is
shown in Fig. 2.8. One thing to note is that the simulation times for single and double
precision showed no remarkable difference as the model is relatively communication
heavy. For 1,048,576 agents a single iteration can be simulated (double precision) in
only 27ms on the GTX590.

When comparing the GPUs to the HPC architecture, the HAPU with 100 cores is
able to simulate 1 million agents at around 6.641 seconds per iteration and the GTX590
uses 0.027 seconds giving a speed up of around 245 times. It shows the graphics
hardware can compete directly with HPC architectures when simulating large number
of agents due to the fact that it is a high-bandwidth architecture and as memory is not
distributed across multiple devices there are no issues with network latency.

2.7 Summary

This chapter has outlined the components of pedestrian modelling and the importance
of local motion and navigation for creating a complex simulation that behaves closely
to what is observed in reality. While computability presents a challenge to pedestrian
ABM, parallel hardware architectures such as the GPU or HPC can be used to speed up
simulation times or simulate larger models. Pedestrian simulation has been applied to
help solve many real-world design, crowd flow shaping and evacuation problems and
many tools and frameworks exist to help support this workflow. The implementation
of pedestrian simulation into a fully integrated Decision Support System (DSS) still

42 Related Work

Figure 2.8 Simulation times for various agent populations on different GPU hardware.

2.7 Summary 43

faces many challenges. There is the need for optimisation algorithms for ranking and
suggesting an optimal scenario, computability needed to explore the solution space
proposed by the optimisation algorithm and tracking systems needed for obtaining the
state of the current environment which can also be used to provide historical data.

In this thesis, the computability issue is addressed in Chapter 3 with the use of a
fast and scalable pedestrian navigation system in combination with models optimised
for the GPU. In Chapter 4, the results of the searchable navigation graph system
Section 3.2 are demonstrated using a working prototype pedestrian simulation tool
named Concoursia. Finally, Chapter 5 details a prototype multi-simulation tool created
for running multiple simulation scenarios concurrently across multiple GPUs and
computer nodes.

Chapter 3

Navigation for Pedestrian ABM

Whilst the Agent-based Modelling (ABM) approach to pedestrian simulation using fine
or continuous networks allows for a more detailed and heterogeneous representation of
pedestrian behaviour, it comes at a much higher computational cost when compared to
pure macroscopic (coarse network) models. High Performance Computing (HPC) has
been proven to be a viable platform for running large pedestrian ABM. By splitting
up the simulation domain and distributing the process across multiple HPC nodes,
Grandison et al. [41] was able to achieve up to 13.9 times speed up compared to a single
CPU. However, as discussed in Sections 2.5 and 2.6.4, the use of a Graphics Processing
Unit (GPU) can provide a more cost-efficient way to accelerate the simulation of ABM,
as there is a large investment difference in a single GPU system and a HPC cluster. The
caveat is that the benefit can only be obtained for models where both the representation
of the agents and the environment are small enough to fit within the memory of a
single GPU.

By keeping the model small enough to be simulated on a single GPU device, the
extra complexity and processing required to synchronise memory between multiple
nodes can be avoided. In addition, there is no need to manage the latency that
results from the difference between the higher bandwidth internal memory and the
lower bandwidth cross-node communication. The bandwidth difference is especially
pronounced when each node in the HPC is equipped with GPUs since they are high
throughput devices. Keeping the model small enough means keeping in mind the
representation of pedestrian agents and the environment. A good example of this
can be seen when comparing the representation of the environment as a uniform grid
(Section 3.1) and as a graph (Section 3.2) where the latter’s memory requirement does
not increase exponentially with the environment size.

The use of local perception alone for navigation is insufficient in all but the simplest
of environments. In many cases, a pedestrian’s destination extends much further than

46 Navigation for Pedestrian ABM

their local perception range with obstacles such as corners, walls and stairs in between.
When many alternative routes to a destination exist, many heuristics can apply to the
choice [100, 160–162], such as a pedestrian’s familiarity with the environment, route
chosen by other pedestrians, signage or congestion. It is possible that pedestrians need
to navigate to multiple different locations to achieve their overall goal, for example
catching a specific train would require one to buy a ticket and navigate to the correct
platform. In terms of the implementation of a navigation system, it must be optimised
to the GPU platform and be scalable in terms of the environment size and has high
performance even when supporting large number of pedestrian agents.

This chapter details the research into two types of navigation system suitable
for use with pedestrian ABM systems, agent-based navigation grid (Section 3.1) and
searchable navigation graph (Section 3.2). A comparison of the two navigation systems
is provided in Section 3.3. This includes a comparison of their memory use and a
discussion on when best to utilise each system.

All of the work in this chapter uses the FLAME GPU framework (Section 2.6.3)
to implement the pedestrian agent model on the GPU in order to gain the processing
advantages provided by the parallel architecture.

3.1 Agent-based Navigation Grid

There are many global navigation techniques that are suitable for use with pedestrian
ABM, as discussed in Section 2.2.2. These techniques however, are implemented
separate to the pedestrian model.

This section proposes a novel navigation system that fully integrates with the ABM
approach. It is a system where both pedestrians and the environment are modelled
as agents. It uses a grid of discrete navigation agents to provide grid-based vector
field navigation for pedestrian simulation. This means the system can be implemented
in any generic ABM framework, allowing it to take advantage of any support for
parallel architecture. In addition, a novel context-aware smoothing technique termed
“backflow smoothing” is introduced in Section 3.1.2 to deal with the problem of
diagonal convergence that can appear when generating vector fields. This work has
been published at TPCG 2010 [70].

The FLAME GPU framework (Section 2.6) is used as a base for implementing the
grid-based navigation system and pedestrian model. In accordance with the FLAME
GPU model specification, two distinct types of agents are used: the pedestrian agents
(Section 3.1.1) and the navigation agents (Section 3.1.2). Fig. 3.2 illustrates, in chrono-
logical order, the sequence of functions that each agent performs and the messages

3.1 Agent-based Navigation Grid 47

x

y

Pedestrian agent

Navigation agent

Grid of navigation agents

Figure 3.1 Pedestrian agents exist on top of a grid of discrete space navigation agents
and their position can be transformed to a relevant navigation agent cell.

Figure 3.2 Sequence diagram for function call of both agents and their utilization of
the message pool.

used in their communication. In the model, the environment that the pedestrian agents
interact with consists of navigation agents arranged in a discrete grid (Fig. 3.1). Each
navigation agent contains a set of vectors specific to their location that are used to
guide the pedestrian agents to their destination and for avoiding static obstacles such
as walls. They also act as entrances and exits to the simulation.

In order to help with the authoring of the environment, a GUI tool (Section 3.1.3)
was created that allow users to create and edit the physical environment. The tool is
then able to create the required vector fields and export the data to be used as the initial
states of the navigation agents for use in the simulation.

An evaluation using a simulated scenario based on a real world environment to test
the performance and behaviour of the system is presented in Section 3.1.4.

48 Navigation for Pedestrian ABM

3.1.1 Pedestrian Agents

Pedestrian agents are continuous space mobile agents, each one representing a single
embodied pedestrian entity within the simulation. The functions of the pedestrians
and how they interact with navigation agents are outlined chronologically from top to
bottom in Fig. 3.2 and the parameters of each agent are shown in Listing 3.1. For this
particular case, the standard social force model with contact force [22] was chosen as
it is a popular model used within research. However, other variations of continuous
spaced pedestrian models, as mentioned in Section 2.2, can be used interchangeably.

The motion of pedestrian agent is calculated using a social and contact force model
by Helbing et al. [22], where large contact forces are applied between pedestrians
when they are touching each other, which helps to more accurately simulate areas
of higher congestion. For N number of pedestrians, each pedestrian i with mass mi

and desired speed v0
i and their neighbouring pedestrian j has a force equation (3.1)

where all forces exerted on and by the pedestrian~fff All is composed of the navigation
force~fff Nav, a sum of inter-pedestrian interaction forces~fff i j and a sum of static obstacle
interaction forces~fff iw.

~fff All =
~fff Nav + ∑

j(6=i)

~fff i j +∑
W

~fff iW (3.1)

The navigation force~fff Nav, which can be found using Equation (3.2), is the force
exerted to reach a desired speed v0

i in the desired direction~eee0
i where vi is the current

speed and τi time characteristic.

~fff Nav = mi
v0

i (t)~eee
0
i (t)− vi(t)

τi
(3.2)

In the inter-pedestrian interaction equation (3.3) the first term Aie(ri j−di j)/Bi is
composed of repulsive force from other pedestrians that exponentially increases the
nearer the distance between pedestrians. Ai and Bi are weighting constants, ri j is the
sum of the two pedestrian’s radii ri + r j, and di j is the distance between the centre
of mass of two pedestrians. The second term kg(ri j − di j)}~nnni j is the ‘body force’
counteracting body compression and the third term κg(ri j −di j)∆vt

ji~ttt i j is the ‘sliding
friction force’ which impedes tangential motion, both only apply when pedestrians
are touching each other and di j is less than ri + r j. The parameter ni j = (n1

i j,n
2
i j) =

(ri − r j)/di j is a normalised vector pointing from pedestrian j to i. Parameters k =

1.2×105kgs−2 and κ = 2.4×105kgm−1s−1 are obstruction effects. Parameter ti j =

(−n2
i j,n

1
i j) is the tangential direction and ∆vt

ji is the tangential velocity difference. g(x)
is a function that outputs zero when pedestrians are not touching.

3.1 Agent-based Navigation Grid 49

~fff i j = {Aie(ri j−di j)/Bi + kg(ri j −di j)}~nnni j +κg(ri j −di j)∆vt
ji~ttt i j (3.3)

The static obstacle interaction equation (3.4) is composed of the wall avoidance
term Aie(ri−diW)/Bi , compression term kg(ri −diw) and the friction force term κg(ri −
diW)(~vvvi ·~ttt iW)~ttt iW . The parameter diW is the distance to the obstacle W , niW is the
direction perpendicular to the obstacle and tiW is the tangential direction.

~fff iw = {Aie(ri−diW)/Bi + kg(ri −diw)}~nnniW −κg(ri −diW)(~vvvi ·~ttt iW)~ttt iW (3.4)

For this model while the desired speed is kept constant at standard walking speed
of v0

i = 1.4ms−1 other variables are kept the same as the original paper [22] where the
mass is m = 80kg , acceleration time is τi = 0.5s, constant Ai = 2×103 and constant
Bi = 0.08m.

Each pedestrian agent first broadcasts their locality and velocity in the broadcast_position

function. The broadcast messages pedestrian_location (Listing 3.2) are stored in
a 3D spatial hash with pedestrian’s position as key. In the avoid_pedestrian func-
tion pedestrians iterate through other pedestrian location messages within a radius
of rmsg = 5m. The repulsive force~fff i j is calculated for each pedestrian in range and
stored in the variables force_x and force_y. The navigate function translates the
pedestrian agent’s current coordinates into a discrete grid coordinate and obtains the
navigation_message at that location. The pedestrian uses its exit variable to determine
the correct navigation vector parameter to use as the desired direction~eee0

i and when
the pedestrian’s exit variable matches the navigation_message exit variable the pedes-
trian knows it has reached the correct exit. The collision_x and collision_y variables
contain the location of the nearest static obstacle and are used to calculate the wall
interaction force ~fff iw which is used to set the agent’s force_x and force_y variables.
Navigation and static obstacle avoidance is further explored in Sections 3.1.2 and 3.1.2.
The change in velocity ∆~vvvi of the pedestrian is calculated using Equation (3.5) where
the current time step is normally set at ∆t = 0.2s.

∆~vvvi =
~fff All∆t

mi
(3.5)

To prevent numerical instability, where ∆~vvvi is above the speed threshold v∆max =

0.2ms−1, ∆t is scaled according to Equation (3.6). As the time step applies to all
pedestrians, the threshold is applied to the one with the greatest ‖∆~vvvi‖ by having all
pedestrians store the value in the deltaSpeed parameter and the scaling is performed
after the navigate function has completed.

50 Navigation for Pedestrian ABM

∆t f inal :=
v∆max

‖∆~vvvi‖
∆t (3.6)

Finally, with the scaled time step ∆t f inal the move function re-calculates the velocity
change ∆~vvvi. The change in velocity is then added to the current velocity ~vvvi with
equation (3.7) and stored in pedestrian variables vel_x and vel_y.

~vvvi := ∆~vvvi +~vvvi (3.7)

The position~pppi can then be calculated with Equation (3.8) which is used to set the
pedestrian’s position variables x and y.

~pppi :=~vvvi∆t f inal +~pppi (3.8)

pedestrian_agent:agent{

x:float32

y:float32

height:float32

deltaSpeed:float32

vel_x:float32

vel_y:float32

force_x:float32

force_y:float32

exit:int

}

Listing 3.1 Pseudocode of a single pedestrian agent’s parameters.

pedestrian_location:message{

x:float32

y:float32

}

Listing 3.2 Pseudocode of a single pedestrian_location message’s parameters.

3.1.2 Navigation Agents

Navigation agents are discrete space agents arranged on a two dimensional grid. As
each agent contains a set of vectors used to assist the pedestrian agents in their global
navigation, each agent can be thought of as a cell and a grid of them makes up a set of
overlapping vector fields. Fig. 3.3 illustrates an example of a simple environment with

3.1 Agent-based Navigation Grid 51

a wall to the north and an obstacle in the middle (black squares). In the example the
pedestrian has two destination locations, either navigating to the exit to the west or to
the north-east (red squares). Two types of vector fields are used. The vector field used
for the avoidance of static obstacles such as walls is called the Collision Vector Field
(CVF). The vector field used for guiding agents to their intended goals is referred to as
the Navigation Vector Field (NVF). In this example model, all goals are associated
with an entrance/exit to the environment and the number of NVFs corresponds to
the number of exits. Each cell in the NVF is encoded with a vector that points to
the shortest non-obstructed direction to the goal. Each agent can also be marked as
an entrance and an exit associated with a single destination. An agent marked as an
entrance is able to emit pedestrians. An agent marked as an exit allows pedestrians to
exit the environment once they have reached the location of the agent and if they share
the same destination id.

The Navigation agents have two functions, generate_pedestrians and
output_navigation_message (Fig. 3.2). When the generate_pedestrians function is
called, if the navigation agent is deemed to be an entrance it will randomly generate
pedestrian agents at that location at a configurable (people per minute) rate. Newly
generated pedestrian agents are then assigned a random exit goal according to a
probabilistic function. Since all vector fields were generated before the start of the
simulation, at run-time navigation-agents need only to broadcast information of their
respective cell in the vector field. This is handled by the output_navigation_message

function.
The structure of a navigation_message can be found in Listing 3.3. The height

parameter is used to encode a discrete height map of the simulated environment and is
used within the visualisation to displace pedestrian agents across differing physical
levels in the simulated space.

For a CVF cell, the variables collision_x and collision_y encode a normalised
repulsion vector pointing away from the obstacle~nnniW . The variable collision_d is
distance away from the pedestrian diW that can be used directly in the static obstacle
interaction force equation (3.4). Only one CVF map is required as pedestrians still
have to avoid the same static obstacles whatever their destination.

The variables exit#_x and exit#_y describe a normalised navigation vector with
the direction leading agents towards the nearest exit cell and are used as the~eee0

i variable
in the agent navigation force equation (3.2). The number in the exit#_x or exit#_y

variables indicates which NVF map it belongs to and therefore the number of NVF
maps used is dependent on the number of destinations available within the model. For
the example in Fig. 3.3, there are two destinations.

52 Navigation for Pedestrian ABM

Navigation Agents

C
ol

lis
io

n
Fo

rc
e

Ve
ct

or
 F

ie
ld

N
av

ig
at

io
n

Fo
rc

e
Ve

ct
or

 F
ie

ld
 1

N
av

ig
at

io
n

Fo
rc

e
Ve

ct
or

 F
ie

ld
 2

Navigation Agents Grid

x

y

Destination/Exit

Static Obstacle

Collision Force Vector

Navigation Force Vector

Figure 3.3 An example of a 6x6 environment with 2 exits and obstacles. Navigation
agents are arranged in a grid as shown (top right) and the position of the agent relates
to a particular cell of the vector fields.

3.1 Agent-based Navigation Grid 53

The entrance variable has an associated id that can be used to determine it as part
of a single entrance point and allows emission rates to be set according to entrance.
Finally the variable exit is used to determine if the force cell indicates the presence
of an actual exit position within the simulation. Exit positions play two important
roles within the simulation. As the exits also double as entrances, the exit position
acts as an ID allowing the navigation agent to know which entrance it is. This allows
the navigation agent to get the emission rate associated to the specific entrance as
well as setting the emitted pedestrian’s destination to be different to the current exit.
In addition, pedestrian agents use the exit position to identify (through message
communication of the cell information) that they have successfully reached their
destination point.

navigation_message:message{

x:float32

y:float32

exit:int

entrance:int

height:float32

collision_x:float32

collision_y:float32

collision_d:float32

exit0_x:float32

exit0_y:float32

exit1_x:float32

exit1_y:float32

exit2_x:float32

exit2_y:float32

...

exitN_x:float32

exitN_y:float32

}

Listing 3.3 Pseudocode of a single navigation_message parameters. Each
exit#_x and exit#_y variable belong to a different set of NVF.

Collision Vector Fields

Navigation agents are generated by rasterising a vector-based representation of the
environment, as shown in Fig. 3.4, with each cell 0.25m in width in accordance with
the smallest obstacle size. Each destination, which can consist of multiple exit areas,
has the same exit id. Each cell is either determined to be a walkable area or an obstacle.

54 Navigation for Pedestrian ABM

Navigation Agents GridEntrance/Exit 1

Entrance/Exit 2

Figure 3.4 A vector representation of the environment is rasterised into a grid of
navigation agents. White cells are walkable terrain, black cells are static obstacles and
red cells are exits which also double as entrances.

A wavefront propagation algorithm ([147] p.378) is then used with the origin of the
propagation being the list of cells that have been marked as an obstacle. The algorithm
proceeds to collect all adjacent cells following the visibility rule shown in Fig. 3.6 that
are not already in the list (Fig. 3.5). This produces a list of valid and not already visited
adjacent cells. For each of these valid cells, the collision vector is the normalized sum
of the vectors pointing away from its neighbouring cells that were visited last iteration
(so for the first iteration, it would be the vectors pointing away from obstacle cells)
and is used to represent the term~nnniW in the Equation (3.4). The Euclidean distance
to the nearest obstacle is also stored which represents the term diW in Equation (3.4).
The adjacent cells list is used as the origin for the next iteration and also added to a
list of all visited cells. The process repeats until there are no more cells to visit or by
reaching a fixed maximum number of iterations (the wall influence distance dWmax).
An example of a calculated CVF map is shown in Fig. 3.3 (top left) where dWmax is
set to be 1.

As interaction force with a static obstacle is sensitive to exponential increase, it is
important to obtain an accurate distance from the static obstacle diW especially when
a pedestrian is near to it. To obtain a continuous diW from discrete cell values, the
pedestrian agent’s position within the cell is used. First a vector of a pedestrian’s
position~pppi relative to the cell C’s centre location~pppC is using Equation (3.9).

~dddiC =~pppi −~pppC (3.9)

The vector~dddiC is then rotated with the function rot(θ ,~xxx) by~nnniW ’s angle θ~nnniW away
from the x axis found by using the atan2(~xxx) function (Equation (3.10)). This rotation

3.1 Agent-based Navigation Grid 55

obstacle

Area covered in
�rst iteration

Area covered in
second iteration

Figure 3.5 Wavefront propagation performed on the obstacle areas. Black areas are
obstacles, white areas are walkable, light blue is the area covered in the first iteration
and dark blue areas are covered in the second iteration.

S

Search
origin

Obstacle

Visible from
origin

Not visible
from origin

Figure 3.6 Visibility rules for the wave propagation. Starting from origin (yellow), the
green areas will be included while the grey areas are not due to it being blocked off by
obstacles.

obtains~dddiCτ which is the vector~dddiC aligned to the frame of reference~nnniW . The process
is illustrated in Fig. 3.7. The x component of the vector~dddiCτ can then added to diW to
achieve a continuous distance value (Equation (3.11)).

~dddiCτ = rot(−atan2(~nnniW),~dddiC) (3.10)

diW := diW +~dddiCτx (3.11)

Navigation Vector Fields

The NVF map for each destination is generated in a similar way to the CVF with
the difference that the origins of propagation are pre-defined exit points rather than
obstacles (Fig. 3.8). Also, each vector points towards the cells of previous iterations
and after normalisation can be used directly as the parameter~eee0

i in the navigation force

56 Navigation for Pedestrian ABM

x

y

x

y

Figure 3.7 Rotation of navigation agent cell to pedestrian distance vector~dddiC to align
with the the frame of reference of vector~nnniW .

origin

1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

obstacle

Figure 3.8 Wavefront propgation performed on a destination cell (red) over 5 iterations.

equation (3.2). Propagation also follows a visibility rule (Fig. 3.6) so that it does not
go through walls or obstacles. The generated NVF is shown in Fig. 3.9(b).

Smoothing the Navigation Vector Field

Although the generated NVF will guarantee to find the shortest path to the destination
from anywhere in the environment, a straightforward implementation of the algorithm
results in a common issue which can be described as a “diagonal convergence” of
vectors (Fig. 3.9(b)). This is a result of the diagonal lines which propagate from
corners representing the shortest path with surrounding flow vectors attempting to
converge towards them. This becomes even more apparent as the grid resolution is
increased around larger areas of open space and results in squashed and unnatural
pedestrian flows (Fig. 3.10(a)). In order to tackle the problem of diagonal convergence,
it is necessary to smooth out the vector flows.

A novel process of backflow smoothing can be used to create a natural looking nav-
igation flow for pedestrian agents successfully avoiding convergence issues. Although

3.1 Agent-based Navigation Grid 57

a) b)

d)c)

Figure 3.9 Comparison of the generated force vector fields. (a) A CVF with force
influence distance of 2. (b) Shows an NVFs with simple propagation , with backflow
propagation but no limit (c) and the result of the final algorithm (d).

58 Navigation for Pedestrian ABM

one potential solution is to use a simple neighbourhood averaging of vectors. The
progressive nature of the backflow smoothing however, results in an even smoother
field especially in large open areas.

The backflow smoothing approach works by propagating a flow in the reverse
direction for each cell of the current iteration and the navigation vector is generated
by summing up the vectors pointing from the current cell to the cells in the reverse
flow. This reverse propagation also follows the same visibility rules of the main wave
propagation (Fig. 3.6) and flows around obstacles. The influence of reverse flow
vectors is decreased in proportion to the increase in distance of the backflow. The final
navigation vector is then normalised after the backflow reaches its maximum iteration
distance.

As the resolution of the grid increases it then becomes necessary to increase the
number of iterations to generate smooth flow, especially if there are large open areas
in the scene. Using more iterations, however, can cause problems in the rest of the
scene especially around tight corners where vectors run into obstacles (Fig. 3.9(c)).
This results in pedestrians getting stuck to walls and obstacles then the NVF is used.

The problem is solved by placing a limit on the backflow when an obstacle is
encountered. Fig. 3.11 visually illustrates how the final algorithm works. Where
the backflow is limited to three iterations, it can be seen that at location B1 it is
able to apply a backflow propagation for the full three iterations. The backflow only
propagates backwards into the previous wavefront iteration. This means for B1 that
starts at the 5th propagation iteration, the first backflow iteration propagates back to
the 4th wavefront propagation iteration (green), the second on the 3rd (light brown)
and third on the 2nd (dark brown). B2 is stopped at a single iteration as there is an
obstacle next to the backflow. The same occurs for B3 where no backflow propagation
occurs as the cell is already next to an obstacle. The final algorithm generates a vector
field that is both smooth in open areas but is also correct around corners and narrow
corridors (Fig. 3.9(d)). The effect of this algorithm can be seen in Fig. 3.10(b) where
pedestrians (in blue) can spread out to take up more space thus making the simulation
look more natural.

3.1.3 Environment Editor

In order to facilitate the rapid generation of the environment, a GUI tool was created
using C# and WPF (Fig. 3.12).The tool allows the user to sketch or trace over a plan of
an area and mark it as an obstacle, entrance or exit. The program can then generate a
CVF and individual NVFs for each destination according to user-specified parameters.
The parameters are influence distance for CVF generation and maximum backflow

3.1 Agent-based Navigation Grid 59

a) b)

Figure 3.10 Comparison of the simulation using un-optimised (a) and with backflow
smoothed (b) navigation vector fields.

iterations for NVF generation (refer to Sections 3.1.2 and 3.1.2). Fig. 3.12 shows an
example generated environment with 2 exits. The environment size is set to be 64x64
and maximum backflow propagation iteration is 5. Finally an XML file is generated
in the format compatible with the navigation agent definition for the FLAME GPU
simulation framework.

McIlveen et al. [263] later extended on the concept with the creation of a
Photoshop-like tool for authoring the vector fields. The approach in addition al-
lowed users to annotate areas of attraction, areas of avoidance and areas of interest to
provide a multi-objective navigation system.

3.1.4 Simulation & Results

This section presents two tests in order to evaluate the agent-based navigation approach.
The first test is a performance benchmarking that varies the navigation agent grid size.
Each grid size is tested for iteration time when there are various numbers of pedestrian
agents in the environment. The second test uses a real urban environment modelled
after a location in central London in order to evaluate the functionality of the navigation
approach in a real scenario with a complex environment.

For both tests, the simulation was run on a 64-bit Windows 7 machine with an
AMD Athlon 4800+ and on NVIDIA GeForce 9800GX2 with one core used for
visualisation and one used for running the simulation.

60 Navigation for Pedestrian ABM

B3

B# Backflow origin

a) b)

1st backflow iteration

2nd backflow iteration

3rd backflow iteration

B1

B2

Iteration 2
Iteration 3

Iteration 4
Iteration 8

Iteration 1

Figure 3.11 Illustration of backflow propagation in action. Take an environment that
has 8 iterations of propagation (a), each blue colour signify a boundary of a wavefront
propagation iteration. The colours are repeated at the 5th iteration. (b) Shows examples
of backflow propagation three locations. Backflow propagation limit is three iterations.
The backflow origin B1 is able to propagate the full three iterations while B2 is stopped
at one iteration as it encountered an obstacle. As B3 is next to an obstacle the backflow
algorithm does not run.

3.1 Agent-based Navigation Grid 61

Figure 3.12 The plan editor software for generating the vector fields. The example
shows a 2-exit environment that was set to be a dimension of 64x64 with maximum
backflow propagation iteration of 5. Exits are shown as red squares and obstacles as
black squares. The two NVFs and an CVF generated are shown where red arrows are
NVF and blue arrows are CVF.

62 Navigation for Pedestrian ABM

Simulation Performance Benchmarking

Navigation grids of sizes 64x64, 128x128, 256x256 and 512x512 were used for
benchmarking. The environment used for testing was a blank space. Each navigation
agent is configured to contain 7 NVF maps and a single CVF map to correspond with
the 7 exits available in the urban test example (Fig. 3.14). Navigation agents always
broadcast their navigation_message and pedestrian agents always receive and process
them along with performing inter-pedestrian avoidance. For each grid size, 1024,
4096, 16384, 66536 and 262144 pedestrian agents were generated and placed at a
constant density within the environment so that time spent processing inter-pedestrian
communication for each pedestrian is roughly constant. The simulation was left to run
for 200 iterations then the time of the next 100 iterations was averaged out to obtain an
average time to perform a single iteration. The result of this test is shown in Fig. 3.13.

As all navigation agents need to broadcast their position every iteration, the time
needed increases exponentially with the grid dimensions. The time for each pedestrian
to access the navigation information takes roughly the same amount of time for each
pedestrian agent. The same applies to inter-pedestrian interaction time as the density
is kept constant. The graph in Fig. 3.13 shows a logarithmic increase in the iteration
time is due to the fact that parallel computing efficiency is not reached until after a
certain point, which is around 60,000 pedestrians in this case. At 262,144 pedestrian
agents and 262,144 navigation agents (512x512 grid) the simulation is able to run at
an average of 34.9ms per iteration.

From Fig. 3.13, we can see that for smaller numbers of pedestrians the differ-
ence in grid size makes a big difference to the simulation time, as the number of
pedestrians increases, the size of the grid becomes less consequential. This would be
especially true in environments with dense areas of interacting agents as the number
of pedestrian_location messages can increase rapidly.

Navigation maps beyond the size of 512x512 cannot be run on larger pedestrian
counts (more than 262,144 pedestrians) due to the lack of GPU memory on the test
device as the list of pedestrian agents are double buffered in order to allow reallocation
for agent births and deaths. The double buffering process is used in order to provide
memory space for moving only alive agents to the buffered memory in parallel and
then swapping this buffer memory location with the main list. Another factor that
contributes to the lack of memory is the fact that as the pedestrian population gets
larger, in order to keep the same density, the number of space partitions (defined by the
communication radius of agents [40, 264]) gets larger and hence requires a lot more
memory.

3.1 Agent-based Navigation Grid 63

Number of pedestrians

103 104 105 106

Ite
ra

tio
n

tim
e

(m
s)

0

10

20

30

40

Environment Size

64x64
128x128
256x256
512x512

Figure 3.13 Performance benchmarking for square environments of width 64, 128, 256
and 512 measuring iteration time is measured when running with 1024, 4096, 16384,
65536 and 262144 pedestrian agents.

64 Navigation for Pedestrian ABM

Simulation Based on a Real Urban Environment

The test environment was based on a busy pedestrianised area in central London. It
contains 7 destinations with one being an access to the underground station (Fig. 3.14).
For this simulation, the navigation agents highlighted by the red lines are marked as
both entrances and exits. Pedestrians are generated at each entrance according to a
specified emission rate in proportion to the size of the entrance and each has a specific
destination based on a pre-determined probability. All exits can be in the state of either
open or closed. When a pedestrian reaches a closed exit, it will randomly choose a
different exit and start navigating to the alternate destination. All vector fields are
pre-generated according to Section 3.1.2 with the whole environment of approximately
120m2 being represented as a 128x128 grid although walkable space occupies less
than 70% of the total area. The resolution of 1 pixel ≈ 1m2 was chosen due to the
fact that an outside environment is represented with a relatively small amount of small
obstacles or narrow corridors. The scenario of the simulation shows the effects of
areas that have been flooded with pedestrians possibly as a result of an evacuation or a
large public event.

The model scenario has the following sequence. First, the simulation starts un-
populated and pedestrians are continually generated until they reach a steady state.
The model is then flooded with pedestrians while an exit is closed. The inability of
pedestrians to leave the environment in a timely fashion results in heavy congestion
and potentially dangerous conditions.

Fig. 3.15 shows a breakdown of simulation time (in ms) during a real time sim-
ulation of the London model. More specifically it shows the timings (stacked) for
individual or combinations of agent function calls (Fig. 3.2). Timings have been
obtained by averaging the simulation time of each function call over the period of
200 simulation steps to avoid any small fluctuations. Over the simulation of roughly
9000 iterations the graph shows three distinct phases. The first occurs between step
0 and 800 and shows relative stability in simulation times. During this phase the
emission rate for each exit in the model is constant and the total number of pedestrians
remains at roughly 3000. The sharp rise in simulation time after this phase is a result
of increasing the emission rate of all the exits. The second phase of relative stability
occurs between steps 1400 and 4400. During this phase of the simulation the large
increase in emission rates has reached a stable population of roughly 11,000 pedestrian
agents. The final phase of the simulation shows the effect of closing one of the 7 major
exits. Any agent that reaches a closed exit is forced navigate to a new exit. The effect
of this is that first the population increases relatively slowly as a result of pedestrians
failing to leave through their preferential exit (steps 4400 to 5600). After this the area

3.1 Agent-based Navigation Grid 65

Underground
station

Figure 3.14 Screenshot of the urban environment simulation running with 10,000
pedestrians. Red lines signify locations of entrances and exits.

66 Navigation for Pedestrian ABM

Iterations

Si
m

ul
at

io
n

tim
e

(m
s)

generate_pedestrian()
output_navigation_message() & broadcast_position()
avoid_pedestrians()
navigate()
move()

Figure 3.15 Time utilization by different agent functions with increasing pedestrian
agent density

around the exit becomes very congested and the number of pedestrians continues to
rise very sharply to just over 20,000 agents. The effect of closing the exit congests the
model to the extent that a stable number of pedestrians cannot be reached.

It can be seen that after the first 1200 iterations, all agent function times remain
relatively stable and that functions related to navigation form a higher percentage of
the simulation time. As pedestrians start to congregate and the density increases from
around iteration 6000, the cost of inter-pedestrian interaction rapidly increases and
even overtakes the computation used for navigation.

The agent-based navigation grid approach provides many advantages, such as
having pedestrian and navigation agents in the same model framework, pre-resolved
paths for pedestrians from anywhere in the environment and high performance for
very large numbers of pedestrians. However, there are also disadvantages. As the
system uses a dense data structure, it will always be limited by exponential memory
requirements with increasing environment size. The use of navigation agents also
increase computational cost as they need to broadcast their location message at every
iteration. These factors become a concern when we start to look at modelling very
large public facilities or even an entire city. In order to deal with the problem of
scalability, a graph-based approach that stores environment data more sparsely can be
used which is discussed in the next section.

3.2 Searchable Navigation Graph 67

3.2 Searchable Navigation Graph

As previously mentioned in Section 2.2.2, using a graph-based navigation approach
generally involves partitioning areas of the physical environment into a set of nodes
containing bounded areas. These areas are connected by node edges. The area within
a node can be of any arbitrary shape resulting in a graph that is invariant to the
environment size. By using sparse data structures, there is no direct relation between
dimension of the environment to the memory required. The low memory use makes the
approach suitable for scenarios where many pedestrians have varying and multi-stage
objectives.

There are many implementations of graph-based navigation (Section 2.2.2). How-
ever, none looks into the effects of using the approach during congestion where
pedestrians may need to make a minor route changes implicitly to avoid getting stuck
trying to follow a pre-assigned route. In addition, although there are various navigation
and path planning research on the GPU that can be used for pedestrian simulation
[265–269] it does not provide a complete system that allows for complex, multi-stage
navigation.

The searchable navigation graph presented in this section is a novel graph-based
navigation system that uses searchable navigation graphs to provide dynamic proba-
bilistic navigation on pre-resolved routes. The work combines the advantages of both
grid and graph-based methods. Sparse navigation graphs are constructed using a subdi-
vision approach which improves coverage of walkable areas while using significantly
less memory than the grid-based alternative. Routing to a destination is fully resolved
for the whole environment so pedestrians are able to navigate to a desired destination
from any point in the environment. This navigation information, also contained in
a graph, is spatially partitioned and made searchable to prevent the possibility of
pedestrian agents having to iterate through the entire graph. This searchable navigation
graph also allows for dynamic re-routing in congested areas, which is applicable to
congested crowds that do not follow strict corridors.

The searchable navigation graph is based on the work of Pettré et al. [47] where
the environment is divided up into inter-connected circular areas forming a disk graph.
While the approach by Pettré et al. [47] goes further to form corridors from the
bisection of overlapping circular areas of the disk graph nodes. This work however,
takes a different approach and uses the disk graph by itself as a means of navigation.

Given a scenario, a definition of the physical environment and a set of high-level
navigation behaviours, the process for creating the navigation data structures takes
place over three main stages. A simple T-shape environment with a scenario shown in
Fig. 3.16 illustrates these different stages.

68 Navigation for Pedestrian ABM

The first stage is the generation of the Environment Graph (Section 3.2.1) which
is a graph-based representation of the physical environment and shows which areas
are connected and traversable (Fig. 3.16(b)). The second stage is the creation of the
Itinerary Graph (Section 3.2.2) that provides a high-level sequence of location-based
objectives defined in the Scenario that pedestrians are to follow (Fig. 3.16(c)). Lastly,
the final stage uses the Environment Graph and the Itinerary Graph to find the optimal
routes between objective locations (e.g. from Entrance 1 to Exit 1) in order to generate
the Navigation Graph (Section 3.2.4) that contains the concise paths that pedestrians
follow to reach their destination (Fig. 3.16(d)). Additionally, static obstacles are
arranged in a separate searchable tree to be used for collision avoidance during the
simulation.

The work was implemented in CUDA as an extension to the FLAME GPU frame-
work and provides an API which is accessible from agent functions within the frame-
work. Chapter 4 gives further details of how this navigation system is integrated into
the overall pedestrian simulation system. Examples are given in Section 3.2.8 to show
that the approach is memory efficient compared to the grid-based approach, while still
being able to provide dynamic routing for the entire environment.

Entrance 1

Go to Exit 2

Go to Exit 1

Entrance 1

a) Scenario

b) Environment graph
d) Navigation graph

c) Itinerary Graph

Exit 1

Exit 2
Entrance 1

Go to Exit 2Go to Exit 1

25%

25%

75%

75%

25%

75%

Figure 3.16 a) For a given scenario, graph data structures are created for use in the
simulation. b) The Environment Graph is a representation of the environment and how
each part is connected. c) The Itinerary Graph represents a high-level set of objectives.
d) The Navigation Graph contains the precise sequence of graph nodes that must be
traversed in order to reach an objective location.

3.2 Searchable Navigation Graph 69

3.2.1 The Environment Graph

The Environment Graph contains a representation of pedestrian walkable areas in the
physical environment. Only circular areas are used to represent the walkable area as
the shape fits well within abstract shapes and bounds can be detected quickly. An
R-tree [270], a spatial search tree, is constructed for the Environment Graph to allow
faster retrieval of navigation information during the simulation.

The environment is discretised into a binary grid where the cells are either walkable
or non-walkable to a pedestrian. In Fig. 3.17(b) walkable areas are shown as white and
non-walkable areas shown as grey. A Euclidean distance transform is then performed
for all walkable cells to find the nearest distance to non-walkable cells. Fig. 3.17(c)
illustrates the result of the distance transform with darker green areas indicating further
distance from a wall or static obstacles. Each cell’s distance transform value effectively
becomes a “clearance radius” where it is guaranteed that there are no static obstacles
within the radius.

To provide maximum coverage of the environment areas using the least number
of cells, a cell with the highest clearance radius is chosen and any other cells within
the radius are rejected. The selection continues until there are no more cells above a
minimum size of 0.25m. Each of the chosen cells becomes a node in the Environment
Graph and a connection is made between all nodes overlapping radii. The result of
this process is shown in Fig. 3.17(d) where the final set of chosen areas can be seen as
overlapping circular shapes covering a majority of the walkable area.

To obtain navigation information during simulation, the Environment Graph is
queried to find the node each pedestrian is in or nearest to. An R-tree is used to
accelerate retrieval of node information. Each node in a tree can have a maximum of
three child nodes and contains a bounding box that completely encapsulate its child
nodes. The method for construction of the tree is outlined in the paper by Guttman
[271]. The process is demonstrated visually in Fig. 3.18 where at the initialisation stage,
a root node is created that has a bounding box covering the entire area (Fig. 3.18(b)).
Note that each node in the R-tree can store a reference to three other nodes and a node
in the R-tree can either be a bounding box node or an Environment Graph node. The
first iteration divides the space along the x axis where we get the bounding box areas
B1 and B2 (Fig. 3.18(c)). The second iteration divides the space long the y axis and B1
is further subdivided into B3 and B4. There is no need to further divide the space in
B2 as there are exactly three nodes within the boundary (Fig. 3.18(d)). Should further
subdivisions be needed, the division axis alternates every iteration until the partitioning
is done. The final R-tree is shown in Fig. 3.18(e).

70 Navigation for Pedestrian ABM

a) b)

c) d)

Figure 3.17 The figure shows the process of creating the Environment Graph. (a) The
outline of the environment in black. (b) The environment discretised to a binary grid
where the white colour is a walkable area and the gray colours are non walkable. (c)
The distance transform where deeper green indicates higher distance transform value.
(d) The nodes with cicular areas created for the Environment Graph.

3.2.2 The Itinerary Graph

The Itinerary Graph is a directed acyclic graph used to express each pedestrian’s goals
as a sequence of location-based objectives (Fig. 3.19(b)). Each node of the Itinerary
Graph is either a single objective or a portal which can act as both entrance and exit to
the simulation. All nodes are associated with a bounding geometry which is used to
check when the pedestrian has arrived at the objective location. Although the bounding
geometry could be any arbitrary shape, only circular, rectangular and capsule shapes
(composed of two circles and a rectangle) were used in order to enforce simple convex
geometry, thus limiting the time needed for bounds checking.

3.2 Searchable Navigation Graph 71

N1

Environment Grapha) b)

c)

e)

d)

Initialisation
Root

Root
1st iteration: divide along x axis 2nd iteration: divide along y axis

N2

N3 N6 N7 N8

N4

N5

N1

N2

N3 N6 N7 N8

N4

N5

N6 N7 N8

N1 N2 N3 N4 N5

N1

N2

N3 N6 N7 N8

N4

N5

B1

Root

B3 B4

B2

N1

N2

N3 N6 N7 N8

N4

N5

Final R-tree

B2

B1B3

B4

Root

B2

B1

Figure 3.18 Generation of an R-tree from the Environment Graph in Fig. 3.16(b).

A connection between nodes within the Itinerary Graph signifies the travel between
the objective locations but not the exact path. It is possible for objectives to diverge and
this is represented as a branch in the graph. When branching occurs, the probability for
selecting the next objective is assigned to each edge of the branch. The approach allow
the itinerary to be shared for pedestrians coming from and leaving at different portals
as long as they share the same objective selection probabilities when encountering the
same branch points. When pedestrians’ goals are too different such as “catch a train”
or “leave the station”, multiple Itinerary Graphs must be created for each of the goals.

Fig. 3.19(b) show an example Itinerary for the more complex environment used in
Fig. 3.19(a), which has a shop and two exits. According to the itinerary, the pedestrian

72 Navigation for Pedestrian ABM

will first go to the Shop and afterwards has a 50% probability to go to either Exit 1 or
Exit 2.

3.2.3 Routes Generation

A Route refers to a connection between two objective locations, e.g. going from the
Shop to Exit 1 in Fig. 3.19(b) is a single Route. Routes are defined during the creation
of the Itinerary Graph and can also be considered as representing the edges of the
graph. However, at this stage, they do not contain the exact sequence of nodes to
allow navigation from one location to the other. Before the Navigation Graph can be
generated, this exact sequence of nodes must first be found.

For every Route in the Itinerary Graph, an A* [144] search of the Environment
Graph is performed. Inter-node distance is used as the heuristic in order to find the
shortest path between objective locations. Fig. 3.19 illustrates this process. The
Environment Graphs shown in Fig. 3.19(a), with an Itinerary Graph as in Fig. 3.19(b).
This has three connections and three Routes are generated, as shown in Fig. 3.19(d,
e and f). The sequence of Environment Graph nodes in a route is uni-directional in
order to enforce a direction of travel.

3.2.4 The Navigation Graph

The Navigation Graph contains detailed routing information between objective loca-
tions specified in the Itinerary Graph and is used by pedestrians during simulation to
obtain routing information (Fig. 3.19(g & h)). The Navigation Graph (Fig. 3.19(d &
e)) shares the same number of nodes as the Environment Graph (Fig. 3.19(a)), also
retaining the same index position, physical location and radius. The edges in Naviga-
tion Graphs are, however, uni-directional connections which are used to indicate the
direction of travel rather than bi-directional connections as found in the Environment
Graph. The edges retain their Route identification and their Route probability which
makes it possible for multiple Routes to overlap over a single node. Having a Naviga-
tion Graph node inherit its physical location, radius and index from the Environment
Graph node allows the Navigation Graph to be searched using the R-tree constructed
for the Environment Graph. As with grid-based navigation (Section 3.1), all nodes
within the Navigation Graph contain navigation information.

Generation of the Navigation Graph begins by taking the Route information gener-
ated previously, as described in Section 3.2.3. For each Route, the connections between
the sequence of nodes that form the Route are added as edges to the Navigation Graph.

3.2 Searchable Navigation Graph 73

Exit 1

Shop Exit 2

Entrance 1 Exit 1

Shop Exit 2

Entrance 1

Exit 1

Shop Exit 2

Exit 1

Shop Exit 2

Entrance 1Entrance 1

Shop

Exit 1

Shop Exit 2

a) b)

g)

d) e) f)

h)

c)

Go to Shop

Go to Exit 2Go to Exit 1

Environment Graph Itinerary Itinerary (route)

Nav. Graph - Go to shop

Route 1 - Entrance1 to Shop Route 2 - Shop to Exit 1 Route 3 - Shop to Exit 2

Nav. Graph - Go to Exit 1 & Go to Exit 2

50% 50%

Enter environment
from Entrance 1

Shop

Entrance 1

Figure 3.19 The process of creating the Navigation Graph. (a) The Environment
graph for an example environment with an entrance, a shop and two exits. (b) The
Itinerary Graph. (c) The routing in the physical environment. (d, e & f) The exact
sequence of nodes is found for each Route in the Itinerary. Two Navigation Graphs
are required for this Itinerary as the nodes overlap in opposite directions. (g) The
Navigation Graph from Entrance 1 to the shop (green arrows). (h) The Navigation
Graph from the Shop and branches to either Exit 1 (yellow arrows) or Exit 2 (blue
arrows). For both Navigation Graphs the brown arrows guide pedestrians back to the
itinerary routes.

74 Navigation for Pedestrian ABM

For all nodes in a route that overlap the Itinerary Graph node’s bounding geometry, a
reference to the geometry is added to the node as a Navigation Target (Section 3.2.5).

The routes found in the previous step are unlikely to utilise all nodes in the
Navigation Graph, e.g. in Fig. 3.19(g) the green arrow indicates the route found from
Entrance 1 to the Shop. A second routing process is performed to provide navigation
information that can lead pedestrians to these routes. A Dijkstra search is performed
starting from the Navigation Graph nodes with routing information and spreads to the
rest of the nodes. Optimal paths for returning to the routes are then resolved from all
locations in the environment. The result of the second routing process is shown in
Fig. 3.19(g) as the brown arrows, which provides navigation for any other nodes not
covered by the green arrows.

Similar to grid-based navigation, multiple Navigation Graphs can be used in
sequence to capture a more complex set of objectives or when routes are circuitous.
An example can be seen in Fig. 3.19(c), where the itinerary involves going to a
location which requires the routing to double back on itself, i.e. Route 1 (Fig. 3.19(d))
overlaps with Route 2 (Fig. 3.19(e)) and Route 3 (Fig. 3.19(f)). Two Navigation
Graphs are generated, one for going to the first objective, the Shop (Fig. 3.19(g)), and
the second for doubling back and going to the second or third objectives, Exit 1 or
Exit 2 (Fig. 3.19(h)).

3.2.5 Other Properties of the Navigation Graph

There are three other properties associated with the Navigation Graph that help in the
implementation of specific behaviours. The properties of Navigation Targets, Queues,
and Waiting Areas are discussed in this section. Chapter 4 provides an example of a
model and scenario which uses these three properties.

Navigation Targets

The location of a pedestrian’s destination may not lie exactly at the centre of the
Environment node. A Navigation Target is extra information that can be attached to
nodes in the Navigation graph. It encapsulates the exact geometry of the destination
within a convex shape and contains other information such as whether it is an exit, or a
teleport, or that it has a delay time which causes pedestrians to be removed from the
simulation, or directly moves a pedestrian from one location to another (e.g. moving
between floors) or introduces a user-specified delay.

3.2 Searchable Navigation Graph 75

Queues

A Queue can be attached to each objective location and provides a location of where
the queue starts and how the physical queue takes shape. The Queue is represented as
a multi-section line (polyline) with one end indicating the start of a queue. A reference
to the Queue is added as a property of a Route that has the associated objective location
as a destination during the creation of the Navigation Graph.

Waiting Areas

A Waiting Area can be attached to each objective location. This indicates a location
where pedestrians navigate to, in order to wait until they are allowed to reach the
objective location the Waiting Area is attached to. The Waiting Area is represented as
a 4-sided polygonal shape and its reference is added to a Route that has the associated
location as a destination during the creation of the Navigation Graph.

3.2.6 Implementation as a Navigation Module in FLAME GPU

This section gives an overview of how the searchable navigation graph is implemented
on the GPU platform. The FLAME GPU framework is used as a base for simulation
of the pedestrian model but as it does not support the graph-based navigation approach
by default, a Navigation Module extension is created in CUDA to provide function
calls that pedestrians can make directly from within the FLAME GPU model. The
main function of the module is to provide global navigation but it also integrates static
obstacle avoidance, waiting and queueing. The difference in architecture between
CPU and GPU means there were three major considerations that affected the final
design of the module.

The first is related to the memory access pattern on the GPU. While it is normal on
the CPU to lay out data structures following the Array of Structures (AoS) pattern, as
discussed in Section 2.5.1, the data structure needs to be converted so that it follows
the Structure of Arrays (SoA) pattern. By laying out the data structure this way, i.e.
coalescing the data, the GPU will be able to cache more relevant variables in a single
memory read. This ultimately leads to lower memory reads overall.

The second consideration is on how data structures link to each other and is closely
related to the first consideration. On the CPU, it is common that links between objects
are done using memory pointers. However, by following the SoA pattern, each variable
in an object is an array. In addition, as the data structures needs to be serialised in order
to be uploaded to the GPU, the memory address of the objects will change, causing

76 Navigation for Pedestrian ABM

the memory pointers to fail. Because of this, objects are connected by indices rather
than memory pointers.

The third consideration is the inefficiency of dynamically allocating global memory
on the GPU device and the smaller size of GPU RAM in comparison to CPU systems.
The system is designed so that pedestrians use a minimum and fixed number of
variables from pre-allocated global memory to track their navigation progress.

The Navigation Data (Fig. 3.20) is a set of data structures that is designed with
these considerations. Fig. 3.20 shows how some objects have variables that store
indices that link it to another object. For the Navigation Graphs, many graphs are
stacked into a single array, but the number of nodes in the graph is always the same.
In this case, an offset is also used along with the index. Wherein, the index refers
to a particular node in the graph, the offset is the number to be added to the index
in order to get the correct node in the correct Navigation Graph. At the start of the
simulation, the data structures are converted to the SoA pattern (Fig. 3.21) before they
are uploaded to the GPU.

Once the Navigation Data is uploaded to the GPU, it is never modified from the
device. It is the pedestrian agent and its agent variables that keep track of the progress
of the current navigation. The pedestrian agent uses the nm_navigate() function that
takes reference pointers of the input parameters so that these parameters can be
modified inside the function and used as output. It is only essential for a pedestrian
agent to store references to its itinerary, current route, current and next Environment
Graph node indices, and its current status (e.g. the pedestrian is waiting or that a
destination is reached). It is only when the pedestrian falls outside of the bounds of
the referenced Environment Graph nodes that an Environment graph search operation
has to be performed.

The R-tree created for searching the Environment Graph uses the stackless traversal
approach by Popov et al. [272] in order to search the tree with constant memory. The
searching of the Environment Graph returns the index to the Environment node that
the pedestrian’s inside (or closest), this index is combined with the offset previously
mentioned in order to get the correct Navigation Graph Node to follow.

Each Navigation Graph Node can also be associated with Navigation Targets
(Section 3.2.5). This forces the pedestrian to navigate to the Shape, a convex shape
bounds, of the associated Target. After the bounds of the shape has been entered, the
action associated to the Navigation Target is carried out such as exiting environment,
teleport to a different floor, wait for a specified time or switch to another Navigation
graph.

Each Navigation Graph Node can have multiple outbound connections belonging
to multiple routes (Fig. 3.22), these are stored in a separate object called Navigation

3.2 Searchable Navigation Graph 77

Figure 3.20 A simplified information flow diagram of the Navigation Data structure.

78 Navigation for Pedestrian ABM

Environment Graph Node ObjectItinerary Object

env_graph_node

x: float[0..*]
y: float[0..*]
radius: float[0..*]

nav_graph_index

id: int[0..*]
start_offset: int[0..*]

nav_graph_conn

route_id: int[0..*]
next_route_index: int[0..*]
conn_probability: float[0..*]
next_node_index: int[0..*]

node_target

shape: ConvexShape[0..*]
is_exit: int[0..*]
delay: float[0..*]
next_nav_graph: int[0..*]
is_open: int[0..*]
teleport: int[0..*]

nav_graph_node

conn_start_index: int[0..*]
conn_count: inex[0..*]
target_start_index: int[0..*]
target_count: int[0..*]

Navigation Graph Node Object

Navigation Graph Node
Connections Object

Target Object

nav_graph_route

route_id: int[0..*]
queue_index: int[0..*]
queue_shape: polyline[0..*]
waiting_area_index: int[0..*]
waiting_area_shape: ConvexShape[0..*]
target_open: int[0..*]

Routes Object

Figure 3.21 The Navigation Data Structure Fig. 3.20 laid out as SoA objects for use
on the GPU.

Graph Node Connections. The Table 3.1 shows an example of the values that can be
found for the configuration shown in Fig. 3.22. The nm_navigate() function iterates
through these connections, first trying to find a connection with the same route id that
the current pedestrian has, otherwise it will fall back on the last route id encountered.
Having decided the route id to follow, if there is branching, a random number is cast. If
the random number is lower than the probability value of the connection, the pedestrian
will follow that connection. Having chosen a route id, the pedestrian also accesses the
Routes Object to obtain information about possible queues within the Route or check
if the Route’s ultimate destination has an associated Waiting area.

N1

N5

N4

N2

N3

Route id: 1Route id: 1
25%25%

75%75%
55%55%

45%45%

Route id: 2Route id: 2

Figure 3.22 An example of branching in the Navigation Node Connections Array.
The pedestrian is at node N1 and there are two routes with IDs 1 and 2 each having 2
branching possibilities.

3.2 Searchable Navigation Graph 79

array_index route_id next_route_index conn_probability next_node_index
0 1 2 0.25 N2
1 1 2 1.0 N3
2 2 -1 0.55 N4
3 2 -1 1.0 N5

Table 3.1 The values that would be found in the Navigation Node Connections Array
for the example in Fig. 3.22.

Having chosen the next Navigation Graph Node to navigate to, the nm_navigate()

function determines navigation direction using the process described in the next section.
Finally, a normalised navigation vector is returned to the pedestrian that indicates
the current direction in which the pedestrian should be heading as well as a flag for
activating a Navigation Target event.

Determining Navigation Direction between two Navigation Graph Nodes

In order to determine a pedestrian’s navigation direction once they have obtained a
reference to a navigation node, a trapezoidal navigation area (red lines in Fig. 3.23) is
generated from the two Navigation Graph nodes’ diameter line that runs perpendicular
to the line connecting the two nodes’ centre points. The pedestrian’s navigation goal is
directed to the location on the next node’s diameter line that is of proportional distance
away between the centre connection line and the top or bottom edge of the navigation
area, as shown by the blue dotted line in Fig. 3.23. Should the pedestrian be outside
of the navigation area, they are redirected to the nearest point on the line of the side
nearest to the pedestrian.

Adding Dynamic Objective Locations

The ability to add new objective locations dynamically is useful in certain scenarios,
for example, when a model represents a fallen pedestrian that needs to be rescued. As
long as the environment layout does not change, it is a simple case of generating a
new Itinerary with the fallen pedestrian as a destination and generating a Navigation
Graph from the itinerary. The generated Navigation Graph can then be appended to
the existing Navigation Data arrays. As long as the pedestrian has the index to the
newly created Navigation Graph, it will be able to navigate to the fallen pedestrian. In
the case where dynamic events also cause the environment layout to change, currently
all the Navigation Graphs must be generated anew and re-uploaded to the GPU.

80 Navigation for Pedestrian ABM

Pedestrian &
Navigation Direction

Navigation Area

N1
N2

Current Node N1

Next Node N2

Centre point connection line

Figure 3.23 During the simulation, a trapezoidal shape navigation area (red line)
is formed from the two diameter lines of the current and next node and used as a
navigation guide. Pedestrians outside of the navigation area try to navigate towards it
while ones inside the navigation area will try to keep a proportional distance to the
centre line between the current and the next node (blue dotted line).

3.2.7 Static Obstacles & Environment Bounds Detection

For engineering applications, it is essential that environment bounds are represented as
accurately as possible to allow pedestrians to utilise the entire space should congestion
occur. In order not to mitigate the scale invariability of the navigation system, bounds
are represented as lines in continuous space and are stored in a searchable K-d tree as
used in the Optimal Reciprocal Collision Avoidance (ORCA) approach by Van Den
Berg et al. [129].

3.2.8 Evaluation and Discussion

This section discusses the advantages of using the searchable navigation graph-based
approach in combination with a graph-based obstacle avoidance system such as ORCA
[129]. The section is divided into two parts. The first part investigates the effect of
congestion in relation to the environment boundary representation and how it effects
the pedestrian flow. The second part then discusses a case when pedestrians are pushed
towards an unintended destination due to congestion and how the searchable navigation
graph approach solves the problem.

Effects of environment shape during congestion

Full utilisation of the entire walkable area makes a substantial difference in the simula-
tion results. Existing research [100, 273, 274] shows that the congestion pattern has an
effect on flow rates and many pedestrians competing to get through a narrow exit at the

3.2 Searchable Navigation Graph 81

same time actually makes the flow slower. The congestion can be reduced by changing
the shape of the corridor, such as making it a funnel or zig-zag shape, and slowing the
pedestrians who are trying to push in from the sides [100, 273, 274]. Placing of pillars
in front of exits also helps to slow down the flow and reduce the congestion.

To investigate the effect of corridor shape on the pedestrian flow and congestion
pattern, a funnel shape corridor is used. Fig. 3.24(a) shows an environment consisting
of a large corridor, 10m in width, connected to a narrower one that is 1m in width.
Pedestrians are emitted from the left side and walk towards the exit on the right side
in the narrow corridor. The emission rate is kept constant at 7 pedestrians per second
which is enough to cause a steady build up of congestion. It can be seen that an arch
congestion pattern (as observed by Helbing et al. [22]) is formed when too many
pedestrians (solid circles) try to exit through a narrow corridor at the same time.

For the approach by Pettré et al. [47], bisection lines between two Environment
Graph nodes (red lines in Fig. 3.24(a)) are used to also restrict the pedestrians’ walkable
space. A simulation was created to show the effect of this change in the pedestrian
flow under congestion when the bounds becomes a funnel shape instead of utilising the
entire walkable space (Fig. 3.24(b)). The narrow corridor width is kept the same size
as the original environment to provide a fairer comparison. The funnel shape causes
the congestion pattern to be very different, which in turn changes the flow rate of the
pedestrians themselves, as observed by Helbing et al. [118], where it is shown that
a funnel shape is an optimal environment design for increasing pedestrian flow and
reducing congestion.

To confirm the change in pedestrian flow between the two corridor shapes, a
comparison is made between the two environments by measuring the number of
pedestrians that have exited the environment over time. This is shown in Fig. 3.25.
After peak congestion near the narrow corridor is reached (approximately 50 seconds,
Fig. 3.24) the exit rate is shown to be roughly stable for both environments. From the
graph in Fig. 3.25 it can be seen that the exit rate in the Funnel environment (dashed
line) averages at 2.89 pedestrian exiting per second while the original environment
(solid line) has only 1.18 pedestrians exiting per second. This shows that environment
shape can greatly affect flow during congestion.

Minor route change during congestion

In locations with multiple narrow corridors side-by-side, e.g. turnstiles or ticket
barriers (Fig. 3.26(a)), under congestion it is possible for pedestrians to be pushed to
the side and outside of all areas within the route. It is also possible for them to get
pushed into a different corridor as more pedestrians arrive from behind and restrict

82 Navigation for Pedestrian ABM

b)
a) Pedestrian travel direction

Exit Exit

Pedestrian travel direction

Figure 3.24 Comparison between the shape of corridors on pedestrian flow during
congestion. (a) During congestion, formation of an arch pattern when moving from a
wide passage to a narrow corridor or doorway is shown which matches the results of
Helbing et al. [22]. Solid circles are pedestrians, black lines mark the environment
boundary, grey lines represent the Environment nodes used in the route, red lines
marks the gate/corridor and shows how the environment is bounded if following the
approach by Pettre et al. [47]. (b) A simulation when the environment is bounded by
corridors creating a funnel shape. The exit corridor size is adjusted to be the same as
the first case to provide a fair comparison of the exit flow rate.

Figure 3.25 The shape of the corridor causes a large difference in flow rate. It can be
seen that the funnel shape allows for pedestrians to exit from the environment much
faster.

3.3 On the Two Navigation Approaches 83

the ability to navigate back to the desired route (Fig. 3.26(b)). If the pedestrian only
has a fixed route though the environment and no other navigation context, they will
be required to go back on themselves and cause further congestion in the narrow
corridor (Fig. 3.26(c)). While it is possible to dynamically calculate a new route to the
destination, this means running the A* algorithm to the destination each time a new
route is needed, which can be costly especially with a larger Environment Graph and
large numbers of pedestrians. Pre-calculation of all possible routes for each pedestrian
separately means redundancy in storing the parts of the routes which are the same
and would still require graph traversal to find a new route for the pedestrian without
a searchable graph structure. If binary search is applied, the algorithmic complexity
of the operation would be O(log∑

r
i=1 Nr) where Nr is the number of nodes for each

existing route r.
Having implemented a fully-resolved branching and searchable Navigation Graph,

the advantage is that there is no redundancy in storing a route which may branch and
converge but ultimately end up at the same final destination. When the pedestrian
is outside its Navigation Graph node’s bounds, it performs a lookup through the
Environment Graph R-tree (Section 3.2.1) using its position, Itinerary index and
Navigation Graph index in order to locate the Navigation Graph node relevant to the
current position and thus obtain a new set of navigation coordinates (Fig. 3.26 (d)
and (e)). The access operation to the R-tree has complexity O(logn), where n is the
number of Environment graph nodes.

3.3 On the Two Navigation Approaches

This chapter presented two novel approaches to agent-based pedestrian navigation.
The first is based on a grid-based navigation system using a grid of Navigation agents
that acts as a set of vector field maps (Section 3.1). The second is a fully-resolved and
searchable graph-based navigation system (Section 3.2). The following subsections
will compare these in terms of memory use and navigation performance.

3.3.1 Memory Use

In order to compare the memory use of the two approaches, two environments were
used with sizes varying from 10x10m to 500x500m (Tables 3.2 and 3.3). The first is a
plain Wedge-shaped environment where the left side is fixed at 4m and the right side
is the same length as the environment, e.g. for a 10x10m environment, the right side is
10m in length. Fig. 3.27 shows the environment at 10x10m and 25x25m. The Wedge

84 Navigation for Pedestrian ABM

Desired route (fixed)

Desired route (dynamic)

Forced direction
due to congestion

Forced direction

Pedestrian tries to go
back to the correct route

Pedestrian uses
alternate route

Routing direction

Navigation Graph node

Fixed route navigation

Pedestrian chooses a route though one narrow gate

Dynamic routing

b)

Pedestrian picks
the top route

a)

c)

d) e)

Figure 3.26 Non-walkable areas in black represent the walls and a set of turnstiles.
The pedestrian (red circle) has a desired route (a) but is forced to go through another
slot due to congestion (b). The pedestrian tries to go back to the pre-specified route
causing congestion (c). With dynamic routing (d), the pedestrian is able to switch to
using the alternate turnstile without problem (e).

3.3 On the Two Navigation Approaches 85

environment is used to test the case where environment complexity remains constant
while the environment size changes.

The second is a Corridor which is a bounded rectangle and contains a 2m square
obstacle for every 5m of the environment length. These square obstacles are evenly
distributed to form a large number of corridors with many possible branching routes.
Fig. 3.28 (a & b) shows the environment at 10x10m and 25x25m, respectively. As the
number of corridors in the environment is directly proportional to the environment
size the complexity of the environment grows exponentially with the environment size.
The green capsules in the environment represent portals. In all cases a simple itinerary
is created where the pedestrian must get from the portal on the left to the portal on the
right.

For the grid-based navigation approach, the resolution used is 4 cells per square
metre. A single grid is required for static obstacle avoidance where each cell contains
12 bytes of obstacle information. Additional grids containing navigation information
require 8 bytes for each cell.

For the graph-based navigation approach, each Environment Graph node uses 12
bytes of memory to store its own position and radius, and an edge uses 8 bytes of
memory to store an index to the node on each side. Each Navigation Graph node costs
16 bytes and each edge costs 12 bytes. A Navigation Graph’s memory consumption is
variable and depends on the complexity of the itinerary but has a baseline requirement
that there is one connection between every traversable node.

As can be seen in Fig. 3.29 and Table 3.2, the memory usage of the grid-based
navigation approach increases exponentially with the environment size irrespective
of the environment complexity. The memory use for the navigation graph approach
meanwhile depends on the complexity of the environment. There is a linear relationship
between the number of nodes in the Environment Graph and the total static memory
required which includes the nodes and edges in the Environment Graph, the R-tree for
searching the Environment Graph and the static obstacle search tree.

The wedge environment example shows how the graph-based approach excels in
environments with a mixture of large and small spaces. It is shown to use significantly
less memory than the grid-based approach (Fig. 3.29). Even in a scenario such as the
corridor scene, where memory requirements for the static data structure are higher than
the grid-based approach, the memory required to create an itinerary is consistently less
than the grid-based approach (Table 3.3), which makes it more suitable for applications
where pedestrians have a wide range of objectives.

Chapter 4 describes how the searchable graph-based navigation approach has been
integrated into a prototype pedestrian simulation called Concoursia. Two real-world
environments, a shopping mall and a train station, are used to demonstrate this system.

86 Navigation for Pedestrian ABM

4m 10m

10m

25m

25m

Figure 3.27 A subset of the Wedge environments used to compare memory usage
between the two navigation approaches (Tables 3.2 and 3.3). Green capsules represents
portals. The environment bounded by brown lines is 10x10m and the environment
bounded by blue lines is 25x25m. The left side is fixed at 4m and the right side is the
same length as the environment.

a) b)

10m 25m

Figure 3.28 A subset of the Corridor environments used to compare memory usage
between the two navigation approaches (Tables 3.2 and 3.3). The environment is
bounded by black lines and the green capsules represents portals. The environments
shown in (a)-(b) are of size 10x10m and 25x25m, respectively. For every 5m of the
environment a 2m square obstacles is added and evenly distributed to create a corridor
layout so that the complexity of the environment grows exponentially with its size.

3.3 On the Two Navigation Approaches 87

Environment Dimension

0 100 200 300 400 500

M
em

or
y

us
e

(M
B

)

0

5

10

15

20

25

30

Corridor Env. Graph
Grid Navigation
Wedge Env. Graph

Figure 3.29 Memory usage comparison for the navigation types on a wedge shape
environment and corridor environment. For grid-based navigation (solid line), the
memory use is the same for both environments and increases exponentially with
environment size. For graph-based navigation (dashed lines), memory use is highly
dependent on the complexity of the environments rather than the size as can be seen
by the disparity for the Corridor environment (dashed line) and Wedge environment
(dash-dotted line).

Env. Size (m)
Grid navigation - Wedge & Corridor Env.

Num. Cells Mem. use per CVF (kB) Mem.use per NVF (kB)
10x10 400 4.8 3.2
25x25 2,500 30 20
50x50 10,000 120 80
75x75 22,500 270 180

100x100 40,000 480 320
200x200 160,000 1,920 1,280
300x300 360,000 4,320 2,880
400x400 640,000 7,680 5,120
500x500 1,000,000 12,000 8,000

Table 3.2 The table shows memory use for various environment sizes for the grid-
based navigation system. The same memory consumption applies to both Wedge and
Corridor environment.

88
N

avigation
forPedestrian

A
B

M

Env. Size (m)
Wedge Env. Corridor Env.

Num. nodes
Total Base
Mem. (kB) Itin. nodes

Itin. Mem.
use (kB) Num. nodes

Total Static
Mem. (kB) Itin. nodes

Itin. Mem.
use (kB)

10x10 22 1.804 2 0.284 37 8.344 13 0.64
25x25 56 3.916 5 0.74 222 54.708 37 3.244
50x50 126 8.212 5 1.58 797 211.672 73 10.72
75x75 184 11.868 5 2.276 1702 474.108 109 22.156

100x100 245 15.656 6 3.024 3280 705.796 151 41.764
200x200 496 31.188 6 6.036 12805 3738.87 301 158.464
300x300 741 46.184 7 8.992 28580 8430.864 451 350.164
400x400 983 60.924 8 11.912 50605 15243.08 601 616.864
500x500 1256 77.368 9 15.204 78880 23617.344 751 958.564

Table 3.3 The table show, for both Wedge and Corridor environment, memory used by the navigation graph system. Base memory includes
the Environment Graph, search R-tree and the static obstacle tree and the memory used for a simple Itinerary for getting from one end of the
environment to the other.

3.3 On the Two Navigation Approaches 89

3.3.2 Navigation Performance

With the agent-based navigation grid approach (Section 3.1), there are two main
processes that use computation time: the outputting of navigation messages and access
to the navigation message. At every iteration, each navigation agent always outputs a
single navigation message and, as they’re discrete agents, the message does not need
to be sorted or hashed. This means the message output time has a linear relationship
with the number of navigation agents. Accessing the navigation information involves
translating the pedestrian’s current location to a discrete coordinate and accessing
a specific message in an array, which is a constant time operation. The message
read time is then a linear relationship with the number of pedestrians accessing the
navigation grid.

For the searchable graph based approach (Section 3.2), the underlying data structure
is static and, as it does not use navigation agents, there are no message output costs,
as the next node information is provided by the current node. Thus, in the best case,
where a pedestrian can directly follow a route without congestion, this has a constant
access time. However, when a pedestrian falls out of the Navigation Node bounds,
an R-tree search must be performed to find the nearest node. This has a worst case
algorithmic complexity of O(logn).

We can extrapolate this to a HPC infrastructure. As the searchable navigation graph
is passive, there will be no difference in access performance on different nodes. With
the agent-based navigation grid, the navigation agents can be split-up with domain
decomposition techniques and each node will only need to perform message processing
for the navigation agents that falls within in its domain. While domain partitioning is
viable for the navigation grid approach, the cost of storing NVF for the subdomain can
quickly add up in scenarios where there are a large number of destinations.

3.3.3 Discussion

With the grid navigation being agent-based, there is a disadvantage in that additional
overhead is added for every simulation iteration, which scales up with the size of the
environment. However, as the environment itself are agents, the advantage is that
additional dynamic features such as spread of smoke could potentially be implemented
into the existing framework.

With both approaches grid and graph approaches, it is currently costly to rebuild the
environment should there be a major change such as multiple routes becoming blocked
in the middle, e.g. as a result of part of the building collapsing, as the entirety of the
creation of grid or graph structure and path-finding involved needs to be performed
again.

90 Navigation for Pedestrian ABM

The grid-based navigation has an advantage in that it generally offers smoother
paths due to the dense data structure and artefacts introduced in the graph-based
approach as a result of the spatial sub-division strategy as can also be seen with other
graph-based approaches [51, 55, 58]. The smoothness of the path is unlikely to make
a major contribution to the flow at the systematic level especially during congestion
when pedestrian’s movement becomes much more dependent on their neighbours.

In models where the environment size and number of pedestrian objectives are
limited, the use of agent-based navigation grids has an advantage in that it provides
a robust system for navigation that is simpler to implement and dynamically modify.
However, the disadvantage of the grid-based approach is that as we start to consider
larger and more complex environments it is not only the size that increases but the
number of objectives that must be represented within the environment. This memory
requirements limitation makes the case for the use of the graph-based navigation
approach much more attractive.

Chapter 4

Concoursia, a prototype pedestrian
simulation system

Although the navigation system is an essential part of a pedestrian simulation system,
many other pieces are required in order to create a complete platform useful for pedes-
trian flow analysis. Concoursia is a prototype crowd simulation platform that takes
advantage of a Graphics Processing Unit (GPU)’s parallel computational architecture
with the use of the FLAME GPU framework (Section 2.6.3). This makes it possible
for simulations to run at real-time or faster [71]. The pedestrian navigation system in
Concoursia uses the graph-based navigation approach as described in Section 3.2.4.
This is implemented for the GPU with CUDA to allow integration with the FLAME
GPU framework and allows a pedestrian agent in FLAME GPU to access the naviga-
tion system directly from within its agent function. Concoursia also provides a GUI
which allows quick creation of scenarios for testing, visualisation and analysis for
various complex environments. The system was designed to support a wide variety of
use cases. However, through the work with industrial partner for the research, Network
Rail, features were added to support common scenarios that occurs in transport hubs
such as queuing, waiting areas and ability to specify public transport schedules.

Section 4.1 explains the various components within Concoursia. The building
and running of the simulation model are then discussed in Sections 4.3 and 4.4,
respectively, including a description of the GUI. Section 4.5 discusses visualisation
of real-time simulations. Essential functions such as reporting of metrics from the
executed simulation can be found in Section 4.6.

Section 4.7 presents a quantitative evaluation of pedestrian navigation in Concour-
sia. The evaluation is done by testing the route utilisation of a complex branching
environment. Section 4.8 presents two case studies based on real-world environments
are presented which highlight typical use-cases for the platform, as well as providing

92 Concoursia, a prototype pedestrian simulation system

benchmarks under realistic conditions. The first is a simple environment based on a
single floor of a shopping mall. The large floor space offers a fairer comparison of
memory use for the grid and graph-based navigation approaches previously covered in
Chapter 3. The second is a more complex example of a busy train station in London
spanning over three floors that utilises every feature implemented in Concoursia. Two
scenarios are used for both examples, one for normal operations and one for evacuation.
Finally, Section 4.9 discusses the Concoursia system.

4.1 System Overview

Concoursia is divided into five major components as can be seen in Fig. 4.1. The
software was designed with a Client and Server view in mind. The Client handles the
editing, creation and analysis of the environment and scenario. The Server application
performs the building of the scenario, as well as running the simulation without direct
user interaction or visualisation.

With the intention for later adapting the software to a Client and Server application
in mind, the software was designed by following the Model View Controller (MVC)
pattern to create a loose coupling between the logic of the program and its visual
representation. The Scenario Model, Simulation Builder and Simulator can be thought
of as models. The functionality of these model components are provided as API
functions usable by the views and controllers. These model components completely
encapsulate the functionalities of creating and running a simulation and can be used
without visual representation, a concept further explored in Chapter 5. The GUI
component is the sole controller and also provides a view for standard GUI items, e.g.
buttons, menu, dialogue boxes, etc. The Visualisation component is purely a view for
visually representing the physical items in the scenario (e.g. walls, floor, etc.) and the
resulting simulation, i.e. the rendering of pedestrians. The model essentially serve as
the Server part and the view and controller as the Client part. This pattern also makes
it easier for multiple developers to work on separate parts of the application at the
same time after having designed the interface between the components.

The Scenario Model component provides an API and data structure for manipulat-
ing, storing and accessing data necessary to build and simulate a scenario (Environment
Data and Navigation Data). The component’s function is akin to a database which
stores and provide data to all other components. Only the serialisation of the Scenario
Model component is necessary to store the working state of the application. After
the scenario creation process is finished, the Environment Data is passed over to the
Simulation Builder (Section 4.3) which generates GPU-optimised Navigation Data.

4.2 Creation of A Scenario 93

After the build process, the Scenario Model contains all data that is required to run a
simulation. As the building of the Navigation Data is an independent process from
management of Environment Data, it is separated into the Simulation Builder compo-
nent. Having generated the Navigation data, it is now possible to run the simulation
using the Simulator component. The Simulator component (Section 4.4) is a wrapper
over FLAME GPU that handles necessary tasks on the CPU such as scheduling of
events and recording of metrics.

The GUI component uses Qt [275] to present user interface components for user
interaction as well as a viewport for 3D OpenGL rendering. The rendering within
the viewport is done by the Visualisation component that renders all physical items
related to the scenario using OpenGL. The rendering is done by using data from the
Scenario Model and the Simulator. The GUI and Visulisation are conceptualised as
two separate components in order to draw a distinction between interaction between
standard Qt user interface components and 3D rendered scenario items.

The GUI’s Environment Designer (Section 4.2.1), Network Editor (Section 4.2.2)
and Itinerary & Schedules editor (Section 4.2.3) are used together in conjunction with
the Scenario Model to produce a set of Environment Data to be used by the Simulation
Builder. The Simulator on the other hand is controlled by the GUI’s Simulation
mode (Section 4.4). The following sections will explain the various components
of Concoursia in order by using the creation of a simple two-platform bus station
environment as an example (Fig. 4.2).

4.2 Creation of A Scenario

As previously mentioned, the Scenario Data component (Fig. 4.1) is a set of APIs and
data structures used for manipulating, storing and serializing scenario data. Within it,
the Environment Data contains information about layout of the environment, objective
locations and how they are connected, as well as the Itinerary and Scheduled events
that are due to happen.

4.2.1 Environment Objects & Environment Designer Mode

Physical items within the environment are called Environment Objects and can either
be represented as rectangles, circles, capsules or polylines. The Environment Objects
consists of Walkable areas, Obstacles, Portals, Waypoints, Queues and Waiting areas.
All Environment Objects are stored in the Environment Objects List.

For the simple two-platform bus station example, the placement of all Environment
Objects are shown in Fig. 4.2. Walkable areas bounded with black lines mark an area

94 Concoursia, a prototype pedestrian simulation system

Concoursia

Scenario Model

Navigation Data
(GPU Opimised)

Environment Data
(not GPU optimised)

Environment Objects Graph

Event Schedule

Environment Objects List

Simulator

Event Scheduler

Pedestrian simulation
(FLAME GPU)

Navigation Module

Metrics recorder/serialiser

GUI (Qt)

Environment Designer
Mode

Itinerary & Schedules Mode

Simulation Mode

Network Editor
Mode

Simulation Builder

Scenario Generator

Navigation Graph Generator

Web-based Metrics

Visulisation
(Static HTML/JS)

Control/ Visualise

Visualisation (OpenGL Rendering)

Render
Environment Objects & Network

Render
3D Pedestrian Visulisation

Render
3D Environment model

Control/Get status feeback

OpenGL Texture
Buffer

Builds Navigation Data

Builds to Vertex Buffer

Figure 4.1 A simplified data flow and interaction diagram of Concoursia’s different
components.

4.2 Creation of A Scenario 95

Stairs
(Waypoint)

Queue 2
(Queue)

Queue 1
(Queue)

Column 1
(Obstacle)

Column 1
(Obstacle)

Ticket machine 1
(Waypoint)

Ticket machine 2
(Waypoint)

Entrance 2
(Portal)

Entrance 1
(Portal)

Platform 1
(Portal)

Waiting area 1
(Waiting area)

Waiting area 2
(Waiting area)

Platform 2
(Portal)

Figure 4.2 A simple bus station environment with two floors and a set of stairs
connecting them. The environment is bounded by the walkable area within the black
lines. It shows the Static Obstacles (red areas), Portals (green areas), Waypoints (blue
areas), Waiting area (grey areas) and Queues (purple dots and lines).

96 Concoursia, a prototype pedestrian simulation system

Two overlapping
Walkable Objects Walkable after environment build

Figure 4.3 Overlapping Walkable Objects are merged into a single walkable area
during the building of the simulation.

of the environment walkable for the pedestrians. Its boundaries are then considered as
impassable walls. When walkable areas overlap, they merge to form a single shape
making it possible to form more complex walkable areas from simpler shapes (Fig. 4.3).
Obstacle objects are static impassable obstacles which can be placed inside Walkable
areas. Portals represents entrances and exits to the simulation such as doorways of
buildings, train doors, etc. Waypoints provide the ability to give pedestrians specific
routes within the environment and for connecting multiple levels together in the case
of stairways, lifts or escalators. Queues are linked to Portal or Waypoints and provide
an indication of how a line should be formed when waiting to reach an objective.
Waiting areas can be linked to Portals or Waypoints in order to clearly mark the areas
that pedestrians can wait while a Portal or Waypoint is closed, e.g. the platform area
when waiting to board a train. Pedestrians in the Waiting area will attempt to evenly
distribute themselves within the area.

The creation and modification of these objects are done through the GUI in the
Environment Designer Mode. Each time the software starts, an empty Scene is created
to contain all objects and events related to the simulation. The Environment Designer
Mode allows users to deal with the placement of objects in the physical environment.
Pre-existing floor plans can be imported from Adobe’s dxf file format and converted to
either Walkable or Obstacle objects. Users can then create new Walkable and Obstacle
objects or modify existing ones. As shapes of Portals, Waypoints, Queues and Waiting
areas are restricted to rectangle, circles or capsules, users have to manually place these
objects within the scene within the program. Images can be imported to serve as an
underlay to guide the creation of the environment. Objects can be grouped together to
help avoid repetitiveness of the object connection process, described in Section 4.2.2,
when using the user interface.

4.2 Creation of A Scenario 97

3 Waypoint group
Actual representation

when building simulation

33.3%

33.3%

33.3%

Figure 4.4 Environment objects of the same type can be grouped in the Network
Editor Mode. To the simulation they are seen as branches with equal probability that a
pedestrian can choose from.

4.2.2 Environment Object Graph & Network Editor Mode

The Environment Objects Graph can be created within the GUI using the Network
Editor Mode (Fig. 4.5). The graph contains connections between the networkable
Environment objects which are the Portals and Waypoints. A connection between
objects can be specified as bi-directional or uni-directional to represent different types
of flow control strategies. Groups of either Portals or Waypoints can also be made.
Grouped objects behave similarly to singular objects in the connection process but the
underlying network also makes a connection to each object within the group. During
the building of the simulation, this results in branching paths of equal probability
to each item in the group (Fig. 4.4). As Concoursia operates in a 2D environment,
multiple floors are laid out on the same plane next to each other and Waypoints must
be placed at the transfer locations between the floors and then connected together to
allow pedestrians to navigate between the floors.

Queues and Waiting areas are not included in the graph and are contained as
properties within Portal and Waypoint objects. The graph allows the creation of
sequences of objectives, e.g. pedestrians must go to a ticket machine first before
heading to a platform. Fig. 4.5 shows the connections between the Environment
Objects in the bus station example, where yellow lines indicate a connection between
objects on the same floor and the dotted grey line is a connection between objects on
different floors.

4.2.3 Event Schedule & Itinerary and Schedules Mode

The Event Schedule stores a timetable of events such as when a Portal is emitting and
when a Portal or Waypoint is closed and pedestrians must initiate queueing or waiting
behaviour. This can be used for example to create schedules for arrival and departures

98 Concoursia, a prototype pedestrian simulation system

Stairs
(Waypoint)

Queue 2
(Queue)

Queue 1
(Queue)

Column 1
(Obstacle)

Column 1
(Obstacle)

Ticket machine 1
(Waypoint)

Ticket machine 2
(Waypoint)

Entrance 2
(Portal)

Entrance 1
(Portal)

Platform 1
(Portal)

Waiting area 1
(Waiting area)

Waiting area 2
(Waiting area)

Platform 2
(Portal)

Figure 4.5 The connections created for the simple bus station environment in Fig. 4.2.
Each orange dot represents a networkable Environment object. They are connected
with the yellow lines on the same floor and a dotted grey line on different floors
representing stairs. Waiting areas and queues are special cases where association with
a Portal or Waypoint is set through object properties rather than in the network. They
are shown connected to the Portal or Waypoint object with dotted purple lines.

4.3 Building the Simulation 99

of trains and buses. The Event Schedule can be created from the GUI’s Itinerary and
Schedules Mode (Fig. 4.6).

The Event Schedule consists of two main parts, the Itinerary Graph and the Sched-
ule. The Itinerary Graph (Section 3.2.2) encapsulates a user’s navigational goals at
a higher level. It is composed of Portals, Services and Activities. Timetabled public
transport such as buses or trains normally have associated platforms for arrival and
departure. These timetabled services are often cyclical in that there are multiple buses
going to a particular destination on the same day. Services allows the representation
of a timetabled transport service going to a set destination and affect the route taken
through the environment. For example, pedestrians will go and wait at the platform
that has the bus they’re waiting to catch. An Activity represents an objective that
must be completed when following the Itinerary, e.g. getting a ticket. An activity is
bound to a Waypoint Object. The software makes the assumption that whatever the
pedestrian’s behaviour within the environment the pedestrian always tries to exit from
the environment at the end so, defining a single Itinerary is a matter of choosing a
starting and ending portal/service and compulsory activities. For the example shown
in Fig. 4.6, an Itinerary Graph as shown in Fig. 4.7 is generated. The Schedule is then
a list of events and determines the timing of when pedestrians are emitted, e.g. when
pedestrians come into the environment by foot or when a service arrives at a platform.

4.3 Building the Simulation

The Simulation Builder prepares the Environment Data for simulation. It creates a
GPU optimised navigation data structure and a Scheduler for handling events during a
simulation run.

Navigation of the pedestrians in Concoursia uses a GPU-optimised navigation
graph approach, as described in Section 3.2. The Navigation Builder in Concoursia
reduces the environment into an Environment Graph which contains a series of con-
nected walkable areas. From the Itineraries specified in the Event Schedule, specific
routes between connected objects in the Environment Object Graph are found by
finding the Environment Graph node nearest to the Environment Objects. Routes are
found between two connected objects using A* and the resulting information stored in
the Environment Object Graph’s edges. For every Itinerary, at least a single Navigation
Graph is created, but more can be used to represent a complex Itinerary involving
multiple objectives or requiring a pedestrian to walk back on itself, e.g. Fig. 3.19 when
a pedestrian has to walk to the shop then double back to the exit. The Navigation
Data creates a Structure of Arrays (SoA) data structure (Fig. 2.2) to store all generated

100 Concoursia, a prototype pedestrian simulation system

Figure 4.6 The Portal, Activity, Services, Itinerary and Schedule pages in the Itinerary
and Schedules Mode.

4.3 Building the Simulation 101

Entrance 1

Platform1

Platform 1

Entrance 1

Entrance 2

Activity: Buy Ticket
Ticket Machine 1

Activity: Buy Ticket
Ticket Machine 2

Platform 2

Waiting Area 1 Waiting Area 2

Platform 2

Entrance 2

50% 50%

Leaving station
(Platform to Entrances)

Catching a bus
(Entrance to Platforms)

Route choice depends on
service coming to platform

Figure 4.7 The Itinerary Graph generated with the environment in Fig. 4.5 for the
example in Fig. 4.6.

navigation information required by the agent during simulation and is uploaded to the
GPU once the simulation starts. The Navigation Data structure is shown in Fig. 3.20
laid out as Array of Structures (AoS) to make it easier to visualise but is laid out in
memory as SoA (Fig. 3.21) in actual use on the GPU. The use of the Navigation Data
structure is explained in Section 4.4.2. Portals and Waypoints store position indices
to their counterparts in the Navigation Data allowing properties such as opening and
closing or branching probability to be changed during simulation run. An example is
the arrival and departure of Services causing a portal to open and close (Listing 4.1).

102 Concoursia, a prototype pedestrian simulation system

// During a simulation iteration

services_event = scheduler.check_services_event ()

foreach service_event in services_event:

portal = service_event.get_associated_portal ()

if service_event.arrived ():

portal.open()

else if service_event.departed ():

portal.close()

navigationData.target_array.is_open[portal.

target_array_index] = portal.is_open ()

navigationData.routes_array.is_open[portal.

route_array_index] = portal.is_open ()

navigationData.synchronise_with_gpu ()

Listing 4.1 Pseudocode for a part of the Schdeduler’s process every simulation
iteration. A portal object updates its status and synchronises data with the
GPU.

A scheduler is also created which tracks and controls the simulation time and
dispatches events on the CPU. The events include emission of pedestrians, opening
and closing of Portals and Waypoints, arrival and departure of services and recording
of metrics.

4.4 Simulator

Concoursia’s Simulator is the part that performs the running of the simulation. It
is composed of the Pedestrian Simulation engine, Event Scheduler and the Metrics
recorder.

The Pedestrian Simulation engine in Concoursia is a custom version of FLAME
GPU that has been modified to run embedded in an application. It allows Concoursia to
take advantage of the GPU’s processing power without re-implementation of essential
functions such as GPU optimised spatially sorted message passing. The agent model
used in Concoursia is explained Section 4.4.1 and the Navigation Module which the
pedestrian agents use for navigation is explained in Section 4.4.2.

The Event scheduler created by the simulation builder runs on the CPU and any
event dispatched, e.g. emission of pedestrians, has a wrapper that allows the upload of
this information to the GPU where the pedestrian model is computed. At set intervals

4.4 Simulator 103

of simulation time, it tells the Metrics recorder to process the model creating metrics
from the simulation, download the information from the GPU and save the data to disk.
Further details on the metrics recorded can be found in Section 4.6.

4.4.1 The Concoursia Agent Model

Concoursia’s agent model consists of two different types of agents, pedestrian agents
and queue agents. Unlike navigation behaviour which is essentially static data access
with no inter-agent communication, the queueing behaviour was introduced as queue
agents due to the need for active management of queue status and the need for a single
queue to communicate with multiple pedestrian agents and resolve queuing order
conflict. Each agent’s function and the messages used for communication are shown
sequentially in Fig. 4.8.

The navigate function deals with accessing the navigation graph structure (Sec-
tion 3.2.4) at runtime, and assessing the pedestrian’s current objectives and headings.
The Navigation Module provides a single function nm_navigate() where pedestrians
can pass in the details of their current navigation objectives and get a vector directing
them to their destination. Further explanation of the Navigation Module and the
nm_navigate() function can be found in Section 4.4.2.

The Queueing behaviour was deemed essential for simulation of busy public
transport hubs as the behaviour can be observed in many cases such as getting a ticket,
waiting to go through turnstiles or waiting to board a bus/train. The problem with
queueing is that it is essentially a sequential operation and so a queueing agent has
to be made to arbitrate the order in which pedestrians get to queue. Each queue in
the environment contains a single queue agent. The pedestrians looking to join the
same queue must first request a queue time from a queue agent which in turn gives
a unique number to each requester. The pedestrians use this queue id as a ticket and
order themselves by queueing behind agents with a lower queue number. Pedestrians
that are queueing then continually make requests to the queue agent to check whether
they are at the head of the queue and, if they are, receive a queue “ticket” allowing
them to go and use the thing they were queueing for. After the pedestrian is done, it
sends the ticket back to the queue agent notifying that a space is now available for the
next agent.

For local collision avoidance against static obstacles and other pedestrians the
Optimal Reciprocal Collision Avoidance (ORCA) model is used, based on the paper
by Snape et al. [130]. By using the ORCA approach, simulation time steps can be kept
constant. This makes the simulation faster than solving a force-based equation that
restricts the simulation time step by a maximum force that can be processed within a

104 Concoursia, a prototype pedestrian simulation system

Figure 4.8 Concoursia’s agent model showing the Pedestrian and Queue agent func-
tions and the messages used.

time slice. The static environment is stored in a searchable KD tree structure to be ac-
cessed during the local_collision_avoidance function. For avoiding other pedestrians,
each pedestrian first broadcasts its own location into a spatially partitioned message
pool (avoid_pedestrians). In the local_collision_avoidance function the pedestrian
accesses location messages within their own spatial bin. Due to the inefficiency in
dynamic memory allocation on the GPU device, instead of using a dynamic list to
store all obstacles within the perception range, the list is restricted to a total of 30
obstacles (15 dynamic and 15 static obstacles). When adding an obstacle to a full list,
the furthest obstacle from the pedestrian is rejected.

4.4.2 Navigation Module

In order to allow pedestrians to navigate complex environments, a system has to be
implemented to provide global navigation. The Navigation Module is implemented
as an extension in the FLAME GPU framework and uses the searchable navigation
graph approach detailed in Section 3.2. It provides an API that pedestrian agents can
use in order to access navigation information from the kernel. In addition, it provides
support for static obstacle avoidance, waiting and queueing. Specific details for the
implementation of the module can be found in Section 3.2.6.

The navigation data used in the module is created by the Navigation Graph Gener-
ator and data management is entirely separate from FLAME GPU. When starting a
simulation the Navigation Data is uploaded by this module to the GPU.

4.4 Simulator 105

Figure 4.9 Simulation and 3D visualisation of the bus station model. The ‘Current
speed’ bar at the top allows for adjustment of simulation speed either to gain increased
simulation performance (speeding up) or easier visual inspection (slowing down).

4.4.3 Simulation Mode

The GUI’s Simulation mode (Fig. 4.9) is used to build, control and visualise the
running simulation. After a scenario has been created and the simulation is started by
the user, the Scenario Data is passed to the Simulation builder. The resulting data is in
turn sent to the Simulator to start the simulation process.

Once the simulation starts, by default the simulation time is locked to real-time.
A slider within the interface allows a change in the time parameter allowing the
simulation to be sped up, paused or slowed down. When the user chooses to speed up
the simulation, the frame-rate is reduced to maximise simulation capacity as simulation
and visualisation both use the GPU for computation. Locking the simulation speed to
real-time, and pausing or slowing down the simulation allows for easier inspection of
model behaviour.

106 Concoursia, a prototype pedestrian simulation system

Figure 4.10 Screenshot of the pedestrian count metric showing number of pedestrians
in the simulation over time for all simulation instances. X axis is time (hours and
minutes) and Y axis is the pedestrian count.

4.5 Visualisation

Concoursia uses OpenGL rendering across all of the main GUI interfaces for visualis-
ing the environment and pedestrians during a simulation. The environment renderer
create a buffer of environment geometry on the GPU from the Environment Data.
For pedestrian rendering, a CUDA kernel selectively copyies pedestrian information
from the FLAME GPU simulation, e.g. positions and headings, writing directly to
an OpenGL Texture Buffer Object. Two human geometry poses are used to animate
the pedestrian. The first geometry has the pedestrian with right foot forward and left
foot back while the other is the opposite. The walk animation is simply a cycle of
linear interpolation between the two shapes. A vertex shader uses the texture data to
interpolate pedestrian geometry to create a walk animation. The pedestrian geometry
is then rotated to the correct heading and translated into the correct position in the
environment.

4.6 Metrics

Concoursia collects three metrics: pedestrian count, journey time and Level of Service
(LoS) [276]. The metrics are automatically recorded every 5 seconds of simulation
time interval during the simulation run.

4.6 Metrics 107

Figure 4.11 The evacuation graph shows the number of people who have exited the
environment during a certain time period, which is used for analysing the rate of exit.
X axis is time (hours and minutes) and Y axis is the number of pedestrians that exited
during the period.

LoS Walking (m2/ped) Standing/Queueing (m2/ped)
A ≥ 3.24 ≥ 1.2
B 2.32 to 3.24 0.93 to 1.2
C 1.39 to 2.32 0.65 to 0.93
D 0.93 to 1.39 0.28 to 0.65
E 0.46 to 0.93 0.19 to 0.28
F ≤ 0.46 ≤ 0.19

Table 4.1 The LoS values used for measuring crowdedness of the environment.

The pedestrian count consists of the number of pedestrians in the environment over
time (Fig. 4.10). It is used as a general indicator of how busy the environment is and
for how rapidly pedestrians can exit the environment during an evacuation scenario.

The pedestrian journey starts when it enters the environment and ends when it exits
(Fig. 4.11). This metric is useful in a wide range of cases such as checking the time
that a pedestrian took to evacuate a station or for getting from an entrance to boarding
a train. Each pedestrian has a variable that records the simulation time that it enters
the simulation. At every iteration, a check is made to see if a pedestrian has exited
the environment and the current simulation time minus the time that they entered the
simulation is recorded.

The LoS (Figs. 4.19, 4.21, 4.25 and 4.27) is a standard metric used to measure the
quality level of traffic for both vehicles and pedestrians [276]. It is measured in levels
as shown in Table 4.1. The metric starts at level A indicating the lowest measured
density, as area of clearance around each pedestrian, and ends at level F with the
highest density. The metric takes into account that activities like walking require more
room around the pedestrian than queueing. So, the lowest LoS when walking, level
F, which requires 0.46m2 per pedestrian, is roughly the same as LoS level D when
queueing or standing.

108 Concoursia, a prototype pedestrian simulation system

Figure 4.12 Origin and Destination matrix shown as a circular migration flow plot.

4.7 Quantitative Evaluation of Agent Navigation 109

Visualisation of the metrics after the simulation has finished running is done
through a web-based interface. This was done as the first phase of transitioning
Concoursia to a web-based tool. The main dashboard shows a graph that gives
the number of pedestrians in the simulation over time (Fig. 4.10). The Migration
page shows pedestrians’ origin and destination using a circular migration flow plot
(Fig. 4.12). The Heat maps page display a cumulative LoS map that shows the
maximum LoS experienced in the environment over the course of the simulation
(Figs. 4.19, 4.21, 4.25 and 4.27). The Evacuation page shows a graph of the number of
pedestrians that has exited over the time period, results from multiple simulation runs
can be plotted on the same graph to show a comparison (Fig. 4.11).

4.7 Quantitative Evaluation of Agent Navigation

A tree-like environment (Fig. 4.13) is used to verify that pedestrian agents are able
to navigate through a complex branching environment, correctly following the pre-
defined branching probabilities. This environment starts from a single corridor on the
left with a height of 150m, which, after 50m, branches into two corridors, each of them
half its width. Multiple environments are tested where the branching happens from
once to four times following the same branching rule. The pedestrians are emitted
from a single Portal on the ’trunk’ (i.e. the left side of the environment) and have to
navigate to the exit Portal at the ’leaves’ (i.e. the right side of the environment). Each
exit Portal is numbered sequentially starting from the top. At each junction, there is a
50% probability of a pedestrian either choosing the top or the bottom branch and so
every exit Portal should statistically obtain a similar number of pedestrians.

For each simulation run, 1000 pedestrians are emitted continuously and the simu-
lation ends when all 1000 pedestrians have exited the environment upon reaching an
exit Portal. The simulation is run 100 times for each environment. The cumulative
numbers of pedestrians exiting for each environment over 100 simulation runs are
shown in Table 4.2. The percentages of chosen exit Portals are also included in Ta-
ble 4.2. This shows that pedestrians spread out to use all exits evenly with a maximum
of 0.52% deviation due to the stochastic nature of pedestrian emission and the random
probability when choosing branching routes.

Figs. 4.14 to 4.17 show the distributions of exit time and distance travelled for
the environment with one to four branches, respectively. The distributions are shown
for each individual exit portal. The mean speed of the pedestrian is in the range
of 1.495 to 1.505ms−1 for all environments with standard deviation in the range of
0.187 to 0.189ms−1 which is in line with the desired speed of 1.5ms−1 with standard

110 Concoursia, a prototype pedestrian simulation system

Environment 1 Environment 3 Environment 4Environment 2

Entrance

Exit 1

Exit 2
Waypoint 1

Waypoint 2
Exit 3

Exit 4

Figure 4.13 The four Tree environments used for testing branching probability during
pedestrian navigation. Environment 2 has been enlarged and annotated to show
the location of the entrance (green), waypoints (blue) and exits (red). Yellow lines
represent branching connections in the itinerary.

deviation of 0.2ms−1. The relatively uniform distribution of both exit time, and
distance travelled, as well as the low variance in mean speed of pedestrians, shows
that minimal congestion occurred. This is in line with the uniform distribution for
low congestion evacuation from an environment as observed by Viswanathan et al.
[277] for the RVO model. Although their paper uses zonal division when assessing
the evacuation time and distance travelled distribution, in this case, where pedestrians
start at the same point, they are instead grouped by the exit portal that they’ve taken.

4.8 Real World Environments in Concoursia

Plans of real-world environments were used in order to test the Concoursia platform.
The first example is a shopping mall layout spanning a single floor with the internal
layouts obtained from Google Maps. The environment was arbitrarily chosen as a

4.8 Real World Environments in Concoursia 111

Pedestrian exit count Pedestrian exit percenage
Env 1 Env 2 Env 3 Env 4 Env 1 Env 2 Env 3 Env 4

Exit 1 54109 24667 12901 6178 49.56% 24.67% 12.90% 6.18%
Exit 2 55077 25264 12552 6208 50.44% 25.26% 12.55% 6.21%
Exit 3 - 25524 12645 6272 - 25.52% 12.65% 6.27%
Exit 4 - 24545 12266 6419 - 24.55% 12.27% 6.42%
Exit 5 - - 12754 6305 - - 12.75% 6.31%
Exit 6 - - 12479 6359 - - 12.48% 6.36%
Exit 7 - - 12119 6187 - - 12.12% 6.19%
Exit 8 - - 12284 6333 - - 12.28% 6.33%
Exit 9 - - - 6213 - - - 6.21%
Exit 10 - - - 6088 - - - 6.09%
Exit 11 - - - 6205 - - - 6.21%
Exit 12 - - - 6415 - - - 6.42%
Exit 13 - - - 6274 - - - 6.27%
Exit 14 - - - 6202 - - - 6.20%
Exit 15 - - - 6196 - - - 6.20%
Exit 16 - - - 6146 - - - 6.15%

Table 4.2 Exit count and percentage for the Tree environments from branching number
1 to 4 over 100 simulations

0 50 100 150

0.
00

0
0.

01
0

0.
02

0

Exit time dist.

Exit time (s)

f(
d)

0 40 80 120

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Distance travelled dist.

Distance travelled (m)

f(
d)

Exit1
Exit2

Figure 4.14 Exit time and Distance travelled distribution for the Tree environment
with one level of branching. Distributions are separated by the pedestrians’ chosen
exit. The distribution is obtained over 100 simulation runs.

112 Concoursia, a prototype pedestrian simulation system

0 100 300

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Exit time dist.

Exit time (s)

f(
d)

0 200 400

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Distance travelled dist.

Distance travelled (m)

f(
d)

Exit1
Exit2
Exit3
Exit4

Figure 4.15 Exit time and Distance travelled distribution for the Tree environment
with two levels of branching. Distributions are separated by the pedestrians’ chosen
exit. The distribution is obtained over 100 simulation runs.

0 200 400

0.
00

0
0.

00
4

0.
00

8

Exit time dist.

Exit time (s)

f(
d)

0 200 400 600

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Distance travelled dist.

Distance travelled (m)

f(
d)

Exit1
Exit2
Exit3
Exit4
Exit5
Exit6
Exit7
Exit8

Figure 4.16 Exit time and Distance travelled distribution for the Tree environment
with three levels of branching. Distributions are separated by the pedestrians’ chosen
exit. The distribution is obtained over 100 simulation runs.

4.8 Real World Environments in Concoursia 113

0 200 400 600

0.
00

0
0.

00
4

0.
00

8

Exit time dist.

Exit time (s)

f(
d)

0 200 600

0.
00

0
0.

00
4

0.
00

8

Distance travelled dist.

Distance travelled (m)

f(
d)

Exit1
Exit2
Exit3
Exit4
Exit5
Exit6
Exit7
Exit8
Exit9
Exit10
Exit11
Exit12
Exit13
Exit14
Exit15
Exit16

Figure 4.17 Exit time and Distance travelled distribution for the Tree environment
with four levels of branching. Distributions are separated by the pedestrians’ chosen
exit. The distribution is obtained over 100 simulation runs.

sample for testing the initial software. The second example is a layout of Clapham
junction train station in London obtained from our industrial partner Network Rail.
This spans over three floors and utilises all features within the Concoursia software.
Although congestion data is not available for use as a comparison, simulation speed,
memory use, and environment build time are used for benchmarking. For both
environments, two scenarios, are used with one representing normal operations and the
other an evacuation scenario. All benchmarks in this section are performed on an Intel
Intel i7-3770K machine with 16GB of RAM and an Nvidia GTX Titan graphics card.

4.8.1 Shopping Mall

The shopping mall has a size of approximately 0.099km2 (Fig. 4.18). It has four
entrances (Portals) and 12 shops (Waypoints) which are used as pedestrian objectives.
As the goal is to simulate only a single floor, elevators, escalators and stairways were
not included. During the normal behaviour scenario, each pedestrian enters from
one of the entrances, randomly select shops to visit and exit the environment through
another entrance. In the evacuation scenario, pedestrians are generated from within
the shops and along the main corridor and must exit the environment using the nearest
exit.

Table 4.3 shows the memory when using the graph-based navigation system. The
coverage refers to the amount of walkable space encapsulated by the Environment

114 Concoursia, a prototype pedestrian simulation system

Coverage (%) 97

Environment
Graph

Node 4,792
Edges 10,914

Mem (kB) 145

R-tree
Nodes 7,191

Mem. (kB) 144
Obstacle (kB) 139

Avg. Mem per
Nav Graph (kB) 134

Build Time (s) 19.4
Table 4.3 Graph-based memory use for the
Shopping mall environment.

Cell width (m) 0.25
Grid Size
(WxH) 1,257x1,266

Walkable
cells (%) 41.13

Collision
Per cell

(B) 12

Per field
(MB) 19.09

Navigation
Per cell

(B) 8

Per field
(MB) 12.73

Table 4.4 Grid-based memory use for the
Shopping mall environment.

Graph, which is 97% in this case. Navigation for the environment uses base memory of
428KB in total. As a navigation graph’s memory consumption is variable per itinerary
and depends on the objectives within it, an example case is used entering from the
south entrance and exiting at the north entrance which results in 21 additional edges
and the total memory use is 134KB per navigation graph. The environment build,
with all itineraries for both normal operations and evacuation, took an average of 19.4
seconds.

Table 4.4 gives the memory use for the grid-based approach. The environment
contains relatively large proportion of walkable area due to the inclusion of shop
floor space compared to the Train station example. For this environment, an obstacle
avoidance field uses 19.09MB and each navigation field uses 12.73MB. Walkable areas
only make up 41.13% of the memory as the diagonal alignment of the environment
means a lot of wasted space on the top right corner. The memory requirements for the
graph-based approach is only 2.24% for the base data such as collision avoidance and
search trees and 1.05% for each Navigation Graph/Itinerary compared to grid-based
approach. For this example where there might be 16 itineraries for ease of comparison,
one for each Portal and one for each shop, the memory use will be 2.57MB for
graph-based as compared to 222.77MB for grid-based navigation.

For the normal scenario 1000 pedestrians are emitted from each Portal over the
duration of an hour. The number is an estimation for a busy time based on yearly
visitor figures to the site. Each pedestrian’s objective is to visit one shop with a random
delay time, then exit the environment through another Portal. The cumulative LoS map
shown in Fig. 4.19 gives an indication of how the environment is utilised. Iteration

4.8 Real World Environments in Concoursia 115

time is found to be proportional to the number of pedestrians in the environment and
a filled area graph (Fig. 4.20) is used to show the time for each agent function with
respect to the number of pedestrians averaged over 100 simulation runs. The function
names stated in the graph corresponds with the agent functions from Fig. 4.8. The
timing is recorded and averaged every 50 iterations. The graph (Fig. 4.20) shows
that the navigation graph access in the navigate function has a roughly constant time
cost even with increasing number of pedestrians. Inter-pedestrian communication
cost however, used for local collision avoidance in the avoid_pedestrian function,
increases with the number of pedestrians as expected when pedestrians can perceive
more pedestrians within their communication range at higher densities.

For the evacuation scenario, 1100 pedestrians, an approximate peak number during
the normal scenario, are emitted in the first two minutes from the 12 shops and must
evacuate to the nearest exit (Fig. 4.21). Iteration times averaged over 100 simulation
runs are shown in Fig. 4.22 and indicate similar behaviour to the normal case. The
overall average walking speed of the pedestrian is 1.502ms−1 with standard deviation
of 0.18ms−1 which is in line with the desired speed of 1.5ms−1 with standard deviation
of 0.2ms−1, which suggests that no significant congestion occurred. A more detailed
plot of distance travelled over the time taken to evacuate is shown in Fig. 4.23 where
the locally weighted scatterplot smoothing (LOWESS) line is shown in red.

116 Concoursia, a prototype pedestrian simulation system

North Entrance 1

East Entrance

Shop

South Entrance

North Entrance 2

Figure 4.18 A shopping mall environment with four entrances and 12 shops. The grey
colour represent walkable areas, green capsules are portals, and blue rectangles are
shops.

4.8 Real World Environments in Concoursia 117

Figure 4.19 Shopping mall normal scenario - a cumulative LoS map of the simulation
run.

118 Concoursia, a prototype pedestrian simulation system

0

5

10

15

300 600 900

Pedestrian count

Ite
ra

tio
n

tim
e

(m
s)

Agent functions

avoid_pedestrian

navigate

return_queue_destination

receive_queue_return

make_queue_time_request

receive_queue_time_request

receive_queue_time_output

make_queue_request

receive_queue_request

receive_queue_response

broadcast_position

move

Figure 4.20 Shopping mall normal scenario - an iteration time over number of
pedestrian graph broken down by the agent functions specified in Fig. 4.8 averaged
over 100 simulation run.

4.8 Real World Environments in Concoursia 119

Figure 4.21 Shopping mall evacuation scenario - a cumulative LoS map of the
simulation run.

120 Concoursia, a prototype pedestrian simulation system

0

3

6

9

100 200 300 400

Pedestrian count

Ite
ra

tio
n

tim
e

(m
s)

Agent functions

avoid_pedestrian

navigate

return_queue_destination

receive_queue_return

make_queue_time_request

receive_queue_time_request

receive_queue_time_output

make_queue_request

receive_queue_request

receive_queue_response

broadcast_position

move

Figure 4.22 Shopping mall evacuation scenario - an iteration time over number of
pedestrian graph broken down by the agent functions specified in Fig. 4.8 averaged
over 100 simulation runs.

4.8 Real World Environments in Concoursia 121

Figure 4.23 Shopping mall evacuation scenario. A scatter plot of Exit time (time to
exit the environment) against Distance travelled over 100 simulation runs. The red line
represents the LOWESS line.

122 Concoursia, a prototype pedestrian simulation system

4.8.2 Train Station

The train station has an area of 0.2km2, 4 entrances, 1 bus stop outside a main entrance
and 17 platforms spanning over 3 levels connected by stairs (Fig. 4.24). A small train
and bus schedule was crated in order to test the entire functionality of the software.
There are ticket stations near all of the entrances (purple squares with black outlines).
Screenshots of the simulation running in Concoursia can be seen in Figs. 4.30 and 4.31.

As can be seen from Table 4.5, graph-based navigation with coverage of 92% result
in 8,698 nodes with 18,691 edges of the Environment Graph. Memory consumption is
254KB for the Environment Graph, 261KB for the environment search tree and 974KB
for static obstacle data structure’s memory consumption making a total of 1.51MB.
An example itinerary of going from all entrances to Platform 1 requires one navigation
graph of 240KB. It took an average of 90.2 seconds to build the environment with all
itineraries for both normal operations and evacuation.

For the grid-based navigation example (Table 4.6) the obstacle avoidance grid is
43.64MB and each grid with navigation information is 29.09MB with only 12% of
the cells walkable. The higher wastage ratio is due to the environment consisting of
mostly long narrow and irregularly shaped corridors.

To compare the memory use of the two approaches, 21 itineraries are used, one for
each objective going to the entrances, bus stop, and all the platforms. This gives a total
memory use of 6.52MB for the graph-based navigation compared to 653.89MB for
the grid-based navigation. The memory required for graph-based navigation is only
1% of what is needed for the grid-based navigation and would reduce further should
there be more itineraries.

The normal scenario takes place over an hour with 12 train services that arrive
at regular intervals. The pedestrian emission rates are based on the combination
of entrance and exit counting and pedestrian movement tracking data provided by
Network Rail. A provided origin destination matrix for the time 7am to 8am indicates
5,937 pedestrians entering and 1,196 exiting over the hour. The pedestrian tracking
data is used to estimate the proportion of pedestrians to have exited and entered each
train. A pedestrian coming into the station via the 3 main entrances to catch a train
service must get a ticket before going through the turnstile and waiting at the platform
before boarding the train. Pedestrians getting off the train travel to one of the main
entrances to exit the environment. Pedestrians will queue at a ticket machine if the
machine is busy. The cumulative LoS map shown in Fig. 4.25 gives an indication
of how the environment is utilised and shows that only minor congestion occur near
Entrance 1, 2 and the bus service stop. The area plot in Fig. 4.26 shows iteration
times broken down by agent functions. Similar to the Shopping mall example, the

4.8 Real World Environments in Concoursia 123

Coverage (%) 92

Environment
Graph

Node 8,691
Edges 18,691

Mem (kB) 245

R-tree
Nodes 13,050

Mem. (kB) 261
Obstacle (kB) 974

Avg. Mem per
Nav Graph (kB) 240

Build Time (s) 90.2
Table 4.5 Graph-based memory use for the
Train station environment.

Cell width (m) 0.25
Grid Size
(WxH) 2,386x1,524

Walkable
cells (%) 12.04

Collision
Per cell

(B) 12

Per field
(MB) 43.64

Navigation
Per cell

(B) 8

Per field
(MB) 29.09

Table 4.6 Grid-based memory use for the
Train station environment.

graph (Fig. 4.26) shows that the navigate function has a roughly constant time cost
and that inter-agent communication in the avoid_pedestrian function increases with
the number of pedestrians in the environment.

For the evacuation scenario, each of the 17 platforms emits 100 pedestrians in
the first minute and each pedestrian uses the nearest exit to evacuate. For a single
simulation, a cumulative LoS map is shown in Fig. 4.27 and iteration times averaged
over 100 simulation runs are shown in Fig. 4.28. It can clearly be seen from the LoS
map that the scenario generates enough pedestrians to cause a congestion and that
most congestions occur at the ticket barriers where the exit is narrowest near Entrance
1 (red areas in the LoS map). This is similar to the example from Section 3.2.8 where
a large corridor becomes narrow. The overall average walking speed of the pedestrians
is 1.397ms−1 with standard deviation of 0.176ms−1. Compared to the desired speed of
1.5ms−1, a difference of 0.103ms−1 suggests that minor congestion occurred. A more
detail plot of distance travelled over the time taken to evacuate is shown in Fig. 4.29
where the LOWESS line is shown in red.

124 Concoursia, a prototype pedestrian simulation system

Entrance 1

Entrance 2
Bus service

Entrance (Portal)

Ticket M
achines

Platform
 (Portal G

roup)

Stairs connection

Entrance 3

Entrance 4

Figure
4.24

A
train

station
environm

entw
ith

three
separate

sections,4
entrances,1

bus
service

and
17

platform
s.G

ray
colourrepresent

w
alkable

areas.T
he

sections
are

connected
by

stairs
grouped

by
blue,orange,red

and
green

rectangles.E
ach

platform
is

a
group

ofportals
representing

each
setoftrain

doors.T
he

purple
rectangle

w
ith

black
outline

representticketm
achines.

4.8 Real World Environments in Concoursia 125

Fi
gu

re
4.

25
Tr

ai
n

st
at

io
n

no
rm

al
sc

en
ar

io
-a

cu
m

ul
at

iv
e

L
oS

m
ap

of
th

e
si

m
ul

at
io

n
ru

n.

126 Concoursia, a prototype pedestrian simulation system

0

5

10

15

20

500 1000 1500 2000 2500

Pedestrian count

Ite
ra

tio
n

tim
e

(m
s)

Agent functions

avoid_pedestrian

navigate

return_queue_destination

receive_queue_return

make_queue_time_request

receive_queue_time_request

receive_queue_time_output

make_queue_request

receive_queue_request

receive_queue_response

broadcast_position

move

Figure 4.26 Train station normal scenario - an iteration time over number of pedestrian
graph broken down by the agent functions specified in Fig. 4.8 averaged over 100
simulation runs.

4.8 Real World Environments in Concoursia 127

Fi
gu

re
4.

27
Tr

ai
n

st
at

io
n

ev
ac

ua
tio

n
sc

en
ar

io
-a

cu
m

ul
at

iv
e

L
oS

m
ap

of
th

e
si

m
ul

at
io

n
ru

n.

128 Concoursia, a prototype pedestrian simulation system

0

5

10

15

400 800 1200 1600

Pedestrian count

Ite
ra

tio
n

tim
e

(m
s)

Agent functions

avoid_pedestrian

navigate

return_queue_destination

receive_queue_return

make_queue_time_request

receive_queue_time_request

receive_queue_time_output

make_queue_request

receive_queue_request

receive_queue_response

broadcast_position

move

Figure 4.28 Train station evacuation scenario - an iteration time over number of
pedestrian graph broken down by the agent functions specified in Fig. 4.8 averaged
over 100 simulation runs.

4.8 Real World Environments in Concoursia 129

Figure 4.29 Train station evacuation scenario - A scatter plot of Exit time (time to exit
the environment) against Distance travelled over 100 simulation runs. The red line
represents the LOWESS line.

130 Concoursia, a prototype pedestrian simulation system

Figure 4.30 Screenshot of the train station scenario (Fig. 4.24) running in Concoursia.
The view shows the station’s Entrance 1.

Figure 4.31 Screenshot of the train station scenario (Fig. 4.24) running in Concoursia.
The view focuses on one of the the station’s platform. The red areas indicate train
carriage entrance.

4.9 Discussion 131

4.9 Discussion

The previous examples show that Concoursia is capable of creating and simulating
pedestrian flow in a large and complex multi-floor environment in a range of scenarios.
The ability to edit the environment and simulate in the same system allows for rapid
and interactive testing of scenarios. Such scenarios can be used for designing a
new environment or planning an intervention to potential problems to support the
final decision on the implementation of crowd control measures. The Shopping mall
scenario (Section 4.8.1) took around 1 hour to implement from scratch while the more
complex Train station scenario (Section 4.8.2) took roughly 4 hours, with all data
about schedule events prepared beforehand. Concoursia is however, still a prototype
system and still lacking in some features that can be found in more mature platforms.

Chapter 3 presented findings that the graph-based navigation system excels in
large environments with varying complexity. The examples in Section 4.8 support
this finding and show that, when applied to real environments (Tables 4.3 to 4.6),
the memory use of the graph-based approach approximately 100 times less than the
grid-based approach. This difference is especially relevant in larger environments
where pedestrians may have many more objectives. This case can be illustrated
by envisioning the simulation of multiple inter-connected facilities (e.g. an airport
connected to a train station). Itineraries for pedestrians using a single facility and a
combination of facilities will need to be created causing a large rise in the number of
itineraries.

The access times for navigation information (Fig. 4.26) has shown to be stable at
up to 2,800 pedestrians and, with R-tree access times being O(logn), it is expected
to scale well even when more pedestrians are introduced or if the complexity of the
environment increases. While it can be seen in Fig. 4.26 that other agent functions
remain constant with increasing numbers of pedestrian, the bottleneck is the inter-
pedestrian communication. The avoid_pedestrian function retrieves location messages
from other pedestrians that are within range. These location messages are spatially
partitioned so that each pedestrian agent can retrieve only messages that are within a
certain distance. When the environment is more crowded, however, each pedestrian
will receive more messages and hence take more time to process all the messages.

The results in Section 4.8 show that Concoursia is capable of running simulations
much faster than real-time. When simulating 2500 pedestrians it is able to simulate at a
speed of approximately 25ms per iteration, which, at 0.2s time step per iteration means
the simulation is running 8 times faster than real-time. Further optimisation should
also be possible by limiting pedestrian communication range and reducing pedestrian
location messages that need to be processed by each pedestrian during congestion. The

132 Concoursia, a prototype pedestrian simulation system

amount that the simulation has to run faster than real-time is very much dependent how
far in the the future a problem can be predicted and how long it takes to implement
the longest intervention. Consider an example where a problem can only be predicted
with good accuracy 45 minutes from the current real-time data (e.g. a train delay at
the next station will cause congestion at this station) and that an intervention must
be executed at least 30 minutes before the problem (e.g. deploy staff to warn people
to stop coming into the station/platform). If the time it takes for an operator to use
the system is 5 minutes, there is a time window of around 10 minutes to predict 45
minutes ahead to forecast the problem and then another 45 minutes to predict the result
of an intervention (total of 90 minutes). We must then have the simulation run at least
9 times faster than real-time to get a prediction within the 10 minute window.

The ORCA model by van den Berg et al. [129] was used in the pedestrian model
due to the attractiveness of the velocity-based approach, which allows for the use of a
fixed time-step and the use of K-trees for accurately representing the static environment.
Viswanathan et al. [277] showed it is the social force model that is closest to observed
pedestrian behaviour when evacuating from a room. However, Wolinski et al. [278]
observed that the ORCA(RVO2) model has a more realistic avoidance movement then
the social force model when compared to captured video due to pedestrians anticipating
each other’s movement. Given more time, it may be possible to introduce a more social
force like behaviour to the ORCA model. Alternatively, the individualised continuum
based approach by Wolinski et al. [36] is attractive, provided that the simulation can
be accelerated as the performance is currently stated to be around 15% of what’s
achievable with ORCA. However, a pedestrian’s local movement behaviour consists
of far more than collision avoidance. With further research, there are also other local
movement behaviours that could be represented such as grouping, someone pushing a
wheel chair or someone pulling luggage behind them.

It was not possible to obtain a real dataset for congestion evaluation as the industrial
project concluded before the industrial partners could provide access to the location.
To be able to provide a more accurate simulation of the pedestrian flow, the model
should be calibrated similar to the approach by Berrou et al. [279], by measuring
pedestrian’s desired speed, personal space, and flow is measured at a more systematic
level. While tracking technology was explored for data collection, approaches such
as Bluetooth and Wifi tracking are very inaccurate as they require the pedestrian to
have a mobile phone and also do not give precise location information (Section 2.4.1).
Installation of cameras or radar-like devices would be optimal for data collection but
the process is costly and can be disruptive in order to obtain the needed coverage.

On the interface and editing side, Concoursia is still lacking tools that can be
used to precisely edit the environment which can be found in commercial systems

4.9 Discussion 133

such as Adobe’s Autocad. It is also lacking the ability to import or directly enter
spreadsheet-style data that could reduce the time needed when specifying event sched-
ules. Additionally it currently does not interface with other systems for automatically
downloading data such as train schedules.

Elevators have yet to be implemented and while it was not essential for the scenarios
presented (and in emergency situations they are normally turned off) they do have an
effect on the pedestrian flow. This is true especially in some locations such as major
airports and tall building complexes that normally use lifts or shuttles as the main way
of transporting pedestrians from one location to another.

Due to the stochasticity of the model, each simulation of the same scenario should
be run multiple times with different random seeds and results averaged to get a good
distribution spread. In addition, a Real-time Decision Support System (RDSS) would
continuously run new simulations based on live sensor data, and, should it forecast
potential problems, it will need to run multiple simulation with various interventions for
shaping the pedestrian flow to safe levels. This ability to run multiple similar models
at the same time and average the results, even ranking them by efficacy, becomes an
essential requirement and is a feature which does not yet exist in Concoursia. Chapter 5
presents a prototype multi-simulation tool and touches on the need to run multiple
concurrent simulation. It presents a system that can potentially be integrated into the
future development of Concoursia.

Chapter 5

A Prototype System for
Multi-Simulation of Pedestrian
Models

As discussed at the end of Chapters 2 and 4, many types of intervention in an envi-
ronment can be used for reducing congestion and maximising pedestrian flow. For
each type of intervention there are many possible configurations. As an example,
consider the redesigning of a space. It may be that a corridor is made into a ‘V’ shape
or that a column could be placed near an entrance as both solutions have been found to
help increase flow during congestion [118]. When testing the effectiveness of each
configuration by using a simulation, it is also necessary to run it multiple times in order
to get a good distribution spread due to the stochastic nature of the pedestrian model.
In order to explore these multiple interventions and configurations within acceptable
time, a system is needed for performing the batching of these simulations with varying
configurations that utilises the capabilities of available hardware within a network.

This chapter presents a prototype system for the simulation of pedestrian models
with various configurations across a number of machines, equipped with one or more
GPUs, over a network. The FLAME GPU framework is used to provide the simulation
capabilities for the pedestrian model. An overview is given of the components of
the system in Section 5.1. The batching of simulations, which requires modification
to the FLAME GPU framework, is discussed in Section 5.2. Metrics collection
when simulating multiple simulation intances on a single GPU due to batching is
outlined in Section 5.3. A scenario based on a dirty bomb explosion within a shopping
mall is used as a case study for the application of the system and is outlined in
Section 5.4. The agent model used to represent the scenario is then discussed in
Section 5.5. Finally, preliminary results of the system are shown in Section 5.7, using

136 A Prototype System for Multi-Simulation of Pedestrian Models

real-world environments based on Nottingham and Sheffield town centre. Benchmarks
are provided for running multiple simulations on multiple GPUs on the same node.
These demonstrate the ability of the software to run concurrent simulation on multiple
GPUs faster than real-time.

5.1 System Overview

In order to create a system that is modular and scalable to a network of GPU-enabled
computers, a distributive approach was taken whereby the system is split into different
applications each with their own functionality.

The system consists of four separate applications which are the Simulator Manager,
Local Simulator Manager, Simulator and GUI Client. The modules form a client-server
relationship where the Simulator Manager can be considered as the server and the other
as clients. A network diagram of the system is shown in Fig. 5.1. Inter-application
communication is performed over network sockets (TCP/IP).

For each GPU utilised, efficiency is increased by merging of multiple smaller
simulations (Section 5.2). During simulation runs, metrics are collected in order to be
used for evaluating the effectiveness of a configuration (Section 5.3).

5.1.1 Simulation Manager

The Simulator Manager (middle of Fig. 5.1) can be considered as the host and com-
municates with all the applications. Simulation instances, which contain all agent
and parameter data required to start a single simulation that are received from the
Client, are queued or dispatched to Simulators with available capacity through the
Local Simulation Manager.

The Simulation Manager is informed once an instance of a simulation has finished
running. It can then request for the metrics to be sent to it through the Local Simulator
Manager. The Simulation Manager stores the metrics data locally, ready to be sent in
response to a request by the GUI Client.

5.1.2 Local Simulation Manager

Each node in the network used for running simulations requires an instance of the
Local Simulation manager (bottom right of Fig. 5.1). It detects the number of Graphics
Processing Unit (GPU)s available on the machine and spawns Simulators to handle
simulation jobs sent by the Simulation Manager. It also keeps track of the number of
simulations running within the entire node and the slots available to handle further

5.1 System Overview 137

Simulator Node 1

Client Node

Host Node

GPUGPU

Simulator
Manager

Simulation Queue

Metrics

GUI
Client

Simulator

Send simulation jobs

Initialise Simulator, schedule simulations, request metrics

Report sim. status

Schedule
 simulation jobs,
 request metricsGets node status

and simulator status
Report simulation

status and metrics

Receive Simulation status
and metrics

Local
Simulator
Manager

Simulator

Figure 5.1 The network diagram shows how each of the application in the system
interact.

138 A Prototype System for Multi-Simulation of Pedestrian Models

simulation jobs. The Local Simulation Manager will then try to batch as many
simulations on to a single GPU as possible to increase efficiency.

5.1.3 Simulator

The Simulator (bottom of Fig. 5.1) contains the simulation framework and is respon-
sible for the actual simulation of the model. An instance of a Simulator is created
for each GPU on the machine. This is done to avoid the complexity of extending
FLAME GPU so that it supports running multiple instances on multiple GPUs in the
same application. It also makes the application design simpler and more modular.
The Simulator uses the FLAME GPU framework [237, 262] with modifications that
enables simulation batching (which is covered in Section 5.2) and collection of metrics
(which is covered in Section 5.3). The model used in the simulation was created based
on the scenario outlined in Section 5.4. This consists of Pedestrian and Environment
agents which are discussed in Section 5.5. In order to avoid overloading the network,
all metrics data generated during a simulation run are saved locally on the machine
and sent across the network when requested by the Simulation Manager.

5.1.4 GUI Client

The GUI Client (top of Fig. 5.1) is local to the user’s machine and is the only part of
the system that allows direct user interaction. The Client is able to create and load a
simulation instance and forward it to the Simulation Manager for batch simulation.
Metrics received from completed simulations are visualised either in comparison with
other instances or individually. Pedestrian counts and zone counts are displayed as a
graph over time, while Level of Service (LoS) is shown as an image (Section 5.3).

5.2 Simulation Batching

It has been demonstrated by Richmond et al. [40] that larger models, involving tens of
thousands of pedestrians, are required in order to make effective use of the parallel
processing capabilities of the GPU. For smaller models, a way to increase efficiency
is by merging multiple simulations together and running them effectively as a single
large simulation. When running multiple simulations together in the same memory
space, considerations must be taken in order to avoid cross-contamination of the agents
between different simulations. This section will discuss the mapping of agents of
multiple instances on to the global memory, stopping cross-contamination between the
simulations and how agents are unloaded when an instance finishes running.

5.2 Simulation Batching 139

Multiple environments can be supported by creating a global environment large
enough to fit the number of local environments required. The local environment
refers to the environment for each individual simulation. Fig. 5.2 shows visually
how the mapping takes place for four instances of a simulation. The screenshot
in Fig. 5.3 shows two simulation instances loaded and running at the same time.
An alternative way to think of the global environment is as a grid containing each
individual simulation. Thus, in case of the example in Fig. 5.2, the grid size would
be 2 by 2 as it can fit two simulations row-wise and two column-wise. This will be
referred to as the simulation grid. When mapping the local environment to the global
one, its x and y coordinates can be translated using Equations 5.1 and 5.2.

x = x0 + cswidthl (5.1)

y = y0 + rsheightl (5.2)

The variables x0 and y0 are the local coordinates of the Environment agents. The
variables x and y represents the global coordinates of the Environment agent. The
variables cs and rs are the columns and rows, respectively, of the simulation in the
simulation grid e.g. for the example in Fig. 5.2, cs = 2 and rs = 2. The variable widthl

is the width of the local environment and the variable heightl is the height. Since the
2D environment grids are actually stored as a row-wise one dimensional array, with
the new global x and y coordinates, the agents must also be written to the correct place
in the array by using Equation 5.3.

env_agent_position_in_global_array = y×widths + x (5.3)

The variable widths represents the cell width of the simulation grid e.g., for the
example in Fig. 5.2, widths = 6. Similar x and y coordinate translation must also be
applied to pedestrian agents.

Pedestrian agents exist in continuous space unlike Environment agents. This means
the Pedestrian agents are stored in an unordered one dimensional list called the Global
Pedestrian List (Fig. 5.2). Within the Global Pedestrian List, the Pedestrian agents
from all running simulation can appear in any order (Fig. 5.4). When a Pedestrian
agent is created in any simulation they are simply appended to the end of the Global
Pedestrian List.

Pedestrian and Environment agents are assigned simulation ids in order to dif-
ferentiate each other and prevent cross-contamination. This helps in boundary cases
when pedestrians are performing local collision detection and when pedestrian agent

140 A Prototype System for Multi-Simulation of Pedestrian Models

related metrics are collected as their location in the global pedestrian list is not sorted
simulation by simulation. Pedestrians should run in environment that is completely
bounded so they cannot walk outside their own simulation area. If one does go outside
its own simulation area, i.e. a pedestrian gets a message from an Enviroment agent
with a different simulation id, that simulation instance is halted and an error is reported.

When a simulation instance finishes running, the Environment agents are left as-is
but the Pedestrian agents must be removed from the Global Pedestrian List. The process
is not straightforward as the agent positions in the array are not ordered by id and must
be shifted to replace the removed agents. The process for removing Pedestrian agents
in parallel is illustrated in Fig. 5.4 and is done at the end of a simulation iteration. First,
a one-dimensional array do_copy is created with length equal to the Global Pedestrian
List. A CUDA kernel goes through the Global Pedestrian List in parallel and marks
the position with 1 if it is to be copied and 0 if it is to be removed, the red pedestrians
in this case. A parallel sum is then performed on the do_copy array so that we can
obtain an array new_index that has the new index position without the red pedestrians.
A new Global Pedestrian List is created and another CUDA kernel goes through the
Global Pedestrian List and uses the new_index[current_index] - 1 as the new index
for copying the pedestrian data. Finally the reference to the Global Pedestrian List and
the new Global Pedestrian List are swapped so that the simulation now uses the data
in the new Global Pedestrian List.

5.3 Collection of Metrics

Metrics provide a way to summarise the result of a simulation run according to specific
criteria and are collected as standard in commercial pedestrian simulation software
such as the ones mentioned in Section 2.3. They are especially useful for comparing
results of multiple simulation runs and various configurations where it is infeasible
for the user to observe every iteration of every simulation run. Various metrics can
be collected such as density, LoS, flow rates, evacuation time, or distance travelled.
The usefulness of each metric varies according to the scenario, the zone count metric
(Section 5.6.1) for example, would not be relevant in a scenario where the environment
is not divided into zones.

Running the simulation on the GPU adds an extra complexity to the collection of
metrics. As the agent’s data is located on the GPU device, it is simply not efficient
to have to synchronise this agent memory with the host machine’s RAM before the
data can be collected. Hence, the metrics should be collected on the GPU itself using
parallel approaches. Additionally, due to simulation batching, metric results must be

5.3 Collection of Metrics 141

Environment Grid

Global Environment Grid

Global
Pedestrian List

Simulation 1

Simulator

Environment Grid

Pedestrian List

Simulation 2

0 1 2

3 4

876

5

0 1 2

3 4

876

5

Environment Grid

Pedestrian List

Simulation 3

0 1 2

3 4

876

5

Environment Grid

Pedestrian List

Simulation 4

0 1 2

3 4

876

5

0 1

0

0

1

1

2

6 7

141312

8

3 4 5

9 10

171615

11

21 22 23

27 28

353433

29

18 19 20

24 25

323130

26

Pedestrian List

Figure 5.2 Multiple simulations can run concurrently in the global environment and
make use of the Global Pedestrian List. Coordinates transformation must be performed
in order to move from local to global and vice-versa.

142 A Prototype System for Multi-Simulation of Pedestrian Models

Figure 5.3 Simulator visualising two simulation instances running side-by-side.

Global
Pedestrian List

When Red sim. instance has finished

New Global
Pedestrian List

Copy to
new_index -1

do_copy new_index

1
1
0
1
1
0
1
1
0
0
0

1
2
2
3
4
4
5
6
0
0
0

Figure 5.4 Parallel removal of pedestrian from the Global Pedestrian List. When a
simulation instance stops, pedestrians of the stopped instance are removed from the
simulation.

5.3 Collection of Metrics 143

re-mapped with respect to each individual simulation. Although there are examples of
pedestrian simulation on the GPU in the literature (Section 2.5.1), they do not explain
the process by which metrics are gathered.

This section details the process in which two categories of metrics are collected
using an approach suitable for a parallel architecture like the GPU. The first metric,
the pedestrian generation metric (Section 5.3.1), is an accurate count of the number
of pedestrians generated over a pre-defined time period. The second metric, the LoS
metric (Section 5.3.2), presents a visual view of the aggregate density data.

These metrics can be collected at pre-defined time intervals or after every simula-
tion step. By assigning longer intervals, the simulation performance can be improved
due to a reduction in processing during the metrics collection and in the time required
for transferring data out of the GPU. Parallel sum and parallel sort operations provided
by the CUDPP library [280] are used to optimise the collection of metrics.

5.3.1 Obtaining an Accurate Pedestrian Generated Count

An accurate pedestrian emission count is crucial in enforcing an emission limit on the
simulation. The environment agents are responsible for emitting pedestrian agents.
In order to collect this emission information, it must transferred from the GPU to
the Simulator. Each environment agent updates a count when a pedestrian is emitted.
Fig. 5.5(a) shows an example simulation grid with four simulation instances (green,
orange, blue and red) - the numbers represent pedestrians generated since the last time
the metric was collected. These counts can then be collected by using a CUDA kernel
that processes all of the environment agents placing the count in a multi dimensional
array with each instance separated by row (Fig. 5.5(b)). By identifying the simulation
id of the environment agent, the counts can be placed into the correct row. A parallel
sum operation can be performed concurrently on each of these rows in order to obtain
the final count specific to each simulation instance, as shown in Fig. 5.5(c). The last
value of the column shows the total pedestrian generated count for each simulation
instance.

5.3.2 Crowd Density and Flow

Areas of dangerous congestion can be visually identified with a density map. Fruin’s
LoS [276] is a widely used standard for measuring density as a comfort level. LoS
metrics vary depending on whether a pedestrian is waiting or walking. The LoS metric
has been described previously in Section 4.6 and Table 4.1. In the model, only the LoS
level for walking pedestrians is used as there is no organised queuing.

144 A Prototype System for Multi-Simulation of Pedestrian Models

Global Environment Grid

Separate sim.
instance by row

a)

b)

c)

Row-wise
parallel sum

Correct count is the last value

0 1 1 0

0 0 2 0

0 0 1 0

0 0 0 0

0 1 0 0
1 0 2 0
0 0 0 0
1 0 0 0

0 1 1 1
1 1 3 3
0 0 0 0
1 1 1 1

Figure 5.5 The colours green, orange, blue and red represent an individual simulation.
(a) The grid of generated pedestrian counts. (b) These are separated by row for each
simulation instance. (c) A row-wise parallel sum can then be performed and the counts
can be obtained in the last column.

While LoS is collected from the Global Pedestrian List, it is required to be spatially
relative to its local environment. The resolution of the LoS grid can be specified.
Fig. 5.6(a) shows an LoS grid of 2x2 for each simulation instance and the pedestrians
that are inside the grid. Each pedestrian agent has an LoS value which is obtained by
dividing their local area by the number of pedestrians present within it as described in
Section 4.6 (Fig. 5.6(b)). A CUDA kernel processes each pedestrian agent and collects
the LoS and position, with respect to the global environment (as an array position),
and a boolean counter value (COUNT) of 1 and writes it into a multi-dimensional
array (Fig. 5.6(c)). The results are then sorted in parallel by their POS (Fig. 5.6(d)).

Another kernel is then used to find the boundary between each of the POS counts
(SEG row). A segment starts and continues with a sequence of 0 until 1 is found and
indicates that the next value is the start of the next segment. A single value segment
starts with 1. The segmentation is needed to perform a segmented sum operation, only
summing the values within a segment, on the LoS row and the COUNT row. The
results are the sum of the LoS values and the number of pedestrians counted within
for each grid point (Fig. 5.6(e)). The resulting LoS row and COUNT row can then
be divided together in order to obtain the average LoS at each grid point. Further
mapping to a local navigation grid can be performed by simply taking the POS row
and calculating the reverse of Equation 5.3. The final result is shown in Fig. 5.6(f).
Note that a cell that is left blank in Fig. 5.6(f) is set at a constant value much higher
than LoS level A to signify that there are no pedestrians in that particular cell.

5.4 The Scenario: Evacuation After a Dirty Bomb Incident 145

5.4 The Scenario: Evacuation After a Dirty Bomb In-
cident

There are many possible disastrous events that could happen within an urban area
that warrant a mass evacuation. It can be from human errors (e.g. toxic spills),
natural disasters such as flooding, earthquakes or terrorist activities such as bombing
or releasing of toxic agents. The evacuation, depending on the location, could involve
tens to hundreds of thousands of people. Further complications arise when toxic
agents are involved and evacuated pedestrians have to be decontaminated. It is often
impractical or impossible to shut down large sections of busy urban areas in order to
perform real-life emergency drills so the use of simulations can provide a practical
and cost-effective alternative.

The scenario presented in this section was implemented on suggestion of an
industrial partner, BAE Systems, and their client, the fire services of Nottingham and
Avon in the U.K., who also provided valuable information on the state of current
approaches and feedback on the system and model. After discussions with the fire
services, the evacuation after a dirty bomb incident inside a busy public building
was deemed suitable as a scenario, where a simulation system to test a variety of
response plans and compare their performance could be effective in helping to minimise
casualties. This is due to the complex coordinated responses that must be organised
in situations that can change rapidly and many decisions must be made that will have
important consequences.

In a dirty bomb incident, the standard response is to establish cordon zones
(Fig. 5.7) around the areas that have been effected. This is in order to manage, contain
and prepare pedestrians for decontamination. The hot zone (red) represents the area
where there is still danger, either from fire hazard or high risk of contamination. The
warm zone (orange) is an area that is determined to not represent an immediate danger
to the pedestrians but could still be contaminated. It is the zone where pedestrians will
be told to wait in order to be processed. Physical barriers will often be erected in the
warm zone in order dissuade breaches, encouraging pedestrians to stay within the zone
to be processed, and reducing the spread of contamination. The cold zone (blue) is
then defined as a safe area where there is no danger of contamination. However, since
it is still an operational area of emergency services, it is not accessible to the general
public.

Having established the zones, disrobing kits are then handed out. These are
modesty kits that allows the pedestrians to remove their contaminated clothes. These
kits can be distributed though fire services personnel or the establishment of disrobing
points, where pallets containing disrobing kits are placed in strategic locations. Having

146 A Prototype System for Multi-Simulation of Pedestrian Models

disrobed, the pedestrians can proceed to the decontamination tunnel that contains a
shower to help remove the rest of the contaminated material from their body.

The focus is in the crucial first hour when the emergency services arrive at the scene
and start establishing cordon zones, as it is the time that dangerous congestion will
most likely occur. It is also important to make sure that pedestrians are as comfortable
as possible in order to dissuade them from leaving the cordon areas to later present
themselves at a hospital, spreading contamination along the way.

The simulation is used for planning the cordon areas so that it will comfortably fit
all evacuees and prevent dangerous congestion. Decontamination tunnels are placed
and verified that they fit within the desired areas. Placements of disrobing points,
which is crucial in deciding where the crowd of pedestrians congregate, can be tested.
The system is used to run the scenario with differing parameters and a variety of
physical configurations in order to find the most favourable solutions.

5.5 The Agent Model

The model for the scenario consists of two types of agents. Pedestrian agents represent
individuals evacuating from the disaster (Section 5.5.1). Environment agents are
discrete grid-based navigation agents as used in Section 3.2.4 but each are also aware
of the cordon zone it belongs in (Section 5.5.2). The process of cordoning pedestrians
normally happens only when the entire cordon has or is nearly established. For this
initial test scenario, in order to simplify the model, it was determined that the event
of establishing the cordon is done instantaneously rather than simulating microscopic
behaviours of the service members.

The model starts from the moment the first evacuee exits the affected building
and ends when a mass decontamination structure is established, since afterwards the
pedestrian density steadily decreases in a controlled way and so is less important from
a safety perspective than immediate control. The sequence of behaviours in the model
is explained further in Section 5.5.3.

5.5.1 Pedestrian Agent

Pedestrians agents in this model (Fig. 5.8) use the social force model with contact forces
[22, 99] for local inter-pedestrian collision avoidance. A more detailed explanation of
the social force model used and the agent functions can be found in Section 3.1.1. For
this model, two additional parameters are used. The first indicates whether a pedestrian
is injured which reduces the walk speed. The reduction is arbitrary set to 25% reduce
in speed as the exact value could not be obtained at the time. The second parameter

5.5 The Agent Model 147

is the self-presenting probability, the probability that a pedestrian will try to leave
the environment even after the cordon has been established. Although the Avon fire
services did not have the exact figure, from the meeting, it was mentioned that 5-10%
is a good estimate. Hence, the self-presenting probability was set as 5% for the test
case. Both of these additional parameters are set by the Environment agent at the time
when a pedestrian is emitted. A velocity threshold is applied so at higher pedestrian
density smaller time steps are used in order to avoid numerical instability. The model
uses a maximum time step of 0.2 seconds.

5.5.2 Environment Agent

Environment agents encode global navigation data and can be considered as over-
lapping grids of vector fields, an approach previously explained in Section 3.1. The
parameters of a single Environment agent can be found in Listing 5.1. The model
makes use of three vector fields in total. A Collision Vector Field (CVF) contains in-
formation necessary for avoiding static obstacles (Fig. 5.9(a)) in variables collision_x,
collision_y, and collision_d. Only two Navigation Vector Field (NVF)s are needed
as pedestrians only have two goals, either to evacuate from the mall to the nearest
exit or to stay in the cordon area and wait to be decontaminated. The first NVF is
the evacuation map which is used to guide the pedestrians to the exit nearest to their
location (Fig. 5.9(b)). This uses the variables evac_x and evac_y. The second NVF is
the disrobing route map which is used in directing pedestrians to their nearest disrobing
point (Fig. 5.9(c)). This uses the variables dcon_x and decon_y. Each Environment
agent stores extra information, which are the entrance markers, disrobing point mark-
ers, exit markers, zone markers, the probability that a generated pedestrian will be
injured(prob_injured) and the probability that the pedestrian will always seek to exit
the environment (prob_force_exit). Entrance markers (entrance), shown as green
squares in Fig. 5.9(d), signify that the agent belongs to an entrance with a particu-
lar id and pedestrians are emitted at configurable rates per entrance. The disrobing
point markers (disrobe), which are shown as orange squares in Fig. 5.9(d), allows the
pedestrian to check whether they have reached and collected a disrobing kit. The exit
markers (exit) are shown as red squares in Fig. 5.9(b). When a pedestrian reaches
an Environment agent with exit > 0, they exit the simulation. Pedestrians that exit
the environment cannot return. The cordon zone marker (zone) shown in Fig. 5.9(e)
stores the zone of that particular environment cell. The red, orange and blue squares
represent hot, warm and cold zones, respectively.

148 A Prototype System for Multi-Simulation of Pedestrian Models

environment_agent:agent{

x:float32

y:float32

prob_injured:float32

prob_force_exit:float32

exit:int

entrance:int

zone:int

disrobe:int

collision_x:float32

collision_y:float32

collision_d:float32

evac_x:float32

evac_y:float32

decon_x:float32

decon_y:float32

}

Listing 5.1 Pseudocode of a single Enviroment agent’s parameters.

5.5.3 Model Behaviour

The model has a set sequence of behaviours:

• When the model begins, pedestrians rush from inside the building (Fig. 5.10(a)).
Occupancy of the building is determined before the simulation starts.

• Pedestrians will try to take the shortest route available to escape from the incident
area (Fig. 5.10(b)). A percentage of pedestrians are injured and therefore have a
slower average walking speed.

• After a certain time period, the emergency services reach the scene and start
establishing cordons (Fig. 5.10(c)). In the model, the entire cordon is established
instantaneously. In a real situation the emergency services are likely to wait until
sufficient numbers of the team are in place.

• Pedestrians that are outside of the cordon at the time it is established will carry
on heading to the exit (Fig. 5.10(d)).

• Pedestrians that are still within the cold zone will then be given instructions to
go back and wait in the warm zone. A configurable percentage of these people
will not follow instructions and will leave the scene right away. The ones that

5.6 Collection of Zone and Disrobing Metric 149

stay behind are required to walk to a disrobing point where they will be given
disrobing kits (Fig. 5.10(e)). In practice, a pedestrian simply switches from
using the evacuation map (Fig. 5.9(b)) to the disrobing map (Fig. 5.9(c)).

• Once the disrobing kit is obtained, they will then wait within the area until the
decontamination tunnels are established and the simulation finishes.

The switching of evacuation map to disrobing map is done by using a global
variable CORDON_ESTABLISHED which at the start of the simulation is set to false. After
a certain simulation time, this variable is set to true and the pedestrians use the
information obtained from the Environment agents and their internal parameters to
decide whether to stay and get decontaminated or continue to exit the environment.

5.6 Collection of Zone and Disrobing Metric

A metric specific to the dirty bomb evacuation scenario (Section 5.4) is collected in
addition to the general metrics discussed in Section 5.3. The zone and disrobing metric
gives the pedestrian counts within each cordon zone and whether or not they have
collected the disrobing kits.

5.6.1 Zone and Disrobing Metric

There are two elements to the zone and disrobing metric: the zone count and disrobing
count. For the zone count, the pedestrian counts in each of the zones are collected
in order to allow the observation of the general flow though each of the cordons.
The disrobing count represents a count of how many pedestrians have collected the
disrobing kits.

Pedestrian agents store the zone that they’re currently in and also whether they
have reached the disrobing point. Fig. 5.11(a) shows an example list of pedestrians
with different statuses, where the letters H, W, C and D refer to hot zone, warm
zone, cold zone and disrobed, respectively. The four collected metrics, number in
hot zone, warm zone, cold zone and how many have reached the disrobing point
can be collected in parallel into a multi-dimensional array where each status of each
simulation is separated by row. The value 1 represents a count of pedestrian and 0
means there’s no pedestrian. In the top row of Fig. 5.11(b), it can be seen that there is
a single pedestrian in the hot zone in the green simulation instance. A kernel processes
through all pedestrian agents and places a count of one in the correct row of the metric.
Row-wise parallel sum can then be performed on the resulting array to find the counts
for each metric. The result of the above example is shown in Fig. 5.11(c) where the

150 A Prototype System for Multi-Simulation of Pedestrian Models

last column shows the final counts for each metric separated by simulation. In the
example it can be seen that for the green simulation instance there is 1 in the hot zone,
2 in the warm zone, 1 in the cold zone and 1 that has collected a disrobing kit. Having
collected these metrics, other information can be found such as when the last person
left the hot zone or how long it takes for everyone to collect the disrobing kit.

5.7 Results

This section outlines the benchmarks that are used for testing the system. The Notting-
ham shopping mall environment (Fig. 5.12) will be used as an example to illustrate
the behaviour. Pedestrians enter the simulation from the entrances, shown as green
lines, and can exit the simulation at the exits, shown by the red lines. The simulation
always follows the scenario where a dirty bomb has exploded inside a building causing
pedestrians to evacuate (Section 5.4). The simulation starts at the point where the
first pedestrian exits the building. Pedestrians then start evacuating to the nearest
exits. A screenshot of the beginning of the evacuation is shown in Fig. 5.22. After 10
minutes, a cordon is established around the perimeter of the warm zone and a disrobing
point becomes available (Figs. 5.13 and 5.14). At this point, any pedestrian already in
the cold zone will continue to head to the exit. Pedestrians in the warm or hot zone
have a 5% chance to continue to exit the environment (as discussed in Section 5.5.1),
otherwise they will stay in the warm zone and pick up a disrobing kit.

Section 5.7.1 presents the 3 environments. For each environment, there are 2
configurations for the cordon zone and disrobing area that is used to test the flexibility
of the system. Two benchmarks were conducted to measure the performance of the
system. The first benchmark measures the simulation speed relative to real time when
the simulation is running the scenario with Evacuation plan 1 (Fig. 5.14). The second
is a multi-GPU performance benchmark that was carried out to show the effect of
running multiple Simulator instances on the same machine.

5.7.1 Environments

In order to ensure that the simulator is able to work in a range of environments, three
different city centre locations were used for testing. The first is a shopping mall
in the centre Nottingham (Figs. 5.13 and 5.14), the second is Sheffield town hall
(Figs. 5.15 and 5.16) and the third is Sheffield city hall (Figs. 5.17 and 5.18). Each of
the environment has two different configurations in the placement of decontamination
tunnel, warm zone and disrobing point.

5.7 Results 151

Simulations are run using these various environments. Screenshots of pedestrians
gathering at dirobing points for the Nottingham shopping mall evacuation plan 1 and 2
are shown in Figs. 5.24 and 5.26, respectively. All simulation ends at 45 minutes when
the decontamination tunnel is established. Fig. 5.19 shows the Nottingham shopping
mall environment plan 1 (left) and plan 2 (right) being run concurrently. Fig. 5.20
shows all four Sheffield environments running concurrently.

5.7.2 Model performance

For this test, Nottingham shopping mall plan 1 is used (Fig. 5.13). A total of 1200
pedestrians enter the environment from the four entrances of the mall, and the number
is distributed evenly between the four entrances (Fig. 5.22).

The use of a social force model for local collision detection means a dynamic time
step must be used in order to avoid numerical instability. Because of this, simulation
performance can vary greatly according to the densities and forces experienced by
the pedestrians. The benchmark measures the performance of the simulation taking
this factor into account. A maximum time step of 0.2 seconds was used. The velocity
threshold, a limit on how much pedestrians can change velocity in a single time step,
was changed between each run. They take the values of 0.02, 0.05 and 0.1, as shown
in Fig. 5.21(a-c), respectively. The increase in velocity threshold is akin to increasing
the time step size allowing pedestrians to move more within a certain amount of
time. In turn, this is are likely to produce more collisions. Teknomo [281] found that
acceleration of pedestrians walking across a zebra crossing has a mean of 0.68ms−2

with a range of 1.39ms−2. As for how these figures compared to the velocity threshold,
the threshold of 0.1 for 0.2s time step equates to a maximum acceleration of 0.5ms−2

before the time step is reduced. The threshold of 0.02 and 0.05 then equates to 0.1ms−2

and 0.25ms−2 limits, respectively. This means the threshold value of 0.02 and 0.05 is
a conservative limit being only at 15% and 37% of the observed mean acceleration
value. For the graphs in Fig. 5.21, iteration count forms the x axis. The left y axis
represents the real simulation speed dt/rdt calculated as the dynamic simulation time
step (dt) divided by the real time needed to process that iteration (rdt). Values higher
than 1 (represented by the red line) means that the simulation is running faster than
real-time. The dt and rdt values are an average taken every 100 steps. Finally the right
y axis (blue) shows the number of pedestrians currently in the environment.

Until the cordon is established, it can be seen from the graphs that value of dt/rdt
fluctuates wildly depending on the maximum force that pedestrians experience. The
dt/rdt then slightly declines as the behaviours change and pedestrians stop trying
to exit the environment and start to congregate in the warm zone near the disrobing

152 A Prototype System for Multi-Simulation of Pedestrian Models

point. After all pedestrians have been emitted and the simulation stabilisess, the
speed can then be seen to increase rapidly due to the fact that pedestrians are able to
spread out into available spaces. The velocity threshold has a drastic effect on the real
simulation speed. For a 45 minute simulation, the simulation with threshold value
of 0.02 (Fig. 5.21(a)) took approximately 29 minutes to complete. Simulations with
threshold values of 0.05 (Fig. 5.21(b)) and 0.1 (Fig. 5.21(c)) completed in 13.8 and
7.2 minutes, respectively. This means a conservative threshold value of 0.05 would
result in the the ability to perform simulations at 3 times the speed of real-time.

The benchmarking was performed on a 3.4GHz Intel Core i7 machine with 8GB
of RAM using the Nvidia GTX590 GPU. Visualisation on the Simulator was turned
off for benchmarking as would be done in a real situation where the user will only see
the recorded metrics.

5.7.3 Performance on multiple GPUs

In order to evaluate the overheads in running multiple instance of the Simulator on
the same machine, performance when running the Simulators on multiple GPUs was
measured. A blank environment was created and gradually filled with pedestrians.
Each Simulator was launched as a separate executable and each occupies a single
GPU. A batch of four simulations were run on each Simulator simultaneously. An
iteration time value, the time to run a single simulation step, was recorded for every
1,000 pedestrians on the GPU starting from 1,000 and ending at 100,000 pedestrians.
When enough pedestrians were generated to start measurement, the emission was
stopped. The simulation was left to stabilise for at least 2 seconds of simulation
time. The iteration time was averaged over the next 100 iterations and recorded. The
benchmark was run first for one instance of the Simulator (using one GPU). It is
then performed again using two instances of the Simulator (two GPUs), effectively
doubling the number of pedestrians simulated. The benchmarking was performed on a
3.5GHz Intel Core i7 machines with 16GB of RAM equipped with two Nvidia GTX
Titan GPU.

The results are plotted on the graph in Fig. 5.27, which shows iteration time (ms)
over pedestrian count. The result when running with two GPUs over a single one is a
mean increase in iteration time of 1.61% with standard deviation of 2.33%. It shows
that there is only a minor difference in the iteration time for running on a one and two
GPUs although the number of concurrent simulations being run is effectively doubled.
This is an expected result as the Simulators are essentially independent from each
other and there is no inter-communication needed between the two GPUs.

5.8 Discussion 153

The Simulator essentially runs one large simulation with each instance of a sched-
uled simulation taking up part of the environment space. This means the maximum
number of concurrent simulations that can be run on each Simulator will depend on
the total environment size and number of agents being simulated at the same time. In
this multi-simulation system, the biggest bottleneck would be the CPU cycles needed
for scheduling the simulator. CPU to GPU communication are minimal, large data
transfers such as uploading the Environment agent data or collecting the LoS metric is
done only once per simulation instance. As the Simulators are independent of each
other, on a multi-core machine where there are at least the same number of cores as
the number of GPU, the system is expected to be able to scale accordingly.

5.8 Discussion

This chapter has presented a prototype system that can be used for running multiple
simulation instances in parallel by spreading the simulation workload across a network
of computers equipped with GPUs. For each GPU, batching is performed by merging
multiple simulation instances into a single large simulation. Metrics are collected using
parallel approaches in order to maximise efficiency. An initial trial was conducted using
four machines, with the same specification as the ones used to perform benchmarking
in Section 5.7.2, connected over a local network. The Simulation Manager was sent a
random batch of evacuation plans (Figs. 5.13 to 5.18) to fill up all available simulation
slots. This showed that the system can schedule simulation across multiple machines,
run simulations concurrently and have no trouble with collection of metrics from
the nodes used for Simulation. The prototype system was shown to successfully
run multiple simulations efficiently. However, the project was concluded before an
empirical study can be made to verify the results of the model.

In an interview with the Avon FRS Planning Specialist after the project ended, it
was stated that the model appears to behave correctly according to their experience but
there are still many features needed to make it useful to planners. First, they would
need a user-interface where, with little training, the planners could use it by themselves
to plan a wider range of scenarios. Also, other contaminants or dangers needed to be
taken into account, e.g. if it’s a chemical leak then containing it would be an additional
priority but may not need decontamination. Additional environment conditions are
also needed, such as terrain elevation, wind patterns and other factors that can affect
the safety of the holding location, e.g. ensure there’s no nearby tall glazed building.

As discussed at the end of Chapter 4, Concoursia is currently lacking in concurrent
multi-simulation capabilities. This chapter has shown how this functionality could be

154 A Prototype System for Multi-Simulation of Pedestrian Models

implemented. Concoursia was designed to be split into two parts, analogous to the
GUI Client and Simulator as described in this chapter. The Client side would need
additional features for sending batch jobs and viewing metrics of multiple simulation
instances. The Simulator side would need the simulation batching feature as described
in Section 5.2 and metrics collection as described in Section 5.3. When managing
multiple simulation instances in the Simulator, it would be simplest to store navigation
graphs and obstacle graphs separately for each running simulation instance and provide
agents with a simulation id for differentiating the simulations they are currently in.
The Simulator manager and the Local Simulation manager could then be used with
relatively little modification for scheduling simulation runs.

5.8 Discussion 155

LoS values obtained from Global Pedestrian List
(X and Y shown already converted to grid position)

Visual represention of LoS grid

X:1
Y:1
L:2.3

X:3
Y:0
L:1.3

X:0
Y:1
L:3.4

X:1
Y:1
L:2.1

X:3
Y:0
L:1.3

X:2
Y:1
L:3.2

X:1
Y:1
L:2.5

X:3
Y:0
L:1.5

X:0
Y:0
L:2.2

5POS

LOS

COUNT

POS

SEG

LOS

COUNT

POS

SEG

LOS

COUNT

3 4 5 3 6 5 3 0

2.3

1

5

2.3

1

1 1 1 1 1 1 1 1

1.3

3

1

1.3

3.4

4

1

3.4

2.1

5

1

2.1

1.3

3

1

1.3

3.2

6

1

3.2

2.5

5

1

2.5

1.5

3

1

1.5

2.2

0

1

1 0 0 1 1 0 0 1 1

2.2

5

2.3

1

3

1

1.3

4

1

3.4

5

2

4.4

3

2

2.6

6

1

3.2

5

3

6.9

3

3

4.1

0

1

1 0 0 1 1 0 0 1 1

2.2

b)a)

c)

d)

e)

Convert x and y
to array position

Parallel sort by
POS then search
for segments (SEG)

Segmented
parallel sum using SEG
on LOS and COUNT

Pedestrian

Final LoS values
(left blank if no pedestrian,
set to high value by default)

Project
to a grid

f)
2.2 1.37

3.22.33.4

Figure 5.6 Parallel generation of LoS grid for multiple simulation instances. Each
simulation instance is represented by a different colour. Local simulation space is
spatially divided into a custom LoS grid of 2x2 in this example.

156 A Prototype System for Multi-Simulation of Pedestrian Models

Hot zone

Warm zone

Cold zone

Decontamination tunnel

wind direction

Incident
Disrobing point

Figure 5.7 The different cordon zones that are set up in order to deal with mass
decontamination incidents. The size and layout of these zones can change due to the
nature of the threat and environmental factors such as wind direction. The hot zone
(red) is an area at high risk of contamination or with active dangers such as fires. The
warm zone (orange) is an area where there are no immediate danger but it could also be
contaminated. Disrobing points (purple) contain kits to enable pedestrians to remove
contaminated clothes modestly. The cold zone (blue) is a safe, non-contaminated area.

Figure 5.8 The pedestrian agent and environment agent functions used in the model.

5.8 Discussion 157

a) b) c)

e)d)

Figure 5.9 This figure shows the different types of maps used to represent the envi-
ronment. (a) The CVF map is used in avoidance of static obstacles. (b) The exit NVF
map guides the pedestrians to the nearest exit in the environment. (c) The disrobing
NVF map guides the pedestrian to the nearest disrobing points. (d) Other information
such as emitter (green blocks) , disrobing points (orange blocks). (e) The hot, warm
and cold cordon zones are represented in as red, orange and blue blocks respectively.

158 A Prototype System for Multi-Simulation of Pedestrian Models

a) b) c)

e)

Pedestrian

d)

Figure 5.10 (a) Pedestrians enters the environment. (b) They then follow the evacuation
map. (c) After a certain time, cordon zones are established, red is hot, orange is warm
and blue is cold. (d) After the cordon has been established, pedestrian outside the
warm zone carries on walking to the exit. (e) Pedestrians inside the warm or hot zones
walks to the nearest disrobing point.

5.8 Discussion 159

Global Pedestrian List
WD

H

W

C

D

H

W

C

D

H

W

C

D

H

W

C

D

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W C WD W C H H Ha)

b)

c)

Seperate by instance and
zone types

Row-wise parallel sum

Final count in last column

Figure 5.11 The colours orange and green represents separate simulations. Pedestrians
keep track of the zones that they’re currently in and whether they have obtained a
disrobing kit. (a) An example of this pedestrian list whereby H, W, C and D refers to
hot zone, warm zone, cold zone and disrobed respectively. (b) All of these properties
are divided into separate arrays. Different simulations are also separated. (c) A parallel
sum can be performed on all of these arrays in order to obtain the final counts.

160 A Prototype System for Multi-Simulation of Pedestrian Models

Entrance Exit Building/static obstacle

Hot zone

Shopping Mall

Figure 5.12 Nottingham shopping mall environment used for testing the multi-
simulation system.

5.8 Discussion 161

Entrance Exit Building/static obstacle

Hot zone Warm zone Cold zone Disrobing Point

Decontamination
tunnel

Shopping Mall

Figure 5.13 Nottingham shopping mall evacuation plan 1 - the decontamination tunnel
is placed at the left most exit, with a disrobing point on the left side of the large
obstacle left of the mall.

162 A Prototype System for Multi-Simulation of Pedestrian Models

Entrance Exit Building/static obstacle

Hot zone Warm zone Cold zone Disrobing Point

Shopping Mall

Decontamination
tunnel

Figure 5.14 Nottingham shopping mall evacuation plan 2 - the decontamination tunnel
is placed at one of the top exits, with a disrobing point on the left side of the Shopping
Mall before the large obstacle.

5.8 Discussion 163

Entrance Exit Building/static obstacle

Hot zone Warm zone Cold zone Disrobing Point

Decontamination
tunnel

Town Hall

Figure 5.15 Sheffield town hall evacuation plan 1 - the decontamination tunnel is
placed at the bottom left exit.

164 A Prototype System for Multi-Simulation of Pedestrian Models

Entrance Exit Building/static obstacle

Hot zone Warm zone Cold zone Disrobing Point

Decontamination
tunnel

Town Hall

Figure 5.16 Sheffield town hall evacuation plan 2 - the decontamination tunnel is
placed at the top left exit.

5.8 Discussion 165

Entrance Exit Building/static obstacle

Hot zone Warm zone Cold zone Disrobing Point

Decontamination
tunnel

City Hall

Figure 5.17 Sheffield city hall evacuation plan 1 - the decontamination tunnel is placed
at the bottom right exit.

166 A Prototype System for Multi-Simulation of Pedestrian Models

Entrance Exit Building/static obstacle

Hot zone Warm zone Cold zone Disrobing Point

Decontamination
tunnelCity Hall

Figure 5.18 Sheffield city hall evacuation plan 2 - the decontamination tunnel is placed
at a lower right exit.

5.8 Discussion 167

Figure 5.19 Two concurrent running simulations. The scene shows pedestrians
gathering at the disrobing point. Nottingham shopping mall environment plan 1
(Fig. 5.13) is shown on the left and plan 2 (Fig. 5.14) is shown on the right.

168 A Prototype System for Multi-Simulation of Pedestrian Models

Figure 5.20 Four concurrent running simulations. The scene shows pedestrians
gathering at the disrobing point. The Sheffield town hall plan 1 (Fig. 5.15) is shown
running at the top left, and plan 2 (Fig. 5.16) is running at the top right. The Sheffield
city hall plan 1 (Fig. 5.17) is shown running at the bottom left and plan 2 (Fig. 5.18) at
the bottom right.

5.8 Discussion 169

25

20

15

10

5

0

dt
/rd

t

250000200000150000100000500000
Iterations

500

400

300

200

100

Pedestrian count

Cordon established

All pedestrians
emitted

20

15

10

5

0

dt
/rd

t

6000050000400003000020000100000
Iterations

500

400

300

200

100

Pedestrian count

Cordon established
All pedestrians
emitted

20

15

10

5

0

dt
/rd

t

120000100000800006000040000200000
Iterations

500

400

300

200

100

Pedestrian count

Cordon established

All pedestrians
emitted

a) Velocity threshold = 0.02

Velocity threshold = 0.05

Velocity threshold = 0.1

b)

c)

Figure 5.21 The three graphs shows how the real simulation speed (dt/rdt) changes
throughout a simulation in normal conditions. The value dt stands for the dynamic
time step and rdt stands for the amount of real time taken to process that step of the
simulation. Both these values are averaged over 100 steps. Real simulation speed
values over 1 (above the red line) means it is running faster than real time. The line
in blue, along with the right axis, shows the number of pedestrians currently in the
simulation.

170 A Prototype System for Multi-Simulation of Pedestrian Models

Figure 5.22 Nottingham shopping mall - start of evacuation. Pedestrians are emitted
from the shopping mall (green lines) and walks to the nearest exit (red lines).

Figure 5.23 Nottingham shopping mall plan 2 - zones as visualised in the simulator.
Green is the cold zone, orange is the warm zone and red is the hot zone.

5.8 Discussion 171

Figure 5.24 Nottingham shopping mall evacuation plan 1 - pedestrians gathering at
the disrobing point. Pedestrians change colour according to their LoS value.

Figure 5.25 Nottingham shopping mall - simulation visualised with 3D plan of the
town centre extracted from GIS data.

172 A Prototype System for Multi-Simulation of Pedestrian Models

Figure 5.26 Nottingham shopping mall evacuation plan 2 - pedestrians gathering at the
disrobing point. The red pedestrians are injured and walk slower. The pink pedestrians
are not injured.

5.8 Discussion 173

20000 40000 60000 80000 100000

6
8

10
12

14
16

18

Pedestrian count (per GPU)

Ite
ra

tio
n

tim
e

(m
s)

Single GPU
Dual GPU − GPU 0
Dual GPU − GPU 1

Figure 5.27 Comparison of running the Simulator running the Nottingham shopping
mall plan 1 over a single GPU and two GPUs. Each GPU is running 4 instances of the
scenario concurrently.

Chapter 6

Conclusions

This thesis has investigated the use of GPUs for the creation of pedestrian simula-
tion systems based on the Agent-based Modelling (ABM) approach. Through the
implementation of two pedestrian simulation systems – Concoursia (Chapter 4) and
a multi-simulation system (Chapter 5) – the architectural complexities of using a
GPU have been examined. In addition, two alternative navigation systems have been
developed and investigated for use in GPU-based pedestrian simulation systems: a
grid-based approach and a graph-based approach (both described in Chapter 3), with
the graph-based approach being used in Concoursia.

The work in this thesis has demonstrated that GPUs can be used to create a fast,
efficient and scalable pedestrian simulation system. Chapter 4 illustrated this by
showing that Concoursia, a pedestrian simulation system built for the GPU, is able
to run simulations that have large, complex, and multi-level environments. This was
illustrated with a Train station scenario that exhibited complex pedestrian behaviours
such as queueing and following multi-stage objectives, which could be run at speeds
faster than real-time. However there are complexities that have to be considered when
using a GPU which could impact on speed, efficiency and scalability. One of the
main issues to deal with is memory access, which can mean that algorithms must be
reengineered. In considering memory access patterns on the GPU, data structures
should be laid out following a Structure of Arrays (SoA) pattern in order to increase
cache hits on memory reads, thus lowering the overall number of reads. Also, when
the SoA pattern is followed and there are complex inter-relationships between the data
structures, using indices rather than memory pointers to link the structures together
makes it simpler to retain these links when transferring the data structures from CPU
to GPU. Another memory issue that potentially can affect a GPU-based ABM system
is that it is inefficient to dynamically allocate global memory from code running on the
device. Considerations must be made for algorithms that rely on data structures that,

176 Conclusions

on the CPU, are designed to dynamically shrink and grow (e.g. vectors, queues, and
stacks). One method that can be used to resolve this is to alter the algorithms so that
they always use a fixed amount of pre-allocated global memory. The work presented
in Chapter 3 demonstrated the use of the fixed memory method by designing the
graph-based navigation system to always require a fixed number of variables to keep
track of navigation progress. The traversal of the R-tree for searching the Environment
graph is also done using a stackless approach ([272]). In addition, the RVO algorithm
in Chapter 4 uses a fixed-length array instead of a dynamic array in order to track
obstacles.

Individual aspects of a complete pedestrian simulation system must also be re-
considered for the GPU. Individual pedestrian behaviour in an ABM approach is
suited to the thread-based multicore GPU, and can be handled using a framework
such as FLAME GPU, which can also deal with local social force models. The other
aspect that must be considered is global navigation which is important for complex
behaviour. Chapter 3 of the thesis focussed on alternative pedestrian global naviga-
tion approaches, a grid-based approach and a graph-based approach, and how these
could be used with FLAME GPU. The grid-based approach addressed an issue in
other grid-based approaches where pedestrians are agents, but navigation is separate.
Instead, grid-based approach in this thesis embraced the agent-based paradigm and
modelled the environment as static agents that encode navigation and the pedestrian
agents as dynamic. This means the grid-based approach could be integrated into any
general ABM framework and could take advantage of existing platform optimisations.
However, the approach is limited to scenarios where the environment size and number
of objectives are small due to its large memory requirements. Therefore, it fails on
scalability. The second approach considered, a searchable graph-based approach, is
scalable. For two large scenarios, a shopping mall and a train station, it used 100
times less memory than the grid-based approach. In contrast to other graph-based
approaches, it also provides dynamic re-planning during congestion. These advantages
meant it was the choice for use in Concoursia. However, the implementation of the
graph-based approach on the GPU faced the memory issues that had to be resolved as
discussed above.

Another aspect to consider is how to deal with running many variations of a
simulation, as might be required when exploring alternative decisions in a complex
scenario. To address this, Chapter 5 demonstrated a prototype pedestrian multi-
simulation tool that is able to run multiple independent simulations concurrently on
machines with a single GPU, with multiple GPUs or on GPUs across a network. For
each GPU, the tool merges multiple independent simulations and runs them as if they
were one single large simulation. This requires careful memory management both

6.1 Limitations and Future Work 177

for running the simulations and also for gathering metrics for each simulation. For
example, efficient parallel operations were used for separating the metrics back in to
the coordinates of individual simulations. When running on a machine with two GPUs,
the amount of simulation runs was effectively doubled with a negligible decrease in
performance (1.61% on average). It is expected that this result will scale up to machines
equipped with more GPUs, as there is essentially no inter-communication between
the GPUs and minimal communication between CPU and GPU during the simulation
run. In addition, as each network node runs simulations that are independent of each
other, the only network communication required is for scheduling the simulation and
retrieving the metrics. The system is thus expected to be able to scale up to a large
number of nodes although further testing is required.

6.1 Limitations and Future Work

This thesis has shown that the GPU can be used to create fast, efficient and scalable
pedestrian simulation systems that have the potential to solve the computability prob-
lem posed by a Decision Support System (DSS). However, the work presented in
the thesis is only a part of a much larger system necessary for the creation of a truly
integrated real-time DSS for managing pedestrian flows.

In the short term, many improvements can be made to the current system. The
integration of Concoursia (Chapter 4) with the multi-simulation system (Chapter 5)
would form a core processing platform that could be used when an optimiser is
integrated on top of the system. It would be necessary to test how the system scales up
when running on hundreds or thousands of nodes. Although no problems are expected
when actually running the model itself, issues with management of the Simulators, or
data storage of collected metrics may arise. In addition, other features and behaviours
such as elevators, re-routing at blocked exits, social grouping and decision making
could be added. The research to add complex cognitive behaviours to the pedestrian
model on the GPU will continue to face the complexities due to the parallel nature
of GPU’s architecture. Recent advances such as unified memory can automatically
manage the synchronisation of memory between the CPU and GPU and allow models
to be larger than the GPU memory. As the memory transfer process is still being
performed in the background, and now as an opaque process, researchers may find
the process more difficult to optimise for. Existing techniques for optimising memory
access such as keeping data structures coalesced (e.g. following the Structure of Arrays
(SoA) pattern) or the allocation of memory will remain relevant for the foreseeable
future. Once the pedestrian model is finalised, it is also important to verify that the

178 Conclusions

model is working and calibrated correctly. As a start, the software could be subjected
to the NIST validation and verification test [103].

Medium term objectives would involve further research into the optimisation of
the simulation. This is the other crucial part of a DSS. Ultimately the system should
be able to suggest a number of plans for solving a problem and provide cost-benefit
analysis associated with carrying out each one. A standard set of metrics could be
established for a wide variety of cases. The system would require a systematic way
for automatically ranking pedestrian simulations, and be able to combine and rank
different type of metrics depending on the initial objective for running the analysis.
It may be that exit time is the most crucial for evacuation but footfall or utilisation
in certain parts of the environment is more relevant to retail. After the system is able
to evaluate simulation results, it must then be able to suggest plans for optimising
the scenario to achieve the desired result. These optimisations are numerous, can be
domain-specific, and will vary in scope and complexity. They could involve things such
as deciding to rope off an area, closing an exit, attempting to pre-warn people at the
entrance or even the re-design of the building or facility. Each of these optimisations
and suggestions must then be validated according to their own guidelines.

Longer term objectives are associated with the implementation of a robust large-
scale automated pedestrian tracking system which still poses a significant challenge
that requires further research. It can be used to validate and calibrate the pedestrian
model as well as providing historical records to assist in future predictions. Although
there exist a variety of technologies and tools as discussed in Section 2.4.1, none of
them currently present a truly robust and cost-effective solution. New algorithms and
hardware will need to be developed. It may require the development of new sensor
technology or the combination of existing ones. Just the process itself will require
many years of development and testing until it is ready to be deployed. The tracking
of pedestrians also raises privacy implications and if the system is not inherently
anonymous, data security, data and privacy laws, and even dealing with public opinion
poses additional challenges to the project.

References

[1] Y. Cao, Q. Duan, and N. Zhang, “Optimized environment designing of nanjing
south railway station based on pedestrian simulation,” Cross-Cultural Design,
Jan. 2016. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-40093-8_
50

[2] R. Lohner, M. Baqui, E. Haug, and B. Muhamad, “Real-time micro-modelling
of a million pedestrians,” Engineering Computations, vol. 33, no. 1, pp. 217–
237, 2016. [Online]. Available: http://dx.doi.org/10.1108/EC-02-2015-0036

[3] E. Galea, G. Sharp, P. Lawrence, and R. Holden, “Approximating the
evacuation of the world trade center north tower using computer simulation,”
Journal of Fire Protection Engineering, vol. 18, no. 2, pp. 85–115, 2008.
[Online]. Available: http://dx.doi.org/10.1177/1042391507079343

[4] A. Veeraswamy, E. R. Galea, L. Filippidis, P. J. Lawrence, and R. J. Gazzard,
“The simulation of urban-scale evacuation scenarios: Swinley forest fire,” in
Human Behaviour in Fire, Proceedings 6th Int Symposium, 2015.

[5] N. Zhu, J. Wang, and J. Shi, “Application of pedestrian simulation
in olympic games,” Journal of Transportation Systems Engineering and
Information Technology, vol. 8, no. 6, pp. 85 – 90, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570667209600076

[6] A. L. Lu, B. G. Ren, C. W. Wang, and D. C.-Y. Chan, “Application of
sfca pedestrian simulation model to the signalized crosswalk width design,”
Transportation Research Part A: Policy and Practice, vol. 80, pp. 76 – 89,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0965856415002050

[7] Y. Zhou, J. Wang, D. Huang, and S. Sun, “Pedestrian simulation modeling for
world expo 2010 shanghai,” Journal of Transportation Systems Engineering and
Information Technology, vol. 9, no. 2, pp. 141 – 146, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570667208600604

http://dx.doi.org/10.1007/978-3-319-40093-8_50
http://dx.doi.org/10.1007/978-3-319-40093-8_50
http://dx.doi.org/10.1108/EC-02-2015-0036
http://dx.doi.org/10.1177/1042391507079343
http://www.sciencedirect.com/science/article/pii/S1570667209600076
http://www.sciencedirect.com/science/article/pii/S0965856415002050
http://www.sciencedirect.com/science/article/pii/S0965856415002050
http://www.sciencedirect.com/science/article/pii/S1570667208600604

180 References

[8] Y. Chen, Y. Cai, P. Li, and G. Zhang, “Study on evacuation evaluation in
subway fire based on pedestrian simulation technology,” p. 9, 2015. [Online].
Available: http://dx.doi.org/10.1155/2015/357945

[9] T. Schelhorn, D. O’Sullivan, M. Haklay, and M. Thurstain-Goodwin, “Streets:
An agent-based pedestrian model,” 1999.

[10] M. Lyell and M. Becker, “Simulation of cognitive pedestrian agents: crowds
in crisis situations,” Systemics, Cybernetics and Informatics, vol. 4, no. 3, pp.
79–84, 2005.

[11] R. Thomas and S. Donikian, “A spatial cognitive map and a human-like memory
model dedicated to pedestrian navigation in virtual urban environments,” in
International Conference on Spatial Cognition. Springer, 2006, pp. 421–438.

[12] J. M. Allbeck, “Carosa: A tool for authoring npcs,” in International Conference
on Motion in Games. Springer, 2010, pp. 182–193.

[13] N. Fridman and G. A. Kaminka, “Modeling pedestrian crowd behavior based
on a cognitive model of social comparison theory,” Computational and Mathe-
matical Organization Theory, vol. 16, no. 4, pp. 348–372, 2010.

[14] E. Andresen, D. Haensel, M. Chraibi, and A. Seyfried, “Wayfinding and cogni-
tive maps for pedestrian models,” in Traffic and Granular Flow’15. Springer,
2016, pp. 249–256.

[15] S. R. Musse and D. Thalmann, “A Model of Human Crowd Behavior: Group
Inter-Relationship and Collision Detection Analysis,” in Workshop Computer
Animation and Simulation of Eurographics, 1997, pp. 39–52.

[16] N. Pelechano, K. O’Brien, B. Silverman, and N. Badler, “Crowd Simulation
Incorporating Agent Psychological Models, Roles and Communication,” 2005.

[17] N. Pelechano and N. I. Badler, “Modeling crowd and trained leader behavior
during building evacuation,” IEEE computer graphics and applications, vol. 26,
no. 6, 2006.

[18] L. Luo, S. Zhou, W. Cai, M. Y. H. Low, F. Tian, Y. Wang, X. Xiao, and D. Chen,
“Agent-based human behavior modeling for crowd simulation,” Computer Ani-
mation and Virtual Worlds, vol. 19, no. 3-4, pp. 271–281, 2008.

[19] M. Asano, T. Iryo, and M. Kuwahara, “Microscopic pedestrian simulation model
combined with a tactical model for route choice behaviour,” Transportation
Research Part C: Emerging Technologies, vol. 18, no. 6, pp. 842–855, 2010.

http://dx.doi.org/10.1155/2015/357945

References 181

[20] W. G. Van Toll, A. F. Cook, and R. Geraerts, “Real-time density-based crowd
simulation,” Computer Animation and Virtual Worlds, vol. 23, no. 1, pp. 59–69,
2012.

[21] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Physi-
cal Review E, vol. 51, no. 5, pp. 4282–4286, May 1995.

[22] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of escape
panic,” Nature, vol. 407, no. 6803, pp. 487–490, 28 Sep. 2000.

[23] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz, “Simulation of
pedestrian dynamics using a two-dimensional cellular automaton,” Physica
A: Statistical Mechanics and its Applications, vol. 295, no. 3–4, pp. 507–525,
15 Jun. 2001.

[24] R.-Y. Guo and H.-J. Huang, “A modified floor field cellular automata model for
pedestrian evacuation simulation,” vol. 41, no. 38, p. 385104, 22 Aug. 2008.

[25] T. Korhonen, S. Hostikka, S. Heliövaara, and H. Ehtamo, “Fds+evac: An agent
based fire evacuation model,” in Pedestrian and Evacuation Dynamics 2008,
W. W. F. Klingsch, C. Rogsch, A. Schadschneider, and M. Schreckenberg, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 109–120.

[26] “Legion website,” http://www.legion.com, accessed: 2017-03-06.

[27] M. Harmon and J. Joseph, “Evacuation planning tool (ept) for emergency, event
and space planning,” in Pedestrian and Evacuation Dynamics. Springer, 2011,
pp. 785–788.

[28] G. Baglietto and D. R. Parisi, “Continuous-space automaton model for pedes-
trian dynamics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 83, no. 5 Pt
2, p. 056117, May 2011.

[29] M. Chraibi, M. Freialdenhoven, A. Schadschneider, and A. Seyfried, “Modeling
the desired direction in a force-based model for pedestrian dynamics,” Traffic
and Granular Flow ’11, pp. 263–275, 2013.

[30] “Massmotion,” http://www.oasys-software.com/products/engineering/
massmotion.html, accessed: 2016-11-08.

[31] S. Paris, J. Pettré, and S. Donikian, “Pedestrian reactive navigation
for crowd simulation: a predictive approach,” Computer Graphics

http://www.legion.com
http://www.oasys-software.com/products/engineering/massmotion.html
http://www.oasys-software.com/products/engineering/massmotion.html

182 References

Forum, vol. 26, no. 3, pp. 665–674, 2007. [Online]. Available: http:
//dx.doi.org/10.1111/j.1467-8659.2007.01090.x

[32] J. Pettré, J. Ondřej, A.-H. Olivier, A. Cretual, and S. Donikian, “Experiment-
based modeling, simulation and validation of interactions between virtual
walkers,” in Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ser. SCA ’09. New York, NY, USA:
ACM, 2009, pp. 189–198. [Online]. Available: http://doi.acm.org/10.1145/
1599470.1599495

[33] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal Velocity Obstacles
for Real-Time Multi-Agent Navigation,” in IEEE INTERNATIONAL CONFER-
ENCE ON ROBOTICS AND AUTOMATION, 2008, pp. 1928–1935.

[34] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and P. Dubey,
“Clearpath: Highly parallel collision avoidance for multi-agent simulation,”
in Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, ser. SCA ’09. New York, NY, USA: ACM, 2009, pp.
177–187. [Online]. Available: http://doi.acm.org/10.1145/1599470.1599494

[35] I. Karamouzas and M. Overmars, “A velocity-based approach for
simulating human collision avoidance,” in Proceedings of the 10th
International Conference on Intelligent Virtual Agents, ser. IVA’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 180–186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1889075.1889097

[36] D. Wolinski, M. C. Lin, and J. Pettré, “Warpdriver: Context-aware
probabilistic motion prediction for crowd simulation,” ACM Trans. Graph.,
vol. 35, no. 6, pp. 164:1–164:11, Nov. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2980179.2982442

[37] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” in SIGGRAPH
’06: ACM SIGGRAPH 2006 Papers. New York, NY, USA: ACM, 2006, pp.
1160–1168.

[38] W. G. Wilson, “Resolving discrepancies between deterministic population
models and individual-based simulations.” The American naturalist, vol. 151,
pp. 116–34, Feb 1998.

[39] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and C. Greenough,
“Exploitation of High Performance Computing in the FLAME Agent-Based

http://dx.doi.org/10.1111/j.1467-8659.2007.01090.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01090.x
http://doi.acm.org/10.1145/1599470.1599495
http://doi.acm.org/10.1145/1599470.1599495
http://doi.acm.org/10.1145/1599470.1599494
http://dl.acm.org/citation.cfm?id=1889075.1889097
http://doi.acm.org/10.1145/2980179.2982442

References 183

Simulation Framework,” in High Performance Computing and Communication
& 2012 IEEE 9th International Conference on Embedded Software and Systems
(HPCC-ICESS), 2012 IEEE 14th International Conference on. IEEE, Jun.
2012, pp. 538–545.

[40] P. Richmond, S. Coakley, and D. Romano, “A High Performance Agent Based
Modelling Framework on Graphics Card Hardware with CUDA,” Proceedings
of The Eighth International Conference on Autonomous Agents and Multiagent
Systems, 2009.

[41] A. Grandison, Y. Cavanagh, P. J. Lawrence, and E. R. Galea, “Increasing
the simulation performance of large-scale evacuations using parallel
computing techniques based on domain decomposition,” Fire Technology,
vol. 53, no. 3, pp. 1399–1438, May 2017. [Online]. Available: https:
//doi.org/10.1007/s10694-016-0645-8

[42] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” in SCA ’05: Pro-
ceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation. New York, NY, USA: ACM Press, 2005, pp. 19–28.

[43] M. Haklay, D. O’Sullivan, M. Thurstain-Goodwin, and T. Schelhorn, ““so go
downtown”: Simulating pedestrian movement in town centres,” Environment
and Planning B: Planning and Design, vol. 28, no. 3, pp. 343–359, 2001.
[Online]. Available: http://dx.doi.org/10.1068/b2758t

[44] K. Zia and A. Ferscha, City Scale Evacuation: A High-Performance
Multi-agent Simulation Framework. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 239–293. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-36614-7_10

[45] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” in SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation. New York, NY, USA: ACM Press, 2005, pp. 19–28.
[Online]. Available: http://dx.doi.org/10.1145/1073368.1073371

[46] J. Shopf, J. Barczak, C. Oat, and N. Tatarchuk, “March of the Froblins: sim-
ulation and rendering massive crowds of intelligent and detailed creatures on
GPU,” in SIGGRAPH ’08: ACM SIGGRAPH 2008 classes. New York, NY,
USA: ACM, 2008, pp. 52–101.

[47] J. Pettré, J. Laumond, and D. Thalmann, “A Navigation Graph for Real-Time
Crowd Animation on Multilayered and Uneven Terrain,” 2005.

https://doi.org/10.1007/s10694-016-0645-8
https://doi.org/10.1007/s10694-016-0645-8
http://dx.doi.org/10.1068/b2758t
http://dx.doi.org/10.1007/978-3-642-36614-7_10
http://dx.doi.org/10.1007/978-3-642-36614-7_10
http://dx.doi.org/10.1145/1073368.1073371

184 References

[48] W. Shao, “Environmental Modeling for Autonomous Virtual Pedestrians,” http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.1901, 2005.

[49] A. Sud, E. Andersen, S. Curtis, M. Lin, and D. Manocha, “Real-time path
planning for virtual agents in dynamic environments,” in ACM SIGGRAPH
2008 Classes, ser. SIGGRAPH ’08. New York, NY, USA: ACM, 2008, pp.
55:1–55:9. [Online]. Available: http://doi.acm.org/10.1145/1401132.1401206

[50] R. Wein, J. P. van den Berg, and D. Halperin, “The visibility–voronoi complex
and its applications,” Computational Geometry, vol. 36, no. 1, pp. 66 – 87,
2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0925772106000496

[51] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and D. Manocha, “Real-
time navigation of independent agents using adaptive roadmaps,” in VRST

’07: Proceedings of the 2007 ACM symposium on Virtual reality software and
technology. New York, NY, USA: ACM, 2007, pp. 99–106.

[52] A. Sud, R. Gayle, S. Guy, E. Andersen, M. Lin, and D. Manocha, “Real-time
Simulation of Heterogeneous Crowds,” 2007.

[53] G. Snook, Game Programming Gems. Charles River Media, 2000, ch. Simpli-
fied 3D movement and pathfinding using navigation meshes, p. 288–304.

[54] W. van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano,
J. Pettré, and R. Geraerts, “A comparative study of navigation meshes,” in
Proceedings of the 9th International Conference on Motion in Games, ser. MIG
’16. New York, NY, USA: ACM, 2016, pp. 91–100. [Online]. Available:
http://doi.acm.org/10.1145/2994258.2994262

[55] W. van Toll, A. F. Cook, and R. Geraerts, “Navigation meshes for realistic
multi-layered environments,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sept 2011, pp. 3526–3532.

[56] A. Barnett, H. P. H. Shum, and T. Komura, “Coordinated crowd simulation with
topological scene analysis,” Comp. Graph. Forum, vol. 35, no. 6, pp. 120–132,
2016.

[57] C. Gloor, P. Stucki, and K. Nagel, “Hybrid Techniques for Pedestrian Simula-
tions,” in Cellular Automata, 2004, pp. 581–590.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.1901
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.1901
http://doi.acm.org/10.1145/1401132.1401206
http://www.sciencedirect.com/science/article/pii/S0925772106000496
http://www.sciencedirect.com/science/article/pii/S0925772106000496
http://doi.acm.org/10.1145/2994258.2994262

References 185

[58] A. Kneidl, A. Borrmann, and D. Hartmann, “Generation and use of sparse
navigation graphs for microscopic pedestrian simulation models,” Advanced
Engineering Informatics, vol. 26, no. 4, pp. 669–680, Oct. 2012.

[59] F. Haron, Y. M. Alginahi, M. N. Kabir, and A. I. Mohamed, “Software evaluation
for crowd evacuation- case study: Al-masjid an-nabawi,” International Journal
of Computer Science Issues(IJCSI), vol. 9, no. 6, 2012.

[60] “EXODUS website,” http://fseg.gre.ac.uk/exodus/, accessed: 2017-03-06.

[61] “Urban analytics framework,” http://www.crowddynamics.com/products/uaf.
php, accessed: 2016-10-17.

[62] J. Hallett, “Introducing decision support systems,” Journal of the Operational
Research Society, vol. 46, no. 10, 1995.

[63] S. H. Ghodsypour and C. O’Brien, “A decision support system for supplier
selection using an integrated analytic hierarchy process and linear programming,”
International journal of production economics, vol. 56, pp. 199–212, 1998.

[64] M. Klein and L. B. Methlie, “Knowledge-based decision support systems with
applications in business: a decision support approach,” 2009.

[65] A. Perini and A. Susi, “Developing a decision support system for integrated
production in agriculture,” Environmental Modelling & Software, vol. 19,
no. 9, pp. 821 – 829, 2004, environmental Sciences and Artificial
Intelligence. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1364815203002007

[66] V. K. Varma, I. Ferguson, and I. Wild, “Decision support system for
the sustainable forest management,” Forest Ecology and Management,
vol. 128, no. 1–2, pp. 49 – 55, 2000. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0378112799002716

[67] J. Törnquist, “Computer-based decision support for railway traffic scheduling
and dispatching: A review of models and algorithms,” in OASIcs-OpenAccess
Series in Informatics, vol. 2. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2006.

[68] P. Richmond and D. Romano, “A High Performance Framework For Agent
Based Pedestrian Dynamics on GPU hardware,” European Simulation and
Modelling, 2008.

http://fseg.gre.ac.uk/exodus/
http://www.crowddynamics.com/products/uaf.php
http://www.crowddynamics.com/products/uaf.php
http://www.sciencedirect.com/science/article/pii/S1364815203002007
http://www.sciencedirect.com/science/article/pii/S1364815203002007
http://www.sciencedirect.com/science/article/pii/S0378112799002716
http://www.sciencedirect.com/science/article/pii/S0378112799002716

186 References

[69] P. Richmond, D. Walker, S. Coakley, and D. Romano, “High performance cellu-
lar level agent-based simulation with FLAME for the GPU,” Brief. Bioinform.,
2010.

[70] T. Karmakharm, P. Richmond, and D. Romano, “Agent-based Large Scale
Simulation of Pedestrians With Adaptive Realistic Navigation Vector Fields,”
in Theory and Practice of Computer Graphics (TPCG) 2010, 2010, pp. 67–74.

[71] T. Karmakharm and P. Richmond, “Large Scale Pedestrian Multi-Simulation
for a Decision Support Tool,” Proceedings of Theory and Practice of Computer
Graphics (TPCG), 13 Sep. 2012.

[72] G. Hoy, E. Morrow, and A. Shalaby, “Use of agent-based crowd simulation to
investigate the performance of large-scale intermodal facilities,” Transportation
Research Record: Journal of the Transportation Research Board, vol. 2540, pp.
20–29, 2016. [Online]. Available: http://dx.doi.org/10.3141/2540-03

[73] C. Deissenberg, S. Vanderhoog, and H. Dawid, “EURACE: A massively parallel
agent-based model of the European economy,” Appl. Math. Comput., vol. 204,
no. 2, pp. 541–552, 15 Oct. 2008.

[74] H. V. D. Parunak, R. Savit, and L. Riolo, “Agent-Based Modeling vs. Equation-
Based Modeling: A Case Study and User’s Guide,” 1998.

[75] F. Reif, Fundamentals of statistical and thermal physics. Waveland Press,
2009, pp. 430–434.

[76] A. Adamatzky, Ed., Game of Life Cellular Automata. Springer London, 2010.

[77] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”
in SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, vol. 21. New York, NY, USA: ACM, Jul.
1987, pp. 25–34.

[78] M.-L. Xu, H. Jiang, X.-G. Jin, and Z. Deng, “Crowd simulation and its applica-
tions: Recent advances,” Journal of Computer Science and Technology, vol. 29,
no. 5, pp. 799–811, 2014.

[79] A. Penn and A. Turner, “Space syntax based agent simulation,” 2001.

[80] ——, “Encoding natural movement as an agent-based system: an investigation
into human pedestrian behaviour in the built environment,” 2001.

http://dx.doi.org/10.3141/2540-03

References 187

[81] P. A. Thompson and E. W. Marchant, “A computer model for the evacuation
of large building populations,” Fire safety journal, vol. 24, no. 2, pp. 131–148,
1995.

[82] E. D. Kuligowski, R. D. Peacock, and B. L. Hoskins, A review of building
evacuation models. US Department of Commerce, National Institute of
Standards and Technology Gaithersburg, MD, 2005.

[83] J. S. Roh, H. S. Ryou, W. H. Park, and Y. J. Jang, “Cfd simulation and assess-
ment of life safety in a subway train fire,” Tunnelling and Underground Space
Technology, vol. 24, no. 4, pp. 447–453, 2009.

[84] E. Mas, S. Koshimura, F. Imamura, A. Suppasri, A. Muhari, and
B. Adriano, “Recent advances in agent-based tsunami evacuation simulations:
Case studies in indonesia, thailand, japan and peru,” Pure and Applied
Geophysics, vol. 172, no. 12, pp. 3409–3424, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s00024-015-1105-y

[85] N. Chooramun, P. Lawrence, and E. Galea, “Urban scale evacuation simulation
using buildingexodus,” Interflam 2016, vol. 2, pp. 1645–1656, 07 2016.

[86] E. A. Khan, M. A. Ahmed, E. H. Khan, and S. C. Majumder, “Fire emergency
evacuation simulation of a shopping mall using fire dynamic simulator (fds),”
Journal of Chemical Engineering, vol. 30, no. 1, pp. 32–36, 2017.

[87] D. Thalmann, “Populating virtual environments with crowds,” in Proceedings
of the 2006 ACM international conference on Virtual reality continuum and its
applications. ACM, 2006, pp. 11–11.

[88] S. Dobbyn, R. McDonnell, L. Kavan, S. Collins, and C. O’Sullivan, “Clothing
the masses: Real-time clothed crowds with variation.” in Eurographics (Short
Presentations), 2006, pp. 103–106.

[89] J. Maïm, B. Yersin, and D. Thalmann, “Unique Character Instances for Crowds,”
IEEE Comput. Graph. Appl., vol. 29, no. 6, pp. 82–90, 2009.

[90] T. Kwon, K. H. Lee, J. Lee, and S. Takahashi, “Group motion
editing,” in ACM SIGGRAPH 2008 Papers, ser. SIGGRAPH ’08. New
York, NY, USA: ACM, 2008, pp. 80:1–80:8. [Online]. Available:
http://doi.acm.org/10.1145/1399504.1360679

http://dx.doi.org/10.1007/s00024-015-1105-y
http://doi.acm.org/10.1145/1399504.1360679

188 References

[91] S. Takahashi, K. Yoshida, T. Kwon, K. H. Lee, J. Lee, and S. Y.
Shin, “Spectral-based group formation control,” Computer Graphics
Forum, vol. 28, no. 2, pp. 639–648, 2009. [Online]. Available: http:
//dx.doi.org/10.1111/j.1467-8659.2009.01404.x

[92] J. Kim, Y. Seol, T. Kwon, and J. Lee, “Interactive manipulation of large-scale
crowd animation,” ACM Trans. Graph., vol. 33, no. 4, pp. 83:1–83:10, Jul.
2014. [Online]. Available: http://doi.acm.org/10.1145/2601097.2601170

[93] J. Henry, H. P. H. Shum, and T. Komura, “Interactive formation control in
complex environments,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 2, pp. 211–222, Feb 2014.

[94] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” Computer
Graphics Forum, vol. 26, no. 3, pp. 655–664, 2007. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2007.01089.x

[95] E. Ju, M. G. Choi, M. Park, J. Lee, K. H. Lee, and S. Takahashi, “Morphable
crowds,” ACM Trans. Graph., vol. 29, no. 6, pp. 140:1–140:10, Dec. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1882261.1866162

[96] M. G. Choi, M. Kim, K. L. Hyun, and J. Lee, “Deformable motion: Squeezing
into cluttered environments,” Computer Graphics Forum, vol. 30, no. 2, pp.
445–453, 2011. [Online]. Available: http://dx.doi.org/10.1111/j.1467-8659.
2011.01889.x

[97] M. Sung, M. Gleicher, and S. Chenney, “Scalable behaviors for crowd
simulation,” Computer Graphics Forum, vol. 23, no. 3, pp. 519–528, 2004.
[Online]. Available: http://dx.doi.org/10.1111/j.1467-8659.2004.00783.x

[98] R. McDonnell, M. Larkin, S. Dobbyn, S. Collins, and C. O’Sullivan, “Clone
attack! Perception of crowd variety,” in SIGGRAPH ’08: ACM SIGGRAPH
2008 papers. New York, NY, USA: ACM, 2008, pp. 1–8.

[99] D. Helbing, “A mathematical model for the behavior of pedestrians,” Behav.
Sci., vol. 36, no. 4, pp. 298–310, Oct. 1991.

[100] D. Helbing, P. Molnar, I. J. Farkas, and K. Bolay, “Self-organizing pedestrian
movement,” Environ. Plann. B Plann. Des., 2001.

[101] M. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe, and
G. Theraulaz, “Experimental study of the behavioural mechanisms underlying

http://dx.doi.org/10.1111/j.1467-8659.2009.01404.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01404.x
http://doi.acm.org/10.1145/2601097.2601170
http://dx.doi.org/10.1111/j.1467-8659.2007.01089.x
http://doi.acm.org/10.1145/1882261.1866162
http://dx.doi.org/10.1111/j.1467-8659.2011.01889.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01889.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00783.x

References 189

self-organization in human crowds,” Proceedings of the Royal Society of London
B: Biological Sciences, vol. 276, no. 1668, pp. 2755–2762, 2009. [Online].
Available: http://rspb.royalsocietypublishing.org/content/276/1668/2755

[102] M. Moussa\“id, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz, “The
Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd
Dynamics,” PLoS One, vol. 5, no. 4, pp. e10 047+, 7 Apr. 2010.

[103] E. Ronchi, E. D. Kuligowski, P. A. Reneke, R. D. Peacock, and D. Nilsson,
The process of verification and validation of building fire evacuation models.
US Department of Commerce, National Institute of Standards and Technology,
2013.

[104] “Massive Software,” http://www.massivesoftware.com/, accessed: 2017-10-11.

[105] “Miarmy,” http://www.basefount.com/miarmy.html, accessed: 2017-03-06.

[106] B. Ulicny and D. Thalmann, “Crowd simulation for interactive virtual environ-
ments and vr training systems,” in Computer Animation and Simulation 2001.
Springer, 2001, pp. 163–170.

[107] N. Pelechano, C. Stocker, J. Allbeck, and N. Badler, “Being a part of the crowd:
towards validating VR crowds using presence,” in AAMAS ’08: Proceedings of
the 7th international joint conference on Autonomous agents and multiagent
systems. Richland, SC: International Foundation for Autonomous Agents and
Multiagent Systems, 2008, pp. 136–142.

[108] D. Panzoli, C. Peters, I. Dunwell, S. Sanchez, P. Petridis, A. Protopsaltis,
V. Scesa, and S. de Freitas, “A level of interaction framework for exploratory
learning with characters in virtual environments,” in Intelligent Computer
Graphics 2010. Springer, 2010, pp. 123–143.

[109] “Total War,” http://www.totalwar.com, accessed: 2017-03-06.

[110] E. d’Eon, D. Luebke, and E. Enderton, “Efficient rendering of human skin,”
in Proceedings of the 18th Eurographics conference on Rendering Techniques.
Eurographics Association, 2007, pp. 147–157.

[111] C. O’Sullivan, J. Cassell, H. Vilhjalmsson, J. Dingliana, S. Dobbyn, B. Mc-
namee, C. Peters, and T. Giang, “Levels of detail for crowds and groups,” in
Computer Graphics Forum, vol. 21, no. 4. Wiley Online Library, 2002, pp.
733–741.

http://rspb.royalsocietypublishing.org/content/276/1668/2755
http://www.massivesoftware.com/
http://www.basefount.com/miarmy.html
http://www.totalwar.com

190 References

[112] S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan, “Geopostors: a real-
time geometry/impostor crowd rendering system,” in Proceedings of the 2005
symposium on Interactive 3D graphics and games. ACM, 2005, pp. 95–102.

[113] E. Millan and I. Rudomin, “Impostors and pseudo-instancing for gpu crowd
rendering,” in Proceedings of the 4th international conference on Computer
graphics and interactive techniques in Australasia and Southeast Asia. ACM,
2006, pp. 49–55.

[114] J. Pettré, P. d. H. Ciechomski, J. Maïm, B. Yersin, J.-P. Laumond, and D. Thal-
mann, “Real-time navigating crowds: scalable simulation and rendering,” Com-
put. Animat. Virtual Worlds, vol. 17, no. 3-4, pp. 445–455, 1 Jul. 2006.

[115] B. Ulicny, P. d. H. Ciechomski, and D. Thalmann, “Crowdbrush: interactive
authoring of real-time crowd scenes,” in Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Eurographics
Association, 2004, pp. 243–252.

[116] R. F. Fahy, “Exit89: an evacuation model for high-rise buildings,” Fire Safety
Science, vol. 3, pp. 815–823, 1991.

[117] Y. Min and Y. Yu, “Calculation of mixed evacuation of stair and elevator using
evacnet4,” Procedia Engineering, vol. 62, pp. 478–482, 2013.

[118] D. Helbing, I. J. Farkas, P. Molnar, and T. Vicsek, “Simulation of pedestrian
crowds in normal and evacuation situations,” in Pedestrian and Evacuation
Dynamics, 1 Jan. 2002, vol. 21, pp. 21–58.

[119] F. Alonso-Marroquín, J. Busch, C. Chiew, C. Lozano, and A. Ramírez-Gómez,
“Simulation of counterflow pedestrian dynamics using spheropolygons,” Phys.
Rev. E Stat. Nonlin. Soft Matter Phys., vol. 90, no. 6, p. 063305, Dec. 2014.

[120] N. Chooramun, P. J. Lawrence, and E. R. Galea, “An agent based evacuation
model utilising hybrid space discretisation,” Safety Science, vol. 50, no. 8, pp.
1685 – 1694, 2012, evacuation and Pedestrian Dynamics. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925753511003419

[121] L. F. Henderson, “The statistics of crowd fluids,” Nature, vol. 229, no. 5284, pp.
381–383, 5 Feb. 1971.

[122] R. Hughes, “The flow of large crowds of pedestrians,” Mathematics and
Computers in Simulation, vol. 53, no. 4-6, pp. 367–370, 2000, cited By

http://www.sciencedirect.com/science/article/pii/S0925753511003419

References 191

63. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-0006212847&partnerID=40&md5=80619defa91e265adab489070cdecc6c

[123] ——, “A continuum theory for the flow of pedestrians,” Trans. Res. Part B:
Methodol., vol. 36, no. 6, pp. 507–535, Jul. 2002.

[124] ——, “The flow of human crowds,” Annual Review of Fluid Mechanics, vol. 35,
pp. 169–182, 2003, cited By 270. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-0346245136&doi=10.1146%2fannurev.fluid.35.
101101.161136&partnerID=40&md5=5081dbff962e7f5d68627ae10b4db4e5

[125] S. Seer, C. Rudloff, T. Matyus, and N. Brändle, “Validating social force based
models with comprehensive real world motion data,” Transportation Research
Procedia, vol. 2, pp. 724–732, 2014.

[126] M. Moussaïd, D. Helbing, and G. Theraulaz, “How simple rules determine
pedestrian behavior and crowd disasters,” Proceedings of the National Academy
of Sciences, vol. 108, no. 17, pp. 6884–6888, 2011. [Online]. Available:
http://www.pnas.org/content/108/17/6884.abstract

[127] M. Moussaïd and J. D. Nelson, “Simple heuristics and the modelling of crowd
behaviours,” in Pedestrian and Evacuation Dynamics 2012, U. Weidmann,
U. Kirsch, and M. Schreckenberg, Eds. Cham: Springer International Publish-
ing, 2014, pp. 75–90.

[128] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using
velocity obstacles,” The International Journal of Robotics Research, vol. 17,
no. 7, pp. 760–772, 1998. [Online]. Available: http://ijr.sagepub.com/content/
17/7/760.abstract

[129] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, Reciprocal n-Body
Collision Avoidance. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 3–19. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-19457-3_1

[130] J. Snape, S. J. Guy, D. Vembar, A. Lake, and others, “Reciprocal collision
avoidance and navigation for video games,” Conf., San Francisco, 2012.

[131] N. Pelechano, J. M. Allbeck, and N. I. Badler, “Controlling individual agents
in high-density crowd simulation,” in Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ser. SCA ’07. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2007, pp. 99–108.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0006212847&partnerID=40&md5=80619defa91e265adab489070cdecc6c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0006212847&partnerID=40&md5=80619defa91e265adab489070cdecc6c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0346245136&doi=10.1146%2fannurev.fluid.35.101101.161136&partnerID=40&md5=5081dbff962e7f5d68627ae10b4db4e5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0346245136&doi=10.1146%2fannurev.fluid.35.101101.161136&partnerID=40&md5=5081dbff962e7f5d68627ae10b4db4e5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0346245136&doi=10.1146%2fannurev.fluid.35.101101.161136&partnerID=40&md5=5081dbff962e7f5d68627ae10b4db4e5
http://www.pnas.org/content/108/17/6884.abstract
http://ijr.sagepub.com/content/17/7/760.abstract
http://ijr.sagepub.com/content/17/7/760.abstract
http://dx.doi.org/10.1007/978-3-642-19457-3_1

192 References

[132] F. Qiu and X. Hu, “Modeling group structures in pedestrian crowd simulation,”
Simulation Modelling Practice and Theory, vol. 18, no. 2, pp. 190–205, 2010.

[133] Y. Murakami, K. Minami, T. Kawasoe, and T. Ishida, “Multi-agent simulation
for crisis management,” in Knowledge Media Networking, 2002. Proceedings.
IEEE Workshop on. IEEE, 2002, pp. 135–139.

[134] J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian, “A synthetic-vision based
steering approach for crowd simulation,” ACM Trans. Graph., vol. 29, no. 4, pp.
123:1–123:9, Jul. 2010.

[135] “STEPS software,” http://www.steps.mottmac.com/, accessed: 2017-03-06.

[136] J. P. Yuan, Z. Fang, Y. C. Wang, S. M. Lo, and P. Wang, “Integrated network
approach of evacuation simulation for large complex buildings,” Fire Saf. J.,
vol. 44, no. 2, pp. 266–275, Feb. 2009.

[137] S. Lemercier and J.-M. Auberlet, “Towards more behaviours in crowd
simulation,” Computer Animation and Virtual Worlds, vol. 27, no. 1, pp. 24–34,
2016, cav.1629. [Online]. Available: http://dx.doi.org/10.1002/cav.1629

[138] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free
paths among polyhedral obstacles,” Commun. ACM, vol. 22, no. 10, pp. 560–
570, Oct. 1979. [Online]. Available: http://doi.acm.org/10.1145/359156.359164

[139] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-time robot
motion planning using rasterizing computer graphics hardware,” in Proceedings
of the 17th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’90. New York, NY, USA: ACM, 1990, pp.
327–335. [Online]. Available: http://doi.acm.org/10.1145/97879.97915

[140] T. Lozano-Pérez, Spatial Planning: A Configuration Space Approach. New
York, NY: Springer New York, 1990, pp. 259–271. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4613-8997-2_20

[141] J. J. Kuffner, Jr., “Goal-directed navigation for animated characters using real-
time path planning and control,” in Proceedings of the International Workshop
on Modelling and Motion Capture Techniques for Virtual Environments, ser.
CAPTECH ’98. London, UK, UK: Springer-Verlag, 1998, pp. 171–186.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647338.723378

[142] S. Bandi and D. Thalmann, “Path finding for human motion in virtual environ-
ments,” Comput. Geom., vol. 15, no. 1-3, pp. 103–127, Feb. 2000.

http://www.steps.mottmac.com/
http://dx.doi.org/10.1002/cav.1629
http://doi.acm.org/10.1145/359156.359164
http://doi.acm.org/10.1145/97879.97915
http://dx.doi.org/10.1007/978-1-4613-8997-2_20
http://dl.acm.org/citation.cfm?id=647338.723378

References 193

[143] D. Delling, P. Sanders, D. Schultes, and D. Wagner, Engineering Route Planning
Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
117–139. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-02094-0_7

[144] W. Zeng and R. L. Church, “Finding shortest paths on real road networks: The
case for a*,” Int. J. Geogr. Inf. Sci., vol. 23, no. 4, pp. 531–543, Apr. 2009.
[Online]. Available: http://dx.doi.org/10.1080/13658810801949850

[145] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” Robotics
and Automation, IEEE Transactions on, vol. 12, no. 4, pp. 566–580, Aug. 1996.

[146] S. Patil, J. Van Den Berg, S. Curtis, M. C. Lin, and D. Manocha, “Directing
crowd simulations using navigation fields,” IEEE transactions on visualization
and computer graphics, vol. 17, no. 2, pp. 244–254, 2011.

[147] S. M. LaValle, Planning Algorithms. Cambridge University Press, 29 May
2006.

[148] S. Chenney, “Flow tiles,” in SCA ’04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2004, pp. 233–242.

[149] X. Jin, J. Xu, C. C. L. Wang, S. Huang, and J. Zhang, “Interactive Control of
Large-Crowd Navigation in Virtual Environments Using Vector Fields,” IEEE
Comput. Graph. Appl., vol. 28, no. 6, pp. 37–46, Nov. 2008.

[150] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No.00CH37065), vol. 2, 2000, pp. 995–1001 vol.2.

[151] X. Yu, J. A. Goldak, and L. Dong, “Constructing 3-D discrete medial axis,”
in SMA ’91: Proceedings of the first ACM symposium on Solid modeling
foundations and CAD/CAM applications. New York, NY, USA: ACM, 1991,
pp. 481–489.

[152] W. H. Hesselink and J. B. Roerdink, “Euclidean skeletons of digital image and
volume data in linear time by the integer medial axis transform.” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 30, no. 12, pp. 2204–2217, Dec. 2008.

http://dx.doi.org/10.1007/978-3-642-02094-0_7
http://dx.doi.org/10.1080/13658810801949850

194 References

[153] H. Xia and P. Tucker, “Distance Solutions for Medial Axis Transform,” in Pro-
ceedings of the 18th International Meshing Roundtable, B. Clark, Ed. Springer
Berlin Heidelberg, 2009, pp. 247–265.

[154] W. van Toll and R. Geraerts, “Dynamically pruned a* for re-planning in naviga-
tion meshes,” in 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Sept 2015, pp. 2051–2057.

[155] G. Reeb, “Sur les points singuliers d’une forme de pfaff complètement intégrable
ou d’une fonction numérique [on the singular points of a completely integrable
pfaff form or of a numerical function],” Comptes Rendus Acad. Sciences, vol.
222, pp. 847–849, 1946.

[156] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology matching
for fully automatic similarity estimation of 3d shapes,” in Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 203–212. [Online].
Available: http://doi.acm.org/10.1145/383259.383282

[157] R. Oliva and N. Pelechano, “Neogen: Near optimal generator of
navigation meshes for 3d multi-layered environments,” Computers &
Graphics, vol. 37, no. 5, pp. 403 – 412, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0097849313000435

[158] M. Mononen, “Recast navigation,” https://github.com/recastnavigation/
recastnavigation, 2014, accessed: 2017-03-03.

[159] B. Yersin, J. Maím, P. D. H. Ciechomski, S. Schertenleib, and D. Thalmann,
“Steering a virtual crowd based on a semantically augmented navigation graph,”
in In Proceedings of the First International Workshop on Crowd Simulation,
2005, pp. 169–178.

[160] P. N. Seneviratne and J. F. Morrall, “Analysis of factors affecting
the choice of route of pedestrians,” Transportation Planning and
Technology, vol. 10, no. 2, pp. 147–159, 1985. [Online]. Available:
http://dx.doi.org/10.1080/03081068508717309

[161] A. W. Agrawal, M. Schlossberg, and K. Irvin, “How far, by which
route and why? a spatial analysis of pedestrian preference,” Journal
of Urban Design, vol. 13, no. 1, pp. 81–98, 2008. [Online]. Available:
http://dx.doi.org/10.1080/13574800701804074

http://doi.acm.org/10.1145/383259.383282
http://www.sciencedirect.com/science/article/pii/S0097849313000435
https://github.com/recastnavigation/recastnavigation
https://github.com/recastnavigation/recastnavigation
http://dx.doi.org/10.1080/03081068508717309
http://dx.doi.org/10.1080/13574800701804074

References 195

[162] R. G. Golledge, “Path selection and route preference in human navigation: A
progress report,” in International Conference on Spatial Information Theory.
Springer, 1995, pp. 207–222.

[163] I. Armeni and K. Chorianopoulos, “Pedestrian navigation and shortest path:
Preference versus distance,” in Ambient Intelligence and Smart Environments,
2014, pp. 647–652.

[164] E. Kuligowski, R. D Peacock, and B. Hoskins, “A review of building evacuation
models, 2nd edition, nist technical note 1680,” 01 2010.

[165] “Pathfinder software,” https://www.thunderheadeng.com/pathfinder/, accessed:
2017-03-06.

[166] P. Thompson, J. Wu, and E. Marchant, “Simulex 3.0: Modelling evacuation in
multi-storey buildings,” Fire Safety Science, vol. 5, pp. 725–736, 1997.

[167] “Simwalk,” http://www.simwalk.com, accessed: 2017-03-06.

[168] M. Harmon and J. Joseph, “Evacuation planning tool (ept) for emergency, event
and space planning,” in Pedestrian and Evacuation Dynamics. Springer, 2011,
pp. 785–788.

[169] R. Kukla, J. Kerridge, A. Willis, and J. Hine, “Pedflow: Development of an
autonomous agent model of pedestrian flow,” Transportation research record:
Journal of the transportation research board, no. 1774, pp. 11–17, 2001.

[170] M. Bensilum and D. A. Purser, “Grid flow: An object-oriented building
evacuation model combining pre-movement and movement behaviours for
performance-based design,” Fire Safety Science, vol. 7, pp. 941–952, 2003.

[171] “MASSEgress website,” http://http://eil.stanford.edu/pengao/ResentFocus/
index.html, accessed: 2017-03-06.

[172] S. F. Railsback, S. L. Lytinen, and S. K. Jackson, “Agent-based simulation
platforms: Review and development recommendations,” Simulation, vol. 82,
no. 9, pp. 609–623, 2006.

[173] R. Löhner, “On the modeling of pedestrian motion,” Applied Mathematical
Modelling, vol. 34, no. 2, pp. 366 – 382, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0307904X09001395

https://www.thunderheadeng.com/pathfinder/
http://www.simwalk.com
http://http://eil.stanford.edu/pengao/ResentFocus/index.html
http://http://eil.stanford.edu/pengao/ResentFocus/index.html
http://www.sciencedirect.com/science/article/pii/S0307904X09001395

196 References

[174] A. Rousset, B. Herrmann, C. Lang, and L. Philippe, “A survey on parallel and
distributed multi-agent systems for high performance computing simulation,”
Computer Science Review, vol. itansdafsdf, pp. –, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1574013715300435

[175] G. Cordasco, R. De Chiara, A. Mancuso, D. Mazzeo, V. Scarano,
and C. Spagnuolo, “Bringing together efficiency and effectiveness in
distributed simulations: The experience with d-mason,” SIMULATION,
vol. 89, no. 10, pp. 1236–1253, 2013. [Online]. Available: http:
//sim.sagepub.com/content/89/10/1236.abstract

[176] N. Collier and M. North, Repast HPC: A Platform for Large-Scale Agent-Based
Modeling. John Wiley & Sons, Inc., 2012, pp. 81–109. [Online]. Available:
http://dx.doi.org/10.1002/9781118130506.ch5

[177] E. S. Angelotti, E. E. Scalabrin, and B. C. Avila, “Pandora: a multi-agent system
using paraconsistent logic,” in Computational Intelligence and Multimedia Ap-
plications, 2001. ICCIMA 2001. Proceedings. Fourth International Conference
on, 2001, pp. 352–356.

[178] “Anylogic,” http://www.anylogic.com/, accessed: 2016-11-01.

[179] “Development and structure of prometheus : the canadian wildland fire growth
simulation model,” http://www.firegrowthmodel.ca/prometheus/overview_e.
php, accessed: 2017-02-20.

[180] E. S. Berner, Clinical decision support systems. Springer, 2007.

[181] A. Kneidl, M. Thiemann, D. Hartmann, and A. Borrmann, “Combining pedes-
trian simulation with a network flow optimization to support security staff
in handling an evacuation of a soccer stadium,” in Proceedings of European
Conference Forum, 2011.

[182] L. Feng and E. Miller-Hooks, “A network optimization-based approach for
crowd management in large public gatherings,” Transportation Research Part
C: Emerging Technologies, vol. 42, pp. 182 – 199, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X1400031X

[183] S. Hoogendoorn, W. Daamen, D. Duives, and F. van Wageningen-Kessels,
Optimal crowd evacuation. TRB, 2013.

http://www.sciencedirect.com/science/article/pii/S1574013715300435
http://sim.sagepub.com/content/89/10/1236.abstract
http://sim.sagepub.com/content/89/10/1236.abstract
http://dx.doi.org/10.1002/9781118130506.ch5
http://www.anylogic.com/
http://www.firegrowthmodel.ca/prometheus/overview_e.php
http://www.firegrowthmodel.ca/prometheus/overview_e.php
http://www.sciencedirect.com/science/article/pii/S0968090X1400031X

References 197

[184] D. R. Bish, H. D. Sherali, and A. G. Hobeika, “Optimal evacuation
planning using staging and routing,” Journal of the Operational Research
Society, vol. 65, no. 1, pp. 124–140, 2014. [Online]. Available:
http://dx.doi.org/10.1057/jors.2013.3

[185] E. Galea, D. Cooney, L. Filippidis et al., “Active dynamic signage system: A
full-scale evacuation trial,” 2015.

[186] “Estimates of station usage - office of rail and road,” http://orr.gov.uk/statistics/
published-stats/station-usage-estimates, accessed: 2017-03-8.

[187] M. Alzantot and M. Youssef, “Uptime: Ubiquitous pedestrian tracking using
mobile phones,” in 2012 IEEE Wireless Communications and Networking
Conference (WCNC), April 2012, pp. 3204–3209.

[188] P. Mirowski, T. K. Ho, S. Yi, and M. MacDonald, “Signalslam: Simultaneous
localization and mapping with mixed wifi, bluetooth, lte and magnetic signals,”
in International Conference on Indoor Positioning and Indoor Navigation, Oct
2013, pp. 1–10.

[189] Y. Malinovskiy, N. Saunier, and Y. Wang, “Analysis of pedestrian travel with
static bluetooth sensors,” Transportation Research Record: Journal of the
Transportation Research Board, no. 2299, pp. 137–149, 2012.

[190] N. Abedi, A. Bhaskar, and E. Chung, “Bluetooth and wi-fi mac address based
crowd data collection and monitoring: benefits, challenges and enhancement,”
36th Australasian Transport Research Forum (ATRF), 2013.

[191] L. Schauer, M. Werner, and P. Marcus, “Estimating crowd densities and
pedestrian flows using wi-fi and bluetooth,” in Proceedings of the 11th
International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, ser. MOBIQUITOUS ’14. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2014, pp. 171–177. [Online]. Available:
http://dx.doi.org/10.4108/icst.mobiquitous.2014.257870

[192] N. Shlayan, A. Kurkcu, and K. Ozbay, “Exploring pedestrian bluetooth and
wifi detection at public transportation terminals,” in Intelligent Transportation
Systems (ITSC), 2016 IEEE 19th International Conference on. IEEE, 2016,
pp. 229–234.

http://dx.doi.org/10.1057/jors.2013.3
http://orr.gov.uk/statistics/published-stats/station-usage-estimates
http://orr.gov.uk/statistics/published-stats/station-usage-estimates
http://dx.doi.org/10.4108/icst.mobiquitous.2014.257870

198 References

[193] A. Lesani and L. F. Miranda-Moreno, “Development and testing of a real-time
wifi-bluetooth system for pedestrian network monitoring and data extrapolation,”
in Transportation Research Board 95th Annual Meeting, no. 16-5665, 2016.

[194] J. Weppner, B. Bischke, and P. Lukowicz, “Monitoring crowd condition
in public spaces by tracking mobile consumer devices with wifi interface,”
in Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct, ser. UbiComp ’16.
New York, NY, USA: ACM, 2016, pp. 1363–1371. [Online]. Available:
http://doi.acm.org/10.1145/2968219.2968414

[195] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
1–9.

[196] X. Zeng, W. Ouyang, B. Yang, J. Yan, and X. Wang, “Gated bi-directional cnn
for object detection,” in European Conference on Computer Vision. Springer,
2016, pp. 354–369.

[197] R. Bodor, B. Jackson, and N. Papanikolopoulos, “Vision-based human tracking
and activity recognition,” in Proc. of the 11th Mediterranean Conf. on Control
and Automation, vol. 1. Citeseer, 2003.

[198] F. Xu, X. Liu, and K. Fujimura, “Pedestrian detection and tracking with night
vision,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 1,
pp. 63–71, 2005.

[199] P. Chong and Y. H. Tay, “A novel pedestrian detection and tracking with boosted
hog classifiers and kalman filter,” in Research and Development (SCOReD),
2016 IEEE Student Conference on. IEEE, 2016, pp. 1–5.

[200] D. Ribeiro, A. Mateus, J. C. Nascimento, and P. Miraldo, “A real-time pedes-
trian detector using deep learning for human-aware navigation,” arXiv preprint
arXiv:1607.04441, 2016.

[201] A. Dehghan and M. Shah, “Binary quadratic programing for online track-
ing of hundreds of people in extremely crowded scenes,” arXiv preprint
arXiv:1603.09240, 2016.

[202] K. Teknomo, Y. Takeyama, and H. Inamura, “Tracking system to auto-
mate data collection of microscopic pedestrian traffic flow,” arXiv preprint
arXiv:1609.01810, 2016.

http://doi.acm.org/10.1145/2968219.2968414

References 199

[203] E. Goubet, J. Katz, and F. Porikli, “Pedestrian tracking using thermal infrared
imaging,” in Proceedings of SPIE, vol. 6206, 2006, pp. 797–808.

[204] A. Leykin and R. Hammoud, “Pedestrian tracking by fusion of thermal-visible
surveillance videos,” Machine Vision and Applications, vol. 21, no. 4, pp. 587–
595, 2010.

[205] G. Lian, J. Lai, and W.-S. Zheng, “Spatial–temporal consistent labeling of
tracked pedestrians across non-overlapping camera views,” Pattern Recognition,
vol. 44, no. 5, pp. 1121–1136, 2011.

[206] F. Tan, L. Huang, C. Zhai, M. Song, R. Zhuang, and W. Liu, “Specific ob-
ject re-identification across non-overlapping camera views in traffic accidents,”
Transportation Planning and Technology, vol. 39, no. 8, pp. 759–767, 2016.

[207] T. Xiao, H. Li, W. Ouyang, and X. Wang, “Learning deep feature representations
with domain guided dropout for person re-identification,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
1249–1258.

[208] “Titan supercomputer,” https://www.olcf.ornl.gov/computing-resources/
titan-cray-xk7/, accessed: 2017-03-06.

[209] “Piz diant, cscs,” http://www.cscs.ch/computers/piz_daint_piz_dora/index.html,
accessed: 2016-11-01.

[210] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, “Medical image process-
ing on the gpu–past, present and future,” Medical image analysis, vol. 17, no. 8,
pp. 1073–1094, 2013.

[211] K. Kim, J. Gu, S. Tyree, P. Molchanov, M. Nießner, and J. Kautz, “A
lightweight approach for on-the-fly reflectance estimation,” arXiv preprint
arXiv:1705.07162, 2017.

[212] J. G. X. Y. S. De and M. J. Kautz, “Dynamic facial analysis: From bayesian
filtering to recurrent neural network,” 2017.

[213] M. Yan, I. Frosio, S. Tyree, and J. Kautz, “Sim-to-real transfer of accurate
grasping with eye-in-hand observations and continuous control,” arXiv preprint
arXiv:1712.03303, 2017.

[214] N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward low-flying
autonomous mav trail navigation using deep neural networks for environmental
awareness,” arXiv preprint arXiv:1705.02550, 2017.

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
http://www.cscs.ch/computers/piz_daint_piz_dora/index.html

200 References

[215] S. Laine and T. Aila, “Temporal ensembling for semi-supervised learning,”
arXiv preprint arXiv:1610.02242, 2016.

[216] T. Karras, T. Aila, S. Laine, A. Herva, and J. Lehtinen, “Audio-driven facial
animation by joint end-to-end learning of pose and emotion,” ACM Transactions
on Graphics (TOG), vol. 36, no. 4, p. 94, 2017.

[217] J. Rodríguez-Navarro and A. Susín Sánchez, “Non structured meshes for cloth
gpu simulation using fem,” in 3rd Workshop in Virtual Reality Interactions and
Physical Simulation. EUROGRAPHICS, 2006, pp. 1–7.

[218] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo, A. Nukada,
N. Maruyama, and S. Matsuoka, “An 80-fold speedup, 15.0 tflops full gpu accel-
eration of non-hydrostatic weather model asuca production code,” in Proceed-
ings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society, 2010,
pp. 1–11.

[219] M. Burtscher and K. Pingali, “An efficient cuda implementation of the tree-
based barnes hut n-body algorithm,” in GPU computing Gems Emerald edition.
Elsevier, 2011, pp. 75–92.

[220] J. Bédorf, E. Gaburov, and S. P. Zwart, “A sparse octree gravitational n-body
code that runs entirely on the gpu processor,” Journal of Computational Physics,
vol. 231, no. 7, pp. 2825–2839, 2012.

[221] A. J. Crespo, J. M. Domínguez, B. D. Rogers, M. Gómez-Gesteira, S. Longshaw,
R. Canelas, R. Vacondio, A. Barreiro, and O. García-Feal, “Dualsphysics: Open-
source parallel cfd solver based on smoothed particle hydrodynamics (sph),”
Computer Physics Communications, vol. 187, pp. 204–216, 2015.

[222] “Cpu, gpu and mic hardware characteristics over time,” https://www.karlrupp.
net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time, accessed:
2017-12-01.

[223] “Nvidia dgx-1,” https://www.nvidia.com/en-us/data-center/dgx-1, accessed:
2017-12-01.

[224] L. Zhang, B. Jiang, Y. Wu, C. Strouthos, P. Z. Sun, J. Su, and X. Zhou, “Devel-
oping a multiscale, multi-resolution agent-based brain tumor model by graphics
processing units,” Theoretical Biology and Medical Modelling, vol. 8, no. 1,
p. 46, 2011.

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time
https://www.nvidia.com/en-us/data-center/dgx-1

References 201

[225] Z. Wang, J. D. Butner, R. Kerketta, V. Cristini, and T. S. Deisboeck, “Simulating
cancer growth with multiscale agent-based modeling,” in Seminars in cancer
biology, vol. 30. Elsevier, 2015, pp. 70–78.

[226] R. M. D’Souza, M. Lysenko, S. Marino, and D. Kirschner, “Data-parallel algo-
rithms for agent-based model simulation of tuberculosis on graphics processing
units,” in Proceedings of the 2009 spring simulation multiconference. Society
for Computer Simulation International, 2009, p. 21.

[227] A. Ulbinaitė and Y. Le Moullec, “Towards an abm-based framework for inves-
tigating consumer behaviour in the insurance industry,” Ekonomika, vol. 89,
2010.

[228] P. Heywood, S. Maddock, J. Casas, D. Garcia, M. Brackstone, and P. Richmond,
“Data-parallel agent-based microscopic road network simulation using graphics
processing units,” Simulation Modelling Practice and Theory, 2017.

[229] Simulation of large crowds in emergency situations including gaseous phenom-
ena, 2005.

[230] A. Rahman, N. A. W. A. Hamid, A. R. Rahiman, and B. Zafar, “Towards
accelerated agent-based crowd simulation for hajj and umrah,” in Agents, Multi-
Agent Systems and Robotics (ISAMSR), 2015 International Symposium on, Aug
2015, pp. 65–70.

[231] M. Joselli, E. B. Passos, M. Zamith, E. Clua, A. Montenegro, and B. Feijó, “A
neighborhood grid data structure for massive 3d crowd simulation on gpu,” in
2009 VIII Brazilian Symposium on Games and Digital Entertainment, Oct 2009,
pp. 121–131.

[232] I. Rudomin, B. Hernández, O. De Gyves, L. Toledo, I. Rivalcoba, and S. Ruiz,
“Gpu generation of large varied animated crowds,” Computación y Sistemas,
vol. 17, no. 3, 2013.

[233] H. Mroz and J. WĄS, “Discrete vs. continuous approach in crowd dynamics
modeling using gpu computing,” Cybernetics and Systems, vol. 45, no. 1, pp.
25–38, 2014.

[234] B. Hernández, H. P’erez, I. Rudomin, S. Ruiz, O. de Gyves, and
L. Toledo, “Simulating and Visualizing Real-Time Crowds on GPU
Clusters,” Computación y Sistemas, vol. 18, pp. 651 – 664, 12 2014.

202 References

[Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&
pid=S1405-55462014000400002&nrm=iso

[235] M. Lysenko and R. M. D’Souza, “A framework for megascale agent based
model simulations on graphics processing units,” Journal of Artificial Societies
and Social Simulation, vol. 11, no. 4, p. 10, 2008. [Online]. Available:
http://jasss.soc.surrey.ac.uk/11/4/10.html

[236] “Flame gpu website,” http://www.flamegpu.com/, accessed: 2017-11-01.

[237] P. Richmond, “FLAME GPU Technical Report and User Guide (CS-11-03),”
Department of Computer Science, University of Sheffield, Tech. Rep., 2011.

[238] “Report on the sunway taihulight,” http://www.netlib.org/utk/people/
JackDongarra/PAPERS/sunway-report-2016.pdf, accessed: 2016-11-20.

[239] “Ibm supercomputer overtakes japan’s fujitsu
as world’s fastest,” http://www.techspot.com/news/
49026-ibm-supercomputer-overtakes-japans-fujitsu-as-worlds-fastest.html,
accessed: 2016-11-01.

[240] M. Wijerathne, L. Melgar, M. Hori, T. Ichimura, and S. Tanaka, “Hpc enhanced
large urban area evacuation simulations with vision based autonomously
navigating multi agents,” Procedia Computer Science, vol. 18, pp. 1515 – 1524,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1877050913004626

[241] D. Pianini, M. Viroli, F. Zambonelli, and A. Ferscha, “Hpc from a self-
organisation perspective: The case of crowd steering at the urban scale,” in High
Performance Computing Simulation (HPCS), 2014 International Conference
on, July 2014, pp. 460–467.

[242] T. Mao, H. Jiang, J. Li, Y. Zhang, S. Xia, and Z. Wang, “Parallelizing continuum
crowds,” in Proceedings of the 17th ACM Symposium on Virtual Reality
Software and Technology, ser. VRST ’10. New York, NY, USA: ACM, 2010,
pp. 231–234. [Online]. Available: http://doi.acm.org/10.1145/1889863.1889914

[243] K. Zia, A. Riener, K. Farrahi, and A. Ferscha, “A new opportunity to urban
evacuation analysis: Very large scale simulations of social agent systems in
repast hpc,” in Principles of Advanced and Distributed Simulation (PADS), 2012
ACM/IEEE/SCS 26th Workshop on, July 2012, pp. 233–242.

http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462014000400002&nrm=iso
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462014000400002&nrm=iso
http://jasss.soc.surrey.ac.uk/11/4/10.html
http://www.flamegpu.com/
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
http://www.techspot.com/news/49026-ibm-supercomputer-overtakes-japans-fujitsu-as-worlds-fastest.html
http://www.techspot.com/news/49026-ibm-supercomputer-overtakes-japans-fujitsu-as-worlds-fastest.html
http://www.sciencedirect.com/science/article/pii/S1877050913004626
http://www.sciencedirect.com/science/article/pii/S1877050913004626
http://doi.acm.org/10.1145/1889863.1889914

References 203

[244] R. Dulam, M. Lalith, M. Hori, T. Ichimura, and S. Tanaka, “Development of an
hpc enhanced multi agent simulation code for tsunami evacuation,” Journal of
Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)), vol. 68,
no. 2, pp. 513–521, 2012.

[245] A. Gutierrez-Milla, F. Borges, R. Suppi, and E. Luque, “Crowd dynamics
modeling and collision avoidance with openmp,” in 2015 Winter Simulation
Conference (WSC), Dec 2015, pp. 3128–3129.

[246] A. Grandison, Y. Muthu, P. Lawrence, and E. R. Galea, “Simulating the
evacuation of very large populations in large domains using a parallel
implementation of the buildingexodus evacuation model,” in Interflam 2007
11th International Fire Science and Engineering Conference. Greenwich:
Interscience Communications, 2007, vol. 1, pp. 259–270, this paper
forms part of the published proceedings from 11th International Fire
Science & Engineering Conference, Interflam 2007, 3-5th September 2007,
Royal Holloway College, University of London, UK. [Online]. Available:
http://gala.gre.ac.uk/1095/

[247] B. Y. Y. Mohedeen, “Domain partitioning and software modifications towards
the parallelisation of the buildingexodus evacuation software,” 2011.

[248] Y. Hirokawa, N. Nishikawa, T. Asano, M. Terai, and T. Matsuzawa,
“A study of real-time and 100 billion agents simulation using the boids
model,” Artificial Life and Robotics, pp. 1–6, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10015-016-0308-3

[249] D. Jacobsen, J. C. Thibault, and I. Senocak, “An MPI-CUDA Implementa-
tion for Massively Parallel Incompressible Flow Computations on Multi-GPU
Clusters,” in American Institute of Aeronautics and Astronautics (AIAA) 48th
Aerospace Science Meeting Proceedings, 2010.

[250] R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman, and G. Latu, “Fast seismic
modeling and Reverse Time Migration on a GPU cluster,” in High Performance
Computing & Simulation, 2009. HPCS ’09. International Conference on. IEEE,
Jun. 2009, pp. 36–43.

[251] H. Pérez, B. Hernández, I. Rudomín, and E. Ayguadé, Scaling
Crowd Simulations in a GPU Accelerated Cluster. Cham: Springer
International Publishing, 2016, pp. 461–472. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-32243-8_32

http://gala.gre.ac.uk/1095/
http://dx.doi.org/10.1007/s10015-016-0308-3
http://dx.doi.org/10.1007/978-3-319-32243-8_32
http://dx.doi.org/10.1007/978-3-319-32243-8_32

204 References

[252] M. Holcombe, S. Adra, M. Bicak, S. Chin, S. Coakley, A. I. Graham, J. Green,
C. Greenough, D. Jackson, M. Kiran et al., “Modelling complex biological
systems using an agent-based approach,” Integrative Biology, vol. 4, no. 1, pp.
53–64, 2012.

[253] M. Burkitt, D. Walker, D. Romano, and A. Fazeli, “Using computational mod-
eling to investigate sperm navigation and behavior in the female reproductive
tract,” Theriogenology, vol. 77, no. 4, pp. 703–716, 2012.

[254] H. Kaul, Z. Cui, and Y. Ventikos, “A multi-paradigm modeling framework
to simulate dynamic reciprocity in a bioreactor,” PLoS One, vol. 8, no. 3, p.
e59671, 2013.

[255] X. Li, A. Upadhyay, A. Bullock, T. Dicolandrea, J. Xu, R. Binder, M. Robinson,
D. Finlay, K. Mills, C. Bascom et al., “Skin stem cell hypotheses and long term
clone survival–explored using agent-based modelling,” Scientific reports, vol. 3,
p. 1904, 2013.

[256] T. Balanescu, A. J. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, and
C. Vertan, “Communicating stream X-machines systems are no more than
X-machines,” in In Twelfth International Symposium on Fundamentals of Com-
putation Theory (FCT’99), Iasi, 1999, pp. 494–507.

[257] S. Coakley, R. Smallwood, and M. Holcombe, “Using X-Machines as a Formal
Basis for Describing Agents in Agent-Based Modelling,” Proceedings of the
2006 Springg Simulation Multiconference, pp. 33–40, Apr. 2006.

[258] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, T. R. o.
the SBML Forum:, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden,
A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin,
W. J. Hedley, T. C. Hodgman, J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L.
Kasberger, A. Kremling, U. Kummer, N. Le Novère, L. M. Loew, D. Lucio,
P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F.
Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence,
J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang, “The systems
biology markup language (SBML): a medium for representation and exchange
of biochemical network models,” Bioinformatics, vol. 19, no. 4, pp. 524–531,
1 Mar. 2003.

[259] A. A. Cuellar, C. M. Lloyd, P. F. Nielsen, D. P. Bullivant, D. P. Nickerson, and
P. J. Hunter, “An Overview of CellML 1.1, a Biological Model Description
Language,” Simulation, vol. 79, no. 12, pp. 740–747, 1 Dec. 2003.

References 205

[260] S. Eilenberg, Automata, Languages, and Machines. Orlando, FL, USA:
Academic Press, Inc., 1974.

[261] “Flame flexible large-scale agent modelling environment,” http://www.flame.ac.
uk, accessed: 2016-11-01.

[262] P. Richmond and D. Romano, “Template-Driven Agent-Based Modeling and
Simulation with CUDA,” in GPU Computing Gems Emerald Edition, 1st ed.,
ser. Applications of GPU Computing Series, W.-M. W. Hwu, Ed. Morgan
Kaufmann, 7 Feb. 2011, ch. 21, pp. 313–324.

[263] J. McIlveen, S. Maddock, P. Heywood, and P. Richmond, “PED: Pedestrian
Environment Designer,” in Computer Graphics and Visual Computing (CGVC),
C. Turkay and T. R. Wan, Eds. The Eurographics Association, 2016.

[264] S. Le Grand, “Broad-Phase Collision Detection with CUDA,” GPU Gems 3, pp.
697–721, 2008.

[265] A. Bleiweiss, “Multi agent navigation on the gpu,” in Games Developpement
Conference, 2009, pp. 39–42.

[266] J. Pan, C. Lauterbach, and D. Manocha, “g-planner: Real-time motion planning
and global navigation using gpus.” in AAAI, 2010.

[267] A. Demeulemeester, C.-F. Hollemeersch, P. Mees, B. Pieters, P. Lambert, and
R. Van de Walle, “Hybrid path planning for massive crowd simulation on the
gpu,” in Motion in Games, J. M. Allbeck and P. Faloutsos, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 304–315.

[268] G. Caggianese and U. Erra, “Gpu accelerated multi-agent path planning based
on grid space decomposition,” Procedia Computer Science, vol. 9, pp. 1847–
1856, 2012.

[269] F. M. Garcia, M. Kapadia, and N. I. Badler, “Gpu-based dynamic search on
adaptive resolution grids,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on. IEEE, 2014, pp. 1631–1638.

[270] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: an
efficient and robust access method for points and rectangles,” in ACM Sigmod
Record, vol. 19, no. 2. Acm, 1990, pp. 322–331.

[271] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’84. New York, NY, USA: ACM, 1984, pp. 47–57.

http://www.flame.ac.uk
http://www.flame.ac.uk

206 References

[272] S. Popov, J. Günther, H. P. Seidel, and P. Slusallek, “Stackless KD-Tree Traver-
sal for High Performance GPU Ray Tracing,” Comput. Graph. Forum, vol. 26,
no. 3, pp. 415–424, Sep. 2007.

[273] K. Bolay, “Nichtlineare phänomene in einem fuid-dynamischen verkehrsmodell,”
Master’s thesis, University of Stuttgart, 1998.

[274] R. D. Peacock, J. D. Averill et al., Pedestrian and evacuation dynamics.
Springer Science & Business Media, 2011.

[275] “Qt project website,” https://www.qt.io/, accessed: 2017-03-06.

[276] J. J. Fruin, Pedestrian planning and design. Metropolitan Association of Urban
Designers and Environmental Planners, 1971.

[277] V. Viswanathan, C. E. Lee, M. H. Lees, S. A. Cheong, and P. M. A. Sloot,
“Quantitative comparison between crowd models for evacuation planning and
evaluation,” The European Physical Journal B, vol. 87, no. 2, p. 27, 2014.
[Online]. Available: http://dx.doi.org/10.1140/epjb/e2014-40699-x

[278] D. Wolinski, S. J Guy, A.-H. Olivier, M. Lin, D. Manocha, and J. Pettré,
“Parameter estimation and comparative evaluation of crowd simulations,” in
Computer Graphics Forum, vol. 33, no. 2. Wiley Online Library, 2014, pp.
303–312.

[279] J. L. Berrou, J. Beecham, P. Quaglia, M. A. Kagarlis, and A. Gerodimos,
Calibration and validation of the Legion simulation model using empirical data.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 167–181. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-47064-9_15

[280] “Cudpp,” http://cudpp.github.io/, accessed: 2017-03-08.

[281] T. Kardi, “Microscopic pedestrian flow characteristics: Development of an
image processing data collection and simulation model,” Ph.D. dissertation,
Tohoku University, 2002.

https://www.qt.io/
http://dx.doi.org/10.1140/epjb/e2014-40699-x
http://dx.doi.org/10.1007/978-3-540-47064-9_15
http://cudpp.github.io/

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Research Outline
	1.2 Contribution to Knowledge
	1.3 Thesis Structure

	2 Related Work
	2.1 Agent-based Modelling
	2.2 Pedestrian Modelling and Simulation
	2.2.1 Local Motion
	2.2.2 Navigation

	2.3 Pedestrian Simulation Systems and Frameworks
	2.4 Pedestrian Simulation and Decision Support Systems
	2.4.1 Pedestrian Tracking Systems

	2.5 Parallel Computing Architecture for abm
	2.5.1 gpu Architecture for abm
	2.5.2 hpc Architecture for abm
	2.5.3 A Summary of gpu and hpc Architectures

	2.6 The FLAME Framework
	2.6.1 FLAME and FLAME GPU System Overview
	2.6.2 FLAME for the HPC Architecture
	2.6.3 FLAME for the GPU Architecture
	2.6.4 FLAME HPC and GPU Performance Benchmarking

	2.7 Summary

	3 Navigation for Pedestrian ABM
	3.1 Agent-based Navigation Grid
	3.1.1 Pedestrian Agents
	3.1.2 Navigation Agents
	3.1.3 Environment Editor
	3.1.4 Simulation & Results

	3.2 Searchable Navigation Graph
	3.2.1 The Environment Graph
	3.2.2 The Itinerary Graph
	3.2.3 Routes Generation
	3.2.4 The Navigation Graph
	3.2.5 Other Properties of the Navigation Graph
	3.2.6 Implementation as a Navigation Module in FLAME GPU
	3.2.7 Static Obstacles & Environment Bounds Detection
	3.2.8 Evaluation and Discussion

	3.3 On the Two Navigation Approaches
	3.3.1 Memory Use
	3.3.2 Navigation Performance
	3.3.3 Discussion

	4 Concoursia, a prototype pedestrian simulation system
	4.1 System Overview
	4.2 Creation of A Scenario
	4.2.1 Environment Objects & Environment Designer Mode
	4.2.2 Environment Object Graph & Network Editor Mode
	4.2.3 Event Schedule & Itinerary and Schedules Mode

	4.3 Building the Simulation
	4.4 Simulator
	4.4.1 The Concoursia Agent Model
	4.4.2 Navigation Module
	4.4.3 Simulation Mode

	4.5 Visualisation
	4.6 Metrics
	4.7 Quantitative Evaluation of Agent Navigation
	4.8 Real World Environments in Concoursia
	4.8.1 Shopping Mall
	4.8.2 Train Station

	4.9 Discussion

	5 A Prototype System for Multi-Simulation of Pedestrian Models
	5.1 System Overview
	5.1.1 Simulation Manager
	5.1.2 Local Simulation Manager
	5.1.3 Simulator
	5.1.4 GUI Client

	5.2 Simulation Batching
	5.3 Collection of Metrics
	5.3.1 Obtaining an Accurate Pedestrian Generated Count
	5.3.2 Crowd Density and Flow

	5.4 The Scenario: Evacuation After a Dirty Bomb Incident
	5.5 The Agent Model
	5.5.1 Pedestrian Agent
	5.5.2 Environment Agent
	5.5.3 Model Behaviour

	5.6 Collection of Zone and Disrobing Metric
	5.6.1 Zone and Disrobing Metric

	5.7 Results
	5.7.1 Environments
	5.7.2 Model performance
	5.7.3 Performance on multiple GPUs

	5.8 Discussion

	6 Conclusions
	6.1 Limitations and Future Work

	References

