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Abstract

The memory colour reproduction is an important factor in judging image quality of
photographic images of real life scenes. As the most important memory colour category,
skin tone was extensively studied for preferred colour reproduction in this research. The
methodology to study skin colour preference was then applied to study the colour
preference of two other important colour categories: green foliage and blue sky.

There are three essential parts for preferred skin colour enhancement: 1) building a
skin colour model to detect skin colours or skin pixels; 2) finding a preferred skin colour
region or a preferred skin colour centre; and 3) developing an algorithm to morph skin
colours toward the preferred skin colour region. This study for skin colour enhancement
started with the mathematical modelling of the skin colour region for skin colour
detection. The modelling of skin colours was then applied to adjust skin colours of test
images for psychophysical experiments that were to determine a preferred skin colour
region. Finally, the skin colour modelling and the preferred skin colour centres were
applied to adjust skin colours of digital photographic images for preferred colour
reproduction.

Two approaches were developed to model the skin colour distribution for skin
colour detection. The first approach was to model a local colour region for general
applications. A convex hull is constructed to fit the geometrical shape of a local region,
and then the convex hull is approximated with mathematical formulae. The formulations
and data fitting are adjusted with interactive 3-D visualization. The approach is flexible
for fitting data gamut with various mathematical forms for different purposes.

The other approach was to model skin colours with elliptical shapes. Three
elliptical skin colour models were developed for skin colour detection. The first one is to
model the skin colour cluster using a single ellipse ignoring the lightness (or luminance)
dependency. It is simple and efficient, and the skin colour detection accuracy may be
adequate for many applications. In the second model, the skin colour ellipse is adapted to
different lightness so that the shape of the ellipse fits the skin colour cluster more
accurately. The model is more complex to train and is less efficient in computation, but it
iIs more accurate in skin colour detection. In the third method, an ellipsoid is trained to fit
the skin colour cluster. It is almost as simple to train as the first model, but the skin
colour detection accuracy is improved. Finally, these models were applied to train mixed
skin colours, African skin colours, Caucasian skin colours, and Asian skin colours.



The results of skin colour modelling were applied to guide psychophysical
experiments to determine preferred skin colours for skin colour enhancement. A series of
psychophysical experiments were conducted to study skin colour preference of mixed
culture background; skin colour preference by ethnicity and skin colour preference across
ethnicities. The results reveal that preferred skin colours are more chromatic than real
skin colours; observer variances in skin colour preference are larger in chroma than in
hue; the preferred skin colour centre for mixed skin colours is about (21, 24) for CIE
a*b* with a hue angle of 49° in D50 illuminant; Orientals prefer slightly less chromatic
skin colours than Africans and Caucasians; and preferred skin colour variations in
Africans are higher than the variations in Caucasians and the variations in Orientals. In
cross-culture preference, Orientals consistently prefer slight less chromatic Oriental,
Caucasian, and African skin colours than Caucasians and Africans, and Africans prefer
more chromatic Caucasian and Oriental skin colours than Caucasians and Orientals.
Comparison of preferred skin colour ellipses in CIELAB and CAMO02-UCS reveals that
CAMO02-UCS is more uniform than CIELAB in the skin colour region.

Preferred skin colour enhancement algorithms were developed for skin colour
enhancement in this research. The first method applies a static skin colour model to
detect skin colours, and morphs skin colours toward a preferred skin colour centre.
Psychophysical experimental results validate that the method of preferred skin colour
enhancement effectively identifies skin colours without face recognition, improves the
skin colour preference, and does not objectionably affect preferred skin colours in
original images. The second method, skin colour enhancement using face box
information, was proposed to further improve the result of skin colour enhancement. The
skin colour distribution of face boxes were used to adjust the skin colour modelling and
to adjust the coefficients for skin colour enhancement. The latter approach is more
effective for enhancing skin colours that are far off from normal skin colours. Lastly, a
new algorithm to morph skin colours was proposed.

The method to build elliptical skin colour models was further applied to model
colour regions of green foliages and blue skies of photographic images for colour
detection and enhancement. Elliptical colour models for these two colour regions were
trained and were used to detect green foliage and blue sky colours.

The training results of the elliptical colour modelling of skin, green foliage, and
blue sky of photographic images in CIELAB and CAMO02-UCS were analysed to study
these three memory colour objects and to study the colour space uniformity between
CIELAB and CAMO02-UCS.



-Vi -

Abbreviations

CMT Colour Masker Tool

CRT Cathode Ray Tube

ICC International Color Consortium

LCD Liquid Crystal Display

LUT Lookup Table

PCS Profile Connection Space (in ICC Colour Management System)
PSCC Preferred Skin Colour Centre

SPD Spectral Power Distribution

UCS Uniform Colour Space

ROC Receiver Operating Characteristics
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Chapter 1
Introduction

With the widespread availability of digital imaging devices to replace
conventional analog devices, coupled with the meteoric growth of the Internet,
colour imaging is experiencing a major revolution. People are finding more and
more innovative ways to create and share digital images. The transformation from
analog imaging to digital imaging makes colour image processing easier and easier.
Due to exponential increasing volumes in digital photos, automatic colour image
enhancement becomes an essential role for improving image quality. One aspect to
improve the perceived image quality of daily life photos is to improve the colour
rendering of images. Preferred colour rendering to appreciate observers is an
important factor in enhancing the image quality of photographic images. In judging
the colour reproduction of a photographic image, people compare memory colours
of the image with memory colours of objects instead of comparing memory colours
of the image with their real colours. Memory colours, especially skin tones, play an
important role for preferred colour reproduction.

Since preferred colours are different from their original colours, preferred
colour reproduction should be deviated from colorimetric colour reproduction. This
is especially true for memory colours. To understand how to enhance memory
colours for preferred colour reproduction, extensive studies on important memory
colour categories were undertaken. This research was focused on the study of skin
colour preference that included modelling skin colours for skin colour detection;
determining preferred skin colours for preferred skin colour enhance of
photographic images; and applying skin colour detection models and preferred skin
colours for skin colour enhancement of photographic images. Colour detection and
enhancement of green foliage and blue sky were briefly studied as well.

1.1 Aims and Scope

The goal of the research is to investigate the colour preference of memory
colours, to find out preferred skin colours for preferred colour reproduction, to
develop algorithms for automatic preferred skin colour reproduction, and to apply
the methodology of skin colour preference to study colour preferences of green
foliage and blue sky.

To achieve this goal, the following specific aims were established:
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1. To establish a skin colour detection model to detect skin colours for
studying skin colour enhancement;

2. To study skin colour preference of mixed culture background;

3. To investigate the differences of skin colour preferences among Africans,
Caucasians, and Orientals;

4. To develop algorithms to automatically detect skin colours and to enhance
skin colours for preferred skin colour reproduction; and

5. To study whether the method of skin colour preferencing can be applied to
green foliage and blue sky colours.

1.2 Thesis Structure

This thesis includes seven further chapters which are organised as below:

Chapter 2: Literature Survey

Literatures relevant to this research were reviewed in five subject areas
(human colour perception, numerical colour, colour appearance model, colour
reproduction of digital images, preferred memory colour reproduction). At the end
of the review, areas for research were determined.

Chapter 3: Modelling Skin Colours for Skin Colour Enhancement

Skin colour models for skin colour detection and skin colour enhancement
were developed.

Chapter 4: Psychophysical Experiments to Study Preferred Skin Colours

Psychophysical experiments were conducted to study skin colour preferences
of different ethnical backgrounds. The results were to be applied to automatic skin
colour enhancement.

Chapter 5: Developing Preferred Skin Colour Enhancement Algorithms

Algorithms for preferred skin colour enhancement were presented.

Chapter 6: Verifying Preferred Skin Colour Enhancement

Psychophysical experiments were conducted to verify the effectiveness of skin
colour enhancements.

Chapter 7: Green Foliage and Blue Sky Colours

The elliptical model for skin colour detection was applied to train colour
detection models for detecting green foliage and blue sky.



Chapter 8: Conclusions

A summary of the findings of modelling skin colours from chapter 3, preferred
skin colours for colour enhancement of photographic images from chapter 4, skin
colour enhancement and verification from chapters 5 and 6, and foliage and sky
colour detection from chapter 7 were given together with suggestions for future

work.

1.3 Summary of Contributions to Knowledge

The present work made significant contributions to the study of skin colour
preference and industry applications. These are summarised below:

Established a robust and novel method for constructing memory colour
databases to study memory colours including skin colours of three ethnic
types, grass and sky;

Proposed a new method to model memory colours using convex hull and
3-D gamut visualisation;

Developed new skin colour models (lightness-dependent ellipse model
and ellipsoid model) and trained them for skin colour detection and
enhancement;

Conducted experiments that lead to findings of preferred skin colours of
different culture backgrounds;

Developed new skin colour enhancement algorithms to apply in practice;

Successfully applied the method of elliptical skin colour modelling to
model green foliage colours and blue sky colours.

Following publications were produced in the course of this research:

1.

Huanzhao Zeng and Ronnier Luo, “Chinese Skin Color Preference for
Preferred Color Reproduction of Photographic Images”, to be published.
Referred to Section 4.3.

Huanzhao Zeng and Ronnier Luo, “Green grass and blue sky colour
modelling and preferred colour adjustment for printing”, to be published.
Referred to Chapter 7.

Huanzhao Zeng and Ronnier Luo, “A New Preferred Skin Color
Enhancement Method for Photographic Colour Reproduction”,
IS&T/SPIE 2012 Electronic Imaging Conference: Color Imaging:
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Device-Independent Color, Color Hardcopy, and Graphic Arts. Referred
to Section 5.2.

Huanzhao Zeng and Ronnier Luo, “Preferred Skin Colours of African,
Caucasian, and Oriental”, 1S&T/SID 19" Color Imaging Conference,
2011. Referred to Section 4.4.

Huanzhao Zeng and Ronnier Luo, “Colour and Tolerance of Preferred
Skin Colours on Digital Photographic Images”, to appear in Color
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Chapter 2
Literature Survey

This chapter provides background information and extensive overview of
research that is relevant to the thesis. It is divided into following sections:

2.1. Human colour perception

2.2. The Numerical Colour

2.3. Colour Appearance Model: CIECAMO02

2.4. Preferred Colour Reproduction of Digital Images
2.5. Conclusion Remark

The sections 2.1 to 2.3 are the overview of human colour perception and
colour science theories. Section 2.4 explores the progress in the research
related to preferred colour reproduction, where skin colour reproduction is the
focus of the topic. Summary of the research in the field of memory colour
reproduction and discussion of topics that are most relevant to the research in
the field is followed in the final section.

2.1 Human colour perception

2.1.1 The Nature of Light

Light is the basis for human vision. Without light, we are all left in the dark.
But what is light? The light (or visible spectrum) is the portion of the
electromagnetic spectrum that is visible to the human eye. A typical human eye
responds to wavelengths in air from about 380 to 730 nanometres (nm). Our visual
system perceives this range of light wave frequencies as a smoothly varying rainbow
of colours from shortest to longest wavelength: violet, blue, green, yellow, orange,
and red. Although the spectrum is continuous and there are no clear boundaries
between one colour and the next, the ranges may be used as an approximation.
Ultraviolet radiation has a shorter wavelength than the visible violet light. Infrared
radiation has a longer wavelength than visible red light. The white light is a mixture
of the colours of the visible spectrum. A total absence of light is sensed as black.
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Fig. 2.1.1-1 The electromagnetic spectrum
(http://scipp.ucsc.edu/~haber/ph5B/Electromagnetic-Spectrum-3.png)

All light travels at the same speed in a vacuum. The speed of light within a
material is lower than the speed of light in vacuum, and the ratio of speeds is known
as the refractive index of the material. Because the refractive index (and thus the
speed) of a wave in a material depends on its frequency, light consisting of multiple
frequencies - for instance white light - will be dispersed at the interface between the
material and air or vacuum. Both water and glass can be used to demonstrate
dispersion; a glass prism yields an optical spectrum from white light, and rainbows
are an ideal example of natural refraction of the visible spectrum.

2.1.2 The Human Colour Vision

2.1.2.1 Colour Perception by Eye

A sketch of the anatomical components of the human eye is shown in Fig.
2.1.2.1-1. The human eye has a simple two element lens. The cornea is the front or
outer element and the lens is the back or inner element. The amount of light
entering the eye is controlled by the iris which lies in between the two. The light
passes through a clear gel called the vitreous humour and creates an inverted image
on the retina at the back of the eyeball. The retina is the light sensitive part of the
eye. Its surface has millions of photoreceptors. These photoreceptors sense the
light and pass electrical signals indicating its presence through the optic nerve to
stimulate the brain.
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Fig. 2.1.2.1-1 A sketch of a cross section of the human eye (modified from
http://info.tuwien.ac.at/iflt/safety/gif/s1_fig35.gif)

There are two types of photoreceptors, rods and cones. The rod vision is
coarse but acute. It does not provide a sharp image. The rods are sensitive to very
low levels of light but are monochromatic and cannot see colour. This is the reason
that at very low light levels, humans see things in black and white.

The retina contains three types of cones. Different light sensitive pigments
within each of these three types responds to different wavelengths of light. The
three cones are maximally receptive to short, medium, and long wavelengths of light
and are therefore usually called S-, M-, and L-cones (short, medium, and long
cones). Cones operate only in relatively bright light, but they provide us with sharp
images and enable us to see colours.
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Fig. 2.1.2.1-2 Normalised absorbance of S, M, and L cones, and rods
(http://www.jpse.co.uk/sensory/images/Cone-response.png)
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At the centre of the retina is an area called the fovea, which has no blood
vessels. Primarily cones are packed tightly in the fovea, so that it has the highest
visual resolution.

2.1.2.2 Colour Perception by Brain

The eye flips the image of the world. The retina distorts the image that falls on
the fovea. The images from the two eyes are combined and processed by a part of
the brain known as visual cortex, which is part of the outermost layer of the brain.
Visual cortex is broken down into five areas, labelled V1, V2, V3, V4, and MT (or
V5). V1 is sometimes called striate cortex, primary visual cortex, or area 17. The
other visual areas are referred to as extrastriate cortex. The visual cortex is located
at the dorsal pole of the occipital lobe; more simply put, at the lower rear of the
brain. An overall pathway of the human visual pathway is shown in Fig. 2.1.2.2-2.
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Fig. 2.1.2.2-1 A sketch diagram of the visual pathway
(http://thebrain.mcgill.ca/flash/index_i.html)

From the V1 blobs, colour information is sent to cells in the second visual
area, V2. Neurons in V2 then synapse onto cells in area V4. Besides colour
sensitivity, V4 neurons have been shown to be very sensitive to the shape of stimuli,
curvature, and stereo-scopic depth. Neurons in V4 provide input to the inferior
temporal lobe, "IT" cortex which is thought to integrate colour information with
shape and form, although it has been difficult to define the appropriate criteria for
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this claim. Despite this murkiness, it has been useful to characterise this pathway
(V1> V2> V4 > IT) as the ventral stream or the "what pathway", distinguished
from the dorsal stream ("where pathway") that is thought to analyse motion, among
many other features (Lamme et al. 1998).
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Fig. 2.1.2.2-2 The visual pathway (http://thebrain.mcgill.ca/flash/index_i.html)

Some controversy still exists regarding the exact extent of area V3, with some
researchers proposing that the cortex located in front of V2 may include two or three
functional subdivisions (Rosa and Tweedale 2000, Braddick et al. 2001).

Visual area V5, also known as visual area MT (middle temporal), is thought to
play a major role in the perception of motion, the integration of local motion signals
into global perceptions and the guidance of some eye movements (Born and Bradley
2005). MT is connected to a wide array of cortical and subcortical brain areas. Its
inputs include the visual cortical areas V1, V2, and dorsal V3 (dorsomedial area)
(Felleman and Essen 1991, Ungerleider and Desimone 1986), the koniocellular
regions of the LGN, and the inferior pulvinar (Sincich et al. 2004).

2.1.3 Theories of Colour Vision

Two complementary theories of colour vision are the trichromatic theory and
the opponent process theory. The Young—Helmholtz theory, proposed in the 19"
century by Thomas Young and Hermann von Helmholtz, is a theory of trichromatic
colour vision - the manner in which the photoreceptors in the eyes of humans and
other primates work to enable colour vision (Goldstein 2007). In 1802, Young
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postulated the existence of three types of photoreceptors (how known as cone cells)
in the eye, each of which was sensitive to a particular range of visible light (Young
1802, Young et al. 1845). Hermann von Helmholtz developed the theory further in
1850: that the three types of cone photoreceptors could be classified as short-
preferring (blue), middle-preferring (green), and long-preferring (red), according to
their response to the wavelengths of light striking the retina (Helmholtz 1850). The
relative strengths of the signals detected by the three types of cones are interpreted
by the brain as a visible colour. The theory was proved over a century later in a
1983 experiment by Dartnall, Bowmaker, and Mollon, when microspectro-photopic
readings of single eye cone cells were obtained (Eysenck and Keane 2005).

Hering proposed the opponent process theory in 1872 (Hering 1964). Hering
looked more at qualitative aspects of colour and said there were six primary colours,
coupled in three pairs: red-green, yellow-blue and white-black. Any receptor that is
turned off by one of these colours is excited by its coupled colour. This results in
six different receptors. The theory also explains afterimages. It was rehabilitated in
the 1970s when Edwin Land developed the Retinex theory stating that whereas
Helmholtz's colours hold for the eye, in the brain the three colours are translated into
six (Land 1977).

The trichromatic theory and the opponent theory are complementary and
explain processes that operate at different levels of the visual system. In summary,
the trichromatic theory and the opponent theory are both correct. The human colour
perception initials with the trichromatic vision in photo receptors, and later enters
higher levels of opponent process in brain. Both theories describe different stages in
visual physiology.

2.1.4 Basic Perceptual Colour Attributes

There are three basic perceptual attributes, brightness, hue, and colourfulness,
and two relative colour attributes, lightness and chroma. According to Hunt (1998),
these are defined as:

Brightness: Attribute of a visual sensation according to which an area appears
to exhibit more or less light.

Hue: Attribute of a visual sensation according to which an area appears to be
similar to one, or to proportions of two, of the perceived colours red, yellow, green,
and blue.

Colourfulness: Attribute of a visual sensation according to which an area
appears to exhibit more or less of its hue.
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Lightness: The brightness of an area judged relative to the brightness of a
similarly illuminated area that appears to be white or highly transmitting.

Chroma: The colourfulness of an area judged in proportion to the brightness of
a similarly illuminated area that appears to be white or highly transmitting.

Lightness and chroma reflect visual strengths as the human visual perception
adapts to a white point.

2.1.5 Adaptation and Colour Appearance Phenomena

2.1.5.1 Light/Dark Adaptation

Adaptation is a remarkable ability of the visual system to automatically adjust
its sensitivity to accommodate a range of illumination greater than 10 orders of
magnitude from dim to bright sunlight (Boynton 1979). In a quick first step,
adaptation begins with the control of the light entering the eye by the iris. While the
main purpose of the iris is to control the spatial quality of an image formed by the
lens on the retina, its opening and closing does provide a crude adaptation
mechanism over a range of only 4:1 to about 16:1 on a time scale of seconds (Fulton
2005). In a second step, the receptive cells on the retina of the eye change their
actual sensitivity. This step is a slower process. The change between rod and cone
vision is one factor. At low levels of illumination (<0.1 lux), the rods is more
sensitive and more numerous than cones and may function alone. At high level of
illumination (>10 lux), the response is only by cones. It takes up to about 30
minutes to complete dark adaptation. By contrast, it takes in the order of minutes to
adapt from scotopic vision to photopic vision (Chien et al. 2000). Gain control in
retinal photoreceptors and cells, and retinal pigment bleaching are also mechanisms
for adaptation. The complex neural reaction in the visual cortex might play higher
level of mechanism for adaptation.

2.1.5.2 Chromatic Adaptation

Chromatic adaptation is the ability of the human visual system to discount the
colour of a light source and to approximately preserve the appearance of an object
(Fairchild 1998). For example, a white piece of paper appears to be white whenever
viewed under sky light and tungsten light.

Since there are several types of receptive cells in the eye, which are sensitive
to different bands in the visible spectrum, the adaptation also manages the "white
balance" of the eye, by chromatic adaptation. If the new lighting situation has a
different colour temperature (e.g. there is an increased amount of red light relative to
the total amount of light), the cells responsible for sensing red light will reduce their
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sensitivity relative to the sensitivity of the other cells. As a result, a white surface
will again appear white to the observer after a certain time, although it reflects a
proportionally increased amount of red light.

2.1.5.3 Basic Colour Appearance Phenomena

The colour appearance of a test stimulus is influenced by changing the
luminance, colours, and special properties of the background and surround. A few
basic phenomena are briefly described here.

Simultaneous contrast and Induction: Two colours, side by side, interact with

one another and change our perception accordingly. The effect of this interaction is
called simultaneous contrast (Luo et al. 1995). Since we rarely see colours in
isolation, simultaneous contrast affects our sense of the colour that we see. Fig.
2.1.5.3-1 shows several examples of the perceptual effect of simultaneous contrast.
In (a), three small gray boxes have the same brightness. Surround a colour with a
lighter colour and it will appear darker. Surround a colour with a darker colour and
it will appear lighter. In (b), two smaller boxes have the same colour value.
Surround a colour with a less saturated colour and it will appear more saturated.
Surround a colour with a more saturated colour and it will appear less saturated. In
(c), three smaller pink rectangles have the same colour value. Surround a colour
with different colour backgrounds and it will appear different. Krauskopf et al.
(1986) developed a method to measure simultaneous contrast, or chromatic
induction. However, the method did not predict the outcome of their experiments.
They concluded that simultaneous contrast was a consequence of interaction within
higher-level chromatic mechanisms. Harrar and Vienot (2005) studied the spatio-
chromatic induction by the neighbouring image and found that the induction differed
from different neighbouring images.

Crispening: Crispening is the effect that causes an increase in perceived
colour-difference when the background of the two stimuli is close to the colour of
the stimuli. For example, the visual colour difference between two grey patches
looks larger if they are on the grey background than they are on white or black
background (Cui et al. 2001).

Hunt Effect: Hunt (1952) found that the colourfulness of an object increases
due to the increase of luminance. For example, a typical outdoor scene appears
more colourful in bright sunlight than it does on a dull day.

Stevens Effect: Stevens and Stevens (1963) found an increase in brightness (or
lightness) contrast with an increasing luminance. As the luminance level increases,
darker colours appear darker and lighter colours appear lighter.
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Surround Effect: Bartleson and Breneman (1967) found that the perceived
contrast in colourfulness and brightness increased with increasing luminance level
of the surround. This effect is very important for cross-media colour reproduction.

Helmholtz-Kohlrausch effect: Helmholtz-Kohlrausch effect shows that
brightness changes as a function of saturation (Wyszecki and Stiles 1982, Nayatani
and Nakajima 1996). As a stimulus becomes more saturated at a constant
luminance, its perceived brightness increase. Helmholtz-Kohlrausch effect is a
function of hue angle as well (Fairchild 1998). It is less noticeable for yellows than
for purples, for instance.

(©)

Fig. 2.1.5.3-1 Examples of simultaneous Contrast
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2.2 The Numerical Colour

A human perceived colour may be expressed mathematically using three
numbers: the extents to which each of the three types of cones is stimulated. Thus a
human perceived colour may be thought of as a point in 3-dimensional Euclidean
space. Since each wavelength A stimulates each of the three types of cone cells to a
known extent, these extents may be represented by three functions, s(A), m(A), (1)
corresponding to the response of the S, M, and L cone cells, respectively.

Finally, since a beam of light can be composed of many different wavelengths,
to determine the extent to which a physical light C(A) stimulates each cone cell, we

must calculate the integral (with respect to A) over the interval [Amin, Amax]:
S-— jj C(2)-s(2)dA
M = jj C(A)-m(1)dA (2.2-1)
L= jj C(2)-1()dA

In practice, it would be quite difficult to measure an individual's cones'
responses, S, M, and L, to various physical colour stimuli. In order to simplify the
problem, the CIE (Commission Internationale de I’Eclairage) defined a standard
colour space, CIE 1931 XYZ colour space, in 1931. In the CIEXYZ colour space,
the tristimulus values are not the S, M, and L responses of the human eye, but rather
a set of tristimulus values called X, Y, and Z, which are roughly red, green and blue,
respectively. Due to the nature of the distribution of cones in the eye, the tristimulus
values depend on the observer's field of view. To eliminate this variable, the CIE
defined the standard (colorimetric) observer (see CIE 2004 document). Originally
this was taken to be the chromatic response of the average human viewing through a
2° angle, due to the belief that the colour-sensitive cones resided within a 2° arc of
the fovea. Thus the CIE 1931 Standard Colorimetric Observer is also known as the
CIE 1931 2° Standard Colorimetric Observer. In 1964, CIE defined a 10° Standard
Colorimetric Observer, which is recommended to be used for more than about a 4°
field of view.

2.2.1 CIE Standard Observers and XYZ Colour Space

The colour matching functions are the numerical description of the chromatic
response of the observer (described above). The CIE has defined a set of three
colour-matching functions, called >_<(ﬂ), 9(/1), and E(A), which can be thought of
as the spectral sensitivity curves of three linear light detectors that yield the
CIEXYZ tristimulus values X, Y, and Z. The tabulated numerical values of these
functions are known collectively as the CIE standard observer. The tristimulus
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values for a colour with a colour stimulus ®(A) are given in terms of the standard
observer by:

X =kY (1) x(A)- AL
Y =k> ®(1) y(A)- AL (2.2.1-1)

Z=k> ®(1)-2(4)-AA

where k is a constant to normalize the Y channel, A is the wavelength of the
equivalent monochromatic light, ®(X) is the colour stimulus function of the light
seen by the observer, x(4), y(4), and z(1)are the colour-matching functions of the
CIE 1931 standard colorimetric observer, and AA is the wavelength sampling
interval.

For non-self-luminous objects, the colour-stimulus function is given by
®(L) = R(A)S(A) or D(A) = T(L)S(A) (2.2.1-2)

where R(L) is the spectral reflectance factor of the object, T(A) is the spectral
transmission factor, and S(A) is the relative spectral power distribution of the
illuminant. The k in equation (2.2.1-1) is chosen such that the tristimulus value Y
yields a value of 100 for a perfect reflecting diffuser (R(A) = 1.0 for all A).

For a self-luminous object, a photometric quantity can be calculated using
equation (2.2.1-1) by setting k = 683 Im/W. Because y(A1) was chosen to be the

CIE V(A) luminosity function, the Y tristimulus value is corresponding to a
photometric quantity.

300 400 500 600 700 800
‘Wavelength (nm)

Fig. 2.2.1-1 CIE 1931 Standard Colorimetric Observer (full-line) and CIE 1964
Standard Colorimetric Observer (dash-line)
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For the 10° observer, >_<(/1), 9(&), and E(/I)in above equations are replaced
with the corresponding 1964 10° Standard Observer, Xio(A1), 910(1), and z10(1),

respectively. Fig. 2.2.1-1 shows the colour matching functions of both 2° and 10°
observers.

The dependence of luminance entirely on the Y value in the XYZ system
means that the y(A) colour-matching function represents the relative luminances of
the colours of the spectrum; this is an important function in photometry, where it is

known as the spectral luminous efficiency function, V(A).

2.2.2 CIE xy Chromaticity Diagram and CIE xyY Colour Space

Since the human eye has three types of colour sensors that respond to different
ranges of wavelengths, a full plot of all visible colours is a three-dimensional figure.
However, the concept of colour can be divided into two parts: brightness and
chromaticity. The CIE XYZ colour space was deliberately designed so that the Y
parameter was a measure of the brightness or luminance of a colour. The
chromaticity of a colour was then specified by the two derived parameters x and vy,
two of the three normalised values which are functions of all three tristimulus values
X,Y,and Z:

X
X=—/
X+Y+Z
Y
= 2.2.2-1
y X+Y+Z ( )
z:#=l—x—y
X+Y+2Z

The derived colour space specified by X, y, and Y is known as the CIE xyY
colour space and is widely used to specify colours in practice. Fig. 2.2.2-1 shows
the related chromaticity diagram (a diagram for 10° is slightly different). The outer
curved boundary is the spectral locus, with wavelengths shown in nanometres. The
diagram represents all of the chromaticities visible to the average person. These are
shown in colour and this region is called the gamut of human vision.
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Fig. 2.2.2-1 The CIE 1931 colour space chromaticity diagram. The outer curved
boundary is the spectral (or monochromatic) locus, with wavelengths shown in
nanometres (http://www.rp-photonics.com/img/cie1931.png).

2.2.3 CIE Uniform Colour Spaces and Colour Difference Models

With CIE XYZ colour space (or CIE xy chromaticity space with equal
luminance), the equal colour differences computed by Euclidean distance in
different regions are not perceptually equal (Wright 1941). Several colour spaces
have been developed to improve the visual uniformity. The mostly widely used
uniform colour space is the CIELAB colour space as shown below:

L*=116f(Y/Y,)-16
a*=500[f (X /X,)-f(Y/Y,)] (2.2.3-1)
b*=200[f(Y/Y,)-f(2/Z,)]

where
f (t) =t'° for t > (24/116)° or
f(t) =(841/108)t +16/116 otherwise,

XYZ are the tristimulus values of a colour and X,Y.Z, are the tristimulus values of
the reference white being used. L* represents the lightness, a* and b* represent the
chroma coordinates.

The chroma is computed as C*=+a** +b** . And colour difference is given
by the formula:
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AE*, = J(AL*) +(Aa*)® +(Ab*) (2.2.3-2)

where AL*, Aa*, and Ab* are the differences of L*, a*, and b* between two colours,
respectively.

The CIE 1976 L*a*b* colour space is not a perfectly uniform colour space.
To further improve the uniformity of the colour difference metric, CIE defined a
colour difference equation, AEq4, for small colour difference (CIE 1995). Since
then, CIE refined the equation to further improve the perceptual uniformity, and
emerged with CIEDE2000 (Luo et al. 2001).

2.2.4 Metamerism

Metamerism is the matching of apparent colour of objects with different
spectral power distributions (Hunt 1998). Colours that match this way are called
metamers. In practice, the word metamerism is often used to indicate a metameric
failure rather than a match.

A spectral power distribution describes the proportion of total light emitted,
transmitted, or reflected by a colour sample at every visible wavelength; it precisely
defines the light from any physical stimulus. However, the human eye contains only
three colour receptors (cone cells), which means that all colours are reduced to three
sensory quantities, called the tristimulus values. Metamerism occurs because each
type of cone responds to the cumulative energy from a broad range of wavelengths,
so that different combinations of light across all wavelengths can produce an
equivalent receptor response and the same tristimulus values or colour sensation.

The term illuminant metameric failure is sometimes used to describe situations
where two material samples match when viewed under one light source but not
another.

The difference in the spectral compositions of two metameric stimuli is often
referred to as the degree of metamerism. The sensitivity of a metameric match to
any changes in the spectral elements that form the colours depend on the degree of
metamerism. Two stimuli with a high degree of metamerism are likely to be very
sensitive to any changes in illuminant, material composition, observer, field of view,
etc.

Using metameric colour matching rather than spectral colour matching is a
problem in industries where colour matching or colour tolerances are important. A
classic example is in automobiles: the interior fabrics, plastics and paints may be
manufactured to provide a good colour match under a standard light source (such as
the sun), but the matches can disappear under different light sources (fluorescent or
halide lights). Similar problems can occur in apparel manufactured from different
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types of dye or using different types of fabric, or in quality colour printing using
different types of inks. Papers manufactured with brighteners are especially
susceptible to colour changes when lights differ in their short wavelength radiation,
which can cause some papers to fluoresce.

Metamerism is a factor that must be considered in non-spectral (metameric)
colour imaging. The human visual system integrates spectral data with three types
of cone receptors to produce a three-channel colour image. It is considered
metameric since an infinite variety of potential spectral power distributions in the
scene can produce the same colour response in the three integrated channels
(Fairchild et al. 2001). The colour matching between two imaging systems in an
illuminant condition may be invalidated under a different illuminant condition. For
example, a colour printer that is tuned for the D50 illuminant will not produce same
colours as viewed under the average office lighting condition because the relative
spectral power distribution of two illuminants are different. Hence, the result of
colour reproduction may be unexpected. There are many factors that influence the
degree of metamerism, such as the spectral absorption of inks and media, the
combination of inks, the tradeoffs of illuminants to modelling the colour mapping.
The metamerism must be considered for preference colour reproduction, because the
colours for preferred colour reproduction are likely to be affected by metamerism.

2.2.5 Illuminants

Except for self-luminous objects, at least a light source must be provided to
light up an object. The spectral power distribution (SPD) of the light source is one
of the factors to determine the colour of the object (see equation 2.2.1-1). It is
therefore clear that an essential step in specifying colour is to accurately define the
illuminants involved. To simplify the problem, CIE specified a serial of Standard
Iluminants: A, B, C, D, E, and F (CIE 2004a).

The D series of illuminants are constructed to represent natural daylight. A D
Illuminant has SPD of a black body in a certain temperature, so it has a colour
temperature (see the section of Colour Temperature). They are difficult to produce
artificially, but are easy to characterise mathematically.

Illuminant E is an equal-energy radiator; it has a constant SPD inside the
visible spectrum. It is useful as a theoretical reference illuminant that gives equal
weight to all wavelengths. It also has equal CIE XYZ tristimulus values, thus its
chromaticity coordinates are (x,y)=(1/3,1/3).

The F series of illuminants represent various types of fluorescent lighting.
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The spectrum of a standard illuminant, like any other profile of light, can be
converted into tristimulus values. The set of three tristimulus coordinates of an
illuminant is called a white point. If the profile is normalised, then the white point
can equivalently be expressed as a pair of chromaticity coordinates.

2.2.6 Colour Temperature

Without a light source, we cannot see anything. The colour temperature of a
light source is determined by comparing its chromaticity with that of an ideal black-
body radiator (Planckian radiator). The temperature (measured in Kelvin, K) at
which the heated black-body radiator matches the colour of the light source is the
source's colour temperature. For a black body source, it is directly related to
Planck’s law (Rybicki and Lightman 1979) and Wien's displacement law (Rybicki
and Lightman 1976). Yellow-red colours are considered warm, and blue-green
colours are considered cool. Confusingly, higher Kelvin temperatures (3600-5500
K) are considered cool and lower colour temperatures (2700-3000 K) are considered
warm. Cool light produces higher contrast and is considered better for visual tasks.
Warm light is preferred for living spaces because it is considered more flattering to
skin tones and clothing.

09

0.0 386 v
0.0 0.1 X 0.3 04 0.5 0.6 0.7 0.8

Fig. 2.2.6-1 The chromaticities of black-body light sources of various temperatures
(Planckian locus) on the CIE 1931 x-y chromaticity space, and lines of
constant correlated colour temperature
(http://www.juliantrubin.com/encyclopedia/engineering/colour_temperature_fi
les/300px-PlanckianLocus.png).
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The chromaticity of a light source may not be on the chromaticity curve of the
Planckian radiator. If that is the case, a term, correlated colour temperature (CCT)
is applied. CCT is the temperature of the Planckian radiator whose perceived colour
most closely resembles that of a given stimulus at the same brightness and under
specified viewing conditions. CCT’s calculation is performed using CIE 1960
uniform colour space coordinates u and v. Fig. 2.2.6-1 shows the colour
temperature line and the constant CCT lines.

2.3 Colour Appearance Model: CIE CAMO02

Colour appearance models are capable of predicting colour appearance under a
variety of viewing conditions, including different light sources, luminance levels,
surrounds, and lightness of backgrounds. They are particularly useful for cross-
media colour reproduction. The CIECAMO2 colour appearance model was built
upon the basic structure and form of the CIECAMZ97s colour appearance model (CIE
2004b). It provides a model to transform tristimulus values to or from perceptual
attribute correlates under different viewing conditions. The two major pieces of this
model are a chromatic adaptation transform and equations for computing correlates
of perceptual attributes.

The visual observing fields are briefly described in the following sub-section,
followed by the forward implementations of CIECAMO2.

2.3.1 Visual Areas in the Observing Field

Hunt (1991 and 1998) defined five visual areas in the observing field for
related colours as illustrates in Fig. 2.3.1-1. A brief description is followed (Choi
2008).

Surround

Background

Stimudus

Proximal
Field

Fig. 2.3.1-1 The five defined visual areas
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Stimulus: the colour element for which colour-appearance measurement is
required. Typically, a stimulus is taken to be a uniform patch of about 2° angular
subtends.

Proximal field: the immediate environment of the colour element considered,
extending typically for about 2° from the edge of that colour element in all or most
direction. It is normally specified to be equal to the background in CIECAMO2.

Background: the environment of the colour element considered, extending
typically for about 10° from the edge of the proximal field in all or most directions.
The background is usually considered to be a neutral grey with 20% luminance
factor.

Surround: a field beyond the background.

Adapting field: the total environment of the colour element considered,
including the proximal field, the background, the surround, and extending to the
limit of vision in all directions.

2.3.2 Setting Model Parameters

Fairchild (1998) and Luo and Hunt (1998) have both provided definitions of
surround. A surround ratio is determined and then a surround is assigned. The
surround ratio, Sg is computed by:

Sk = Lsw/Lpw

where Lsw is the luminance of the surround white and Lpw is the luminance of the
device white. The luminance values are measured in cd/m® If Sg is O then a dark
surround is appropriate. If Sg is less than 0.2 then a dim surround should be used
while an Sg of greater than or equal to 0.2 corresponds to an average surround. A
few examples of parameter settings are shown in Table 2.3.2-1, where La is the
luminance of the adapting field in cd/m? which is computed as 20% of the device
white (CIE TC 8-01).

Table 2.3.2-1 Example parameter settings

Example Ambient Scene or | Lo in | Adopted Sk Surround
Illuminatio | device cd/m® | white point

n in lux (or | white

cd/m?) luminance
Surface colour | 1000 (318.3) | 318.30 63.66 Light booth | 1 Average
evaluation in a cd/m? WP

light booth
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Viewing self- | 38 (12) 80 cd/m? 16 Between 0.15 | Dim
luminous display at display WP
home and ambient

WP
Viewing slides in | 0(0) 150 cd/m? 30 Between 0 Dark
dark room Projector WP

and E
Viewing self- | 500 (159.2) | 80 cd/m? 16 Between 2 Average
luminous  display display WP
under office and CWF
illumination

2.3.3 Implementation of the Forward Model

First the surround parameters F, ¢ and Nc are selected from Table 2.3.3-1. For
intermediate surrounds, these values can be linear interpolated.

Table 2.3.3-1 Categorical viewing condition settings for the model

Viewing Condition F Nc
Average surround 1.0 0.69 1.0
Dim surround 0.9 0.59 0.9
Dark surround 0.8 0.525 0.8

The sample CIE 1931 tristimulus values are converted to a long, medium and
short wavelength sensitive space using the CAT02 forward matrix as shown below:

R
G|= MCAT
B

M cxrop = | —0.7036  1.6975

X
02| Y
Z

0.7328

0.0030

0.4296 -0.1624
0.0061
0.0136 0.9834

(2.3.3-1)

(2.3.3-2)

The degree of adaptation to the white point, D, is computed by equation (2.3.3-
3). The value ranges from 1 for complete adaptation to 0 for no adaptation.

1 j e[‘L3§42)J]
36

(2.3.3-3)
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The chromatic adaptation is computed by equation (2.3.3-4).

R, =[(Y,D/R,)+(1-D)R

G, =[(Y,D/G,)+(1-D)|G (2.3.3-4)
B, =[(Y,D/B,)+(1-D)B

where Ry, Gy, By are the RGB values computed for the white point using equations
(2.3.3-1) and (2.3.3-2).

The viewing condition dependent constants are computed below:

k =1/(5L, +1) (2.3.3-5)
F_=0.2k*(5L,)+0.11-k*)*(5L,)"® (2.3.3-6)
n=Y, /v, (2.3.3-7)
N,, = N, =0.725(1/n)"? (2.3.3-8)
z=1.48++n (2.3.3-9)

Convert to Hunt-Pointer-Estevez space for post-adaptation nonlinear
compression:

R' R,
G'|=M, e Mo, G, (2.3.3-10)
B' B

c

0.38971 0.68898 —0.07868
M,pe =|—0.22981 1.18340 0.04641 (2.3.3-11)
0 0 1

Apply post-adaptation nonlinear compression:
R 400(F, |R/100)***sign(R")
© 27.13+(F_|R]/100)%*
o - 400(F |G1/100)***sign(G")
Y 27.13+(F.|G]/100)**

. 400(F_|B/100)***sign(B")
" 27.13+(F|B]/100)°

+0.1 (2.3.3-12)

Calculate temporary Cartesian representation (a and b) and hue before

computing eccentricity factor and perceptual attributes:
a=R',-12G', /11+B', /11

2.3.3-13

b=%(R'a+G'a—ZB'a) ( )

h=tan"(b/a) (2.3.3-14)
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The hue angle, h, should be computed in degrees.

Compute eccentricity factor:

e, = %{cos(hﬁ + 2} + 3.8} (2.3.3-15)

Hue quadrature or H can be computed from linear interpolation of the data
shown in Table 2.3.3-2. If h < h;, then H’=h+360; otherwise h’=h. Choose a value
of | so that h; <=h’ < hjs1.

Table 2.3.3-2 Unique hue data for the calculation of Hue Quadrature

Red Yellow Green Blue Red
i 0 1 2 3 4
hi 20.14 90.00 164.25 237.53 380.14
€i 0.8 0.7 1.0 1.2 0.8
Hi 0.0 100.0 200.0 300.0 400.0
=M e + s e .

Compute A, the achromatic response:
A=[2R',+G' +(1/20)B',-0.305]N,, (2.3.3-17)

Lightness, J, is calculated from the achromatic signals of the stimulus, A, and
white, Ay:

J =100(A/A,)“ (2.3.3-18)
Compute brightness, Q:

Q:%JJ /100(A, +4)F* (2.3.3-19)

Compute a temporary magnitude quantity, t, which will be used to compute C.
(= (50000/13)N_N e, (a® +b*)°®

(2.3.3-20)
R',+G',+(21/20)B’,
Calculate chroma, C:
C=t*°yJ/100(1.64 —0.29")°" (2.3.3-21)
Calculate colourfulness, M:
M = CFLO'25 (2.3.3-22)

Saturation, s, can be calculated by:
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$=100,/M /Q (2.3.3-23)

The corresponding Cartesian coordinates are as followed:
a. =Ccos(h)

. (2.3.3-24)
b. =Csin(h)
a,, =M cos(h) (2.3.3-25)
b, =M sin(h) o
a, =scos(h) (2.3.3-26)
b, = ssin(h) o

Attributes of CAMO02-UCS (Luo et. al. 2006), a uniform colour space based on
CIECAMO02, are computed below:
3o (1+100-c,)J
1+c,-J
M'=(@/c2)In(l+c,-M)
a'=M"cos(h)
b'=M"sin(h)

where ¢; = 0.007, ¢, = 0.0228.

2.3.4 Examples Using CIECAMO2 for Device Colour Characterisation

Two examples below demonstrate how to use CIECAMO2 colour appearance
model for device colour characterization. The first example illustrates an ideal
method to display SRGB (Stoke et al. 1996) colour images (or RGB colours from the
standard SRGB monitor) on an LCD monitor. Prior to the colour transformation, an
SRGB data set sampled in entire SRGB gamut is prepared to generate a source gamut
for gamut mapping. The data set in SRGB colour space are converted to CIE XYZ
colour space. CIECAMO2 colour appearance model is used to convert XYZ to
CAMO2 Jab or JCh. A source gamut in Jab or JCh space is constructed. Similarly,
a destination gamut in Jab or JCh space is constructed as well. Now, a gamut
mapping object is constructed using the source gamut and the destination gamut. As
shown in Fig. 2.3.4-1, the steps to convert a colour from sSRGB to LCD device RGB
are: 1) the sRGB colour is converted to CIEXYZ; 2) the CIECAMO02 forward
transformation of the source is applied to convert XYZ to Jab or JCh; 3) gamut
mapping is applied to map Jab or JCh from the source gamut to the destination
gamut; 4) the new Jab or JCh colour is converted to XYZ using the inverse
transformation of the CIECAMO2 colour appearance model of the destination; and
5) the colour in CIE XYZ space is finally transformed to the LCD device RGB
space using the LCD monitor device colour model.
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CRT monitor device color model
¥

CIE Xy Z

CIECAMOZ model & fonward transform

CIECAMOZ Jab or JCh
within source gamut

Gamut mapping

MNew CIECAMOZ Jab or JCh
within destination gamut

CIECAMOZ inverse transform

MNew TIE XY Z

LCD monitor device color model

¥
LCD device RGB

Fig. 2.3.4-1 A block diagram for the colour characterisation to transform sRGB to
an LCD device RGB colour space

CRT monitor device color modsl

¥

CIE X2

CIECAMO2 model & forward transform

¥

CIECAMOZ Jab or JCh
within source gamut

Gamut mapping

¥

MNew CIECAMOZ Jab or JCh
within destination gamut

Tetrahedral interpolation

¥

Printer device ChY

Fig. 2.3.4-2 A block diagram for the colour characterisation to transform sRGB to a
printer device CMY colour space
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Another example is the colour characterisation to transform sRGB to a printer
device CMY/(K) colour space. Fig. 2.3.4-2 illustrates a typical approach a block
diagram for the colour characterisation. The process is similar to that in the earlier
example except that an inverse transformation of the CIECAMO02 model in the
destination viewing environment is avoided. After the gamut mapping, a colour in
Jab or JCh within the destination is converted to the printer CMY (K) space directly
through tetrahedral interpolation.

Depending on the algorithms or the implementation for cross-media colour
reproduction, an inverse transformation from CIECAMO02 attributes to CIE XYZ
may be required (example 1) or may never occur (example 2).

2.4 Preferred Colour Reproduction of Digital Images

An image may be captured with a digital camera, scanned with a scanner, or
created using computer graphics. It may then be displayed on a monitor display,
projected on a screen, sent to somewhere else as a digital file, or printed as a
hardcopy. The colour and image content of an image may be edited before being
displayed or printed. A simple imaging flow may be abstracted as three
components: an input component to create the image, an enhancement component to
process or edit the image, and an output component to reproduce the image on
display, hardcopy, or as a digital file.

In an open workflow, an input component typically produces an image with a
certain reference standard. For example, a digital camera captures a scene in a raw
data form with the scene-referred state and typically transforms it to a display-
referred SRGB image. Besides re-rendering the image to a specific output device
(e.g. a LCD display or a printer), an output component may perform specific colour
and imaging rendering for certain objectives. Some of the renderings may be
performed in a separate component between the input and the output component. In
a complex workflow, there may be more variable and more uncertainties for the
colour rendering, depending on the objective of the colour reproduction.

Hunt (1974, 2006) categorised the objective of colour reproduction into six
types: spectral colour reproduction, colorimetric, exact, equivalent, corresponding,
and preferred. Some of these rendering types can be correlated with the rendering
intents in ICC (International Color Consortium) colour management system
(http://www.color.org).

Section 2.4.1 provides an overview of the six types of colour reproduction.
Since the preferred colour reproduction is the interest in this research, it is discussed
further in Section 2.4.2. A subset of preferred colour reproduction, memory colour
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reproduction of familiar objects, which is the centre of this research, is discuss in
detail in Section 2.4.3. Sections 2.4.4 to 2.4.6 briefly explore colour enhancement
of skin, green plants, and blue sky, respectively. Section 2.4.7 summaries the survey
of the preferred colour reproduction.

2.4.1 Hunt’s Colour Reproduction Intents

If the purpose of colour reproduction is to reproduce the colours of the original
and to have the reproduced colours match the original colours independent of the
illuminant, the spectral reflectance curves of the original and reproduced colours
must be identical. For self-luminous colours, this has to be defined as equality of
relative spectral power distributions. This is call spectral colour reproduction. The
spectral colour reproduction (Hardeberg 2001, Berns et al. 1998, Tzeng and Berns
1999 and 2000, Murakami and Ishii 2004, Chorin et al. 2007, Yamamoto et al. 2007,
Derhak et al. 2006) is promising, but it is mostly not available for general digital
image colour reproduction, especially in consumer digital imaging. A 3-channel
display is not able to produce the same relative spectral power distributions as those
of the original colour. Colour images are mostly not represented with spectral
reflectance, either. A camera, a scanner, or a printer is mostly not able to produce
the same spectral reflectance as that of the originals.

Since spectral colour reproduction is mostly impractical, a metameric match to
have the same CIE chromaticities and relative luminances between the original and
the reproduction colours may be characterised. This is called colorimetric colour
reproduction (Clapper and DeMarsh 1969). The colorimetric calculation is usually
carried out relative to a well-lit reference white in the original, and relative to the
illuminant white of its reproduction. This makes absolute luminances between the
original and the reproduction independent of each other. This simplification may
have its limitation, since the illuminance intensity affects the colour appearance.
For the rendering from a physical world to a digital image using a digital camera,
this method may not produce colour appearance match satisfactorily, due to more
extended dynamic ranges of the physical world. Colorimetric colour reproduction
(equality of chromaticities and relative luminances) is a useful criterion when the
original and reproduction have the same viewing conditions and uses illuminants of
the same colour. The colorimetric colour reproduction closely matches the absolute-
colorimetric colour rendering intent in ICC colour management. In ICC colour
management, the absolute-colorimetric colour rendering intent may be used for
colour proofing of a print hardcopy on a display or using a different printer.

On the top of the colorimetric colour reproduction, if the absolute luminances
of the colours in the original and in the picture are also equal, the reproduction of a
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colour in a picture is exactly the same as that in the original in chromaticity and
absolute luminance. This is called exact colour reproduction. In this case, the
equality of colour appearance is guaranteed only if the viewing conditions between
the two are the same. Exact colour reproduction (equality of chromaticities, relative
luminances, and absolute luminances) ensures equality of appearance for original
and reproduction if the viewing conditions between the two are the same.

In many situations (e.g. different lighting conditions), colorimetric and exact
colour reproduction may not produce similar colour appearance. Another approach,
equivalent colour reproduction, is defined as the reproduction in which the
chromaticities, relative luminances, and absolute luminances of the colours are such
that, when seen in the reproduction-viewing conditions, they have the same
appearance as the colours in the original scene. The illuminants (spectral
distribution and intensity) and surrounds are of practical importance in modelling
the equivalent colour reproduction. These effects can be modelled using
CIECAMO02 colour appearance model. Equivalent colour reproduction
(chromaticities, relative luminances, and absolute luminances such as to ensure
equality of appearance) allows for adjustments to compensate the differences in
viewing conditions.

Corresponding colour reproduction is defined as reproduction in which the
chromaticities and relative luminances of the colours are such that, when seen in the
picture-viewing conditions, they have the same appearance as those colours in the
original would have had if they had been illuminated to produce the same average
absolute luminance level as that of the reproduction. Corresponding colour
reproduction has the same advantage over equivalent colour reproduction as
colorimetric colour reproduction has over exact colour reproduction: by relating the
colours both in the original and in the reproduction to a reference white, allowance
is made for the fact that observers tend to perceive not in isolation but with
reference to a framework provided by the environment. Corresponding colour
reproduction (chromaticities and relative luminances such as to ensure equality of
appearance when the original and reproduction luminance levels are the same)
allows for all effects of viewing conditions except absolute luminance levels, and
provides a realistic criterion for general application.

The colour reproductions described above are aimed to reproduce colour
perception of the original scene in certain conditions. There are evidences that
people might prefer to see an image in which the colour appearances of some
familiar objects to be shifted slightly away from their original colours. For example,
Caucasian skin colour is generally preferred to be a sun-tanned appearance; yet
Asian skin colour may prefer to be slightly desaturated. Blue sky is generally
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preferred to be more saturated. It may also be desirable to introduce other
distortions of colour rendering to create mood or atmosphere in a picture. In this
context, preferred colour reproduction is defined as reproduction in which colours
depart from equality of appearance to those in the original, either absolutely or
relative to white, in order to achieve a more pleasing result to the viewer (Hunt
2006). In ICC colour management system, the perceptual rendering intent is an
intent that allows preference rendering; however, it is not equivalent to the preferred
colour reproduction defined by Hunt. According to Hunt, the preferred colour
reproduction can be applied on top of any other five colour reproduction intents.
Preferred colour reproduction is an appropriate aim for consumer colour imaging,
such as consumer printing and consumer digital photography.

Except for the spectral colour reproduction, a comparison of the major
properties of the other five colour reproduction methods is listed in Table 2.4.1-1.

Table 2.4.1-1 A comparison of 5 non-spectral colour reproduction intents

chromaticities relative absolute appearance

luminances luminances
Colorimetric Colour equal equal
Reproduction
Exact Colour equal equal equal
Reproduction
Equivalent Colour same same same same
Reproduction appearance appearance appearance
Corresponding Colour same same equal same
Reproduction appearance appearance
Preferred Colour more
Reproduction pleasing

2.4.2 Preferred Colour Reproduction

To simplify the problem yet adequate for the current research, the non-spectral
colour reproduction objectives may be regrouped into three categories: colorimetric
(relative and absolute colorimetric), perceptual, and preferred. The colorimetric
colour reproduction covers Hunt’s Colorimetric and Exact colour reproduction. The
perceptual colour reproduction includes Hunt’s equivalent and corresponding colour
reproduction. Preferred colour reproduction is the perceptual colour reproduction,
plus preference colour adjustment.
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In digital colour reproduction, the colorimetric colour reproduction is used for
colour proofing, and is also used as a baseline colour reproduction. Without the
capability of colorimetric colour characterization, the objective of perceptual colour
characterisation may be difficult to achieve. Fernandez et al. (2005) investigated
preferred colour reproduction versus colorimetric colour reproduction, and
concluded that colorimetric intention of image reproduction was a good first step,
and observer colour preference incorporated into image reproduction techniques
should be viewed as an enhanced or customized version of the colorimetric
reproduction objective.

Previous research efforts for preferred colour reproduction can be traced back
more than half a century. According to Bartleson (1960), people might prefer to see
an image in which the colour appearance of a familiar object agrees with its memory
colour rather than with the actual colorimetric content of the original scene. Hunt et
al. (1974), although indicated that colorimetric type of colour reproductions should
be used as a baseline of colour reproduction, concluded that observers would prefer
object colours to be reproduced with greater saturation in comparison to the original,
and that certain memory colours such as grass, sky, and skin are preferred to be
produced with slightly different hues and with greater purity. It is well known that
observers are able to rate the quality of an image with or without the original image
presented. Without the original image, observers rate the quality of the image with
an idealized image in the memory (Janssen and Blommaert 2000).

Apparently, the colour sensations evoked by a reproduction are compared with
a mental recollection of the colour sensations previously experienced when looking
at objects similar to the ones being appraised (Yendrikhovskij et al. 1999). Since
most of the object colours found in nature are subject to considerable variations in
hue, saturation, and lightness, the precision with which their mental recollections are
stored in memory is low, and generally leads to substantial subjective tolerances for
colour reproduction errors. And, since the appreciation is based on the mental
recollections of similar objects, the correctness of the colour rendering can be
estimated in pictures taken by other people.

Boust et al. (2006) compared how experts and naives judge the colour
preference of digital images. They found that both experts and naives did not focus
on objects if no memory colours were associated with them. Both experts and naive
observers used memory colours to adjust image or to judge image quality. An
image was preferred if the colours of the elements in the scene match the colours
observers had stored in their memory. The findings reveal that preference memory
colour reproduction is crucial for the colour quality of images.
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Koh et al. (2006) studied colour preference and perceived colour naturalness of
television quality digital videos, and found maximum scores for both attributes
usually occurred at videos with higher chroma than the original videos. However,
the naturalness scores peaked at lower mean chroma than the preferred chroma.
They also found that the chroma boosting for both attributes were video content
dependent. Koh et al. (2007) then added another parameter, ‘annoyance’, to study
compressed video 1Q (image quality). Besides the same conclusion for colour
preference and naturalness, annoyance scores decrease to a minimum and then
increase as mean chroma increased.

Colour preference enhancement is to improve the perceived image quality.
Yendrikhovskij et al. (1998, 1999) used naturalness to determine the fidelity of
reproduced object colours. A GUN space is proposed to model image quality. The
three coordinates are: Genuineness (G), Usefulness (U), and Naturalness (N).
Genuineness is referred to as the degree of apparent similarity of reproduced image
& environment with the external reference, i.e. original image & environment.
Ideally, an image with highest degree of genuineness should give an impression of
‘real’. The genuineness is crucial for proofs, catalogues, fine art, etc. Usefulness is
referred to as the degree of apparent correspondence of the reproduced image &
environment with the observer & task activity. The main criterion of usefulness is
the maximum discriminability. The usefulness requirement is crucial for medical
images, military night-vision images, etc. Naturalness is referred to as the degree of
apparent similarity between the reproduced image & environment and the internal
references, i.e. memory prototypes. The influence of this attribute on the quality
judgements becomes substantial when no external reference, i.e. the original, is
available for observers: watching TV, looking at photos, browsing through the
internet, etc. It gives a measure of the similarity between the colours of objects
presented in an image and the prototypical colours of the corresponding object
categories. They found naturalness of a whole picture was determined by the
naturalness of the most critical objects in the picture. They proposed that images of
good quality should at least be perceived as natural, implying a strong relationship
between perceived naturalness and the quality of images of real-life scenes. To
summarize, considering an over-saturated original picture that has to be reproduced
by three colour devices, the Genuineness-device (‘no lies’ strategy) will reproduced
the picture perceptually the same; the Usefulness-device (‘see more’ strategy) will
try to increase the saturation further (considering colour attribute only); the
Naturalness-device (‘no surprise’ strategy) will decrease the saturation down to the
prototypical level.
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Yendrikhovskij et al. further developed a colour quality index to evaluate the
colour quality of natural images. The colour quality is the weighted combination of
a naturalness index and a normalised colourfulness index. Yendrikhovskij analysed
78 images from two Photo CDs, and suggested that the distribution of colours could
be roughly divided in four regions in CIE u’v’ colour space: achromatic, orange-
yellow, yellow-green, and blue. Those areas have no distinct borders and form a
sort of triangle within the orange, green, and blue colours in corners. These three
regions can be referred to as ‘skin’, ‘grass’, and ‘sky’ segments for convenience.
They represent the three most familiar and frequently reproduced categories of
colours: human faces, grass, and sky (Bartleson and Bray 1962, Hunt et al 1974).
The naturalness of colour reproduction of natural images is estimated locally within
these segments. Yendrikhovskij defined the naturalness of each segment by a
Gaussian density function of the differences between the average saturation of the
segment and a mean saturation which is the expected mean value of colours within
the segment. The total naturalness index for an image is defined as the average
naturalness indices of each pixel of the image. The colourfulness index of an image
is defined as the combination of the average saturation of the image and the standard
deviation of the saturation of the image. Finally, a colour quality index is proposed
based on the naturalness index and colourfulness index. Yendrikhovskij’s
experimental results show very good agreement between the model and
psychophysical values. However, in the experiment, Yendrikhovskij manipulated
only the saturation of images in CIELUV colour space, and the lightness and hue
angle are excluded from the modelling. Even if saturation is considered, it is
difficult to model because the saturation for maximizing colour preference is not the
same as that for maximizing naturalness.

Colour preference is different from either genuineness or naturalness. It seems
that the colour preference is ignored in the GUN model. Although colour preference
enhancement improves the image quality, it may degrade genuineness. Although
both correlate with each other, their objectives are different. For example, an
observer may prefer the blue sky of an image to be more saturated than that with
optimized naturalness. Koh et al., in their study of colour preference and perceived
colour naturalness of digital video, found naturalness scores peaked at lower mean
chroma levels than preference.

Fernandez et al. (2005) studied the observer and cultural variability for
preferred colour reproductions of pictorial images, and concluded that inter-observer
variability was approximately twice the magnitude of intra-observer variability.
When analysing the data set for image content variability, images that contained
people (faces) were routinely less variable than images without people (faces).
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Furthermore, despite the fact that preference variability due to observers' cultural
background was found to be statistically significant, it was also demonstrated not to
be visually significant. Finally, variability in preference due to image content and
differences among observers were visually more significant than the variability due
to cultural background.

While Fernandez’s results show that the differences of colour preference
among different cultures are not significant, there are other evidences that
demonstrate difference in colour preference among different ethnic backgrounds.
This will be discussed in Section 2.4.3. As a matter of fact, different preference
colour reproductions for different geographical locations have been designed and
implemented on many consumer printers, digital photo mini-labs, and movies.

To understand how colour preference works in an imaging workflow, a couple
of colour pipeline examples are provided in sub-section 2.4.2.1. A few important
components that affect colour preference are overviewed in sub-section 2.4.2.2.

2.4.2.1 Colour Preference in an Imaging Pipeline

There are many approaches to produce colour images. Colour imaging
pipelines for different capturing approaches are different. Fig. 2.4.2.1-1 illustrates
an example of a specific case, a typical digital camera processing pipeline. Since an
image captured with a digital camera is to be viewed on a display screen or on a
hardcopy, it is necessary to transform the image from the scene-referred state to the
output-referred state such that the image appears pleasing on the output device and
has the desired colour appearance of the image creator. Colour images produced
from different approaches are usually converted to a common colour rendering state
(usually in the output-referred state), and mostly are merged into a common colour
space. Fig. 2.4.2.1-1 depicts an original scene captured with a digital camera sensor
through optical lens, passing through a series of colour and image processing steps,
and eventually becoming an output-referred colour encoding RGB image. Preferred
colour enhancement in the colour rendering step is to produce colours that are
preferred to human eyes.
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Fig. 2.4.2.1-1 A typical digital camera processing pipeline

Fig. 2.4.2.1-2 illustrates a colour processing pipeline that the author developed
for the colour transformation from the output-referred state to a target device colour
space (e.g. to display or to print). The image classifier is to classify images based on
image objects, pages, or jobs. If an object is classified as photo, a series of colour
and image enhancements may be applied. The order of the enhancements in the
figure may be altered, depending on the implementation. Again, the step of
preferred colour enhancement is to produce more pleasing colours. The object is
then passed to a step for colour appearance adjustment aimed at a target device and
at a target viewing condition, a step for gamut mapping to the target device, and a
step for colour space transformation to a target device. If the gamut mapping is not
image-dependent, this step may be performed through interpolation using a pre-
generated colour lookup table. A computer application always generates computer
graphics at the output-referred state, and an image scanner scans a colour hardcopy
that is already at the output-referred state. Therefore there is no scene-referred to
output-referred colour rendering in these two situations.
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Fig. 2.4.2.1-2 A colour processing pipeline for the colour transformation of the
output-referred encoding colours to a target device colour space.

An ideal process for the colour reproduction of output-referred images is to
first perform object type segmentation. The purpose of this step is to apply different
colour rendering intents and different image enhancements to different objects.
Photographic images and business graphics (including text) have different
characteristics and generally should be treated differently. For example, gamut
mapping methods or parameters for printing these two types of images are quite
different. A simple approach to classify an image (or object) into photo or graphics
is to count the colours on the image. If the number of colours is small, the image is
classified as graphics. Otherwise, it is a photo. This method is simple but false
classification may be high. Prabhakar et al. (2002) used three low-level image
features: texture, colour, and edge characteristics to classify a colour image into
business graphics or natural picture. Naccari et al. (2005) developed a method to
classify images into ‘portrait’, ‘landscape’, and ‘other’ for automat colour rendition
of natural scene images. Besides applying different colour enhancement algorithms
to these three types of objects as described in the reference, different colour maps
may be used to further optimize the colour reproduction. Szummer and Picard
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(1998) developed an indoor-outdoor image classification method using low-level
image features. Hu et al. (2003) applied Bayesian framework and relevance
feedback to improve the accuracy of indoor-outdoor image classification. The
classification of indoor-outdoor images may be applied to process colours
differently. For example, it may be used to aid detecting illuminant or neutral
balance.

Automatic detecting grey (black and white) images is very useful in many
applications. If RGB signals are the same among three channels (assuming the
colour space is neutral balanced with R=G=B), the image may be treated a perfect
grey image. However, scanning a grey image in a colour mode by a scanner will
mostly not produce equal RGB signals for each pixel. The classification of colour
Vv.S. grey images in this case may be scanner device dependent. The scanner neutral
balance, scanner spectral sensitivity characteristics, and the image processing
pipeline affect the neutral balance. Similarly, using a digital camera to capture a
gray object will not produce a perfect gray image, because of non-perfect
illumination detection. From the colour processing point of view, if a colour image
has very low chroma (near grey), most of colour enhancement steps may be skipped
(except for tone adjustment). However, knowing an image is a grey image may be
very helpful for the neutral balance in colour transformation from one colour space
to another.

The finer the image classification, the more it helps for colour enhancement.
However, image classification in general is a difficult task and subject to false
detection. EXIF (Exchangeable Image File Format) tags (http://www.exif.org/), if
found within an image, may be helpful for classifying the image. Many tags (e.g.
exposure time, F number, OECF, ISO speed rating, light source, scene capture type,
etc) are useful for colour and image enhancement.

If an image contains different content types, it may be segmented to different
objects and each object is assigned a proper object type for colour and image
processing. This method has been used for image segmentation of scanned images,
and for preference colour reproduction. For example, an image that contains text,
pie-charts, faces, sky, and trees, may be segmented to sub-images (objects), in which
each contains single object type. Text enhancement is applied to the text object, the
business graphics colour map is applied to pie-charts, and memory colour
enhancements are applied to skin tone, blue sky, and trees, and so on.

2.4.2.2 Colour Imaging Attributes that Affect Colour Preference

A few important colour imaging attributes that affect colour preference are
briefly discussed below.
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2.4.2.2.1 Global Tone Adjustment and Chroma Adjustment

Tone and colour processing are of major importance in producing excellent
images. Tone mapping is a technique to modify colours through tone curves, such
as to approximate the appearance of high dynamic range (HDR) images with a more
limited dynamic range. Although a capturing device, such as a digital camera,
performs tone mapping when captures images, the tone mapping may not be optimal
for a specific reproduction device on a specific viewing condition, and thus a tone
re-mapping may be necessary.

Histogram equalization is a technique to stretch an image to the full dynamic
range. It effectively spreads out frequent intensity pixels. However, it may produce
unrealistic visual effects for natural images. Improved techniques, such as local
histogram equalization and adaptive histogram equalization were proposed to
enhance image contrast and maintain the natural visual effect (Kim et al. 1998,
Buzuloiu et al. 1999, Tian et al. 2007).

Holm (2003) developed a tone mapping method based on “zone”
characteristics of an image. Zone 0 is full black, zone 10 is full white, and contents
with shadings fall between 1 and 9. A tone curve is generated based on the re-
mapping of the zones. The method requires extensive knowledge about the
conditions that an image is captured. Zhang et al. (2006) developed a method for
image tone mapping using an adaptive sigmoidal function, in which the sigmoidal
function parameters are determined by original image statistics.

Besides global tone transformation to map original tone range into the
reproduction medium, local contrast enhancement is another technique to preserve
details.

Properly adjusting chroma may enhance the overall image quality. An image
captured using a digital camera tends to perceptually lack of colourfulness. Because
the colourfulness is related to brightness (Hunt 2006), if a physical world scene that
usually has a higher luminance than that of a digital world is reproduced
colorimetrically, the colourfulness will be reduced. To compensate the differences
in brightness, chroma of the captured image should be boosted. To optimize the
chroma adjustment, the image characteristics, the viewing condition, and the gamut
of the device should be considered.

2.4.2.2.2 Colour Balance

Colour balance is another important factor in colour image enhancement. An
important goal of this adjustment is to balance neutral colours correctly. Hence, the
general method is sometimes called grey balance, neutral balance, or white balance.
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Most digital cameras have a mean to select a colour correction based on the type of
scene illumination, using either manual illuminant selection, or automatic white
balance (AWB), or custom white balance. The algorithms are known as illuminant
estimation and chromatic adaptation (Forsyth 1990, Finlayson 1996, Barnard 1999,
Finlayson and Hordley 2000, Finlayson et al. 2001, Sisstrunk et at. 2001, Jiang and
Fairchild 2005, Xiong and Funt 2006, Ebner 2007, Skaff and Clark 2007).

In printing world, colour balance is generally an effort to print a colour image
that preserves the neutral balance of the original image. Colour separation or black
generation is an important step to determine the neutral grey for printer colour
characterisation (Zeng 2000 and 2001). CMYK 1- dimensional (1-D_ lookup tables
(LUT) or multiple-dimensional LUT may be adjusted to compensate colour shift in
printing (Zeng 2003).

The judgment of neutral balance is affected by the viewing condition.
Furthermore, different persons may prefer neutral to be slightly different in colour
tints, for example, one may prefer neutral to be slightly bluish while another one
may prefer slightly yellowish. Hence, a colour temperature adjustment feature may
be implemented in an imaging workflow to adjust the colour balance of images
(Park 2003). This can also be used to compensate metamerism.

2.4.2.2.3 Local Contrast Enhancement

To produce a higher dynamic range image on a smaller dynamic range device,
optimizing global tone mapping may not cope well with huge contrast ratios. Local
contrast adjustment is generally capable of preserving local detail while the global
tone range is compressed. Retinex models have been extensively used for local
contrast enhancement (Brainard and Wandell 1986, McCann 2001, Moroney and
Tastl 2004, Meylan and Sisstrunk 2006). There are rich sources of open source
codes and references in this area. Moroney proposed a local contrast enhancement
method using non-linear masking (Moroney 2000). iCAM is a sophisticated colour
appearance model that is capable of performing high-dynamic range tone mapping
and other colour appearance modelling (Fairchild and Johnson 2002, Kuang and
Fairchild 2007). Local contrast enhancement is not only used for processing HDR
images, but also used for processing images that lack of local contrast.

2.4.2.2.4 Device-Dependent and Image-Dependent Gamut Mapping

Due to the gamut limitation in reproducing colour, gamut mapping is essential
for adapting colours from one device gamut to another (Morovic 2008). Device-
dependent gamut mapping methods treat image-dependency very coarsely. An
image, a page, or a document is categorised into a few groups, such as photo,
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business graphics, and mixed contents. A gamut mapping method that is optimized
for each group is applied to map the source device gamut to the destination device
gamut. Besides the dependency on image types, the reproduction objective
(rendering intent) is another factor for consideration. For example, a gamut
mapping that minimizes a colour difference metric may be used for colorimetric
rendering intent, and a geometric morphing method may be applied for the mapping
of business graphics.

Gamut mapping may have interaction with other colour rendering attributes.
For example, to display an sRGB image (or a video stream) on a large gamut
display, such as an Adobe RGB display, the smaller source gamut may be expanded
to the Adobe RGB gamut. As a result, the skin tone may become displeasing due to
gamut expansion.

Image-dependent gamut mapping, although has many limitations, may be
preferred in many situations (Bala et al. 2001, Morovic and Wang, 2003, Zolliker
and Simon 2007). It uses the information of the image content (image gamut, image
histogram, etc.) to perform gamut mapping. It may use the output device gamut
more wisely than the device-dependent gamut mapping. If an edge-preserving
gamut mapping method is applied, image details are preserved.

2.4.2.2.5 Imaging Attributes for Colour Enhancement

Besides enhancing the colour characteristics, a number of imaging attributes
may be considered for image enhancement.

Sharpening is an important attribute. This attribute is image dependent, and
medium dependent. A sharpness value on an image may be estimated to determine
how much to sharpen or to smooth the image. A medium (a specific display or
printer on a specific setting) dependent sharpening factor may be applied to optimise
the final sharpening decision. Local sharpening/smoothing may be applied to
sharpen sharp edges, to smooth face and flat areas, etc. De-noise, scratch removal,
and de-screening may be applied to further remove image noise. Other factors, such
as 3-D boosting to increase the depth effect, face retouching to rejuvenate
characters, teeth whitening, red-eye removal, may be applied to photographic
images.

2.4.3 Preferred Colours and Memory Colours of Familiar Objects

As a subset of the preference colour reproduction, memory colour
reproduction plays an important role in overall colour reproduction. Memory
colours, such as colours of skin tone, green grass, and blue sky are often categorised
as special colour regions for subjective adjustment during colour enhancement or
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gamut mapping. They may also be used for automatic image classification and
image retrieval, and for pictorial image quality analysis. An overview of
prototypical colours of skin tone, green plant, and blue sky is presented below.

2.4.3.1 MacAdam (1951)

In his study of the quality of colour reproduction, MacAdam used a series of
colour prints to study optimum colour reproduction of skin colours. The colour
prints of a portrait of a young lady (Caucasian) were made from well-exposed
colour-separation negatives, with variations of balance from too red or yellow to too
blue, and from too green to too pink. Sufficiently small steps of variation were used
S0 as to obtain a number of satisfactory prints. These prints were presented to a
number of judges who were asked to accept or reject each on the basis of balance
alone. An ellipse encompassing forehead colours with 50% or greater acceptance
levels was drawn. The print accepted by the most judges (83%) had the forehead
colour (CIE x-y of about 0.434 and 0.396) located in the middle of the ellipse. The
actual forehead colour of the lady (CIE x-y of about 0.437 and 0.384) was
noticeably different from the acceptance colours within the ellipse.  The
measurement was based on the assumption of a 4000K blackbody source of
illumination. The results led to two conclusions. First, optimum reproduction of
skin colour is not “exact” reproduction. Second, the shape of the 50% acceptance
zone is similar to the shape of the zone of equally noticeable differences.

2.4.3.2 Sanders (1959)

Sanders studied colour preferences for natural objects, including hand, face,
tea, butter, raw beefsteak, and potato chips. A viewing booth with variable colour
light was provided to change colours of test objects. The main illumination of the
booth was provided by three pairs of fluorescent lamps with green, blue, and pink
colours. The luminous flux from each pair of lamps could be controlled by means of
a dimmer circuit. By adjusting each 21-step dimmer, light of variable colours could
be produced. Additional tungsten lamps could be switched on or off as desired to
achieve desirable colours. The colour light was mixed by a sheet of tracing paper
and a diffusing screen. The background colour was controlled by a background box
at the back of the booth. The box, which contained two fluorescent lamps, was
painted white inside and was covered with tracing paper. The colour of the
background could be altered by changing the fluorescent lamps. In this experiment,
the background was confined to the chromaticity of either CIE Illuminant B or C.
For each object investigated an attempt was made to provide a set of colours which
included unsatisfactory colours on all sides of the acceptable ones. The colours in
the set were then presented in random order to each observer who was asked to say
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whether the colour presented was found to give “good”, “fair to good”, “fair”, “fair
to unsatisfactory”, or “unsatisfactory” colour rendition to the sample. To average
repeated observations, the judgments were given the weights 100, 75, 50, 25, and 0,
respectively. It was found that the preferred colour of the face (CIE xy values under
CIE Hluminant C are 0.441+/-0.011 and 0.379+/-0.007, respectively) is more
saturated than the actual facial colour; the preferred colour for butter is considerably
paler than the colour of the actual butter sample; the difference between the
preferred colour and its actual colour for the remainder of the objects were not
significant.

2.4.3.3 Bartleson

2.4.3.3.1 Bartleson (1959)

According to Bartleson, photographs typically do not compare a photo directly
with its original scene. Photographers rely on their memory of the colours of objects
in the original scene to judge the colour reproduction quality of memory colours.
Bartleson printed a woman portrait using Kodak Flexichrome Process to study the
preferred colour reproduction of flesh colours. Twelve 4x5-in. prints were produced
in which chromaticities of the face area were systematically varied around and
between the chromaticities for average natural flesh and the corresponding mean
memory-colour. The prints were viewed in a viewing booth with neutral gray wall
of approximately 18% reflectance and CIE Illuminant C simulated daylight. 10
observers who had moderate to advanced technical knowledge of colour
photography evaluated the samples by paired-comparison, and then judged the
acceptability one by one. Acceptability was defined as the condition in which an
observer evidenced no displeasure when evaluating the reproduction. The
experiment confirmed that memory flesh colours were warmer (or more yellowish)
and more chromatic than actual flesh colours. The mean memory-colour and the
optimum print were coincident in Munsell notation chart, i.e., both have the same
chromaticness. Bartleson concluded that “preferred flesh-reproductions may be of
virtually the same hue and saturation as the abstract memory-colour for flesh”.
Since the data was rather limited (only one image was used), the conclusion was

considered “qualitative rather than quantitative”.

2.4.3.3.2 Bartleson (1960)

Bartleson defined “memory colour” as colours that are recalled in association
with familiar objects, that is, objects with which we have frequent visual experience.
In this context, memory colour does not refer to the ability of sheer colour
recollection which is generally termed “colour memory”. Instead, memory colours
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are considered to be an individual’s standard recollection for familiar objects and,
because of the frequency with which certain object-perceptions are repeated, these
memory colours tend to be relatively stabilized. In his study of memory colours of
ten familiar, naturally occurring objects, Bartleson placed 931 Munsell colour
patches in a viewing booth and judged by 50 observers. The walls of the viewing
booth were painted with a neutral gray of approximately 18% reflectance, and the
colour temperature was 2700°K with an illumination level of approximately 200ft-c
at the viewing plane. About half of the observers were “nontechnical” and the other
half were “technical”. The experimenter named an object or a substance and the
observer examined the display of colour samples and then indicated the patch that
best represented the colour of the object. Observers were allowed to interpolate
between available patches. The ten object colours used were: red brick, green grass,
dry grass, blue sky, flesh, tanned flesh, broad-leafed summer foliage, evergreen
trees, inland soil, and beach sand. Each observer completed all ten judgments in
about 15 minutes. The result indicates that chromaticities of the memory colours are
different from those of the natural objects. In natural flesh, including suntan, varies
mostly in luminance (for Caucasian) and somewhat in purity, the memory colours
for flesh are dissimilar in dominant wavelength and both are distinctly more yellow
than natural flesh. Green grass and deciduous foliage appear to be remembered as
more blue green than yellow green, both memory colours having approximately the
same dominant wavelength. Dry grass, in memory, falls at a dominant wavelength
that is nearly common to both natural grass and deciduous foliage. The memory
colour for blue sky is more cyan and of higher purity than the mean for natural skies.
The standard deviation for the choice of memory-colour hue for flesh is the highest,
excepting that resulting from the abnormal distribution of memory colours for sand.
This may indicate that individuals have rather definite impressions of the colour of
flesh, although a general tendency to remember flesh as being more yellow than it
actually is. Overall, there is evidence of increased saturation in the memory colours.
To compare his data with others, Bartleson converted his finding of memory colours
from Illuminant A to llluminant C. The CIE x-y values of mean memory colours of
flesh, grass, and sky are listed in Table 2.4.3.3-1.

Table 2.4.3.3-1 Bartleson’s result of mean memory colours (CIE xy) in lluminant C

(1960)
Memory colour X y
Flesh 0.3548 0.3441
Tan flesh 0.3593 0.3724

Green grass 0.2478 0.4149
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Dry grass 0.3372 0.4059
Green foliage 0.2665 0.3681
Evergreens 0.3735 0.4049
Blue sky 0.2319 0.3012

2.4.3.3.3 Bartleson (1961)

Bartleson found that colour memory obtained from successive colour matching
was significantly different from memory colour. Bartleson defined that colour
memory was an observer’s ability to remember and reproduce or recognize abstract
colours. Short-term colour memory could be found through successive colour-
matching experiments. To study whether there was significantly difference between
colour memory and memory-colour, Bartleson conducted a successive colour-
matching experiment using four 3- by 3-inch colour patches of natural flesh, blue
sky, sand, and deciduous foliage, together with 931 Munsell patches. The viewing
condition was exactly the same as the memory colour experiment described earlier.
One object-colour patch was viewed by an observer for 15 second against a neutral
surround of about Munsell Value 5. The patch was then removed and the observer
searched the array of Munsell patches in order to find one that best matched the
original patch. The process was repeated for all four object-colours. Experimental
results of successive colour matching indicate that saturation and lightness tend to
change in memory, but hue remains essentially the same. In general, there is an
increase in saturation with memory and usually an increase in the lightness of light
colours and a decrease in the lightness of dark colours. By contrast, memory-
colours of familiar objects have statistically and perceptually significant hue shifts
as well as changes in saturation and lightness with memory. The differences suggest
that the processes of colour memory and memory-colour are significantly different.
Therefore, colour-memory and memory-colour effects cannot be indiscriminately
interchanged in considering colour reproduction requirements for photographic
processes.

2.4.3.3.4 Bartleson and Bray (1962)

In their study of the preferred reproduction of flesh, blue-sky, and green-grass
colours, Bartleson and Bray closely examined the differences among preferred
colour, memory colour, and real colours of the three familiar objects. To study the
tolerance for preferred Caucasian flesh reproduction in prints, nineteen 6- by 7.5-
inch Kodak Dye Transfer Prints were made, all with the same colour balance, with
variations only in the flesh chromaticities. Eleven experienced observers evaluated
the prints in a viewing booth illuminated with CIE Illuminnt C. Each observer first



- 46 -

ranked 19 samples into two groups of 9 and 10 prints, respectively. Thus, there was
forced consistency within each group, as was common in ranking experiments.
Then, the observer fitted each print of the first group, randomly selected, into the
group-two rank array. The individual observer consistency as evaluated by this
procedure was somewhere between pair-comparison and the forced consistency of
ranking. The data were fitted into a pair-comparison data matrix and therefore
treated as pair-comparison data. An elliptical contour was constructed to
approximate the locus of 50% acceptance (positive z-scores were treated as
acceptable). The result shows that a) the centroids for the flesh memory-colour, b)
several satisfactory reproductions of flesh, c¢) a preferred reproduction flesh colour
determined in a different time, and d) the most preferred reproduction colour
determined in this experiment all lie close to one another and at some distance from
natural flesh. It indicates that preferred reproduction colours for flesh are
distributed around the chromaticness of the mean flesh memory-colour rather than
the average natural flesh colour. The preferred flesh (Caucasian) colour has CIE x-y
values of about (0.436, 0.392) under 4000K illuminant. Probably due to the gamut
limitation of the photographic colour reproduction, the preferred colour is a little
pale compared to that in the modern colour photographic colour reproduction.

Their second phase of the experiment was to study preferred colour
reproduction for blue sky. Two series of 14 and 9 prints were made of scenes
containing large areas of blue sky in the same manner. Blue sky chromaticities were
varied while the overall print balance remained constant. 20 experienced observers
ranked each of the prints in order of merit according to their preferences for the
colour of reproduced sky. The chromaticities of the prints which received
acceptable ratings were plotted. The approximate area of natural sky chromaticities
was plotted in the same figure. The mean memory colours determined by Bartleson
(1960) and by Newnhall et. al. (1957) lie at some distance from the centroid
chromaticity of these preferred print colours. The most representative chromaticity
for preferred reproduction of blue sky agreed well with the natural sky chromaticity
but not with the mean memory colour chromaticity. There was no tendency of
memory colours to be more preferred than natural colours. These results indicate
that the preferred blue sky hue is the same as the real sky hue. However, due to the
limitation of the print gamut, the preference in chroma may be unreliable.

The third phase of the experiment was to study the preferred colour
reproduction for green grass. Again, a panel of 20 observers rated prints from two
dissimilar scenes in which colours of grass areas had been controlled separately
from the overall colour balance. 10 sample prints from Scene | and 20 from Scene
Il were selected for judgment. The chromaticities of prints found to be acceptable
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were plotted, together with the hue locus of the mean natural grass colours. They
found that the most preferred grass colour located at some distance from that of the
mean memory colour. The difference in hue is such as to produce a preferred colour
that is more “yellow-green” than the memory colour. The preferred chromaticities
lie along the locus of the natural grass hue. The preferred reproduction colour
appears to be more similar to the mean of the natural colour than to the mean of the
memory colour.

2.4.3.4 Huntetal. (1974)

Hunt et al. commented that the gamut of colours attainable in some of the
systems used in earlier publications was much more limited than that produced with
modern photographic systems, and such systems might be biased in favour of a
somewhat lower level of colour saturation. Another bias from the previous studies
was that most of the colour preferences were assessed in reflection prints using
daylight. For these reasons, Hunt et al. undertook a fresh assessment of the
preferred colour reproduction of blue sky, green grass, and Caucasian skin in colour
photography using up-today colour photographic systems. A split-field technique
was used to produce colour reflection prints and projected transparencies, in which
one area could be altered in colour while keeping the rest of the picture constant.
The variable area was arranged to contain only blue sky, green grass, or Caucasian
skin. Colour pictures were judged by groups of observers for the quality of the
reproduction in the test areas, and chromaticities corresponding to preferred and
acceptable colour reproduction were obtained. In reflection prints, the preferred
blue sky was found to have a higher purity than the average real blue sky, but the
preferred green grass and the preferred Caucasian skin had similar purities but were
slightly yellower than average real samples. In transparencies projected with
tungsten-halogen lamps, the preferred and acceptable chromaticities were
considerably more orange because of visual adaptation to the light of the projector.
The authors compared the results with earlier studies by other researchers using
photographic materials that had more limited colour gamuts and suggested that the
limited gamuts might tend to reduce the purities of preference colours.

2.4.3.5 Sanger et al. (1994)

To adjust skin colours for preferred colour reproduction, the preferred skin
colour region must be found. Sanger et al. measure offset printing samples of
Mongoloid, Caucasoid, and Negroid skin colours, and modelled the colour regions
of each type of skin colours in u’-v’ axes with ellipses. They found that the Negroid
distribution was wider than the distribution of other races; chroma of skin colour
increased steadily in the order of Caucasoid, Mongoloid, and Negroid while the
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lightness increased in the reverse order; the hues were similar and the dominant
wavelength was about 590nm in all distributions. Three portrait photos of
Mongoloid, Caucasoid, and Negroid were used to study preferred skin colours. Skin
colours of each image were altered to produce a series of 50 to 60 copies of images
with different facial tones. A preferred colour for each image was evaluated by an
observer rating experiment. A panel of five naive observers was asked to rate skin
colours using five categories: excellent, good, acceptable, poor, and bad.
Afterwards, chromaticities u’ and v’ of skin colours in sample images as excellent
and good were measured and plotted in u’v’ chromaticity diagram to analyse their
distributions. The result shows that chroma of preferred skin colours increases
steadily in the order of Caucasoid, Mongoloid, and Negroid, preferred hue angles
among three groups are about the same, with dominant wavelength at about 590nm.
The u’v’ of preferred skin colour centres of Caucasoid, Mongoloid, and Negroid in
D65 are approximately (0.218, 0.486), (0.221, 0.492), and (0.231, 0.501),
respectively. The orientations of three preferred skin colour ellipses are similar, and
the shape of each ellipse shows that hue tolerance is smaller than the chroma
tolerance in preferred skin colours.

2.4.3.6 Yano and Hashimoto (1997)

Yano and Hashimoto used three female models to studying the preference for
Japanese complexion. Each model’s face was illuminated under 40 different
illumination colours from a lighting box while the viewing adapting fields were
illuminated by two other lighting boxes with correlated colour temperature the same
as D65 (6100K), produced the combination of 120 facial colours under a constant
viewing condition. Twenty-one Japanese women evaluated the preference of the
skin colours using seven scales: excellent, good, fair, acceptable, poor, bad, and very
bad. The skin colours rated as better than acceptable were used to draw a preferred
skin colour ellipse in u’v’ coordinate diagram for each model. Three preferred skin
colour ellipses are very close, which indicates that the preferred complexions are
about the same among different models. The real skin colours of the three models
were measured, adapted to D65 and drawn on the same u’v’ diagram to compare
with their preferred complexions. It illustrates that the three real skin colours are
more different than the three preferred skin colours.  The average preferred
Japanese complexion was (u’, v’) = (0.2425, 0.4895) corresponding to D65
illuminant. Compared with the real complexion of “Japanese Woman”, the
preferred skin colour is shifted to a slightly higher saturation and slightly more
reddish in hue. The preferred Japanese complexion is quite different from the
preferred complexion of Caucasian woman studied by Sanders (1959). Preferred
Caucasian complexion is shifted to a much higher saturation level than the real
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Caucasian complexion. They concluded that “Caucasian observers prefer a higher

saturated complexion than do Japanese observers”.

2.4.3.7 Yendrikhovskij (1999)

Yendrikhovskij discussed two interesting aspects of appraising colour
reproductions. First, “although any colour photograph is always distorted relative to
reality, the deviation from the colorimetrically perfect rendering is seldom
conspicuous to observers”. Second, “although items in a reproduction might never
be experienced by observers directly, people usually do not have any problem in
criticizing the realism of the reproduced colours”. The reason is that the colour
sensations evoked by a reproduction are compared with a mental recollection of the
colour sensations previously experienced when looking at objects similar to the ones
being appraised. Memory colours are quite consistent among different observers.
And there is a tendency for memory colours to be more saturated compared with
their actual object colours. People might prefer to see an image in which the colour
appearance of a familiar object agrees with its memory colour rather than with their
colorimetric content of the original scene. One of the important characteristics of
the representation of colours in memory is the organization of colours into
categories and prototypes. Prototypical colours are indeed more salient in
perceptual and cognitive domains. They tend to be more rapidly and consistently
perceived, remembered, and learned than non-prototypical colours. Skin, grass, and
sky are the categories that are frequently seen in real-life images. “One can expect
that observers are sensitive to colour manipulation of these categories, since they
exhibit a limited gamut in nature. On the other hand, colour manipulations of
objects from a category that does not exhibit certain stabilities in the outside world

are not as critical for observers.”

2.4.3.8 Bodrogi and Tarczali (2001)

Bodrogi and Tarczali studied the colour memory of various sky, skin, and
plant colours. Observers memorise an original colour O in a first viewing situation.
This becomes an instant memory colour M. After a given time interval t, observers
compare their so-called later memory colour M’ with an “actual” colour A. The
colour A seen in a second viewing situation usually differs from the colour seen the
first viewing situation. In the second viewing situation, observers may modify the
colour A until it matches M’. The result of the modification of A is the colour C.
The later is usually called corresponding colour. In their study, the two viewing
situations were identical. Thus the difference between the colours O and C is
completely due to memory effects. Bodrogi used photo-realistic images containing
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sky, plant, and Caucasian skin colours, as well as standalone colour patches taken
from the corresponding photo-realistic images to study the shift of memory colours.

In their experiment, all images were displayed in a dark room, on a calibrated
EIZO F784 21> colour monitor. The reference white (x=0.299, y=0.267, and
Y=37cd/m?) was always displayed on the left side and on the right side of the screen
as two vertical stripes. An observer adapted to this viewing situation for at least 2
minutes. The observer watched a colour of the part of an image (or a uniform colour
patch); memorize it in the next black frame; after 4 second of pause, tried to find the
memory of the colour by adjusting three sliders at the top of the screen
corresponding to lightness, hue, and saturation. In one of the task, the original
colour O is a uniform patch on a uniform gray background. In another task, the
original colour O is displayed with the image context. In a third task, the original
colour O is part of a photo-realistic image containing an identifiable shapes and /or
texture (e.g. grass, sky, or Caucasian skin). 11 observers participated in the
experiment. In general, memory colour shift is larger in photo-realistic images than
in standalone colour patches. In both cases, later memory colours M’ tend to have
higher chroma than the instant memory colour M. This is agreed with findings from
many other researches. For skin and sky, the later memory colours M’ tend to be
darker than the instant memory colour M. For plant, the result is opposite. Hue
shift depends on the original colours. For sky, instant memory colours M are shifted
toward purple-blue. For skin, observers tend to find that M’ colours contain more
unique yellow than O. For plants, observers tend to find that M’ colours contain
more unique green than O. Bodrogi suggested that the findings of memory colour
shift can be applied to gamut mapping to mimic the memory shift. Because the
memory shift depends on the presence or absence of the image context, the context
of image contents should be considered in the memory colour reproduction.

2.4.3.9 Kuang et al. (2005)

Kuang et al. (2005) conducted psychophysical experiments to study the
influence of different factors on colour preference of photographic colour
reproduction. 14 sRGB images were used to study colour preference of skin tone,
green grass, and blue sky. The area of interest (people, green grass, or blue sky) is
masked manually for colour adjustment. Each image was converted to CIELAB
colour space, and then colours of the area of interest were adjusted in Lch (lightness,
chroma, and hue) space. The Lch space was divided evenly into 12 by 12 by 6 small
cubes. Therefore, there were 13, 13 and 7 steps in L*, Cy* and hy, respectively.
Thus a total of 1183 colour adjusted images for each original image might be
produced. In each comparison, three images were displayed on the CRT screen
simultaneously.  Forty-eight colour-normal observers took part in the colour
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preference experiment. They were categorised into four groups: 14 Caucasian, 13
Asian/Pacific, 13 Indian and 8 African American observers. Of them, 17 were
females and 31 were males. Observers were instructed to pick the preferred one by
clicking that image directly. A preferred image was found in 14 comparisons from
coarse to fine selection. The experimental result is summarized below: 1)
background lightness has little influence on skin colour preference; 2) capturing
illuminant has significant influence on skin colour preference; 3) the preference
variances on Asian and Caucasian skin colours are smaller than those on Indian and
African American; 4) background lightness has slight influence on the lightness
preference while background chromaticity and image content have little influence
for sky colour preference; 5) image contents have influence on grass colour
preference both in lightness and chromaticity; and 6) no significant culture
difference among different ethnic observers.

2.4.3.10 Topfer et al. (2006)

Topfer et al. studied the regional preference for the rendition of people. They
argued that the preferred rendition of people was more complex than reproducing
the preferred chromaticities of skin tones, because colour and tone attributes came
into play, e.g., tone reproduction and colour and density balance. AgX systems in
store fields were used to print samples. Near optimum rendition of the scenes
presented in the experiment (in terms of tone reproduction and overall colour and
density balance) was obtained with the help of local Kodak personnel. The
selections were quantified using small Munsell N5 gray cards included in the
images. Samples with different skin tone variations were produced. Print lightness
was quantified based on five different CIELAB L* levels of a mid-tone neutral
patch covering a total range of 25. In each experiment, observers were asked to
rank-order 13 or 14 4 x 6-inch prints for each scene in terms of overall quality. All
experiments were conducted under controlled lighting conditions using a Gretag
Macbeth Judge 11 light booth with D50 Illuminant. In China, ten scenes captured on
Kodak Gold 200 film and on three digital camera models were included in the skin
tone and colour balance studies. Additional experiments on tone reproduction were
carried out with five levels and 35 different scenes. At least 30 observers
participated in each study. Ten labs in four large cities in China were chosen for the
field study. Eight participants per lab were recruited, including three lab operators
and five store customers, for a total of 80 observers (30 photofinishing operators and
50 consumers). In India, sixteen scenes captured on four different film types,
including Kodak Gold 200 film, were presented in a combined skin colour and tone
reproduction experiment. Three largest cities (Delhi, Chennai, and Mumbai) were
selected for the study allowed to sample the full gamut of skin colours in India. The
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rank-order technique was used for judgment. The proportions of selecting one
sample over another in terms of quality were transformed to 50% just-noticeable
differences (JNDs) of quality.

The experimental result demonstrates that preferences for the rendition of
Caucasian and Asian skin tones differ substantially; more reddish and desaturated
renditions of skin colour were preferred in India and China; the preferred skin
colours for India and China overlap, which suggests that similar appearances of skin
tones are preferred in both countries, however, Indian skin tones show a wider
variety in lightness than Chinese skin tones, and are on average somewhat darker;
the preferred overall print lightness, quantified by the Munsell N3.5 is highest in
India, followed by China and the US; the orientation of the preferred skin colour
ellipses changes by region; for Caucasian skin tones, hue is the most important
attribute; wider variations in hue were tolerated in China; and individual preferences
for the rendition of skin colour showed much less variation in China than in India
and the US.

2.4.3.11 Summary

Various researches consistently concluded that preferred colour reproduction
tends to produce more chromatic colours than original colours in general, although it
may slightly distort the fidelity. Preferred colour reproduction has optimal chroma
higher than that for natural colour reproduction.

The skin colour category is the most critical prototypical colour region in
photographic colour images. There is a consistent conclusion that preferred skin
colours are different from actual skin colours, and preferred Caucasian skin colour is
more yellowish than real Caucasian skin colours.

A summary of preferred skin colours from various researches is listed in Table
2.4.3.11-1. Some colour values are estimated from plots of authors’ publications.
Parker et al. data are from their presentation slides.

Table 2.4.3.11-1 Mean preferred skin colours from various studies

Authors Sample Obs. Ethnics Viewing Colour
Condition
MacAdam Kodak n/a  Caucasian skin ~ 4000K CIE xy:
1951 print tone, Caucasian  Illuminant 0.434, 0.396
observers

Sanders 1959  Physical n/a  Caucasian skin ~ C llluminant  CIE xy:
people tone, Caucasian 0.441, 0.379
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Bartleson &
Bray 1962

Sanger 1994

Sanger 1994

Sanger 1994

Yano &
Hashimoto
1997

Bodrogi &
Tarczali 2001

Kuang et al.
2005

Kuang et al.
2005

Kuang et al.
2005

Kuang et al.
2005

Parker et al.
2006

Parker et al.
2006

Kodak
print

Print

Print

Print

female
model

CRT
display

CRT
display

CRT
display

CRT
display
CRT

display

TV

TV

11

21

11

48

48

48

48

n/a

n/a

observers

Caucasian skin
tone, Caucasian
observers

Caucasian skin
tone, Japanese
observers

Asian skin tone,
Japanese
observers

African skin
tone, Japanese
observers

Japanese skin
tone Japanese
observers

Caucasian skin
tone, Caucasian
observers

Asian skin tone,
mixed observers

Caucasian skin
tone, mixed
observers

Indian skin tone,
mixed observers

African skin
tone, mixed
observers

Asian skin tone

Caucasian skin
tone

4000K

IHluminant

D65

D65

D65

D65

Background:
CIE Yxy: 37,
0.299, 0.267
D65

D65

D65

D65

D65

D65

CIE xy:
0.436, 0.392

CIE xy:
0.355, 0.351

CIE xy:
0.367, 0.360

CIE xy:
0.387, 0.373

CIEu’v’:
0.2425,
0.4895
CIEu’v’:
0.27,0.47

CIE a*b*:
11.7215

CIE a*b*:
26.7,38.0

CIE a*b™:
23.0, 30.0

CIE a*b™;
18.3, 29.0

YCDbCr:
121.9, 104.6,
157.3

YCDbCr:
157.2, 104.3,
153.1
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Parker et al. TV n/a  African skin D65 YCDbCr:

2006 tone 95.7,111.6,
150.2

Parker et al. TV n/fa  Mixed skintone D65 YCDbCr:

2006 136.3, 105.6,
153.9

To compare results with each other, all colours are adapted to a common white
point, D50, and converted to a common colour space, CIELAB. If an original
adapted white point is not known, the viewing illuminant is assumed. Since
MacAdam and Bartleson and Bray used an illuminant that is very different from
D65 and their adapted white points are not known, their data are not used for
comparison. If a mean preferred skin colour was provided in CIE xy or u’v’ colour
space, CIE Y value is set to be a value so that L* equals 60 for Caucasian and Asian
skin tones or 50 for African skin tone. The skin colour from Bodrogi and Tarczali is
a mean memory skin colour instead of a preferred skin colour. The results are listed
in Table 2.4.3.11-2 and illustrated in Fig. 2.4.3.11-1.

Table 2.4.7-2 Mean preferred skin colours from various studies converted to
CIELAB with D50 white point

Authors Sample Obs. Ethnics a* b*
Sanders 1959 Physical n/a  Caucasian skin  tone, 225 34.8
people Caucasian observers
Sanger 1994 Print 5 Caucasian skin  tone, 7.8 11.2
Japanese observers

Sanger 1994 Print 5 Asian skin tone, Japanese 89 15.1
observers

Sanger 1994 Print 5 African skin tone, Japanese 9.8 18.6
observers

Yano & female 21  Japanese skin tone Japanese 19.0 15.3

Hashimoto 1997 model observers

Bodrogi & CRT 11  Caucasian skin  tone, 23.0 215

Tarczali 2001 display Caucasian observers

Kuang etal. 2005 CRT 48  Asian skin tone, mixed 12.2 22.8

display observers
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Kuang etal. 2005 CRT 48 Caucasian skin tone, mixed 28.7 38.7
display observers

Kuang etal. 2005 CRT 48  Indian skin tone, mixed 20.8 30.6
display observers

Kuang etal. 2005 CRT 48  African skin tone, mixed 20.1 29.5
display observers

Parker etal. 2006 TV nfa  Asian skin tone 19.8 248

Parker etal. 2006 TV n/fa  Caucasian skin tone 14.8 239

Parker etal. 2006 TV nfa  African skin tone 16.3 18

Parker etal. 2006 TV n/fa  Mixed skin tone 16.6 23

The mean preferred skin colours spread in a large chroma range. The
preferred colours obtained from print samples in 1950°s to 1960°s have smaller
chroma, which may be the result of gamut limitation in producing image samples.
The hue angles spread around a small hue range, with a hue centre at about 54°.

40

3 O MacAdam (Caucasian)

[0 Sanders (Caucasian)

35 A Bartleson & Bray (Caucasian)

ml

[ Sanger (Caucasian)
20 “ Sanger (Asian)
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Yano & Hashimoto (Japanese)

25 x Bodrogi & Tarczali (Caucasian)
o Kuang et al. (Asian)
X ¢ Kuang et al. (Caucasian)

520 .
X & Kuang et al. (Indian)

Kuang et al. (African
O . g ( )

15 Parker et al. (Asian)
® Parker et al. (Caucasian)
® Parker et al. (African)

® Parker et al. (Mixed)

10

Fig. 2.4.3.11-1 Mean preferred skin colours from various studies
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Green plants appear to be remembered as more blue green than yellow green.
The memory colour for blue sky is more cyan and of higher purity than the mean for
natural skies. Green plants and blue skies are preferred to be more chromatic than
their memory colours.

2.4.4 Skin Colour Enhancement

Since preferred colour reproduction is to have colour look preferred to human
eyes, the outcome of preference should be determined on the output-referred state.
Say it more specifically, the optimization of the preferred colour reproduction
should aim at the representation medium, such as a LCD display, a printed
hardcopy, SRGB colour space, etc.

To perform special colour processing to a category of memory colours, the
category of colours must be detected, and its boundary must be defined. There are
two basic approaches for memory colour segmentation. One is feature-based and
the other is pixel-based (ignoring spatial information). The feature-based technique
is often used to detect blue sky, green grass, faces, lake/sea water, etc. It may be
used to detect face, and therefore to determine the skin region of the face (Sanger et
al. 1994, Qian 2001, Nallaperumal et al. 2006, Gasparini et al. 2008, Gallagher et al.
2008, Fredembach et al. 2008). It has been used extensively in red-eye removal.
General speaking, this technique is computational expensive.

Detecting object’s memory colours through their colour values is simpler than
feature based approaches. If a colour belongs to the skin tone region, the relative
position or probability of the colour is computed for proper adjustment. The major
drawback of this approach is that it identifies any colour that belongs to a memory
colour region regardless what the object is. For example, the skin colour of a wall is
processed the same way as that of a face. A combination of feature-based and
colour-based detections improves the detection accuracy.

A detail review of skin colour, skin colour detection, and skin colour
enhancement is presented in next three sub-sections.

2.4.4.1 Skin Colour Overview

Each of us is unique in terms of the combination of tens of thousands of
genetically determined characteristics that we possess. However, we clearly have
some traits in common with other people. These traits can be affected by
differential selective pressures and environmental influences.

Humans like to classify and use identity labels for people and things with
which we come in contact. It satisfies our apparent need for a sense of order. In
addition to gender and age, most of us readily classify each other into categories on
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the basis of what we consider to be races. In North America, people usually think in
terms of Black, White, Asian, Hispanic or Latino, and Indian or Native American.
These are all archaic concepts of physical types that have little biological reality.
Academics may use more sophisticated sounding terms for these perceived
biological groupings, such as Negroid, Caucasoid or Caucasian, and Mongoloid.
Fig. 2.4.4.1-1 shows the worldwide distribution of skin colour variation.

' PACIFIC
D\ OCEAN |

- Scale by latitude

307y '
Range of human skin tone colour 0 1,000 2,000 mi

0 1,610 3,220 km

Darkest Lightest © 2000 Encyelopadia Britannica, Ine,

Fig. 2.4.4.1-1 Worldwide distribution of skin colour variation (Encyclopaedia
Britannica, Inc.)

Human skin can be divided into two main regions, the epidermis and the
dermis. The dermis is attached to the underlying hypodermis (see Fig. 2.4.4.1-2).
The epidermis is the most superficial layer of the skin. The dermis is the inner layer
of the skin. Hypodermis is a layer connects the skin to deeper structures. It is not
part of the skin. The reflectance of the skin at various wavelengths is mainly
determined by the chromophores present in the various layers of the skin, which
includes melanin, keratin, carotene, collagen, and haemoglobin (Angelopoulou 1999
and 2001). Light incident on skin must first encounter the epidermis. The melanin
in the epidermis acts as a filter whose transmission rate increase with wavelength.
The light that is not absorbed by melanin penetrates the epidermis and reaches the
dermis. In the dermis, the hemoblobin in the blood vessels causes selective
absorptions.  Heavily pigmented skin increases the amount of melanin which
absorbs most of the light in the epidermis, allowing a much smaller percentage of
the incident light to reach the vasculature of the dermis (Angelopoulou 2001). The
spectral characteristics of difference races or different individuals are due only to
variation in the amount of melanin present (Sun and Fairchild 2002).
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Fig. 2.4.4.1-2 A diagram of human skin (created by Crystal Mason, release under
GNU Free Documentation License)

2.4.4.2 Skin Detection

When developing a system for skin colour detection and skin colour
enhancement, three main problems are faced: what colour space to be used; how to
model skin colour distribution; and how to adjust skin colours. Each of these three
aspects is discussed in following subsections.

2.4.4.2.1 Colour Spaces for Skin Colour Modelling

In the scene-referred state, if the image capturing condition is known, the
parameters of the capturing condition may be used to guide how to decide a skin
colour region. The higher the confidence of the parameters (illuminant and other
lighting parameters), the smaller a skin colour region can be determined for more
accurate skin colour detection.

To detect skin colours in the output-referred state, a larger colour region
should be defined to cover skin colours captured under different lighting conditions
and with different sensors. Because the white balance may be incorrect or
inaccurate, the skin colours may occupy slightly different regions. Colour editing or
various colour enhancement may shift skin tones. For various reasons, a skin colour
gamut larger than that in the scene-referred state should normally be used for the
skin colour detection of general output-referred images. If the capturing condition is
fixed or is known, the skin colour region will be confined in a smaller region.
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Many colour spaces (e.g. RGB, r-g, YCyC;, HSV/HIS/HSL, YUV, YIQ,
L*u*v*, L*a*b*, etc.) have been used to define a skin colour region for skin colour
detection, face detection, and skin colour enhancement (Kakumanu 2007).

2.4.4.2.1.1 RGB Colour Space

Due to the fact that colour images are displayed in an RGB colour space, an
RGB colour space may be used to detect skin colours efficiently. For general RGB
images with an unknown RGB colour space, SRGB colour space may be assumed.
If RGB colour space is treated as device-dependent, the parameters for the skin
region must be modified for each RGB colour space. Gasparini et al. (2008) used
RGB colour space for binary classification of skin pixels. Choudhury et al. (2008)
applied RGB colour space in forensic investigations to search and identify
pornographic images. Jones et al. (2002) developed a statistical colour model using
RGB colour space to detect skin colours.

2.4.4.2.1.2 r-g Colour Space

To remove the effect of brightness, an RGB colour space may be normalized
as an r-g chrominance space:
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Fig. 2.4.4.2-1 Computed skin loci for a Sony digital camera
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As a 2-D space, r-g chrominance space is efficient in computation, and it is
approximately invariant to changes of surface orientation relative to the light source.
The r-g colour space has been widely used for illumination detection and skin/face
detection in scene-referred stage (Martinkauppi 2002). Fig. 2.4.4.2-1 (Martinkauppi
2002) shows the r-g gamut of skin colours (the red area) computed with the data
captured using a Sony digital camera.

The r-g colour space is also used for skin/face detection in the output-referred
stage. Qian (2001) applied r-g space to generate a binary map for face detection.
Because of the high efficiency in using the r-g chrominance space, this approach can
be used for real-time face detection for video and TV. Boussaid et al. (2003)
applied r-g colour space on the on-chip skin detection for colour CMOS imagers.
Almohair et al. (2007) used a Gaussian model for skin detection in r-g colour space.
The r-g colour space was widely used for face detection (Gasparini 2008, Zarit
1999).

The ratios between two channels of RGB colour space may be directly applied
for skin colour detection. The basic idea is similar to using r-g chrominance space.
Brand and Mason (2000) used the ratio of R/G to determine skin colours (with
additional ratios of R/B and G/B to improve accuracy).

In summary, representing skin gamut in the r-g colour space is efficient
(downgrade colour space from 3-D to 2-D), simple, and compact. A basic
assumption of using r-g colour space for skin colour detection is that the skin locus
is luminance independent in r-g space. It has been found that the accuracy of skin
colour detection is compromised based on this assumption (Hsu et al. 2002, Kovac
et al. 2003).

2.4.4.2.1.3 YCuC, Colour Space

YC,C; is a colour space that is rotated from a nonlinear RGB colour space so
that Y approximately represents brightness, and C, and C; represent chrominance
coordinates. The colour space is used for image and video compression (JPEG,
JPEG2000, and MPEG). Many hardware/firmware manipulates RGB images in
YCpC; colour space. This makes YC,C; convenient and efficient to use.
Furthermore, explicit separation of colour signals into luminance and chrominance
makes it attractive for skin colour modelling.

The official YC,C; colour space is sometimes referred to as the CCIR 601
colour space. The recommendation 601 specifies 8-bit (i.e. 0 to 255) coding of
YCyC:, whereby the luminance component Y has an excursion of 219 and an offset
of +16. This coding places black at code 16 and white at code 235. In doing so, it
reserves the extremes of the range for signal processing foot-room and headroom.
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On the other hand, the chrominance components C, and C; have excursions of +/-
112 and offset of +128, producing a range from 16 to 240 inclusively. Similar
colour spaces include YUV and YIQ. YC,C, is a digital colour system, while YUV
and Y1Q are analog spaces for their respective PAL and NTSC systems.

The YCyC, colour space used in different literatures may be slightly different.
It may be the rotation of SRGB to sYCC with personal scaling range.

Chai et al. (2000) applied a Bayesian approach for skin colour classification in
YC,C, colour space. Hsu et al. (2002) modified YCyC; such that chrominance of
skin colours with the same C,C, were about the same for different luminance, i.e., to
make the skin colour loci to be Y-component independent. Phung et al. (2002)
modelled skin colours by a set of three Gaussian clusters, each of which was
characterised by a centroid and a covariance matrix. Park et al. (2006) applied
YC,C, colour space to model the distribution of skin colour in the Cp-C; plane, in
which the Mahalanobis distances of skin colours to the skin centre were used to
compute the distribution of skin colours using a bivariate Gaussian probability
density function. To remove the luminance (Y-coordinate) dependency on the
decision for the skin colour detection, Kovac modified YC,C, colour space so that
the 2-D chrominance ellipse of the skin colour region was about the same for
different Y (Kovac et al. 2003). Many other literatures used YCyC; colour space for
skin colour detection or face detection (Zarit 1999, Gasparini 2008, Menser and
Wien 2000, Mahmoud 2008).

2.4.4.2.1.4 Perceptually Uniform Colour Spaces

CIE L*a*b* and L*u*v* are perceptually uniform colour spaces. The Jab
coordinates based on CIECAMO2 colour appearance model is reported to be
reasonably uniform (Luo et al. 2006). Colour characterization and gamut mapping
are mostly performed in a uniform colour space. If the skin colour detection is to be
used for colour enhancement, a uniform colour space may be more appropriate.

Cai et al. (1998) used CIE L*a*b* colour space to determine the likelihood of
a colour to be a skin colour. Kuang et al. (2005) studied the colour preference in
photographic colour reproduction for skin tone, green, and blue sky under CIE
L*a*b* colour space. They concluded that the capturing illuminant and the image
content was an important factor that influenced the colour preference of human skin
and grass. Braun (2006) performed memory colour enhancement in CIE L*a*b*
colour space for colour mapping and ICC profiling. Yang and Ahuja (1998) applied
the u*-v* coordinates of CIEL*u*v* colour space to detect human faces.

2.4.4.2.1.5 Other Colour Spaces
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Converting a colour signal to luminance-chrominance coordinates, one
separates the colour signal into a luminance and two chrominance coordinates. This
generally simplifies the colour processing. Many other luminance-chrominance
colour spaces (e.g. HSV, HSL, HSI, TSL) may be used for skin colour detection
(Zarit 1999, Sigal et al. 2000, Jordao et al. 1999, Birchfield 1998, Huynh-Thu et al.
2002, Tomaz et al. 2003, Gasparini and Schettini 2006).

2.4.4.2.1.6 Discussion

Zarit et al. (1999) investigated five colour spaces (CIE L*a*b*, Fleck HS,
HSV, r-g, and YC,Cy) for skin detection. Their result shows that the goodness of a
colour space depends on the implementation.

Albio et al. (2001) theoretically proved that “separability of the skin and no
skin is independent of the colour space chosen”. For every colour space, there exists
an optimum skin detector scheme such that the performances of all these skin
detector schemes are the same. However, some colour spaces may be easier to
optimize while others are more difficult to optimize. Therefore Albio’s conclusion
may be theoretically correct but practically incorrect.

Shin et al. (2002) evaluated skin detection using RGB colour space and other
eight colour spaces: normalized RGB, CIE XYZ, CIE L*a*b*, HIS, SCT, YC,Cy,
YIQ, and YUV, and concluded that the RGB colour space provided the best
separability between skin and non-skin.  However, this conclusion may be
unreliable, since it only proves that their modelling in RGB colour space is better
than in other colour spaces. The performance for difference colour spaces highly
depends on the optimization or the training of parameter sets.

Lee and Yoo (2002) developed an elliptical boundary model for skin colour
detection. They tested the model using six chrominance spaces (ignoring the
luminance channel): r-g, CIE a*b*, CIE xy, CIE u*v*, C,C,, and 1Q (IQ of YIQ).
The model “gives the best performance in every chrominance space” compared with
the single and mixture Gaussian models. One short coming of the model is that it
assumes the skin boundary is luminance independent. Expanding the model to adapt
the shape of ellipses to different luminance should further improve the performance
of the model.

A good colour space for skin colour detection should well separate skin and
non-skin colours. Some researchers modified existing colour spaces to improve the
separation of skin and non-skin colours. However, modifying a colour space with
such an approach distorts the uniformity of the colour space and therefore is not
appropriate for skin colour enhancement.
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In summary, the RGB colour space seems to be more suitable for fast detection
on RGB images. Using a luminance-chrominance colour space for skin colour
detection reduces the interaction between luminance and chrominance, therefore
generally simplifies the process. For this reason, YC,C, and r-g colour spaces are
widely used for skin colour detection. Using a uniform colour space (CIE L*a*b*,
L*u*v*, or CAMJab) may improve the skin colour detection rate, however, the
computation efficiency may be compromised. Skin colour detection using
chrominance (e.g. rg, a*b*, or u*v*) ignoring the luminance-dependency simplifies
the algorithm and improves the efficiency, but the detection rate may be lower.

2.4.4.2.2 Skin Decision Rules

Most of skin colour detection methods are aimed for face detection. The rules
to determine skin colours for face detection and for skin colour enhancement may be
different. However, it is no doubt that there are similarities and that methods for
face detections would be useful for skin colour enhancement.

Fig. 2.4.4.2-2 shows an example of the skin colour distribution under two
different colour spaces (Lee and Yoo 2000). The Compaqg skin database (Jones and
Rehg 1999) was used to generate the colour distribution. Lee and Yoo selected
2,000 skin images and 4,000 non-skin images from the database to compute
histograms with 400x400 bin resolution. The distribution of skin densities looks like
a normal distribution. Fig. 2.4.4.2-3 shows a side view of Fig. 2.4.4.2-2(a), where N
denotes non-skin density peak and S denotes skin density peak. The figure show the
peak of the skin skewed toward the grey point.

(a) (b)

Fig. 2.4.4.2-2 Skin chrominance histograms in a) r-g and b) CIE-u*v* colour
spaces. The cross mark denotes the grey point. (Lee and Yoo 2000)
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Fig. 2.4.4.2-3 A side view of Fig. 2.4.4.2-2(a), where N denotes non-skin density
peak and S denotes skin density peak. (Lee and Yoo 2000)

2.4.4.2.2.1 Explicitly defined skin colour region

One method to define the skin colour region is explicitly defined the range in a
specific colour space. For example, Kovac et al. (2003) determined the skin region
in RGB colour space under D65 illuminant as shown below:

R > 95, G > 40, B > 20;
Max{R, G, B} - min {R, G, B} < 15; and
IR-G|>15R>G,R>B.

Chai et al. (1999) used C, and C; thresholds to determine skin colours in
YC,C; colour space:

77 <=Cp<=127and 133 <=C,<=173.

Phung et al. (2002) used slightly different ranges for skin colour detection in
Y CyC; colour space:

75 <= Cp <= 135 and 130 <= C, <= 180.
Following ranges was used for skin colour detection by Mahmoud (2008):
Y >80, 85 < C, < 135, 135 < C, < 180.

Gomez and Morales (2002) applied skin colour decision rules in r-g colour
space:

r/g>1.185,r(1-r-g)>0.107,and rg > 0.112.
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Obviously, applying chrominance decision rules (CyC; or rg) do not take the
luminance into account. To consider the range dependency on luminance, one
approach is to modify the chrominance coordinate so that the space is invariant of
luminance. Hsu et al. (2002) modified C,C; in YC,C; colour space, and defined skin
colours in a modified C,C; ellipse that is not dependent on luma Y. This is achieved
by fitting piecewise linear boundaries to the skin cluster using

Ci(Y) K, <Y <K,
Clpr = (Ci (Y)_Ei(y)).ww—ziY)JrEi(Kh) else

where i represents b or r, and

(Y _Ymin ) ’ (VVC- _WLCi)
+ i

WL, <K,
W — KI _Ymin
G (Ymax _Y)'(\NCi _WHCi)
WHCi Y _ K h
max h
o (Ki-Y)-(118-108)
Cb (Y) — KI_Ymin
o, (=K (18-108)
max _Kh
154+ &K _YK)'%M_M“) Y <K,
C_r(Y) — ~ 1~ "min ~
154+ &JGT 132) v.k,
max  '“h

with W¢p=46.97, WLcp=23, WHcp=14, W¢,=38.76, WL=20, WH¢=10, K=125,
and K;=188. These parameters are estimated from training samples of skin colours.
Ymin @aNd Ymax in the YC,Cy, colour space are 16 and 235, respectively. An elliptical
model for the skin colours in the transformed C’,C’, space is described as

(x—ec)? (y—ec,)’
a2 b

X | | cos(d) sin(0) C',—c,

y| [-sin(@) cos@®)|C' —c,
where ¢, =109.38, ¢,~=152.02, 6=2.53 (in radian), ecx=1.60, ecy,=2.41, a=25.39, and
b=14.03 are computed from the skin cluster in the C*,C’; space.

1

Kovac et al. (2003) applied the same approach with slightly different
piecewise linear fitting parameters.
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The obvious advantage of these methods is its simplicity of the decision rules
that leads to rapid constructing a classifier. The difficulty is to find a good colour
space and adequate decision rules empirically.

2.4.4.2.2.2 Non-parametric skin distribution modelling

The key idea of the non-parametric skin colour modelling is to estimate skin
colour distribution from the training data without deriving an explicit skin colour
model (Vezhnevets et al. 2003). The process is sometimes referred to as the
construction of skin probability map (SPM).

A colour space may be quantized to a number of bins, forming a 2D or 3D
histogram that is formed as a lookup table (LUT). Each bin stores the number of
times this particular colour occurred in the training images. The histogram may then
be normalized and converted to a discrete probability distribution:

Puin(C) = Norm

where skin[c] is the value of the histogram bin corresponding to colour vector c, and
Norm is the normalization coefficient. Pgin(c) can be stored in a LUT that
constitutes the likelihood of colours corresponding to skin.

This method has been used for face detection and tracking by many
researchers (Chen et al. 1995, Zarit et al. 1999, Brand et al. 2000, Sigal et al. 2000,
Gomez 2002).

Psin(c) is actually a conditional probability P(c|skin), a probability of
observing colour c, knowing that a skin pixel is seen. Another conditional
probability P(c|-skin), the probability that a given colour belongs to non-skin class,
can also be computed. Using Bayes maximum likelihood approach, a given image
pixel can be classified as skin, if

P(c| skin) S

P(c|-skin)

where 0 <= p <=1 is a threshold value which can be adjusted to trade-off between
true positives and false positives using a ROC (receiver operating characteristics)
curve calculated from a training data set.

Another appropriate measure for skin detection would be P(skin|c), the
probability of being a skin pixel given a colour value c. The Bayes rule to compute
this probability is:

P(c| skin)P(skin)

P(skin|c) = P(c | skin)P(skin) + P(c | —skin) P(=skin)
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where P(c|skin) are P(c|-skin) are directly computed from skin and non-skin colour
histograms. The prior probability P(skin) and P(-skin) can be estimated from the
overall number of skin and non-skin samples in the training set (Jones and Rehg
1999, Zarit et al. 1999, Chai et al. 2000)

Brown et al. (2000) applied Self-Organizing Map (SOM), which is an
unsupervised artificial neural network, to skin detection.

In summary, the advantages of the non-parametric methods are fast in training
and usage, and theoretically independent of the shape of skin distribution (it is not
required for considering the shape of the skin colour cluster as a colour space is
selected). The disadvantage is that a large storage space may be required. To
reduce the amount of memory, a coarser sampling in the colour space must be used.

2.4.4.2.2.3 Parametric skin distribution modelling

It may be assumed that skin has a colour centre and skin colours spread around
the centre due to different skin colours, various capturing conditions, and colour
processing variations. The skin colour distribution may be described with a
Gaussian like function.

Single Gaussian Model (SGM)

A multivariate normal distribution of a D-dimensional random variable X is
defined as:

1 1
N(X1,2) = —————exp| — = (X— )" (X~
(X 1, %) PECHIT Xp{ o (x=a) 2 u)}
where 1 is the mean vector and X the covariance matrix of the normally distributed
random variable x. The model parameters are estimated from the training data using
the following equations:

1
H=—NXC
n i=

1 n
T=——3(c - u)(c;— )’
n-1it

Either the P(c|skin) probability or the Mahalanobis distance from the ¢ colour
vector to mean vector x can be used to measure the similarity of the pixel with the
skin colour (Hsu et al. 2002, Yang and Ahuja 1998, Menser and Wien, 2000,
Almohair et al. 2007, Park et al. 2006).

Gaussian Mixture Model (GMM)

SGM assumes a unimodal distribution which may cause intolerable error in
estimation and discrimination. A better approximation can be obtained when the
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values are generated by one of several randomly occurring independent sources. In
this case the distribution function is a multimodal one which can be estimated using
a finite number of mixed Gaussian or a Gaussian mixture model.

There are several facts that support the model of mixed Gaussian functions.
The colour distribution is influenced by different lighting conditions or object
movement.  Different cameras, camera settings, or illuminants may produce
different colour values. Human skin colours differ from person to person.

The GMM probability density function can be defined as a weighted sum of
Gaussian as:

P(GO) = Za G, @)

where q; is the weight of i component. The weight can be interpreted as a priori
probability of a random variable in the i group. G is a Gaussian probability density
function with parameters p and a. In addition, x is a sample input and N is the
number of components. The parameter list of the GMM probability density function
is given by:

0{ai, W, oi} fori=1,...,N.

Estimation of model parameters is performed using a well known iterative
method called Expectation Maximization (EM) which assumes that the number of
components is known before hand (Yang and Ahuja 1999, Jones and Rehg 1999,
Terrillon et al. 2000, Huynh-Thu et al. 2002, Hassanpour et al. 2008).

The choice of number of components, N, is quite important. While too low of
number N may lead to poor fitting, too high a number may over-fit the data (fit the
noise). The number of components used in literatures are from 2 (Yang and Ahuja
1999) to 16 (Jones and Rehg 1999).

Caetano et al. (2002) evaluated SGM and MGM. They concluded that: first,
GMM behaves similarly over the whole range of the ROC curve; second, although
the performance of SGM is similar to those of GMM for low false positive rates, it
is significantly decreased for high true positive rates. The conclusion suggests that
GMM may be more appropriate than SGM when a high correct detection rate is
needed.

Elliptic Boundary Model

Using the single Gaussion model to detect skin, the boundary of each equal
probability distribution locus is an ellipse, and the centre colour (the skin colour
with the highest probability) is at the centre of the ellipse. If an elliptic model is
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considered, there will be no restriction that the skin colour with the highest
probability to be in the centre.

The mixed Gaussian model provides more freedoms for modelling the skin
colour region. From the human perception point of view, the shape of each equal
probability distribution locus should be smooth. Yet, this may be a difficult task for
multiple Gaussian distributions. Nevertheless, a smooth curve fit of each equal
probability distribution locus should still be an elliptic shape.

To develop a uniform colour space or a perceptual colour difference model,
perceptual tolerance ellipses are often used to check the uniformity or goodness of
the model (Macadam 1942, Wyszecki and Fielder 1971, Luo and Rigg 1986). The
human perceptual colour tolerance to a colour in a perceptually uniform colour
space can be modelled with an elliptic shape. The better the modelling of the
uniformity of a uniform colour space correlate to human perception, the closer the
tolerance ellipses is to spheres. Based on this observation, the colour tolerance to
skin tone in a perceptually well correlated colour space should be an elliptic shape.

Yendrikhovskij et al. (1999) suggested that the colours of an object category
were distributed with a probability density function around its prototypical colour.
Based on this opinion, the single Gaussian model should be a perfect fit for skin
colours. Due to various physical factors (illuminants, camera characteristics, human
colour editing, etc.), the skin colour distribution deviates from the Gaussian
distribution.  However, the boundary of equal-distribution boundary should
approximately be an elliptic shape.

By examining skin and non-skin distributions in six colour spaces, Lee and
Yoo (2002) concluded that skin colour cluster, being approximately elliptic in shape
is not well approximate by a SGM. Due to the asymmetry of the skin cluster with
respect to its density peak, the usage of the symmetric Gaussian models may lead to
high false positive rate. They proposed an “elliptical boundary model” which is as
fast and simple in training and evaluation as SGM, gives superior detection results
on the Compag database compared to both SGM and MGM.

Kim et al. (2005) applied the elliptical boundary model for preferred skin
colour reproduction. A set of skin colour regions in different luminance were
modelled using ellipses in u’-v’ chrominance space, and a set of corresponding
ellipses were modelled for preferred skin colours. The colour adjustment was
performed based on adaptive affine transform.

In Summary, SGM, MGM, and the elliptical model all operate in chrominance
plane, ignoring the luminance information. Although the mathematical models to
train parameters ignore the luminance information, the final parameters may be
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tuned to fit for different luminance levels. Since the goodness fit depends on the
shape of the skin colour cluster, the model performance varies from colour space to
colour space (Terrillon et al. 2000, Lee and Yoo 2002). The SGM should fit well
for strict physical conditions (fixed lighting condition, single camera and setting,
etc.). Yang et al. (1998) has shown that the skin colour distribution of a single
person under fixed lighting conditions in a normalized RGB space obeys Gaussian
distribution. In reality, general skin colour distribution has asymmetric distributions
that cannot be fitted with SGM. Employing mixture of Gaussians or several
Gaussian clusters provides the flexibility to fit data with asymmetric distributions.
Observing that the clouds of skin colours in chrominance spaces are of nearly
elliptic shape, the elliptical boundary model should be promising.

2.4.4.2.2.4 Multispectral Approach

Storring et al. (2004) used a combination of standard RGB bands and three
near infrared bands to detect human skin. With simulations under changing
illumination conditions, their result shows an improved robustness over pure RGB
based approaches. This approach may be generalized to detect the skin colours of
multispectral images.

2.4.4.2.3 Summary of Skin Detection

Skin colour detection significantly depends on the training data. The aim of
the skin colour detection determines how training data to be collected. For example,
if the skin detection is under a specific lighting condition, the training data set
should be collected under the same lighting condition. If the skin detection is for
general purposes, the training data should be collected from various sources that
cover varieties of capturing conditions and skin types.

The skin colour modelling depends on factors, such as accuracy, efficiency,
and hardware capability. In general, using a simple explicit defined model is fast,
hardware cost is low, yet the accuracy may be compromised.

The histogram based approach is fast in training and usage. Due to the table
based property, it is independent of the shape of the skin colour distribution. The
size of a LUT can be determined based on the requirement of accuracy, and
affordability of the memory usage. The probability of a colour that is not located on
a node may be quantized to the closest node or be computed through multi-
dimensional interpolation.

SGM may be accurate enough under controlled environments, such as under a
specific lighting condition and using a specific type of camera. For general
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purposes, MGM may be used to improve the modelling accuracy in the expenses of
more complex training process and higher computation complexity.

Due to the asymmetry of the skin colour cluster with respect to its density
peak, the usage of symmetric Gaussian models may lead to high false positive
detection rate. An elliptic boundary model may fit training data more accurately and
may be easier to train, and it is more efficient in computation.

The goodness of a skin detection model is often evaluated using the true
positive (TP) and false positive (FP) detection rates. Increasing the TP detection
rate is generally at the cost of increasing the FP detection rate. The relationship
between TP rate and FP rate is often drawn with a curve, called Receiver Operating
Characteristics (ROC) curve. Fig. 2.4.4.2-4 shows an example. The horizontal axis
is FP detection rate, and the vertical axis is TP detection rate. The curve is very
helpful for determining a proper detection threshold.

ROC curves for different color spaces
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Fig. 2.4.4.2-4 ROC curves for different colour spaces (Albio et al. 2001)

There are a number of other skin detection methods that are not discussed here,
because they are less relevant for colour adjustment. For example, Gomez (2002)
constructed new colour spaces to cluster skin colours such that skin colours and
non-skin colours are better separated. The method improves the skin detection rate.
However, the colour space is distorted, which is not relevant for colour adjustment.
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2.4.4.2.4 Discussion of Skin Detection Relevant to Skin Colour Reproduction

Most of skin colour detection methods discussed herein is used for face
tracking. Typically, a colour space is selected, and a skin decision rule to separate
colours as skin and non-skin colours is applied. A boundary must be determined to
separate skin and non-skin.

A colour space that performs well for skin detection may be impropriate for
colour enhancement. Important criteria of a good colour space for skin detection
are: 1) the shape of the skin cluster can be easily formulated; and 2) the skin colours
and non-skin colours are well separated. Important criteria for skin colour
enhancement may be: 1) the shape of the skin colour cluster can be easily
formulated; and 2) the colour space is perceptual uniformed.

The skin detection for face tracking sets a clear boundary to determine skin
and non-skin. In skin colour enhancement, a skin likelihood value is computed for
colour adjustment. There is no need to set a clear boundary for skin colour
enhancement.

The method using skin probability distribution LUT may be a potentially
useful method for skin colour adjustment. Smaller LUTs may be built if memory
usage is limited, and probabilities may be computed through interpolation.

SGM is simple and is accurate under a controlled environment. If faces are
detected in a single photo, it should be very accurate for modelling skin colours of
one or few faces in the photo. For such reason, it may be useful for face detection
aided skin colour enhancement.

Although the elliptical boundary model has the advantage over other skin
detection models, it models skin colours in chrominance coordinates ignoring the
luminance channel. Expanding it to model skin colours in 3-D colour space should
further improve skin colour detection accuracy.

The shape of the skin colour cluster depending on luminance is not taken into
account in many skin detection methods for face detection and skin colour
enhancement. It has been found that the skin colour region in chromaticity space is
luminance (or lightness) dependent. Ignoring the luminance-dependency, both face
detection and skin colour enhancement suffer due to lowering accuracy in skin
detection. To improve the accuracy for skin colour modelling, the luminance
dependency should be further investigated.

The illuminant has a large effect on the skin colour locus. If the illuminant is
known, the skin colour locus for the specific illuminant can be use for skin detection
(Storring and Graunum 2002). On the other hand, if the illuminant is unknown but a
skin region is detected (e.g. a face is detected), the illuminant can be derived
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through analysing the skin locus (Martinkauppi 2002). Besides using skin detection
for illumination detection and face recognition, the skin colour detection can be used
for the colour adjustment beyond the skin colour adjustment. For example, it can be
used for auto-exposure and auto-focus control such that skin tone is optimally
captured in digital photography (Quan et al. 2005). It can be used to improve the
white balance and to optimize the global tone curve or local contrast.

2.4.4.3 Skin Colour Enhancement Algorithms

Skin colours are different under different illuminant conditions. As flesh tones
are captured with a digital camera, the raw RGB signals are recorded. If a digital
camera detects the illuminant accurately, chromatic adaptation will be performed
correctly to normalise the white point of the image and to produce an output-referred
image with proper white balance. The output image is normally display preferred
and it is mostly in SRGB colour space, in which D65 illuminant with IEC61966-2.1
(http://webstore.ansi.org/) specified viewing condition is assumed. In a professional
mode, images may be encoded using Adobe RGB colour space. Except for working
on the raw RGB stage, the illuminant detection and chromatic adaptation have
mostly been applied. However, the illumination detection may be incorrect or
inaccurate, and needs to be fine tune in skin colour enhancement.

To enhance skin colours, skin colour must be detected. A skin colour
probability model or a face detection method may be used for skin colour detection
and to compute a strength for skin colour adjustment. A following step is to morph
skin colours to a preferred colour region.

Lee and Ha (1997) proposed a flesh tone enhancement approach for real-time
TV display. Mongolian, Negroid, and Caucasian skin tones were detected based on
the hue angle of each colour. The brightness and saturation of a skin colour was
adjusted toward its ideal colour centre, and the hue angle was not adjusted.

Braun (2006) developed an algorithm that squeezes skin colours toward a
preferred point. Squeezing is used rather than rotation since the input skin hue is
unknown. The squeezing is applied to entire images to improve skin tones without
the need for segmentation. It affects objects that are not skin but are with skin-
colours. It was found that the colour modification of objects with skin colours was
not objectionable since people focused mainly on colour adjustment of skin objects
in images. The best results were found when the preferred point was specified by its
CIELAB hue angle and chroma, and squeezed only in hue, but over a limited
chroma range. The formula for the adjustment is shown below:

Hout = Hin —AH "Wy - We
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where AH = Hin — Hprer, Wc iS given by a Gaussian, and wy is given by the addition
of two Gaussian functions as shown below:

K- Wtemp
wy, =
max Wtemp
H;,-M 2 H;,+M 2
in— int+
af s of ren)
sigma sigma
W, e +e

Hprer=45, Cpref = 25

Hsigma = 20, Csigma = 10

M=30,K=0.6

Images enhanced by this algorithm were reported to result in equal or
improved rendition over the unadjusted originals.

Kim et al. (2005) developed a preferred skin colour adjustment method based
on adaptive affine transform. The RGB signals of the input video are first

transformed to Yu’v’. Skin colours are defined within an ellipse as given below:
[Au'cos @, + Av'sin g, | .\ [AV'cos 6, — Au'sing, [

A’ B,’
In the equation, Au’ =u’-u’s and Av’ = v’-v’s. The (u’s, v’s) IS the centre of the skin

colour ellipse. 05, A;, and Bs are the rotation angle, the major axis length, and the
minor axis length of the skin colour ellipse, respectively.

<1

A preferred skin colour region is noted with coefficients: the centre is (u’y v’p),
the rotation angle is 6y, and the major and the minor axes are A, and B,. An input
skin colour is converted into a preferred skin colour by the following equation

[u'p v, 1 =M, [u, v, 1T
where M+ is a 3x3 matrix for the skin colour transformation which is decomposed

into five matrices as below:
IvlT = M OTransl\/I Oratl\/I Aff M IRot M

ITrans

where,
1 0 u cosd, sing, O
M ITrans — 01 _Vls , M IRot — —sin es Cos 95 0,
00 1 0 0 1
u', cosgd, sing, 0

Morans=]0 1 =V' |, Mggy =| —sin@, cosd, 0],
00 1 0 0 1
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Here, Mitrans is @ matrix to translate the centre (u’p, v’p) of the skin colour
ellipse to the origin and Morrans IS @ matrix to convert the origin to the centre of the
preferred skin colour ellipse. Mgt is @ matrix to rotate the skin colour ellipse to 0°
and Morot IS @ matrix to rotate the ellipse to the angle of the preferred skin colour
ellipse. Magr is an affine transform matrix to rescale the skin colour area to the
preferred skin colour area.

The colour adjustment based on these math formulae is simple but is not
smooth for the transition from original skin colours to preferred skin-colours due to
boundary issues.

Park et al. (2006) proposed a method to optimize memory colours in YC,C;
colour space for the colour reproduction on digital TV. Because images may be
captured under various conditions, they suggested that “the skin colour boundary for
practical purposes should be large enough to cover skin colours taken under various
illuminants but small enough to avoid unintended colour transformation of non-skin
areas in an image; and preferred skin colours should be included within the skin
colour boundary”. The skin colour data were collected from digital images in Corel
Gallery 1,000,000. The 20x20 pixels of colour patches were taken from the skin
area in these images. A total of 1196 skin samples were taken, including 365 from
Oriental, 627 from Caucasians, and 202 from blacks. How these images were
captured was unknown. It was assumed that various illuminants and capturing
conditions were covered. They found that the skin colour distribution was
Gaussian-liked. The skin colour distribution was therefore modelled with a
bivariate Gaussian probability density function, f(Xx, y):

f(0y)= o) 3ax)|

270,0, (1— p2)1

where x and y represent Cp and C;, px and py are the mean values of x and y, oy and
oy are the variances of x and y, and

ootz
P o, o, o, o,

is the squared Mahalanobis distance.

Park et al. found that the distribution among skin tones of different skin types
was very similar except for the average luminance. However, the distributions of
luminance were overlapped among skin types. They decided not to distinguish skin
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types for colour transformation. The squared Mahalanobis distance, q(x, y), was
used to determine the skin boundary. A small region with a boundary of a constant
Mahalanobis distance around the centre (py, py) was determined as the prototypical
colour region of the skin object. A larger region with a boundary of a constant
Mahalanobis distance around the centre (jiy, py) was determined as the skin colour
region.

Fig. 2.4.4.3-1 shows a prototypical colour of skin object M; an area, C, that
belong to a “constant interval” of the skin object (the orange region); and an area
detected as skin colours, A (grey + orange regions). According to Park et al., a skin
colour that is within the orange region C is an ideal skin colour and therefore is not
adjusted; a colour that is outside the boundary of A is not belong to a skin colour
and therefore is not adjusted either; and a skin colour P is pushed closer to the ideal
skin colour region C. A line is drawn between P and M, and P is reproduced as P’,

which is moved closer to the prototypical colour boundary, M’.

Fig. 2.4.4.3-1 Relationship among prototypical colour, constant interval, and
boundary of a memory colour

Park’s approach assumes that the preferred skin colour centre is the centre of
the skin colour distribution, which is not true in reality.

Quan and Jin (2008) presented a method for memory colour based preferred
colour reproduction. They applied following simple rules to segment green foliage,
skin tone, and blue sky in YC,C; colour space:

Green: Cy <C, & Cp,>10*C,
Skin: Cp <-0.1 *C, & C, > -1/0.8*C, & R < 1.75*G



-77 -

Sky: Cp < -1/0.4*C; & C, > -0.6*C,

A nonlinear curve is used for contrast and saturation adjustment, and a tone
mapping curve is applied to adjust the tone range. Following non-linear curve is
used for contrast and saturation adjustment:

y=a"7x 0<x<a;
y=1-(1-a)7@1-x) a<x<Ll

where a is a transition value and v is to control the nonlinearity of the curve.

Saturation adjustments in their experiment are: a = 0.2; y = 2.0 for foliage
green cluster, y = 1.5 for sky blue cluster, y = 1.0 for skin colour cluster, and y =
1.25 for all other colours that do not belong to these three memory colour clusters.

To stretch pixel values to the entire tone range, a confident black level (x0)
and a confident white level (x1) are calculated by analysing the histogram of the
image. Then the pixel range in the range of [x0, x1] is expanded to the full range of
[0, 1] through following transformation in order to use the above nonlinear curve:

a- X0+ x1

2
x'= min{max {x — x0,0}/(x1 - x0),1}

vy is set to 1.2 in their experiment for contrast enhancement.

Their findings are: 1) for people scenes, high contrast decreases image quality
and effect of saturation is small; 2) for non-people scenes, high contrast enhances
image quality significantly and medium saturation is favoured compared to low and
high levels; 3) for high light level scenes where noise is not an issue, enhancing
contrast is in general good; 4) for low light level scenes, the treatment in colour and
tone has only moderate effect on perceived image quality, because the scenes lack
memory colours and tradeoffs need to be made between colour saturation, contrast,
shadow details, and noise.

Nachlieli et al. (2009) presented an algorithm that used face detection and a
global skin colour model to coarsely discriminate skin from non-skin pixels on
faces. A statistical analysis of skin colours in each face was used to refine
parameters of the skin colour model. The per-face colour models were used to
compute the final skin probability map. The colours of skin pixels were shifted
towards a “memory prototype” skin colour, while the magnitude of the shift was the

function of the pixel’s likelihood belonging to the skin tone area.

Initially, a Gaussian probability function for skin detection in LCH colour
space is constructed as
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(I )2+(C—ﬂc)2+(h—#h)2]
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The skin probability map is adjusted based on the relative location of each
pixel on a face map.

Ignoring the lightness dependency, the skin likelihood function of each person
becomes:

[ (c=pe)? (h—p)?
- 202 - 207
P(skin|c,h)=Z-e ¢ "

u and o of each person is computed from the person’s probability map.

The (a*orig, b*orig) Of @ skin colour in L*a*b* space is corrected by following
formulae:

a ., = a;ig +Al akP(a* b’

orig? ~orig
*
bnew = b

*

orig

TN C

orig? ~orig

where P(a*orig, b*orig) 1S the pre-calculated skin likelihood of this pixel, y controls the
smoothness of the transition between the corrected and uncorrected regions, and k is
a factor that controls the magnitude for colour correction.

Xu and Pan (2010) presented a skin and sky colour detection and enhancement
method for TV colour enhancement. A sigma filter decomposes the input image
into a low-pass image (or primary image) and a high-pass image (or residue image).
The sigma filter utilizes a 1-D or 2-D rectangular window, where the current pixel
I(x,y) is at the centre of the window. The sigma filter compares the pixels I(i,j) in
the window with the central pixel I(x,y), and averages those pixels whose value
differences with the central pixel 1(x,y) is within a threshold T. Because the sigma
filter drops pixels that are not within the threshold, it is a nonlinear filter.
Mathematically, the output from the sigma filter, 1 p(X,y), may be calculated by

D16 0)

(. J)E&I())-TCGY)I<T

N(x,y)

where E is the window, N(X, y) is the count of the pixels in E that satisfy the
condition of |I(l, j) = I(X, y)| <T

ILP(Xf y)=

The sigma filter generates the low-pass image, and the high-pass image is
obtained by subtraction. Because the sigma filter is a smoothing filter preserving
sharp edges, the low-pass image generated from a sigma filter contains limited
details but maintains sharp edges, and the high-pass image contains
details/noises/artifacts but relatively few sharp edges. In general, by separating the
image into a pair of channels, the lower frequency channel will contain relatively
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few artifacts and noise, and the higher frequency channel will contain relatively
more artifacts and noise. By performing the enhancements primarily on the lower
frequency channel, the artifacts and noise in the image will not tend to be enhanced
in the final image.

A skin score LUT and a sky score LUT are pre-generated. Skin colour
enhancement is expressed as:

C,oy = SKiNScore(c) - skinEnhance(c) + (1— skinScore(c))- ¢

where c represents a pixel colour, skinScore(c) represents the skin colour likelihood
for colour ¢, and skinEnhance(c) refers to enhanced skin colour for colour ¢, and
Cnew 1S the output colour.

Sky colour enhancement is performed in similar manner. The low-pass image,
which contains no details or artifacts, goes through the detection and enhancement
path. The high pass image, containing details and noise and artifacts, does not go
through the detection and enhancement path and will be added back to the colour
enhanced low pass image to generate the enhanced image. Therefore, the noise in
the high pass image is not enhanced. The enhancement can take place in any colour
space such as YC,C,, HSV, or IPT.

Hung et. Al. (2010) developed a skin colour enhancement method that
modified hue and saturation of skin tone colours using linear interpolation in a
triangle that encompasses skin colours to be adjusted. A 2-D colour space (the
luminance or light channel is not considered) is divided into many triangular sub-
regions. Knowing the colour mapping of each vertex from original colour values to
enhanced/adjusted colour values, any colour is mapped to a corresponding location
by linear interpolation within a triangle that encompasses the colour.

2.4.5 Colour Enhancement of Green Plants

The green plant colour region is another important memory colour category in
natural scenes (Yendrikhovskij et al. 1999). The reproduction of green foliage is of
importance in preferred colour reproduction.

Bartleson and Bray (1962) used Kodak Dye Transfer prints to produce two
dissimilar green grass scenes. The grass areas were controlled separately from the
overall colour balance. According to them, the most representative chromaticity for
preferred reproduction is located at some distance from that of the mean memory
colour. The difference in hue is such as to produce a preferred colour that is more
“yellow-green” than the memory colour. The preferred colour appears to be more
similar to the mean of the natural colour than to the mean of the memory colour.
They found that the preferred chroma for green grass to be lower than that of the
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natural mean, but the result might be due to the limit of the physical gamut. Hunt et
al. (1974) found that the preferred grass colour lied on the yellowish side of typical
average real grass, but the difference was small; and the purities were about the
same. Kuang et al. (2005) found that preferred chroma for grass and sky was much
higher than the original colours, i.e. observers preferred higher chromatic grass and
sky colours than their actual colours. Bartleson and Bray and Hunt et al. concluded
that the preferred green grass was slightly more yellowish than real green.

Determining a colour region by hue angles is simple and intuitive. Although
this may not be very accurate, it has been widely used to determine green plant
colours in colour enhancement (referred to the description of Quan’s and Jin’s
method in Section 2.4.5). The feature based image segmentation is another
approach to detect green plants (Fredembach et. al. 2008, Naccari et. al. 2005, Luo
et. al. 2001, Herman et. al. 2004, Skarbek and Koschan 1994).

Fredemback et al. (2008) applied an eigenregion-based framework that used
PCA-based features to segment three memory colour regions, skin, plants, and sky.
Adding colour-based segmentation should further improve the segmentation
accuracy.

Chromatic green colours displayed on display screens are much brighter than
reproduced on hardcopies due to the gamut difference. How to optimize colours in
this region for the preference colour reproductions from display to hardcopy and
from hardcopy to display is yet to be known.

2.4.6 Colour Preference of Blue Sky

Similar to the green grass category, blue sky is another category among three
important memory colour categories for natural scene images. The colour
reproduction of blue sky is very important for photographic images of outdoor
scenes. Bartleson and Bray (1962) found that the preferred reproduction of blue sky
in colour prints corresponded to a more “purple-blue” colour than the memory
colour, and the preferred hue was more like the hue of the natural colour. This is
different from the preferred reproduction colour for flesh in which the preferred
flesh colour is more like the mean memory flesh colour rather than the average
natural flesh colour. Although the experimental results were derived from very
limited data sets (two scenes only), they emphasized that there was “ample evidence
that the sky reproductions having the hue of natural sky do tend to be preferred”.
The preferred reproduction for sky occurred at a generally higher purity than the
natural colour.
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Hunt et al. (1974) found that “for the blue sky colour, although the dominant
wavelength of the preferred and the real colours are closely similar, the preferred

colour has an appreciably higher purity”.

Kuang et al. (2005) found preferred chroma for sky was much higher than the
original colours, i.e. observers preferred high chromatic sky colours than their real
colours. And observers preferred more cyan-ish blue sky colour. Koh et al. (2007)
studied the colour preference and perceived colour naturalness of digital video, and
also found that blue sky looked more pleasing when its colour was purer and deeper.

Detecting blue sky may be useful for colour enhancement. Luo and Etz (2002)
proposed a model-based approach consisting of colour classification, region
extraction, and physical-motivated sky signature validation. Gallagher et al. (2004)
improved this detection algorithm based on a two-dimensional polynomial model of
the image of blue sky. Initial sky detection is applied to establish high-confidence
blue sky regions. A 2-D polynomial model is used to validate candidate sky
regions.

Takahashi and Hirata (2006) proposed a sky detection method enabling robust
region detection for cloudy sky by evaluating similarity of visual features between
combined regions of segmented regions from an input image and sky region stored
in a database.

Quach et al. (2007) implemented a blue-sky detection method for real-time
blue sky detection, which can be used for the noise reduction and colour
enhancement of blue sky for HDTV.

You and Chien (2008) proposed a method to segment the sky area and enhance
the saturation of the region with a factor determined by an average saturation of the
whole sky region and a weight computed from the relative pixel position as well as
original saturation. The RGB values of an image are converted into HSV using
following equations:

H, = cos™ 0.5[(R—G)+(R—B)]
J(R=G)?+(R-B)(G-B)

H=H, B<G
H=360°-H1 B>G
_ max(R,G, B)-min(R,G, B)
max(R, G, B)
_ max(R,G,B)
255

S

\Y

The boundary of sky is defined by
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180°<H <300°0.1<S<=1,04<V<=1.

Similarly, Quan and Jin used hue angles to determine blue sky colours
(referred to Section 2.4.5).

The sky region detected using above equations also includes blue parts from
sea, lake, and buildings. Such regions are removed through efficient non-recursive
flood-fill labelling algorithm.

Increasing the saturation of the whole sky without considering cloud regions
can lead to lower contrast between sky and cloud. Since the B component is much
higher than the R and G components in sky, and the R, G, and B are very close and
with high values in cloud, the R/B ration can be used to extract cloud.

A saturation enhancement factor, E, is computed by:
1 N
QW:NZ& S, € sky
i=1

E=3010-S,,) 02<S,, <10,

E=03 Sy <0.2

where Sayq IS the average saturation of the detected sky region. The saturation of the
sky is increased by a factor of 0.3 if the average sky saturation is lower than 0.2, and
is reduced if the average sky saturation is higher.

The saturation of a clear blue sky in daylight gradually increases as we look
upward from the horizon to the zenith. Thus, a vertical position adjustment factor
may be computed to gradually increase enhancement as the position moves up.

Similar to segmenting skin and green plants using PCA-based feature
detection, blue sky may be segment in the same manner (Fredemback et al. 2008).

Displays (CRT, LCD, LED) are able to produce bright chromatic colours,
while printers produce high chromatic colours with lower lightness. Chromatic blue
colours represented on a display colour space tend to be mapped to darker colours
on hardcopies. On the other hand, if dark blue sky colours scanned from a hardcopy
are to be displayed on a display screen or to be translated into a display colour
space, should the lightness be increased or be preserved? How the transformation
between hardcopy and display affects the preferred colour reproduction on blue sky
remains to be investigated.

2.5 Conclusion Remark

As a subset of preferred colour reproduction, memory colour reproduction
plays an important role in overall colour reproduction. Memory colours of familiar
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objects are the key clues to judge the colour quality. People usually judge the colour
of a familiar object by comparing its colour appearance with its memory colour
rather than with the real object. Three prototypical categories: skin, green foliage,
and blue sky, are main memory colour categories for preferred colour reproduction.

To enhance colours locally through digital image processing, a region of
interest must be determined. There are many approaches to determine the skin
colour region for face detection. Determining skin colours explicitly for skin colour
detection is simple but the detection rate may be low. This approach may be used in
situations that hardware resource is limited. Modelling skin colour distribution
using probability LUTSs is expensive in memory usage. However, reducing the size
of LUT and using it with interpolation may be an attractive approach for skin colour
enhancement. SGM was found to be accurate under a strict condition. GMM may
be used for unconstraint conditions for its ability to adapt to the shape of non-
symmetric histograms. However, it is more complex to train and the computation
efficiency is lower. The elliptical boundary model is simple, easy to train, and more
accurate than SGM. The method has been used for colour adjustment in
chrominance space. Ignoring the fact that the luminance (or lightness) affects the
shape of the skin colour region, skin colour detection accuracy would be
compromised. To achieve high modelling accuracies, the luminance dependency
should be taken into account.

With colour-based skin colour detection for skin colour enhancement, all
colours that belong to skin colours are adjusted. This has been found not to be a
problem in general, because people focus on memory colours of familiar objects.
To exclude these non-skin objects from skin colour enhancement, feature-based skin
detection must be applied. However, feature-based approaches may detect and
enhance faces only and miss to detect and enhance full body colours.

Many other colour transformations, such as global tone and local tone
adjustment and global chroma adjustment, should be executed prior to memory
colour enhancement. Skin colours captured with a digital camera highly depend on
the lighting condition or the white balance. White balance should be performed
prior to preferred colour enhancement. On the other hand, skin colour analysis from
skin colour enhancement may be useful for rebalancing overall image colours that
are shifted from inaccurate illuminant detection.

Green plants and blue sky are two other important memory colour categories
of natural scene images. Methods that combine colour-based detections with
feature-based detections were found to be more effective for blue sky colour
enhancement.



-84 -

A preferred colour centre must be determined for preference colour
enhancement of the colour region. A preferred colour is different from a memory
colour. The difference is smaller for some prototypical colours, and larger for some
other prototypical colours. Improperly using a statistical skin colour centre, a
preferred skin colour centre, or a memory skin colour centre for preferred colour
enhancement will lead to suboptimal results.

Preferred skin colour has been extensively studied in the past half a century.
However, these studies are not comprehensive due to the technical limitations in
psychophysical experiments, and inconsistent results due to limited number of
samples or observers or biased from experimental conditions. In order to have a
solid understanding of skin colour preference for preferred colour reproduction, new
psychophysical experiments should be designed and conducted to overcome these
problems.

In a colour imaging chain, there may be different blocks where colours can be
adjusted. Similar colour enhancement algorithms may be repeated in different
blocks. For example, skin colour enhancement may be performed in the capturing
step in a digital camera, in photo application software in the editing step, and in the
printing step in a printer or in a displaying step in a display. Applying a skin colour
enhancement algorithm multiple times may lead to excess adjustment and result in
losing details or other artifacts. By analysing the colour distribution of the skin
colours in an image, the amount of colour adjustment may be determined. If skin
tones of an image have been in a preferred condition, the skin colour enhancement
step should not degrade the preference of the skin tones.
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Chapter 3
Modelling Skin Colours for Skin
Colour Enhancement

3.1 Introduction

Colour rendering is an important factor to judge the perceived image quality of
the colour reproduction of digital images. Skin tone, as the most important category
among memory colours, plays an important role in preferred colour reproduction.
Various skin colour detection models have been presented in the past. A simple
method is to explicitly define the range of colours in a specific colour space. In
general, this method is computationally efficient, low hardware cost, yet the
accuracy may be compromised. Another method is to estimate skin colour
distribution from the training data without deriving an explicit skin colour model. A
skin probability map is constructed, and may be quantized and represented as a
lookup table (LUT). The probability of a colour that is not located on a node may
be quantized to the closest node or be computed through interpolation. While the
method is fast in training and is theoretically independent of the shape of the skin
colour distribution, a large storage space may be required.

With the assumption that skin colours spread around a skin colour centre due
to variations in physical conditions (e.g. skin types, capturing conditions, etc.), the
skin colour distribution may be approximated with a Gaussian-like function. The
idea leads to the proposal of Single Gaussian Model (SGM), which is formulated by
a multivariate normal distribution function.  Although modelling reasonably
accurate in a strict condition, SGM may cause intolerable error in estimation and
discrimination of skin colours captured in complex environments. A Dbetter
approximation can be obtained using Gaussian Mixture Model (GMM) which mixes
a finite number of Gaussian functions. GMM may be more appropriate than SGM if
high correct detection rates are desired. However, it is more complex to train and
more expensive in computation.

Storring et al. (2004) and Fredembach et al. (2009) combined standard RGB
bands and near-infrared bands to detect human skin. Their results demonstrate an
improved robustness over pure RGB based approaches. The approach may be
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generalized for the skin colour detection of multispectral images, yet it is not
appropriate for general consumer imaging.

Sanger et al. (1994, 1997) applied an ellipse distribution function to express
skin colours for face detection. Lee and Yoo (2002) concluded that the skin colour
cluster could be well modelled using an ellipse. This is similar to the modelling of
the human perceptual colour tolerance in a perceptually uniform colour space in
which the visual colour tolerance can be well modelled with ellipses. Another
evidence to support elliptical modelling is that colours of an object category
distribute around its prototypical colour with a probability density function. Due to
various physical disturbances (illuminations, camera characteristics, image editing,
etc.), the skin colour distribution deviates from Gaussian distributions. However,
the shape of equal-distribution contours should be approximately elliptical.

In a preliminary study, a limited amount of skin colours were used to construct
a convex hull for the skin colour region, and the shape of the convex hull was
analysed and fitted mathematically. It was confirmed that the shape of the skin
colour cluster in chrominance space could be fitted with Gaussian distribution or
ellipse (Zeng and Luo 2010). From the human perception point of view, the shape
of each equal probability distribution locus of a skin colour boundary should be
smooth and should be approximately elliptical. Furthermore, an elliptical shape is a
natural choice for approximating the shape of a physical object. From all of these
evidences, an elliptical boundary model was finally adapted, modified and expanded
to compensate the lightness dependency in this study. The model was applied to
guide psychophysical experiments to determine a preferred skin colour centre for
skin colour enhancement.

This chapter is organized as below: the primary study of modelling a local
colour region using a convex is presented in Section 3.2; a method to construct skin
colour databases for elliptical modelling is presented in Section 3.3; the study of the
skin colour region to justify of adopting an elliptical model is discussed in Section
3.4; the ellipse modelling and ellipsoid modelling are described in Section 3.5; the
training results of skin colour modelling of digital images are presented in Section
3.6; the training results of skin colour modelling of colorimetric skin colours are
presented in Section 3.7; and the final section is the conclusion remark.

3.2 Priminary Study of Skin Colour Modelling

As far as the shape of a colour region is convex, a convex hull can be
constructed to represent the gamut of the region. It is fairly safe to assume that the
shape of a local colour region (e.g. skin, grass, sky) for colour preference
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enhancement is convex. Constructing a local colour region using a convex hull is
flexible and universal (applicable to modelling skin colour boundary as well as
modelling other local colour regions, such as green grass and blue sky). Assuming
that the shape of a colour region is convex, a convex hull can be generated
automatically to represent the region. Using skin tone as an example, a set of skin
colours are collected to generate a convex hull that represents the skin tone region.
In this study, two approaches are used to build a database for a colour region. One
is to carefully hand-pick colour samples that are within a colour region (the skin
colour region in this case) to be studied and to add them to a data set (noted “skin
sample set” herein). No order sequence is required for adding colours into the skin
sample set, and duplicating colours are allowed. A skin colour sample can be
obtained from an image or through measurement. The other approach is to use a
bitmap image or a set of images (noted “skin image set” herein). Fig. 3.2-1 shows a
skin image set in which the sub-images were cropped from various images. A
master image with uniform skin colour background was initially created in
Photoshop. Skin tone images were cropped from various images and pasted to this
image. Each sub-image was converted to the colour space of the master image
before being pasted to the master image. Because images may have noisy pixels,
noise removal operations were applied to remove noise. In Photoshop, Median and
Depeckle filters were applied to remove noise.

Fig. 3.2-1 A skin colour combo image

All skin colours were converted to CIELAB colour space, adapted to D50
using the linear Bradford chromatic adaptation matrix. A convex hull was then
generated. The skin colour loci in three lightness levels were created in CIE a*-b*
coordinates with constant lightness as shown in Fig. 3.2-2. It illustrates that the skin
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tone loci is lightness dependent in CIELAB colour space. The lightness dependency
should be taken into account for skin colour modelling.
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Fig. 3.2-2 A comparison of the skin tone convex hull in a*-b* coordinates with
constant-lightness. The three lightness levels are 25, 50, and 85.

Fig. 3.2-3 Skin colour convex hulls generated using a skin image set (wireframe)
and a skin sample set (solid) in CIE L*a*b* colour space, and the SRGB gamut

(transparent)

Fig. 3.2-3 shows two convex hulls generated using two skin colour data sets,
the skin sample set and the skin image set. The sRGB gamut is also drawn for
visual comparison. The skin sample set was constructed by hand picking about 200
skin colour samples from many different images. Due to the inclusion of chromatic
reds (such as lips) in the skin image set, its corresponding convex hull has richer
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colours in the red region. Fig. 3.2-4 shows both skin tone convex hulls and SRGB
gamut in a*-b* coordinates.

Fig. 3.2-4 Skin colour convex hulls generated using a skin image set (orange) and a
skin sample set (blue), and the SRGB gamut (outskirt)

It is easy to add a lot of colours to a data set represented as images. However,
it may be difficult to remove unwanted colours that may screw up the convex hull.
Although it is laborious to hand-pick (or measure) a large amount of colours and add
them to a skin sample set, it is easy to add carefully selected colours or to detect any
colours that are entered incorrectly. As shown in figures 3.2-3 and 3.2-4, different
data sets produce different convex hulls. It is important to visually check convex
hulls for any errors that may exist in a database, because any noisy sample points
may inflated a convex hull.

A green grass data set and a blue sky data set are prepared to construct grass
and sky convex hulls as well. Fig. 3.2-5 shows the SRGB gamut, convex hulls of
skin tones, green grass colours, and blue sky colours in CIELAB colour space. Fig.
3.2-6 is the projection of Fig. 3.2-5 in a*-b* coordinates (i.e. ignoring the L*
coordinate).

To enhance memory colours, colours within the convex hull of the memory
colour region are identified and adjusted accordingly. If a colour is out of the
convex hull, preference adjustment is not performed. Otherwise, a weight to
modulate the preferred colour adjustment is computed based on the relative location
of the colour in the convex hull. If a colour is within a defined core region, full
adjustment is performed. Otherwise, a distance to the boundary of the convex hull
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and a distance to the core region are applied to compute a weight for colour
adjustment.

To simplify colour adjustments, an equation based model may be built to
approximate a colour region described with a convex hull. To model skin colours,
the shape of 3-D skin colours is visualized to assist formulizing the region. Three
formulations were developed in this study for skin colour modelling.
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Fig. 3.2-5 Convex hulls of skin tones, green grass colours, and blue sky colours,
and the SRGB gamut in CIELAB colour space
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Fig. 3.2-6 Convex hulls of skin tones, green grass colours, and blue sky colours,
and the sSRGB gamut in a*-b* coordinates
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3.2.1 Skin Colour Formulation 1

L* of skin tones is set to be in the range of [3, 97], and is scaled to the range of
[0, 1]:
L = L*_L*dark

S * *
L light -L dark

(3.2.1-1)

where L* is lightness; L*gar and L*jign; are the lower end (=3) and higher end (=97)
of lightness of the skin colours; and L is the scaled output.

A coefficient for lightness-dependent chroma adjustment is determined by Eq.
(3.2.1-2) where a power of 0.4 is to adjust the curve so that w_ maximizes at a
proper position.

0.4
w, = [1-%} (3.2.1-2)

By visualizing each hue slice of the skin gamut in CIELAB colour space
(adapted to D50), the relationship between hue angle in degrees and maximum
chroma is obtained as listed in Table 3.2.1-1.

Table 3.2.1-1 Hue angle (in degrees) vs. chroma of skin colours

HUE ANGLE CHROMA

0 35

10 45
20 55
30 65
40 60

50 52

60 40

70 40

80 25

A coefficient for chroma adjustment is computed by:

h=heol )~
w, :[1 center J (3.2.1-3)

O'S(hhigh - hlow)

where wy, is the coefficient for hue-dependent chroma adjustment, h is the hue angle
in degrees, heentre IS the hue centre of the skin tone, hnigh and hiew are the higher end
(78-degree) and lower end (0-degree) of the skin colours. hcentre = (Nhigh + hiow)/2.



-92-

Two end points of the skin colour gamut on the lightness-chroma coordinates
are (3, 3) and (97, 3), corresponding to the shadow end and the highlight end. With
these parameters, a colour must have a chroma of 3 or higher to be classified as a
skin colour. In other words, colour adjustment for skin colours starts with chroma
that is equal to or greater than 3.

The minimum chroma of skin tone is computed by linear interpolation between
two end points:

C min — Cdark + Ls (Clight —C dark) (321'4)

where Cpin IS the minimum chroma of skin colour for L* corresponding to Ls
computed using Eq. (3.2.1-2); Cgak and Ciigny are the chroma of the shadow end and
the highlight end, respectively. Since both Cgak and Ciign: are set to 3, Cpin is always

equal to 3. Eq. (3.2.1-4) is used only if Cgark and Ciign: are different.
The maximum chroma of skin colours is fitted with:
Coox =CinH(35-w, +35)-w, (3.2.1-5)

min

The skin colours are bounded by lightness between [Liow, Lnign], hue angle
between [hiow, hnign], and chroma between [Crin, Crmax]-

100 b

Fig. 3.2.1-1 The formulation of the skin colour boundary (wireframe) and the
colours of the skin image set (blue dots)

A 129x129x129 uniformly sampled sRGB colours are converted to CIELAB
colour space and adapted to D50 with the linear Bradford chromatic adaptation. The
above skin colour formulation is applied to find skin colours. These sampled skin
colours are used to construct a convex hull as shown in Fig. 3.2.1-1 for the
parameter tuning and model verification. The skin image set is shown as blue dots
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to visualize how well the model fits the image set. A gamut comparison of the skin
colour formulation, the skin image set, and the skin sample set is drawn in CIE a*-
b* coordinates with constant-lightness of 25, 50, and 70 from left to right as shown
in Fig. 3.2.1-2. The gamut of the skin colour formulation (orange) is aimed to fit the
skin image set (cyan). The model mimics the gamut of the image set closely. The
gamut from the skin colour formulation covers a larger range of colours. The
intention is to cover the nearby transition colours for preference adjustment.
Depending on how the transition of the colour adjustment is performed from non-

skin colours to skin colours, the skin colour formulation may be adjusted to slightly

shrink or expand the skin colour region.
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Fig. 3.2.1-2 A comparison of constant-lightness slices of the skin colour

formulation (orange), the skin image set (cyan), and the skin colour sample set
(black) in a*-b* coordinates with constant-lightness at 25, 50, and 70, from left
to right, respectively. The outbound is the SRGB gamut.

3.2.2 Skin Colour Formulation 2

The skin colour boundary formulation 1 is developed by visualizing the shape
of each hue slice. A different formulation is developed through visualizing the

gamut in constant-lightness slices. Following equation is applied to fit the gamut
shape in constant-lightness slices:

C=C,, -[sin(20)]"* (3.2.2-1)

where Cnax IS the max chroma in each constant-lightness slice, and 6 is a parameter
scaled from hue angle. 0 is in the range of [0° 90°], or [0, n/2]. For different

constant-lightness slices, Cmax is different, i.e. Crnax is lightness-dependent.

Fig.
3.2.2-1 shows the curve of Eq. (3.2.2-1) with Cyax = 71.

The hue range of skin colours is denoted [hiow, hnign]. In CIELAB colour

space, hiow is about 0° and hpign is about 80°. The hue angle, h, of a skin colour in
the range of [hiow, hnign] is scaled to [0°, 90°] by:
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0= h— hlow
hhigh - hIow

.90 (3.2.2-2)
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Fig. 3.2.2-1 A curve to formulate the skin colour boundary in a constant-lightness
slice

The approximate relationship between lightness and maximum chroma of skin
colours in CIE L*a*b* colour space is shown in Table 3.2.2-1.

Table 3.2.2-1 lightness versus chroma of skin colours

L* Cnax
0 0
10 32
20 50
30 60
40 70
50 70
60 65
70 57
80 42
90 21
100 0

The maximum chroma is about 71 at lightness of about 46. The maximum
chroma in each constant-lightness is computed by following equations:

L*Y
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w, =4-L -(1-L,) (3.2.2-4)
C=C,, -[sin(20)['"* w, (3.2.2-5)

Eq. (3.2.2-3) is to readjust L* so that the mid-point, Ls = 0.5, corresponds to
the constant-lightness slice in which the maximum chroma of skin colours is
reached, i.e., a weight, w,, reaches maximum of 1.0. Set L*=45.5 as the L* in
which chroma reaches maximum, » =1og(0.5)/log(0.455) , which is about 0.88.
The reasons to choose L*=45.5 for computing y are: to maximize chroma on this
lightness-slice; and to have chroma in Eq. (3.2.2-5) closely match the maximum
chroma in Table 3.2.2-1 globally. Cnax is a constant that is set to about 71.

To detect whether a colour is within the skin colour region, the hue angle is
first computed. If the hue angle is within the range of [hiow, hnign], EQs. (3.2.2-2) to

(3.2.2-5) are applied to compute chroma, C. If the chroma of the colour is not larger
than C, the colour is a skin colour.

With this formulation, neutral axis (chroma=0) becomes a natural boundary for
skin colours. This is the intention to have colour adjustment stop at neutral axis. A
minimum chroma may be set to exclude near-neutral colours.

The comparison of the skin colour formulations 1 and 2 is shown in Fig. 3.2.2-
2. Again, a 129x129x129 uniformly sampled sRGB colours are converted to
CIELAB colour space and adapted to D50 using the linear Bradford chromatic
adaptation. Each skin colour formulation is applied to find skin colours. A convex
hull is then constructed for the resulted skin colours obtained from each formulation.
The gamut shapes of two formulations are very similar.
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Fig. 3.2.2-2 A comparison of two skin colour formulations in a*-b* coordinates
with constant-lightness (black wireframe for Formulation 1 and solid colour
brush for Formulation 2). The lightness are 25, 50, and 70, from left to right,
respectively. The outbound is the SRGB gamut.
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3.2.3 Skin colour Formulation 3

Park, et al. (2006) formulated the boundary of skin colours in Cy-C; colour
space for preferred skin colour reproduction of displays. The boundary of skin
colours is defined as an ellipse using a constant density contour having the same
probability of a bivariate Gaussian function. Kim (2005) applied an elliptical model
for skin colour enhancement. In this study, following formulae are applied to
compute a constant density contour to describe the skin colour boundary in CIELAB
colour space:

2 2
AR e
ra ra rb r.b
P, =exp(-05-q) (3.2.3-2)

where (ag bo) is the centre of the skin chrominance; r, and ry, are the variances of a*
and b* of the skin colours, respectively; and p is a correlation coefficient. Py, iS the
probability map of skin colours, which is used to determine the boundary of skin
colours and how far a colour is from the skin colour centre. The formula was fitted
with the skin image set. The coefficients are: (ap, bo) = (27, 22); (ra, 1v) = (20, 18);
and p = 0.7. Py>0.4 is set to be the boundary for skin colours.

To take the attribute of lightness into account, an L*-dependent factor, w,,
computed from Eq. (3.2.2-4) is applied to modulate the coefficients, ao, bo, ra, and ry:

ao' =a,-W_

by =by W, (3.2.3-3)
r,=r,-w,

no=r -w

where ag, by, r., and ryare used to replace ao, bo, rs, and r, in Eq. (3.2.3-1) for
computing g.

The advantage of this model is the convenience for computing the distance of
a colour to the skin colour centre, and therefore it is easy to compute a weight for
skin colour adjustment.

3.2.4 Discussion

With 3-D gamut visualization, a convex hull generated from a colour region is
fitted with different formulae. Although the approach lacks rigorous mathematical
modelling, the formulations and data fitting can be adjusted with interactive visual
inspection.  In addition, it is flexible for fitting data gamut with various
mathematical formulae for different purposes. The formulations 1 and 2 work
directly in lightness, chroma, and hue angle coordinates, while the formulation 3
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works directly in lightness-chromaticities space. Formulation 2 is convenient for
skin colour adjustment that gradually fades off toward the neutral axis. Formulation
3 has the advantage for computing a distance to the gamut boundary and to use the
distance as a weight for skin colour adjustment.

A limitation of the method is that the occurrence of a skin pixel in a database
(or the probability of a colour to be a skin colour) can not be applied to affect the
construction of the boundary. The probability of each colour may be applied to
compute a weight to affect the gamut construction. With such an approach, noise
colours and other colours that have very low probabilities can be removed. This
will be explored in next few sections. The elliptical modelling as described in
Section 3.2.3 will be further studied as well.

3.3 Constructing an Image Database to Train Skin Models

In this research, the preferred skin colour reproduction is aimed for processing
general digital photographic images. Hence, images captured with different digital
cameras under various conditions were collected for training skin colour models.

An image database, Halloween database, to train skin colour models is
composed of about 2500 digital images that cover Caucasian, Asian, and African
facial tones. About 60% of the images came from an HP internal image database.
Since 1998, the HP Vancouver site organized a Halloween event for the kids of HP
employees to have fun in the site. Taking photos for kids and families was part of
the event. Two photo studios were set up each year to take pictures. Thus, there
were two capturing conditions in which the lighting conditions, backgrounds, and
digital cameras might be different each year. And these setting conditions and
digital cameras were different year over year. The digital photos from 2001 to 2008
are used for our skin tone analysis. Since the photos captured prior to 2001 have
lower image quality, they were decided not to be used. The main reason to use these
images for this study was that the lighting conditions were well controlled, and
therefore each image had proper white balance.

The images from the HP Halloween image source were captured under limited
conditions (lighting conditions and camera types). To avoid bias on image capturing
conditions, images from various other sources were added. Most of these images
were captured outdoor in past few years using various professional and consumer
digital cameras. Fig. 3.3-1 shows a few images from the database.



Fig. 3.3-1 Selected images from Halloween database

A colour masking tool (CMT) was developed to label skin colours in each
image. Fig. 3.3-2 is a snapshot of the tool. The left window shows the original
image. Once the mouse is pointed to a skin colour and clicked, the skin colour of
this point is applied as the seed colour (colour centre) to grow the colour region.
The span of the region is determined by a range slider that sets a colour difference
threshold of each pixel to the seed colour. A colour difference value is scaled to an
8-bit mask value between 0 and 255. A seed colour has a colour difference of zero
and is corresponded to a mask value of zero. A colour difference that is equal to or
greater than the threshold set by the range slider corresponds to a mask value of 255.
All other colour differences are scaled to the range of 0 and 255 accordingly. A
mask value of 255 corresponds to non-skin colours. Pixels selected as skin colours
are marked pink on the centre window. The mask values of the image are
represented as a gray-scale image shown on the right window.
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Fig. 3.3-2 The colour masking tool (CMT) to label skin colours

Although an RGB colour space can be used to grow a region, it was found that
results produced in CIELAB colour space were more closely correlated to the
human visual perception. Therefore, CIELAB colour space was selected in this
study. RGB colour values are converted to L*a*b* using the embedded ICC profile
of each image (or SRGB ICC profile if no embedded ICC profile exists).

If the segmentation method, “Colour + Object” in the tool, is selected, the
regional growth subjects to the constraint that skin colours must be clustered
together as a single object, which prohibits more than one isolated region. This
method is used to construct the skin database for: 1) it prohibits growing similar
colours to other objects; and 2) it enables labelling skins of different persons on an
image with different colour centres.

After an object is labelled, the source image (on the left window), the image
with a labelled skin object (on the centre window), the image of the skin mask (on
the right window), and the setting parameters are saved. An image with very high
resolution is re-sampled to a size of about 2-mega pixels to avoid that the image is
weighted much higher than a lower resolution image.

Labelled pixels are used to analyse skin colours, and all other pixels that are
not labelled (white pixels in the image on the right window) are ignored. As a
result, labelling all skin pixels is not necessary.

After labelling all images, a script reads each image (the image on the left
window) and its associated labelled image (image on the right window) and adds
occurrences of skin colours to a 256x256x256 RGB LUT. The reason for using a
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256° LUT is the convenience for counting occurrences of 8-bit RGB images. The
number on each node of the LUT represents the occurrences of the RGB colour as a
skin pixel. So the number on every non-skin node is zero. Each skin colour from an
8-bit/channel RGB image adds an occurrence count to the corresponding bin of the
LUT. To remove noisy pixels and pixels that may be inaccurately selected as skin
pixels, a small percentage of pixels with occurrences at the lower end are excluded
from counting occurrences at the time each image is processed. In this study, 10%
least occurring pixels were removed from each image.

The skin colours of the Halloween image database were labelled mostly by the
author. The bias from the user selection should be insignificant for two reasons:
first, during counting skin pixel occurrences from each image, a process was
implemented to remove a small percentage of labelled skin pixels whose colour
histograms were under a threshold; and secondly, a huge amount of skin pixels (in
the order of billions) were collected from diversified images. Nevertheless, a
second image database, RPS database, was created to verify the bias of skin
labelling from different users and the dependency on training data sets. It is a
collection of 626 proprietary photographic images that were collected from different
sources, including indoor and outdoor images and covering different ethnic types.
All images were sampled to a uniform resolution of 1200x1800. Fig. 3.3-3 shows a
few images from this database. Again, the same colour selector tool was used to
label skin pixels. The skin labelling was mostly done by a colour engineering when
he and | worked on a join-project. A comparison of training results using these two
databases is presented in the Discussion section.

Fig. 3.3-3 Selected images from RPS database



- 101 -

3.4 Gamut of Skin Colour Cluster of Digital Images

Fig. 3.4-1 shows the cluster of the selected skin colours of the Halloween
database in CIELAB colour space. The right one is the projection in a*-b*
coordinates, i.e., the top-down view of the cluster. The shapes of constant-lightness
slices are close to ellipses, but the sizes and the locations of ellipses at different
lightness are different. If an ellipse is used to fit the skin boundary on the a*-b*
plane, it should be large enough to cover the dominant mid-tone skin colours,
although smaller ellipses fit well for lighter and darker tones.

Fig. 3.4-1 3-D gamut of all labelled skin pixels of Halloween database

CIELAB colour space is selected to study skin colour modelling, because it is
reasonably uniform in the skin colour region, its lightness and chrominance are
separated by L* and a*b*, and the transformation between CIELAB and RGB is
reasonably efficient.

To study how an ellipse fits skin colours on constant lightness slices, 2-D a*-
b* convex hulls of skin colours were constructed for constant lightness at 0, 10, 20,
..., 100. Since no skin sample colours were found on L* that was less than or equal
to 10, no convex hulls could be constructed for these two L* levels. Convex hulls
for other L* levels (20, 30, ..., 90) are shown in Fig. 3.4-2. Except that extreme
colours (noise, incorrectly selected pixels) skew the shape of the convex hull in
highlight and shadow regions, the shapes of convex hulls in the mid-tone region
look like ellipse. Dark colours subject to higher noise, and highlight colours may be
influenced more heavily by the white balance and lighting conditions. These may
be the reasons that the shapes of the convex hull in two end regions are less like
ellipse. This is the reason that frequencies (f; in elliptical modelling formulae) are
used as weights to model the shape.



- 102 -

Fig. 3.4-2 2-D constant-lightness a*-b* slices of skin colours for L* at 20, 30, ...,

90, from left to right, top to bottom.

Figs. 3.4-1 and 3.4-2 show a trend that ellipses to fit the gamut of skin colours
in a*-b* coordinates should be lightness dependent. Would it be less luminance-
dependent in CIE Yxy space? Fig. 3.4-3 shows the skin colour cloud of the same
data set in Yxy space. The shapes and sizes of the skin colours at different Y levels
are different. For images captured with a single camera or at the raw data state, the
skin colour cluster under x-y or r-g space may take up a smaller region and be less
luminance-dependent, but this is not the focus of this study.

The shape of the skin colour gamut in Fig. 3.4-1 shows that the skin colour
boundary can be reasonably approximated with an ellipse. The variations of 2-D
a*b* gamut in different lightness shows that modelling elliptical boundary that is
adapted to different lightness should fit the skin colour cluster more accurately.
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Fig. 3.4-3 3-D skin colour gamut in Yxy colour space (D50)

3.5 Elliptical Boundary Model

Since the shape of the skin colour cluster of digital images in CIELAB colour
space is approximately elliptical, the skin colour cluster will be modelled with
elliptical shapes. To generalize the model, let Xy, ..., X, be distinctive colours of a
skin colour training data set and f(X;)=f; (i = 1, ..., n) be the occurrence counts of a
colour, X;. An elliptical boundary model @(X)=(X, ¥, 4) is defined as

O(X)=[X —¥] A [X - ¥] (3.5-1)

where the elliptical centre, ¥, and the covariance matrix, A, are given by

W % ixi (3.5-2)
A=, 0X, =X, ) (35-3)

n
where N =Z f. is the total number of samples in the training data set and the
i=1

13 : .

vector u = WZ f, X, is the mean of chrominance vectors.
i=1

Given a threshold p and an input colour X of a pixel, X is classified as a skin

colour if @(X) < p and as a non-skin colour otherwise. The threshold p trades off

correct detections by false detections. As p increases, the correct detection rate

increases, however, the false detection rate increases as well. @&(X) = p defines an
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elliptical boundary between skin and non-skin colours. The centre of the ellipse is
given by w and the principal axes are determined by A.
3.5.1 Ellipse Skin Colour Modelling

In this study, an ellipse skin colour model represented in a matrix form and a
polynomial form were derived. And a skin colour database was created to train
coefficients of these two formulae.

Ignoring the lightness coordinate, the cluster of skin colours may be modelled
with a single ellipse. In a 2-dimensional chrominance space, X is expressed as

X
X = ( j and 4™ is represented in a matrix form
y

Ao A
A :( % °1J (3.5-4)
Ao Ay
@(X) can be reorganized in the following form:
D(X) = Ao (X=X9)* + (oy + Aro)(X =%, )(Y = ¥o) + Aus (Y = ¥5) (3.5-5)

where (Xo, Yo) is the centre and A coefficients determines the covariance matrix.

The equation can be expressed by

D(X, y) = Uy (X~ X)* + Uy (X=X )(Y = Yo) +U, (Y - ¥o)° (3.5-6)
where Ug = Ago, U1 = Ao1 + A1g, and Uy = Agg.

The ellipse equation Eq. (3.5-6) has been widely used in colour difference
modelling. With the elliptical model, the majority work is to find the matrix A.
According the Eq. (3.5-3),

1& X; — X
A:_Zf(xi'yi)( O](Xi_xo yi_yo)
N i=1 yi — Yo
This can be reformatted as

13 (X' _Xo)2 (Xi _XO)(yi - yo)
A==3F(x.y, ' 2
I y)[(xi—xo)(yi—yo) Vi~ Yo) J

i=1

(3.5-7)

Comparing Egs. (3.5-4) and (3.5-7), it is obvious that Ag; = A1.

It will be easier to draw the ellipse, if the x-y coordinate system is translated to
the ellipse’s centre and then rotated to the principal axes of the ellipse. Let’s rotate

X X'
X = [ j to a new coordinate X'= ( j with an angle of 0,
y y

X"} _(cos(d) —sin(0) x| [ cos(@) sin(0) | X
(y']‘(sin(e) cos(9) ) yJ_ ~sin(6) cos(a)] v)
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Eq. (3.2-1) can be written as

Ao Aoy [ X—X
CD(X):(X_XO y_yo{ ° 01)( OJ
2’10 Ail y - yO
where Ag; = A10. After translating the origin to (Xo, Yo), the above equation becomes
Ao A '
(X = (x y')( ° j[xj
Ao A \Y
By applying rotation, the equation becomes

X" _(" o €0S(8) —sin(@) Ay, Ao | COS(@) sin(O) \ X" (35-8)
(X)={x y{sin(e) cos(&)J/llo A, (—sin(&) cos(e)j[y"j '

or

d(X")=(x" y" A0 €0S? (6) — Aoy -SIN@O) + A1 5in° (6) Aoy C0S(26) —0.5(411 — Ago) SiN0) [xJ
101003(29)—0.5(211—100)3”1(29) 200Sinz(é’)+101Sin(26’)+/1110052(9) y"

(3.5-9)
By rotating the coordinate to the principal axes, the matrix in the middle
becomes a diagonal matrix, i.e., the upper right and the lower left terms become

zero:
A1 €08(20) —0.5(4,; — Ay)sin(26) =0.

Thus, the angle to rotate the major axis is

2
0= O.5arctan(£} (3.5-10)
_/100 +A’11
Two parameters related to the principal axes are
A= 1,,c0s°(6) — Ay, -sin(26) + A,,sin’ (6
00 €087 (0) = Aoy -5iN(20) + 1, 5in” (0) 3510

B = A4, Sin*(0) + A, 8iN(26) + A,, cos® (0)
The lengths of the semi-major and semi-minor axes are \/% and \/%
Rewrite Eq. (3.5-8) as
cos(f) —sin(@)\ Ay Aoi ) COS(O) sin(@)) (A O
sin()  cos(@) \ A, A, )\—sin@@) cos®)) \0 B)
The equation can be reorganized as

sin(20)

(3.5-12)

2 a2
(/100 /101]: A-cos”(0)+ B-sin“(6)

Ao B_Asin(ze) A-sin®(6) + B-cos?(6)
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The training result (see Section 3.6) shows that the centre, the size, and the
orientation of a 2-D chrominance ellipse at different lightness levels are different.
The colour modelling accuracy would be comprised if a single ellipse is derived to
represent the skin colour region. To improve the modelling accuracy, a training data
set is divided into many sub-sets, each containing pixels within a bin of lightness.
For example, a data set represented in CIELAB colour space may be divided into
twenty sub-sets, in which each sub-set spans 5 units of L*, and an ellipse is
generated for each bin of lightness. The variations of the sequence of ellipses are
analysed, abrupt changes are smooth out, and interpolations are applied to derive a
lightness-adapted ellipse model. The details are described in Section 3.6.

3.5.2 Ellipsoid Skin Colour Modelling

A new skin colour model, the ellipsoid skin colour model, is proposed in this
section to model the skin colour cluster in a 3-dimensional lightness-chrominance
colour space. An advantage of this model over the ellipse model is that the lightness
dependency of the shape of skin cluster is included in the modelling.

X
In a 3-D space, X is represented as X =| y |. The At is represented in a matrix
z

form
X’OO ﬁ’Ol 202
A=Ay Ay A (3.5-13)
1’20 2’21 2’22
@(X) in Eq. (3.5-1) is reorganized as
D(X, Y, 2) = A (X — Xo)2 + (Aoy + Ap) (X=X )Y — Yo) +
(Aoz + A2) (X=X )2 = 2¢) + Ay, (Y - YO)Z + (3.5-14)
(Aip + 2p)(Y = Yo )(Z = 24) + Ao (2 - 2,)?
With the ellipsoid model, the main work is to find the matrix A. According to Eq.
(3.5-7),

X —X

1 n i 0
Azﬁzf(xi!yi’zi) Yi=Yo (Xi_XO Yi— Yo Zi_zo)

i=1 z. -1,

This can be reformatted as
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Lo (X =%o)° (X =%)(Yi = Yo) (% =X )(Z; = 2)

A :W; F O Yz (6 =%)(Yi = Yo) (¥i = ¥o)* (Vi = ¥o)(z; — Z,)
" G =X )(Zi —20) (Vi = Yo)(Zi — 20) (z; _20)2
(3.5-15)

Comparing Egs. (3.5-13) and (3.5-15), ko1 = A1 and Ap; = Aq2. The ellipsoid
function (3.5-14) can be written as:
D(x,y,2) =
U (X~ Xp)? + Uy (X =Xy )(Y = Vo) + Uy = V)2 + Uy (X = X,)(2 = 20) + U, (Y = Yo) (2~ 2,) + Us (2 - 2,)°

(3.5-16)
where Ug = Agg, U1 = Ao1 + Aag, U2 = A11, Uz = Ao2 + Ao, Us = A12 + Ap1, and Us = Apo.

A general approach to find the three principal axes of the ellipsoid is to
translate the origin of the coordinate to the centre of the ellipsoid, and then rotate the
ellipsoid so that three principal axes overlapped with the three coordinates. After
translating the origin of the coordinates to the centre of the ellipsoid, the coordinate
X(xy z) becomes X’(x’ y’ z’), where

X'= X=X,
Y=Y-Yo-
'=7-1,

Denote a 3x3 rotation matrix, M, which is a 3x3 matrix. X"=M _X'. Eq.
(3.5-1) is rewritten as

DO(X")=X"TM,AM, X" (3.5-17)

Denoting M =M, " A™M,, ®(X")= X"T MX". To rotate X' to X", M, must
be such that M becomes a diagonal matrix. A 3-dimensional rotation can be

specified with three Euler angles.

Matrices for rotating a around the x-axis, £ around the y-axis, and y around the
z-axis are expressed below:

1 0 0 0
0 cosa -—-sina O
R, (a) = .
0 sina cosa O
0 0 0 1
cosp 0 sing O
0 1 0 0
R,(B)=| .
—-sing 0 cosp O
0 0 0 1



- 108 -

cosy —siny 0 O
siny cosy 0 O
R, (»)= 0 o 10
0 0 01

A general rotation matrix depends on the order of rotations. A matrix rotates

about x, then y, and finally z is:
cos fcosy cosysinasinf—cosasiny  cosacosysin f+sinasiny 0
cos gsiny cosacosy+sinasin gsiny —cosysina +cosasingsiny 0
—sin g cos #sina COS & C0S 3 0
0 0 0 1

R,R,R, (@) =

With such complexity, it is not trivial to derive «, f, and y to meet the
requirement that M becomes a diagonal matrix. Doing the math in a spherical
coordinate system may simplify the expression slightly. However, finding three
rotation angles are neither trivial.

An exhaustive search approach was then developed to solve the problem.
Since two points on the surface that intercept the longest principal axis have the
longest distance to the centre, this property was used to find the longest axis. Due to
the symmetric behaviour, it is not necessary to search the entire gamut, and only a
point on the ellipsoid surface needs to be found (the other point is the mirror from
the centre). By exhaustive searching points within a portion of the ellipsoid, a point
that has the longest distance to the centre is found. The vector connected the centre
and this point is the longest principal semi-axis.

There are two points that the shortest principal axis intercepts with the
ellipsoid surface. The distance of either point to the centre is shorter than the
distance of any other surface point to the centre. This property is used to find the
shortest principal axis. With exhaustive searching, if a point is not inside the
ellipsoid, its distance to the centre is computed. A point that has the shortest
distance to the centre is eventually found. Because principal axes are perpendicular
to each other, this property can be used to reduce searching points. A vector
connecting the resulted point and the centre is the shortest semi-axis.

A vector that passes the centre and is perpendicular to a plane constructed
using the longest and the shortest principal axis is the vector of the third axis. This
property is used to find the third axis. The direction of the third axis is the cross
product of the vectors of the other two axes. By searching the points from the centre
along the direction of the vector of the third axis, a point within the ellipsoid and has
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the longest distance to the centre is the interception point between the third axis and
the ellipsoid surface.

3.6 Training Results of Skin Colour Modelling of Digital Images

3.6.1 Ellipse Skin Colour Boundary Modelling

As described in Section 3.3, each labelled skin pixel in the database has a mask
value between 0 and 255 to encode skin colour likelihood (the higher the value, the
lower the likelihood). However, mask values were binarized to skin or non-skin
colours for the skin colour modelling in this study. In other words, each colour was
treated as a skin colour or a non-skin colour, and its likelihood value (colour
difference to the central skin colour) was not applied for the modelling. Although
some information about the likelihood of skin pixels are lost from binarisation the
skin map, the binarised skin likelihood information may be more reliable from
following two reason. First, skin pixels were labelled based on visual feedback from
the binary mask shown on the right window using CMT. Second, since skin pixels
were labelled mostly by a single operator, using binary mask might reduce biased
from operators.

The RGB colour at each node of the RGB skin occurrence LUT was converted
to CIE L*a*b* colour space and the white point was adapted to D50 using linear
Bradford chromatic adaptation matrix (Luo and Hunt 1998) which was used to
create the official SRGB ICC profile, (Nielsen and Stokes 1998). The LUT was
used to train elliptical models, where the count in each bin of the LUT is the
occurrence, f(X;) or f;, in Eq. (3.5-3), and the a*b* or L*a*b* of each bin location is
the colour, X.

3.6.1.1 Lightness-Independent Ellipse Model (Single-Ellipse Model)

Projecting all colours to a*-b* coordinates (i.e., ignoring each colour’s
lightness value), an ellipse is trained. Although the accuracy to fit skin colour in an
ellipse is sacrificed for simplicity and efficiency, it is adequate for some
applications. Fig. 3.6.1-1 shows the modelled ellipse in a*-b* coordinates to cover
95% of the labelled skin colours of Halloween database. The centre coordinates are
(19, 20), together with the ellipse parameters [A, A/B, 6] of [26.9, 1.8, -62°], where A
and B are the semi-major axis and semi-minor axis, and @ is the orientation angle of
the major axis (negative-degree means counter-clockwise rotation). See Appendix
A for the detailed training result. For practical applications, the principle axes may
be increased or decreased proportionally (equivalent to adjusting p of the elliptical
model) to adjust the skin colour boundary. A method to choose a proper coverage
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rate to achieve desired skin colour detection accuracy will be discussed in Section
3.6.3.

Fig. 3.6.1-1 The trained skin colour ellipse in CIELAB a*-b* coordinates

3.6.1.2 Lightness-Dependent Ellipse Model (Multi-Ellipse Model)

The centres, sizes, and orientations of 2-D chrominance ellipses of the skin
colour cluster at different lightness levels are different. Training ellipses on
different lightness separately should improve the skin colour modelling accuracy.
To train lightness-dependent ellipses, the labelled skin colours of Halloween
database were divided into many sub-sets, each containing pixels within a bin of
lightness. In this study, the full range of L* from O to 100 was divided into 10
buckets, each occupying an L* of 10 units. The training data set was sorted into
these 10 L* buckets. Ellipses in a*-b* coordinates trained for each bucket are
shown in Fig. 3.6.1.2-1. Each ellipse was fitted to cover 90% of skin colours within
the bucket. There is no ellipse at the bucket of L* within [0, 10]. The upper left one
is for the L* bucket of [10, 20] and the last one is for L* bucket of [90, 100]. The
L* bucket increases orderly from left to right and top to bottom in the figure. The
skin colour centres, sizes of principal axes, and orientations of ellipses as functions
of lightness are described in following sub-sections. See Appendix B for details of
the training result.
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Fig. 3.6.1.2-1 Skin colour ellipses in different constant-lightness buckets

3.6.1.2.1 Skin Colour Centre

Chroma of each ellipse centre is plotted in Fig. 3.6.1.2-2. There is no data in
the first bin where L* is in the range of 0 to 10. A curve to fit the trained points is
plotted as well. The curve was fitted with an equation:

C*=-0.00004L ** —0.00130L *? +0.42260L *+16.84800 .
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Fig. 3.6.1.2-3 Hue angles (degrees) of the skin centres

Hue angles of ellipse centres are plotted in Fig. 3.6.1.2-3. Since they are close
to a constant, a line was fitted with a constant hue angle of 47.35° averaged from all
hue angles.

3.6.1.2.2 Orientation and Sizes of Ellipses

The orientations (6) of the trained major axis (negative means clock-wisely
rotation) are plotted in Fig. 3.6.1.2-4. The angle of the last bin for the highlight
region does not follow the global trend. Since the result may be affected by lighting
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and white balance, this last point was ignored from curve fitting. The orientations of
the major axes were fitted with a straight line by an equation:

6=49.00-0.23-L*.
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Fig. 3.6.1.2-4 Orientations of the major axes (negative means clock-wise)

The length of the trained semi-major axis in each L* level and its fitting curve
are plotted in Fig. 3.6.1.2-5. &(X) was set to 1 (p = 1) as the skin boundary. The
semi-major axes were fitted with a polynomial equation:

* 3 * 2 *
A:4.O(L—j —127.0(L—j +133.3(L—j—5.0.
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Fig. 3.6.1.2-5 Semi-major axes of skin ellipses
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Fig. 3.6.1.2-6 Semi-minor axes of skin ellipses

The length of the trained semi-minor axis in each L* level and its fitting curve
are plotted in Fig. 3.6.1.2-6. The points were fitted with a polynomial equation:

B= 65.5[5)3 + 67.7(5]2 —5.3(£j +5.5.
100 100 100

As shown in Figures 3.6.1.2-3 and 3.6.1.2-4, the hue angles of the centres and
the hue angles of the orientations of the principal axis were fitted with smooth
curves, because the physical behaviour should be smooth. More attentions were
paid for fitting the mid-tone region. The curves were smoothly extended to both
ends. It is suspected that the shadow region is more noisy and the highlight region
are affected more by the lighting condition and the white balance, therefore the
curve fitting was not attempted to fit both ends if the curve has to be bended
abruptly.

3.6.1.3 An Alternative Formulation of the Ellipse Model

Based on Eq. (3.5-6), skin colours are bounded within the region of:
Uy (X— Xo)2 +U (X=X )(Y = Yo) +U, (Y — yo)2 =p (3.6-1)

In this study, p was set to 1 to train Uo, Uz, and u, so that ellipses covered 90%
of skin colours in the database. p may then be reduced or increased to adjust the
skin region. The trained values of uo, Ui, and u, are plotted in Fig. 3.6.1.3-1. In
general, each data point set is smooth in the mid-tone area and is not smooth in
shadow and highlight. Again, all curves were to fit mid-tone areas accurately and to
extend to both ends smoothly, and the abrupt behaviours in both ends were ignored.
Uo, U1, and u, were fitted with following equations:
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3.6.2 Ellipsoid Skin Colour Model

3.6.2.1 Training Ellipsoid Skin Colour Model in CIELAB Colour Space

Instead of modelling lightness-dependent ellipses, modelling an ellipsoid to fit
the skin colour boundary considerably simplifies the modelling and training process.
Fig. 3.6.2.1-1 shows a trained ellipsoid that covers 90% of the skin colours (black
dots) in CIELAB colour space (Section 3.6.3 will discuss how to choose a proper
coverage rate to achieve desired skin colour detection accuracy). It should be noted
that skin colour that are not within the ellipsoid mostly have very low occurrences.
The ellipsoid centre is (59, 19, 20); the principal axis parameters [A, A/B, A/C] are
[38, 1.4, 2.5], where A, B, and C are semi-principal axes; and the unit vectors of
three principal axes relative to the centre are (0.97, -0.14, -0.19), (0.24, 0.44, 0.87),
and (0.04, 0.89, -0.46). See Appendix C for more details of the training result.

Fig. 3.6.2.1-1 An ellipsoid to cover 90% of skin colours

Constant hue-slices of the ellipsoid covering 90% of the skin colours are
shown in Fig. 3.6.2.1-2. There is no ellipse at L*=15. The L* from 25 to 95 at the
interval of 10 are drawn, to be compared with the ellipses modelled with the
lightness-dependent ellipses shown in Fig. 3.6.1-2. The largest ellipse is at L* = 65
in both models (L*=65 in Fig. 3.5.2-2 is comparable with L* bucket of [60, 70] in
Fig. 3.6.1-2). Sizes of ellipses reduce gradually as L* increases or decreases in both
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models. Their orientations are very similar, and their eccentricities are similar as
well.
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Fig. 3.6.2.1-2 Constant-lightness slices of the ellipsoid covering 90% of skin
colours

3.6.2.2 Training Ellipsoid Skin Colour Model in CIECAMO02-UCS

The uniform colour space modified from CIE CAMO2 colour model is used to
model the skin colour boundary in this section. The CIE XYZ values computed
from sSRGB images are transformed to the CAMO02-UCS for elliptical modelling.
The scene luminance is set to 500lux, and the surround viewing condition is set to
average. The parameters for 90% coverage rate are:

Skin centre: (62, 13, 12);
Principal axes [A, A/B, A/C]: (38, 2.7, 3.7);

The unit vectors of three principal axes relative to the centre: (1.00, -0.07, -
0.06), (-0.09, -0.56, -0.82), and (-0.02, -0.83, 0.56);

u (i =0, 1, 2 3,4, 5): (0.00074, 0.00081, 0.00824, 0.00045, -0.00392,
0.00672), with ®(X) = 1. See Appendix D for the detailed training result.
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In ellipsoid modelling, the longest axis, A, is almost parallel with the lightness
axis in both CIELAB colour space and CAM02-UCS. This reveals that the longest
axis primarily models the lightness dependency. The other two axes, B and C,
model chroma and hue dependency. The ‘eccentricity’, B/C, equals 0.56 for the
ellipsoid in CIELAB colour space, while B/C = 0.73 in CIECAMO02-UCS. The B/C
closer to unity in CAMO02-UCS implies that the distribution of skin colours in
CAMO02-UCS is slightly more uniform than in CIELAB colour space.

3.6.3 Comparing Skin Colour Detection Accuracy among Three Models

Fig. 3.6.3-1 shows an example of skin colour detection using different skin
colour models. Detected skin colours are marked with pink. The results look
similar. It is very difficult to find the differences in skin colour detection accuracies
visually.

Fig. 3.6.3-1 Skin colour detection using different models: original (upper-left), skin
colour detection using an ellipse model (upper-right), a lightness-dependent
ellipse model (lower-left), and an ellipsoid model (lower-right)

The skin colour detection accuracy of a skin model is typically evaluated using
True Positive detection rates (TP) and False Positive detection rates (FP). TP is the
ratio of the number of skin pixels detected as skin pixels over the total skin pixels.
FP is the ratio of the number of non-skin pixels detected as skin pixels over the total
non-skin pixels. Increasing TP typically forces to increase FP as well. In other
words, to increase the likelihood that a true skin pixel is detected as a skin pixel, a
non-skin pixel is more likely to be falsely detected as a skin pixel. Optimizing a
skin detector is to achieve a TP as high as possible for a given FP. The relationship
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between TP and FP is plotted with a curve, the Receiver Operating Characteristics
(ROC) curve. The curve is very useful for determining a proper skin detection
threshold with the trade-off between TP and FP.

To verify detection rates on an image, all skin pixels of the image must be
labelled. Since the Halloween image database used for skin colour modelling do not
have all skin pixels labelled, it cannot be used to compute skin detection rates. A
different image database that consists of 106 images was constructed to analyse the
skin colour detection accuracy of the three elliptical models. Fig. 3.6.3.2 shows a
few examples and their corresponding manual labelled skin masks. These images
cover different skin types and different capturing conditions. The skin pixels of
each image were labelled manually using Photoshop. Each skin colour model was
applied to original images to detect skin colours, and the corresponding labelled
images were applied to verify whether the skin detection for each pixel is correct.
TP and FP were computed using all tested images.
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Fig. 3.6.3-2 Selected images for analysing skin colour detection accuracy

By changing p of a skin model, a set of FP versus TP was obtained. Fig. 3.6.3-
3 shows the ROC curves of the three elliptical models. It depicts that increasing TP
is at the cost of increasing FP. The figure shows that Single-Ellipse Model
(lightness-independent model) has the lowest detection accuracy in general, and
Multi-Ellipse Model (lightness-dependent skin model) has slightly higher detection
accuracy than Ellipsoid Model. Because a fixed ellipse is applied to cover skin
colours in different lightness levels in Single-Ellipse Model, in order to reach the
same TP as the other two models do, it must cover larger portion of dark colours and
highlight colours that are not skin colours and therefore its FP is higher. As FP
reaches to a very high value, the TP differences among three models diminish. It
demonstrates that if high FP is acceptable, optimizing a skin colour models is not
critical; instead, choosing a skin colour model with high computation efficiency and
low hardware cost may be more important.
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Fig. 3.6.3-3 ROC curves of three skin elliptical models

Tuning a skin detection algorithm to have a very low FP, and therefore a very
low TP is practically useless. On the other hand, tuning a skin detection algorithm
to have a very high TP, and therefore a very high FP is practically useless, too. A
practical range is marked in yellow in Fig. 3.6.3-3. In this area, the single-ellipse
model is most inaccurate and the multi-ellipse model is most accurate in skin colour
detection.

Since Multi-Ellipse Model is trained in each lightness level, it should
theoretically achieve higher detection accuracy than Ellipsoid Model. It is
surprising that the detection accuracy of Ellipsoid Model is so close to that of the
Multi-Ellipse Model, as shown in Fig. 3.6.3-3. Because the majority of test images
have mid-tone skin colours, the total number of dark and light skin pixels is much
smaller than the number of mid-tone skin pixels, and therefore the contribution of
the detection accuracy of dark and light skin pixels may be negligible. If both
models were well optimized for mid-tone skin colours, the differences of detection
accuracies in light-tone and dark-tone may have little influence on the overall
detection accuracy. Ellipsoid Model fits skin clouds well for mid-tone but fits not
so well for light-tone and dark-tone, while Multi-Ellipse should well fit skin colour
clouds for every lightness level. To verify the hypothesis, seven dark skin images
from the 106 images were chosen to compute detection rates of the three models.
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Their ROC curves are plotted in Fig. 3.6.3-4. The result that the difference of the
detection rates between Ellipsoid Model and Multi-Ellipse Model is larger in this
case than that using all images was expected. Because Multi-Ellipse Model was
trained on each lightness bucket, its detection accuracy is the highest. Since the skin
colour boundary parameter of Single-Ellipse Model, p, is adjusted to fit dark skin
colours of test images, its detection accuracy is close to that of Multi-Ellipse Model.
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Fig. 3.6.3-4 ROC curves of three elliptical skin models tested on dark skin images

3.6.4 A Few Factors that Affect Training Results

Knowing how different factors influence training results of the elliptical
modelling will be helpful for training models accurately and evaluating models
confidently. Three important factors that will be evaluated in this section are skin
types, image database, and colour space.

3.6.4.1 Skin Colour Modelling of Different Skin Types

The RPS database includes three sub-sets: a Caucasian set composed of 302
Caucasian images, an Oriental set composed of 285 Oriental images, and an African
set composed of 28 African images. Each set was used to train a lightness-
independent skin model and an ellipsoid model for each skin type. A comparison of
the three ellipses is shown in Fig. 3.6.4.1-1. Although the Caucasian skin colour
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region is shifted slightly toward less chromatic and less yellowish colour region, the
Caucasian skin colour region and the Oriental skin colour region are very similar.
The African skin colour region has a higher mean chroma, a larger chroma variation,
and a smaller hue variation. Its hue range is within those of the other two.
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Fig. 3.6.4.1-1 Caucasian, Oriental, and African skin ellipses in CIELAB a*-b*
coordinates

The centre coordinates, together with the semi-major axis (A), the
‘eccentricity’ (A/B), and the orientation of the major axis () (negative 6 means
counter-clockwise rotation) of three ellipses are listed in Tables 3.6.4.1-1 and
3.6.4.1-2. 95% skin coverage rate was used for all three skin types.

Table 3.6.4.1-1 A comparison of ellipse coefficients of three different skin types

Skin centre A A/B 0
Caucasian (17, 16) 29 1.7 -52°
Asian (18, 21) 31 1.9 -60°

African (21, 29) 35 3.0 -58°
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Table 3.6.4.1-2 Covariance coefficients u; (i = 1, 2, and 3)

Uo uz uz

Caucasian 0.00268462 -0.00227808 0.00207791
Asian 0.00302517 -0.00225233 0.00172195
African 0.005373 -0.00567292 0.00257024

Fig. 3.6.4.1-2 Caucasian (colour), Oriental (black), and African (green) skin colour
ellipsoids in CIELAB colour space (left) and their projection in a*-b*
coordinates (right)

An ellipsoid was trained for each skin type to cover 95% skin colours. Fig.
3.6.4.1-2 shows a side by side comparison of Caucasian, Oriental, and African skin
colour ellipsoids in CIELAB colour space and their projection on a*-b* coordinates.
The lightness ranges of Caucasian and Oriental skin colours are about the same,
while the African skin colour region is slightly darker than the other two.
Regardless the lightness coordinate, the result is consistent with the 2-D ellipse
modelling. The Oriental skin colour region is slightly more yellowish and slightly
more chromatic than the Caucasian skin colours, and the African skin colour region
is more chromatic than the other two skin colour types.

The coefficients of Caucasian ellipsoid:

Centre: (61, 17, 16)
Principal axis parameters [A, A/B, A/C]: [43, 1.4, 2.3]
Unit vectors of three principal axes relative to the centre:
(0.93, -0.24, -0.28)
(-0.37, -0.55, -0.75)
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(-0.03, -0.80, 0.60)

17247 -2185 -23538
Matrix A: |-2185 627.0 343.7
-2358 343.7 8101

u(i=0,1,2,3,4,5) for dX) = 1: (0.00061, 0.00030, 0.00212, 0.00023, -
0.00171, 0.00163)

The coefficients of Asian ellipsoid:

Centre: (60, 18, 21)
Principal axis parameters [A, A/B, AIC]: [42, 1.2, 2.3]
Unit vectors of three principal axes relative to the centre:
(0.98,-0.17, -0.11)
(0.18, 0.48, 0.86)

(0.09, 0.86, -0.50)

1753.2 -1695 -27.4
Matrix A: | -169.5 549.8 359.6
-27.4 359.6 965.9

ui(i=0,1,2,3,4,5) for ®X) = 1: (0.00059, 0.00045, 0.00249, -0.00013, -
0.00184, 0.00138)

The coefficients of African ellipsoid:

Centre: (50, 21, 29)
Principal axis parameters [A, A/B, A/C]: [45, 1.2, 3.7]
Unit vectors of three principal axes relative to the centre:
(1.00, 0.03, 0.08)
(-0.09, 0.54, 0.84)

(0.03, 0.84, -0.55)

20218 -24 69.3
Matrix A: | -2.4 478.1 527.6
69.3 527.6 999.4

Ui (i=0,1,2,3,4,5) for ®X) = 1: (0.00050, 0.00019, 0.00503, -0.00017, -
0.00532, 0.00241)
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3.6.4.2 Training with Different Image Databases

To study how training results of modelling parameters influenced by different
image databases, the lightness-independent ellipse trained earlier using the
Halloween database was compared with the result trained using the RPS database.
In Fig. 3.6.4.2-1, the Halloween ellipse and the RPS ellipse were trained using the
same configuration parameters. The centres of two ellipses are almost the same (the
circular orange dot is the centre of the RPS ellipse and the square green dot is the
centre of the Halloween ellipse); the eccentricities of two ellipses are very close; and
the orientations of two ellipses are about the same. However, the ellipse trained
using the RPS database is larger. This is the result that the other person labelled
skin pixels more aggressively. By controlling the threshold value, p, the size of an
ellipse can be increased or decreased proportionally. With p =1.25, the Halloween
ellipse is expanded to Adjusted-Halloween ellipse which is very close to the RPS
ellipse. The result demonstrates that the results trained using these two different
databases are very consistent, and the training result is independent of skin colour
labelling by different persons.
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Fig. 3.6.4.2-1 Skin colour ellipses trained using two different databases
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3.6.4.3 Skin Colour Modelling under Different Colour Spaces

Various colour spaces (e.g. RGB, r-g, YCyC;, HSV/HIS/HSL, YUV, YIQ,
L*u*v*, L*a*b*, etc.) have been used to define skin colour gamut for skin colour
detection, face detection, or skin colour enhancement. Zarit et al. investigated five
colour spaces (L*a*b*, Fleck HS, HSV, r-g, and YC,Cy) for skin detection. Their
result shows that the goodness of a skin model depends on the colour space used.
Albio et al. theoretically proved that “separability of the skin and no skin is
independent of the colour space chosen”.  This disagrees with practical
implementations. Shin et al. evaluated skin detection using RGB colour space and
other eight colour spaces: normalised RGB, CIE XYZ, CIE L*a*b*, HIS, SCT,
YC.Cyp, YIQ, and YUV, and concluded that the RGB colour space provided the best
separability between skin and non-skin. This result may only confirm that Shin’s
skin detection method works best in RGB colour space.

In summary, an RGB colour space may be more suitable for histogram based
models, for an RGB LUT to store the trained skin colours can be used directly to
process RGB pixels without additional colour transformation. Using a luminance-
chrominance colour space for skin colour detection reduces the interaction between
luminance and chrominance, therefore simplifies the process. Ignoring the
dependency on luminance (or lightness), skin colour detection using chrominance
(e.g0. rg, CyC;, a*b*, or u*v*) further simplifies the process and improves the
efficiency. However, the detection rate may be compromised.

The present study is aimed for the preferred colour enhancement of digital
images. Although CIELAB colour space, a profile connection colour space in ICC
colour management, was chosen for the workflow, a more uniform colour space,
CAMO2 uniform colour space (UCS) has been in our consideration. Therefore, the
skin colour modelling in CIELAB and CAMO02-UCS were studied.

Since CAMO02-UCS is more uniform than CIELAB colour space, the skin
colour boundary of an elliptical model in CAMO02-UCS may be closer to circular
than in CIELAB colour space. To verify whether this is true, skin ellipsoids trained
in CIELAB and CAMO02-UCS were compared. As discussed in Section 3.6.2, the
ellipsoid modelling result shows that the longest axis is almost parallel with the
lightness axis in both CIELAB colour space and CAMO02-UCS. This implies that
the longest axis primarily models the lightness dependency. The other two axes, B
and C, primarily model chrominance dependency. The ratio of these two axes, B/C,
can be viewed as the eccentricity of an ellipse that an ellipsoid projected on the
chromaticity axes. B/C = 1 means that the ellipse is a circle. B/C is 0.56 for the
ellipsoid in CIELAB colour space and is 0.73 for the ellipsoid in CAMO02-UCS. The
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B/C closer to unity in CAMO02-UCS evinces that the distribution of skin colours in
CAMO02-UCS is slightly more uniform than in CIELAB colour space.

Skin colour detection accuracies in CIELAB and CAMO02-UCS were compared
as well. The ROC curves of the ellipsoid modelling in CIELAB and CAMO02-USC
were generated using the database described earlier in Section 3.6.3 to study skin
detection accuracy. The results plotted in Fig. 3.6.4.3-1 illustrates that the skin
detection accuracy in CIECAMO02-UCS is higher than that in CIELAB colour space.
Improved uniformity of skin colours in CAMO02-UCS may be the reason that the
skin detection accuracy is more accurate in this colour space.
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Fig. 3.6.4.3-1 ROC curves of the ellipsoid modelling in CIELAB and CAM02-UCS
colour spaces

3.6.5 Conclusion of Elliptical Modelling of Skin Colours of Digital
Photographic Images

Skin colour distributions were estimated using three elliptical models.
Modelling skin colours with a single ellipse is simple in training, and is efficient in
computation. To cover high chroma skin colours in the mid-tone region, a large
enough ellipse must be determined, although smaller ellipses better fit light skin
colours and dark skin colours. To improve the skin colour detection accuracy, a
lightness-dependent ellipse model was developed to adjust skin colour ellipses that
fit skin colours in different lightness. However, formulating lightness-dependent
ellipses is complex, and computing skin colour boundary is less efficient. A third
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model, an ellipsoid skin colour model, is a compromise among modelling
complexity, computation efficiency, and detection accuracy. Unlike the single-
ellipse model, it adapts skin gamut boundary to different lightness. Although the
gamut adaptation to different lightness is not as accurate as that in the lightness-
dependent ellipse model, the ellipsoid modelling is simpler to train and more
efficient in computation.

The consistent results of skin colour ellipses trained with two different
databases verify that the method to construct databases is reliable for skin colour
modelling. A separate training of Caucasian, Oriental, and African skin colours
reveals that the Caucasian skin colour gamut and the Oriental skin colour gamut are
very similar; the Oriental skin colours are slightly more yellowish and slightly more
chromatic than the Caucasian skin colours; the lightness ranges of the Caucasian and
Oriental skin colours are about the same. Comparing to the Caucasian and Oriental
skin regions, the African skin colour region is slightly darker, its centre is more
chromatic, its chroma variation is higher, and its hue range is within those of the
other two skin regions. The result of the skin colour ellipsoids trained in CIELAB
and CAMO02-UCS colour spaces reveals that CAMO02-UCS is slightly more uniform
in the skin colour area. With ellipsoid modelling, the skin colour detection accuracy
in CAMO02-UCS is slightly higher than that in CIELAB colour space.

3.7 Training Results of Skin Colour Modelling of Colorimetric Skin
Colours

The RIT and Oulu spectral data sets of skin colours were used to model skin
colorimetric colour boundary.

RIT Data Set: The lighting system included two lighting heads (Scanlite
Digital 1000, Elinchrom) with halogen Photo Optic lamps (FEF/1000W, 120V). A
Photo Research Spectroradiometer, SpectraScan 704, was used for spectral
measurement. The measurement system was calibrated using a high quality white
reference, a barium sulphate coated paper which was spectrally flat and uniform.
The distance from PR-704 to the subject was about 1.6m. 11 female and 23 male
subjects with ages ranging from 18 to 40 participated in the experiment. The
subjects included five culture backgrounds, 11 Pacific-Asian subjects, 8 Caucasian
subjects, 7 Black subjects, 6 subcontinental Asian subjects, and 2 Hispanic subjects.

Oulu Data Set: A hand-held, contact spectrophotometer Minolta CM-2002 was
used to measure skin spectral reflectance. For each person, there were
measurements of diffusely reflected light (the surface or specular component
excluded) on the skin at the wavelength range of 400nm to 700nm by 10nm steps.
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For a group of 20 persons, the skin was also measured with a specular component
included as an option which takes into account specularly reflected light at the same
wavelength range. The measurement positions on the face were the forehead, left
cheek, and right cheek, and each result was obtained as an average of three
measurements.  The illuminant SPDs were obtained from their definitions
(confirmed by spectroradiometric measurement).

There were total of 697 measurements (340 from RIT and the rest from Oulu),
covering Caucasian, Hispanic, and Asian skin colours. Both databases can be
downloaded from http://mcsl.rit.edu/. The spectral data were converted to CIEXYZ
in D65 illuminant. The colours in CIEXYZ colour space were adapted to D50 with
the Bradford chromatic adaptation transformation. The XYZ data were then
converted to CIELAB colour space for modelling in CIELAB colour space, or
converted to CAMO02-UCS colour space for modelling in the uniform colour space.
The reason to adapt colours to D50 is to be consistent with the colour transformation
of digital images using ICC colour management workflow.

To model the skin colour boundary, the RIT and Oulu skin colour cluster is
drawn in CIELAB colour space for visual check (see Figs. 3.7-1 and 3.7-2). Since
both data sets occupy about the same region, no separate analysis was tried. Instead,
both data sets were merged to a single set for skin colour modelling. The skin
colour cluster takes up much smaller space than that of the image database, because
of strict measurement conditions and no illuminant mismatch exists. The figure
shows that skin chroma maximizes at about 55 L* units, and gradually reduces as
lightness increases or decreases.

L Black: RIT
Orange: Culu

Fig. 3.7-1 The RIT and Oulu skin colour data in L*a*b* colour space
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Fig. 3.7-2 The RIT and Oulu skin colour data in a*-b* coordinates

3.7.1 Ellipse Modelling in CIE a*b* Colour Space

Modelling an ellipse in CIELAB a*-b* coordinates (adapted to D50
illuminant) with 95% coverage rate, the colour centre is (14.0, 17.1), together with
the ellipse parameters [A, A/B, 0] of [7.1, 1.1, -63°] (negative-degree means
counter-clockwise rotation). See Appendix E for the detailed training result. In Fig.
3.7.1-1, the black circles are from the RIT skin colour data set, and the cyan crosses
are from the Oulu skin colour data set.

25

20

15

10

Fig. 3.7.1-1 An ellipse to cover 95% of colorimetric skin colours in CIE a*b*
coordinates (‘o’ — RIT data, ‘x” — Oulu data)
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3.7.2 Ellipse Modelling in CAMO02-UCS

The CIE XYZ values computed using D65 illuminant were converted to the
CAMO02-UCS colour space. The ambient illuminant was set to 1000 lux (318.3
cd/m?), and the average surround viewing condition was applied.

The ellipse with 95% skin colour coverage rates is shown in Fig. 3.7.2-1.
Again, the black dots are from RIT skin colour data set, and the cyan crosses are
from Oulu skin colour data set. The colour centre is (9.5, 5.1), together with the
ellipse parameters [A, A/B, 0] of [5.4, 1.2, 72°] (positive-degree means clockwise
rotation). See Appendix F for the detailed training result.

15

10

Mb

Fig. 3.7.2-1 An ellipse to cover 95% colorimetric skin colour in CAM02-UCS (‘o’
— RIT data, ‘x” — Oulu data)

3.7.3 Ellipsoid Modelling in CIELAB Colour Space

Fig. 3.7.3-1 shows the ellipsoid modelling in CIE L*a*b* colour space (D50)
with 100% (skin colours), 99% (green), and 95% (pink) skin colour coverage rates.
Skin colours for modelling are shown together for comparison. The ellipsoid with
99% coverage rate covers samples very well. Except for a dark skin colour that is
far away from the ellipsoid (this point might be a colour measured incorrectly), all
other skin colours are either within the ellipsoid or are close to the boundary. To
encompass the darkest colour sample, an ellipsoid must be expanded significantly
(see the ellipsoid with 100% coverage rate). The ellipsoid with 95% coverage rate
misses to cover most of dark skin colours.
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Fig. 3.7.3-1 Skin colour ellipsoids with 100% (skin colours), 99% (green), and 95%
(pink) coverage rates in CIELAB colour space

The parameters for 99% coverage rate are:
Colour centre: (57, 14, 17);
Principal axis coefficients [A, A/B, A/C]: (38.7, 3.52, 4.27);

The unit vectors of three principal axes relative to the centre: (1.00, 0.05, -
0.01), (0.02, -0.43, -0.90), and (0.04, -0.90, 0.43);

1499.3 62.1 -34
Matrix A: | 62.1 89.8 10.6 |;
-34 10.6 1055

ui (i =0, 1, 2, 3, 4, 5): (0.00069, -0.00097, 0.011612, 0.000141, -0.002356,
0.009602), with d(X) = 1.

3.7.4 Ellipsoid Modelling in CAM02-UCS

The setting parameters for CAMO02-UCS are the same as those in Section
3.6.2. Ellipsoids with 100% (skin colours), 99% (green), and 95% (pink) skin
colour coverage rates are shown Fig. 3.7.4-1. The black dots are the skin sample
colours for modelling. Again, it shows that an ellipsoid must be enlarged
significantly to cover the darkest sample colour. For the ellipsoid with 99%
coverage rate, every sample skin colour is either encompassed by the ellipsoid or is
very close to the boundary of the ellipsoid. The ellipsoid with 95% coverage rate
misses to encompass many dark skin colours.
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Fig. 3.7.4-1 Skin ellipsoids with 100% (skin colours), 99% (green), and 95% (pink)
coverage rates in CAMO02-UCS colour space

The parameters for 99% coverage rate are:
Colour centre: (60.1, 9.5, 5.1);
Principal axis coefficients [A, A/B, A/C]: (39.9, 4.64, 5.85);

The unit vectors of three principal axes relative to the centre: (-0.99, -0.01,
0.11), (-0.09, 0.67, -0.73), (0.07, 0.74, 0.67). See Appendix G for detailed training
result.

3.7.5 Summary of the Elliptical Modelling of Colorimetric Skin Colours

The RIT and Oulu skin colour data sets were used to model skin ellipses in
CIELAB colour space and CAMO02-UCS. Ellipses modelled in both colour spaces
are close to circles, for both are uniform colour spaces. In CIEXYZ colour space,
the skin colours cluster is a thin and long strip, implying a fitting ellipse would be
thin and long, which is not ideal for colour adjustment.

An ellipsoid may be used to model skin colour boundary in 3-D colour space.
An ellipsoid encompassing 99% of colour samples covers the skin cloud reasonably
well. The fact that the principal axis is very close to parallel to the lightness axis
and is very long reveals that the axis mainly models the large lightness variation of
different skin colours. The other two axes mostly determine chromatic extents. The
99% coverage rate was used to compute the ratio of the lengths of the two shorter
axes to analyse the uniformity of the chroma axes. The ratio in CAMO02-UCS is
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slightly closer to unity than that in CIELAB colour space, but the difference
between the two is very small.

3.8 Summary of Skin Colour Modelling

Different image databases were created from a collection of rendered (output-
referred) images, and were used for skin colour modelling of digital photographic
images. During the colour rendering from the scene-referred state to the output-
referred (display-referred) state, the contrast and chroma are typical boosted.
Combining with other factors, such as under-exposure or over-exposure, and
illuminant detection inaccuracy, the skin colour gamut is increased considerably
compared with the colorimetric gamut of skin colours.

While the colorimetric skin colour gamut may be used for skin/face detection
and illuminant detection for scene-referred images, the rendered skin colour gamut
generated from output-referred digital images may be used for skin/face detection
and preferred skin colour reproduction of general digital photographic images.

Three elliptical skin colour models: Single-Ellipse Model (Lightness-
Independent Ellipse Model), Multiple-Ellipse Model (Lightness-Dependent Ellipse
Model), and Ellipsoid Model, were developed to model skin colour regions of
rendered digital images as well as skin colorimetric data. A method to train
elliptical models was presented. Skin colour databases were created to train these
three elliptical models. Their detection accuracies were analysed. The Lightness-
Independent Ellipse Model is easy to train, efficiency in computation, yet the
detection accuracy is lower than the other two models. The Lightness-Dependent
Ellipse Model has the highest detection accuracy; however, the training is most
complicated. Compared with the two ellipse models, Ellipsoid Model is a good
comprise among modelling complexity, detection accuracy, and computation
efficiency.

Another method of modelling a colour region is to construct a convex hull for
the region and fit the convex hull with formulae. The method can be used to model
any specific object colour gamut.
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Chapter 4
Preferred Skin Colours

Various researches support the idea that there is a preferred skin colour centre
for human eyes. In preferred colour reproduction, moving skin colours toward the
preferred centre should improve the colour preference. Finding the preferred skin
colour centre is a basic step for preferred skin colour reproduction. In this chapter,
the elliptical skin colour model developed in the prior chapter was applied to study
skin colour preference. A series of psychophysical experiments were conducted to
analyse skin colour preference, and to optimise algorithms and parameters for skin
colour enhancement.

4.1 Introduction

People, particularly facial patterns, are often the primary visual subjects in a
colour image. Reproducing them with highest possible image quality is crucial in
photographic colour reproduction. Since people typically rely on their preference on
skin colours to judge the colour reproduction quality of face objects, it is important
to know preferred skin colours for preference colour reproduction.

Bartleson investigated the preferred colour reproduction of skin colours and
found that the actual colour and the memory colour were significantly different in
chroma, and the preferred flesh tone appeared to be yellower and more chromatic
than the colours of real flesh tone. Bartleson and Bray further investigated the
preferred colour reproduction of flesh tone, blue-sky, and green-grass, and
concluded that the preferred colour for reproducing Caucasian complexions was to
have the same chromaticness as the mean memory colour of the flesh tone. Sanders
studied the colour preference of natural objects, and found that the preferred
Caucasian facial colour was more saturated than actual facial colours. Hunt et al.
studied the preferred colour reproduction in colour photography, and concluded that
for reflection prints the preferred Caucasian skin colour had about the same purities
as the real skin colour but was a little yellower. Sanger et al. used portrait photos of
Mongoloid, Caucasoid, and Negroid to study preferred skin colours, and found that
chroma of preferred skin colours increases steadily in the order of Caucasoid,
Mongoloid, and Negroid, preferred hue angles among three groups are about the
same, with dominant wavelength at about 590nm. Yano and Hashimoto studied the
preference of Japanese complexion, and found that the preferred complexion of
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Japanese women was shifted to a slightly higher chroma and was more reddish in
hue than the actual complexion of Japanese women; the direction of hue shift is
different from that of the preferred Caucasian women; and the preferred skin colour
of Caucasian women is more colourful than that of the Japanese woman.

Park et al. studied preferred skin colour reproduction on display. The skin
colours were determined using a bivariate Gaussian function. The centre of the skin
colour boundary was used as the preferred skin colour centre. Skin colours were
moved toward a small colour region around preferred skin colour centres for
preference enhancement. Kuang et al. conducted psychophysical experiments to
study the influence of different factors on skin colour preference for photographic
colour reproduction. They found that background lightness has little influence on
skin colour preference; the preference variances on Oriental and Caucasian skin
colours are smaller than those on Indian and African American; and no significant
culture difference among different ethnic observers. Their finding that capturing
illuminants have significant influence on skin colour preference may be the result of
inaccurate white balance in the cameras they used. Fernandez and Fairchild studied
the observer and cultural variability for preferred colour reproductions of pictorial
images. Their experiments yielded that inter-observer variability was approximately
twice the magnitude of intra-observer variability; and images containing people
(faces) were routinely less variable than images without people (faces). Although
the preference variability due to observers' cultural background was found to be
statistically significant, it was not visually significant. The preference variability
due to image contents and the preference variability among observers were more
significant than the variability due to cultural background.

Bodrogi used photo-realistic images containing sky, plant, and Caucasian skin
colours, as well as standalone colour patches taken from the corresponding photo-
realistic images to study memory colour shift on a calibrated CRT monitor.
Memory colour shift in photo-realistic images was found larger than that in colour
patches, and later (long-term) memory colours had higher chroma than the instant
memory colour in both photo images and colour patches. For skin, observers’ long-
term memory colours tended to be yellower than original colours.

It can be concluded from different studies that preferred skin colours are
different from actual skin colours. However, preferred skin colour centres from
various studies are somewhat different. In order to have a solid understanding of
skin colour preference for reliable skin colour enhancement of photographic images,
psychophysical experiments were conducted to revisit and to verify preferred skin
colours, to determine preferred skin colour regions, and to study inter-observer
variation and tolerance.
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4.2 Experiment I: Skin Colour Preference of Mixed Culture
Backgrounds

This psychophysical experiment was to study the colour preference of African,
Caucasian, and Oriental skin tones judged by a pool of observers with mixed culture
backgrounds (African, Caucasian, Asian, and Hispanics). The experiment was
divided into two phases as presented in following sub-sections.

4.2.1 Experiment I-1

To simplify the experiment, the lightness-independent skin ellipse model
developed in Chapter 3 was applied to detect skin colours. An image database
composed of approximately 2500 digital images was used to train the skin model.
The images were captured using various digital cameras under different conditions.
The subjects covered different skin-tones, including Caucasian, Asian, Hispanics,
African, and Indian. This image dataset is named ‘skin image database’, and the
selected skin colours from the image dataset is name ‘skin colour database’
throughout this paper.

Psychophysical experiments were conducted to determine preferred skin
colour regions for preference colour enhancement. The procedure were: 1) the skin
colour gamut is uniformly sampled to obtain an N-point skin colour set; 2) skin
colours of each test image is morphed toward each of these N skin colour points;
and 3) observers evaluate the preference of the N versions of each image displayed
on LCD displays. A paired comparison method was used for the experiment. The
number of judgements on each image is m = N(N-1)/2. If skin sample points are
large (a large N), m may be too large for practical evaluation. As a compromise, 9
sample points are chosen. The total number of judgements on each image by an
observer is 9x8/2 = 36. To ensure the quality of observations, each observer was to
judge images for no more than 30 minutes in a single session. With this constraint,
an observer was able to judge 4 images within about half an hour (4x36 = 144 pairs
of comparisons). Twelve images were judged by each observer. The experiment
was divided into 3 sessions. Each observer completed a session each day and
therefore all observations were completed in three days.

A set of nine pre-determined colour centres uniformly sampled within the skin
colour ellipse in CIE a*b* diagram was used to morph skin colours of test images
without changing lightness. Fig. 4.2.1-1(a) shows the nine pre-determined colour
centres uniformly distributed on the skin colour ellipse that was trained using all
skin types. The dot in the centre is the statistical skin colour centre. The skin model
coefficients can be found in Chapter 3. The centre point #4 is overlapped with the
skin elliptical centre. Because of a software bug, an SRGB display ICC profile



- 138 -

instead of the actual monitor display colour characterisation was applied to the
colour transformation, the nine pre-determined colour centres were actually shifted
to positions shown in Fig. 4.2.1-1(b).

50 ) 50

(a) (b)

Fig. 4.2.1-1 Nine predetermined skin colour centres in CIELAB a*-b* diagram

A test image was morph toward each pre-determined colour centre to produce
a new image in which skin colours were adjusted. With nine skin colour centres,
nine versions of adjusted images were produced to judge skin colour preference.

Twelve sRGB images for the experiment were carefully selected to cover
different skin types (see Fig. 4.2.1-2). General criteria for selecting images were:
the colour balance of an image should not be too much off from ideal; the
background behind a person’s face should not be highly chromatic; the global tone
should not be too much off from ideal; and the image quality should be good (no
visible noise).

The skin colours of each image were processed in a way that skin colours were
morphed toward a skin colour centre. As colours changed from the statistical skin
colour centre to the skin colour boundary, the adjustment gradually faded off. Each
image was first transformed from its source RGB colour space to CIELAB using it
source ICC profile (ICC website, Nielsen and Stokes 1998, Zeng 2002). To create
ICC profiles for colour transformation, a linear Bradford chromatic adaptation
matrix (Luo and Hunt 1998) was applied to adapt colours from the white point of the
RGB colour space to D50 . The skin colour ellipse model was applied to compute
Mahalanobis distance, @(X).
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Fig. 4.2.1-2 Test images used in Experiment I-1

Image pixel colour:
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Fig. 4.2.1-3 A block diagram illustrating skin colour adjustment on test images

@(X) = p defines the skin colour boundary. If &(X) is greater than p, the
colour X is considered a non-skin colour, and no colour adjustment is applied.
Otherwise, a weight is computed from the Mahalanobis distance to morph the skin
colour toward each of the nine skin colour centres. Fig. 4.2.1-3 shows a block



- 140 -

diagram for adjusting skin colours of images used for the experiment. Lightness is
not adjusted, and a*b* are adjusted if the colour is a skin colours. Pseudo codes to
compute the weight are:

if (@(a, b) < p){
r=®(a, b)/p;
if r<0.5)r=0;
else r = (r - 0.5)/0.5;

ew = (1-1)*0.5;

}

As shown in the pseudo code, a colour at the statistical skin colour centre is
adjusted the most, and colours on or outside the skin colour gamut are not adjusted.
With nine predetermined skin colour centres, nine versions of images are created
from each image. Fig. 4.2.1-4 shows an example.

Fig. 4.2.1-4 An image morphed toward nine colour centres

If teeth of a person in an image have yellowish tint, they may become more
yellowish after the skin colour adjustment. It is obvious that highlight colours are
adjusted too much. Because the artefact was found in a very late stage of the
preparation for the psychophysical experiment, instead of tuning skin colour
adjustment algorithm, images were carefully selected so that this type of artefact
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was not seen in images. The skin colour adjustment algorithm was not modified to
fix the artefact until a subsequent experiment.

Because paired-comparison is slow for its large amount of comparisons to
evaluate an image, and there are only nine coarse colour centres to manipulate
images practically, other experimental methods were designed and tested to speed
up the psychophysical experiment and to allow denser sampling points to
manipulate images.

In an initial study, a tool was developed to display a test image at a time on a
monitor screen for evaluation. The image can be modified and morphed toward
each of nine pre-set skin colour centres using three sliders (see Fig. 4.2.1-5). As an
observer adjusts a slider position from 0 to 8, skin colours of the image are changed
accordingly. An observer stops on slider positions in which the image is mostly
preferred. There are three sliders to manipulate. The Coarse slider morphs skin
colours toward nine colour centres uniformly sampled on the skin colour region (A,
B, .., | in Fig. 4.2.1-6). After a preferred skin colour position is found by
manipulating the Coarse slider, another set of eight skin colour centres around the
coarse preferred skin colour centre is generated (there are total of nine preferred skin
colour centres including the coarse preferred skin colour centre) (see a, b, ..., i in
Fig. 4.2.1-6). The sampling density is doubled in this step (i.e. the distance between
two neighbour skin colour centres is half of the previous one). In the third step, the
observer manipulates the Fine slider to find a most preferred skin colour position.
After a fine preferred skin colour centre is found, a last set of eight skin colour
centres around the fine preferred skin colour centre is generated (there are total of
nine preferred skin colour centres including the fine preferred skin colour centre).
The sampling density is doubled again at this time, The observer manipulate the
Finer slider to find a most preferred skin colour position (0, 1, ..., 8 in Fig. 4.2.1-6).
Finally, the most preferred colour centre is saved in a file. Fig. 4.2.1-6 shows an
example: nine coarse skin colour centres (A, B, ..., I) are first generated to process
images controlled by the Coarse slider; after #C is selected, nine finer skin colour
centres (a, b, ..., i) are then generated to process image controlled by the Fine slider;
and after #i is selected, nine finest skin colour centres (1, 2, ..., 8) are generated to
process image controlled by the Finer slider.

Because a single image was displayed at a time with this experimental setup,
observers must rely on their memory of preference levels of nine images to
determine a most preferred one, which is very difficult. An initial psychophysical
experiment conducted by this approach did not yield converged result.
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Fig. 4.2.1-5 A psychophysical experimental tool to find a preferred skin colour
centre

Fig. 4.2.1-6 A diagram illustrating the distribution of nine skin colour centres
generated in each of three phases
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The above experimental design was modified so that observers did not need to
remember preference of nine versions of a test image. Instead of displaying an
image at a time, nine versions of images are displayed simultaneously on a monitor
screen (see Fig. Fig. 4.2.1-7). After an observer clicks on an image that is most
preferred to him or her, the corresponding skin colour centre is applied to generate a
denser set of nine skin colour centres that are applied to update these nine images.
The observer selects a most preferred image again and the nine versions of images
are updated with further denser skin colour centres. After the process is repeated
three times (equivalent to adjust three sliders shown in Fig. 4.2.1-6), the preferred
skin colour centre corresponding to the most preferred version of image is saved to a
file. The result from a preliminary psychophysical experiment shows that the
repeatability of observer judgment is poor. Reasons may be that 1) images must be
scaled to very a small dimension to fit on a 21-inch display for observer judgment;
and 2) judging nine images at once may be a difficult task for many observers or
observers may rush to pick an image that is pleasing but not most preferred.

&% ImageDisplay - face.tif E@lﬂ

: File Edit View Window Help

facetif x | ) ) v

Fig. 4.2.1-7 Another psychophysical experimental tool to find a preferred skin
colour centre

For these failures in preliminary psychophysical experiments, the paired-
comparison method was finally adopted for this study.

Five workstations were used to conduct the experiment simultaneously, each
with an HP L2335 active matrix TFT 23-inch LCD display to display images. The
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colour characteristics of the displays will be described in Section 4.2.1.1. The room
lighting was adjusted to simulate a typical dim surround condition.

Nineteen observers participated in this phase of the experiment. All of them
came from a pool of HP employees at the site in Vancouver, Washington, US. They
were diverse in gender and culture backgrounds (Caucasian dominated), and ages
were between 25 and 50. All of them satisfactorily completed the colour vision
discrimination test and observer orientation training. They were experienced at
evaluating image quality because of involvement in colour and image quality
evaluations that were conducted regularly.

All test images were cropped to a uniform size of 8-inch width by 10-inch
height. As a pair of images was displayed on a display each time, the remaining
area of the display was filled with uniform medium gray (see Fig. 4.2.1-8). Each
observer was instructed to sit at distances that was most comfortable for viewing,
followed by the presentation of an image pair on display at a time, and was asked to
indicate which rendition of the two was preferred for skin colours. After the
response was recorded, the next image pair was loaded and the observer proceeds
until all samples were evaluated. All possible pair combinations of the nine
treatments (36 in total) were presented to each observer via a script that randomized
the order and the placement (left/right) of the treatments. With 12 images, each
observer compared 432 pairs. There are 8208=36x12x19 total judgments from all
observers.

Fig. 4.2.1-8 A snapshot of a display screen for the experiment

4.2.1.1 Display Colour Characterization

Since five workstations are used to conduct the experiment simultaneously, it
is very important to have all five LCD displays perform consistently. An X-Rite
Eye-One Pro spectrophotometer was used to characterise each display. Each display
was adjusted to a target D65 white point, and the RGB tone curves were adjusted to
have a gamma of 2.2. Then an ICC profile was generated for each display’s colour
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transformation.  Figures 4.2.1.1-1 and 4.2.1.1-2 show the gamut comparison
between a display monitor used for the experiment and sRGB in CIELAB colour
space. The display has substantially more saturated red and green primaries than the
corresponding sSRGB primaries, and the blue primary of the display is about the
same as the sRGB blue primary. For a set of skin tone RGB colours directly
displayed on an sRGB display and on an actual display, it is obvious that the actual
display produces more chromatic skin colours.

To study the consistency of all five monitors, a set of 5x5x5 RGB data
uniformly sampled the entire RGB colour space was created, and converted to
CIELAB using each of the five ICC profiles. The mean of each colour from the five
CIELAB data sets was computed. The differences of each of the 5x5x5 = 125
colours between each data set and the mean data set were computed. The mean
difference, maximum difference, and standard deviation of the differences in
CIEDE2000 (AE*y) were calculated. Table 4.2.1.1-1 shows mean differences,
maximum differences, and standard deviations of the differences in AE*y. Monitor
#4 has the largest deviation from the mean, mostly in dark colours. Overall, the
colour consistency among five monitors is reasonably good.

Fig. 4.2.1.1-1 sRGB gamut (black) and a display gamut (colour) in CIELAB colour
space



Fig. 4.2.1.1-2 sRGB gamut (black) and a display gamut (colour) in CIE a*b*
coordinates

Table 4.2.1.1-1 CIE AE*y, between each monitor and the mean from all monitors

MEAN MAX STDEV
Monitor #1 0.2 0.7 0.1
Monitor #2 0.3 1.2 0.2
Monitor #3 0.2 0.7 0.1
Monitor #4 0.5 2.6 0.5
Monitor #5 0.2 0.7 0.2

4.2.1.2 Colour Distribution of Test Images

The 12 test images were carefully selected and visually judged to avoid biases
in skin colour distributions. Quantitative analysis were performed to analyse skin
colour distributions of the set of images and to compare them with the statistical
distribution of skin colours. The purpose was to confirm that the skin colour
distribution of the set of image was reasonably balanced.

The skin colours of each image were masked manually. A histogram of skin
colours of the 12 images was then generated. Two steps were performed to reduce
noise in histogram: 1) images were de-noised prior to skin colour masking; and 2) a
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small percentage (5% in this experiment) of least occurred skin colours in each
labelled skin image were removed. Step 2 was to guarantee that incorrectly masked
non-skin colours were removed. The skin colour histogram was applied to train an
ellipsoid that covered 90% of masked skin colours. Fig. 4.2.1.2-1 shows the skin
colour ellipsoids in CIELAB colour space, where the skin colour ellipse of the 12
images is illustrated in orange, and the ellipsoid of the skin colour database is drawn
in black. 3-D visualization of the ellipsoids demonstrates that the orange ellipsoid is
approximately in the centre of the skin colour database, which means no obvious
overall skin colour bias in the skin colour distribution of test images. Fig. 4.2.1.2-2
shows three constant-lightness planes of the ellipsoids. Orange ellipses are skin
colour ellipses of 12 images and black ellipses are ellipses of the skin colour
database in constant-lightness planes. Fig. 4.2.1.2-2 shows skin colours of 12 test
images are approximately distributed around the centre of the skin colour database,
although the dark skin tone ellipse of test images (the right figure) is slightly shifted
off the centre of the overall skin colour distribution. In overall, the skin colour
distribution of these 12 images has very little bias against the centre of the skin
colour database. This is important because if skin colours of an image are too much
off from average skin colours or preferred skin colours, the skin colour adjustment
function may not be able to move them to preferred skin colour centres.

Fig. 4.2.1.2-1 The skin colour ellipsoid of the 12 images (orange) and the skin
colour ellipsoid of the image database (black) in CIELAB colour space
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Fig. 4.2.1.2-2 Constant-lightness slices of the skin colour ellipsoid of the 12 images
(orange) and the skin colour ellipsoid of the image database (black)

4.2.1.3 Preferred Skin Colour Centre

The Thurston’s Law of Comparison Case 5 was applied to analyse the result
(Bartleson and Grum 1984). The z-scores of each image at skin centres O to 8
obtained from all judgements are plotted in Fig. 4.2.1.3-1. A higher z-score means
stronger ‘prefer’ (or less ‘dislike’). Error bars represent the 95% confidence interval
(Montag 2006). The figure shows that skin centres #0 and #2 are least preferred to
most images, and #4 and #7 are most preferred to most images.
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Fig. 4.2.1.3-1 z-score of each individual image at each skin colour centre
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Characterising skin colour centres using a representative display ICC profile
(an ICC profile that approximately represents the average of all five displays) and
using the average z-scores of skin centres #4 and #7 as weights, an approximate
preferred skin colour centre a* b* = (20.4, 23.4) is obtained.

A preferred skin colour centre of a test image can be computed from each
image using the a*b* of nine colour centres and their corresponding z-scores as
weights:

a -Z

8
ar=——

=0

where (a*;, b*;) is the mean skin colour of the i-th version of the image, Z; is the Z-
score of the i-th version of an image.

Although the method to adjust skin colours of test images morphs skin colours
toward each of the nine predetermined skin colour centres, it does not morph overall
skin colours or the mean skin colour exactly to each predetermined skin colour
centre. Furthermore, although statistical analysis of test images confirms that the
overall skin colour distribution of test images have no obvious bias compared to the
overall skin colour distribution of the skin colour database generated with large
amount of images for skin colour modelling, skin chromaticity distributions of
different test images are not exactly the same. Since observers rate a image by
judging overall skin colours of the image to, instead of computing preferred skin
colours using nine preferred skin colour centres, preferred skin colours should be
computed using skin colours of nine versions of each test image and their
corresponding z-scores.

To compute preferred skin colours using skin colour distributions of each
image, a skin mask was made for each of 12 images. Fig. 4.2.1.3-2 shows an
example. Using a mask to index each pixel of each of the nine versions of an image,
all skin pixels were found. To remove noisy pixels and colours that were less likely
to be skin colours, a small percentage of pixels in the lower end of the histogram
were removed. This percentage was set as 10% to remove noise pixels, specular
reflectance colours, and objects such as hair that might be included in skin mask. A
mean skin colour was computed for each version of adjusted images. Assuming
images with negative scores are not acceptable, positive z-scores were used as
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weights to draw elliptical contours and to compute weighted average colours as
preferred skin colours (Bartleson and Bray 1962).

By averaging skin colours in each image to compute a preferred skin colour, it
assumes that all skin colours are visually equally important in colour preference
judgment. This might not be true. Some critical spots in faces may play more
importantly than rest of spots in determining skin colour preference. For this reason,
a slightly different method that takes only critical spots (typically forehead and
cheeks are critical spots) to compute preferred skin colours was tested as well. Fig.
4.2.1.3-3 shows an example. Three circle areas were selected critical regions of this
image. The nose area was ignored because of specular reflectance. Ears and
regions that have shades were ignored as well. A mean colour of critical regions
was computed on each of nine versions of a test image.

Fig. 4.2.1.3-2 A test image and its skin mask

Fig. 4.2.1.3-3 Critical regions in a test image

A final preferred skin colour was computed as weighted average of the nine
mean colours using their corresponding z-scores as weights. The results of preferred
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skin colour computed by the method using the skin colour distribution of all face
skin colours and by the method using the skin colour distribution of critical spots
were compared. The preferred skin colours computed by these two methods have
AE*, of 1.0 by averaging preferred skin colours computed on all nine images.

Since preferred skin colours computed using the colour distribution of all skin
colours are very close to those computed from critical spots and the method using
critical spots may subject to personal bias in determining critical spots, the method
using the colour distribution of all skin colours was accepted to compute preferred
skin colours in this thesis.

After a preferred skin colour from each of 19 observers on each image was
computed, an ellipse was generated from the 19 preferred skin colours of each
image. Fig. 4.2.1.3-4 shows the preferred skin colour ellipses of 12 test images in
CIELAB a*-b* coordinates (L* is ignored). The pink dot in the centre is the centre
of the skin colour database. Each small ellipse, which covers about 50% of the sum
of scaled positive z-scores, represents a preferred skin colour region judged by
observers on one image. The centre of an ellipse was considered the preferred skin
colour centre of the corresponding image. The diamond dot is the preferred skin
colour centre averaged from preferred skin centres of all images. The distribution of
preferred skin colour centres has smaller difference in hue than in chroma, which
implies that the tolerance of preferred skin colours is smaller in hue than in chroma.
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Fig. 4.2.1.3-4 Preferred skin colour ellipses of 12 test images in Experiment -1
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To understand the underlying trends of different skin colours, the skin colours
were categorised into light, medium, and dark skin-tones. They were categorised
mainly based on the average L* of skin colours. L* at 58 and 48 were considered
the boundaries of light/medium and medium/dark skin tones, respectively.
However, since the visual perception of the “whiteness” of face tones were not
completely determined by lightness, average L* of skin colours of an image at or
close to a boundary were visually evaluated to determine a skin tone group that the
image belonged to. The first five images (A, B, C, D, E) were categorised as light
skin-tone images (Caucasian dominated), the next three images (F, G, H) were
categorised as medium skin-tone images (Oriental), and the remaining four images
(1, J, K, L) were categorised as dark skin-tone images (African dominated).

The preferred skin colour ellipses of three groups are illustrated in Fig. 4.2.1.3-
3, where ellipses of light, medium, and dark skin-tone images are drawn in orange,
gray, and black, respectively. Except that the distribution for medium skin-tone
images has smaller variations than other two groups, there are no clear disparities
among three groups. Table 4.2.1.3-1 lists the average preferred skin colour centres
of three groups. It shows that preferred skin colours among three groups are about
the same in chrominance.

Table 4.2.1.3-1 Preferred skin colour centres of three skin-tone groups

a* b* C*ab Nap
Light-tone 19.8 23.2 30.5 49.5°
Mid-tone 21.3 25.0 32.8 49.5°
Dark-tone 21.0 24.0 31.9 48.8°

Table 4.2.1.3-2: Preferred skin colour centres of three ethnic groups

a* b* C*p hab

Caucasian 19.3 22.1 29.3 48.8°
Oriental 20.7 24.4 31.9 49.7°
African 20.5 23.3 31.0 48.7°

To analyse the skin colour preference among different culture backgrounds,
the images were categorised into Caucasian, Oriental, and African groups. Because
it was difficult to determine ethnic groups for three images, (B, G, and I in Fig.
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4.2.1-2), these three were not used for analysis. Three images were selected for
each group: A, C, and D for Caucasian; E, F, and H for Oriental; and J, K, and L for
African. The result is shown in Table 4.2.1.3-2.

4.2.1.4 Inter-Observer Variation

There are 19 observer preferred skin colour centres represented with a*b*
(ignoring L*) on each image. Each observer’s preferred skin colour centre against
the mean skin colour centre on each image were computed. They represent the
observer variations, (Aa*, Ab*), on each image. Dots in Fig. 4.2.1.4-1 are these
(Aa*, Ab*) points. Each point is a preferred skin colour centre of an observer
judgement on an image. The 19 points on each image represent inter-observer
variances on skin colour preference for this image. An ellipse to cover 85% of 19
sets of (Aa*, Ab*) from all observer judgements on each image was generated. It
was found that typically, two or three observer data points in a set were noisy and
should be excluded from the ellipse fitting. For such reason, an 85% coverage rate
for an ellipse was determined to cover 16 points, i.e., three outlier points was
discarded. All ellipses show very long major-axis and very short minor-axis, and
have about the same orientation. Translating each ellipse centre to its original a*b*,
one will see that the orientation of each ellipse lies within a small hue range,
implying preferred skin colours lying within a limited hue range; and their chroma
variations are more tolerable.

If each ellipse in Fig. 4.2.1.4-1 is translated to absolute a*b* coordinates, the
orientation of each ellipse reveals an interesting hue preference: if a chroma higher
than the mean chroma is preferred, the preferred hue angle tends to be slightly
higher than the average preferred hue angle (the hue preference is slightly more
yellowish); if a chroma lower than the mean chroma is preferred, the preferred hue
angle tends to be slightly lower than the average preferred hue angle (the hue
preference is slightly redder).

There are total of 228 (19 by 12) observer preferred skin colour centres. Fig.
4.2.1.4-2 illustrates the colour preference ellipse (orange ellipse) from Experiment I-
1 to cover 85% of these preferred skin colours projected to CIELAB a*-b*
coordinates (the ellipse from Experiment I-2 is plotted for comparison and will be
discussed in Section 4.2.2). The shape and orientation of the ellipse illustrate that
observer variations are larger in chroma than in hue, i.e., the hue tolerance is smaller
than chroma tolerance among observers
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Fig. 4.2.1.4-1 Variations of observer judgements on each image in CIELAB a*-b*
diagram
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Fig. 4.2.1.4-2 Preferred skin colour ellipses from all observers on all images in
CIELAB a*-b* diagram

4.2.1.5 Inter-Image Variation

The preferred skin colour centre of each image is plotted in Fig. 4.2.1.5-1.
There are no significant differences among three skin colour groups. All of these
skin colour centres spread around a large area, but in a narrow hue range with a
mean hue angle of about 49° (the straight line in Fig. 4.2.1.5-1). It implies that
preferred skin colours lie within a small hue range and have a larger discrepancy or
tolerance in chroma. To reproduce skin colours pleasingly, it is important to morph
them toward their ideal hue centre. It is not very clear why the results of the image
A (the orange dot in the bottom) and image K (the black dot far away from the fitted
line) are more different from others. It was found that higher chromatic versions of
the adjusted images of the image A look flat and unnatural.

Table 4.2.1.5-1 lists each of these 12 preferred colour centres. A mean
preferred skin colour centre is averaged from all individual preferred skin colour
centres (a preferred skin colour centre computed by this approach is slightly
different from that generated as the centre of a colour distribution ellipse). AE*, of
the preferred skin colour of each image to the mean preferred skin colour is
distributed in a range of 0.4 and 6.0, with a mean AE*y, of 2.3. Very light and very
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dark skin colour images tend to have larger AE*,,, and medium skin colour images
seem to have smaller AE*y,. The large spread of AE*,, seems to indicate that
image-dependent skin colour enhancement may be an optimal solution.
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Fig. 4.2.1.5-1 Preferred skin colour centres of individual images in CIELAB a*-b*
diagram

Table 4.2.1.5-1 Preferred skin colour centres of individual images

Image A B C D E F G H I J K L Awrage

ar 181 | 187 212 216 | 195 | 20.7 | 214 | 218 | 227 206 229 179 206
b* 185 | 225 | 252 | 263 | 237 243 255 251 | 263 | 249 | 243 | 206 @ 239

C*ab 259 | 293 330 340 307 319 334 | 3832 347 323 334 274 316
Nap 456 | 50.2 499 506 @ 50.7 495  50.0 | 491 492 505 468 @ 49.0 49.2
AEgsp 6.0 2.4 1.4 2.5 1.2 0.4 1.8 1.6 3.2 1.0 2.3 4.2 2.3

4.2.2 Experiment I-2

The experiment I-1 was considered to be an initial study of the evaluation.
The results reveal a strong preference at an ‘ideal’ skin colour centre. AS a
subsequent experiment, Experiment 1-2, was to refine the preferred skin colour
region in a finer resolution around the preferred skin colour centre found in
Experiment I-1. The intention was to produce a more accurate preferred skin colour
centre.
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In this experiment, a denser sampling of nine skin colour centres surrounding
the preferred skin centre found in Experiment I-1 were generated to evaluate the
skin colour preference in a smaller region. In Fig. 4.2.2-1, the cross points (marked
‘x’) noted with A, B, ..., I are the nine pre-determined skin centres for this
experiment; and the black dots noted with 1, 2, ..., 8 are the nine colour centres used
in Experiment 1-1 (display colour characterisation was not taken into account in the
plot). Point #E is the preferred colour centre found in Experiment I-1. The skin
colour sampling in Experiment 1-2 is about twice as dense as that in Experiment I-1.

The skin ellipse model was the same as that in Experiment I-1. Since the skin
colour adjustment was found to be too strong on some images (e.g. teeth with
yellowish tint become more yellowish), the strength of the colour morphing was
reduced to relief some artefacts found in Experiment I-1. If a colour is a skin
colour, i.e., @(a, b) < p, the weight for skin colour adjustment is computed by W =
0.5(1- d(a, b)/p).
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Fig. 4.2.2-1 Skin colour centres for the experiment in CIELAB a*b* diagram

Monitor displays, and experimental set-up and procedures were the same as in
Experiment I-1. To avoid potential bias toward certain images, a complete different
set of 12 images were carefully selected to cover various skin types (see Fig. 4.2.2-
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2). Quantitative analysis of the statistical colour distributions of the set of 12
images and comparing them with the skin image database verified that the overall
statistical distribution of the skin colours of the 12-image set was reasonably
balanced. 20 observers from the same HP observer pools participated in this phase
of experiment. Five of them participated in Experiment I-1 as well. Again,
observers were Caucasian dominated. There were 8640 total judgments from 20
observers on 12 images by 9 observer centres (8640 =36x12x20).

Fig. 4.2.2-2 Test images used in Experiment 1-2

4.2.2.1 Preferred Skin Colour Centre

Fig. 4.2.2.1-1 shows z-scores of individual images. Error bars correspond to
the 95% confidence interval. Overall, there is a relative stronger preference for skin
colour locations #E, #F, #H and #l than for other skin centres. However, the
preference is not as selective as in Experiment I-1 due to less discrepancy among
nine colour centres. Among these 12 images, the preference of Image e (see the
green bar in the figure) is very different from others. This image is strongly
preferred in locations that have lower chroma (#A, #D, and #G), and is strongly
unfavoured in locations that have higher chroma (#C, #F, and #l). Skin colours of
this image are very chromatic. It was suspected that this was an image scanned
from a negative film.

Again, assuming images with negative scores are not acceptable, the positive
z-scores and mean skin colours of their corresponding versions of each image were
used to construct elliptical contours for preferred skin colours and to compute z-
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score weighted average preferred skin colours for each image. An overall preferred
skin colour was averaged from all preferred skin colours.
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Fig. 4.2.2.1-2 Preferred skin colour ellipses of 12 test images (Experiment 1-2)

Fig. 4.2.2.1-2 shows the preferred skin colour ellipses of 12 test images in
CIELAB a*-b* coordinates (ignoring L*). The pink dot in the centre is the
statistical skin colour centre. Again, each small ellipse, which covers about 50% of
the sum of scaled positive z-scores, represents a preferred skin colour region judged
by observers on an image. Each ellipse centre represents the preferred skin colour
centre of its corresponding image. The orientation of the ellipse of Image e, with a
major axis in vertical direction, is very different from other. The hue preference of
this image is lower than overall trend as well. Preference of Image b has smaller
chroma than others.

4.2.2.2 Inter-Observer Variation

The ellipse of the distribution of the preferred skin colour centre offset (Aa*,
Ab*) from each observer on each image was generated and plotted in Fig. 4.2.2.2-1.
This represents observer variation projected to a*-b* coordinates (ignoring L*).
With smaller colour differences among nine versions of images, their sizes are
smaller than those in Experiment I-1. Similar to Experiment I-1, variation in hue is
smaller than variation in chroma.

All (Aa*, Ab*) of the 20 observers’ preferred skin colour centres on 12 images
were applied to generate an ellipse that covers 85% of the data points (see orange
ellipses in Fig. 4.2.2.2-2). This is the observer variation projected into a*-b*
coordinates. The ellipse from Experiment 1-1 is plotted in black for comparison.
The orientations and eccentricities in two ellipses are about the same. The size of
the ellipse in Experiment I-1 is about twice of that in Experiment 1-2, which
corresponds to that the colour differences among nine versions of each image in
Experiment I-1 are about twice to those in Experiment 1-2. With smaller variation in

test images, observers’ judgment for skin colour preference was more consistent.

A preferred skin colour ellipse to cover 85% of individual preferred skin
colours in Experiment I-2 is plotted in Fig. 4.2.1.4-2 (the blue ellipse). The
preferred skin centre was changed to a slightly different position, and preferred skin
colour ellipses from two phases are mostly overlapped. The results demonstrate that
the experiments are reliable and repeatable. Although colour differences among
nine versions of each test image in Experiment 1-2 are about half of those in
Experiment 1-1, the preferred skin colour ellipse that represents the observer
variation in Experiment 1-2 is only slightly smaller than that in Experiment I-1.
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Fig. 4.2.2.2-2 Variations of all observer judgements on all images in CIELAB a*-
b* diagram

4.2.2.3 Inter-Image Variation

Table 4.2.2.3-1 lists the preferred skin colour centre of each image computed
using positive z-scores as weights. The colour difference (AE*,,) of each preferred
skin colour centre against the average preferred skin colour centre were computed
and listed in the last row. The inter-image variation is about the same as that in
Experiment I-1.

Table 4.2.2.3-1 Preferred skin colour centres of individual images
Image a b c d e f g h i i k | Average

a* 212 179 220 184 227 232 20.7 202 223 214 223 212 211
b 242 229 263 240 244 262 246 257 27.1 264 278 274 256
Ct 322 29.1 343 30.2 333 350 322 327 351 340 356 346 332
Pan 48.7 521 50.1 525 471 485 499 519 505 51.0 51.2 523 505
AE.. 14 42 11 31 20 21 10 10 20 09 25 18 19
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4.2.3 Discussion

4.2.3.1 Recalibration of Preferred Skin Colour Centre

Since the colour transformation using the display ICC profile of monitor #3 is
most close to that by averaging the colour transformation using all five profiles, the
display ICC profile of monitor #3 was used to convert display RGB to CIELAB for
computing skin colour centres. The display ICC profile is modelled with a matrix
plus R, G, and B tone curves for colour transformation. To improve the colour
accuracy, the RGB colour of a final preferred skin colour centre (a*b*) obtained in
Experiment 1-2 with different lightness along with the monitor white point
(R=G=B=255) and the monitor black point (R=G=B=0) were displayed on all five
displays, and their colorimetric values were measured using an X-Rite Eye-One Pro
spectrophotometer. The a*b* values of the preferred skin colour were averaged
from the white point adapted colours of the measurement data. The differences
between a measured skin colour value and the same colour computed using a display
ICC profile are about (0.4, 1.3) in a* and b*, respectively. Hence, a*b* of about
(0.4, 1.3) should be added to the results of preferred skin colours.

Preferred skin colours in all tables above have taken this set of calibration
values into account. However, the calibration values are not added to any plots
above.

4.2.3.2 Preferred Skin Colours from Experiments I-1 and I-2

The overall preferred skin colour (mixed preferred skin colour) may be
computed by averaging preferred skin colours of 12 images. Another method is to
generate a preferred skin colour ellipse using preferred skin colours judged by all
observers and determine the ellipse centre as the overall preferred skin colour
centre. Tables 4.2.3.2-1 and 4.2.3.2-2 list the results from Experiments I-1 and I-2.
a*b* have been added by (0.4, 1.3) to calibrate the colour inaccuracy computed
using a display ICC profile. Because some extreme observations were discarded
while an ellipse is trained, an ellipse centre should be more representative for
preferred skin colour centre than a mean colour.

Table 4.2.3.2-1 Mixed preferred skin colours computed with two different
approaches (Experiment 1-1)

Method ax* b* C*a Nab

Mean 21.2 24.3 32.2 48.9°
Ellipse centre 21.3 235 317 47.8°
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Table 4.2.3.2-2 Mixed preferred skin colours computed with two different
approaches (Experiment 1-2)

Method a* b* C*ap Nap
Mean 211 25.6 33.2 50.5°
Ellipse centre 21.2 24.7 32.6 49.4°

It has been mentioned in Section 4.2.2.1 that the colour preferences of Image b
and Image e are different from the overall trend. To investigate this problem, nine
versions of adjusted images of each test image were analysed to see if in some test
images, the deviation of nine versions of adjusted images were not sufficient for
distributing their skin colours around a most preferred skin colour centre.

For each test image, the mean skin colours of nine adjusted images were
computed, and the average of these mean colours was computed. AE*q, of each of
nine mean colours to the average of nine mean colours represents AE*,, of the skin
colours of the corresponding adjusted image to the average skin colours of the all
nine adjusted images. An average AE*,, from AE*,, of 12 images was computed.
In Experiment I-1, average AEg, of 12 images are in the range of 5.6 to 6.8, while
the range is from 2.4 to 3.0 in Experiment I-2. If the mean skin colour of an image
is more than 3.0 AE*,, away from its most preferred skin colour, the skin colour
adjustment function may not be able to produce nine versions of adjusted images
whose mean skin colours are distributed around a most preferred skin colour centre.
Fig. 4.2.3.2-1 illustrates another evident that the range of adjustment is potentially
not sufficient. The plot shows Z-scores averaged from all 12 images for each skin
colour centre in Experiment 1-2. The most preferred regions are E and H. These
two regions have about the same Z-score. A more preferred colour centre could be
somewhere further away from H if nine predetermined colour centres were in a
larger region. Since the result from Experiment I-2 is very close to Experiment I-1,
if the range to adjust skin colours in Experiment I-2 is not sufficient for some
images, it is probably very small.

Although the denser sampling density of skin colours in Experiment I-2 should
improve the accuracy mathematically for computing preferred skin colours through
interpolation (weighted averaging) in a small area, the potential insufficient range of
the skin colour distribution of nine adjusted images on some test images makes the
result less reliable and may degrade the colour accuracy as well. Consequently, the
result from Experiment I-1 is believed to be more reliable and potentially more
accurate.

Although an ellipse centre is probably more representative for preferred skin
colour centre than a mean colour, preferred colour centres obtained from these two
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approaches are about the same (see Table 4.2.3.2-2). The result of the preferred
mixed skin colour is about (21, 24) for (a*, b*) with a hue angle of 49°.
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Fig. 4.2.3.2-1 Mean Z-score in each skin colour centre (Experiment 1-2)

4.2.3.3 Comparing the Present Studies to Others

To compare preferred skin colours with real skin colours, the RIT and Oulu
spectral data sets of skin colours were analysed (RIT Munsell Website, Sun and
Fairchild 2002, Martinkauppi 2002). CIE XYZ values of each skin colour were
computed using D65 illuminant, and then adapted to D50 using the linear Bradford
chromatic transformation (same as that used to create display ICC profiles) and
finally converted to CIELAB values. The skin colours of three categories are
plotted: African (black ‘x’), Asian (pink ‘x’), and Caucasian (orange ‘x’) (see Fig.
4.2.3.3-1). The preferred skin colour centres found from the present study are
circled with a small black ellipse. The largest ellipse is the skin colour boundary.
Except for the result obtained by Sanger in which Japanese prefer less chromatic
skin colours on the three ethnic groups (Caucasian, Japanese, and African),
preferred skin colours are clearly more chromatic than real skin colours from all
other studies. This confirms that the memory skin colour is more colourful than real
skin colours. The hue angle of the preferred Caucasian skin colour is slightly more
yellowish than that of the real Caucasian skin colour. The preferred Oriental and
African skin colours are slightly more reddish than real Oriental and African skin
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colours, respectively. Since a single group of observers judges images of all skin
types, the preferred skin colours of Caucasian, Oriental, and African from the
present study represent cross-culture preference. This may be the reason that three
preferred skin colour centres have very small discrepancies.
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Fig. 4.2.3.3-1 Skin colour centres in CIELAB a*-b* coordinates (adapted to D50)
from different sources

The remark from Hunt et. al. that preferred Caucasian skin colours were
slightly more yellowish than the real skin colours agrees with results from many
other studies. However, Hunt’s finding that the chroma of preferred Caucasian is
about the same as that of the real skin colour is different from the results of the
present study and most of other reports.

Sanders’ result of the preferred Caucasian face colour centre under C
illuminant is (x, y) = (0.441, 0.379). Converting the colour with different Y values
to CIELAB under D50, the hue angle is about 57°. Since the mean L* of Caucasian
and Asian skin colours computed from the skin image database is about 60, it was
applied to compute Sander’s preferred Caucasian skin colour. The result is a*b* =
(22.6, 34.7) (the orange square in Fig. 4.2.3.3-1). The preferred hue angle is almost
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10° higher than the real Caucasian skin colour, and is about 8° higher than that of the
preferred Caucasian skin-tone of the present study. The colour is more chromatic
than that from the present study.

Sanger’s result of preferred Caucasian, Japanese, and African skin tones
judged by Japanese in D65 are (X, y) = (0.355, 0.351), (0.367, 0.360), (0.387, 0.373),
respectively. Assume L* to be 60 for Caucasian and Japanese and 50 for African,
their a*b* adapted to D50 are (7.8, 11.2), (8.9, 15.1), and (9.8, 18.6), respectively.
All preferred skin colours are less chromatic than actual skin colours.

The average preferred Japanese complexion found by Yano and Hashimoto is
(u’, v’) = (0.2425, 0.4895) in D65 illuminant, or (x, y) = (0.3881, 0.3482).
Assuming L* = 60, the preferred skin colour is a*b* = (18.9, 15.4) (the pink solid
circular dot in Fig. 4.2.3.3-1). Its chroma is lower than the result of the present
study. Its hue angle is about 39°, which is lower than the present result as well.

Kuang et. al. studied colour preferences of different skin-tones under different
conditions for photographic colour reproduction. The preferred skin colour centres
of Caucasian, Asian, African-American, and Indian found by them were marked
with small circles in Fig. 4.2.3.3-1. The chroma of the preferred Caucasian skin
colour is unreasonably higher than the results from other researches; but the hue
angle (53°) is only slightly higher than that of the present results. The preferred
Asian skin colour is slightly more colourful than that of real skin colours; however,
the hue angle (62°) seems to be very high.

Park et. al. defined a memory skin colour ellipse and adjusted skin colours
within the large skin colour ellipse toward a smaller skin memory colour ellipse to
improve skin colour preference. The skin colour centre was used as the memory
skin colour centre (the preferred skin colour centre) in their skin colour
enhancement. This is different from our approach in which the centre of skin colour
ellipse and the preferred skin colour ellipse are different. Their skin colour centres
for East Asian, Caucasian, African, and Mixed skin colours represented in YC,C;
colour space were converted to RGB and then to CIEXYZ using sRGB
specification, adapted to D50, and finally transformed to CIELAB for comparison.
The results are (51.4, 19.8, 24.8), (64.7, 14.8, 23.9), (40.5, 16.3, 18.0), and (56.8,
16.6, 23.0), respectively (see triangles in Fig. 4.2.3.3-1). Their hue angles are 52°,
59°, 48° and 54°, respectively. The skin colour centre for East Asian is similar to
the present finding for mixed skin colours, the preferred Caucasian skin colour
centre is more yellowish than the present finding, and the preferred African skin
colour centre is much less chromatic than the present finding.
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Bodrogi and Tarczali found that skin colours shifting towards its memory
prototypical colour centre occurred not only in photo contents but also in standalone
colour patches, although the memory colour shift in standalone patches was weaker.
This suggests that preferred skin colour adjustment may be applied to non-skin skin
colours as well, but with less adjustment. With complete adaptation of their bluish
reference white to D50, their memory skin colour centre is plotted as an orange star
in Fig. 4.2.3.3-1. The memory skin colour is more reddish compared to those from
other studies. One reason is that their memory colour study is different from the
study of preferred colours, and to compare their data to others a complete adaptation
from the bluish white to D50 was assumed.

The preferred skin colours plotted in Fig. 4.2.3.3-1 are spread in a small hue
range, with a mean hue angle of 52° and a standard deviation of 7°. The mean hue
of preferred skin colours is about the same as that of real skin colours, while chroma
of preferred skin colours are significantly higher than those of real skin colours.
The variation in chroma is larger than the variation in hue, which is similar to that of
the inter-observer variations of the present study.

A serial of psychophysical experiments were further conducted and will be
presented in next few sections. These experiments confirm the repeatability of our
experimental method and verify the reliability of our experimental results.

4.2.3.4 Tolerances in CAMO02-UCS

Preferred skin colour ellipses confine within a small hue range and a relatively
large chroma range. In other words, there is smaller tolerance in hue than in
chroma. To study whether this is related to the colour space uniformity of the skin
colour region in CIELAB colour space and whether the uniformity is improved in
CAMO02-UCS, the observer data from Experiment I-1 were plotted in CAM02-UCS
for comparison (see Fig. 4.2.3.4-1). It can be seen from Figures 4.2.2.2-1 and
4.2.3.4-1 that the ellipses in CAMO02-UCS are closer to circle than ellipses in
CIELAB colour space. However, no matter what colour space is used, hue tolerance
IS tighter than chroma tolerance.

An ellipse to cover 85% of all observer preferred skin colour centres on all
images is generated and compared with that generated in CIELAB colour space.
The ratio of the major axis over the minor axis, A/B, in CIELAB and CAMO02-UCS
from all observers on all images are 4.2 and 3.0, respectively. The result that A/B in
CAMO2-UCS is closer to unity indicates that CAMO02-UCS is slightly more uniform
in representing skin colours.



- 169 -

e .
. *
TR T SR

AN o ' .

4% e

/

i

: I/
L]

Fig. 4.2.3.4-1 Variation of observer judgments (Experiment I-1) on each image in
CAMO02-UCS chroma coordinates

4.2.4 Summary

Psychophysical experiments were conducted to evaluate skin colour preference
and tolerance. The findings from the psychophysical experiments are summarized
below: 1) preferred skin colours are more chromatic than real skin colours; 2)
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observer variances in skin colour preference are larger in chroma than in hue, i.e.
hue tolerance is tighter than chroma tolerance; 3) the preferred skin colour centre for
mixed skin colours is about (21, 24) for (a*, b*) with a hue angle of 49° in D50
illuminant; 4) the preferred Caucasian skin colour is slightly more yellowish than
average real Caucasian skin colour, and preferred Oriental and African skin colours
are slightly more reddish than their real skin colours; and 5) CAMO02-UCS is slightly
more uniform than CIELAB in the skin colour region.

4.3 Experiment Il: Chinese Skin Colour Preference Judged by
Chinese

The objective of this experiment was to find the preferred Chinese skin colour
judged by Chinese and to exam the reliability of the experimental method by
analysing the results of this experiment and Experiment I.

The experimental procedure in Experiment | was utilized. Since the colour
range for skin colour adjustment in Experiment 1-2 may be slight too small, a larger
range of nine skin colour centres were selected to adjust skin colours. Four Chinese
portrait images (see Fig. 4.3-1) were judged by 19 Chinese observers through paired
comparison. Images were displayed on a 24-inch Eizo ColorEdge CG241W TFL
active matrix LCD monitor which has a native resolution of 1920x1200, a 12-bit
LUT for each of R/G/B channels, and a wide gamut covering about 96% of Adobe
RGB gamut. The monitor was calibrated to achieve gamma value of 2.2, luminance
of 120cd/m?, and a white point of D65 using ColourNavigator CE software and Eye-
One Pro.

Man Woman

Fig. 4.3-1 Images to judge Chinese skin colour preference

The preferred skin colour centre found in the prior experiment was selected as
the initial preferred skin centre for the experiment. A set of nine preferred a*b*
centres was used to produce nine versions of images for pair comparison. Table 4.3-
1 shows the set of a*b* centres. In Fig. 4.3-2, the cross points (‘x”) noted with A, B,
..., I are the nine pre-determined skin centres for this experiment; and the black

circle dots noted with 1, 2, ..., 8 are the nine colour centres used in Experiment I-1
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of the prior experiment. Point #E is the preferred colour centre found in the prior
experiment. The predetermined skin colour centres for this experiment is slightly
coarser than those in Experiment I-2. The skin colour ellipse model is the same as
that in Experiment I-2. The method of skin colour morphing is exactly the same as
that of Experiment I-2 as well.

Table 4.3-1 Nine preferred skin colour centres

A B C D E F G H I

a* 209 259 309 161 211 261 113 163 213
b* 127 218 308 153 244 335 180 270 361
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Fig. 4.3-2 Nine predetermined skin colour centres to test Chinese skin colour
preference

4.3.1 Experimental Result and Discussion

Among the nine versions of images processed from each of four images, skin
colours are different and non-skin colours are the same. There are 36 pairs to judge
on each test image. Each pair of images was displayed on the monitor screen side
by side. Observers were asked to select a more preferred one between two images
based on their judgment on overall colour preference.
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Again, the Thurston’s Law of Comparison Case 5 was used to analyse the
result. The z-scores of each image at skin centres A to | obtained from all observers
are shown in Table 3.4.1-1. The first column is the image name. The 2" to 9"
columns are the z-cores at skin centre A, B, ..., I, respectively. The last column is
the 95% confidence interval. The last row lists the average z-scores of all images.
A higher z-score means stronger preference. Fig. 4.3.1-1 shows the z-scores of each
image. The error bars correspond to the 95% confidence interval. Overall, there is a
relatively stronger preference at skin colour centres A, B, C, E and F; and a very
strong dislike at the centre G. The overall preferences of all four images are very
similar.

0.5 1

-0.5 1

Z-score

o !

-2

A B C D E F G H |

Skin Center
Fig. 4.3.1-1 Preference scores of individual images

Table 4.3.1-1 Z-scores of each image obtained from all observers

95%
A B C D E F G H | confidence

Boy 0.31 0.57 0.08 0.01 0.43 0.12 -1.13 -0.09 -0.30 0.32
Girl 0.02 0.19 0.16 -0.21 0.40 0.38 -0.98 0.01 0.03 0.32
Man 0.15 0.45 0.20 -0.26 0.53 0.25 -0.86 -0.27 -0.17 0.32
Woman | 0.04 0.67 0.53 -0.52 0.49 0.45 -1.41 -0.19 -0.05 0.32
Average | 0.13 0.47 0.24 -0.25 0.46 0.30 -1.10 -0.14 -0.12 0.32

The average Z-scores were computed from all images and shown in Fig. 4.3.1-
2. The skin centre G is strongly disliked, and skin centres B, E, and F are strongly
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preferred. Fig. 4.3.1-3 shows that observer’s most preferred pick of skin centre is
not on boundaries. It implies that the region for the preset of nine skin colours is
large enough for judgment.
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A B C D E F G H

Skin Center

Fig. 4.3.1-2 Overall preference scores from all images

Z-score

Skin Centre

Fig. 4.3.1-3 Overall preference scores from all images
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4.3.2 Determine a Preferred Skin Colour Centre

Since observers rated images based on the skin colour appearance of test
images, the preference of skin colours should directly correlate to skin colours of
test images. Consequently, skin colour distribution of each test image was applied
to compute preferred skin colours. Similar to Experiment I, a skin mask was made
from each original image, and a mean skin colour was computed for each version of
adjusted images.  Again, images with negative z-scores were considered
unacceptable, positive z-scores and their corresponding versions of images were
used to train preferred skin colour ellipses and to compute a z-score weighted
average colour as a final preferred skin colour. The result is shown in Table 4.3.2-1.
The final average preferred skin colour centre is a*b* = (19.9, 23.0). This is slightly
different from (20.7, 24.4), the preferred Oriental skin colour centre judged by
observers with mixed culture backgrounds in Experiment I.

Table 4.3.2-1 Preferred skin colour centres of all four images

Boy Girl Man Woman Mean
a* 21.0 19.8 20.8 17.9 19.9
b* 22.9 24.5 22.6 22.2 23.0
C* 31.1 315 30.7 28.5 30.4
Nab 47.6° 51.0° 47.5° 51.1° 49.3°
AE*y, 1.1 1.4 1.0 2.2 1.4

4.3.3 Summary

This psychophysical experiment was designed to study the skin colour
preference of Asian skin tone judged by Chinese. The preferred skin colour centre
was found to be a*b* = (19.9, 23.0) in D50 computed using a method of weighted
average of mean skin colours of nine versions of each test image and their
corresponding z-scores. This is slightly different from (20.7, 24.4), which is the
preferred Oriental skin colour centre judged by observers with mixed culture
backgrounds in Experiment I-1. Although the hue angles of the two are very close,
the result from the current experiment is slightly less chromatic. The result suggests
that Chinese prefers slightly less chromatic Oriental skin colours.

4.4 Experiment I11: Skin Colour Preferences of Africans,
Caucasians, and Orientals

Skin colour preferences for different ethnic skin tones judged by observer
groups with mixed ethnic backgrounds have been studied in Experiment I, and the
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Chinese skin colour preference judged by Chinese has been studied in Experiment
Il. However, these two experiments did not answer all questions about skin colour
preferences of single-culture backgrounds and cross-culture backgrounds. This
study was to investigate the skin tone preferences of following two aspects: skin
tone preference by ethnicity (an ethnic group’s skin tone preference of its own
ethnic group), and skin tone preference across ethnicities (an ethnic group’s skin
tone preference of other ethnic groups). The result was to be used for optimising
skin colour reproduction of colour imaging products for different geographical
regions.

4.4.1 Experimental

Images were displayed on LCD monitors under the dim surround condition in
the previous studies. In this study, an HP P1100 21-inch CRT monitor was used to
display images in a completely dark room. An African image, a Caucasian image,
and an Oriental image were chosen for judgment (see Fig. 4.4.1-1). Similar to
Experiments | and Il, CIE a*b* of skin colours of each image was adjusted to
produce nine versions of images for paired comparison. 18 Caucasians (British
dominated), 16 Africans from Africa and UK, and 21 Oriental observers (19 Chinese
and 2 Korean) judged all three images. All observers were between 19 and 45 years
old, and they all passed through Ishihara’s Tests for Colour-Blindness.

African Caucasian Oriental

Fig. 4.4.1-1 Images to judge skin colour preferences

The parried-comparison method was chosen for the experiment to determine a
preferred skin colour centre. Nine versions of adjusted images were produced for
each image. The total number of judgements on each image by an observer is 9x8/2
= 36. As a pair of images was displayed on the display each time, the remaining
area of the display was filled with uniform medium gray. Each observer was
instructed to sit at a distance that was most comfortable for viewing, followed by the
presentation of an image pair on display at a time, and was asked to indicate which
rendition of the two was preferred for skin colours. After the response was
recorded, the next image pair was loaded and the observer proceeds until all samples
were evaluated. All 36 pair combinations of the nine treatments were presented to
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each observer via a script that randomized the order and the placement (left/right) of
the treatments.

4.4.1.1 Skin Colour Adjustment for Psychophysical Experiment

Skin colours of each image were detected using a skin colour model and were
morphed toward nine different directions to produce nine versions of images.
Psychophysical experiments were conducted to determine preferred skin colour
regions for preferred skin colour enhancement. A pair of images from the nine
images was displayed on the monitor screen each time for paired comparison.
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Fig. 4.4.1.1-1 Mean skin colours of nine versions of images processed from three

original images

A skin mask was created from each original image to determine skin colours
that were used to compute a mean skin colour to represent the skin colour of a test
image (referred to Sections 4.2). A mean skin colour of each image version was
computed by averaging colours of skin pixels. Fig. 4.4.1.1-1 shows the mean skin
colours of nine versions of images processed from every test image. A successful
design is to have each set of nine mean skin colours distributed around observers’
preferred skin colour centres. A simple approach to meet this requirement is to have
these nine images distribute around a large skin colour region. However, since a
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final preferred skin colour centre is to be interpolated from all or some of these nine
colours using Z-scores or frequencies as weights, the accuracy from interpolation
will degrade if these nine colours spread around a large region. Therefore, the best
design is to have these nine skin colour centres spread around a region just enough
to cover observers’ preferred skin colours. However, since preferred skin colours
were not known yet, parameters to determine how to spread these nine skin colour
centres were guessed based on the knowledge from prior experiments.

This experimental method has been used in Experiment | and Experiment 1.
In Experiment I-1, nine skin colour centres were distributed around a statistical skin
colour centre and were spread on a large region. An approximate preferred skin
colour was derived. In Experiment I-2, nine skin colour centres were distributed
around this approximate preferred skin colour centre and were spread on a smaller
region. It was later found that a parameter to control the range of spreading was not
large enough in Experiment I-2. In this experiment, the parameter to control the
range of spreading was set to be a value half way between the values in these two
phases. However, because a different monitor that has a smaller colour gamut was
used to display images and the computation of spreading was in the device RGB
colour space, the spreading of nine skin colour centres were not 