
UNIVERSITY OF SHEFFIELD

DOCTORAL THESIS

Structure-Preserving Matrix Methods for Computations on
Univariate and Bivariate Bernstein Polynomials

Martin Bourne

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

The University of Sheffield
Faculty of Engineering

Department of Computer Science

November 2017

Abstract

Curve and surface intersection finding is a fundamental problem in computer-aided geo-
metric design (CAGD). This practical problem motivates the undertaken study into meth-
ods for computing the square-free factorisation of univariate and bivariate polynomials in
Bernstein form. It will be shown how these two problems are intrinsically linked and
how finding univariate polynomial roots and bivariate polynomial factors is equivalent to
finding curve and surface intersection points.

The multiplicities of a polynomial’s factors are maintained through the use of a square-
free factorisation algorithm and this is analogous to the maintenance of smooth intersec-
tions between curves and surfaces, an important property in curve and surface design.
Several aspects of the univariate and bivariate polynomial factorisation problem will be
considered.

This thesis examines the structure of the greatest common divisor (GCD) problem
within the context of the square-free factorisation problem. It is shown that an accurate
approximation of the GCD can be computed from inexact polynomials even in the presence
of significant levels of noise. Polynomial GCD computations are ill-posed, in that noise
in the coefficients of two polynomials which have a common factor typically causes the
polynomials to become coprime. Therefore, a method for determining the approximate
greatest common divisor (AGCD) is developed, where the AGCD is defined to have the
same degree as the GCD and its coefficients are sufficiently close to those of the exact
GCD. The algorithms proposed assume no prior knowledge of the level of noise added
to the exact polynomials, differentiating this method from others which require derived
threshold values in the GCD computation.

The methods of polynomial factorisation devised in this thesis utilise the Sylvester
matrix and a sequence of subresultant matrices for the GCD finding component. The
classical definition of the Sylvester matrix is extended to compute the GCD of two and
three bivariate polynomials defined in Bernstein form, and a new method of GCD compu-
tation is devised specifically for bivariate polynomials in Bernstein form which have been
defined over a rectangular domain. These extensions are necessary for the computation of
the factorisation of bivariate polynomials defined in the Bernstein form.

Supporting Publications

[9] BOURNE, M., WINKLER, J. R. and SU, Y. The computation of the degree of an
approximate greatest common divisor of two Bernstein polynomials. Applied Numerical
Mathematics 111 (2017), 17-35.

[10] BOURNE, M., WINKLER, J. R. and SU, Y. A non-linear structure preserving matrix
method for the computation of the coefficients of an approximate greatest common divisor
of two Bernstein polynomials. Journal of Computational and Applied Mathematics 320
(2017), 221-241.

Dedications

Firstly, and most importantly, I would like to thank my mother, for instilling in me the
hardest of work ethics. To my wider family, thank you for your continued love and

support. May you all bask in my reflected glory for many years to come.

Jessica, thank you.

I would also like to thank my supervisor, Dr Joab Winkler, for his patience, guidance
and advice throughout my time as his student.

I would also like to thank the University of Sheffield and A*STAR Singapore for the
A*STAR-Sheffield Research Attachment Programme which allowed me to conduct my

research.

Contents

Abstract

Dedications

List of Tables

List of Figures

Symbols and Notation

1 Introduction 1
1.1 A Brief History of CAGD . 5
1.2 Curves and Surfaces and Their Representations 6
1.3 Intersections of Curves and Surfaces . 8
1.4 Polynomial Real Root Finding . 14

1.4.1 Bounds on the Number and Size of Real Roots of a Polynomial and
Root Isolation Techniques . 15

1.4.2 Polynomial Root Finding Algorithms 17
1.4.3 Roots Computed by MATLAB roots() 21

1.5 Polynomial Factorisation Algorithms . 23
1.5.1 Gauss’ Algorithm . 24
1.5.2 Musser’s Polynomial Factorisation Algorithm 25

1.6 The Condition of a Multiple Root . 28
1.7 The Pejorative Manifold of a Polynomial . 31
1.8 Methods for the Computation of the GCD and AGCD 33

1.8.1 Polynomial GCD Computation Using the Sylvester Matrix 35
1.8.2 The Bézoutian Matrix . 37
1.8.3 The GCD of Two Polynomials in Bernstein Form 38
1.8.4 Bivariate Polynomial GCDs . 38

1.9 Conclusion . 39

2 Curves, Surfaces and Polynomial Representations 41
2.1 Bézier Curves and Surfaces . 41

2.1.1 The Bézier Curve . 41
2.1.2 The Rectangular Tensor-Product Bézier Surface Patch 43
2.1.3 The Triangular Bézier Surface Patch 44

2.2 The Bernstein Polynomial Representation 45
2.2.1 The Univariate Polynomial in Bernstein Form 45
2.2.2 The Bivariate Bernstein Polynomial over a Rectangular Domain . . 49
2.2.3 The Bivariate Bernstein Polynomial over the Triangular Domain . . 55

2.3 Conclusion . 62

3 The Univariate Polynomial GCD - The Two Polynomial Problem 63
3.1 The Computation of the Degree of the AGCD of Two Univariate Polyno-

mials in Bernstein Form . 64
3.1.1 The Degree of the GCD by the Subresultant Matrix Methods 66
3.1.2 The Sylvester Matrix and the Subresultant Matrix Sequence 68
3.1.3 The Construction of the Subresultant Matrix Sequence 69
3.1.4 Variants of the Subresultant Matrices 70

3.2 Methods for the Computation of the Degree of the GCD 75
3.2.1 The Degree of the GCD by Singular Values 75
3.2.2 The Degree of the GCD by QR Decomposition 77
3.2.3 The Degree of the GCD by Residuals 79
3.2.4 The QR Decomposition of the Sequence of Subresultant Matrices . . 80
3.2.5 Exceptions to the Method of Computing the Degree of the AGCD . 82

3.3 The Optimal Variant of the Subresultant Matrices for the Computation of
the Degree of the GCD . 85

3.4 Preprocessing the Subresultant Matrices . 92
3.4.1 Normalisation . 94
3.4.2 Computing the Optimal Values of α and θ 99

3.5 The Coefficients of Cofactor Polynomials and Matrix Low Rank Approxi-
mations . 112
3.5.1 The Coefficients of Cofactor Polynomials by Least Squares 113
3.5.2 The Coefficients of Cofactor Polynomials by STLN 115

3.6 Conclusion . 129

4 The Univariate Polynomial Factorisation Algorithm 131
4.1 Modifications to the GCD Computation . 132

4.1.1 Bounds on the Degree of the GCD of a Polynomial and its Derivative132
4.1.2 Bounds for Numerical Rank Determination 135

4.2 Deconvolution in the Factorisation Algorithm 140
4.2.1 Separate Deconvolution (SD) . 141
4.2.2 Batch Deconvolution (BD) . 142
4.2.3 Batch Deconvolution with Structured Total Least Norm (BDSTLN) 147
4.2.4 Constrained Batch Deconvolution (CBD) 150
4.2.5 Constrained Batch Deconvolution with STLN (CBDSTLN) 152
4.2.6 Results . 152

4.3 Univariate Root Finding Results . 159
4.4 Conclusion . 164

5 The Univariate Polynomial GCD - The Three Polynomial Problem 167
5.1 The Degree of the Three-Polynomial GCD 169
5.2 Optimal Variants of the (2×3) and (3×3) Partitioned Subresultant Matrices180
5.3 Preprocessing the Three-Polynomial Subresultant Matrices 182

5.3.1 The Minimisation Problem . 184
5.4 Approximating the Coefficients of Cofactor Polynomials and the GCD . . . 186
5.5 Results . 187
5.6 Conclusion . 195

6 GCDs of Bivariate Polynomials over a Triangular Domain 197
6.1 The Bivariate Polynomial Square-Free Factorisation Algorithm 198
6.2 The GCD of Two or Three Bivariate Polynomials in Bernstein Form over

a Triangular Domain . 202
6.2.1 The Degree of the GCD of Two Bivariate Polynomials 202
6.2.2 The Degree of the GCD of Three Polynomials 204

6.3 Variants of the Subresultant Matrices . 209

6.3.1 The Two-Polynomial Subresultant Matrices 209
6.3.2 The Three-Polynomial Subresultant Matrices 210

6.4 Preprocessing of the Bivariate Subresultant Matrices 214
6.5 Approximating the Coefficients of the Cofactor Polynomials and the GCD . 219
6.6 Results . 221
6.7 Conclusion . 229

7 GCDs of Bivariate Polynomials over a Rectangular Domain 231
7.1 The GCD of Two or Three Bivariate Polynomials in Bernstein Form Defined

over a Rectangular Domain . 232
7.1.1 The GCD of Three Bivariate Polynomials in Bernstein Form over a

Rectangular Domain . 235
7.2 Variants of the Subresultant Matrices . 237
7.3 Preprocessing . 241
7.4 Methods for the Computation of the Degree of the GCD 247
7.5 Approximating the Coefficients of the Cofactor Polynomials and the GCD . 255
7.6 Results . 256

7.6.1 Examples of the Two-Polynomial Problem 256
7.6.2 Examples of the Three-Polynomial Problem 266

7.7 Conclusion . 268

8 Conclusion 271
8.1 Thesis Conclusion . 271
8.2 Suggestions for Future Research . 274

Appendices 277

A Polynomials in Bernstein Form 279
A.1 Degree Elevation . 279

A.1.1 The Degree Elevation of Univariate Polynomials in Bernstein Form . 279
A.2 Conversions Between the Bernstein Basis and Power Basis 280

A.2.1 Basis Conversion for Univariate Polynomials 280
A.3 De Casteljau’s Algorithm . 281

B Subresultant Matrix Sequences 283
B.1 The Subresultant Matrix Sequence for Univariate Polynomials in Bernstein

Form . 283
B.1.1 Constructing the Three-Polynomial Subresultant Matrix Sequence . 283

B.2 The Subresultant Matrix Sequence for Polynomials in Bernstein Form De-
fined over a Triangular Domain . 284

B.3 The Subresultant Matrix Sequence for Polynomials in Bernstein Form De-
fined over a Rectangular Domain . 285

C Preprocessing 287
C.1 Preprocessing the Subresultant Matrices of Univariate Polynomials in Bern-

stein Form . 287
C.1.1 Preprocessing the Three-Polynomial Subresultant Matrices 287

C.2 Preprocessing the Subresultant Matrices of Polynomials in Bernstein Form
Defined over a Triangular Domain . 290
C.2.1 The Arithmetic Mean of the Non-Zero Entries of the (n−k)th Order

Convolution Matrix . 290
C.2.2 The Geometric Mean of the Non-Zero Entries of the (n−k)th Order

Convolution Matrix . 291
C.2.3 Preprocessing the Two-Polynomial Subresultant Matrices 292
C.2.4 Preprocessing the Three-Polynomial Subresultant Matrices 295

C.3 Preprocessing the Subresultant Matrices of Bivariate Polynomials Defined
over a Rectangular Domain . 297
C.3.1 The Geometric Mean of the Non-Zero Entries of the (n−k)th Order

Convolution Matrix . 297
C.3.2 Preprocessing the Two-Polynomial Subresultant Matrices 299
C.3.3 Preprocessing the Three-Polynomial Subresultant Matrices 302

List of Tables

3.1 Error in the approximations of ût(x), v̂t(x) and d̂t(x) in Example 3.3.4 . . 91
3.2 Error in the approximations of ût(x), v̂t(x) and d̂t(x) in Example 3.5.3 . . 127
3.3 Error in the approximations of ût(x), v̂t(x) and d̂t(x) in Example 3.5.4 . . 128
3.4 Error in the approximations of ût(x), v̂t(x) and d̂t(x) in Example 3.5.5 . . 129

4.1 Error in the approximations of the polynomials {ĥi(x)} in Example 4.2.3 . 154
4.2 Error in the approximations of the polynomials {ĥi(x)} in Example 4.2.4 . 155
4.3 Error in the approximations of the polynomials {ĥi(x)} in Example 4.2.5 . 157
4.4 Error in the approximations of the polynomials {ĥi(x)} in Example 4.2.6 . 158
4.5 Roots and root multiplicities computed by Method 1 in Example 4.3.2 . . 161
4.6 Roots and root multiplicities computed by Method 2 (SQFF) in Exam-

ple 4.3.2 . 162
4.7 Error in the approximations of the sets of polynomials {f̂i(x)} , {ĥi(x)}

and {ŵi(x)} in Example 4.3.2 . 162
4.8 Error in the approximations of {f̂i(x)} , {ĥi(x)} and {ŵi(x)} in Exam-

ple 4.3.3 . 163
4.9 Roots and root multiplicities approximated by Method 1 in Example 4.3.3 164
4.10 Roots and root multiplicities approximated by Method 2 (SQFF) in Ex-

ample 4.3.3 . 164

5.1 Error in the approximations of ût(x), v̂t(x), ŵt(x) and d̂t(x) with {εf,i},
{εg,j} and {εh,p} in the interval [1e− 6, 1e− 4] in Example 5.5.4 194

5.2 Error in the approximations of ût(x), v̂t(x), ŵt(x) and d̂t(x) with {εf,i},
{εg,j} and {εh,p} in the interval [1e− 10, 1e− 8] in Example 5.5.4 195

6.1 Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y) in Exam-
ple 6.3.1 . 214

6.2 Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y), where {εf,i1,i2}
and {εg,j1,j2} are set at 10−6 in Example 6.6.1 223

6.3 Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y), where {εf,i1,i2}
and {εg,j1,j2} are in the interval [10−10, 10−8] in Example 6.6.1 223

6.4 Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y) in Exam-
ple 6.6.2 . 225

6.5 Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y) with reduced
upper bound of noise in Example 6.6.2 . 226

6.6 Error in the approximations of ût(x, y), v̂t(x, y), ŵt(x, y) and d̂t(x, y), where
{εf,i} and {εg,j} are in the interval [10−6, 10−4] in Example 6.6.4 228

6.7 Error in the approximations of ût(x, y), v̂t(x, y), ŵt(x, y) and d̂t(x, y), where
{εf,i} and {εg,j} are in the interval [10−8, 10−6] in Example 6.6.4 229

7.1 Error in the approximations of ût1,t2(x, y), v̂t1,t2(x, y) and d̂t1,t2(x, y), where
{εf,i1,i2} and {εg,j1,j2} are in the interval [10−10, 10−8] in Example 7.6.2 . . 262

7.2 Error in the approximations of ût1,t2(x, y), v̂t1,t2(x, y) and d̂t1,t2(x, y) with
upper bound of noise εf = εg = 10−14 in Example 7.6.2 263

7.3 Error in the approximations of ût1,t2(x, y), v̂t1,t2(x, y) and d̂t1,t2(x, y) in
Example 7.6.3 . 265

List of Figures

1.1 Plotting the curves f̂(x, y) = 0 and ĝ(x, y) = 0 and their intersection points
in Example 1.3.1 . 9

1.2 The intersections of two curves f̂(x, y) = 0 and ĝ(x, y) = 0 in the interval
[−3, 0] for various values of n in Example 1.3.2 10

1.3 The intersections of two surfaces f̂(x, y, z) = 0 (�) and ĝ(x, y, z) = 0 (�)
in Example 1.3.3 . 11

1.4 The approximations of the roots of {f̂i(x) | i = 1, 10} computed using
Matlab roots() in Example 1.4.2 . 21

1.5 The approximations of the roots of {f̂i(x) | i = 15, 20} computed using
Matlab roots() in Example 1.4.2 . 22

1.6 Forward error {λi} and backward error {µi} of the computed roots {ri} in
Example 1.4.2 . 23

1.7 The curve C and the surface S as defined in Example 1.7.1 33

2.1 The cubic Bézier curve with control points P0 = (1, 2), P1 = (2.5, 5),
P2 = (6.5, 6) and P3 = (7, 3) . 42

2.2 A bicubic Bézier surface patch . 43
2.3 Control points of a cubic triangular Bézier patch 44

3.1 The coefficients of both the unprocessed polynomials f(x) (�) and g(x)
(•) and the preprocessed polynomials f̃1(ω) (�) and α1g̃1(ω) (•) in
Example 3.2.1 . 84

3.2 The singular values of {Sk} and the diagonal entries of {R1,k} from the
QR decomposition of {Sk} in Example 3.2.1 85

3.3 Scaling of the coefficients { âi | i = 0, . . . , 5 } in the first partition of four
subresultant matrix variants where k = 5 in Example 3.3.1 87

3.4 The magnitude of the coefficient multipliers in the fifth subresultant matrix
of the four subresultant matrix variants in Example 3.3.2 88

3.5 The singular values {σk,i} of each subresultant matrix for each of the four
subresultant matrix variants in Example 3.3.3 89

3.6 The singular values {σk,i} of each subresultant matrix for each of the four
subresultant matrix variants in Example 3.3.4 92

3.7 The coefficients of both the unprocessed polynomials f(x) and g(x) and
the preprocessed polynomials f̃1(ω) and α1g̃1(ω) in Example 3.4.1 103

3.8 The absolute values of the entries of the (i) unprocessed and (ii)
preprocessed Sylvester matrices in Example 3.4.1 103

3.9 The coefficients of both the unprocessed polynomials f(x) (•) and g(x)
(•) and the preprocessed polynomials f̃1(ω) (•) and α1g̃1(ω) (•) in
Example 3.4.2 . 104

3.10 The minimum singular values {σ̇k} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 3.4.2 105

3.11 The coefficients of both the unprocessed polynomials f(x) (•) and g(x)
(•) and the preprocessed polynomials f̃1(ω) (•) and α1g̃1(ω) (•) in
Example 3.4.3 . 106

3.12 The singular values {σk,i} of the sets of (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 3.4.3 . 107

3.13 The normalised singular values {σi/σ1} of the Bernstein-Bézoutian matrix
B̃(f, g) . 107

3.14 The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 3.4.4 . 108

3.15 The minimum singular values {σ̇k} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 3.4.4 109

3.16 The singular values {σk,i} of the unprocessed subresultant matrices
{Sk (f(x), g(x))} for noise at levels (i) 10−12 and (ii) 10−4 in Example 3.4.5 110

3.17 The singular values {σk,i} of the preprocessed subresultant matrices
{Sk(f̃k(ω), αkg̃k(ω))} for noise at levels (i) 10−12 and (ii) 10−4 in
Example 3.4.5 . 110

3.18 The normalised singular values {σi/σ1} of the preprocessed Bézoutian
matrix B(f, g) in Example 3.4.5 . 111

3.19 The minimum singular values {σ̇k} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 3.4.6 112

3.20 The normalised singular values {σi/σ1} of the Sylvester matrices
S(f(x), g(x)) (before preprocessing) (�) , S(ḟ(x), ġ(x)) (with struc-
tured perturbations) (�) , S(f̃(x), g̃(x)) (with preprocessing) (�) and
S(ḟ(ω), βġ(ω)) (with preprocessing and structured perturbations) (�) in
Example 3.5.2 . 125

3.21 Low rank approximation of the Sylvester matrix in Example 3.5.3 127

4.1 Computing the degree of the first and second GCD in the square-free
factorisation of f̂(x) in Example 4.1.1 . 134

4.2 Computing the degree of the third, fourth, fifth and sixth GCD in the
square-free factorisation of f̂(x) in Example 4.1.1 135

4.3 Computing the degree of the seventh and eighth GCD in the square-free
factorisation of f̂(x) in Example 4.1.1 . 136

4.4 The minimum singular values {σ̇k} in the first and second GCD
computation of the square-free factorisation problem in Example 4.1.2 . . . 137

4.5 The minimum singular values {σ̇k} in the third and fourth GCD
computation of the square-free factorisation problem in Example 4.1.2 . . . 138

4.6 The minimum singular values {σ̇k} of the subresultant matrices
{Sk(f̃4,k(ω), α4,kg̃4,k(ω))} in the fifth GCD computation of the square-free
factorisation problem in Example 4.1.2 . 139

4.7 Error in the approximations of {ĥi(x)} by five deconvolution methods (i)
excluding and (ii) including preprocessing in Example 4.2.3 155

4.8 Error in the approximations of {ĥi(x)} computed using five deconvolution
methods (i) excluding and (ii) including preprocessing in Example 4.2.4 . . 156

4.9 Error in the approximations of {ĥi(x)} computed using five deconvolution
methods (i) excluding and (ii) including preprocessing in Example 4.2.5 . . 157

4.10 Error in the approximations of {ĥi(x)} computed using five deconvolution
methods (i) excluding and (ii) including preprocessing in Example 4.2.6 . . 158

4.11 Error in approximation of { f̂i(x) | i = 1, . . . , 20 } by (i) Method 1 (�)
and (ii) Method 2 (�) in Example 4.3.1 160

4.12 Error in the approximations of {ĥi(x)} computed using five deconvolution
methods in Example 4.3.1 . 160

4.13 Average error in the approximations of {f̂i(x)}, {ĥi(x)} and {ŵi(x)}
approximated by (i) Method 1 and (ii) Method 2 (SQFF) in
Example 4.3.2 . 163

4.14 Roots of f̂(x) as approximated by (i) SQFF, (ii) Matlab roots() and
(iii) multroot() in Example 4.3.2 . 163

4.15 Average error in the approximations of {f̂i(x)} , {ĥi(x)} and {ŵi(x)}
approximated by (i) Method 1 and (ii) Method 2 (SQFF) in
Example 4.3.3 . 164

4.16 Roots of f̂(x) as approximated by (i) SQFF, (ii) Matlab roots() and
(iii) multroot() in Example 4.3.3 . 165

5.1 The singular values {σk,i} of the unprocessed subresultant matrices (i)

{S̃k(f(x), g(x), h(x))}, (ii) {Ŝk(f(x), g(x), h(x))}, (iii) {Ŝk(g(x), f(x), h(x))}
and (iv) {Ŝk(h(x), g(x), f(x))} in Example 5.1.2 176

5.2 The coefficients of the polynomials f(x), g(x) and h(x) in Example 5.1.3 . 177
5.3 The singular values {σk,i} of the subresultant matrices (i){S̃k(f(x), g(x), h(x))},

(ii){Ŝk(f(x), g(x), h(x))}, (iii){Ŝk(g(x), f(x), h(x))} and (iv){Ŝk(h(x), g(x), f(x))}
in Example 5.1.3 . 177

5.4 The singular values {σk,i} of the unprocessed subresultant matrices
(i) {Sk(f(x), g(x))}, (ii) {Sk(f(x), h(x))} and (iii) {Sk(g(x), h(x))} in
Example 5.1.3 . 179

5.5 Heat map of the coefficient multipliers in the entries of the four (2 × 3)
subresultant matrix variants in Example 5.2.1 182

5.6 Heat map of the coefficient multipliers in the entries of the four (3 × 3)
partitioned subresultant matrix variants in Example 5.2.1 183

5.7 The coefficients of both the unprocessed polynomials f(x), g(x) and
h(x) and the preprocessed polynomials λ1f̃1(ω), g̃1(ω) and ρ1h̃1(ω) in
Example 5.1.2 . 188

5.8 The singular values {σk,i} of the (3 × 3) and (2 × 3) preprocessed
subresultant matrices in Example 5.1.2 . 189

5.9 The coefficients of both the unprocessed polynomials f(x), g(x) and
h(x) and the preprocessed polynomials λ1f̃1(ω), g̃1(ω) and ρ1h̃1(ω) in
Example 5.5.2 . 191

5.10 The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 5.5.2 . 191

5.11 The minimum singular values {σ̇k} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 5.5.2 192

5.12 The coefficients of both the unprocessed polynomials f(x), g(x) and
h(x) and the preprocessed polynomials λ1f̃1(ω), g̃1(ω) and ρ1h̃1(ω) in
Example 5.5.3 . 193

5.13 The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 5.5.3 . 193

5.14 The coefficients of both the unprocessed polynomials f(x), g(x) and h(x)
and preprocessed polynomials λ1f̃1(ω), g̃1(ω) and µ1h̃1(ω) in Example 5.5.4 194

5.15 The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 5.5.4 . 195

6.1 The coefficients of f(x, y), g(x, y) and h(x, y) in Example 6.2.1 208
6.2 The singular values {σk1,k2} of the unprocessed subresultant matri-

ces (i){Ŝk(f(x, y), g(x, y), h(x, y))}, (ii){Ŝk(g(x, y), f(x, y), h(x, y))},
(iii){Ŝk(h(x, y), g(x, y), f(x, y))} and (iv){S̃k(f(x, y), g(x, y), h(x, y))} in
Example 6.2.1 . 209

6.3 The singular values {σk,i} of the unprocessed subresultant matrices in
Example 6.3.1 . 213

6.4 The coefficients of both the unprocessed polynomials f(x, y) and g(x, y) and
the preprocessed polynomials λ1f̃1(ω1, ω2) and g̃1(ω1, ω2) in Example 6.6.1 222

6.5 The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 6.6.1 . 224

6.6 The coefficients of both the unprocessed polynomials f(x, y) and g(x, y) and
the preprocessed polynomials λ1f̃1(ω1, ω2) and g̃1(ω1, ω2) in Example 6.6.2 224

6.7 The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 6.6.2 . 225

6.8 The singular values {σk,i} of the preprocessed subresultant matrices in
Example 6.6.3 . 227

6.9 The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 6.6.4 . 228

7.1 Heat map of the coefficient multipliers in the subresultant matrix variants
where k1 = 1 and k2 = 1 in Example 7.2.1 239

7.2 The coefficients of the polynomials f(x, y), g(x, y) and h(x, y) in
Example 7.2.2 . 241

7.3 Heat map of the coefficient multipliers (using logarithmic scale) in the
variants of the subresultant matrices in Example 7.2.2. 242

7.4 The minimum singular values {σ̇k1,k2} of each subresultant matrix for each
of the four subresultant matrix variants in Example 7.2.2. 243

7.5 The minimum singular values {σ̇k1,k2} of the preprocessed subresultant
matrices {Sk1,k2(λk1,k2 f̃k1,k2(ω1, ω2), g̃k1,k2(ω1, ω2))} in Example 7.4.3 . . . 252

7.6 The minimum singular values of the preprocessed subresultant matrices in
the BVDRGCD algorithm in Example 7.4.3 253

7.7 The coefficients of the unprocessed polynomials f(x, y) and g(x, y) and the
preprocessed polynomials λ1,1f̃1,1(ω1, ω2) and g̃1,1(ω1, ω2) in Example 7.6.1 257

7.8 The minimum singular values {σ̇k1,k2} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 7.6.1 258

7.9 BVDRGCD Stage 1 : The minimum singular values of the prepro-
cessed subresultant matrices {Sk,k(λk,k f̃

∗
k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} in

Example 7.6.1 . 258
7.10 BVDRGCD Stage 2 : The minimum singular values of the preprocessed

subresultant matrices. 259
7.11 The coefficients of both the unprocessed polynomials f(x, y) and g(x, y)

and the preprocessed polynomials λ1,1f̃1,1(ω1, ω2) and g̃1,1(ω1, ω2) in
Example 7.6.2 . 260

7.12 The minimum singular values {σ̇k1,k2} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 7.6.2 261

7.13 BVDRGCD Stage 1 : The minimum singular values {σ̇k,k} of the
preprocessed subresultant matrices {Sk(λk,k f̃∗k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} in
Example 7.6.2 . 261

7.14 BVDRGCD Stage 2 : The minimum singular values of the subresultant
matrices (i) {St1,k2} and (ii) {Sk1,t2} in Example 7.6.2 262

7.15 The coefficients of both the unprocessed polynomials f(x, y) and g(x, y)
and the preprocessed polynomials λ1,1f̃1,1(ω1, ω2) and g̃1,1(ω1, ω2) in
Example 7.6.3 . 264

7.16 The minimum singular values {σ̇k1,k2} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 7.6.3 264

7.17 BVDRGCD Stage 1 : The minimum singular values of the preprocessed
subresultant matrices {Sk(λk,k f̃∗k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} in Example 7.6.3 265

7.18 The minimum singular values of the subresultant matrices in the second
stage of the BVDRGCD method in Example 7.6.3 266

7.19 The minimum singular values {σ̇k1,k2} of the (i) unprocessed (ii)
preprocessed subresultant matrices in Example 7.6.4 267

7.20 BVDRGCD Stage 1 : The minimum singular values of {Sk,k} in
Example 7.6.4 . 267

7.21 BVDRGCD Stage 2 : The minimum singular values of (i) {St1,k2} and (ii)
{Sk1,t2} in the second stage of the BVDRGCD method in Example 7.6.4 . 268

Symbols and Notation

Univariate Polynomials - Associated Values

σ̇k The minimum singular value of the kth subresultant matrix
Sk

σk,i The ith singular value of the kth subresultant matrix Sk

Bivariate Polynomials - Associated Values

σ̇k1,k2 The minimum singular value of the (k1, k2)th subresultant
matrix Sk1,k2

σk1,k2,i The ith singular value of the (k1, k2)th subresultant matrix
Sk1,k2

Polynomials

f̂(x) A polynomial with exact coefficients
f(x) A polynomial with inexact coefficients
f̄(x) A polynomial whose coefficients have been normalised

f̃k(ω) A polynomial which has been preprocessed and the indepen-
dent variable x has been replaced by θkω, where θk is the
result of an optimisation problem and ω is the new indepen-
dent variable

ḟ(ω) A polynomial whose coefficients have been perturbed and is
given by f̃(ω) + z(ω)

Acronyms

AGCD approximate greatest common divisor

BD batch deconvolution
BDSTLN batch deconvolution with STLN
BVDRGCD bivariate dimension reducing GCD
BVGCD bivariate GCD

CAGD computer-aided geometric design
CAM computer-aided manufacture
CBD constrained batch deconvolution
CBDSTLN constrained batch deconvolution with STLN

DC1 degree computation 1
DC2 degree computation 2
DC3 degree computation 3
DC4 degree computation 4
DC5 degree computation 5

GCD greatest common divisor

LSE least squares with equality

MUGCD modified univariate GCD

NC numerically controlled

PRS polynomial remainder sequence

SD separate deconvolution
SNTLN structured non-linear total least norm
SQFF square-free factorisation
STLN structured total least norm
SVD singular value decomposition

UGCD univariate GCD

VDP variation diminishing property

Chapter 1

Introduction

The calculation of the intersection points of curves and surfaces is one of the most funda-

mental problems in computer-aided geometric design (CAGD). The accurate representa-

tion of intersections is necessary in the construction of smooth, watertight surfaces. The

computation of points of intersection can be reduced to computing (i) the roots of univari-

ate polynomials and (ii) the factorisation of bivariate polynomials. This thesis develops

a robust method for solving these problems where the polynomials are given in Bernstein

form, since this basis is frequently used in CAGD. The method of root finding in this the-

sis preserves the multiplicity structure of the roots by first determining the polynomial’s

square-free factorisation and root multiplicity structure.

When considering intersections of Bézier curves and Bézier surface patches, the poly-

nomials associated with these intersections are in Bernstein form. It is therefore necessary

to derive robust methods native to polynomials in Bernstein form to avoid unstable con-

version to the power basis [25,26].

Smooth intersections are important in CAGD because they reduce high stresses at

sharp corners, which can cause an object to fracture when in operation. Smooth or

tangential intersections are associated with polynomials with roots of high multiplicity. It

is this type of root finding problem where standard methods typically fail. Singular roots of

high multiplicity can erroneously be computed as a cluster of roots, and this is equivalent

to a loss of smoothness at a tangential intersection point. The standard root finding

methods are more effectively applied by first determining the square-free factorisation of

a polynomial, then computing the simple roots of its square-free factorisation.

The first part of this thesis (Chapters 3 and 4) considers the computation of the

square-free factorisation and roots of a univariate polynomial in Bernstein form. Two

key components in this process are (i) the computation of a sequence of iterative greatest

common divisors (GCDs) and (ii) a structured polynomial deconvolution problem. Both

of these problems are highly sensitive to noise in the input data, and structured methods

developed in this work aim to overcome this limitation.

An approximate greatest common divisor (AGCD) of two inexact polynomials will

be defined, and the degree of the AGCD will be computed from a modified version of

the classical Sylvester matrix adapted for polynomials in Bernstein form. In this thesis

a set of three preprocessing operations is developed and applied to the polynomials in

order for the AGCD to be computed using the Sylvester matrix and the sequence of

1

2

subresultant matrices. It will be shown that the degree of the GCD is more reliably

determined from the set of preprocessed subresultant matrices and that approximations of

the cofactor polynomials and the AGCD can be several orders of magnitude more accurate

than approximations obtained without preprocessing.

Structured perturbations are also added to the inexact polynomials, and a low rank

approximation of the Sylvester matrix is determined. The coefficients of the cofactor

polynomials and the AGCD are approximated, and these approximations of the exact

polynomials are shown to be significantly better than those obtained by standard least

squares based methods.

The second part of this thesis (Chapters 5 to 7) focuses on several new extensions to

the work discussed in the first part. These extensions are necessary in the computation

of the factorisation of a bivariate polynomial in Bernstein form. The factorisation of a

bivariate polynomial reduces to the computation of a sequence of polynomial GCDs and

a set of deconvolution problems.

In this thesis two new forms of the Sylvester matrix are defined. These are used in the

computation of the GCD of three polynomials, also referred to as the three-polynomial

GCD problem. Initial experiments show that polynomial ordering in these forms must be

carefully considered. The definition of the Sylvester matrix in Bernstein form is generalised

to accommodate bivariate polynomials defined over either a rectangular or triangular

domain.

The method of computing the degree of the GCD of two or three bivariate polyno-

mials over a triangular domain follows from the univariate problems. A relatively simple

extension for the computation of the GCD of two or three bivariate polynomials defined

over a rectangular domain is then described, but experiments show that this method is

inefficient. A second, alternative and faster method which makes use of degree elevated

polynomials will also be presented. This method gives similar results to the first extension,

but with significantly reduced computational complexity.

Chapter 1 An overview of intersection finding algorithms is given. It will be shown how

a curve or surface intersection problem reduces to the factorisation of a univariate or

bivariate polynomial. For this problem a robust GCD finding algorithm is required

and several GCD finding methods are discussed.

Chapter 2 In the second chapter, the Bézier curve and Bézier surface patch represen-

tations are defined. The univariate and bivariate Bernstein polynomial forms are

also described and some basic polynomial arithmetic by structured matrix methods

is considered. These methods are pertinent to the work discussed in later chapters.

Chapter 3 The third chapter considers the computation of the degree and coefficients

of the GCD of two univariate polynomials f̂(x) and ĝ(x) in Bernstein form. A

sequence of subresultant matrices is used to determine the degree of the GCD and

this is extended to the computation of the AGCD of two inexact polynomials f(x)

and g(x).

It will be shown how preprocessing the subresultant matrices yields improved re-

sults in the computation of the degree, t, and the coefficients of the GCD. The

Chapter 1. Introduction 3

coefficients of the cofactor polynomials and the AGCD are approximated using a

low rank approximation of the tth subresultant matrix, and the results of this new

method, which will now be referred to as the univariate GCD (UGCD) method, will

be compared with a standard least squares approach. It will be shown that, given

the degree of the GCD is correctly determined, the low rank approximation method

yields improved approximations of the coefficients of the cofactor polynomials and

the GCD, particularly in the presence of noise.

Chapter 4 Having developed the univariate GCD (UGCD) method in the previous chap-

ter, this chapter describes the square-free factorisation algorithm due to Gauss. The

algorithm is used for the computation of multiple roots of a univariate polynomial in

Bernstein form and has two key components. The first part is the computation of a

sequence of polynomial GCDs and the second is a set of polynomial deconvolutions.

Modifications are made to the univariate GCD (UGCD) method, for use specifically

in the set of GCD problems arising in the square-free factorisation algorithm. Each

problem in the set of GCD problems {f̂i+1(x) = GCD(f̂i(x), ĝi(x)) has the structure

that ĝi(x) is the derivative of f̂i(x), and the Sylvester matrix and subresultant ma-

trices can be structured accordingly. A lower limit for the degree of the GCD in the

(i+ 1)th GCD computation can be determined from the ith GCD, so methods for a

more efficient and more reliable algorithm are described. These modifications give a

new GCD method called the modified univariate GCD (MUGCD) algorithm.

Polynomial division in the square-free factorisation algorithm is also discussed in this

chapter. Several matrix based methods are considered for the deconvolution problem

which arises specifically in the square-free factorisation algorithm. In particular, a

new matrix based method which exploits the structure of this problem is described,

and this gives significantly improved approximations of the set of polynomials when

compared with naive deconvolution methods.

The combination of the modified univariate GCD (MUGCD) method and the batch

deconvolution method gives a square-free factorisation (SQFF) algorithm which is

then compared with other existing root finding methods. The new composite algo-

rithm compares favourably with the alternative root finding methods, which fail to

retain a polynomial’s root multiplicity structure in the presence of noise.

Chapter 5 This chapter extends work in Chapter 3 and Chapter 4 to compute the GCD

of three univariate polynomials f̂(x), ĝ(x) and ĥ(x) and the AGCD of three inexact

polynomials f(x), g(x) and h(x). Two variants of the three-polynomial subresultant

matrix exist and these are analysed to determine the optimal form for computing

the degree and coefficients of the three-polynomial GCD.

Chapter 6 The extensions necessary to compute the GCD of two or three bivariate

polynomials defined over a triangular domain are considered. The definition of the

Sylvester matrix and subresultant matrices is extended to the two-polynomial and

three-polynomial GCD problems for bivariate polynomials. Results will again show

that preprocessing is required to reliably determine the degree of the GCD partic-

ularly in the three-polynomial problem where the row and column-partitions of the

4

subresultant matrices must be balanced. This particular set of GCD problems arises

in the computation of intersections involving triangular Bézier patches. More gener-

ally, these three-polynomial GCD problems arise in the square-free factorisation of

a bivariate polynomial defined over a triangular domain.

Chapter 7 This chapter considers the extensions necessary to compute the GCD of two

or three bivariate polynomials defined over a rectangular domain. These GCD prob-

lems arise in the computation of intersections between rectangular Bézier patches. A

simple extension of the previously developed UGCD method gives rise to the bivari-

ate GCD (BVGCD) method. However, this method has significant computational

cost associated with it. A second, more efficient method is also considered in which

the two-polynomial and three-polynomial bivariate GCD problem is solved in two

one-dimensional stages. It will be shown that this new method, bivariate dimension

reducing GCD (BVDRGCD), is significantly faster than the BVGCD method.

Chapter 8 This chapter concludes the work in the thesis. The key developments are

summarised and ideas for future research are presented.

The remainder of this first chapter considers the background material and sets of

alternative methods for (i) the curve and surface intersection problems, (ii) the polynomial

root finding problem, (iii) the square-free factorisation problem and (iv) the polynomial

GCD finding problem. The chapter has the following structure :

Section 1.1 This section describes the historical context of the curve and surface inter-

section problems within CAGD.

Section 1.2 Geometric representations of curves and surfaces are introduced.

Section 1.3 The curve and surface intersection problems are described and algorithms

for solving these problems are considered. Of particular interest are intersections

between Bézier curves and Bézier patches which reduce to computing the roots of a

univariate or bivariate polynomial in Bernstein form.

Section 1.4 A variety of classical methods for polynomial root isolation and root finding

are considered, some of which require that roots are first isolated with initial approx-

imations. These root finding methods typically fail to accurately compute roots of

high multiplicity (also referred to as multiple roots), yet it is this type of polynomial

which arises in the computation of the points of intersection between curves and

surfaces where the intersections are smooth.

Section 1.5 Univariate square-free factorisation methods are described. Given a square-

free factorisation, the roots of a polynomial are more easily computed by conventional

methods.

Section 1.6 The unstructured and structured condition numbers of a polynomial are

defined in this section.

Section 1.7 The pejorative manifold of a polynomial is defined. A pejorative manifold

gives a geometric interpretation of the conditions under which perturbations of the

Chapter 1. Introduction 5

exact polynomial f̂(x) cause its multiplicity structure to break down. The inexact

polynomial f(x) either has simple roots or has the same multiplicity as the exact

form f̂(x).

Section 1.8 Polynomial GCD computation is one of the two fundamental components

of Gauss’ square-free factorisation algorithm described in Section 1.5. Several al-

gorithms for the computation of the GCD of two polynomials are considered. Of

particular interest are the matrix based methods such as the methods which utilise

the Sylvester or Bézoutian matrix to compute the degree and coefficients of the

GCD.

1.1 A Brief History of CAGD

The relatively modern development of CAGD has its origins in the automotive, shipbuild-

ing and aerospace sectors. As the design of ships and motorcars became increasingly

complex in scale and intricacy, the need for machine based construction techniques in-

creased. By the 1950s, numerically controlled machinery became available, which allowed

for the production of stamps and dyes for use in the manufacturing process. The introduc-

tion of CAGD and computer-aided manufacture (CAM) meant highly consistent products

could be manufactured from reproducible tools. The difficulty faced by the industry at

that time was in producing a numeric representation of the required shapes.

Early efforts focused on the laborious task of taking many thousands of individual mea-

surements from blueprints or clay models which were fed into a numerically controlled (NC)

machine from which the shape and surface geometry were approximated. Any changes in

design meant that this process had to be repeated over again at great expense. This lead

to the utilization of computers as part of the design process as well as the manufacturing

process, eliminating the need for hand crafted prototypes.

It was de Casteljau, while working for the car manufacturer Citroën, who first used

Bernstein polynomials to define curves and surfaces [18]. The Bernstein basis had been

developed some fifty years earlier, in the early 1900s, as part of a solution to a problem

in approximation theory. The work by de Casteljau was kept secret within Citroën, but

work by Bézier developed around the same time for rival manufacturer Renault had similar

results. This work was openly published and the resulting curves and surfaces bear his

name.

The Bézier curve allowed for intuitive flexible design, and despite initial resistance from

the design community, it became the industry standard. The control point based structure

meant that a designer could alter the shape of a curve or surface by simply dragging and

dropping control points.

Parametrically defined curves and surfaces such as Bézier curves and surfaces are used

to represent large free flowing surfaces with minimal amounts of low level detail. A car

body panel or aeroplane fuselage for example can be represented using Bézier patches,

and this requires significantly less data than an alternative polygonal based modelling

approach. Polygonal models, however, lend themselves to representing areas of low level

detail. Surfaces can repeatedly be subdivided for areas of localised detail and this is much

more difficult to achieve with Bézier patches. It is also difficult to produce sharp edges

6

using Bézier curves and surface patches. In comparison, sharp edges are easily achieved

in a polygonal based model.

The accurate computation of the points of intersection of parametrically defined sur-

faces is a real industrial problem [19]. Holes which appear in computer generated models

due to poor intersection approximations must be patched manually, and this can be a

laborious manual process. Dokken and Skytt offer an in-depth analysis of the difficulties

using floating point representations of curves and surfaces and the computation of points

of smooth intersection between curves and surfaces. The merits of various intersection

finding methods are considered in [19] such as surface triangulation, lattice evaluation,

marching, refinement and recursive subdivision. The authors also consider the method

used in this thesis where an intersection is reduced to a root finding problem by com-

bining the use of parametric and algebraic representations. For instance, the intersection

of two rational bicubic patches reduces to finding the zeros of a polynomial of bi-degree

(54, 54).

While focusing on the GCD and polynomial factorisation problem, this thesis con-

siders methods for the computation of intersections of curves and surfaces defined either

implicitly or parametrically. These curves and surfaces are now defined.

1.2 Curves and Surfaces and Their Representations

This section introduces the explicit, implicit and parametric curve definitions. Typical

CAGD problems involve intersections of parametrically defined curves and surfaces, and

this thesis focuses on the computation of intersections between Bézier curves and surfaces.

It will be shown how these intersections reduce to the computation of the roots of a

univariate polynomial or the factorisation of a bivariate polynomial in Bernstein form. The

properties of different curve and surface representations and their respective applications

are discussed.

Explicitly Defined Curves and Surfaces

An explicitly defined curve is of the form y = f̂(x), where y is dependent on the variable

x. Similarly, an explicitly defined surface has the form z = f̂(x, y), and z is dependent on

the variables x and y. These only represent a subset of all curves and surfaces, and this is

due to the previously mentioned dependence between the variables x, y and z.

Implicitly Defined Curves and Surfaces

An implicit curve is defined as the set of all (x, y) coordinate pairs which satisfy the

equation

f̂(x, y) = 0.

Similarly, an implicitly defined surface in three-dimensional space is given by

f̂(x, y, z) = 0.

Chapter 1. Introduction 7

The set of implicit curves in two-dimensional space can represent all possible curve shapes

and the explicitly defined curves of the form y = f̂(x) are a subset of implicit curves, which

can be written in the form f̂(x)− y = 0. The implicit curve in three-dimensional space is

the intersection of two implicitly defined surfaces and is given by f̂(x, y, z) ∩ ĝ(x, y, z) .

Parametrically Defined Curves and Surfaces

The most frequently used representation within CAGD is the parametric curve or sur-

face. Occasionally trigonometric parametrizations are used, but more typically polynomial

parametrizations are used. Of particular interest to this work are the Bézier curves and

patches which will be defined later.

The parametric curve ĝ(t) in two-dimensional space is defined by two functions in one

variable, t, called the parameter, and is given by

x = ĝ1(t) and y = ĝ2(t).

A rational parametric curve is given by

x =
ĝ1(t)

ŵ(t)
and y =

ĝ2(t)

ŵ(t)
,

where ŵ(t) is a weighting function.

A parametrically defined surface in three-dimensional space is given by

x = ĝ1(s, t), y = ĝ2(s, t), and z = ĝ3(s, t).

All parametric curves have an implicit representation which can be obtained by implici-

tisation, but typically an approximate implicitisation is used to represent a parametric

curve or surface since the exact implicit form is generally of high degree. A general trian-

gular patch of degree n has an implicit form f̂(x, y, z) = 0 of degree n2, while a general

tensor-product surface patch of degree (m,n) has an implicit representation f̂(x, y, z) = 0

of degree 2mn. For example, a bicubic tensor-product surface has an implicit equation

f̂(x, y, z) = 0 of degree 18 with
(

18+3
3

)
= 1330 coefficients [59]. A triangular cubic Bézier

patch has an implicit representation f̂(x, y, z) = 0 of degree 9.

Discussing the Curve and Surface Representations

The three representations have respective advantages and disadvantages when considered

within CAGD. In rendering for example, an image is generated from a two or three-

dimensional object. A parametric surface with parameters s and t is rendered by the

evaluation for a set of si and ti parameter pairs. There is no equivalent method for

rendering an implicitly defined curve or surface, and generating the set of (x, y) or (x, y, z)

points required for rendering is much more difficult.

Given a point (x1, y1) in two dimensions or (x1, y1, z1) in three dimensions, it is easy

to determine whether that point lies on, inside, or outside of an implicitly defined curve

or surface. Simple substitution and evaluation of f̂(x1, y1) or f̂(x1, y1, z1) will reveal the

location of the point dependent on whether the evaluation is greater than, less than or

8

equal to zero.

Intersection problems are typically more easily solved with an implicit representation

of the curves or surfaces involved and a breakdown of these problems will be given in

Section 1.3.

1.3 Intersections of Curves and Surfaces

In this section methods for the computation of intersections between curves and surfaces

are briefly considered. Texts such as [19] contain a much deeper analysis of the possible

intersection problems. This thesis focuses on the set of problems which can either be

reduced to finding the roots of a univariate polynomial in Bernstein form or finding an

irreducible factorisation of a bivariate polynomial in Bernstein form.

In particular, this thesis focuses on problems where the roots of a univariate poly-

nomial are of high multiplicity, and these root finding problems are typically associated

with tangential intersection problems. Tangential intersections occur where two curves or

surfaces are near parallel at their intersection and perturbations of two curves or surfaces

with a tangential intersection can cause the intersection point to be lost. One possible re-

sult is that the perturbed curves no longer intersect, but instead have a distance ε between

them. Alternatively, the perturbed curves or surfaces can overlap near to the intersection,

causing a cluster of intersections to occur, rather than a unique point. This section dis-

cusses the types of intersection problems encountered when using the various curve and

surface representations, and methods for their computation.

The first part of this section considers the computation of the intersections of two

implicitly defined curves or surfaces. These problems most readily reduce to polynomial

root finding (or factorisation finding) problems.

Secondly, the intersection of one implicitly defined object and a parametrically defined

object similarly reduces to a root or factorisation problem. This problem first requires a

substitution to obtain a polynomial whose roots are then computed.

Thirdly, the intersection of two parametrically defined objects (Bézier curves and sur-

faces, for example) are considered, but these problems require an implicitisation stage to

reduce them to a problem of computing the intersection of a parametrically defined object

and an implicitly defined object.

Implicit Curve and Surface Intersections

The following set of examples considers the intersection of two implicitly defined curves or

surfaces. These problems reduce to the computation of the roots of a polynomial ĥ(x) = 0

or the factorisation of a bivariate polynomial ĥ(x, y) = 0. It will be shown how curves and

surfaces with smooth intersections reduce to polynomial factorisation problems where the

factors are of high multiplicity.

Example 1.3.1. Consider two implicitly defined curves given by

f̂(x, y) = (x− 4)(x− 3)(x+ 1)(x+ 2)− y = 0

ĝ(x, y) = −3(x+ 1)(x+ 2)(7x+ 11)− y = 0.

Chapter 1. Introduction 9

Either f̂(x, y) = 0 or ĝ(x, y) = 0 can be written explicitly, so let the first curve be written

in the form y = f̂(x), and this is substituted into ĝ(x, y) = 0 such that a third polynomial

ĥ(x) = ĝ(x, f̂(x)) = 0 is given by

ĥ(x) = (x+ 1)(x+ 2) ((x− 4)(x− 3)− (−21x− 33)) = 0

= (x+ 1)(x+ 2)(x+ 5)(x+ 9).

The real roots xi of ĥ(x) determine the x coordinate of the points of intersection of f̂(x)

and ĝ(x)

x1 = −9, x2 = −5, x3 = −2 and x4 = −1.

The intersection points are obtained by substituting the values xi into either f̂(x, y) = 0

-10 -8 -6 -4 -2 0
-0

2000

4000

6000

8000

10000

(i) Plotting f̂(x, y) and ĝ(x, y) over the
interval [−10, 0]

-3 -2.5 -2 -1.5 -1 -0.5 0
-10

-8

-6

-4

-2

0

2

4

6

8

10

(ii) Plotting f̂(x, y) and ĝ(x, y) over the
interval [−3, 0]

Figure 1.1: Plotting the curves f̂(x, y) = 0 and ĝ(x, y) = 0 and their intersection points
in Example 1.3.1

or ĝ(x, y) = 0 and solving for yi, and are given by

(x1, y1) = (−9, 8736) , (x2, y2) = (−5, 864) , (x3, y3) = (−2, 0) and (x4, y4) = (−1, 0) .

Figure 1.1i shows the four points of intersection in the interval [−10, 0], while Figure 1.1ii

shows only the two points of intersection in the interval [−3, 0].

�

Example 1.3.2. Consider a modified version of Example 1.3.1, where the polynomials

f̂n(x, y) and ĝn(x, y) are given by

f̂n(x, y) = (x− 4)(x− 3)(x+ 1)(x+ 2)n − y = 0

ĝn(x, y) = −3(x+ 1)(x+ 2)n(7x+ 11)− y = 0.

Either f̂n(x, y) = 0 or ĝn(x, y) = 0 can be written explicitly, so the implicit equation

10

-3 -2.5 -2 -1.5 -1 -0.5 0
-10

-8

-6

-4

-2

0

2

4

6

8

10

(i) n = 1

-3 -2.5 -2 -1.5 -1 -0.5 0
-10

-8

-6

-4

-2

0

2

4

6

8

10

(ii) n = 9

Figure 1.2: The intersections of two curves f̂(x, y) = 0 and ĝ(x, y) = 0 in the interval
[−3, 0] for various values of n in Example 1.3.2

y = f̂n(x) can be substituted into ĝn(x, y) such that ĥn(x) = ĝn(x, f̂n(x)) = 0 is given by

ĥn(x) = (x+ 1)(x+ 2)n ((x− 3)(x− 4)− (−21x− 33))

= (x+ 1)(x+ 2)n(x+ 5)(x+ 9).

The roots of ĥn(x) are −1, −2, −5 and −9. The curves f̂2(x, y) = 0 and ĝ2(x, y) = 0

are plotted in Figure 1.2i and the curves f̂9(x, y) = 0 and ĝ9(x, y) = 0 are plotted in

Figure 1.2ii. It can be seen that the intersection between the two curves f̂9(x, y) = 0

and ĝ9(x, y) = 0 is significantly smoother than the intersection between f̂2(x, y) = 0 and

ĝ2(x, y) = 0, and this smooth intersection gives rise to a polynomial root finding problem

with a root of high multiplicity.

�

The smoothness of the intersection of two curves is determined by the multiplicity of

the roots of ĥ(x) = 0, where higher multiplicity in the roots is equivalent to smoother

intersections. Roots of high multiplicity are likely to be incorrectly computed when using

standard root finding methods so it is necessary to first compute the square-free factori-

sation, from which simple roots can be computed. The simple roots obtained from the

square-free factorisation are the roots of ĥ(x) = 0, and this algorithm is discussed in more

detail in Section 1.5.

A surface intersection problem similarly reduces to the computation of the factors of

ĥ(x, y) = 0, and factors with high multiplicity are associated with smooth intersections.

Example 1.3.3. Consider the two implicitly defined surfaces given by

f̂(x, y, z) = (x2 + y2 − 1)n × (x+ y + 0.2)− z = 0

ĝ(x, y, z) = (x2 + y2 − 1)n × (y − 0.2)− z = 0.

Chapter 1. Introduction 11

The intersections between the two surfaces are the factors of

ĥ(x, y, z) = (x2 + y2 − 1)n × ((x+ y + 0.2)− (y − 0.2))

= (x2 + y2 − 1)n(x− 0.4)

so there is a circle of intersection given by (x2 + y2 − 1) = 0 and a line of intersection

given by x + 0.4 = 0. Larger values of n give smoother intersections around the circle

x2 + y2 − 1 = 0 as shown in Figure 1.3.

(i) n = 1 (ii) n = 10

Figure 1.3: The intersections of two surfaces f̂(x, y, z) = 0 (�) and ĝ(x, y, z) = 0 (�) in
Example 1.3.3

�

Typically in real world applications the intersection of two surfaces P (Consisting of

bicubic patches Pi) and Q (Consisting of bicubic patches Qj) reduces to the computation

of any intersections of the Pi and Qj patches. Despite these patches being of modest

degree, such intersections involve zero finding of bivariate polynomials of significantly

higher degree. The focus of this thesis is to develop the matrix based GCD finding methods

and polynomial deconvolution necessary for such intersection problems.

Newton’s Method for the Computation of Intersections Between Two Implic-

itly Defined Curves

The intersections of two implicitly defined curves f̂(x, y) = 0 and ĝ(x, y) = 0 are computed

using Newton’s method. Given an initial approximation, (x0, y0), the iterative procedure

generates successive approximations (xi+1, yi+1) given by[
xi+1

yi+1

]
=

[
xi

yi

]
+

[
δxi

δyi

]
,

where δxi and δyi are given by[
∂f̂(xi,yi)

∂x
∂f̂(xi,yi)

∂y
∂ĝ(xi,yi)

∂x
∂ĝ(xi,yi)

∂y

][
δx

δy

](i)

= −

[
f̂(xi, yi)

ĝ(xi, yi)

](i)

.

12

The iterative process is terminated when a solution (xi, yi) satisfies the conditions that∣∣∣f̂(xi, yi)
∣∣∣ ≤ ε and |ĝ(xi, yi)| ≤ ε for some threshold value ε or when a maximum number

of iterations has been reached.

An initial approximation of the point of intersection is required, and intersection points

can only be found one at a time. As with the root finding implementation of Newton’s

method, the method may be divergent, and termination can only be achieved when the

intersection is computed to within some threshold ε of its exact value, and this threshold

must be predetermined. For these reasons, the implementation of the intersection method

based on Newton’s method is reserved for refining already approximated intersection points

obtained by other means.

The method is extended to the computation of the points of intersection of two im-

plicitly defined surfaces f̂(x, y, z) = 0 and ĝ(x, y, z) = 0. The intersection point (xi, yi, zi)

is given by

[
∂f̂(xi,yi,zi)

∂x
∂f̂(xi,yi,zi)

∂y
∂f̂(xi,yi,zi)

∂z
∂ĝ(xi,yi,zi)

∂x
∂ĝ(xi,yi,zi)

∂y
∂ĝ(xi,yi,zi)

∂z

] δx

δy

δz

 = −

[
f̂(xi, yi, zi)

ĝ(xi, yi, zi)

](i)

.

This initial point on the intersection curve can then be used in a tracing based method

to compute the curve of intersection.

Implicit and Parametric Curve and Surface Intersections

The points of intersection between the implicit curve f̂(x, y) = 0 and the parametric curve

defined by equations x = ĝ1(t), y = ĝ2(t) are given by the following process:

1. The variables x and y in f̂(x, y) = 0 are replaced by the corresponding parametric

equations x = ĝ1(t) and y = ĝ2(t) such that a new equation ĥ(t) = f̂(ĝ1(t), ĝ2(t)) = 0

is given. The roots {ti} of the univariate polynomial ĥ(t) = 0 are computed and

these are substituted back into the parametric equations x = ĝ1(t) and y = ĝ2(t) to

compute xi and yi pairs, which are the set of intersection points.

2. The intersections of the implicitly defined surface given by f̂(x, y, z) = 0 and the

parametric surface defined by x = ĝ1(s, t), y = ĝ2(s, t) and z = ĝ3(s, t) can be com-

puted by the factorisation of the polynomial f̂(ĝ1(s, t), ĝ2(s, t), ĝ3(s, t)) = ĥ(s, t) = 0.

Intersections of Two Parametric Curves or Surfaces

The intersection of two parametrically defined surfaces S1(s, t) and S2(s, t) requires that

one of the two surfaces is first implicitised. The implicitisation of the surface S1(s, t) of

degree (m1,m2) has degree d = 2m1m2 and has
(
d+3

3

)
coefficients. For example, a bicubic

Bézier patch has an implicit form of total degree 18, and has 1330 coefficients. Having

implicitised one of the polynomials, the problem reduces to one of the set of problems

listed earlier in the section.

Implicitisation is the process in which, given a parametric curve or surface, an implicit

form is found. This is a simple process for curves and surfaces of low degree. However, as

the degree of the parametric surface increases, the number of coefficients of the implicit

Chapter 1. Introduction 13

representation increases. In the literature much work has been completed on the various

methods of finding local and approximate implicit forms [1, 13,24,35,46,57,58,60].

Example 1.3.4 shows the implicitisation of a parametrically defined curve.

Example 1.3.4. Consider the parametrically defined curve C1 which is defined by the

parametric equations

f̂1(t) = 0.1 + 0.8t− 0.1t2

f̂2(t) = 1− 3.4t+ 3.5t2.

The standard form of implicitisation by the Sylvester matrix based method [59, Section 4.1]

requires the construction of the 2n× 2n Sylvester matrix containing coefficients of

f̂1(t) = 0.1 + 0.8t− 0.1t2 − x

f̂2(t) = 1− 3.4t+ 3.5t2 − y

which is given by

S
(
f̂1(t), f̂2(t)

)
=


−0.1 0 3.5 0

0.8 −0.1 −3.4 3.5

(0.1− x) 0.8 (1− y) −3.4

0 (0.1− x) 0 (1− y)

 .

The implicit expression is given by the determinant of the above matrix

ĥ(x, y) =
49

4
x2 +

7

10
xy +

1

100
y2 − 5757

500
x− 1029

500
y +

30069

10000
.

�

Bézier Subdivision

This method can be utilized in computing the intersection of two Bézier curves. The

convex hull property can be used to determine whether two curves intersect [43]. An

absence of intersections of convex hulls can be used to exclude intersections of curves,

but an intersection of convex hulls does not guarantee curve intersections. The region

of intersection is reduced by subdividing and checking for intersections between the new

set of curves. Given that the convex hulls of two Bézier curves C1 and C2 intersect, the

intersection can be found by subdividing C1 into C1,Left and C1,Right, and C2 into C2,Left

and C2,Right.

The convex hulls in each pairing (i) C1,Left and C2,Left, (ii) C1,Left and C2,Right,

(iii) C1,Right and C2,Left and (iv) C1,Right and C2,Right are then checked for possible inter-

sections. Those which do not intersect are rejected while convex hulls which do intersect

may contain an intersection point. The curves are repeatedly subdivided and checked

for intersections until the subdivided curves can be approximated by straight lines. The

intersection of these lines gives an approximation of the exact intersection point.

An improvement to this algorithm is developed by Sederberg [61], which introduces the

14

concept of fat arcs, and this method converges more quickly than the standard clipping

algorithm. One limitation of this algorithm is that a threshold is required to determine

when a curve is sufficiently flat to be approximated by a straight line.

In Section 1.3 several curve and surface intersection finding methods have been consid-

ered. It has been shown that the algebraic methods generally reduce to the computation of

the roots or factors of univariate or bivariate polynomials, and methods for solving these

problems are discussed in Section 1.4 and Section 1.5 respectively.

1.4 Polynomial Real Root Finding

This section considers the computation of the real roots of a univariate polynomial f̂(x).

Given f̂(x) of degree m, x0 ∈ R is a root of f̂(x) if f̂(x0) = 0. Or, equivalently (x− x0) is

a factor of f̂(x). The multiplicity m0 of the factor (x−x0) is equivalently the multiplicity

of the root and a polynomial of degree m has at most m distinct real roots.

Roots of high multiplicity are of particular interest in the application of this work since

it is these polynomials which define smooth intersections in curve and surface intersection

problems. A multiple root of a polynomial f̂(x) is, however, sensitive to small perturba-

tions in the coefficients of f̂(x), which can cause the root to break up into simple roots.

It is therefore necessary to consider methods which preserve the multiplicity structure of

the roots. Given that this structure is maintained, the roots are well conditioned.

The computation of the intersection of two curves was shown to reduce to root finding

problem. The intersection of two cubic Bézier curves requires that one curve is in para-

metric form while the other is in implicit form. The implicit form of a parametric curve

defined in terms of parametric equations of degree three, is similarly of degree three. The

intersection problem therefore reduces to finding the roots of a polynomial of degree nine.

The root finding and GCD finding problems in this thesis often involve polynomials of

degree 20 or more, and this is to highlight the robustness of the algorithms used.

Numerous methods have been considered for the computation of the roots of a polyno-

mial. Laguerre’s method [30,37] is an algorithm which always converges to a complex root

given any starting point. Other methods, such as Newton’s method and its variants [45],

require an initial approximation which is sufficiently close to a root, but the method may

still be divergent. Interval bisection based methods are slow to converge and may fail to

identify roots of even multiplicity. Other methods make use of properties of polynomials

in Bernstein form. For instance, the convex hull is used in clipping algorithms [3, 45, 47].

This section considers some of the classical algorithms and their suitability to the root

finding problem at hand.

Section 1.4.1 discusses some root isolation techniques for square-free polynomials, as

well as the determination of an interval containing all roots based on the polynomial

coefficients. Section 1.4.2 discusses the traditional polynomial root finding algorithms,

which are particularly useful when polynomials are of low degree and contain simple

roots, and these methods work best when roots have already been isolated. Section 1.4.3

discusses the difficulties in computing polynomial roots by a conventional method using

the Matlab roots() function.

Chapter 1. Introduction 15

1.4.1 Bounds on the Number and Size of Real Roots of a Polynomial

and Root Isolation Techniques

The fundamental theorem of algebra states that a univariate polynomial with complex

coefficients must have at least one complex root, and a polynomial f̂(x) of degree m has

m complex roots.

Descartes’ Rule of Signs

For polynomials in the power basis, Descartes’ rule of signs is used to determine an upper

bound for the number of positive roots. The number of positive roots, denoted n, is given

by

n = v
(
f̂(x)

)
− 2k

for some value of k ∈ Z+, and v
(
f̂(x)

)
∈ Z+ is the number of changes of sign in the

ordered coefficients of f̂(x).

Example 1.4.1. Consider the polynomial f̂(x) given by

f̂(x) = 5x5 − 2x4 + 2x3 − 3x2 + 2x− 5,

which has five changes of signs in its ordered coefficients. The number of positive real

roots of f̂(x) is given by

n = 5− 2k for some k ≥ 0.

�

The upper limit of the number of negative roots of f̂(x) is given by the number of

changes of sign in the coefficients of f̂(−x)

n = v
(
f̂(−x)

)
− 2k for some k ≥ 0.

Fourier’s Theorem

The Fourier sequence, denoted Fseq, is the set of (m+ 1) polynomials

Fseq(f̂(x)) =
{
f̂(x), f̂

′
(x), f̂ (2)(x), . . . , f̂ (m)(x)

}
.

Let v(Fseq(f̂(a))) denote the number of sign variations of the Fourier sequence evaluated

at x = a, and v(Fseq(f̂(b))) denote the number of sign variations of the Fourier sequence

evaluated at x = b, then the number of real roots in the interval (a, b), where a < b, is

given by

n = v
(
Fseq

(
f̂(a)

))
− v

(
Fseq

(
f̂(b)

))
− 2k,

where k ∈ Z+.

16

Sturm’s Theorem

Sturm’s theorem builds on Fourier’s theorem, but the sequence Fseq(f̂(x)) is replaced

by the sequence Sseq(f̂(x)) which consists of remainders obtained by polynomial long

division. A Sturm chain can be used to compute the number of roots in a given interval.

By this method, roots can be isolated in ever decreasing intervals. The Sturm chain of a

polynomial f̂(x, y) is given by

f̂0(x) = f̂(x)

f̂1(x) = f̂
′
0(x)

f̂2(x) = −rem
(
f̂0(x), f̂1(x)

)
...

f̂i+1(x) = −rem
(
f̂i−1(x), f̂i(x)

)
...

0.

Let v(f̂(x)) be the number of changes of sign in the sequence f̂0(x), f̂1(x), . . . , f̂m(x),

then the number of roots in the interval (α, β) is given by

n = v
(
f̂(α)

)
− v

(
f̂(β)

)
.

For a polynomial f̂(x) of degree m, all of its roots are bounded by [−M,M], where

M = 1 +
max{â0, â1, . . . , âm−1}

âm
,

where âi are the coefficients of f̂(x).

The roots of a polynomial can therefore be isolated using this method by subdividing

the interval [−M,M] until each subinterval contains at most one root. The computation

of the Sturm chain is, however, computationally inefficient and methods for root isolation

based on Descartes’ rule of signs are more effective.

Roots of Polynomials in Bernstein Form by Transformation

The polynomial in Bernstein form defined over the unit interval is given by

f̂(t) =

m∑
i=0

âiB
n
i (t) for 0 ≤ t < 1

by the substitution t = x
1+x this can be written as

f̂

(
x

1 + x

)
=

m∑
i=0

âi

(
1− x

1 + x

)m−i x

1 + x

i

=
1

(1 + x)m

m∑
i=0

âix
i for 0 < x <∞

Chapter 1. Introduction 17

This transformation is used in later sections to compare alternate methods with the method

developed in this thesis, and it is clear to see that the number of roots of f̂(t) in the interval

[0, 1) is given by the number of changes of sign in the coefficients âi minus a nonnegative

even integer as described in the section on Descartes’ rule of sign. For roots ti of f̂(t)

approximate to 1, the roots in x, xi tend to infinity, and small perturbations in ti result

in large changes of xi.

Bounds on the Number of Roots of Polynomials in Bernstein Form by variation

diminishing property (VDP)

The upper bound of the number of roots of a polynomial f̂(x) in Bernstein form is given

by the number of intersections of its control polygon and the x-axis. This is due to the

VDP which states that a polynomial in Bernstein form is at least as smooth as its control

polygon.

1.4.2 Polynomial Root Finding Algorithms

Polynomial root finding is a classical problem with a long history and this section describes

some classical root finding techniques. The first two methods described are the interval

bisection method and the method of false position. Both make use of bounding intervals

which are known to contain a polynomial root. The bounding intervals are iteratively

shrunk until the root can be approximated by the intervals midpoint.

Newton’s method and the secant method do not utilise bounding boxes, and are said

to be ‘open’ root finding methods. This often results in faster convergence, but can also

lead to divergence away from the root, depending on the shape of the polynomial function.

Another method, Brent’s method, makes use of the bisection method, secant method and

inverse quadratic interpolation and offers the same reliability as the bisection method, but

with a faster rate of convergence.

The last two methods, Bézier subdivision and convex hull marching, are used specifi-

cally for finding zeros of Bézier curves because they make use of properties of Bézier curves

such as the VDP and the convex hull property.

Interval Bisection

The interval bisection root finding method, also known as interval halving or binary search,

is perhaps the most trivial of all root finding methods. Suppose a continuous function f̂(x)

is given over a closed interval [a, b], where f̂(a)f̂(b) < 0, then f̂(x) has at least one root in

the interval. This result is a specific case of the intermediate value theorem and is called

Bolzano’s theorem.

The algorithm works by generating a sequence of intervals of decreasing size, {[ak, bk]},
in which a root of f̂(x) is known to be contained and proceeds as follows:

1. Set k = 0, ak = a and bk = b. The midpoint of the interval is given by ck = ak+bk
2 .

2. If f̂(ck) = 0, then the root is found and the algorithm terminates.

3. If bk − ak ≤ θ, then the interval is sufficiently small and the polynomial root is

approximated as the midpoint ck.

18

4. If f̂(ak)f̂(ck) < 0, then the root lies in the first half of the interval [ak, bk]. The

algorithm is called again for the interval [ak+1, bk+1] = [ak, ck].

5. Otherwise, f̂(ck)f̂(bk) < 0 and the root lies in the second half of the interval, so the

algorithm is called again for the interval [ak+1, bk+1] = [ck, bk].

A threshold value θ is required to determine when the size of the interval [ak, bk] is

sufficiently small for a root to be approximated by the interval midpoint.

The bisection algorithm is slow when compared with other methods, but other methods

do not always guarantee convergence. Given that a root is known to be contained within

an interval, it is either at the interval midpoint, or contained in one of the two interval

halves. Therefore, the algorithm will always converge. However, if the root is of even

multiplicity it may be missed completely. For example, let α be a root of the polynomial

f̂(x) with even multiplicity, then f̂(α− ε) has the same sign as f(α+ ε). A lack of change

of sign within an interval means that the algorithm fails to spot that a root is contained,

and the root is therefore likely missed by the bisection algorithm.

Before the bisection algorithm can be applied, an interval [a, b] must be selected where

f̂(a)f̂(b) < 0, and this interval must isolate the root. Such intervals can be obtained by

root isolation techniques which were discussed in Section 1.4.1.

Regula Falsi / False Position

If the function f̂(x) is differentiable, a more appropriate root finding method is the method

of false position. As with the interval bisection method, the algorithm for false position

produces a sequence of intervals [ak, bk] of decreasing size, which contain the root α of the

polynomial f̂(x). The algorithm proceeds as follows:

1. Two initial values of a0 and b0 are chosen such that f̂(a0)f̂(b0) < 0.

2. The value ck is given by the intersection of the straight line between the points

(ak, f̂(ak)) and (bk, f̂(bk)).

3. If f̂(ck) is sufficiently close to zero, then the algorithm terminates and the root α is

equal to ck.

4. If f̂(ak)f̂(ck) < 0, then the root lies in the interval [ak+1, bk+1] = [ak, ck] .

5. If f̂(ck)f̂(bk) < 0, then the root lies in the interval [ak+1, bk+1] = [ck, bk].

As with the bisection method, the method of false position keeps the root bounded and

always converges, but typically does so at a faster rate than the bisection method.

Newton’s Method

Perhaps the most famous of the classical root finding algorithms is Newton’s method.

Given an initial root approximation x0 of f̂(x), a new approximation x1 is given by the

intersection of the tangent of f̂(x) at (x0, f̂(x0)) and the x-axis. The (k+1)th approxima-

tion xk+1 is given by the intersection of the tangent of f̂(x) at (xk, f̂(xk)) and the x-axis,

Chapter 1. Introduction 19

so is given by

xk+1 = xk −
f̂(xk)

f̂ ′(xk)
.

The algorithm terminates when the evaluation of f̂(xk) is sufficiently close to zero, and

for this a threshold θ is required.

Newton’s method is not guaranteed to converge unless certain conditions are satisfied.

If any approximation xk is a stationary point, the derivative f̂ ′(xk) is equal to 0, and

xk+1 is undefined. Also, some starting points may result in a sequence of approximations

which are cyclic. For instance, in a 2-cycle, the approximations x0 = x2 = x4 = · · · = xk

and x1 = x3 = · · · = xk+1 and the approximations clearly fail to converge on the root.

However, choosing an alternative starting approximation can overcome this particular

problem.

When the algorithm does converges it does so at a quadratic or linear rate dependent

on whether the root is a multiple root.

The Secant Method

The secant method is similar to the method of false position, in that a straight line is

used to approximate a curve between two points x0 and x1, where the interval is known to

contain the root. A new point is calculated at the intersection of the line and the x-axis.

However, the secant method is open and unlike the method of false position, the root is

not bounded. The secant method is a finite difference approximation of Newton’s method.

It converges more quickly than the false position method, but in some cases can fail to

converge. A straight line is constructed between two initial approximations, x0 and x1.

The point of intersection between the straight line between xk−2 and xk−1 and the x-axis

is denoted xk, and a new line between xk and xk−1 is considered.

Brent’s Method

Brent’s method [11], like the bisection method requires an initial bounding interval which

is known to contain the root which is to be approximated. This is a hybrid method

which makes use of the bisection, secant and inverse quadratic interpolation root finding

methods, to offer a reliable root finding method which typically converges more quickly

than the bisection method alone.

Bézier Subdivision (Schneider’s Algorithm)

This algorithm, described by Schneider in [34, Chapter 8.2], computes the roots of f̂(x),

a polynomial in Bernstein form, by repeatedly subdividing the curve. By the variation

diminishing property, a line which intersects the control polygon of f̂(x) n times intersects

the curve f̂(x) at most n times. In this algorithm, one of three possible scenarios arise:

1. If no intersections occur between the control polygon of f̂(x) and the x-axis, then

f̂(x) has no real roots in the interval.

20

2. If there is more than one intersection between the control polygon of f̂(x) and

the x-axis, then the curve f̂(x) is subdivided at its midpoint and the algorithm is

recursively called for the two halves of the subdivided curve.

3. If there is only one intersection between the control polygon and the x-axis, and if

the control polygon is deemed “flat enough”, then the curve is approximated by a

line segment which passes through the bounding box of the control polygon. The

root is then given by the intersection of the approximating line segment and the

x-axis.

This method recursively subdivides the curve until all roots are isolated. However, the

algorithm relies on a threshold to determine whether the control polygon is “flat enough”.

Convex Hull Marching

The method of convex hull marching relies on the convex hull property of a polynomial

in Bernstein form, described in Section 2.2.1. All roots are approached from the left, and

cannot be skipped over. This method removes one root at a time, but the removal of

inexact roots can cause an accumulation of errors due to division.

Given a polynomial f̂(x) of degree m in Bernstein form, the first intersection of the

convex hull of f̂(x) with the x-axis, denoted x0, is evaluated to determine whether it is

sufficiently close to a root α. If x0 6= α, the curve is subdivided at the point (x0, f̂(x0))

giving two new curves, f̂left(x) in the interval [0, x0] and f̂right(x) in the interval [x0, 1].

The left partition is discarded since it does not contain any roots. A new polynomial

f̂1(x) of degree m is given, which has a new convex hull. The process is iterated until the

intersection of the convex hull and the x-axis, given by xk, is sufficiently close to a root.

The root is removed from f̂(x) and the process begins again for the polynomial f̂∗(x).

About Classical Root Finding Methods

The classical root finding methods such as the bisection method and Newton’s method are

typically only useful when determining a single root which has a good initial approximation

or bounding interval. These algorithms can be used in two ways:

1. The set of roots {ri} of f̂0(x) can be computed successively. The ith root ri is

computed given f̂i(x), which is deflated by dividing by the factor (x−ri) and the next

root is computed from f̂i+1(x). This repeated division can be unstable, particularly

when the computed roots are rough approximations of the exact roots.

However, this can be overcome using methods described in [52], where it is shown

that repeated deflation can be stable given sufficiently accurate root approximations

and each root is removed in an order dependent on the absolute value of the complete

set of roots [54, Section 9.5].

2. Alternatively, bounding intervals of each root ri of f̂i(x) are predetermined, and the

roots can be computed simultaneously as long as there is good separation between

the roots.

Chapter 1. Introduction 21

5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(i) Computed roots of f̂1(x)

5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

i

(ii) Computed roots of f̂10(x)

Figure 1.4: The approximations of the roots of {f̂i(x) | i = 1, 10} computed using
Matlab roots() in Example 1.4.2

Neither of the approaches above can effectively compute polynomial roots of high multi-

plicity, and it is therefore advantageous to consider methods which first compute a fac-

torisation of f̂(x) resulting in a set of polynomials {wi(x)}, whose easily obtained simple

roots are the roots of f̂i(x) with multiplicity i.

1.4.3 Roots Computed by MATLAB roots()

There are many difficulties in computing the real roots of a polynomial. Firstly, roots

of high multiplicity are not reliably computed by standard root finding methods as will

be shown in Example 1.4.2. The MATLAB roots() function computes the roots of a

polynomial f(x) which is a floating-point representation of f̂(x). The computed roots are

typically of multiplicity one.

Example 1.4.2. This example considers the set of polynomials { f̂i(x) | i = 1, . . . ,m }
given by

f̂i(x) = (x− r̂)i,

where r̂ = 7.123456789.

The roots of the set of polynomials {f̂i(x)} are approximated by Matlab roots()

and are plotted in Figure 1.4 and Figure 1.5 for i = 1, 10, 15 and 20. The set of computed

roots of f̂i(x) are denoted by { ri,j | j = 1, . . . , i }. So, {r5,j} is the set of five computed

roots of f̂5(x), while {r10,j} is the set of ten computed roots of f̂10(x).

The forward error is a measure of the distance between the roots of f̂i(x) and the

computed roots { ri,j | j = 1, . . . , i }. Let λi denote the average Euclidean distance

between the exact root r̂ and the set of computed roots of { f̂i(x) | j = 1, . . . , i } such

that λi is given by

λi =

∑i
j=1 |r̂ − ri,j |

i
.

22

5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
i

(i) Computed roots of f̂15(x)

5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

i

(ii) Computed roots of f̂20(x)

Figure 1.5: The approximations of the roots of {f̂i(x) | i = 15, 20} computed using
Matlab roots() in Example 1.4.2

From Figure 1.4 it can be seen that the radius of the computed roots {ri,j} increases

(almost linearly) as the root multiplicity i increases, and the forward error λi is plotted

in Figure 1.6i.

The backward error will be defined as the distance between the input polynomial f̂i(x)

and the polynomial fi(x), whose roots are given by the set {ri,j | j = 1, . . . , i}, that is,

fi(x) = (x− r1)(x− r2) . . . (x− ri).

The relative error between the vectors of the coefficients of the two polynomials f̂i(x) and

fi(x) is given by

µi =

∥∥∥f̂− fi

∥∥∥
2∥∥∥f̂∥∥∥

2

,

where f̂ and f̂i are vectors of the coefficients of the polynomials f̂(x) and f̂i(x). In Fig-

ure 1.6ii it is shown that the backward error µi is consistently small.

As previously stated, the Matlab roots() function computes the exact roots of a

floating point representation, f(x), of the exact polynomial f̂(x).

�

This example has shown how roots of high multiplicity tend to be incorrectly computed

as a cluster of simple roots. As root multiplicity increases, so too does the radius of

the cluster of computed roots. Secondly, when two roots of high multiplicity are close,

the clusters of computed roots overlap such that they are no longer separable. While

the MATLAB roots() function accurately determines the roots of the floating point

representation of f̂(x), methods which maintain the multiplicity structure of the roots of

the exact polynomial must instead be considered.

Chapter 1. Introduction 23

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

(i) Forward error λi for i = 1, . . . , 20 in
Example 1.4.2

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
10-15

(ii) Backward error µi for i = 1, . . . , 20 in
Example 1.4.2

Figure 1.6: Forward error {λi} and backward error {µi} of the computed roots {ri} in
Example 1.4.2

1.5 Polynomial Factorisation Algorithms

It has been shown that a curve-curve intersection problem can be reduced to the determi-

nation of the square-free factorisation of a univariate polynomial, that is, a factorisation

such that f̂(x) is expressed as a set of square-free polynomials {ŵi(x)}, each of multiplicity

i. The simple roots of the square-free polynomial ŵi(x) are computed and these are the

roots of f̂(x) with multiplicity i. This method gives better results than standard root

finding methods since the root multiplicity structure is preserved.

Several papers use a similar square-free factorisation method. Musser describes a set of

polynomial factorisation algorithms in [49], while [66,73,78] all use variations of the same

square-free factorisation algorithm which is described in Section 1.5.1. Yun refers to it as

being “due to Tobey and Horowitz” [76], however an earlier version of the algorithm is

found in [63] and it is believed to have originated from Gauss. In this thesis it is described

as “the algorithm due to Gauss” or “Gauss’ Algorithm”.

The square-free polynomial and square-free factorisation are now defined and the def-

inition from [33] is used with modified notation which is consistent with the remainder of

this thesis.

Definition 1. Let f̂(x) ∈ R[x] be a primitive polynomial over a unique factorisation

domain R. Then f̂(x) is square-free if it has no repeated factors, that is, if there exists no

b̂(x) with deg(b̂(x)) ≥ 1 such that

b̂(x)2|f̂(x).

The square-free factorisation of f̂(x) is given by

f̂(x) =

r∏
i=1

ŵii(x),

24

where each ŵi(x) is a square-free polynomial and

GCD (ŵi(x), ŵj(x)) = 1 for i 6= j,

that is, each pair of polynomials in the set {ŵi(x)} are coprime.

It is convenient to define the polynomial f̂(x) as the product of the factors {ŵi(x)},
where each ŵi is the product of factors of degree i in f̂(x). If f̂(x) does not contain a

factor of multiplicity i, then ŵi(x) is set equal to a constant

f̂(x) =

m∑
i=0

âi

(
m

i

)
(1− x)m−ixi = ŵ1(x)ŵ2

2(x) . . . ŵrr(x). (1.1)

This factorisation is important for the understanding of the methods of Gauss and Musser,

which are now described.

1.5.1 Gauss’ Algorithm

Gauss’ algorithm [63] relies on the principle that if f̂(x) is a polynomial in a unique

factorisation domain and f̂(x) is square-free, then

GCD
(
f̂(x), f̂

′
(x)
)

= 1,

otherwise

GCD
(
f̂(x), f̂

′
(x)
)

= f̂∗(x),

where f̂∗(x) is given by the polynomial f̂(x) with all multiplicities of its factors reduced

by one. This property is used to compute the square-free decomposition of the polynomial

f̂(x). The outputs of the algorithm, denoted {ŵi(x)}, are square-free polynomials where

each ŵi is the product of the factors of f̂0(x) with multiplicity i.

Algorithm 1: Square-free factorization due to Gauss

Input: f̂0(x) = ŵ1(x)ŵ2
2(x) . . . ŵrr(x)

1 f̂1(x)← GCD
(
f̂0(x), f̂

′
0(x)

)
= ŵ2(x)ŵ2

3(x) . . . ŵr−1
r (x)

2 ĥ1(x)← f̂0(x)

f̂1(x)
= ŵ1(x)ŵ2(x) . . . ŵr(x)

3 i← 1;

4 while hi(x) 6= 1 do

5 f̂i+1(x)← GCD
(
f̂i(x), f̂

′
i (x)

)
= ŵi+2(x)ŵ2

i+3(x) . . . ŵr−i−1
r (x)

6 ĥi+1(x)← f̂i(x)

f̂i+1(x)
= ŵi(x)ŵi+1(x) . . . ŵr(x)

7 ŵi(x)← ĥi(x)

ĥi+1(x)

8 i← i+ 1

9 end

10 set ŵi(x) = ĥi(x)

11 return ŵ1(x), ŵ2(x), . . . , ŵi−1(x)

The computation of the set of polynomials {f̂i(x)} is independent of the computation

Chapter 1. Introduction 25

of the sets {ĥi(x)} or {ŵi(x)} so these can be determined first, followed by the set {ĥi}
and finally the set {ŵi(x)}, as shown in Example 1.5.1.

Example 1.5.1. Consider the polynomial f̂(x), whose factorised form is given by

f̂(x) = (x− 0.2)7(x− 0.3)12.

The set of polynomials { f̂i(x) | i = 0, . . . , 12 } is given by

f̂i(x) = GCD
(
f̂i−1(x), f̂

′
i−1(x)

)

=



(x− 0.3)12(x− 0.2)7 i = 0,

(x− 0.3)12−i(x− 0.2)7−i i = 1, . . . , 6,

(x− 0.3)12−i i = 7, . . . , 11,

1 i = 12.

The set of polynomials { ĥi(x) | i = 1, . . . , 12 } is given by

ĥi(x) =

(x− 0.3)(x− 0.2) i = 1, . . . , 7,

(x− 0.3) i = 8, . . . , 12.

Finally, the set of polynomials { ŵi(x) | i = 1, . . . , 12 } is given by

wi(x) =


1 i ∈ [1, 6] ∪ [8, 11],

(x− 0.2) i = 7,

(x− 0.3) i = 12.

Therefore, the factors of f̂(x) are (x − 0.2) and (x − 0.3) with multiplicity 7 and 12

respectively. �

1.5.2 Musser’s Polynomial Factorisation Algorithm

The algorithm due to Musser [49] given in Algorithm 2 is a more efficient version of the

algorithm due to Gauss. Both methods share the same intermediate values, however, all

26

but the first polynomial differentiations are removed in Musser’s method.

Algorithm 2: Musser’s square-free factorisation algorithm

Input: f̂0(x) = ŵ1(x)ŵ2
2(x) . . . ŵrr(x)

1 f̂1(x)← GCD
(
f̂0(x), f̂

′
0(x)

)
= ŵ2(x)ŵ2

3(x) . . . ŵr−1
r (x)

2 ĥ1(x)← f̂0(x)

f̂1(x)
= ŵ1(x)ŵ2(x) . . . ŵr(x)

3 i← 1

4 while hi(x) 6= 1 do

5 ĥi+1(x)← GCD
(
f̂i(x), ĥi(x)

)
= ŵi+1(x)ŵi+2(x) . . . ŵr(x)

6 f̂i+1(x)← f̂i(x)

ĥi+1(x)
= ŵi+2(x)ŵ2

i+3(x) . . . ŵr−i−1
r (x)

7 ŵi(x)← ĥi(x)

ĥi+1(x)
= ŵi(x)

8 i← i+ 1

9 end

10 return : ŵ1(x), ŵ2(x), . . . , ŵi−1(x)

Given a general polynomial f̂(x) with k factors each of multiplicity mk, the ith GCD

computation is performed on a polynomial f̂i(x) and a square-free polynomial ĥi(x).

If f̂(x) does not have a root of multiplicity i then ĥi+1(x), computed in the ith GCD

computation, is equal to ĥi(x). In which case

deg
(
ĥi+1(x)

)
= deg

(
ĥi(x)

)
.

This type of GCD problem (where the GCD is equal to one of the input polynomials)

is particularly problematic for the UGCD method developed in this work. The method

computes the degree of the GCD of two polynomials f̂(x) and ĝ(x) by determining the

index of the last rank deficient subresultant matrix in the subresultant matrix sequence.

There are two cases for which this method fails:

1. The first is when the two polynomials are coprime, in which case all subresultant

matrices are nonsingular (full rank) and therefore a change in their numerical rank

does not exist.

2. The second is when the GCD of f̂(x) and ĝ(x) is equal to ĝ(x) (assuming deg(g(x)) <

deg(f(x))), in which case all subresultant matrices are singular or rank deficient.

In Musser’s algorithm it is the second exception which occurs frequently.

Example 1.5.2. Consider the exact polynomial f̂(x), whose factorised form is given by

f̂(x) = (x− 0.2)3(x− 0.7)5.

Chapter 1. Introduction 27

The algorithm produces the following output

f̂0(x) = (x− 0.2)2(x− 0.7)3

f̂1(x) = GCD
(
f̂0(x), f̂

′
0(x)

)
= (x− 0.2)(x− 0.7)2

ĥ1(x) = f̂0(x)

f̂1(x)
= (x− 0.2)(x− 0.7)

ĥ2(x) = GCD
(
f̂1(x), ĥ1(x)

)
= (x− 0.2)(x− 0.7)

f̂2(x) = f̂1(x)

ĥ2(x)
= (x− 0.7)

ŵ1(x) = ĥ1(x)

ĥ2(x)
= 1

ĥ3(x) = GCD
(
f̂2(x), ĥ2(x)

)
= (x− 0.7)

f̂3(x) = f̂2(x)

ĥ3(x)
= 1

ŵ2(x) = ĥ2(x)

ĥ3(x)
= (x− 0.2)

ĥ4(x) = GCD
(
f̂3(x), ĥ3(x)

)
= 1

f̂4(x) = f̂3(x)

ĥ4(x)
= 1

ŵ3(x) = ĥ3(x)

ĥ4(x)
= (x− 0.7).

Therefore, the factors of f̂0(x) are (x−0.2) and (x−0.7) with multiplicities two and three

respectively. �

Note on Square Free Factorisation and Root Finding

This work uses a square free factorisation method to approximate the roots of a polynomial

where the roots are of high multiplicity. Conversely, the computation of the roots of

the polynomials f̂ (n−1)(x), f̂ (n−2)(x), . . . , f̂ (1)(x) can be used to compute the square-free

factorisation of f̂(x). The roots of the polynomial f̂ (n−2)(x) are found between the roots

of f̂ (n−1)(x) and Fourier sign rule can be used to determine their locations. However,

this thesis assumes that the problem of root finding is hard and a method of square-free

factorisation must be employed to maintain the multiplicity structure of the polynomials

roots.

The complexity of the square-free factorisation problem is dependent on the multiplic-

ity structure of the polynomial roots. Smooth intersections are associated with polyno-

mials whose roots are of high multiplicity. The algorithm requires a sequence of GCD

computations for two polynomials.

As stated earlier, the intersection of two parametric curves whose parametric equations

are of degree three typically reduces to the computation of the roots of a polynomial of

degree nine. In which case the polynomial f̂0(x) and its derivative f̂
′
0(x) are of degree 9

and 8 respectively.

Polynomials in subsequent GCD computations are of a lower degree and the algorithm

terminates when f̂i(x) and its derivative f̂
′
i (x) are coprime, that is, when f̂i(x) is square-

free. Suppose r denotes the highest multiplicity of any of the roots of f̂(x), then r GCD

computations are required in Musser’s square-free factorisation algorithm.

28

1.6 The Condition of a Multiple Root

The previous section considered the computation of the square-free factorisation of a

polynomial. Given the square-free factorisation, the polynomial’s multiple roots are more

easily obtained when using classical root finding methods. This section now considers the

structured and unstructured condition numbers of a polynomial’s roots. Further discussion

of the condition number of a polynomials roots can be found in [28].

The unstructured condition number of a root α, is defined by the addition of random

perturbations to the coefficients of f̂(x), in which case it can be assumed that the r roots

at α break up into simple roots.

The structured condition number of α is defined by the addition of structured pertur-

bations to the coefficients of f̂(x), such that the perturbed form of f̂(x) has a root (α+δα)

of multiplicity r, that is, the value of the root changes, but the multiplicity structure is

maintained.

Theorem 1. Let the monic polynomial f̂(x) have coefficients âi, i = 0, . . . ,m, with respect

to the basis φi(x) such that f̂(x) is given by

f̂(x) =
m∑
i=0

âiφi(x).

Now let the coefficients âi be perturbed to ai = âi + δâi, where

|δâi| ≤ ε |âi| , i = 0, . . . ,m,

and where ε is the upper bound of the relative error.

Let the real root α of f̂(x) have multiplicity r, and let one of these r roots be perturbed

to (α + δα), where δα(i) is the perturbation of the root due to the perturbations in the

coefficients âi as described above. The unstructured componentwise condition number of α

is defined in [65] and is given by

κ(α) = max
|δâi|≤ε|âi|

|δα|
|α|

1

ε
=

1

ε1−
1
r

1

|α|

 r!∣∣∣f̂ (r)(α)
∣∣∣
m∑
i=0

|âiφi(α)|

 1
r

. (1.2)

The structured condition number requires that f̂(x) be written in terms of its p distinct

roots, α̃ = {αi | i = 1, . . . , p}, where each αi is a distinct root, and is of multiplicity mi.

The structured condition number is defined where the multiplicity structure of the roots

is maintained.

f̂(x, α̃) =

p∏
i=1

(θ(x, αi))
mi

where, for example,

θ(x, αk) = (x− αk) ,
∂θ(x, αk)

∂αk
= −1 (1.3)

(i)Note that the notation δα describes a perturbation of α, and not a product δ × α

Chapter 1. Introduction 29

for the power basis, and

θ(x, αk) = (1− αk) y − αk (1− x) ,
∂θ(x, αk)

∂αk
= −1 (1.4)

for the Bernstein basis.

The perturbed form of f̂(x, α̃) is therefore given by

f̂(x, α̃+ δα̃) =

p∏
i=1

(θ (x, αi + δαi))
mi ≈ f̂(x, α̃) +

p∑
i=1

∂f̂(x, α̃)

∂αi
δαi, (1.5)

to first order.

Theorem 2. The structured condition number of a root αk, ρ(αk), is defined as

ρ(αk) =
‖θ(x, αk)‖
mk |αk|

, (1.6)

where

ρ(αk) =
∆αk

∆f̂(x, α̃)
, ∆αk =

|δαk|
|αk|

, ∆f̂(x, α̃) =

∥∥∥δf̂(x, α̃)
∥∥∥∥∥∥f̂(x, α̃)
∥∥∥ .

and δf̂(x, α̃) is calculated from (1.5).

Proof. It follows from (1.5) that, to first order,

f̂(x, α̃+ δα̃) =

p∏
i=1

(
θ(x, αi) +

∂θ(x, αi)

∂αi

)mi
=

p∏
i=1

(
(θ(x, αi))

mi +mi(θ(x, αi))
mi−1∂θ(x, αi)

∂αi
δαi

)

=

p∏
i=1

(θ(x, αi))
mi +

p∑
i=1

 p∏
j=1,j 6=i

(θ(x, αj)
mj

mi(θ(x, αi)
mi−1∂θ(x, αi)

∂αi
δαi

hence

p∑
i=1

∂f̂(x, α̃)

∂αi
δαi =

p∏
j=1

(θ(x, αj))
mj

p∑
i=1

mi

θ(x, αi)

∂θ(x, αi)

∂αi
δαi.

There are p condition numbers, one for each of the p distinct roots in the set {αi | i =

1, . . . , p}. The condition number of the root αk is obtained by specifying

δαi =

0 i = 1, . . . , k − 1, k + 1, . . . , p

δαk, i = k

and hence

∂f̂(x, α̃)

∂αk
=

p∏
j=1

(θ(x, αj))
mj mk

θ(x, αk)

∂θ(x, αk)

δαk
= mk

f̂(x, α̃)

θ(x, αk)

∂θ(x, αk)

∂αk

30

It therefore follows from (1.3) and (1.4) that for the power and Bernstein bases,

δf̂(x, α̃k) = − mk

θ(x, αk)
f̂(x, α̃)δαk

and thus ∥∥∥θ(x, αk)δf̂(x, α̃k)
∥∥∥ = mk |δαk|

∥∥∥f̂(x, α̃k)
∥∥∥ (1.7)

from which, the result (1.6) follows

Note how the unstructured condition number κ(α) is a function of the upper bound of

the relative error in the coefficients ε, while the structured condition number, ρ(αk), of a

root αk is independent of ε.

Example 1.6.1. Consider the polynomial f̂(x) with one root α of multiplicity m, where

0 < α ≤ 1, given by

f̂(x) =
(
− α(1− x) + (1− α)x

)m
=

m∑
i=0

âi

(
m

i

)
(1− x)m−ixi.

If m is sufficiently large, the unstructured condition number (1.2) is given by

κ(α) ≈ 1

ε |α|

and a decrease in ε causes an increase in κ(α).

The structured condition number is easily obtained from (1.6) and

ρ(α) <
‖(−α(1− x) + (1− α)x)m‖

m |α|
∥∥∥(−α(1− x) + (1− α)x)m−1

∥∥∥ ≤
(
α2 + (1− α)2

) 1
2

m |α|

assuming the two norm is used, and thus

1√
2mα

≤ ρ(α) ≤ 1

mα
for 0 < α ≤ 1.

A decrease in ε, that is, a decrease in the upper bound of the relative error in the coefficients

of bi, causes an increase in the unstructured condition number κ(α). The bounds on the

structured condition number ρ(α) are independent of ε, and as the multiplicity m increases

the bounds decrease. The two condition numbers κ(α) and ρ(α) differ greatly and the

multiple root α is stable if the perturbation of f̂(x) preserves its multiplicity. �

Chapter 1. Introduction 31

1.7 The Pejorative Manifold of a Polynomial

Let f̂(x) have p distinct roots αi, i = 1, . . . , p, each of multiplicity mi, such that f̂(x) can

be written as

f̂(x) =

m∑
i=0

āi

(
m

i

)
(1− x)m−ixi =

p∏
i=1

(αi(1− x)− (1− αi)x)mi ,

where

â0 =
∏
i=1

αmii , âm =

p∏
i=1

(−(1− αi))mi and

p∑
i=1

mi = m.

The pejorative manifold of a polynomial is defined by the multiplicities of its roots, and

it is convenient to consider the monic form ĝ(x) of f̂(x). The polynomial ĝ(x) is obtained

by normalising the coefficients of f̂(x) by â0 and is given by

ĝ(x) =
m∑
i=0

b̂i

(
m

i

)
(1− x)m−ixi =

p∏
i=1

((1− x)− λix)mi , (1.8)

where

b̂i =
âi
â0

and λi =
1− αi
αi

where αi 6= 0.

Equation (1.8) shows that there exists a set of functions {hi(λ1, . . . , λp) | i = 1, . . . ,mi }
that define the transformation between the coefficients { bi | i = 1, . . . ,m} and the set of

parameters {λi | i = 1, . . . , p } given by

b1 = h1(λ1, . . . , λp)

b2 = h2(λ1, . . . , λp)

...

bm = hm(λ1, . . . , λp).

Definition 2. Let µ = {m1,m2, . . . ,mp} be the set of multiplicities of the polynomial

ĝ(x). The pejorative manifold Mµ ⊂ Rm is the set of real coefficients {b̂1, . . . b̂m} such

that ĝ(x) has p distinct roots whose multiplicities are equal to µ.

Example 1.7.1. The polynomial f(x) of degree m = 3 with roots α1, α2 and α3 is given

by

= α1α2α3

(
3

0

)
(1− x)3 − (α1α2β3 + α2α3β1 + α3α1β2)(

3
1

) (
3

1

)
(1− x)2x

+
(α1β2β3 + α2β3β1 + α3β1β2)(

3
2

) (
3

2

)
(1− x)x2 − β1β2β3

(
3

3

)
x3,

where βi = 1− αi. There are two distinct pejorative manifolds for a cubic polynomial:

(i) A curve C defines the pejorative manifold of a cubic polynomial with one cubic root,

that is, α1 = α2 = α3.

32

(ii) A surface S defines the pejorative manifold of a cubic polynomial with one simple

root α1 and one double root α2.

First suppose that the polynomial f(x) has a real triple root α = α1 = α2 = α3

f(x) = (α(1− x)− (1− α)x)3 =
3∑
i=0

(−1)iα3−i(1− α)i
(

3

i

)
(1− x)3−ixi,

whose monic form is given by

g(x) =

(
3

0

)
(1− x)3 − λ

(
3

1

)
(1− x)2x+ λ2

(
3

2

)
(1− x)x2 − λ3

(
3

3

)
x3,

where λ = 1−α
α , α 6= 0 and the curve C is therefore given by

C : (X(λ), Y (λ), Z(λ)) =
(
−λ, λ2, −λ3

)
.

Consider now the situation in which f̂(x) has a double root α1 and a simple root α2

f̂(x) = α2
1α2

(
3

0

)
(1− x)3 −

(
α2

1(1− α2) + 2α1α2(1− α1)
)(

3
1

) (
3

1

)
(1− x)2x

+

(
2α1(1− α1)(1− α2) + α2(1− α1)2

)(
3
2

) (
3

2

)
(1− x)x2

− (1− α1)2(1− α2)

(
3

3

)
x3.

The monic form of f̂(x) can be considered by defining λ and µ as

λ =
1− α1

α1
and µ =

1− α2

α2
, α1, α2 6= 0, (1.9)

and thus the pejorative manifold S of a real cubic Bernstein basis polynomial that has

one simple root and one double root is given by

S :
(
X(λ, µ) Y (λ, µ) Z(λ, µ)

)
=

(
−(2λ+ µ)

3
,
λ(λ+ 2µ)

3
, −λ2µ

)
.

�

The Pejorative Manifold and the Square-Free Factorisation

Square-free factorisation methods such as the methods due to Gauss and Musser work to

first preserve the multiplicity structure of the polynomial f̂(x), equivalent to determining

the manifold on which the f(x) lies. The set of GCD computations and polynomial

deconvolutions (In this context meaning polynomial division, described in more detail in

Section 2.2.1) work to find where on the manifold the polynomial lies.

If the given polynomial f̂(x) is exact, then it is represented by a point on a manifold M,

and GCD computations and polynomial deconvolutions are performed exactly. However,

if the coefficients of f(x) are inexact, it can be assumed that the roots are all simple and

Chapter 1. Introduction 33

-8000

-20

-6000

-15

-4000

-10

-2000

400
350

300-5 250

0

200
150

100
500

0

Figure 1.7: The curve C and the surface S as defined in Example 1.7.1

Stage Numerical Operation Geometric Operation

(1) Computation of
the multiplicity of
roots of f(x)

GCD computations and
polynomial deconvolu-
tions

Identification of the pe-
jorative manifold

(2) Computation of
root values

Solutions of polynomial
equations wi(x) = 0, all
of whose roots are sim-
ple

Identification of the
point on M that defines
the polynomial

therefore do not lie on the manifold M. In this case, the GCD computations project onto

a manifold M∗.

This section has described the motivation for determining a polynomial’s square-free

factorisation. It has already been stated that a fundamental component of the square-

free factorisation algorithm is the polynomial GCD computation, and methods for this

computation are considered in the next section.

1.8 Methods for the Computation of the GCD and AGCD

It was shown in Section 1.5 that the algorithms for square-free factorisation require a

sequence of GCD computations. The computation of the GCD of two polynomials has

applications in many areas. For instance, one method involved in image deblurring con-

siders the pixel values in the rows and columns of an image as polynomials. An unknown

blurring function is computed by taking the GCD of the polynomial representation of two

rows of pixels [2, 53, 67]. GCD computations are also used for the decoding and error

correction of Reed-Solomon codes which are used to encode data on compact discs [31].

Algorithms for computing the intersection of two algebraic curves require that the

curves f and g be coprime before their resultant is computed, so the common factors must

first be removed. Similarly, computations on rational functions f(x) = a(x)
b(x) may require

34

that the two polynomials a(x) and b(x) be coprime, with common factors removed, which

requires a GCD computation. For instance, this is required in the degree reduction of

rational Bézier curves.

The GCD problem is ill-conditioned, in that small perturbations in the input polyno-

mials give rise to large changes in the output GCD. Typically, if two exact polynomials

f̂(x) and ĝ(x) have an exact GCD d̂(x), then it is highly likely that their perturbed forms

f(x) = f̂(x) + δf̂(x) and g(x) = ĝ(x) + δĝ(x) are coprime.

The GCD is defined for exact polynomials f̂(x) and ĝ(x) only, and it is therefore

necessary to define an AGCD of two inexact polynomials. Methods for the computation

of exact GCDs which fail to compute the AGCD for inexact polynomials do not suit the

requirements of the inexact problem stated in this thesis. It is therefore necessary to

instead consider methods which can compute the AGCD of two polynomials.

Univariate Polynomial GCD Computation by Euclid’s Algorithm

The Euclidean algorithm for integer GCD computation can be extended to the compu-

tation of the GCD of two univariate polynomials [41]. Euclidean division is replaced

by polynomial long division and the remainder sequence in the Euclidean algorithm is

replaced by the polynomial remainder sequence (PRS).

Example 1.8.1. Consider the exact polynomials f̂(x) and ĝ(x) given by

f̂(x) = (x− 1)(x− 2)(x− 3)(x− 4)(x− 9)

= x5 − 19x4 + 125x3 − 365x2 + 474x− 216

ĝ(x) = (x− 1)(x− 2)(x− 3)(x− 5)(x− 12)

= x5 − 23x4 + 173x3 − 553x2 + 762x− 360.

The first polynomial long division in the Euclidean algorithm is given by

f̂(x) = p0(x)ĝ(x) + r0(x),

where

f̂(x) = (1× ĝ(x)) + x5 − 23x4 + 173x3 − 553x2 + 762x− 360

p̂0(x) = 1

r̂0(x) = x5 − 23x4 + 173x3 − 553x2 + 762x− 360.

The second and third polynomial long divisions are completed in the same way as the

first and are omitted from this text. The remainder r̂2(x) is zero, and thus the algorithm

terminates and the GCD is given by r̂1(x), that is, d̂(x) is given by

d̂(x) = −6x3 + 36x2 − 66x+ 36.

�

The extended Euclidean algorithm [14, Section 4.2] also returns the cofactor polyno-

mials û(x) and v̂(x) such that f̂(x)û(x)+ĝ(x)v̂(x) = d̂(x). Despite the decreasing degree of

Chapter 1. Introduction 35

the polynomials in the PRS, the coefficients of these polynomials are often large. Instead,

it is advantageous to consider the psuedo-PRS, which is generated by replacing polynomial

division with psuedo-division.

Repeated polynomial division in Euclid’s algorithm is equivalent to solving a linear

system whose coefficient matrix is ill-conditioned, and thus small perturbations in the

coefficients are magnified by the ill-conditioned problem. In [50] Noda and Sasaki note

the limitations of the Euclidean algorithm, namely that close roots and floating-point

numbers reduce the accuracy of coefficients in the PRS. Because of this, they developed a

modified algorithm in which regularization is applied [50], with improved results.

1.8.1 Polynomial GCD Computation Using the Sylvester Matrix

Many GCD finding methods make use of the singular value decomposition (SVD) of the

Sylvester matrix or its sequence of subresultant matrices [15,21], while others consider the

QR decomposition [16,77] and methods which use the structure of the Sylvester matrix in

the computation of the AGCD [5,6,44,79]. The Sylvester matrix and subresultant matrices

are briefly defined for two polynomials in the power basis, and this is later extended to

two polynomials in Bernstein form.

The Sylvester matrix, S(f̂(x), ĝ(x)) ∈ Rm+n+2×m+n, of two polynomials f̂(x) and ĝ(x)

of degrees m and n respectively, contains entries which are coefficients of the two polyno-

mials. The partitioned structure consists of two Toeplitz matrices Tn(f̂(x)) ∈ R(m+n)×n

and Tm(ĝ(x)) ∈ R(m+n)×m, and is given by

S
(
f̂(x), ĝ(x)

)
=
[
Tn

(
f̂(x)

)
Tm

(
ĝ(x)

)]

=



â0 b̂0
...

. . .
...

. . .

âm â0 b̂n b̂0
. . .

...
. . .

...

âm b̂n


The determinant of the Sylvester matrix is zero if the polynomials f̂(x) and ĝ(x) have a

common root.

The sequence of subresultant matrices {Sk(f̂(x), ĝ(x)) | k = 1, . . . ,min(m,n)} are

obtained by the removal of a subset of rows and columns from the Sylvester matrix,

S(f̂(x), ĝ(x)) = S1(f̂(x), ĝ(x)). Each subresultant matrix Sk(f̂(x), ĝ(x)) ∈ R(m+n−k+1)×(m+n−2k+2)

is given by removing the last (k− 1) rows and the (k− 1) rightmost columns from each of

the two partitions Tn(f̂(x)) and Tm(ĝ(x)) of S1(f̂(x), ĝ(x)). The kth subresultant matrix

is therefore given by

Sk

(
f̂(x), ĝ(x)

)
=
[
Tn−k

(
f̂(x)

)
Tm−k

(
ĝ(x)

)]
for k = 1, . . . ,min(m,n),

where Tn−k(f̂(x)) ∈ R(m+n−k+1)×(n−k+1) and Tm−k(ĝ(x)) ∈ R(m+n−k+1)×(m−k+1) are

Toeplitz matrices. Two polynomials have a common divisor of degree k if the kth sub-

resultant matrix has a zero determinant, therefore the sequence of subresultant matrices

can be used to determine the degree of the GCD.

36

Singular Value Decomposition of the Sylvester Matrix

Many methods have been devised which make use of the SVD of the Sylvester matrix

S(f̂(x), ĝ(x)). The SVD is useful in the determination of the numerical rank of a matrix.

In this thesis a matrix is described as being numerically rank deficient if it is sufficiently

close to a matrix which is exactly rank deficient, and this is typically indicated by a large

separation between two distinct subsets of singular values obtained by the SVD. This is a

purely heuristic definition.

The discussion found in [36] is sufficient to describe the appeal of the SVD, where

it is stated that “rounding errors and fuzzy data make rank determination a non-trivial

exercise”. Definitions of the SVD are frequently found throughout the literature. Here it

is defined in the context of the Sylvester matrix.

Let f̂(x) and ĝ(x) be polynomials of degree m and n with a common divisor of degree

t, then the Sylvester matrix S(f̂(x), ĝ(x)) ∈ R(m+n)×(m+n) has the SVD S = UΣV T ,

where columns of U given by u1, . . . ,um+n are the left singular vectors, columns of V

given by v1, . . . ,vm+n are the right singular vectors, and the diagonal matrix Σ contains

the ordered singular values of S(f̂(x), ĝ(x))

σ1 ≥ σ2 ≥ · · · ≥ σm+n−t−1 ≥ σm+n−t = σm+n−t+1 = · · · = σm+n = 0.

However, in a floating-point environment, matrices can rarely be defined in terms of their

rank since it is highly unlikely that they have singular values which are exactly equal to

zero. Instead, it is necessary to consider the numerical rank.

Again, the numerical rank is defined in terms of the Sylvester matrix. The Sylvester

matrix is said to have numerical rank (m+ n− t) if

σ1 ≥ · · · ≥ σm+n−t−1 ≥ µ
∥∥∥S(f̂(x), ĝ(x))

∥∥∥
2
≥ σm+n−t ≥ σm+n−t+1 ≥ · · · ≥ σm+n,

where µ is the machine precision. However, this assumes the matrix S(f̂(x), ĝ(x)) is exactly

defined. Suppose the Sylvester matrix S(f(x), g(x)) of inexact polynomials is instead

considered, then the ε-rank is considered. However, this is dependent on knowledge of the

size of the errors in the entries of S(f(x), g(x)).

The Sylvester matrix of exact polynomials f̂(x) and ĝ(x) in row echelon form reveals

the GCD to within a constant factor [42]. This theorem is used by Corless et al. [15],

where the SVD of a Sylvester matrix is used to compute the degree of the AGCD of two

polynomials. Although it is numerically stable, the SVD is computationally inefficient.

Their method computes the GCD of f̂(x) and ĝ(x) of degree m and n by determining the

singular values of the Sylvester matrix S(f̂(x), ĝ(x)), and the numerical rank is used to

determine the degree of the AGCD.

This differs from the work in this thesis, wherein the singular values of the Sylvester

matrix and a set of subresultant matrices {Sk(f̂(x), ĝ(x))} are considered in the deter-

mination of the degree of the GCD. The process of computing a sequence of matrices is

more costly, but often provides better results than the method described above. Several

examples will show that there is often no separation between the numerically zero and

non-zero singular values of S1(f̂(x), ĝ(x)), particularly in the presence of noise.

Chapter 1. Introduction 37

Elias and Zitko [20] similarly determine the degree of the AGCD by computing the

set of minimum singular values {σ̇i | i = 1, . . . ,min(m,n)} and the corresponding singular

vectors {vi | i = 1, . . . ,min(m,n)} for every subresultant matrix in the set {Sk(f̂(x), ĝ(x)) |
k = 1, . . . ,min(m,n) }. The degree t of the AGCD is given by the index of the largest entry

in the set of { σ̇i | i = 1, . . . ,min(m,n) } such that σi ≤ θ for some predefined threshold

value θ. The cofactor polynomials u(x) = f(x)
d(x) and v(x) = g(x)

d(x) are then extracted from

the vector vt.

This method is dependent on the determination of some threshold value θ, but the work

described in this thesis removes the necessity for threshold determination. Instead, this

thesis considers the point of maximal change in a set of values { ρk | k = 1, . . . ,min(m,n) }
to be indicative of the GCD degree, where ρk is a measure of rank of the matrix and may

be obtained by SVD or QR decomposition.

Rank Revealing QR Decomposition

The rank of a matrix can also be determined by a rank revealing QR decomposition. Each

subresultant matrix Sk+1(f̂(x), ĝ(x)) in the sequence of subresultant matrices (where f̂(x)

and ĝ(x) are in the power basis) can be constructed by row and column removals from the

previous matrix Sk(f̂(x), ĝ(x)).

The matrix Q is orthogonal so the rank of the subresultant matrix Sk is equal to the

rank of matrix R. Since R is upper triangular, its diagonal entries can be used in place of

the set of singular values to determine the numerical rank of Sk. Good numerical results

were shown in [9].

The QR decomposition, unlike the SVD, can be updated when rows and columns

are removed, with a quadratic rather than cubic cost. However, this thesis deals with

polynomials in the Bernstein form where the construction of the subresultant matrix

sequence requires row and column multiplication as well as row and column removal.

The QR update function can therefore no longer be applied.

A method of determining the coefficients of a GCD by QR decomposition of a matrix

denoted S∗4 (a modified form of the Sylvester matrix) is given in [77]. A similar method

is used by Corless et al. in their QRGCD method implemented in the SNAP package of

Maple [16].

1.8.2 The Bézoutian Matrix

The Bézoutian matrix is used in the computation of the GCD of two polynomials. If f̂(x)

and ĝ(x) of degrees m and n respectively have a common root at y then

f̂(x)ĝ(y)− f̂(y)ĝ(x)

(x− y)
= 0.

38

The Bézoutian matrix of f̂ and ĝ defined in the power basis is given by

B(f̂ , ĝ) =


c0,0 c0,1 . . . c0,n−1

c1,0 c1,1 . . . c1,n

...
...

...

cn,0 cn,1 . . . cn,n

 , (1.10)

where {ci,j} are the (m × m) coefficients of the bivariate polynomial ĥ(x, y) of degree

(m− 1,m− 1)

ĥ(x, y) =

m−1∑
i2=0

m−1∑
i1=0

ci1,i2x
i1yi2 =

f̂(x)ĝ(y)− f̂(y)ĝ(x)

x− y
.

The determinant of the Bézoutian matrix is the resultant of the two polynomials f̂ and ĝ,

which is zero if and only if they have a common divisor. The degree of the GCD of two

polynomials f̂(x) and ĝ(x) is therefore given by

t = max(m,n)− rank
(
B(f̂ , ĝ)

)
,

that is, t is given by the rank loss of B(f̂ , ĝ).

The coefficients of the common divisor are given by the last non-zero row of entries of

the Bézoutian matrix in row echelon form. The extension of the Bézoutian matrix for the

computation of the GCD of two polynomials in Bernstein form is considered in [7,8] and a

Bézoutian matrix preprocessing operation is described in [74, 75]. The method described

in [74] is used as a comparison for the methods developed in this thesis.

1.8.3 The GCD of Two Polynomials in Bernstein Form

The computation of the GCD of two polynomials is a well established problem, with several

different approaches. However, much less work exists in relation to the computation of

the GCD of two univariate polynomials in Bernstein form.

In [7,8] the Bernstein-Bézoutian matrix is used to compute the GCD of two polynomials

in Bernstein form, with applications in computing the intersections of rational curves.

The Sylvester matrix is also adapted for use in computing the GCD of two polynomials

in Bernstein form [9,10,74].

Given an arbitrary polynomial, the roots will lie in the complex plane. In the Bernstein

basis only the roots in the unit interval are of interest, but a polynomial that arises from an

intersection problem will, in general, have roots in the complex plane. Outside thisinterval,

the Bernstein basis has no advantages with respect to the power basis. Examples in this

thesis will consist of GCD and root finding problems where the specified polynomials roots

both inside and outside the unit interval.

1.8.4 Bivariate Polynomial GCDs

A principal ideal domain is defined as an integral domain where every proper ideal can

be generated by a single element. While the univariate polynomials form a Euclidean

Chapter 1. Introduction 39

domain, the bivariate polynomials do not, since the ideal (x, y) is not principal. However

the bivariate polynomials do form a unique factorisation domain, and the GCD is still

defined.

The computation of the GCD of multivariate polynomials has received much less at-

tention than the univariate problem. Brown’s method for computing the GCD of two

bivariate polynomials with integer coefficients in [12] reduces the multivariate problem

to a simpler domain. The multivariate GCD algorithm requires a set of modular ho-

momorphisms and evaluation homomorphisms. An evaluation homomorphism reduces a

polynomial in Z[x1, . . . , xk] to a problem in Z[x1] by evaluating the polynomial at a set

of points for all other variables [x2, . . . , xk]. The Chinese remainder theorem is used to

determine the GCD in the original problem domain. Extensions of this are the sparse

GCD method due to Zippel [81, 82] and the EZGCD algorithm developed by Moses and

Yun [48].

This thesis is mostly concerned with structured matrix based methods. The singular

value decomposition of the Sylvester matrix is used in the computation of the degree of

the GCD of two bivariate polynomials [15,79,80]. However, an extension of the Sylvester

matrix for use in the computation of the GCD of two bivariate polynomials in Bernstein

form does not seem to appear in the literature. Therefore, this form of Sylvester matrix

will be defined in the later chapters of this thesis.

1.9 Conclusion

This chapter has discussed a set of curve and surface intersection problems and a variety

of methods for their solution. Bézier curve-curve and surface-surface intersections were

shown to reduce to (i) the computation of the roots of a univariate polynomial or (ii) the

factorisation of a bivariate polynomial where polynomials are defined in Bernstein form.

The methods of Gauss and Musser were considered for the polynomial square-free

factorisation problem, and given the square-free factors of a polynomial, the multiple roots

are more easily obtained. These methods have the benefit of preserving the multiplicity

structure of the polynomial roots, and this structure is given by a sequence of GCD

computations. Two main components of Gauss’ and Musser’s algorithms are the set

of polynomial GCD computations and the structured set of polynomial deconvolutions.

Structured matrix based methods are used to solve both problems in the following chapters.

The two-polynomial GCD finding problem has been considered, and a significant por-

tion of this chapter was focused on methods using the Sylvester matrix. The UGCD

method defined in the following chapters will make use of the same structure for the

computation of the GCD of polynomials in Bernstein form.

In the next chapter the Bézier curve and surface patches are defined and some prop-

erties are explored. The relationship between Bernstein polynomial multiplication and

convolution matrices is described such that the computation of polynomial GCDs by ma-

trix methods is more easily defined in Chapter 3.

40

Chapter 2

Curves, Surfaces and Polynomial

Representations

The Bézier curve and Bézier surface patches have been briefly introduced as means of

representing curves and surfaces in CAGD. This section defines the Bézier curve and Bézier

surface representations as well as univariate and bivariate polynomials in Bernstein form.

Some basic arithmetic will be discussed, focusing on univariate and bivariate polynomial

multiplication by matrix based methods. This gives insight into the development of the

Sylvester matrix and subresultant matrices described in the Chapter 3.

Section 2.1 In this section the Bézier curves, triangular Bézier surface patches and rect-

angular Bézier surface patches are defined and some properties of these curves and

surfaces are given. Of more interest to this work are the univariate and bivariate

Bernstein polynomials which define these curves and surfaces.

Section 2.2 The univariate polynomial in Bernstein form and the two bivariate exten-

sions required for the representation of the two forms of the Bézier patch are defined.

The representation of polynomials in matrix and vector form is considered and a

method is described in which a polynomial multiplication, h = fg, can be written

as a matrix vector product, where the matrix and vector contain the coefficients of

f and g respectively. Multiplication in Bernstein form is somewhat more involved

than the equivalent operation for polynomials in the power basis, particularly when

considering the multiplication of bivariate polynomials.

2.1 Bézier Curves and Surfaces

2.1.1 The Bézier Curve

The planar Bézier curve B(t) of degree m is a parametrically defined curve which is

uniquely determined by a set of (m + 1) coordinate pairs, {Pi = (xi, yi) | i = 0, . . . ,m}.
These control points define the shape of the curve which starts and ends at P0 and Pm

respectively. The intermediate control points act as a pull on the direction of the curve,

and these points may or may not be weighted to strengthen or relax this pull. In CAGD

software the control points of a curve or surface can easily be manipulated by a designer

to intuitively alter the shape.

41

42

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

P
0

P
1

P
2

P
3

Figure 2.1: The cubic Bézier curve with control points
P0 = (1, 2), P1 = (2.5, 5), P2 = (6.5, 6) and P3 = (7, 3)

A planar Bézier curve of degree m is defined by

B(t) =

m∑
i=0

PiB
m
i (t), (2.1)

where the set of (m+ 1) basis elements {Bm
i (t) | i = 0, . . . ,m} are given by

Bm
i (t) =

(
m

i

)
(1− t)m−i ti where

m∑
i=0

Bm
i (t) = 1. (2.2)

The curve is defined parametrically and the defining functions x(t) and y(t) are given as

x(t) =

m∑
i=0

xiB
m
i (t) and y(t) =

m∑
i=0

yiB
m
i (t).

The non-planar Bézier curve of degree m is defined in a similar way. Its control points Pi

are coordinates in three-dimensional space, and it is defined by three parametric functions

x(t), y(t) and z(t).

Bézier curves used in CAGD are typically limited to degree three curves, since a cubic

curve is flexible enough to allow the construction of most simple shapes. More intricately

shaped curves can be constructed by stitching cubic Bézier curves together in the form

of splines. A generalization of the Bézier curve is the rational Bézier curve, which can

represent a wider variety of curves, including conics, through the introduction of weights

wi. The rational Bézier curve is given by

B(t) =

∑m
i=0wiPiB

m
i (t)∑m

i=0wiB
m
i (t)

.

It was mentioned in Section 1.2 that a parametric curve as described in (2.1) is rendered

by evaluation at a set of values ti. When rendering a Bézier curve it can be more compu-

tationally efficient to utilise the de Casteljau algorithm (Appendix A.3) for generating a

set of points which have the advantage of being evenly distributed along the curve.

Chapter 2. Curves, Surfaces and Polynomial Representations 43

Properties of Bézier Curves

The properties of Bézier curves are well documented [23, Section 4.2] and the most im-

portant of these properties are now outlined:

End Point Interpolation : A Bézier curve with (m+ 1) control points passes through

the points P0 and Pm.

Convex Hull Property : The entire Bézier curve is contained within its convex hull.

Methods for computing the convex hull can be found in [51, Chapter 3], and the

convex hulls of two curves can be used to compute their intersection.

Degree Elevation : A Bézier curve of degree m can be degree elevated to a curve of

degree (m+ r) for r ∈ Z+.

2.1.2 The Rectangular Tensor-Product Bézier Surface Patch

The rectangular Bézier surface patch whose degree with respect to s and t is given by m1

and m2 is given by

B(s, t) =

m2∑
i2=0

m1∑
i1=0

Pi1,i2B
m1
i1

(s)Bm2
i2

(t),

where

Bm1
i1

(s) =

(
m1

i1

)
(1− s)m1−i1si1 and Bm2

i2
(t) =

(
m2

i2

)
(1− t)m2−i2ti2

are the univariate Bernstein basis functions described in (2.2).

Figure 2.2: A bicubic Bézier surface patch

The surface is defined by the set of (m1 + 1) × (m2 + 1) control points which form a

control mesh for the surface. The points Pi1,i2 are the (m1+1)×(m2+1) three-dimensional

44

control points given by

Pi1,i2 =
[
xi1,i2 , yi1,i2 , zi1,i2

]T
for i1 = 0, . . .m1; i2 = 0, . . . ,m2.

In CAGD the rectangular Bézier surface patch is typically limited to a bicubic patch, where

m1 = 3 and m2 = 3 (as shown in Figure 2.2) and the control points of a bicubic Bézier

patch are given by a two-dimensional array of vectors. Similar to Bézier curves, bicubic

Bézier patches are often stitched together to form more complex shapes and objects.

2.1.3 The Triangular Bézier Surface Patch

An overview of triangular Bézier patches is now given, with its defining basis polynomials

being considered in the next section. A more detailed study of triangular Bézier patches

is given by Farin in [22] and more recently in [23].

The triangular Bézier patch of total degree m is given by the set of
(
m+2

2

)
= (m+1)(m+2)

2

control points Pi1,i2 which form a triangular control net. A point on the surface is given

by the function

S(s, t) =

m∑
i1+i2=0

Pi1,i2B
m
i1,i2(s, t),

where Bm
i1,i2

(s, t) are the basis elements given by

Bm
i1,i2(s, t) =

(
m

i1, i2

)
(1− s− t)m−i1−i2si1ti2 for 0 ≤ i1 + i2 ≤ m

and the trinomial coefficients (
m

i1, i2

)
=

m

i1!i2!(m− i1 − i2)!
(2.3)

generate Pascal’s triangle.

P0,0 P0,1 P0,2 P0,3

P1,0

P1,1

P1,2

P2,0 P2,1

P3,0

Figure 2.3: Control points of a cubic triangular Bézier patch

The three edges of the control net, E1, E2 and E3, are defined by a subset of control

points, where E1 is defined by the set of points {P0,i2 | i2 = 0, . . . ,m }, E2 is defined by

the points {Pi1,0 | i1 = 0, . . . ,m } and E3 is defined by the points {Pi1,i2 | i1 + i2 = m }.

Chapter 2. Curves, Surfaces and Polynomial Representations 45

All three of these edges are Bézier curves of degree m.

2.2 The Bernstein Polynomial Representation

Section 2.1 introduced the Bézier curve, the rectangular Bézier surface patch and the tri-

angular Bézier surface patch. These curves and surfaces are parametric representations

and their defining parametric equations are polynomials in Bernstein form. Basic arith-

metic of univariate polynomials in Bernstein form can be found in [29] and extensions to

bivariate polynomials are found in [4].

This section introduces the Bernstein polynomial representation for univariate and

bivariate polynomials. The bivariate polynomial in Bernstein form has two distinct forms,

which are described in Sections 2.2.2 and 2.2.3 respectively.

2.2.1 The Univariate Polynomial in Bernstein Form

In Section 2.1.1 the Bézier curve was introduced, and was defined by a set of control points

whose coordinates are the coefficients of two univariate polynomials in Bernstein form. A

univariate polynomial in Bernstein form f̂(x) of degree m is given by

f̂(x) =

m∑
i=0

âiB
m
i (x) =

m∑
i=0

âi

(
m

i

)
(1− x)m−ixi. (2.4)

The polynomial f̂(x) is said to be in scaled Bernstein form when the binomial coefficient(
m
i

)
is included with the polynomial coefficient âi, that is, f̂(x) in scaled Bernstein form

is given by

f̂(x) =

m∑
i=0

[
âi

(
m

i

)] (
(1− x)m−ixi

)
. (2.5)

Properties of the Bernstein Basis Functions

Properties of the Bernstein basis functions are described by Farouki in [27], and as with

the properties of the Bézier curve, a subset of key properties associated with this thesis

are now described:

Non-Negative : The Bernstein basis functions Bm
i (t) are non-negative over the interval

[0, 1], that is, Bm
i (t) ≥ 0 for i = 0, . . . ,m, t ∈ [0, 1].

Partition of Unity : For any value t in the interval [0, 1], the sum of the set of Bernstein

basis functions Bm
i (t) for i = 0, . . . ,m is equal to one, that is,

m∑
i=0

Bm
i (t) = 1 for t ∈ [0, 1].

Symmetry : The Bernstein basis functions are symmetric, that is,

Bm
i (t) = Bm

m−i(1− t) t ∈ [0, 1].

46

Degree Elevation : In Chapter 7 the degree elevation of univariate and bivariate poly-

nomials will be considered in the computation of the degree of a bivariate GCD. A

simple method of degree elevation is described in Appendix A.1.

Vector Representation and Polynomial Multiplication

The coefficients of a polynomial f̂(x) of degree m can be arranged as a coefficient vector

f̂ ∈ Rm+1. In this thesis the coefficients of a polynomial are ordered in ascending power,

i.e. the coefficient âi corresponding to basis element Bm
i (x) precedes âi+1 in the coefficient

vector. The vector of coefficients of the polynomial f̂(x) as described in (2.4) is given by

f̂ =
[
â0, â1, . . . , âm

]T
(2.6)

and the vector of coefficients of the polynomial f̂(x) in scaled Bernstein form in (2.5) is

given by

f̂bi =
[
â0

(
m
0

)
, â1

(
m
1

)
, . . . , âm

(
m
m

)]T
.

Algorithms for arithmetic operations on polynomials in the Bernstein basis are found

in [29]. The work in this thesis requires the multiplication of polynomials in Bernstein

form, and the method required is quite different from that required for the multiplication

of polynomials in the power basis.

The product of two polynomials f̂(x) and ĝ(x) of degrees m and n respectively with

basis elements {Bm
i (x) | i = 0, . . . ,m } and {Bn

i (x) | i = 0, . . . , n } is a polynomial ĥ(x)

of degree (m + n) with basis elements {Bm+n
i (x) | i = 0, . . . ,m + n }. The polynomial

f̂(x) is defined in (2.4) and ĝ(x) is given by

ĝ(x) =
n∑
i=0

b̂i

(
n

i

)
(1− x)n−ixi.

The product ĥ(x) in terms of the coefficients of f̂(x) and ĝ(x) is given by

ĥ(x) =
n∑
j=0

m∑
i=0

âib̂j

(
m

i

)(
n

j

)
(1− x)m+n−i−jxi+j , (2.7)

which is ‘almost’ in Bernstein form, and multiplying each term in the summation in (2.7)

by
(m+n
i+j)

(m+n
i+j)

yields a polynomial in Bernstein form given by

ĥ(x) =

m∑
i=0

n∑
j=0

âib̂j

(
m+n
i+j

)(
m+n
i+j

)(m
i

)(
n

j

)
(1− x)m+n−i−jxi+j

=

m∑
i=0

n∑
j=0

âib̂j

(
m
i

)(
n
j

)(
m+n
i+j

) Bm+n
i+j (x).

Chapter 2. Curves, Surfaces and Polynomial Representations 47

The coefficients of ĥ(x) are computed by the matrix-vector multiplication

ĥ = Cn

(
f̂(x)

)
ĝ

ĥ =
(
D−1
m+nTn

(
f̂(x)

)
Qn

)
ĝ, (2.8)

where Cn(f̂(x)) is the nth order convolution matrix of the polynomial f̂(x) in Bernstein

form given by

Cn

(
f̂(x)

)
=
(
D−1
m+nTn

(
f̂(x)

)
Qn

)
. (2.9)

This convolution matrix is the product of three matrices D−1
m+n, Tn(f̂(x)) and Qn, where

the diagonal matrix D−1
m+n ∈ R(m+n+1)×(m+n+1) is given by

D−1
m+n = diag

[
1

(m+n
0)

, 1

(m+n
1)

, . . . , 1

(m+n
m+n)

]
, (2.10)

the Toeplitz matrix Tn(f̂(x)) ∈ R(m+n+1)×(n+1) consists of the coefficients of the polyno-

mial f̂(x) in scaled Bernstein form as defined in (2.5) and is given by

Tn

(
f̂(x)

)
=



â0

(
m
0

)
â1

(
m
1

)
â0

(
m
0

)
... â1

(
m
1

) . . .

...
...

. . . â0

(
m
0

)
âm
(
m
m

) ... â1

(
m
1

)
âm
(
m
m

) ...

. . .
...

âm
(
m
m

)



, (2.11)

and the diagonal matrix Qn ∈ R(n+1)×(n+1) is given by

Qn = diag
[(

n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)]
. (2.12)

The vector ĝ ∈ Rn+1 in (2.8) is a column vector containing the coefficients of the polyno-

mial ĝ(x) and is given by

ĝ =
[
b̂0, b̂1, . . . , b̂n

]T
∈ Rn+1.

Note that the product of the diagonal matrix Qn and the vector ĝ is equal to a vector

of coefficients in scaled Bernstein form as described in Section 2.2.1, but in this thesis the

binomial coefficients are deliberately separated into the matrix Qn.

The multiplication of two polynomials is commutative, that is, f̂(x)ĝ(x) = ĥ(x) and

ĝ(x)f̂(x) = ĥ(x), so the matrix-vector product can be written as either

D−1
m+nTn

(
f̂(x)

)
Qnĝ = ĥ or D−1

m+nTm

(
ĝ(x)

)
Qmf̂ = ĥ,

48

where Tm (ĝ(x)) ∈ R(m+n+1)×(m+1) is a Toeplitz matrix of the coefficients of ĝ(x) in scaled

Bernstein form, similar to (2.11), and Qm ∈ R(m+1)×(m+1) is similar to (2.12).

Example 2.2.1. Consider the polynomial f̂(x) of degreem = 2 which is given in Bernstein

form as

f̂(x) = 7B2
0(x) + 9.5B2

1(x) + 15B2
2(x),

and the polynomial ĝ(x) of degree n = 1 which is given in Bernstein from as

ĝ(x) = 1B1
0(x) + 3B1

1(x).

The product ĥ(x) of degree m+ n = 3 is given by the matrix-vector product

1

(3
0)

1

(3
1)

1

(3
2)

1

(3
3)




7
(

2
0

)
0

9.5
(

2
1

)
7
(

2
0

)
15
(

2
2

)
9.5
(

2
1

)
0 15

(
2
2

)


[(

1
0

) (
1
1

)] [1

3

]
=


7

40/3

24

45

 .

The resulting vector contains the coefficients of the polynomial ĥ(x) which is given by

ĥ(x) = 7B3
0(x) +

40

3
B3

1(x) + 24B3
2(x) + 45B3

3(x).

The multiplication of polynomials in Bernstein form is required in Section 3.1, where

it will be shown that the Sylvester subresultant matrix Sk(f̂(x), ĝ(x)) of two polynomials

f̂(x) and ĝ(x) is a matrix consisting of two convolution matrices. The Sylvester matrix

and the sequence of subresultant matrices will be utilized in the computation of the degree

and coefficients of the GCD of two polynomials.

Division

Polynomial division follows from its inverse operation multiplication, and is briefly de-

scribed here. In the problems described in this thesis, it is assumed that the polynomials

found in the division problems divide exactly with zero remainder, or, are inexact forms

of exact polynomials which divide with zero remainder. Given two polynomials f̂(x)

and ĝ(x) of degrees m and n respectively, the equation f̂(x)
ĝ(x) = ĥ(x) can be written as

ĝ(x)ĥ(x) = f̂(x), where ĥ(x) is unknown. This can be written as the linear system

Cm−n (ĝ(x)) ĥ = f̂(
D−1
m Tm−n (ĝ(x))Qm−n

)
ĥ = f̂

which is solved for ĥ by simple least squares. As with univariate polynomial multiplica-

tion, the convolution matrix Cm−n (ĝ(x)) is the product of three matrices and is given by

Cm−n (ĝ(x)) = D−1
m Tm−n (ĝ(x))Qm−n, where the component matrices D−1

m , Tm−n (ĝ(x))

and Qm−n are of the same structure as the matrices defined in (2.10), (2.11) and (2.12)

respectively.

Chapter 2. Curves, Surfaces and Polynomial Representations 49

2.2.2 The Bivariate Bernstein Polynomial over a Rectangular Domain

In Section 2.1.2 the rectangular Bézier patch was introduced, and the defining parametric

equations for this patch are given by bivariate Bernstein polynomials over a rectangular

domain. The bivariate polynomial f̂(x, y) in Bernstein form of degree (m1,m2) is given

by

f̂(x, y) =

m1∑
i1=0

m2∑
i2=0

âi1,i2B
m1
i1

(x)Bm2
i2

(y)

=

m1∑
i1=0

m2∑
i2=0

âi1,i2

(
m1

i1

)(
m2

i2

)
(1− x)m1−i1xi1(1− y)m2−i2yi2 . (2.13)

The bracketed pair (m1,m2) describes the degree structure of a bivariate polynomial,

where degx(f̂(x, y)) = m1 and degy(f̂(x, y)) = m2. This notation is used throughout the

remainder of this thesis and can be extended to describe the degree structure of any n

variate polynomial with the vector
[
m1, m2, . . . , mn

]
containing the degree of the

polynomial with respect to each of the n variables.

As with the univariate polynomial, the bivariate polynomial can be expressed in scaled

Bernstein form which is given by

f̂(x, y) =

m1∑
i1=0

m2∑
i2=0

[
âi1,i2

(
m1

i1

)(
m2

i2

)]
(1− x)m1−i1xi1(1− y)m2−i2xi2 ,

where the set { âi1,i2
(
m1

i1

)(
m2

i2

)
| i1 = 0, . . . ,m1; i2 = 0, . . . ,m2 } contains the (m1 + 1) ×

(m2 + 1) coefficients of the polynomial in scaled Bernstein form. The polynomial f̂(x, y)

can also be written as the product of a coefficient matrix and two vectors of basis elements

and is given by

f̂(x, y) =
[
Bm1

0 (x), . . . , Bm1
m1

(x)
]

â0,0 . . . â0,m2

...
. . .

...

âm1,0 . . . âm1,m2



Bm2

0 (y)
...

Bm2
m2

(y)

 . (2.14)

Vector Representation and Multiplication by a Matrix Method

As with univariate polynomials, it is necessary to define a vector representation of the

bivariate polynomial in Bernstein form. The polynomial f̂(x, y) can be considered as a

polynomial in y whose coefficients are polynomials in x, that is, the (m2 + 1) coefficients

are given by the set { f̂j(x) | j = 0, . . . ,m2 } and f̂(x, y) is given by

f̂(x, y) =
(
f̂0(x)×Bm2

0 (y)
)

+
(
f̂1(x)×Bm2

1 (y)
)

+ · · ·+
(
f̂m2(x)×Bm2

m2
(y)
)
, (2.15)

where each of the univariate polynomials in the set { f̂j(x) | j = 0, . . . ,m2 } is given by

f̂j(x) =

m1∑
i=0

âi,jB
m1
i (x), j = 0, . . . ,m2

50

and the coefficients of each polynomial f̂j(x) form the (j + 1)th column of the coefficient

matrix in (2.14).

The coefficients of the bivariate Bernstein polynomial f̂(x, y) are arranged to form the

vector f̂ ∈ R(m1+1)(m2+1)×1 as follows:

f̂ =
[

f̂0, f̂1, . . . , f̂m2

]T
,

where each of the vectors f̂j ∈ Rm1+1 for j = 0, . . . ,m2 contain the coefficients of the

polynomial f̂j(x) and are given by

f̂j =
[
â0,j , â1,j , . . . , âm1,j

]T
.

An alternative ordering of the coefficients is given by considering f̂(x, y) as a polynomial

in the primary variable x whose (m1 + 1) coefficients are polynomials in the secondary

variable y, but for the remainder of this work it can be assumed that the first ordering is

used.

Having defined a system for ordering the coefficients of the bivariate polynomial in

Bernstein form, the multiplication of two bivariate polynomials f̂(x, y) and ĝ(x, y) is now

considered. Let the bivariate polynomial f̂(x, y) with degree structure (m1,m2) be as

defined in (2.13) and let ĝ(x, y) with degree structure (n1, n2) be given by

ĝ(x, y) =

n2∑
i2=0

n1∑
i1=0

b̂i,jB
n1
i1

(x)Bn2
i2

(y).

The polynomial ĝ(x, y) can be thought of as a polynomial in y whose (n2 + 1) coefficients

are each polynomials in x, each of degree n1, such that ĝ(x, y) is given by

ĝ(x, y) = ĝ0(x)Bn2
0 (y) + ĝ1(x)Bn2

1 (y) + · · ·+ ĝn2(x)Bn2
n2

(y),

where

ĝj(x) =

n1∑
i1=0

b̂i1,jB
n1
i1

(x) for j = 0, . . . , n2.

The product of f̂(x, y) and ĝ(x, y) is given by ĥ(x, y)

ĥ(x, y) =

m2+n2∑
i2=0

m1+n1∑
i1=0

ĉi,jB
m1+n1
i1

(x)Bm2+n2
i2

(y).

The polynomial ĥ(x, y) is considered as a polynomial in y of degree (m2 + n2), where

the set of coefficients { ĥi(x) | i = 0, . . . ,m2 + n2 } are polynomials in x, each of degree

(m1 + n1)

ĥ(x, y) = ĥ0(x)Bm2+n2
0 (y) + ĥ1(x)Bm2+n2

1 (y) + · · ·+ ĥm2+n2(x)Bm2+n2
m2+n2

(y).

Alternatively, expressed in terms of the set of polynomials { f̂i(x) | i = 0, . . . ,m2 } and

Chapter 2. Curves, Surfaces and Polynomial Representations 51

{ ĝj(x) | j = 0, . . . , n2 }, ĥ(x, y) is given by

ĥ(x, y) = f̂0(x)ĝ0(x)Bm2
0 (y)Bn2

0 (y) +
(
f̂0(x)ĝ1(x)Bm2

0 (y)Bn2
1 (y) + f̂1(x)ĝ0(x)Bm2

1 (y)Bn2
0 (y)

)
+
(
f̂2(x)ĝ0(x)Bm2

2 (y)Bn2
0 (y) + f̂1(x)ĝ1(x)Bm2

1 (y)Bn2
1 (y) + f̂0(x)ĝ2(x)Bm2

0 (y)Bn2
2 (y)

)
+ · · ·+

(
f̂m2

(x)ĝn2
(x)Bm2

m2
(y)Bn2

n2
(y)
)

(2.16)

and a general product from the summation (2.16) above is given by

f̂s(x)ĝt(x)Bm2
s (y)Bn2

t (y) = (Bm2
s (y)Bn2

t (y)) f̂s(x)ĝt(x)

=

(
m2

s

)(
n2

t

)(
m2+n2

s+t

) Bm2+n2
s+t (y)f̂s(x)ĝt(x).

The expression (2.16) can be rewritten as

ĥ(x, y) = Bm2+n2
0 (y)

(
f̂0(x)ĝ0(x)

(
m2

0

)(
n2

0

)(
m2+n2

0

))

+Bm2+n2
1 (y)

(
f̂0(x)ĝ1(x)

(
m2

0

)(
n2

1

)(
m2+n2

1

) + f̂1(x)ĝ0(x)

(
m2

1

)(
n2

0

)(
m2+n2

1

))

+Bm2+n2
2 (y)

(
f̂2(x)ĝ0(x)

(
m2

2

)(
n2

0

)(
m2+n2

2

) + f̂1(x)ĝ1(x)

(
m2

1

)(
n2

1

)(
m2+n2

2

) + f̂0(x)ĝ2(x)

(
m2

0

)(
n2

2

)(
m2+n2

2

))

+ · · ·+Bm2+n2
m2+n2

(y)

(
f̂m2

(x)ĝn2
(x)

(
m2

m2

)(
n2

n2

)(
m2+n2

m2+n2

)) , (2.17)

which can be written as a matrix-vector product

ĥ = Cn1,n2

(
f̂(x, y)

)
ĝ

ĥ =
(
D−1
m1+n1,m2+n2

Tn1,n2

(
f̂(x, y)

)
Qn1,n2

)
ĝ, (2.18)

where the matrix Cn1,n2(f̂(x, y)) has the dimensions (m1 + n1 + 1)(m2 + n2 + 1)× (n1 +

1)(n2 + 1) and is the convolution matrix for two bivariate polynomials in Bernstein form

defined in the rectangular domain. The partitioned structure of Cn1,n2(f̂(x, y)) is given

by 

Cn1(f̂0(x))(m2
0)(n2

0)
(m2+n2

0)
Cn1(f̂1(x))(m2

1)(n2
0)

(m2+n2
1)

Cn1(f̂0(x))(m2
0)(n2

1)
(m2+n2

1)
...

Cn1(f̂1(x))(m2
1)(n2

1)
(m2+n2

3)

. . .

...
...

. . .
Cn1(f̂0(x))(m2

0)(n2
n2

)
(m2+n2

n2
)

Cn1(f̂m2 (x))(
m2
m2

)(n2
0)

(m2+n2
m2

)

...
Cn1(f̂1(x))(m2

1)(n2
n2

)
(m2+n2
n2+1)

Cn1(f̂m2
(x))(m2

m2
)(n2

1)
(m2+n2
m2+1)

...

. . .
...

Cn1(f̂m2 (x))(
m2
m2

)(n2
n2

)
(m2+n2
m2+n2

)



. (2.19)

In (2.15) the bivariate polynomial f̂(x, y) was defined as a polynomial in y whose coeffi-

52

cients were polynomials in x which were denoted f̂i(x). The matrix (2.19) has a partitioned

structure and each matrix of the form Cn1(f̂j(x)) is the convolution matrix of a univariate

polynomial f̂j(x) expressed in Bernstein form, multiplied by a polynomial of degree n1.

These matrices have dimensions (m1 + n1 + 1)× (n1 + 1) and have the same structure as

the univariate convolution matrix which is defined in (2.9).

The matrix (2.19) can also be thought of as the product of three matrices, D−1
m1+n1,m2+n2

,

Tn1,n2(f̂(x, y)) andQn1,n2 , which are now described. The block diagonal matrixD−1
m1+n1,m2+n2

of order (m1 + n1 + 1)(m2 + n2 + 1) is given by

D−1
m1+n1,m2+n2

= diag

[
1

(m2+n2
0)

D−1
m1+n1

, 1

(m2+n2
1)

D−1
m1+n1

, . . . , 1

(m2+n2
m2+n2

)
D−1
m1+n1

]
,

where the diagonal matrix D−1
m1+n1

is given by (2.10). The matrix Tn1,n2(f̂(x, y)) is the

Toeplitz matrix Tn1,n2(f̂(x, y)) of a bivariate polynomial f̂(x, y) and is given by

Tn1

(
f̂0(x)

) (
m2

0

)
Tn1

(
f̂1(x)

) (
m2

1

)
Tn1

(
f̂0(x)

) (
m2

0

)
... Tn1

(
f̂1(x)

) (
m2

1

) . . .

...
...

. . . Tn1

(
f̂0(x)

) (
m2

0

)
Tn1

(
f̂m2

(x)
) (

m2

m2

) ... Tn1

(
f̂1(x)

) (
m2

1

)
Tn1

(
f̂m2

(x)
) (

m2

m2

) ...

. . .
...

Tn1

(
f̂m2

(x)
) (

m2

m2

)



, (2.20)

where each matrix Tn1(f̂i(x)) is a Toeplitz matrix of the same structure as (2.11).

The block diagonal matrix Qn1,n2 ∈ R(n1+1)×(n2+1) of order (n1 + 1)(n2 + 1) is given by

Qn1,n2 = diag
[
Qn1

(
n2

0

)
, Qn1

(
n2

1

)
, . . . , Qn1

(
n2

n2

)]
,

where each matrix Qn1 is of the same structure as (2.12).

The vectors ĝ and ĥ in (2.18) are vectors of the coefficients of the bivariate polynomials

ĝ(x, y) and ĥ(x, y) and these vectors follow the format described in Section 2.2.2. The

vector ĝ is given by

ĝ =
[

ĝ0, ĝ1, . . . , ĝn2

]T
∈ R(n2+1)(n1+1)×1,

where each vector ĝi contains the coefficients of the polynomial ĝi(x) of degree n1 and is

given by

ĝi =
[
b̂0,j , b̂1,j . . . , b̂n1,j

]T
∈ Rn1+1.

The vector ĥ is given by

ĥ =
[

ĥ0, ĥ1, . . . , ĥm2+n2

]T
∈ R(m2+1)(m1+1)×1,

Chapter 2. Curves, Surfaces and Polynomial Representations 53

where each vector ĥi contains the coefficients of the polynomial ĥi(x) of degree (m1 + n1)

ĥi =
[
ĉ0,i, ĉ1,i, . . . , ĉm1+n1,i

]T
∈ Rm1+n1+1.

Example 2.2.2. Consider the exact polynomial f̂(x, y) with degree structure (2, 2) which

is given by

f̂(x, y) = 7B2
0(x)B2

0(y) + 4B2
1(x)B2

0(y) + 1B2
0(x)B2

1(y) + 6B2
2(x)B2

0(y)

+ 5B2
1(x)B2

1(y) + 2B2
0(x)B2

2(y) + 3B2
2(x)B2

1(y) + 8B2
1(x)B2

2(y)

+ 5B2
1(x)B2

1(y)

=
[
B2

0(x) B2
1(x) B2

2(x)
] 7 1 2

4 5 8

6 3 9


 B2

0(y)

B2
1(y)

B2
2(y)


and the polynomial ĝ(x, y) with relative degree structure (n1, n2) = (1, 1) which is given

as

ĝ(x, y) = 2B1
0(x)B1

0(y) + 3B1
1(x)B1

0(y) + 4B1
0(x)B1

1(y) + 7B1
1(x)B1

1(y)

=
[
B1

0(x) B1
1(x)

] [2 4

3 7

][
B1

0(y)

B1
1(y)

]
.

The polynomial f̂(x, y) can be thought of as a combination of the three polynomials f̂0(x),

f̂1(x) and f̂2(x) and is given by

f̂(x, y) = B2
0(y)f̂0(x) +B2

1(y)f̂1(x) +B2
2(y)f̂2(x),

where

f̂0(x) = 7B2
0(x) + 4B2

1(x) + 6B2
2(x),

f̂1(x) = 1B2
0(x) + 5B2

1(x) + 3B2
2(x),

f̂2(x) = 2B2
0(x) + 8B2

1(x) + 9B2
2(x).

The polynomial ĝ(x, y) is the combination of polynomials ĝ0(x) and ĝ1(x)

ĝ(x, y) = ĝ0(x)B1
0(y) + ĝ1(x)B1

1(y),

where

ĝ0(x) = 2B1
0(x) + 3B1

1(x),

ĝ1(x) = 4B1
0(x) + 7B1

1(x).

The product ĥ(x, y) is a polynomial of degree (3, 3) and is the sum of four polynomials

ĥ0(x), . . . , ĥ3(x). The coefficients of ĥ(x, y) are computed by the matrix-vector multipli-

54

cation

Cn1,n2

(
f̂(x, y)

)
ĝ = ĥ

C1(f̂0(x))(2
0)(

1
0)

(3
0)

C1(f̂1(x))(2
1)(

1
0)

(3
1)

C1(f̂0(x))(2
0)(

1
1)

(3
1)

C1(f̂2(x))(2
2)(

1
0)

(3
2)

C1(f̂1(x))(2
1)(

1
1)

(3
2)

C1(f̂2(x))(2
2)(

2
2)

(3
3)


[

ĝ0

ĝ1

]
=


ĥ0

ĥ1

ĥ2

ĥ3

 . (2.21)

The convolution matrix C1,1(f̂(x, y)) is given by



7
(2
0)(

1
0)(

2
0)(

1
0)

(3
0)(

3
0)

4
(2
1)(

1
0)(

2
0)(

1
0)

(3
1)(

3
0)

7
(2
0)(

1
1)(

2
0)(

1
0)

(3
1)(

3
0)

6
(2
2)(

1
0)(

2
0)(

1
0)

(3
2)(

3
0)

4
(2
1)(

1
1)(

2
0)(

1
0)

(3
2)(

3
0)

6
(2
2)(

1
1)(

2
0)(

1
0)

(3
3)(

3
0)

1
(2
0)(

1
0)(

2
1)(

1
0)

(3
0)(

3
1)

7
(2
0)(

1
0)(

2
0)(

1
1)

(3
0)(

3
1)

5
(2
1)(

1
0)(

2
1)(

1
0)

(3
1)(

3
1)

1
(2
0)(

1
1)(

2
1)(

1
0)

(3
1)(

3
1)

4
(2
1)(

1
0)(

2
0)(

1
1)

(3
1)(

3
1)

7
(2
0)(

1
1)(

2
0)(

1
1)

(3
1)(

3
1)

3
(2
2)(

1
0)(

2
1)(

1
0)

(3
2)(

3
1)

5
(2
1)(

1
1)(

2
1)(

1
0)

(3
2)(

3
1)

6
(2
2)(

1
0)(

2
0)(

1
1)

(3
2)(

3
1)

4
(2
1)(

1
1)(

2
0)(

1
1)

(3
2)(

3
1)

3
(2
2)(

1
1)(

2
1)(

1
0)

(3
3)(

3
1)

6
(2
2)(

1
1)(

2
0)(

1
1)

(3
3)(

3
1)

2
(2
0)(

1
0)(

2
2)(

1
0)

(3
0)(

3
2)

1
(2
0)(

1
0)(

2
1)(

1
0)

(3
0)(

3
2)

8
(2
1)(

1
0)(

2
2)(

1
0)

(3
1)(

3
2)

2
(2
0)(

1
1)(

2
2)(

1
0)

(3
1)(

3
2)

5
(2
1)(

1
0)(

2
1)(

1
1)

(3
1)(

3
2)

1
(2
0)(

1
1)(

2
1)(

1
1)

(3
1)(

3
2)

9
(2
2)(

1
0)(

2
2)(

1
0)

(3
2)(

3
2)

8
(2
1)(

1
1)(

2
2)(

1
0)

(3
2)(

3
2)

3
(2
2)(

1
0)(

2
1)(

1
1)

(3
2)(

3
2)

5
(2
1)(

1
1)(

2
1)(

1
1)

(3
2)(

3
2)

9
(2
2)(

1
1)(

2
2)(

1
0)

(3
3)(

3
2)

3
(2
2)(

1
1)(

2
1)(

1
1)

(3
3)(

3
2)

2
(2
0)(

1
0)(

2
2)(

1
1)

(3
0)(

3
3)

8
(2
1)(

1
0)(

2
2)(

1
1)

(3
1)(

3
3)

2
(2
0)(

1
1)(

2
2)(

1
1)

(3
1)(

3
3)

9
(2
2)(

1
0)(

2
2)(

1
1)

(3
2)(

3
3)

8
(2
1)(

1
1)(

2
2)(

1
1)

(3
2)(

3
3)

0 9
(2
2)(

1
1)(

2
2)(

1
1)

(3
3)(

3
3)



,

where the constant terms are the coefficients of the polynomial f̂(x, y). Vectors ĝ and ĥ

in (2.21) are given by

ĝ =
[

ĝ0, ĝ1

]T
=
[

2 3 4 7
]T

ĥ =
[

14 121
8 12 18 102

3 141
9 168

9 20 4 142
3 255

9 23 8 26 491
3 63

]T
.

Chapter 2. Curves, Surfaces and Polynomial Representations 55

The polynomial ĥ(x, y) is therefore given by

[
B3

0(x), B3
1(x), B3

2(x), B3
3(x)

]


14 102
3 4 8

121
8 141

9 142
3 26

12 168
9 255

9 491
3

18 20 23 63



B3

0(y)

B3
1(y)

B3
2(y)

B3
3(y)

 .

�

2.2.3 The Bivariate Bernstein Polynomial over the Triangular Domain

In Section 2.1.3 the triangular Bézier surface patch was introduced and the defining para-

metric equations are bivariate polynomials over the triangular domain. The bivariate

polynomial over the triangular domain f̂(x, y) of total degree m is given by

f̂(x, y) =

m∑
i1+i2=0

âi1,i2B
m
i1,i2(x, y)

=

m∑
i1+i2=0

âi1,i2

(
m

i1, i2

)
(1− x− y)m−i1−i2xi1yi2 , (2.22)

where the term
(
m
i1,i2

)
is defined in (2.3). The bivariate polynomial in Bernstein form has(

m+2
2

)
coefficients and is quite different from the bivariate polynomial over a rectangular

domain defined in (2.13). The polynomial f̂(x, y) can be considered as the sum of the set

of polynomials { f̂i(x, y) | i = 0, . . . ,m } and is given by

f̂(x, y) = f̂0(x, y) + f̂1(x, y) + · · ·+ f̂m(x, y),

where each polynomial in the set { f̂k(x, y) | k = 1, . . . ,m } is given by

f̂k(x, y) =

k∑
j=0

âk−j,j

(
m

k − j, j

)
(1− x− y)m−kxk−jyj . (2.23)

Vector Representation and Multiplication

In Section 2.2.2 the vector representation and multiplication of bivariate polynomials over

a rectangular domain was considered, and now the representation and multiplication of

bivariate polynomials over a triangular domain is described.

The vector representation f̂ ∈ R(m+2
2) of the polynomial f̂(x, y) is a column vector

given by

f̂ =
[

f̂0, f̂1, . . . , f̂m

]T
,

where each vector f̂k ∈ Rk+1 from the set of vectors { f̂k | k = 0, . . . ,m } contains the

coefficients of f̂k(x, y) seen in (2.23) and is given by

f̂k =
[
âk,0, âk−1,1, . . . , â0,k

]T
. (2.24)

56

Consider the bivariate polynomials f̂(x, y) and ĝ(x, y) in Bernstein form over the triangular

domain, of total degrees m and n respectively. The polynomial f̂(x, y) is defined in (2.22)

and ĝ(x, y) is given by

ĝ(x, y) =

n∑
i+j=0

b̂i,jB
n
i,j(x, y).

The polynomials f̂(x, y) and ĝ(x, y) can be thought of as the sums of the sets of polynomials

{ f̂j(x, y) | j = 0, . . . ,m } and { ĝj(x, y) | j = 0, . . . , n } respectively, where f̂j(x, y) is

defined in (2.23) and the polynomials ĝj(x, y) are given by

ĝj(x, y) =

j∑
i=0

b̂i,j−iB
n
i,j−i(x, y)

such that

ĝ(x, y) = ĝ0(x, y) + ĝ1(x, y) + · · ·+ ĝn−1(x, y) + ĝn(x, y).

The product ĥ(x, y) = f̂(x, y)ĝ(x, y) of degree (m+ n) is given by

ĥ(x, y) =
m∑

i+j=0

ĉi,j

(
m+ n

i, j

)
(1− x− y)m+n−i−jxiyj

and ĥ(x, y) can be thought of as the sum of polynomials { ĥj(x, y) | j = 0, . . . ,m + n },
where

ĥj(x, y) =

j∑
i=0

ĉi,j−i

(
m+ n

i, j − i

)
(1− x− y)m−jxiyj−i.

Expressed as a product of f̂(x, y) and ĝ(x, y), ĥ(x, y) is given as

ĥ(x, y) =
(
f̂0(x, y)ĝ0(x, y)

)
+
(
f̂0(x, y)ĝ1(x, y) + f̂1(x, y)ĝ0(x, y)

)
+
(
f̂2(x, y)ĝ0(x, y) + f̂1(x, y)ĝ1(x, y) + f̂0(x, y)ĝ2(x, y)

)
+ . . .

· · ·+
(
f̂m(x, y)ĝn(x, y)

)
, (2.25)

where one of the products of the form f̂s(x, y)ĝt(x, y) in the summation in (2.25) is given

by

=

s∑
i=0

t∑
j=0

âi,s−ib̂j,t−j

(
m

i, s− i

)(
n

j, t− j

)
xi+jys+t−i−j(1− x− y)m+n−s−t

=

s∑
i=0

t∑
j=0

âi,s−ib̂j,t−j

(
m

i,s−i
)(

n
j,t−j

)(
m+n

i+j,s+t−i−j
)(m+ n

i+ j, s+ t− i− j

)
xi+jys+t−i−j(1− x− y)m+n−s−t

=

s∑
i=0

t∑
j=0

âi,s−ib̂j,t−j
(
m

i,s−i
)(

n
j,t−j

)(
m+n

i+j,s+t−i−j
) Bs+ti+j,s+t−i−j(x, y). (2.26)

Chapter 2. Curves, Surfaces and Polynomial Representations 57

The expression (2.26) can be written as the matrix-vector product

Ċt

(
f̂s(x, y)

)
ĝt or

(
Ḋ−1
m+n,s+tṪt

(
f̂s(x, y)

)
Q̇n,t

)
ĝt. (2.27)

The matrix Ċt(f̂s(x, y)) is the convolution matrix of a polynomial f̂s(x, y) multiplied by

ĝt(x, y) and is the product of three matrices Ḋ−1
m+n,s+t , Tt(f̂s(x, y)) and Q̇n,t. The diagonal

matrix Ḋ−1
m+n,s+t ∈ R(s+t+1)×(s+t+1) is given by

Ḋ−1
m+n,s+t = diag

[
1

(m+n
0,s+t)

, 1

(m+n
1,s+t−1)

, . . . , 1

(m+n
s+t,0)

]
, (2.28)

the Toeplitz matrix Ṫt(f̂s(x, y)) ∈ R(s+t+1)×(t+1) is given by

âs,0
(
m
s,0

)
âs−1,1

(
m

s−1,1
)

âs,0
(
m
s,0

)
... âs−1,1

(
m

s−1,1
) . . .

...
...

. . . âs,0
(
m
s,0

)
â1,s−1

(
m

1,s−1
) ... âs−1,1

(
m

s−1,1
)

â0,s
(
m
0,s

)
â1,s−1

(
m

1,s−1
) ...

â0,s
(
m
0,s

) . . .
...

. . . â1,s−1
(

m
1,s−1

)
â0,s

(
m
0,s

)



, (2.29)

and the diagonal matrix Q̇n,t ∈ Rt+1 is given by

Q̇n,t = diag
[(

n
t,0

)
,
(

n
t−1,1

)
, . . . ,

(
n
0,t

)]
∈ R(t+1)×(t+1). (2.30)

The vector ĝt ∈ Rt+1 in (2.27) has the same structure as the vector of the coefficients of

f̂(x, y) defined in Equation (2.24) and is given by

ĝt =
[
b̂0,t, b̂1,t−1, . . . , b̂t,0

]T
. (2.31)

The entire expression (2.25) can be written as the matrix-vector product

Cn

(
f̂(x, y)

)
ĝ = ĥ, (2.32)

58

where the bivariate convolution matrix Cn(f̂(x, y)) is given by

Cn

(
f̂(x, y)

)
=



Ċ0

(
f̂0(x, y)

)
Ċ0

(
f̂1(x, y)

)
Ċ1

(
f̂0(x, y)

)
... Ċ1

(
f̂1(x, y)

) . . .

...
...

. . . Ċn

(
f̂0(x, y)

)
Ċ0

(
f̂m(x, y)

) ... Ċn

(
f̂1(x, y)

)
Ċ1

(
f̂m(x, y)

) ...

. . .
...

Ċn

(
f̂m(x, y)

)



(2.33)

and each partition Ċt(f̂s(x, y)) for t = 0, . . . , n; s = 0, . . . ,m, is a convolution matrix with

the same structure as (2.27).

The bivariate convolution matrix Cn(f̂(x, y)) can also be written as

Cn(f̂(x, y)) = D−1
m+nTk

(
f̂(x, y)

)
Qn, (2.34)

where the block diagonal matrix D−1
m+n ∈ R(m+n+2

2)×(m+n+2
2) is given by

D−1
m+n = diag

[
Ḋ−1
m+n,0, Ḋ−1

m+n,1, . . . , Ḋ−1
m+n,m+n

]
and each Ḋ−1

m+n,i for i = 0, . . . ,m + n has the same structure as (2.28). The matrix

Tn(f̂(x, y)) has a partitioned structure and is given by

Tn

(
f̂(x, y)

)
=



Ṫ0

(
f̂0(x, y)

)
Ṫ0

(
f̂1(x, y)

)
Ṫ1

(
f̂0(x, y)

)
... Ṫ1

(
f̂1(x, y)

) . . .

...
...

. . . Ṫn

(
f̂0(x, y)

)
Ṫ0

(
f̂m(x, y)

) ... Ṫn

(
f̂1(x, y)

)
Ṫ1

(
f̂m(x, y)

) ...

. . .
...

Ṫn

(
f̂m(x, y)

)



, (2.35)

where each of the non-zero partitions Ṫj(f̂i(x, y)) ∈ R(i+j+1)×(j+1) are of the same struc-

ture as the Toeplitz matrix in (2.29). The block diagonal matrix Qn ∈ R(n+2
2)×(n+2

2) is

given by

Qn = diag
[
Q̇n,0, Q̇n,1, . . . , Q̇n,n

]
, (2.36)

where the matrices Q̇n,t for t = 0, . . . , n are of the same structure as the matrix in (2.30).

Chapter 2. Curves, Surfaces and Polynomial Representations 59

The vector ĝ in (2.32) is given by

ĝ =
[

ĝ0, ĝ1, . . . , ĝn

]T
∈ R(n+2

2),

where each ĝi ∈ Ri+1 is a vector with the same structure as (2.31) and the vector ĥ

containing the coefficients of the polynomial ĥ(x, y) is given by

ĥ =
[

ĥ0, ĥ1, . . . , ĥm+n

]T
∈ R(m+n+2

2). (2.37)

Example 2.2.3. The polynomial f̂(x, y) of degree m = 2 is given in Bernstein form by

f̂(x, y) =
2∑

i+j=0

âi,j

(
2

i, j

)
xiyj(1− x− y)2−i−j

= â0,0B
2
0,0(x, y) + â1,0B

2
1,0(x, y) + â0,1B

2
0,1(x, y)

+ â2,0B
2
2,0(x, y) + â1,1B

2
1,1(x, y) + â0,2B

2
0,2(x, y).

Alternatively, f̂(x, y) can be considered as the sum of the set of polynomials { f̂i(x, y) |
i = 0, 1, 2} and is given by f̂(x, y) = f̂0(x, y) + f̂1(x, y) + f̂2(x, y), where

f̂0(x, y) = â0,0

(
2

0, 0

)
(1− x− y)2,

f̂1(x, y) =

(
â1,0

(
2

1, 0

)
x+ â0,1

(
2

0, 1

)
y

)
(1− x− y),

f̂2(x, y) = â2,0

(
2

2, 0

)
x2 + â1,1

(
2

1, 1

)
xy + â0,2

(
2

0, 2

)
y2.

The polynomial ĝ(x, y) of degree n = 2 is given by

ĝ(x, y) =
2∑

i+j=0

b̂i,j

(
2

i, j

)
xiyj(1− x− y)2−i−j

and is the sum of polynomials ĝ0(x, y), ĝ1(x, y) and ĝ2(x, y), where

ĝ0(x, y) = b̂0,0

(
2

0, 0

)
(1− x− y)2,

ĝ1(x, y) =

(
b̂1,0

(
2

1, 0

)
x+ b̂0,1

(
2

0, 1

)
y

)
(1− x− y),

ĝ2(x, y) = b̂2,0

(
2

1, 0

)
x2 + b̂1,1

(
2

1, 1

)
xy + b̂0,2

(
2

0, 2

)
y2.

The product ĥ(x, y) is given in terms of the set of polynomials { f̂i(x, y) | i = 0, 1, 2 } and

{ ĝi(x, y) | i = 0, 1, 2 }

f̂(x, y)× ĝ(x, y) =
(
f̂0(x, y) + f̂1(x, y) + f̂2(x, y)

)(
ĝ0(x, y) + ĝ1(x, y) + ĝ2(x, y)

)
,

so ĥ(x, y) in terms of f̂0(x, y), f̂1(x, y) and f̂2(x, y), and ĝ0(x, y), ĝ1(x, y) and ĝ2(x, y) is

60

given by

ĥ(x, y) = f̂2(x, y)ĝ2(x, y) +
(
f̂2(x, y)ĝ1(x, y) + f̂1(x, y)ĝ2(x, y)

)
+
(
f̂2(x, y)ĝ0(x, y) + f̂1(x, y)ĝ1(x, y) + f̂0(x, y)ĝ2(x, y)

)
+
(
f̂1(x, y)ĝ0(x, y) + f̂0(x, y)ĝ1(x, y)

)
+ f̂0(x, y)ĝ0(x, y).

This can be written as the matrix-vector product

C2

(
f̂(x, y)

)
ĝ = ĥ,



Ċ0

(
f̂0(x, y)

)
Ċ0

(
f̂1(x, y)

)
Ċ1

(
f̂0(x, y)

)
Ċ0

(
f̂2(x, y)

)
Ċ1

(
f̂1(x, y)

)
Ċ2

(
f̂0(x, y)

)
Ċ1

(
f̂2(x, y)

)
Ċ2

(
f̂1(x, y)

)
Ċ2

(
f̂2(x, y)

)



 ĝ0

ĝ1

ĝ2

 =


ĥ0

ĥ1

ĥ2

ĥ3

ĥ4



and ĥ contains the ordered coefficients of ĥ(x, y).

�

Example 2.2.4. Consider the polynomials f̂(x, y) of degree m = 2 which is given by

f̂(x, y) = 3B2
0,0(x, y) + 2B2

1,0(x, y) + 2B2
0,1(x, y) + 1B2

2,0(x, y) + 5B2
1,1(x, y) + 2B2

0,2(x, y)

and ĝ(x, y) of degree n = 1 which is given by

ĝ(x, y) = 1B1
0,0(x, y) + 3B1

1,0(x, y) + 2B1
0,1(x, y).

The coefficients of f̂(x, y) and ĝ(x, y) are given in matrix form as

M
(
f̂
)

=


i2 = 0 i2 = 1 i2 = 2

i1 = 0 3 2 2

i1 = 1 2 5

i1 = 2 1

, and M (ĝ) =


i2 = 0 i2 = 1

i1 = 0 1 2

i1 = 1 3

.

The polynomial f̂(x, y) can be thought of as the sum of polynomials f̂0(x, y), f̂1(x, y) and

f̂2(x, y)

f̂(x, y) = f̂0(x, y) + f̂1(x, y) + f̂2(x, y),

Chapter 2. Curves, Surfaces and Polynomial Representations 61

where

f̂0(x, y) = 3B2
0,0(x, y),

f̂1(x, y) = 2B2
1,0(x, y) + 2B2

0,1(x, y),

f̂2(x, y) = 1B2
2,0(x, y) + 5B2

1,1(x, y) + 2B2
0,2(x, y).

The polynomial ĝ(x, y) is given by

ĝ(x, y) = ĝ0(x, y) + ĝ1(x, y),

where

ĝ1(x, y) = 1B1
0,0(x, y)

ĝ1(x, y) = 3B1
1,0(x, y) + 2B1

0,1(x, y).

The product ĥ(x, y) is given by

D−1
3 T1

(
f̂(x, y)

)
Q1ĝ, (2.38)

where the diagonal matrix D−1
3 ∈ R10×10 is given by

D−1
3 = diag

[
1

(3
0,0)

1

(3
1,0)

1

(3
0,1)

1

(3
2,0)

1

(3
1,1)

1

(3
0,2)

1

(3
3,0)

1

(3
2,1)

1

(3
1,2)

1

(3
0,3)

]
,

the matrix T1(f̂(x, y)) ∈ R10×3 is given by

T1

(
f̂(x, y)

)
=



3
(

2
0,0

)
2
(

2
1,0

)
3
(

2
0,0

)
2
(

2
0,1

)
3
(

2
0,0

)
1
(

2
0,2

)
2
(

2
1,0

)
5
(

2
1,1

)
2
(

2
0,1

)
2
(

2
1,0

)
2
(

2
0,2

)
2
(

2
0,1

)
1
(

2
2,0

)
5
(

2
1,1

)
1
(

2
2,0

)
2
(

2
0,2

)
5
(

2
1,1

)
2
(

2
0,2

)


and the diagonal matrix Q1 ∈ R3×3 is given by

Q1 = diag
[(

1
0,0

)
,
(

1
1,0

)
,
(

1
0,1

)]
.

The matrix-vector product (2.38) is given by

D̃−1
3 T1

(
f̂(x, y)

)
Q̃1ĝ =

[
3 20

3
14
3

13
3

25
6

10
3 6 34

3
32
3 8

]T

62

and the matrix of the coefficients of ĥ(x, y) is therefore given by

M
(
ĥ
)

=


3 14

3
10
3 8

20
3

25
6

32
3

13
3

34
3

6

 .

�

Partial Derivatives

Differentiation of bivariate polynomials in Bernstein form is required for determining the

square-free factorisation in the extended version of Gauss’ algorithm, where the sequence

of polynomials {f̂i(x, y)} is generated and each f̂i+1(x, y) is the GCD of fi(x, y) and its

partial derivatives with respect to x and y.

The partial derivative of f̂(x, y) defined in (2.22) with respect to x is given by

∂f̂(x, y)

∂x
=

m−1∑
i+j=0

m (âi+1,j − âi,j)Bm−1
i,j (x, y)

and the partial derivative with respect to y is given by

∂f̂(x, y)

∂y
=

m−1∑
i+j=0

m (âi,j+1 − âi,j)Bm−1
i,j (x, y).

2.3 Conclusion

This section has introduced the Bézier curve, the rectangular Bézier surface patch and the

triangular Bézier surface patch. The polynomials that define these curves and surfaces

have also been discussed. It has been shown how the coefficients of the product of two

polynomials are generated by the multiplication of a convolution matrix and a vector of

coefficients. These definitions are used in the next chapter wherein the Sylvester matrix

and subresultant matrices of two polynomials in Bernstein form are defined.

Chapter 3

The Univariate Polynomial GCD -

The Two Polynomial Problem

The calculation of the points of intersection of Bézier curves reduces to a univariate polyno-

mial root finding problem. By using the square-free factorisation algorithm (Algorithm 1)

this reduces to a set of polynomial GCD problems and a set of polynomial deconvolu-

tions. Polynomial GCD computation and deconvolution methods are developed specifi-

cally for polynomials in Bernstein form as the conversion between bases is known to be

ill-conditioned [17,26,29].

In general it is unlikely that any two randomly chosen polynomials have a common

divisor. The computation of points of intersection between two curves or surfaces require

a sequence of GCD computations where, if the intersections are smooth, the polynomials

in each GCD computation are not coprime. The method of AGCD computation developed

in this thesis is a general method, and examples using arbitrary polynomials which are not

necessarily derived from intersection problems, i.e ĝ(x) is not necessarily the derivative of

f̂(x), are considered.

This chapter focuses on the development of general-purpose algorithm for computing

the GCD of two arbitrary polynomials f̂(x) and ĝ(x) in Bernstein form, and this method,

referred to as UGCD, is adapted in Chapter 4 for use in the specific GCD problem found

in the square-free factorisation algorithm, that is where ĝ(x) is the derivative of f̂(x).

Examples in this chapter are defined such that f̂(x) and ĝ(x) always have a common

divisor, but their inexact counterparts f(x) and g(x) are highly likely to be coprime.

The aim will be to determine the coefficients of the AGCD which is close to the GCD

of the exact polynomials. Since the problem is converted from a polynomial based problem

to a matrix-vector problem, closeness between two polynomials is to be defined in terms

of the distance between the vectors of their coefficients as described in Section 3.5. That

is, the distance between the exact GCD and AGCD will be defined as ‖d̂− d‖/‖d̂‖.
Several polynomial GCD finding methods were discussed in Section 1.8 and this chap-

ter focuses on a method which uses the Sylvester matrix and the sequence of subresultant

matrices to determine the degree and coefficients of the GCD, specifically where polyno-

mials are defined in Bernstein form.

Section 3.1 It is shown how the computation of the degree of the GCD of two univari-

ate polynomials in Bernstein form reduces to the determination of the index of the

63

64

last numerically singular subresultant matrix in the sequence of subresultant ma-

trices. Several variants of the subresultant matrix sequence are defined. It is also

shown how the set of subresultant matrices can be constructed by a series of matrix

transformations applied to the first subresultant matrix S1(f̂(x), ĝ(x)).

Section 3.2 Several methods are considered for the computation of the degree of the

GCD using either the SVD or QR decomposition of the sequence of subresultant

matrices. Despite being more computationally expensive, methods which use the

complete set of subresultant matrices to compute the degree of the GCD will be

shown to be more reliable than methods which consider only the numerical rank of

the first subresultant matrix.

Section 3.3 Given that several variants of the sequence of subresultant matrices have

been defined and methods for the computation of the degree of the GCD have been

considered, this section determines the optimal variant of the set of subresultant

matrices for use in the computation of the degree of the GCD.

Section 3.4 This section considers three preprocessing operations for each of the subre-

sultant matrices in the subresultant matrix sequence. It will be shown that the degree

of the GCD or AGCD is reliably obtained by analysis of the numerical rank of each

of the subresultant matrices containing the coefficients of preprocessed polynomials.

It will also be shown that approximations of coefficients of the cofactor polynomials

and the GCD are more accurate than those obtained from unprocessed polynomials.

Preprocessing does have a small but significant cost associated, however methods to

mitigate this cost will also be described.

Section 3.5 This section describes two methods for the computation of approximations

of the cofactor polynomials and the GCD or AGCD of two polynomials in Bernstein

form. A simple least squares based method is used given the tth subresultant ma-

trix St(f, g) and an alternative method is presented in which the coefficients of the

cofactor polynomials are approximated from a structured low rank approximation

of the tth subresultant matrix of preprocessed polynomials f̃t(ω) and αtg̃t(ω). This

method has previously been considered for computing the low rank approximation

of the tth subresultant matrix of two polynomials in the power basis [69, 70] but is

now extended to polynomials in Bernstein form.

It will be shown that this second method compares favourably with the standard

least squares approach and that the approximations of ût(x) and v̂t(x) and the GCD

d̂t(x) obtained by this method can be some orders of magnitude more accurate.

3.1 The Computation of the Degree of the AGCD of Two

Univariate Polynomials in Bernstein Form

The computation of the GCD of two polynomials f̂(x) and ĝ(x) is an ill-posed problem,

in that the result is highly sensitive to perturbations in the input polynomials. That

is, small changes in the input polynomials result in large discontinuous changes in the

output. Consequently, the GCD is only defined for exact polynomials f̂(x) and ĝ(x), and

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 65

it is highly likely that the inexact polynomials f(x) and g(x) (obtained by the addition of

minimal noise to f̂(x) and ĝ(x)) are coprime.

Integer GCD computations are similarly ill-posed. For example, the integers 54 and

24 have a GCD equal to 6, but it is highly likely that any small perturbations would cause

the inexact integers 54 + ε and 6 + ε to be coprime.

A polynomial GCD finding algorithm which requires exact inputs is not suitable for

the problems considered in this thesis, where polynomials are subject to errors. Instead,

a method which considers that f(x) and g(x) are close to two polynomials with a non-

constant common divisor is required. The UGCD method is developed in the following

chapter, which returns an AGCD whose coefficients are close to those of the exact GCD,

even in the presence of significant levels of noise.

Noise can come from many sources in computational mathematics, and some of these

are now considered:

1. The first source of error comes from round-off in floating-point representations. A

floating-point representation consists of a coefficient and an exponent. Therefore,

numerical accuracy is traded off against range. A subset of rational numbers have

an infinite decimal representation, but must be represented by a truncated and finite

decimal form. For example, 1
3 has an infinite decimal representation and a truncated

floating-point representation.

2. The two polynomials whose GCD is to be determined may themselves be the output

of some earlier computation, which has potentially introduced computational and

round-off errors. For instance, the ith GCD computation in the square-free factori-

sation algorithm (Algorithm 1) computes the GCD of fi(x) and f
′
i (x), where fi(x)

is the (i−1)th computed GCD. Since each computation is subject to round-off error

it is likely that the cumulated error after many iterations is significant.

3. In curve-curve and surface-surface intersection problems, the polynomial whose square-

free factorisation must be computed may be derived from an approximated curve or

surface. Or, the process of conversion from a parametric to implicit form may have

introduced errors. The implicitisation of bicubic patches produces implicit surfaces

of high degree, and it is standard practice to perform an approximate implicitisation

which minimises the degree of the implicit form. This approximation is generally

computed more quickly than an exact implicitisation, and consequently the polyno-

mial to be factorised will be inexact.

Since noise is seemingly inevitable in this type of problem, it is necessary to consider

defining the AGCD, dt(x), of two inexact polynomials f(x) and g(x), whose exact coun-

terparts f̂(x) and ĝ(x) have a GCD d̂t(x). The AGCD, dt(x), of two polynomials f(x)

and g(x) is defined to be correct when it is sufficiently close to the the GCD, d̂t(x), of two

polynomials f̂(x) and ĝ(x) obtained by minimal perturbations of f(x) and g(x). A crucial

component of this definition is that the degree of the AGCD is equal to the degree of the

GCD d̂t(x). In [6] a more formal definition of a AGCD is given, which takes into account

the machine precision and in [56] the quasi-GCD is defined.

The method of computing the degree of the GCD, described in the following section,

66

is defined in terms of exact polynomials. However, the same methods are successfully

applied to inexact polynomials f(x) and g(x).

3.1.1 The Degree of the GCD by the Subresultant Matrix Methods

This section considers the computation of the degree of the GCD of exact polynomials

f̂(x) and ĝ(x) by using the Sylvester matrix and the sequence of subresultant matrices.

A variation on this is used in the computation of the AGCD of two inexact polynomials.

It will be shown that computing the degree t of the GCD reduces to determining the

numerical rank of each matrix in the set of subresultant matrices {Sk(f̂(x), ĝ(x)) | k =

1, . . . ,min(m,n) }.
Consider two exact polynomials in Bernstein form, f̂(x) and ĝ(x), of degrees m and n

respectively which are given by

f̂(x) =

m∑
i=0

âi

(
m

i

)
(1− x)m−ixi and ĝ(x) =

n∑
i=0

b̂i

(
n

i

)
(1− x)n−ixi (3.1)

and whose GCD d̂t(x) of degree t is given by

d̂t =
t∑
i=0

dt,iB
t
i(x).

There exists a set of common divisors of f̂(x) and ĝ(x) denoted d̂k(x) for k = 1, . . . , t(i).

Note that the GCD of f̂(x) and ĝ(x) is unique to within a scalar multiplier, however the

common divisors of degree k = 1, . . . , t− 1 are not unique.

Example 3.1.1. The two polynomials f̂(x) and ĝ(x) given by

f̂(x) = (x− 1)(x− 2)(x− 3) and ĝ(x) = (x− 1)(x− 2)(x− 4)

have a set of common divisors of degree one given by {d̂1(x)} = {(x − 1), (x − 2)} and a

unique GCD of degree t = 2 given by d̂2(x) = (x− 1)(x− 2). �

By Bézout’s identity, there also exist cofactor polynomials { ûk(x) | k = 1, . . . , t } and

{ v̂k(x) | k = 1, . . . , t } of degrees (m − k) and (n − k), which are the cofactors of d̂k(x),

and these are given by

ûk(x) =

m−k∑
i=0

ûk,i

(
m− k
i

)
(1− x)m−k−ixi

v̂k(x) =

n−k∑
i=0

v̂k,i

(
n− k
i

)
(1− x)n−k−ixi for k = 1, . . . , t.

Therefore, the statements

f̂(x) = ûk(x)d̂k(x) and ĝ(x) = v̂k(x)d̂k(x) (3.2)

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 67

hold for k = 1, . . . , t, and

v̂k ≡ 0 for k = t+ 1, . . . ,min(m,n),

ûk ≡ 0 for k = t+ 1, . . . ,min(m,n).

It follows from (3.2) that

f̂(x)v̂k(x)− ĝ(x)ûk(x) = 0, for k = 0, . . . , t,

which can be written as the matrix-vector product

Sk

(
f̂(x), ĝ(x)

)[v̂k

−ûk

]
= 0. (3.3)

This has non-trivial solutions for k = 1, . . . , t and the solution vector consists of vectors

v̂k ∈ Rn−k+1 and ûk ∈ Rm−k+1, which contain the coefficients of cofactor polynomials

ûk(x) and v̂k(x), given by

v̂k =
[
v̂k,0, v̂k,1, . . . , v̂k,n−k

]T
and ûk =

[
ûk,0, ûk,1, . . . , ûk,m−k

]T
.

The matrix Sk(f̂(x), ĝ(x)) ∈ R(m+n−k+1)×(m+n−2k+2) in (3.3) is the kth subresultant ma-

trix and is given by

Sk(f̂(x), ĝ(x)) =
[
Cn−k

(
f̂(x)

)
Cm−k

(
ĝ(x)

)]
, (3.4)

where Cn−k(f̂(x)) and Cm−k(ĝ(x)) are the (n − k)th and (m − k)th order convolution

matrices (as described in (2.9)) of f̂(x) and ĝ(x) respectively.

Since (3.3) has a non-zero solution for k = 1, . . . , t, the subresultant matri-

ces {Sk(f̂(x), ĝ(x)) | k = 1, . . . , t } are singular, while the subresultant matrices

{Sk(f̂(x), ĝ(x)) | k = t + 1, . . . ,min(m,n) } are nonsingular. The computation of the

degree t of the GCD d̂(x) is therefore reduced to the determination of the largest k such

that Sk(f̂(x), ĝ(x)) is rank deficient

rank Sk

(
f̂(x), ĝ(x))

)
< m+ n− 2k + 2 for k = 1, . . . , t,

rank Sk

(
f̂(x), ĝ(x)

)
= m+ n− 2k + 2 for k = t+ 1, . . . ,min(m,n).

The rank of the kth subresultant matrix Sk(f̂(x), ĝ(x)) for the exact polynomials f̂(x) and

ĝ(x) is unlikely to be equal to the rank of Sk (f(x), g(x)), whose entries contain coefficients

of inexact polynomials f(x) and g(x). It is probable that each subresultant matrix of the

set {Sk(f(x), g(x)) | k = 1, . . . , t} is of full rank, since inexact polynomials f(x) and g(x)

(perturbed versions of exact polynomials f̂(x) and ĝ(x)) are typically coprime.

Methods for determining the rank of a subresultant matrix are also inexact due to

round-off error in floating-point arithmetic. The theoretical rank loss of the tth subresul-

tant matrix St(f̂(x), ĝ(x)) (where f̂(x) and ĝ(x) are known exactly) is one. However, it is

highly likely that the computed rank loss is zero, that is, the matrix is of full rank.

It is instead necessary to consider the numerical rank of the set of subresultant matrices

68

{Sk (f(x), g(x)) | k = 1, . . . ,min(m,n) } when computing the degree of the AGCD of two

inexact polynomials.

The next section describes the Sylvester matrix and the matrices of the subresultant

matrix sequence (as seen in (3.3)) of two polynomials in Bernstein form. The variants

obtained by including or excluding diagonal matrices D−1
m+n−k and Q̂k are also considered.

3.1.2 The Sylvester Matrix and the Subresultant Matrix Sequence

Given the definition of the convolution matrix in (2.9), the kth subresultant matrix (3.4)

can be considered as the product of three matrices and is given by

Sk

(
f̂(x), ĝ(x)

)
= D−1

m+n−kTk

(
f̂(x), ĝ(x)

)
Q̂k. (3.5)

The diagonal matrix D−1
m+n−k ∈ R(m+n−k+1)×(m+n−k+1) in (3.5) is of the same structure

as the matrix D−1
m+n defined in (2.10) and is given by

D−1
m+n−k = diag

[
1

(m+n−k
0)

, 1

(m+n−k
1)

, . . . , 1

(m+n−k
m+n−k)

]
. (3.6)

The matrix Tk(f̂(x), ĝ(x)) ∈ R(m+n−k+1)×(m+n−2k+2) consists of two partitions which are

both Toeplitz matrices, and is given by

Tk

(
f̂(x), ĝ(x)

)
=
[
Tn−k

(
f̂(x)

)
Tm−k

(
ĝ(x)

)]

=



â0
(
m
0

)
b̂0
(
n
0

)
â1
(
m
1

) . . . b̂1
(
n
1

) . . .
...

. . . â0
(
m
0

) ...
. . . b̂0

(
n
0

)
âm−1

(
m
m−1

)
â1
(
m
1

)
b̂n−1

(
n
n−1
)

b̂1
(
n
1

)
âm
(
m
m

) . . .
... b̂n

(
n
n

) . . .
...

. . . âm−1
(
m
m−1

) . . . b̂n−1
(
n
n−1
)

âm
(
m
m

)
b̂n
(
n
n

)


,

where Tn−k(f̂(x)) ∈ R(m+n−k+1)×(n−k+1) and Tm−k(ĝ(x)) ∈ R(m+n−k+1)×(m−k+1) have

the same structure as Tn(f̂(x)) (defined in (2.11)). The block diagonal matrix Q̂k in (3.5)

of order (m + n − 2k + 2) contains binomial coefficients corresponding to the cofactor

polynomials v̂k(x) and ûk(x) and is given by

Q̂k = diag
[
Qn−k, Qm−k

]
, (3.7)

where the matrices Qn−k ∈ R(n−k+1)×(n−k+1) and Qm−k ∈ R(m−k+1)×(m−k+1) are diagonal

matrices with the same structure as the matrix Qn defined in (2.12), and are given by

Qm−k = diag
[(

m−k
0

)
,
(
m−k
1

)
, . . . ,

(
m−k
m−k

)]
Qn−k = diag

[(
n−k
0

)
,
(
n−k
1

)
, . . . ,

(
n−k
n−k
)]

.

The Sylvester matrix S(f̂(x), ĝ(x)) is the first matrix in the subresultant matrix se-

quence and is also denoted S1(f̂(x), ĝ(x)). The matrices of the sequence S1(f̂(x), ĝ(x)),

S2(f̂(x), ĝ(x)), . . . , Smin(m,n)(f̂(x), ĝ(x)) are of decreasing size, where each matrix

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 69

Sk(f̂(x), ĝ(x)) is of dimensions (m+ n− k + 1)× (m+ n− 2k + 2), and a method for the

computation of the matrices in this sequence is now described.

3.1.3 The Construction of the Subresultant Matrix Sequence

The subresultant matrices of polynomials in the power basis contain the same set of

non-zero entries and each subresultant matrix Sk(f̂(x), ĝ(x)) is easily obtained by the

removal of a set of (k − 1) rows and (2k − 2) columns from S1(f̂(x), ĝ(x)). However, the

relationship between the two subresultant matrices Sk(f̂(x), ĝ(x)) and Sj(f̂(x), ĝ(x)) for

polynomials f̂(x) and ĝ(x) in Bernstein form is non-trivial. Each of the non-zero entries

of Sk(f̂(x), ĝ(x)) consists of three binomial terms which are dependent on k, so entries of

each subresultant matrix in the sequence are distinct.

This section begins by developing the transformation to obtain Sk(f̂(x), ĝ(x))

given Sk−1(f̂(x), ĝ(x)), and this is extended to the general transformation to compute

Sj(f̂(x), ĝ(x)) from Sk(f̂(x), ĝ(x)) for any j, where k < j ≤ min(m,n).

The matrix Sk+1(f̂(x), ĝ(x)) is given by

Sk+1

(
f̂(x), ĝ(x)

)
= Am+n−kSk

(
f̂(x), ĝ(x)

)
B̂k,

where the matrix Am+n−k ∈ R(m+n−k)×(m+n−k+1) is given by
m+n−k
m+n−k 0

m+n−k
m+n−k−1 0

. . .
...

m+n−k
1 0

 . (3.8)

The block diagonal matrix B̂k ∈ R(m+n−2k+2)×(m+n−2k) is given by

B̂k = diag
[
Bn−k, Bm−k

]
, (3.9)

where the matrices Bn−k ∈ R(n−k+1)×(n−k) and Bm−k ∈ R(m−k+1)×(m−k) are given by

Bn−k =



n−k
n−k

n−k−1
n−k

. . .
1

n−k
0 0 . . . 0


and Bm−k =



m−k
m−k

m−k−1
m−k

. . .
1

m−k
0 0 . . . 0


.

(3.10)

This transformation is extended such that the (k+j)th subresultant matrix Sk+j(f̂(x), ĝ(x))

for 1 ≤ j ≤ (min(m,n)−k) can be obtained by the transformation of the kth subresultant

matrix.

70

The matrix Sk+j(f̂(x), ĝ(x)) is given by

Sk+j

(
f̂(x), ĝ(x)

)
= Am+n−k−j+1Am+n−k−j . . .Am+n−k×

Sk

(
f̂(x), ĝ(x)

)
× B̂kB̂k+1 . . . B̂k+j , (3.11)

where the matrices Am+n−k, . . . ,Am+n−k−j+1 and B̂k, . . . , B̂k+j are of the same form as

the matrices defined in (3.8) and (3.9) respectively.

3.1.4 Variants of the Subresultant Matrices

In Section 3.1.2 the sequence of subresultant matrices was introduced, and this section

considers five variants of this sequence of matrices. These variants will be defined for the

kth subresultant matrix only, and the definitions are to be extended to all matrices in

the relevant sequence. The first four variants arise by including or excluding the diagonal

matrices D−1
m+n−k and Q̂k in the definition of the subresultant matrices and are given by:

(i) {Tk(f̂(x, y), ĝ(x, y))}

(ii) {D−1
m+n−kTk(f̂(x, y), ĝ(x, y))}

(iii) {Tk(f̂(x, y), ĝ(x, y))Q̂k}

(iv) {D−1
m+n−kTk(f̂(x, y), ĝ(x, y))Q̂k}

The orthogonal matrices D−1
m+n−k and Q̂k pre and post multiply Tk(f̂(x), ĝ(x)) re-

spectively, and the rank of the subresultant matrices is theoretically unaffected by

their inclusion. The fifth variant is constructed by the rearrangement of the variant

D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k such that divisors common to each of the non-zero entries of

the two partitions can be removed, which again does not theoretically affect the rank of

the subresultant matrix.

Binomial terms in each non-zero entry of the kth subresultant matrix variant may

cause the ratio of the entry of maximum magnitude to entry of minimum magnitude to be

large. This can cause numerical problems and as a consequence some variants are more

suited to further rank analysis than others. Of interest to this work, the singular values

of the kth subresultant matrix for each subresultant variant can be significantly different.

The first four variants of the kth subresultant matrix are now defined:

1. The first variant of the kth subresultant matrix is given by

Tk

(
f̂(x), ĝ(x)

)
=
[
Tn−k

(
f̂(x)

)
Tm−k

(
ĝ(x)

)]
.

Entries of the first partition Tn−k(f̂(x)) are given by

Tn−k

(
f̂(x)

)
(i+j+1,j+1)

=

âi
(
m
i

)
i = 0, . . . ,m;

0 otherwise,

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 71

and entries of the second partition Tm−k(ĝ(x)) are of the form

Tm−k

(
ĝ(x)

)
(i+j+1,j+1)

=

b̂i
(
n
i

)
i = 0, . . . , n;

0 otherwise.

When the two polynomials f̂(x) and ĝ(x) are of significantly different degree, entries

of the two partitions Tn−k(f̂(x)) and Tm−k(ĝ(x)) can be unbalanced due to the

binomial terms
(
m
i

)
and

(
n
j

)
as in Example 3.1.2. These binomial terms are referred

to as the coefficient multipliers of entries in Tn−k(f̂(x)) and Tm−k(ĝ(x)).

Example 3.1.2. Consider two polynomials f̂(x) and ĝ(x) of degrees m = 20 and

n = 5 respectively. The non-zero entries in the first partition of Tk(f̂(x), ĝ(x)) are

scaled between 1 and
(

20
10

)
= 184756, while entries in the second partition are scaled

by at most 10. This difference in scaling over the two partitions can cause issues in

the computation of the numerical rank of the subresultant matrices.

�

2. The second variant of the kth subresultant matrix includes the diagonal matrix

D−1
m+n−k and is given by D−1

m+n−kTk(f̂(x), ĝ(x)). Entries in the first partition

D−1
m+n−kTn−k(f̂(x)) are of the form

D−1
m+n−kTn−k

(
f̂(x)

)
(i+j+1,j+1)

=


âi(mi)

(m+n−k
i+j)

i = 0, . . . ,m; j = 0, . . . , n− k,

0 otherwise,

and entries in the second partition D−1
m+n−kTm−k(ĝ(x)) are of the form

D−1
m+n−kTm−k

(
ĝ(x)

)
(i+j+1,j+1)

=


b̂i(ni)

(m+n−k
i+j)

i = 0, . . . , n; j = 0, . . . ,m− k,

0 otherwise.

The effect of the coefficient multipliers
(
m
i

)
/
(
m+n−k
i+j

)
and

(
n
i

)
/
(
m+n−k

j

)
is to scale the

coefficients by a value between 0 and 1, but it is shown in Figure 3.3i of Example 3.3.1

that the scaling is not optimal and the entries in the middle columns of each partition

are disproportionately small.

3. The third variant of the kth subresultant matrix includes the matrix Q̂k and is given

by Tk(f̂(x), ĝ(x))Q̂k. Entries in the first partition Tn−k(f̂(x))Qn−k are given by

(
Tn−k

(
f̂(x)

)
Qn−k

)
(i+j+1,j+1)

=

âi
(
m
i

)(
n−k
j

)
i = 0, . . . ,m; j = 0, . . . , n− k,

0 otherwise,

and entries in the second partition Tm−k(ĝ(x))Qm−k are given by

(
Tm−k

(
ĝ(x)

)
Qm−k

)
(i+j+1,j+1)

=

b̂i
(
n
i

)(
m−k
j

)
i = 0, . . . , n; j = 0, . . . ,m− k,

0 otherwise.

72

For large values of m and n− k, the product
(
m
i

)
×
(
n−k
j

)
is large when i ≈ m

2 and

j ≈ n−k
2 . The coefficient multipliers are therefore disproportionately large for entries

in the middle columns of Cn−k(f(x)), particularly around the middle rows. Entries

in the second partition Cm−k(ĝ(x)) are similarly scaled, and this effect is seen in

Figure 3.3ii.

4. The fourth variant of the kth subresultant matrix is given by

D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k, which has already been described in Section 3.1.2.

Entries in the first partition of the kth modified subresultant matrix are of the form

Cn−k

(
f̂(x)

)
(i+j+1,j+1)


âi(mi)(

n−k
j)

(m+n−k
i+j)

i = 0, . . . ,m; j = 0, . . . , n− k,

0 otherwise,

and entries in the second partition D−1
m+n−kTm−k(g(x))Qm−k are given by

Cm−k

(
ĝ(x)

)
(i+j+1,j+1)

=


b̂i(ni)(

m−k
j)

(m+n−k
i+j)

i = 0, . . . , n; j = 0, . . . ,m− k,

0 otherwise.

The effect of the coefficient multipliers is to scale the coefficients âi for i = 0, . . . ,m

and b̂i for i = 0, . . . , n by a multiplier between 0 and 1. The scaling achieved by the

combination of these three binomial coefficients, shown in Figure 3.3iii, is an optimal

form of scaling when compared with the first three variants.

The scaling of the non-zero entries of these four subresultant matrix variants will be further

analysed in Section 3.3, and a set of examples will show which of the variants is optimal

for the computation of the degree of the GCD. However, a fifth variant, a modified form

of D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k, is first considered.

The Fifth Variant of the Subresultant Matrices

Each of the non-zero entries of the kth subresultant matrix given by

D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k contains three binomial coefficients, two of which are functions

of k, and this presents two issues:

1. The computation of three possibly large binomial coefficients is necessary for each

entry of the kth subresultant matrix Sk(f̂(x), ĝ(x)), so for the polynomials f̂(x) and

ĝ(x) of degree m and n, the construction of the subresultant matrix Sk(f̂(x), ĝ(x))

requires the evaluation of 3 × [(m + 1)(n − k + 1) + (n + 1)(m − k + 1)] binomial

coefficients.

2. Each of the subresultant matrices Sk(f̂(x), ĝ(x)) for k = 1, . . . ,min(m,n) requires

the evaluation of a different set of entries, since the (i, j)th entry of Sk(f̂(x), ĝ(x))

differs from the (i, j)th entry of Sk−1(f̂(x), ĝ(x)).

This section introduces a manipulation of the three binomial coefficients of the en-

tries of Sk(f̂(x), ĝ(x)). All three of the binomial coefficients for the non-zero entries in

Sk(f̂(x), ĝ(x)) are functions of i or j, and are therefore dependent on their position within

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 73

the matrix. It is shown that the entries of the subresultant matrix can be reduced to the

product of two binomial terms dependent on i or j in the numerator and a third constant

binomial coefficient in the denominator.

The kth subresultant matrix Sk(f̂(x), ĝ(x)) is given by

â0(m0)(n−k0)
(m+n−k

0)
b̂0(n0)(

m−k
0)

(m+n−k
0)

â1(m1)(n−k0)
(m+n−k

1)

. . .
b̂1(n1)(

m−k
0)

(m+n−k
1)

. . .

...
. . .

â0(m0)(n−kn−k)
(m+n−k

n−k)

...
. . .

b̂0(n0)(
m−k
m−k)

(m+n−k
m−k)

...
â1(m1)(n−kn−k)
(m+n−k
n−k+1)

...
b̂1(n1)(

m−k
m−k)

(m+n−k
m−k+1)

âm−1(m
m−1)(

n−k
0)

(m+n−k
m−1)

...
b̂n−1(n

n−1)(
m−k

0)
(m+n−k

n−1)

...

âm(mm)(n−k0)
(m+n−k

m)

. . .
...

b̂n(nn)(
m−k

0)
(m+n−k

n)

. . .
...

. . .
âm−1(m

m−1)(
n−k
n−k)

(m+n−k
m+n−k−1)

. . .
b̂n−1(n

n−1)(
m−k
m−k)

(m+n−k
m+n−k−1)

âm(mm)(n−kn−k)
(m+n−k
m+n−k)

b̂n(nn)(
m−k
m−k)

(m+n−k
m+n−k)



.

The non-zero entries of Cn−k(f̂(x)) can by manipulation of the binomial coefficients be

rearranged as

Cn−k

(
f̂(x)

)
(i+j+1,j+1)

=


âi(i+ji)(m+n−k−i−j

m−i)
(m+n−k

m)
i = 0, . . . ,m; j = 0, . . . , n− k,

0 otherwise,
(3.12)

and by a similar rearrangement, entries of Cn−k(ĝ(x)) are given by

Cm−k

(
ĝ(x)

)
(i+j+1,j+1)

=


b̂i(i+ji)(m+n−k−i−j

n−i)
(m+n−k

n)
i = 0, . . . , n; j = 0, . . . ,m− k,

0 otherwise.
(3.13)

The kth subresultant matrix Sk(f̂(x), ĝ(x)) ∈ R(m+n−k+1)×(m+n−2k+2) with rearranged

entries is given by

â0(0
0)(

m+n−k
m)

(m+n−k
m)

b̂0(0
0)(

m+n−k
n)

(m+n−k
n)

â1(1
1)(

m+n−k−1
m−1)

(m+n−k
m)

. . .
b̂1(1

1)(
m+n−k
n−1)

(m+n−k
n)

. . .

...
. . .

â0(n−k0)(mm)
(m+n−k

m)

...
. . .

b̂0(0
0)(

m−k
0)

(m+n−k
n)

...
â1(n−k+1

1)(m−1
m−1)

(m+n−k
m)

...
b̂1(n−1

n−1)(
m−k+1

1)
(m+n−k

n)
âm−1(m−1

m−1)(
n−k+1

1)
(m+n−k

m)

...
b̂n−1(n−1

n−1)(
m−k+1

1)
(m+n−k

n)

...

âm(mm)(n−k0)
(m+n−k

m)

. . .
...

b̂n(nn)(
0
0)

(m+n−k
n)

. . .
...

. . .
âm−1(m+n−k−1

m−1)(1
1)

(m+n−k
m)

. . .
b̂n−1(m+n−k−1

n−1)(1
1)

(m+n−k
n)

âm(m+n−k
m)(0

0)
(m+n−k

m)
b̂n(m+n−k

n)(0
0)

(m+n−k
n)



,

and this rearrangement of the binomial terms has following interesting properties:

1. Consider the non-zero entries in the first partition of the kth subresultant matrix

74

with rearranged entries. The product of the first binomial coefficient in all of the

non-zero entries is equal to the product of the second binomial coefficient in the

numerator of all of the non-zero entries, that is,

n−k∏
j=0

m∏
i=0

(
i+ j

j

)
≡

n−k∏
j=0

m∏
i=0

(
m+ n− k − i− j

n− k − j

)
.

This is of interest since the complexity of computing the geometric mean of non-zero

entries in the two partitions of the subresultant matrices is reduced. The computa-

tion of the geometric mean is described in Section 3.4.

2. A simple expression for the computation of the arithmetic mean is deduced from the

entries of the rearranged kth subresultant matrix. The sum of all non-zero entries

in Sk(f̂(x), ĝ(x)), containing any specified coefficient âi, is given by

n−k∑
j=0

âi

(
i+j
i

)(
m+n−k−i−j

m−i
)(

m+n−k
m

) = âi

(
m+n−k+1

m+1

)(
m+n−k

m

) = âi

(
m+ n− k + 1

m+ 1

)

and a similar expression is derived for entries containing the coefficients b̂i. This

significantly reduces the effort required to compute the arithmetic mean of the non-

zero entries of Cn−k(f̂(x)) and Cm−k(ĝ(x)), which will be shown in Section 3.4.

The fifth variant of subresultant matrix is given by the removal of common denominators(
m+n−k

m

)
and

(
m+n−k

n

)
from the partitions Cn−k(f̂(x)) and Cm−k(ĝ(x)) of the kth subre-

sultant matrix Sk(f̂(x), ĝ(x)), and this is equivalent to scaling the polynomials f̂(x) and

ĝ(x) by the non-zero constants 1

(m+n−k
m)

and 1

(m+n−k
n)

. The GCD of these scaled forms is

equivalent to that of the original polynomials, that is,

GCD
(
f̂(x), ĝ(x)

)
= GCD

(
f̂(x)(
m+n−k

m

) , ĝ(x)(
m+n−k

n

)) .
The subresultant matrix with denominators omitted is denoted by S̆k(f̂(x), ĝ(x))

S̆k

(
f̂(x), ĝ(x)

)
=
[
C̆n−k

(
f̂(x)

)
C̆m−k

(
ĝ(x)

)]
for k = 1, . . . ,min(m,n),

where the matrices C̆n−k(f̂(x)) and C̆m−k(ĝ(x)) are given by

C̆n−k

(
f̂(x)

)
=

(
m+ n− k
n− k

)
× Cn−k

(
f̂(x)

)
C̆m−k

(
ĝ(x)

)
=

(
m+ n− k
m− k

)
× Cm−k

(
ĝ(x)

)
.

The rank of this new form of subresultant matrix S̆k(f̂(x), ĝ(x)) is theoretically equal to

the rank of Sk(f̂(x), ĝ(x))

rank
(
S̆k

(
f̂(x), ĝ(x)

))
= rank

(
Sk

(
f̂(x), ĝ(x)

))
.

Five variants of the subresultant matrix sequence have been described, and the scaling

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 75

of their entries has been considered. Poor scaling within the subresultant matrices is

known to give bad results when attempting to determine the degree or coefficients of

the GCD. The variant denoted D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k has optimal scaling amongst its

entries, and numerical examples will show this in Section 3.3.

The rearrangement of the entries in the fourth variant of subresultant matrix reveals

some interesting properties of these matrices. A common divisor to all non-zero entries in

each partition is found, and properties which allow for fast methods of the computation

of the arithmetic and geometric means have been described.

A set of examples in Section 3.3 will determine which of the five variants of subresultant

matrix is optimal for computing the degree of the GCD. First, several methods for the

computation of the degree of the GCD using subresultant matrices are described.

3.2 Methods for the Computation of the Degree of the GCD

It has already been stated that the computation of the degree of the GCD of two exact

polynomials, or the AGCD of two inexact polynomials, reduces to the determination of

the last singular or numerically singular subresultant matrix in the respective subresultant

matrix sequences.

Alternatively, the degree of the GCD is given by the rank loss of S1(f̂(x), ĝ(x)) or the

numerical rank loss of S1(f(x), g(x)), but this method is typically weaker than considering

all subresultant matrices.

This section describes several methods for the computation of the degree of the GCD or

AGCD of two univariate polynomials f and g, which may be exactly or inexactly defined.

3.2.1 The Degree of the GCD by Singular Values

This section considers two methods for the computation of the degree of the GCD by

methods which make use of the SVD of the Sylvester matrix and the set of subresultant

matrices. Again, polynomials f and g of degrees m and n respectively have a GCD of

degree t.

Degree Computation 1 (DC1) : The degree computation 1 (DC1) method for com-

puting the degree of the GCD utilises the singular values of the first subresultant

matrix, that is, the set {σ1,i | i = 1, . . . ,m+ n}. A method which uses the singular

values of the Sylvester matrix was described in Section 1.8.1, but the method de-

scribed here does not require any thresholds or prior knowledge of the noise added

to the coefficients of f and g. Instead, a heuristic algorithm is used.

For exact polynomials, using infinite precision arithmetic, the Sylvester matrix has

the rank m + n − t, however, in a floating point environment, the Sylvester matrix

is typically of full rank, and has numerical rank m + n − t. The numerical rank,

as defined in this thesis, is defined based on a large separation between numerically

zero and non-zero singular values. This method is disregards the level of noise or

machine precision and is based on observations only.

Since the singular values are in descending order, the first (m+n− t) singular values

{σ1,i | i = 1, . . . , (m + n − t)} are non-zero, while the remaining t singular values

76

{σ1,i | i = (m+ n− t+ 1), . . . , (m+ n)} are numerically zero.

Since the magnitude of the minimum singular values are of interest, let ρ̌i be the log

of the singular value σ1,i

ρ̌i = log10(σ1,i) for i = 1, . . . ,min(m,n).

With the singular values ordered in decreasing size, a large negative change in mag-

nitude from σ1,i to σ1,i+1 indicates that σ1,i is non-zero while σ1,i+1 is numerically

zero. Let δρ̌i denote the magnitude of change between σ1,i and σ1,i+1 given by

δρ̌i = ρ̌i − ρ̌i+1

= log10(σ1,i)− log10(σ1,i+1)

= log10

(
σ1,i

σ1,i+1

)
for i− 1, . . . , (min(m,n)− 1) (3.14)

In this particular set of problems it is unlikely that any σ1,i is exactly equal to

zero, since computations are performed in a floating-point environment and the

polynomials f and g are inexact. Instead, a large negative change is expected between

ρ̌m+n−t (a non-zero value) and ρ̌m+n−t+1 (a numerically zero value). Therefore, δρ̌i

in (3.14) is large and positive for i = m+n− t. The numerical rank of the Sylvester

matrix is given by

m+ n− t = argi max{δρ̌i | i = 1, . . . , (min(m,n)− 1)}

= argi max

{
log10

(
σi
σi+1

)}
and so t, the degree of the GCD, is given by

t = m+ n− argi max

{
log10

(
σi
σi+1

)}
.

While this heuristic method works for many examples, it is possible that a maximum

δρ̌i is used to incorrectly identify the degree of the GCD. The term large is used

within the context of all other δρ̌i, and while one of these values is necessarily larger

than the others, it may be the case that its significance is exaggerated, and the degree

of the GCD is incorrectly determined. In such cases it would be necessary to define

some threshold to determine whether max{δρ̌i} is significant. These exceptions are

described in more detail in Section 3.2.5.

Degree Computation 2 (DC2) : The degree computation 2 (DC2) method utilises

the set of minimum singular values {σ̇k | k = 1, . . . ,min(m,n)} of the sequence of

subresultant matrices {Sk(f, g) | k = 1, . . . ,min(m,n)}, where σ̇k is the minimum

singular value of the kth subresultant matrix Sk(f, g). Again, the magnitude of these

values is of interest so let ρ̇k be defined as

ρ̇k = log10 (σ̇k) for k = 1, . . . ,min(m,n) (3.15)

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 77

and let δρ̇i denote the change in magnitude between σ̇i and σ̇i+1 given by

δρ̇i = ρ̇i+1 − ρ̇i
= log10(ρ̇i+1)− log10(ρ̇i)

= log10

(
σ̇i+1

σ̇i

)
. (3.16)

The kth subresultant matrix Sk(f, g) is numerically rank deficient for k = 1, . . . , t, or

of full rank for k = (t + 1), . . . ,min(m,n). Therefore, the minimum singular values

σ̇k in the set {σ̇k | k = 1, . . . , t} are numerically zero, while the minimum singular

values in the set { σ̇k | k = (t + 1), . . . ,min(m,n) } are non-zero. A large positive

change between ρ̇t and ρ̇t+1 is expected, therefore δρ̇t is expected to be large and

positive.

The degree of the GCD is therefore given by

t = argi max{δρ̇i}

= argi max{ρ̇i+1 − ρ̇i}

= argi max

{
log10

(
σ̇i
σ̇i+1

)}
. (3.17)

3.2.2 The Degree of the GCD by QR Decomposition

The computation of the degree of the GCD by SVD is computationally expensive for

polynomials in both the power basis and Bernstein basis. Instead, a method which utilises

the QR decomposition can be used to similar effect, but with the advantage that updating

and downdating can be applied for polynomials in the power basis. This does not extend

to polynomials in the Bernstein basis, however this discussion is saved for Section 3.2.4.

The QR decomposition of the kth subresultant matrix is given by

Sk (f, g) = Qk

[
R1,k

0k−1

]
,

where the matrix Qk
(ii) ∈ R(m+n−k+1)×(m+n−k+1) is orthogonal, the matrix R1,k ∈

R(m+n−k+1)×(m+n−k+1) is upper triangular and 0k−1 ∈ R(k−1)×(m+n−k+1) is a zero ma-

trix.

Since the rank of Sk(f, g) is equal to the rank of R1,k, two methods for the compu-

tation of the degree of the GCD can be derived from the entries of the upper triangular

matrix R1,k. Firstly, if a diagonal entry of R1,k is zero, then the matrix is rank deficient.

However, in the context of floating-point computations and inexact polynomials it must

be determined whether a value 0 + ε (for some minor perturbation ε) is numerically zero

or non-zero. Secondly, a zero-row in R1,k is indicative of rank deficiency in both R1,k and

Sk(f, g). Again, it must be determined whether the rows of R1,k are numerically zero, in

which case R1,k is rank deficient, or non-zero, in which case R1,k is of full rank.

(ii) Qk is not to be confused with Q̂k used in the definition of the kth subresultant matrix
D−1
m+n−kTk(f, g)Q̂k or the diagonal matrix Qn used in polynomial convolution.

78

The two methods for the computation of the degree of the GCD derived from the QR

decomposition are now described:

Degree Computation 3 (DC3) : The degree computation 3 (DC3) method makes

use of the diagonal entries of R1,k. The ratio of the maximum diagonal entry of R1,k

to the minimum diagonal entry of Rk is given by

ρ̃k = log10

(
max{ |R1,k(i, i)| | i = 1, . . . ,m+ n− 2k + 2 }
min{ |R1,k(i, i)| | i = 1, . . . ,m+ n− 2k + 2 }

)
for k = 1, . . . ,min(m,n).

The value ρ̃k is finite when R1,k is nonsingular, since min{R1,k(i, i) | i =

1, . . . ,m + n − k + 1} is non-zero. However, when R1,k is singular, ρ̃k is infinite,

since min{R1,k(i, i) | i = 1, . . . ,m + n − k + 1 } = 0. When the polynomials f

and g are inexact and the QR decomposition is computed in a floating-point en-

vironment, it can be assumed that none of the matrices R1,k are exactly singular.

Instead, a large value ρ̃k is indicative of R1,k being numerically singular and the two

polynomials having a common divisor of degree k. When ρ̃k is small then R1,k is

nonsingular.

Let

δρ̃i = ρ̃i − ρ̃i+1 for i = 1, . . . ,min(m,n)− 1.

The maximum positive change occurs between ρ̃t and ρ̃t+1 since ρ̃t is an infinite (or

very large) value and ρ̃t+1 is a finite (or significantly smaller) value. The degree of

the GCD is therefore given by

t = argi max{δρ̃i}

= argi max{ρ̃i − ρ̃i+1}.

Degree Computation 4 (DC4) : The degree computation 4 (DC4) method considers

the norms of the rows of R1,k in the computation of the degree of the GCD. Let

R1,k(i, :) denote the set of entries of the ith row of the matrix R1,k. The ratio ρ̂k
is defined as the ratio of the maximum 2-norm to the minimum 2-norm of the rows

R1,k(i, :), that is, ρ̂k is given by

ρ̂k = log10

(
max{ ‖R1,k(i, :)‖2 | i = 1, . . . ,m+ n− 2k + 2}
min{ ‖R1,k(i, :)‖2 | i = 1, . . . ,m+ n− 2k + 2 }

)
, for k = 1, . . . ,min(m,n).

If a row of R1,k is numerically zero, then ρ̂k is large since

lim
x→∞

log10(x) =∞.

Therefore, the matrix R1,k is classified as numerically singular if ρ̂k is large and

nonsingular if ρ̂k is significantly smaller than infinity. Let

δρ̂i = ρ̂i − ρ̂i+1 for i = 1, . . . ,min(m,n)− 1.

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 79

It follows that t is given by

t = argi max{δρ̂i}

= argi max{ρ̂i − ρ̂i+1}.

For two polynomials in the power basis, the QR decomposition of each of the subre-

sultant matrices is obtained in a more computationally efficient manner than the singular

values by SVD. The QR decomposition of the first subresultant matrix is computed at a

cost of n3, and the QR decomposition of each subsequent subresultant matrix only requires

two QR downdate operations at a cost of n2, since each subsequent subresultant matrix is

given by the removal of two columns and one row from the previous matrix. However, this

does not extend to subresultant matrices of polynomials in Bernstein form since the entries

in D−1
m+n−kTk(f, g)Q̂k are different to the entries found in D−1

m+n−k−1Tk+1(f, g)Q̂k+1.

3.2.3 The Degree of the GCD by Residuals

It has already been stated that the computation of the degree of the AGCD reduces to

the determination of the index of the last numerically rank deficient subresultant matrix.

When a subresultant matrix is rank deficient there is at least one column which lies in the

space spanned by the remaining columns, and when a matrix is numerically rank deficient

a column lies in the space spanned by the remaining columns with a minimal residual.

Since this work deals with inexact polynomials defined in a floating-point environment,

it is assumed that the subresultant matrices are never rank-deficient, but a subset are

numerically rank deficient.

If the kth subresultant matrix Sk(f, g) is numerically rank deficient, a column ck,q of

Sk(f, g) lies in the space spanned by the remaining columns and the subresultant matrix

with the qth column removed is denoted Ak,q(f, g).

Degree Computation 5 (DC5) : The degree computation 5 (DC5) method uses a

set of residuals associated with the subresultant matrices to determine whether they

are singular or nonsingular. The residuals { rk,i | i = 1, . . . ,m+ n− 2k + 2 } are

computed by the least squares solution of the approximate linear algebraic equations

Ak,i (f, g) xk,i ≈ ck,i for i = 0, . . . ,m+ n− 2k + 1

and are given by

rk,i = ‖ck,i −Ak,i (f, g) xk,i‖ for i = 0, . . . ,m+ n− 2k + 1. (3.18)

An efficient method for the computation of xk,i utilises the QR decomposition of

Sk(f, g), which can be updated for the removal of each column ck,i.

The minimum residual r̃k associated with the kth subresultant matrix is given by

r̃k = min{rk,i | i = 0, . . . ,m+ n− 2k + 1} k = 1, . . . ,min(m,n). (3.19)

80

If r̃k is large, then the columns of Sk(f, g) are linearly independent and Sk(f, g) is

of full rank (nonsingular). Alternatively, if r̃k is numerically zero, then there is a

column in Sk(f, g) which is nearly linearly dependent on the remaining columns and

Sk(f, g) is numerically singular.

Let ρ̆k denote the log of the minimum residual r̃k

ρ̆k = log10 (r̃k) for k = 1, . . . ,min(m,n)

and let

δρ̆i = ρ̆i+1 − ρ̆i
= log10 (r̃i+1)− log10 (r̃i)

= log10

(
r̃i+1

r̃i

)
for k = 1, . . . ,min(m,n)− 1,

then the degree of the GCD is given by

t = argi max{δρ̆i}

= argi max {ρ̆i+1 − ρ̆i}

= argi max {log10 (r̃i+1)− log10 (r̃i)}

= argi max

{
r̃i+1

r̃i
| i = 1, . . . ,min(m,n)− 1

}
. (3.20)

That is, t is equal to the value of k for which the change between r̃k and r̃k+1 is

maximal, as this indicates that Sk(f, g) is numerically singular while Sk+1(f, g) is

nonsingular.

Several methods for the computation of the degree of the GCD of two univariate

polynomials have been considered. These measures are based on the SVD and the QR

decomposition of the Sylvester matrix or the set of subresultant matrices. Examples will

show that methods which make use of the complete set of subresultant matrices give better

results than methods which only consider the Sylvester matrix. However, these methods

are typically more computationally expensive.

It was stated that methods which make use of the QR decomposition are faster than

computing the SVD for each subresultant matrix. This is due to the ability to update a

QR decomposition to take into account row and column removals. It will now be shown

why QR updating is not applicable to the sequence of subresultant matrices of polynomials

in Bernstein form.

3.2.4 The QR Decomposition of the Sequence of Subresultant Matrices

Methods for computing the degree of the GCD based on the QR decomposition are pre-

ferred over methods based on SVD. This is because the QR decomposition can be updated

to account for row and column deletion, whereas the SVD must be computed from scratch.

Many algorithms for QR decomposition exist, such as Gram-Schmidt, Householder and

Givens. These algorithms are described in detail in [36, Chapter 5.2]. The work in this

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 81

Algorithm 3: The degree of an AGCD of two polynomials using the method of
residuals

Input: Two polynomials f(x) and g(x)
1 begin
2 for k = 1, . . . ,min(m,n) % for each subresultant Sk(f, g) do
3 Perform any preprocessing on the subresultant matrix
4 for j = 1, . . . ,m+ n− 2k + 2 % for each column j of the subresultant

Sk(f, g) do
5 Define the removed column ck,j ← Sk(f, g)×Mj

6 Define the matrix of the remaining columns of Sk(f, g) as Ak,j(f, g)
7 Calculate the residual rk,j by the least squares solution of (3.18)

8 end
9 Get minimum residual r̃k of the set {rk,j}

10 end
11 Using the set of minimal residuals {r̃k} compute the degree of the GCD

12 end
Output: t the degree of the AGCD of f(x) and g(x)

thesis uses the standard Matlab qr() function which makes use of Householder trans-

formations.

The QR decomposition of Sk(f̂(x), ĝ(x)) can be updated for row and column dele-

tion, and this is typically faster than computing the QR decomposition from scratch.

This is advantageous when considering the QR decomposition of the sequence of subre-

sultant matrices containing coefficients of two polynomials in the power basis, and where

Sk+1(f̂(x), ĝ(x)) is given by the removal of two columns and one row from Sk(f̂(x), ĝ(x)).

The entries of the subresultant matrix Sk(f̂(x), ĝ(x)) for two polynomials in Bernstein

form differ from the entries of Sk+j(f̂(x), ĝ(x)), and it was described in Section 3.1.3 how

the matrix Sk+1(f̂(x), ĝ(x)) can be obtained by a transformation of Sk(f̂(x), ĝ(x)).

The QR decomposition of Sk+1(f̂(x), ĝ(x)) reduces to the QR decomposition of

QSk+1
RSk+1

= Am+n−kSk

(
f̂(x), ĝ(x)

)
B̂k, (3.21)

where Am+n−k and B̂k are defined in Section 3.1.3. Given the QR decomposition of

Sk(f̂(x), ĝ(x)) = QSkRSk , the QR decomposition of (3.21) should be simpler to compute

than the QR decomposition from scratch.

Let the matrix Am+n−k be written as

Am+n−k = A∗m+n−kIA

=


m+n−k
m+n−k

m+n−k
m+n−k−1

. . .

m+ n− k


[
Im+n−k,m+n−k 0m+n−k,1

]
,

where A∗m+n−k ∈ R(m+n−k)×(m+n−k) is given by

A∗m+n−k = diag
[

m+n−k
m+n−k ,

m+n−k
m+n−k−1 , . . . , m+n−k

1

]
.

82

Let B̂k be written as

B̂k = IBB
∗
k

[
Bn−k

Bm−k

]
=


In−k,n−k 0n−k,m−k

01,n−k 01,m−k

0m−k,n−k Im−k,m−k

01,n−k 01,m−k


[
B∗n−k

B∗m−k

]
,

where B∗m−k ∈ R(m−k)×(m−k) and B∗n−k ∈ R(n−k)×(n−k) are given by

B∗m−k = diag
[

m−k
m−k ,

m−k−1
m−k , . . . , 1

m−k

]
,

B∗n−k = diag
[

n−k
n−k ,

n−k−1
n−k , . . . , 1

n−k

]
.

Then (3.21) is written as

A∗m+n−kIAQSkRSkIB

[
B∗n−k

B∗m−k

]
. (3.22)

IA and IB have the effect of removing one row and two columns from Sk(f̂(x), ĝ(x)),

so the QR decomposition of IAQSkRSkIB can be obtained by QR update and the QR

decomposition with updates is defined as

Q2R2 = (IAQSkRSkIB) .

The expression (3.22) is therefore reduced to

A∗m+n−kQ2R2B
∗
k.

Since B∗k is orthogonal, the matrix product Q2R2B
∗
k is given by Q2R3, where R3 is upper

triangular and the ith column of R3 is given by the ith column of R2 multiplied by the

ith diagonal entry of B∗k

A∗m+n−kQ2R3.

This is almost in the form of a QR decomposition. However, the pre-multiplication by

A∗m+n−k must be considered and the QR decomposition of A∗m+n−kQ2R3 must be com-

puted from scratch. This proves that the problem of determining the ranks of the sub-

resultant matrices of two polynomials in Bernstein form is much more involved than the

equivalent problem for two polynomials in the power basis.

3.2.5 Exceptions to the Method of Computing the Degree of the AGCD

The degree of the GCD of two polynomials can be computed by the five methods DC1 -

DC5. Four of these methods, DC2 - DC5, are similar, in that each computes the degree

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 83

of the GCD as

t = argi max{ δρi | i = 1, . . . ,min(m,n)− 1 }, (3.23)

where δρi is defined for each of the methods. Under the following two conditions under

which the degree of the GCD cannot be computed by these methods and it is necessary

to employ alternative methods:

1. When the two polynomials f and g are coprime, the degree t of the GCD is equal to

zero. However, the computed value of t given by argi max{δρi} and this is limited

to the range 1, . . . ,min(m,n)− 1.

In the square-free factorisation algorithm (Algorithm 1), the GCD of a polynomial

and its derivatives is required. Only when fi is square-free are the polynomials fi

and f
′
i coprime, at which point the algorithm terminates.

2. The second condition under which the described methods fail to compute the degree

of the GCD occurs when the GCD, d̂(x), is equal to one of the input polynomials to

within a scalar multiplier, and t = min(m,n).

This can occur in the square-free factorisation algorithm when fi of degree mi has

only one root of multiplicity mi. The GCD of fi and its derivative f
′
i is equal to f

′
.

These two situations can often be anticipated in the square-free factorisation algorithm,

since bounds on the degree of each GCD can be determined before each computation. This

will be described in more detail in Chapter 4.

For the computation of the GCD of two arbitrary polynomials, a threshold φ could

instead be used such that

if max
k=1,...,min(m,n)−1

{δρk} < φ

then t = 0 or t = min(m,n).

It must then be determined whether all subresultant matrices {Sk(f, g)} are singular

(t = 0) or nonsingular (t = min(m,n)), and this would require a threshold τ such that t

is given by

t =

0 If max{ρk} < τ

min(m,n) otherwise.

It is possible that the degree t of the GCD cannot be determined by any metric de-

scribed in this section, even with polynomials in preprocessed form. The set of values

{ρk | k = 1, . . . ,min(m,n)} may span several orders of magnitude, with the first, ρ1,

indicative of a singular subresultant matrix and the last, ρmin(m,n), indicative of a nonsin-

gular matrix. If there is no significant change between any two values ρk and ρk+1 then it

is not possible to determine if a subset of the subresultant matrices are singular. In these

cases, it may be necessary to consider a threshold τ , such that if ρk > τ , then Sk(f, g) is

nonsingular.

84

The methods described above are all derivative of either the QR decomposition or

the SVD of the set of subresultant matrices. In the following example, the singular values

{σk,i | k = 1, . . . ,min(m,n); i = 1, . . . ,m+n−2k+2} and the diagonal entries {R1,k(i, i) |
k = 1, . . . ,min(m,n); i = 1, . . . ,m+ n− 2k+ 2} will be considered. It will be shown how

both methods generally give the same result, but a different pattern amongst the two sets

of values is observed.

Example 3.2.1. Consider the Bernstein form of the polynomials f̂(x) and ĝ(x) of degrees

m = 39 and n = 42 respectively, whose factorisations are given by

f̂(x) = (x− 5.8265747784)7(x− 1.2435487954)5(x− 0.85487987)(x− 0.26)2

(x− 0.217612343)3(x− 0.157981)9(x+ 0.27564657)5(x+ 1.56)7

ĝ(x) = (x− 1.2435487954)5(x− 0.99102445)5(x− 0.4579879)9(x− 0.217612343)3

(x− 0.157981)9(x+ 0.12)4(x+ 1.56)7.

The GCD of f̂(x) and ĝ(x), d̂t(x) of degree t = 24, has a factorised form given by

d̂t(x) = (x− 1.2435487954)5(x+ 1.56)7(x− 0.217612343)3(x− 0.157981)9.

Noise is added to the coefficients of f̂(x) and ĝ(x) such that the coefficients of the inexact

polynomials f(x) and g(x) are given by

ai = âi + rf,iâiεf,i and bj = b̂j + rg,j b̂jεg,j , (3.24)

where { rf,i | i = 0, . . . ,m } and { rg,j | j = 0, . . . , n } are uniformly distributed random

variables in the interval [−1, 1], and { εf,i | i = 0, . . . ,m } and { εg,j | j = 0, . . . , n } are

uniformly distributed random variables in the interval
[
10−12, 10−10

]
. The polynomials

f(x) and g(x) are preprocessed by methods which are described in a later section. The co-

efficients of the unprocessed polynomials f(x) and g(x), and the preprocessed polynomials

f̃1(ω) and g̃1(ω) are plotted in Figure 3.1. The singular values {σk,i} of the preprocessed

5 10 15 20 25 30 35 40
-15

-10

-5

0

5

10

Figure 3.1: The coefficients of both the unprocessed polynomials f(x) (�) and g(x) (•)
and the preprocessed polynomials f̃1(ω) (�) and α1g̃1(ω) (•) in Example 3.2.1

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 85

subresultant matrices {Sk(f̃1(ω), α1g̃1(ω))} are plotted in Figure 3.2i. Diagonal entries of

the matrices {R1,k} are plotted in Figure 3.2ii, where R1,k is obtained by the QR decom-

position of the kth preprocessed subresultant matrix. Both methods reveal the degree of

the GCD as t = 24, but have significantly different sets of values.

5 10 15 20 25 30 35
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(i) The singular values {σk,i} of the
preprocessed subresultant matrices

{Sk(f̃k(ω), αkg̃k(ω))}

5 10 15 20 25 30 35
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(ii) The diagonal entries of the matrices
{R1,k} obtained by the QR decomposition of

subresultant matrices {Sk(f̃k(ω), αkg̃k(ω))}

Figure 3.2: The singular values of {Sk} and the diagonal entries of {R1,k} from the QR
decomposition of {Sk} in Example 3.2.1

�

This section has considered methods for the computation of the degree of the GCD

(or AGCD) of two univariate polynomials in Bernstein form. Several methods based on

either the QR decomposition or the SVD were considered.

In Example 3.2.1 there is a clear separation between the numerically zero and non-

zero singular values in the decomposition of each subresultant matrix Sk for k =

1, . . . ,min(m,n) in the subresultant matrix sequence. However, there is not a distinct

separation between the numerically zero and non-zero diagonals of the matrices {R1,k}
for k = 1, . . . , 12. The remainder of this thesis makes frequent use of the singular value

decomposition for the computation of the degree of the AGCD of two inexact polynomials.

3.3 The Optimal Variant of the Subresultant Matrices for

the Computation of the Degree of the GCD

Five subresultant matrix variants were considered in Section 3.1.4, and methods for the

computation of the degree of the GCD were considered in Section 3.2. Now, by a set of

examples, it will be shown that D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k is typically the optimal variant

of the subresultant matrix for use in the computation of the degree of the GCD and the

approximation of its coefficients. The chosen examples are non trivial and include poly-

nomials whose coefficients span many orders of magnitude, and are of signifcant degree.

However, the examples included are not exhaustive, and the stated optimality is in relation

to the examples shown, and should no rigorous proof of optimality is given.

86

Theoretically, the rank of each variant is equal, that is,

rank
(
D−1m+n−kTk

(
f̂(x), ĝ(x)

)
Q̂k

)
= rank

(
D−1m+n−kTk

(
f̂(x), ĝ(x)

))
= rank

(
Tk

(
f̂(x), ĝ(x)

)
Q̂k

)
= rank

(
Tk

(
f̂(x), ĝ(x)

))
= rank

(
S̆k

(
f̂(x), ĝ(x)

))
.

However, in practical problems, the numerical rank of these matrices can differ, and in

this set of examples some variants are better suited to the computation of the degree of

the GCD. This does not discount the other variants which under preprocessing and with

infinite precision, are equally valid choices.

Example 3.3.1 considers scaling the coefficients of the polynomial f̂(x) in the first par-

tition of each subresultant matrix variant due to their coefficient multipliers. The scaling

effect of the coefficient multipliers across both partitions of the subresultant matrices are

then considered in Example 3.3.2, where heat maps of the entries of f̂(x) and ĝ(x) for

each of the subresultant matrix variants are plotted. Finally, Example 3.3.3 considers the

singular values of the set of subresultant matrices for each subresultant matrix variant as

a method for the determination of the degree of the GCD of two polynomials.

Example 3.3.1. Let f̂(x) and ĝ(x) be polynomials of degree m = 5 and n = 11, and

consider the scaling effect on the polynomial coefficients âi due to the coefficient multipliers

found in the entries in the first subresultant matrix for all variants. This example considers

the scaling of six coefficients âi for i = 0, . . . , 5, in each of the eleven columns { cj | j =

0, . . . , 10 } of the four subresultant matrix variants. The first variant given by Tn−k(f̂(x))

is omitted in this example since the coefficient multiplier of entries containing âi is equal for

all columns. The four variants considered are (i) D−1
m+n−kTn−k(f̂(x)), (ii) Tn−k(f̂(x))Qn−k,

(iii) D−1
m+n−kTn−k(f̂(x))Qn−k and (iv) D−1

m+n−kT̆n−k(f̂(x))Qn−k.

In Figures 3.3i to 3.3iv the ith plotted line represents the scaling of coefficient âi due

to coefficient multipliers across each column of the four subresultant matrix variants. For

instance, Figure 3.3i plots the coefficient multipliers which multiply any one coefficient âi

in D−1
m+n−kTn−k(f̂(x)), that is, the coefficient multipliers

{
(mi)

(m+n−k
i+j)

| j = 0, . . . , n− k
}

are plotted for each âi. From Figure 3.3i it can be seen that the entries in the middle

columns are of significantly smaller magnitude than those in the surrounding columns,

while in Figure 3.3ii the opposite is true and scaling due to the coefficient multipliers in

the middle columns is significantly larger than in the remaining columns.

The optimal form of scaling is given by the coefficient multipliers in the variant

D−1
m+n−kTn−k(f̂(x))Qn−k as seen in Figure 3.3iii, where coefficients are scaled over the

unit interval.

Example 3.3.2. This example considers the scaling (due to the coefficient multipliers)

of the coefficients of f̂(x) and ĝ(x) in the entries of the fifth subresultant matrix for each

of the four variants. In this example the arbitrary polynomials f̂(x) and ĝ(x) of degrees

m = 5 and n = 15 are considered.

Heat maps of the coefficient multipliers in the entries of the fifth subresultant ma-

trix of the sets (i) {Tk(f̂(x), ĝ(x))}, (ii) {D−1
m+n−kTk(f̂(x), ĝ(x))}, (iii) {Tk(f̂(x), ĝ(x))Q̂k}

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 87

0 1 2 3 4 5 6 7 8 9 10
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(i) D−115 T10(f̂(x))

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

(ii) T10(f̂(x))Q10

0 1 2 3 4 5 6 7 8 9 10
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(iii) D−115 T10(f̂(x))Q10

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

(iv) D−115 T̆10(f̂(x))Q10

Figure 3.3: Scaling of the coefficients { âi | i = 0, . . . , 5 } in the first partition of four
subresultant matrix variants where k = 5 in Example 3.3.1

and (iv) {D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k}. are plotted in Figure 3.4 In Figure 3.4i the co-

efficient multipliers in the second partition are significantly larger than the coefficient

multipliers in the first partition for the variant Tk(f(x), g(x)), since n >> m. The coeffi-

cient multipliers in both partitions are of similar magnitude for D−1
m+n−kTk(f̂(x), ĝ(x))

and Tk(f̂(x), ĝ(x))Q̂k, but Figure 3.4ii and Figure 3.4iii show that some entries in

D−1
m+n−kTk(f̂(x), ĝ(x)) and Tk(f̂(x), ĝ(x))Q̂k are subject to more scaling than others be-

cause their coefficient multipliers are larger.

From Figure 3.4iv it can be seen that the optimal form of scaling is achieved by the

subresultant matrix variant given by D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k, where non-zero entries in

both partitions are equivalently scaled.

Example 3.3.3. Consider the Bernstein forms of the exact polynomials f̂(x) and ĝ(x) of

88

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

0

1.18

2.02

2.66

2.66

2.02

1.18

0

-Inf

-Inf

0

1.18

2.02

2.66

2.66

2.02

1.18

0

3.14

3.48

3.7

3.81

3.81

3.7

3.48

3.14

3.14

3.48

3.7

3.81

3.81

3.7

3.48

3.14

(i) Tk(f̂(x), ĝ(x))

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

-1.75

-2.56

-3.64

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-1.2

-1.38

-1.75

-2.26

-2.94

-3.9

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-2.08

-2.05

-2.26

-2.64

-3.2

-4.06

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-2.75

-2.56

-2.64

-2.9

-3.36

-4.11

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-3.26

-2.94

-2.9

-3.06

-3.41

-4.06

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-3.64

-3.2

-3.06

-3.11

-3.36

-3.9

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-3.9

-3.36

-3.11

-3.06

-3.2

-3.64

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-4.06

-3.41

-3.06

-2.9

-2.94

-3.26

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-4.11

-3.36

-2.9

-2.64

-2.56

-2.75

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-4.06

-3.2

-2.64

-2.26

-2.05

-2.08

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-3.9

-2.94

-2.26

-1.75

-1.38

-1.2

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-3.64

-2.56

-1.75

-1.2

-Inf

-Inf

-1.2

0

-0.51

-1.08

-1.08

-0.51

0

0

-0.03

-0.06

-0.09

-0.12

-0.16

-0.2

-0.25

-0.3

-0.36

-0.43

-0.51

-0.6

-0.73

-0.9

-0.9

-0.73

-0.6

-0.51

-0.43

-0.36

-0.3

-0.25

-0.2

-0.16

-0.12

-0.09

-0.06

-0.03

0

(ii) D−1m+n−kTk(f̂(x), ĝ(x))

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

0.7

1

1

0.7

0

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

1.04

1.74

2.04

2.04

1.74

1.04

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

1.74

2.44

2.74

2.74

2.44

1.74

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

2.22

2.22

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

2.52

2.52

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

2.66

2.66

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

2.66

2.66

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

2.52

2.52

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

2.22

2.22

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

1.74

2.44

2.74

2.74

2.44

1.74

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

1.04

1.74

2.04

2.04

1.74

1.04

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

0

0.7

1

1

0.7

0

0

1.18

2.02

2.66

2.66

2.02

1.18

0

-Inf

-Inf

0

1.18

2.02

2.66

2.66

2.02

1.18

0

2.92

3.22

3.22

2.92

3.22

3.52

3.52

3.22

3.36

3.66

3.66

3.36

3.36

3.66

3.66

3.36

3.22

3.52

3.52

3.22

2.92

3.22

3.22

2.92

3.14

3.48

3.7

3.81

3.81

3.7

3.48

3.14

3.14

3.48

3.7

3.81

3.81

3.7

3.48

3.14

(iii) Tk(f̂(x), ĝ(x))Q̂k

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

-1.08

-1.75

-2.56

-3.64

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-1.22

-1.9

-2.86

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-1.46

-2.32

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-1.14

-1.89

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-1.54

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-0.98

-1.24

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-1.24

-0.98

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-1.54

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-1.89

-1.14

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-2.32

-1.46

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-2.86

-1.9

-1.22

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-Inf

-3.64

-2.56

-1.75

-1.08

-1.2

-Inf

-Inf

-1.2

0

-0.51 -0.16

-0.34

-0.71

-0.34

-0.31

-0.52

-0.9

-0.53

-0.34

-0.42

-0.69

-0.74

-0.42

-0.39

-0.54

-0.89

-0.54

-0.39

-0.44

-0.69

-0.69

-0.44

-0.39

-0.54

-0.89

-0.54

-0.39

-0.42

-0.74

-0.69

-0.42

-0.34

-0.53

-0.9

-0.52

-0.31

-0.34

-0.71

-0.34

-0.16 -0.51

0

0

-0.03

-0.06

-0.09

-0.12

-0.16

-0.2

-0.25

-0.3

-0.36

-0.43

-0.51

-0.6

-0.73

-0.9

-0.9

-0.73

-0.6

-0.51

-0.43

-0.36

-0.3

-0.25

-0.2

-0.16

-0.12

-0.09

-0.06

-0.03

0

(iv) D−1m+n−kTk(f̂(x), ĝ(x))Q̂k

Figure 3.4: The magnitude of the coefficient multipliers in the fifth subresultant matrix
of the four subresultant matrix variants in Example 3.3.2

degrees m = 25 and n = 17, whose factorised forms are given by

f̂(x) = (x− 1.46)2(x− 1.37)3(x− 0.82)3(x− 0.75)3(x− 0.56)8(x− 0.1)3(x+ 0.27)3

ĝ(x) = (x− 2.12)(x− 1.37)3(x− 1.2)3(x− 0.99)4(x− 0.75)3(x− 0.56)8(x− 0.1)2

and whose GCD d̂(x, y) of degree t = 16 is given by

d̂(x) = (x− 1.37)3(x− 0.75)3(x− 0.56)8(x− 0.1)2.

Random noise is added to the coefficients of f̂(x) and ĝ(x) such that the coefficients of the

inexact polynomials f(x) and g(x) are given by (3.24), where { rf,i | i = 0, . . . ,m } and

{ rg,j | j = 0, . . . , n } are uniformly distributed random variables in the interval [−1, 1],

and { εf,i | i = 0, . . . ,m } and { εg,j | j = 0, . . . , n } are uniformly distributed random

variables in the interval
[
10−12, 10−10

]
.

The singular values {σk,i | k = 1, . . . ,min(m,n); i = 1, . . . ,m + n − 2k + 2 }
of the sets of subresultant matrices (i) {Tk(f(x), g(x))}, (ii) {D−1

m+n−kTk(f(x), g(x))},
(iii) {Tk(f(x), g(x))Q̂k} and (iv) {D−1

m+n−kTk(f(x), g(x))Q̂k} are plotted in Figures 3.5i

to 3.5iv.

Two methods, DC1 and DC2, can be used to determine the degree of the AGCD

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 89

5 10 15 20
-25

-20

-15

-10

-5

0

5

(i) {Tk (f(x), g(x))}

5 10 15 20
-25

-20

-15

-10

-5

0

5

10

(ii) {Tk (f(x), g(x)) Q̂k}

5 10 15 20
-35

-30

-25

-20

-15

-10

-5

0

(iii) {D−1m+n−kTk (f(x), g(x))}

5 10 15 20
-30

-25

-20

-15

-10

-5

0

(iv) {D−1m+n−kTk (f(x), g(x)) Q̂k}

Figure 3.5: The singular values {σk,i} of each subresultant matrix for each of the four
subresultant matrix variants in Example 3.3.3

from the SVD of the set of subresultant matrices in this example. These methods were

described in Section 3.2.1. From Figures 3.5i to 3.5iii, the degree of the AGCD cannot

be determined by either of the DC1 or DC2 methods and there is no clear, discernible

separation between the non-zero and numerically zero singular values of theses subresultant

matrices. However, in Figure 3.5iv the non-zero and numerically zero singular values of the

subresultant matrices {Sk (f(x), g(x))} are shown to be well separated and the degree of

the AGCD is correctly determined as t = 16 by DC1 due to the separation of the singular

values of the first subresultant matrix.

In this example, the degree of the AGCD is not correctly determined by the DC2

method when only considering the set of minimum singular values {ρ̇k = log10 (σ̇k)}
of any of the four variants, since max{δρ̇k} (defined in (3.16)) is small for all k =

1, . . . ,min(m,n)− 1.

�

90

Example 3.3.4. This example is similar to the previous example, but here the degree m

of f̂(x) is significantly larger than the degree n of ĝ(x), where f̂(x) and ĝ(x) are given by

f̂(x) = (x− 1.46)(x− 0.82)30(x− 0.7515678)2(x− 0.37)5(x− 0.10122344)×

(x+ 2.27564657)20

ĝ(x) = (x− 1.2222222)(x− 0.99102445)5(x− 0.7515678)2(x− 0.37)5(x− 0.12)5,

which are of degrees m = 59 and n = 18 respectively. The GCD d̂t(x) of degree t = 7 is

given by

d̂t(x) = (x− 0.7515678)2(x− 0.37)5.

Noise is added to the coefficients of f̂(x) and ĝ(x) as in (3.24), where { εf,i | i = 0, . . . ,m }
and { εg,j | j = 0, . . . , n } are uniformly distributed random variables in the interval

[10−10, 10−9].

The singular values of each of the sets of subresultant matrices (i) {Tk(f(x), g(x))},
(ii) {D−1

m+n−kTk(f(x), g(x))}, (iii) {Tk(f(x), g(x))Q̂k} and (iv) {D−1
m+n−kTk(f(x), g(x))Q̂k}

are plotted in Figures 3.6i to 3.6iv.

The singular values of the set of subresultant matrices {Tk(f(x), g(x))} are plotted in

Figure 3.6i. From the set {σk,i | k = 1, . . . ,min(m,n); i = 1, . . .m + n − 2k + 2}, this

variant is ill-suited to the purpose of computing the degree of the AGCD by analysis of the

set of singular values. There is a clear separation between a subset of large singular values

of magnitude in the interval [105, 1010] and the remaining singular values of magnitude less

than one. However, this separation is due to poor scaling of the two partitions Cn−k(f(x))

and Cm−k(g(x)), and is not indicative of numerical rank deficiency in all of the subresultant

matrices.

There is however some suggestion of separation between the numerically zero and non-

zero singular values of the set of subresultant matrices {D−1
m+n−kTk(f(x), g(x))} seen in

Figure 3.6ii. Recall from the DC2 method that the degree of the AGCD is given by the

index of the maximum change in magnitude of the minimum singular values, that is, the

index of the maximum entry of the set {δρ̇i i = 1, . . . ,min(m,n) − 1}. Where each δρ̇i,

defined in (3.16), is given by δρ̇i = ρ̇i+1 − ρ̇i and ρ̇i = log10(σ̇i). The maximum entry of

the set {δρ̇i} is given by δρ̇7. Therefore, the degree of the AGCD is correctly determined

to be t = 7. However, δρ̇7 is only marginally larger than the other entries in the set {δρ̇i}.
The subresultant matrices in the set {D−1

m+n−kTk(f(x), g(x))Q̂k} have singular values

with a more significant separation found between the set of non-zero and numerically zero

values {σk,i | k = 1, . . . ,min(m,n); i = 1, . . . ,m+n− 2k+ 2}. These singular values are

plotted in Figure 3.6iv.

The set of minimum singular values can be used for the computation of the degree

of the GCD as described in the DC2 method. The minimum singular values are denoted

{σ̇k} The maximum entry in the set {δρ̇i} is given by δρ̇7 and the degree of the AGCD

is given by t = 7. There is also a separation between the numerically zero and non-zero

singular values of the first subresultant matrix S1(f(x), g(x)). By the DC1 method, the

degree of the AGCD is given by the numerical rank loss of S1(f(x), g(x)), which also gives

the degree of the AGCD as t = 7. The degree of the AGCD can therefore be determined

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 91

by several methods which use the singular values of this set of subresultant matrices.

Finally, approximations of the coefficients of the cofactor polynomials ût(x) and v̂t(x)

and the AGCD d̂t(x) are computed from the tth subresultant matrix for each subresultant

matrix variant. The errors between the approximations ut(x), vt(x) and dt(x) and the

exact polynomials ût(x), v̂t(x) and d̂t(x) are given in Table 3.1. These approximations

are obtained by the least squares solution to a system of equations derived from the tth

subresultant matrix, a method which is described in Section 3.5. Given that the degree

of the AGCD is correctly computed, both the variants of subresultant matrix given by

D−1
m+n−tTt(f(x), g(x)) and D−1

m+n−tTt(f(x), g(x))Q̂t return approximations which are of

similar accuracy.

Method Tt(f, g) D−1
m+n−tTt(f, g) Tt(f, g)Q̂t D−1

m+n−tTt(f, g)Q̂t

Error ût(x) - 4.616148e− 08 - 4.615582e− 08

Error v̂t(x) - 1.749660e− 07 - 1.749654e− 07

Error d̂t(x) - 1.988072e− 07 - 1.988315e− 07

Average Error - 1.399782e− 07 - 1.399843e− 07

Table 3.1: Error in the approximations of ût(x), v̂t(x) and d̂t(x) in Example 3.3.4

Some precision has been lost when compared to the noise of the input polynomials, but

methods such as preprocessing the polynomials and computing the low rank approximation

of the subresultant matrix will yield improved results in later sections.

�

The five variants of the set of subresultant matrices are given by:

(i) {Tk(f̂(x), ĝ(x))},

(ii) {Tk(f̂(x), ĝ(x))Q̂k}

(iii) {D−1
m+n−kTk(f̂(x), ĝ(x))}

(iv) {D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k}

(v) {D−1
m+n−kT̃k(f̂(x), ĝ(x))Q̂k}

for k = 1, . . . ,min(m,n).

The SVD of the subresultant matrices of any of these variants can, in theory, be used

to determine the degree of the GCD or AGCD. In practice, however, there are three

situations in which some of the variants fail. These are (i) when noise is added to the

coefficients of f̂(x) and ĝ(x), (ii) when the degrees of one or both of the polynomials are

large and (iii) when the coefficients of f̂(x) and ĝ(x) span different ranges of magnitude.

It was shown in Example 3.3.3 that the optimal variant of the subresultant matrix

sequence is given by {D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k} due to the coefficient multipliers being of

similar magnitude across all entries in both partitions of each of the subresultant matrices.

This variant also exhibited the best separation between the numerically zero and non-zero

singular values of its SVD.

92

2 4 6 8 10 12 14 16 18
-25

-20

-15

-10

-5

0

5

10

(i) {Tk(f(x), g(x))}

2 4 6 8 10 12 14 16 18
-35

-30

-25

-20

-15

-10

-5

0

5

(ii) {D−1m+n−kTk(f(x), g(x))}

2 4 6 8 10 12 14 16 18
-15

-10

-5

0

5

10

15

20

(iii) {Tk(f(x), g(x))Q̂k}

2 4 6 8 10 12 14 16 18
-25

-20

-15

-10

-5

0

5

(iv) {D−1m+n−kTk(f(x), g(x))Q̂k}

Figure 3.6: The singular values {σk,i} of each subresultant matrix for each of the four
subresultant matrix variants in Example 3.3.4

The ratio of the entry of maximum magnitude to the entry of minimum magnitude in

the matrices of the subresultant matrix sequence {D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k} may still be

large. This could be caused by the coefficients of one polynomial being much larger than

the coefficients of the other. Alternatively, the degree of one polynomial may be signifi-

cantly larger than the other. It is therefore advantageous to preprocess the subresultant

matrices and methods of preprocessing are considered in the next section.

3.4 Preprocessing the Subresultant Matrices

The previous section described how it is advantageous to compute the degree of the GCD

of two polynomials f̂(x) and ĝ(x) from the sequence of subresultant matrices of the form

{Sk(f̂(x), ĝ(x)) = D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k}. The polynomials f̂(x) and ĝ(x) are pre-

processed for use in each subresultant matrix, which typically results in a more reliable

computation of the degree of the GCD and its coefficients with minimal additional com-

putational complexity.

In this section three preprocessing stages are developed and applied to the polynomials

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 93

used in the subresultant matrices. These preprocessing operations have previously been

developed for the subresultant matrices of two polynomials in the power basis in [69,70,72,

73], where preprocessing is only required once since the entries of each subresultant matrix

are equal. However, the subresultant matrices Sk(f̂(x), ĝ(x)) for k = 1, . . . ,min(m,n) of

two polynomials in Bernstein form have entries which depend on k, and the preprocessing

of each subresultant matrix is considered independently [9, 74]. This section summarises

the cited work, as well as taking further steps to reduce computational complexity.

The method of preprocessing in this section is defined for exact polynomials f̂(x) and

ĝ(x), but these same preprocessing operations can also be applied to inexact polynomials

f(x) and g(x), as in the examples at the end of the chapter.

The three preprocessing operations are now briefly described before being considered

in more detail:

1. Normalisation by Mean of Non-Zero Entries of the Subresultant Matrix

The coefficients of f̂(x) and ĝ(x) may span many orders of magnitude, and the en-

tries of the partition Cn−k(f̂(x)) may be much smaller or larger than the entries

of Cm−k(ĝ(x)). It is therefore necessary to scale the polynomials by the arithmetic

or geometric mean of their entries in their respective partitions of Sk(f̂(x), ĝ(x)).

The choice of normalisation method is discussed in [71], where the arithmetic mean,

geometric mean and 2-norm are considered. Division of non-zero entries by their

geometric mean is preferred, particularly in cases where the coefficients of the input

polynomials span many orders of magnitude. On first inspection, the geometric mean

and arithmetic mean of the non-zero entries in the partitions of the subresultant ma-

trices have a significantly more complicated expression than an equivalent Sylvester

matrix of two polynomials in the power basis. However, simplified expressions can

be derived. The polynomials normalised by the mean of the non-zero entries in the

kth subresultant matrix are denoted f̄k(x) and ḡk(x).

Since the polynomial GCD is defined within scalar multipliers, the GCD of the

normalised polynomials is equal to the GCD of the original forms:

GCD
(
f̂(x), ĝ(x)

)
∼ GCD

(
f̄k(x), ḡk(x)

)
,

where ∼ is an equivalence to within a non-zero scalar multiplier.

2. Scaling the Partitions of the kth Subresultant Matrix

The polynomial GCD is defined to within a scalar constant, so GCD(f̂(x), ĝ(x)) ∼
GCD(f̂(x), αĝ(x)). Similarly,

rank
(
Sk
(
f̄k(x), ḡk(x)

))
= rank

(
Sk
(
f̄k(x), αḡk(x)

))
,

so both forms can be used in the computation of the degree t of the GCD. However,

typically better results are obtained in the version where the two partitions are bal-

anced due to the inclusion of an optimised α for k = 1, . . . ,min(m,n). The optimal

value αk is chosen such that the non-zero entries in Cn−k(f̄k(x)) and Cm−k(αkḡk(x))

are of a similar order of magnitude. The computation αk requires the solution of a

linear programming problem for each subresultant matrix.

94

3. Change of Independent Variable

The independent variable x is replaced by the independent variable ω using the sub-

stitution x = θω . The non-zero parameter θ ∈ R is optimal when the coefficients of

the polynomials f̃k(ω) and g̃k(ω) are of similar orders of magnitude, and the differ-

ence between the entry of maximum magnitude and entry of minimum magnitude

in the kth subresultant matrix is minimised. As with αk, the optimal value of θk

is given by the solution of a linear programming problem, and both αk and θk are

therefore computed simultaneously using a combined linear programming problem.

3.4.1 Normalisation

The Arithmetic Mean of the Non-Zero Entries of the Subresultant Matrices

Preprocessing the polynomials f̂(x) and ĝ(x) in each subresultant matrix in the sequence

Sk(f̂(x), ĝ(x)) is computationally expensive, but it is necessary since the entries of each

subresultant matrix Sk(f̂(x), ĝ(x)) are dependent on k. This section therefore focuses on

efficient methods for of computing the arithmetic mean of non-zero entries contained in

the two partitions of the subresultant matrices.

Let Ak(f̂(x)) denote the arithmetic mean of the non-zero entries in the first partition

of the kth subresultant matrix, that is, the (n−k)th convolution matrix of the polynomial

f̂(x).

Proposition 1. The arithmetic mean of the non-zero entries in the first partition, Cn−k(f̂(x)),

of the kth subresultant matrix is given by

An−k

(
f̂(x)

)
=

1

(m+ 1)(n− k + 1)

n−k∑
j=0

m∑
i=0

âi
(
m
i

)(
n−k
j

)(
m+n−k
i−j

) (3.25)

and this can be simplified to the form

An−k

(
f̂(x)

)
=

m+ n− k + 1

(m+ 1)2(n− k + 1)

m∑
i=0

âi. (3.26)

Proof. The (n− k + 1) entries of the (i+ 1)th diagonal of the matrix are of the form

âi

(
i+j
i

)(
m+n−k−i−j

m−i
)(

m+n−k
m

) for j = 0, . . . , n− k.

The sum of these entries along each diagonal is given by

n−k∑
j=0

âi

(
i+j
i

)(
m+n−k−i−j

m−i
)(

m+n−k
m

) =
(n− k + 1)(

m+n−k
m

) n−k∑
j=0

âi

(
i+ j

i

)(
m+ n− k − i− j

m− i

)
= âi

m+ n− k + 1

m+ 1
,

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 95

and therefore the computation of the arithmetic mean in (3.25) is simplified to

Ak

(
f̂(x)

)
=

1

(m+ 1)(n− k + 1)

m∑
i=0

âi
m+ n− k + 1

m+ 1

=
m+ n− k + 1

(m+ 1)2(n− k + 1)

m∑
i=0

âi.

The expression (3.25) requires the evaluation of three binomial coefficients for each of

the (n−k+1)×(m+1) non-zero entries, and this can have significant computational cost.

This is reduced significantly by utilising the new expression for An−k(f̂(x)) in (3.26).

Corollary 1. The arithmetic mean of the non-zero entries in the first partition, Cn−k−1(f̂(x)),

of the (k + 1)th subresultant matrix Sk+1(f̂(x), ĝ(x)) is given by

An−k−1

(
f̂(x)

)
=

(m+ n− k)

(m+ 1)2(n− k + 1)

m∑
i=0

âi.

Alternatively, given An−k(f̂(x)) the arithmetic mean An−k−1(f̂(x)) is given by

An−k−1

(
f̂(x)

)
=

(m+ n− k)(n− k + 1)

(m+ n− k + 1)(n− k)
×An−k

(
f̂(x)

)
.

Corollary 2. Given Ak(f̂(x)), the arithmetic mean of the non-zero entries of the first

partition of the (k + p)th subresultant matrix is given by

An−k−p

(
f̂(x)

)
=

(m+ n− k − p+ 1)(n− k + 1)

(n− k − p+ 1)(m+ n− k + 1)
×An−k

(
f̂(x)

)
,

which significantly reduces the complexity of computing the set of arithmetic means

{An−k(f̂(x)) | k = 1, . . . ,min(m,n) } and {Am−k(ĝ(x)) | k = 1, . . . ,min(m,n) }.

The Geometric Mean of Non-Zero Entries of the Subresultant Matrices

The first preprocessing operation normalises the polynomials f̂(x) and ĝ(x) by the geo-

metric means Gn−k(f̂(x)) and Gm−k(ĝ(x)) of their entries in the kth subresultant matrix.

This can be computationally expensive, since the geometric mean must be computed for

each subresultant matrix, the entries of which are unique compared with any of the other

subresultant matrices. For completeness, and in the pursuit of efficiency, a simplified ex-

pression for the computation of these geometric means is derived. An expression of the

geometric mean of the non-zero entries in a partition of a subresultant matrix is given

in [74], and this is now developed further.

The non-zero entries in the first partition, Cn−k(f̂(x)), of the kth subresultant matrix

Sk(f̂(x), ĝ(x)) are given by∣∣∣âi(mi)(n−k0

)∣∣∣(
m+n−k

i

) ,

∣∣∣âi(mi)(n−k1

)∣∣∣(
m+n−k
i+1

) , . . . ,

∣∣∣âi(mi)(n−kn−k
)∣∣∣(

m+n−k
i+n−k

)

96

and their geometric mean as given by [74] is computed using the expression

Gn−k

(
f̂(x)

)
=

 m∏
i=0

n−k∏
j=0

∣∣∣âi(mi)(n−kj)∣∣∣(
m+n−k
i+j

)


1
(n−k+1)(m+1)

, (3.27)

which is simplified to

Gn−k

(
f̂(x)

)
=

m∏
i=0

(|âi| (mi))n−k+1∏n−k
j=0

(
n−k
j

)∏n−k
j=0

(
m+n−k
i+j

)
 1

(m+1)(n−k+1)

.

The two partitions of the rearranged form of the kth subresultant matrix, defined in

(3.12) and (3.13), give rise to a new, more efficient method of computing the geometric

means of the non-zero entries of Cn−k(f̂(x)) and Cm−k(ĝ(x)) .

The absolute values of the non-zero entries of Cn−k(f̂(x)) in the rearranged form are given

by ∣∣∣âi(ii)(m+n−k−i
m−i

)∣∣∣(
m+n−k
n−k

) ,

∣∣∣âi(i+1
i

)(
m+n−k−i−1

m−i
)∣∣∣(

m+n−k
m

) , . . . ,

∣∣∣âi(i+n−ki

)(
m−i
m−i
)∣∣∣(

m+n−k
m

) .

Proposition 2. The geometric mean Gn−k(f̂(x)) of the non-zero entries of Cn−k(f̂(x))

is given by

Gn−k

(
f̂(x)

)
=

 m∏
i=0

n−k∏
j=0

∣∣∣âi(i+ji)(m+n−k−i−j
m−i

)∣∣∣(
m+n−k

m

)


1
(n−k+1)(m+1)

(3.28)

and is reduced to the more computationally efficient expression

Gn−k

(
f̂(x)

)
=

(
∏m
i=0 |âi|)

1
m+1

[∏n−k
j=0

∏m
i=0

(
i+j
j

)] 2
(n−k+1)(m+1)(

m+n−k
m

) .

Proof. The geometric mean in (3.28) can be considered in three parts. Let Gn−k(f̂(x)) be

given by

Gn−k

(
f̂(x)

)
= A × Bk × Ck,

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 97

where

A =

 m∏
i=0

n−k∏
j=0

|âi|

 1
(n−k+1)(m+1)

=

(
m∏
i=0

|âi|

) 1
m+1

, (3.29)

Bk =

 m∏
i=0

n−k∏
j=0

(
i+ j

i

)(
m+ n− k − i− j

m− i

) 1
(n−k+1)(m+1)

, (3.30)

Ck =

 m∏
i=0

n−k∏
j=0

1(
m+n−k

m

)
 1

(n−k+1)(m+1)

=
1(

m+n−k
m

) . (3.31)

The expressions A and Ck are simplified above in (3.29) and (3.31), and the binomial

terms in Bk have the property that

n−k∏
j=0

m∏
i=0

(
i+ j

j

)
≡

n−k∏
j=0

m∏
i=0

(
m+ n− k − i− j

m− i

)
,

such that (3.30) is simplified and given by

Bk =

n−k∏
j=0

m∏
i=0

(
i+ j

j

) 2
(n−k+1)(m+1)

. (3.32)

Therefore, the geometric mean in (3.28) can be simplified to

Gn−k

(
f̂(x)

)
=

[
∏m
i=0 |âi|]

1
m+1

[∏n−k
j=0

∏m
i=0

(
i+j
j

)] 2
(n−k+1)(m+1)(

m+n−k
m

) . (3.33)

Similarly, the geometric mean of the entries of Cm−k(ĝ(x)) is given by

Gm−k

(
ĝ(x)

)
=

(∏n
i=0

∣∣∣b̂i∣∣∣) 1
n+1

(∏m−k
j=0

∏n
i=0

(
i+j
j

)) 2
(m−k+1)(n+1)(

m+n−k
n

) .

The computation of the geometric means Gn−k(f̂(x)) and Gm−k(ĝ(x)) of each of the

subresultant matrices is required for the preprocessing of the polynomials { f̂k(x) | k =

1, . . . ,min(m,n) } and { ĝk(x) | k = 1, . . . ,min(m,n) }. Computing Gn−k(f̂(x)) and

Gm−k(ĝ(x)) using the expression in (3.27) is computationally expensive, and the rearrange-

ment developed in this section goes some way to reducing the complexity. An expression

is now derived for the computation of Gn−k−1(f̂(x)) given the component parts of the

geometric mean Gn−k(f̂(x)), and this further reduces the computational complexity.

Proposition 3. The geometric mean Gn−k−1(f̂(x)) is given by

Gn−k−1

(
f̂(x)

)
=

[
∏m
i=0 âi]

1
m+1

[∏n−k−1
j=0

∏m
i=0

(
i+j
j

)] 2
(n−k)(m+1)(

m+n−k−1
m

) .

98

Given A, Bk and Ck, defined in (3.29,3.30,3.31), the geometric mean Gn−k−1(f̂(x)) can

be expressed as

Gn−k−1

(
f̂(x)

)
=

(m+ n− k)A × B
n−k+1
n−k

k × Ck

(n− k)
(∏m

i=0

(
i+n−k
n−k

)) 2
(n−k)(m+1)

.

Proof. The geometric mean Gn−k−1(f̂(x)) is given by

Gn−k−1

(
f̂(x)

)
= A × Bk+1 × Ck+1.

Firstly, Bk+1 is given by

Bk+1 =

n−k−1∏
j=0

m∏
i=0

(
i+ j

j

) 2
(n−k)(m+1)

=

[∏n−k
j=0

∏m
i=0

(
i+j
j

)] 2
(n−k)(m+1)

[∏m
i=0

(
i+n−k
n−k

)] 2
(n−k)(m+1)

,

which in terms of Bk (defined in (3.32)) is given by

Bk+1 =
B
n−k+1
n−k

k[∏m
i=0

(
i+n−k
n−k

)] 2
(n−k)(m+1)

. (3.34)

Secondly, Ck+1 is given by

Ck+1 =
1(

m+n−k−1
m

) ,
which when written in terms of Ck (defined in (3.31)), is given by

Ck+1 =
m+ n− k
n− k

Ck. (3.35)

Given (3.34) and (3.35), Gn−k−1(f̂(x)) is given by

Gn−k−1

(
f̂(x)

)
=

(m+ n− k)A × B
n−k+1
n−k

k × Ck

(n− k)
(∏m

i=0

(
i+n−k
n−k

)) 2
(n−k)(m+1)

.

This rearranged form is computationally more efficient than the previously described

approach. The geometric means of the non-zero entries of the two partitions of the kth

subresultant matrix are denoted Gn−k(f̂(x)) and Gm−k(ĝ(x)) respectively. The coefficients

of polynomials in the kth subresultant matrix are replaced by the coefficients of normalised

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 99

polynomials f̄k(x) and ḡk(x), where

f̄k(x) =

m∑
i=0

āi

(
m

i

)
(1− x)m−ixi, where āi =

âi

Gn−k

(
f̂(x)

) ,
ḡk(x) =

n∑
i=0

b̄i

(
n

i

)
(1− x)n−ixi, where b̄i =

b̂i
Gm−k (ĝ(x))

.

3.4.2 Computing the Optimal Values of α and θ

Having reduced the complexity of the first preprocessing operation, the optimal values of

α and θ from the second and third preprocessing operations are now computed by solving

a linear programming problem.

The second preprocessing operation scales the entries of the second partition of the kth

subresultant matrix by αk and the third preprocessing operation replaces the independent

variable x with θω, where ω is a new independent variable. Values of α and θ are optimally

chosen such that the ratio of entry of maximum magnitude to entry of minimum magnitude

in the matrix Sk(f̃k(ω), αkg̃k(ω)) is minimised.

The three preprocessing operations yield the polynomials

f̈k(θ, ω) =

m∑
i=0

āiθ
i

(
m

i

)
(1− θω)m−i ωi,

αg̈k(θ, ω) = α

n∑
i=0

b̄iθ
i

(
n

i

)
(1− θω)n−i ωi,

where α and θ are to be optimised.

The general expression for a non-zero entry of the first partition, Cn−k(f̈k(θ, ω)), of

the subresultant matrix Sk(f̂(x), ĝ(x)) is given by

Cn−k

(
f̈k(θ, ω)

)
(i+j+1, j+1)

=


āiθ

i(i+ji)(m+n−k−i−j
m−i)

(m+n−k
m)

i = 0, . . . ,m; j = 0, . . . , n− k,

0 otherwise,

and the general expression of a non-zero entry in the second partition, Cm−k(αg̈k(θ, ω)),

is given by

Cm−k

(
αg̈(θ, ω)

)
(i+j+1, j+1)

=


αb̄iθ

i(i+ji)(m+n−k−i−j
n−i)

(m+n−k
n)

i = 0, . . . , n; j = 0, . . . ,m− k,

0 otherwise.

It is convenient to define the sets of non-zero entries in the two partitions as P1,k(θ) and

P2,k(α, θ) respectively, where

P1,k (θ) =


∣∣∣āiθi(i+ji)(m+n−k−i−j

m−i
)∣∣∣(

m+n−k
m

) | i = 0, . . . ,m, j = 0, . . . , n− k.


P2,k (α, θ) =


∣∣∣αb̄iθi(i+ji)(m+n−k−i−j

n−i
)∣∣∣(

m+n−k
n

) | i = 0, . . . , n, j = 0, . . . ,m− k

 .

100

The minimisation problem described above can be written as

(αk, θk) = arg min
α,θ

{
max{max{P1,k (θ)},max{P2,k (α, θ)}}
min{min{P1,k (θ)},min{P2,k (α, θ)}}

}
(3.36)

for each subresultant matrix Sk for k = 1, . . . ,min(m,n).

The minimisation (3.36) can be written as

Minimise
u

v

Subject to

u ≥ |āiθi(i+ji)(m+n−k−i−j
m−i)|

(m+n−k
m)

i = 0, . . . ,m; j = 0, . . . , n− k,

u ≥ |αb̄iθi(i+ji)(m+n−k−i−j
n−i)|

(m+n−k
n)

i = 0, . . . , n; j = 0, . . . ,m− k,

v ≤ |āiθi(i+ji)(m+n−k−i−j
m−i)|

(m+n−k
m)

i = 0, . . . ,m; j = 0, . . . , n− k,

v ≤ |αb̄iθi(i+ji)(m+n−k−i−j
n−i)|

(m+n−k
n)

i = 0, . . . , n; j = 0, . . . ,m− k,

v > 0,

αk > 0,

θk > 0,

(3.37)

and using the set of transformations

U = log10 (u) , V = log10 (v) , φ̄ = log10 (θ) , µ̄ = log10 (α) ,

ᾱi,j = log10


∣∣∣āi(i+ji)(m+n−k−i−j

m−i
)∣∣∣(

m+n−k
m

)
 and β̄i,j = log10


∣∣∣b̄i(i+jj)(m+n−k−i−j

n−i
)∣∣∣(

m+n−k
n

)


can be written as

Minimise U − V

subject to

U −iφ̄ ≥ ᾱi,j i = 0, . . . ,m; j = 0, . . . , n− k,
U −iφ̄ −µ̄ ≥ β̄i,j i = 0, . . . , n; j = 0, . . . ,m− k,
−V +iφ̄ ≥ −ᾱi,j i = 0, . . . ,m; j = 0, . . . , n− k,
−V +iφ̄ +µ̄ ≥ −β̄i,j i = 0, . . . , n; j = 0, . . . ,m− k.

(3.38)

Since j only appears on the right-hand side of these inequalities, the values M̄1,i and m̄1,i

are used to denote the maximum and minimum entries in the set { ᾱi,j | j = 0, . . . , n−k }.
Similarly, M̄2,j and m̄2,j are used to denote the maximum and minimum entries in the set

{ β̄i,j } for j = 0, . . . ,m− k and are given by

M̄1,i = maxj=0,...,n−k{ᾱi,j} for i = 0, . . . ,m,

M̄2,i = maxj=0,...,m−k{β̄i,j} for i = 0, . . . , n,

m̄1,i = mini=0,...,n−k{ᾱi,j} for i = 0, . . . ,m,

m̄2,i = mini=0,...,m−k{βi,j} for i = 0, . . . , n.

. (3.39)

The location of the maximum entry of each coefficient āi in the kth subresultant matrix

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 101

is given by (i+ j + 1, j + 1), where j is given by

j =

[
i× n− k

m

]
.

The location of the minimum entry of the coefficient āi is given by (i+ j+ 1, j+ 1), where

j =


0 i <

[
m
2

]
,

0 or n− k i = m
2 ,

n− k otherwise.

Given this, the determination of M̄1,i, M̄2,i, m̄1,i and m̄2,i is of reduced complexity since

the locations of the maximum and minimum entries are already known. The minimisation

problem in (3.38) can now be written as

Minimise U − V

subject to

U −iφ̄ ≥ M̄1,i i = 0, . . . ,m,

U −iφ̄ −µ̄ ≥ M̄2,i i = 0, . . . , n,

−V +iφ̄ ≥ −m̄1,i i = 0, . . . ,m,

−V +iφ̄ +µ̄ ≥ −m̄2,i i = 0, . . . , n.

In matrix form, this is given by

Minimise
[

1 −1 0 0
]

U

V

φ̄k

µ̄k

 subject to A


U

V

φ̄k

µ̄k

 ≥ b. (3.40)

The matrix A ∈ R(2m+2n+4)×4 in (3.40) is given by

A =
[
Ā1, Ā2, ā1, ā2

]T
,

where matrices Ā1 and ā1 ∈ R(m+1)×4 are given by

Ā1 =



1 0 0 0

1 0 −1 0

1 0 −2 0
...

...
...

...

1 0 −m 0


, ā1 =



0 −1 0 0

0 −1 1 0

0 −1 2 0
...

...
...

...

0 −1 m 0



102

and Ā2 and ā2 ∈ R(n+1)×4 are given by

Ā2 =



1 0 0 −1

1 0 −1 −1

1 0 −2 −1
...

...
...

...

1 0 −n −1


, ā2 =



0 −1 0 1

0 −1 1 1

0 −1 2 1
...

...
...

...

0 −1 n 1


.

The vector b ∈ R2m+2n+4 in (3.40) is given by

b =
[
M̄1,0, . . . , M̄1,m M̄2,0, . . . , M̄2,n −m̄1,0, . . . , −m̄1,m −m̄2,0, . . . , −m̄2,n

]T
,

where M̄i,j and m̄i,j are defined in (3.39).

The optimal values αk and θk are given by 10µ̄ and 10φ̄ respectively, and the resulting

preprocessed polynomials are given by

f̃k(ω) =

m∑
i=0

āiθ
i
k

(
m

i

)
(1− θkω)m−i ωi, where āi =

âi

Gn−k

(
f̂(x)

) ,
αkg̃k(ω) = αk

n∑
i=0

b̄iθ
i
k

(
n

i

)
(1− θkω)n−i ωi, where b̄i =

b̂i

Gm−k

(
ĝ(x)

) .
The following examples consider the scaling of the coefficients of two preprocessed polyno-

mials, and consequently the scaling of the entries of the sequence of subresultant matrices.

The computation of the degree of the GCD is also considered in these examples, by

analysing the singular values of each subresultant matrix for (i) unprocessed and (ii) pre-

processed polynomials.

Example 3.4.1. This example considers the effect of preprocessing on the coefficients of

the polynomials f̂(x) and ĝ(x), whose preprocessed forms are given by f̃k(ω) and αkg̃k(ω).

The scaling of entries in the first unprocessed and preprocessed subresultant matrix is also

considered.

Consider the Bernstein form of exact polynomials f̂(x) and ĝ(x) of degrees m = 4 and

n = 4, whose factorised forms are given by

f̂(x) = (x+ 0.1)2(x+ 0.2)(x+ 0.3)

ĝ(x) = (x− 0.2)(x+ 0.1)2(x+ 0.2),

and whose GCD d̂t(x) of degree t = 2 is given by

d̂t(x) = (x+ 0.1)2.

Noise is added to the coefficients of f̂(x) and ĝ(x) to give the inexact polynomials f(x)

and g(x), whose coefficients are given by (3.24), where {rf,i} and {rg,j} are uniformly

distributed random variables in the interval [−1, 1], and the set of values {εf,i} and {εg,j}
are uniformly distributed random variables in the interval

[
10−12, 10−10

]
.

The polynomials f(x) and g(x) are preprocessed such that the preprocessed polynomi-

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 103

0 1 2 3 4
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(i) Coefficients of f(x) (•) and f̃1(ω) (�)

0 1 2 3 4
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(ii) Coefficients of g(x) (•) and α1g̃1(ω)
(�)

Figure 3.7: The coefficients of both the unprocessed polynomials f(x) and g(x) and the
preprocessed polynomials f̃1(ω) and α1g̃1(ω) in Example 3.4.1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

-3.222

-2.557

-1.971

-1.505

-1.268

-Inf

-Inf

-Inf

-Inf

-3.59

-2.557

-1.716

-Inf

-Inf

-Inf

-Inf

-4.067

-2.779

-1.716

-Inf

-Inf

-Inf

-Inf

-4.766

-3.256

-1.971

-3.398

-2.863

-2.571

-2.486

-1.479

-Inf

-Inf

-Inf

-Inf

-3.766

-2.863

-2.316

-2.009

-Inf

-Inf

-Inf

-Inf

-4.243

-3.085

-2.316

-1.787

-Inf

-Inf

-Inf

-Inf

-4.942

-3.562

-2.571

-1.787

-1.028

-0.5692 -0.8063

-0.09207 -0.8063

0.2759

-0.78

-0.3029

0.06506
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(i) Entries in S1(f(x), g(x))

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

-1.704

-2.104

-2.733

-Inf

-Inf

-Inf

-Inf

-2.034

-Inf

-Inf

-Inf

-Inf

-2.069

-1.647

-Inf

-Inf

-Inf

-Inf

-2.768

-2.124

-1.704

-2.093

-2.874

-2.733

-Inf

-Inf

-Inf

-Inf

-1.838

-2.397

-2.034

-Inf

-Inf

-Inf

-Inf

-2.034

-1.741

-1.838

-2.175

-Inf

-Inf

-Inf

-Inf

-2.733

-2.218

-2.093

-2.175

-1.224

-1.425 -1.591

-1.425

-1.449

-1.627 -1.449

-1.405

-1.557 -1.405

-1.189

-1.189

-1.519 -1.557

-1.519

-1.557

-1.189
-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

(ii) Entries in S1(f̃1(ω), α1g̃1(ω))

Figure 3.8: The absolute values of the entries of the (i) unprocessed and (ii)
preprocessed Sylvester matrices in Example 3.4.1

als are given by f̃1(ω) and α1g̃1(ω) where α1 = 0.6408 and θ1 = 0.1362. The coefficients of

the unprocessed and preprocessed polynomials are plotted in Figure 3.7, where it can be

seen that the coefficients of the unprocessed polynomials span four orders of magnitude

while the coefficients of the preprocessed polynomials only span one order of magnitude.

The overall effect of this scaling is seen in Figure 3.8, where heat maps of the log of

the entries of the (i) unprocessed and (ii) preprocessed Sylvester matrix are shown. It is

observed that the non-zero entries in the preprocessed subresultant matrix (Figure 3.8ii)

span many fewer orders of magnitude than the unprocessed Sylvester matrix (Figure 3.8i).

�

Example 3.4.2. This example considers the scaling of the polynomials f(x) and g(x),

and the computation of the degree of the GCD by minimum singular values of the (i)

unprocessed and (ii) preprocessed subresultant matrices.

Consider the Bernstein form of the exact polynomials f̂(x) and ĝ(x) of degrees m = 21

104

and n = 20, whose factorised forms are given by

f̂(x) = (x− 1.46)2(x− 1.37)3(x− 0.82)3(x− 0.75)3(x− 0.56)4(x− 0.1)3(x+ 0.27)3

ĝ(x) = (x− 2.12)(x− 1.37)3(x− 1.2)3(x− 0.99)4(x− 0.75)3(x− 0.56)4(x− 0.1)2.

The GCD d̂(x) of degree t = 12 in factorised form is given by

d̂(x) = (x− 0.75)3 (x− 0.1)2 (x− 0.56)4 (x− 1.37)3 .

Noise is added to the coefficients of exact polynomials f̂(x) and ĝ(x) such that the coeffi-

cients of the inexact polynomials f(x) and g(x) are given by (3.24), where the set of values

{rf,i} and {rg,j} are uniformly distributed random variables in the interval [−1, 1], and

{εf,i} and {εg,j} are uniformly distributed random variables in the interval
[
10−12, 10−10

]
.

The polynomials f(x) and g(x) are preprocessed for each of the k subresultant matrices,

thereby producing the sets { f̃i(ω) | i = 1, . . . , 20} and {αig̃i(ω) | i = 1, . . . , 20} such that

the preprocessed subresultant matrices are given by {Sk(f̃k(ω), αkg̃k(ω)) | k = 1, . . . , 20 }.
Coefficients of the unprocessed polynomials f(x) and g(x), and preprocessed polyno-

mials f̃1(ω) and α1g̃(ω) are plotted in Figure 3.9. The coefficients of the unprocessed

pair of polynomials span ≈ 12.5 orders of magnitude, while the coefficients of the pair of

preprocessed polynomials only span ≈ 7 orders of magnitude.

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

Figure 3.9: The coefficients of both the unprocessed polynomials f(x) (•) and g(x) (•)
and the preprocessed polynomials f̃1(ω) (•) and α1g̃1(ω) (•) in Example 3.4.2

The degree of the GCD is computed using DC2, that is, the method of degree com-

putation using minimum singular values described in Section 3.2.1. The sets of minimum

singular values { σ̇k | k = 1, . . . , 20 } of the (i) unprocessed and (ii) preprocessed subre-

sultant matrices are plotted in Figure 3.10i and Figure 3.10ii respectively.

The degree of the GCD can with confidence be determined from the minimum singular

values of the preprocessed subresultant matrices (Figure 3.10ii). There is a clear separation

between the set of values { ρ̇i = log10(σ̇i) | i = 1, . . . , 12 } and the set { ρ̇i = log10(σ̇i) |
i = 13, . . . , 20}. The two separate sets of numerically zero and non-zero minimum singular

values are indicative of rank deficient and full rank subresultant matrices respectively.

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 105

The maximum change in the set {ρ̇k} occurs between k = 12 and k = 13, that is, δρ̇12 is

maximal in the set {δρ̇i | i = 1, . . . ,min(m,n) − 1}. The degree of the GCD is therefore

correctly identified as t = 12.

However, there is not a clear separation amongst the minimum singular values {ρ̇k =

log10(σ̇k) | k = 1, . . . , 20} of the unprocessed subresultant matrices {Sk(f(x), g(x))} in

Figure 3.10i. By the same method, the index of maximum change in {ρ̇i} is given by

i = 12, but the value δρ̇12 is not significantly larger than the other entries in the set {δρ̇i}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

(i) The minimum singular values {σ̇k} of
the unprocessed subresultant matrices

{Sk(f(x), g(x))}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

(ii) The minimum singular values {σ̇k} of
the preprocessed subresultant matrices

{Sk(f̃k(ω), αkg̃k(ω))}

Figure 3.10: The minimum singular values {σ̇k} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 3.4.2

�

Example 3.4.3. This example considers the scaling of the polynomial coefficients and

the computation of the degree of the GCD using the complete set of all singular values for

the (i) unprocessed and (ii) preprocessed subresultant matrices. The degrees of f̂(x), ĝ(x)

and d̂(x), given by m = 42, n = 39 and t = 28, are significantly larger than in previous

examples.

Consider the Bernstein form of the exact polynomials f̂(x) and ĝ(x), whose factorised

forms are given by

f̂(x) = (x− 5.56)8(x− 1.46)4(x− 1.37)3(x− 1.2435487954)2(x− 0.82)3×

(x− 0.7515678)15(x− 0.10122344)4(x+ 2.27564657)3

ĝ(x) = (x− 5.56)8(x− 2.12)4(x− 1.37)3(x− 1.2435487954)2(x− 1.2222222)3×

(x− 0.99102445)4(x− 0.7515678)15,

and whose GCD d̂(x) of degree t = 28 is given by

d̂(x) = (x− 5.56)8(x− 1.37)3(x− 1.2435487954)2(x− 0.7515678)15.

Random noise is added to the coefficients of f̂(x) and ĝ(x) in the same way as in the

106

previous example, and {εf,i} and {εg,j} are uniformly distributed random variables in the

interval
[
10−12, 10−10

]
.

0 5 10 15 20 25 30 35 40
-20

-15

-10

-5

0

5

10

15

20

Figure 3.11: The coefficients of both the unprocessed polynomials f(x) (•) and g(x)
(•) and the preprocessed polynomials f̃1(ω) (•) and α1g̃1(ω) (•) in Example 3.4.3

In Figure 3.11 the coefficients of the unprocessed and preprocessed polynomials f(x),

g(x), f̃1(ω) and α1g̃1(ω) are plotted. The coefficients of the unprocessed polynomials

f(x) and g(x) span approximately 20 orders of magnitude, while the coefficients of the

preprocessed polynomials f̃1(ω) and α1g̃1(ω) only span ≈ 10 orders of magnitude.

In Figure 3.12 the two complete sets of singular values of the (i) unprocessed and

(ii) preprocessed subresultant matrices are plotted. It is not possible to determine the

degree of the AGCD from the singular values of the unprocessed subresultant matrices

{Sk(f(x), g(x))} shown in Figure 3.12i. There is no clear separation between the numeri-

cally zero and non-zero singular values. Both DC1 and DC2 fail to compute the degree of

the GCD.

However, in Figure 3.12ii there is a clear separation between the numerically zero

and non-zero singular values of {Sk(f̃k(ω), αkg̃k(ω))}. By both methods DC1 and DC2,

the set of subresultant matrices {Sk(f̃k(ω), αkg̃k(ω)) | k = 1, . . . , 28 } are identified as

numerically singular, while the remaining subresultant matrices {Sk(f̃k(ω), αkg̃k(ω)) |
k = 29, . . . 39 } are full rank. The degree of the AGCD is therefore correctly determined

to be given by t = 28.

Results using the sets of singular values from the Sylvester matrix and the sequence

of subresultant matrices are now compared with the singular values of the preprocessed

Bézoutian matrix B̃(f, g) obtained using the method described in [74]. The degree of the

GCD of two polynomials is given by the rank loss of the Bézoutian matrix B(f, g).

In Figure 3.13 the normalised singular values {σi/σ1 | i = 1, . . . ,max(m,n)} of the

Bézoutian matrix are plotted on a logarithmic scale. The degree of the GCD can be

computed by a method similar to DC1. The SVD of the Bézoutian matrix B(f, g) has

max(m,n) singular values. The rank of B(f, g) is given by the number of non-zero singular

values and the degree of the GCD is given by max(m,n)− rank(B(f, g)).

The degree of the GCD cannot, however, be determined from this set of singular values.

Since it is known that the degree of the GCD is given by t = 28, a large negative change

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 107

5 10 15 20 25 30 35
-35

-30

-25

-20

-15

-10

-5

0

5

10

(i) The singular values {σk,i} of the
unprocessed subresultant matrices

{Sk(f(x), g(x))}

5 10 15 20 25 30 35
-10

-5

0

5

10

15

20

(ii) The singular values {σk,i}. of the
preprocessed subresultant matrices

{Sk(f̃k(ω), αkg̃k(ω))}

Figure 3.12: The singular values {σk,i} of the sets of (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 3.4.3

0 5 10 15 20 25 30 35 40
-30

-25

-20

-15

-10

-5

0

Figure 3.13: The normalised singular values {σi/σ1} of the Bernstein-Bézoutian matrix
B̃(f, g)

would be expected between log10(σ14/σ1) and log10(σ15/σ1) to indicate that σ14 is the last

numerically non-zero singular value.

�

Example 3.4.4. In Example 3.3.3 it was shown that D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k was the

optimal variant of subresultant matrix for the computation of the degree of the GCD. The

polynomials f(x) and g(x) for this example are given by adding noise to the coefficients

of the Bernstein form of the exact polynomials f̂(x) and ĝ(x) defined in Example 3.3.3

f̂(x) = (x− 1.46)2(x− 1.37)3(x− 0.82)3(x− 0.75)3(x− 0.56)8(x− 0.1)3(x+ 0.27)3

ĝ(x) = (x− 2.12)(x− 1.37)3(x− 1.2)3(x− 0.99)4(x− 0.75)3(x− 0.56)8(x− 0.1)2.

Again, {εf,i} and {εg,j} are uniformly distributed random variables in the interval [10−12, 10−10].

The inexact polynomials f(x) and g(x) are preprocessed to produce the sets of polynomials

108

{ f̃k(ω) | k = 1, . . . ,min(m,n) } and {αkg̃k(ω) | k = 1, . . . ,min(m,n)}.
The singular values {σk,i} of the (i) unprocessed subresultant matrices {Sk(f(x), g(x))}

and (ii) preprocessed subresultant matrices {Sk(f̃k(ω), αkg̃k(ω))} are plotted in Figure 3.14i

and Figure 3.14ii respectively. In Figure 3.14i there is a clear separation between the nu-

merically zero and non-zero singular values of each subresultant matrix. However, the

last numerically zero singular value of S16(f(x), g(x)) is similar to the smallest non-zero

singular value of S17(f(x), g(x)), that is, ρ̇16 ≈ ρ̇17 where ρ̇i = log10(σ̇i).

This is easier to see in Figure 3.15, where only the minimum singular values of each

subresultant matrix are plotted. Consider the use of the the method DC2 for the com-

putation of the degree of the GCD by the set of minimum singular values as described in

Section 3.2.1. Let δρ̇i be the change between any two consecutive ρ̇i and ρ̇i+1 as defined

in (3.16). Since the degree of the GCD is given by t = 16, theoretically, max{δρi} is given

by δρ̇16. While this is true, δρ̇16 is not significantly larger than all other δρ̇i in the set

{ρ̇i}, that is, the change between ρ̇16 and ρ̇17 is not significantly larger than the change

between any other consecutive ρ̇i and ρ̇i+1.

This is in contrast to the clearly defined separation between the rank deficient and full

rank preprocessed subresultant matrices whose singular values are plotted in Figure 3.14ii

and whose minimimum singular values are plotted in Figure 3.15ii. The degree of the GCD

can be computed by (i) the set of singular values of the first subresultant matrix, (ii) the

maximum change in magnitude of the minimum singular values of each subresultant matrix

or (iii) observation of the complete set of singular values of all subresultant matrices.

5 10 15 20
-30

-25

-20

-15

-10

-5

0

(i) The singular values {σk,i} of the
unprocessed subresultant matrices

{Sk(f(x), g(x))}

2 4 6 8 10 12 14 16 18 20 22 24
-10

-5

0

5

10

15

(ii) The singular values {σk,i} of the
preprocessed subresultant matrices

{Sk(f̃k(ω), αkg̃k(ω))}

Figure 3.14: The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 3.4.4

�

Example 3.4.5. Consider the Bernstein form of the exact polynomials f̂(x) and ĝ(x) of

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 109

1 3 5 7 9 11 13 15 17 19 21 23
-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

(i) The minimum singular values {σ̇k} of the
unprocessed subresultant matrices

{Sk(f(x), g(x))}

1 3 5 7 9 11 13 15 17 19 21 23
-10

-8

-6

-4

-2

0

2

4

6

8

(ii) The minimum singular values {σ̇k} of the
preprocessed subresultant matrices

{Sk(f̃k(ω), αkg̃k(ω))}

Figure 3.15: The minimum singular values {σ̇k} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 3.4.4

degrees m = 35 and n = 31, whose factorisations are given by

f̂(x) = (x− 1.46)2(x− 1.37)3(x− 0.82)3(x− 0.75)10(x− 0.56)8(x− 0.1)6(x+ 0.27)3

ĝ(x) = (x− 2.12)(x− 1.37)3(x− 1.2)3(x− 0.99)4(x− 0.75)10(x− 0.56)8(x− 0.1)2.

The factorised form of the GCD d̂(x) of degree t = 23 is given by

d̂(x) = (x− 1.37)3(x− 0.75)10(x− 0.56)8(x− 0.1)2.

Noise is added to the coefficients of the exact polynomials f̂(x) and ĝ(x), and the coef-

ficients of the inexact polynomials f(x) and g(x) are given by (3.24), where {εf,i} and

{εg,j} are initially set equal to 10−12 and in the second experiment set equal to 10−4. The

sets of values {rf,i} and {rg,j} are uniformly distributed random variables in the interval

[−1, 1].

This example shows that the degree of the GCD of two polynomials can be computed

by analysis of the singular values of the set of subresultant matrices, and that in the

presence of noise this computation is less likely to succeed. However, preprocessing the

polynomials typically allows for the recovery of the degree of the GCD where the use of

unprocessed polynomials would otherwise fail.

The sets of singular values of each subresultant matrix of the (i) unprocessed and

(ii) preprocessed polynomials are computed at two noise levels. The singular values of

the subresultant matrices {Sk(f(x), g(x))} containing the coefficients of the unprocessed

polynomials are plotted in Figure 3.16. Meanwhile, the singular values of the set of

subresultant matrices {Sk(f̃k(ω), αkg̃k(ω))} containing the coefficients of the preprocessed

polynomials are plotted in Figure 3.17. From these graphs, it can be seen that the singular

values of the subresultant matrices of preprocessed polynomials give a clearer indication of

the degree of the GCD even at the highest noise levels, while there is minimal separation

110

between the non-zero and numerically zero singular values of the subresultant matrices of

unprocessed polynomials even at low noise levels.

5 10 15 20 25 30
-35

-30

-25

-20

-15

-10

-5

0

(i) {εf,i} = {εg,j} = 10−12

5 10 15 20 25 30
-30

-25

-20

-15

-10

-5

0

(ii) {εf,i} = {εg,j} = 10−4

Figure 3.16: The singular values {σk,i} of the unprocessed subresultant matrices
{Sk (f(x), g(x))} for noise at levels (i) 10−12 and (ii) 10−4 in Example 3.4.5

5 10 15 20 25 30
-15

-10

-5

0

5

10

15

(i) {εf,i} = {εg,j} = 10−12

5 10 15 20 25 30
-4

-2

0

2

4

6

8

10

12

14

(ii) {εf,i} = {εg,j} = 10−4

Figure 3.17: The singular values {σk,i} of the preprocessed subresultant matrices
{Sk(f̃k(ω), αkg̃k(ω))} for noise at levels (i) 10−12 and (ii) 10−4 in Example 3.4.5

The singular values of the preprocessed Bézoutian matrix B̃(f, g) are plotted

in Figure 3.18, where f and g are inexact polynomials with {εf,i} = {εg,j} =

10−4. The Bézoutian matrix has max(m,n) singular values, where the subset {σk |
1, . . . ,max(m,n)− t } are non-zero and the subset {σk | max(m,n)− t+ 1 . . .max(m,n)}
are numerically zero. The degree of the GCD is therefore given by the rank loss of B̃(f, g)

t = max(m,n)− k∗, where k∗ is the index of the last non-zero singular value.

Since it is known that the degree of the GCD is given by t = 23, it would be expected

that the last non-zero singular value would be σ12 and the first numerically zero singular

value would be σ13.

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 111

As in earlier examples, let the change in magnitude of the log of the singular values be

denoted {δρi = ρi − ρi+1 | i = 1, . . . ,max(m,n)}, where ρi = log10(σi). Then the degree

of the AGCD is given by

argi max{ δρi | i = 1, . . . ,max(m,n) } (3.41)

While the change between the 12th and 13th singular value, δρ12, is significant, a larger

change is given between the 2nd and 3rd singular values (δρ2), that is δρ2 > δρ12. Conse-

quently, the degree of the AGCD is incorrectly determined.

5 10 15 20 25 30 35
-14

-12

-10

-8

-6

-4

-2

0

Figure 3.18: The normalised singular values {σi/σ1} of the preprocessed Bézoutian
matrix B(f, g) in Example 3.4.5

�

Example 3.4.6. Consider the Bernstein form of the exact polynomials f̂(x) and ĝ(x),

whose factorisations are given by

f̂(x) = (x− 3.4)3(x− 2.5)3(x− 0.8)2(x− 0.7)3(x− 0.5)2(x− 0.3)2(x− 0.1)4

ĝ(x) = (x− 1.1)3(x− 0.9)4(x− 0.85)4(x− 0.8)2(x− 0.1)3

and whose GCD d̂(x) has the factorisation

d̂(x) = (x− 0.8)2(x− 0.1)3.

Variable noise is added to the coefficients of f̂(x) and ĝ(x) and the inexact polynomials

f(x) and g(x) have the coefficients given by (3.24), where {εf,i} and {εg,j} are uniformly

distributed random variables in the interval
[
10−12, 10−10

]
, and {rf,i} and {rg,j} are uni-

formity distributed random variables in the interval [−1, 1].

The set of minimum singular values { σ̇i | i = 1, . . . , 16 } of the subresultant matrices

of the unprocessed polynomials {Sk(f(x), g(x) } are shown in Figure 3.19i. From this set

of values, the degree of the AGCD is incorrectly computed by DC2, which identifies the

degree of the AGCD as t = 2. However, better results are obtained from the preprocessed

subresultant matrices. The set of minimum singular values {σ̇k} of the subresultant ma-

trices of the preprocessed polynomials, {Sk(f̃k(ω), αkg̃k(ω))}, are shown in Figure 3.19ii.

There is a distinct separation between the numerically zero and non-zero minimum sin-

112

2 4 6 8 10 12 14 16
-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

(i) The minimum singular values {σ̇k} of
the unprocessed subresultant matrices

{Sk (f(x), g(x))}

2 4 6 8 10 12 14 16
-10

-8

-6

-4

-2

0

2

4

6

(ii) The minimum singular values {σ̇k} of
the preprocessed subresultant matrices

{Sk(f̃k(ω), αkg̃k(ω))}

Figure 3.19: The minimum singular values {σ̇k} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 3.4.6

gular values. The degree of the GCD is given by max({δρ̇i}) and is correctly identified as

t = 5.

�

Section 3.4 has considered the computation of the degree of the GCD of two polyno-

mials, f̂(x) and ĝ(x). Three preprocessing operations have been introduced, and efficient

methods for their computation have been developed.

The numerical rank of each matrix in the set of subresultant matrices of two prepro-

cessed polynomials has been shown to be better defined than the numerical rank of each

of the subresultant matrices of the equivalent unprocessed polynomials.

It has been shown by Example 3.4.2 and Example 3.4.3 that preprocessing inexact

polynomials allows the recovery of the AGCD degree by analysis of the preprocessed sub-

resultant matrices, where the subresultant matrices of the equivalent unprocessed polyno-

mials would otherwise fail.

The methods described in this work have been compared with a method which makes

use of the Bézoutian matrix [72], which has typically failed for examples with high levels

of noise.

The second stage of computing the AGCD of two polynomials is to compute its co-

efficients. Using the tth subresultant matrix, the coefficients of the cofactor polynomials

ût(x) and v̂t(x) and the coefficients of the GCD d̂t(x) can be approximated. Methods for

the computation of these approximations are described in the next section.

3.5 The Coefficients of Cofactor Polynomials and Matrix

Low Rank Approximations

The previous section focused on the computation of the degree t of the AGCD of two

univariate polynomials, f(x) and g(x), and showed that satisfactory results are obtained

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 113

when the correct subresultant matrix variant is considered and the polynomials are pre-

processed. This section now considers an initial approximation of the coefficients of the

GCD from the subresultant matrix St(f̃t(ω), αtg̃t(ω)).

3.5.1 The Coefficients of Cofactor Polynomials by Least Squares

The rank of the tth subresultant matrix St(f̂(x), ĝ(x)) ∈ R(m+n−t+1)×(m+n−2t+2) for the

exact polynomials f̂(x) and ĝ(x) is equal to m + n − 2t + 1, that is, the matrix has a

rank loss of one. Therefore, there is exactly one column of the matrix which defines the

linear dependence of all other columns. However, this property does not extend to the

tth subresultant matrix of the inexact preprocessed polynomials St(f̃t(ω), αtg̃t(ω)), which

is of full rank. Instead, St(f̃t(ω), αtg̃t(ω)) is considered to be numerically rank deficient,

and one of its columns lies in the space spanned by the remaining columns with minimal

residual.

The columns of St(f̃t(ω), αtg̃t(ω)) are given by the set of vectors

{ct,j | j = 0, . . . ,m+ n− 2t+ 1 }

such that the tth subresultant matrix is given by

St

(
f̃t(ω), αtg̃t(ω)

)
=
[

ct,0, . . . , ct,n−t, ct,n−t+1, . . . , ct,m+n−2t+1

]
.

To determine which column lies in the space spanned by the others with minimum error,

each column is removed in turn to form the set of approximate equations

{At,j
(
f̃t(ω), αtg̃t(ω)

)
xt,j ≈ ct,j | j = 0, . . . ,m+ n− 2t+ 1 },

where At,j(f̃t(ω), αtg̃t(ω)) is the tth subresultant matrix St(f̃t(ω), αtg̃t(ω)) with the column

ct,j removed, and the associated residuals are given by

rt,j =
∥∥∥ct,j −At,j (f̃t(ω), αtg̃t(ω)

)
xt,j

∥∥∥ for j = 0, . . . ,m+ n− 2t+ 1.

The set of residuals associated with these approximate equations is denoted { rt,j | j =

0, . . . ,m+ n− 2t+ 1 }. Let q be the index of the column removed with minimal residual

q = argj min{ rt,j | j = 1, . . . ,m+ n− 2t+ 2},

then it is the column ct,q which is most likely to be nearly linearly dependent on the other

columns. The approximate equation of interest for the low rank approximation problem

is therefore given by

At,q

(
f̃t(ω), αtg̃t(ω)

)
xt,q ≈ ct,q. (3.42)

Let Mq be defined as

Mq =
[

e1, e2, . . . , eq−1, eq+1, . . . , em+n−2t+2

]
,

114

where ei ∈ Rm+n−2t+2 is the ith unit basis vector, then the approximation (3.42) can be

written as(
D−1
m+n−tTt

(
f̃t(ω), αtg̃t(ω)

)
Q̂t

)
Mqxt,q ≈

(
D−1
m+n−tTt

(
f̃t(ω), αtg̃t(ω)

))
eq. (3.43)

The vector xt,q ∈ R(m+n−2t+1) in (3.42), given by

xt,q =
[
x0, x1, . . . , xm+n−2t

]T
∈ Rm+n−2t+1,

is obtained by a simple least squares based method.

The insertion of ‘−1’ into the qth position of the vector xt,q gives the vector xt ∈
R(m+n−2t+2)

xt =
[
x0, x1, . . . , xq−2, −1, xq−1, . . . , xm+n−2t+1

]T
such that

St

(
f̃t(ω), αtg̃t(ω)

)
xt ≈ 0.

The vector xt contains the coefficients of the cofactor polynomials ṽt(ω) and ũt(ω)

xt =
[
v̄0, v̄1θ, . . . , v̄n−tθ

n−t, −ū0, −ū1θ, . . . −ūm−tθm−t
]
.

Having computed approximations of the coefficients of the cofactor polynomials ṽt(ω)

and ũt(ω), the coefficients of the polynomial d̃t(ω) are approximated as the least squares

solution of the system of equations([
D−1
m 0

0 D−1
n

][
Tt (ũt(ω))

Tt (ṽt(ω))

]
Qt

)
d̃t ≈

[
f̃

αg̃

]

and the vector d̃t ∈ Rt+1 is given by

d̃t =
[
d0, d1θ, . . . , dtθ

t
]T
,

where diθ
i are the coefficients of the polynomial d̃t(ω).

The least squares solution only gives an approximation of the polynomials ũt(ω) and

ṽt(ω) since f̃t(ω) and αtg̃t(ω) are subject to noise. However, structure can be added to the

subresultant matrix St(f̃t(ω), αtg̃t(ω)), such that a low rank approximation is obtained.

The polynomials f̃t(ω) + δf̃t(ω) and g̃t(ω) + δg̃t(ω) are obtained by perturbing f̃t(ω) and

g̃t(ω) such that St(f̃t + δf̃t, αt(g̃t + δg̃t)) is a low rank approximation of St(f̃t(ω), αtg̃t).

This added structure results in improved approximations of the cofactor polynomials and

the coefficients of the GCD. This method of determining the low rank approximation is

now described.

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 115

3.5.2 The Coefficients of Cofactor Polynomials by STLN

A structured low rank approximation can be obtained by structured total least norm

(STLN) algorithms [55], specifically applied to the Sylvester matrix [40, 44, 68]. In [69]

the linear problem of computing minimal perturbations of the coefficients of f and g is

transformed to a non-linear problem by also considering perturbations of αt and θt which

have previously been determined to be the optimal values in preprocessing of the tth

subresultant matrix.

In this section a method of structured non-linear total least norm (SNTLN) is de-

veloped for the computation of a low rank approximation of the tth subresultant matrix

St(f̃t(ω), αtg̃t(ω)), from which the coefficients of the cofactor polynomials ũt(ω) and ṽt(ω)

are computed.

The approximate equation (3.42) is replaced by an exact equation given by the addition

of a structured matrix Bt,q and vector ht,q, such that an exact equation is given by

(At,q +Bt,q) xt,q = ct,q + ht,q. (3.44)

The matrix Bt,q and vector ht,q are structured in the same way as At,q and ct,q respectively,

and contain coefficients of polynomials to be added to the polynomials f̃t(ω) and αtg̃t(ω).

The matrix Bt,q and vector ht,q are not unique, since there are infinitely many sets of

perturbations such that the polynomials f̃t(ω) + δf̃t(ω) and g̃t(ω) + δg̃t(ω) have a non-

constant polynomial GCD. It is therefore necessary to constrain the problem to find the

minimal perturbations δf̃(ω) and δg̃(ω) and the problem is solved by least squares with

equality (LSE)

min{‖Bt,q‖2 + ‖ht,q‖2} such that (At,q +Bt,q) xt,q = ct,q + ht,q. (3.45)

As stated above, the solution to (3.44) is not unique, but (3.45) ensures that the polyno-

mials f̃t(ω) and g̃t(ω) are perturbed by the minimum amount to induce a common divisor

of degree t, such that the problem has a unique solution.

The Subresultant Matrix, Structured Perturbations and a Low Rank Approx-

imation Method

The polynomials f̃t(ω) and αtg̃t(ω) are highly likely to be coprime, and these are perturbed

to induce a non-constant common divisor in their perturbed forms. The polynomials added

to f̃t(ω) and αtg̃t(ω) are given by

s̃t(ω) =

m∑
i=0

z1,iφ
i

(
m

i

)
(1− φω)m−iωi

and βt̃t(ω) = β

n∑
i=0

z2,iφ
i

(
n

i

)
(1− φω)n−iωi

respectively.

The matrix Bt(φ, β, z) is used to describe the structured matrix containing the co-

efficients of the polynomials s̃(φ, ω) and βt̃(φ, ω), which is equivalent in structure to

116

St(f̃(φ, ω), βg̃(φ, ω)) and is given by

Bt (β, φ, z) = D−1
m+n−tFt (β, φ, z) Q̂t ∈ R(m+n−t+1)×(m+n−2t+2).

The matrices D−1
m+n−t ∈ R(m+n−t)×(m+n−t) and Q̂t ∈ R(m+n−2t+2)×(m+n−2t+2) are already

defined in (3.6) and (3.7) respectively, and the matrix Ft(β, φ, z) is given by

Ft(β, φ, z) =
[
Tn−t (s̃(φ, ω)) Tm−t

(
βt̃(φ, ω)

)]

=



z1,0

(
m
0

)
βz2,0

(
n
0

)
z1,1φ

(
m
1

) . . . βz2,1φ
(
n
1

) . . .

...
. . . z0

(
m
0

) ...
. . . βz2,0

(
n
0

)
z1,mφ

m
(
m
m

) . . . z1,1φ
1
(
m
1

)
βz2,nφ

n
(
n
n

) . . . βz2,1φ
1
(
n
1

)
. . .

...
. . .

...

z1,mφ
m
(
m
m

)
βz2,nφ

n
(
n
n

)


.

The perturbation of the coefficients of f̃(φ, ω) and αtg̃(φ, ω) implies that the equation

(3.44) is given by(
D−1
m+n−t (Tt + Ft) Q̂t

)
Mt,xt,q =

(
D−1
m+n−t (Tt + Ft) Q̂t

)
eq. (3.46)

A change in notation is required since (3.46) is a non-linear equation solved iteratively,

and the variables to be determined are β, φ and z. The initial values are given by

β(0) = αt, φ(0) = θt and z(0) = 0m+n+2. (3.47)

These variables are now included in the arguments of the vectors and matrices in the

expression (3.46), which is now given by(
D−1
m+n−t (Tt (β, φ) + Ft (β, φ, z)) Q̂t

)
Mt,qxt,q = ct,q (β, φ) + ht,q (β, φ, z) , (3.48)

where

ct,q(β, φ) = D−1
m+n−tTt (β, φ) Q̂teq and ht,q(β, φ, z) = D−1

m+n−tFt (β, φ, z) Q̂teq.

The variable β is included in the arguments of ct,q and ht,q, but it is possible that these

vectors may not be functions of β. The remainder of this section assumes that ct,q is a

column removed from the second partition of the tth subresultant matrix, and n− t+ 1 ≤
q ≤ m+ n− 2t+ 1. Alternatively, if ct,q is from the first partition and 0 ≤ q ≤ n− t, the

dependence of ct,q and ht,q on β is removed

ct,q = ct,q(φ) ht,q = ht,q(φ, z) if 0 ≤ q ≤ n− t
ct,q = ct,q(β, φ) ht,q = ht,q(β, φ, z) if n− t+ 1 ≤ q ≤ m+ n− 2t+ 1.

Equation (3.48) is non-linear and is solved by using the Newton-Raphson method. The

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 117

residual associated with an approximate solution of this is given by

r (β, φ,xt,q, z) = ct,q (β, φ) + ht,q (β, φ, z)

−
(
D−1
m+n−t (Tt (β, φ) + Ft (β, φ, z)) Q̂t

)
Mt,qxt,q (3.49)

and the computation of the vectors z and xt,q and β and φ such that r(β, φ,xt,q, z) = 0

yields an LSE. The residual r̃ is defined by

r̃ = r (β + δβ, φ+ δφ, xt,q + δxt,q, z + δz)

= ct,q (β + δβ, φ+ δφ) + ht,q (β + δβ, φ+ δφ, z + δz)

−
(
D−1
m+n−t (Tt (β + δβ, φ+ δφ) + Ft (β + δβ, φ+ δφ, z + δz)) Q̂t

)
Mt,q(xt,q + δxt,q),

which to first order is given by

r̃ = r (β, φ,xt,q, z)−
(
D−1
m+n−t

(
∂Tt
∂φ

+
∂Ft
∂φ

)
Q̂tMt,qxt,q −

(
∂ct,q
∂φ

+
∂ht,q
∂φ

))
δφ

−
(
D−1
m+n−t

(
∂Tt
∂β

+
∂Ft
∂β

)
Q̂tMt,qxt,q −

(
∂ct
∂β

+
∂ht,q
∂β

))
δβ

−
(
D−1
m+n−t (Tt + Ft) Q̂tMt,q

)
δxt,q +

m+n+1∑
i=0

∂ht,q
∂zi

δzi

−

(
D−1
m+n−t

m+n+1∑
i=0

∂Ft
∂zi

δzi

)
Q̂tMt,qxt,q. (3.50)

The terms ∂Tt
∂φ , ∂Ft

∂φ ,
∂ct,q
∂φ ,

∂ht,q
∂φ , ∂Tt

∂β , ∂Ft
∂β ,

∂ct,q
∂β and

∂ht,q
∂β are easily computed.

The final two terms in (3.50) first require some manipulation. Firstly, a matrix-vector

product which defines ht,q is found, and secondly, due to the commutative nature of

multiplication, the product Bt(s̃(ω), βt̃(ω))xt,q is rearranged as a matrix containing the

entries of the vector xt,q and a vector containing coefficients of the polynomials s̄(x) and

t̄(x).

Expressing ht,q as a Matrix-Vector Product

A column ht,j for j = 0, . . . ,m + n − 2t + 1 of the structured matrix Bt(β, φ, z) can be

written as a matrix-vector product, where the matrix consists of entries containing φi and

the vectors s and t contain the coefficients of the polynomials s̄(x) and t̄(x).

If j is in the interval [0, n− t], then the vector ht,j is a column in the first partition of

the structured matrix Bt(β, φ, z) and is of the form

ht,j =

[
0j ,

z̄1,0(m0)(n−tj)
(m+n−t

j)
,

z̄1,1φ(m1)(n−tj+1)
(m+n−t

j+1)
, . . .

z̄1,mφm(mm)(n−tj+1)
(m+n−t
m+j+1)

, 0n−t−j

]T
,

which can be written as

ht,j = D−1
m+n−tPt

[
s

t

]
. (3.51)

The diagonal matrix D−1
m+n−t ∈ R(m+n−t+1)×(m+n−t+1) has the same structure as (2.10)

118

and the matrix Pt is given by

Pt =

(
n− t
j

) 0j,m+1 0j, n+1

Im+1,m+1 0m+1, n+1

0n−t−j,m+1 0n−t−j, n+1

[φm

φn

][
Qm

Qn

]
,

where Im+1,m+1 ∈ R(m+1)×(m+1) is the (m + 1)th identity matrix Im+1 ∈ R(m+1)×(m+1).

The matrices φm ∈ R(m+1)×(m+1) and φn ∈ R(n+1)×(n+1) are diagonal matrices given by

φm = diag
[

1, φ, . . . , φm
]

and φn = diag
[

1, φ, . . . , φn
]
.

The vectors s̄ ∈ R(m+1) and t̄ ∈ R(n+1) contain the coefficients {z̄1,i} and {z̄2,i} respectively

and are given by

s =
[
z1,0 z1,1 . . . z1,m

]T
∈ Rm+1,

t =
[
z2,0 z2,1 . . . z2,n

]T
∈ Rn+1.

Example 3.5.1. This example considers the expression of a column of the structured ma-

trix Bt(β, φ, z) as a matrix-vector product, where the vector contains the set of coefficients

of s̄(x) and t̄(x).

Consider the system where m = 3, n = 5 and t = 2. The third column of the matrix

B3(β, φ, z) is given by

h2,2 =

[
0 0

z1,0(3
0)(

3
2)

(6
2)

z1,1φ(3
1)(

3
2)

(6
3)

z1,2φ2(3
2)(

3
2)

(6
4)

z1,3φ3(3
3)(

3
2)

(6
5)

0

]T
and can be written as the matrix-vector product

c2,2 = D−1
6 P2

[
s

t

]
,

where the matrix D−1
6 ∈ R7×7

D−1
6 = diag

[
1

(6
0)
, 1

(6
1)
, 1

(6
2)
, 1

(6
3)
, 1

(6
4)
, 1

(6
5)
, 1

(6
6)

]
.

The matrix P2 ∈ R7×10 is given by

P2 =

(
3

2

)
×



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0(
3
0

)
0 0 0 0 0 0 0 0 0

0
(

3
1

)
φ 0 0 0 0 0 0 0 0

0 0
(

3
2

)
φ2 0 0 0 0 0 0 0

0 0 0
(

3
3

)
φ3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


,

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 119

and s ∈ R4 and t ∈ R6 are vectors of coefficients given by

s =
[
z1,0, z1,1, z1,2, z1,3

]T
and t =

[
z2,0, z2,1, z2,2, z2,3, z2,4, z2,5

]T
.

�

Now suppose instead that the ̂th column which lies in the second partition of the

subresultant matrix is removed. The vector ht,̂ has the form

ht,̂ =

[
0̂, βz̄2,0

(n0)(
m−t

̂)
(m+n−t

̂)
, βz̄2,1φ

(n1)(
m−t

̂)
(m+n−t

̂+1)
, . . . , βz̄2,nφ

n (nn)(
m−t

̂)
(m+n−t

n+̂)
, 0m−t−̂

]
,

and can be written as the matrix-vector product

ht,̂ = βD−1
m+n−tPt

[
s̄

t̄

]
.

The matrix Pt is given by

Pt =

(
m+ n− t

̂ + 1

) 0̂,m+1 0̂, n+1

0n+1,m+1 In+1, n+1

0m−t−̂,m+1 0m−t−̂, n+1

[φm

φn

][
Qm

Qn

]
,

where In+1,n+1 ∈ R(n+1)×(n+1) is the (n+1)th identity matrix. The vector ht,j ∈ Rm+n−t+1

is given by

ht = βD−1
m+n−tPtz.

The penultimate term in (3.50) can therefore be rearranged as

m+n+1∑
i=0

∂ht,q
∂zi

δzi = βD−1
m+n−tPtδz.

The Matrix-Vector Product Rearrangement

The last term in (3.50) is also simplified by noting that the matrix-vector product

D−1
m+n−tFtQ̂tMt,qxt,q can be written as a matrix-vector product D−1

m+n−tYt(xt,q)z. The

equation given by

St

(
f̃(ω), βg̃(ω)

)
Mt,qxt,q = ct,q

or

D−1
m+n−t

[
Tn−k

(
f̃(ω)

)
Tm−k

(
βg̃(ω)

)][Qn−t

Qm−t

]
Mt,qxt,q = ct,q (3.52)

can be written as a matrix whose non-zero entries contain {xi | i = 0, . . . ,m+n− 2t} and

a vector in terms of f̄(x) and ḡ(x).

The matrix-vector product Mt,qxt,q in (3.52) is denoted x̄ and is given by inserting a zero

120

into the qth position of xt,q, that is, x̄ ∈ Rm+n−2t+2 is given by

x̄ =
[

x̄1, x̄2

]T
,

where either x̄1 or x̄2 contains the introduced zero entry. Assuming that q < m − t + 1,

the vectors x̄1 and x̄2 are given by

x̄1 =
[
x0 x1 . . . xq−1 0 xq . . . xm−t−1

]T
∈ Rm−t+1

x̄2 =
[
xm−t−1 xm−t . . . xm+n−2t

]T
∈ Rn−t+1.

For simplicity, vector x̄ is now redefined as

x̄ =

[
x̄1

x̄2

]
=
[
x̃0 x̃1, . . . , x̃m−t, x̃m−t+1, x̃m−t+2, . . . , x̃m+n−2t+1

]T
∈ Rm+n−2t+2,

where the entries {x̃0, . . . , x̃m+n−2t+1} are the set of entries {x0, . . . , xm+n−2t} with a zero

inserted.

The matrix-vector product in (3.52) can be written as the product of a matrix which has

entries containing coefficients {x̃i} and a vector containing coefficients of the polynomials

f̄(x) and ḡ(x)

D−1
m+n−t

[
Tm (x̄1) Tn (β, x̄2)

] [φm

φn

][
Qm

Qn

][
f̄

ḡ

]
.

The matrix Tm (x̄1) ∈ R(t+1)×(m+1) is given by

Tm (x̄1) =



x̃0
(
m−t
0

)
x̃1
(
m−t
1

)
x̃0
(
m−t
0

)
... x̃1

(
m−t
1

) . . .

x̃m−t
(
m−t
m−t

) ...
. . . x̃0

(
m−t
0

)
x̃m−t

(
m−t
m−t

)
x̃1
(
m−t
1

)
. . .

...

x̃m−t
(
m−t
m−t

)


and Tn (β, x̄2) ∈ R(t+1)×(n+1) is given by

Tn (β, x̄2) =



βx̃m−t+1

(
n−t
0

)
βx̃m−t+2

(
n−t
1

)
βx̃m−t+1

(
n−t
0

)
... βx̃m−t+2

(
n−t
1

) . . .

βx̃m+n−2t+1

(
n−t
n−t
) ...

. . . βx̃m−t+1

(
n−t
0

)
βx̃m+n−2t+1

(
n−t
n−t
)

βx̃m−t+1

(
n−t
1

)
. . .

...

βx̃m+n−2t+1

(
n−t
n−t
)


.

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 121

Given the rearrangement above, the expression

D−1
m+n−tFt

(
s̃(ω), βt̃(ω)

)
Q̂tMt,qxt,q (3.53)

is similarly rearranged, so that the final term in (3.50) can be written in an alternative

form

D−1
m+n−t

[
Tm (x̄1) Tn (βx̄2)

] [φm

φn

][
Qm

Qn

][
s

t

]
= ht,q, (3.54)

and the matrix Yt (x̄1, x̄2) is given by

Yt (x̄1, x̄2) =
[
Tm (x̄1) Tn (x̄2)

] [φm

φn

][
Qm

Qn

]
.

The differentiation of (3.54) with respect to z yields

D−1
m+n−tYt (β, φ,xt,q) δz =

m+n+1∑
i=0

(
∂Ft
∂zi

δzi

)
Q̂tMt,qxt,q

and thus (3.50) simplifies to

r̃ = r (β, φ,xt,q, z)−
(
D−1
m+n−t

(
∂Tt
∂φ

+
∂Ft
∂φ

)
Q̂tMqxt,q −

(
∂ct,q
∂φ

+
∂ht,q
∂φ

))
δφ

−
(
D−1
m+n−t

(
∂Tt
∂β

+
∂Ft
∂β

)
Q̂tMt,qxt,q −

(
∂ct,q
∂β

+
∂ht,q
∂β

))
δβ

−
(
D−1
m+n−t (Tt + Ft) Q̂tMt,q

)
δxt,q −D−1

m+n−t (Yt − Pt) δz

to first order. The jth iteration in the Newton-Raphson method for the calculation of β,

φ, xt,q and z is obtained from

[
Hz Hxt,q Hβ Hφ

](j)


δz

δxt,q

δβ

δφ


(j)

= r(j), (3.55)

where r(j) = r(j) (β, φ,xt,q, z)

Hz = D−1
m+n−t (Yt − Pt) ∈ R(m+n−t+1)×(m+n+2),

Hxt,q = D−1
m+n−t (Tt + Ft) Q̂tMt,q ∈ R(m+n−t+1)×(m+n−2t+1),

Hβ = D−1
m+n−t

(
∂Tt
∂β

+
∂Ft
∂β

)
Q̂tMt,qxt,q −

(
∂ct,q
∂β

+
∂ht,q
∂β

)
∈ Rm+n−t+1,

Hφ = D−1
m+n−t

(
∂Tt
∂φ

+
∂Ft
∂φ

)
Q̂tMt,qxt,q −

(
∂ct,q
∂φ

+
∂ht,q
∂φ

)
∈ Rm+n−t+1.

122

The values β, φ, xt,q and z at the jth iteration are given by

y(j) = y(j−1) + δy(j),


z,

xt,q,

β,

φ


(j)

, and δyj =


δz,

δxt,q,

δβ,

δφ


(j)

. (3.56)

The initial value of z is the zero vector z(0) = 0, since z is the vector of the perturbations

of the coefficients of the inexact polynomials f̃(ω) and g̃(ω), and the initial perturbations

are zero. The initial values of φ and β are given by φ(0) = θt and β(0) = αt. Finally, the

initial value of x
(0)
t,q is calculated from (3.49), where r = ht,q = 0 and Ft = 0

x
(0)
t,q = arg min

w
‖
(
D−1
m+n−tTt (α0, θ0) Q̂tMt,q

)
w− ct,q(α0, θ0)‖.

Equation (3.55) is under-determined and has infinitely many solutions. It can therefore

be written as

C(j)δy(j) = r(j),

where C(j) is given by

C(j) =
[
Hz, Hxt,q , Hβ, Hφ

](j)
.

It is necessary to seek the solution such that the values δz, δβ and δφ are all minimised,

that is, where the vector δy(j) is minimised. The magnitude of difference between y(j)

and the initial estimate y(0) is given by∥∥∥∥∥∥∥∥∥∥∥


(z(j) − z(0))

(x
(j)
t,q − x

(0)
t,q)

(α(j) − α(0))

(θ(j) − θ(0))


(j)
∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥


δz(j)

δx
(j)
t,q

δα(j)

θ(j)

−



z(0)

x
(0)
t,q

α(0)

θ(0)

−


z(j−1)

x
(j−1)
t,q

α(j−1)

θ(j−1)



∥∥∥∥∥∥∥∥∥∥

which is of the form ∥∥∥δy− (y(0) − y(j−1))
∥∥∥ =

∥∥∥δy(j) − p(j)
∥∥∥ , (3.57)

and the minimisation problem is given by

Minimise∥∥∥δy(j) − p(j)
∥∥∥ (3.58)

subject to[
Hz, Hxt,q , Hβ, Hφ

](j)
δy(j) = r(j).

This problem can be solved by QR decomposition at each iteration [36], where δy(j),

C(j), p(j) and r(j) are updated between iterations.

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 123

If the iterative procedure converges and the residual is minimised, then the vector of

perturbations z∗1,i for i = 0, . . . ,m and z∗2,i for i = 0, . . . , n, and parameters β∗ and φ∗ can

be recovered from the vector y(j). The updated polynomials are therefore given by

ḟ(ω) =

m∑
i=0

ȧi (φ∗)i
(
m

i

)
(1− φ∗ω)m−iωi where ãi =

(
āi + z∗1,i

)
(3.59)

β∗ġ(ω) = β

n∑
i=0

ḃi (φ∗)i
(
n

i

)
(1− φ∗ω)n−iωi where ḃi = b̄i + z∗2,i, (3.60)

which have a GCD ḋ(ω) given by

ḋ(ω) =
t∑
i=0

d̃i (φ∗)i
(
t

i

)
(1− φ∗ω)t−i ωi. (3.61)

These updated polynomials satisfy the equations

u̇t(ω)ḋt(ω) = ḟ(ω) and v̇t(ω)ḋt(ω) = βġ(ω),

where u̇t(ω) and v̇t(ω) are obtained by the least squares solution xt,q of (3.48) with β = β∗

and z = z∗. Having obtained u̇t(ω) and v̇t(ω), the coefficients of the polynomial ḋt(ω) are

obtained from the matrix equation[
D−1
m

D−1
n

][
Tt (u̇t(ω))

Tt (v̇t(ω))

]
Qtḋt =

[
ḟ

β∗ġ

]
,

where the matrices D−1
m ∈ R(m+1)×(m+1) and D−1

n ∈ R(n+1)×(n+1) are matrices of binomial

coefficients with the same structure as (2.10) and are given by

D−1
m = diag

[
1

(m0)
, 1

(m1)
, . . . , 1

(mm)

]
D−1
n = diag

[
1

(nn)
, 1

(nn)
, . . . , 1

(nn)

]
.

The matrices Tt (u̇t(ω)) ∈ R(m+1)×(t+1) and Tt (v̇t(ω)) ∈ R(n+1)×(n+1) are tth order uni-

variate Toeplitz matrices of the polynomials u̇t(ω) and v̇t(ω). These matrices have the

same structure as the Toeplitz matrix in (2.11). The diagonal matrix Qt ∈ R(t+1)×(t+1)

has the same structure as Qn in (2.12) and consists of binomial coefficients corresponding

to the polynomial ḋ(ω)

Qt = diag
[(

t
0

)
,
(
t
1

)
, . . . ,

(
t
t

)]
.

The vector ḋ is a vector of the coefficients of the polynomial ḋ(ω) and the vectors ḟ and ġ

are vectors of the coefficients of the corrected polynomials ḟ(ω) and ġ(ω)

ḟ =
[
ȧ0, ȧ1φ

∗, . . . , ȧm(φ∗)m
]T
∈ Rm+1,

ġ =
[
ḃ0, ḃ1φ

∗, . . . , ḃn(φ∗)n
]T
∈ Rn+1,

ḋ =
[
ḋ0, ḋ1φ

∗, . . . , ḋt(φ
∗)t

]T
∈ Rt+1,

124

where the coefficients ȧi (φ∗)i, ḃi (φ∗)i and ḋi (φ∗)i are defined in (3.59), (3.60) and (3.61).

A set of examples now shows that the determination of the low rank approximation of

the subresultant matrix, by addition of minimal perturbations, yields improved results in

the approximation of coefficients of cofactor polynomials ût(x) and v̂t(x).

Example 3.5.2. Consider the Bernstein form of the exact polynomials f̂(x) and ĝ(x),

whose factorisations are given by

f̂(x) = (x− 1.46)2(x− 1.37)3(x− 0.82)3(x− 0.75)3(x− 0.56)8(x− 0.1)3(x+ 0.27)3

ĝ(x) = (x− 2.12)(x− 1.37)3(x− 1.2)3(x− 0.99)4(x− 0.75)3(x− 0.56)8(x− 0.1)2,

and whose GCD is given by

d̂(x) = (x− 1.37)3(x− 0.75)3(x− 0.56)8(x− 0.1)2.

Noise is added to the coefficients of f̂(x) and ĝ(x), and coefficients of the inexact polyno-

mials f(x) and g(x) are given by

ai = âi + rf,iâiεf,i and bj = b̂j + rg,j b̂jεg,j , (3.62)

where {rf,i} and {rg,j} are uniformly distributed random variables in the interval

[−1, 1], and {εf,i} and {εg,j} are uniformly distributed random variables in the interval[
10−10, 10−6

]
.

Figure 3.20 shows the normalised singular values of the Sylvester matrix of four pairs of

polynomials (i) f(x) and g(x), (ii) f̃(ω) and αg̃(ω), (iii) ḟ(ω) and αġ(ω), and (iv) ḟ(x) and

ġ(x). The numerical rank of the Sylvester matrix of unprocessed polynomials S(f(x), g(x))

cannot be determined from its singular values as there is no distinct change between any

singular value σi and the proceeding σi+1. That is, there is no δσ̇k which is significantly

larger than all other {δσi}. However, the numerical rank of the Sylvester matrix of prepro-

cessed polynomials f̃t(ω) and αtg̃t(ω) is clearly defined and is equal to 33. The separation

between non-zero and numerically zero singular values is more clearly defined for perturbed

polynomials S(ḟ(ω), βġ(ω)), and similarly for S(ḟ(x), ġ(x)).

�

The following examples consider three methods for the approximations of the GCD

triple û(x), v̂(x) and d̂(x) given the inexact polynomials f(x) and g(x), whose coefficients

are given by

ai = âi + rf,iâiεf,i and bj = b̂j + rg,j b̂jεg,j , (3.63)

where {εf,i} and {εg,j} are uniformly distributed random variables in the interval [εL, εU],

and {rf,i} and {rg,j} are uniformly distributed random variables in the interval [−1, 1].

The following three methods call all be used to compute the approximations of ût(x),

v̂t(x) and d̂t(x):

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 125

5 10 15 20 25 30 35 40 45
-30

-25

-20

-15

-10

-5

0

Figure 3.20: The normalised singular values {σi/σ1} of the Sylvester matrices
S(f(x), g(x)) (before preprocessing) (�) , S(ḟ(x), ġ(x)) (with structured perturbations)

(�) , S(f̃(x), g̃(x)) (with preprocessing) (�) and S(ḟ(ω), βġ(ω)) (with preprocessing and
structured perturbations) (�) in Example 3.5.2

1. The least squares solution xt,q of At,q(f(x), g(x))xt,q ≈ ct,q contains the coefficients of

the approximations ut(x) and vt(x), from which, the coefficients of the approximation

of dt(x) are easily determined. The distances between these polynomials and their

exact counterparts ût(x), v̂t(x) and d̂t(x) are given by

ε (ut(x)) =
‖ût − ut‖
‖ût‖

, ε (vt(x)) =
‖v̂t − vt‖
‖v̂t‖

and ε (dt(x)) =

∥∥∥d̂t − dt

∥∥∥∥∥∥d̂t∥∥∥ .

(3.64)

2. The least squares solution xt,q of At,q(f̃t(ω), αtg̃t(ω))xt,q ≈ ct,q contains the coeffi-

cients of ũt(ω) and ṽt(ω), and by a final simple least squares problem, the coefficients

of the approximation d̃t(ω) are computed.

By the substitution ω = x/θt, polynomials ũt(x), ṽt(x) and d̃t(x) are obtained and

the distances between these and the exact polynomials ût(x), v̂t(x) and d̂t(x) are

given by

ε̃ (ut(x)) =
‖ût − ũt‖
‖ût‖

, ε̃ (vt(x)) =
‖v̂t − ṽt‖
‖v̂t‖

and ε̇ (dt(x)) =

∥∥∥d̂t − d̃t

∥∥∥∥∥∥d̂t∥∥∥ .

(3.65)

3. The solution xt,q of At,q(f̃t(ω) + δf̃t(ω), (αt + δαt) (g̃t(ω) + δg̃t(ω)))xt,q = ct,q + ht,q

contains the coefficients of u̇t(ω) and v̇t(ω), from which ḋt(ω) can be computed. By

the substitution ω = x/θ, the polynomials u̇t(x), v̇t(x) and ḋt(x) are obtained, and

126

the distances between these and the exact polynomials are given by

ε̇ (ut(x)) =
‖ût − u̇t‖
‖ût‖

, ε̇ (vt(x)) =
‖v̂t − v̇t‖
‖v̂t‖

and ε̇ (dt(x)) =

∥∥∥d̂t − ḋt

∥∥∥∥∥∥d̂t∥∥∥ .

(3.66)

The condition number of each of the matrices (i) At,q(f(x), g(x)), (ii) At,q(f̃t(ω), αtg̃t(ω))

and (iii) At,q(ḟt(ω), βtġt(ω)) are also recorded.

Example 3.5.3. Consider the Bernstein form of the exact polynomials f̂(x) and ĝ(x),

whose factorisations are given by

f̂(x) = (x− 3.4)3(x− 2.5)3(x− 0.8)2(x− 0.7)3(x− 0.5)2(x− 0.3)2(x− 0.1)4

ĝ(x) = (x− 1.1)3(x− 0.9)4(x− 0.85)4(x− 0.8)2(x− 0.1)3,

and whose GCD of degree t = 5 is given by

d̂(x) = (x− 0.8)2(x− 0.1)3.

Noise is added to the coefficients of f̂(x) and ĝ(x), and the inexact polynomials f(x)

and g(x) have the coefficients {ai} and {bj} given by (3.62), where {εf,i} and {εg,j} are

uniformly distributed random variables in the interval
[
10−12, 10−10

]
and {rf,i} and {rg,j}

are uniformly distributed random variables in the interval [−1, 1].

Figure 3.21i shows the singular values of three Sylvester matrices (i) S1(f(x), g(x),

(ii) S1(f̃t(ω), αtg̃t(ω)) and (iii) S1(ḟt(ω), βtġt(ω)). The computation of the degree of the

GCD of two polynomials can be reduced to the determination of the number of numerically

zero singular values, and a significant change in the ordered singular values is indicative

of moving from the non-zero set to the numerically zero set.

There exists a significant change in the size of the singular values of the unprocessed

subresultant matrix S1(f(x), g(x)), where {σ1,i | i = 1, . . . , 33 } are large and the remain-

ing values σ34 and σ35 are numerically zero. The numerical rank is incorrectly determined

as 33, hence the degree of the GCD is incorrectly given as two.

By the same metric, the numerical rank of the Sylvester matrix of the preprocessed

polynomials f̃t(ω) and αtg̃t(ω), given by S1(f̃t(ω), αtg̃t(ω)), is equal to 30, and the degree

of the GCD is correctly given as t = 5.

Similar results are obtained by analysis of the singular values of the Sylvester matrix

of the perturbed polynomials ḟt(ω) and βtġt(ω), but here the separation of the numeri-

cally zero and non-zero singular values is several orders of magnitude larger than the the

separation of singular values of S1(f̃t(ω), αtg̃t(ω)).

In Table 3.2 the error between the exact GCD triple (ût(x), v̂t(x) and d̂t(x)) and the

polynomials obtained by three methods of approximation are given. Also included in this

table is the condition number of the matrix denoted At, from which the approximations

were computed. Note that the first column of Table 3.2 is left blank, since the degree of

the GCD was not correctly computed and the approximations of ût(x), v̂t(x) and d̂t(x)

were not computed.

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 127

5 10 15 20 25 30 35
-25

-20

-15

-10

-5

0

(i) The normalised singular values {σi/σ1} of
S1(f(x), g(x)) (�) , S1(f̃t(ω), αtg̃t(ω)) (�)

and S1(ḟt(ω), βtġt(ω)) (�) in Example 3.5.3

20 40 60 80 100 120 140 160 180 200
Iterations

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

lo
g 10

 R
es

id
ua

l

(ii) Residual at each iteration of the LSE
problem

Figure 3.21: Low rank approximation of the Sylvester matrix in Example 3.5.3

The computation of the low rank approximation of the tth subresultant matrix yields

the improved approximations u̇t(x), v̇t(x) and ḋt(x) of the GCD triple ût(x), v̂t(x) and

d̂t(x), which appear to be one order of magnitude better than the approximations obtained

by preprocessing alone.

Unprocessed

ut(x) , vt(x) , wt(x)

Preprocessed

ũt(x) , ṽt(x) , w̃t(x)

Perturbed

u̇t(x) , v̇t(x) , ẇt(x)

κ(At) - 1.1183e+ 11 1.5510e+ 09

ε(ut(x)) - 6.605633e− 07 5.524534e− 08

ε(vt(x)) - 1.092723e− 07 8.380987e− 09

ε(dt(x)) - 1.225898e− 06 9.373335e− 08

Average ε - 6.6524e− 07 5.2453e− 08

Table 3.2: Error in the approximations of ût(x), v̂t(x) and d̂t(x) in Example 3.5.3

�

Example 3.5.4. Consider the Bernstein form of the exact polynomials f̂(x, y) and ĝ(x, y),

whose factorisations are given by

f̂(x) = (x− 9.7515678)(x− 5.56)2(x− 1.46)(x− 1.37)(x− 1.2435487954)×

(x− 0.82)(x− 0.10122344)(x+ 2.27564657)2

ĝ(x) = (x− 9.7515678)(x− 5.56)2(x− 2.12)(x− 1.37)(x− 1.2435487954)×

(x− 1.2222222)(x− 0.99102445)

and whose GCD d̂t(x) of degree t = 5 is given by

d̂(x) = (x− 9.7515678)(x− 5.56)2(x− 1.37)(x− 1.2435487954).

128

Noise is added to coefficients of f̂(x) and ĝ(x) as described in (3.63), where εL =

1e − 6, εU = 1e − 5. The three sets of approximations of the GCD triple given by

(ut(x), vt(x), dt(x)), (ũt(x), ṽt(x), d̃t(x)) and (u̇t(x), v̇t(x), ḋt(x)) are computed and their

respective errors are given in Table 3.3.

Unprocessed

ut(x) , vt(x) , dt(x)

Preprocessed

ũt(x) , ṽt(x) , d̃t(x)

Perturbed

u̇t(x) , v̇t(x) , ḋt(x)

κ(At) 1.9970e+ 04 3.6460e+ 03 2.4476e+ 03

ε(ut(x)) 5.952614e− 04 1.731751e− 04 7.321304e− 05

ε(vt(x)) 1.957345e− 04 7.402057e− 05 2.468431e− 05

ε(dt(x)) 1.863888e− 04 6.582286e− 05 2.311860e− 05

Average ε 3.2579e− 04 1.0434e− 04 4.0339e− 05

Table 3.3: Error in the approximations of ût(x), v̂t(x) and d̂t(x) in Example 3.5.4

Again, the approximations obtained from the structured low rank approximation of

the tth subresultant matrix are an order of magnitude better than the approximations

obtained by least squares of the preprocessed tth subresultant matrix. �

Example 3.5.5. Consider the Bernstein form of the exact polynomials f̂(x, y) and ĝ(x, y),

whose factorisations are given by

f̂(x) = (x− 1.600548798)(x− 1.2435487954)(x− 0.76549843)4(x− 0.7165792)×

(x− 0.5465444984)(x− 0.37987984)(x+ 2.27564657)2(x+ 5.103579)2

ĝ(x) = (x− 1.2435487954)(x− 1.229876852)(x− 0.9916546598)

(x− 0.76549843)4(x− 0.54987)(x− 0.37987984)(x+ 5.103579)2,

and whose GCD of degree t = 8 is given by

d̂(x) = (x− 1.2435487954)(x− 0.76549843)4(x− 0.37987984)(x+ 5.103579)2.

Noise is added to the coefficients of f̂(x) and ĝ(x) as in (3.63) and the sets of values

{εf,i} and {εg,j} are uniformly distributed random variables in the interval [10−10, 10−8].

Polynomials (ut(x), vt(x), dt(x)), (ũt(x), ṽt(x), d̃t(x)) and (u̇t(x), v̇t(x), ḋt(x)) are computed

by the methods described above and errors in these approximations are given in Table 3.4.

In this example the approximations are improved by two orders of magnitude by consid-

ering the low rank approximation of the tth subresultant matrix.

�

This section has considered the computation of a low rank approximation of the tth

subresultant matrix to obtain improved approximations for the coefficients of the cofactor

polynomials ût(x), v̂t(x) and d̂t(x). The original problem of computing the AGCD of two

inexact polynomials f(x) and g(x) was reduced to the computation of the rank of the sub-

resultant matrices Sk(f̃k(ω), αkg̃k(ω)). By the computation of a low rank approximation of

the tth subresultant matrix, the GCD of the corrected polynomials ḟt(ω) and βtġt(ω) was

Chapter 3. The Univariate Polynomial GCD - The Two Polynomial Problem 129

Unprocessed
ut(x) , vt(x) , dt(x)

Preprocessed

ũt(x) , ṽt(x) , d̃t(x)

With Perturbations

u̇t(x) , v̇t(x) , ḋt(x)

κ(At) 4.5106e+ 05 5.4676e+ 04 3.3417e+ 04
ε(ut(x)) 6.900070e− 07 9.694460e− 07 1.025432e− 08
ε(vt(x)) 4.896091e− 07 6.915281e− 07 8.980188e− 10
ε(dt(x)) 2.053205e− 07 2.962297e− 07 5.693964e− 10

Average ε 4.616455e− 07 6.524013e− 07 3.907244e− 09

Table 3.4: Error in the approximations of ût(x), v̂t(x) and d̂t(x) in Example 3.5.5

computed and shown to be an improved approximation over the standard least squares

based method.

3.6 Conclusion

This chapter has considered the computation of the GCD of two univariate polynomials

in Bernstein form and the main points of this chapter are now summarised:

The Sylvester Matrix : The Sylvester matrix and subresultant matrices for two uni-

variate polynomials in Bernstein form were defined and several variants containing

different combinations of binomial coefficients were discussed. The optimal variant

of the kth subresultant matrix was given by D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k, which had

both optimal scaling amongst its entries and the best separation between the numer-

ically zero and non-zero singular values in its SVD. It was shown in Example 3.3.3

that this variant gave the best separation between the numerically zero and non-zero

singular values in the SVD of the set of subresultant matrices.

GCD Degree Computation : Several methods for the computation of the degree of

the GCD were considered, and SVD based methods, DC1 and DC2, were compared

with QR decomposition based methods, DC3 and DC4.

Example 3.4.5 has shown that in some instances, the set of minimum singular values

{σ̇k} is not sufficient to determine the degree of the GCD, whereas observation of

the complete set of singular values {σk,i} reveals a clear separation between numer-

ically zero and non-zero singular values and the degree of the GCD can correctly be

identified. In the same example in Figure 3.17i it can be seen that DC1 is not the

optimal method for determining the degree of the GCD.

A method which uses the SVD of the Bézoutian matrix was also included for com-

parison purposes, however this method failed to reliably determine the degree of the

GCD in most cases where polynomials were inexactly defined.

Preprocessing : The two polynomials were preprocessed to minimise the ratio of the

entry of maximum magnitude to the entry of minimum magnitude for each subresul-

tant matrix. Examples have shown that the degree of the GCD of two polynomials is

more reliably determined when the subresultant matrices contain preprocessed poly-

nomials. Some efficient methods for the preprocessing operations were developed.

130

Coefficient Computation : Two methods were considered for computing approxima-

tions of the cofactor polynomials ût(x) and v̂t(x) and the GCD d̂t(x). The first

method was a simple least squares approach and the second method computed a

structured low rank approximation of the tth subresultant matrix, from which coef-

ficients of the cofactor polynomials were computed.

The low rank approximation based method was shown to give better results than

the least squares method and the errors in the approximations are typically within

the range of the initial input error.

Developing a robust method for the computation of the GCD of two univariate polyno-

mials in Bernstein form is the first part of developing a method for polynomial square-free

factorisation. The next chapter discusses modifications to this general purpose GCD

finding method for use specifically in the square-free factorisation algorithm. The next

chapter also considers methods for polynomial deconvolution and examples of polynomial

root finding will be presented.

Chapter 4

The Univariate Polynomial

Factorisation Algorithm

Chapter 3 discussed the UGCD method for the computation of the degree and coefficients

of the GCD of two exact polynomials and the AGCD of two inexact polynomials in Bern-

stein form. Variants of the subresultant matrices were considered and various methods

(DC1 - DC5) were considered for the computation of the degree of the GCD (or AGCD).

It was also shown that a low rank approximation of the tth subresultant matrix typically

yields improved results in the computation of the coefficients of the GCD.

GCD computation is only one part of the square-free factorisation algorithm (Algo-

rithm 1), and the general purpose UGCD method developed in Chapter 3 can be specialised

further for the problem found in square-free factorisation. In this chapter, the MUGCD

method is developed, which is a refined version of UGCD and is used specifically as a part

of the square-free factorisation algorithm.

Section 4.1 In this section the UGCD finding algorithm is modified for use in the square-

free factorisation algorithm (Algorithm 1). This method, called MUGCD makes use

of prior knowledge obtained from previous iterations of the square-free factorisation

algorithm in order to quickly and reliably determine the degree of the ith GCD.

Section 4.2 This section considers the second part of the square-free factorisation algo-

rithm. Several matrix based methods are considered for the deconvolution of the set

of polynomials {f̂i(x)}. These deconvolution methods exploit the structure of the

set of polynomials f̂i(x) to give improved approximations of the set of polynomials

{ĥi(x)}.

Section 4.3 In the final section of the chapter, the MUGCD method and the appropri-

ate deconvolution method will be used to form a complete square-free factorisation

algorithm, square-free factorisation (SQFF), and this method will be compared with

other appropriate root finding methods. Some examples of univariate polynomial

root finding will be given, and it will be shown that this method returns good re-

sults even in the presence of significant noise.

131

132

4.1 Modifications to the GCD Computation

The GCD computations in the square-free factorisation algorithm are structured such

that polynomial ĝ(x) is the derivative of f̂(x), so the general purpose GCD finder UGCD

can be modified such that the degree of the GCD is more reliable computed, and in a

computationally more efficient way.

4.1.1 Bounds on the Degree of the GCD of a Polynomial and its Deriva-

tive

This section describes how an upper and lower limit, KUB and KLB respectively, can be

determined such that the degree t of the GCD of a polynomial and its derivative is known

to be contained within the interval [KLB,KUB] prior to its computation. The method for

determining the upper and lower bound is now described.

Let f̂0(x) be a univariate polynomial of degree M0, with a set of d0 distinct roots given

by { ri | i = 1, . . . , d0 }, where each root ri is of multiplicity mi. The polynomial f̂0(x) is

written in terms of its factors as

f̂0(x) = (x− r1)m1(x− r2)m2 . . . (x− rd0)md0

and its degree M0 is given by

M0 = m1 +m2 + · · ·+md0 .

The derivative of f̂0(x) is given by

df̂0(x)

dx
= f̂ ′0(x) = (x− r1)m1−1(x− r2)m2−1 . . . (x− rd0)md0−1 × k0(x),

where k0(x) is a polynomial of degree (d0 − 1).

As seen in Algorithm 1, the polynomial f̂1(x) is defined as the GCD of f̂0(x) and its

derivative f̂
′
0(x), and is given by

f̂1(x) = GCD
(
f̂0(x), f̂ ′0(x)

)
= (x− r1)m1−1(x− r2)m2−1 . . . (x− rd0)md0−1,

which has degree M1 = M0 − d0.

Suppose now that f̂0 is given in terms of its coefficients rather than its factorisation.

The number of distinct factors d0 is therefore unknown but can be determined by

d0 = M0 −M1,

where M0 and M1 are the degrees of f̂0(x) and f̂1(x) respectively.

More generally, the number of distinct roots di of any of the polynomials in the

set {f̂i(x) | i = 1, . . . ,mdi} is a function of its degree Mi and the degree of f̂i+1(x) =

GCD(f̂i(x), f̂
′
i (x)), and is given by

di = Mi −Mi+1.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 133

The number of distinct roots of f̂i(x) is only known after the computation of f̂i+1(x). This

can be used to determine a lower bound for the degree of the GCD(f̂i(x), f̂
′
i (x)) for any

i = 2, . . . ,md0 .

Since the number of distinct roots of f̂i+1(x) is less than or equal to the number of

distinct roots of f̂i(x), that is, di+1 ≤ di, then the lower bound of the degree of f̂i+1(x) is

given by

Mi+1 ≥ kLB = Mi − di−1 for i = 1, . . . ,md0 . (4.1)

This lower bound is only defined in the computation of the degree of f̂2(x), . . . , fmd0 (x).

The degree of f̂0(x) given by M0 is already known and the degree M1 of f̂1(x) is

computed with knowledge of the upper bound only, that is M1 ≤ M0 − 1. The degree

computation for all subsequent f̂i(x) is bounded by kLB and kUB as defined in (4.1).

In the case that di−1 = 1, then f̂i−1(x) has one distinct root, and the degree Mi of

f̂i(x) = GCD
(
f̂i−1(x), f̂

′
i−1(x)

)
is Mi−1 − 1.

There are two aims of determining an upper and lower bound:

1. The first aim is to reduce the number of subresultant matrices which must be con-

structed, preprocessed, and have their numeric rank analysed.

When computing the degree of the GCD of two arbitrary polynomials, f̂(x) and ĝ(x),

the algorithm described in Chapter 3 requires that min(m,n) subresultant matrices

be constructed and their numeric rank evaluated. In the univariate square-free

factorisation algorithm a set of GCD computations are required, and the construction

of the complete set of subresultant matrices for the computation of the GCD of each

f̂i(x) and its derivative f̂i(x)
′

is a time consuming process.

Rather than constructing and analysing the rank of each subresultant matrix

Sk(f̂(x), f̂
′
(x)) for k = 0, . . . ,min(m,m − 1), a lower bound kLB is determined

such that it is only necessary to consider a subset of the sequence of subresultant

matrices, the set {Sk(f̂(x), f̂
′
(x)) | k = kLB, . . . ,min(m,m− 1)}.

2. Alternatively, kLB can be used to define a threshold in the computation of the

degree of the GCD. Since it is known that all subresultant matrices Sk(f̂(x), ĝ(x)) for

k = 0, . . . , kLB−1 are numerically singular, the set of values {ρk | k = 1, . . . , kLB−1}
can be used to determine whether ρk for k = kLB, . . . ,min(m,n) is indicative of

Sk(f̂(x), ĝ(x)) being a numerically singular or nonsingular subresultant matrix.

Example 4.1.1. Consider the Bernstein form of the exact polynomial f̂(x), whose fac-

torisation is given by

f̂(x) = (x− 1.5)7(x− 0.17523547)5(x− 0.1)3(x+ 0.75)10(x+ 1.2354)3.

134

5 10 15 20 25
-18

-16

-14

-12

-10

-8

-6

-4

-2

(i) The minimum singular values {σ̇k} of the
subresultant matrices

{Sk(f̃0,k(ω), α0,kg̃0,k(ω))} for k = 1, . . . , 27

5 10 15 20
-18

-16

-14

-12

-10

-8

-6

-4

-2

(ii) The minimum singular values {σ̇k} of the
subresultant matrices

{Sk(f̃1,k(ω), α1,kg̃
′

1,k(ω))} for k = 1, . . . , 22

Figure 4.1: Computing the degree of the first and second GCD in the square-free
factorisation of f̂(x) in Example 4.1.1

The exact polynomials { f̂i(x) | i = 0, . . . , 10 } are given by

f̂i(x) =



(x− 1.5)7−i(x− 0.17523547)5−i(x− 0.1)3−i(x+ 0.75)10−i(x+ 1.2354)3−i i = 0, 1, 2,

(x− 1.5)7−i(x− 0.17523547)5−i(x+ 0.75)10−i i = 3, 4,

(x− 1.5)7−i(x+ 0.75)10−i i = 5, 6,

(x+ 0.75)10−i i = 7, 8, 9,

1 i = 10,

where each f̂i+1(x) is the GCD of f̂i(x) and f̂
′
i (x). The degrees of the set of polynomials

{f̂i(x)} are given by {mi} = {28, 23, 18, 13, 10, 7, 5, 3, 2, 1}. Random noise is added

to the coefficients of f̂(x) such that the perturbed polynomial f(x) has coefficients ai =

âi + εiâiri for i = 0, . . . ,m, where {εi} are uniformly distributed random variables in the

interval
[
10−12, 10−10

]
and {ri} are uniformly distributed random variables in the interval

[−1, 1].

In the ith GCD computation, polynomials fi(x) and f
′
i (x) are preprocessed as de-

scribed in Section 3.4 and the degree of the GCD fi+1(x) is computed by analysis of the

set of minimum singular values of {Sk(f̃i,k(ω), αi,kg̃i,k(ω)) | k = 1, . . . ,mi − 1}.
The notation f̃i,k(ω) denotes the ith polynomial in the set {fi(x)} (computed by the

square-free factorisation algorithm) having been preprocessed in the kth subresultant ma-

trix. Also, the preprocessed form of f
′
i (x) is denoted αi,kgi,k(ω) since the preprocessed

polynomial is not necessarily the derivative of f̃i(ω).

Figures 4.1 to 4.3 show the minimum singular values of each subresultant matrix

Sk(f̃i+1,k(ω), αi+1,kf̃
′
i+1,k(ω)) in the computation of each GCD. The vertical dashed red

lines in each of the figures indicate the computed upper and lower bound, kUB and kLB

respectively, for the degree of the GCD.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 135

2 4 6 8 10 12 14 16
-15

-10

-5

0

(i) The minimal singular values {σ̇k} of the
subresultant matrices

{Sk(f̃2,k(ω), α2,kg̃2,k(ω))} for k = 1, . . . , 17

2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

(ii) The minimal singular values {σ̇k} of the
subresultant matrices

{Sk(f̃3,k(ω), α3,kg̃3,k(ω))} for k = 1, . . . , 12

1 2 3 4 5 6 7 8 9
-14

-12

-10

-8

-6

-4

-2

0

(iii) The minimum singular values {σ̇k} of the
subresultant matrices

{Sk(f̃4,k(ω), α4,kg̃4,k(ω))} for k = 1, . . . , 9

1 2 3 4 5 6
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(iv) The minimum singular values {σ̇k} of the
subresultant matrices

{Sk(f̃5,k(ω), α5,kg̃5,k(ω))} for k = 1, . . . , 6

Figure 4.2: Computing the degree of the third, fourth, fifth and sixth GCD in the
square-free factorisation of f̂(x) in Example 4.1.1

�

In this section a lower bound KLB was derived for the computation of the degree of

the ith GCD. This lower bound can be included in a fast version of the GCD finding

algorithm used specifically in square-free factorisation, which can be significantly faster

than UGCD. This depends on the multiplicity structure of the polynomial for which the

square-free factorisation is computed. This fast method is referred to as MUGCD.

4.1.2 Bounds for Numerical Rank Determination

In the computation of the degree of the GCD of two arbitrary polynomials f̂(x) and ĝ(x),

a metric ρk of Sk(f̂(x), ĝ(x)) is derived by one of several methods described in Section 3.2.

136

1 1.5 2 2.5 3 3.5 4
-8

-7

-6

-5

-4

-3

-2

-1

0

1

(i) The minimum singular values {σ̇k} of the
subresultant matrices

{Sk(f̃6,k(ω), α6,kg̃6,k(ω))} for k = 1, . . . , 4

1 1.2 1.4 1.6 1.8 2
-7

-6

-5

-4

-3

-2

-1

0

1

(ii) The minimum singular values {σ̇k} of the
subresultant matrices

{Sk(f̃7,k(ω), α7,kg̃7,k(ω))} for k = 1, 2

Figure 4.3: Computing the degree of the seventh and eighth GCD in the square-free
factorisation of f̂(x) in Example 4.1.1

The value of ρk gives an indication as to whether the kth subresultant matrix is singular

or nonsingular, and when the complete set { ρk | k = 1, . . . ,min(m,n) } is considered, the

degree of the GCD can be computed from a maximum change in the set of values.

In the square-free factorisation algorithm, suppose ti is the degree of f̂i(x) =

GCD(f̂i−1(x), f̂
′
i−1(x)), then ρti is indicative of a numerically singular matrix while ρti+1 is

indicative of a nonsingular matrix. These two values can be used as threshold values, φi,LB

and φi,UP respectively, in the computation of the degree of f̂i+1 = GCD(f̂i(x), f̂
′
i (x)). It

is typically observed that φi,LB and φi,UP closely approximate ρti+1 and ρti+1+1 in the

subsequent GCD finding problem as shown in the following example.

Example 4.1.2. Consider the Bernstein form of the exact polynomial f̂(x) of degree

m = 11, whose factorisation is given by

f̂(x) = (x− 0.5)4(x+ 0.75)7.

The polynomials f̂0(x), . . . , f̂7(x) are given by

f̂i(x) =


(x− 0.5)4−i(x+ 0.75)7−i i = 0, 1, 2, 3,

(x+ 0.75)7−i i = 4, 5, 6,

1 i = 7,

where each f̂i+1(x) is the GCD of f̂i(x) and its derivative f̂
′
i (x), the degrees of which are

given by {Mi} = {11, 9, 7, 5, 3, 2, 1, 0}.
The degree of f̂1(x) = GCD(f̂0(x), f̂

′
0(x)) is determined by analysis of the minimum

singular values {σ̇k} of Sk(f̃0,k(ω), α0,kg̃0,k(ω)), and the set of values {ρ̇k = log10(σ̇k)} are

plotted in Figure 4.4i, from which the degree of f̂0(x) is given by t1 = 9.

Since t1 = 9, the ninth subresultant matrix S9(f̃0,9(ω), α0,9g̃0,9(ω)) is singular while

Chapter 4. The Univariate Polynomial Factorisation Algorithm 137

2 4 6 8 10
-16

-14

-12

-10

-8

-6

-4

-2

0

(i) The minimum singular values {σ̇k} of
the subresultant matrices
{Sk(f̃0,k(ω), α0,kg̃0,k(ω))}

1 2 3 4 5 6 7 8
-16

-14

-12

-10

-8

-6

-4

-2

0

(ii) The minimum singular values {σ̇k} of
the subresultant matrices
{Sk(f̃1,k(ω), α1,kg̃1,k(ω))}

Figure 4.4: The minimum singular values {σ̇k} in the first and second GCD
computation of the square-free factorisation problem in Example 4.1.2

S10(f̃0,10(ω), α0,10g̃0,10(ω)) is nonsingular, so the values ρ̇9 = log10 (σ̇9) ≈ −11 and

ρ̇10 = log10 (σ̇10) ≈ −1 are used as threshold values in the subsequent GCD computa-

tion. That is, φ0,LB = ρ̇9 and φ0,UB = ρ10. These are used in computing the degree

of f2(x), where f2(x) = GCD(f1(x), f
′
1(x)). The minimum singular values of subresul-

tant matrices Sk(f̃1,k(ω), α1,kg̃1,k(ω)) are plotted in Figure 4.4ii and horizontal red dot-

ted lines indicate the values of φ0,UB and φ0,LB. These values closely approximate the

values ρ̇7 = log10 (σ̇7) and ρ̇8 = log10 (σ̇8) respectively, and it is determined that the

subresultant matrix S7(f̃1,7(ω), α1,7g̃1,7(ω)) is numerically rank deficient while the matrix

S8(f̂1,8(ω), α1,8ĝ1,8(ω)) is of full rank. The values φ1,LB and φ1,UB are therefore given by

ρ7 and ρ8 respectively.

Values φ1,LB, φ1,UB, φ2,LB and φ2,UB are similarly computed and used in the compu-

tations of the degree of f3(x) and f4(x) in Figure 4.5i and Figure 4.5ii respectively. The

entries of the set {φ0,LB, . . . , φ3,LB} are approximately equal, as are the entries of the

set {φ0,UB, . . . , φ3,UB}, and this is typical for many examples. This approximation of a

numerically zero singular value is particularly useful when in the jth GCD computation

δρ̇i is insignificant for all values i = 1, . . . ,min(mj ,mj − 1) and it must be determined

whether all subresultant matrices are numerically rank deficient or of full rank.

In Figure 4.6, given the horizontal red dotted lines, the minimum singular values σ̇1

and σ̇2 of the subresultant matrices S1(f̃4,1(ω), α4,1f̃
′
4,1(ω)) and S2(α4,2f̃4,2(ω), f̃

′
4,2(ω)) are

both deemed to be numerically zero and therefore the degree of f5(x) is given by t5 = 2.

�

This section has considered methods to adapt the UGCD method developed in Chap-

ter 3, such that the GCD of two polynomials can be computed in the specific case where

ĝ(x) is the derivative of f̂(x) and forms a part of the square-free factorisation problem.

Refinements to the GCD finding method were discussed, specifically for the GCD problems

which arise in the square-free factorisation algorithm (Algorithm 1). These modifications

138

1 2 3 4 5 6
-14

-12

-10

-8

-6

-4

-2

0

(i) The minimum singular values {σ̇k} of
the subresultant matrices
{Sk(f̃2,k(ω), α2,kg̃2,k(ω))}

1 1.5 2 2.5 3 3.5 4
-14

-12

-10

-8

-6

-4

-2

0

(ii) The minimum singular values {σ̇k} of
the subresultant matrices
{Sk(f̃3,k(ω), α3,kg̃3,k(ω))}

Figure 4.5: The minimum singular values {σ̇k} in the third and fourth GCD
computation of the square-free factorisation problem in Example 4.1.2

give a significantly more efficient and reliable algorithm.

In the MUGCD method, only a subset of subresultant matrices,

SLB(f, g), . . . , Smin(m,n)(f, g), are required, since it is known that the degree of the

GCD lies in the interval [kLB,min(m,n)]. In the square-free factorisation of a polynomial

with few roots of high multiplicity, this can be significantly faster than considering all

subresultant matrices S1(f, g), . . . , Smin(m,n)(f, g) for each iteration of the algorithm.

The MUGCD method is also more reliable. It is known that the subresultant matrices

S1(f, g), . . . , SLB(f, g) are singular, and therefore the ranges of numerically zero and

non-zero singular values can be approximated for the singular values of SLB+1(f, g), . . . ,

Smin(m,n)(f, g).

The second stage of the square-free factorisation algorithm, deconvolution, must now

be considered.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 139

1 1.2 1.4 1.6 1.8 2
-14

-12

-10

-8

-6

-4

-2

0

Figure 4.6: The minimum singular values {σ̇k} of the subresultant matrices
{Sk(f̃4,k(ω), α4,kg̃4,k(ω))} in the fifth GCD computation of the square-free

factorisation problem in Example 4.1.2

140

4.2 Deconvolution in the Factorisation Algorithm

The previous section discussed modifications to the general purpose GCD finding method

for use in the square-free factorisation algorithm (Algorithm 1). The second stage of

this algorithm is the computation of the set of polynomials {ĥi(x)} by a set of divisions

over the polynomials f̂i(x), where each ĥi is given by f̂i−1/f̂i. Rather than the exact

polynomials f̂i(x), the inexact polynomials {fi(x)} must be deconvolved. It is assumed

that these polynomials are inexact since they are outputs of a sequence of non-exact GCD

computations performed in a floating-point environment. The GCD computations are

iterative, so errors are likely to propagate.

This section develops a robust matrix based method for the computation of approxima-

tions of the set of polynomials {ĥi(x)}, which utilises knowledge of the number of distinct

roots of the set of polynomials {fi(x)}. Five methods of polynomial deconvolution by

matrix methods are considered and are given as follows.:

1. Separate Deconvolution (SD) : In Section 4.2.1 each of the deconvolutions
f̂i−1(x)

f̂i(x)
for i = 1, . . . ,m are performed independently and the approximations of

{ĥi(x)} are obtained by simple least squares.

2. Batch Deconvolution (BD) : In Section 4.2.2 the polynomial deconvolutions

are performed simultaneously using a structured matrix method. Each polynomial

in the set {ĥi(x)} is given by ĥi(x) = f̂i−1(x)

f̂i(x)
, so each f̂i(x) is the divisor in the

ith division and the numerator in the (i + 1)th. The method described as batch

deconvolution takes advantage of this structure.

3. Batch Deconvolution with STLN (BDSTLN) : It is likely that the polynomials

fi(x) in the set {fi(x)} are inexact, and in Section 4.2.3 the method of deconvolution

is extended to include the computation of minimal perturbations δfi(x), such that

fi(x) + δfi(x) ≈ f̂i(x) and the polynomials {ĥi(x)} are approximated with minimal

error.

4. Constrained Batch Deconvolution (CBD) : In Section 4.2.4 further structure

is added to the set of deconvolutions. By the degree structure of the set of poly-

nomials {fi(x)} and the number of distinct roots in each fi(x), certain subsets of

the polynomials {ĥi(x)} are equal and the matrix deconvolution method is altered

accordingly.

5. Constrained Batch Deconvolution with STLN (CBDSTLN) : It is likely

that the polynomials in the set {fi(x)} are inexact, and in Section 4.2.5 polynomi-

als δfi(x) are computed such that the polynomials ĥi(x) are approximated by the

deconvolution of the set {fi(x) + δfi(x)} using the batch constrained method.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 141

4.2.1 Separate Deconvolution (SD)

Each polynomial ĥi(x, y) can be computed by an independent separate deconvolution. Let

the ith polynomial in the set of polynomials f̂i(x, y) be given by

f̂i(x) =

mi∑
j=0

âi,j

(
mi

j

)
(1− x)mi−jxj , (4.2)

where mi is the degree of the polynomial f̂i(x). The polynomial ĥi(x) of degree ni =

mi−1 −mi is given by

ĥi(x) =
f̂i−1(x)

f̂i(x)
for i = 1, . . . , µ.

The polynomial division can be written in matrix form as

Cni

(
f̂i(x)

)
ĥi(x) = f̂i−1, (4.3)

where Cni(f̂i(x)) ∈ R(mi−1+1)×(ni+1) is the matrix given by

Cni

(
f̂i(x)

)
= D−1

mi−1
Tni

(
f̂i(x)

)
Qni .

The matrix D−1
mi−1

∈ R(mi−1+1)×(mi−1+1) is given by

D−1
mi−1

= diag

[
1

(mi−1
0)

, 1

(mi−1
1)

, . . . , 1

(mi−1
mi−1

)

]
, (4.4)

the matrix Tni(f̂i(x)) ∈ R(mi−1+1)×(ni+1) is given by

Tni

(
f̂i(x)

)
=



âi,0
(
mi
0

)
âi,1
(
mi
1

)
âi,0
(
mi
0

)
... âi,1

(
mi
1

) . . .

âi,mi−1
(
mi
mi−1

) ...
. . . âi,0

(
mi
0

)
âi,mi

(
mi
mi

)
âi,mi−1

(
mi
mi−1

)
âi,1
(
mi
1

)
âi,mi

(
mi
mi

) . . .
...

. . . âi,mi−1
(
mi
mi−1

)
âi,mi

(
mi
mi

)


(4.5)

and the matrix Qni ∈ R(ni+1)×(ni+1) is given by

Qni = diag
[(

ni
0

)
, . . . ,

(
ni
ni

)]
. (4.6)

The vector ĥi ∈ Rni+1 in (4.3) is given by

ĥi =
[
ĥi,0, ĥi,1, . . . , ĥi,ni

]T
, (4.7)

which contains the coefficients of the polynomial ĥi(x) and is computed by a simple least

squares method. The vector f̂i consists of the coefficients of the polynomial f̂i(x) and is

142

given by

f̂i =
[
âi,0, âi,1, . . . , âi,mi

]T
. (4.8)

4.2.2 Batch Deconvolution (BD)

In the previous section the deconvolution problem was considered as a set of independent

problems in which the coefficients of each polynomial f̂i(x) for i = 1, . . . , µ−1 appear in a

convolution matrix in the ith deconvolution and a vector in the (i+1)th deconvolution. The

coefficients of the polynomial f̂0(x) only appear as a vector in the first deconvolution, and

the coefficients of f̂µ(x) are only contained in a coefficient matrix in the µth deconvolution.

The values M and N are defined as

M = (m0 + 1) + (m1 + 1) + · · ·+ (mµ−1 + 1)

= m0 +m1 + · · ·+mµ−1 + µ

N = (n1 + 1) + (n2 + 1) + · · ·+ (nµ + 1)

= n1 + n2 + · · ·+ nµ + (µ− 1)

and these assist in the description of the coefficient matrix for the set of deconvolutions.

The set of deconvolutions can be written in matrix form as

C
(
f̂1(x), . . . , f̂µ(x)

)
ĥ = f̂. (4.9)

The matrix C(f̂1(x), . . . , f̂µ(x)) ∈ RM×N is given by
D−1m0

Tn1

(
f̂1(x)

)
Qn1

D−1m1
Tn2

(
f̂2(x)

)
Qn2

. . .

D−1mµ−1
Tnµ

(
f̂µ

)
Qnµ


or alternatively the coefficient matrix is given by

C
(
f̃1(x), f̃2(x), . . . , f̃µ(x)

)
= D−1T

(
f̃1(x), f̃2(x), . . . , f̃µ(x)

)
Q̂. (4.10)

The block diagonal matrix D−1 ∈ RM×M is given by

D−1 = diag
[
D−1
m0
, D−1

m1
, . . . , D−1

mµ−1

]
, (4.11)

where each partition on the diagonal D−1
mi ∈ R(mi+1)×(mi+1) has the same structure as the

matrix defined in (4.4). The block diagonal matrix T(f̂1(x), f̂2(x), . . . , f̂µ(x)) ∈ RM×N is

given by

diag
[
Tn1

(
f̂1(x)

)
, Tn2

(
f̂2(x)

)
, . . . , Tnµ

(
f̂µ(x)

)]
, (4.12)

where each Tni(f̂i(x)) is of the structure defined in (4.5). The block diagonal matrix

Chapter 4. The Univariate Polynomial Factorisation Algorithm 143

Q̂ ∈ RN×N is given by

Q̂ = diag
[
Qn1 , Qn2 , . . . , Qnµ

]
, (4.13)

where each Qni ∈ R(ni+1)×(ni+1) is defined in (4.6).

A partition D−1
mi−1

Tni(f̂i(x))Qni has the structure

âi,0(mi0)(ni0)
(mi−1

0)
âi,1(mi1)(ni0)

(mi−1
1)

âi,0(mi0)(ni1)
(mi−1

1)

. . .

âi,2(mi2)(ni0)
(mi−1

2)
âi,1(mi1)(ni1)

(mi−1
2)

. . .
âi,0(mi0)(nini)
(mi−1
mi−1−mi

)
...

âi,2(mi2)(ni1)
(mi−1

3)

âi,1(mi1)(nini)
(mi−1
mi−1−mi+1)

âi,mi(
mi
mi

)(ni0)
(mi−1
mi

)

...
âi,2(mi2)(nini)
(mi−1
mi−1−mi+2)

âi,mi(
mi
mi

)(ni2)
(mi−1
mi+1)

. . .
...

âi,mi(
mi
mi

)(nini)
(mi−1
mi−1

)



.

The vector f̂ ∈ RM×1 in (4.9) is given by

f̂ =
[

f̂0, f̂1, . . . , f̂µ−1

]T
,

where the vectors f̂i ∈ R(mi+1)×1 are defined in (4.8). Similarly, the vector ĥ ∈ RN×1 in

(4.9) is given by [
ĥ1, ĥ2, . . . , ĥµ−1, ĥµ

]T
,

where the vectors ĥi are of the form (4.7).

As with the first method described in Section 4.2.1, this problem is also solved by

simple least squares.

Computations on polynomials whose coefficients vary widely in magnitude may be

unreliable, and preprocessing the set of polynomials {fi(x)} which are defined in (4.2) is

necessary. The substitution x = θω is considered, and the optimal value of θ is determined

by a linear programming problem such that the ratio of maximum entry of the preprocessed

D−1T (f̃1(ω), . . . , f̃µ(ω))Q̂ to the minimum entry of D−1T (f̃1(ω), . . . , f̃µ(ω))Q̂ is minimal.

The polynomials in the set {f̈k(θ, ω)} are unoptimised in the independent variable ω and

are defined by

f̈k(θ, ω) =

mk∑
i=0

âk,iθ
j

(
mk

i

)[
(1− θω)mk−jωk

]
for k = 0, . . . , µ. (4.14)

A general expression for a non-zero element in the first (n1 + 1) columns of

144

D−1T (f̈1(x), . . . , f̈µ(x))Q, that is, in the block D−1
m0
Tn1(f̈1(θ, ω))Qn1 , is

Cn1

(
f̈1(θ, ω)

)
(i+j+1,j+1)

=


â1,iθ

i(m1
i)(n1

j)
(m0
i+j)

i = 0, . . . ,m1; j = 0, . . . , n1,

0 otherwise.

More generally, the kth block D−1
mk−1

Tnk(f̈k(θ, ω))Qnk contains entries of the form

Cnk

(
f̈k(θ, ω)

)
(i+j+1,j+1)

=


âk,iθ

i(mki)(nkj)
(mk−1
i+j)

, i = 0, . . . ,mi; j = 0, . . . , ni,

0 otherwise.

It is convenient to define the sets Pk(θ) for k = 1, . . . , µ, where

Pk(θ) =


∣∣∣âk,iθi(mki)(nkj)∣∣∣(mk−1

i+j

) | i = 0, . . . ,mk; j = 0, . . . , nk

 ,

such that the minimisation problem to determine the optimal value of θ is written as

θ0 = arg min
θ

{
max{Pk(θ) | k = 1, . . . , µ }
min{Pk(θ) | k = 1, . . . , µ }

}
.

This problem can be written as

Minimise
t

s

Subject to

t ≥

∣∣∣âk,iθi(mki)(nkj)∣∣∣(mk−1
i+j

) k = 1, . . . , µ; i = 0, . . . ,mk; j = 0, . . . , nk,

s ≤

∣∣∣âk,iθi(mki)(nkj)∣∣∣(mk−1
i+j

) k = 1, . . . , µ; i = 0, . . . ,mk; j = 0, . . . , nk,

s > 0,

θ > 0.

By the transformations

T = log10 (t) , S = log10 (s) , φ̄ = log10 (θ) and ᾱk,i,j = log10


∣∣∣âk,i(mki)(nkj)∣∣∣(mk−1

i+j

)
 ,

Chapter 4. The Univariate Polynomial Factorisation Algorithm 145

the constrained minimisation problem can be written as

Minimise T − S

subject to

T −iφ̄ ≥ ᾱ1,i,j i = 0, . . . ,m1; j = 0, . . . , n1,

T −iφ̄ ≥ ᾱ2,i,j i = 0, . . . ,m2; j = 0, . . . , n2,
...

...
...

...
...

T −iφ̄ ≥ ᾱµ,i,j i = 0, . . . ,mµ; j = 0, . . . , nµ,

−S +jφ̄ ≥ −ᾱ1,i,j i = 0, . . . ,m1; j = 0, . . . , n1,

−S +jφ̄ ≥ −ᾱ2,i,j i = 0, . . . ,m2; j = 0, . . . , n2,
...

...
...

...
...

−S +jφ̄ ≥ −ᾱµ,i,j i = 0, . . . ,mµ; j = 0, . . . , nµ.

(4.15)

Since the counter j only appears on the left hand side of the inequalities, let λ̄k,i and ψ̄k,i

be defined as

M̄k,i = max {ᾱk,i,j | j = 0, . . . , 0, . . . , nk} k = 0, . . . , µ; i = 0, . . . ,mk

m̄k,i = min {ᾱk,i,j | j = 0, . . . , nk} k = 0, . . . , µ; i = 0, . . .mk,
(4.16)

then the above minimisation problem (4.15) can be written as

Minimise T − S

subject to

T −iφ̄ ≥ M̄1,i i = 0, . . . ,m1

T −iφ̄ ≥ M̄2,i i = 0, . . . ,m2

...
...

...
...

T −iφ̄ ≥ M̄µ,i, i = 0, . . . ,mµ

−S +iφ̄ ≥ −m̄1,i i = 0, . . . ,m1

−S +iφ̄ ≥ −m̄2,i i = 0, . . . ,m2

...
...

...
...

−S +iφ̄ ≥ −m̄1,i i = 0, . . . ,mµ

.

The minimisation problem can be written in matrix form as

Minimise
[

1 −1 0
] T

S

φ̄

 Subject to A

 T

S

φ̄

 ≥ b. (4.17)

The matrix A ∈ R(m1+m2+···+mµ)×3 in (4.17) is given by

A =
[
A1, A2, . . . , Aµ, a1, a2, . . . , aµ

]T
,

146

where the matrices Ak, ak ∈ R(mk+1)×3 are given by

Ak =



1 0 0

1 0 −1
...

...
...

1 0 −(mk − 1)

1 0 −mk


, ak =



0 −1 0

0 −1 1
...

...
...

0 −1 (mk − 1)

0 −1 mk


.

The vector b in (4.17) is given by

b =
[
M̄1, M̄2, . . . , M̄µ, −m̄1, −m̄2, . . . , −m̄µ

]T
,

where the vectors M̄k, m̄k ∈ Rmk+1 are given by

M̄k =
[
M̄k,0, M̄k,1, . . . , M̄k,mk

]T
, m̄k =

[
m̄k,0, m̄k,1, . . . , m̄k,mk

]T
.

The linear programming problem returns the value θ(0) and it follows that the set of

preprocessed polynomials are given by

f̃i(ω) =

mi∑
j=0

âi,jθ
j
0

(
mi

j

)[
(1− θ0ω)mi−jωj

]
, i = 0, . . . , µ.

Assuming now that f̃i(ω) are preprocessed forms of the inexact polynomials fi(x), the µ

deconvolutions of the preprocessed polynomials {f̃i(ω)} can be written in matrix form as

D−1T
(
f̃1(ω), f̃2(ω), . . . f̃µ(ω)

)
Q̂h̃ ≈ f̃. (4.18)

The block diagonal matrix D−1 is already defined in (4.11). Similarly, the block diagonal

matrix Q̂ is defined in (4.13), and the matrix T (f̃1(ω), f̃2(ω), . . . f̃µ(ω)) is given by

T
(
f̃1(ω), f̃2(ω), . . . f̃µ(ω)

)
=


Tn1

(
f̃1(ω)

)
Tn2

(
f̃2(ω)

)
. . .

Tnµ

(
f̃µ(ω)

)

 .

The vectors h̃ and f̃ are given by

h̃ =
[

h̃1, h̃2, . . . , h̃µ

]T
and f̃ =

[
f̃0, f̃1, . . . , f̃µ−1

]T
,

where f̃i ∈ Rmi+1 is given by

f̃i =
[
āi,0, āi,1θ0, . . . , āi,mθ

mi
0

]T
and h̃i ∈ Rni+1 is given by

h̃i =
[
h̄i,0, h̄i,1θ0, . . . , h̄i,niθ

ni
0

]
.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 147

The vectors h̃i containing the coefficients of the polynomials {h̃i(ω)} are computed by

least squares solution of (4.18).

4.2.3 Batch Deconvolution with Structured Total Least Norm (BD-

STLN)

The previous section considered the computation of several linked deconvolutions using

a structured matrix based method. The polynomials were preprocessed such that the

entries in each of the partitions were scaled to minimise the ratio of the entry of maximum

magnitude to entry of minimum magnitude. This section extends the previous work by

computing structured perturbations of the polynomials f̃i(ω), resulting in the improved

approximation of the set of polynomials {ĥi(x)}. The described method is somewhat

similar to that used in the computation of the low rank approximation of the subresultant

matrix in Section 3.5.2.

The coefficient matrix in (4.9), given by D−1T (f̃1(ω), . . . , f̃µ(ω))Q̂, is of order M ×N .

It is assumed that the coefficients of the polynomials are inexact, and thus (4.9) does

not possess an exact solution. It is therefore necessary to add a structured matrix to the

coefficient matrix and a structured vector to the right hand side vector of this equation.

Let q̃i(ω) be the polynomial added to f̃i(ω), and let q̃i ∈ Rmi+1 be the vector of

perturbations added to f̃i. Let the vector q̃ contain all perturbations of each vector f̃i

q̃ =
[

q̃0, q̃1, . . . , q̃µ

]T
,

where

q̃0 =
[
z0, z1θ, . . . , zm0θ

m0

]T
∈ Rm0+1,

q̃1 =
[
zm0+1, zm0+2θ, . . . , zm0+m1+1θ

m1

]T
∈ Rm1+1,

...

q̃µ =
[
zM , zM+1θ, . . . , zM1−1θ

mµ
]T
∈ Rmµ+1.

A matrix of structured perturbations is added to each of the matrices Ti(f̃i(x)) for i =
1, . . . , µ, and thus the coefficient matrix in (4.9) is replaced by

D−1
[
T
(
f̃1(ω), . . . , f̃µ(ω)

)
+ T (q̃1(ω), . . . , q̃µ(ω))

]
Q̂,

where the matrix T (q̃1(ω), q̃2(ω), . . . , q̃µ(ω)) ∈ RM×N is a block diagonal matrix whose

diagonal partitions are of the form Tni (q̃i(ω)) ∈ R(mi−1+1)×(ni+1), i = 1, . . . , µ.

Consider now the vector on the right hand side of (4.9), the perturbed form of which

is 

f̃0 + q̃0

f̃1 + q̃1

...

f̃µ−2 + q̃µ−2

f̃µ−1 + q̃µ−1


=



f̃0

f̃1

...

f̃µ−2

f̃µ−1


+
[
IM 0M×mµ

]


q̃0

q̃1

...

q̃µ−2

q̃µ−1


=



f̃0

f̃1

...

f̃µ−2

f̃µ−1


+ P q̃,

148

where

P =
[
IM 0M×mµ

]
∈ RM×M1 .

It follows that the corrected form of (4.9) is

D−1
(
T
(
f̃1, . . . , f̃µ

)
+ T (q̃1, . . . , q̃µ)

)
Q̂h̃ = f̃ + P q̃, (4.19)

where

h̃ =
[

h̃1, . . . , h̃µ−1, h̃µ

]T
∈ RN and f̃ =

[
f̃0, . . . , f̃µ−2, f̃µ−1

]T
∈ RM .

The residual due to an approximate solution of (4.19) is

r = r(q̃) =
(
f̃ + P q̃

)
−D−1

(
T
(
f̃1(ω), . . . , f̃µ(ω)

)
+ T (q̃1(ω), . . . , q̃µ(ω))

)
Q̂h̃, (4.20)

and the first order Taylor expansion of r(q̃) is given by

r̃ (q̃ + δq̃) = (f + P (q̃ + δq̃))

−D−1
(
T
(
f̃1, . . . , f̃µ

)
+ T (q̃1 + δq̃1, . . . , q̃µ + δq̃µ)

)
Q̂
(
h̃ + δh̃

)
= r (q̃) + Pδq̃−D−1

(
T
(
f̃1, . . . , f̃µ

)
+ T (q̃1, . . . , q̃µ)

)
Q̂
(
δh̃
)

−D−1δT (q̃1, . . . , q̃µ) Q̂h̃. (4.21)

There exist matrices Yi(h̃i(ω)) ∈ R(mi−1+1)×(mi+1) for i = 1, . . . , µ, such that

D−1
mi−1

Tni (q̃i(ω))Qnih̃i = D−1
mi−1

Ymi

(
h̃i(ω)

)
Qmi q̃i

and thus

D−1
mi−1

δTni (q̃i(ω))Qnih̃i = D−1
i−1Ymi

(
h̃i(ω)

)
Qmiδq̃i,

from which it follows that

D−1δT (q̃1, . . . , q̃µ) Q̂h̃ =
D−1m0

Ym1
(h̃1(ω))Qm1

. . .

D−1mµ−2
Ymµ−1(h̃µ−1(ω))Qmµ−1

D−1mµ−1
Ymµ(h̃µ(ω))Qmµ





δq̃1

δq̃2

...

δq̃µ−1
δq̃µ



=



0 D−1m0
Ym1(h̃1(ω))Qm1

0
...

. . .

0 D−1mµ−2
Ymµ−1(h̃µ−1(ω))Qmµ−1

0 D−1mµ−1
Ymµ(h̃µ(ω))Qmµ


δq̃

= D−1Y
(
h̃1, . . . , h̃µ

)
Q̂zδq̃, (4.22)

Chapter 4. The Univariate Polynomial Factorisation Algorithm 149

and an element of a partition of this matrix, D−1
mk−1

Ymk(h̃k(ω))Qmk , has the form

(
D−1
mk−1

Ymk

(
h̃k(ω)

)
Qmk

)
(i+j+1,j+1)

=


h̃k,iθ

i
0
(nii)(mij)
(mi−1
i+j)

i = 0, . . . , ni; j = 0, . . . ,mi;

0 otherwise.

The substitution of (4.22) into (4.21) yields

r (q̃ + δq̃) = r (q̃)−D−1
(
T
(
f̃1, . . . , f̃µ

)
+ T (q̃1, . . . , q̃µ)

)
Q̂δh̃−

(
D−1Y

(
h̃1, . . . , h̃µ

)
Q̂z − P

)
δq̃,

and thus the Newton-Raphson method requires the iterative solution of

[
D−1

(
T (f̃1, . . . , f̃µ) + T (q̃1, . . . , q̃µ)

)
Q̂

(
D−1Y (h̃1, . . . , h̃µ)Q̂z − P

)][δh̃

δq̃

]
= r(q̃),

which is an under-determined equation, and the coefficient matrix is given by[
D−1

(
T (f̃1, . . . , f̃µ) + T (q̃1, . . . , q̃µ)

)
Q̂

(
D−1Y (h̃1, . . . , h̃µ)Q̂z − P

)]
∈ RM×(N+M1).

If h̃
(0)

and q̃(0) = 0 are the initial values of h̃ and q̃ respectively in the Newton-Raphson

method, then the (j + 1)th iteration requires the minimisation of∥∥∥∥∥ h̃
(j+1) − h̃

(0)

q̃(j+1)

∥∥∥∥∥ =

∥∥∥∥∥ h̃
(j)

+ δh̃
(j) − h̃

(0)

q̃(j) + δq̃(j)

∥∥∥∥∥ =

∥∥∥∥∥
[
δh̃

(j)

δq̃(j)

]
−

[
−(h̃

(j) − h̃
(0)

)

−q̃(j)

]∥∥∥∥∥
subject to

[
D−1

(
T
(
f̃1, . . . , f̃µ

)
+ T (q̃1, . . . , q̃µ)

)
Q̂ D−1Y

(
h̃1, . . . , h̃µ

)
Q̂z − P

](j) [δh̃

δq̃

](j)
= r(j),

where the initial value of h̃ is calculated from (4.9)

h̃
(0)

=
(
D−1T (f̃1(ω), f̃2(ω), . . . , f̃µ(ω))Q̂

)†
f̃.

This gives rise to an LSE problem

miny ‖Fy − s‖ subject to Gy = t,

where

F = IN+M1

G =
[
D−1

(
T
(
f̃1, . . . , f̃µ

)
+ T (q̃1, . . . , q̃µ)

)
Q̂ D−1Y

(
h̃1, . . . , h̃µ

)
Q̂z − P

]j
∈ RM×(N+M1)

y =

[
δh̃

(j)

δq̃(j)

]
∈ RN+M1

s =

[
h(0) − h(j)

−q̃(j)

]
=

[
h0

q0

]
−

[
h̃

q̃

](j)

∈ RN+M1

150

and t = r(j) ∈ RM .

4.2.4 Constrained Batch Deconvolution (CBD)

The previous two sections have considered the batch deconvolution (BD) method and

the extension to the batch deconvolution with STLN (BDSTLN) method. In the batch

deconvolution with STLN (BDSTLN) method, structured perturbations are computed

such that the residual associated with (4.19) is minimised. In this section further con-

straints are applied to the problem, and these are derived from the multiplicity structure

of the factors of f̂0(x). Given the multiplicity structure, certain subsets of the polynomials

{ĥi(x) = f̂i+1(x)/f̂i(x)} are equal, and this constraint can be added to the structure of

the deconvolution problem.

For the development of the theory in this section, it is assumed that the polynomials

to be deconvolved, f̂i(x), are in the exact form. The factorisation of the exact polynomial

f̂(x) is given by

f̂0(x) = w1(x)w2(x)2 . . . wµ(x)µ,

where {wi(x)} are square-free polynomials of multiplicity i. Let {wki(x)} be the subset of

{wi(x)}, such that each wki in a non-constant polynomial. The set is given by

{wki} = {wi(x) | wi(x) 6= 1 } ,

where k1, . . . , kt are integers of increasing size. The polynomial f̂(x) has at least one factor

of multiplicity ki for i = 1, . . . , t, where t denotes the size of the set of wki .

Example 4.2.1. Consider the polynomial f̂(x) given by

f̂(x) = (x− 0.2)2(x− 0.3)5,

then

w1 = 1, w2 = (x− 0.2), w3 = 1, w4 = 1 and w5 = (x− 0.3)

so k1 = 2 and k2 = 5. �

The set of polynomials {hi(x)} can therefore be split into the subsets {h0, h1, . . . , hk1},
{hk1+1, . . . , hk2}, . . . , {hkt−1+1,...,hkt

}, where the polynomials contained within a subset

are all identical. Let the set of polynomials { p̂j | j = 1, . . . , t } be given by

p̂j(x) = ĥkj−1
(x) = ĥkj−1+1(x) = · · · = ĥkj (x),

where the degree of pj(x) is given by oj . The polynomials { p̂i(x) | i = 1, . . . , t } form the

solution vector of the system

C
(
f̂1(x), . . . , f̂kt(x)

)
p̂ = f̂, (4.23)

Chapter 4. The Univariate Polynomial Factorisation Algorithm 151

where the matrix C(f̂1(x), . . . , f̂kt(x)) is given by

D−1m0
To1

(
f̂1(x)

)
Qo1

...

D−1mk1−1
To1

(
f̂k1(x)

)
Qo1

D−1mk1
To2

(
f̂k1+1(x)

)
Qo2

...

D−1mk2−1
To2

(
f̂k2(x)

)
Qo2

. . .

. . .

. . .

D−1mkt−1−1
Tot

(
f̂kt−1+1(x)

)
Qot

...

D−1mkt−1
Tot

(
f̂kt(x)

)
Qot



.

The vector p̂ is given by

p̂ =
[

p̂1, p̂2, . . . , p̂t

]T
and the vector f̂ is given by

f̂ =
[

f̂0, . . . , f̂k1−1, f̂k1 , . . . , f̂k2−1, f̂k2 , . . . , f̂k3−1, . . . , f̂kt−2 , . . . , f̂kt−1

]T
.

Assuming now that polynomials {fi(x)} are defined inexactly, the approximations pi(x)

are computed from the least squares solution of

C(f1(x), f2(x), . . . , fkt(x))p ≈ f. (4.24)

Example 4.2.2. Consider the Bernstein form of the exact polynomial f̂(x), whose fac-

torisation is given by

f̂(x) = (x− 0.3)7(x− 0.2)3.

The polynomials { f̂i(x) | i = 0, . . . , 7 } are given in factorised form by

f̂i(x) =

(x− 0.3)7−i(x− 0.2)3−i i = 0, . . . , 3,

(x− 0.3)7−i i = 4 . . . 7

and the polynomials { ĥi(x) | i = 1, . . . , 7 } are given by

ĥi(x) =
f̂i−1(x)

f̂i(x)
,

where the polynomials {ĥ1(x), . . . , ĥ3(x)} are equal, as are the polynomials

{ĥ4(x), . . . , ĥ7(x)}. Therefore, the set of polynomials { ĥi(x) | i = 1, . . . , 7 } can be

152

computed by defining p̂1(x) and p̂2(x) as

p̂1(x) = ĥ1(x) = · · · = ĥ3(x) and p̂2(x) = ĥ4(x) = · · · = ĥ7(x)

and constructing the matrix-vector product

C(f̂1(x))

C(f̂2(x))

C(f̂3(x))

C(f̂4(x))

C(f̂5(x))

C(f̂6(x))

C(f̂7(x))



[
p̂1

p̂2

]
=



f̂0

f̂1

f̂2

f̂3

f̂4

f̂5

f̂6


,

then solving to find vectors p̂1 and p̂2. �

As with the batch deconvolution method, preprocessing the polynomials can be con-

sidered, and typically best results are obtained by the inclusion of preprocessing. Since the

matrix partitions in the batch constrained problem are identical to the partitions found

in the unconstrained problem, the linear programming problem is unaltered.

4.2.5 Constrained Batch Deconvolution with STLN (CBDSTLN)

In the constrained batch deconvolution with STLN (CBDSTLN) method, the low rank

approximation of the matrix in (4.24) is computed. Minimal perturbations are added to

the polynomials {fi} much in the same way as in BDSTLN but with the added constraints

introduced by the CBD method. Given the inexactly defined set of polynomials {fi(x)},
perturbations {qi(x)} are computed such that

C(f1, f2, . . . , fµ) +B(q1, q2, . . . , qµ)p = f + q (4.25)

and the vector p contains the coefficients of the set of polynomials {pi(x)}.

4.2.6 Results

Three distinct approaches to the deconvolution problem have been considered: (i) separate

deconvolution (SD), (ii) batch deconvolution (BD) and (iii) constrained batch deconvo-

lution (CBD). Both the batch deconvolution (BD) and constrained batch deconvolution

(CBD) methods may include the computation of structured perturbations. The following

examples will consider the computation of approximations of the polynomials {ĥi(x, y)}
given the inexact polynomials {f̂i(x, y)} for each of the described methods.

In each of the following examples a polynomial f̂(x) is defined in terms of its factors

and each of the subsequent polynomials f̂i(x) for i = 1, . . . , µ are given such that each

f̂i+1(x) is the GCD of f̂i(x) and its derivative f̂
′
i (x). Noise is added to the coefficients of

Chapter 4. The Univariate Polynomial Factorisation Algorithm 153

each f̂k(x) and the perturbed polynomials fk(x) have coefficients

fk(x) =

mk∑
i=0

ak,i

(
m

i

)
(1− x)mk−ixi where ak,i = âk,i + δâk,i.

The noise introduced in these examples does not necessarily give an accurate represen-

tation of the noise in the polynomials { fi(x) | i = 0, . . . , µ } computed by the square-free

factorisation algorithm (Algorithm 1). In fact, it would reasonably be anticipated that

each polynomial fi(x) would have a larger error than fi−1(x). That is, fj(x) has more

error in its coefficients than fi(x) for j > i. This is due to the iterative nature of the

square-free factorisation algorithm. However, for simplicity, these examples assume noise

is random and defined within a given interval.

Approximations of the polynomials { ĥi(x) = f̂i−1(x)

f̂i(x)
| i = 1, . . . , µ } are computed by

the five methods (i) separate deconvolution (SD), (ii) batch deconvolution (BD), (iii) batch

deconvolution with STLN (BDSTLN), (iv) constrained batch deconvolution (CBD) and

(v) constrained batch deconvolution with STLN (CBDSTLN), which were described in

Section 4.2.

For each method, two variations are considered :

1. The inexact polynomials {fi(x)} are deconvolved to obtain the set of approximations

{hi(x)}. The error between the approximated polynomials {hi(x)} and the exact

polynomials {ĥi(x)} is given by

εi (hi) =

∥∥∥ĥi − hi

∥∥∥∥∥∥ĥi∥∥∥ for i = 1, . . . , µ, (4.26)

where ĥi ∈ Rni+1 is the vector of coefficients of the exact polynomial ĥi(x) and

hi ∈ Rni+1 is the vector of coefficients of the computed polynomial hi(x).

2. Preprocessing the polynomials {fi(x)} gives the set of preprocessed polynomials

{ f̃i(ω) | i = 0, . . . , µ } which are deconvolved to obtain approximations { h̃i(ω) |
i = 1, . . . , µ }. The errors between the set of exact polynomials {ĥi(x)} and the set

of corresponding approximations { h̃i(x) } are given by

ε̃i(h̃i) =

∥∥∥ĥi − h̃i

∥∥∥∥∥∥ĥi∥∥∥ for i = 1, . . . , µ, (4.27)

where h̃i is a vector of the coefficients of h̃i(x) and the polynomials { h̃i(x) } are

given by a change in the independent variable where ω = x
θ . That is, the polynomials

{h̃i(x)} are given by

h̃i(x) =

ni∑
j=0

hi,jθ
j

(
ni
j

)
(1− θω)ni−j ωj ×

(
xj

θj

)

=

ni∑
j=0

hi,j

(
ni
j

)
(1− x)ni−j xj for i = 1, . . . , µ.

154

The values εavg and ε̃avg are defined as the averages of the sets { εi | i = 1, . . . , µ } and

{ ε̃i | i = 1, . . . , µ }, where εi and ε̃i are defined in (4.26) and (4.27) respectively. By the

examples included in this section, it will be shown that ε̃avg is typically smaller than εavg.

Example 4.2.3. Consider the Bernstein form of the exact polynomial f̂0(x), whose fac-

torisation is given by

f̂0(x) = (x− 0.56897)3(x+ 0.56921)9(x+ 1.24672)6.

The polynomials {f̂1(x), . . . , f̂9(x)} are computed by a sequence of GCD computations

such that f̂i+1(x) = GCD(f̂i(x), f̂
′
i (x)), and each f̂i(x) is given by

f̂i(x) =



(x− 0.56897)(3−i)(x+ 0.56921)(9−i)(x+ 1.24672)(6−i) i = 0, 1, 2,

(x+ 0.56921)(9−i)(x+ 1.24672)(6−i) i = 3, 4, 5,

(x+ 0.56921)(9−i) i = 6, 7, 8,

1 i = 9.

Random noise is added to the coefficients of each f̂i(x), such that the coefficients of the

inexact polynomials { fi(x) | i = 0, . . . , 9 } are given by

ai,j = âi,j + ri,j âi,jεi,j , for i = 1, . . . , µ; j = 0, . . . ,mi, (4.28)

where rj are uniformly distributed random variables in the interval [−1, 1] and εj are

uniformly distributed random variables in the interval
[
10−10, 10−8

]
.

The five deconvolution methods are considered for (i) the set of unprocessed inexact

polynomials {fi(x)} and (ii) preprocessed inexact polynomials {f̃i(x)}, and the errors {εi}
and {ε̃i} for i = 1, . . . , 9 are plotted in Figures 4.7i and 4.7ii respectively.

The average errors εavg and ε̃avg for each of the five methods are given in Table 4.1.

Method
Unprocessed

εavg

Preprocessed
ε̃avg

Separate 4.545356e− 08 4.545356e− 08
Batch 4.545355e− 08 8.423505e− 09
Batch with STLN 4.490187e− 08 6.783958e− 09
Batch Constrained 5.651231e− 08 6.708721e− 09
Batch Constrained with STLN 2.246971e− 08 3.199323e− 09

Table 4.1: Error in the approximations of the polynomials {ĥi(x)} in Example 4.2.3

�

Example 4.2.4. Consider the Bernstein form of the exact polynomial f̂(x), whose fac-

torised form is given by

f̂0(x) = (x− 6.5432)7(x− 2.1234565487)(x− 1.589212457)4(x− 0.7213)10(x+ 0.72)20.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 155

1 2 3 4 5 6 7 8 9
-10.5

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

(i) Errors {εi} in the approximations of

{ĥi(x)} by five deconvolution methods

1 2 3 4 5 6 7 8 9
-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

(ii) Errors {ε̃i} in the approximations of

{ĥi(x)} by five deconvolution methods

Figure 4.7: Error in the approximations of {ĥi(x)} by five deconvolution methods (i)
excluding and (ii) including preprocessing in Example 4.2.3

The polynomials { f̂i(x) | i = 1, . . . , 20} are given by

f̂i(x) =



(x− 6.5432)7−i(x− 1.589212457)4−i(x− 0.7213)10−i(x+ 0.72)20−i i = 1, 2, 3,

(x− 6.5432)7−i(x− 0.7213)10−i(x+ 0.72)20−i i = 4, 5, 6,

(x− 0.7213)10−i(x+ 0.72)20−i i = 7, 8, 9,

(x+ 0.72)20−i i = 10, . . . , 19,

1 i = 20.

Let the coefficients of each f̂i(x) be denoted { âi,j | j = 0, . . . ,m20}. Noise is added to the

coefficients of the polynomials {f̂i(x)} such that the coefficients of the inexact polynomials

{fi(x)} are given by (4.28), where {ri,j} are uniformly distributed random variables in the

interval [−1, 1] and {εi,j} = 10−8.

The sets of polynomials {hi(x) | i = 1, . . . , 20} and { h̃i(x) | i = 1, . . . , 20 } are

approximations of {ĥi(x)} and the distances between the exact polynomials {ĥi(x)} and

the approximations are given by {εi} and {ε̃i} respectively, which are plotted in Figure 4.8i

and Figure 4.8ii. The average errors denoted ε and ε̃ of the sets {εi} and {ε̃i} for each

deconvolution method are given in Table 4.2.

Method
Unprocessed

εavg

Preprocessed

ε̃avg

Separate 3.431876e− 07 3.431876e− 07

Batch 3.431876e− 07 5.974866e− 09

Batch with STLN 3.090918e− 07 5.856129e− 09

Batch Constrained 2.624582e− 07 3.912796e− 09

Batch Constrained with STLN 2.490096e− 07 1.767510e− 09

Table 4.2: Error in the approximations of the polynomials {ĥi(x)} in Example 4.2.4

156

2 4 6 8 10 12 14 16 18 20
-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

(i) Error {εi} in the approximations of

{ĥi(x)} by five deconvolution methods

2 4 6 8 10 12 14 16 18 20
-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

(ii) Error {ε̃i} in the approximations of

{ĥi(x)} by five deconvolution methods

Figure 4.8: Error in the approximations of {ĥi(x)} computed using five deconvolution
methods (i) excluding and (ii) including preprocessing in Example 4.2.4

�

Example 4.2.5. Consider the Bernstein form of the exact polynomial f̂(x), whose fac-

torisation is given by

f̂(x) = (x− 2.16547697898)2(x− 1.589)12(x+ 0.2789)30.

By the square-free factorisation algorithm (Algorithm 1), the exact polynomials { f̂i(x) |
i = 0, . . . , 30 } are given by

f̂i(x) =



(x− 2.16547697898)2−i(x− 1.589)12−i(x+ 0.2789)30−i i = 0, 1,

(x− 1.589)12−i(x+ 0.2789)30−i i = 2, . . . , 11,

(x+ 0.2789)30−i i = 13, . . . , 29,

1 i = 30

and the exact polynomials ĥi(x) for i = 1, . . . , 30 are given by

ĥi(x) =


(x− 2.16547697898)(x− 1.589)(x+ 0.2789) i = 1, 2,

(x− 1.589)(x+ 0.2789) i = 3, . . . , 12,

(x+ 0.2789) i = 13, . . . , 30.

This example proceeds in the same way as Example 4.2.4, and the coefficients of each

inexact polynomial fi(x) are given by (4.28), where εi,j in this case is set equal to 10−6.

The distance between the two sets of approximations {hi(x)} and {h̃i(x)} and the exact

polynomials {ĥi(x)} is measured and plotted in Figure 4.9. The average errors in these

two sets of approximations are denoted εavg and ε̃avg respectively, and are given for each

method in Table 4.3.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 157

Method
Unprocessed

εavg

Preprocessed

ε̃avg

Separate 1.233120e− 06 9.979658e− 07

Batch 1.233120e− 06 4.675257e− 06

Batch with STLN 1.228831e− 06 4.469532e− 06

Batch Constrained 2.836729e− 07 1.311885e− 06

Batch Constrained with STLN 1.027127e− 07 2.867082e− 07

Table 4.3: Error in the approximations of the polynomials {ĥi(x)} in Example 4.2.5

5 10 15 20 25 30
-8

-7.5

-7

-6.5

-6

-5.5

-5

(i) Error {εi} in the approximations of

{ĥi(x)} computed using five
deconvolution methods

5 10 15 20 25 30
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

(ii) Error {ε̃i} in the approximations of

{ĥi(x)} computed using five
deconvolution methods

Figure 4.9: Error in the approximations of {ĥi(x)} computed using five deconvolution
methods (i) excluding and (ii) including preprocessing in Example 4.2.5

�

Example 4.2.6. Consider the Bernstein form of the exact polynomial f̂0(x), whose fac-

torised form is given by

f̂0(x) = (x− 3.654132475632154)10(x− 1.589)12(x+ 0.278912456789)40.

The polynomials { f̂i(x) | i = 1, . . . , 40 } are given by

f̂i(x) =



(x− 3.654132475632154)10−i(x− 1.589)12−i(x+ 0.278912456789)40−i i = 1, . . . , 9,

(x− 1.589)12−i(x+ 0.278912456789)40−i i = 10, 11,

(x+ 0.278912456789)40−i i = 12, . . . , 39,

1 i = 40.

Noise is added to the coefficients of each of the polynomials in the set { f̂i | i = 1, . . . , 40 },
where the coefficients of the inexact polynomials are given by (4.28), where {ri,j} are

uniformly distributed random variables in the interval [−1, 1] and {εi,j} = 10−6.

The approximations {hi(x)} are computed from the unprocessed inexact polynomials

{fi(x)} using five deconvolution methods. The error in the approximation of each polyno-

158

5 10 15 20 25 30 35 40
-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

(i) Errors {εi} in the approximations of

{ĥi(x)} computed using five deconvolution
methods

5 10 15 20 25 30 35 40
-9

-8

-7

-6

-5

-4

-3

(ii) Errors {ε̃i} in approximations of {ĥi(x)}
computed using five deconvolution methods

Figure 4.10: Error in the approximations of {ĥi(x)} computed using five deconvolution
methods (i) excluding and (ii) including preprocessing in Example 4.2.6

mial ĥi, given by εi, is plotted in Figure 4.10i. The polynomials {h̃i(x)} are computed by

the deconvolution of the preprocessed inexact polynomials {f̃i(ω)} and the errors in these

approximations, given by ε̃i, are plotted in Figure 4.10ii. The average errors, denoted ε

and ε̃, are given in Table 4.4.

Method
Unprocessed

εavg

Preprocessed

ε̃avg

Separate 1.071075e− 04 4.889416e− 05

Batch 1.071075e− 04 6.134607e− 07

Batch with STLN 8.844553e− 05 6.082674e− 07

Batch Constrained 5.383393e− 05 5.283715e− 08

Batch Constrained with STLN 1.116176e− 05 2.641052e− 08

Table 4.4: Error in the approximations of the polynomials {ĥi(x)} in Example 4.2.6

�

This section has described several methods of polynomial deconvolution using struc-

tured matrix methods, given the synthetically inexact polynomials {fi(x)}. The examples

in this section have considered five methods (i) separate deconvolution (SD), (ii) batch

deconvolution (BD), (iii) batch deconvolution with STLN (BDSTLN), (iv) constrained

batch deconvolution (CBD) and (v) constrained batch deconvolution with STLN (CBD-

STLN) for division of the polynomials {fi(x) | i = 0, . . . , µ}. It has been shown that first

preprocessing the polynomials, such that the block partitions of the coefficient matrix are

relatively scaled, yields improved results in the approximation of {ĥi(x)}.
The methods batch deconvolution (BD) and constrained batch deconvolution (CBD)

can give significantly smaller errors in the approximations of f̂i(x) when compared with

separate deconvolution (SD), particularly when the polynomial f̂0(x) is of high degree and

has few roots of high multiplicity.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 159

The next section combines the work so far and considers examples where the square-

free factorisation of a univariate polynomial in Bernstein form is computed.

4.3 Univariate Root Finding Results

This section now considers results of the square-free factorisation algorithm, and these

results are compared with the standard Matlab roots() method, as well as multroot()

by Zeng.

The first stage of the square-free factorisation algorithm (Algorithm 1) requires the

computation of the polynomials {f̂i(x)}, where each f̂i(x) is the GCD of f̂i−1(x) and its

derivative. In the following examples, given a perturbed f0(x), two sets of approximations

of {f̂i(x)} are computed by two different methods which are outlined below:

Method 1 : This method employs the standard least squares based method (described

in Section 3.5) for the computation of the coefficients of the sequence of GCDs. This

gives the set of approximations {f̃i(x)}.

Method 2 : In this method each fi(x) in the set of polynomials {fi(x)}, generated by

a set of GCD computations, has its coefficients computed using a low rank approxi-

mation of the tith subresultant matrix, where ti is the degree of fi(x).

The errors between the exact polynomials {f̂i(x)} and the two sets of approximations

{f̃(x)} and {ḟ(x)} are given by Equation (3.65) and Equation (3.66) respectively.

Example 4.3.1. This example considers the two methods of computing approximations

of the polynomials {f̂i(x)} and five methods of deconvolution. No other root finding

methods are considered for this example.

Consider the Bernstein form of the exact polynomial f̂(x), whose factorised form is

given by

f̂(x) = (x− 0.101)20(x− 0.1)20(x+ 0.5)2.

This example considers the computation of the square-free factorisation, and roots of the

inexact polynomial f(x). Noise is added to the coefficients of the polynomial f̂(x) such

that the coefficients of the inexact polynomial f(x) are given by ai = âi + riâiεi, where

{ri} are uniformly distributed random variables in the interval [−1, 1] and {εi} = 10−8.

The polynomials {f̂i(x)} are given by

f̂i(x) =


(x− 0.101)20−i(x− 0.1)20−i(x+ 0.5)2−i i = 0, 1,

(x− 0.101)20−i(x− 0.1)20−i i = 2, . . . , 19,

1 i = 20.

The first stage of the square-free factorisation algorithm computes approximations of these

polynomials. Figure 4.11 shows the error between exact polynomials {f̂i(x)} and the

two sets of approximations {f̃i(x)} and {ḟi(x)} obtained by Method 1 and Method 2

respectively.

160

2 4 6 8 10 12 14 16 18 20
-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

Figure 4.11: Error in approximation of { f̂i(x) | i = 1, . . . , 20 } by (i) Method 1 (�)
and (ii) Method 2 (�) in Example 4.3.1

Given the set of approximations ḟi(x) obtained by Method 2, the second part of the

square-free factorisation algorithm computes approximations of the polynomials {ĥi(x)}.
The five deconvolution methods are used in this problem and are compared. In Figure 4.12

the error in each approximation hi(x) is plotted and it is clear to see that the best approx-

imations are obtained by the constrained batch deconvolution with STLN (CBDSTLN)

method.

2 4 6 8 10 12 14 16 18 20
-7.5

-7

-6.5

-6

-5.5

-5

Figure 4.12: Error in the approximations of {ĥi(x)} computed using five deconvolution
methods in Example 4.3.1

�

In the following examples two methods are considered for the square-free factorisation

problem :

Method 1 : The first method used in the following examples proceeds as follows:

1. The approximations {f̃i(x)} are computed by the GCD finding method which

makes use of least squares approximation in Section 3.5.1.

2. The polynomials {ĥi(x)} are approximated using the separate deconvolution

(SD) method, that is, the approximations {h̃i(x)} are given by f̃i−1/f̃i as de-

scribed in Section 4.2.1.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 161

3. The polynomials {w̃i(x)} are given by deconvolution of the set {h̃i(x)} where

the batch deconvolution (BD) method is used.

Method 2 (SQFF) : The second method considered in the following examples is given

the name square-free factorisation (SQFF) and proceeds as follows :

1. The approximations {ḟi(x)} are computed by the GCD finding method which

makes use of the low rank approximation of the tth subresultant matrix as seen

in Section 3.5.2.

2. The polynomials in the set {ḟi(x)} are deconvolved using the constrained batch

deconvolution with STLN (CBDSTLN) method as described in Section 4.2.5

to obtain the approximations {ḣi(x)}.

3. The approximations {ẇi(x)} are computed by batch deconvolution (BD) of the

polynomials {ḣi(x)} as described above.

Example 4.3.2. Consider the Bernstein form of the exact polynomial f̂(x) of degree

m = 45, whose factorisation is given by

f̂(x) = (x− 3.216789879)13(x− 1.23456)5(x− 0.75)15(x− 0.4)10(x+ 0.12687)2.

Noise is added to the coefficients of f̂(x), and the coefficients of the inexact polynomial

f(x) are given by ai = âi + âiriεi, where {ri} are uniformly distributed random variables

in the interval [−1, 1] and {εi} are uniformly distributed random variables in the interval

[10−10, 10−8].

Figure 4.13i plots the errors in the sets of approximations {f̃i(x)}, {h̃i(x)} and {w̃i(x)}
and Figure 4.13ii plots the errors in the approximations {ḟi(x)}, {ḣi(x)} and {ẇi(x)},
where the two batches of approximations are obtained by Method 1 and Method 2

(SQFF) respectively. The roots {ri} computed by Method 1 and Method 2 (SQFF)

are shown in Table 4.5 and Table 4.6 respectively.

These indicate that the errors in approximations obtained by Method 2 (SQFF) are

smaller than those obtained by Method 1, while both methods correctly identify the root

multiplicity structure.

Computed Root

ri

Error

|r̂i − ri|
Root

Multiplicity

−0.126869586179687 4.1382e− 07 2

1.234560435234715 4.3523e− 07 5

0.399988340390411 1.1660e− 05 10

3.216453021241865 3.3686e− 04 13

0.750002359901100 2.3599e− 06 15

Table 4.5: Roots and root multiplicities computed by Method 1 in Example 4.3.2

162

Computed Root

ri

Error

|r̂i − ri|
Root

Multiplicity

−0.126870364702462 3.6470e− 07 2

1.234560309624994 3.0962e− 07 5

0.400000368352912 3.6835e− 07 10

3.216807497210620 1.7618e− 05 13

0.750000508265343 5.0827e− 07 15

Table 4.6: Roots and root multiplicities computed by Method 2 (SQFF) in
Example 4.3.2

The average errors in the approximations of {f̂i(x)}, {ĥi(x)} and {ŵi(x)} for each

of the methods are given in Table 4.7. The errors in the approximations {f̃i(x)} com-

puted by the simple least squares based method are typically larger than the errors in the

approximations {ḟ(x)}.

Method 1 Method 2 (SQFF)

εavg {f̂i(x)} 2.560914e− 06 7.997036e− 07

εavg {ĥi(x)} 1.068434e− 05 9.474574e− 07

εavg {ŵi(x)} 9.773989e− 06 6.944887e− 07

Table 4.7: Error in the approximations of the sets of polynomials {f̂i(x)} , {ĥi(x)} and
{ŵi(x)} in Example 4.3.2

Results from Method 2 (SQFF) are compared with the Matlab roots() method

and Zeng’s multroot(). Both Matlab and Zeng’s methods fail to retain the multiplicity

structure of the roots of f̂(x) in the presence of noise. Consequently, clusters of roots are

computed in complex conjugate pairs and these surround the exact roots (see Figure 4.14).

The errors in the approximations of the roots by these two methods are significant, but

their respective backward errors are small. However, Method 2 (SQFF) retains the

multiplicity structure.

Example 4.3.3. Consider the Bernstein form of the exact polynomial f̂(x) of degree

m = 11, whose factorised form is given by

f̂(x) = (x− 0.5)4(x+ 0.75)7.

Noise is added to the coefficients of f̂(x) such that the coefficients of the inexact polynomial

f(x) are given by ai = âi + âi × ri × 10−8, where {ri} are uniformly distributed random

variables in the interval [−1, 1].

Approximations of the sets of polynomials {f̂i(x)}, {ĥi(x)} and {ŵi(x)} are computed

by Method 1 and Method 2 (SQFF) and the errors for both of these methods are

plotted in Figure 4.15i and Figure 4.15ii respectively. The average errors are then given in

Table 4.8. The sets of roots approximated by Method 1 and Method 2 (SQFF) and

their respective errors are given in Table 4.9 and Table 4.10 respectively.

Chapter 4. The Univariate Polynomial Factorisation Algorithm 163

2 4 6 8 10 12 14
-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

(i) Method 1

2 4 6 8 10 12 14
-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

(ii) Method 2 (SQFF)

Figure 4.13: Average error in the approximations of {f̂i(x)}, {ĥi(x)} and {ŵi(x)}
approximated by (i) Method 1 and (ii) Method 2 (SQFF) in Example 4.3.2

-1 0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.14: Roots of f̂(x) as approximated by (i) SQFF, (ii) Matlab roots() and
(iii) multroot() in Example 4.3.2

Method 1 Method 2 (SQFF)

εavg{f̂i(x)} 3.140354e− 09 4.731169e− 09

εavg{ĥi(x)} 1.182284e− 08 1.584437e− 09

εavg{ŵi(x)} 9.779087e− 09 8.945724e− 10

Table 4.8: Error in the approximations of {f̂i(x)} , {ĥi(x)} and {ŵi(x)} in
Example 4.3.3

164

Computed Root

ri

Error

|r̂i − ri|
Root

Multiplicity

0.499999994397712 5.6023e− 09 4

−0.750000030281793 3.0282e− 08 7

Table 4.9: Roots and root multiplicities approximated by Method 1 in Example 4.3.3

Computed Root

ri

Error

|r̂i − ri|
Root

Multiplicity

0.499999999796249 −2.0375e− 10 4

−0.749999994991544 −5.0085e− 09 7

Table 4.10: Roots and root multiplicities approximated by Method 2 (SQFF) in
Example 4.3.3

1 2 3 4 5 6 7
-9.4

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6

(i) Method 1

1 2 3 4 5 6 7
-9.4

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6

(ii) Method 2 (SQFF)

Figure 4.15: Average error in the approximations of {f̂i(x)} , {ĥi(x)} and {ŵi(x)}
approximated by (i) Method 1 and (ii) Method 2 (SQFF) in Example 4.3.3

�

Many other combinations of preprocessing, low rank approximation methods and de-

convolution methods can be considered, but generally best results are obtained by methods

which :

1. Preprocess the polynomials in the GCD problem

2. Exploit structure preserving low rank approximation methods

3. Make use of constrained deconvolution methods

4.4 Conclusion

This section has considered the computation of the factorisation of a univariate polyno-

mial in Bernstein form. Gauss’ algorithm was used in the computation of the square-free

Chapter 4. The Univariate Polynomial Factorisation Algorithm 165

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 4.16: Roots of f̂(x) as approximated by (i) SQFF, (ii) Matlab roots() and
(iii) multroot() in Example 4.3.3

factorisation, which makes use of a sequence of GCD computations and two sets of poly-

nomial deconvolutions. The simple roots of the square-free polynomials {ŵi(x)} are the

roots of f̂(x) of multiplicity i.

The MUGCD Method : The modified univariate GCD (MUGCD) method was de-

veloped in this chapter and modifies the standard univariate GCD (UGCD) method

developed in the previous chapter. This method is significantly faster when deal-

ing with the type of GCD problem found in the square-free factorisation algorithm

(Algorithm 1). Using this method, fewer subresultant matrices must be constructed

and preprocessed. This also reduces the number of required SVD operations.

The Deconvolution Problem : Several deconvolution methods were considered and

the best approximations of the set of polynomials {ĥi(x)} were shown to be obtained

using the structured matrix methods of batch deconvolution (BD) and constrained

batch deconvolution (CBD).

The Square-Free Factorisation Problem : Results from the square-free factorisa-

tion (SQFF) method developed in this chapter compare favourably with Matlab

roots() and Zeng’s multroots() methods. The multiplicity structure is generally

preserved in SQFF where the other methods fail. This can be seen in Example 4.3.2.

The extension of the square-free factorisation algorithm (Algorithm 1) to determine

the factorisation of a bivariate polynomial will be described in Section 6.1. This algorithm

requires the computation of the GCD of three bivariate polynomials. First, the UGCD

method described in Chapter 3 is extended to compute the GCD of three univariate

polynomials. Following this, a simple extensions to compute the GCD of three bivariate

polynomials is derived.

166

Chapter 5

The Univariate Polynomial GCD -

The Three Polynomial Problem

Chapter 3 described the UGCD method for the computation of the GCD of two exact

polynomials f̂(x) and ĝ(x) or the AGCD of two inexact polynomials f(x) and g(x), where

the polynomials were defined in Bernstein form.

For the factorisation of a univariate polynomial, the square-free factorisation algorithm

(Algorithm 1) generates the set {f̂i(x)}, where f̂i+1(x) = GCD(f̂i(x), f̂
′
i (x)) as discussed

in Chapter 4. An extension of the above mentioned algorithm allows for the computation

of the square-free factorisation of a bivariate polynomial f̂(x, y). In this algorithm the set

of polynomials {f̂i(x, y)} is generated, where each f̂i+1(x, y) is given by

f̂i+1(x, y) = GCD

(
f̂i(x, y),

∂f̂i(x, y)

∂x
,
∂f̂i(x, y)

∂y

)
.

Therefore, it is necessary to develop a robust method for the computation of the GCD

of three bivariate polynomials. This introduces two new problems. They are the com-

putation of the GCD of three polynomials and the computation of the GCD of bivariate

polynomials. This chapter first extends the univariate GCD (UGCD) method to compute

the GCD of three polynomials, f̂(x), ĝ(x) and ĥ(x), using similar structured matrix meth-

ods. Subsequent chapters will discuss the extension to compute the GCD of two or three

bivariate polynomials.

One approach to the problem is to first compute the GCD d̂a(x) of any two of the

three polynomials, say f̂(x) and ĝ(x), then compute the GCD of the result and the third

polynomial ĥ(x). That is,

d̂(x) = GCD
(
f̂(x), ĝ(x), ĥ(x)

)
= GCD

(
GCD

(
f̂(x), ĝ(x)

)
, ĥ(x)

)
= GCD

(
GCD

(
f̂(x), ĥ(x)

)
, ĝ(x)

)
= GCD

(
GCD

(
ĝ(x), ĥ(x)

)
, f̂(x)

)
.

Let p̂(x) be the GCD of f̂(x) and ĝ(x), then it may be that the GCD of p̂(x) and ĥ(x),

that is dt(x), is also equal to p̂(x), and therefore all of the subresultant matrices in the set

{Sk(p̂(x), ĥ(x))} are singular. However, it is this type of problem which forms one of the

167

168

exceptions to the univariate GCD (UGCD) finding algorithm discussed in Section 3.2.5.

The AGCD of any two of three polynomials may be less well defined than the AGCD

of any other pair. That is to say, by the method described in Chapter 3, the AGCD is

not recoverable by analysis of the numerical rank of the subresultant matrices. However,

another pairing may avoid this problem. For example, f(x) and g(x) may have a poorly

defined AGCD but g(x) and h(x) may have a well-defined AGCD such that

AGCD
(

AGCD (f(x), g(x)) , h(x)
)
6= AGCD

(
f(x),AGCD (g(x), h(x))

)
= d(x).

When computing the AGCD of three inexact polynomials, f(x), g(x) and h(x), the

AGCD of da(x)
(

the AGCD of f(x) and g(x)
)

and h(x) can become coprime, since the

first AGCD computation moves the result p(x) away from the point which would represent

the AGCD of all three polynomials.

Improved results are obtained by utilising a method where the GCD of all three poly-

nomials is considered simultaneously, and for this a new structured matrix based method is

considered. The new set of three-polynomial subresultant matrices extends the definition

of the two-polynomial subresultant matrices to a form consistent with the three-polynomial

problem.

The bivariate or n-variate Sylvester matrix and sequence of subresultant matrices is

covered in a small number of publications [32,39,53,79]. However, significantly less work is

found on the Sylvester matrix of three polynomials in Bernstein form, and this is addressed

in this chapter.

Section 5.1 The determination of the degree of the GCD of three polynomials reduces

to the computation of the numerical rank of a set of subresultant matrices. This

is similar to the method already seen for the computation of the degree of the

GCD of two polynomials in Chapter 3. There are two variations of the subresul-

tant matrices for the three-polynomial problem, namely {Ŝk(f̂(x), ĝ(x), ĥ(x))} and

{S̃k(f̂(x), ĝ(x), ĥ(x))}, which have (2× 3) and (3× 3) partitioned structures respec-

tively, and the structure of these matrices is discussed.

This section also considers the optimal ordering of polynomials f̂(x), ĝ(x) and ĥ(x)

for inclusion in the (2×3) partitioned subresultant matrix, where each ordering gives

rise to a set of subresultant matrices of different dimensions. The entries of these

matrices can be of significantly different magnitudes, and their numerical ranks are

not consistent.

Section 5.2 The optimal variant of the two-polynomial subresultant matrix sequence was

described in Section 3.1.4 and was given by the set of subresultant matrices of the

form {D−1
m+n−kTk(f̂(x), ĝ(x))Q̂k | k = 1, . . . ,min(m,n)}. This section considers the

optimal variant of the three-polynomial subresultant matrix sequence.

Section 5.3 Preprocessing the two-polynomial subresultant matrices was considered in

Section 3.4, and it was shown that the degree t of the AGCD was more reliably

computed from the subresultant matrices of preprocessed polynomials. The prepro-

cessed tth subresultant matrix also gave improved approximations of the coefficients

of the GCD. This section extends the preprocessing, such that the (2×3) and (3×3)

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 169

partitioned subresultant matrices of three polynomials are preprocessed. It will be

shown that the preprocessing of these three-polynomial subresultant matrices has

similar benefits in the computation of the degree of the three-polynomial GCD with

similar results. It will also be shown how poor scaling can arise amongst the row-

partitions, should the polynomialsf̂(x), ĝ(x) and ĝ(x) be of significantly different

degree.

Section 5.4 Approximations of the cofactor polynomials ût(x), v̂t(x) and ŵt(x) and the

GCD d̂t(x) are computed by least squares and the method is described in this section.

Section 5.5 This section presents a set of examples in which the degree of the GCD of

three polynomials is computed using the subresultant matrices of unprocessed and

preprocessed polynomials.

Approximations of the coefficients of cofactor polynomials and the GCD are com-

puted from the tth unprocessed and tth preprocessed subresultant matrix and it is

shown that approximations from the preprocessed subresultant matrix are signifi-

cantly better.

5.1 The Degree of the Three-Polynomial GCD

The three polynomials f̂(x), ĝ(x) and ĥ(x) of degrees m, n and o respectively, have a

common divisor d̂k(x) of degree k if and only if there exist cofactor polynomials ûk(x),

v̂k(x) and ŵk(x) of degrees (m− k), (n− k) and (o− k) respectively, such that

f̂(x)

ûk(x)
= d̂k(x),

ĝ(x)

v̂k(x)
= d̂k(x) and

ĥ(x)

ŵk(x)
= d̂k(x).

A divisor d̂k(x) is common to all three polynomials if all three of the equations

f̂(x)v̂k(x)− ĝ(x)ûk(x) = 0 (5.1)

f̂(x)ŵk(x)− ĥ(x)ûk(x) = 0 (5.2)

ĝ(x)ŵk(x)− ĥ(x)v̂k(x) = 0 (5.3)

are simultaneously satisfied.

As with the two-polynomial GCD problem, these equations can be written in matrix

form. There are two variations of the three-polynomial subresultant matrices with (3× 3)

and (2×3) partitioned structures respectively. The (2×3) partitioned subresultant matrix

takes three different forms, dependent on which two of the three equations are considered.

These variations will be defined later in this section, but first the (3 × 3) partitioned

subresultant matrix is defined.

The three equations (5.1, 5.2, 5.3) can be written in matrix form as

S̃k

(
f̂(x), ĝ(x), ĥ(x)

)
xk = 0, (5.4)

170

which has non-trivial solutions for k = 1, . . . , t and the solution vector xk is given by

xk =
[

v̂k, ŵk, −ûk

]T
, (5.5)

where vectors v̂k, ŵk and ûk contain the coefficients of the cofactor polynomials v̂k(x),

ŵk(x) and ûk(x) respectively. The matrix S̃k(f̂(x), ĝ(x), ĥ(x)) in (5.4) is the (3 × 3)

partitioned subresultant matrix and is given by

S̃k

(
f̂(x), ĝ(x), ĥ(x)

)
= D̃−1

k T̃k

(
f̂(x), ĝ(x), ĥ(x)

)
Q̃k. (5.6)

The block diagonal matrix D̃−1
k of order (2m+ 2n+ 2o− 3k + 3) is given by

D̃−1
k = diag

[
D−1
m+n−k, D−1

m+o−k, D−1
n+o−k

]
,

where D−1
m+n−k is defined in (3.6) and the matrices D−1

m+o−k and D−1
n+o−k share the same

structure. The matrix T̃k(f̂(x), ĝ(x), ĥ(x)) is given by

T̃k

(
f̂(x), ĝ(x), ĥ(x)

)
=


Tn−k

(
f̂(x)

)
Tm−k (ĝ(x))

To−k

(
f̂(x)

)
Tm−k

(
ĥ(x)

)
Tn−k

(
ĥ(x)

)
−To−k (ĝ(x))

 ,

where each partition of the form Tn∗−k(f̂
∗(x)) is the (n∗ − k)th order Toeplitz matrix as

defined in (2.11). The block diagonal matrix Q̃k of order (m+ n+ o− 3k+ 3) is given by

Q̃k = diag
[
Qn−k, Qo−k, Qm−k

]
, (5.7)

where Qn−k, Qm−k and Qo−k have the same structure as the diagonal matrix Qn ∈
R(n+1)×(n+1) defined in (2.12).

The kth subresultant matrix of three univariate polynomials is therefore given by

S̃k

(
f̂(x), ĝ(x), ĥ(x)

)
=

 Ra,k

Rb,k

Rc,k

 =


Cn−k

(
f̂(x)

)
Cm−k

(
ĝ(x)

)
Co−k

(
f̂(x)

)
Cm−k

(
ĥ(x)

)
Cn−k

(
ĥ(x)

)
−Co−k

(
ĝ(x)

)
 , (5.8)

where each partition Cn−k(f̂ (x)) = D−1
m+n−kTn−k(f̂(x))Qn−k is a univariate convolution

matrix as defined in (2.9) and Ra,k, Rb,k and Rc,k are the row-partitions given by

Ra,k =
[
Cn−k

(
f̂(x)

)
0m+n−k+1,o−k+1 Cm−k

(
ĝ(x)

)]
, (5.9)

Rb,k =
[

0m+o−k+1,n−k+1 Co−k

(
f̂(x)

)
Cm−k

(
ĥ(x)

)]
, (5.10)

Rc,k =
[
Cn−k

(
h(x)

)
−Co−k

(
g(x)

)
0n+o−k+1,n−k+1

]
. (5.11)

Having defined the (3 × 3) partitioned subresultant matrix, the (2 × 3) subresultant

matrix is now defined. Two of the equations (5.1, 5.2, 5.3) are sufficient to describe the

system of equations, and the third equation can be derived given the first two. This is

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 171

equivalent to solving two of the GCD problems simultaneously

GCD
(

GCD
(
f̂∗(x), ĝ∗(x)

)
,GCD

(
f̂∗(x), ĥ∗(x)

))
.(i) (5.12)

The three variations of the (2 × 3) partitioned subresultant matrix are defined by the

three ways of choosing two of the above equations. Variation 1 : Equations (5.1) and

(5.2) can be written in matrix form as

Ŝk

(
f̂(x), ĝ(x), ĥ(x)

)
xk,1 = 0, (5.13)

which has a non-zero solution for k = 1, . . . , t, and the solution vector xk,1 in (5.13) is

equal to the solution vector xk defined in (5.5). The (2×3) partitioned subresultant matrix

Ŝk(f̂(x), ĝ(x), ĥ(x)) in (5.13) is of dimension (2m+ n+ o− 2k+ 2)× (m+ n+ o− 3k+ 3)

and is given by

Ŝk(f̂(x), ĝ(x), ĥ(x)) =

[
Ra,k

Rb,k

]
=

 Cn−k

(
f̂(x)

)
Cm−k

(
ĝ(x)

)
Co−k

(
f̂(x)

)
Cm−k

(
ĥ(x)

)  ,
where Ra,k and Rb,k are row-partitions defined in (5.9) and (5.10) respectively. Variation

2 : Equations (5.1) and (5.3) are written in matrix form as

Ŝk

(
ĝ(x), f̂(x), ĥ(x)

)
xk,2 = 0, (5.14)

which has non-zero solutions for k = 1, . . . , t, and the vector xk,2 is a rearrangement of

the component vectors of xk,1, given by

xk,2 =
[

ûk ŵk −v̂k

]T
.

The subresultant matrix Ŝk(ĝ(x), f̂(x), ĥ(x)) is of dimension (m+ 2n+ o− 2k+ 2)× (m+

n+ o− 3k + 3) and is given by

Ŝk(ĝ(x), f̂(x), ĥ(x)) =

[
R̃a,k

R̃c,k

]
=

 Cm−k

(
ĝ(x)

)
Cn−k

(
f̂(x)

)
Co−k

(
ĝ(x)

)
Cn−k

(
ĥ(x)

)  ,
where R̃a,k and R̃c,k are rearranged row-partitions Ra,k and Rc,k. Variation 3 : The

equations (5.2) and (5.3) give rise to the system

Ŝk

(
ĥ(x), ĝ(x), f̂(x)

)
xk,3 = 0, (5.15)

which has non-zero solutions for k = 1, . . . , t, and the solution vector xk,3 is a rearranged

(i)Where * indicates that f̂(x), ĝ(x) and ĥ(x) can be considered in any order.

172

form of xk,1 which is given by

xk,3 =
[

v̂k, ûk, −ŵk

]T
.

The subresultant matrix Sk(ĥ(x), ĝ(x), f̂(x)) in (5.15) of dimension (m + n + 2o − 2k +

2) × (m + n + o − 3k + 3) is the third variation of the (2 × 3) partitioned subresultant

matrix. It can be written as[
R̃b,k

R̃c,k

]
=

 Cn−k

(
ĥ(x)

)
Co−k

(
ĝ(x)

)
Cm−k

(
ĥ(x)

)
Co−k

(
f̂(x)

)  ,
where R̃b,k and R̃c,k are rearranged forms of Rb,k and Rc,k.

Since there are three variations of the (2 × 3) partitioned subresultant matrix, the

notation Ŝk(f̂
∗(x), ĝ∗(x), ĥ∗(x)) is used to denote that polynomials f̂(x), ĝ(x) and ĥ(x)

can be considered in any order, where each ordering gives one of the three variations of

subresultant matrices.

Computing the Degree of the Three-Polynomial GCD

The different systems of equations (5.4, 5.13, 5.14, 5.15) only have non-trivial solutions

when k is the degree of a common divisor of polynomials f̂(x), ĝ(x) and ĥ(x), therefore

rank
(
S̃k

(
f̂(x), ĝ(x), ĥ(x)

))
< 2m+ 2n+ 2o− 3k + 3 for k = 1, . . . , t,

rank
(
S̃k

(
f̂(x), ĝ(x), ĥ(x)

))
= 2m+ 2n+ 2o− 3k + 3 for k = t+ 1, . . . ,min(m,n, o),

rank
(
Ŝk

(
f̂∗(x), ĝ∗(x), ĥ∗(x)

))
< 2m∗ + n∗ + o∗ − 3k + 3 for k = 1, . . . , t,

rank
(
Ŝk

(
f̂∗(x), ĝ∗(x), ĥ∗(x)

))
= 2m∗ + n∗ + o∗ − 3k + 3 for k = t+ 1, . . . ,min(m,n, o).

As with the two-polynomial GCD problem, poorly scaled three-polynomial subre-

sultant matrices can lack the desired property of having clear separation between the

zero and non-zero singular values in their SVD. One source of poor scaling in the two-

polynomial problem came from a large difference in the entries in the two column-partitions

Cn−k(f̂(x)) and Cm−k(ĝ(x)). This remains true for three-polynomial subresultant matri-

ces, but poor scaling amongst the row-partitions must also be considered. It will be shown

that poor scaling of this type can lead to erroneous GCD degree computations.

The following examples consider the effect of poor scaling amongst the row-partitions.

First, however, it is necessary to define the pairwise GCDs for each pair of the three

polynomials f̂(x), ĝ(x) and ĥ(x). Let the pairwise GCDs be defined as

d̂a(x) = GCD(f̂(x), ĝ(x)), (5.16)

d̂b(x) = GCD(f̂(x), ĥ(x)), (5.17)

d̂c(x) = GCD(ĝ(x), ĥ(x)), (5.18)

where d̂a(x), d̂b(x) and d̂c(x) are of degree ta, tb and tc respectively.

The row-partition Ra,k in (5.9) is singular for k = 1, . . . , ta, Rb,k in (5.10) is singular

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 173

for k = 1, . . . , tb and Rc,k in (5.11) is singular for k = 1, . . . , tc. Since the three-polynomial

subresultant matrices consist of various arrangements of these row-partitions, the compu-

tation of the degree of the GCD is affected by poor scaling amongst them. The following

theoretical example shows how poor scaling can cause the degree of the GCD to be deter-

mined incorrectly.

Example 5.1.1. Consider the three polynomials f̂(x), ĝ(x) and ĥ(x) of degrees m, n

and o respectively. All three polynomials have a GCD d̂t(x) of degree t and the pairwise

GCDs of degrees ta, tb and tc are defined in (5.16, 5.17, 5.18). For this example, assume

that f̂(x), ĝ(x) and ĥ(x) are polynomials in the power basis since this avoids scaling in

the subresultant matrices due to binomial terms. The polynomials f̂(x) and ĝ(x) are both

scaled by 105 and ĥ(x) is scaled by 10−5

f(x) = f̂(x)× 105, g(x) = ĝ(x)× 105 and h(x) = ĥ(x)× 10−5.

The system of equations

Ŝk (f(x), g(x), h(x))

 vk

wk

−uk

 = 0 (5.19)

has non-zero solutions for k = 1, . . . , t. However, the kth (2 × 3) subresultant matrix

Ŝk(f(x), g(x), h(x)) contains the partition Cm−k(h(x)), whose entries are approximately

zero relative to the large entries of the partitions containing the coefficients of f(x) and

g(x)[
Cn−k (f(x)) Cm−k (g(x))

Co−k (f(x)) Cm−k (h(x))

]
≈

[
Cn−k (f(x)) Cm−k (g(x))

Co−k (f(x)) 0

]
.

Therefore, the second row-partition Rb,k is approximately full rank, so the rank loss of

Ŝk(f(x), g(x), h(x)) effectively reduces to the rank loss of[
Cn−k (f(x)) Cm−k (g(x))

]
.

Since

[
Cn−k (f(x)) Cm−k (g(x))

] [vk

−uk

]
= 0

has non-trivial solutions for k = 1, . . . , ta, the degree of the three-polynomial GCD, d̂t(x),

is erroneously computed to be equal to ta.

�

Each of the three combinations of row-partitions in the three (2× 3) partitioned sub-

resultant matrices theoretically have the same rank

rank
(
Ŝk

(
f̂(x), ĝ(x), ĥ(x)

))
= rank

(
Ŝk

(
ĝ(x), f̂(x), ĥ(x)

))
= rank

(
Ŝk

(
ĥ(x), ĝ(x), f̂(x)

))
,

174

but in practice, as shown by the Example 5.1.1, polynomials whose coefficients span signif-

icantly different orders of magnitude or polynomials of significantly different degree (when

in Bernstein form) can give rise to three subresultant matrices of different numerical rank

and a numeric example is now given.

Example 5.1.2. This example shows the difficulties in the computation of the degree of

the three-polynomial GCD where two of the three polynomials f̂(x), ĝ(x) and ĥ(x) have a

GCD of degree ta, which is greater than the degree t of the GCD of all three polynomials.

The polynomials f̂(x), ĝ(x) and ĥ(x) are considered in the power basis, to eliminate

scaling due to binomial terms in the entries of the subresultant matrices. Also, no noise

is added to their coefficients. The polynomials are instead multiplied by scalars such that

their GCD is unaltered but their subresultant matrices are badly scaled.

Consider the exact polynomials f̂(x), ĝ(x) and ĥ(x) of degrees m = 17, n = 13 and

o = 14, whose factorisations are given by

f̂(x) = (x− 4.65)2(x− 1.5)2(x− 1.26)4(x− 1.1)3(x− 1)4(x+ 3)2

ĝ(x) = (x− 4.99)3(x− 4.65)2(x− 2)(x− 1.26)4(x− 1.1)3

ĥ(x) = (x− 4.65)2(x− 3.2)2(x− 1.26)4(x− 0.71)4(x+ 1.75)2,

and whose GCD d̂t(x) of degree t = 6 is given by

d̂(x) = (x− 1.26)4(x− 4.65)2.

The GCD of f̂(x) and ĝ(x) is denoted d̂a(x) of degree ta = 9 and is given by

d̂a(x) = (x− 4.65)2(x− 1.26)4(x− 1.1)3.

The GCD d̂b(x) of f̂(x) and ĥ(x) is equal to the GCD d̂c(x) of ĝ(x) and ĥ(x) and

GCD
(
f̂(x), ĥ(x)

)
= GCD

(
ĝ(x), ĥ(x)

)
= GCD

(
f̂(x), ĝ(x), ĥ(x)

)
= d̂t(x).

As in Example 5.1.1, the polynomials f̂(x), ĝ(x) and ĥ(x) are scaled by 105, 105

and 10−5 respectively such that f(x) = 105 × f̂(x), g(x) = 105 × ĝ(x) and h(x) =

10−5 × ĥ(x). The SVDs of the sets of subresultant matrices (i) {S̃k(f(x), g(x), h(x))},
(ii) {Ŝk(f(x), g(x), h(x))}, (iii) {Ŝk(g(x), f(x), h(x))} and (iv) {Ŝk(h(x), g(x), f(x))} are

computed, and the singular values are plotted in Figures 5.1i to 5.1iv. In Figure 5.1ii

and Figure 5.1iii the large separation between the numerically zero and non-zero singular

values suggests that the degree of the GCD of f(x), g(x) and h(x) is given by t = 9, but

this is an incorrect result, and is due to the magnitude of the entries in the row-partition

Ra,k being significantly larger than those in the row-partition Rb,k.

The system of equations[
Cn−k (f(x)) , 0(m+n−k+1),(o−k), Cm−k (g(x))

]
xk,1 = 0

has a non-trivial solution for k = 1, . . . , 9 and the row-partition Ra,k is rank deficient for

k = 1, . . . , 9. The entries of the rows contained in this row-partition are significantly larger

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 175

than the entries in the coefficient matrix of[
0(m+o−k+1),(n−k+1), Co−k (f(x)) , Cm−k (h(x))

]
xk,1 = 0,

which only has non-zero solutions for k = 1, . . . , 6.

Let ra,k, rb,k and rc,k be the ratios of entry of maximum magnitude to entry of minimum

magnitude in the row-partitions Ra,k, Rb,k and Rc,k respectively. The ratios in the first

subresultant matrix S̃k(f(x), g(x), h(x)) are given by

ra,1 =
max{Ra,1}
min{Ra,1}

=
max{Cn−k(f(x)),Cm−k(g(x))}
min{Cn−k(f(x)),Cm−k(g(x))} = 1.180983e+ 06 (5.20)

rb,1 =
max{Rb,1}
min{Rb,1}

=
max{Co−k(f(x)),Cm−k(h(x))}
min{Co−k(f(x)),Cm−k(h(x))} = 7.437698e+ 15 (5.21)

rc,1 =
max{Rc,1}
min{Rc,1}

=
max{Co−k(g(x)),Cn−k(h(x))}
min{Co−k(g(x)),Cn−k(h(x))} = 7.437698e+ 15. (5.22)

The subresultant matrix Ŝk(h(x), g(x), f(x)) consists of the row-partitions R̃b,k and R̃c,k.

The ratios of entry of maximum magnitude to entry of minimum magnitude of Rb,1 and

Rc,1 are given by rb,1 = 7.437698e+15 and rc,1 = 7.437698e+15 respectively, and
rb,1
rc,1

= 1.

This indicates that the row-partitions are ideally scaled for the computation of the degree

of the GCD. However, the entries of the two non-zero partitions in each of Ra,1 and Rb,1

are unbalanced. Preprocessing the subresultant matrices yields improved results and will

be considered in Section 5.3. This example is then repeated for preprocessed polynomials

in Section 5.5 (Example 5.5.1), where it will be shown that preprocessing has eliminated

the poor scaling and the degree of the GCD is correctly identified.

�

Example 5.1.3. Consider the Bernstein form of the exact polynomials f̂(x), ĝ(x) and

ĥ(x) of degree m = 29, n = 19 and o = 18 respectively, whose factorisations are given by

f̂(x) = (x− 9.2657984335)2(x− 1.2657984335)4(x− 0.41564897)6(x− 0.21657894)×

(x− 0.0654654561)2(x+ 0.7879734)9(x+ 1.654987654)2(x+ 1.932654987)×

(x+ 2.3549879)2

ĝ(x) = (x− 9.2657984335)2(x− 1.75292)(x− 1.2657984335)4(x− 0.99851354877)3×

(x− 0.21657894)(x− 0.0654654561)2(x+ 0.1654988136)4(x+ 1.654987654)2

ĥ(x) = (x− 9.2657984335)2(x− 1.2657984335)4(x− 0.564987986958)3(x− 0.21657894)×

(x− 0.0654654561)2(x+ 0.778912324654)2(x+ 1.654987654)2(x+ 1.75)2

and whose GCD d̂t(x) of degree t = 11 is given in factorised form by

d̂t(x) = (x− 9.2657984335)2(x− 1.2657984335)4(x− 0.21657894)×

(x− 0.0654654561)2(x+ 1.654987654)2.

Noise is added to the coefficients of f̂(x), ĝ(x) and ĥ(x) such that the coefficients of inexact

176

2 4 6 8 10 12
-10

-5

0

5

10

15

(i) {S̃k(f(x), g(x), h(x))}

2 4 6 8 10 12
-8

-6

-4

-2

0

2

4

6

8

10

12

(ii) {Ŝk(f(x), g(x), h(x))}

2 4 6 8 10 12
-6

-4

-2

0

2

4

6

8

10

12

(iii) {Ŝk(g(x), f(x), h(x))}

2 4 6 8 10 12
-20

-15

-10

-5

0

5

10

15

(iv) Ŝk(h(x), g(x), f(x))

Figure 5.1: The singular values {σk,i} of the unprocessed subresultant matrices (i)

{S̃k(f(x), g(x), h(x))}, (ii) {Ŝk(f(x), g(x), h(x))}, (iii) {Ŝk(g(x), f(x), h(x))} and (iv)
{Ŝk(h(x), g(x), f(x))} in Example 5.1.2

polynomials f(x), g(x) and h(x) are given by

ai = âi + âiεf,irf,i, bj = b̂j + b̂jεg,jrg,j and cp = ĉp + ĉpεh,prh,p, (5.23)

where {rf,i}, {rg,j} and {rh,p} are uniformly distributed random variables in the interval

[−1, 1] and {εf,i} = {εg,j} = {εh,p} = 10−9 for i = 0, . . . ,m, j = 0, . . . , n and p = 0, . . . , o.

In Figure 5.2 the coefficients of f(x), g(x) and h(x) are plotted. The degree of f(x) is

significantly higher than the degree of g(x) and h(x) and the span of the magnitude of the

coefficients of f(x) and g(x) is greater than the span of the magnitudes of the coefficients

of h(x).

The singular values of the sets of (2 × 3) and (3 × 3) subresultant matrices

(i) {S̃k(f(x), g(x), h(x))}, (ii) {Ŝk(f(x), g(x), h(x))}, (iii) {Ŝk(g(x), h(x), f(x))} and

(iv) {Ŝk(h(x), g(x), f(x))} are plotted in Figures 5.3i to 5.3iv. The singular values

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 177

0 5 10 15 20 25
-10

-8

-6

-4

-2

0

2

4

Figure 5.2: The coefficients of the polynomials f(x), g(x) and h(x) in Example 5.1.3

2 4 6 8 10 12 14 16 18
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

(i) {S̃k(f(x), g(x), h(x))}

2 4 6 8 10 12 14 16 18
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

(ii) {Ŝk(f(x), g(x), h(x))}

2 4 6 8 10 12 14 16 18
-20

-15

-10

-5

0

5

(iii) {Ŝk(g(x), f(x), h(x))}

2 4 6 8 10 12 14 16 18
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

(iv) {Ŝk(h(x), g(x), f(x))}

Figure 5.3: The singular values {σk,i} of the subresultant matrices

(i){S̃k(f(x), g(x), h(x))}, (ii){Ŝk(f(x), g(x), h(x))}, (iii){Ŝk(g(x), f(x), h(x))} and
(iv){Ŝk(h(x), g(x), f(x))} in Example 5.1.3

178

of the subresultant matrices {Ŝk(g(x), f(x), h(x))} (Figure 5.3iii) and to a lesser ex-

tent, those of {Ŝk(h(x), g(x), f(x))} (Figure 5.3iv) can be used to correctly deduce the

degree of the GCD. The optimal variation of the subresultant matrices, with maxi-

mal separation amongst the numerically zero and non-zero singular values, is given by

{Ŝk(g(x), f(x), h(x))}.
The singular values of the (3× 3) subresultant matrices (Figure 5.3i) reveal the degree

of the GCD with a significant separation between the zero and non-zero singular values.

However, the separation is far less significant than the separation of the singular values of

{Ŝk(g(x), f(x), h(x))} in Figure 5.3iii.

The three pairwise GCDs are now considered, and the analysis of these gives

some insight as to why certain variations of the (2 × 3) partitioned three-polynomial

subresultant matrices cannot be used in the computation of the degree of the GCD.

The computation of the degree of the pairwise GCDs (i) da(x) = GCD(f(x), g(x)),

(ii) db(x) = GCD(f(x), h(x)) and (iii) dc(x) = GCD(g(x), h(x)) are

now considered. The singular values of the subresultant matrices

(i) {Sk(f(x), g(x)) | k = 1, . . .min(m,n) }, (ii) {Sk(f(x), h(x)) | k = 1, . . . ,min(m, o) }
and (iii) {Sk(g(x), h(x)) | k = 1, . . . ,min(n, o) } are plotted in Figures 5.4i to 5.4iii. The

degree of the GCD is correctly determined from the singular values of {Sk(g(x), h(x))}
in Figure 5.4iii, due to a large separation between the zero and non-zero singular values.

There is a small but significant separation between the numerically zero and non-zero

singular values of {Sk(f(x), g(x))}, such that the degree of the GCD can be recovered.

Yet in Figure 5.4ii the separation between the zero and non-zero singular values is

indicative of the degree of the GCD being given by t = 14, but this is incorrect and is

possibly due to a factor of f(x) which is similar to a factor of g(x).

These three pairwise GCDs reveal why the degree of the GCD can be obtained using

one variant of the (2×3) subresultant and why another variant returns an incorrect result.

For instance, the kth subresultant matrix in the set of (2 × 3) partitioned subresul-

tant matrices {Ŝk(g(x), f(x), h(x))} contains the row-partitions Ra,k and Rc,k. These are

derived from the two-polynomial subresultant matrices used in the computation of the

degree of the GCD of f(x) and g(x), and the degree of the GCD of g(x) and h(x).

From Figures 5.4i and 5.4iii, these GCD computations are well defined and the nu-

merically zero and non-zero singular values are well separated. However, the degree of the

GCD of f(x) and h(x) is incorrectly determined and therefore the (2×3) partitioned sub-

resultant matrices which include the row-partition Rb,k are less reliable in the computation

of the GCD degree, as shown in Figure 5.3ii.

�

In this section the optimal ordering of the three polynomials in the (2× 3) partitioned

subresultant matrices has been discussed. It was shown by example that good scaling

of the row-partitions is necessary to reliably compute the degree of the GCD of three

polynomials. Examples have shown that it is possible that the degree of the GCD can be

correctly computed from one variation of the (2 × 3) subresultant matrix sequence while

being incorrectly computed from an alternative ordering of polynomials f(x), g(x) and

h(x).

The GCD of three polynomials has also been considered by computing pairwise GCDs,

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 179

5 10 15
-20

-15

-10

-5

0

5

(i) {Sk(f(x), g(x))}

2 4 6 8 10 12 14 16
-20

-15

-10

-5

0

5

(ii) {Sk(f(x), h(x))}

2 4 6 8 10 12 14 16 18
-16

-14

-12

-10

-8

-6

-4

-2

0

2

(iii) {Sk(g(x), h(x))}

Figure 5.4: The singular values {σk,i} of the unprocessed subresultant matrices (i)
{Sk(f(x), g(x))}, (ii) {Sk(f(x), h(x))} and (iii) {Sk(g(x), h(x))} in Example 5.1.3

and it was shown by example that for three polynomials f(x), g(x) and h(x) with a

common divisor d(x), the computation of the degree of the pairwise GCD of f(x) and

g(x) may return an incorrect result where computing the degree of the GCD of all three

polynomials simultaneously returns the correct result.

It has also been shown that in the computation of the degree of the GCD of three poly-

nomials it is only necessary to consider two of the three equations (5.1,5.2,5.3). Therefore,

the (2×3) partitioned subresultant matrices are sufficient to describe the complete system

of three equations, but these two equations must be chosen with consideration.

180

5.2 Optimal Variants of the (2 × 3) and (3 × 3) Partitioned

Subresultant Matrices

In Section 3.1.4 the five variants of the two-polynomial subresultant matrices were consid-

ered, where each variant was defined by the inclusion or exclusion of matrices D−1
m+n−k and

Q̂k. In this section the optimal variant of the three-polynomial subresultant matrices must

be considered. These are defined in a similar way to the variants of the two-polynomial

subresultant matrices in Section 3.1.4, but each of these variants must be considered for

both the (2× 3) and (3× 3) partitioned variants.

The variants of the kth (3 × 3) partitioned subresultant matrix, given in (5.6),

are defined in terms of matrices D̃−1
k , T̃k(f̂(x), ĝ(x), ĥ(x)) and Q̃k. Therefore,

the four variants are given by (i) T̃k(f̂(x), ĝ(x), ĥ(x)), (ii) D̃−1
k T̃k(f̂(x), ĝ(x), ĥ(x)),

(iii) T̃k(f̂(x), ĝ(x), ĥ(x))Q̃k and (iv) D̃−1
k T̃k(f̂(x), ĝ(x), ĥ(x))Q̃k = S̃k(f̂(x), ĝ(x), ĥ(x)).

The kth (2 × 3) partitioned kth subresultant matrix has a similar definition and is

given by

Ŝk

(
f̂ (x), ĝ(x), ĥ(x)

)
= D̂−1

k T̂k

(
f̂ (x), ĝ(x), ĥ(x)

)
Q̃k. (5.24)

The block diagonal matrix D̂−1
k of order (2m + n + o − 2k) is given by

D̂−1
k = diag

[
D−1
m+n−k, D−1

m+o−k

]
, (5.25)

where matrices D−1
m+n−k and D−1

m+o−k are of the same structure as the matrix in (2.10).

The matrix T̂k(f̂ (x), ĝ(x), ĥ(x)) is given by Tn−k

(
f̂ (x)

)
Tm−k

(
ĝ(x)

)
To−k

(
f̂ (x)

)
Tm−k

(
ĥ(x)

)  , (5.26)

where the partitions of the form Tn−k(f̂ (x)) ∈ R(m+n−k)×(n−k+1) are Toeplitz matrices

and have the same structure as the matrix in (2.11). The matrix Q̃k in (5.24) is given by

Q̃k = diag
[
Qn−k, Qo−k, Qm−k

]
.

Similar to the (2× 3) partitioned matrices, the (2× 3) partitioned subresultant matrices

have four variants defined by the inclusion or exclusion of D̂−1
k and Q̃k, and these are given

by (i) {T̂k(f̂ (x), ĝ(x), ĥ(x))}, (ii) {D̂−1
k T̂k(f̂ (x), ĝ(x), ĥ(x))}, (iii) {T̂k(f̂ (x), ĝ(x), ĥ(x))Q̃k}

and (iv) {D̂−1
k T̂k(f̂ (x), ĝ(x), ĥ(x))Q̃k}.

The following example shows how the sets of coefficient multipliers in the different

variants of the subresultant matrices can cause significant scaling issues amongst the row

and column-partitions.

Example 5.2.1. Consider the polynomials f̂(x), ĝ(x) and ĥ(x) of degrees m = 5, n =

15 and o = 7. This example considers the scaling effect of the coefficient multipliers

for the (2 × 3) and (3 × 3) partitioned subresultant matrices Ŝ3(f̂(x), ĝ(x), ĥ(x)) and

S̃3(f̂(x), ĝ(x), ĥ(x)).

Figures 5.5i to 5.5iv show heat maps of the coefficient multipliers (on a logarithmic

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 181

scale) of the entries of the four (2 × 3) partitioned subresultant matrix variants. First

consider the coefficient multipliers in the variant given by Tk(f̂(x), ĝ(x), ĥ(x)) shown in

Figure 5.5i. The non-zero entries of the top right partition are significantly larger than

the entries in the three remaining non-zero partitions. This is because the degree of ĝ(x)

is significantly larger than the degree of f̂(x) or ĥ(x), so coefficients of ĝ(x) appearing in

the top right partition Tm−k(ĝ(x)) are multiplied by
(
n
i

)
=
(

15
i

)
, which has a maximum of(

15
7

)
= 6435, while the coefficient multipliers of Tn−k(f̂(x)) and Tm−k(ĥ(x)) are at most

equal to
(

5
2

)
= 10 and

(
7
3

)
= 35.

Scaling due to coefficient multipliers is also unbalanced in T̂k(f̂(x), ĝ(x), ĥ(x))Q̃k as

shown in Figure 5.5iii. The coefficient multipliers in the second row-partition Rb,k are of

significantly smaller magnitude than those in the first row-partition Ra,k, and again this

is due to n being significantly larger than m and o.

The variant D̂−1
k T̂k(f̂(x), ĝ(x), ĥ(x)) also suffers from poor scaling. The top left parti-

tion of this subresultant matrix contains entries in its middle rows which are significantly

smaller than those in the other rows.

Figure 5.6 shows a heat map of the coefficient multipliers in the entries of the four

subresultant variants where the subresultant matrix has a (3 × 3) partitioned structure,

and again the same arguments are used to suggest that the optimal variant is given by

D̃−1
k T̃k(f̂(x), ĝ(x), ĥ(x))Q̃k.

�

Example 5.1.2 showed that poorly scaled polynomials give incorrect results for the

computation of the degree of the GCD. The combination of binomial terms in the non-

zero entries of the sets of subresultant matrices Tk, D
−1
k Tk, TkQk and D−1

k TkQk
(ii), for

both (2× 3) and (3× 3) partitioned forms, can cause further scaling problems. As such, it

is necessary to consider the variant which has the optimal scaling amongst its entries. The

heat maps of the entries of the matrices Ŝk(f̂ (x), ĝ(x), ĥ(x)) = D̂−1
k T̂k(f̂ (x), ĝ(x), ĥ(x))Q̃k

and S̃k(f̂(x), ĝ(x), ĥ(x)) = D̃−1
k T̃k(f̂(x), ĝ(x), ĥ(x))Q̃k suggest these variants are optimal

for the (2× 3) and (3× 3) subresultant matrices respectively. This outcome is consistent

with the variants of the two-polynomial subresultant matrices.

By Example 5.2.1 it is shown that the optimal subresultant variant of the (2×3) subre-

sultant matrices is given by D̂−1
k T̂k(f̂(x), ĝ(x), ĥ(x))Q̃k, where D̂−1

k and Q̃k have the effect

of dividing the rows and multiplying the columns by binomial terms such that the entries

in the partitions of the subresultant matrices contain the coefficients of f̂(x), ĝ(x) and ĥ(x)

multiplied by a scalar in the unit interval. Similarly, the variant D̃−1
k T̃k(f̂(x), ĝ(x), ĥ(x))Q̃k

is the optimal variant of the (3× 3) partitioned subresultant matrices.

As seen in Example 5.1.2, the entries in the set of subresultant matrices of the form

{D−1
k TkQk} for both (2× 3) and (3× 3) variants may still be badly scaled. Preprocessing

the thee-polynomial subresultant matrices goes some way to mitigating the effect of poor

scaling and this will be discussed in Section 6.4.

(ii)These are loosely defined terms which refer to the four subresultant matrix variants.

182

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 0

0.5

1

1.5

2

2.5

3

3.5

(i) T̂k(f̂(x), ĝ(x), ĥ(x))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(ii) D̂−1k T̂k(f̂(x), ĝ(x), ĥ(x))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 0

0.5

1

1.5

2

2.5

3

3.5

4

(iii) T̂k(f̂(x), ĝ(x), ĥ(x))Q̃k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(iv) D̂kT̂k(f̂(x), ĝ(x), ĥ(x))Q̃k

Figure 5.5: Heat map of the coefficient multipliers in the entries of the four (2× 3)
subresultant matrix variants in Example 5.2.1

5.3 Preprocessing the Three-Polynomial Subresultant Ma-

trices

In Section 3.4 it was shown that preprocessing the set of two-polynomial subresultant

matrices yields improved results in the computation of both the degree and coefficients

of the GCD. These preprocessing operations can be extended to preprocess the three-

polynomial subresultant matrices which have been defined in this section.

Firstly, the polynomials f̂(x), ĝ(x) and ĥ(x) are normalised by the geometric mean of

their respective entries in Ŝk(f̂(x), ĝ(x), ĥ(x)) or Ŝk(f̂(x), ĝ(x), ĥ(x)). When normalising

f̂(x), ĝ(x) and ĥ(x) by the geometric mean of their entries in the (3×3) partitioned matrix,

all three polynomials are normalised by the geometric mean of the non-zero entries in two

partitions each. The normalised polynomials f̄k(x), ḡk(x) and h̄k(x) are given by

f̄(x) =
f̂(x)

Ĝk

(
f̂(x)

) , ĝ(x) =
ĝ(x)

Ĝk

(
ĝ(x)

) and ĥ(x) =
ĥ(x)

Ĝk

(
ĥ(x)

) ,

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 183

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 0

0.5

1

1.5

2

2.5

3

3.5

(i) T̃k(f̂(x), ĝ(x), ĥ(x))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(ii) D̃−1k T̃k(f̂(x), ĝ(x), ĥ(x))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(iii) T̃k(f̂(x), ĝ(x), ĥ(x))Q̃k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(iv) D̃−1k T̃k(f̂(x), ĝ(x), ĥ(x))Q̃k

Figure 5.6: Heat map of the coefficient multipliers in the entries of the four (3× 3)
partitioned subresultant matrix variants in Example 5.2.1

where

Ĝk

(
f̂(x)

)
=

n−k∏
j=0

m∏
i=0

âi
(
m
i

)(
n−k
j

)(
m+n−k
i+j

) × o−k∏
p=0

m∏
i=0

âi
(
m
i

)(
o−k
p

)(
m+o−k
i+p

)
 1

(m+1)(n+o−2k+2)

. (5.27)

The new notation Ĝk(f̂(x)) is used to denote the geometric mean of the polynomial f̂(x)

in the two partitions Cn−k(f̂(x)) and Co−k(f̂(x)).

In the (2×3) partitioned subresultant matrices Ŝk(f̂(x), ĝ(x), ĥ(x)) only the coefficients

of the polynomial f̂(x) appear in two partitions, namely, Cn−k(f̂(x)) and Co−k(f̂(x)), and

the geometric mean of the non-zero entries in these two partitions is given by Ĝk(f̂(x))

which is defined in (5.27). Coefficients of the polynomials ĝ(x) and ĥ(x) are normalised

by Gm−k(ĝ(x)) and Gm−k(ĥ(x)) respectively, where these expressions are of the same form

as (3.33).

184

5.3.1 The Minimisation Problem

The second and third preprocessing operations described in Section 3.4 scaled the second

partition of the kth two-polynomial subresultant matrix by αk and replaced the indepen-

dent variable x with θkω, where αk and θk were optimally chosen to minimise the ratio

of entry of maximum magnitude of entry of minimum magnitude in the kth subresultant

matrix.

The method for preprocessing the (2 × 3) partitioned three-polynomial subresultant

matrix Ŝk(f̂(x), ĝ(x), ĥ(x)) is now described, and this is easily extended to consider the two

other variations Ŝk(ĝ(x), f̂(x), ĥ(x)) and Ŝk(ĥ(x), ĝ(x), f̂(x)) given by alternative polyno-

mial orderings.

The independent variable x is again replaced by θω and polynomials f̂(x) and ĥ(x)

are scaled by λ and ρ respectively. The optimal values of λ, ρ and θ are to be determined

for each subresultant matrix.

The polynomials which are to be optimised are given by

λf̈(ω, θ) = λ

m∑
i=0

āiθ
i

(
m

i

)
(1− θω)m−iωi,

g̈(ω, θ) =

n∑
i=0

b̄iθ
i

(
n

i

)
(1− θω)n−iωi,

and ρḧ(ω, θ) = ρ
o∑
i=0

c̄iθ
i

(
o

i

)
(1− θω)o−iωi. (5.28)

The unprocessed (2× 3) subresultant matrix is given by

Ŝk(λf̈(θ, ω), g̈(θ, ω), ρḧ(θ, ω)) =

 Cn−k

(
λf̈(θ, ω)

)
0 Cm−k

(
g̈(θ, ω)

)
0 Co−k

(
λf̈(θ, ω)

)
Cm−k

(
ρḧ(θ, ω)

)  .
(5.29)

The optimal values λk, ρk, and θk of λ, ρ and θ are sought such that the ratio of entry of

maximum magnitude to entry of minimum magnitude is minimised in the kth subresultant

matrix.

It is convenient to define the sets of all non-zero entries in each of the partitions

Cn−k(λf̈(θ, ω)), Cm−k(g̈(θ, ω)), Co−k(λf̈(θ, ω)) and Cm−k(ρḧ(θ, ω)). Let the sets of non-

zero entries of these partitions be given by P1,k(λ, θ), P2,k(θ), P3,k(λ, θ) and P4,k(ρ, θ),

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 185

where

P1,k (λ, θ) =


∣∣∣λāiθi(mi)(n−kj)∣∣∣(

m+n−k
i+j

)
 i = 0, . . . ,m; j = 0, . . . , n− k,

P2,k (θ) =


∣∣∣b̄iθi(ni)(m−kj)∣∣∣(

m+n−k
i+j

)
 i = 0, . . . , n; j = 0, . . . ,m− k,

P3,k (λ, θ) =


∣∣∣λāiθi(mi)(o−kj)∣∣∣(

m+o−k
i+j

)
 i = 0, . . . ,m; j = 0, . . . , o− k,

P4,k (ρ, θ) =


∣∣∣ρc̄iθi(oi)(m−kj)∣∣∣(

m+o−k
i+j

)
 i = 0, . . . , o; j = 0, . . . ,m− k,

such that the minimisation problem is given by

(λk, ρk, θk) = arg min
λ,ρ,θ

{
max{max{P1,k(λ, θ)},max{P2,k(θ)},max{P3,k(λ, θ)},max{P4,k(ρ, θ)}}
min{min{P1,k(λ, θ)},min{P2,k(θ)},min{P3,k(λ, θ)},min{P4,k(ρ, θ)}}

}
.

The optimal values λk, ρk and θk are computed as solutions of the linear programming

problem which is similar to that used for preprocessing the two-polynomial subresultant

matrices in Section 3.4. A full description of this linear programming problem is found in

Appendix C.1.1 and the preprocessed polynomials λkf̃k(ω), g̃k(ω) and ρkh̃k(ω) are given

by

λkf̃k(ω) = λk

m∑
i=0

āiθ
i
k

(
m

i

)
(1− θkω)m−iωi,

g̃k(ω) =
n∑
i=0

b̄iθ
i
k

(
n

i

)
(1− θkω)n−iωi,

ρkh̃k(ω) = ρk

o∑
i=0

c̄iθ
i
k

(
o

i

)
(1− θkω)o−iωi.

A trivial extension is required to compute the optimal values λk, ρk, and θk for prepro-

cessing the polynomials of the (3× 3) subresultant matrices. The sets P1,k(λ, θ), P2,k(θ),

P3,k(λ, θ) and P4,k(ρ, θ) are defined above. Now, the sets P5,k(ρ, θ) and P6,k(θ) are defined

to account for the additional row-partition in the (3×3) partitioned subresultant matrices.

These are given by

P5,k (λ, θ) =


∣∣∣ρc̄iθi(oi)(n−kj)∣∣∣(

n+o−k
i+j

)
 i = 0, . . . , o; j = 0, . . . , n− k,

P6,k (θ) =


∣∣∣b̄iθi(ni)(o−kj)∣∣∣(

n+o−k
i+j

)
 i = 0, . . . , n; j = 0, . . . , o− k.

186

The extended minimisation problem is written as

(λk, ρk, θk) = arg min
λ,ρ,θ

{
max {max{P1,k(λ, θ)},max{P2,k(θ)},max{P3,k(λ, θ)},
min {min{P1,k(λ, θ)},min{P2,k(θ)},min{P3,k(λ, θ)},
max{P4,k(ρ, θ)},max{P5,k(ρ, θ)},max{P6,k(θ)}}
min{P4,k(ρ, θ)},min{P5,k(ρ, θ)},min{P6,k(θ)}}

}
,

where the optimal values of λk, ρk, and θk are the solutions of a linear programming

problem similar to the one defined for the (2 × 3) partitioned subresultant matrix, with

an additional set of constraints.

The degree and coefficients of the GCD are more reliably approximated from the

sequence of the preprocessed subresultant matrices {Ŝk(λkf̃k(ω), g̃k(ω), ρkh̃k(ω))} than the

unprocessed forms due to improved scaling of the entries. Examples will show that due

to the inclusion of preprocessing, the separation between the zero and non-zero singular

values is increased, and the approximations of cofactor polynomials are significantly better.

Examples are given in Section 5.5, but first the method of approximating the coefficients

of cofactor polynomials and the GCD is considered.

5.4 Approximating the Coefficients of Cofactor Polynomials

and the GCD

In Section 3.5.1 the computation of approximations of the cofactor polynomials ût(x)

and v̂t(x) and the GCD d̂t(x) was considered. This section describes the computation of

approximations of the three cofactor polynomials ût(x), v̂t(x) and ŵt(x) and the GCD

d̂t(x) using a similar least squares based method.

In this section the definitions of polynomials f , g and h are deliberately not specified

as they may represent (i) inexact polynomials f(x), g(x) and h(x) or (ii) preprocessed

polynomials λtf̃t(ω), g̃t(ω) and ρth̃t(ω).

The tth (2× 3) subresultant matrix Ŝt(f, g, h) and the tth (3× 3) subresultant matrix

S̃t(f , g, h) are numerically rank deficient, and therefore there exist non-zero vectors x̂t

and x̃t such that

S̃t (f, g, h) x̃t ≈ 0 and Ŝt (f , g, h) x̂t ≈ 0. (5.30)

One of the columns of each of the subresultant matrices S̃t(f, g, h) and Ŝt(f , g, h) lies in

the space spanned by the remaining columns (with a minimal residual) and these columns

are denoted c̃t,q and ĉt,q respectively. The remaining columns are denoted Ãt,q(f, g, h) and

Ât,q(f , g, h)

Ãt,q(f, g, h)x̃t,q ≈ ct,q and Ât,q(f , g, h)x̂t,q ≈ ct,q,

where the vectors x̃t,q and x̂t,q can be computed by the standard least squares method.

The vectors x̃t and x̂t in (5.30) are given by the insertion of ‘−1’ into the qth position of

both x̃t,q and x̂t,q.

The vectors x̃t and x̂t contain the coefficients of the polynomials ut, vt and wt and are

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 187

given by

x̃t = x̂t =
[

vt, wt, −ut

]T
.

The coefficients of the approximation of the AGCD are given by the solution to Ct (ut)

Ct (vt)

Ct (wt)

dt ≈

 f

g

h

 . (5.31)

It was stated that f , g and h were deliberately not specified, and different definitions

of these polynomials give different approximations:

1. If f , g, and h represent the unprocessed polynomials f(x), g(x) and h(x), then the

vectors ut, vt, wt and dt contain the coefficients of the approximations ut(x), vt(x),

wt(x) and dt(x).

2. Otherwise, if f , g and h represent the preprocessed polynomials f̃t(ω), g̃t(ω) and

h̃t(ω), then the vectors ut, vt, wt and dt contain the coefficients of ũt(ω), ṽt(ω), w̃t(ω)

and d̃t(ω) from which the polynomials ũt(x), ṽt(x), w̃t(x) and d̃t(x) are obtained by

a change of variable ω = x/θ.

The errors in the approximations ut(x), vt(x), wt(x) and dt(x) obtained from the

unprocessed polynomials f(x), g(x) and h(x) are defined in (3.64), while the errors in the

approximations ũt(x), ṽt(x), w̃t(x) and d̃t(x) obtained from the preprocessed polynomials

f̃t(ω), g̃t(ω) and h̃t(ω) are defined in (3.65).

5.5 Results

Example 5.5.1. This example returns to the set of polynomials f(x), g(x) and h(x)

defined in Example 5.1.2. Scaling was introduced such that the degree of the AGCD was

incorrectly determined. The polynomials f(x), g(x) and h(x) are now preprocessed to

obtain the sets of scaled polynomials {λkf̃k(ω)}, {g̃k(ω)} and {ρkh̃k(ω)}. The coefficients

of the unprocessed and preprocessed polynomials λ1f̃1(ω), g̃1(ω) and ρ1h̃1(ω) are plotted

in Figure 5.7. The coefficients of the unprocessed forms span many orders of magnitude

(due to the scaling introduced at the beginning of the example), while the coefficients of

the preprocessed polynomials all span a similar range.

Preprocessing is applied to the three sets of (2× 3) partitioned subresultant matrices

and the single set of (3 × 3) partitioned subresultant matrices. These sets are given

by (i) {Ŝk(f(x), g(x), h(x))}, (ii) {Ŝk(g(x), f(x), h(x))}, (iii) {Ŝk(h(x), g(x), f(x))} and

(iv) {S̃k(f(x), g(x), h(x))}.
The SVDs of the subresultant matrices of the preprocessed polynomials are

computed, and the sets of singular values {σk,i} of the three subresultant ma-

trix variations (i) {S̃k(λkf̃k(ω), g̃k(ω), ρkh̃k(ω))}, (ii) {Sk(λkf̃k(ω), g̃k(ω), ρkh̃k(ω))},
(iii) {Sk(g̃k(ω), λkf̃k(ω), ρkh̃k(ω))} and (iv) {Sk(ρkh̃k(ω), g̃k(ω), λkf̃k(ω))} are plotted in

Figures 5.8i to 5.8iv. The separation of the numerically zero and non-zero singular values

indicates that the degree of the AGCD is given by t = 6 for each of the three variations

188

2 4 6 8 10 12 14 16 18
-6

-4

-2

0

2

4

6

8

10

12

Figure 5.7: The coefficients of both the unprocessed polynomials f(x), g(x) and h(x)
and the preprocessed polynomials λ1f̃1(ω), g̃1(ω) and ρ1h̃1(ω) in Example 5.1.2

of the (2 × 3) partitioned subresultant matrices and the (3 × 3) partitioned subresultant

matrices.

�

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 189

2 4 6 8 10 12
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

(i) {S̃k(λkf̃k(ω), g̃k(ω), ρkh̃k(ω))}

2 4 6 8 10 12
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

(ii) {Ŝk(λkf̃k(ω), g̃k(ω), ρkh̃k(ω))}

2 4 6 8 10 12
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

(iii) {Ŝk(g̃k(ω), λkf̃k(ω), ρkh̃k(ω))}

2 4 6 8 10 12
-14

-12

-10

-8

-6

-4

-2

0

2

4

(iv) {Ŝk(ρkh̃k(ω), g̃k(ω), λkf̃k(ω))}

Figure 5.8: The singular values {σk,i} of the (3× 3) and (2× 3) preprocessed
subresultant matrices in Example 5.1.2

190

Example 5.5.2. Consider the Bernstein form of the exact polynomials f̂(x), ĝ(x) and

ĥ(x), whose factorised forms are given by

f̂(x) = (x− 0.5654654561)5(x− 0.21657894)10(x− 0.01564897)2×

(x+ 1.234)3(x+ 1.2468796514)3

ĝ(x) = (x− 0.99851354877)3(x− 0.5654654561)5(x− 0.21657894)10×

(x+ 1.2468796514)3(x− 1.75292)4

ĥ(x) = (x− 0.5654654561)5(x− 0.21657894)10(x+ 0.778912324654)4×

(x+ 1.2468796514)3(x+ 1.75)2

and whose GCD d̂(x) of degree t = 18 is given by

d̂(x) = (x− 0.5654654561)5(x− 0.21657894)10(x+ 1.2468796514)3.

Noise is added to the coefficients of f̂(x), ĝ(x) and ĥ(x) such that the coefficients of the

inexact polynomials are given by (5.23), where {rf,i}, {rg,j} and {rh,p} are uniformly dis-

tributed random variables in the interval [−1, 1] and {εf,i}, {εg,j} and {εh,p} are uniformly

distributed random variables in the interval
[
10−8, 10−6

]
for i = 0, . . . ,m, j = 0, . . . , n and

p = 0, . . . , o. The inexact polynomials f(x), g(x) and h(x) are preprocessed and the coef-

ficients of the (i) unprocessed and (ii) preprocessed polynomials are shown in Figure 5.9.

In Figure 5.10 the complete sets of singular values of each subresultant matrix are

plotted. From Figure 5.10i, there is no clear separation between the numerically zero

and non-zero singular values, and therefore the degree of the AGCD cannot be accurately

determined by this method. However, the zero-like singular values of the preprocessed

subresultant matrices {Ŝk(λkf̃(ω), g̃(ω), ρkh̃(ω))} are clearly separated from the non-zero

values in Figure 5.10ii, and the degree of the AGCD is correctly determined to be t = 18.

The set of the minimum singular values of the (i) unprocessed (ii) preprocessed sub-

resultant matrices are shown in Figure 5.11. There is a large change in the minimum

singular values of the preprocessed subresultant matrices, and it is seen that σ̇19 >> σ̇18,

so the degree of the AGCD is correctly identified. However, this is not the case for the

unprocessed subresultant matrices.

�

Example 5.5.3. Consider the Bernstein form of the exact polynomials f̂(x), ĝ(x) and

ĥ(x), whose factorisations are given by

f̂(x) = (x− 0.5654654561)5(x− 0.21657894)(x− 0.01564897)2×

(x+ 0.2468796514)3(x+ 0.7879734)

ĝ(x) = (x− 0.99851354877)7(x− 0.75292)20(x− 0.5654654561)5×

(x− 0.21657894)(x+ 0.2468796514)3

ĥ(x) = (x− 0.5654654561)5(x− 0.21657894)(x+ 0.2468796514)3×

(x+ 0.778912324654)4(x+ 1.75)2,

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 191

0 5 10 15 20
-12

-10

-8

-6

-4

-2

0

2

(i) The coefficients of f(x)
(◦) and λ1f̃1(ω) (�)

0 5 10 15 20 25
-12

-10

-8

-6

-4

-2

0

2

(ii) The coefficients of g(x)
(◦) and g̃1(ω) (�)

0 5 10 15 20
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(iii) The coefficients of h(x)
(◦) and ρ1h̃1(ω) (�)

Figure 5.9: The coefficients of both the unprocessed polynomials f(x), g(x) and h(x)
and the preprocessed polynomials λ1f̃1(ω), g̃1(ω) and ρ1h̃1(ω) in Example 5.5.2

5 10 15 20
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(i) The singular values {σk,i} of the
unprocessed subresultant matrices

{Ŝk(f(x), g(x), h(x))}

5 10 15 20
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(ii) The singular values {σk,i} of the
preprocessed subresultant matrices
{Ŝk(λkf̃(ω), g̃(ω), ρkh̃(ω))}

Figure 5.10: The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 5.5.2

and whose GCD d̂t(x) of degree t = 9 is given by

d̂(x) = (x− 0.5654654561)5(x− 0.21657894)(x+ 0.2468796514)3.

Noise is added to the coefficients of f̂(x), ĝ(x) and ĥ(x) such that the coefficients of the

inexact polynomials f(x), g(x) and h(x) are given by (5.23), where {εf,i}, {εg,j} and {εh,p}
are uniformly distributed random variables in the interval [1e−7, 1e−4]. The polynomials

f(x), g(x) and h(x) are preprocessed to obtain the sets {λif̃i(ω)}, {g̃i(ω)} and {ρih̃i(ω)}
and the coefficients of λ1f̃1(ω), g̃1(ω) and ρ1h̃1(ω) are plotted in Figure 5.12 alongside

their corresponding unprocessed forms f(x), g(x) and h(x).

The singular value decomposition of each of the subresultant matrices

{Sk(f(x), g(x), h(x))} and {Sk(λkf̃k(ω), g̃k(ω), ρkh̃k(ω))} is computed, and the sets

of singular values of the unprocessed and preprocessed subresultant matrices are plotted

in Figure 5.13i and Figure 5.13ii respectively. There is no distinct separation between

192

5 10 15 20
-18

-16

-14

-12

-10

-8

-6

-4

-2

(i) The minimum singular values {σ̇k} of the
unprocessed subresultant matrices

{Ŝk(f(x), g(x), h(x))}

5 10 15 20
-18

-16

-14

-12

-10

-8

-6

-4

-2

(ii) The minimum singular values {σ̇k} of the
preprocessed subresultant matrices
{Ŝk(λkf̃k(ω), g̃k(ω), ρkh̃k(ω))}

Figure 5.11: The minimum singular values {σ̇k} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 5.5.2

the zero and non-zero singular values of the unprocessed subresultant matrices. However,

there is a clear separation between the zero and non-zero sets of singular values of the

preprocessed subresultant matrices shown in Figure 5.13ii.

�

Example 5.5.4. Consider the Bernstein form of the exact polynomials f̂(x), ĝ(x) and

ĥ(x), whose factorisations are given by

f̂(x) = (x− 1.46)2(x− 1.37)3(x− 1.2)(x− 0.82)3(x− 0.75)5(x− 0.56)4(x− 0.1)2(x+ 0.27)4

ĝ(x) = (x− 0.99)4(x− 0.12)4(x+ 0.2)3(x− 0.1)2(x− 0.56)4(x− 0.75)5(x− 1.37)3

ĥ(x) = (x− 1.37)3(x− 0.75)5(x− 0.72)8(x− 0.56)4(x− 0.1)2(x+ 0.75)2

and whose GCD d̂(x) of degree t = 14 is given by

d̂(x) = (x− 0.1)2(x− 0.56)4(x− 0.75)5(x− 1.37)3.

Noise is added to the coefficients of f̂(x), ĝ(x) and ĥ(x), where {εf,i}, {εg,j} and {εh,p}
are all uniformly distributed random variables in the interval [10−4, 10−6].

The inexact polynomials are preprocessed, and the optimal values λ, ρ and θ for

the polynomials in the first subresultant matrix are given by λ1 = 1.4804, ρ1 = 2.3823

and θ1 = 1.5543. The coefficients of the unprocessed polynomials f(x), g(x) and h(x)

and the preprocessed polynomials λ1f̃1(ω), g̃1(ω) and ρ1h̃1(ω) are plotted in Figure 5.14,

where it shown that the coefficients of the preprocessed polynomials span many fewer

orders of magnitude than the unprocessed polynomials. The singular values {σk,i} of the

(i) unprocessed and (ii) preprocessed subresultant matrices are plotted in Figure 5.15.

In Figure 5.15i there is no clear separation between the numerically zero and non-zero

singular values. However, in Figure 5.15ii there is a clear separation between these two

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 193

5 10 15 20 25 30 35
-30

-25

-20

-15

-10

-5

0

5

10

Figure 5.12: The coefficients of both the unprocessed polynomials f(x), g(x) and h(x)
and the preprocessed polynomials λ1f̃1(ω), g̃1(ω) and ρ1h̃1(ω) in Example 5.5.3

2 4 6 8 10 12
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(i) {Ŝk(f(x), g(x), h(x))}

2 4 6 8 10 12
-14

-12

-10

-8

-6

-4

-2

0

(ii) {Ŝk(λkf̃k(ω), g̃k(ω), ρkh̃k(ω))}

Figure 5.13: The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 5.5.3

sets of values and the degree of the GCD can effectively be determined by (i) the set of

singular values of the first subresultant matrix given by {σ1,i} by DC1 and (ii) the set

of minimum singular values of the set of subresultant matrices {σ̇k} by DC2. From this

figure, the degree of the GCD is well defined and is given by t = 14.

Since analysis of the singular values of the unprocessed subresultant matrices fails

to reveal the degree of the GCD, the coefficients of the approximations ut(x), vt(x),

wt(x) and dt(x) cannot be determined and so the corresponding column of measured

errors in Table 5.1 remains blank. However, the tth preprocessed subresultant matrix

Ŝt(λtf̃t(ω), g̃t(ω), ρth̃t(ω)) is used to approximate the coefficients of ût(x), v̂t(x) and ŵt(x).

Polynomials ũt(ω), ṽt(ω) and w̃t(ω) are computed by least squares (5.30) and the coef-

ficients of d̃t(ω) are given by the solution of (5.31). Replacing the independent variable

ω = x/θ, the polynomials ũt(x), ṽt(x) and w̃t(x) are approximations of ût(x), v̂t(x) and

ŵt(x) and the errors in these values are shown in Table 5.1.

The amount of additive noise is reduced and the values of {εf,i}, {εg,j} and {εh,p}

194

5 10 15 20 25
-15

-10

-5

0

5

10

Figure 5.14: The coefficients of both the unprocessed polynomials f(x), g(x) and h(x)
and preprocessed polynomials λ1f̃1(ω), g̃1(ω) and µ1h̃1(ω) in Example 5.5.4

Unprocessed
ut(x), vt(x), wt(x),

and dt(x)

Preprocessed
ũt(x), ṽt(x), w̃t(x)

and d̃t(x)

Error ût(x) - 1.744320e− 05
Error v̂t(x) - 8.334257e− 05
Error ŵt(x) - 3.447570e− 05

Error d̂t(x) - 8.504447e− 06

Average - 3.643007e− 05

Table 5.1: Error in the approximations of ût(x), v̂t(x), ŵt(x) and d̂t(x) with {εf,i},
{εg,j} and {εh,p} in the interval [1e− 6, 1e− 4] in Example 5.5.4

are now set to be uniformly distributed random variables in the interval [10−10, 10−8].

The degree of the GCD can now be determined from the sets of singular values of the

unprocessed and preprocessed subresultant matrices.

Two sets of approximations of the cofactor polynomials and the GCD can now be

computed as stated in Section 5.4:

1. The approximations ut(x), vt(x), wt(x) and dt(x) are computed from the tth unpro-

cessed subresultant matrix.

2. The approximations ũt(x), ṽt(x), w̃t(x) and d̃t(x) are computed from the tth pre-

processed subresultant matrix.

The errors in these approximations are given in Table 5.2, from which it can be seen that

the approximations (ũt(x), ṽt(x), w̃t(x), d̃t(x)) are significantly better than the approxima-

tions (ut(x), vt(x), wt(x), dt(x)).

�

Chapter 5. The Univariate Polynomial GCD - The Three Polynomial Problem 195

Unprocessed
ut(x), vt(x), wt(x)

and dt(x)

Preprocessed
ũt(x), ṽt(x), w̃t(x)

and d̃t(x)

Error ût(x) 4.230783e− 06 1.789312e− 09
Error v̂t(x) 1.588693e− 05 8.260332e− 09
Error ŵt(x) 1.111483e− 06 3.481161e− 09

Error d̂t(x) 1.448698e− 06 7.129575e− 10

Average 7.188802e− 06 3.587534e− 09

Table 5.2: Error in the approximations of ût(x), v̂t(x), ŵt(x) and d̂t(x) with {εf,i},
{εg,j} and {εh,p} in the interval [1e− 10, 1e− 8] in Example 5.5.4

5 10 15 20
-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

(i) The singular values {σk,i} of the
unprocessed subresultant matrices

5 10 15 20
-6

-4

-2

0

2

4

6

8

(ii) The singular values {σk,i} of the
preprocessed subresultant matrices

Figure 5.15: The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 5.5.4

5.6 Conclusion

The two-polynomial GCD finding method was extended to compute the GCD of three uni-

variate polynomials in Bernstein form. Initial investigations into this problem revealed two

variations of the three-polynomial subresultant matrices. These variations were defined

in a way which extended the two-polynomial subresultant matrix. The first of these new

forms was the (2× 3) partitioned structure which had three alternate variations given by

Ŝk(f(x), g(x), h(x)), Ŝk(g(x), f(x), h(x)) and Ŝk(h(x), g(x), f(x)), and it was shown that

these forms may have different numerical rank dependent on the ordering of the three

polynomials.

Some further conclusions based on the work in this chapter are :

1. Each subresultant matrix variation is equivalent to solving two pairwise GCD prob-

lems simultaneously. Suppose the pairwise GCD of f(x) and g(x) is poorly defined,

then the two (2 × 3) partitioned subresultant matrix variants containing the row-

partition Ra,k (see (5.9)) are also poorly defined. The GCD is therefore most reliably

computed from the third (2× 3) partitioned subresultant matrix variant containing

row-partitions Rb,k and Rc,k ((5.10), (5.11)).

196

2. Poorly scaled row-partitions give bad results in the computation of the degree of the

GCD. Suppose f(x) and g(x) have a GCD of degree ta, which is greater than the

degree t of the GCD of f(x), g(x) and h(x), then the best results are obtained from

the subresultant matrix where the row-partition Ra,k is not included.

3. Preprocessing goes some way to mitigating the effect of poorly scaled row-partitions.

The next chapter will extend the two-polynomial and three-polynomial GCD find-

ing method to compute the GCD and AGCD of two and three bivariate polynomials in

Bernstein form defined over a triangular domain.

Chapter 6

GCDs of Bivariate Polynomials

over a Triangular Domain

The previous chapter discussed the extension of the UGCD method for the computation

of the GCD of three univariate polynomials in Bernstein form. This chapter now considers

another extension to compute the GCD of two and three bivariate polynomials in Bernstein

form where the polynomials are defined over a triangular domain. The factorisation of

a bivariate polynomial over a triangular domain requires the extension of the square-free

factorisation algorithm (Algorithm 1).

The methods in this chapter for solving the two-polynomial and three-polynomial GCD

problems are similar to the methods described in Chapter 3 and Chapter 5 respectively.

However, the structure of the subresultant matrices is significantly different, and the total

degree of the bivariate GCD is sought.

Section 6.1 The first section of this chapter describes the method of computing the

square-free factorisation of a bivariate polynomial by extension of the square-free

factorisation algorithm for univariate polynomials (Algorithm 1). Similar to the

univariate polynomial factorisation, this reduces to the computation of a sequence

of three-polynomial GCD problems and a set of deconvolutions.

Section 6.2 The second section considers the computation of the degree of the GCD

of two or three exact bivariate polynomials and the AGCD of two or three inexact

polynomials in Bernstein form. The method described in this section uses a sequence

of subresultant matrices in a similar way to the UGCD method defined for the

computation of the GCD of univariate polynomials.

Section 6.3 This section considers the variants of the two and three-polynomial sub-

resultant matrices for bivariate polynomials defined over a triangular domain. As

with the subresultant matrices of univariate polynomials, there exist several vari-

ants of the subresultant matrices of bivariate polynomials. The trinomial terms in

the entries of the subresultant matrices can cause the entries to span many orders

of magnitude. Experiments will consider which of the variants is optimal for the

computation of the degree and coefficients of the GCD of two or three polynomials.

Section 6.4 Preprocessing of the two-polynomial and three-polynomial subresultant ma-

trices for bivariate polynomials over a triangular domain is described, and some

197

198

results are shown.

Section 6.5 This section considers the computation of the coefficients of cofactor poly-

nomials in the two-polynomial and three-polynomial GCD finding problem. The

simple least squares based method will be used to the compute coefficients of the

cofactor polynomials given the tth subresultant matrix.

Section 6.6 Results using the methods developed in this chapter are presented. It will

be shown how the degree of the GCD of two or three bivariate polynomials is re-

liably computed from the set of preprocessed subresultant matrices in cases where

unprocessed subresultant matrices otherwise fail.

6.1 The Bivariate Polynomial Square-Free Factorisation Al-

gorithm

This section describes an extension to the square-free factorisation algorithm for univariate

polynomials (Algorithm 1), such that a bivariate polynomial can be factorised into its

irreducible factors in x and y and non-separable factors of both x and y. Let p̂k(x) be the

product of all factors of the bivariate polynomial f̂(x, y) only in x with multiplicity k. Let

mx denote the highest multiplicity of any of these factors in f̂(x, y) such that all factors

are contained in the set { p̂k(x) | k = 1, . . . ,mx } and p̂k(x) = 1 if there is no factor of

multiplicity k.

Similarly, let q̂k(y) be the product of all factors of f̂(x, y), which are polynomials in

y with multiplicity k, and let my denote the highest multiplicity of any of these factors

in f̂(x, y) such that all factors are contained in the set { q̂k(y) | k = 1, . . . ,my } and

q̂k(y) = 1 if there is no factor of multiplicity k.

Finally, let r̂k(x, y) be the product of all factors of f̂(x, y), which are non-separable

with multiplicity k, and let mx,y denote the highest multiplicity of any of these factors

in f̂(x, y) such that { r̂k(x, y) | k = 1, . . . ,mxy } and r̂k(x, y) = 1 when no non-separable

factor of multiplicity k exists.

To compute a factorisation of f̂(x, y), first consider the polynomial as a product of the

polynomials p̂i(x), q̂j(y) and r̂k(x, y) for i = 1, . . . ,mx, j = 1, . . . ,my and k = 1, . . . ,mxy

f̂0(x, y) =
(
p̂1(x)p̂2

2(x)p̂3
3(x) . . . p̂mxmx(x)

) (
q̂1(y)q̂2

2(y)q̂3
3(y) . . . q̂

my
my (y)

)
×(

r̂1(x, y)r̂2
2(x, y)r̂3

3(x, y) . . . r̂
mxy
mxy (x, y)

)
.

The partial derivative of f̂0(x, y) with respect to x is given by

∂f̂0(x, y)

∂x
=
(
p̂2(x)p̂2

3(x) . . . p̂mx−1
mx (x)

) (
q̂1(y)q̂2

2(y)q̂3
3(y) . . . q̂

my
my (y)

)
×(

r̂2(x, y)r̂2
3(x, y) . . . r̂

mxy−1
mxy (x, y)

)
× kx(x, y),

where kx(x, y) is a bivariate polynomial whose degree is such that ∂f̂0(x,y)
∂x is of the same

degree as f̂0(x, y) in y and has degree of one less than f̂0(x, y) in x. Details of the degree

structure of kx(x, y) need not be known for the purpose of this algorithm.

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 199

The partial derivative of f̂0(x, y) with respect to y is given by

∂f̂0(x, y)

∂y
=
(
p̂1(x)p̂2

2(x)p̂3
3(x) . . . p̂mxmx(x)

) (
q̂2(y)q̂2

3(y) . . . q̂
my−1
my (y)

)
(
r̂2(x, y)r̂2

3(x, y) . . . r̂
mxy−1
mxy (x, y)

)
× ky(x, y),

where ky(x, y) is defined in a similar way to kx(x, y). Its degree structure is such that
∂f̂0(x,y)
∂y has the same degree as f̂0(x, y) in x and has degree one less than f̂0(x, y) in y.

The polynomial f̂1(x, y) is given by

f̂1(x, y) = GCD

(
f̂0(x, y),

∂f̂0(x, y)

∂x
,
∂f̂0(x, y)

∂y

)
=
(
p̂2(x)p̂23(x) . . . p̂mx−1mx (x)

) (
q̂2(y)q̂23(y) . . . q̂my−1my (y)

)(
r̂2(x, y)r̂23(x, y) . . . r̂mxy−1mxy (x, y)

)
.

The sequence of polynomials {f̂k(x, y)} is generated, where f̂k is given by computing the

GCD of f̂k−1(x, y) and its derivatives with respect to x and y

f̂k(x, y) = GCD

(
f̂k−1(x, y),

∂f̂k−1(x, y)

∂x
,
∂f̂k−1(x, y)

∂y

)
=
(
p̂k+1(x)p̂2

k+2(x) . . . p̂mx−kmx (x)
)(

q̂k+1(y)q̂2
k+2(y) . . . q̂

my−k
my (y)

)
(
r̂k+1(x, y)r̂2

k+2(x, y) . . . r̂
mxy−k
mxy (x, y)

)
,

which terminates when f̂k is square-free and f̂k(x, y) and its derivatives are coprime.

Suppose that mx > my > mxy, then:

1. The polynomials in the set {f̂k(x, y) | k = 0, . . . , (mxy − 1)} can be written as the

product of polynomials of the form p̂(x), q̂(y) and r̂(x, y).

2. The polynomials in the set {f̂k(x, y) | k = mxy, . . . ,my − 1} can be written as the

product of polynomials of the form p̂(x) and q̂(y).

3. Finally, the polynomials in the set {f̂k(x, y) | k = my, . . . ,mx− 1} are all univariate

in x and are written as the product of polynomials of the form p̂(x).

As with the univariate polynomial factorisation algorithm, the set of polynomi-

als {ĥi(x, y)} is given by a series of deconvolutions of the set of f̂i(x, y) and each

200

ĥi(x, y) = f̂i−1(x, y)/f̂i(x, y)

ĥ1(x, y) = f̂0(x,y)

f̂1(x,y)
=

(p̂1(x)p̂2(x)p̂3(x) . . . p̂mx)
(
q̂1(y)q̂2(y)q̂3(y) . . . q̂my (y)

)
×
(
r̂1(x, y)r̂2(x, y)r̂3(x, y) . . . r̂mxy (x, y)

)
ĥ2(x, y) = f̂1(x,y)

f̂2(x,y)
=

(p̂2(x)p̂3(x) . . . p̂mx(x))
(
q̂2(y)q̂3(y) . . . q̂my (y)

)
×
(
r̂2(x, y)r̂3(x, y) . . . r̂mxy (x, y)

)
...

...
...

ĥmxy (x, y) =
f̂mxy−1(x,y)

f̂mxy (x,y)
=

(
p̂mxy (x)p̂mxy+1(x) . . . p̂mx(x)

) (
q̂mxy (y)q̂mxy+1(y) . . . q̂my (y)

)
×
(
r̂mx,y (x, y)

)
...

...
...

ĥmy (x, y) =
f̂my−1(x,y)

f̂my (x,y)
= p̂my (x)p̂my+1(x) . . . p̂mx(x)

...
...

...

ĥmx(x, y) =
f̂mx−1(x,y)

f̂mx (x,y)
= p̂mx(x).

The set of polynomials { ŵi(x, y) | i = 1, . . . ,mx } is given by ŵi = ĥi(x, y)/ĥi+1(x, y)

ŵ1(x, y) = ĥ1(x,y)

ĥ2(x,y)
= p̂1(x)q̂1(y)r̂1(x, y)

ŵ2(x, y) = ĥ2(x,y)

ĥ3(x,y)
= p̂2(x)q̂2(y)r̂2(x, y)

...

ŵmxy(x, y) =
ĥmxy (x,y)

ĥmxy+1(x,y)
= p̂mxy(x)q̂mxy(y)r̂mxy(x, y)

...

ŵmy(x, y) =
ĥmy (x,y)

ĥmy+1(x,y)
= p̂my(x)q̂my(y)

...

ŵmx(x, y) = ĥmx = p̂mx(x).

Each polynomial in the set of square-free polynomials {ŵi(x, y)} contains the irreducible

factors of f̂(x, y) which have multiplicity i in f̂(x, y).

Example 6.1.1. Consider the exact polynomial f̂(x, y) given by

f̂(x, y) = (x2 + y2 − 0.2)2(x+ 0.5)3(y − 0.7)4.

The partial derivative of f̂0(x, y) with respect to x is given by

∂f̂0(x, y)

∂x
= (x2 + y2 − 0.2)(x+ 0.5)2(y − 0.7)4 × 7(−0.0857143 + 0.285714x+ x2 + 0.428571y2)

and the partial derivative with respect to y is given by

∂f̂0(x, y)

∂y
= (x2 + y2 − 0.2)(x+ 0.5)3(y − 0.7)3 × 4(−0.2 + x2 − 0.7y + 2y2).

The polynomial f̂1(x, y) is the GCD of f̂0(x, y) and its partial derivatives, and is given by

f̂1(x) = (x2 + y2 − 0.2)(x+ 0.5)2(y − 0.7)3.

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 201

The partial derivative of f̂1(x) with respect to x is given by

∂f̂1(x, y)

∂x
= (x+ 0.5)(y − 0.7)3 × 2(−0.2 + 0.5x+ 2x2 + y2)

and the partial derivative with respect to y is given by

∂f̂1(x, y)

∂y
= (x+ 0.5)2(y − 0.7)2 × 3(−0.2 + x2 − 0.466667y + 1.66667y2),

so f̂2(x, y) is given by

f̂2(x, y) = GCD

(
f̂1(x, y),

∂f̂1(x, y)

∂x
,
∂f̂1(x, y)

∂y

)
= (x+ 0.5)(y − 0.7)2.

The partial derivatives of f̂2(x, y) with respect to x and y are given by

∂f̂2(x, y)

∂x
= (y − 0.7)2 and

∂f̂2(x, y)

∂y
= 2(x+ 0.5)(y − 0.7),

and f̂3(x, y) is the GCD of f̂2(x, y) and its partial derivatives so is given by

f̂3(x, y) = (y − 0.7).

Finally, the partial derivatives with respect to x and y are given by

∂f̂3(x, y)

∂x
= 0, and

∂f̂3(x, y)

∂y
= 1

and the GCD of f̂3(x, y) and its derivatives is given by f̂4(x, y), where

f̂4(x, y) = 1.

The set of polynomials {ĥi(x, y) | i = 1, . . . , 4 } is given by

ĥ1(x, y) =
f̂0(x, y)

f̂1(x, y)
= (x2 + y2 − 0.2)(x+ 0.5)(y − 0.7)

ĥ2(x, y) =
f̂1(x, y)

f̂2(x, y)
= (x2 + y2 − 0.2)(x+ 0.5)(y − 0.7)

ĥ3(x, y) =
f̂2(x, y)

f̂3(x, y)
= (x+ 0.5)(y − 0.7)

ĥ4(x, y) =
f̂3(x, y)

f̂4(x, y)
= (y − 0.7).

202

and the set of polynomials { ŵi(x, y) | i = 1, . . . 4 } is given by

ŵ1(x, y) =
ĥ1(x, y)

ĥ2(x, y)
= 1

ŵ2(x, y) =
ĥ2(x, y)

ĥ3(x, y)
= x2 + y2 − 0.2

ŵ3(x, y) =
ĥ3(x, y)

ĥ4(x, y)
= x+ 0.5

ŵ4(x, y) = ĥ4(x, y) = y − 0.7

The polynomials {ŵi(x, y)} are the factors of f̂(x, y) of multiplicity i. �

The factorisation of a bivariate polynomial has been reduced to a sequence of three-

polynomial GCD problems followed by a set of deconvolutions. In the remainder of this

chapter the two-polynomial and three-polynomial GCD finding problems are considered

for Bernstein polynomials defined over a triangular domain.

6.2 The GCD of Two or Three Bivariate Polynomials in

Bernstein Form over a Triangular Domain

In Section 3.1.1 and Section 5.1 the two-polynomial and three-polynomial subresultant

matrices were defined for univariate polynomials. These subresultant matrices were used

in the computation of the degree and coefficients of the GCD of two or three univariate

polynomials respectively.

The determination of the degree of the GCD of two or three bivariate polynomials

is similarly reduced to the determination of the numerical rank of each matrix in a se-

quence of two-polynomial or three-polynomial subresultant matrices defined for bivariate

polynomials.

6.2.1 The Degree of the GCD of Two Bivariate Polynomials

The bivariate polynomial in Bernstein form defined over a triangular domain was defined

in Section 2.2.3. Consider two bivariate polynomials f̂(x, y) and ĝ(x, y) of total degree m

and n respectively, which are given by

f̂(x, y) =
m∑

i1+i2=0

âi1,i2B
m
i1,i2(x, y) and ĝ(x, y) =

n∑
i1+i2=0

b̂i1,i2B
n
i1,i2(x, y).

If they have a GCD d̂t(x, y) of total degree t, then there exist cofactor polynomials of

degrees (m− t) and (n− t) such that

f̂(x, y)

ût(x, y)
= d̂t(x, y) and

ĝ(x, y)

v̂t(x, y)
= d̂t(x, y), (6.1)

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 203

where d̂t(x, y) is defined to within a scalar constant. There also exists a set of common

divisors {d̂k(x, y)}(i) of degree k = 1, . . . , t such that

f̂(x, y)v̂k(x, y)− ĝ(x, y)ûk(x, y) = 0 for k = 1, . . . , t. (6.2)

Equation (6.2) can be written in matrix form as

Sk

(
f̂(x, y), ĝ(x, y)

)
xk = 0, (6.3)

which has a non-trivial solution for k = 1, . . . , t and the solution vector xk in (6.3) is given

by

xk =
[

v̂t, −ût

]T
,

where v̂t ∈ R(n−k+2
2) and ût ∈ R(m−k+2

2) are vectors containing the coefficients of the

polynomials ût(x, y) and v̂t(x, y).

The matrix Sk(f̂(x, y), ĝ(x, y)) in (6.3) is the kth order subresultant matrix for two

bivariate polynomials in Bernstein form and is given by

Sk

(
f̂(x, y), ĝ(x, y)

)
=
[
Cn−k

(
f̂(x, y)

)
Cm−k

(
ĝ(x, y)

)]
, (6.4)

where Cn−k(f̂(x, y)) and Cm−k(ĝ(x, y)) are bivariate convolution matrices as defined in

(2.33). Alternatively, the kth subresultant matrix is given by

Sk

(
f̂(x, y), ĝ(x, y)

)
= D−1

m+n−kTk

(
f̂(x, y), ĝ(x, y)

)
Q̂k.

The matrices D−1
m+n−k, Tk(f̂(x, y), ĝ(x, y)) and Q̂k defined here are different from those

used in the definition for the subresultant matrices of univariate polynomials. The block

diagonal matrix D−1
m+n−k of order

(
m+n−k+2

2

)
is given by

D−1m+n−k = diag
[(

m+n−k
0,0

) (
m+n−k

1,0

) (
m+n−k

0,1

)
. . .

(
m+n−k
m+n−k,0

)
. . .

(
m+n−k
0,m+n−k

)]
. (6.5)

The matrix Tk(f̂(x, y), ĝ(x, y)) ∈ R(m+n−k+2
2)×((m−k+2

2)+(n−k+2
2)) is given by

Tk

(
f̂(x, y), ĝ(x, y)

)
=
[
Tn−k

(
f̂(x, y)

)
Tm−k

(
ĝ(x, y)

)]
,

where Tn−k(f̂(x, y)) ∈ R(m+n−k+2
2)×(n−k+2

2) and Tm−k (ĝ(x, y)) ∈ R(m+n−k+2
2)×(m−k+2

2) have

the same structure as the matrix defined in (2.29). The block diagonal matrix Q̂k of order((
n−k+2

2

)
+
(
m−k+2

2

))
is given by

Q̂k = diag
[
Qn−k, Qm−k

]
,

where Qn−k and Qm−k are of the same form as the matrix Qn defined in (2.36).

The degree of the GCD of two bivariate polynomials over a triangular domain can

(i)Note that there is more than one polynomial d̂k(x, y) of degree k which satisfies (6.2) and the set
{d̂k(x, y)} should be read as {{d̂1(x, y)}, {d̂2(x, y)}, . . . , d̂t(x, y)}.

204

be computed in a similar way to the univariate two-polynomial problem (Section 3.2).

Suppose that f̂(x, y) and ĝ(x, y) have a GCD d̂t(x, y) of degree t, then

rank Sk

(
f̂(x, y), ĝ(x, y)

)
<

(
m+ n− k + 2

2

)
for k = 1, . . . , t,

rank Sk

(
f̂(x, y), ĝ(x, y)

)
=

(
m+ n− k + 2

2

)
for k = t, . . . ,min(m,n).

Therefore, the degree of the GCD is given by the index of the last numerically rank

deficient subresultant matrix.

Alternatively, the first subresultant matrix S1(f̂(x, y), ĝ(x, y)) has
(
t+1

2

)
numerically

zero singular values and any two-polynomial subresultant matrix St−p(f̂(x, y), ĝ(x, y)) for

p ≤ t has
(
p+2

2

)
numerically zero singular values. Therefore, the degree of the GCD can be

computed by the numerical rank loss of the first (or any subsequent) subresultant matrix.

It has, however, been shown for univariate polynomial GCD problems that consideration

of the numerical rank or each subresultant matrix in the sequence gives a more reliable

method of GCD degree determination. A method for the construction of the sequence of

subresultant matrices is described in Appendix B.2.

Having described how the degree of the GCD of two bivariate polynomials can be

computed, an extension to the three-polynomial problem is now described.

6.2.2 The Degree of the GCD of Three Polynomials

Suppose now that f̂(x, y), ĝ(x, y) and a third polynomial ĥ(x, y) have a common divisor

d̂k(x, y) of degree k, then

f̂(x, y)

ûk(x, y)
= d̂k(x, y),

ĝ(x, y)

v̂k(x, y)
= d̂k(x, y) and

ĥ(x, y)

ŵk(x, y)
= d̂k(x, y).

This gives rise to three equations, where the first is given in (6.2) and two new equations

are given by

f̂(x, y)ŵk(x, y)− ĥ(x, y)ûk(x, y) = 0 (6.6)

ĥ(x, y)v̂k(x, y)− ĝ(x, y)ŵk(x, y) = 0. (6.7)

The set of three equations (6.2, 6.6, 6.7) can be written in matrix form as

S̃k

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
xk = 0, (6.8)

which has a non-trivial solution for k = 1, . . . , t and the vector xk contains coefficients of

the cofactor polynomials ûk(x, y), v̂k(x, y) and ŵk(x, y) and is given by

xk =
[

v̂k, ŵk, −ûk

]T
. (6.9)

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 205

The matrix S̃k(f̂(x, y), ĝ(x, y), ĥ(x, y)) is the (3 × 3) partitioned kth subresultant matrix

of three bivariate polynomials in Bernstein form and is given by

S̃k

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
= D̃−1

k T̃k

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
Q̃k.

The block diagonal matrix D̃−1
k of order

((
m+n−k+2

2

)
+
(
m+o−k+2

2

)
+
(
n+o−k+2

2

))
is given

by

D̃−1
k = diag

[
D−1
m+n−k, D−1

m+o−k, D−1
n+o−k

]
,

where D−1
m+n−k is defined in (6.5) and D−1

m+o−k and D−1
n+o−k are of the same structure.

The matrix T̃k(f̂(x, y), ĝ(x, y), ĥ(x, y)) is given by
Tn−k

(
f̂(x, y)

)
Tm−k

(
ĝ(x, y)

)
To−k

(
f̂(x, y)

)
Tm−k

(
ĥ(x, y)

)
Tn−k

(
ĥ(x, y)

)
−To−k

(
ĝ(x, y)

)
 , (6.10)

where the matrix partitions of the form Tn−k(f̂ (x, y)) are Toeplitz-like and have the same

structure as (2.35). The block diagonal matrix Q̃k of order (m+ n+ o− 3k + 3) is given

by

Q̃k = diag
[
Qn−k, Qo−k, Qm−k

]
, (6.11)

where the partitions Qn−k, Qo−k and Qm−k are diagonal matrices of the same structure

as the matrix Qn defined in (2.36).

The kth (3 × 3) partitioned subresultant matrix S̃k(f̂(x, y), ĝ(x, y), ĥ(x, y)) can be

written in terms of its row-partitions and is given by

 Ra,k

Rb,k

Rc,k

 =


Cn−k

(
f̂(x, y)

)
Cm−k (ĝ(x, y))

Co−k

(
f̂(x, y)

)
Cm−k

(
ĥ(x, y)

)
Cn−k

(
ĥ(x, y)

)
−Co−k

(
ĝ(x, y)

)
 , (6.12)

where each of the row-partitions are defined accordingly

Ra,k =
[
Cn−k

(
f̂(x, y)

)
0(m+n−k+2

2),(o−k+2
2) Cm−k

(
ĝ(x, y)

)]
, (6.13)

Rb,k =
[

0(m+o−k+2
2),(n−k+2

2) Co−k

(
f̂(x, y)

)
Cm−k

(
ĥ(x, y)

)]
, (6.14)

Rc,k =
[
Cn−k

(
ĥ(x, y)

)
−Co−k

(
ĝ(x, y)

)
0(n+o−k+2

2),(m−k+2
2)

]
. (6.15)

The matrices Cn−k(f̂(x, y)) in (6.12) and Tn−k(f̂(x, y)) in (6.10) are related by the equa-

tion

Cn−k

(
f̂(x, y)

)
= D−1

m+n−kTn−k

(
f̂(x, y)

)
Qn−k (6.16)

and Cn−k(f̂(x, y)) was originally defined in (2.33).

Alternatively, two of the three equations (6.2, 6.6, 6.7) are sufficient to describe the

206

system completely and the third can be derived given the other two. This gives rise to

three variations of the (2× 3) partitioned subresultant matrices.

Variation 1 : The equations (6.2) and (6.6) can be written in matrix form as

Ŝk

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
xk,1 = 0, (6.17)

which has non-zero solutions for k = 1, . . . , t and the vector xk,1 is of the same structure

as xk defined in (6.9). The matrix Ŝk(f̂(x, y), ĝ(x, y), ĥ(x, y)) is given by

[
Ra,k

Rb,k

]
=

 Cn−k

(
f̂(x, y)

)
Cm−k

(
ĝ(x, y)

)
Co−k

(
f̂(x, y)

)
Cm−k

(
ĥ(x, y)

)  ,
where Ra,k and Rb,k are the row-partitions defined in (6.13) and (6.15) respectively.

Variation 2 : The two equations (6.2) and (6.7) are written in matrix form as

Sk

(
ĝ(x, y), f̂(x, y), ĥ(x, y)

)
xk,2 = 0, (6.18)

which has non-zero solutions for k = 1, . . . , t and the vector xk,2 is given by reordering the

row-partitions of xk,1

xk,2 =
[

ûk, ŵk, −v̂k

]T
.

The matrix Ŝk(ĝ(x, y), f̂(x, y), ĥ(x, y)) is given by

[
R̃a,k

R̃c,k

]
=

 Cm−k

(
ĝ(x, y)

)
Cn−k

(
f̂(x, y)

)
Co−k

(
ĝ(x, y)

)
Cn−k

(
ĥ(x, y)

) 
and R̃a,k and R̃c,k are variations of Ra,k and Rc,k defined in (6.13) and (6.15).

Variation 3 : Equations (6.6) and (6.7) can be written in matrix form as

Sk

(
ĥ(x, y), ĝ(x, y), f̂(x, y)

)
xk,3 = 0, (6.19)

which has non-trivial solutions for k = 1, . . . , t and the vector xk,3 is given by reordering

the row-partitions of xk,1

xk,3 =
[

ûk, v̂k, −ŵk

]T
.

The matrix Sk(ĥ(x, y), ĝ(x, y), f̂(x, y)) is the third variation of the (2 × 3) partitioned

subresultant matrix and is given by[
R̃b,k

R̃c,k

]
=

 Cm−k

(
ĥ(x, y)

)
Co−k

(
f̂(x, y)

)
Cn−k

(
ĥ(x, y)

)
Co−k

(
ĝ(x, y)

)  ,
where R̃a,k and R̃c,k are variations of Ra,k and Rc,k respectively.

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 207

Since there are three variations of the (2× 3) partitioned subresultant matrix, the no-

tation Ŝk(f̂
∗(x, y), ĝ∗(x, y), ĥ∗(x, y)) is used to denote that the polynomials f̂(x, y), ĝ(x, y)

and ĥ(x, y) can be considered in any order. Each ordering gives one of the three variations

of subresultant matrix already discussed.

The degree t of the GCD is given by the index of the last rank deficient subre-

sultant matrix in the sequence of subresultant matrices S̃k(f̂(x, y), ĝ(x, y), ĥ(x, y)) and

Ŝk(f̂ (x, y), ĝ(x, y), ĥ(x, y))

rank
(
S̃k(f̂(x, y), ĝ(x, y), ĥ(x, y))

)
<

(
m+ n− k + 2

2

)
+

(
m+ o− k + 2

2

)
+

(
n+ o− k + 2

2

)
for k = 1, . . . , t,

rank
(
Ŝk(f̂ (x, y), ĝ(x, y), ĥ(x, y))

)
<

(
m + n − k + 2

2

)
+

(
m + o − k + 2

2

)
for k = 1, . . . , t.

The pairwise GCDs of the polynomials f̂(x, y), ĝ(x, y) and ĥ(x, y) are defined as

d̂a(x, y) = GCD
(
f̂(x, y), ĝ(x, y)

)
d̂b(x, y) = GCD

(
f̂(x, y), ĥ(x, y)

)
d̂c(x, y) = GCD

(
ĝ(x, y), ĥ(x, y)

)
and each of the matrix equations (6.17, 6.18, 6.19) can be thought of as simultaneously

solving two of the three pairwise two-polynomial GCD problems.

Problems due to scaling of the three-polynomial subresultant matrices for univariate

polynomials carry over to the bivariate problem. This is exacerbated by the trinomial

terms found in the subresultant matrices of bivariate polynomials, as shown in the following

example.

Example 6.2.1. Consider the Bernstein form of the exact polynomials f̂(x, y), ĝ(x, y)

and ĥ(x, y) of degree m = 14, n = 14 and o = 14 respectively. The factorised forms of

f̂(x, y), ĝ(x, y) and ĥ(x, y) are given by

f̂(x, y) = (x− 0.72)(x− 0.52)2(x+ 0.75)(y − 0.75)2(y − 0.15)(y2 − 1.7)(x+ y − 0.5)5

ĝ(x, y) = (x− 0.72)(x− 0.52)2(x− 0.192)(y − 0.15)(x+ y − 0.5)5(y2 − 1.7)(x2 + y2 + 0.7)

ĥ(x, y) = (x− 1.91987)4(x− 0.72)(y − 0.15)(y2 − 1.7)(x2 + y2 − 0.34)3,

whose GCD d̂t(x, y) of degree t = 4 is given by

d̂t(x, y) = (x− 0.72)(y − 0.15)(y2 − 1.7).

The polynomials f̂(x, y) and ĝ(x, y) have a GCD d̂a(x, y) of degree ta = 11 which is given

by

d̂a(x, y) = (x− 0.72)(y − 0.15)(y2 − 1.7)(x− 0.52)2(x+ y − 0.5)5

and d̂b(x, y) = d̂c(x, y) = d̂t(x, y). The coefficients of the exact polynomials f̂(x, y),

ĝ(x, y) and ĥ(x, y) are multiplied by 105, 105 and 10−5 respectively. Noise is added to

208

the coefficients of f̂(x, y), ĝ(x, y) and ĥ(x, y) such that the coefficients of the inexact

polynomials f(x, y), g(x, y) and h(x, y) are given by

ai1,i2 = âi1,i2 + âi1,i2 εf,i1,i2 rf,i1,i2 for i1 + i2 = 0, . . . ,m,

bj1,j2 = b̂j1,j2 + b̂j1,j2 εg,j1,j2 rg,j1,j2 for j1 + j2 = 0, . . . , n,

cp1,p2 = ĉp1,p2 + ĉp1,p2 εg,p1,p2 rh,p1,p2 for p1 + p2 = 0, . . . , o,

(6.20)

where {εf,i1,i2} {εg,j1,j2} and {εh,p1,p2} are uniformly distributed random variables in the

interval [10−8, 10−6]. The values {rf,i1,i2}, {rg,j1,j2} and {rh,p1,p2} are uniformly distributed

random variables in the interval [−1, 1]. The coefficients of the inexact polynomials are

plotted in Figure 6.1, where it is shown that the coefficients of h(x, y) are significantly

smaller than those of f(x, y) or g(x, y).

0 20 40 60 80 100 120
-10

-8

-6

-4

-2

0

2

Figure 6.1: The coefficients of f(x, y), g(x, y) and h(x, y) in Example 6.2.1

The singular values of the three variations of the (2 × 3) partitioned sub-

resultant matrices (i) {Ŝk(f(x, y), g(x, y), h(x, y))}, (ii) {Ŝk(g(x, y), f(x, y), h(x, y))}
and (iii) {Ŝk(h(x, y), g(x, y), h(x, y))} and the (3 × 3) subresultant matrices

{S̃k(f(x, y), g(x, y), h(x, y))} are plotted in Figures 6.2i to 6.2iv.

There is a large separation between the numerically zero and non-zero sin-

gular values of the subresultant matrices {Ŝk(f(x, y), g(x, y), h(x, y))} (Figure 6.2i),

{Ŝk(g(x, y), f(x, y), h(x, y))} (Figure 6.2ii) and {S̃k(f(x, y), g(x, y), h(x, y))} (Fig-

ure 6.2iv). The numerically zero singular values span the interval [10−10, 10−5] while the

non-zero singular values span the interval [10−2, 102]. The results in both graphs suggest

that the 11th subresultant matrix is the last singular matrix, and therefore the degree of

the AGCD is given by t = 11. However, this is incorrect and is due to the coefficients

of f(x, y) and g(x, y) being significantly larger than the coefficients of h(x, y) such that

the matrices Cm−k(h(x, y)) and Cn−k(h(x, y)) appear to be zero-like in the subresultant

matrices when considered next to the matrices containing the coefficients of f(x, y) and

g(x, y).

The degree of the AGCD is given by t = 4, which is correctly determined by the

minimum singular values of {Ŝk(h(x, y), g(x, y), f(x, y))} (Figure 6.2iii). There are two

separations amongst the singular values for this set of subresultant matrices. The first

separation defined by the interval [10−11, 10−12] correctly identifies the separation of the

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 209

2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

(i) {Ŝk(f(x, y), g(x, y), h(x, y))}

2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

(ii) {Ŝk(g(x, y), f(x, y), h(x, y))}

0 2 4 6 8 10 12 14
-16

-14

-12

-10

-8

-6

-4

-2

0

2

(iii) {Ŝk(h(x, y), g(x, y), f(x, y))}

2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

(iv) {S̃k(f(x, y), g(x, y), h(x, y))}

Figure 6.2: The singular values {σk1,k2} of the unprocessed subresultant matrices

(i){Ŝk(f(x, y), g(x, y), h(x, y))}, (ii){Ŝk(g(x, y), f(x, y), h(x, y))},
(iii){Ŝk(h(x, y), g(x, y), f(x, y))} and (iv){S̃k(f(x, y), g(x, y), h(x, y))} in Example 6.2.1

numerically zero and non-zero singular values. The second separation between 10−4 and

10−2 arises due to poor scaling of the columns within the row-partitions. This example is

revisited in Section 6.6 (Example 6.6.3), where it is shown that the degree of the AGCD

is correctly identified by analysis of the singular values of the preprocessed subresultant

matrices.

�

6.3 Variants of the Subresultant Matrices

6.3.1 The Two-Polynomial Subresultant Matrices

Several variants of the sequence of subresultant matrices of two univariate polynomials

were described in Section 3.1.4. Now, the variants of the subresultant matrices of two

bivariate polynomials are considered with similar results. The entries of these variants

differ from the univariate subresultant matrices and entries for the first partition of each

210

variant are now described:

1. The first variant of the kth subresultant matrix is given by Tk(f̂(x, y), ĝ(x, y)) and

the non-zero entries of the first partition Tn−k(f̂(x, y)) are given by

âi1,i2

(
m

i1, i2

)
for i1 + i2 = 0, . . . ,m.

for each column j1 + j2 = 0, . . . , n− k.

2. The second variant of the kth subresultant matrix is given by

D−1
m+n−kTk(f̂(x, y), ĝ(x, y)) and the non-zero entries of the first partition

D−1
m+n−kTn−k(f̂(x, y)) are given by

âi1,i2
(
m
i1,i2

)(
m+n−k

i1+j1,i2+j2

) for i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k.

3. The third variant of the kth subresultant matrix is given by Tk(f̂(x, y), ĝ(x, y))Q̂k

and the non-zero entries of the first partition Tn−k(f̂(x, y))Qn−k are given by

âi1,i2

(
m

i1, i2

)(
n− k
j1, j2

)
for i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k.

4. The fourth subresultant matrix variant is given by D−1
m+n−kTk(f̂(x, y), ĝ(x, y))Q̂k

and the non-zero entries of the first partition D−1
m+n−kTn−k(f̂(x, y))Qn−k are given

by

âi1,i2
(
m
i1,i2

)(
n−k
j1,j2

)(
m+n−k

i1+j1,i2+j2

) for i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k.

As with the variants of the two-polynomial subresultant matrices for univariate polyno-

mials, the rank of the kth subresultant matrix for each variant is theoretically equal.

However, scaling due to the presence of potentially large trinomial terms can cause nu-

merical issues, and the entries of the partitions of the kth subresultant matrix may be of

significantly different magnitudes. This can cause spurious results in the analysis of the

SVD.

6.3.2 The Three-Polynomial Subresultant Matrices

The partitioned structure of the kth (3 × 3) subresultant matrix was described

in Section 6.2.2 where it was defined as the product of three matrices, D̃−1
k ,

T̃k(f̂(x, y), ĝ(x, y), ĥ(x, y)) and Q̃k. The four variants of the kth (3 × 3) partitioned sub-

resultant matrix are therefore given by

(i) {T̃k(f̂(x, y), ĝ(x, y), ĥ(x, y))}

(ii) {D̃−1
k T̃k(f̂(x, y), ĝ(x, y), ĥ(x, y))}

(iii) {T̃k(f̂(x, y), ĝ(x, y), ĥ(x, y))Q̃k}

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 211

(iv) {D̃−1
k T̃k(f̂(x, y), ĝ(x, y), ĥ(x, y))Q̃k}

The kth (3×3) partitioned subresultant matrix consists of six non-zero partitions and three

zero partitions as defined in (6.12). The entries contained in the six non-zero partitions

of these subresultant matrix variants have an equivalent structure to the variants defined

for the two-polynomial subresultant matrices in Section 6.3.1.

The (2× 3) partitioned subresultant matrices Ŝk(f̂ (x, y), ĝ(x, y), ĥ(x, y)) are similarly

defined

Ŝk

(
f̂ (x, y), ĝ(x, y), ĥ(x, y)

)
= D̂−1

k T̂k

(
f̂ (x, y), ĝ(x, y), ĥ(x, y)

)
Q̃k.

The block diagonal matrix D̂−1
k of order (

(
m+n−k+2

2

)
+
(
n+o−k+2

2

)
) is given by

D̂−1
k = diag

[
D−1
m+n−k, D−1

m+o−k

]
.

The matrix T̂k(f̂ (x, y), ĝ(x, y), ĥ(x, y)) consists of Toeplitz matrices and is given by Tn−k

(
f̂ (x, y)

)
Tm−k

(
ĝ(x, y)

)
To−k

(
f̂ (x, y)

)
Tm−k

(
ĥ(x, y)

) 
and the block diagonal matrix Q̃k of order

(
n−k+2

2

)
+
(
o−k+2

2

)
+
(
m−k+2

2

)
is given by

Q̃k = diag
[
Qn−k, Qo−k, Qm−k

]
.

The variants of the (2× 3) subresultant matrices are therefore given by

(i) {T̂k(f̂ (x, y), ĝ(x, y), ĥ(x, y))}

(ii) {D̂−1
k T̂k(f̂ (x, y), ĝ(x, y), ĥ(x, y))}

(iii) {T̂k(f̂ (x, y), ĝ(x, y), ĥ(x, y))Q̃k}

(iv) {D̂−1
k T̂k(f̂ (x, y), ĝ(x, y), ĥ(x, y))Q̃k}

The entries in the partitions of these variants are of the same structure as those found in

Section 6.3.1.

Example 6.3.1. In this example, the singular values of the two-polynomial sub-

resultant matrix variants (i) {Tk(f̂(x, y), ĝ(x, y))}, (ii) {D−1
m+n−kTk(f̂(x, y), ĝ(x, y))},

(iii) {Tk(f̂(x, y), ĝ(x, y))Q̂k} and (iv) {D−1
m+n−kTk(f̂(x, y), ĝ(x, y))Q̂k} are analysed to de-

termine the optimal variant for use in the computation of the degree of the GCD.

Consider the Bernstein form of the exact polynomials f̂(x, y) and ĝ(x, y), whose fac-

212

torisations are given by

f̂(x, y) = (x− 1.126479841321)5(x− 0.8365498798)3(x+ 0.145487821)10

(y − 0.2564878)4(x+ y − 0.16546978321)2(x+ y + 1.5679814354)3

(x2 + y2 − 0.46549871232156)

ĝ(x, y) = (x− 1.126479841321)5(x− 0.8365498798)3(y − 0.45489789123123)

(x+ y − 0.16546978321)2(x+ y − 0.35648979126321)3(x+ y + 1.5679814354)3

(x2 + y2 − 0.46549871232156),

and whose GCD d̂t(x, y) of total degree t = 15 has the factorisation given by

d̂t(x, y) = (x− 1.126479841321)5(x− 0.8365498798)3(x+ y − 0.16546978321)2

(x+ y + 1.5679814354)3(x2 + y2 − 0.46549871232156).

Noise is added to the coefficients of f̂(x, y) and ĝ(x, y) such that the coefficients of the

inexact polynomials are given by

ai1,i2 = âi1,i2 + âi1,i2
(
rf,i1,i2 × 10−5

)
and bj1,j2 = b̂j1,j2 + b̂j1,j2

(
rg,j1,j2 × 10−5

)
,

where {rf,i1,i2} and {rg,j1,j2} are uniformly distributed random variables in the interval

[−1, 1].

The SVD of the set of subresultant matrices for each of the four variants

(i) {Tk(f(x, y), g(x, y))}, (ii) {D−1
m+n−kTk(f(x, y), g(x, y))}, (iii) {Tk(f(x, y), g(x, y))Q̂k}

and (iv) {D−1
m+n−kTk(f(x, y), g(x, y))Q̂k} are computed, and the singular values {σk,i} of

each variant are plotted in Figures 6.3i to 6.3iv. The following observations can be made:

1. In Figures 6.3i and 6.3iii there is no discernible separation between the numerically

zero and non-zero singular values of the subresultant matrices {Tk(f(x, y), g(x, y))}
and {Tk(f(x, y), g(x, y))Q̂k}.

2. In Figure 6.3iv there is a significant separation between the numerically zero and non-

zero singular values of S10(f(x, y), g(x, y), . . . , S15(f(x, y), g(x, y). From Figure 6.3iv,

the degree of the AGCD is correctly determined to be equal to t = 15.

3. In Figure 6.3ii a similar pattern emerges amongst the singular values {σk,i} of

{D−1
m+n−kTk(f(x, y), g(x, y))}, but fewer of the subresultant matrices in the sequence

have the required separation between their numerically zero and non-zero singular

values. For subresultant matrices where this separation is present, it is consider-

ably smaller than the separation found between the numerically zero and non-zero

singular values of the subresultant matrices {D−1
m+n−kTk(f(x, y), g(x, y))Q̂k}.

4. There is no distinct separation between the numerically zero and non-zero singular

values of the first subresultant matrix of any of the four variants. Thus, the degree of

the AGCD cannot be determined from the rank loss of the first subresultant matrix.

The coefficients of the cofactor polynomials ût(x, y) and v̂t(x, y) and the GCD d̂t(x, y)

can be approximated by a least squares based method that will be described in Sec-

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 213

2 4 6 8 10 12 14 16 18
-8

-6

-4

-2

0

2

4

6

(i) {Tk(f(x, y), g(x, y))}

2 4 6 8 10 12 14 16 18
-25

-20

-15

-10

-5

0

(ii) {Dm+n−kTk(f(x, y), g(x, y))}

2 4 6 8 10 12 14 16 18
-5

0

5

10

15

20

(iii) {Tk(f(x, y), g(x, y))Q̂k}

2 4 6 8 10 12 14 16 18
-20

-15

-10

-5

0

5

(iv) {D−1m+n−kTk(f(x, y), g(x, y))Q̂k}

Figure 6.3: The singular values {σk,i} of the unprocessed subresultant matrices in
Example 6.3.1

tion 6.5. This method is a trivial extension of the method described for the univariate

problem. The distances between the exact polynomials and the two sets of approxi-

mations obtained by the least squares method using (i) D−1
m+n−tTt(f(x, y), g(x, y)) and

(ii) D−1
m+n−tTt(f(x, y), g(x, y))Q̂t are computed and given in Table 6.1. Note that the ap-

proximations of ût, v̂t and d̂t were not computed from the tth subresultant matrix of the

form Tk(f(x, y), g(x, y)) or Tk(f(x, y), g(x, y))Q̂k since the degree of the AGCD was not

correctly determined from the corresponding sets of subresultant matrices.

The table shows that the sets of approximations return errors which are of the

same order of magnitude as the initial noise added to the exact polynomials, but

D−1
m+n−tTt(f(x, y), g(x, y))Q̂t offers slightly better results.

214

Tk(f, g) D−1
m+n−kTk(f, g) Tk(f, g)Q̂k D−1

m+n−kTk(f, g)Q̂k

Error ût(x, y) - 7.397585e− 05 - 1.704812e− 05

Error v̂t(x, y) - 4.069999e− 04 - 1.245633e− 04

Error d̂t(x, y) - 1.574557e− 04 - 9.827083e− 05

Average - 1.679890e− 04 - 5.931488e− 05

Table 6.1: Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y) in Example 6.3.1

�

In Example 6.3.1 the set of subresultant matrices {D−1
m+n−kTk(f̂(x, y), ĝ(x, y))Q̂k} had

the largest separation between the numerically zero and non-zero singular values and

this result is typical for many examples. Therefore, this is the most appropriate set of

subresultant matrices for the computation of the degree of the AGCD. This variant and the

variant D−1
m+n−kTk(f̂(x, y), ĝ(x, y)) also gave the best approximations of the coefficients of

cofactor polynomials and the GCD.

As the upper bound of the noise is increased, the separation between the numerically

zero and non-zero singular values decreases. However, preprocessing the polynomials in

each subresultant matrix typically allows for higher levels of noise to be applied before the

separation can no longer be identified. These preprocessing operations are now considered.

6.4 Preprocessing of the Bivariate Subresultant Matrices

In Section 6.3 it was shown that the sequences of subresultant matrices

{D−1
m+n−kTk(f̂(x, y), ĝ(x, y))Q̂k} and {D̃−1

m+n−kT̃k(f̂(x, y), ĝ(x, y), ĥ(x, y))Q̃k} exhibited

the best relative scaling of the entries in their partitions when compared with the other

variants of two-polynomial and three-polynomial subresultant matrices. These variant

also had maximum separation between their numerically zero and non-zero singular val-

ues which were used in the computation of the degree of the GCD. However, the ratio of

the entry of maximum magnitude to entry of minimum magnitude in these subresultant

matrices may still be large.

As in Section 3.4, preprocessing the polynomials f̂(x, y) and ĝ(x, y) will be shown to

yield improved results in the computation of the degree and coefficients of their GCD.

The three preprocessing operations were defined in Section 3.4 and modifications are now

considered.

Normalisation by Arithmetic or Geometric Means in the Two-Polynomial Sub-

resultant Matrices

The geometric means of the non-zero entries in Cn−k(f̂(x, y)) and Cm−k(ĝ(x, y)) are de-

noted Gn−k(f̂(x, y)) and Gm−k(ĝ(x, y)) respectively.

The geometric mean of the non-zero entries of Cn−k(f̂ (x, y)) is given by

Gn−k

(
f̂ (x, y)

)
=

n−k∏
j1+j2=0

m∏
i1+i2=0

(
âi1,i2

(
m
i1,i2

)(
n−k
j1,j2

)(
m+n−k

i1+j1,i2+j2

))
1

(m+2
2)×(n−k+2

2)
(6.21)

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 215

and a similar expression is given for Gm−k(ĝ(x, y)).

Methods for the fast computation of the arithmetic and geometric means of the non-

zero entries in the (n − k)th order convolution matrix, Cn−k(f̂(x)), are given in Ap-

pendix C.2.1 and Appendix C.2.2 respectively and the normalised polynomials f̄k(x, y)

and ḡk(x, y) are given by

f̄k(x, y) =
m∑

i1+i2=0

āi1,i2B
m
i1,i2(x, y) where āi1,i2 =

âi1,i2

Gn−k

(
f̂ (x, y)

)
ḡk(x, y) =

n∑
i1+i2=0

b̄i1,i2B
n
i1,i2(x, y) where b̄i1,i2 =

b̂i1,i2

Gm−k

(
ĝ(x, y)

) .
Normalisation by Geometric Means in the (3 × 3) Partitioned Subresultant

Matrices

Normalisation of the polynomials f̂ (x, y), ĝ(x, y) and ĥ(x, y) in the (3 × 3) partitioned

subresultant matrices of the form S̃k(f̂(x, y), ĝ(x, y), ĥ(x, y)) is given by a simple extension

of the method described for the normalisation of two polynomials in the two-polynomial

subresultant matrices.

Since each of the three polynomials appear in two partitions, the normalised polyno-

mials are given by

f̄k(x, y) =
f̂ (x, y)

Ĝk

(
f̂(x, y)

) , ḡk(x, y) =
ĝ(x, y)

Ĝk

(
ĝ(x, y)

) and h̄k(x, y) =
ĥ(x, y)

Ĝk

(
ĥ(x, y)

) ,
where Ĝk

(
f̂(x, y)

)
is given by

Ĝk

(
f̂(x, y)

)
=

 n−k∏
j1+j2=0

m∏
i1+i2=0

âi1,i2
(
m
i1,i2

)(
n−k
j1,j2

)(
m+n−k

i1+j1,i2+j2

) o−k∏
j1+j2=0

m∏
i1+i2=0

âi1,i2
(
m
i1,i2

)(
o−k
j1,j2

)(
m+o−k

i1+j1,i2+j2

)
 1

r+c

(6.22)

and

r =

(
m + n − k + 2

2

)(
n − k + 2

2

)
and c =

(
m + o − k + 2

2

)(
o − k + 2

2

)
.

Normalisation by Geometric Means in the (2 × 3) Partitioned Subresultant

Matrices

The coefficients of the polynomials ĝ(x, y) and ĥ(x, y) appear in one partition each of

the (2 × 3) partitioned subresultant matrix Ŝk(f̂(x, y), ĝ(x, y), ĥ(x, y)). The geomet-

ric means of the non-zero entries containing the coefficients of ĝ(x, y) and ĥ(x, y) in

the kth subresultant matrix are given by Gm−k (ĝ(x, y)) and Gm−k(ĥ(x, y)) respectively.

These follow from (6.21). However, the coefficients of f̂(x, y) appear in two partitions of

Ŝk(f̂(x, y), ĝ(x, y), ĥ(x, y)) and therefore f̂(x, y) is normalised by the geometric mean of

its entries in both partitions.

216

The normalised polynomials f̄k(x, y), ḡk(x, y) and h̄k(x, y) are given by

f̄k(x, y) =
f̂ (x, y)

Ĝk

(
f̂(x, y)

) , ḡk(x, y) =
ĝ(x, y)

Gm−k

(
ĝ(x, y)

) and h̄k(x, y) =
ĥ(x, y)

Gm−k

(
ĥ(x, y)

) ,
where Ĝk(f̂(x, y)) is defined in (6.22).

The Optimisation Problem for the Two-Polynomial Subresultant Matrix

The GCD of two polynomials is defined to within an arbitrary scalar, so the polynomial

f̄k(x, y) is multiplied by the scalar λ ∈ R, where the optimal value of λ, denoted λk,

is determined for each preprocessed subresultant matrix Sk such that the magnitude of

entries in both partitions is similar.

The two independent variables x and y are replaced by x = θ1ω1 and y = θ2ω2, where

ω1 and ω2 are the new independent variables and θ1, θ2 ∈ R are optimally chosen to

minimise the ratio of entry of maximum magnitude to entry of minimum magnitude in

the kth subresultant matrix Sk.

Let λf̈(θ1, θ2, ω1, ω2) and g̈(θ1, θ2, ω1, ω2) denote the unoptimised polynomials given by

λf̈k(θ1, θ2, ω1, ω2) = λ
m∑

i1+i2=0

āi1,i2θ
i1
1 θ

i2
2

(
m

i1, i2

)
(1− θ1ω1 − θ2ω2)m−i1−i2 ωi11 ω

i2
2 , (6.23)

g̈k(θ1, θ2, ω1, ω2) =

n∑
i1+i2=0

b̄i1,i2θ
i1
1 θ

i2
2

(
n

i1, i2

)
(1− θ1ω1 − θ2ω2)n−i1−i2 ωi11 ω

i2
2 . (6.24)

Let the sets of non-zero entries in the first and second partitions of the kth unprocessed

subresultant matrix be denoted P1,k(λ, θ1, θ2) and P2,k(θ1, θ2), which are given by

P1,k (λ, θ1, θ2) =


∣∣∣λāi1,i2θi11 θi22 (m

i1,i2

)(
n−k
j1,j2

)∣∣∣(
m+n−k

i1+j1,i2+j2

) | i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k


(6.25)

P2,k (θ1, θ2) =


∣∣∣b̄i1,i2θi11 θi22 (n

i1,i2

)(
m−k
j1,j2

)∣∣∣(
m+n−k

i1+j1,i2+j2

) | i1 + i2 = 0, . . . , n; j1 + j2 = 0, . . . ,m− k

 .

(6.26)

The optimal values λ, θ1 and θ2 are given by solutions of the minimisation problem

(
λk, θ1,k, θ2,k

)
= arg min

λ,θ1,θ2

{
max{max{P1,k(λ, θ1, θ2)},max{P2,k(θ1, θ2)}}
min{min{P1,k(λ, θ1, θ2)},min{P2,k(θ1, θ2)}}

}
.

This minimisation is solved by a linear programming problem described in Ap-

pendix C.2.3. It follows that the subresultant matrices of the preprocessed polyno-

mials, given by Sk(λkf̃k(ω1, ω2), g̃k(ω1, ω2)) = D−1
m+n−kTk(λkf̃k(ω1, ω2), g̃k(ω1, ω2))Q̂k for

k = 1, . . . ,min(m,n), are used to compute the degree of an AGCD of the inexact polyno-

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 217

mials, where

λkf̃k (ω1, ω2) = λk

m∑
i1+i2=0

āi1,i2θ
i1
1,kθ

i2
2,k

(
m

i1, i2

)
(1− θ1,kω1 − θ2,kω2)m−i1−i2 ωi11 ω

i2
2

g̃k (ω1, ω2) =

n∑
i1+i2=0

b̄i1,i2θ
i1
1,kθ

i2
2,k

(
n

i1, i2

)
(1− θ1,kω1 − θ2,kω2)n−i1−i2 ωi11 ω

i2
2 .

The Optimisation Problem for the Three-Polynomial Subresultant Matrix

The second and third preprocessing operations for the (2 × 3) partitioned subresultant

matrix follow directly from the second and third preprocessing operations for the two-

polynomial subresultant matrices. A new variable ρ is introduced, which scales the poly-

nomial ĥ(x, y). The unoptimised polynomials f̈k(θ1, θ2, ω1, ω2) and g̈k(θ1, θ2, ω1, ω2) are

defined in (6.23) and (6.24) respectively, and the unoptimised polynomial ḧk(θ1, θ2, ω1, ω2)

is given by

ḧk(θ1, θ2, ω1, ω2) =

o∑
i1+i2=0

c̄i1,i2θ
i1
1 θ

i2
2

(
o

i1, i2

)
(1− θ1ω1 − θ2ω2)o−i1−i2 ωi11 ω

i2
2 .

The kth unoptimised subresultant matrix is given by Cn−k

(
λf̈k(θ1, θ2, ω1, ω2)

)
Cm−k

(
g̈k(θ1, θ2, ω1, ω2)

)
Co−k

(
λf̈k(θ1, θ2, ω1, ω2)

)
Cm−k

(
ρḧk(θ1, θ2, ω1, ω2)

)  .
The optimal values θ1, θ2, λk and ρk minimise the ratio of entry of maximum magnitude

to entry of minimum magnitude in the kth subresultant matrix.

The sets of non-zero entries in the first two partitions, denoted P1,k(λ, θ1, θ2,) and

P2,k(θ1, θ2), are already defined in (6.25) and (6.26). The sets of non-zero entries in the

third and fourth non-zero partitions are given by P3,k(λ, θ1, θ2) and P4,k(θ1, θ2), where

P3,k (λ, θ1, θ2) =


∣∣∣λāi1,i2θi11 θi22 (m

i1,i2

)(
o−k
j1,j2

)∣∣∣(
m+o−k

i1+j1,i2+j2

) | i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , o− k


P4,k (ρ, θ1, θ2) =


∣∣∣ρc̄i1,i2θi11 θi22 (o

i1,i2

)(
m−k
j1,j2

)∣∣∣(
m+o−k

i1+j1,i2+j2

) | i1 + i2 = 0, . . . , o; j1 + j2 = 0, . . . ,m− k


such that the minimisation problem can be written as

(λk, ρk, θ1, θ2) = arg min
λ,ρ,θ1,θ2

{
max {max{P1,k(λ, θ1, θ2)},max{P2,k(θ1, θ2)},
min {min{P1,k(λ, θ1, θ2)},min{P2,k(θ1, θ2)},

max{P3,k(λ, θ1, θ2)},max{P4,k(ρ, θ1, θ2)}}
min{P3,k(λ, θ1, θ2)},min{P4,k(ρ, θ1, θ2)}}

}
. (6.27)

The minimisation problem for determining the optimal values of λ, ρ, θ1 and θ2 in the

(3 × 3) partitioned subresultant matrices is a simple extension of the (2 × 3) partitioned

218

subresultant matrix problem.
Cn−k

(
λf̈k(θ1, θ2, ω1, ω2)

)
Cm−k

(
g̈k(θ1, θ2, ω1, ω2)

)
Co−k

(
λf̈k(θ1, θ2, ω1, ω2)

)
Cm−k

(
ρḧk(θ1, θ2, ω1, ω2)

)
Cn−k

(
λḧk(θ1, θ2, ω1, ω2)

)
−Co−k

(
g̈k(θ1, θ2, ω1, ω2)

)
 .

The sets of non-zero entries in Cn−k

(
λḧk(θ1, θ2, ω1, ω2)

)
and Co−k (g̈k(θ1, θ2, ω1, ω2)) are

given by P5(ρ, θ1, θ2) and P6(θ1, θ2), where

P5,k (ρ, θ1, θ2) =


∣∣∣ρc̄i1,i2θi11 θi22 (o

i1,i2

)(
n−k
j1,j2

)∣∣∣(
n+o−k

i1+j1,i2+j2

) | i1 + i2 = 0, . . . , o; j1 + j2 = 0, . . . , n− k


P6,k (θ1, θ2) =


∣∣∣b̄i1,i2θi11 θi22 (n

i1,i2

)(
o−k
j1,j2

)∣∣∣(
n+o−k

i1+j1,i2+j2

) | i1 + i2 = 0, . . . , n; j1 + j2 = 0, . . . , o− k

 .

The minimisation problem (6.27) is extended to

(λk, ρk, θ1, θ2) = arg min
λ,ρ,θ1,θ2

{
max {max{P1,k(λ, θ1, θ2)},max{P2,k(θ1, θ2)},
min {min{P1,k(λ, θ1, θ2)},min{P2,k(θ1, θ2)},

max{P3,k(λ, θ1, θ2)},max{P4,k(ρ, θ1, θ2)}
min{P3,k(λ, θ1, θ2)},min{P4,k(ρ, θ1, θ2)}
max{P5,k(ρ, θ1, θ2)},max{P6,k(θ1, θ2)}}
min{P5,k(ρ, θ1, θ2)},min{P6,k(θ1, θ2)}}

}
.

This minimisation problem is reduced to a linear programming problem which is described

in Appendix C.2.4 and the values λk, ρk, θ1,k and θ2,k are retrieved from the solution of

this linear programming problem. The preprocessed polynomials λkf̃k(ω1, ω2), g̃k(ω1, ω2)

and ρkh̃k(ω1, ω2) are therefore given by

λkf̃k(ω1, ω2) = λk

m∑
i1+i2=0

āi1,i2θ
i1
1,kθ

i2
2,k

(
m

i1, i2

)
(1− θ1,kω1 − θ2,kω2)m−i1−i2ωi11 ω

i2
2 ,

g̃k(ω1, ω2) =

n∑
i1+i2=0

b̄i1,i2θ
i1
1,kθ

i2
2,k

(
n

i1, i2

)
(1− θ1,kω1 − θ2,kω2)n−i1−i2ωi11 ω

i2
2 ,

ρkh̃k(ω1, ω2) = ρk

o∑
i1+i2=0

c̄i1,i2θ
i1
1,kθ

i2
2,k

(
o

i1, i2

)
(1− θ1,kω1 − θ2,kω2)o−i1−i2ωi11 ω

i2
2 .

This section has considered preprocessing of the polynomials f̂(x, y) and ĝ(x, y) in the

two-polynomial problem, and f̂(x, y), ĝ(x, y) and ĥ(x, y) in the three-polynomial problem.

The corresponding preprocessed subresultant matrices contain entries where the ratio of

entry of maximum magnitude to entry of minimum magnitude is minimised. Preprocessing

gives greater separation between the numerically zero and non-zero singular values of the

set of preprocessed subresultant matrices when compared with equivalent unprocessed

matrices.

As with the univariate GCD problem, improved approximations of the cofactor poly-

nomials are also obtained when preprocessed polynomials are considered. Results will be

saved until after the discussion on methods used to approximate the coefficients of the

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 219

cofactor polynomials.

6.5 Approximating the Coefficients of the Cofactor Polyno-

mials and the GCD

Computing Coefficients of the Cofactor Polynomials and the AGCD in the

Two Polynomial Problem

Given t, the total degree of the AGCD, the coefficients of the cofactor polynomials ût(x, y)

and v̂t(x, y) can be approximated from the tth subresultant matrix and this is similar to the

equivalent problem for two univariate polynomials in Section 3.5.1. The tth subresultant

matrix is near rank deficient, so

St(f, g)xt ≈ 0 (6.28)

has a non-zero solution vector xt. The definitions of f and g are deliberately not specified

as this method applies to both (i) the unprocessed inexact polynomials f(x, y) and g(x, y)

and (ii) the preprocessed polynomials f̃t(ω1, ω2) and αtg̃t(ω1, ω2). Since St(f, g) has a

rank deficiency of one, a column ct,q of St(f, g) nearly lies in the space spanned by the

remaining columns. That is,

At,q(f, g)xt,q ≈ ct,q. (6.29)

The vector xt,q can be computed by the least squares solution of (6.29), and the vector

xt in (6.28) is given by the insertion of ’−1’ into the qth position of the vector xt,q. The

vector xt contains coefficients the of the polynomials ut and vt. That is, xt is given by

xt =
[

vt, −ut

]T
,

where vt ∈ R(n−t+2
2) and ut ∈ R(m−t+2

2) are vectors of the coefficients of the approximations

vt and ut. An approximation of the coefficients of GCD d̂(x, y) can then be computed as

the least squares solution of [
Ct (ut)

Ct (vt)

]
dt ≈

[
f

g

]
. (6.30)

Given that the coefficients of the approximations ut, vt and dt are computed, they can

be compared with the coefficients of the exact polynomials ût(x, y), v̂t(x, y) and d̂t(x, y).

This comparison is dependent on the definition of f , g and h.

Suppose that f and g represent unprocessed polynomials f(x, y) and g(x, y), then ut,

vt and dt represent the approximations ut(x, y), vt(x, y) and dt(x, y). The error in these

approximations is given by

εut = ût(x, y)− ut(x, y), εvt = v̂t(x, y)− vt(x, y) and εdt = d̂t(x, y)− dt(x, y).

(6.31)

220

Suppose now that f and g represent the preprocessed polynomials f̃t(ω1, ω2) and

αtg̃t(ω1, ω2) then the approximations ut, vt and dt represent polynomials ũt(ω1, ω2),

ṽt(ω1, ω2) and d̃t(ω1, ω2). By the substitutions ω1 = x/θ1 and ω2 = y/θ2, the polyno-

mials ũt(x, y), ṽt(x, y) and d̃t(x, y) are given and the error in these approximations is

given by

εũt = ût(x, y)− ũt(x, y), εṽt = v̂t(x, y)− ṽt(x, y) and εd̃t = d̂t(x, y)− d̃t(x, y).

(6.32)

Computing the Cofactor Polynomials and the GCD by Least Squares in the

Three Polynomial Problem

By extension of the method described above, the coefficients of the polynomials ût(x, y),

v̂t(x, y), ŵt(x, y) and d̂t(x, y) can be approximated. The three variations of the (2 × 3)

partitioned subresultant matrices and the (3 × 3) partitioned subresultant matrix are

numerically rank deficient, so

S̃t(f , g, h)xt ≈ 0 and Ŝt(f , g, h)xt ≈ 0 (6.33)

have non-trivial solutions. The columns c̃t,q and ĉt,q almost lie in the space spanned by

the remaining columns of S̃t(f, g, h) and Ŝt(f, g, h) respectively, with a minimal residual,

so

Ãt(f , g, h)x̃t,q ≈ c̃t,q and Ât(f , g, h)x̂t,q ≈ ĉt,q,

where x̃t,q and x̃t,q are found by simple least squares. The vectors x̃t and x̂t are given by

the insertion of ‘−1’ into the qth position of x̃t,q and x̂t,q respectively, and the coefficients

of ut, vt and wt are contained within the vectors

x̃t = x̂t =
[

vt, wt, −ut

]T
.

Given an alternative variation of the (2 × 3) partitioned subresultant matrix, either

Ŝt(g, f, h) or Ŝt(h, g, f), the order of the vectors vt, wt and ut would be rearranged ac-

cording to either (6.18) or (6.19).

Toefficients of the approximation dt are given by the least squares solution of Ct (ut)

Ct (vt)

Ct (wt)

dt ≈

 f

g

h

 .
The errors in the approximations ut, vt, wt and dt are computed according to the error

measure defined in (6.31) and (6.32).

The method of SNTLN was used in Section 3.5.2 for the computation of the low rank

approximation of the tth subresultant matrix of two univariate polynomials in Bernstein

form. From the low rank approximation, approximations of the coefficients of cofactor

polynomials and the GCD were considerably more accurate than the approximations ob-

tained by the least squares based method. It is expected that an equivalent method would

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 221

give better approximations of the cofactor polynomials in the bivariate two or three-

polynomial problem. However, the approximations obtained by the least squares based

method are sufficient to show how preprocessing the subresultant matrices yields improved

results when compared with unprocessed subresultant matrices.

The extension of the SNTLN method would require a significant amount of new work,

more suited to future research. The main focus of this chapter was the computation of

the degree of the GCD of two or three bivariate polynomials in Bernstein form, with

experiments in variations of the subresultant matrices. These extensions are significantly

more interesting than extensions of methods for the computation of the coefficients of the

GCD.

6.6 Results

Examples of the two-polynomial problem will now be considered, followed by examples

for the three-polynomial problem. These results will show that the numerical rank of each

of the preprocessed subresultant matrices is better defined than those of the equivalent

unprocessed subresultant matrices. The separation between the numerically zero and non-

zero singular values of the preprocessed matrices is typically larger than the separation of

the singular values of the unprocessed subresultant matrices.

Two-Polynomial Problems

Example 6.6.1. Consider the Bernstein form of the exact polynomials f̂(x, y) and ĝ(x, y),

whose factorisations are given by

f̂(x, y) = (x− 0.46549)5(x+ 0.11156)6(x+ 0.16551)4(y − 0.24687)2(x2 + y2 − 0.16579)3

ĝ(x, y) = (x− 0.35465)3(x+ 0.11156)6(y − 0.46546)(y − 0.24687)2

and whose GCD d̂t(x, y) of degree t = 15 given by

d̂(x, y) = (x− 0.46549)5(x+ 0.16551)4(x2 + y2 − 0.16579)3.

The coefficients of f̂(x, y) and ĝ(x, y), given by âi,j and b̂i,j , are perturbed to give the

inexact polynomials f(x, y) and g(x, y) whose coefficients are

ai1,i2 = âi1,i2 + âi1,i2rf,i1,i2εi1,i2 and bj1,j2 = b̂j1,j2 + b̂j1,j2rg,j1,j2εj1,j2 , (6.34)

where {rf,i1,i2} and {rg,j1,j2} are uniformly distributed random variables in the interval

[−1, 1] and {εf,i1,i2} = {εg,j1,j2} = 10−6.

The inexact polynomials f(x, y) and g(x, y) are preprocessed as described in Sec-

tion 6.4 to give the polynomials λ1f̃1(ω1, ω2) and g̃1(ω1, ω2). In Figure 6.4 the coefficients

of f(x, y) and g(x, y) span approximately 15 orders of magnitude, while coefficients of

the preprocessed polynomials λ1f̃1(ω1, ω2) and g̃1(ω1, ω2) span approximately 5 orders of

magnitude. Also note that the sets of coefficients of λ1f̃1(ω1, ω2) and g̃1(ω1, ω2) are of

similar magnitude.

222

0 50 100 150 200 250 300
-20

-15

-10

-5

0

5

Figure 6.4: The coefficients of both the unprocessed polynomials f(x, y) and
g(x, y) and the preprocessed polynomials λ1f̃1(ω1, ω2) and g̃1(ω1, ω2) in

Example 6.6.1

The DC1 and DC2 methods can be used to compute the degree of the AGCD using

the singular values of unprocessed and preprocessed subresultant matrices.

The sets of singular values of the (i) unprocessed and (ii) preprocessed subresultant

matrices are plotted in Figure 6.5i and Figure 6.5ii respectively and the following obser-

vations are made:

1. The degree of the AGCD can be computed using the minimum singular values of

the unprocessed subresultant matrices (by DC2), which are plotted in Figure 6.5i.

Let δρ̇i be defined as in (3.16), then δρ̇15 = ρ̇16− ρ̇15 is maximal in the set {δρ̇i | i =

1, . . . ,min(m,n)}. The degree of the AGCD is computed as t = 15.

2. The maximal change δρ̇15 amongst the minimum singular values of the unprocessed

subresultant matrices is significantly smaller than the maximal change δρ̇15 amongst

the minimum singular values of the preprocessed subresultant matrices.

3. When considering the complete set of singular values, there is no clear separation

between the numerically zero and non-zero singular values {σk,i} of the unprocessed

subresultant matrices {Sk(f(x, y), g(x, y))}. However, there is a significant sepa-

ration between the complete set of numerically zero and non-zero singular values

{σk,i} of the preprocessed subresultant matrices {Sk(λkf̃k(ω1, ω2), g̃k(ω1, ω2))} in

Figure 6.5ii, and by observation of the complete set, the degree of the AGCD is

determined to be given by t = 15.

Given the degree of the AGCD, the coefficients of the cofactor polynomials and

the GCD are approximated as described in (6.29) and (6.30) respectively. The unpro-

cessed subresultant matrix St(f(x, y), g(x, y)) yields the approximations of the GCD triple

(ut(x, y), vt(x, y), dt(x, y)) and the preprocessed subresultant St(λtf̃t(ω1, ω2), g̃t(ω1, ω2))

yields the approximations (ũt(ω1, ω2), ṽt(ω1, ω2), d̃t(ω1, ω2)). The respective errors are

measured as per (6.31) and (6.32) and plotted in Table 6.2, where it can be seen that

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 223

there is significantly less error in the approximations obtained by first preprocessing the

polynomials.

Without Preprocessing

ut(x, y), vt(x, y) and dt(x, y)

With Preprocessing

ũt(x, y) , ṽt(x, y) and d̃t(x, y)

Error ût(x, y) 9.999988e− 01 2.259597e− 05

Error v̂t(x, y) 9.080576e− 01 3.505760e− 05

Error d̂t(x, y) 1.309569e+ 01 2.289066e− 05

Average 2.282515e+ 00 2.627184e− 05

Table 6.2: Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y), where {εf,i1,i2}
and {εg,j1,j2} are set at 10−6 in Example 6.6.1

The level of additive noise is reduced such that {εf,i1,i2} and {εg,j1,j2} are uniformly

distributed random variables in the interval [1e− 10, 1e− 8] and the approximation errors

are given in Table 6.3.

Without Preprocessing

ut(x, y), vt(x, y) and dt(x, y)

With Preprocessing

ũt(x, y) , ṽt(x, y) and d̃t(x, y)

Error ût(x, y) 1.003175e+ 00 2.938467e− 07

Error v̂t(x, y) 4.176566e− 02 2.996180e− 07

Error d̂t(x, y) 4.499127e− 02 3.076126e− 07

Average 1.235307e− 01 3.003062e− 07

Table 6.3: Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y), where {εf,i1,i2}
and {εg,j1,j2} are in the interval [10−10, 10−8] in Example 6.6.1

At both noise levels, the approximations obtained from the tth preprocessed subre-

sultant matrix are significantly better than those from the tth unprocessed subresultant

matrix.

�

Example 6.6.2. Consider the Bernstein form of the exact polynomials f̂(x, y) and ĝ(x, y),

whose factorisations are given by

f̂(x, y) = (x+ 0.56)
(
x2 + y2 + 0.51

)2
(x+ y + 1.12)3 (x+ y + 0.0124)6

ĝ(x, y) = (x+ 0.56)
(
x2 + y2 + 0.51

)2
(x+ y + 1.12)3 (x+ y + 0.4512)3

and whose GCD d̂t(x, y) of degree t = 8 is given by

d̂t(x, y) = (x+ 0.56)
(
x2 + y2 + 0.51

)2
(x+ y + 1.12)3 .

Noise is added to the coefficients of f̂(x, y) and ĝ(x, y) such that the inexact polynomials

f(x, y) and g(x, y) have coefficients given by

ai1,i2 = âi1,i2 + âi1,i2 (ri1,i2εf) and bj1,j2 = b̂j1,j2 + b̂j1,j2 (rg,j1,j2εg) ,

224

(i) The singular values {σk,i} of the
unprocessed subresultant matrices

{Sk(f(x, y), g(x, y))}

(ii) The singular values {σk,i} of the
preprocessed subresultant matrices
{Sk(λkf̃k(ω1, ω2), g̃k(ω1, ω2))}

Figure 6.5: The singular values {σk,i} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 6.6.1

where {rf,i1,i2} and {rg,j1,j2} are uniformly distributed random variables in the interval

[−1, 1] and εf = εg = 10−10.

From Figure 6.6, it can be seen that the coefficients of f(x, y) span approximately 14

orders of magnitude, whereas the coefficients of the preprocessed polynomial λ1f̃1(ω1, ω2)

span only 4 orders of magnitude. Both g(x, y) and g̃1(ω1, ω2) span approximately 4 orders

of magnitude, but the coefficients of g̃1(ω1, ω2) are of the same order of magnitude as the

coefficients of λ1f̃1(ω1, ω2).

10 20 30 40 50 60 70 80 90 100 110 120
-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Figure 6.6: The coefficients of both the unprocessed polynomials f(x, y) and g(x, y)
and the preprocessed polynomials λ1f̃1(ω1, ω2) and g̃1(ω1, ω2) in Example 6.6.2

The singular values of the subresultant matrices of the unprocessed and preprocessed

polynomials are plotted in Figure 6.7i and Figure 6.7ii respectively. There is no clear

separation between the numerically zero and non-zero singular values of the unprocessed

subresultant matrices, however the separation between the two sets of singular values is

clearly defined for the preprocessed subresultant matrices.

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 225

Given that the degree of the AGCD is computed, approximations of the coefficients of

cofactor polynomials and the GCD are computed and their errors are given in Table 6.4.

Note that approximations were not computed from the unprocessed subresultant matrices

since the degree of the AGCD was not correctly determined.

0 2 4 6 8 10 12
-14

-12

-10

-8

-6

-4

-2

0

2

4

(i) The singular values {σk,i} of the
unprocessed subresultant matrices

{Sk(f(x, y), g(x, y))}

0 2 4 6 8 10 12
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

(ii) The singular values {σk,i} of the
preprocessed subresultant matrices
{Sk(λkf̃k(ω1, ω2), g̃k(ω1, ω2))}

Figure 6.7: The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 6.6.2

Without Preprocessing

ut(x, y) , vt(x, y)

and dt(x, y)

With Preprocessing

ũt(x, y) , ṽt(x, y)

and d̃t(x, y)

Error ût(x, y) - 9.005377e− 10

Error v̂t(x, y) - 7.410582e− 10

Error d̂t(x, y) - 3.090752e− 10

Average - 5.908439e− 10

Table 6.4: Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y) in Example 6.6.2

The amount of noise is reduced such that εf,i1,i2 = εg,j1,j2 = 10−14, and the degree of

the AGCD is correctly determined by both the sets of unprocessed subresultant matrices

and preprocessed subresultant matrices. Given the tth unprocessed and preprocessed

subresultant matrices, the approximations of ût(x, y), ĝt(x, y) and d̂t(x, y) are computed

and the respective errors are given in Table 6.5. It can be seen that approximations

obtained from the tth preprocessed subresultant matrix are significantly better than the

approximations obtained from the tth unprocessed subresultant matrix.

226

Without Preprocessing

ut(x, y) , vt(x, y)

and dt(x, y)

With Preprocessing

ũt(x, y) , ṽt(x, y)

and d̃t(x, y)

Error ût(x, y) 5.582028e− 09 9.895789e− 14

Error v̂t(x, y) 4.480417e− 09 8.115812e− 14

Error d̂t(x, y) 4.293959e− 09 3.681717e− 14

Average 4.753237e− 09 6.662097e− 14

Table 6.5: Error in the approximations of ût(x, y), v̂t(x, y) and d̂t(x, y) with reduced
upper bound of noise in Example 6.6.2

�

Three-Polynomial Problems

Example 6.6.3. In this example, the polynomials from Example 6.2.1 are reconsidered.

The SVD of the sets of preprocessed subresultant matrices

(i) {S̃k(λkf̃k(ω1, ω2), g̃k(ω1, ω2), ρkh̃k(ω1, ω2))}

(ii) {Ŝk(λkf̃k(ω1, ω2), g̃k(ω1, ω2), ρkh̃k(ω1, ω2))}

(iii) {Ŝk(µkg̃k(ω1, ω2), f̃k(ω1, ω2), ρkh̃k(ω1, ω2))}

(iv) {Ŝk(ρkh̃k(ω1, ω2), g̃k(ω1, ω2), λkf̃k(ω1, ω2))}

are computed and plotted in Figure 6.8. There is a clear separation between the non-zero

and numerically zero singular values for all four sets of subresultant matrices. This is in

contrast to the singular values of the unprocessed subresultant matrices in Example 6.2.1

(Figure 6.2). From this example it can be seen that the ordering of the polynomials, which

gives rise to the three variations of the (2 × 3) subresultant matrices, is irrelevant when

polynomials are first preprocessed.

�

Example 6.6.4. Consider the Bernstein form of the exact polynomials f̂(x, y), ĝ(x, y)

and ĥ(x, y) of degrees m = 23, n = 11 and o = 10, whose factorisations are given by

f̂(x, y) = (x+ 2.21657951321)(x2 + y2 + 0.5679814324687)2×

(x+ y + 42.46578784351654)3(x+ y + 0.0124)6(x− 0.554687987932164654)3

ĝ(x, y) = (x+ 2.21657951321)(x2 + y2 + 0.5679814324687)2×

(x+ y + 42.46578784351654)3(x+ y + 0.4512)3

ĥ(x, y) = (x+ 2.21657951321)(x2 + y2 + 0.5679814324687)2×

(x+ y + 42.46578784351654)3(12x2 + y2 − 52.34)

and whose GCD d̂t(x, y) of degree t = 8 in factorised form is given by

d̂t(x, y) = (x+ 2.21657951321)(x2 + y2 + 0.5679814324687)2×

(x+ y + 42.46578784351654)3.

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 227

2 4 6 8 10 12 14
-6

-4

-2

0

2

4

6

(i) S̃(λkf̃k(ω1, ω2), g̃k(ω1, ω2), ρkh̃k(ω1, ω2))

2 4 6 8 10 12 14
-6

-4

-2

0

2

4

6

(ii) Ŝk(λkf̃k(ω1, ω2), g̃k(ω1, ω2), ρkh̃k(ω1, ω2))

2 4 6 8 10 12 14
-6

-4

-2

0

2

4

6

(iii) Ŝk(µkg̃k(ω1, ω2), f̃k(ω1, ω2), ρkh̃k(ω1, ω2))

2 4 6 8 10 12 14
-6

-4

-2

0

2

4

6

(iv) Ŝk(ρkh̃k(ω1, ω2), g̃k(ω1, ω2), λkf̃k(ω1, ω2))

Figure 6.8: The singular values {σk,i} of the preprocessed subresultant matrices in
Example 6.6.3

Noise is added to the coefficients of the exact polynomials f̂(x, y), ĝ(x, y) and ĥ(x, y), where

the coefficients of the inexact polynomials are given by (6.20) with {rf,i1,i2}, {rg,j1,j2}
and {rh,p1,p2} being uniformly distributed random variables in the interval [−1, 1] and

{εf,i1,i2}, {εg,i1,i2} and {εh,i1,i2} being uniformly distributed random variables in the inter-

val
[
10−6, 10−4

]
.

The sets of singular values of the unprocessed subresultant matrices

{Sk(f(x, y), g(x, y), h(x, y)) | k = 1, . . . ,min(m,n, o) } are plotted in Figure 6.9i,

but the degree of the AGCD cannot be computed from these values as there is no

separation into numerically zero and non-zero singular values. However, the degree of

the AGCD can be computed from the singular values of the preprocessed subresultant

matrices {Sk(λkf̃k(ω1, ω2), g̃k(ω1, ω2), ρkh̃k(ω1, ω2))}, which are plotted in Figure 6.9ii,

and the degree of the AGCD is correctly determined to be t = 8.

228

0 2 4 6 8 10
-6

-4

-2

0

2

4

6

8

(i) The singular values {σk,i} of the
unprocessed subresultant matrices
{Ŝk(f(x, y), g(x, y), h(x, y))}

0 2 4 6 8 10
-8

-6

-4

-2

0

2

4

(ii) The singular values {σk,i} of the
preprocessed subresultant matrices

{Ŝk(αf̃(ω1, ω2), βg̃(ω1, ω2), γh̃(ω1, ω2))}

Figure 6.9: The singular values {σk,i} of the (i) unprocessed and (ii) preprocessed
subresultant matrices in Example 6.6.4

Approximations of the cofactor polynomials and coefficients of the GCD are computed

where possible. The SVD of the subresultant matrices of the inexact unprocessed polyno-

mials f(x, y), g(x, y) and h(x, y) cannot be used to determine the degree of the AGCD and

so the coefficients of the cofactor polynomials and GCD cannot be approximated. Errors

in the approximations of ût(x, y), v̂t(x, y), ŵt(x, y) and d̂t(x, y) are given in Table 6.6.

Method

Without Preprocessing

ut(x, y), vt(x, y), wt(x, y)

and dt(x, y)

With Preprocessing

ũt(x, y) , ṽt(x, y) , w̃t(x, y)

and d̃t(x, y)

Error ût(x, y) - 5.890669e− 04

Error v̂t(x, y) - 6.053376e− 04

Error ŵt(x, y) - 4.344286e− 04

Error d̂t(x, y) - 5.718709e− 04

Average - 5.5018e− 04

Table 6.6: Error in the approximations of ût(x, y), v̂t(x, y), ŵt(x, y) and d̂t(x, y), where
{εf,i} and {εg,j} are in the interval [10−6, 10−4] in Example 6.6.4

The noise level is reduced such that εf,i1,i2 , εg,j1,j2 and εh,k1,k2 are uniformly distributed

random variables in the interval [10−8, 10−6], at which point the degree of the AGCD is

correctly determined from the SVD of both the unprocessed and preprocessed subresultant

matrices. The errors in the approximations of the coefficients of the cofactor polynomials

and the GCD are given in Table 6.7

Chapter 6. GCDs of Bivariate Polynomials over a Triangular Domain 229

Method

Without Preprocessing

ut(x, y), vt(x, y), wt(x, y)

and dt(x, y)

With Preprocessing

ũt(x, y), ṽt(x, y), w̃t(x, y)

and d̃t(x, y)

Error ût(x, y) 1.682191e− 04 5.375237e− 06

Error v̂t(x, y) 1.477191e− 04 5.579333e− 06

Error ŵt(x, y) 1.268452e− 04 3.991345e− 06

Error d̂t(x, y) 1.582510e− 04 5.214778e− 06

Average 1.494456e− 04 4.998432e− 06

Table 6.7: Error in the approximations of ût(x, y), v̂t(x, y), ŵt(x, y) and d̂t(x, y), where
{εf,i} and {εg,j} are in the interval [10−8, 10−6] in Example 6.6.4

�

6.7 Conclusion

This chapter has considered the computation of the degree and coefficients of the GCD of

two or three bivariate polynomials in Bernstein form. The main findings of this chapter

are outlined below:

The Bivariate Subresultant Matrix : This chapter has extended the definition of

the Sylvester matrix and the set of subresultant matrices. These were defined for

the two-polynomial and three-polynomial GCD finding problems where the bivariate

polynomials are in Bernstein form defined over a triangular domain.

Variations of the Subresultant Matrices : Several variants of the (2× 3) and (3×
3) subresultant matrices were defined. It was shown that the computation of the

degree of the GCD of poorly scaled polynomials can return erroneous results due to

unbalanced row-partitions in these subresultant matrices. In particular, when two

of the three polynomials, f̂(x, y) and ĝ(x, y), have a GCD d̂a(x, y) of degree greater

than the degree of the GCD of all three polynomials, poor scaling can result in

the GCD of f̂(x, y) and ĝ(x, y) being incorrectly identified as the GCD of all three

polynomials.

Preprocessing : The poor scaling was addressed by adapting the preprocessing oper-

ations described in Section 3.4. Examples have shown that improved results are

obtained from preprocessed polynomials. Example 6.6.1 and Example 6.6.2 have

shown that the degree of the GCD can be computed by analysis of the singular val-

ues of the set of preprocessed subresultant matrices, where analysis of unprocessed

subresultant matrices would otherwise fail.

Coefficient Computation : It has also been shown that the approximations of both

the cofactor polynomials ût(x, y), v̂t(x, y) and ŵt(x, y) and the coefficients of the

GCD d̂t(x, y) obtained from the tth preprocessed subresultant matrix are consider-

ably better than the approximations obtained by the same method applied to the

tth unprocessed subresultant matrix.

230

Having extended the GCD finding method to solve the two-polynomial and three-

polynomial problem for bivariate polynomials defined over a triangular domain, the more

difficult extension to the two-polynomial and three-polynomial problem for polynomials

defined over a rectangular domain is described in the next chapter.

Chapter 7

GCDs of Bivariate Polynomials

over a Rectangular Domain

The previous chapter considered the computation of the degree and coefficients of the

GCD (or AGCD) of two or three bivariate polynomials in Bernstein form defined over a

triangular domain. This chapter considers the computation of the GCD of two or three

bivariate polynomials defined over a rectangular domain, which is a problem that arises

in the computation of intersection points involving tensor-product Bézier surfaces.

The bivariate polynomial defined over a rectangular domain is given in terms of its

relative degree with respect to x and y, and the computation of the degree (t1, t2) of the

two-polynomial or three-polynomial GCD reduces to computing the numerical rank of a

two-dimensional array of two-polynomial or three-polynomial subresultant matrices.

The first of two methods developed in this chapter, described as the BVGCD method, is

a simple extension of the UGCD method, but has considerable computational complexity.

A one-dimensional search for the degree t in an interval [1,min(m,n)] is replaced by a

two-dimensional search for (t1, t2) in an array of (k1, k2) pairs for k1 = 0, . . . ,min(m1, n1)

and k2 = 0, . . . ,min(m2, n2).

Suppose that m1 ≈ m2 ≈ n1 ≈ n2, then there are approximately m2 subresultant

matrices which must be evaluated. Each matrix in the m2 array must be preprocessed

and its SVD must also be computed. The computation of the degree of the GCD is the

most expensive component of this method.

The second method presented in this chapter, BVDRGCD, overcomes the cost asso-

ciated with the computation of the degree of the GCD. The developed method is faster,

has similar intermediate results, and the same outputs as the BVGCD method.

Section 7.1 This section describes the first approach to the method of computing the

degree of the GCD of two or three bivariate polynomials in Bernstein form defined

over a rectangular domain. It will be shown that the problem reduces to the de-

termination of the index (k1, k2) of the last numerically rank deficient subresultant

matrix. The two-polynomial and three-polynomial subresultant matrices are defined

and their respective structures are discussed.

Section 7.2 Variants of the two-polynomial and three-polynomial subresultant matrices

are considered for bivariate polynomials defined over a rectangular domain. The

231

232

binomial terms included in the entries of some of these variants are shown to cause

poor scaling amongst the matrix partitions.

Section 7.3 Preprocessing of two-polynomial and three-polynomial subresultant matri-

ces has been considered for univariate and bivariate polynomials over a triangular

domain. This section extends the set of preprocessing operations defined in earlier

chapters so that the subresultant matrices of two or three bivariate polynomials

defined over a rectangular domain can be similarly preprocessed.

Section 7.4 This section develops two methods for the computation of the degree of the

GCD of two or three bivariate polynomials in Bernstein form. The first method,

BVGCD, is a simple but computationally expensive extension of univariate GCD

(UGCD). The second method, bivariate dimension reducing GCD (BVDRGCD),

aims to reduce the problem to a one-dimensional set of subresultant matrices by a

sequence of degree elevations such that the degree of the GCD is computed in two

stages but using a significantly faster algorithm.

Section 7.5 Approximations of the coefficients of the cofactor polynomials and the GCD

are computed by a least squares based method for the two-polynomial and three-

polynomial problem. Examples will show that the best approximations are given

when polynomials are first preprocessed.

Section 7.6 This section considers a set of examples of the computation of the degree and

coefficients of the GCD of two bivariate polynomials. Both the methods of BVGCD

and BVDRGCD will be considered in these examples.

7.1 The GCD of Two or Three Bivariate Polynomials in

Bernstein Form Defined over a Rectangular Domain

Consider the two polynomials f̂(x, y) and ĝ(x, y) of degrees (m1,m2) and (n1, n2) respec-

tively, which are given by

f̂(x, y) =

m2∑
i2=0

m1∑
i1=0

âi1,i2B
m1
i1

(x)Bm2
i2

(y) and ĝ(x, y) =

n2∑
i2=0

n1∑
i1=0

b̂i1,i2B
n1
i1

(x)Bn2
i2

(y).

Suppose they have a GCD d̂t1,t2(x, y) of degree (t1, t2) which is given by

d̂t1,t2(x, y) =

t1∑
i1=0

t2∑
i2=0

d̂i1,i2B
t1
i1

(x)Bt2i2 (y),

then there exists a set of cofactor polynomials ûk1,k2(x, y) and v̂k1,k2(x, y) such that

f̂(x, y)v̂k1,k2(x, y)− ĝ(x, y)ûk1,k2(x, y) = 0 (7.1)

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 233

holds for k1 = 0, . . . , t1; k2 = 0, . . . , t2. The cofactor polynomials ûk1,k2(x, y) and

v̂k1,k2(x, y) are given by

v̂k1,k2(x, y) =

n2−k2∑
i2=0

n1−k1∑
i1=0

v̂i,jB
n1−k1
i1

(x)Bn2−k2
i2

(y),

ûk1,k2(x, y) =

m2−k2∑
i2=0

m1−k1∑
i1=0

ûi1,i2B
m1−k1
i1

(x)Bm2−k2
i2

(y).

Equation (7.1) can be written in matrix form as

Sk1,k2

(
f̂(x, y), ĝ(x, y)

)
xk1,k2 = 0, (7.2)

which has non-trivial solutions for k1 = 0, . . . , t1; k2 = 0, . . . , t2. The solution vector xk1,k2

contains the coefficients of the polynomials ûk1,k2(x, y) and v̂k1,k2(x, y) and is given by

xk1,k2 =
[

v̂k1,k2 , −ûk1,k2

]T
,

where the partitioned vectors v̂k1,k2 and ûk1,k2 are given by

v̂k1,k2 =
[

v̂1, v̂2, . . . , v̂n2−k2

]T
and ûk1,k2 =

[
û1, û2, . . . , ûm2−k2

]T
,

the partitions of which, {v̂i} and {ûi}, are given by

v̂i =
[
v̂0,i, v̂1,i, . . . , v̂m1−k1,i

]T
and ûi =

[
û0,i û1,i . . . , ûn1−k1,i

]T
.

The matrix Sk1,k2(f̂(x, y), ĝ(x, y)) is the (k1, k2)th two-polynomial subresultant matrix,

where the number of rows r and columns c are given by

r = (m1 + n1 − k1 + 1)(m2 + n2 − k2 + 1)

c = (m1 − k1 + 1)(m2 − k2 + 1) + (n1 − k1 + 1)(n2 − k2 + 1).

In a similar manner to other versions of the subresultant matrices, the (k1, k2)th subre-

sultant matrix Sk1,k2(f̂(x, y), ĝ(x, y)) can be defined as

Sk1,k2 =
[
Cn1−k1,n2−k2

(
f̂(x, y)

)
Cm1−k1,m2−k2

(
ĝ(x, y)

)]
,

where the first partition Cn1−k1,n2−k2(f̂(x, y)) is a bivariate convolution matrix of the same

234

structure as the matrix defined in (2.19). The matrix Cn1−k1,n2−k2(f̂(x, y)) is given by

Cn1−k1(f̂0(x))(m2
0)(n2−k2

0)
(m2+n2

0)
Cn1−k1(f̂1(x))(m2

1)(n2−k2
0)

(m2+n2−k2
1)

Cn1−k1(f̂0(x))(m2
0)(n2−k2

1)
(m2+n2−k2

1)
...

Cn1−k1(f̂1(x))(m2
1)(n2−k2

1)
(m2+n2−k2

3)

. . .

...
...

. . .
Cn1−k1(f̂0(x))(m2

0)(n2−k2
n2−k2)

(m2+n2−k2
n2−k2)

Cn1−k1(f̂m2
(x))(m2

m2
)(n2−k2

0)
(m2+n2−k2

m2
)

...
Cn1−k1(f̂1(x))(m2

1)(n2−k2
n2−k2)

(m2+n2−k2
n2−k2+1)

Cn1−k1(f̂m2
(x))(m2

m2
)(n2−k2

1)
(m2+n2−k2

m2+1)

...

. . .
...

Cn1−k1(f̂m2
(x))(m2

m2
)(n2−k2
n2−k2)

(m2+n2−k2
m2+n2−k2)



.

Alternatively, the (k1, k2)th subresultant matrix can be written as

Sk1,k2

(
f̂(x, y), ĝ(x, y)

)
= D−1

m1+n1−k1,m2+n2−k2
Tk1,k2

(
f̂(x, y), ĝ(x, y)

)
Q̂k1,k2 .

The block diagonal matrix D−1
m1+n1−k1,m2+n2−k2

of order (m1+n1−k1+1)(m2+n2−k2+1)

is given by

diag
[
D−1m1+n1−k1

1

(m2+n2−k2
0)

, D−1m1+n1−k1
1

(m2+n2−k2
1)

, . . . , D−1m1+n1−k1
1

(m2+n2−k2
m2+n2−k2)

]
, (7.3)

where the diagonal matrix D−1
m1+n1−k1

of order (m1 + n1− k1 + 1) is defined in (3.6). The

matrix Tk1,k2(f̂(x, y), ĝ(x, y)) is given by[
Tn1−k1,n2−k2

(
f̂(x, y)

)
Tm1−k1,m2−k2

(
ĝ(x, y)

)]
,

where the partitions are of the form (2.20). The block diagonal matrix Q̂k1,k2 is given by

Q̂k1,k2 = diag
[
Qn1−k1,n2−k2 , Qm1−k1,m2−k2

]
,

where both of the matrices Qn1−k1,n2−k2 and Qm1−k1,m2−k2 are themselves block diagonal

matrices given by

Qn1−k1,n2−k2 = diag
[
Qn1−k1

(
n2−k2

0

)
, Qn1−k1

(
n2−k2

1

)
, . . . , Qn1−k1

(
n2−k2
n2−k2

)]
Qm1−k1,m2−k2 = diag

[
Qm1−k1

(
m2−k2

0

)
, Qm1−k1

(
m2−k2

1

)
, . . . , Qm1−k1

(
m2−k2
m2−k2

)]
and Qn1−k1 ∈ R(n1−k1+1)×(n1−k1+1) and Qm1−k1 ∈ R(m1−k1+1)×(m1−k1+1) are of the same

structure as the matrix partitions shown in (2.12).

From equation (7.2) the (k1, k2)th subresultant matrix of two bivariate polynomials in

Bernstein form is numerically rank deficient for k1 = 0, . . . , t1 and k2 = 0, . . . , t2, while

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 235

the remaining subresultant matrices are of full rank

rank (Sk1,k2) < (m1 + n1 − k1 + 1)(m2 + n2 − k2 + 1)

for k1 = 0, . . . , t1; k2 = 0, . . . , t2

rank (Sk1,k2) = (m1 + n1 − k1 + 1)(m2 + n2 − k2 + 1)

for k1 = (t1 + 1), . . . ,min(m1, n1); k2 = (t2 + 1), . . . ,min(m2, n2).

The computation of the degree of the GCD therefore reduces to the computation of

the last numerically rank deficient subresultant matrix Sk1,k2(f̂(x, y), ĝ(x, y)), where

Sk1+1,k2(f̂(x, y), ĝ(x, y)) and Sk1,k2+1(f̂(x, y), ĝ(x, y)) are both of full rank. Having reduced

the two-polynomial problem to the determination of the last numerically rank deficient

subresultant matrix, the three-polynomial problem is considered.

7.1.1 The GCD of Three Bivariate Polynomials in Bernstein Form over

a Rectangular Domain

Suppose f̂(x, y), ĝ(x, y) and a third polynomial ĥ(x, y) have a GCD of degree (t1, t2), then

there exist common divisors of degree (k1, k2) such that

f̂(x, y)

ûk1,k2(x, y)
= d̂k1,k2(x, y),

ĝ(x, y)

v̂k1,k2(x, y)
= d̂k1,k2(x, y) and

ĥ(x, y)

ŵk1,k2(x,y)
= d̂k1,k2(x, y)

for k1 = 0, . . . , t1 and k2 = 0, . . . , t2. This gives rise to three equations, the first of which

is defined in (7.1) and the remaining two equations are given by

f̂(x, y)ŵk1,k2(x, y)− ĥ(x, y)ûk1,k2(x, y) = 0 (7.4)

ĥ(x, y)v̂k1,k2(x, y)− ĝ(x, y)ŵk1,k2(x, y) = 0. (7.5)

The three equations (7.1, 7.4, 7.5) must be simultaneously satisfied and can be written in

matrix form as

S̃k1,k2

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
xk1,k2 = 0, (7.6)

which has a non-trivial solution for k1 = 0, . . . , t1; and k2 = 0, . . . , t2 and the solution

vector is given by

xk1,k2 =
[

v̂k1,k2 , ŵk1,k2 , −ûk1,k2

]T
, (7.7)

where v̂k1,k2 , ŵk1,k2 and ûk1,k2 are the vectors of the coefficients of polynomials ûk1,k2(x, y),

v̂k1,k2(x, y) and ŵk1,k2(x, y).

The matrix S̃k1,k2(f̂(x, y), ĝ(x, y), ĥ(x, y)) in (7.6) is the (k1, k2)th (3× 3) partitioned

subresultant matrix of three bivariate polynomials. It can also be written as

S̃k1,k2

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
= D̃−1

k1,k2
T̃k1,k2

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
Q̃k. (7.8)

236

The block diagonal matrix D̃−1
k1,k2

is given by

D̃−1
k1,k2

= diag
[
D−1
m1+n1−k1,m2+n2−k2

, D−1
m1+o1−k1,m2+o2−k2

, D−1
n1+o1−k1,n2+o2−k2

]
,

where the matrix partitions are of the same form as the matrix D−1
m1+n1−k1,m2+n2−k2

in

(7.3). The partitioned matrix T̃k1,k2(f̂(x, y), ĝ(x, y), ĥ(x, y)) is given by
Tn1−k1,n2−k2

(
f̂(x, y)

)
Tm1−k1,m2−k2

(
ĝ(x, y)

)
To1−k1,o2−k2

(
f̂(x, y)

)
Tm1−k1,m2−k2

(
ĥ(x, y)

)
Tn1−k1,n2−k2

(
ĥ(x, y)

)
−To1−k1,o2−k2

(
ĝ(x, y)

)
 ,

where the partitions Tn1−k1,n2−k2(f̂ (x, y)) are of the same form as (2.20). The block

diagonal matrix Q̃k1,k2 is given by

Q̃k1,k2 = diag
[
Qn1−k1,n2−k2 , Qo1−k1,o2−k2 , Qm1−k1,m2−k2

]
. (7.9)

The matrix S̃k1,k2

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
can be defined in terms of row-partitions

 Ra,k1,k2

Rb,k1,k2

Rc,k1,k2

 =


Cn1−k1,n2−k2

(
f̂(x, y)

)
Cm1−k1,m2−k2

(
ĝ(x, y)

)
Co1−k1,o2−k2

(
f̂(x, y)

)
Cm1−k1,m2−k2

(
ĥ(x, y)

)
Cn1−k1,n2−k2

(
ĥ(x, y)

)
−Co1−k1,o2−k2

(
ĝ(x, y)

)
 ,

where

Ra,k1,k2 =
[
Cn1−k1,n2−k2

(
f̂(x, y)

)
0a Cm1−k1,m2−k2

(
ĝ(x, y)

)]
, (7.10)

Rb,k1,k2 =
[

0b Co1−k1,o2−k2

(
f̂(x, y)

)
Cm1−k1,m2−k2

(
ĥ(x, y)

)]
, (7.11)

Rc,k1,k2 =
[
Cn1−k1,n2−k2

(
ĥ(x, y)

)
−Co1−k1,o2−k2

(
ĝ(x, y)

)
0c

]
. (7.12)

The matrices 0a, 0b and 0c in (7.10, 7.11, 7.12) are appropriately sized zero matrices,

where 0a is a zero matrix of size (m1 +n1− k1)(m2 +n2− k2)× (o1− k1 + 1)(o2− k2 + 1),

the matrix 0b is of size (m1 + o1− k1)(m2 + o2− k2)× (m1− k1 + 1)(m2− k2 + 1) and the

matrix 0c is of size (n1 + o1 − k1)(n2 + o2 − k2)× (m1 − k1 + 1)(m2 − k2 + 1).

An alternative definition of the three-polynomial subresultant matrix has a (2 × 3)

partitioned structure. Two of the three equations (7.1, 7.4, 7.5) are sufficient to describe

the system, which gives rise to the (2 × 3) partitioned subresultant matrices whose row-

partitions are a subset of the row-partitions of the (3×3) partitioned subresultant matrix.

The subresultant matrices of this form have already been described for use in the three-

polynomial GCD problem where polynomials are either univariate or bivariate and defined

over a triangular domain. In this section only one variation of the (2 × 3) subresultant

matrix is considered and the other two variations are easily derived.

The equations (7.1) and (7.4) can be written in matrix form as

Ŝk1,k2

(
f̂ (x, y), ĝ(x, y), ĥ(x, y)

)
xk1,k2 = 0,

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 237

which has non-trivial solutions for k1 = 0, . . . , t1; and k2 = 0, . . . , t2, and the vector xk1,k2

is given by (7.7).

The matrix Ŝk1,k2(f̂ (x, y), ĝ(x, y), ĥ(x, y)) is the (2×3) partitioned subresultant matrix

and is given by[
Ra,k1,k2

Rb,k1,k2

]
=

 Cn1−k1,n2−k2

(
f̂(x, y)

)
Cm1−k1,m2−k2

(
ĝ(x, y)

)
Co1−k1,o2−k2

(
f̂(x, y)

)
Cm1−k1,m2−k2

(
ĥ(x, y)

)  ,
where Ra,k1,k2 and Rb,k1,k2 are row-partitions as defined in (7.10) and (7.11).

7.2 Variants of the Subresultant Matrices

The Two-Polynomial Subresultant Matrices

As with the other forms of subresultant matrix of two polynomials in Bernstein form, the

sequence of subresultant matrices of two bivariate polynomials have several variants given

by

(i) {Tk1,k2(f̂(x, y), ĝ(x, y))}

(ii) {D−1
k1,k2

Tk1,k2(f̂(x, y), ĝ(x, y))}

(iii) {Tk1,k2(f̂(x, y), ĝ(x, y))Q̂k1,k2}

(iv) {D−1
k1,k2

Tk1,k2(f̂(x, y), ĝ(x, y))Q̂k1,k2}

for k1 = 0, . . . ,min(m1, n1); k2 = 0, . . . ,min(m2, n2).

1. The first variant of the (k1, k2)th subresultant matrix is given by

Tk1,k2(f̂(x, y), ĝ(x, y)), and entries in the first partition are of the form

âi1,i2

(
m1

i1

)(
m2

i2

)
i1 = 0, . . . ,m1;

i2 = 0, . . . ,m2.

The entries of this subresultant variant can span many orders of magnitude when

m1 or m2 is large. Each coefficient of f̂(x, y) appears in each of the (n1 − k1 + 1)×
(n2 − k2 + 1) columns of the first partition.

2. The second variant of the (k1, k2)th subresultant matrix is given by

D−1
k1,k2

Tk1,k2(f̂(x, y), ĝ(x, y)) and entries in the first partition are of the form

âi1,i2
(
m1

i1

)(
m2

i2

)(
m1+n1−k1

i1+j1

)(
m2+n2−k2

i2+j2

) i1 = 0, . . . ,m1; j1 = 0, . . . , n1 − k1;

i2 = 0, . . . ,m2; j2 = 0, . . . , n2 − k2.

3. The third subresultant matrix variant is given by Tk1,k2(f̂(x, y), ĝ(x, y))Q̂k1,k2 and

entries in the first partition are of the form

âi1,i2

(
m1

i1

)(
m2

i2

)(
n1 − k1

j1

)(
n2 − k2

j2

)
i1 = 0, . . . ,m1; j1 = 0, . . . , n1 − k1;

i2 = 0, . . . ,m2; j2 = 0, . . . , n2 − k2.

238

4. The fourth variant of the (k1, k2)th subresultant matrix is given by

D−1
k1,k2

Tk1,k2(f̂(x, y), ĝ(x, y))Q̂k1,k2 and the first partition contains entries of the form

âi1,i2
(
m1

i1

)(
m2

i2

)(
n1−k1

j1

)(
n2−k2

j2

)(
m1+n1−k1

i1+j1

)(
m2+n2−k2

i2+j2

) i1 = 0, . . . ,m1; j1 = 0, . . . , n1 − k1;

i2 = 0, . . . ,m2; j2 = 0, . . . , n2 − k2.

The Three-Polynomial Subresultant Matrices

The (k1, k2)th (3×3) partitioned subresultant matrix was defined in (7.8) and the variants

of the (3× 3) partitioned subresultant matrices are given by

(i) {T̃k1,k2(f̂ (x, y), ĝ(x, y), ĥ(x, y))}

(ii) {D̃−1
k1,k2

T̃k1,k2(f̂ (x, y), ĝ(x, y), ĥ(x, y))}

(iii) {T̃k1,k2(f̂ (x, y), ĝ(x, y), ĥ(x, y))Q̃k1,k2}

(iv) {D̃−1
k1,k2

T̃k1,k2(f̂ (x, y), ĝ(x, y), ĥ(x, y))Q̃k1,k2}

for k1 = 0, . . . ,min(m1, n1, o1); k2 = 0, . . . ,min(m2, n2, o2).

The variants of the (k1, k2)th subresultant matrix contain partitions of the same form

as the partitions of the two-polynomial subresultant matrices described in (7.2), but the

second row-partition is now included, which contains two additional non-zero partitions.

The (k1, k2)th (2× 3) partitioned subresultant matrix is given by

Ŝk1,k2

(
f̂ (x, y), ĝ(x, y), ĥ(x, y)

)
= D̂−1

k1,k2
T̂k1,k2

(
f̂ (x, y), ĝ(x, y), ĥ(x, y)

)
Q̃k1,k2 .

The matrix D̂−1
k1,k2

is given by

D̂−1
k1,k2

= diag
[
D−1
m1+n1−k1,m2+n2−k2

, D−1
m1+o1−k1,m2+o2−k2

]
,

where the matrices on the diagonal are of the same form as the matrix defined in (7.3).

The matrix T̂k1,k2(f̂ (x, y), ĝ(x, y), ĥ(x, y)) is given by Tn1−k1,n2−k2

(
f̂ (x, y)

)
Tm1−k1,m2−k2

(
ĝ(x, y)

)
To1−k1,o2−k2

(
f̂ (x, y)

)
Tm1−k1,m2−k2

(
ĥ(x, y)

)  ,
where the partitions are of the form (2.20), and Q̃k1,k2 is already defined in (7.9).

The variants of the (2× 3) partitioned subresultant matrices are therefore given by:

(i) {T̂k1,k2(f̂(x, y), ĝ(x, y), ĥ(x, y))}

(ii) {D̂−1
k1,k2

T̂k1,k2(f̂(x, y), ĝ(x, y), ĥ(x, y))}

(iii) {T̂k1,k2(f̂(x, y), ĝ(x, y), ĥ(x, y))Q̃k1,k2}

(iv) {D̂−1
k1,k2

T̂k1,k2(f̂(x, y), ĝ(x, y), ĥ(x, y))Q̃k1,k2}

for k1 = 0, . . . ,min(m1, n1, o1); k2 = 0, . . . ,min(m2, n2, o2).

Again, the partitions of these matrices follow from the definitions of the two-polynomial

subresultant matrix variants but six non-zero partitions are contained rather than two.

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 239

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

0

2

4

6

8

10

12

14

(i) Tk1,k2(f̂(x, y), ĝ(x, y))

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(ii) D−1k1,k2Tk1,k2(f̂(x, y), ĝ(x, y))

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

0

2

4

6

8

10

12

14

16

18

20

(iii) Tk1,k2(f̂(x, y), ĝ(x, y))Q̂k1,k2

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(iv) D−1k1,k2Tk1,k2(f̂(x, y), ĝ(x, y))Q̂k1,k2

Figure 7.1: Heat map of the coefficient multipliers in the subresultant matrix variants
where k1 = 1 and k2 = 1 in Example 7.2.1

Example 7.2.1. Consider the polynomials f̂(x, y) and ĝ(x, y) with degree structures

(m1,m2) = (10, 15) and (n1, n2) = (9, 6). Figure 7.1 shows heat maps of the scaling effect

of the coefficient multipliers in each entry of the first subresultant matrix for each of the

four the subresultant variants (i) Tk1,k2(f̂(x, y), ĝ(x, y)), (ii) D−1
k1,k2

Tk1,k2(f̂(x, y), ĝ(x, y)),

(iii) Tk1,k2(f̂(x, y), ĝ(x, y))Q̂k1,k2 and (iv) D−1
k1,k2

Tk1,k2(f̂(x, y), ĝ(x, y))Q̂k1,k2 , where k1 = 1

and k2 = 1.

In Figure 7.1i the entries in the first partition are significantly larger than the entries

in the second due to the presence of the binomial terms
(
m1

i1

)(
m2

i2

)
, which are significantly

larger than the terms
(
n1

i1

)(
n2

i2

)
. The largest of the coefficient multipliers in the first par-

tition is equal to
(

10
5

)(
15
7

)
= 1621620, while the largest in the second partition is equal

to
(

9
4

)(
6
3

)
= 2520. In Figure 7.1ii the entries in the second partition are still significantly

smaller than entries in the first partition. In Figure 7.1iii entries in the second partition

are much larger due to the presence of the binomial terms
(
m1−k1

j1

)(
m2−k2

j2

)
, which are

much larger than the binomial terms
(
n1−k1

j1

)(
n2−k2

j2

)
in the coefficient multipliers of the

first partition.

As with the univariate subresultant matrices, optimally scaled entries are given in the

variant of the form D−1
k1,k2

Tk1,k2(f̂(x, y), ĝ(x, y))Q̂k1,k2 , which can be seen in Figure 7.1iv.

Example 7.2.2. Consider the Bernstein form of the exact polynomials f̂(x, y), ĝ(x, y)

and ĥ(x, y) of degrees (17, 13), (20, 19) and (10, 13) respectively, whose factorised forms

240

are given by

f̂(x, y) = (x− 0.554687987932164654)3(x+ 0.21657951321)(x+ y − 0.46578784351654)3

(x+ y + 0.0124)6(x2 + y2 + 0.5679814324687)2 (7.13)

ĝ(x, y) = (x+ 0.21657951321)(x+ y − 0.46578784351654)3(x+ y + 0.4512)6

(x2 + y2 − 0.00104751807)3(x2 + y2 + 0.5679814324687)2 (7.14)

ĥ(x, y) = (x+ 0.21657951321)(y − 0.2465879841351465498)4(x+ y − 0.46578784351654)3

(12x2 + y2 − 0.348798)(x2 + y2 + 0.5679814324687)2. (7.15)

The polynomials f̂(x, y), ĝ(x, y) and ĥ(x, y) have a GCD d̂t1,t2(x, y) of degree (8, 7), which

is given by

d̂(x, y) = (x+ 0.21657951321)(x2 + y2 + 0.5679814324687)2(x+ y − 0.46578784351654)3.

Noise is added to the coefficients of f̂(x, y), ĝ(x, y) and ĥ(x, y) such that the coefficients

of the inexact polynomials f(x, y), g(x, y) and h(x, y) are given by

ai1,i2 = âi1,i2 + εf,i1,i2 âi1,i2rf,i1,i2 for i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

bj1,j2 = b̂i1,i2 + εg,j1,j2 b̂j1,j2rg,j1,j2 for i1 = 0, . . . , n1; i2 = 0, . . . , n2,

cp1,p2 = ĉp1,p2 + εh,p1,p2 ĉp1,p2rh,p1,p2 for i1 = 0, . . . , o1; i2 = 0, . . . , o2,

(7.16)

where {εf,i1,i2}, {εg,j1,j2} and {εh,p1,p2} are uniformly distributed random variables in the

interval [10−12, 10−10] and {rf,i1,i2}, {rg,j1,j2} and {rh,p1,p2} are uniformly distributed ran-

dom variables in the interval [−1, 1]. The coefficients of f(x, y), g(x, y) and h(x, y) are

plotted in Figure 7.2, where it can be seen that the coefficients of f(x, y) and g(x, y) span

many more orders of magnitude than those of h(x, y).

Heat maps of the coefficient multipliers in the variants of the subresultant matrices

are plotted in Figure 7.3 and the following observations are made:

1. Figure 7.3i plots the magnitude of the coefficient multipliers in the entries of

T̂k1,k2(f(x, y), g(x, y), h(x, y)). It can be seen that the top right partition, whose

entries are of the form bi1,i2
(
n1

i1

)(
n2

i2

)
, has entries of significantly larger magnitude

than those in the remaining three non-zero partitions.

2. Figure 7.3iii plots the magnitude of the coefficient multipliers in

T̂k1,k2(f(x, y), g(x, y), h(x, y))Q̃k1,k2 . The first row-partition of this matrix,

Ra,k1,k2 , contains coefficient multipliers which are significantly larger than the

coefficient multipliers of the second row-partition Rb,k1,k2 .

3. Figure 7.3iv plots the magnitude of the coefficient multipliers in

D̂−1
k1,k2

T̂k1,k2(f(x, y), g(x, y), h(x, y))Q̃k1,k2 , which appears to have the optimal

form of scaling.

The minimum singular values of the subresultant matrices

(i) {T̂k1,k2(f(x, y), g(x, y), h(x, y))}

(ii) {D̂−1
k1,k2

T̂k1,k2(f(x, y), g(x, y), h(x, y))}

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 241

0 50 100 150 200 250 300 350 400
-15

-10

-5

0

5

Figure 7.2: The coefficients of the polynomials f(x, y), g(x, y) and h(x, y) in
Example 7.2.2

(iii) {T̂k1,k2(f(x, y), g(x, y), h(x, y))Q̃k1,k2}

(iv) {D̂−1
k1,k2

T̂k1,k2(f(x, y), g(x, y), h(x, y))Q̃k1,k2}

for k1 = 1, . . . ,min(m1, n1, o1); k2 = 1, . . . ,min(m2, n2, o2) are computed and plotted

in Figures 7.4i to 7.4iv. From these sets of minimum singular values, it is clear that

{D̂−1
k1,k2

T̂k1,k2(f(x, y), g(x, y), h(x, y))Q̃k1,k2} is the optimal subresultant matrix sequence

for the computation of the degree of the AGCD since the separation between the numeri-

cally zero and non-zero minimum singular values is more pronounced.

The results in this example can be further improved by preprocessing the three-

polynomial subresultant matrices and this will be considered in Section 7.3. This ex-

ample is extended in Example 7.6.4 to consider higher levels of noise and the effect of

preprocessing on the computation of the degree of the AGCD.

�

The results in this section are consistent with earlier results for the two-polynomial and

three-polynomial problems for univariate and bivariate polynomials defined over a rectan-

gular domain. Despite D−1
k1,k2

Tk1,k2Qk1,k2 being the optimal variant of the four subresultant

matrix variants, the ratio of entry of maximum magnitude to entry of minimum magni-

tude is still likely to be large and again preprocessing the three polynomials polynomials

is considered.

7.3 Preprocessing

The three preprocessing operations have been discussed for the two-polynomial and three-

polynomial subresultant matrices of both univariate and bivariate polynomials where the

bivariate polynomials were defined over a triangular domain.

The equivalent three preprocessing operations are now considered for the two-

polynomial and three-polynomial subresultant matrices for bivariate polynomials defined

over a rectangular domain. In this section the two-polynomial and three-polynomial pre-

processing stages will be considered simultaneously, since the extension from preprocess-

242

0

1

2

3

4

5

6

7

8

9

10

(i) T̂k1,k2(f(x, y), g(x, y), h(x, y))

-16

-14

-12

-10

-8

-6

-4

-2

0

(ii) D̂−1k1,k2 T̂k1,k2(f(x, y), g(x, y), h(x, y))

0

2

4

6

8

10

12

14

16

(iii) T̂k1,k2(f(x, y), g(x, y), h(x, y))Q̃k1,k2

-16

-14

-12

-10

-8

-6

-4

-2

0

(iv) D̂−1k1,k2 T̂k1,k2(f(x, y), g(x, y), h(x, y))Q̃k1,k2

Figure 7.3: Heat map of the coefficient multipliers (using logarithmic scale) in the
variants of the subresultant matrices in Example 7.2.2.

ing the two-polynomial subresultant matrix to the three-polynomial subresultant matrix

is easily derived.

The three preprocessing stages developed in Section 3.4 are adapted for the com-

putation of preprocessed two-polynomial and three-polynomial subresultant matrices of

bivariate polynomials in Bernstein form.

Normalisation by Geometric Means in the Two-Polynomial Subresultant Ma-

trices

Polynomials f̂(x, y) and ĝ(x, y) are normalised by the geometric mean of their non-zero

entries in the matrix partitions Cn1−k1,n2−k2(f̂(x, y)) and Cm1−k1,m2−k2(ĝ(x, y)) respec-

tively. The geometric mean of the non-zero entries in Cn1−k1,n2−k2(f̂(x, y)), denoted

Gn1−k1,n2−k2(f̂(x, y)), is given by

n2−k2∏
j2=0

n1−k1∏
j1=0

m2∏
i2=0

m1∏
i1=0

(
âi1,i2

(
i1+j1
i1

)(
m1+n1−k1−i1
n1−k1−i1−j1

)(
m1+n1−k1
n1−k1

) (
i2+j2
i2

)(
m2+n2−k2−i2
n2−k2−i2−j2

)(
m2+n2−k2
n2−k2

)) 1
r×c

, (7.17)

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 243

-22

-20

15

-18

-16

-14

-12

-10

10

-8

109875 6543210 0

(i) {T̂k1,k2(f(x, y), g(x, y), h(x, y))}

-30

-28

15

-26

-24

-22

-20

-18

-16

-14

10

-12

109875 6543210 0

(ii) {D̂−1k1,k2 T̂k1,k2(f(x, y), g(x, y), h(x, y))}

-26

-24

15

-22

-20

-18

-16

-14

-12

-10

10

-8

109875 6543210 0

(iii) {T̂k1,k2(f(x, y), g(x, y), h(x, y))Q̃k1,k2}

-20

-19

15

-18

-17

-16

-15

-14

-13

-12

-11

10

-10

109875 6543210 0

(iv)
{D̂−1k1,k2 T̂k1,k2(f(x, y), g(x, y), h(x, y))Q̃k1,k2}

Figure 7.4: The minimum singular values {σ̇k1,k2} of each subresultant matrix for each
of the four subresultant matrix variants in Example 7.2.2.

where

r = (m1 + 1)(m2 + 1) and c = (n1 − k1 + 1)(n2 − k2 + 1)

and a similar expression for Gm1−k1,m2−k2 (ĝ(x, y)) can be derived such that the normalised

polynomials f̄k1,k2(x, y) and ḡk1,k2(x, y) are given by

f̄k1,k2(x, y) =
f̂(x, y)

Gn1−k1,n2−k2

(
f̂(x, y)

) ,
ḡk1,k2(x, y) =

ĝ(x, y)

Gm1−k1,m2−k2

(
ĝ(x, y)

) .
An efficient method for the computation of the geometric mean is given in Appendix C.3.1

which extends the method seen in Section 3.4.

244

Normalisation by Geometric Means in the (2 × 3) Partitioned Subresultant

Matrices

The polynomials f̂(x, y), ĝ(x, y) and ĥ(x, y) are normalised by the geometric mean of their

entries in the (k1, k2)th subresultant matrix Ŝk1,k2(f̂(x, y), ĝ(x, y), ĥ(x, y)), where the coef-

ficients of f̂(x, y) appear in two partitions, Cn1−k1,n2−k2(f̂(x, y)) and Co1−k1,o2−k2(f̂(x, y)),

and the coefficients of ĝ(x, y) and ĥ(x, y) only appear in one partition each. These are

Cm1−k1,m2−k2(ĝ(x, y)) and Cm1−k1,m2−k2(ĥ(x, y)) respectively. The normalised polynomi-

als are therefore given by

f̄k1,k2(x, y) =
f̂(x, y)

Ĝk1,k2

(
f̂(x, y)

) ,
ḡk1,k2(x, y) =

ĝ(x, y)

Gm1−k1,m2−k2

(
ĝ(x, y)

) ,
h̄k1,k2(x, y) =

ĥ(x, y)

Gm1−k1,m2−k2

(
ĥ(x, y)

) ,
where Gm1−k1,m2−k2(ĝ(x, y)) and Gm1−k1,m2−k2(ĥ(x, y)) are given by (7.17), and

Ĝk1,k2(f̂(x, y)) is the geometric mean of f̂(x, y) in two partitions of the (k1, k2)th sub-

resultant matrix.

Normalisation by Geometric Means in the (2 × 3) Partitioned Subresultant

Matrices

In the (3× 3) subresultant matrix, all three of the polynomials f̂(x, y), ĝ(x, y) and ĥ(x, y)

appear in two partitions each, and so the normalised polynomials are given by

f̄k1,k2(x, y) =
f̂(x, y)

Ĝk1,k2

(
f̂(x, y)

) ,
ḡk1,k2(x, y) =

ĝ(x, y)

Ĝk1,k2

(
ĝ(x, y)

) ,
h̄k1,k2(x, y) =

ĥ(x, y)

Ĝk1,k2

(
ĥ(x, y)

) ,
where Ĝk1,k2(f̂(x, y)) is the geometric mean of f̂(x, y) in two partitions of the (k1, k2)th

subresultant matrix.

The Two-Polynomial Subresultant Matrix Optimisation Problem

To scale the two partitions of the two-polynomial subresultant matrix, the second partition

is scaled by λ and the independent variables x and y are replaced such that x = θ1ω1 and

y = θ2ω2. The optimal values of λ, θ1 and θ2 are computed such that the ratio of entry

of maximum magnitude to entry of minimum magnitude in the (k1, k2)th subresultant

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 245

matrix, given by[
Cn1−k1,n2−k2

(
λf̈(θ1, θ2, ω1, ω2)

)
, Cm1−k1,m2−k2

(
g̈(θ1, θ2, ω1, ω2)

)]
,

is minimised. The unoptimised polynomials λf̈(θ1, θ2, ω1, ω2) and g̈(θ1, θ2, ω1, ω2) are given

by

λf̈(θ1, θ2, ω1, ω2) = λ

m2∑
i2=0

m1∑
i1=0

ai1,i2θ
i1
1 θ

i2
2

(
m1

i1

)(
m2

i2

)
(1− θ1ω1)m1−i1(1− θ2ω2)m2−i2ωi11 ω

i2
2

g̈(θ1, θ2, ω1, ω2) =

n2∑
i2=0

n1∑
i1=0

b̄i1,i2θ
i1
1 θ

i2
2

(
n1

i1

)(
n2

i2

)
(1− θ1ω1)n1−i1(1− θ2ω2)n2−i2ωi11 ω

i2
2 .

Let the sets of all non-zero entries in the first and second partitions of the (k1, k2)th

subresultant matrix be denoted P1,k1,k2(λ, θ1, θ2) and P2,k1,k2(θ1, θ2) respectively, where

P1,k1,k2 =


∣∣∣λāi1,i2θi11 θi22 (m1

i1

)(
m2

i2

)(
n1−k1
j1

)(
n2−k2
j2

)∣∣∣(
m1+n1−k1
i1+j1

)(
m2+n2−k2
i2+j2

)
 i1 = 0, . . . ,m1; j1 = 0, . . . , n1 − k1,

i2 = 0, . . . ,m2; j2 = 0, . . . , n2 − k2,

(7.18)

P2,k1,k2 =


∣∣∣b̄i1,i2θi11 θi22 (n1

i1

)(
n2

i2

)(
m1−k1
j1

)(
m2−k2
j2

)∣∣∣(
m1+n1−k1
i1+j1

)(
m2+n2−k2
i2+j2

)
 i1 = 0, . . . , n1; j1 = 0, . . . ,m1 − k1,

i2 = 0, . . . , n2 j2 = 0, . . . ,m2 − k2.

(7.19)

The optimal values of λ, θ1 and θ2 are given when the ratio of the entry of maximum

magnitude to entry of minimum magnitude is minimised. The minimisation problem can

be written as

(λk1,k2 , θ1,k1,k2 , θ2,k1,k2) = arg min
λ,θ1,θ2

{
max{max{P1,k1,k2(λ, θ1, θ2)},max{P2,k1,k2(θ1, θ2)}}
min{min{P1,k1,k2(λ, θ1, θ2)},min{P2,k1,k2(θ1, θ2)}}

}
.

(7.20)

The minimisation problem is detailed in Appendix C.3.2 and the optimal values λk1,k2 ,

θ1,k1,k2 and θ2,k1,k2 are given as the solution of a linear programming problem such that

the preprocessed polynomials λk1,k2 f̃k1,k2(ω1, ω2) and g̃k1,k2(ω1, ω2) are given by

λk1,k2 f̃k1,k2(ω1, ω2) = λk1,k2

m2∑
i2=0

m1∑
i1=0

āi1,i2θ
i1
1,k1,k2

θi22,k1,k2

(1− θ1,k1,k2ω1)m1−i1(1− θ2,k1,k2ω2)m2−i2ωi11 ω
i2
2

g̃k1,k2(ω1, ω2) =

n2∑
i2=0

n1∑
i1=0

b̄i1,i2θ
i1
1,k1,k2

θi22,k1,k2(1− θ1,k1,k2)n1−i1(1− θ2,k1,k2)n2−i2ωi11 ω
i2
2 .

The Three-Polynomial Subresultant Matrix Optimisation Problem

The (2 × 3) partitioned subresultant matrices have the two additional non-zero parti-

tions Co1−k1,o2−k2(f̂(x, y)) and Cm1−k1,m2−k2(ĥ(x, y)). The sets P1,k1,k2(λ, θ1, θ2) and

P2,k1,k2(θ1, θ2) are already defined in (7.18) and (7.19), and the sets of entries in the

246

additional partitions denoted P3,k1,k2(λ, θ1, θ2) and P4,k1,k2(ρ, θ1, θ2) are given by

P3,k1,k2 (λ, θ1, θ2) =

{
λāi1,i2θ

i1
1 θ

i2
2

(
m1

i1

)(
m2

i2

)(
o1−k1
j1

)(
o2−k2
j2

)(
m1+o1−k1
i1+j1

)(
m2+o2−k2
i2+j2

) }
i1 = 0, . . . ,m1; j1 = 0, . . . , o1 − k1,
i2 = 0, . . . ,m2; j2 = 0, . . . , o2 − k2,

(7.21)

P4,k1,k2 (ρ, θ1, θ2) =

{
ρc̄i1,i2θ

i1
1 θ

i2
2

(
o1
i1

)(
o2
i2

)(
m1−k1
j1

)(
m2−k2
j2

)(
m1+o1−k1
i1+j1

)(
m2+o2−k2
i2+j2

) }
i1 = 0, . . . , o1; j1 = 0. . . . ,m1 − k1,
i2 = 0, . . . , o2; j2 = 0, . . . ,m2 − k2.

(7.22)

The minimisation problem for the (2× 3) partitioned subresultant matrix can be written

as an extension of (7.20) and is given by

(λk1,k2 , ρk1,k2 , θ1,k1,k2 , θ2,k1,k2) = arg min
λ,ρ,θ1,θ2

{
max {max{P1,k1,k2(λ, θ1, θ2)},max{P2,k1,k2(θ1, θ2)},
min {min{P1,k1,k2(λ, θ1, θ2)},min{P2,k1,k2(θ1, θ2)},

max{P3,k1,k2(λ, θ1, θ2)},max{P4,k1,k2(ρ, θ1, θ2)}}
min{P3,k1,k2(λ, θ1, θ2)},min{P4,k1,k2(ρ, θ1, θ2)}}

}
,

where the linear programming problem for determining the optimal values of λ, ρ, θ1 and

θ2 is detailed in Appendix C.3.3.

The method of minimising the (2× 3) subresultant matrices can be extended to min-

imise the (3× 3) partitioned subresultant matrix, and values λ, ρ, θ1 and θ2 are given by

the minimisation of

(λk1,k2 , ρk1,k2 , θ1,k1,k2 , θ2,k1,k2) = arg min
λ,ρ,θ1,θ2

{
max {max{P1,k1,k2(λ, θ1, θ2)},max{P2,k1,k2(θ1, θ2)},
min {min{P1,k1,k2(λ, θ1, θ2)},min{P2,k1,k2(θ1, θ2)},

max{P3,k1,k2(λ, θ1, θ2)},max{P4,k1,k2(ρ, θ1, θ2)}
min{P3,k1,k2(λ, θ1, θ2)},min{P4,k1,k2(ρ, θ1, θ2)}
max{P5,k1,k2(ρ, θ1, θ2)},max{P6,k1,k2(θ1, θ2)}}
min{P5,k1,k2(ρ, θ1, θ2)},min{P6,k1,k2(θ1, θ2)}}

}
,

where

P5,k1,k2 (ρ, θ1, θ2) =

{
ρc̄i1,i2θ

i1
1 θ

i2
2

(
o1
i1

)(
o2
i2

)(
n1−k1
j1

)(
n2−k2
j2

)(
n1+o1−k1
i1+j1

)(
n2+o2−k2
i2+j2

) }
i1 = 0, . . . , o1; j1 = 0. . . . , n1 − k1,
i2 = 0, . . . , o2; j2 = 0, . . . , n2 − k2,

(7.23)

P6,k1,k2(θ1, θ2) =


∣∣∣b̄i1,i2θi11 θi22 (n1

i1

)(
n2

i2

)(
o1−k1
j1

)(
o2−k2
j2

)∣∣∣(
n1+o1−k1
i1+j1

)(
n2+o2−k2
i2+j2

)
 i1 = 0, . . . , n1; j1 = 0, . . . , o1 − k1;

i2 = 0, . . . , n2; j2 = 0, . . . , o2 − k2.

(7.24)

The preprocessed polynomials λk1,k2 f̃k1,k2(ω1, ω2), g̃k1,k2(ω1, ω2) and ρk1,k2 h̃(ω1, ω2) are

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 247

given by

λk1,k2 f̃k1,k2(ω1, ω2) = λk1,k2

m2∑
i2=0

m1∑
i1=0

āi1,i2θ
i1
1,k1,k2

θi22,k1,k2

(
m1

i1

)(
m2

i2

)
×

(1− θ1,k1,k2ω1)m1−i1(1− θ2,k1,k2ω2)m2−i2ωi11 ω
i2
2

g̃k1,k2(ω1, ω2) =

n2∑
i2=0

n1∑
i1=0

b̄i1,i2θ
i1
1,k1,k2

θi22,k1,k2

(
n1

i1

)(
n2

i2

)
×

(1− θ1,k1,k2ω1)n1−i1(1− θ2,k1,k2ω2)n2−i2ωi11 ω
i2
2

ρk1,k2 h̃k1,k2(ω1, ω2) = ρk1,k2

o2∑
i2=0

o1∑
i1=0

c̄i1,i2θ
i1
1,k1,k2

θi22,k1,k2

(
o1

i1

)(
o2

i2

)
×

(1− θ1,k1,k2ω1)o1−i1(1− θ2,k1,k2ω2)o2−i2ωi11 ω
i2
2 .

This section has presented the extensions necessary to preprocess the subresultant

matrices of two or three bivariate polynomials in Bernstein form. It will be shown in

Section 7.6 that preprocessing the polynomials in the two-polynomial and three-polynomial

subresultant matrices yields improved results for the computation of the degree of the GCD

and approximations of its coefficients.

Preprocessing the subresultant matrices has a significant cost due to the repeated use of

linear programming. In the two-polynomial problem the solution of a linear programming

problem gives the optimal values (θ1, θ2, λ). Similarly, in the three-polynomial problem,

the solution of a linear programming problem gives the optimal values (θ1, θ2, λ, ρ). A

new linear programming problem must be considered for each subresultant matrix in a

two-dimensional array.

Methods have been considered for the efficient computation of the geometric means

of polynomials f̂(x, y), ĝ(x, y) and ĥ(x, y) in the sequence of subresultant matrices (Ap-

pendix C.3.1). Despite offering a clean and efficient expression for these geometric means,

the reduction in complexity of the complete algorithm is minimal.

The cost of the algorithm is still significant due to the repeated use of the singular

value decomposition for each of the subresultant matrices in a two-dimensional array. The

next section considers a new method for the computation of the degree of the GCD of

two bivariate polynomials in Bernstein form. This method still makes use of a sequence

of subresultant matrices, but reduces the computational complexity by reducing the two-

dimensional array of subresultant matrices to a one-dimensional problem.

7.4 Methods for the Computation of the Degree of the GCD

In Section 3.2 the degree of the GCD of two or three univariate polynomials was reduced

to the determination of the last singular matrix in the subresultant matrix sequence. The

method was extended to the computation of the degree of the GCD of two or three bivariate

polynomials defined over a triangular domain, where the numerical rank of a sequence of

subresultant matrices Sk(f̂(x, y), ĝ(x, y)) for k = 1, . . . ,min(m,n) was considered.

Bivariate polynomials defined over a triangular domain are defined in terms of their

total degree, and the subresultant matrix sequences associated with the two-polynomial

248

and three-polynomial problem in this form are one-dimensional. However, bivariate poly-

nomials over a rectangular domain are defined in terms of their relative degree structure

with respect to x and y. By extension, the subresultant matrix sequences associated with

the two-polynomial or three-polynomial GCD problems form two-dimensional arrays.

This section develops two methods for the computation of the degree of the GCD of

two or three bivariate polynomials in Bernstein form. The methods are described for two

polynomial problems and the extension to the three-polynomial problem is trivial.

The first method, BVGCD, is a simple extension of the univariate GCD (UGCD)

method, while the second method, BVDRGCD, uses degree elevated polynomials in the

sequence of subresultant matrices. The BVGCD method follows directly from earlier work

and is considered first.

BVGCD

The set of subresultant matrices of two bivariate polynomials defined over a rect-

angular domain forms the two-dimensional array {Sk1,k2(f̂(x, y), ĝ(x, y)) | k1 =

0, . . . ,min(m1, n1); k2 = 0, . . . ,min(m2, n2)}. As with the univariate subresultant ma-

trices, a measure of the rank of the (k1, k2)th subresultant matrix is denoted ρ̇k1,k2 . For

the remainder of this thesis only the minimum singular value of each subresultant matrix

is considered. That is, ρ̇k1,k2 = log10(σ̇k1,k2). Since { ρ̇i1,i2 | i1 = 0, . . . ,min(m1, n1); i2 =

0, . . . ,min(m2, n2) } is a two-dimensional array, the degree of the GCD is determined by

the maximum change δρ̇i1,i2 , where

δρ̇i1,i2 = ρ̇i1+1,i2+1 − ρ̇i1,i2 for
i1 = 0, . . . ,min(m1, n1)− 1;

i2 = 0, . . . ,min(m2, n2)− 1.

Therefore, the degree of the GCD is given by

(t1, t2) = argi1,i2 max{δρ̇i1,i2}.

This comes with the constraint that δρ̇i1,i2 is only defined for i1 = 0, . . . ,min(m1, n1)− 1

and i2 = 0, . . . ,min(m2, n2) − 1, so the degree of the GCD is only determined when

0 ≤ t1 ≤ (min(m1, n1)− 1) 0 ≤ t2 ≤ (min(m2, n2)− 1).

Despite offering interesting insights, the computation of the degree of the GCD of

two bivariate polynomials using the described method is computationally expensive.

Constructing, preprocessing and analysing the singular values of (min(m1, n1) + 1) ×
(min(m2, n2) + 1) subresultant matrices is inefficient, and instead methods for reducing

this to a one-dimensional problem should now be considered.

BVDRGCD

The BVDRGCD method reduces the computation of the degree structure (t1, t2) from a

two-dimensional problem to a one-dimensional problem with two stages. The first stage

determines a value t∗ such that either t1 or t2 can be deduced. Then, given either t1 or t2,

the second stage computes t2 or t1 from the set of subresultant matrices {St1,k2 | k2 =

0, . . . ,min(m2, n2) } or {Sk1,t2 | k1 = 0, . . . ,min(m1, n1) }.

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 249

The first stage of the algorithm requires the degree elevation of the polynomials f̂(x, y)

and ĝ(x, y) and methods for degree elevation are found in [29]. The effect of degree

elevation on the computation of the degree of the GCD of the two univariate polynomials

f̂(x) and ĝ(x) is considered first. This is then extended to the computation of the GCD

of two bivariate polynomials which have been arbitrarily degree elevated, before finally

considering the degree elevation necessary to reduce the computation of the degree of the

GCD to a one-dimensional problem.

Example 7.4.1. Consider the univariate polynomials f̂(x) and ĝ(x) of degrees m and n

respectively, which have a GCD d̂t(x) of degree t. Then

f̂(x) = ût(x)d̂t(x) and ĝ(x) = v̂t(x)d̂t(x),

where ût(x) and v̂t(x) are of degrees (m − t) and (n − t) respectively. By elimination of

d̂t(x), the two equations can be written as

f̂(x)v̂t(x)− ĝ(x)ût(x) = 0,

which can be written in matrix form as

St

(
f̂(x), ĝ(x)

)
xt = 0. (7.25)

This has a unique solution defined to within a scalar multiplier.

The pair of polynomials f̂(x) and ĝ(x) are degree elevated to degrees m∗ and n∗

respectively, where m∗ = m + p and n∗ = n + p. The degree elevated polynomial f̂∗(x)

can be written as

f̂∗(x) = û∗t,i(x)d̂∗t,p−i(x) for i = 0, . . . , p

for a set of (p+1) possible polynomial pairs û∗t,i(x) and d̂∗t,p−i(x) for i = 0, . . . , p. The first

subscript of these polynomials is indicative of the degree of the GCD and is consistent

with notation used so far in this thesis. The second subscript is indicative of the number of

degree elevations of the polynomial. For instance, the polynomials {û∗t,i(x)} and {d̂∗t,p−i(x)}
are sets of degree elevated forms of ût(x) and d̂t(x) respectively, where

deg
(
û∗t,i(x)

)
= m− t+ i

deg
(
d̂∗t,p−i(x)

)
= t+ p− i for i = 0, . . . p.

Therefore, the polynomial f̂∗(x) has a divisor d̂∗t,p(x) of degree (t + p), which is a degree

elevated form of d̂t(x). Similarly, the polynomial ĝ∗(x) can be written as the product

ĝ∗(x) = v̂∗t,i(x)d̂∗t,q−i(x) for i = 0, . . . , q.

The (q + 1) possible polynomial pairs v̂∗t,i(x) and d̂∗t,q−i(x) are degree elevated forms of

250

v̂t(x) and d̂t(x) respectively and

deg
(
v̂∗t,i(x)

)
= n− t+ i

deg
(
d̂∗t,q−i(x)

)
= t+ q − i for i = 0, . . . q.

So ĝ∗(x) has a divisor d̂∗t,q(x) of degree (t + q), which is a degree elevated form of d̂t(x).

Therefore, polynomials f̂∗(x) and ĝ∗(x) have a GCD d̂t,min(p,q)(x) of degree (t+min(p, q)),

which is a degree elevated form of d̂t(x), and the modified form of (7.25) is given by

Sk(f̂
∗(x), ĝ∗(x))xk = 0,

which has non-trivial solutions for k = 1, . . . , (t + min(p, q)) and has only zero solutions

for k = (t+ min(p, q) + 1), . . . ,min(m∗, n∗).

�

This is now extended to consider the effect of degree elevation on the degree of the

GCD of the two arbitrarily degree elevated bivariate polynomials f̂(x, y) and ĝ(x, y), given

that the degree of the GCD of the polynomials without degree elevation is known.

Example 7.4.2. Consider now the two bivariate polynomials f̂(x, y) and ĝ(x, y) of degree

(m1,m2) and (n1, n2) respectively, with a common divisor d̂t1,t2(x, y) of degree (t1, t2).

Suppose f̂(x, y) and ĝ(x, y) are degree elevated by (p1, p2) and (q1, q2) respectively.

The polynomial f̂∗(x, y) can be written as the product

f̂∗(x, y) = ût1,t2,i1,i2(x, y)d̂t1,t2,p1−i1,p2−i2 for i1 = 0, . . . , p1; i2 = 0, . . . , p2,

where the polynomial ût1,t2,i1,i2 is a degree elevated form of ût1,t2 which has been degree

elevated by (i1, i2), and the polynomial d̂t1,t2,p1−i1,p2−i2 is a degree elevated form of d̂t1,t2

which has been degree elevated by (p1 − i1, p2 − i2)

deg
(
ût1,t2,i1,i2(x, y)

)
= (m1 − t1 + i1,m2 − t2 + i2)

deg
(
d̂t1,t2,p1−i1,p2−i2(x, y)

)
= (t1 − p1 − i1, t2 − p2 − i2) .

The polynomial f̂∗(x, y) has a divisor of degree (t1 + p1, t2 + p2), which is the degree

elevated form of d̂t1,t2(x, y). Similarly,

ĝ∗(x, y) = v̂t1,t2,i1,i2(x, y)d̂t1,t2,q1−i1,q2−i2(x, y) for i1 = 0, . . . , q1; i2 = 0, . . . , q2.

The GCD of f̂(x, y) and ĝ(x, y) is therefore given by d̂t1,t2,min(p1,q1) min(p2,q2)(x, y) of degree

(t1 +min(p1, q1), t2 +min(p2, q2)), which is a degree elevated form of d̂t1,t2(x, y). The third

and fourth subscripts denote the number of degree elevations of the original d̂t1,t2(x, y),

and

Sk1,k2

(
f̂∗(x, y), ĝ∗(x, y)

)
xk1,k2 = 0

has non-trivial solutions for k1 = 0, . . . , (t1 + min(p1, q1)) ; k2 = 0, . . . , (t2 + min(p2, q2))

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 251

and only trivial solutions for k1 = (t1 + min(p1, q1) + 1), . . . , (min(m∗, n∗)) ; k2 = (t2 +

min(p2, q2) + 1), . . . , (min(m∗, n∗)).

�

Suppose now that f̂(x, y) and ĝ∗(x, y) are degree elevated such that f̂∗(x, y) is of

degree (m∗,m∗) and ĝ∗(x, y) is of degree (n∗, n∗), where m∗ = max(m1,m2) and n∗ =

max(n1, n2).

Consider now the bivariate subresultant matrix Sk,k(f̂∗(x, y), ĝ∗(x, y)). If

Sk,k(f̂∗(x, y), ĝ∗(x, y)) is rank deficient, then the following conditions hold:

k ≤ t1 + min(p1, q1) and k ≤ t2 + min(p2, q2). (7.26)

Suppose t is defined such that St,t(f̂
∗(x, y), ĝ∗(x, y)) is rank deficient but

St+1,t+1(f̂∗(x, y), ĝ∗(x, y)) is of full rank, then one of the conditions given above in (7.26)

no longer holds. Therefore, one or both of the following hold:

t = t1 + min(p1, q1) (7.27)

or t = t2 + min(p2, q2). (7.28)

Three possible scenarios must now be considered:

1. The first equation (7.27) holds and t1 is therefore given by

t1 = t −min(p1, q1)

and t2 must be determined. The set of equations

St1,k2

(
f̂(x, y), ĝ(x, y)

)
xt1,k2 = 0

have non-trivial solutions for k2 = 0, . . . , t2 and only trivial solutions for k2 =

t2 + 1, . . . ,min(m2, n2), and t2 can therefore be determined by analysis of the

numerical rank of the set of subresultant matrices {St1,k2(f̂(x, y), ĝ(x, y)) | k2 =

0, . . . ,min(m2, n2)}.

2. The second equation (7.28) holds, and t2 is therefore given by

t2 = t −min(p2, q2).

Then t1 must be determined by analysis of the set of subresultant matrices

Sk1,t2

(
f̂(x, y), ĝ(x, y)

)
k1 = 1, . . . ,min(m1, n1).

3. Both equations hold, in which case

t1 = t −min(p1, q1) and t2 = t −min(p2, q2).

Given t, it is not known which of the two equations (7.27, 7.28) holds, so both sets of sub-

252

resultant matrices {St1,k2(f̂(x, y), ĝ(x, y))} and {Sk1,t2(f̂(x, y), ĝ(x, y))} are constructed

and two possible candidate pairs (t1, t2) are computed. The degree of the GCD is the

maximum of these two pairs.

The following worked example aims to highlight the differences between the BVGCD

and BVDRGCD methods described in this section.

Example 7.4.3. Consider the polynomials f̂(x, y) and ĝ(x, y) of degrees (m1,m2) =

(16, 12) and (n1, n2) = (14, 10) respectively

f̂(x, y) = (x+ y + 0.0124)5(x+ 0.56)4(x2 + y2 + 0.51)2(x+ y + 1.12)3

ĝ(x, y) = (x+ y + 0.4512)3(x+ 0.56)4(x2 + y2 + 0.51)2(x+ y + 1.12)3,

whose GCD in factorised form is given by

d̂(x, y) = (x+ 0.56)4(x2 + y2 + 0.51)2(x+ y + 1.12)3.

Noise is added to the coefficients of f̂(x, y) and ĝ(x, y) such that the coefficients of the

inexact polynomials f(x, y) and g(x, y) are given by

ai1,i2 = âi1,i2 + rf,i1,i2 âi1,i2εf,i1,i2 for i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

bi1,i2 = b̂i1,i2 + rg,j1,j2 b̂i1,i2εg,i1,i2 for j1 = 0, . . . , n1; j2 = 0, . . . , n2,
(7.29)

where {εf,i1,i2} = {εg,j1,j2} = 10−8.

The bivariate GCD (BVGCD) algorithm proceeds by preprocessing the polynomi-

als f(x, y) and g(x, y) for each subresultant matrix {Sk1,k2 | k1 = 0, . . . ,min(m1, n1) =

14; k2 = 0, . . . ,min(m2, n2) = 10} and computing the minimum singular value of each

subresultant matrix {Sk1,k2(f̃k1,k2(ω1, ω2), αk1,k2 g̃k1,k2(ω1, ω2))}. The two-dimensional set

of minimum singular values {σ̇k1,k2} are plotted in Figure 7.5 from which the degree of

the AGCD is correctly identified as (11, 7), since the maximum of the set {δρ̇i1,i2} is given

by δρ̇11,7.

-20
10

-15

8

-10

-5

6
14

12
4 10

8
62

4
20 0

Figure 7.5: The minimum singular values {σ̇k1,k2} of the preprocessed subresultant
matrices {Sk1,k2(λk1,k2 f̃k1,k2(ω1, ω2), g̃k1,k2(ω1, ω2))} in Example 7.4.3

The BVDRGCD method is now considered. In the first stage of the BVDRGCD

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 253

method, the polynomials f(x, y) and g(x, y) are degree elevated to (m∗,m∗) and (n∗, n∗)

respectively. That is, f(x, y) and g(x, y) are degree elevated by (p1, p2) = (0, 4) and

(q1, q2) = (0, 4) respectively.

The minimum singular values of the set of subresultant matrices

Sk∗,k∗(λk∗,k∗ f̃
∗
k,k(ω1, ω2), g̃∗k,k(ω1, ω2)) for k = 1, . . . ,min(m∗, n∗) (7.30)

are computed and plotted in Figure 7.6i, from which, t = 11. Given t = 11, either

t1 = t −min(p1, q1) = 11

or t2 = t −min(p2, q2) = 11− 4 = 7.

In this instance, both t1 and t2 are correctly identified. However, assume that only t2

is correctly determined, then the degree of the AGCD with respect to x, that is t1, is

computed from the minimum singular values of the set of subresultant matrices

Sk1,t2

(
λk1,t2 f̃k1,t2(ω1, ω2), g̃k1,t2(ω1, ω2)

)
for k1 = 1, . . . ,min(m1, n1),

which are plotted in Figure 7.6ii. From the set of minimum singular values {σ̇k1,t2 | k1 =

1, . . . ,min(m1, n1)}, the degree of the AGCD with respect to x is determined to be equal

to t1 = 11.

In this example, the bivariate GCD (BVGCD) algorithm required the evaluation of

140 subresultant matrices, whereas the bivariate dimension reducing GCD (BVDRGCD)

method required the preprocessing and evaluation of only 28 subresultant matrices.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

(i) BVDRGCD Stage 1 :
The minimum singular values {σ̇k,k} of

{Sk,k(λk,k f̃k,k(ω1, ω2), g̃k,k(ω1, ω2))}

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-14

-13

-12

-11

-10

-9

-8

-7

-6

(ii) BVDRGCD Stage 2a :
The minimum singular values {σ̇k1,t1} of

{Sk1,t2(λk1,t2 f̃k1,t2(ω1, ω2), g̃k1,t2(ω1, ω2))}

Figure 7.6: The minimum singular values of the preprocessed subresultant
matrices in the BVDRGCD algorithm in Example 7.4.3

�

In this section, a method (BVDRGCD) has been developed which allows for the fast

computation of the degree of the GCD of two bivariate polynomials in Bernstein form

254

which are defined over a rectangular domain.

Other methods were considered for dimension reduction. One proposed method pro-

ceeds as follows :

1. Fix k1 to an arbitrary value k∗1 which is known to be smaller than t1, the degree of

the GCD with respect to x.

2. Determine the numerical rank of all subresultant matrices {Sk∗1 ,k2(f̂(x, y), ĝ(x, y)) |
k2 = 0, . . . ,min(m2, n2) } and t2 is given by the index k2 of the last subresultant

matrix St1,k2 which is numerically rank deficient.

3. Having determined t2, compute t1 from the set of subresultant matrices

{Sk1,t2(f̂(x, y), ĝ(x, y)) | k1 = 1, . . . ,min(m1, n1)}.

Though this method is theoretically correct, since Sk1,k2(f̂(x, y), ĝ(x, y)) is rank defi-

cient for all k1 = 0, . . . ,min(m1, n1); k2 = 0, . . . ,min(m2, n2), numerical results suggest it

should not be utilised. Not all choices of k∗1 < t1 are ‘good’ choices. Consider Example 7.4.3

and the minimum singular values plotted in Figure 7.5. A choice of k∗1 from the interval

[0, 6] fails to reveal the degree of the GCD with respect to y, since there is no maximal

change in the minimum singular values of {Sk∗1 ,k2(f̂(x, y), ĝ(x, y)) | k2 = 0, . . . ,min(m,n)}.
In this method, only a subset of possible (k1, k2) pairs are considered, however the

BVDRGCD method considers all possible (k1, k2) pairs in degree elevated forms.

Another similarly proposed method proceeds as follows :

1. Compute the minimum singular values of the set of subresultant matrices

{Sk,k(f̂ (x), ĝ(x)) | k = 1, . . . ,min(min(m1, n1),min(m2, n2))}.

2. Determine the value t given by the index of the last rank deficient subresultant

matrix.

3. Since St,t(f̂(x, y), ĝ(x, y)) is rank deficient and St+1,t+1(f̂(x, y), ĝ(x, y)) is of full rank,

then either t1 = t or t2 = t.

4. Suppose that t1 is correctly identified, then t2 is given by the index k2 of the last

numerically singular matrix in the set {St1,k2 | k2 = 0, . . . ,min(m2, n2)} to give the

candidate pair (t1, t2).

5. Suppose that t2 is correctly identified, then t1 is given by the index k1 of the last

numerically singular matrix in the set {Sk1,t2 | k1 = 0, . . . ,min(m1, n1)} to give the

candidate pair (t1, t2).

6. Given the two candidate pairs, determine the degree of the GCD.

However, in Example 7.4.3 the set of minimum singular values of all subresultant

matrices Sk1,k2 are plotted in Figure 7.5, from which it can be seen that the maximum

change in singular values between σ̇11,7 and σ̇12,8, that is, δσ̇11,7, is maximal in the set

{δσ̇k1,k2}. This result is not included when only considering the subresultant matrices

Sk,k(f̂(x, y), ĝ(x, y)) and only {δσ̇i,i | i = 1, . . . ,min(m1, n1,m2, n2)} are considered.

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 255

Suppose m1 ≈ m2 ≈ m and n1 ≈ n2 ≈ n, then the standard method BVGCD requires

the construction of a two-dimensional array of n2 subresultant matrices, but BVDRGCD

reduces this to approximately 3n subresultant matrices.

Only the two-polynomial GCD problem has been considered in this section. The

necessary theoretical development to extend the BVDRGCD method for the computation

of the degree of the GCD of three-polynomial problem is a trivial extension. Examples

are given in (7.6.2).

The next section considers the computation of the coefficients of the cofactor polynomi-

als given t1 and t2, and this least squares based method is independent of whether BVGCD

or BVDRGCD is used in the computation of the degree of the GCD. The coefficients are al-

ways computed using the (t1, t2)th subresultant matrix. More results comparing BVGCD

and BVDRGCD are given in Section 7.6.

7.5 Approximating the Coefficients of the Cofactor Polyno-

mials and the GCD

The Two-Polynomial Problem

This section considers the approximation of the coefficients of the GCD triple

(ût1,t2 , v̂t1,t2 , d̂t1,t2). Approximations can be computed from the (t1, t2)th subresultant

matrix of (i) the unprocessed polynomials f(x, y) and g(x, y) or (ii) the preprocessed

polynomials λt1,t2 f̃t1,t2(ω1, ω2) and g̃(ω1, ω2). The respective approximations are denoted

(ut1,t2(x, y), vt1,t2(x, y), dt1,t2(x, y)) and (ũt1,t2(x, y), ṽt1,t2(x, y), d̃t1,t2(x, y)).

Given that the degree of the GCD has been computed and is given by the pair (t1, t2),

then

St1,t2(f, g)xt1,t2 ≈ 0

has a non-trivial solution and a column ct1,t2,q of St1,t2(f, g) lies in the space spanned by

the remaining columns At1,t2,q such that

At1,t2,q(f, g)xt1,t2,q ≈ ct1,t2,q.

The vector xt1,t2 is given by the insertion of ‘−1’ into the qth position of xt1,t2,q.

The coefficients of the approximations of the polynomials ût1,t2(x, y) and v̂t1,t2(x, y) are

given by the vector x̄t1,t2 , where the first (n1− t1 +1)× (n2− t2 +1) entries are coefficients

of the approximation of v̂t1,t2(x, y) and the remaining (m1− t1 + 1)× (m2− t2 + 1) entries

are the coefficients of the approximation of ût1,t2(x, y).

The Three-Polynomial Problem

The (2 × 3) and (3 × 3) subresultant matrices Ŝk1,k2 and S̃k1,k2 are numerically singular

for k1 = 0, . . . ,min(m1, n1, o1); k2 = 0, . . . ,min(m2, n2, o2) so

S̃k1,k2 (f , g, h) xk1,k2 ≈ 0 and Ŝk1,k2 (f , g, h) xk1,k2 ≈ 0 (7.31)

256

have non-trivial solutions. A column of S̃t1,t2(f , g, h) and Ŝt1,t2(f , g, h) lies in the space

spanned by the remaining columns with minimal residual, so

Ât1,t2 (f , g, h) x̂t1,t2,q ≈ ĉt1,t2,q and Ãt1,t2 (f , g, h) x̃t1,t2,q ≈ c̃t1,t2,q.

The vectors x̃t1,t2 and x̂t1,t2 in (7.31) are given by the insertion of ‘−1’ into the vec-

tors x̃t1,t2,q and x̂t1,t2,q, and contain approximations of the coefficients of the polynomials

ût1,t2(x, y), v̂t1,t2(x, y) and ŵt1,t2(x, y).

Methods for computing the structured low rank approximation of the (t1, t2)th sub-

resultant matrix could be used to compute more accurate approximations of the cofactor

polynomials and the GCD. However, this theoretically small extension would require a

significant amount of work to implement, and this chapter focuses more on methods for

the computation of the degree of the GCD rather than its coefficients.

7.6 Results

This section presents results of the two developed methods in this chapter. Examples will

consider the computation of the GCD of two bivariate polynomials using the standard

BVGCD method, where the minimum singular values of unprocessed and preprocessed

subresultant matrices are compared. The following examples also consider the computa-

tion of the degree of the GCD using the bivariate dimension reducing GCD (BVDRGCD)

method.

7.6.1 Examples of the Two-Polynomial Problem

Example 7.6.1. Consider the Bernstein form of the exact polynomials f̂(x, y) and ĝ(x, y)

of degrees (17, 10) and (17, 11) respectively, whose factorisations are given by

f̂(x, y) = (x− 1.39872512)3(x− 0.5354788154)2(x− 0.44455421)10×

(x+ 0.268721020)2(y − 0.96543321)6(y + 5.45492341)4

ĝ(x, y) = (x− 1.39872512)3(x− 0.5354788154)2(x− 0.155224776)10

(x+ 0.268721020)2(y − 0.96543321)6(y − 0.22341321)5.

The polynomials f̂(x, y) and ĝ(x, y) have a GCD of degree (7, 6) which is given by

d̂(x, y) = (x− 1.39872512)3(x− 0.5354788154)2(x+ 0.268721020)2(y − 0.96543321)6.

Noise is added to the coefficients of f̂(x, y) and ĝ(x, y) such that the coefficients of the

inexact polynomials f(x, y) and g(x, y) are given by

ai1,i2 = âi1,i2 + rf,i1,i2 âi1,i2εf,i1,i2 and bj1,j2 = b̂j1,j2 + rg,j1,j2 b̂j1,j2εg,j1,j2 , (7.32)

where { rf,i1,i2 | i1 = 0, . . . ,m1; i2 = 0, . . . ,m2 } and { rg,j1,j2 | j1 = 0, . . . , n1; j2 =

0, . . . , n2 } are uniformly distributed random variables in the interval [−1, 1], while

{ εf,i1,i2 | i1 = 0, . . . ,m1; i2 = 0, . . . ,m2 } and { εg,j1,j2 | j1 = 0, . . . , n1; j2 = 0, . . . , n2 }
are uniformly distributed random variables in the interval

[
10−12, 10−10

]
.

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 257

The inexact polynomials f(x, y) and g(x, y) are preprocessed, and the coefficients of

the (i) unprocessed and (ii) preprocessed forms are plotted in Figure 7.7. The coefficients

of f(x, y) and g(x, y) span approximately 20 orders of magnitude, while the coefficients

of the preprocessed polynomials λ1,1f̃1,1(ω1, ω2) and g̃1,1(ω1, ω2) span approximately 10

orders of magnitude.

20 40 60 80 100 120 140 160 180
-20

-15

-10

-5

0

5

10

Figure 7.7: The coefficients of the unprocessed polynomials f(x, y) and g(x, y) and the
preprocessed polynomials λ1,1f̃1,1(ω1, ω2) and g̃1,1(ω1, ω2) in Example 7.6.1

Using the BVGCD method, the SVD of each of the (i) unprocessed or (ii) prepro-

cessed subresultant matrices are computed, and the minimum singular values {σ̇k1,k2} of

the unprocessed and preprocessed subresultant matrices are plotted in Figure 7.8i and

Figure 7.8ii respectively.

The degree of the AGCD cannot be determined from the minimum singular values

of the subresultant matrices of unprocessed polynomials f(x, y) and g(x, y) (Figure 7.8i).

However, by observation, it is clear that the degree of the AGCD with respect to y is given

by t2 = 6, but the degree with respect to x in unknown.

The minimum singular values {σ̇k1,k2} of the subresultant matrices

{Sk1,k2(λk1,k2 f̃k1,k2(ω1, ω2), g̃k1,k2(ω1, ω2))} of the preprocessed polynomials

λk1,k2 f̃k1,k2(ω1, ω2) and g̃k1,k2(ω1, ω2) are plotted in Figure 7.8ii. From this, it can

be seen that the of the AGCD is correctly identified as (t1, t2) = (7, 6).

The BVDRGCD method is now considered. The polynomials f(x, y) and g(x, y) are

degree elevated by (p1, p2) = (0, 7) and (q1, q2) = (0, 6) respectively to obtain the de-

gree elevated polynomials f∗(x, y) and g∗(x, y) of degrees m∗ = 17 and n∗ = 13 respec-

tively. The minimum singular values {σ̇k,k | k = 1, . . . , 17} of the subresultant matrices

{Sk,k(λk,k f̃∗k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} are plotted in Figure 7.9, from which the degree of

the AGCD is given by t = 7. Given t, either

t1 = t −min(p1, q1) = 7 or t2 = t −min(p2, q2) = 7− 6 = 1.

The second stage of the BVDRGCD requires the computation of the sets

of the minimum singular values of the preprocessed subresultant matrices

{St1,k2(λt1,k2 f̃t1,k2(ω1, ω2), g̃t1,k2(ω1, ω2)) | k2 = 0, . . . ,min(m2, n2)} and the pre-

258

-24

-22

10

-20

-18

-16

-14

-12

8

-10

-8

-6

-4

6
18

16
144 12

10
82 6

4
20 0

(i) The minimum singular values {σ̇k1,k2}
of the unprocessed subresultant matrices

{Sk1,k2(f(x, y), g(x, y))}

-10

-8

10

-6

-4

-2

0

8

2

4

6

6
18

16
144 12

10
82 6

4
20 0

(ii) The minimum singular values
{σ̇k1,k2} of the preprocessed subresultant

matrices
{Sk1,k2(λk1,k2 f̃k1,k2(ω1, ω2), g̃k1,k2(ω1, ω2))}

Figure 7.8: The minimum singular values {σ̇k1,k2} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 7.6.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Figure 7.9: BVDRGCD Stage 1 :
The minimum singular values of the preprocessed subresultant matrices

{Sk,k(λk,k f̃
∗
k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} in Example 7.6.1

processed subresultant matrices {Sk1,t2(λk1,t2 f̃k1,t2(ω1, ω2), g̃k1,t2(ω1, ω2)) | k1 =

0, . . . ,min(m1, n1)}, which are plotted in Figure 7.10i and Figure 7.10ii respectively.

It can be seen that if the candidate t1 = 7 is correct, then t2 is given

by the index of the last numerically rank deficient subresultant matrix in the set

{St1,k2(λt1,k2 f̃t1,k2(ω1, ω2), g̃t1,k2(ω1, ω2)) | k2 = 0, . . . ,min(m2, n2)}. The minimum sin-

gular values of these subresultant matrices are given by {σ̇t1,k2 | k2 = 1, . . . ,min(m2, n2)}
and these values are plotted in Figure 7.10i. The computed degree of the AGCD with

respect to x is given by t2 = 6 The candidate pair for the degree of the AGCD is therefore

given by (t1, t2) = (7, 6).

Alternatively, if the candidate t2 = 1 is correct, then t1 is given by

the index of the last numerically rank deficient subresultant matrix in the set

{Sk1,t2(λk1,t2 f̃k1,t2(ω1, ω2), g̃k1,t2(ω1, ω2)) | k1 = 0, . . . ,min(m1, n1)}. The minimum singu-

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 259

lar values of the set of subresultant matrices are denoted {σ̇k1,t2 | k1 = 1, . . . ,min(m1, n1)}
and are plotted in Figure 7.10ii. The computed degree of the AGCD with respect to x is

given by t1 = 7 and the candidate pair is therefore given by (t1, t2) = (7, 1).

Since the candidate pair (7, 6) is greater than (7, 1), the degree of the AGCD is given

by (t1, t2) = (7, 6).

1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4

(i) BVDRGCD Stage 2a :
The minimum singular values of the
preprocessed subresultant matrices
{St1,k2 | k2 = 1, . . . ,min(m2, n2)}

2 4 6 8 10 12 14
-8

-6

-4

-2

0

2

4

(ii) BVDRGCD Stage 2b :
The minimum singular values of the
preprocessed subresultant matrices
{Sk1,t2 | k1 = 1, . . . ,min(m1, n1)}

Figure 7.10: BVDRGCD Stage 2 : The minimum singular values of the preprocessed
subresultant matrices.

In this example the BVGCD method required the evaluation of(i)180 subresultant

matrices while BVDRGCD required the evaluation of only 32 subresultant matrices.

�

Example 7.6.2. Consider the Bernstein form of the exact polynomials f̂(x, y) and ĝ(x, y)

of degrees (13, 12) and (11, 10) respectively, whose factorised forms are given by

f̂(x, y) = (x+ 0.56)(x+ y + 0.0124)5(x+ y + 1.12)3(x2 + y2 + 0.51)2

ĝ(x, y) = (x+ 0.56)(x+ y + 0.4512)3(x+ y + 1.12)3(x2 + y2 + 0.51)2.

The GCD of f̂(x, y) and ĝ(x, y), of degree (t1, t2) = (8, 7), is given by

d̂t(x, y) = (x+ 0.56)(x2 + y2 + 0.51)2(x+ y + 1.12)3.

Noise is added to the coefficients of f̂(x, y) and ĝ(x, y) and the coefficients of inexact

polynomials f(x, y) and g(x, y) are given by (7.32), where {rf,i1,i2} and {rg,j1,j2} are

uniformly distributed random variables in the interval [−1, 1] and {εf,i1,i2} and {εg,j1,j2}
are uniformly distributed random variables in the interval [10−10, 10−8].

(i) The term “evaluation of” is used here to mean “construction of, preprocessing of and singular value
decomposition of”.

260

From Figure 7.11 it can be seen that the coefficients of f(x, y) and g(x, y) span ap-

proximately 14 orders of magnitude, while the coefficients of the preprocessed polynomials

λ1,1f̃1,1(ω1, ω2) and g̃(ω1, ω2) span less than 6 orders of magnitude.

20 40 60 80 100 120 140 160 180
-12

-10

-8

-6

-4

-2

0

2

4

Figure 7.11: The coefficients of both the unprocessed polynomials f(x, y) and g(x, y)
and the preprocessed polynomials λ1,1f̃1,1(ω1, ω2) and g̃1,1(ω1, ω2) in Example 7.6.2

This example begins by considering the BVGCD method for the computation of

the degree of the GCD of two bivariate polynomials. The BVGCD algorithm pro-

ceeds by computing the minimum singular values {σ̇k1,k2 | k1 = 0, . . . ,min(m1, n1), k2 =

0, . . . ,min(m2, n2)} of either the set of unprocessed or preprocessed subresultant matrices.

In Figure 7.12 the minimum singular values {σ̇k1,k2} of both the (i) unprocessed and

(ii) preprocessed subresultant matrices are plotted. In Figure 7.12i there is no distinct

value ρ̇k1,k2 = log10 (σ̇k1,k2) such that δρ̇k1,k2 is significantly larger than any other {δρ̇i,j}.
Therefore the degree of the is not correctly identified. However, in Figure 7.12ii there is

a clear separation between the numerically zero and non-zero minimum singular values

of the preprocessed subresultant matrices {Sk1,k2(λk1,k2 f̃k1,k2(ω1, ω2), g̃k1,k2(ω1, ω2))}, and

δσ̇8,7 is the the maximum entry of the set {δσ̇i,j}, that is, the maximum change in the

minimum singular values occurs between σ̇8,7 and σ̇9,8 . The degree of the AGCD is

therefore correctly determined as (t1, t2) = (8, 7).

The BVDRGCD method is now considered. The polynomials f(x, y) and g(x, y) are

degree elevated to f∗(x, y) and g∗(x, y) of degree m∗ = 13 and n∗ = 11 respectively, where

the number of degree elevations of f(x, y) and g(x, y) are given by (p1, p2) = (0, 1) and

(q1, q2) = (0, 1) respectively.

The minimum singular values {σ̇k,k | k = 1, . . . ,min(m∗, n∗) = 11} of the preprocessed

subresultant matrices {Sk,k(λk,k f̃
∗
k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} are plotted in Figure 7.13. The

degree t is given by the index of the last numerically rank deficient subresultant matrix

in {Sk,k(λk,k f̃
∗
k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} so t = 8. Therefore, either

t1 = t −min(p1, q1) = 8 or t2 = t −min(p2, q2) = 7.

Suppose that the candidate t1 = 8 is correctly identified, then t2 is

given by the last numerically rank deficient subresultant matrix in the sequence

{St1,k2(λt1,k2 f̃t1,k2(ω1, ω2), g̃t1,k2(ω1, ω2))}. The minimum singular values of this set of

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 261

-14

-12

-10

-8

10

-6

-4

-2

0

2

8
6

124 10862 4200

(i) The minimum singular values of the
unprocessed subresultant matrices

{Sk1,k2(f(x, y), g(x, y))}

-20

-15

10

-10

-5

8
6

4 10
8

62 4
20 0

(ii) The minimum singular values of the
preprocessed subresultant matrices

{Sk1,k2(λk1,k2 f̃k1,k2(ω1, ω2), g̃k1,k2(ω1, ω2))}

Figure 7.12: The minimum singular values {σ̇k1,k2} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 7.6.2

1 2 3 4 5 6 7 8 9 10 11
-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

Figure 7.13: BVDRGCD Stage 1 :
The minimum singular values {σ̇k,k} of the preprocessed subresultant matrices

{Sk(λk,k f̃∗k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} in Example 7.6.2

subresultant matrices are plotted in Figure 7.14i, from which it can be seen that the de-

gree of the AGCD with respect to y is given by t2 = 7, so the candidate pair is given by

(t1, t2) = (8, 7).

Alternatively, suppose that the candidate t2 = 7 is correctly identified, then t1

is given by the last numerically rank deficient subresultant matrix in the sequence

{Sk1,t2(λk1,t2 f̃k1,t2(ω1, ω2), g̃k1,t2(ω1, ω2))}. The minimum singular values of this set of

subresultant matrices are plotted in Figure 7.14ii, from which it can be seen that the

degree of the AGCD with respect to x is given by t1 = 8, so the candidate pair is given

by (t1, t2) = (8, 7). The candidate pairs are equal so the degree of the AGCD is given by

(t1, t2) = (8, 7).

Approximations of ût1,t2(x, y), v̂t1,t2(x, y) and d̂t1,t2(x, y) are computed from the subre-

sultant matrix of the preprocessed polynomials St1,t2(λt1,t2 f̃t1,t2(ω1, ω2), g̃t1,t2(ω1, ω2)) and

262

1 2 3 4 5 6 7 8 9 10
-14

-13

-12

-11

-10

-9

-8

-7

-6

(i) BVDRGCD Stage 2a :
The minimum singular values of the

preprocessed subresultant matrices {St1,k2}

1 2 3 4 5 6 7 8 9 10 11
-14

-13

-12

-11

-10

-9

-8

-7

-6

(ii) BVDRGCD Stage 2b :
The minimum singular values of the

preprocessed subresultant matrices {Sk1,t2}

Figure 7.14: BVDRGCD Stage 2 : The minimum singular values of the subresultant
matrices (i) {St1,k2} and (ii) {Sk1,t2} in Example 7.6.2

the relative errors between the exact polynomials and the approximations are given in

Table 7.1. Note that the first column is left blank since the degree of the AGCD was not

computed from the subresultant matrices of the unprocessed polynomials.

The upper bound of noise is reduced to 10−14, and the degree of the AGCD is correctly

determined from both the sets of unprocessed and preprocessed subresultant matrices.

The coefficients of the cofactor polynomials are computed by the least squares method

described in Section 7.5. The approximations ut1,t2(x, y), vt1,t2(x, y) and dt1,t2(x, y) are

obtained from the (t1, t2)th unprocessed subresultant matrix, and the approximations

ũt1,t2(x, y), ṽt1,t2(x, y) and d̃t1,t2(x, y) are obtained from the (t1, t2)th preprocessed subre-

sultant matrix.

The approximations derived from the preprocessed subresultant matrix are signifi-

cantly better than those derived from the unprocessed subresultant matrix.

Without Preprocessing
ut1,t2(x, y), vt1,t2(x, y) and

dt1,t2(x, y)

With Preprocessing
ũt1,t2(x, y) , ṽt1,t2(x, y) and

d̃t1,t2(x, y)

Error ût1,t2(x, y) - 2.101474e− 05
Error v̂t1,t2(x, y) - 3.082401e− 05

Error d̂t1,t2(x, y) - 2.037024e− 05

Average - 2.4070e− 05

Table 7.1: Error in the approximations of ût1,t2(x, y), v̂t1,t2(x, y) and d̂t1,t2(x, y), where
{εf,i1,i2} and {εg,j1,j2} are in the interval [10−10, 10−8] in Example 7.6.2

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 263

Without Preprocessing

ut1,t2(x, y), vt1,t2(x, y), and

dt1,t2(x, y)

With Preprocessing

ũt1,t2(x, y), ṽt1,t2(x, y) and

d̃t1,t2(x, y)

Error ût1,t2(x, y) 3.018324e− 06 1.226623e− 11

Error v̂t1,t2(x, y) 5.014151e− 06 1.751399e− 11

Error d̂t1,t2(x, y) 2.815919e− 06 1.160994e− 11

Average 3.616131e− 06 1.379672e− 11

Table 7.2: Error in the approximations of ût1,t2(x, y), v̂t1,t2(x, y) and d̂t1,t2(x, y) with
upper bound of noise εf = εg = 10−14 in Example 7.6.2

�

Example 7.6.3. Consider the Bernstein form of the exact polynomials f̂(x, y) and ĝ(x, y)

of degrees (29, 15) and (20, 17) respectively, whose factorisations are given by

f̂(x, y) = (x− 0.8365498798)3(x− 0.145487821)10(x− 0.126479841321)5×

(x+ y − 0.16546978321)2(x+ y + 0.5679814354)3(x+ y2 − 0.2564878)4×

(x2 + y2 − 0.46549871232156)

ĝ(x, y) = (x− 0.8365498798)3(x− 0.126479841321)5(y − 0.45489789123123)5×

(x+ y − 0.35648979126321)3(x+ y − 0.16546978321)2(x+ y + 0.5679814354)3×

(x2 + y2 − 0.46549871232156)(x2 + y2 − 0.45489789123123).

The polynomials f̂(x, y) and ĝ(x, y) have a GCD d̂t1,t2(x, y) of degree (t1, t2) = (15, 7)

which is given by

d̂t1,t2(x, y) = (x− 0.8365498798)3(x− 0.126479841321)5(x+ y − 0.16546978321)2

(x+ y + 0.5679814354)3(x2 + y2 − 0.46549871232156).

Noise is added to the coefficients of f̂(x, y) and ĝ(x, y) as in (7.32), where {εf,i1,i2} and

{εg,j1,j2} are uniformly distributed random variables in the interval [1e− 11, 1e− 10], and

the sets of values {rf,i1,i2} and {rg,j1,j2} are uniformly distributed random variables in the

interval [−1, 1].

The inexact polynomials f(x, y) and g(x, y) are preprocessed for each subresultant

matrix Sk1,k2 for k1 = 1, . . . ,min(m1, n1); k2 = 1, . . . ,min(m2, n2). The coefficients of

both the unprocessed and preprocessed polynomials f(x, y) and g(x, y), and preprocessed

polynomials λ1,1f̃1,1(ω1, ω2) and g̃1,1(ω1, ω2) are plotted in Figure 7.15. The coefficients of

the polynomials f(x, y) and g(x, y) span approximately 18 orders of magnitude, while the

coefficients of the preprocessed polynomials span approximately 6 orders of magnitude.

The BVGCD method is considered first. The minimum singular values {σ̇k1,k2} of the

(i) unprocessed and (ii) preprocessed subresultant matrices are plotted in Figure 7.16i and

Figure 7.16ii respectively.

The minimum singular values {σ̇k1,k2} of the unprocessed subresultant matrices

Sk1,k2(λk1,k2 f̃k1,k2(ω1, ω2, g̃k1,k2(ω1, ω2) are plotted in Figure 7.16i. From these values it

264

50 100 150 200 250 300 350 400 450
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Figure 7.15: The coefficients of both the unprocessed polynomials f(x, y) and g(x, y)
and the preprocessed polynomials λ1,1f̃1,1(ω1, ω2) and g̃1,1(ω1, ω2) in Example 7.6.3

is clear to see that the degree of the AGCD cannot be determined, by the DC2 method,

from the set of minimum singular values (an arrow points to the location of the last theo-

retically rank deficient subresultant matrix St1,t2). However, the degree of the AGCD can

be determined from the minimum singular values of the preprocessed subresultant matri-

ces by the DC2 method. There is a significant change between ρ̇15,7 = log10(σ̇15,7) and
˙rho16,8 = log10(σ̇16,8) and δρ15,7 is maximal in the set δρi,j , so the degree of the AGCD is

given by (t1, t2) = (15, 7).

-26

-24

15

-22

-20

-18

-16

-14

-12

-10

-8

10

-6

201816145 121086420 0

(i) The minimum singular values {σ̇k1,k2} of
unprocessed subresultant matrices

-20

-18

15

-16

-14

-12

-10

-8

-6

-4

-2

10

0

20
18

16
145 12

10
8

6
4

20 0

(ii) The minimum singular values {σ̇k1,k2} of
preprocessed subresultant matrices

Figure 7.16: The minimum singular values {σ̇k1,k2} of the (i) unprocessed and (ii)
preprocessed subresultant matrices in Example 7.6.3

Alternatively, the BVDRGCD method can be used to compute the degree of the

AGCD. The polynomials f(x, y) and g(x, y) are degree elevated by (p1, p2) = (0, 14) and

(q1, q2) = (0, 3) respectively such that the degree elevated forms f∗(x, y) and g∗(x, y) are

of degrees m∗ = 29 and n∗ = 20 respectively.

The minimum singular values of the set of preprocessed subresultant matrices

{Sk,k(λk,k f̃
∗
k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} are plotted in Figure 7.17, from which, the degree

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 265

of the AGCD is identified as t = 10. Therefore, either

t1 = t −min(p1, q1) = 10 or t2 = t −min(p2, q2) = 7.

0 2 4 6 8 10 12 14 16 18 20
-18

-16

-14

-12

-10

-8

-6

-4

-2

Figure 7.17: BVDRGCD Stage 1 :
The minimum singular values of the preprocessed subresultant matrices

{Sk(λk,k f̃∗k,k(ω1, ω2), g̃∗k,k(ω1, ω2))} in Example 7.6.3

Suppose the candidate t1 = 10 is correct, then the corresponding candidate t2 is

given by the index of the last numerically rank deficient subresultant matrix in the set

St1,k2(λt1,k2 f̃t1,k2(ω1, ω2), g̃t1,k2(ω1, ω2)). The minimum singular values of these subresul-

tant matrices are plotted in Figure 7.18i, from which, the degree of the AGCD with respect

to y is given by t2 = 7.

Alternatively, if the candidate t2 = 7 is correct then t1 is given by

the index of the last numerically rank deficient subresultant matrix in the set

{Sk1,t2(λk1,t2 f̃k1,t2(ω1, ω2), g̃k1,t2(ω1, ω2))}. The minimum singular values of these subre-

sultant matrices are plotted in Figure 7.18ii, from which, the degree of the AGCD with

respect to x is given by t1 = 15. The degree of the AGCD is therefore given by either

(10, 7) or (15, 7), so (t1, t2) = (15, 7).

The coefficients of the GCD triple ût1,t2(x, y), v̂t1,t2(x, y) and dt1,t2(x, y) are approxi-

mated by the method described in Section 7.5 and the errors are given in Table 7.3.

Without Preprocessing

ut1,t2(x, y), vt1,t2(x, y) and

dt1,t2(x, y)

With Preprocessing

ũt1,t2(x, y) , ṽt1,t2(x, y) and

d̃t1,t2(x, y)

Error ût1,t2(x, y) - 1.455132e− 06

Error v̂t1,t2(x, y) - 5.197778e− 06

Error d̂t1,t2(x, y) - 2.548405e− 06

Average - 3.0671e− 06

Table 7.3: Error in the approximations of ût1,t2(x, y), v̂t1,t2(x, y) and d̂t1,t2(x, y) in
Example 7.6.3

�

266

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

(i) BVDRGCD Stage 2a :
The minimum singular values of {St1,k2}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

(ii) BVDRGCD Stage 2b :
The minimum singular values of {Sk1,t2}

Figure 7.18: The minimum singular values of the subresultant matrices in the second
stage of the BVDRGCD method in Example 7.6.3

7.6.2 Examples of the Three-Polynomial Problem

Example 7.6.4. This example uses the same set of polynomials as Example 7.2.2, in

which it was shown how the optimal variant of the (k1, k2)th three-polynomial subresul-

tant matrix was given by DTQ(ii). However, in this example, more noise is added to

the coefficients of f̂(x, y), ĝ(x, y) and ĥ(x, y) such that the degree of the AGCD of the

inexact forms is not recoverable from the set of unprocessed subresultant matrices. In

Example 7.2.2 only the BVGCD method was considered in the computation of the degree

of the AGCD, but in this example both the BVGCD and BVDRGCD methods are used.

The polynomials f̂(x, y), ĝ(x, y) and ĥ(x, y) were defined in (7.13), (7.14) and (7.15)

respectively and noise is added to their coefficients such that the inexact coefficients are

given by (7.16), where {rf,i1,i2}, {rg,j1,j2} and {rh,p1,p2} are uniformly distributed random

variables in the interval [−1, 1] and {εf,i1,i2}, {εg,j1,j2} and {εh,p1,p2} are uniformly dis-

tributed random variables in the interval [10−10, 10−8]. This represents a small increase

in the noise over Example 7.2.2, but this is sufficient for the computation of the degree of

the AGCD to fail if the same methods are applied again.

This example begins by considering the BVGCD method. The two-

dimensional array of minimum singular values {σ̇k1,k2} of the set of unpro-

cessed subresultant matrices {Ŝk1,k2(f(x, y), g(x, y), h(x, y))} are plotted in Fig-

ure 7.19i. The minimum singular values of the preprocessed subresultant matrices

{Ŝk1,k2(λk1,k2 f̃k1,k2(ω1, ω2), g̃k1,k2(ω1, ω2), ρk1,k2 h̃k1,k2(ω1, ω2))} are plotted in Figure 7.19ii.

There is no significant separation between the numerically zero and non-zero singular

values of the unprocessed subresultant matrices, and the degree of the AGCD cannot

reliably be determined. However, there is a distinct separation between the numerically

zero and non-zero minimum singular values of the preprocessed subresultant matrices and

the degree of the AGCD is correctly determined and is given by (t1, t2) = (8, 7).

(ii) Where DTQ refers to either the (2×3) partitioned subresultant matrix Ŝk1,k2 or the (3×3) partitioned
subresultant matrix S̃k1,k2 .

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 267

-20

-18

15

-16

-14

-12

-10

10
85 6420 0

(i) The minimum singular values {σ̇k1,k2} of
the unprocessed subresultant matrices

-16

-14

15

-12

-10

-8

-6

-4

10
85 6420 0

(ii) The minimum singular values {σ̇k1,k2} of
the preprocessed subresultant matrices

Figure 7.19: The minimum singular values {σ̇k1,k2} of the (i) unprocessed (ii)
preprocessed subresultant matrices in Example 7.6.4

Alternatively, the new BVDRGCD method is used. The polynomials f(x, y), g(x, y)

and h(x, y) are of degrees (17, 13), (20, 19) and (10, 13) respectively and these are degree

elevated such that the polynomials f∗(x, y), g∗(x, y) and h∗(x, y) are of degrees m∗ = 17,

n∗ = 20 and o∗ = 13. The number of degree elevations of f(x, y), g(x, y) and h(x, y) are

given by (p1, p2) = (0, 4) , (q1, q2) = (0, 1) and (r1, r2) = (3, 0).

The minimum singular values of the set of preprocessed subresultant matrices

{S̃k,k(λk,k f̃
∗
k,k(ω1, ω2), g̃∗k,k(ω1, ω2), ρk,k h̃

∗
k,k(ω1, ω2))} are plotted in Figure 7.20, from

which the value t is computed and is given by t = 7. Given t, either

t1 = t −min(p1, q1, r1) = 7 or t1 = t = min(p1, q1, r1) = 7.

2 4 6 8 10 12
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Figure 7.20: BVDRGCD Stage 1 :
The minimum singular values of {Sk,k} in Example 7.6.4

Suppose that the candidate t1 = 7 is correct, then the degree of the AGCD with

respect to y is given by the index of the last numerically rank deficient subresultant

268

matrix in the set St1,k2(λt1,k2 f̃t1,k2 , g̃t1,k2 , ρt1,k2 h̃t1,k2). The minimum singular values of

these subresultant matrices are plotted in Figure 7.21i, from which, the degree of the

AGCD with respect to y is given by t2 = 7.

Alternatively, suppose the candidate t2 = 7 is correct, then the degree of the AGCD

with respect to x is given by the index of the last numerically rank deficient subresultant

matrix in the set St1,k2(λt1,k2 f̃t1,k2(ω1, ω2), g̃t1,k2(ω1, ω2), ρt1,k2 h̃t1,k2(ω1, ω2)). The mini-

mum singular values of these subresultant matrices are plotted in Figure 7.21ii, from

which, the degree of the AGCD with respect to x is given by t1 = 8. The two candidate

pairs are given by (t1, t2) = (7, 7) and (t1, t2) = (8, 7) so the degree of the AGCD is given

by (8, 7).

2 4 6 8 10 12
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

(i) BVDRGCD Stage 2a :
The minimum singular values {σ̇t1,k2} of the
preprocessed subresultant matrices {St1,k2}

1 2 3 4 5 6 7 8 9 10
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

(ii) BVDRGCD Stage 2b :
The minimum singular values {σ̇k1,t2} of the
preprocessed subresultant matrices {Sk1,t2}

Figure 7.21: BVDRGCD Stage 2 :
The minimum singular values of (i) {St1,k2} and (ii) {Sk1,t2} in the second stage of the

BVDRGCD method in Example 7.6.4

The BVGCD method required the evaluation of 150 subresultant matrices while the

BVDRGCD method required the evaluation of only 36 subresultant matrices. This repre-

sents a significant reduction in computation time.

�

7.7 Conclusion

This chapter has considered extensions of the univariate GCD (UGCD) method to compute

the GCD or AGCD of two or three bivariate polynomials in Bernstein form, where the

polynomials are defined over a rectangular domain. The first method, BVGCD, was a

simple extension of the UGCD in that the method computes the maximal change in a rank-

related metric given over a two-dimensional array rather than a one-dimensional array.

However this method was considered to be inefficient. The second method, BVDRGCD,

uses degree elevation to reduce the number of subresultant matrices which require analysis,

thus reducing the problem from a two-dimensional problem to a one-dimensional problem.

Chapter 7. GCDs of Bivariate Polynomials over a Rectangular Domain 269

This means that it performs significantly faster than BVGCD.

Some further conclusions are outlined below :

The Subresultant Matrices : The Sylvester matrix and sequence of subresultant ma-

trices have been defined for two or three polynomials in Bernstein form which are

defined over a rectangular domain. A transformation used in generating this se-

quence is given in Appendix B.3.

Preprocessing : A simple extension of the preprocessing operations described in ear-

lier chapters allows for the preprocessing of the two-polynomial and three-polynomial

subresultant matrices where the polynomials are bivariate and defined over a rect-

angular domain.

Examples have shown that the degree of the GCD or AGCD of two or three bivariate

polynomials is more reliably recovered from the array of subresultant matrices of pre-

processed polynomials rather than the array of subresultant matrices of unprocessed

polynomials.

Computational Complexity : The cost associated with constructing, preprocessing

and computing the SVD of each subresultant matrix in a two-dimensional array is

considerable. Instead, a method which makes use of degree elevated forms of f̂(x, y)

and ĝ(x, y) (and ĥ(x, y) in the three-polynomial problem) reduces the problem to

one dimension. Many examples have shown that this method has a significantly

reduced computational cost with equally well defined results.

Degree elevation is useful in the computation of the degree of the GCD. However, the

coefficients of the cofactor polynomials and the GCD are always computed from the

(t1, t2)th subresultant matrix of preprocessed polynomials which are not in degree

elevated form, thus giving the coefficients of the GCD in its base form(iii), and

preventing any error magnification which may occur as a result of degree elevation.

(iii)Where the “base form” of a polynomial is defined as the non-degree elevated form.

270

Chapter 8

Conclusion

8.1 Thesis Conclusion

The main result of this work is a complete square-free factorisation algorithm for univariate

polynomials, and the development of methods required in the computation of an irreducible

factorisation of a bivariate polynomial in Bernstein form. The thesis has mostly focused

on a variety of univariate and bivariate GCD finding methods for the computation of the

GCD of two or three polynomials in Bernstein form.

The key developments in this thesis are now outlined:

The Univariate Sylvester Matrix : A robust method for the computation of the de-

gree and coefficients of the GCD of two polynomials in Bernstein form was presented

in Chapter 2. The analysis of the singular values of the sequence of subresultant

matrices gave rise to a rank-related metric which was used to compute the degree of

the GCD. This eliminated the requirement of a threshold value.

Extensions of the Sylvester Matrix : Two extensions of the Sylvester matrix and

subresultant matrices have been presented in this work. Firstly, the three-polynomial

Sylvester matrix was defined for univariate polynomials in Bernstein form and was

used in the computation of the degree and coefficients of the GCD of three univariate

polynomials. Secondly, the Sylvester matrix was extended for the computation of

the GCD of two or three bivariate polynomials defined in Bernstein form. Both the

triangular and rectangular domain were considered for the bivariate extensions. The

Sylvester matrices associated with these two problems were of significantly different

structure, and the methods for computing the degree of the GCD were significantly

different. The optimal structure of these subresultant matrices has been carefully

considered. Experiments have shown that the ordering of the three polynomials

in the three-polynomial subresultant matrices can have a significant effect on the

ability to determine the numerical rank, and as a consequence, in the ability to

determine the degree of the GCD. It was shown how the different orderings related

to computing different GCD pairs, and how less well-defined GCDs can also affect

the numerical rank determination.

In addition, a previously developed set of preprocessing operations for univariate two-

polynomial subresultant matrices has been extended to the new forms of Sylvester

271

272

matrix described in this thesis. It has been shown that the degree of the GCD of

two or three polynomials is more reliably obtained when the subresultant matrices

contain the coefficients of polynomials which have been preprocessed.

Efficient methods of constructing the sequence of subresultant matrices are described

in the appendices of this thesis. Given the kth subresultant matrix, methods for

computing the (k + 1)th subresultant matrix of (i) three univariate polynomials in

Bernstein form (Appendix B.1.1), (ii) two or three bivariate polynomials in Bernstein

form defined over a triangular domain (Appendix B.2) and (iii) two or three bivariate

polynomials in Bernstein form defined over a rectangular domain (Appendix B.3)

are described.

GCD Coefficient Computation : In Section 3.5 methods for computing approxima-

tions of the GCD of two univariate polynomials were considered. A standard least

squares based method and a structure preserving low rank approximation method

were used to approximate the coefficients of the cofactor polynomials ût(x) and v̂t(x)

and the GCD d̂t(x). When using the second method, the addition of structured per-

turbations to the tth subresultant matrix gave a rank deficient subresultant matrix

from which better approximations of the cofactor polynomials and GCD were ob-

tained.

The MUGCD Method : The univariate polynomial square-free factorisation problem

was considered in Chapter 4, and refinements of the univariate GCD (UGCD) al-

gorithm were included in the modified univariate GCD (MUGCD) method, which

was used specifically in the square-free factorisation problem. This thesis has shown

that by using the modified univariate GCD (MUGCD) method, the degree of the ith

GCD was reliably computed when upper and lower bounds were first determined,

where these bounds were derived from the structure of the (i− 1)th GCD problem.

Given the upper and lower bounds, the MUGCD method was shown to be consid-

erably faster than the UGCD method. It was shown that the amount of speed up

obtained was dependent on the multiplicity structure of the roots of the polynomial

whose square-free factorisation was sought. The algorithm which made use of the

MUGCD method was significantly faster than the algorithm which made use of the

UGCD method when the polynomial f̂(x) was of high degree and had few roots of

high multiplicity.

Deconvolution in the SQFF Problem : Methods for solving the set of deconvolution

problems in Gauss’ square-free factorisation algorithm were developed in Section 4.2.

The problem was shown to have a significant amount of structure in that (i) each

f̂i(x) is the divisor in the ith deconvolution problem and the numerator in the (i+1)th

and (ii) certain subsets of the set of polynomials {ĥi} are equal and the coefficient

matrix can be structured accordingly. The structure of the deconvolution problem

was exploited to yield methods which were shown to give improved approximations

of the set of polynomials {ĥi(x)}.

Univariate Square-Free Factorisation : The root finding method developed in Chap-

ter 4, SQFF, made use of the MUGCD method and the structured matrix based de-

Chapter 8. Conclusion 273

convolution method. This was shown to give improved approximations of polynomial

roots when compared with Zeng’s multroot() and Matlab roots(), which typi-

cally fail for polynomials whose roots are of high multiplicity and whose coefficients

are defined inexactly.

Bivariate Square-Free Factorisation : The square-free factorisation algorithm due

to Gauss (Algorithm 1) was extended to compute the square-free factorisation of

a bivariate polynomial in Bernstein form, and it was shown that this problem re-

duced to (i) the computation of the GCD of three bivariate polynomials and (ii) the

computation of a sequence of polynomial deconvolutions.

Three Univariate Polynomial GCD Computation : An initial investigation into

the structure of the three univariate polynomial GCD finding problem was com-

pleted. Several variations of the subresultant matrix were considered. It was shown

both theoretically and by example that it is important for row-partitions of the

(2 × 3) partitioned three-polynomial subresultant matrices to be relatively scaled.

In addition, it was shown that if the pairwise GCD of two of the three polynomials

is poorly defined, then the (2 × 3) subresultant matrix which uses the other two

pairwise GCDs is optimal.

The Computation of the GCD of Two or Three Bivariate Polynomials over

a Triangular Domain : The problems of two-polynomial and three-polynomial

GCD computation, where the polynomials are bivariate and defined over a trian-

gular domain, follow from the equivalent univariate problems. The definitions of

the Sylvester matrix and subresultant matrices were extended for this particular

problem type. The preprocessing operations which yielded improved results for the

univariate problems were also extended and gave similarly improved results.

The Computation of the GCD of Two or Three Bivariate Polynomials over a

Rectangular Domain : The problems of two-polynomial and three polynomial

GCD computation, where the polynomials are bivariate and defined over a rectan-

gular domain, follow from the equivalent univariate problems. However, it has been

shown that the extensions required are significantly different to those necessary in

the GCD computation for polynomials defined over a triangular domain.

Two extensions for the computation of the GCD of bivariate polynomials were con-

sidered. The simple extension, BVGCD, was shown to be computationally expen-

sive since it necessitates the computation of a two-dimensional array of subresultant

matrices. Each of these subresultant matrices requires preprocessing and the com-

putation of an SVD.

The second new method, BVDRGCD, makes use of bivariate polynomial degree

elevation to reduce the two-dimensional array to a one-dimensional array. Therefore,

it has been shown to be more computationally efficient than the BVGCD method

while giving equally accurate results.

274

8.2 Suggestions for Future Research

The QR Decomposition of a Subresultant Matrix in Bernstein Form : The

QR decomposition of a subresultant matrix can also be used in the computation

of the degree of the GCD. The QR decomposition of the subresultant matrices

of two polynomials in the power basis can make use of updating and downdating

since each Sk is obtained by the removal of rows and columns from Sk−1. This

is computationally less expensive than QR decomposition from scratch. However,

the subresultant matrix Sk of two univariate polynomials in Bernstein form has

entries which are dependent on k and the transformation to compute Sk+1 given

Sk is described in Section 3.1.3. It is therefore not possible to make use of QR

updating and downdating methods since the entries of each subresultant matrix

are unique. The transformation described in Section 3.1.3 gives Sk+1 by pre and

post multiplication of Sk by orthogonal diagonal matrices. Further work could

exploit this to derive a fast method for the QR decomposition of Sk+1 given the QR

decomposition of Sk.

This could be extended to the decomposition of a subresultant matrix of two bivariate

polynomials in Bernstein form defined over a rectangular domain. The development

of a method in which the QR decomposition of Sk1,k2 is updated to give the QR

decomposition of Sk1+1,k2 is particularly appealing. As previously discussed, the

computation of the SVD of each subresultant matrix in the n×n array has significant

cost associated, and alternative methods must be sought. One approach to a more

efficient bivariate GCD finding method is given by the BVDRGCD method which

was described in Section 7.4. Despite BVDRGCD being significantly faster than

BVGCD, the method would still benefit from a QR update based method.

The Factorisation of a Bivariate Polynomial in Bernstein Form : The square-

free factorisation of a bivariate polynomial is considered in Section 6.1, where it

is shown that the problem reduces to a sequence of three-polynomial GCD problems

followed by a set of deconvolutions. In this thesis, methods have been developed

for the computation of the GCD of two or three arbitrary bivariate polynomials in

Bernstein form. The bivariate deconvolution problem is omitted from the thesis but

follows directly from the univariate deconvolution problem in Section 4.2.

The Intersection of Bézier Curves and Surfaces by Structured Matrix Methods :

This thesis has described a set of methods necessary to compute the factorisation

of univariate and bivariate polynomials in Bernstein form.

Although the problems of computing points or areas of intersection between Bézier

curves or surfaces have not been fully addressed in this thesis, fundamental compo-

nents of an algorithm which would solve such problems have been investigated with

promising results. The implementation of these components could be used in future

work as part of a composite algorithm for solving these intersection problems.

Other Generalisations : A method for the computation of the degree and coefficients

of the GCD of two univariate polynomials in Bernstein form has been considered.

Chapter 8. Conclusion 275

This was extended to compute the GCD of three univariate polynomials in Bern-

stein form. A second extension was to compute the GCD of two or three bivariate

polynomials in Bernstein form. This is sufficient for the computation of the points of

intersection of two curves or surfaces, however the work can theoretically be extended

further to compute the GCD of n polynomials in m variables.

276

Appendices

277

Appendix A

Polynomials in Bernstein Form

A.1 Degree Elevation

A.1.1 The Degree Elevation of Univariate Polynomials in Bernstein

Form

Degree elevation is unique to polynomials in Bernstein form and degree elevated polyno-

mials can cause computational problems when determining the degree of a polynomial

GCD. Methods for the computation of a degree elevated polynomial are discussed by

Farouki [27,29], and a deeper analysis of degree elevation techniques and their complexity

is found in [62].

The univariate polynomial f̂(x) of degree m can be degree elevated to an equivalent

polynomial f̂∗ of degree (m+p) by multiplication with a polynomial ĝ(x) of degree p whose

coefficients are equal to one. Multiplication of polynomials in Bernstein form is described

in Section 2.2.1, and multiplication by a Bernstein polynomial whose coefficients are all

equal to one is equivalent to multiplication by one.

Example A.1.1. A polynomial f̂(x) of degree m = 2 given by

f̂(x) = 7B2
0(x) + 9.5B2

1(x) + 15B2
2(x)

is degree elevated to a polynomial f̂∗(x) of degree (m+p) = 4 through multiplication with

the polynomial

ĝ(x) = 1B2
0(x) + 1B2

1(x) + 1B2
2(x) ≡ 1 for all x.

The matrix-vector product is given by

ĥ = D−1
4 T2

(
f̂(x)

)
Q2ĝ,

where D−1
4 ∈ R5×5 is given by

D−1
4 = diag

[
1

(4
0)
, 1

(4
1)
, 1

(4
2)
, 1

(4
3)
, 1

(4
4)

]
,

279

280

the matrix T2(f̂(x)) ∈ R5×3 is given by
7
(

2
0

)
9.5
(

2
1

)
7
(

2
0

)
15
(

2
2

)
9.5
(

2
1

)
7
(

2
0

)
15
(

2
2

)
9.5
(

2
1

)
15
(

2
2

)


and the diagonal matrix Q2 ∈ R3×3 is given by

Q2 = diag
[(

2
0

)
,
(

2
1

)
,
(

2
2

)]
.

The vector ĝ is given by

ĝ =
[

1, 1, 1
]T

and the computed product ĥ is given by[
7, 8.25, 10, 12.25, 15

]T
,

so the degree elevated polynomial is given by

f̂∗(x) = 7B4
0(x) + 8.25B4

1(x) + 10B4
2(x) + 12.25B4

3(x) + 15B4
4(x).

A.2 Conversions Between the Bernstein Basis and Power

Basis

The conversion from power to Bernstein form and vice versa are ill-conditioned and should

be avoided [26]. Methods of conversion between the power and Bernstein bases are devel-

oped in [64]. In this section a simple conversion method is considered.

A.2.1 Basis Conversion for Univariate Polynomials

The univariate polynomial f̂(x) given by the power basis representation

f̂(x) =

m∑
i=0

âix
i

can be converted to a polynomial in Bernstein form over the interval [xlow, xhigh] by

substituting

x = (1− t)xlow + txhigh

which yields

f̂(t) = âi ((1− t)xlow + txhigh) .

Appendix A. Polynomials in Bernstein Form 281

Given a polynomial expressed in the power basis with the coefficients Ai for i = 0, . . . ,m,

the coefficients of the equivalent polynomial in Bernstein form ai for i = 0, . . . ,m are given

by

âi =
i∑

j=0

(
i
j

)(
n
j

)Ak.
Similarly, the transformation from Bernstein form to power form is given by

Ai =
i∑

k=0

(−1)i−j
(
n

i

)(
i

j

)
âj .

Example A.2.1. The polynomial f̂(x) = x3 + 7x2 + 5x2 + 2 can be converted to a

polynomial in Bernstein form by the transformation matrix T

T =



(3
0)

(3
0)

0 0 0

(3
1)

(3
1)

(2
0)

(3
1)

0 0

(3
2)

(3
2)

(2
1)

(3
2)

(1
0)

(3
2)

0

(3
3)

(3
3)

(2
2)

(3
3)

(1
1)

(3
3)

(0
0)

(3
3)


and the vector of coefficients of f̂(x) in Bernstein form is given by

(3
0)

(3
0)

0 0 0

(3
1)

(3
1)

(2
0)

(3
1)

0 0

(3
2)

(3
2)

(2
1)

(3
2)

(1
0)

(3
2)

0

(3
3)

(3
3)

(2
2)

(3
3)

(1
1)

(3
3)

(0
0)

(3
3)




6

−7

0

1

 =


2
11
3
23
3

15

 ,

so the polynomial in Bernstein form is 2B3
0(x) + 11

3 B
3
1(x) + 23

3 B
3
2(x) + 15B3

3(x).

A.3 De Casteljau’s Algorithm

The de Casteljau algorithm is an algorithm for the evaluation of a point on a Bézier curve.

It is also used to subdivide curves and is useful for the intersection of curves and Bernstein

polynomial zero finding. The de Casteljau algorithm is described throughout the relevant

literature [23, Section 3.2] [46, Section 6.8] [38, Section 4.1] [24, Section 4.2.3].

Given the set of (n+ 1) control points of a curve C1 of degree n, and a parameter value t,

the algorithm splits the curve at t into two curves, C1,left and C1,right both of degree n.

The de Casteljau algorithm is a numerically stable method of evaluating a Bernstein poly-

nomial or Bézier curve at a given parameter value.

The repeated application of the de Casteljau algorithm produces an approximation of

the Bézier curve, in which the curve is approximated by the control polygons of compos-

ite curves. This is useful in rendering, computing Bernstein polynomial roots and more

generally computing intersections of Bézier curves.

282

Appendix B

Subresultant Matrix Sequences

B.1 The Subresultant Matrix Sequence for Univariate Poly-

nomials in Bernstein Form

In Section 3.1.3 a transformation was described such that given the kth subresultant matrix

of two univariate polynomials in Bernstein form, the (k + 1)th could easily be obtained.

This is now extended to the three polynomial subresultant matrix.

B.1.1 Constructing the Three-Polynomial Subresultant Matrix Se-

quence

The (2×3) partitioned subresultant matrix Ŝk+1(f̂(x), ĝ(x), ĥ(x)) with dimensions (2m+

n+o−2k)×(m+n+o−3k) can be computed by a transformation of Ŝk+1(f̂(x), ĝ(x), ĥ(x))

whose dimensions are (2m+ n+ o− 2k + 2)× (m+ n+ o− 3k + 3). The transformation

is given by

Ŝk+1

(
f̂(x), ĝ(x), ĥ(x)

)
= Âk × Ŝk

(
f̂(x), ĝ(x), ĥ(x)

)
× B̃k.

The block diagonal matrix Âk ∈ R(2m+n+o−2k)×(2m+n+o−2k+2) is given by

Âk = diag
[
Am+n−k, Am+o−k

]
,

where Am+n−k ∈ R(m+n−k)×(m+n−k+1) is defined in Equation (3.8) and the matrix

Am+o−k ∈ R(m+o−k)×(m+n−k+1) is similarly defined. The block diagonal matrix B̃k ∈
R(m+n+o−3k+3)×(m+n+o−3k) is given by

B̃k = diag
[
Bn−k, Bo−k, Bm−k

]
, (B.1)

where Bn−k and Bm−k are defined in Equation (3.10) and Bo−k is similarly defined.

By a minor extension, the (k+ 1)th (3× 3) partitioned three-polynomial subresultant

matrix is given by

S̃k+1

(
f̂(x), ĝ(x), ĥ(x)

)
= Ãk × S̃k

(
f̂(x), ĝ(x), ĥ(x)

)
× B̃k,

283

284

where the block diagonal matrix Ãk ∈ R(2m+2n+2o−3k)×(2m+2n+2o−3k+3) is given by

Ãk = diag
[
Am+n−k, Am+o−k, An+o−k

]
,

and the matrix B̃k is defined in (B.1).

B.2 The Subresultant Matrix Sequence for Polynomials in

Bernstein Form Defined over a Triangular Domain

Constructing the Two-Polynomial Subresultant Matrix Sequence

The (k + 1)th subresultant matrix is given in terms of the kth subresultant matrix by

Sk+1

(
f̂(x, y), ĝ(x, y)

)
= Am+n−k × Sk

(
f̂(x, y), ĝ(x, y)

)
× B̂k. (B.2)

The matrix Am+n−k ∈ R(m+n−k+1
2)×(m+n−k+2

2) is given by

Am+n−k =


m+n−k
m+n−k I1 01,m+n−k+1

m+n−k−1
m+n−k I2 02,m+n−k+1

. . .
...

1
m+n−k Im+n−k 0m+n−k,m+n−k+1

 , (B.3)

where Ij ∈ Rj×j is the jth identity matrix and 0j,m+n−k+1 is a zero matrix of size j ×
(m+ n− k + 1).

The matrix B̂k is a block diagonal matrix given by

B̂ = diag
[
Bn−k, Bm−k

]
,

where the matrices Bn−k ∈ R(n−k+2
2)×(n−k+1

2) and Bm−k ∈ R(m−k+2
2)×(m−k+1

2) are given by

Bn−k =



n−k
n−k I1

n−k−1
n−k I2

. . .
1

n−k In−k

0n−k+1,1 0n−k+1,2 . . . 0n−k+1,n−k


, (B.4)

and

Bm−k =



m−k
m−k I1

m−k−1
m−k I2

. . .
1

m−k Im−k

0m−k+1,1 0m−k+1,2 . . . 0m−k+1,m−k


. (B.5)

Appendix B. Subresultant Matrix Sequences 285

Constructing the Three-Polynomial Subresultant Matrix Sequence

The (2×3) partitioned three-polynomial subresultant matrix Ŝk+1(f̂(x, y), ĝ(x, y), ĥ(x, y))

is similarly derived from the kth subresultant matrix and is given by

Ŝk+1

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
= Âk × Ŝk

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
× B̃k.

The matrix Âk is a block diagonal matrix given by

Âk = diag
[
Am+n−k, Am+o−k

]
,

where the matrix Am+n−k is already defined in (B.3), and Am+o−k has an equivalent

structure. The matrix B̃k is a block diagonal matrix given by

B̃k = diag
[
Bn−k, Bo−k, Bm−k

]
, (B.6)

where the matrices Bn−k and Bm−k are defined in (B.4) and (B.5) respectively, and Bo−k

has an equivalent structure.

Given the kth (3×3) partitioned subresultant matrix, an extension of the above method

allows for the computation of the (k + 1)th (3× 3) partitioned subresultant matrix

S̃k+1

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
= ÃkS̃k

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
B̃k,

where Ã is the block diagonal matrix given by

Ã = diag
[
Am+n−k, Am+o−k, An+o−k

]
and B̃k is given in (B.6).

B.3 The Subresultant Matrix Sequence for Polynomials in

Bernstein Form Defined over a Rectangular Domain

Constructing the Two-Polynomial Subresultant Matrix Sequence

The subresultant matrix Sk1,k2+1(f̂(x, y), ĝ(x, y)) is given by

Sk1,k2+1

(
f̂(x, y), ĝ(x, y)

)
= Am2+n2−k2 × Sk1,k2

(
f̂(x, y), ĝ(x, y)

)
× B̂k2 .

The matrix Am2+n2−k2 ∈ Rrk1,k2+1×rk1,k2 is given by
m2+n2−k2
m2+n2−k2 Im1+n1−k1+1 0m1+n1−k1+1

m2+n2−k2−1
m2+n2−k2 Im1+n1−k1+1 0m1+n1−k1+1

. . .
...

1
m2+n2−k2 Im1+n1−k1+1 0m1+n1−k1+1

 ,

where Ij ∈ Rj×j is the jth identity matrix and each partition 0m1+n1−k1+1 ∈
R(m1+n1−k1+1)×(m1+n1−k1+1) is a zero matrix.

286

The block diagonal matrix B̂k2 ∈ Rck1,k2
×ck1,k2+1 is given by

B̂k2 = diag
[
Bn2−k2 , Bm2−k2

]
,

where Bn2−k2 is a diagonal matrix of order (n1 − k1 + 1)(n2 − k2 + 1) given by

Bn2−k2 =



n2−k2
n2−k2 In1−k1+1

n2−k2−1
n2−k2 In1−k1+1

. . .
1

n2−k2 In1−k1+1

0n1−k1+1 0n1−k1+1 . . . 0n1−k1+1


and where 0n1−k1+1 is a zero matrix of dimensions (n1 − k1 + 1) × (n1 − k1 + 1). The

diagonal matrix Bm2−k2 of order (m1 − k1 + 1)(m2 − k2 + 1)× (m1 − k1 + 1)(m2 − k2) is

given by

Bm2−k2 =



m2−k2
m2−k2 Im1−k1+1

m2−k2−1
m2−k2 Im1−k1+1

. . .
1

m2−k2 Im1−k1+1

0m1−k1+1 0m1−k1+1 . . . 0m1−k1+1


.

Constructing the Three-Polynomial Subresultant Matrix Sequence

The (2×3) partitioned subresultant matrix Ŝk1,k2+1(f̂(x, y), ĝ(x, y), ĥ(x, y)) can be written

as a transformation of Ŝk1,k2(f̂(x, y), ĝ(x, y), ĥ(x, y)) and is given by

Ŝk1,k2+1

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
= Âk2 × Ŝk1,k2

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
× B̃k2 ,

where the block diagonal matrix Âk2 is given by

Âk2 = diag
[
Am2+n2−k2 , Am2+o2−k2

]
and the block diagonal matrix B̃k2 is given by

B̃k2 = diag
[
Bn2−k2 , Bo2−k2 , Bm2−k2

]
. (B.7)

By a simple extension, the (3 × 3) partitioned subresultant matrix

S̃k1,k2+1(f̂(x, y), ĝ(x, y), ĥ(x, y)) can be written in terms of S̃k1,k2(f̂(x, y), ĝ(x, y), ĥ(x, y))

and is given by

S̃k1,k2+1

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
= Ãk2 × S̃k1,k2

(
f̂(x, y), ĝ(x, y), ĥ(x, y)

)
× B̃k2 ,

where the block diagonal matrix Ãk2 is given by

Ãk2 = diag
[
Am2+n2−k2 , Am2+o2−k2 , An2+o2−k2

]
and B̃k2 is given by (B.7).

Appendix C

Preprocessing

C.1 Preprocessing the Subresultant Matrices of Univariate

Polynomials in Bernstein Form

C.1.1 Preprocessing the Three-Polynomial Subresultant Matrices

This section considers the computation of the optimal values of λ, ρ and θ such that the

ratio of entry of maximum magnitude in Sk(λf̈(θ, ω), g̈(θ, ω), ρḧ(θ, ω)) to entry of minimum

magnitude in Sk(λf̈(θ, ω), g̈(θ, ω), ρḧ(θ, ω)) is minimised. This problem is described in

Section 5.3 and the optimal values λk, ρk and θk are given by the solution of a linear

programming problem. The minimisation problem is stated as

Minimise
u

v

Such that

u ≥
∣∣∣λāiθi(mi)(n−kj)

∣∣∣
(m+n−k

i+j)
i = 0, . . . ,m; j = 0, . . . , n− k,

u ≥
∣∣∣b̄iθi(ni)(m−kj)

∣∣∣
(m+n−k

i+j)
i = 0, . . . , n; j = 0, . . . ,m− k,

u ≥
∣∣∣λāiθi(mi)(o−kj)

∣∣∣
(m+n−k

i+j)
i = 0, . . . ,m; j = 0, . . . , o− k,

u ≥
∣∣∣ρc̄iθi(oi)(m−kj)

∣∣∣
(m+o−k

i+j)
i = 0, . . . , o; j = 0, . . . ,m− k,

v ≤
∣∣∣λāiθi(mi)(n−kj)

∣∣∣
(m+n−k

i+j)
i = 0, . . . ,m; j = 0, . . . , n− k,

v ≤
∣∣∣b̄iθi(ni)(m−kj)

∣∣∣
(m+n−k

i+j)
i = 0, . . . , n; j = 0, . . . ,m− k,

v ≤
∣∣∣λāiθi(mi)(o−kj)

∣∣∣
(m+n−k

i+j)
i = 0, . . . ,m; j = 0, . . . , o− k,

v ≤
∣∣∣ρc̄iθi(oi)(m−kj)

∣∣∣
(m+o−k

i+j)
i = 0, . . . , o; j = 0, . . . ,m− k.

287

288

Given the transformations

U = log10(u), V = log10(v), φ̄ = log10 (θ)

µ̄1 = log10 (λ) , , µ̄2 = log10 (ρ)

ᾱi,j = log10


∣∣∣āi(mi)(n−kj)∣∣∣(

m+n−k
i+j

)
 , β̄i,j = log10


∣∣∣b̄i(ni)(m−kj)∣∣∣(

m+n−k
i+j

)


C̄i,j = log10


∣∣∣āi(mi)(o−kj)∣∣∣(

m+o−k
i+j

)
 , D̄i,j = log10


∣∣∣c̄i(oi)(m−kj)∣∣∣(

m+o−k
i+j

)
 ,

the minimisation problem can be written as

Minimise U − V

subject to

U −iφ̄ −µ̄1 ≥ ᾱi,j i = 0, . . . ,m; j = 0, . . . , n− k,
U −iφ̄ ≥ β̄i,j i = 0, . . . , n; j = 0, . . . ,m− k,
U −iφ̄ −µ̄1 ≥ C̄i,j i = 0, . . . ,m; j = 0, . . . , o− k,
U −iφ̄ −µ̄2 ≥ D̄i,j i = 0, . . . , o; j = 0, . . . ,m− k,
−V +iφ̄ +µ̄1 ≥ −ᾱi,j i = 0, . . . ,m; j = 0, . . . , n− k,
−V +iφ̄ ≥ −β̄i,j i = 0, . . . , n; j = 0, . . . ,m− k,
−V +iφ̄ +µ̄1 ≥ −C̄i,j i = 0, . . . ,m; j = 0, . . . , o− k,
−V +iφ̄ +µ̄2 ≥ −D̄i,j i = 0, . . . , o; j = 0, . . . ,m− k.

Since j only occurs on the right hand side, the sets

M̄1,i = max{ ᾱi,j | j = 0, . . . , n− k }, m̄1,i = min{ ᾱi,j | j = 0, . . . , n− k} i = 0, . . . ,m,

M̄2,i = max{ β̄i,j | j = 0, . . . ,m− k}, m̄2,i = min{ β̄i,j | j = 0, . . . ,m− k} i = 0, . . . , n,

M̄3,i = max{ C̄i,j | j = 0, . . . , o− k}, m̄3,i = min{ C̄i,j | j = 0, . . . , o− k } i = 0, . . . ,m,

M̄4,i = max{ D̄i,j | j = 0, . . . ,m− k }, m̄4,i = min{ D̄i,j | j = 0, . . . ,m− k} i = 0, . . . , o

are defined, such that the conditions of the minimisation problem can now be written as

U −iφ̄ −µ̄1 ≥ M̄1,i i = 0, . . . ,m,

U −iφ̄ ≥ M̄2,i i = 0, . . . , n,

U −iφ̄ −µ̄1 ≥ M̄3,i i = 0, . . . ,m,

U −iφ̄ −µ̄2 ≥ M̄4,i i = 0, . . . , o,

−V +iφ̄ +µ̄1 ≥ −m̄1,i i = 0, . . . ,m,

−V +iφ̄ ≥ −m̄2,i i = 0, . . . , n,

−V +iφ̄ +µ̄1 ≥ −m̄3,i i = 0, . . . ,m,

−V +iφ̄ +µ̄2 ≥ −m̄4,i i = 0, . . . , o.

Appendix C. Preprocessing 289

The minimisation problem can therefore be written in matrix form as

Minimise
[

1 −1 0 0 0
]

U

V

φ̄

µ̄1

µ̄2

 subject to A


U

V

φ̄

µ̄1

µ̄2

 ≥ b. (C.1)

The matrix A ∈ R(4m+2n+2o+8)×5 in (C.1) is given by

A =
[
Ā1 Ā2 Ā1 Ā3 ā1 ā2 ā1 ā3

]T
,

where the matrices Ā1 and ā1 ∈ R(m+1)×5 contain rows of the form

Ā1 =
[

1 0 −i −1 0
]
, ā1 =

[
0 −1 i 1 0

]
, for i = 0, . . . ,m,

the matrices Ā2 and ā2 ∈ R(n+1)×5 contain rows of the form

Ā2 =
[

1 0 −i 0 0
]
, ā2 =

[
0 −1 i 0 0

]
, for i = 0, . . . , n,

and the matrices Ā3 and ā3 ∈ R(o+1)×5 contain rows of the form

Ā3 =
[

1 0 −i 0 −1
]
, ā3 =

[
0 −1 i 0 1

]
, for i = 1, . . . , o.

The vector b in (C.1) is given by

b =
[
M̄1 M̄2 M̄3 M̄4 −m̄1 −m̄2 −m̄3 −m̄4

]T
,

where

M̄i =



[
M̄i,0 M̄i,1 . . . M̄i,m

]T
∈ Rm+1 i = 1, 3,[

M̄i,0 M̄i,1 . . . M̄i,n

]T
∈ Rn+1 i = 2,[

M̄i,0 M̄i,1 . . . M̄i,o

]T
∈ Ro+1 i = 4,

and

m̄i =



[
m̄i,0 m̄i,1 . . . m̄i,m

]T
∈ Rm+1 i = 1, 3,[

m̄i,0 m̄i,1 . . . m̄i,n

]T
∈ Rn+1 i = 2,[

m̄i,0 m̄i,1 . . . m̄i,o

]T
∈ Ro+1 i = 4.

The optimal values λk, ρk and θk are given by 10φ, 10µ1 and 10µ2 .

290

C.2 Preprocessing the Subresultant Matrices of Polynomi-

als in Bernstein Form Defined over a Triangular Do-

main

C.2.1 The Arithmetic Mean of the Non-Zero Entries of the (n − k)th

Order Convolution Matrix

This section simplifies the expression used for the computation of the arithmetic mean of

the non-zero entries in the (n− k)th order convolution matrix of the polynomial f̂(x, y).

Given the simplified expression, an expression is derived such that the arithmetic mean of

the (n−k−1)th order convolution matrix can be determined with minimal computational

cost.

Proposition 4. The arithmetic mean of the non-zero entries in the first partition,

Cn−k(f̂(x, y)), of the kth subresultant matrix is given by

An−k

(
f̂(x, y)

)
=

(
m+n−k+2

2

)(
m+2

2

)2(n−k+2
2

) m∑
i1+i2=0

âi1,i2 .

Proof. Each of the
(
m+2

2

)
coefficients of f̂(x, y) appear in each of the

(
n−k+2

2

)
columns of

Cn−k(f̂(x, y)) so the arithmetic mean is given by

An−k

(
f̂(x, y)

)
=

1(
m+2

2

)(
n−k+2

2

) m∑
i1+i2=0

n−k∑
j1+j2=0

âi1,i2

(
i1+j1
i1

)(
i2+j2
i2

)(
m+n−k−i1−i2−j1−j2

m−i1−i2

)(
m+n−k
n−k

) .

(C.2)

The sum of the entries containing any given âi1,i2 is given by

n−k∑
j1+j2=0

âi1,i2

(
i1+j1
i1

)(
i2+j2
i2

)(
m+n−k−i1−i2−j1−j2

m−i1−i2

)(
m+n−k

m

) = âi1,i2

(
m+n−k+2

2

)(
m+2

2

)
= âi1,i2

(m+ n− k + 1)(m+ n− k + 2)

(m+ 1)(m+ 2)

and therefore (C.2) can be reduced to the significantly less complex expression

An−k

(
f̂(x, y)

)
=

1(
m+2

2

)(
n−k+2

2

) m∑
i1+i2=0

âi1,i2

(
m+n−k+2

2

)(
m+2

2

) =

(
m+n−k+2

2

)(
m+2

2

)2(n−k+2
2

) m∑
i1+i2=0

âi1,i2 .

(C.3)

Proposition 5. Given the arithmetic mean An−k(f̂(x, y)) of the non-zero entries in the

(n− k)th order convolution matrix, the arithmetic mean An−k−1(f̂(x, y)) given by

An−k−1

(
f̂(x, y)

)
=

(
m+n−k+1

2

)(
m+2

2

)2(n−k+1
2

) m∑
i1+i2=0

âi1,i2

Appendix C. Preprocessing 291

is more simply given by

An−k−1

(
f̂(x, y)

)
=

(m+ n− k)(n− k + 2)

(n− k)(m+ n− k + 2)
An−k

(
f̂(x, y)

)
.

Proof. The arithmetic mean of the non-zero entries in the first partition of the kth subre-

sultant matrix are given by (C.3) and the arithmetic mean of the non-zero entries in the

first partition of the (k + 1)th subresultant matrix is given by

An−k−1

(
f̂(x, y)

)
=

(
m+n−k+1

2

)(
m+2

2

)2(n−k+1
2

) m∑
i1+i2=0

âi1,i2 .

The expression x such that An−k−1(f̂(x, y)) = xAn−k(f̂(x, y)) is given by

x ==

(m+n−k+1
2)

(m+2
2)

2
(n−k+1

2)

∑m
i1+i2=0 âi1,i2

(m+n−k+2
2)

(m+2
2)

2
(n−k+2

2)

∑m
i1+i2=0 âi1,i2

=

(
m+n−k+1

2

)(
m+2

2

)2(n−k+2
2

)
âi1,i2(

m+2
2

)2(n−k+1
2

)(
m+n−k+2

2

)
âi1,i2

=
(m+ n− k + 1)(n− k + 2)

(n− k)(m+ n− k + 2)
,

so the arithmetic mean of the entries in the first partition of the (k+ 1)th subresultant in

terms of An−k(f̂(x, y)) is given by

An−k−1

(
f̂(x, y)

)
= An−k

(
f̂(x, y)

)
× (m+ n− k + 1)(n− k + 2)

(n− k)(m+ n− k + 2)
.

A similar expression is easily obtained for Am−k−1(ĝ(x, y)) .

C.2.2 The Geometric Mean of the Non-Zero Entries of the (n − k)th

Order Convolution Matrix

This section considers the computation of the geometric mean Gn−k

(
f̂(x, y)

)
of the non-

zero entries in the (n − k)th convolution matrix of the polynomial f̂(x, y). Each of the(
m+2

2

)
coefficients âi1,i2 occur in each of the

(
n−k+2

2

)
columns of Cn−k(f̂(x, y)), the first

partition of Sk(f̂(x, y), ĝ(x, y)). The geometric mean Gn−k

(
f̂(x, y)

)
of the non-zero entries

in Cn−k(f̂(x, y)) is given by

Gn−k

(
f̂(x, y)

)
=

n−k∏
j1+j2=0

m∏
i1+i2=0

(
âi1,i2

(
m
i1,i2

)(
n−k
j1,j2

)(
m+n−k

i1+j1,i2+j2

))
1

(m+2
2)×(n−k+2

2)
. (C.4)

Proposition 6. The geometric mean of the non-zero entries of Cn−k(f̂(x, y)) is written

as

Gn−k

(
f̂(x, y)

)
=

n−k∏
j1+j2=0

m∏
i1+i2=0

(
âi1,i2

(
i1+j1
i1

)(
i2+j2
i2

)(
m+n−k−i1−i2−j1−j2

m−i1−i2

)(
m+n−k
n−k

)) 1

(m+2
2)(n−k+2

2)

292

and this can be simplified to

Gn−k

(
f̂(x, y)

)
=

1(
m+n−k
n−k

) (m∏
i1+i2=0

âi1,i2

) 1

(m+2
2)

 m∏
i1+i2=0

n−k∏
j1+j2=0

(
i1 + j1
j1

) 3

(m+2
2)(n−k+2

2)
.

Proof. The proof proceeds by considering the computation of Gn−k

(
f̂(x, y)

)
in three parts

An−k

(
f̂(x, y)

)
= A × Bk × Ck.

Firstly, the geometric mean of the coefficients âi1,i2 is simplified as

A =

 m∏
i1+i2=0

n−k∏
j1+j2=0

âi1,i2

 1

(m+2
2)(n−k+2

2)
=

(
m∏

i1+i2=0

âi1,i2

) 1

(m+2
2)

.

Secondly, let Bk be given by

Bk =

 m∏
i1+i2=0

n−k∏
j1+j2=0

(
i1 + j1
j1

)(
i2 + j2
j2

)(
m+ n− k − i1 − i2 − j1 − j2

m− i1 − i2

) 1

(m+2
2)(n−k+2

2)

and notice that

m∏
i1+i2=0

n−k∏
j1+j2=0

(
i1 + j1
j1

)
=

m∏
i1+i2=0

n−k∏
j1+j2=0

(
i2 + j2
j2

)
=

m∏
i1+i2=0

n−k∏
j1+j2=0

(
m+ n− k − i1 − i2 − j1 − j2

m− i1 − i2

)
,

so Bk reduces to

Bk =

 m∏
i1+i2=0

n−k∏
j1+j2=0

(
i1 + j1
j1

) 3

(m+2
2)(n−k+2

2)
.

Finally, the denominator of each of the non-zero entries in the first partition of the subre-

sultant matrix is constant and

Ck =

 n−k∏
j1+j2=0

m∏
i1+i2=0

1(
m+n−k
n−k

)
 1

(m+2
2)(n−k+2

2)
=

1(
m+n−k
n−k

) .
So, Gn−k(f̂(x, y)) can be written as

Gn−k(f̂(x, y)) =
1(

m+n−k
n−k

) (m∏
i1+i2=0

âi1,i2

) 1

(m+2
2)

 m∏
i1+i2=0

n−k∏
j1+j2=0

(
i1 + j1
j1

) 3

(m+2
2)(n−k+2

2)
.

C.2.3 Preprocessing the Two-Polynomial Subresultant Matrices

This section addresses the minimisation problem in preprocessing the subresultant matrix

of two bivariate polynomials in Bernstein form defined over a triangular domain. Variables

Appendix C. Preprocessing 293

λ, θ1 and θ2 must be optimised such that the ratio of entry of maximum magnitude to entry

of minimum magnitude in the kth subresultant matrix is minimised. The minimisation

problem staged in Section 6.4 is reduced to the form

Minimise
u

v

subject to

u ≥
∣∣∣λāi1,i2θi11 θ

i2
2 (m

i1,i2
)(n−kj1,j2

)
∣∣∣

(m+n−k
i1+j1,i2+j2

)
i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k,

u ≥
∣∣∣b̄i1,i2θi11 θ

i2
2 (n

i1,i2
)(m−kj1,j2

)
∣∣∣

(m+n−k
i1+j1,i2+j2

)
i1 + i2 = 0, . . . , n; j1 + j2 = 0, . . . ,m− k,

v ≤
∣∣∣λāi1,i2θi11 θ

i2
2 (m

i1,i2
)(n−kj1,j2

)
∣∣∣

(m+n−k
i1+j1,i2+j2

)
i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k,

v ≤
∣∣∣b̄i1,i2θi11 θ

i2
2 (n

i1,i2
)(m−kj1,j2

)
∣∣∣

(m+n−k
i1+j1,i2+j2

)
i1 + i2 = 0, . . . , n; j1 + j2 = 0, . . . ,m− k,

v > 0,

θ1 > 0,

θ2 > 0,

λ > 0.

(C.5)

By the transformations

U = log10 (u) , V = log10 (v) , φ̄1 = log10 (θ1) , φ̄2 = log10 (θ2) , µ̄1 = log10 (λ) (C.6)

ᾱi1,i2,j1,j2 = log10


∣∣∣āi1,i2(m

i1,i2

)(
n−k
j1,j2

)∣∣∣(
m+n−k

i1+j1,i2+j2

)
 , β̄i1,i2,j1,j2 = log10


∣∣∣b̄i1,i2(n

i1,i2

)(
m−k
j1,j2

)∣∣∣(
m+n−k

i1+j1,i2+j2

)
 , (C.7)

the minimisation problem (C.5) can be written as

Minimise U − V

Subject to

U −i1φ̄1 −i2φ̄2 −µ̄1 ≥ ᾱi1,i2,j1,j2 i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k,
U −i1φ̄1 −i2φ̄2 ≥ β̄i1,i2,j1,j2 i1 + i2 = 0, . . . , n; j1 + j2 = 0, . . . ,m− k,
−V +i1φ̄1 +i2φ̄2 +µ̄1 ≥ −ᾱi1,i2,j1,j2 i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k,
−V +i1φ̄1 +i2φ̄2 ≥ −β̄i1,i2,j1,j2 i1 + i2 = 0, . . . , n; j1 + j2 = 0, . . . ,m− k.

(C.8)

The counters j1 and j2 appear only on the right hand side of these inequalities, thus

M̄1,i1,i2 , M̄2,i1,i2 , m̄1,i1,i2 and m̄2,i1,i2 can be defined as

M̄1,i1,i2 = max
j1+j2=0,...,n−k

{ᾱi1,i2,j1,j2} for i1 + i2 = 0, . . . ,m, (C.9)

M̄2,i1,i2 = max
j1+j2=0,...,m−k

{β̄i1,i2,j1,j2} for i1 + i2 = 0, . . . , n, (C.10)

m̄1,i1,i2 = min
j1+j2=0,...,n−k

{ᾱi1,i2,j1,j2} for i1 + i2 = 0, . . . ,m, (C.11)

m̄2,i1,i2 = min
j1+j2=0,...,m−k

{β̄i1,i2,j1,j2} for i1 + i2 = 0, . . . , n, (C.12)

294

and the minimisation problem (C.8) can be written as

Minimise U − V

subject to

U −i1φ̄1 −i2φ̄2 −µ̄1 ≥ M̄1,i1,i2 i1 + i2 = 0, . . . ,m,

U −i1φ̄1 −i2φ̄2 ≥ M̄2,i1,i2 i1 + i2 = 0, . . . , n,

−V +i1φ̄1 +i2φ̄2 +µ̄1 ≥ −m̄1,i1,i2 i1 + i2 = 0, . . . ,m,

−V +i1φ̄1 +i2φ̄2 ≥ −m̄2,i1,i2 i1 + i2 = 0, . . . , n,

which in matrix form is given by

Minimise
[

1 −1 0 0 0
]

subject to A


U

V

φ̄1

φ̄2

µ̄1

 ≥ b. (C.13)

The matrix A ∈ R(2(m+2
2)+2(n+2

2))×5 in (C.13) is given by

A =
[
Ā1 Ā2 ā1 ā2

]T
,

where the matrices Ā1 and ā1 ∈ R(m+2
2)×5 are given by

Ā1 =



1 0 0 0 −1

1 0 −1 0 −1

1 0 0 −1 −1

1 0 −2 0 −1

1 0 −1 −1 −1

1 0 0 −2 −1
...

...
...

...
...

1 0 −m 0 −1
...

...
...

...
...

1 0 0 −m −1



, ā1 =



0 −1 0 0 1

0 −1 1 0 1

0 −1 0 1 1

0 −1 2 0 1

0 −1 1 1 1

0 −1 0 2 1
...

...
...

...
...

0 −1 m 0 1
...

...
...

...
...

0 −1 0 m 1


and the matrices Ā2 and ā2 ∈ R(n+2

2)×5 are given by

Ā2 =



1 0 0 0 0

1 0 −1 0 0

1 0 0 −1 0

1 0 −2 0 0

1 0 −1 −1 0

1 0 0 −2 0
...

...
...

...
...

1 0 −n 0 0
...

...
...

...
...

1 0 0 −n 0



, ā2 =



0 −1 0 0 0

0 −1 1 0 0

0 −1 0 1 0

0 −1 2 0 0

0 −1 1 1 0

0 −1 0 2 0
...

...
...

...
...

0 −1 n 0 0
...

...
...

...
...

0 −1 0 n 0



.

Appendix C. Preprocessing 295

The vector b ∈ R(2(m+2
2)×2(n+2

2)) in (C.13) is given by

b =
[
M̄1, M̄2, −m̄1, −m̄2

]T
∈ R(2(m+2

2)+2(n+2
2)),

where

M̄1 =
[
M̄1,0,0, M̄1,1,0, M̄1,0,1, . . . , M̄1,0,m

]
∈ R(m+2

2) (C.14)

M̄2 =
[
M̄2,0,0, M̄2,1,0, M̄2,0,1, . . . , M̄2,0,n

]
∈ R(n+2

2) (C.15)

m̄1 =
[
m̄1,0,0, m̄1,1,0, m̄1,0,1, . . . , m̄1,0,m

]
∈ R(m+2

2) (C.16)

m̄2 =
[
m̄2,0,0, m̄2,1,0, m̄2,0,1, . . . , m̄2,0,n

]
∈ R(n+2

2). (C.17)

The optimal values λ, θ1 and θ2 are given by 10µ̄1 , 10φ̄1 and 10φ̄2 respectively, such that

the optimally preprocessed polynomials for use in the kth subresultant matrix are given

by λkf̃k(ω1, ω2) and g̃k(ω1, ω2).

C.2.4 Preprocessing the Three-Polynomial Subresultant Matrices

In this section the preprocessing of the three-polynomial subresultant is considered, where

the three bivariate polynomials are defined over a triangular domain. This extends the

work in Appendix C.2.3. The minimisation problem (C.5) is extended, with the additional

constraints

u ≥
∣∣∣λāi1,i2θi11 θ

i2
2 (m

i1,i2
)(o−kj1,j2

)
∣∣∣

(m+o−k
i1+j1,i2+j2

)
i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , o− k,

v ≤
∣∣∣b̄i1,i2θi11 θ

i2
2 (n

i1,i2
)(m−kj1,j2

)
∣∣∣

(m+n−k
i1+j1,i2+j2

)
i1 + i2 = 0, . . . , n; j1 + j2 = 0, . . . ,m− k.

(C.18)

By the set of transformations (C.6) and (C.7) and additional transformations µ̄2 = log10 (ρ)

and

C̄i1,i2,j1,j2 = log10

(∣∣∣āi1,i2(m
i1,i2

)(o−kj1,j2
)
∣∣∣

(m+o−k
i1+j1,i2+j2

)

)
i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , o− k,

D̄i1,i2,j1,j2 = log10

(∣∣∣c̄i1,i2(o
i1,i2

)(m−kj1,j2
)
∣∣∣

(m+o−k
i1+j1,i2+j2

)

)
i1 + i2 = 0, . . . , o; j1 + j2 = 0, . . . ,m− k,

296

the extended minimisation problem can be written as

Minimise U − V

Subject to

U − i1φ̄1 − i2φ̄2 − µ̄1 ≥ ᾱi1,i2,j1,j2 i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k,
U − i1φ̄1 − i2φ̄2 ≥ β̄i1,i2,j1,j2 i1 + i2 = 0, . . . , n; j1 + j2 = 0, . . . ,m− k,
U − i1φ̄1 − i2φ̄2 − µ̄1 ≥ C̄i1,i2,j2,j2 i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , o− k,
U − i1φ̄1 − i2φ̄2 − µ̄2 ≥ D̄i1,i2,j2,j2 i1 + i2 = 0, . . . , o; j1 + j2 = 0, . . . ,m− k,
−V + i1φ̄1 + i2φ̄2 + µ̄1 ≥ −ᾱi1,i2,j1,j2 i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , n− k,
−V + i1φ̄1 + i2φ̄2 ≥ −β̄i1,i2,j1,j2 i1 + i2 = 0, . . . , n; j1 + j2 = 0, . . . ,m− k,
−V + i1φ̄1 + i2φ̄2 + µ̄1 ≥ −C̄i1,i2,j1,j2 i1 + i2 = 0, . . . ,m; j1 + j2 = 0, . . . , o− k,
−V + i1φ̄1 + i2φ̄2 + µ̄2 ≥ −D̄i1,i2,j1,j2 i1 + i2 = 0, . . . , o; j1 + j2 = 0, . . . ,m− k.

(C.19)

The sets M̄1, M̄2, m̄1 and m̄2 are already defined in (C.9, C.10, C.11, C.9) and now M̄3,

M̄4, m̄3 and m̄4 are given by

M̄3,i1,i2 = maxj1+j2=0,...,o−k{C̄i1,i2,j1,j2} for i1 + i2 = 0, . . . ,m,

M̄4,i1,i2 = maxj1+j2=0,...,m−k{D̄i1,i2,j1,j2} for i1 + i2 = 0, . . . , o,

m̄3,i1,i2 = minj1+j2=0,...,o−k{C̄i1,i2,j1,j2} for i1 + i2 = 0, . . . ,m,

m̄4,i1,i2 = minj1+j2=0,...,m−k{D̄i1,i2,j1,j2} for i1 + i2 = 0, . . . , o,

such that the minimisation problem (C.19) can be written as

Minimise U − V

subject to

U −i1φ̄1 −i2φ̄2 −µ̄1 ≥ M̄1,i1,i2 i1 + i2 = 0, . . . ,m,

U −i1φ̄1 −i2φ̄2 ≥ M̄2,i1,i2 i1 + i2 = 0, . . . , n,

U −i1φ̄1 −i2φ̄2 −µ̄1 ≥ M̄3,i1,i2 i1 + i2 = 0, . . . ,m,

U −i1φ̄1 −i2φ̄2 −µ̄2 ≥ M̄4,i1,i2 i1 + i2 = 0, . . . , o,

−V +i1φ̄1 +i2φ̄2 +µ̄1 ≥ −m̄1,i1,i2 i1 + i2 = 0, . . . ,m,

−V +i1φ̄1 +i2φ̄2 ≥ −m̄2,i1,i2 i1 + i2 = 0, . . . , n,

−V +i1φ̄1 +i2φ̄2 +µ̄1 ≥ −m̄3,i1,i2 i1 + i2 = 0, . . . ,m,

−V +i1φ̄1 +i2φ̄2 +µ̄2 ≥ −m̄4,i1,i2 i1 + i2 = 0, . . . , o.

This can be written in matrix form as

Minimise

[
1 −1 0 0 0 0

]


U

V

φ̄1

φ̄2

µ̄1

µ̄2


subject to A



U

V

φ̄1

φ̄2

µ̄1

µ̄2


≥ b, (C.20)

Appendix C. Preprocessing 297

where the matrix A is given by

A =
[
Ā1 Ā2 Ā1 Ā3 ā1 ā2 ā1 ā3

]
.

The rows of matrices Ā1 and ā1 ∈ R(m+2
2)×6 are given by

Ā1 =
[

1 0 −i1 −i2 −1 0
]
, ā1 =

[
0 −1 i1 i2 1 0

]
,

for i1 + i2 = 0, . . . ,m. The rows of Ā2, ā2 ∈ R(n+2
2)×6 are given by

Ā2 =
[

1 0 −i1 −i2 0 0
]
, ā2 =

[
0 −1 i1 i2 0 0

]
,

for i1 + i2 = 0, . . . , n. The rows of Ā3, ā3 ∈ R(o+2
2)×6 are given by

Ā3 =
[

1 0 −i1 −i2 0 −1
]
, ā3 =

[
0 1 i1 i2 0 1

]
.

The vector b in (C.20) is given by

b =
[
M̄1 M̄2 M̄3 M̄4 −m̄1 −m̄2 −m̄3 −m̄4

]T
.

The vectors M̄1, M̄2, m̄1 and m̄2 are already defined in (C.14, C.15, C.16, C.17) and the

vectors M̄3, M̄4, m̄3 and M̄4 are similarly defined as

M̄3 =
[
M̄3,0,0 M̄3,1,0 M̄3,0,1 . . . M̄3,0,m

]
∈ R(m+2

2), (C.21)

M̄4 =
[
M̄4,0,0 M̄4,1,0 M̄4,0,1 . . . M̄4,0,o

]
∈ R(o+2

2), (C.22)

m̄3 =
[
m̄3,0,0 m̄3,1,0 m̄3,0,1 . . . m̄3,0,m

]
∈ R(m+2

2), (C.23)

m̄4 =
[
m̄4,0,0 m̄4,1,0 m̄4,0,1 . . . m̄4,0,o

]
∈ R(o+2

2). (C.24)

The optimal values λk, ρk, θ1,k and θ2,k are given by 10µ1 , 10µ2 , 10φ1 and 10φ2 .

C.3 Preprocessing the Subresultant Matrices of Bivariate

Polynomials Defined over a Rectangular Domain

C.3.1 The Geometric Mean of the Non-Zero Entries of the (n − k)th

Order Convolution Matrix

Proposition 7. The geometric mean Gn1−k1,n2−k2(f̂(x, y)) of the non-zero entries of

Cn1−k1,n2−k2(f̂(x, y)) is given by

n2−k2∏
j2=0

n1−k1∏
j1=0

m2∏
i2=0

m1∏
i1=0

(
âi1,i2

(
i1+j1
i1

)(
m1+n1−k1−i1
n1−k1−i1−j1

)(
m1+n1−k1
n1−k1

) (
i2+j2
i2

)(
m2+n2−k2−i2
n2−k2−i2−j2

)(
m2+n2−k2
n2−k2

)) 1
(m1+1)(m2+1)(n1−k1+1)(n2−k2+1)

298

and can be simplified to

1(
m1+n1−k1

n1−k1

)(
m2+n2−k2

n2−k2

) ×(m2∏
i2=0

m1∏
i1=0

ai1,i2

) 1
(m1+1)(m2+1)

×
n1−k1∏
j1=0

m1∏
i1=0

(
i1 + j1
i1

) 2
(m1+1)(n1−k1+1)

×
n2−k2∏
j2=0

m2∏
i2=0

(
i2 + j2
j2

) 2
(m2+1)(n2−k2+1)

.

Proof. The geometric mean Gn1−k1,n2−k2(f̂(x, y)) can be considered as the product of four

parts

A × Bk1 × Ck2 ×Dk1,k2 .

Firstly,

A =

n2−k2∏
j2=0

n1−k1∏
j1=0

m2∏
i2=0

m1∏
i1=0

(âi1,i2)
1

(m1+1)(m2+1)(n1−k1+1)(n2−k2+1)

=

(
m2∏
i2=0

m1∏
i1=0

ai1,i2

) 1
(m1+1)(m2+1)

.

Secondly,

Bk1 =

n2−k2∏
j2=0

n1−k1∏
j1=0

m2∏
i2=0

m1∏
i1=0

((
i1 + j1
i1

)(
m1 + n1 − k1 − i1 − j1

n1 − k1 − j1

)) 1
(m1+1)(m2+1)(n1−k1+1)(n2−k2+1)

=

n1−k1∏
j1=0

m1∏
i1=0

((
i1 + j1
i1

)(
m1 + n1 − k1 − i1 − j1

n1 − k1 − j1

)) 1
(m1+1)(n1−k1+1)

and since

n1−k1∏
j1=0

m1∏
i1=0

(
i1 + j1
i1

)
=

n1−k1∏
j1=0

m1∏
i1=0

(
m1 + n1 − k1 − i1 − j1

n1 − k1 − j1

)
,

Bk1 can be written as

Bk1 =

n1−k1∏
j1=0

m1∏
i1=0

(
i1 + j1
i1

) 2
(m1+1)(n1−k1+1)

.

Thirdly, by a similar deduction, the geometric mean of the second set of binomials in the

numerator can be given by

Ck2 =

n2−k2∏
j2=0

m2∏
i2=0

(
i2 + j2
j2

) 2
(m2+1)(n2−k2+1)

.

Appendix C. Preprocessing 299

Finally, the terms in the denominator are constants

Dk1,k2 =

n2−k2∏
j2=0

n1−k1∏
j1=0

m2∏
i2=0

m1∏
i1=0

(
1(

m1+n1−k1

n1−k1

)(
m2+n2−k2

n2−k2

)) 1
(m1+1)(m2+1)(n1−k1+1)(n2−k2−1)

=
1(

m1+n1−k1

n1−k1

)(
m2+n2−k2

n2−k2

) .

A similar expression for Gn1−k1,n2−k2(f̂(x, y)) can be derived.

The Arithmetic Mean of the Non-Zero Entries of the (n − k)th Order Convo-

lution Matrix

This section considers the fast computation of the arithmetic mean of the non-zero entries

in the (n − k)th order convolution matrix of the polynomial f̂(x, y). The sum of the

non-zero entries in Cn−k(f̂(x, y)) containing any one coefficient âi1,i2 is given by

n2−k2∑
j2=0

n1−k1∑
j1=0

âi1,i2

(
i1+j1
i1

)(
i2+j2
i2

)(
m1+n1−k1−(i1+j1)

m1−i1

)(
m2+n2−k2−(i2+j2)

m2−i2

)(
m1+n1−k1

m1

)(
m2+n2−k2

m2

) ,

and this expression reduces to

âi1,i2 ×
m1 + n1 − k1 + 1

m1 + 1
× m2 + n2 − k2 + 1

m2 + 1
.

C.3.2 Preprocessing the Two-Polynomial Subresultant Matrices

This section considers the determination of the optimal values of λ, θ1 and θ2 such that the

ratio of the entry of maximum magnitude to entry of minimum magnitude in Sk1,k2(f, g)

is minimised. This problem arises in Section 7.3, and the values λk1,k2 , θ1,k1,k2 and θ2,k1,k2

are given by the solution of a linear programming problem. The minimisation problem is

written as

Minimise
u

v

subject to

u ≥ P1,k1,k2(λ, θ1, θ2)
i1 = 0, . . . ,m1; j1 = 0, . . . , n1 − k1;

i2 = 0, . . . ,m2; j2 = 0, . . . , n2 − k2,

u ≥ P2,k1,k2(θ1, θ2)
i1 = 0, . . . , n1; j1 = 0, . . . ,m1 − k1;

i2 = 0, . . . , n2; j2 = 0, . . . , n2 − k2,

v ≤ P1,k1,k2(λ, θ1, θ2)
i1 = 0, . . . ,m1; j1 = 0, . . . , n1 − k1;

i2 = 0, . . . ,m2; j2 = 0, . . . , n2 − k2,

v ≤ P2,k1,k2(θ1, θ2)
i1 = 0, . . . , n1; j1 = 0, . . . ,m1 − k1;

i2 = 0, . . . , n2; j2 = 0, . . . ,m2 − k2,
v > 0,

θ1 > 0,

θ2 > 0,

α > 0.

(C.25)

300

Given the set of transformations

U = log10 (u) , V = log10 (v) , φ̄1 = log10 (θ1) , φ̄2 = log10 (θ2) , µ̄1 = log10 (λ) (C.26)

and

ᾱi1,i2,j1,j2 = log10


∣∣∣āi1,i2(m1

i1

)(
m2

i2

)(
n1−k1
j1

)(
n2−k2
j2

)∣∣∣(
m1+n1−k1
i1+j1

)(
m2+n2−k2
i2+j2

)


β̄i1,i2,j1,j2 = log10


∣∣∣b̄i1,i2(n1

i1

)(
n2

i2

)(
m1−k1
j1

)(
m2−k2
j2

)∣∣∣(
m1+n1−k1
i1+j1

)(
m2+n2−k2
i2+j2

)
 , (C.27)

the minimisation problem (C.25) can be written as

Minimise U − V

Subject to

U −i1φ̄1 −i2φ̄2 −µ̄1 ≥ ᾱi1,i2,j1,j2
i1 = 0, . . . ,m1; j1 = 0, . . . , n1 − k1;

i2 = 0, . . . ,m2; j2 = 0, . . . , n2 − k2,

U −i1φ̄1 −i2φ̄2 ≥ β̄i1,i2,j1,j2
i1 = 0, . . . , n1; j1 = 0, . . . ,m1 − k1;

i2 = 0, . . . , n2; j2 = 0, . . . ,m2 − k2,

−V +i1φ̄1 +i2φ̄2 +µ̄1 ≥ −ᾱi1,i2,j1,j2
i1 = 0, . . . ,m1; j1 = 0, . . . , n1 − k1;

i2 = 0, . . . ,m2; j2 = 0, . . . , n2 − k2,

−V +i1φ̄1 +i2φ̄2 ≥ −β̄i1,i2,j1,j2
i1 = 0, . . . , n1; j1 = 0, . . . ,m1 − k1;

i2 = 0, . . . , n2; j2 = 0, . . . ,m2 − k2.

The counters j1 and j2 appear on the right hand sides only of these inequalities, and thus

if M̄1,i1,i2 , M̄2,i1,i2 , m̄1,i1,i2 and m̄2,i1,i2 are defined as

M̄1,i1,i2 = max
j1=0,...,n1−k1
j2=0,...,n2−k2

{αi1,i2,j1,j2} i1 = 0, . . . ,m1, i2 = 0, . . . ,m2, (C.28)

M̄2,i1,i2 = max
j1=0,...,m1−k1
j2=0,...,m2−k2

{βi1,i2,j1,j2} i1 = 0, . . . , n1, i2 = 0, . . . , n2, (C.29)

m̄1,i1,i2 = min
j1=0,...,n1−k1
j2=0,...,n2−k2

{αi1,i2,j1,j2} i1 = 0, . . . ,m1, i2 = 0, . . . ,m2, (C.30)

m̄2,i1,i2 = min
j1=0,...,n1−k1
j2=0,...,n2−k2

{βi1,i2,j1,j2} i1 = 0, . . . , n1, i2 = 0, . . . , n2, (C.31)

the constraints of the minimisation problem above can be written as

U −i1φ̄1 −i2φ̄2 −µ̄1 ≥ M̄1,i1,i2 i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

U −i1φ̄1 −i2φ̄2 ≥ M̄2,i1,i2 i1 = 0, . . . , n1; i2 = 0, . . . , n2,

−V +i1φ̄1 +i2φ̄2 +µ̄1 ≥ −m̄1,i1,i2 i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

−V +i1φ̄1 +i2φ̄2 ≥ −m̄2,i1,i2 i1 = 0, . . . , n1; i2 = 0, . . . , n2.

(C.32)

Appendix C. Preprocessing 301

The minimisation in matrix form is given by

Minimise
[

1 −1 0 0 0
]

U

V

φ̄1

φ̄2

µ̄1

 Subject to A


U

V

φ̄1

φ̄2

µ̄1

 ≥ b. (C.33)

The matrix A has the structure

A =
[
Ā1 Ā2 ā1 ā2

]T
,

where the matrices Ā1 and ā1 ∈ R(m1+1)(m2+1)×5 are given by

Ā1 =



1 0 0 0 −1
...

...
...

...
...

1 0 0 −m2 −1

1 0 −1 0 −1
...

...
...

...
...

1 0 −1 −m2 −1
...

...
...

...
...

1 0 −m1 0 −1
...

...
...

...
...

1 0 −m1 −m2 −1



, ā1 =



0 −1 0 0 1
...

...
...

...
...

0 −1 0 m2 1

0 −1 1 0 1
...

...
...

...
...

0 −1 1 m2 1
...

...
...

...
...

0 −1 m1 0 1
...

...
...

...
...

0 −1 m1 m2 1


and the matrices Ā2 and ā2 ∈ R(n1+1)(n2+1)×5 are given by

Ā2 =



1 0 0 0 0
...

...
...

...
...

1 0 0 −n2 0

1 0 −1 0 0
...

...
...

...
...

1 0 −1 −n2 0
...

...
...

...
...

1 0 −n1 0 0
...

...
...

...
...

1 0 −n1 −n2 0



, ā2 =



0 −1 0 0 0
...

...
...

...
...

0 −1 0 n2 0

0 −1 1 0 0
...

...
...

...
...

0 −1 1 n2 0
...

...
...

...
...

0 −1 n1 0 0
...

...
...

...
...

0 −1 n1 n2 0



.

The vector b in (C.33) is given by

b =
[
M̄1 M̄2 −m̄1 −m̄2

]T
,

302

where the vectors M̄1, M̄2, m̄1 and m̄2 are given by

M̄1 =
[
M̄1,0,0 . . . M̄1,m1,m2

]T
∈ R(m1+1)(m2+1), (C.34)

M̄2 =
[
M̄2,0,0 . . . M̄2,n1,n2

]T
∈ R(n1+1)(n2+1), (C.35)

m̄1 =
[
m̄1,0,0 . . . m̄1,n1,n2

]T
∈ R(m1+1)(m2+1), (C.36)

m̄2 =
[
m̄2,0,0 . . . m̄2,n1,n2

]T
∈ R(n1+1)(n2+1). (C.37)

The optimal values λk1,k2 , θ1,k1,k2 and θ2,k1,k2 are given by 10µ1 , 10φ1 and 10φ2 respectively.

C.3.3 Preprocessing the Three-Polynomial Subresultant Matrices

This section considers the preprocessing of the three-polynomial subresultant matrices and

extends the minimisation problem in Appendix C.3.2. The minimisation problem (C.25)

now has the added constraints

u ≥ P3,k1,k2(λ, θ1, θ2)
i1 = 0, . . . ,m1;

i2 = 0, . . . ,m2;

j1 = 0, . . . , o1 − k1;

j2 = 0, . . . , o2 − k2,

u ≥ P4,k1,k2(ρ, θ1, θ2)
i1 = 0, . . . , o1;

i2 = 0, . . . , o2;

j1 = 0, . . . ,m1 − k1;

j2 = 0, . . . ,m2 − k2,

v ≤ P3,k1,k2(λ, θ1, θ2)
i1 = 0, . . . ,m1;

i2 = 0, . . . ,m2;

j1 = 0, . . . , o1 − k1;

j2 = 0, . . . , o2 − k2,

v ≤ P4,k1,k2(ρ, θ1, θ2)
i1 = 0, . . . , o1;

i2 = 0, . . . , o2;

j1 = 0, . . . ,m1 − k1;

j2 = 0, . . . ,m2 − k2.

Consider the same set of transformations in (C.26) and (C.27) with additional transfor-

mations log10(ρ) = µ2 and

C̄i1,i2,j1,j2 = log10


∣∣∣āi1,i2(m1

i1

)(
m2

i2

)(
o1−k1
j1

)(
o2−k2
j2

)∣∣∣(
m1+o1−k1
i1+j1

)(
m2+o2−k2
i2+j2

)


D̄i1,i2,j1,j2 = log10


∣∣∣c̄i1,i2(o1i1)(o2i2)(m1−o1

j1

)(
m2−o2
j2

)∣∣∣(
m1+o1−k1
i1+j1

)(
m2+o2−k2
i2+j2

)
 .

Appendix C. Preprocessing 303

The extended minimisation problem can therefore be written as

Minimise U − V

subject to

U −i1φ1 −i2φ2 −µ1 ≥ ᾱi1,i2,j1,j2
i1 = 0, . . . ,m1;

i2 = 0, . . . ,m2;

j1 = 0, . . . , n1 − k1;

j2 = 0, . . . , n2 − k2,

U −i1φ1 −i2φ2 ≥ β̄i1,i2,j1,j2
i1 = 0, . . . , n1;

i2 = 0, . . . , n2;

j1 = 0, . . . ,m1 − k1;

j2 = 0, . . . ,m2 − k2,

U −i1φ1 −i2φ2 −µ1 ≥ C̄i1,i2,j1,j2
i1 = 0, . . . ,m1;

i2 = 0, . . . ,m2;

j1 = 0, . . . , o1 − k1;

j2 = 0, . . . , o2 − k2,

U −i1φ1 −i2φ2 −µ2 ≥ D̄i1,i2,j1,j2

i1 = 0, . . . , o1;

i2 = 0, . . . , o2;

j1 = 0, . . . , n1 − k1;

j2 = 0, . . . , n2 − k2,

−V +i1φ1 +i2φ2 +µ1 ≥ −ᾱi1,i2,j1,j2
i1 = 0, . . . ,m1;

i2 = 0, . . . ,m2;

j1 = 0, . . . , n1 − k1;

j2 = 0, . . . , n2 − k2,

−V +i1φ1 +i2φ2 ≥ −β̄i1,i2,j1,j2
i1 = 0, . . . , n1;

i2 = 0, . . . , n2;

j1 = 0, . . . ,m1 − k1;

j2 = 0, . . . ,m2 − k2,

−V +i1φ1 +i2φ2 +µ1 ≥ −C̄i1,i2,j1,j2
i1 = 0, . . . ,m1;

i2 = 0, . . . ,m2;

j1 = 0, . . . , o1 − k1;

j2 = 0, . . . , o2 − k2,

−V +i1φ1 +i2φ2 +µ2 ≥ −D̄i1,i2,j1,j2

i1 = 0, . . . , o1;

i2 = 0, . . . , o2;

j1 = 0, . . . , n1 − k1;

j2 = 0, . . . , n2 − k2.

The sets { M̄1,i1,i2 | i1 = 0, . . . ,m1; i2 = 0, . . . ,m2 } and { M̄2,i1,i2 | i1 = 0, . . . , n1; i2 =

0, . . . , n2 } are already defined in (C.28) and (C.29) respectively. Now M̄3,i1,i2 and M̄4,i1,i2

are defined as

M̄3,i1,i2 = max{ C̄i1,i2,j1,j2 | j1 = 0, . . . , o1 − k1; j2 = 0, . . . , o2 − k2}

for i1 = 0, . . . ,m1; i2 = 0, . . . ,m2

M̄4,i1,i2 = max{ D̄i1,i2,j1,j2 | j1 = 0, . . . ,m1 − k1; j2 = 0, . . . ,m2 − k2}

for i1 = 0, . . . , o1; i2 = 0, . . . , o2. (C.38)

The sets m̄1,i1,i2 and m̄2,i1,i2 are already defined in (C.30) and (C.31)

m̄3,i1,i2 = min{ C̄i1,i2,j1,j2 | j1 = 0, . . . , o1 − k1; j2 = 0, . . . , o2 − k2}

for i1 = 0, . . . ,m1; i2 = 0, . . . ,m2

m̄3,i1,i2 = min{ D̄i1,i2,j1,j2 | j1 = 0, . . . ,m1 − k1; j2 = 0, . . . ,m2 − k2}

for i1 = 0, . . . , o1; i2 = 0, . . . , o2. (C.39)

The minimisation problem can now be written as

Minimise U − V

subject to (C.40)

U −i1φ̄1 −i2φ̄2 −µ̄1 ≥ M̄1,i1,i2 i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

U −i1φ̄1 −i2φ̄2 ≥ M̄2,i1,i2 i1 = 0, . . . , n1; i2 = 0, . . . , n2,

U −i1φ̄1 −i2φ̄2 −µ1 ≥ M̄3,i1,i2 i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

U −i1φ̄1 −i2φ̄2 −µ̄2 ≥ M̄4,i1,i2 i1 = 0, . . . , o1; i2 = 0, . . . , o2,

−V +i1φ̄1 +i2φ̄2 +µ̄1 ≥ −m̄1,i1,i2 i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

−V +i1φ̄1 +i2φ̄2 ≥ −m̄2,i1,i2 i1 = 0, . . . , n1; i2 = 0, . . . , n2,

−V +i1φ̄1 +i2φ̄2 +µ̄1 ≥ −m̄3,i1,i2 i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

−V +i1φ̄1 +i2φ̄2 +µ̄2 ≥ −m̄4,i1,i2 i1 = 0, . . . , o1; i2 = 0, . . . , o2.

304

which in matrix form is given by

Minimise
[

1 −1 0 0 0 0
]


U

V

φ̄1

φ̄2

µ̄1

µ̄2


Subject to A



U

V

φ̄1

φ̄2

µ̄1

µ̄2


≥ b. (C.41)

The matrix A is given by

A =
[
Ā1 Ā2 Ā1 Ā3 ā1 ā2 ā1 ā3

]T
,

where the matrices Ā1 and ā1 ∈ R(m1+1)(m2+1)×6 contain rows of the form

Ā1 =
[

1 0 −i1 −i2 −1 0
]
, ā1 =

[
0 −1 i1 i2 1 0

]
for i1 = 0, . . . ,m1; i2 = 0, . . . ,m2, the matrices Ā2, ā2 ∈ R(n1+1)(n2+1)×6 contain rows of

the form

Ā2 =
[

1 0 −i1 −i2 0 0
]
, ā2 =

[
0 −1 i1 i2 0 0

]
for i1 = 0, . . . , n1; i2 = 0, . . . , n2 and the matrices Ā3, ā3 ∈ R(o1+1)(o2+1)×6 contain rows

of the form

Ā3 =
[

1 0 −i1 −i2 0 −1
]
, ā3 =

[
0 −1 i1 i2 0 1

]
for i1 = 0, . . . , o1; i2 = 0, . . . , o2.

The vector b in (C.41) is given by

b =
[
M̄1 M̄2 M̄3 M̄4 −m̄1 −m̄2 −m̄3 −m̄4

]T
,

where M̄1, M̄2, m̄1 and m̄2 are already defined in (C.34, C.35, C.36, C.37) and M̄3, M̄4,

m̄3 and m̄4 are given by

M̄3 =
[
M̄1,0,0 . . . M̄1,m1,m2

]T
∈ R(m1+1)(m2+1), (C.42)

M̄4 =
[
M̄2,0,0 . . . M̄2,n1,n2

]T
∈ R(n1+1)(n2+1), (C.43)

m̄3 =
[
m̄1,0,0 . . . m̄1,m1,m2

]T
∈ R(m1+1)(m2+1), (C.44)

m̄4 =
[
m̄2,0,0 . . . m̄2,n1,n2

]T
∈ R(n1+1)(n2+1). (C.45)

The optimal values λk1,k2 , ρk1,k2 , θ1,k1,k2 and θ2,k1,k2 are given by 10µ1 , 10µ2 , 10φ1 and

10φ2 .

Bibliography

[1] Aigner, M., Poteaux, A., and Jüttler, B. Numerical and Symbolic Scientific

Computing. Springer-Verlag Wien, 2012, ch. Approximate Implicitization of Space

Curves, pp. 1–19.

[2] Alkhaldi, N., and Winkler, J. R. Blind image deconvolution using the Sylvester

resultant matrix. In 2015 IEEE International Conference on Image Processing (ICIP)

(Sept 2015), IEEE, pp. 784–788.

[3] Barton, M., and Jüttler, B. Computing roots of polynomials by quadratic

clipping. Computer Aided Geometric Design 24, 3 (Apr. 2007), 125–141.

[4] Berchtold, J., and Bowyer, A. Robust arithmetic for multivariate Bernstein-

form polynomials. Computer-Aided Design 32, 11 (Sept. 2000), 681–689.

[5] Bini, D. A., and Boito, P. Structured matrix-based methods for polynomial ∈-

gcd: analysis and comparisons. In Proc. 2007 International Symposium on Symbolic

and Algebraic Computation (2007), ACM Press, pp. 9–16.

[6] Bini, D. A., and Boito, P. Numerical Methods for Structured Matrices and Ap-

plications. Birkhäuser Basel, 2010, ch. A fast algorithm for approximate polynomial

gcd based on structured matrix computations, pp. 155–173.

[7] Bini, D. A., and Gemignani, L. Bernstein-Bezoutian matrices. Theoretical Com-

puter Science 315, 2-3 (May 2004), 319–333.

[8] Bini, D. A., Gemignani, L., and Winkler, J. R. Structured matrix methods for

CAGD: an application to computing the resultant of polynomials in the Bernstein

basis. Numerical Linear Algebra with Applications 12, 8 (Oct. 2005), 685–698.

[9] Bourne, M., Winkler, J. R., and Su, Y. The computation of the degree of an ap-

proximate greatest common divisor of two Bernstein polynomials. Applied Numerical

Mathematics 111 (Jan. 2017), 17–35.

[10] Bourne, M., Winkler, J. R., and Su, Y. A non-linear structure-preserving

matrix method for the computation of the coefficients of an approximate greatest

common divisor of two Bernstein polynomials. Journal of Computational and Applied

Mathematics 320 (Aug. 2017), 221–241.

[11] Brent, R. P. An algorithm with guaranteed convergence for finding a zero of a

function. The Computer Journal 14, 4 (1971), 422–425.

305

306

[12] Brown, W. S., and Traub, J. F. On Euclid’s algorithm and the theory of subre-

sultants. Journal of the ACM 18, 4 (Oct. 1971), 505–514.

[13] Chionh, E.-W., and Goldman, R. N. Using multivariate resultants to find the

implicit equation of a rational surface. The Visual Computer 8, 3 (May 1992), 171–

180.

[14] Cohen, J. S. Computer Algebra and Symbolic Computation: Elementary Algorithms.

A. K. Peters, Ltd., 2002.

[15] Corless, R. M., Gianni, P. M., Trager, B. M., and Watt, S. M. The singular

value decomposition for polynomial systems. In Proc. 1995 International Symposium

on Symbolic and Algebraic Computation (1995), A. Levelt, Ed., vol. 1, ACM Press,

pp. 195–207.

[16] Corless, R. M., Watt, S. M., and Zhi, L. QR factoring to compute the GCD

of univariate approximate polynomials. IEEE Transactions on Signal Processing 52,

12 (Dec. 2004), 3394–3402.

[17] Daniel, M., and Daubisse, J.-C. The numerical problem of using Bézier curves

and surfaces in the power basis. Computer Aided Geometric Design 6, 2 (May 1989),

121–128.

[18] de Casteljau, P. Courbes et surfaces à pôles. Tech. rep., Citroën, Paris, 1963.

[19] Dokken, T., and Skytt, V. Geometric Modelling, Numerical Simulation, and

Optimization. Springer-Verlag, Berlin, 2007, ch. Intersection algorithms and CAGD,

pp. 41–90.

[20] Eliás, J., and Źıtko, J. Approximate polynomial GCD. In Programs and Al-

gorithms of Numerical Mathematics 16 (Prague, 2013), J. Chleboun, K. Segeth,

J. Š̀ıstek, and T. Vejchodskỳ, Eds., pp. 63–68.

[21] Emiris, I. Z., Galligo, A., and Lombardi, H. Certified approximate univariate

GCDs. Journal of Pure and Applied Algebra 117-118 (May 1997), 229–251.

[22] Farin, G. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design

3, 2 (1986), 83–127.

[23] Farin, G. Curves and Surfaces for Computer Aided Geometric Design, 4th ed., vol. i.

Academic Press, 1997.

[24] Farin, G. E., Hoschek, J., and Kim, M.-S., Eds. Handbook of Computer Aided

Geometric Design. Elsevier, 2002.

[25] Farouki, R., and Goodman, T. On the optimal stability of the bernstein basis.

Mathematics of Computation of the American Mathematical Society 65, 216 (1996),

1553–1566.

[26] Farouki, R. T. On the stability of transformations between power and Bernstein

polynomial forms. Computer Aided Geometric Design 8, 1 (Feb. 1991), 29–36.

Bibliography 307

[27] Farouki, R. T. The Bernstein polynomial basis: A centennial retrospective. Com-

puter Aided Geometric Design 29, 6 (Aug. 2012), 379–419.

[28] Farouki, R. T., and Rajan, V. On the numerical condition of polynomials in

bernstein form. Computer Aided Geometric Design 4, 3 (1987), 191–216.

[29] Farouki, R. T., and Rajan, V. Algorithms for polynomials in Bernstein form.

Computer Aided Geometric Design 5, 1 (June 1988), 1–26.

[30] Foster, L. V. Generalizations of Laguerre’s method: higher order methods. SIAM

Journal on Numerical Analysis 18, 6 (1981), 1004–1018.

[31] Gao, S. Communications, Information and Network Security. Springer, Boston,

MA, 2002, ch. A new algorithm for decoding Reed-Solomon codes, pp. 55–68.

[32] Gao, S., Kaltofen, E., May, J., Yang, Z., and Zhi, L. Approximate factor-

ization of multivariate polynomials via differential equations. In Proc. 2004 Interna-

tional Symposium on Symbolic and Algebraic Computation (2004), ACM, New York,

pp. 167–174.

[33] Geddes, K. O., Czapor, S. R., and Labahn, G. Algorithms for Computer

Algebra. Springer, Norwell, MA, 1992.

[34] Glassner, A. S., Ed. Graphics Gems. Academic Press, 1990.

[35] Goldman, R. N., Sederberg, T. W., and Anderson, D. Vector elimination

: A technique for the intersection of planar parametric rational polynomial curves.

Computer Aided Geometric Design 1, 4 (Dec. 1984), 327–356.

[36] Golub, G. H., and van Loan, C. F. Matrix Computations, 3rd ed. Johns Hopkins

University Press, 1996.

[37] Hansen, E., Patrick, M., and Rusnak, J. Some modifications of Laguerre’s

method. BIT Numerical Mathematics 17, 4 (Dec. 1977), 409–417.

[38] Hoschek, J., and Lasser, D. Fundamentals of Computer Aided Geometric Design.

A. K. Peters, Ltd., Natick, MA, 1993.

[39] Kaltofen, E., Yang, Z., and Zhi, L. Approximate greatest common divisors of

several polynomials with linearly constrained coefficients and singular polynomials. In

Proc. 2006 Internation Symposium on Symbolic and Algebraic Computation (2006),

ACM, New York, p. 169.

[40] Kaltofen, E., Yang, Z., and Zhi, L. Symbolic-Numeric Computation. Birkhäuser,

Basel, 2007, ch. Structured low rank approximation of a Sylvester matrix, pp. 69–83.

[41] Knuth, D. The Art of Computer Programming : Fundamental Algorithms. Pearson

Education, 1997.

[42] Laidacker, M. Another theorem relating Sylvester’s matrix and the greatest com-

mon divisor. Mathematics Magazine 42, 3 (May 1969), 126–128.

308

[43] Lane, J. M., and Riesenfeld, R. F. A theoretical development for the com-

puter generation and display of piecewise polynomial surfaces. IEEE Transactions

on Pattern Analysis and Machine Intelligence 2, 1 (Jan. 1980), 35–46.

[44] Li, B., Yang, Z., and Zhi, L. Fast Low Rank Approximation of a Sylvester Matrix

by Structured Total Least Norm. J.JSSAC 11, 3,4 (2005), 165–174.

[45] Madsen, K. A root-finding algorithm based on Newton’s method. BIT Numerical

Mathematics 13, 1 (Mar. 1973), 71–75.

[46] Marsh, D. Applied Geometry for Computer Graphics and CAD, 2nd ed. Springer-

Verlag, London, 2005.

[47] Mørken, K., and Reimers, M. An unconditionally convergent method for com-

puting zeros of splines and polynomials. Mathematics of Computation 76, 258 (Apr.

2007), 845–865.

[48] Moses, J., and Yun, D. Y. Y. The EZ GCD algorithm. In Proc. 1973 ACM

Annual Conference (1973), ACM, New York, pp. 159–166.

[49] Musser, D. R. Algorithms for Polynomial Factorization. PhD thesis, The University

of Wisconsin, 1971.

[50] Noda, M.-T., and Sasaki, T. Approximate GCD and its application to ill-

conditioned algebraic equations. Journal of Computational and Applied Mathematics

38, 1-3 (Dec. 1991), 335–351.

[51] O’Rourke, J. Computational Geometry in C, 2nd ed. Cambridge University Press,

Cambridge, 1998.

[52] Peters, G., and Wilkinson, J. H. Practical problems arising in the solution of

polynomial equations. IMA Journal of Applied Mathematics 8, 1 (1971), 16–35.

[53] Pillai, S., and Liang, B. Blind image deconvolution using a robust GCD approach.

IEEE Transactions on Image Processing 8, 2 (Feb. 1999), 295–301.

[54] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.

Numerical recipes in C, vol. 2. Cambridge university press Cambridge, 1996.

[55] Rosen, J. B., Park, H., and Glick, J. Structured total least norm for nonlinear

problems. SIAM Journal on Matrix Analysis and Applications 20, 1 (1998), 14–30.

[56] Schönhage, A. Quasi-gcd computations. Journal of Complexity 1, 1 (1985), 118–

137.

[57] Sederberg, T. W. Planar piecewise algebraic curves. Computer Aided Geometric

Design 1, 3 (Dec. 1984), 241–255.

[58] Sederberg, T. W. Applications to computer aided geometric design. In Proc.

Symposia in Applied Mathematics (1998), vol. 53, pp. 67–89.

Bibliography 309

[59] Sederberg, T. W., Anderson, D., and Goldman, R. N. Implicit representation

of parametric curves and surfaces. Computer Vision, Graphics, and Image Processing

28, 1 (Oct. 1984), 72–84.

[60] Sederberg, T. W., and Parry, S. R. Comparison of three curve intersection

algorithms. Computer-Aided Design 18, 1 (Jan. 1986), 58–63.

[61] Sederberg, T. W., White, S. C., and Zundel, A. K. Fat arcs: A bounding

region with cubic convergence. Computer Aided Geometric Design 6, 3 (Aug. 1989),

205–218.

[62] Szafnicki, B. On the degree elevation of Bernstein polynomial representation. Jour-

nal of Computational and Applied Mathematics 180, 2 (Aug. 2005), 443–459.

[63] Uspensky, J. Theory of Equations. McGraw-Hill Book Co., 1948.

[64] Winkler, J. R. Polynomial basis conversion made stable by truncated singular

value decomposition. Applied Mathematical Modelling 21, 9 (Sept. 1997), 557–568.

[65] Winkler, J. R. High order terms for condition estimation of univariate polynomials.

SIAM Journal on Scientific Computing 28, 4 (2006), 1420–1436.

[66] Winkler, J. R. Structured matrix methods for the computation of multiple roots of

a polynomial. Journal of Computational and Applied Mathematics 272 (Dec. 2014),

449–467.

[67] Winkler, J. R. Polynomial computations for blind image deconvolution. Linear

Algebra and its Applications 502 (Aug. 2016), 77–103.

[68] Winkler, J. R., and Allan, J. D. Structured total least norm and approximate

GCDs of inexact polynomials. Journal of Computational and Applied Mathematics

215, 1 (May 2008), 1–13.

[69] Winkler, J. R., and Hasan, M. A non-linear structure preserving matrix method

for the low rank approximation of the Sylvester resultant matrix. Journal of Compu-

tational and Applied Mathematics 234, 12 (Oct. 2010), 3226–3242.

[70] Winkler, J. R., and Hasan, M. An improved non-linear method for the com-

putation of a structured low rank approximation of the Sylvester resultant matrix.

Journal of Computational and Applied Mathematics 237, 1 (Jan. 2013), 253–268.

[71] Winkler, J. R., Hasan, M., and Lao, X. Two methods for the calculation of

the degree of an approximate greatest common divisor of two inexact polynomials.

Calcolo 49, 4 (Dec. 2012), 241–267.

[72] Winkler, J. R., and Lao, X. The calculation of the degree of an approximate

greatest common divisor of two polynomials. Journal of Computational and Applied

Mathematics 235, 6 (Jan. 2011), 1587–1603.

[73] Winkler, J. R., Lao, X., and Hasan, M. The computation of multiple roots

of a polynomial. Journal of Computational and Applied Mathematics 236, 14 (Aug.

2012), 3478–3497.

310

[74] Winkler, J. R., and Yang, N. Resultant matrices and the computation of the

degree of an approximate greatest common divisor of two inexact Bernstein basis

polynomials. Computer Aided Geometric Design 30, 4 (May 2013), 410 – 429.

[75] Yang, N. Structured Matrix Methods for Computations on Bernstein Basis Polyno-

mials. PhD thesis, The University of Sheffield, 2013.

[76] Yun, D. Y. On square-free decomposition algorithms. In Proc. 3rd ACM Symposium

on Symbolic and Algebraic Computation (1976), ACM, New York, pp. 26–35.

[77] Zarowski, C. J., Ma, X., and Fairman, F. W. QR-factorization method for

computing the greatest common divisor of polynomials with inexact coefficients. IEEE

Transactions on Signal Processing 48, 11 (Nov. 2000), 3042–3051.

[78] Zeng, Z. Computing multiple roots of inexact polynomials. Mathematics of Com-

putation 74, 250 (2005), 869–903.

[79] Zeng, Z., and Dayton, B. H. The approximate GCD of inexact polynomials part

ii : a multivariate algorithm. In Proc. 2004 International Symposium on Symbolic

and Algebraic Computation (2004), pp. 320–327.

[80] Zhi, L., and Yang, Z. Computing approximate GCD of multivariate polynomials

by structure total least norm. MM Research Preprint, 23 (Dec. 2004), 388–401.

[81] Zippel, R. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic

Computation. EUROSAM 1979. Lecture Notes in Computer Science (1979), E. W.

Ng, Ed., vol. 72, Springer, Berlin, pp. 216–226.

[82] Zippel, R. Interpolating polynomials from their values. Journal of Symbolic Com-

putation 9, 3 (Mar. 1990), 375 – 403.

	Abstract
	Dedications
	List of Tables
	List of Figures
	Symbols and Notation
	Introduction
	A Brief History of CAGD
	Curves and Surfaces and Their Representations
	Intersections of Curves and Surfaces
	Polynomial Real Root Finding
	Bounds on the Number and Size of Real Roots of a Polynomial and Root Isolation Techniques
	Polynomial Root Finding Algorithms
	Roots Computed by MATLAB roots()

	Polynomial Factorisation Algorithms
	Gauss' Algorithm
	Musser's Polynomial Factorisation Algorithm

	The Condition of a Multiple Root
	The Pejorative Manifold of a Polynomial
	Methods for the Computation of the GCD and AGCD
	Polynomial GCD Computation Using the Sylvester Matrix
	The Bézoutian Matrix
	The GCD of Two Polynomials in Bernstein Form
	Bivariate Polynomial GCD

	Conclusion

	Curves, Surfaces and Polynomial Representations
	Bézier Curves and Surfaces
	The Bézier Curve
	The Rectangular Tensor-Product Bézier Surface Patch
	The Triangular Bézier Surface Patch

	The Bernstein Polynomial Representation
	The Univariate Polynomial in Bernstein Form
	The Bivariate Bernstein Polynomial over a Rectangular Domain
	The Bivariate Bernstein Polynomial over the Triangular Domain

	Conclusion

	The Univariate Polynomial GCD - The Two Polynomial Problem
	The Computation of the Degree of the AGCD of Two Univariate Polynomials in Bernstein Form
	The Degree of the GCD by the Subresultant Matrix Methods
	The Sylvester Matrix and the Subresultant Matrix Sequence
	The Construction of the Subresultant Matrix Sequence
	Variants of the Subresultant Matrices

	Methods for the Computation of the Degree of the GCD
	The Degree of the GCD by Singular Values
	The Degree of the GCD by QR Decomposition
	The Degree of the GCD by Residuals
	The QR Decomposition of the Sequence of Subresultant Matrices
	Exceptions to the Method of Computing the Degree of the AGCD

	The Optimal Variant of the Subresultant Matrices for the Computation of the Degree of the GCD
	Preprocessing the Subresultant Matrices
	Normalisation
	Computing the Optimal Values of and

	The Coefficients of Cofactor Polynomials and Matrix Low Rank Approximations
	The Coefficients of Cofactor Polynomials by Least Squares
	The Coefficients of Cofactor Polynomials by STLN

	Conclusion

	The Univariate Polynomial Factorisation Algorithm
	Modifications to the GCD Computation
	Bounds on the Degree of the GCD of a Polynomial and its Derivative
	Bounds for Numerical Rank Determination

	Deconvolution in the Factorisation Algorithm
	Separate Deconvolution (SD)
	Batch Deconvolution (BD)
	Batch Deconvolution with Structured Total Least Norm (BDSTLN)
	Constrained Batch Deconvolution (BDC)
	Constrained Batch Deconvolution with STLN (BDCSTLN)
	Results

	Univariate Root Finding Results
	Conclusion

	The Univariate Polynomial GCD - The Three Polynomial Problem
	The Degree of the Three-Polynomial GCD
	Optimal Variants of the (2 3) and (3 3) Partitioned Subresultant Matrices
	Preprocessing the Three-Polynomial Subresultant Matrices
	The Minimisation Problem

	Approximating the Coefficients of Cofactor Polynomials and the GCD
	Results
	Conclusion

	GCD of Bivariate Polynomials over a Triangular Domain
	The Bivariate Polynomial Square-Free Factorisation Algorithm
	The GCD of Two or Three Bivariate Polynomials in Bernstein Form over a Triangular Domain
	The Degree of the GCD of Two Bivariate Polynomials
	The Degree of the GCD of Three Polynomials

	Variants of the Subresultant Matrices
	The Two-Polynomial Subresultant Matrices
	The Three-Polynomial Subresultant Matrices

	Preprocessing of the Bivariate Subresultant Matrices
	Approximating the Coefficients of the Cofactor Polynomials and the GCD
	Results
	Conclusion

	GCD of Bivariate Polynomials over a Rectangular Domain
	The GCD of Two or Three Bivariate Polynomials in Bernstein Form Defined over a Rectangular Domain
	The GCD of Three Bivariate Polynomials in Bernstein Form over a Rectangular Domain

	Variants of the Subresultant Matrices
	Preprocessing
	Methods for the Computation of the Degree of the GCD
	Approximating the Coefficients of the Cofactor Polynomials and the GCD
	Results
	Examples of the Two-Polynomial Problem
	Examples of the Three-Polynomial Problem

	Conclusion

	Conclusion
	Thesis Conclusion
	Suggestions for Future Research

	Appendices
	Polynomials in Bernstein Form
	Degree Elevation
	The Degree Elevation of Univariate Polynomials in Bernstein Form

	Conversions Between the Bernstein Basis and Power Basis
	Basis Conversion for Univariate Polynomials

	De Casteljau's Algorithm

	Subresultant Matrix Sequences
	The Subresultant Matrix Sequence for Univariate Polynomials in Bernstein Form
	Constructing the Three-Polynomial Subresultant Matrix Sequence

	The Subresultant Matrix Sequence for Polynomials in Bernstein Form Defined over a Triangular Domain
	The Subresultant Matrix Sequence for Polynomials in Bernstein Form Defined over a Rectangular Domain

	Preprocessing
	Preprocessing the Subresultant Matrices of Univariate Polynomials in Bernstein Form
	Preprocessing the Three-Polynomial Subresultant Matrices

	Preprocessing the Subresultant Matrices of Polynomials in Bernstein Form Defined over a Triangular Domain
	The Arithmetic Mean of the Non-Zero Entries of the (n - k)th Order Convolution Matrix
	The Geometric Mean of the Non-Zero Entries of the (n-k)th Order Convolution Matrix
	Preprocessing the Two-Polynomial Subresultant Matrices
	Preprocessing the Three-Polynomial Subresultant Matrices

	Preprocessing the Subresultant Matrices of Bivariate Polynomials Defined over a Rectangular Domain
	The Geometric Mean of the Non-Zero Entries of the (n-k)th Order Convolution Matrix
	Preprocessing the Two-Polynomial Subresultant Matrices
	Preprocessing the Three-Polynomial Subresultant Matrices

