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Abstract 

Background: Models predicting return to walking after stroke might allow 

accurate prognostication, and planning of rehabilitation. This study aimed to 

construct prognostic models to predict ability to walk 10m or more 

independently at 8weeks and 6months after stroke. 

Method: All participants (N=593) were enrolled in the “Dopamine Augmented 

Rehabilitation in Stroke” trial, and were unable to walk 10m or more 

independently at baseline.  

Imaging predictor variables (from the first available CT scan) included where 

relevant: infarct size and location; vascular territory affected; haematoma 

location and volume; presence of atrophy, white matter hypodensities, old 

stroke lesions, mass effect, or hydrocephalus. Demographic variables 

included age, gender, and Oxford Community Stroke Project syndrome. 

Clinical outcomes recorded at baseline, 8weeks, and 6months included: the 

Rivermead Mobility Index (RMI); the Montreal Cognitive Assessment (MoCA), 

General Health Questionnaire-12; presence of musculoskeletal pain.  

Using forward stepwise binary logistic regression, six models were 

constructed: models 1 and 2 (walking ability after ischaemic stroke); models 

3 and 4 (walking ability after intracerebral haemorrhage); and models 5 and 6 

(walking ability in the whole DARS sample). Models 1-4 utilised imaging, 

demographic, and clinical predictors; models 5 and 6 included demographic 

and clinical predictors only. 

Results: No imaging variables predicted outcome. Baseline RMI was most 

consistently predictive across all models. Baseline MoCA was also predictive, 

but with a smaller effect size than RMI. Only 68%-73% of patients were 

correctly classified by the models. The percentage of variance they explained 

was modest (20-30%). 

Discussion: This exploratory analysis utilised existing data, excluding 

predictors that might have explained additional variance. Within these 

limitations, this study suggests that initial level of mobility offers a more useful 
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prediction of mobility at up to 6months than assessment of structural brain 

impairment on CT.  
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Résumé Français 

Contexte: les modèles prédisent que le retour à la marche après un accident 

vasculaire cérébral pourraient permettre un pronostic précis et la planification 

de la réadaptation. Cette étude visait à construire des modèles pronostiques 

pour prédire la capacité des patients à marcher 10 mètres ou plus 

indépendamment à 8 semaines et 6 mois après un accident vasculaire 

cérébral.  

Méthode: Tous les participants (N = 593) ont été inscrits dans le procès 

"Dopamine Augmented Rehabilitation in Stroke", et ont été incapables de 

marcher 10 mètres indépendamment au départ. Les variables prédictives 

d'imagerie (à partir de la première tomodensitométrie disponible) incluses 

étaient significatives, et, le cas échéant, la taille et l'emplacement de 

l'infarctus; Territoire vasculaire affecté; Emplacement et volume de 

l'hématome; Présence d'atrophie, hyperintensités de la matière blanche, 

vieilles lésions d’accident vasculaire cérébral (AVC), effet de masse ou 

hydrocéphalie. Les variables démographiques comprenaient l'âge, le sexe et 

le syndrome de Oxford Community Stroke Project. Les résultats cliniques 

enregistrés à la ligne de base, 8 semaines et 6 mois comprises: Rivermead 

Mobility Index (RMI); Évaluation cognitive de Montréal (MoCA); Santé 

générale. Questionnaire-12; Présence de douleurs musculo-squelettiques. En 

utilisant la régression logistique binaire progressive par étapes, six modèles 

ont été construits: modèles 1 et 2 (capacité de marche après accident 

vasculaire ischémique); Modèles 3 et 4 (capacité de marche après une 

hémorragie); Et les modèles 5 et 6 (capacité de marche dans l'ensemble de 

l'échantillon DARS). Les modèles 1-4 utilisaient des prédicteurs d'imagerie, 

démographiques et cliniques; Les modèles 5 et 6 incluaient les prédicteurs 

démographiques et cliniques seulement.  

Résultats: aucune variable d'imagerie n'a prédit de résultat. Le RMI de 

référence était la variable prédictive la plus constante dans tous les modèles. 

Le MoCA de base était également prédictif, mais avec une taille d'effet plus 

petite que le RMI. Seulement 68% -73% des patients ont été correctement 
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classés par les modèles. Le pourcentage de variance qu'ils ont expliqué était 

modeste (20 à 30%).  

Discussion: Cette analyse exploratoire a utilisé les données existantes, à 

l'exclusion des prédicteurs qui auraient expliqué une variance 

supplémentaire. Dans le cadre de ces limites, cette étude suggère que le 

niveau initial de mobilité offre une prédiction plus utile de la mobilité jusqu'à 6 

mois que l'évaluation de l'insuffisance cérébrale structurelle sur la 

tomodensitométrie. 

Traduit par Dr Collette Isabel Stadler, Academic Clinical Fellow, University of 

Cambridge. 
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Chapter 1. Introduction 

Part 1.1 Stroke in context 

1.1.1. The epidemiology of stroke 

Every two seconds, someone in the world sustains a stroke for the first time 

(The Stroke Association, 2017c). Around 85% of strokes result from an 

occlusion of an artery, with the remaining 15% resulting from a bleed in to the 

brain parenchyma (Feigin et al., 2014). 

Although the overall incidence of stroke in the UK has reduced by 19% 

between 1990 and 2010, this still equates to around 100,000 new cases a 

year or roughly one person every 5 minutes (The Stroke Association, 2017c). 

Women tend to be slightly older than men at the time of first stroke, with a 

mean age of 80 (versus 74 for men) in England, Wales, and Northern Ireland, 

and 76 (versus 71 for men) in Scotland (The Stroke Association, 2017c). 

However, around 25% of strokes happen in adults of working age. Although 

the peak incidence of stroke remains in the over-70s age group, in England 

the proportion of strokes sustained by those aged 40-69 has risen from 33.7% 

in 2007 to 38.2% in 2016 (Public Health England, 2018). This is significant, as 

those who survive a stroke at a younger age might be expected to spend a 

greater number of years of their lives living with disability and in many cases 

requiring carer support. 

The number of deaths attributable to stroke in the UK have almost halved 

between 1990 and 2010; however, it remains the UK’s fourth largest cause of 

death accounting for 7% of all deaths overall (The Stroke Association, 2017c). 

There are a greater number of stroke-related deaths in women (8% of female 

deaths) than in men (6% of all male deaths); presumably due in part to the 

longer life expectancy of women, and the fact that they tend to be older (and 

thus more frail) at the time of stroke (The Stroke Association, 2017c). The 

greatest mortality from stroke is within the first 30 days, with around one 
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person in eight who has a stroke dying within this time (The Stroke 

Association, 2017c).  

Those who survive a stroke are often left with profound impairments. There 

are 1.2million stroke survivors in the UK, of whom: 75% have arm and/ or leg 

weakness; 50% have problems with bladder control; 45% have swallowing 

problems; 30% have aphasia; and 20% have long-term visual problems (The 

Stroke Association, 2017c). The Auckland Stroke Outcomes Study found that 

after five years, 15% of stroke survivors were living in institutional care (Feigin 

et al., 2010).  

1.1.1.1. The wider impact of stroke 

In 2010, the direct cost of stroke care to the UK’s National Health Service 

(NHS) was estimated at around £3billion annually (Department of Health, 

2010). A more recent study by The Stroke Association (2017a) estimated that 

stroke care cost the NHS £3.5billion in 2015, and forecast that this figure could 

rise to £10.2billion by 2035. The annual cost of stroke care to UK society as a 

whole is £25.6billion (The Stroke Association, 2017b). This equates to an 

average societal cost of £45,409 per patient in the first year, and £24,778 per 

patient per year thereafter (The Stroke Association, 2017b). Around 

£15.8billion of this £25.5billion annual cost is the value of “informal” or unpaid 

care provided to stroke survivors by family members and friends (The Stroke 

Association, 2017b). The cost of lost economic productivity is more modest by 

comparison; around £1.6billion per year (The Stroke Association, 2017b).   

The emotional cost to stroke survivors and their families is, of course, 

substantial. A recent survey of stroke survivors by the Stroke Association 

found that 67% had experienced anxiety and 59% had felt depressed: but two-

thirds did not feel that their emotional needs were adequately addressed (The 

Stroke Association, 2013). A similar proportion of partners reported 

relationship strain, and one-in-ten had either ended their relationship or had 

considered doing so (The Stroke Association, 2013). Rates of anxiety and 

depression amongst carers were comparable to those seen in stroke survivors 

themselves, at 79% and 56% respectively. 
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1.1.1.2. The global impact of stroke 

On a global scale, stroke accounts for 6.7million deaths per year: almost one-

third of the total number of deaths worldwide that are attributable to 

cardiovascular disease (The World Health Organisation, 2014c). Another way 

of conceptualising the impact of stroke is to measure the number of years of 

healthy life lost to this condition each year (either by death, or by survival with 

disability): a concept termed “Disability-Adjusted Life Years” (DALYs;  The 

World Health Organisation (2014b)). Viewed in these terms, in 2012 stroke 

accounted for the loss of over 141million years of healthy life worldwide (The 

World Health Organisation, 2014b). Worryingly, the incidence of stroke is 

projected to increase, due to a general aging of the world population (The 

World Health Organisation, 2014a)  and an increased prevalence of 

modifiable risk factors such as hypertension, diabetes, tobacco use, and 

obesity (Mendis, 2013). 

Internationally, the burden of stroke is not evenly borne. Mortality and disability 

rates vary ten-fold between the most- and least-affected countries (Johnston 

et al., 2009b). Regions with the highest mortality are Eastern Europe, North 

Asia, central Africa, and the South Pacific (Johnston et al., 2009b). The 

countries most profoundly affected are those with low- and middle-incomes, 

which account for 85% of all strokes each year, and which bear 87% of all the 

DALYs lost to stroke (Johnston et al., 2009b). The period between 1970 and 

2008 has seen a 42% fall in stroke incidence in high income countries, but a 

100% increase in incidence in low- and middle-income nations (Johnston et 

al., 2009b). In the absence of effective acute stroke services (as is the case 

in many developing countries), 62% of those who sustain a stroke will be dead 

or dependent at six months (Johnston et al., 2009b). 

1.1.2. Defining “stroke” 

This Thesis is set within the context of a large randomised controlled trial of a 

novel stroke rehabilitation intervention (DARS; Dopamine Augmented 

Rehabilitation in Stroke, ISRCTN99643613) (Bhakta et al., 2014). The 

purpose and methods of this trial will be described later, but at present it must 

be noted that participants were enrolled on the basis of the World Health 
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Organisation’s clinical criteria (Bhakta et al., 2014), which define “stroke” as 

“rapidly developed clinical signs of focal (or global) disturbance of cerebral 

function, lasting more than 24hours or leading to death, with no apparent 

cause other than of vascular origin” (Aho et al., 1980). Although widely 

adopted, this definition has been criticised (Sacco et al., 2013). Firstly, stroke 

rarely results in “global” cerebral dysfunction (Sacco et al., 2013). Secondly, 

the 24-hour timeframe that distinguishes “stroke” from “transient ischaemic 

attack” was arbitrarily defined (Sacco et al., 2013). As imaging technology has 

matured, it has become apparent that patients with a “transient” clinical deficit 

may have signs of established infarction on scans; conversely, chronic 

ischaemia may cause persistent clinical manifestations in the absence of 

radiographic evidence of an infarct (Sacco et al., 2013). Finally, the WHO 

definition of stroke makes no reference to the underlying pathophysiology of 

this condition. It is therefore important to distinguish between a patient’s 

clinical presentation (“stroke”), and terms that describe pathophysiological 

processes (“ischaemic stroke” or “haemorrhage”) or scan findings (“infarct” or 

“haematoma”). 

The language used in the literature to describe a stroke syndrome attributable 

to haemorrhage is sometimes confusing. The term “intracerebral 

haemorrhage” is sometimes used to cover both spontaneous events and 

parenchymal bleeding due to trauma, and may also encompass subarachnoid 

haemorrhage (Sacco et al., 2013). The alternative expression “haemorrhagic 

stroke” is  ambiguous since it may denote a primary haemorrhage or 

haemorrhagic transformation of an underlying infarct (Sacco et al., 2013). This 

Thesis will adopt the term “intracerebral haemorrhage” (ICH), defined as “a 

focal collection of blood within the brain parenchyma or ventricular system that 

is not caused by trauma” (Sacco et al., 2013). Patients with primary 

subarachnoid haemorrhage will not be considered here. It is important to note 

that the definition of ICH as stated above includes both primary ICH and 

confluent parenchymal haematomas which arise as a result of haemorrhagic 

transformation of an underlying infarct (Sacco et al., 2013). The case for 

including these lesions is that the management of a confluent secondary ICH 

is analogous to a spontaneous primary ICH (Sacco et al., 2013). Although the 

term “intracerebral” strictly refers to a process occurring within the cerebral 
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hemispheres, for simplicity the expression “ICH” will also be used here to 

encompass spontaneous haemorrhage in to the parenchyma of the 

cerebellum or brain stem. 

1.1.3. What constitutes optimal care for people with stroke? 

The care of people with stroke focuses initially upon minimising the extent of 

tissue injury, preventing secondary complications, and identifying and treating 

modifiable risk factors. Subsequently, multidisciplinary rehabilitation seeks to 

restore or compensate for lost functions, with the overall aim of maximising 

independence and autonomy. The principles of rehabilitation will be examined 

in detail below: but first, it is perhaps worth reviewing in brief what constitutes 

“optimal” acute care in stroke. In doing so, reference will be made to the most 

recent UK guidelines for stroke care (The Royal College of Physicians, 2016), 

whilst acknowledging that practice may vary between nations depending upon 

local resources and policies.   

1.1.3.1. Raising public awareness of stroke symptoms 

Optimum care perhaps begins with the patient themselves recognising the 

symptoms of an acute stroke, and presenting promptly to medical services. 

High-profile public health campaigns, such as the UK Department of Health’s 

recent “Act FAST” initiative (Public Health England Campaigns Resource 

Centre, 2009), use multi-media marketing techniques to raise public 

awareness of stroke symptoms and to emphasise the importance of seeking 

medical help promptly (Dombrowski et al., 2013). Nevertheless, a review of 

several such campaigns across a number of countries concluded that there is 

no evidence to suggest that they actually change public behaviour 

(Lecouturier et al., 2010). Although the Act FAST campaign resulted in a short-

term fall in delays in seeking and receiving help in those with suspected stroke 

(Wolters et al., 2015), a survey of general practitioners reported scepticism of 

its longer-term impact on public behaviour  (Dombrowski et al., 2013). Claims 

made by ministers at the time that the campaign saved 642 people from death 

or serious disability were based upon modelling conducted by the advertising 

agency involved in the design of the campaign (Dudley, 2011). These models 

formed part of a cost-effectiveness (“return on marketing investment”) 
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analysis, but have been criticised for assuming firstly that thrombolysis is a 

potentially life-saving intervention (the true aim of this treatment is to prevent 

disability), and secondly that an implausibly-high 56% of patients who 

presented to hospital within three hours of a stroke would be eligible to receive 

this intervention (Dudley, 2011). 

1.1.3.2. Acute investigation and management of ischaemic stroke 

An ischaemic stroke typically consists of a “core” of irreversibly-infarcted 

tissue, surrounded by a zone of less-severe ischaemia. This so-called 

“penumbra” contains tissue that is under oxidative stress, but is potentially 

salvageable with optimum treatment (Iadecola and Anrather, 2011). The basis 

of treatment of ischaemic stroke is therefore firstly to minimise the extent of 

permanent tissue injury, and secondly to maximise salvage of the “ischaemic 

penumbra”.  

The primary purpose of acute imaging in stroke is to differentiate between 

ischaemic stroke and ICH, to exclude other conditions that might mimic stroke 

(The Royal College of Physicians, 2016), but also to identify substantial 

infarcts that carry a greater risk of haemorrhagic transformation (Kaste et al., 

1995, Hacke et al., 1998). Non-contrast computerised tomography (CT) 

scanning performed early after ictus is highly sensitive for acute ICH, and is 

therefore the first-line investigation of choice (Macellari et al., 2014, Sacco et 

al., 2013). National clinical guidelines currently recommend that patients with 

suspected stroke are scanned urgently as soon as possible after presentation, 

within a maximum of one hour of presentation (The Royal College of 

Physicians, 2016).  

For those with ischaemic stroke, intravenous thrombolysis using the 

recombinant tissue plasminogen activator alteplase has been shown to 

reduce the risk of death or dependency at 3-6 months (odds ratio (OR) 0.85, 

95% confidence interval (CI) 0.78-0.93; Wardlaw et al. (2014b)). This 

treatment should be administered as quickly as possible; ideally within 3 hours 

of ictus if the time of onset of symptoms is known, although treatment may be 

considered at up to 4.5 hours on a case-by-case basis (The Royal College of 

Physicians, 2016). Although treatment with alteplase carries an increased risk 
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of both fatal and non-fatal  ICH within the first 7 to 10 days (OR 3.75, CI 3.11-

4.51; Wardlaw et al. (2014b)), mortality at six months does not appear to be 

increased (The Royal College of Physicians, 2016). Furthermore, older 

patients (aged 80 or over) benefitted equally from treatment when compared 

those under 80, particularly when the drug was administered within 3 hours of 

symptom onset (Wardlaw et al., 2014b). Alteplase must be given by staff 

experienced in stroke thrombolysis. Prior to initiation of treatment the patient’s 

blood pressure must be controlled to less than 185/110mmHg. Following 

treatment, patients must be cared for on a dedicated hyper-acute stroke unit 

(The Royal College of Physicians, 2016). 

Historically thrombolysis has been the only available means of restoring brain 

perfusion after ischaemic stroke. However, there is now growing evidence to 

suggest that endovascular clot retrieval (“thrombectomy”) is effective in 

reducing disability after stroke (Berkhemer et al., 2015, Campbell et al., 2015, 

Goyal et al., 2015, Goyal et al., 2016, Jovin et al., 2015, Muir et al., 2017, 

Saver et al., 2015). A meta-analysis of trials enrolling a total of 1287 patients 

with anterior circulation ischaemic stroke found that for every 2.6 patients 

treated, one would achieve a reduction in Modified Rankin Scale (mRS) score 

of at least one point. Treatment effect sizes were similar in several sub-group 

analyses, including patients aged >80, those randomised more than 300 

minutes after symptom onset, and those who were not eligible for intravenous 

alteplase (Goyal et al., 2016). The inclusion criteria for several of these trials 

specified a National Institute of Health Stroke Scale (NIHSS) score of 6 or 

more. The time between symptom onset and thrombectomy varied between 

trials; significantly, all trials that enrolled patients between 6 and 12 hours after 

stroke required evidence of viable penumbral tissue on CT perfusion (The 

Royal College of Physicians, 2016). For patients undergoing thrombectomy 

within 5 hours of symptom onset, demonstration of a large-vessel occlusion 

on CT angiography was regarded as sufficient (The Royal College of 

Physicians, 2016).  

The most recent UK guidelines for stroke care recommend that thrombectomy 

be considered for patients with an NIHSS of 6 or more, who present within 5 

hours of onset of anterior circulation symptoms attributable to a proximal 
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large-vessel thrombus. Patients with anterior circulation symptoms and 

evidence of viable brain tissue on perfusion imaging may be considered for 

thrombectomy up to 12 hours after symptom onset. Those with a large-vessel 

posterior circulation syndrome may be considered for thrombectomy within 24 

hours of ictus. In patients presenting within the time window for thrombolysis 

and with no contraindications to this intervention, a combination of initial 

treatment with intravenous alteplase followed by thrombectomy may be 

offered. For those with known contra-indications to thrombolysis but not to clot 

retrieval, thrombectomy may be considered as a “stand alone” treatment 

within 5 hours of symptom onset. Although thrombectomy is a promising 

development in acute stroke care, delivery of this intervention is dependent 

upon the availability of resources such as operating theatres, interventional 

radiologists skilled in this procedure, and other support staff. At present, there 

remain significant barriers to the widespread introduction of this treatment 

(The Royal College of Physicians, 2016). 

1.1.3.3. Secondary prevention of ischaemic stroke 

In ischaemic stroke it is recommended that, unless otherwise contra-

indicated, high-dose aspirin (300mg) be commenced as soon as possible 

within the first 24 hours and continued thereafter for two weeks (The Royal 

College of Physicians, 2016). In those without underlying atrial fibrillation (AF), 

long term antiplatelet therapy should then be initiated. Clopidogrel 75mg is 

recommended as first line; if this is not tolerated then combination treatment 

with aspirin 75mg and modified-release dipyridamole may be used (The Royal 

College of Physicians, 2016). There is no evidence to support the combined 

use of aspirin and clopidogrel  (The Royal College of Physicians, 2016), nor 

for the use of other antiplatelet agents such as ticlopidine, cilostazol, satigrel, 

sarpolgrelate, KBT 3022, or isbogrel (Sandercock et al., 2014). 

Patients who have sustained an embolic stroke as a result of permanent or 

paroxysmal AF have an annual risk of recurrent stroke of 12% (Anonymous, 

1993). Oral anticoagulants are significantly more effective than antiplatelets in 

preventing stroke in this group, with around a one-third risk reduction when 

compared to aspirin alone (Aguilar et al., 2007). Vitamin K antagonists such 

as warfarin have previously been the drug of choice for stroke prevention in 
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AF. More recently newer drugs which act to inhibit thrombin or factor Xa (non-

vitamin K oral anticoagulants; “NOAC”) have been found to be more effective 

than warfarin in stroke prevention (relative risk 0.87, 95% CI 0.77 to 0.99), 

with a lower risk of intracranial bleeding (relative risk 0.49, 95% CI 0.36 to 

0.66; Miller et al. (2012)). In acute stroke, there is concern that early initiation 

of anticoagulation may increase the risk of haemorrhagic transformation of the 

infarct. Current guidelines therefore recommend a two-week initial course of 

aspirin 300mg, followed  by anticoagulation with either a vitamin K antagonist 

or (in non-valvular AF) a NOAC (The Royal College of Physicians, 2016). 

Every effort should be made to identify and mitigate risk factors for bleeding 

before anticoagulation is initiated. In those judged to be at high risk of 

bleeding, aspirin alone cannot be considered a safer alternative to 

anticoagulation (The Royal College of Physicians, 2016). 

Control of cardiovascular risk factors is crucial in the secondary prevention of 

ischaemic stroke. Aggressive control of hypertension is not recommended in 

the hyperacute stage, due to concerns about further compromising cerebral 

perfusion. Early treatment of hypertension is therefore only recommended if 

there is a definite indication to do so; for example, where there is evidence of 

end-organ injury (hypertensive encephalopathy, nephropathy, or heart 

failure), or in patients who might be eligible for thrombolysis if their blood 

pressure can be reduced to <185/110mmHg. For longer-term secondary 

prevention a target systolic blood pressure (SBP) of <130mmHg is 

recommended, except in those with severe bilateral carotid stenosis in whom 

a target of 140-150mmHg is appropriate (The Royal College of Physicians, 

2016) 

Lipid lowering therapy with atorvastatin 80mg following an ischaemic stroke 

or transient ischaemic attack has been shown to reduce the risk of a 

subsequent stroke by 15%, and that of major coronary events by 35% 

(Amarenco et al., 2006). High-intensity lipid lowering treatment with 

atorvastatin 20mg-80mg should therefore be initiated as soon as possible 

after ischaemic stroke, aiming for a 40% reduction in non-high density 

lipoprotein cholesterol (The Royal College of Physicians, 2016). 



10 
 

1.1.3.4. Acute management of ICH 

Patients who sustain an ICH are at risk of deterioration, and must therefore 

be admitted to a hyper-acute stroke unit for monitoring of their conscious level  

(The Royal College of Physicians, 2016). For patients who sustain an ICH, 

treatment aimed at reducing SBP to a target of <140mmHg within the first six 

hours of stroke has been shown to reduce the risk of haematoma expansion 

within the first 72 hours (Anderson et al., 2010). For patients with deep ICH 

involving the basal ganglia, achieving a target SBP of <140mmHg does not 

appear to reduce the risk of  haematoma expansion or death, but there is a 

possible benefit in reducing the final level of disability (defined by the mRS) 

and quality of life (Anderson et al., 2013). A more aggressive target of 110-

139mmHg does not result in any significant benefit in terms of survival or final 

level of disability for those with small deep ICH (Qureshi et al., 2016). For 

those presenting with acute ICH and a SBP>150mmHg, initiation of 

antihypertensive treatment within 6 hours of stroke onset aiming for a target 

of <140mmHg is recommended (The Royal College of Physicians, 2016).  

Those patients who were anticoagulated with warfarin or a NOAC prior to their 

stroke should have their anticoagulation reversed as soon as possible. A 

combination of intravenous vitamin K and prothrombin complex concentrate 

is recommended for those taking vitamin K antagonists. For those taking 

Factor Xa inhibitors, treatment with four-factor prothrombin complex is 

recommended (The Royal College of Physicians, 2016). 

The majority of patients with ICH do not require surgery, and should be 

managed by control of hypertension and reversal of anticoagulation. The 

exceptions are patients with posterior fossa ICH and those who develop 

hydrocephalus, for whom surgical intervention may be considered (The Royal 

College of Physicians, 2016). There is no evidence to suggest that surgical 

evacuation of lobar ICH reduces the rate of death or disability at 6 months 

(Mendelow et al., 2013). 

1.1.3.5. Evidence for management on an acute stroke unit 

For both ischaemic stroke and ICH, the environment in which acute care is 

provided is of crucial importance. The use of dedicated stroke units, staffed 
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by a skilled multidisciplinary team with expertise in the care of stroke patients, 

has been shown to reduce significantly the odds of death at follow-up (median 

1 year; ) OR 0.81, CI 0.69-0.94; p=0.005), death or discharge to institutional 

care (OR 0.78, CI 0.68-0.89; p=0.0003), or death or dependency (OR 0.79, 

0.68-0.90; p=0.0007) when compared with care provided on general medical 

wards or by a “roving” stroke team (Stroke Unit Trialists Collaboration, 2013). 

Admission to a stroke unit is therefore recommended for all patients with an 

acute stroke in England (National Institute for Health and Care Excellence, 

2013, The Royal College of Physicians, 2016). 

1.1.3.6. Recommendations for rehabilitation after stroke 

Following initial stabilisation patients typically require a period of 

multidisciplinary rehabilitation. An initial rehabilitation assessment should be 

completed as soon as possible after admission to hospital. This should focus 

on impairments that might affect adversely the safety or comfort of the patient 

such as swallowing, nutritional status, skin pressure areas, continence, 

cognition, communication, and cognitive function (National Institute for Health 

and Care Excellence, 2016). A more detailed rehabilitation assessment 

should then follow, taking in to account a patient’s previous functional abilities, 

their impairment in bodily structures and functions, activity limitations and 

participation restrictions, and relevant environmental factors (National Institute 

for Health and Care Excellence, 2016). 

A rehabilitation programme should be delivered on a specialist rehabilitation 

ward (National Institute for Health and Care Excellence, 2016). In England, it 

is currently recommended that those who are able to participate should have 

a minimum of 45 minutes per day of each relevant therapy on at least five 

days a week (National Institute for Health and Care Excellence, 2016, The 

Royal College of Physicians, 2016). For selected patients with mild to 

moderate disability, early discharge home from hospital with ongoing 

rehabilitation provided by a dedicated Early Supported Discharge team is 

associated with significantly reduced lengths of stay, a lower risk of requiring 

institutional care, and a greater odds ratio of regaining independence in 

activities of daily living (Early Supported Discharge Trialists, 2009). Discharge 

to such services is therefore recommended for patients who have a safe 
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environment to return to, and who are able to transfer safely from bed to chair 

(National Institute for Health and Care Excellence, 2016, The Royal College 

of Physicians, 2016). Following discharge long-term rehabilitation should be 

provided if necessary, to facilitate participation in social roles such as 

employment, hobbies, and relationships (National Institute for Health and 

Care Excellence, 2016). Patients’ health and social care needs should be 

assessed at six months and twelve months after stroke, then annually 

thereafter, to ensure that they are receiving the care they need (National 

Institute for Health and Care Excellence, 2016)  

1.1.3.7. Current status of stroke services in the UK 

Although evidence-based guidelines are available to support best practice in 

stroke care, there has for some time been disquiet that services in the UK 

compare unfavourably with those of other European nations (Department of 

Health, 2007), despite the UK having one of the largest total healthcare 

expenditures for cardiovascular disease of any of the countries studied (Leal 

et al., 2006). Published in 2007, the National Stroke Strategy (Department of 

Health, 2007) set out ten key priorities for improving acute and long term care 

for those with stroke. Central to these recommendations was early access to 

specialist multi-disciplinary rehabilitation, with intervention beginning in the 

acute phase on an acute stroke unit then continuing through early supported 

discharge to the community and maintained thereafter into the long term 

according to need (Department of Health, 2007). At the time of publication, it 

was estimated that only around 50% of patients were able to access 

appropriate rehabilitation within the first six months after discharge 

(Department of Health, 2007). When progress towards meeting these 

strategic aims was reviewed in 2010, it was clear that development of 

rehabilitation services continued to lag behind that of acute care (Acler et al., 

2009b). Only 36% of hospitals had early supported discharge teams, with no 

consensus on how such  teams would be funded (Acler et al., 2009b). The 

National Sentinel Stroke Audit of 2010 found that around a third of patients 

did not receive therapy of the recommended intensity (Intercollegiate Stroke 

Working Party, 2011).  
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1.1.3.8. Stroke services in developing countries 

Although stroke services in the UK clearly require improvement, it is important 

to bear in mind that what is considered to be “gold standard” care in high-

income countries is beyond the means of most low- and middle-income 

nations to deliver. Unfortunately, these nations are the very ones in which the 

incidence of stroke is rising most rapidly (Feigin et al., 2009, Mendis, 2013). 

There are significant barriers to implementing intravenous thrombolysis in 

such countries, including the significant treatment cost (which is usually borne 

by the patient), delays in accessing medical help (due to lack of awareness of 

stroke symptoms or prolonged transit times to regional medical centres), and 

the paucity of scanning facilities (Mendis, 2010, Kamalakannan et al., 2016). 

There are frequently critical shortages of key health workers, and the costs of 

setting up organised stroke units may be prohibitive (Mendis, 2010). In such 

countries public health measures focusing upon the primary prevention of 

cardiovascular diseases in general may be a more efficient use of limited 

resources (Garbusinski et al., 2005). For those who sustain a stroke in 

developing countries, the focus of treatment remains on early initiation of 

aspirin (World Health Organization, 2009), as well as on the prevention of 

secondary complications such as infections and pressure ulcers (Mendis, 

2010). Multidisciplinary rehabilitation, with its focus upon mitigating disability 

and maximising independence, may have much to offer stroke survivors in 

low-income countries. Although data on the availability of rehabilitation 

services in such countries are sparse, it is probably reasonable to assume 

that there exists a substantial unmet need (The World Health Organisation, 

2011). It is likely, moreover, that many barriers exist to providing rehabilitation 

services including lack of funding for healthcare, lack of appropriately-trained 

personnel, and the centralisation of such rehabilitation services as there are 

in major population centres beyond travelling distance for those in rural 

communities (The World Health Organisation, 2011). Where rehabilitation 

services do exist, the cost of accessing them may be prohibitive, and access 

to appropriate assistive technologies is often limited (Kamalakannan et al., 

2016). The implications of unmet rehabilitation needs in developing countries 

are potentially profound, since a lack of timely and appropriate rehabilitation 

may contribute to long term limitation of activities and restriction of 
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participation, and lead to poorer quality of life and dependency upon others 

for assistance (The World Health Organisation, 2011). Epidemiological data 

on disability after stroke and on access to rehabilitation in developing 

countries are urgently needed if appropriate priorities for development of 

services are to be set (The World Health Organisation, 2011). 

1.1.4. What is “rehabilitation”? 

1.1.4.1. Definition of “rehabilitation” 

The World Health Organisation defines “rehabilitation” as “The use of all 

means aimed at reducing the impact of disabling and handicapping conditions 

and at enabling people with disabilities to achieve optimal social integration” 

(Gutenbrunner et al., 2006). The overall aim of effective rehabilitation is to 

“enable people with disabilities to lead the life that they would wish, given any 

inevitable restrictions imposed on their activities by impairments resulting from 

illness or injury” (Gutenbrunner et al., 2006). The cornerstone of rehabilitation 

practice is the World Health Organisation International Classification of 

Functioning, Disability, and Health (ICF; Figure 1.1.) (World Health 

Organisation, 2001). 

 

 

Figure 1.1. The WHO International Classification of Functioning, Disability, 
and Health (ICF) 
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1.1.4.2. The WHO International Classification of Functioning, Disability, 

and Health 

The WHO-ICF model was published in 2001, and postulates that an 

underlying health condition may cause impairment in bodily structures and 

function, which lead in turn to limitation of activities and restriction of 

participation (The World Health Organisation, 2011). In the context of the ICF, 

a “health condition” is a generic term used to describe any underlying disease 

or disorder: including genetic predispositions, or circumstances such as 

ageing (Gutenbrunner et al., 2006). “Bodily structures” are defined 

anatomically as organs, limbs, and their components (Gutenbrunner et al., 

2006). “Bodily functions” are defined primarily in physiological terms, but also 

include cognitive, mental and psychological functions (Gutenbrunner et al., 

2006). “Activity” is conceptualised as an individual’s ability to execute a tasks 

such as walking, transferring, or personal care (Gutenbrunner et al., 2006). 

“Participation” relates to the individual’s ability to fulfil their role in life situations 

such as employment, leisure pursuits, or relationships (Gutenbrunner et al., 

2006). The spectrum of dysfunction after stroke has been defined by expert 

consensus in a “core set” of ICF codes (Geyh et al., 2004). For example, 

clinically important impairments following stroke include changes in 

intellectual functions, gait pattern, inability to sequence complex movements, 

and alterations in muscle tone and power (Geyh et al., 2004). Activity 

limitations and participation restrictions may include difficulties in problem 

solving, transferring oneself, maintaining family and personal relationships, or 

acquiring and keeping a job (Geyh et al., 2004).   

Important though they are, characteristics intrinsic to the individual (physical 

impairment and limitation of activities) are themselves insufficient to define the 

construct of “disability”. An individual’s functional abilities are often profoundly 

influenced by wider contextual factors (Gutenbrunner et al., 2006), both 

environmental and personal. Environmental factors are external to the 

individual, yet make up the background of their lives (Gutenbrunner et al., 

2006). They comprise not only the built environment, but also legislation (such 

as anti-discrimination laws), and societal attitudes (Gutenbrunner et al., 2006). 

Depending upon circumstances they may serve as barriers to or as facilitators 
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of individual function (Gutenbrunner et al., 2006). Personal factors are intrinsic 

to the individual but not related directly to the underlying health condition 

(Gutenbrunner et al., 2006). They include gender, age, race, and physical 

fitness (Gutenbrunner et al., 2006). 

1.1.4.3. Defining “disability” 

In ICF terms, “disability” is therefore constructed as an “interaction between 

an individual (with a health condition) and that individual’s contextual factors 

(environmental and personal)” [author’s italics] (The World Health 

Organisation, 2011, Dahl, 2002). If the role of rehabilitation professionals is to 

mitigate disability due to an underlying health condition, then rehabilitation 

interventions must comprise a package of measures intervening at multiple 

levels of the ICF. The precise nature of the intervention required, and the ICF 

level upon which efforts will be focused, will vary depending upon the patient’s 

goals, and with the passage of time from stroke. Within the first few hours 

optimum acute care helps to minimise the extent of tissue injury and 

secondary complications (impairment in structure), and therefore maximise 

preservation of function (The Royal College of Physicians, 2010). As planning 

for discharge progresses then environmental assessment and, if necessary, 

provision of assistive technologies (contextual factors) may help to enhance 

safety and personal independence on leaving hospital. In the long term, a 

combination of rehabilitation interventions at impairment (cognition, 

communication, psychological status), activities, and environmental 

(environmental modification, assistive technologies) levels may be necessary 

to address specific goals such as return to work (participation) (National 

Institute for Health and Care Excellence, 2013). Many stroke survivors require 

not only intermittent discrete periods of time-limited rehabilitation to address 

particular functional goals, but also longer term monitoring and support to 

prevent complications and to mitigate the effects of changing disability (such 

as deterioration in mobility due to accelerated joint ageing) (The Royal College 

of Physicians, 2010). 

1.1.4.4. Disability on an international scale 

Article 26 of the United Nations Convention on the Rights of Persons with 

Disabilities calls for signatory nations to develop services to support people 
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with disabilities to attain and maintain maximum independence and full 

participation in all aspects of life (United Nations, 2009). Despite this, in many 

low- and middle-income countries people with disabilities continue to 

experience significant barriers to participating fully in society (The World 

Health Organisation, 2011). These include the lack of access to rehabilitation 

services or to appropriate equipment, inaccessibility of the local environment 

or public amenities including health services, negative attitudes towards 

people with disabilities, and a lack of involvement of people with disabilities in 

shaping legislation and policy (The World Health Organisation, 2011). 

Worldwide, people with disabilities are more likely to be unemployed, and 

those who are employed generally earn less than non-disabled workers (The 

World Health Organisation, 2011). Households with a disabled member are 

more likely to experience poor housing, food insecurity, and a lack of access 

to sanitation or safe water supplies (The World Health Organisation, 2011). 

Since disabled people are more likely to live in poverty, they may lack the 

financial capability to mitigate or overcome barriers to participation in society. 

1.1.5. The trajectory of recovery after stroke 

1.1.5.1. Early recovery 

There is significant heterogeneity in outcomes following stroke: some make a 

near-complete recovery, whilst others are left with profound residual disability 

(Kwakkel and Kollen, 2013). Despite this variability, some interesting patterns 

in recovery may be discerned. The rate of recovery of function tends to be 

maximal within the first few weeks of stroke. This improvement is thought to 

be largely spontaneous (Kwakkel and Kollen, 2013).  

1.1.5.2. Late recovery 

By around eight to ten weeks after stroke the rate of spontaneous recovery 

begins to plateau (Partridge and Morris, 1993). Thereafter recovery occurs 

more slowly, but the final level of ability that a patient attains may nevertheless 

be improved by appropriate rehabilitation (National Institute for Health and 

Care Excellence, 2013). The biological basis of this process will be discussed 

below. The sequence of recovery of activities tends to follow a hierarchical 

pattern: those that may be accomplished by use of compensatory strategies 
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such as grooming tend to be achieved before more complex tasks such as 

climbing stairs (Kwakkel and Kollen, 2013). 

1.1.5.3. Long-term prognosis 

Although considerable effort and money have been invested in early 

rehabilitation services, there is evidence that gains in function achieved in the 

first few months after stroke are not sustained in the long term. A recent multi-

centre longitudinal cohort study that recruited across several European 

rehabilitation services found that motor and functional outcomes all improve 

within the first six months, but this is followed by a progressive decline in 

function over time (Appelros and Viitanen, 2004). By five years outcome 

scores do not differ significantly compared with those recorded at two months 

after stroke (Appelros and Viitanen, 2004). Perhaps it is insufficient to focus 

research effort upon strategies to achieve short-term gains in function, 

important though this is. A survey of stroke survivors conducted in 2012 has 

identified a clear desire to prioritise funding for research in to managing the 

long-term sequelae of stroke at both impairment (motor, cognitive, and speech 

functions), and participation (general confidence, and emotional well-being) 

levels of the ICF (Pollock et al., 2012). 

1.1.6. What rehabilitation interventions are effective after stroke? 

1.1.6.1. Restorative versus compensatory rehabilitation strategies 

Broadly, rehabilitation interventions may be viewed as restorative (for 

example, encouraging use of a hemiplegic limb in functional tasks or attention 

to a neglected side), or compensatory (such as learning to complete tasks one 

handed, or the provision of orthoses, walking aids, or assistive technologies) 

(National Institute for Health and Care Excellence, 2013).  

1.1.6.2. Restorative rehabilitation: motor control approaches 

At an impairment level, a variety of physiotherapy approaches have been 

developed, each based upon differing theories about how patients recover 

from stroke. Prior to the 1940s, the emphasis of stroke rehabilitation was upon 

compensating for lost function and maintaining joint range by passive 

movement (Langhorne et al., 2009). In the 1950s and 1960s, new approaches 
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were developed that incorporated emerging insights in to the neurophysiology 

of motor control (Langhorne et al., 2009). Berta and Karel Bobath based their 

treatment on a detailed assessment of abnormalities in a patient’s postural 

control reflexes, and sought to correct these by intervening upon abnormalities 

in muscle tone (Semans, 1967).  

1.1.6.3. Restorative rehabilitation: feedback on movement performance 

The process of rehabilitation depends upon a patient’s ability to re-learn motor 

skills. Learning may be “explicit”, in which the components of a task are 

committed to declarative memory, or “implicit”, in which a sequence of 

movements is learned and optimised without conscious recognition or recall 

of its component tasks (Subramanian et al., 2010). The biological basis of 

motor learning is a process termed “neuroplasticity”. This will be discussed in 

detail below, but in the context of motor learning it may be defined as the 

reorganisation of movement representations in cortical regions (such as the 

pre-motor cortex and supplementary motor area) resulting from physiological 

changes to synaptic efficacy and remodelling of dendrite spines 

(Subramanian et al., 2010). 

When re-learning movements after stroke, it is common for patients to develop 

inefficient or ineffective movement patterns that, if allowed to persist, may 

compromise their long-term independence (Subramanian et al., 2010). For 

this reason, therapists commonly offer patients feedback on their performance 

during practice of a task (van Vliet and Wulf, 2006, Subramanian et al., 2010). 

Feedback may be intrinsic (the sensory and proprioceptive information 

available to an individual whilst a movement is in progress), or extrinsic (an 

external commentary on the quality of movement performance) (van Vliet and 

Wulf, 2006, Subramanian et al., 2010). Extrinsic feedback may be given 

verbally, or augmented with visual information such as video recording of task 

performance (van Vliet and Wulf, 2006). It may encompass the way in which 

a movement is executed (“knowledge of performance”), or the outcome of that 

movement (“knowledge of results”) (van Vliet and Wulf, 2006, Subramanian 

et al., 2010). Since intrinsic feedback mechanisms may be impaired following 

a stroke, extrinsic feedback may be particularly valuable in improving the 

quality of movement in stroke survivors (van Vliet and Wulf, 2006). Providing 
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extrinsic feedback may also allow stroke patients to utilise declarative memory 

(for facts and events) when learning skills, bypassing impairment in implicit 

learning mechanisms (the learning of motor skills without conscious 

awareness; van Vliet and Wulf (2006)). 

1.1.6.4. The evidence base for different motor rehabilitation strategies 

A recent Cochrane review comparing competing physiotherapy approaches 

to promoting recovery of lower limb function and postural control following 

stroke found that there is no clear evidence to favour any one strategy (Pollock 

et al., 2007). There is, however, some evidence to support specific 

interventions. Langhorne et al. (2009) found modest effect sizes for constraint-

induced movement therapy, electromyographic biofeedback, mental practice 

with motor imagery, and robotic interventions in promoting recovery of arm 

function. However, none of these strategies was of proven benefit in 

enhancing recovery of hand function (Langhorne et al., 2009). Interventions 

to promote recovery of walking included fitness training (both 

cardiorespiratory alone, and combined cardiorespiratory and strength 

training); high-intensity physiotherapy; and repetitive task practice (Langhorne 

et al., 2009). All showed modest effect sizes, but only in the case of 

cardiorespiratory training was the evidence of benefit felt to be strong 

(Langhorne et al., 2009). For standing balance, interventions trialled include 

biofeedback using a force plate, training on a moving platform, and repetitive 

task training. Trials were generally small and of poor quality, and evidence to 

support any one intervention was considered weak (Langhorne et al., 2009). 

For sit-to-stand transfers, only repetitive task training showed a modest effect 

across seven trials. However, this review included a total of only 346 patients 

(Langhorne et al., 2009). A later Cochrane review, of upper limb rehabilitation 

strategies, identified larger numbers of trials; but, once again, of moderate 

quality at best (Pollock et al., 2014). Beneficial effects were shown for 

repetitive task practice (at high doses), mental practice, mirror therapy, 

constraint-induced movement therapy, and interventions for sensory 

impairment (Pollock et al., 2014). 
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1.1.7. The biological basis of rehabilitation 

1.1.7.1. Motor learning: the basis of rehabilitation interventions 

Although evidence is lacking for particular interventions, participation in a 

structured multi-disciplinary rehabilitation programme has been shown to 

improve function and quality of life after stroke, and this complex package of 

interventions therefore remains the cornerstone of treatment for the majority 

of patients (Department of Health, 2007, National Institute for Health and Care 

Excellence, 2013). But what biological processes underpin “rehabilitation”? 

One might say that strategies that aim to restore (as opposed to compensate 

for) loss of function depend fundamentally upon a person’s ability to learn 

skills.  

1.1.7.2. Motor learning after stroke 

The process of learning is itself a complex phenomenon. In healthy 

individuals, learning a new skill depends upon a close interaction between 

spatially distributed and functionally disparate areas of the brain (Doyon et al., 

2009, Hikosaka et al., 2002, Penhune and Steele, 2012). Where brain injury 

has occurred, as in stroke, there is evidence to suggest that areas remote to 

the original injury are activated during task learning: a process that is thought 

to result in partial reorganisation of brain function and the re-location of motor 

representations to spared areas of brain (Hodics et al., 2006). At a cellular 

level, learning is thought to induce the formation of new “hard wired” pathways 

within the brain through re-modelling of axons, changes in the number and 

morphology of dendrites (Dimyan and Cohen, 2011, Ward and Cohen, 2004, 

Gillick and Zirpel, 2012), and long term potentiation or depression of synaptic 

transmission (Gillick and Zirpel, 2012, Ward and Cohen, 2004). These 

processes are enhanced by repetitive practice of a task (French et al., 2007).  

1.1.7.3. Novel rehabilitation interventions to enhance learning 

It is thought that neuroplasticity is enhanced by repetitive practice of a task. 

Thus, more intensive practice, delivered early after stroke, has the potential 

to improve rehabilitation outcomes. For this reason, there has been enormous 

research interest in the development of novel rehabilitation strategies to 

enhance neuroplasticity. For example, the use of robotic systems to assist a 
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patient in active movement of a paretic arm might allow a greater duration and 

intensity of practice than could be provided by a therapist, and may therefore 

enhance recovery of upper limb function (Pollock et al., 2014, Kwakkel et al., 

2008, Sivan et al., 2014). Alternatively, the use of drugs that act to enhance 

neuroplasticity directly might offer a means of amplifying the effectiveness of 

traditional rehabilitation interventions (Chollet et al., 2011, Berends et al., 

2009, Scheidtmann et al., 2001). An understanding of the processes of 

learning in stroke might allow the targeting of emergent rehabilitation 

interventions to those patients most likely to benefit. The biology of learning 

will thus be considered in Part 1.2, below. 
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Part 1.2 Motor learning and recovery from stroke 

1.2.1. Motor learning after stroke 

1.2.1.1. Defining “motor learning” 

Motor learning is fundamental not only to rehabilitation but also to daily life 

(Dayan and Cohen, 2011): from a baby learning to walk to a musician 

practising a symphony. Becoming skilled in a motor task requires us not only 

to learn the correct order of movements, but also to develop an awareness of 

the sensory input that guides decisions such as timing of the movement, 

trajectory, and what force should be applied when manipulating an object 

(Penhune and Steele, 2012). Often, acquiring a skill also requires the learner 

to manipulate or interact with objects in their environment (Doyon et al., 2009). 

Although there is no universally-accepted definition of “motor learning”, it has 

been conceptualised as “a change in motor behaviour, specifically referring to 

the increased use of novel, task-specific joint sequences and combinations, 

resulting from practice and/or repetition” (Nudo, 2008). It is now recognised 

that motor learning, and other cognitive functions, are critically dependent 

upon network interactions between spatially-distributed brain structures. It is 

interesting to consider how a historical understanding of brain function, 

revealed by an understanding of the consequences of direct injury to discrete 

cortical areas, has evolved in to a more modern appreciation of the role of 

neural networks and the connectional anatomy of the brain.   

1.2.1.2. Early theories of motor control 

Many of the early endeavours to understand brain function focused upon 

motor control, rather than cognition. This work has been the subject of a 

historical review by Gross (2007), which will be summarised here in the next 

two paragraphs. As long ago as 1664, Thomas Willis suggested that the 

cortex initiates voluntary movement. Emanuel Schwenbourg (1688-1772) 

proposed that motor function is localised in the cortex in a somatotopic 

manner, with cortical neurones projecting down through the white matter to 

the medulla, and thence to the spinal cord and peripheries. His insight, though 

astonishing to modern eyes, was well ahead of its time and was largely 

ignored by the scientific community of the day. Françoise Pourfour du Petit 
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(1644-1741), a French military surgeon, demonstrated the laterality of motor 

function in a series of experiments with animals which he correlated with 

observations in wounded soldiers. Again, these findings were largely ignored, 

and the prevailing view of the cortex in to the early 18th Century was conveyed 

by the literal translation of the term from Latin: little more than a protective 

“rind”.   

1.2.1.3. The discovery of the cortical localisation of motor control 

Amongst the earliest circumstantial evidence for the localisation of cortical 

function came in 1870, with the observation by John Hughlings Jackson that 

his wife’s seizures showed a distinct pattern of progression (Gross, 2007). He 

recorded twitching that began first in the hand then moved in a stereotyped 

manner up the arm before the seizure become generalised. From this, he 

inferred that distinct muscle groups must be controlled by co-located brain 

areas. He did not, however, directly implicate the cortex as the seat of motor 

function. The first direct experimental evidence for the existence of a “motor 

cortex” came at around this time (1870) when Gustav Fritsch and Edvard 

Hitzig observed reproducible patterns of limb twitching in response to 

“Galvanic“ (electrical) stimulation of the anterior cortex in dogs. Fritsch and 

Hitzig did not themselves cite Jackson’s work, although Jackson’s findings 

were certainly known to David Ferrier who successfully reproduced Fritsch 

and Hitzig’s experiment in 1873. This discovery heralded a growth in interest 

throughout the 19th Century in determining the localisation of brain functions. 

Some of this work, such as Carl Wernicke’s seminal 1874 case series of ten 

patients with the aphasia which now bears his name (Wernicke, 1970), has 

stood the test of time (de Almeida et al., 2014). Other theories have fallen in 

to disrepute. Franz Gall (1758-1828) proposed not only that skills and 

personality traits have their seat in the cortex, but also that the presence of 

these traits in specific individuals would lead to cortical hypertrophy (de 

Almeida et al., 2014). This would in turn result in displacement of the overlying 

skull, and a characteristic pattern of skull prominences from which the 

presence of defined personality characteristics could be inferred (de Almeida 

et al., 2014). Although both flawed in its methodology and erroneous in its 

conclusions, it is worth noting that this theory of “phrenology” was amongst 
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the first attempts to systematically localise cortical functions (de Almeida et 

al., 2014).  

1.2.1.4. Wernicke, and the discovery of network interactions between 

brain structures 

If stroke were a purely “cortical” phenomenon, then predicting recovery would 

be straightforward: the spectrum of impairments, and their ultimate outcome, 

would depend upon the location and extent of the cortical lesion. However, it 

has long been known that the spectrum of impairment seen following a brain 

injury of any nature depends not only upon the pattern of cortical injury, but 

also upon disruption of connections between different brain structures. 

Wernicke described in 1874 how the production of speech depends upon the 

integrity of connections between the superior temporal gyrus and Broca’s area 

in the posterior infrerior frontal gyrus (Wernicke, 1970). This was followed in 

1885 by Ludwig Lichtheim’s description of what he termed a “reflex arc” 

between cortical areas responsible for understanding spoken language and 

those responsible for initiating the motor component of speech (de Almeida et 

al., 2014).  

1.2.1.5. White matter tracts and loop circuits: a contemporary view of 

brain function 

More recently, the existence of extensive networks of white matter projections 

between spatially-distributed structures (both cortical and sub-cortical) has 

been recognised. The basal ganglia are key nodes within these circuits. They 

comprise the striatum (caudate, putamen, and nucleus accumbens), and the 

globus pallidus (Da Cunha et al., 2009, Bolam et al., 2000). The sub-thalamic 

nucleus, substantia nigra and ventral tegmental areas are considered 

associated structures (Da Cunha et al., 2009). Alexander et al. (1986)  

described five loop circuits between the cortex and basal ganglia: the motor, 

occulomotor, dorsolateral prefrontal, lateral orbitofrontal, and anterior 

cingulate. Each arises from different regions of the frontal cortex (Alexander 

et al., 1986), and sends excitatory inputs to the striatum (McHaffie et al., 

2005). Striatal neurones then send a complex web of inhibitory inputs to the 

substantia nigra and the globus pallidus interna, which project in turn to the 

thalamus (McHaffie et al., 2005). The primary output of these circuits is 
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excitatory efferents from the thalamus to cortical areas (McHaffie et al., 2005). 

(Figure 1.2. adapted from McHaffie et al. (2005)). 

 

Figure 1.2. Schematic illustration of the architecture of the cortico-basal loop 
circuits 

Predominantly excitatory pathways and structures are in red; those with 
predominantly inhibitory output are in blue. Figure taken from (McHaffie 
et al., 2005) 

Similar loop circuits are also now known to exist between subcortical 

structures (McHaffie et al., 2005). In this case, the primary input nucleus is the 

thalamus, which sends excitatory input to the striatum (McHaffie et al., 2005). 

This in turn sends inhibitory projections to the substantia nigra and globus 

pallidus interna, which in turn send inhibitory input back to midbrain and 

hindbrain structures (McHaffie et al., 2005) (Figure 1.3. (McHaffie et al., 

2005)). 
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Figure 1.3. Schematic illustration of the architecture of the subcortical loop 
circuits.  

Predominantly excitatory pathways and structures are in red; those with 
predominantly inhibitory output are in blue. Figure taken from (McHaffie 
et al., 2005) 

1.2.1.6. Neuronal networks and cognitive functioning 

Cortico-basal and subcortical circuits are now known to play a role in a variety 

of cognitive processes. The clinical evidence for this derives in part from 

conditions other than stroke. Huntington’s chorea and Parkinson’s disease are 

both degenerative conditions of the basal ganglia, which have impairment of 

motor control as their primary manifestation. And yet Huntington (1872) also 

described a “tendency towards insanity” in advanced cases, including sexual 

disinhibition. The non-motor manifestations of Parkinson’s disease were not 

at first appreciated: Parkinson (1817) himself noted that the “senses and 

intellects… [are] uninjured”. It was only later that cognitive dysfunction was 

also recognised in the advanced stages of the illness (Louis, 1997). 

Impairment in concentration and attention, strategic planning, procedural 

learning ability, working memory, and verbal fluency are all now recognised 

features of this condition, as are decreased mental flexibility and difficulty in 

switching between cognitive tasks (Schmahmann and Pandya, 2008). More 

recently, studies of discrete stroke lesions in humans have demonstrated a 

similar pattern of cognitive impairment following injury to the basal ganglia 
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(Schmahmann and Pandya, 2008) and cerebellum (Schmahmann et al., 

2009). 

1.2.1.7. Neuronal networks and motor learning 

There has recently been considerable interest in how network interactions 

between disparate brain structures might interact to facilitate the learning of 

motor skills. Advanced imaging techniques may offer insights in to the 

anatomical basis of learning. At the simplest level, techniques such as Voxel-

based mophometry (VBM) or Diffusion Tensor Imaging (DTI) allows detailed 

analysis of the volume of grey matter structures, or visualisation of the white 

matter tracts that link them (Thomas and Baker, 2013). Statistical comparison 

of anatomical differences between trained and untrained individuals, or within 

the same group before and after learning a task, may allow inferences to be 

made about the role of these structures in the learning process (Thomas and 

Baker, 2013). However, VBM and DTI merely provide semi-quantitative 

estimates of structural change: they do not allow real-time visualisation of the 

activation of these brain regions as learning takes place.  

1.2.1.8. Theories of motor learning: evidence from functional magnetic 

resonance imaging (fMRI) 

In contrast to structural imaging, functional imaging techniques allow 

exploration of how patterns of metabolic activity within specific brain regions 

change throughout the learning cycle. Functional MRI (fMRI) relies upon the 

detection of increased levels of deoxygenated haemoglobin in brain regions 

of interest: the Blood Oxygen Level-Dependent (BOLD) signal (Arthurs and 

Boniface, 2002). This is assumed to reflect increased oxygen uptake by 

metabolically active tissue, and therefore increased neuronal activity in that 

area (Arthurs and Boniface, 2002). Several studies have used fMRI to explore 

the process of motor learning. Doyon et al. (2009) suggest that the striatum 

contributes to consolidation of skills, with activity first predominant in the 

associative striatum, but a subsequent shift to the sensorimotor striatum. 

Hikosaka et al. (2002) hypothesised that successful movement requires an 

initial awareness of the body’s spatial position and of the position of 

environmental objects with which it interacts. This requires integration of any 

available spatial information, which is thought to be performed by circuits 
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between the fronto-parietal cortices and the associative striata (Hikosaka et 

al., 2002). This information is then used to generate a series of motor 

coordinates for the planned action prior to execution of a movement: a function 

thought to be performed by loops between the motor cortex, basal ganglia and 

cerebellum (Hikosaka et al., 2002). When learning a new sequence of 

movements, initially each component of that sequence is executed individually 

(Hikosaka et al., 2002). This is an explicit process which requires cognitive 

effort, and results in slow and deliberate movements (Hikosaka et al., 2002). 

The sequence of actions are subsequently optimised, in an implicit process 

requiring no conscious thought (Hikosaka et al., 2002). The end result is fluid 

effortless movement, that retains spatial accuracy (Hikosaka et al., 2002). 

Penhune and Steele (2012) believe that the cerebellum is responsible for the 

construction of an “internal model,” containing the optimum kinematic 

parameters for a planned movement sequence. This representation is then 

compared with proprioceptive feedback whilst the movement is in progress, 

allowing optimisation of movement in real time (Penhune and Steele, 2012). 

The final anatomical localisation of memory traces for learned action is split, 

with the motor, pre-motor, and parietal cortex encoding a representation of a 

learned sequence of movements, and the cerebellum encoding the motor 

control parameters for that action (Penhune and Steele, 2012). The role of the 

striatum in the learning process is in the “reward” response when an explicit 

goal is achieved (Penhune and Steele, 2012). Despite the term “functional” 

MRI, what this technique actually demonstrates is a signal that is thought to 

correlate with tissue metabolism: any inferences about the actual function of 

those structures in learning remain speculative. 

1.2.2. Cognitive dysfunction after stroke 

1.2.2.1. Cognitive impairment after stroke: a “disconnection” 

phenomenon   

As understanding of cognitive function has evolved, it has become apparent 

that injury to structures such as the basal ganglia, cerebellum, or white matter 

tracts may give rise to a picture of cognitive dysfunction that mimics a large 

cortical injury. Such phenomena have been termed “disconnection 

syndromes”, since they represent a failure of the network between brain 
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structures (Schmahmann and Pandya, 2008). Impairments in key cognitive 

domains such as memory, executive function, praxis, and visuospatial 

perception are common after stroke (Barker-Collo et al., 2010). They may 

occur as a result of a variety of underlying processes, with the common feature 

being disruption of distributed neural networks and thus failure of interactions 

between brain structures. Unfortunately, the wide array of pathological lesions 

that may lead to cognitive failure has led to a bewildering array of 

terminologies to describe these phenomena (O'Brien et al., 2003). Some imply 

the presence of specific histological findings: “multi-infarct dementia”, for 

example, presumes an additive burden of several cortical infarcts, whereas 

“subcortical dementia” and “subcortical ischaemic vascular dementia” suggest 

a burden of lacunar infarcts to the basal ganglia. The term “dementia”, 

common to all of the above, is based largely upon the characteristics of 

Alzheimer’s disease, and therefore presupposes the presence of memory 

impairment as a key diagnostic feature (O'Brien et al., 2003, Moorhouse and 

Rockwood, 2008). Other terms, such as “vascular cognitive impairment” seek 

to define a construct, whilst minimising assumptions about aetiology and 

pathophysiology (O'Brien et al., 2003).   

1.2.2.2. Classifying cognitive impairment after stroke 

Perhaps the most straightforward taxonomy is that proposed by O'Brien et al. 

(2003) and later elaborated by Moorhouse and Rockwood (2008) (Figure 

1.4.). The use of “Vascular Cognitive Impairment” (VCI) was initially proposed 

as an umbrella term for cerebrovascular pathology which results in a specific 

cognitive profile: preserved memory, with impairment in attentional and 

executive functioning (O'Brien et al., 2003). It has subsequently been 

suggested that vascular cognitive impairment which results in memory 

impairment (thereby meeting diagnostic criteria for “dementia”) be termed 

“VCI with dementia”. There is, of course, a substantial overlap between VCI 

and neurodegenerative pathology. 
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Figure 1.4. schematic representation of the overlap between syndromes of 
cognitive impairment.  

After Moorhouse and Rockwood (2008) 

1.2.2.3. Cognitive impairment as a result of a global burden of injury to 

neuronal networks  

If cognitive dysfunction is conceptualised as being a result of disruption to the 

network anatomy of the brain, then it is clear that this impairment may arise 

as a result of a variety of pathologies, and as a consequence of disruption to 

any of the structures or white matter tracts within the network. Some 

conditions, such as a stroke affecting a large cortical territory or the 

cerebellum, or a smaller “strategic” lesion to an area critical to cognitive 

function, may cause a sudden and dramatic deterioration, which may fulfil the 

criteria for dementia (Iadecola, 2013). However, a more generalised burden 

of chronic ischaemic injury to the cortico-basal and subcortical loop pathways 

may result in a subtle and insidious cognitive deterioration, which may even 

pre-date or occur in the absence of a large-vessel stroke (Iadecola (2013); 

Figure 1.5).  
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Figure 1.5. Mechanisms of injury to cortico-basal and subcortical loop circuits. 

Schematic illustration of the cortico-basal (green) and subcortical 
(purple) loop circuits. Different components of these pathways may be 
susceptible to injury by a variety of mechanisms (red). This may manifest 
as vascular cognitive impairment. 

In short, the overall picture of cognitive dysfunction after stroke most likely 

represents an interaction between a large-vessel lesion (infarct versus ICH) 

and a more global burden of “small vessel” injury (some of which may be pre-

existing). How this overall burden of structural (brain injury) and functional 

(cognitive) impairment might attenuate a patient’s ability to re-learn motor 

skills is of particular interest to rehabilitation practice.    

1.2.2.4. “Small vessel” injury: an underlying cause of cognitive 

impairment 

“Small vessel” injury is a concept that covers a variety of lesions seen on brain 

imaging, which may or may not have similar underlying pathological 

mechanisms. Here again, one encounters the problem of a lack of 

standardised terminology and definitions for these lesions (Wardlaw et al., 

2013b). Often several different terms are used to describe the same 

phenomenon. Some (such as “white matter hyperintensities”) describe 

radiological findings (the appearance of these lesions on T2-weighted MRI); 

others (such as “leukoencephalopathy”) refer to histopathological changes 
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(white matter necrosis of presumed ischaemic aetiology) (Wardlaw et al., 

2013b). From an imaging perspective, a single pathological process may 

mature to give very different radiological appearances on follow-up scans. For 

example, a small acute subcortical infarct may leave no visible lesion on a 

follow-up MRI scan, or it may appear as a cavitating lacunar lesion or white 

matter hyperintensity (Wardlaw et al., 2013b). In pathological terms, there are 

a wide range of possible mechanisms by which brain injury may occur; and 

yet, the repertoire of possible tissue responses to injury (inflammation, 

necrosis, scarring) are limited (Hachinski, 2007). It therefore cannot be 

assumed that lesions with similar histological appearances share a common 

mechanism. With these difficulties in mind, three common lesions implicated 

in vascular cognitive impairment will be discussed: white matter lesions, 

lacunar lesions, and microbleeds. For each an attempt will first be made 

attempt to instil some clarity around definitions, before the underlying 

pathophysiology of these lesions and their consequences for cognitive 

function are explored. 

1.2.2.5. Imaging correlates of small vessel disease: white matter 

lesions 

There are over 50 synonyms in use to describe white matter lesions: 

Binswanger’s disease, leukoariosis, leukoencephalopathy, white matter 

hyperintensity, white matter change, and white matter disease are amongst 

the most common (Wardlaw et al., 2013b). They appear on T2-weighted MRI 

as areas of hyperintensity in the deep or periventricular white matter, which 

may be patchy or confluent (Wardlaw et al., 2013b, Wardlaw et al., 2013a). 

On computerised tomography scanning (CT), they are hypodense, returning 

an attenuation lower than that of surrounding tissue (although not as low as 

cerebrospinal fluid (Wardlaw et al., 2013b). They are also seen in other 

conditions such as multiple sclerosis or leukodystrophies (Wardlaw et al., 

2013b). Wardlaw et al. (2013b) therefore proposed the radiological 

descriptors “white matter hyperintensities of presumed vascular origin” for the 

MRI appearance, with “white matter hypodensities of presumed vascular 

origin” endorsed for the equivalent CT finding. Since both magnetic resonance 

imaging (MRI) and CT findings will be discussed here, the more generic (but 
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less precise) term “white matter lesions” will be used, with reference to white 

matter “hyperintensitiy” or “hypodensity” only in the context of MRI and CT 

findings respectively. It will be assumed throughout that these lesions are “of 

presumed vascular origin”, unless otherwise stated. Following the 

recommendations of Wardlaw et al. (2013b), these terms will not be applied 

to lesions in the brain stem or deep grey matter. Radiologically, white matter 

lesions are known to be associated with a number of other findings including 

lacunes, atrophy, cerebral microbleeds, and prominent perivascular spaces 

(Wardlaw et al., 2013a). They are strongly associated with cardiovascular risk 

factors including hypertension, hyperlipidaemia, diabetes, and smoking 

(Wardlaw et al., 2013b, Iadecola, 2013) Histologically, a number of small 

vessels changes have been associated with these lesions including 

atherosclerosis, hyaline deposition in the vessel walls (lipohyalinosis), fibrosis 

and stiffening of small vessels (arteriosclerosis), and loss of integrity of the 

vascular basement membrane (fibrinoid necrosis) (Iadecola, 2013). How, or 

whether, these microvascular changes may give rise to white matter lesions 

remains opaque, but possible mechanisms include chronic hypoperfusion, 

and/ or dysfunction of the blood/ brain barrier with extravasation of fluid in to 

white matter tracts (Debette and Markus, 2010). Histological evidence of white 

matter injury includes axonal loss, vacuolation, and demyelination (Iadecola, 

2013). As they progress lesions tend to expand in to adjacent normal white 

matter, and may eventually become confluent (Iadecola, 2013). White matter 

lesions are common, with a prevalence of 11%-24% in over-65s, and 94% at 

age 82 (Debette and Markus, 2010). They may be asymptomatic, and were 

once thought to be a benign associate of normal ageing. However, it is now 

clear that they are associated with an increased risk of stroke, dementia, and 

death (Debette and Markus, 2010), a faster rate of decline in global cognitive 

performance, executive function, and information processing speed (Debette 

and Markus, 2010), gait disturbance (de Laat et al., 2011), and an increased 

risk of transition from independence to disability (Inzitari et al., 2009). 

1.2.2.6. Imaging correlates of small vessel disease: lacunar lesions 

“Lacunes” were first described in 1838 as cavitating lesions containing 

cerebrospinal fluid of around 3-20mm in diameter (Potter et al., 2010). They 
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are more common with age; one large MRI survey of participants aged over 

65 found one or more lacunes in around 25% of the sample (Longstreth et al., 

1998). On imaging, established lacunar lesions are isointense to 

cerebrospinal fluid (Roman et al., 2002). They are typically found in the deep 

white matter, basal ganglia, thalamus, and pons (Wardlaw, 2005). They are 

often assumed to be ischaemic in origin, although a small deep intracerebral 

haemorrhage can, when mature, give a radiological appearance that is 

indistinguishable from an ischaemic lacune (Wardlaw et al., 2013b). Although 

commonly used as such in the literature, the terms “lacune”, “lacunar stroke”, 

and “lacunar infarction” are not interchangeable. “Lacune” refers to a 

radiological or pathological finding of a cavitating lesion. Only a minority of 

“lacunar” small-vessel infarcts actually go on to cavitate and assume this 

appearance; the majority take on the appearance of white matter lesions 

(Potter et al., 2010). Simply counting the numbers of lacunes may therefore 

underestimate the true burden of ischaemic small vessel disease (Potter et 

al., 2010). “Lacunar stroke” describes a clinical stroke syndrome consistent 

with a small subcortical or brainstem lesion (Wardlaw, 2008, Bamford et al., 

1991). However, this clinical syndrome may not match radiological findings: in 

around 10-20% of patients with a clinically-defined “lacunar” syndrome a small 

cortical infarct is later identified on imaging as the culprit lesion (Mead et al., 

1999). Nor do all lacunes give rise to a “lacunar stroke” syndrome. As many 

as 89% are thought to be clinically silent, or are manifested by more subtle 

impairments in gait and cognition (Longstreth et al., 1998). “Lacunar infarct” 

implies a lacunar stroke syndrome for which an underlying ischaemic lacunar 

lesion is visible on imaging (Wardlaw, 2008). The radiological appearance of 

“lacunes” may be mimicked by expansion of the perivascular spaces around 

small perforating vessels (Wardlaw et al., 2013b). These are generally smaller 

than lacunes (around 3mm), run parallel to the course of vessels, and may be 

seen most prominently in the basal ganglia (Wardlaw et al., 2013b). 

Frustratingly, this phenomenon has also spawned its own rash of synonyms 

including “Virchow-Robin spaces”, “état crible” (for lesions located 

predominantly in the basal ganglia) or (confusingly) “Type 3 lacune” (Wardlaw 

et al., 2013b). Although both give the radiological appearance of fluid-filled 

cavities, the origins and significance of perivascular spaces cannot be 
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assumed to be the same as that of lacunes of presumed ischaemic or 

haemorrhagic origin. It is therefore necessary to distinguish carefully between 

the two. Wardlaw et al. (2013b) suggest the term “lacune of presumed 

vascular origin”, since this a) differentiates between vascular and non-

vascular causes of cavitation, and b) avoids making assumptions about 

whether the lesion is a consequence of ischaemia or haemorrhage where 

initial imaging is not available. For simplicity, the radiological term “lacune” will 

be used here, leaving implicit that this refers only to lesions “of presumed 

vascular origin” (ischaemic and haemorrhagic) unless otherwise stated. The 

clinical syndrome of “lacunar stroke” will be defined according to the Oxford 

Community Stroke Project classification (OCSP) of Bamford et al. (1991), 

whilst remaining mindful that this syndrome does not always correlate with 

imaging findings (Mead et al., 1999). 

Although the earliest descriptions of lacunes was of ischaemic necrosis on 

histology (Fisher, 1965), the presumption that small vessel occlusion is the 

underlying cause (Fisher, 1968) has been challenged. Common precipitants 

of ischaemic cortical stroke (carotid stenosis or cardiac emboli) are implicated 

in only around 10-15% of ischaemic lacunar strokes, and some studies 

purporting to demonstrate a link between lacunes and risk factors for 

embolisation actually included mild carotid stenosis (as little as 25%), or 

cardiac abnormalities not typically associated with emboli (such as left 

ventricular hypertrophy) (Wardlaw, 2005). In animal models, the majority of 

particles injected in to the carotid artery embolised to the cortical vasculature 

rather than the lenticulostriate arteries, suggesting that cardiac embolization 

is not the primary cause of lacunes in the majority of cases (Wardlaw, 2005). 

Nor may it be reasonable to assume that all lacunes share a common origin. 

There have been suggestions that larger lacunar infarcts are a consequence 

of atheromatous disease in more proximal arterioles, whereas lacunar lesions 

caused by lipohyalinosis and arteriolosclerosis of the microvasculature tend 

to coexist with white matter hyperintensities (Wardlaw et al., 2013a). The 

Leukoariosis and Disability (LADIS) study found that lacunes in the basal 

ganglia were associated with AF (suggesting an embolic cause), whereas 

those in the deep white matter were often accompanied by new or expanding 
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white matter lesions and were associated with a history of hypertension and 

stroke (Gouw et al., 2008). 

Reliable estimates for the incidence and prevalence of cognitive impairment 

after lacunar stroke are hard to come by. A recent systematic review (Makin 

et al., 2013) found that studies were generally small, with non-blinded 

assessment of cognitive function, and did not estimate the prevalence of 

cognitive dysfunction before the stroke (Makin et al., 2013). None used gold-

standard imaging techniques to confirm lacunar infarction. Long-term data are 

scant, with few studies including follow-up beyond one year (Makin et al., 

2013). Within these limitations, the prevalence of cognitive impairment and 

dementia after lacunar stroke was estimated at 29%: comparable with cortical 

stroke (24%) (Makin et al., 2013).  

The figure quoted in this meta-analysis were heavily influenced by one large 

study, which accounted for 38% of all patients included (Bejot et al., 2011). In 

this study, the odds ratio for cognitive impairment with lacunar versus non-

lacunar stroke was 3.48 (Bejot et al., 2011); far higher than for pooled 

estimates derived from all other studies analysed by Makin et al. (2013) (odds 

ratio 0.67 for cognitive impairment with lacunar versus non-lacunar stroke). 

One possible reason for the disparity is that Bejot et al. (2011) assessed 

cognitive function at one month post stroke. Their estimates may not reflect 

the true prevalence of cognitive impairment in the long term. Secondly, the 

odds  ratio for cognitive impairment after lacunar stroke changed significantly 

in the 24-year period in which the study was recruiting: from 10.1 in 1991-

1996, to 1.51 in 2003-2008 (Bejot et al., 2011). The reasons for this striking 

observation remain unclear: it is possible that changes in clinical practice over 

the course of the study period led to an improvement in dementia-free survival 

from stroke (Bejot et al., 2011). However, the possibility of a change in 

methodology over the course of that study cannot be discounted (Makin et al., 

2013).   

Although the limitations of the literature in this area must be acknowledged, it 

is nevertheless clear that cognitive impairment is common after lacunar 

stroke: perhaps surprisingly so, given the small size of the lesions concerned 

(Makin et al., 2013). This implies that the degree of cognitive dysfunction 
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manifested clinically is not dependent upon the size of the infarct, but rather 

its impact upon wider network functions, and perhaps an interaction with other 

markers of small-vessel disease, such as white matter lesions (Makin et al., 

2013).    

1.2.2.7. Imaging correlates of small vessel disease: microbleeds 

What are termed “cerebral microbleeds” are thought to represent small 

perivascular collections of haemosiderin-laden macrophages (Fazekas et al., 

1999) which form as a result of leakage of blood products from small vessels 

injured by hypertension (lipohyalinosis) or by amyloid deposition (amyloid 

angiopathy) (Werring et al., 2010). There are many synonyms (including 

“microhaemorrhage”), but “cerebral microbleed” is the most commonly used 

and has therefore been has been proposed as a consensus term (Wardlaw et 

al., 2013b). The descriptor is primarily radiological (Greenberg et al., 2009): 

on MRI sequences that are sensitive to magnetic effects (gradient-echo T2*), 

cerebral microbleeds are visible as small (5-10mm diameter), well-

demarcated, hypointense lesions (Werring et al., 2010). The pattern of lesions 

seen may reflect the underlying pathology: hypertensive vasculopathy 

generally causes microbleeds in the basal ganglia, thalamus, brainstem, and 

cerebellum, whereas amyloid angiopathy typically displays a lobar distribution 

(Greenberg et al., 2009). Cerebral microbleeds are associated with 

hypertension, and may co-exist with white matter lesions and lacunes 

(Greenberg et al., 2009).  They may also be associated with an increased risk 

of subsequent large-vessel ICH in patients following a first haemorrhage or 

infarct, although the evidence for this is based upon small samples 

(Greenberg et al., 2009). Their significance as a marker of future haemorrhage 

risk in those who have not already had an overt large-vessel stroke is unclear, 

and the balance of risks versus benefits in initiating antiplatelet therapy in 

patients with both cerebral microbleeds and risk factors for ischaemic stroke 

remains unknown (Greenberg et al., 2009). Several small studies have 

demonstrated an association between cerebral microbleeds and an increased 

risk of cognitive impairment, dependency, or death; but this may simply reflect 

the coexistence of these lesions with white matter lesions and lacunes 

(Greenberg et al., 2009).   
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1.2.2.8. “Small vessel disease”: a unifying theory?  

White matter lesions, lacunes, and cerebral microbleeds often coexist, and it 

is by no means clear that atherosclerotic processes analogous to those 

implicated in large-vessel stroke play a role in these processes (Wardlaw et 

al., 2013a). Associations between these lesions and “traditional” 

cardiovascular risk factors (such as hypertension, hyperlipidaemia, smoking, 

and diabetes) have not been firmly established (Vermeer et al., 2007). Indeed, 

antihypertensive treatment and lipid-lowering agents are ineffective in 

preventing the expansion of white matter lesions, and antiplatelet therapy is 

associated with an increased risk of symptomatic ICH and death after lacunar 

stroke (Wardlaw et al., 2013a). The hypothesis of endothelial dysfunction has 

recently been proposed as a common origin for these lesions (Wardlaw et al., 

2013a). This theory postulates that disruption of the vascular endothelium 

leads to localised leakage of tissue fluid in to the perivascular space and 

transepithelial migration of inflammatory cells, leading to localised tissue 

oedema and the characteristic microvascular changes seen in small vessel 

disease (fibrinoid necrosis, lipohyalinosis) (Wardlaw et al., 2013a). Over time 

this process could result in the pattern of demyelination and white matter 

necrosis seen in white matter lesions (Wardlaw et al., 2013a). The same 

process may also lead to thickening of arteriolar walls, resulting in luminal 

narrowing and thrombus formation (Wardlaw et al., 2013a). This could result 

in tissue ischaemia and “lacunar” infarction (Wardlaw et al., 2013a). How such 

endothelial dysfunction may arise remains speculative. The permeability of 

the blood-brain barrier is known to increase with normal aging, but how other 

stimuli might interact with this process to trigger a pathological cascade has 

yet to be delineated (Wardlaw et al., 2013a). Amyloid deposition in 

Alzheimer’s disease is known to enhance blood-brain barrier permeability: but 

permeability is higher in vascular cognitive impairment with dementia than in 

Alzheimer’s disease or age-matched healthy controls (Wardlaw et al., 2013a). 

1.2.2.9. The role of small vessel disease in cognitive impairment 

Clearly further work is needed to understand fully how the lesions that 

characterise so-called “small-vessel disease” arise, and how they may be 

prevented. What is clear, however, is that they are far from benign. Although 
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the role of microhaemorrhages in precipitating cognitive dysfunction is less 

clear, white matter lesions and lacunes are certainly known to be associated 

with cognitive decline in people who have not had a stroke. After stroke, they 

are associated with an increased risk of recurrent stroke, and of transition to 

dementia and dependency. The underlying mechanism for this is most likely 

network dysfunction. Pre-existing white matter lesions and lacunes may not 

cause an overt “stroke” syndrome but could, over time, cause injury and 

disruption to cortico-basal and subcortical loop circuits: in effect, a 

“disconnection syndrome”. To this pre-existing burden of brain injury may then 

be added the further insult of a cortical stroke. Even in the absence of 

significant pre-existing “small vessel” injury, a large-vessel stroke may cause 

injury to any one of a number of key “nodes” within these loop circuits: the 

cortex, white matter tracts, or basal ganglia. Crucially to our purposes, these 

loop circuits are thought to play a key role in motor learning processes. This 

may have important consequences in clinical practice, since impairment in 

learning ability may attenuate a patient’s ability to respond to rehabilitation 

and thereby act to limit recovery.  

1.2.3. Dopamine augmentation of rehabilitation in stroke: a 

theoretical background 

1.2.3.1. How might dopamine enhance rehabilitation interventions? 

Although there is considerable uncertainty about precisely how disparate 

brain structures interact to facilitate motor learning, it is clear that the basal 

ganglia play a key role in this process. Dopamine is a key modulator of basal 

ganglia function. It is thought to play a number of important roles in the control 

of movement and in learning processes, including the selection and 

termination of motor programmes for skilled movements (Nambu, 2008, 

Leblois et al., 2006), encoding the “value” of a reward (Wise, 2004), or 

“stamping in” associations between stimulus and response (Wise, 2004). 

More recently, it has been proposed that phasic dopamine release acts as an 

“alerting signal,” prompting the orientation of conscious attention and cognitive 

processing towards salient environmental cues and increasing general 

arousal and motivation (Bromberg-Martin et al., 2010). There has therefore 
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been considerable interest in the possibility of using dopamine agonists as an 

adjunct to standard rehabilitation interventions in stroke.  

Attention has focused in particular upon the use of Levodopa, an orally-

administered precursor of dopamine. This crosses the blood-brain barrier 

before being metabolised to dopamine centrally, resulting in a rise in brain 

dopamine levels (Berends et al., 2009). Co-careldopa is a combined 

preparation of levodopa 100mg with a peripheral DOPA-decarboxylase 

inhibitor, Carbidopa. Carbidopa reduces peripheral levodopa metabolism, 

thereby maximising the central bioavailability of levodopa (Nutt and Fellman, 

1984). Peak plasma levels of levodopa occur between 30minutes to 2hours 

after a single oral dose of co-careldopa, with a plasma half-life of 1 to 3 hours. 

Several trials have evaluated whether administering co-careldopa might 

enhance the efficacy of standard rehabilitation approaches such as 

physiotherapy and occupational therapy. A systematic review (Berends et al., 

2009) found only two trials of this drug in recovery of walking function after 

stroke (Sonde and Lokk, 2007, Scheidtmann et al., 2001).  Scheidtmann et al. 

(2001) reported an improvement in mean Rivermead Motor Assessment score 

of 6.4 points after a three-week course of levodopa, compared with an 

improvement of 4.1 points with placebo (p=0.004). Sonde and Lokk (2007) 

tested three drug regimens (levodopa, d-amphetamine, or levodopa and d-

amphetamine) delivered over ten rehabilitation sessions, and found no 

improvement in motor function or independence in activities of daily living for 

any of these treatments when compared with placebo. 

A number of smaller studies have also addressed the effect of dopaminergic 

agents on other aspects of recovery such as independence in activities of daily 

living and upper limb function (Lokk et al., 2011, Engelter et al., 2010, Rosser 

et al., 2008b, Restemeyer et al., 2007, Floel et al., 2005, Zorowitz et al., 2005, 

Acler et al., 2009a). Many were limited by small sample sizes (Restemeyer et 

al., 2007, Acler et al., 2009a) or comparatively short follow-up (Restemeyer et 

al., 2007), or administered only single doses of co-careldopa (Restemeyer et 

al., 2007, Floel et al., 2005). Some recruited patients months or years after 

stroke (Restemeyer et al., 2007, Acler et al., 2009a).  
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A wide range of outcome measures has been used to measure response to 

levodopa treatment, including: the Barthel Index (BI); NIHSS; the Functional 

Independence Measure (FIM); and walking speed. Unfortunately, the lack of 

a standardised approach to outcome measurement greatly complicates meta-

analysis in this area. Several trials have demonstrated benefit with dopamine 

on outcome measures including: the BI (Lokk et al., 2011); NIHSS (Lokk et 

al., 2011); FIM (Engelter et al., 2010); walking speed and manual dexterity 

(Acler et al., 2009a); procedural motor learning (Rosser et al., 2008b); and 

motor memory (Floel et al., 2005). However, others have found no 

improvement in length of hospital stay (Zorowitz et al., 2005), cognitive and 

motor function (Zorowitz et al., 2005), or upper limb function (Restemeyer et 

al., 2007). In summary, there is certainly a strong theoretical basis to suggest 

that taking co-careldopa in conjunction with therapy sessions could enhance 

the effects of rehabilitation and lead to an improvement in motor recovery: but 

high-quality evidence to support the implementation of this intervention in 

routine clinical practice has hitherto been lacking. 

1.2.3.2. Dopamine Augmented Rehabilitation in Stroke: the first large-

scale trial of levodopa use in stroke rehabilitation 

In 2009 the Efficacy and Mechanism Evaluation Programme of the National 

Institute for Health Research approved funding for a large double-blinded 

randomised controlled trial to assess the impact on recovery of walking ability 

of administering co-careldopa or placebo in conjunction with standard multi-

disciplinary rehabilitation following stroke. The protocol for this trial, (DARS: 

ISRCTN99643613), has been published elsewhere (Bhakta et al., 2014) and 

its methods will be described in detail in the Chapter 2. However, the trial did 

not show any significant benefit of administering co-careldopa on participants’ 

ability to walk 10m or more independently at up to a year after randomisation.  

1.2.3.3. Original aim of this Thesis: exploring factors that influence a 

patient’s response to Levodopa 

This Thesis was set in the context of the DARS trial, and utilises data derived 

from this study. The aims of this work have altered somewhat since the 

inception of the trial. At the time of trial set-up, it was believed that co-

careldopa would show an effect in enhancing motor recovery in the sample as 
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a whole. However, a fundamental assumption of interventional drug trials is 

that patients within the sample are homogeneous and that any benefit from 

treatment will be approximately the same for the whole group. This ignores 

the possibility that sub-populations within the sample may derive a greater- or 

less-than-average benefit from treatment (Dorresteijn et al., 2011). Standard 

trial analyses, which report an effect size for the whole sample, may thus fail 

to detect clinically-important variations in sub-groups of patients (Young et al., 

2005). Since levodopa is known to act upon the basal ganglia, it was felt to be 

possible that any response to levodopa might be heavily attenuated in patients 

who had experienced a stroke that included these structures; or conversely, 

that preservation of the basal ganglia might be a pre-requisite for responding 

to levodopa-linked rehabilitation. An understanding of how structural brain 

impairment (as seen on CT imaging) might influence a patient’s response to 

levodopa therefore could have been useful in informing future clinical 

guidelines about which patients might benefit from this treatment. 

The results of the DARS trial are currently in press. Unfortunately, co-

careldopa did not prove to be effective in enhancing motor recovery in the 

moderately-disabled sample of stroke survivors enrolled by DARS. 

Exploratory analyses showed no evidence of a differential effect of levodopa 

with stroke type (infarct versus haemorrhage), gender or age. Nor was there 

evidence of a beneficial effect of levodopa on secondary outcome measures, 

such as hand function or independence in activities of daily living. Hence, on 

the basis of the largest randomised controlled trial of levodopa-augmented 

stroke rehabilitation to date, this intervention cannot be recommended for 

routine clinical use.  

1.2.3.4. Why did Levodopa prove ineffective in enhancing stroke 

rehabilitation?  

Although these results are disappointing, the question of whether levodopa 

might enhance recovery of walking ability following stroke has at least been 

answered in a robust clinical trial that is likely to stand as the definitive study 

of this intervention. However, the mechanism by which levodopa might 

influence recovery was biologically plausible, and several smaller trials had 

suggested a positive effect on motor function and other outcomes. It is 
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therefore worth considering why levodopa did not deliver measureable clinical 

benefit when applied to a large sample of patients. As we have seen above, 

motor learning and other cognitive functions are crucially dependent upon 

interactions between disparate brain structures. Although the putative action 

of co-careldopa is as a modulator of basal ganglia functions, any effect is likely 

to be subsumed in vivo by the impact of more generalised brain injury both as 

a result of the stroke itself and as a consequence of a prior burden of 

microvascular disease. Motor learning ability may be heavily attenuated by 

both the global burden of brain injury, and by the impairment in cognitive 

function as a result of this. Furthermore, the efficacy of rehabilitation 

interventions may be reduced by other impairments in bodily functions that 

are ostensibly not directly related to the stroke itself, such as musculoskeletal 

pain, fatigue, and depression. 

1.2.4. Other impairments that might influence recovery from 

stroke 

1.2.4.1. Musculoskeletal pain 

Musculoskeletal pain is common in the general population (around 15% 

prevalence; Keenan et al. (2006)), but particularly so amongst stroke survivors 

(prevalence of up to 47%; Hettiarachchi et al. (2011)). The combined impact 

of these two pathologies is considerable, and greater than the individual 

impact of either condition occurring in isolation (Hettiarachchi et al., 2011). For 

example, having left hip pain without a co-existing stroke confers a ten-fold 

increase in the odds of reporting difficulty in standing and walking 

(Hettiarachchi et al., 2011), whereas an isolated right hemiparesis as a result 

of a stroke confers a five-fold increase in the odds of reporting problems with 

standing and walking (Hettiarachchi et al., 2011). When both impairments are 

present simultaneously, the odds for reporting problems in standing and 

walking is increased by almost fifty-fold (Hettiarachchi et al., 2011). This 

suggests that the combined effect of both impairments (right hemiparesis and 

contralateral hip pain) is far more disabling than either impairment alone. 
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1.2.4.2. Fatigue 

Fatigue is a debilitating consequence of stroke, but estimates of prevalence 

vary enormously (from 23% to 75%)  depending on the characteristics of the 

sample studied (Choi-Kwon and Kim, 2011). Definitions of “post stroke 

fatigue” (PSF) vary (Lynch et al., 2007, Staub and Bogousslavsky, 2001) and 

there is even debate about whether PSF represents a single construct or a 

common manifestation of a variety of underlying processes (Choi-Kwon and 

Kim, 2011, Wu et al., 2015). A recent systematic review found no evidence of 

an association between the onset of fatigue and the presence of white matter 

lesions and brain atrophy, and mixed evidence of an association between 

fatigue and stroke laterality and location (Kutlubaev et al., 2012). 

Nevertheless, fatigue may reduce a patient’s ability to participate in 

rehabilitation.  

1.2.4.3. Depression 

Depression occurs in up to a third of stroke survivors (Hackett et al., 2005, 

Kutlubaev and Hackett, 2014) but the interaction between mood and disability 

is complex. A small study conducted some years ago in an Irish sample found 

that 20% of patients met the criteria for major depression (Cassidy et al., 

2004). However, the presence of depression did not seem to influence final 

rehabilitation outcomes; the stronger predictor of rehabilitation outcome was 

the baseline Barthel Disability Score (Cassidy et al., 2004). Depression is 

associated with stroke severity and disability (Aben et al., 2002, Appelros and 

Viitanen, 2004, Brown et al., 2012, Desmond et al., 2003, Eriksson et al., 

2004, Kotila et al., 1998, Pohjasvaara et al., 1998, Townend et al., 2010, 

Verdelho et al., 2004, Kutlubaev and Hackett, 2014) but the directionality and 

causality of this relationship is unclear. It is possible that an extensive stroke 

leads to severe disability, with depression as a consequence of this; it is 

equally plausible that depression may attenuate a patient’s motivation to 

participate in rehabilitation, thereby increasing the risk of an adverse outcome 

(Kutlubaev and Hackett, 2014).  
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1.2.5. Might an assessment of brain structure contribute to 

predicting prognosis in rehabilitation? 

Although the initial intention of this Thesis (to explore the impact of structural 

brain impairment upon a patient’s ability to respond to co-careldopa-

augmented rehabilitation) was superseded by the negative results of the 

DARS trial, the data-set that DARS made available represents an important 

opportunity to explore how patients recover from stroke, and to begin to 

develop models that might contribute to more accurate prognostication. In 

particular, the availability of brain imaging for a large cohort of patients allows 

an exploratory analysis of how impairment in brain structure (as seen on CT) 

might interact with other impairment in bodily structures (musculoskeletal 

pain) and functions (cognition, fatigue, and mood) to produce limitation of 

motor recovery.  

1.2.5.1. The current role of brain imaging in rehabilitation assessment  

At present, a rehabilitation assessment usually begins with a detailed 

assessment of a person’s physical impairment, and seeks to understand how 

this interacts with contextual factors (both personal and environmental) to 

produce limitation of activities and restriction of participation (Gutenbrunner et 

al., 2006). However, the role of neuroimaging in predicting rehabilitation 

outcomes is unclear (Stinear and Ward, 2013). As such, although CT 

scanning remains useful in guiding the acute management of patients 

presenting with a clinical stroke syndrome, a detailed review of imaging does 

not at present form a routine part of prognostication in stroke rehabilitation 

(Stinear and Ward, 2013).  

1.2.5.2. The use of advanced imaging techniques in rehabilitation 

assessment  

It has been suggested that MRI scanning may allow impairment in brain 

structure (injury to the corticospinal tract) to be linked to impairment in bodily 

function (limb weakness), and thus to limitation of activity (walking) (Lee et al., 

2005, Tang et al., 2010). There is, however, there is no  consensus on the 

value of this approach in predicting walking ability (Dawes et al., 2008). More 

recently, an algorithm comprising a combination of clinical outcome 
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measures, neurophysiological assessment of corticospinal tract integrity, and 

MRI assessment of the posterior limb of the internal capsule has been used 

to predict recovery of upper limb function after stroke (Stinear et al., 2012). 

However, the value of such an approach in predicting walking ability has not 

been established. Functional MRI may be helpful in predicting recovery of 

certain functions such as language, (Saur et al., 2010) but it has not been 

widely applied in routine clinical practice (Stinear and Ward, 2013).  

1.2.5.3. Might CT imaging contribute to prediction of rehabilitation 

outcomes? 

The notion of combining an assessment of impairment in brain structure (on 

imaging) with impairment in brain function (using clinical assessment) to guide 

prognostication in rehabilitation is nevertheless appealing. However, if 

prognostic models are to be useful in clinical practice, then it is advantageous 

to utilise predictor variables that are easily collected. MRI scanning is more 

time consuming than CT. It is thus not currently the recommended imaging 

modality for acute stroke, due to the difficulties of managing safely patients 

who are unwell whilst images are being acquired, and the requirement for 

rapid imaging to inform time-sensitive treatment decisions such as 

thrombolysis. More specialised MRI modalities such as fMRI may have the 

potential to provide a more detailed assessment of brain structure, but are not 

yet in routine clinical use. CT scanning, although not without its limitations, is 

thus the investigation of choice for acute stroke and is  routinely performed in 

all patients presenting with symptoms suggestive of stroke. Thus, if imaging 

parameters are to be included in a prognostic model, then variables derived 

from CT imaging are more likely to be routinely available than those that rely 

upon MRI or fMRI. However, the use of CT imaging in prognostic modelling 

depends upon a standardised and clinically-meaningful method of coding 

scan findings. Several such templates exist, for both ischaemic stroke and 

ICH, and will be discussed below.   



48 
 

Part 1.3 Standardised image analysis instruments 

1.3.1. Mechanisms of brain injury in stroke 

The use of brain imaging as a predictor of rehabilitation outcomes is not at 

present widespread. The association between imaging markers of brain injury 

and motor recovery will be one of the key considerations of this Thesis. 

However, in order to understand radiological descriptors of tissue injury and 

how imaging findings evolve over time, it is helpful to first review the cellular 

mechanisms that underpin these processes.   

1.3.2. Mechanisms of brain injury in ischaemic stroke 

1.3.2.1. Initial cascades of brain injury following acute ischaemia 

In ischaemic stroke the initial cause of tissue injury is hypoxia. This unleashes 

several cascades of events that lead to neuronal injury and cell death. Some 

of these pathways cause immediate injury, others result in a delayed insult 

over subsequent hours and days (Albert-Weisenberger et al., 2013). Acute 

ischaemia initially results in an inability to maintain transmembrane ion 

gradients, and water influx causing cell swelling (“cytotoxic oedema”; Meuth 

et al. (2009)). More prolonged ischemia results in the production of free 

radicals and changes in intracellular pH (Albert-Weisenberger et al., 2013). 

Oxidative stress stimulates the release of glutamate, causing the activation of 

lytic enzymes (Iadecola and Anrather, 2011). Tissue perfusion may be further 

compromised by microvascular thrombosis as a result of dysfunction of the 

vascular endothelium (Stoll et al., 2008). In the most severe cases disruption 

of the blood/ brain barrier may lead to vasogenic oedema, with a life-

threatening rise in intracranial pressure (Ayata and Ropper, 2002). In the post-

acute phase, a variety of immune-cell-based mechanisms also contribute to 

tissue injury (Albert-Weisenberger et al., 2013, Iadecola and Anrather, 2011). 

1.3.2.2. Evolution of CT findings after acute ischaemic stroke 

Cellular injury following stroke is a dynamic process that evolves over time. 

The same is true of the imaging findings that result from brain ischaemia. In 

the early stages of an infarct, swelling as a result of cytotoxic oedema may be 

seen on plain CT as effacement of the sulci overlying the infarct (Wardlaw and 
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Mielke, 2005). The increased water content of ischaemic brain tissue causes 

reduced attenuation of the x-ray beam, and therefore an apparent reduction 

in density of ischaemic tissue relative to surrounding brain. In its earliest 

stages this may be visible as loss of the normal differentiation at interfaces 

between grey and white matter (the basal ganglia, frontoparietal cortex, and 

insular ribbon) (Grotta et al., 1999, Wardlaw and Mielke, 2005), or later as an 

area of “hypodensity”. The presence of an acute clot within a vessel may 

cause it to assume a hyperattenuated appearance (Wardlaw and Mielke, 

2005), which, if visible, may suggest an infarct involving that vascular territory 

even if other signs of parenchymal ischaemia are not yet obvious. As an infarct 

matures, more marked hypodensity develops, with both the cortex and white 

matter of the infarcted zone appearing darker than normal on CT (Grotta et 

al., 1999). Early signs of ischaemia are often subtle; a systematic review found 

inter-observer agreement for these signs to be poor to moderate (Wardlaw 

and Mielke, 2005). However, these findings were based on evidence that in 

some cases dates back to the early 1990s (Wardlaw and Mielke, 2005). The 

technology for both acquiring and viewing imaging has changed considerably 

since then. For example, only one study reviewed images in digital format on 

computer workstations (as is current practice); the remainder using lightboxes 

to view images printed on to films (Wardlaw and Mielke, 2005). Whether 

subsequent advances in technology have improved detection rates for early 

ischaemic changes remains unknown (Wardlaw and Mielke, 2005). 

Interestingly, blinding observers to patients’ clinical symptoms did not affect 

detection rates for early ischaemic change (Wardlaw and Mielke, 2005). 

1.3.2.3. Brain imaging findings and prognosis after stroke 

Although scanning provides at best a proxy assessment of clinical impairment 

after stroke (Kobayashi et al., 2009), the presence of any visible infarct on a 

baseline CT scan is associated with an increased risk of dependency 

(Wardlaw et al., 1998). It is also positively correlated with adverse functional 

outcome on the BI, Glasgow Outcome Scale (GOS), and NIHSS (Saver JL et 

al., 1999), although other studies have found that models incorporating 

imaging variables are not superior to those incorporating clinical variables 

alone (Reid et al., 2010). The initial volume of an infarct or haemorrhage 
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significantly predicts outcome measured by the mRS at 90 days, adding 15% 

to the explicable variance compared with a model comprising age and NIHSS 

score alone (Vogt et al., 2012).  

1.3.3. Mechanisms of brain injury in ICH 

1.3.3.1. Causes of ICH 

ICH is typically the result of spontaneous rupture of arterioles that have 

sustained long-term injury to the intima and sub-endothelium due to 

hypertension, atherosclerosis, or beta amyloid deposition (Qureshi et al., 

2009). More rarely, a secondary cause will be found such as a vascular 

malformation, coagulopathy, or an underlying neoplasm (Macellari et al., 

2014). The sites most commonly affected are the cerebral hemispheres, basal 

ganglia, thalamus, pons, and cerebellum (Qureshi et al., 2009). Up to 60% of 

those experiencing an ICH will be dead within a year, with half of these 

fatalities occurring within the first seven days (Sacco et al., 2009).  

1.3.3.2. Mechanisms of brain injury in ICH 

Tissue injury and cell death following intracerebral haemorrhage occur via a 

variety of mechanisms, which will be reviewed in detail below. The initial injury 

is usually a direct mechanical disruption of tissue as a result of the expanding 

haematoma (Xue and Yong, 2008). Subsequently the release of blood 

products, inflammatory cells, and proteases into the brain parenchyma causes 

a widespread inflammatory response (Xue and Yong, 2008). Rupture of a 

haematoma into the ventricular system with subsequent formation of 

intraventricular thrombus may also obstruct the normal circulation of 

cerebrospinal fluid, causing secondary brain injury due to acute obstructive 

hydrocephalus (Balami and Buchan, 2012). 

1.3.3.3. Causes of early deterioration in ICH: haematoma expansion 

Deterioration in neurological status is common within the first 48hours 

following ICH (Mayer et al., 1994). The most common cause is early 

expansion of the haematoma. Radiologically, there is no consensus on what 

constitutes h\aematoma “expansion”: various definitions have been proposed 

including absolute increase in volume or percentage change in haematoma 
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volume relative to initial lesion size (Dowlatshahi et al., 2011). Various cut-offs 

have been proposed, including absolute volume change by >3ml, >6ml, or 

>12.5ml (Dowlatshahi et al., 2011), and relative increase by >33% or >40% 

(Dowlatshahi et al., 2011). Although haematoma expansion is associated with 

adverse functional outcome (defined using the mRS), the sensitivity and 

specificity of this predictor for unfavourable outcome change depending upon 

how “expansion” is defined (Dowlatshahi et al., 2011, Davis et al., 2006). 

Furthermore, detecting haematoma expansion relies upon serial imaging at 

two or more time-points. This necessitates additional radiation exposure for 

the patient, and is thus not routine practice unless there is strong clinical 

evidence to suggest expansion. Since serial imaging is not universally 

performed in stroke care, the models presented here will be constructed using 

only findings from the first available CT scan. For this reason, haematoma 

expansion will not be included as a possible predictor variable.  

The initial volume of a haematoma, however, may be obtained from first 

imaging and appears to be important in predicting the risk of early expansion. 

Data from several trials in the Virtual International Stroke Trials Archive 

(VISTA: Ali et al. (2007)) have shown that a smaller initial haematoma volume 

is not only independently associated with lower mortality and favourable 

functional outcomes on the mRS at 90 days, but also with a decreased risk of 

subsequent haematoma expansion (Dowlatshahi et al., 2010). No 

haematomas with an initial size of <3ml went on to expand by >6ml, whereas 

7% of haematomas of 3-10ml, and 30.4% of those >10ml did so (Dowlatshahi 

et al., 2010). For an expansion of >12.5ml, the percentages of haematomas 

expanding were 0% (initial volume <3ml), 1.4% (initial volume 3-10ml), and 

16.9% (initial volume >10ml). For expansion of >33% above baseline, 17.6% 

of haematomas <3ml expanded, versus 22.4% of those 3-10ml and 27.6% of 

those >10ml (Dowlatshahi et al., 2010). 

1.3.3.4. Causes of early deterioration in ICH: rupture of the haematoma 

in to the ventricular system 

Aside from direct pressure effects of the initial lesion, a further burden of brain 

injury may be imposed by rupture of the haematoma into the ventricular 

system. This results initially in a widespread ventriculitis. Subsequently, clot 
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formation within the ventricular system may cause impedance of the normal 

circulation of cerebrospinal fluid, leading to an obstructive hydrocephalus in 

up to 50% of patients (Balami and Buchan, 2012). This may contribute further 

to rising intracranial pressure, causing secondary brain injury (Balami and 

Buchan, 2012). The mortality attendant with intraventricular extension is 

greater than that of intracerebral haemorrhage alone, and is estimated at 50-

75% (Balami and Buchan, 2012). Thalamic and caudate haematomas have 

the highest incidence of Intraventricular rupture due to their anatomical 

proximity to the ventricular system (Hallevi et al., 2008). Although larger 

haematoma volumes are generally correlated with the risk of intraventricular 

rupture (Steiner et al., 2006), the actual volume of blood required to precipitate 

this is lower for thalamic and pontine haematomas versus lobar lesions 

(Hallevi et al., 2008).  

The volume of blood in the ventricles is of prognostic importance, with 20ml 

or more being associated with poor outcome (Young et al., 1990). A combined 

volume of parenchymal and intraventricular blood of >40ml also predicts poor 

outcome on the mRS, with combined volumes of >60ml being predictive of 

mortality (Hallevi et al., 2009). With a combined haemorrhage volume above 

50ml, poor outcome (death or dependency) is universal (Hallevi et al., 2009). 

The presence of any intraventricular extension is also indicative of a poor 

prognosis, irrespective of volume. Hallevi et al. (2008) found that patients with 

intraventricular haemorrhage were twice as likely to be dead or dependent 

(mRS 4-6), and three times more likely to die than those with an isolated 

parenchymal haemorrhage. In the one large study of recombinant clotting 

Factor VII for intracerebral haemorrhage, only 20% of patients with 

intraventricular haemorrhage achieved a good outcome (mRS of 1-3), versus 

43% of those with unruptured parenchymal haematomas (Steiner et al., 2006). 

The presence of intraventricular rupture at any time-point independently 

predicted death or dependency (mRS of 4-6) at 90 days (Steiner et al., 2006). 

The Surgical Trial in Intracerebral Haemorrhage (STICH) likewise 

demonstrated that 31.4% of those without intraventricular extension achieved 

a good outcome (defined using the GOS), versus 15.1% of those with 

haematomas that ruptured (Bhattathiri et al., 2006). 
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1.3.3.5. Evolution of CT findings after acute ICH 

The appearance of a haematoma on CT changes as it matures, and may 

provide a rough estimate of its age (Macellari et al., 2014). An acute 

haematoma returns a homogenous, hyperdense appearance (Macellari et al., 

2014). Over the first 48 hours fluid levels may become apparent within the 

haematoma, reflecting different rates of coagulation or new bleeding within 

the haematoma (Macellari et al., 2014). The haematoma itself is typically 

surrounded by oedematous tissue (Balami and Buchan, 2012). Initially this is 

vasogenic oedema: a consequence of the leakage of osmotically active 

proteins from injured vessels in to the brain parenchyma (Balami and Buchan, 

2012). There is often an initial rapid expansion of oedema volume within the 

first 72 hours after haemorrhage (Arima et al., 2009). This may be seen on CT 

as a rim of hypodensity surrounding the haematoma itself (Macellari et al., 

2014).  

Subsequently, the presence of highly irritant blood products within the 

extravascular space stimulates activation of the inflammatory cascade, 

leading to a second phase of oedema accumulation which may persist over 

the first few days and weeks after ictus (Balami and Buchan, 2012). Over the 

next three weeks the appearance of the haematoma on CT imaging slowly 

becomes less intense, and when intravenous contrast medium is 

administered the periphery of the lesion may enhance to give a ring-like 

appearance mimicking an abscess (Macellari et al., 2014). By around nine 

weeks the lesion assumes its final hypodense appearance on CT (Macellari 

et al., 2014). Whilst plain CT is used primarily for confirming the diagnosis of 

ICH, contrast-enhanced CT (CE-CT) may be helpful in judging the risk of 

further haematoma expansion (Macellari et al., 2014). Leakage of contrast 

medium from injured vessels in to the haematoma cavity (the “spot sign”) has 

been shown to predict haematoma expansion and clinical deterioration 

(Macellari et al., 2014). CE-CT may also be used to detect underlying vascular 

abnormalities (Macellari et al., 2014). However, CE-CT carries a greater 

radiation exposure than plain CT, and in some patients a risk of precipitating 

renal failure or allergic reaction to the contrast medium (Macellari et al., 2014). 
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In practice, the use of this modality in evaluating acute ICH is therefore limited 

(Macellari et al., 2014). 

1.3.3.6. Models to predict prognosis after acute ICH 

Several models have been developed in order to predict which patients might 

be at risk of adverse outcomes following ICH. These are referenced and 

summarised in Appendix A. Many include radiological, as well as clinical, 

predictors. The aims of such models range from informing initial management 

decisions (such as who might benefit from surgery or intensive care) to 

providing more accurate prognostic information to patients and their families, 

or stratifying patients for entry in to research trials. For this reason, all models 

incorporated predictors that could be collected shortly after admission: 

typically a combination of radiological and clinical variables. Early mortality 

remains a key outcome with predictors including age, disordered 

consciousness on admission, admission GCS, haematoma diameter, volume 

of haematoma, the presence or absence of intraventricular extension, the 

presence of hydrocephalus, haemorrhage location (supratentorial versus 

infratentorial), history of hypertension, pulse pressure, subarachnoid 

extension, NIHSS score, blood glucose level, displacement of midline 

structures, mean arterial pressure, vomiting on admission, and the presence 

of signs of ischaemia on CT. Many of these variables (age, impairment of 

consciousness, baseline GCS, volume of haematoma, intraventricular 

extension, presence of hydrocephalus, supratentorial versus infratentorial 

location, midline shift, pulse pressure, admission temperature, and NIHSS 

score) are also predictors of functional outcomes measured using the mRS, 

GOS, or BI. Models therefore tend to include combinations of the same 

predictors, but with differing categorisation of predictor variables, cut-off 

scores, or score weightings used to provide additional sensitivity or specificity 

for mortality or for functional prognosis as required. 

1.3.4. The need for a standardised system to code scan findings 

As has been shown above, CT findings may offer important prognostic 

information; at least in terms of predicting the risk of death or dependency in 

activities of daily living (Wardlaw et al., 1998, Saver JL et al., 1999, Vogt et 
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al., 2012, Cheung and Zou, 2003, Cho et al., 2008, Lisk et al., 1994, Ruiz-

Sandoval et al., 2007, Tuhrim et al., 1991). However, the value of early CT 

scanning as a predictor of walking ability is less certain. If the question of 

whether or not baseline imaging is a useful predictor of rehabilitation outcome 

is to be addressed, then a standardised system for analysing scans and 

coding findings is required. The use of standardised templates to aid scan 

reporting is thought to improve the accuracy of scan reporting by non-

radiologists, since having a systematic approach to reviewing images helps to 

ensure that subtle signs are not missed (Wardlaw et al., 2007, Wardlaw et al., 

2010), 

1.3.5. Standardised systems for coding ischaemic stroke 

1.3.5.1. Why were standardised coding systems for CT findings in 

acute ischaemic stroke first developed? 

Several standardised templates for reporting scan findings in ischaemic stroke 

exist: but they were not developed with prediction of functional prognosis in 

mind. Their development can be traced back to early trials of thrombolysis, 

which showed that patients with more extensive infarcts carry a greater risk of 

subsequent haemorrhagic transformation (Kaste et al., 1995, Anonymous, 

1995, Anonymous, 1996, Hacke et al., 1995). The ability to determine the 

extent of an infarct on early imaging was therefore felt to be crucial to the safe 

implementation of this intervention. This prompted the development of 

standardised methods for quantifying the extent of ischaemic change on CT 

scans. Such systems required good inter-observer agreement: not only 

amongst neuro-radiologists, but also amongst the stroke physicians, 

neurologists, and acute physicians who it was felt would most likely be 

involved in making a decision to proceed with thrombolysis (Grotta et al., 

1999). 

1.3.5.2. The “⅓MCA rule” 

The earliest and simplest system to be developed was the so-called “⅓MCA 

rule” (Kaste et al., 1995). This divided the volume of the middle cerebral artery 

(MCA) territory into 3, with ischaemic change in >⅓ thought to pose a higher 

risk for thrombolysis (Kaste et al., 1995, Hacke et al., 1998). Unfortunately this 
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system yields only moderate inter-observer agreement (Grotta et al., 1999). 

When used to determine eligibility for a hypothetical thrombolysis trial, even 

experienced observers correctly classified only 45% of patients as eligible or 

ineligible, although prior training did improves the rate of correct classification 

(von Kummer, 1998). This system does however have reasonable test-retest 

reliability, with 80% of scans being coded identically on first and second 

reading (Wardlaw et al., 1999). The utility of the “⅓MCA rule” in predicting 

recovery of walking has not been established. 

1.3.5.3. The Alberta Stroke Program Early CT Score (ASPECTS) 

The difficulty in estimating the extent of ischaemic change using the ⅓MCA 

rule prompted the development of more systematic methods for quantifying 

MCA ischaemia, in the hope of improving inter-observer agreement (Barber 

et al., 2000). The Alberta Stroke Program Early CT Score (ASPECTS; Barber 

et al. (2000)) defines ten regions within the MCA territory: six cortical 

(numbered M1-M6), and four subcortical (caudate, lentiform nucleus, insular 

cortex, and internal capsule). From an initial score of ten points, one point is 

deducted for each region in which signs of acute ischaemia (swelling, 

hypoattenuation, or loss of grey/ white matter definition) are seen (Barber et 

al., 2000). A score of 10 therefore denotes no visible ischaemic change, whilst 

a score of zero indicates ischaemia involving the entire MCA territory (Barber 

et al., 2000).   

1.3.5.4. ASPECTS as a predictor of prognosis  

In contrast to the “⅓MCA rule”, the ASPECTS was intended from the outset 

to predict functional outcome: albeit dichotomised as “independent” versus 

“dead or dependent” (Barber et al., 2000). It was anticipated that it would be 

helpful not only as a decision aid for thrombolysis but also in the selection of 

patients for trials of future neuroprotective drugs (Barber et al., 2000). 

Dichotomising baseline ASPECTS (scored on the CT scan performed at 

presentation) in to ≤7 or >7 discriminated independence (mRS 0-2) from 

dependence and death (mRS 3-6) at 3months (Barber et al., 2000). 

Dichotomised ASPECTS was also predictive of symptomatic haemorrhage 

after thrombolysis (p=0.012; Barber et al. (2000)). With knowledge of the 

affected side, the inter-observer agreement for dichotomised ASPECTS 
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ranged from k=0.71 for radiology trainees to k=0.86 for stroke neurologists 

and k=0.89 for neuro-radiologists (Barber et al., 2000). This compared 

favourably with the ⅓MCA rule (k-0.64 for radiology trainees, 0.61 for stroke 

neurologists, and 0.52 for experienced neuro-radiologists). Without 

knowledge of the affected side agreement was more modest (k=0.39 for 

radiology trainees,0.69 for stroke neurologists, and 0.47 for neuro-

radiologists), but agreement remained higher than that achieved using the 

⅓MCA rule (k=0.14 for trainees, 0.49 for neurologists, and 0.37 for 

neuroradiologists; Barber et al. (2000)). The sensitivity of dichotomised 

ASPECTS for good versus poor functional outcome was 0.78, with a 

specificity of 0.96 (Barber et al., 2000). Comparable figures for the ⅓MCA rule 

are sensitivity 0.73, specificity 0.91.  

As a predictor of good/poor functional outcome, the ASPECTS score thus 

compares favourably with baseline clinical findings using the NIHSS. When 

dichotomised as ≤15 or >15, the NIHSS has sensitivity 0.69, and specificity 

0.76 for good versus poor outcome (Barber et al., 2000). Since its inception, 

ASPECTS has been widely used and evaluated. When comparing ASPECTS 

scored in “real time” clinical practice (i.e. at the point of treatment) by stroke 

physicians with the score subsequently allocated by a radiologist on later 

review, there was substantial agreement (weighted k=0.69), although the 

stroke physicians tended to under-estimate the extent of ischaemic change 

when ASPECTS was >7, and over-estimate the extent of changes by nearly 

two points for the worst-affected scans (ASPECTS<3) (Coutts et al., 2004). 

Although useful in predicting “good/ poor” functional outcome, the ASPECTS 

remains a comparatively crude assessment of the extent of an infarct. For 

example, an ASPECTS of 8 indicates ischaemia in two of the ten areas of 

interest, but does not specify which two (Wardlaw et al., 2010). Also, 

ASPECTS only codes infarction in the MCA territory. It offers no information 

on other vascular territories, and nor does it provide accurate coding of 

features such as oedema, mass effect, lacunar lesions, white matter lesions, 

and haemorrhagic transformation of infarcts. It does not classify old infarcts 

and non-stroke lesions. 
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1.3.5.5. The Acute Ischaemic Stroke Classification Template (AISCT) 

The Acute Ischaemic Stroke Classification Template (AISCT), was developed 

by Professor J.M. Wardlaw et al, of the Brain Research Imaging Centre, 

Neuroimaging Sciences, Edinburgh (www.bric.ed.ac.uk; Wardlaw and Sellar 

(1994)). It comprises a series of templates for coding the location and extent 

of ischaemic change and tissue swelling, which were constructed following a 

review of over 100 scans (Appendix B; Wardlaw and Sellar (1994)). The 

AISCT addresses many of the deficiencies of the “⅓MCA rule” and ASPECTS, 

and was thus used in DARS with the agreement of Professor Wardlaw.  

1.3.5.6. Inter-observer agreement of the AISCT 

Amongst experienced neuroradiologists, the AISCT has good inter-observer 

agreement for infarct size and type (K=0.78), excellent agreement for infarct 

swelling (K=0.80), and moderate agreement for haemorrhagic transformation 

of the infarct (Wardlaw and Sellar, 1994). Amongst radiology trainees, it has 

moderate to good agreement for infarct size and site, fair to moderate 

agreement for infarct swelling, and poor to fair agreement for haemorrhagic 

transformation (Wardlaw and Sellar, 1994). The inter-observer agreement of 

AISCT system has also been evaluated in a large sample of non-radiologists 

from a variety of specialties and with prior experience of CT interpretation 

ranging from <5 years to >10 years (Wardlaw et al., 2007, Wardlaw et al., 

2010). The inter-observer agreement of the AISCT is comparable to that of 

the ⅓MCA rule, ASPECTS (area under receiver operator characteristics curve 

0.602-0.604 for all scales; Wardlaw et al. (2010)). When the performance of 

neuroradiologists was compared to that of non-radiologists, the expert 

observers tended to spot more subtle signs of ischaemia compared with non-

experts (Wardlaw et al., 2007), and took longer to read each scan (Wardlaw 

et al., 2010). More severe ischaemia (hypodensity and swelling) was more 

reliably detected than subtle signs, and a longer time from presentation to 

scan also improved detection rates for ischaemic change (Wardlaw et al., 

2010). Detection of acute ischaemia was not influenced by scan quality, or by 

the presence of an old ischaemic lesion (Wardlaw et al., 2010). The AISCT 

has been used in the Third International Stroke Trial, IST-3 (Sandercock et 

al., 2012, The IST collaborative group, 2015), and was also adapted for a 
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subsidiary study to determine if CT or MRI angiography might be used to guide 

administration of tissue plasminogen activator at up to six hours after stroke 

(Wardlaw et al., 2014a). The relationship between infarct classification using 

this system and prognosis for return to walking has not yet been established. 

1.3.5.7. How well does the AISCT correlate with clinical impairment? 

In DARS, the diagnosis of “stroke” was clinically defined (Aho et al., 1980, 

Bhakta et al., 2014). Patients were not required to have a compatible stroke 

lesion visible on imaging in order to be eligible to participate. However, the 

AISCT classification of ischaemic lesions has shown a good correlation with 

the clinical classification of ischaemic stroke described by Bamford et al. 

(1991). Radiological lesions that are compatible with a total anterior circulation 

stroke syndrome (TACS) include infarcts involving: the whole of the cortical 

MCA territory (Kobayashi et al., 2009); the whole of the cortical MCA territory 

plus the lateral basal ganglia (Kobayashi et al., 2009); the whole MCA territory 

(Kobayashi et al., 2009); or more than 50% of the MCA territory plus the 

anterior cerebral artery (ACA) or posterior cerebral artery (PCA) territory 

(Mead et al., 2000). Infarcts compatible with a partial anterior circulation stroke 

syndrome (PACS) include: small cortical infarcts; infarcts of the ACA territory; 

or a border-zone infarct between the MCA and ACA or MCA and PCA 

territories (Mead et al., 2000). Lesions compatible with either a TACS or a 

PACS syndrome include: medium-sized cortical infarcts of about half the MCA 

territory; or large (>1.5cm) striatocapsular infarcts (Mead et al., 2000). A 

posterior circulation stroke syndrome (POCS) is compatible with a cortical 

infarct in the posterior cerebral artery (PCA) territory, or a lesion in the brain 

stem or cerebellum, including small infarcts to the pons (Mead et al., 2000). A 

lacunar stroke syndrome (LACS) is compatible with any subcortical lacunar 

infarct, including in the centrum semiovale (Mead et al., 2000).  

With this in mind, it is possible to determine the proportion of patients in a 

sample who manifest imaging findings that are compatible with their clinical 

stroke syndrome. Mead et al. (2000) reported a series of 1012 patients with 

ischaemic stroke, of whom 655 had a recent infarct visible on CT or MRI. Of 

those with a visible recent infarct, 75% had a lesion compatible with their 

clinical syndrome (Mead et al., 2000). Breaking down by syndrome, 79% of 
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patients with a TACS syndrome had a compatible lesion, as did 71% of 

patients with a PACS syndrome, 83% of those with a POCS, and 73% of those 

with a LACS (Mead et al., 2000). Figures for the whole sample can be 

estimated by assuming a “best case scenario (in which all patients with no 

visible acute infarct at baseline later develop a lesion compatible with their 

clinical syndrome), and a “worst case” scenario (under which no patients 

without a visible infarct initially later develop a lesion compatible with their 

clinical syndrome). Assuming the “best case” scenario the total percentage of 

patients who would have a compatible lesion would be 84%: 81% for TACS; 

81% for PACS; 90% for POCS; and 85% for LACS (Mead et al., 2000). 

Assuming the “worst case” scenario, the total percentage with compatible 

scan findings would be 49% (73% for TACS; 48% for PACS; 50% for POCS; 

and 40% for LACS; Mead et al. (2000)). The positive predictive values of each 

clinical syndrome for a compatible CT lesion were: TACS 79% (95% CI 68%-

87%); PACS 71% (66%-75%); POCS 83% (75%-89%); and LACS 73% (63%-

80%) (Mead et al., 2000).  

Kobayashi et al. (2009) reported findings from the first 510 patients presenting 

to the IST-3 trial. Of those with abnormal scans (329/510), figures for those 

presenting with a compatible clinical syndrome and radiological lesion were: 

79% for TACS; 57% for PACS; 33% for POCS; and 40% for LACS. Assuming 

a “best case” scenario in the whole sample gives: 100% TACS; 80% PACS; 

81% POCS; and 62% LACS (Kobayashi et al., 2009). Assuming a “worst 

case” scenario in the whole sample, the estimates are: 79% TACS; 37% 

PACS; 14% POCS; and 2% LACS (Kobayashi et al., 2009). This indicates 

that, if an infarct is not seen on imaging, the clinical syndrome as defined by 

the Oxford Community Stroke Project classification may provide a reasonably 

reliable surrogate estimate of its location and size (Mead et al., 2000): at least 

for TACS and PACS syndromes (Kobayashi et al., 2009). Findings for POCS 

and LACS were less consistent. This may in part reflect the lower sensitivity 

of acute CT imaging for lacunar infarcts (Kobayashi et al., 2009). It may also 

reflect the mis-assignment of patients to the LACS category by the computer 

algorithm used by IST-3: in the sample reported by Kobayashi et al, around 

20% of those judged to have a “LACS” syndrome in fact had a small cortical 



61 
 

or striato-capsular infarct that would be more consistent with a PACS 

syndrome (Kobayashi et al., 2009). 

1.3.6. Standardised systems for coding ICH 

1.3.6.1. What imaging variables are of prognostic importance after ICH? 

Several imaging variables are associated with poor functional outcome from 

intracerebral haemorrhage. These include: volume of intracerebral 

haemorrhage (Cho et al., 2008, Godoy et al., 2006, Ruiz-Sandoval et al., 

2007, Tuhrim et al., 1991, Lisk et al., 1994, Mase et al., 1995, Schwarz et al., 

2000, Shaya et al., 2005); intraventricular extension (Godoy et al., 2006, Ruiz-

Sandoval et al., 2007, Tuhrim et al., 1991, Portenoy et al., 1987, Mase et al., 

1995, Schwarz et al., 2000, Hallevy et al., 2002, Bhattathiri et al., 2006); 

presence of hydrocephalus (Shaya et al., 2005); supra-tentorial versus infra-

tentorial location (Ruiz-Sandoval et al., 2007); and midline shift (Hallevy et al., 

2002). As discussed previously the utility of these variables in predicting other 

outcomes such as recovery of walking ability remains unknown. The 

classification systems for ischaemic stroke that were described above either 

do not include detailed coding of ICH (Barber et al., 2000, Kaste et al., 1995), 

or code ICH primarily in the context of haemorrhagic transformation of an 

underlying infarct (Wardlaw and Sellar, 1994). Additional coding for specific 

ICH variables that may be of prognostic importance is therefore required. A 

variety of classification systems have been developed, for purposes as 

diverse as enrolling patients in to clinical trials of surgical haematoma 

evacuation (Bhattathiri et al., 2003, Mendelow et al., 2005), judging the effects 

of interventions such as blood pressure reduction (Delcourt et al., 2012, 

Delcourt et al., 2010) or recombinant factor VII for intracerebral haemorrhage 

(Mayer et al., 2005a, Mayer et al., 2005b), or the recording and reporting of 

intracerebral haemorrhage as an adverse event during trials of thrombolysis 

for acute myocardial infarction (Gebel et al., 1998).  

1.3.6.2. Assessment of haematoma volume 

All of the standardised systems for coding ICH that were outlined above 

incorporate an assessment of haematoma volume (Bhattathiri et al., 2003, 

Mendelow et al., 2005, Delcourt et al., 2012, Delcourt et al., 2010, Mayer et 
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al., 2005a, Mayer et al., 2005b, Gebel et al., 1998), but methods for deriving 

this vary. Computer-assisted planimetry uses computer software to estimate 

the surface area of each axial slice, which is then multiplied by slice thickness 

and summed to provide an estimate of volume (Gebel et al., 1998, Delcourt 

et al., 2012, Delcourt et al., 2010, Mayer et al., 2005b, Mayer et al., 2005a, 

Kosior et al., 2011). These software packages are rarely available in routine 

clinical practice (Divani et al., 2011). A more straightforward, albeit less 

accurate, method for estimating the volume of a haematoma utilises the 

formula: 

Volume = A × B × C 
                2 

in which A is the greatest dimension of the haemorrhage on axial imaging; B 

is the greatest diameter at 90° to A; and C is the approximate number of axial 

imaging slices on which the haematoma is visible, multiplied by slice thickness 

(Kwak et al., 1983, Kothari et al., 1996). This “ABC/2 method” has been widely 

used (Bhattathiri et al., 2003, Mendelow et al., 2005, Mendelow et al., 2011, 

Hemphill et al., 2001, Ruiz-Sandoval et al., 2007, Vogt et al., 2012, Sloan et 

al., 1995, Claassen et al., 2001, Leira et al., 2004, Lisk et al., 1994), but it 

assumes that the 3-dimensional shape of a haematoma approximates to an 

ellipsoid (Divani et al., 2011). It therefore provides a less accurate estimation 

of the volume of irregularly-shaped haematomas than computer-assisted 

planimetry (Kothari et al., 1996, Divani et al., 2011), with reports of an error of 

up to 8% in such lesions (Divani et al., 2011). The measurement error for the 

“C” term has also been shown to increase with each millimetre of axial slice 

thickness (Divani et al., 2011). These sources of error may be problematic in 

studies that rely upon detecting change in haematoma volume over two or 

more imaging series acquired at different time points (Divani et al., 2011): but 

in this Thesis only the initial haematoma volume will be considered. 

Furthermore, the ABC/2 method can be used with little training and without 

the need for computerised post-acquisition image processing. For these 

reasons, this was the method chosen for estimating haematoma volume in 

DARS. 
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1.3.6.3. Systems for coding other ICH characteristics 

Numerous systems have been proposed to classify other lesion 

characteristics such as haematoma location, and the presence of 

intraventricular extension, hydrocephalus, or mass effect (Bhattathiri et al., 

2003, Gebel et al., 1998, Lisk et al., 1994).  

Gebel et al. (1998) classified haemorrhage location as parenchymal, 

subdural, intraventricular, or subarachnoid. The site was coded as frontal, 

parietal, occipital, thalamus, basal ganglia/ internal capsule, cerebellar, and 

brainstem (Gebel et al., 1998). They noted haematoma characteristics such 

as the presence of a blood/ fluid level, and the haematoma appearance 

(confluent, mottled, or hypodense) (Gebel et al., 1998). Signs of mass effect 

were noted including: ventricular effacement; horizontal or vertical shift of the 

pineal gland; effacement of the cisterns; and subfalcine or transtentorial 

herniation of brain structures (Gebel et al., 1998). Hydrocephalus and 

intraventricular extension were classified as mild, moderate, or severe, with 

descriptors of each provided (Gebel et al., 1998). The presence of any other 

brain lesion (cortical or lacunar infarct, atrophy, periventricular leucomalacia, 

underlying mass lesion) were noted (Gebel et al., 1998). The volume of the 

largest haematoma was calculated using computer-assisted planimetry: and 

thus relied upon software that would not be available for use in routine clinical 

practice (Gebel et al., 1998).  

Lisk et al (Lisk et al., 1994) classified the site of the haemorrhage as 

putaminal, thalamic, or lobar; ventricular enlargement, ventricular extension, 

and mass effect were graded as “none”, “slight”, “moderate”, or “severe”; 

subarachnoid blood was coded as present or absent; the volume of 

haemorrhage was calculated using the ABC/2 method; and the largest 

diameter of the haemorrhage was noted (Lisk et al., 1994).  

Although comprehensive, the methods of Gebel et al. (1998) and Lisk et al. 

(1994) have not been validated for inter-observer agreement. The system 

proposed by Bhattathiri et al. (2003), however, has  a published assessment 

of inter-observer agreement. This system calculates volume (using the ABC/2 

method), records the subjective presence or absence of hydrocephalus, a 
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measurement of midline shift, depth of the haematoma from the cortical 

surface, and haematoma location (classified as frontal, temporal, parietal, 

occipital, basal ganglia, internal capsule, and thalamus) . When inter-observer 

agreement for this system was evaluated (in two consultant neurosurgeons, 

two neurosurgical trainees, one consultant neuroradiologist, and one 

radiology trainee), there was good agreement for side of haemorrhage 

(k=0.87), lobar (versus deep) origin (k=0.78), involvement of the basal ganglia 

and thalamus (k=0.85), and the presence of intraventricular extension 

(k=0.82). However, agreement was moderate (k=0.44) for the presence of 

hydrocephalus (Bhattathiri et al., 2003). The system developed by Bhattathiri 

et al. (2003) will therefore form the basis of the haemorrhage classification 

system used for DARS, albeit with one minor addition not included in the 

original: the presence or absence of intraventricular extension as a 

dichotomous variable. 
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Part 1.4 Developing a prognostic model to predict recovery 

of mobility after stroke 

1.4.1. The need to predict specific rehabilitation outcomes 

1.4.1.1. What is a “prognostic model”? 

A prognostic model is a means of combining a series of predictor variables in 

order to generate an estimate of the risk of a specified outcome for an 

individual patient (Steyerberg et al., 2013). As detailed above, there has been 

substantial research interest in predicting outcome after both ischaemic stroke  

and ICH. However, many existing models focus upon predicting the risk of 

death (Broderick et al., 1993, Hemphill et al., 2001, Cheung and Zou, 2003, 

Godoy et al., 2006, Tuhrim et al., 1991, Lisk et al., 1994, Cho et al., 2008, 

Ruiz-Sandoval et al., 2007, Bhattathiri et al., 2006), the risk of adverse events 

such as post-thrombolysis haemorrhage (Kaste et al., 1995, Hacke et al., 

1998), or crude “dependent/ independent” functional outcomes such as the 

mRS (Cheung and Zou, 2003, Lisk et al., 1994, Hallevy et al., 2002, Portenoy 

et al., 1987, Schwarz et al., 2000).  

1.4.1.2. How useful are existing prognostic models in rehabilitation 

practice? 

Whilst such models might be of value in guiding treatment decisions in the 

acute stages of care, their value in the rehabilitation phase is limited. In 

rehabilitation practice, patients and their families are usually concerned about 

the recovery of specific activities (Craig et al., 2011). Although measures such 

as the NIHSS have some relationship to broad functional outcome, they are 

of limited value in predicting whether an individual patient might be able to 

achieve goals such as walking, using a computer, or holding a conversation 

(Stinear and Ward, 2013). 

1.4.1.3. The potential uses of models to predict specific rehabilitation 

outcomes  

The ability to offer a more detailed rehabilitation prognosis than “death or 

dependency” would be enormously useful for rehabilitation professionals and 

patients and their families. In particular, the ability to walk independently is a 
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crucial determinant of whether or not a patient is likely to be able to return to 

independent living or require institutional care (Craig et al., 2011). Being able 

to predict reliably who might walk again would therefore allow the rehabilitation 

team to deliver a more accurate prognosis when speaking to patients and their 

families (Craig et al., 2011). This would in turn allow both patients and the 

team to set achievable rehabilitation goals, and may also facilitate early 

planning for discharge thereby minimising the length of a patient’s hospital 

stay (Kwakkel and Kollen, 2013). Accurate prognostication may also allow 

rehabilitation interventions to be selected and tailored towards the needs of 

individual patients. For example, those who have the highest probability of 

regaining independent walking may be more likely to benefit from restorative 

approaches, whereas for those with a low probability of walking again the 

focus of rehabilitation would be to teach the use of adaptive and compensatory 

strategies. Perhaps most interestingly, prognostic models may allow 

emergent rehabilitation interventions such as robotics to be targeted towards 

those who stand the greatest chance of responding to these treatments 

(Kwakkel and Kollen, 2013). However, the derivation and introduction in to 

clinical practice of a prognostic model poses several challenges. 

1.4.2. The challenges of developing prognostic models 

1.4.2.1. Clinical versus statistical validity 

Of course, fully realising the potential benefits of prognostic modelling will 

depend upon constructing valid models to predict outcomes that are important 

in rehabilitation practice. It is therefore important to consider what is meant 

when one refers to the “validity” of a model. In modelling, “validity” may be 

viewed as both a clinical and a statistical concept. The clinical validity of a 

model refers to its ability to predict satisfactorily an outcome that is of clinical 

importance (Altman and Royston, 2000). This is determined in part by the 

choice of predictor variables that are fitted to the model. If variables that are 

intrinsically weak predictors are used, then its predictive ability in practice will 

be limited. The concept of statistical validity refers to the goodness-of-fit of a 

model to both the data-set in which it was derived, and to the population of 

patients to which it is ultimately applied. The two concepts are not 

synonymous. For example, it is possible to derive a model that is an excellent 
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fit to data, but which predicts an outcome that is of no clinical interest 

whatsoever (Vickers and Cronin, 2010). Such a model might be said to have 

good statistical validity, but limited clinical validity. Conversely, the 

Framingham model to predict mortality from cardiovascular disease has high 

clinical validity and is widely used in practice, despite having only modest 

discriminatory power in some sub-populations (Moons et al., 2009a). Some of 

the difficulties associated with the development and introduction in to clinical 

use of prognostic models are well-illustrated by considering the myriad of 

models developed to predict outcomes in ICH that were discussed above.  

1.4.2.2. What is meant by the “clinical validity” of a model? 

If the clinical validity of a model depends upon its ability to predict an outcome 

reliably, then the choice of predictor variables included is a crucial and often 

difficult judgement when constructing a model. Often this decision is based 

upon what has already been demonstrated to be of prognostic importance, 

with variables being entered in to or excluded from the model in order of the 

strength of their individual association with the outcome of interest (Altman 

and Royston, 2000). Statistical software packages may allow this process to 

be semi-automated, with little or no intellectual input in to selection of predictor 

variables (Altman and Royston, 2000). Unfortunately it does not always follow 

that predictors selected by a computer algorithm are the most clinically valid, 

or that they will yield the strongest prediction (Altman and Royston, 2000). 

Furthermore, choosing candidate predictors based upon a review of previous 

literature may present a problem if the outcome of interest has not been 

explored previously. For example, although several models predict survival 

with disability following ICH (Cheung and Zou, 2003, Lisk et al., 1994, Hallevy 

et al., 2002, Portenoy et al., 1987, Schwarz et al., 2000, Ruiz-Sandoval et al., 

2007, Godoy et al., 2006, Cho et al., 2008, Shaya et al., 2005, Tuhrim et al., 

1991, Bhattathiri et al., 2006), the outcome measures they adopted (Jennett 

and Bond, 1975, Bonita and Beaglehole, 1988) are fairly crude categorical 

scales that classify disability as mild, moderate, or severe. It is possible that 

variables that are predictive of dichotomised “death or dependency” outcomes 

will have little or no validity in predicting specific rehabilitation outcomes such 

as recovery of walking ability.  
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1.4.2.3. What is meant by the “statistical validity” of a model?  

The construction of a statistical model is simply the first step in the process of 

development and introduction into clinical use. Many of the models developed 

to predict prognosis in ICH appeared to perform reasonably well in predicting 

outcomes in the samples in which they were derived (Ariesen et al., 2005). 

However, their adoption into routine clinical practice has been limited (Ariesen 

et al., 2005). It is  worth considering why this might be so. Firstly, fitting a 

model to a single sample without subsequent validation risks over-estimating 

the predictive value of variables included: so-called “over-fitting” (Altman and 

Royston, 2000). Models that are over-fitted tend to be unduly complex and 

may contain predictors that, whilst statistically significant in the derivation 

cohort, add little or no predictive value when applied to other samples (Altman 

and Royston, 2000). This may explain why an evaluation of three prognostic 

models for intracerebral haemorrhage (Hemphill et al., 2001, Ruiz-Sandoval 

et al., 2007, Cho et al., 2008) found that the predictive power of the GCS alone 

was similar to that of all three more complex models (Parry-Jones et al., 2013). 

Furthermore, the properties of an over-fitted model may change when it is 

applied to a sample of patients with different characteristics to the derivation 

cohort. This instability may engender mistrust amongst clinicians (Ariesen et 

al., 2005). For example, models to predict outcome in intracerebral 

haemorrhage tend to be most reliable in identifying patients with the highest 

probabilities of death or poor outcomes (Ariesen et al., 2005). In clinical 

practice however, the majority of patients have a somewhat lower risk of death 

or disability (Ariesen et al., 2005). The accuracy of models in discriminating 

moderate from high risk of death or poor outcome is questionable, and  raises 

concerns that patients may be inappropriately assigned to the “poor 

prognosis” group and thus denied aggressive care (Ariesen et al., 2005). 

Statistical models cannot therefore be assumed to be generalisable beyond 

the data-set in which they were originally derived (Altman and Royston, 2000). 

For this reason, fmal validation is required for all models prior to adoption in 

to clinical practice (Altman and Royston, 2000). Moons et al. (2015) have 

proposed a hierarchy of validation, ranging from development only (in which 
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a model is derived but not validated) to the evaluation of a published model 

using an independent data-set. 

1.4.2.4. Other considerations when developing a prognostic model 

Aside from the requirement for both statistical and face validity, the ease with 

which a model may be used in practice is an important determinant of how 

widely it is ultimately adopted. The use of predictors that are time-consuming 

to collect or that are not collected as part of routine practice may severely limit 

a model’s clinical utility. A second consideration is how the model is used to 

generate a summary risk score. Using a single predictor variable (a univariate 

model) is most straightforward, but in practice univariate models rarely provide 

sufficient predictive ability (Moons et al., 2015). Combining several predictors 

in a multivariate model may improve the accuracy of predictions, but the 

complex scoring systems required to assimilate data from several variables 

into a summary statistic may be difficult to apply and interpret in practice 

(Moons et al., 2015). This was certainly the case for several early prognostic 

models for intracerebral haemorrhage, which derived their output scores using 

complex algebraic equations (Ariesen et al., 2005).  

1.4.3. Aims of this Thesis 

The development and introduction into clinical practice of a prognostic model 

is thus no easy matter. However the rich DARS data-set presents an 

opportunity for an exploratory analysis of variables that influence recovery of 

walking ability after stroke, whilst remaining mindful of the above 

considerations. This Thesis  aims to develop a series of models to predict who 

might recover the ability to walk 10m or more after stroke. It will utilise a 

combination of clinical predictor variables and markers of impairment in brain 

structure derived from CT to predict the dichotomous outcome “able to walk 

independently for 10m or more, with aid if necessary but no standby help” at 

two time points: eight weeks and six months after randomisation in to the 

DARS trial.  

This work will focus upon the initial development of the models, but not their 

validation. Nor will their utility in a clinical setting be assessed. It must be 

stressed that these models are derived “post-hoc” from an existing data-set. 
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The limitations of this approach are well recognised, and  will be discussed in 

detail in the concluding chapter. The intention of this work is to generate 

hypotheses that might be explored subsequently in a prospective cohort. 
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Chapter 2. Methods 

Part 2.1 Methods for the DARS trial  

2.1.1. What was the DARS trial? 

2.1.1.1. Primary objective of the DARS trial 

DARS was a multi-centre double-blinded randomised controlled trial of co-

careldopa or placebo in conjunction with standard NHS physiotherapy and 

occupational therapy in patients presenting with a new clinical diagnosis of 

stroke (Bhakta et al., 2014). The primary objective of the trial was to compare 

the proportion of patients in the active treatment and placebo arms who were 

walking independently by eight weeks after randomisation (Bhakta et al., 

2014).  

2.1.1.2. Primary outcome measure 

The primary outcome measure was the self-reported ability of patients to walk 

ten metres or more (with an aid if necessary) at eight weeks after 

randomisation (Bhakta et al., 2014). This was defined using the Rivermead 

Mobility Index (RMI; Collen et al. (1991)): specifically a RMI score or seven or 

greater, or answer “yes” to question seven. Since co-careldopa proved 

ineffective in enhancing recovery from stroke, the DARS data-set has been 

treated as a large observational cohort for the purposes of this Thesis. The 

process of randomisation and the medication regimen administered are thus 

of little relevance to this work: they will be outlined here in sufficient detail to 

provide context, but the full protocol for DARS has been published elsewhere 

(Bhakta et al., 2014). 

2.1.2. Trial setup 

2.1.2.1. Sponsorship and sources of funding 

The DARS trial was funded by the National Institute for Health Research 

(Grant reference number 08/43/61; Bhakta et al. (2014)). It was sponsored by 
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the University of Leeds, and coordinated from the University of Leeds Clinical 

Trials Research Unit (CTRU; Bhakta et al. (2014)).  

2.1.2.2. Trial management and oversight 

The management of the trial was the responsibility of the Trial Management 

Group, with support from the Trial Steering Committee (TSC). An independent 

Data Monitoring and Ethics Committee (DMEC) was convened to provide 

oversight as the trial progressed (Bhakta et al., 2014). The DMEC had full 

access to unblinded trial data, including all end-points and reports of adverse 

events and serious adverse events. They had the authority to terminate the 

trial at any point in the light of concerns about safety, or in the event of new 

evidence emerging that called in to question the clinical equipoise of the trial. 

The design and conduct of the trial, data analysis, and authorship of any 

papers that arise from this work are at the sole discretion of the TSC, without 

influence from the Sponsor or funding body. 

2.1.2.3. Trial registration 

DARS was registered with the International Standard Randomised Controlled 

Trial Number (ISRCTN) database (Faure and Hrynaszkiewicz (2011); 

www.isrctn.com, registration number ISRCTN99643613) and the European 

Union Drug Regulating Authorities Clinical Trial Register 

(https://eudract.ema.europa.eu/: registration number 2009-017925-20) 

(Bhakta et al., 2014).  

2.1.2.4. Legal framework and ethical approval 

The Trial was approved by the Medicines and Healthcare Products Regulatory 

Agency, and was conducted in accordance with: applicable legislation 

including the European Union Clinical Trials Directive 2001/20/EC (The 

European Parliament and Council, 2001) and the UK Medicines for Human 

Use (Clinical Trials) Amendment Regulations, 2006 (The Stationery Office, 

2006); the principles of Good Clinical Practice in research as laid down in the 

Declaration of Helsinki (The World Medical Association, 2013); and the NHS 

Research Governance Framework for Health and Social Care, 2005 

(Department of Health, 2005). All data received, including digital copies of 

scans, were collected,  handled, and stored securely in accordance with the 

http://www.isrctn.com/
https://eudract.ema.europa.eu/
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requirements of the Data Protection Act, 1998 (The Stationary Office, 1998). 

Ethical approval was granted by the UK National Research Ethics Service 

(reference 10/H1005/6; Bhakta et al. (2014)). Initial ethical approval was 

followed by approval of an amendment to the protocol and patient information 

sheet, to make explicit the intention of the trial team to collect copies of any 

available neuroimaging for the index admission.  

2.1.2.5. Recruiting centres 

Participants were recruited from NHS stroke services across all four nations 

of the United Kingdom. Coordination of site setup, recruitment, and 

randomisation was managed by The University of Leeds CTRU. The trial 

opened to recruitment in May 2011; the final participant was recruited in March 

2014. The large number of centres that were recruiting to DARS necessitated 

the establishment of a network of local Principal Investigators (PIs), each of 

whom was responsible for the conduct of the trial at their site. PIs were 

consultant physicians, usually in stroke medicine, neurology, or rehabilitation 

medicine. Their duties included the recruitment and consenting of participants, 

overseeing the clinical care of patients enrolled in the trial, and the reporting 

and medical management of adverse events. Screening, consent, 

randomisation, and follow-up of participants were performed by researchers 

employed by the Comprehensive Local Research Network (CLRN). However, 

the DARS trial also necessitated considerable involvement from NHS staff 

such as ward nurses and therapists: many of whom had had no previous 

involvement in research. For this reason, a series of face-to-face site initiation 

visits were arranged, with training in trial procedures provided for key 

personnel. The training package was developed and delivered by Dr John 

Pearn (JP: Clinical Research Fellow to the DARS trial) and Ms Lorna Barnard 

(CTRU Trial Monitor). Ongoing support and advice to sites was also provided 

throughout the recruitment period by CTRU. 

2.1.3. Participants 

2.1.3.1. Sample size and power calculation 

An initial target of 572 participants was set, providing a 90% power to detect 

a 50% difference in the proportion of patients walking independently in the 
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intervention and control arms at eight weeks, using a 5% significance level. 

This sample size also provided an 80% power to detect a small to moderate 

effect size (0.3) in key secondary outcomes (Bhakta et al., 2014). However, a 

slightly higher than expected rate of loss to follow-up at the eight-week time 

point necessitated continuation of recruitment to a larger sample size of 592 

participants in order to retain power for the primary outcome at the specified 

level (The DARS Collaborators: data not yet published).  

2.1.3.2. Inclusion criteria 

Patients were eligible to participate if they: had sustained a new or recurrent 

clinically diagnosed ischaemic stroke or ICH (excluding subarachnoid 

haemorrhage) within 5 to 42 days prior to randomisation; were unable to walk 

ten metres or more indoors independently (with an aid if necessary, but no 

physical assistance); had a therapist-completed RMI score of <7; were 

expected to require rehabilitation treatment; were aged 18 years or above; 

were able to give informed consent; were able to access continuity of 

rehabilitation treatment following discharge from hospital (defined as being 

able to access community-based rehabilitation services within five days of 

hospital discharge); were expected to be able to comply with the treatment 

schedule (for example, were able to swallow whole tablets); and were 

expected to be in hospital for at least the first two doses of trial medication 

(Bhakta et al., 2014).  

2.1.3.3. Exclusion criteria 

Patients were deemed ineligible if they: were not expected to survive for two 

months following stroke; had a diagnosis of Parkinson’s disease, severe 

medical or surgical illness, or severe psychosis; had a known hypersensitivity 

or contraindication to co-careldopa treatment; had symptomatic orthostatic 

hypotension; needed physical assistance of at least one person to walk prior 

to their index stroke due to pre-existing co-morbidities (for example, heart 

failure, or osteoarthritis); were pregnant, lactating, or a women of child-bearing 

potential (unless they were willing to use medically approved contraception 

whilst receiving treatment and for one month after the cessation of treatment); 

could not walk 10 metres or more indoors prior to their stroke (Bhakta et al., 

2014). 



75 
 

2.1.3.4. Patient consent 

Written informed consent was obtained from all participants by local stroke 

physicians, all of whom had received training in trial procedures and in Good 

Clinical Practice in Research (Bhakta et al., 2014). Provisions were made to 

allow witnessed consent to be obtained in patients who had capacity to 

consent but were unable to sign the consent form (for example, due to 

weakness of the dominant hand).  
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Part 2.2 Treatment and follow-up 

All DARS participants were randomised to receive up to eight weeks of co-

careldopa or placebo, in conjunction with usual NHS physiotherapy and 

occupational therapy sessions (Bhakta et al., 2014). There were four points at 

which data were collected: at entry in to the trial; at eight weeks after 

randomisation; at six months after randomisation; and at twelve months after 

randomisation. The process of data collection and the treatment regimen will 

be described below.  

2.2.1. Timing of assessments 

2.2.1.1. Protocol-specified timing of assessments 

The timing of assessments was specified in the DARS protocol (Bhakta et al., 

2014), and is summarised in Figure 2.1. A baseline assessment was 

performed on the day of randomisation. Follow-up assessments were then 

conducted at “eight weeks” and “six months” after randomisation. However, 

since patients were eligible for enrolment in to the trial between 5 and 42 days 

after stroke, the actual timing of assessments in relation to the date of the 

stroke was heterogeneous. For example, when allowance was made for the 

recruiting window, the “eight week” assessment could be conducted within a 

range of 61-96 days. In addition, a grace period of ±5 days was permitted 

within which visits could be arranged. Hence, the window within which “eight 

week” assessments could be conducted was 56-101 days after stroke. 

Similarly, the window for performing “six month” visits (accounting for the 

recruitment period and a “grace period” of ±7 days) was 178-229 days after 

stroke.  

2.2.1.2. Definition of data collection points used in this Thesis 

This Thesis will refer to the timing of assessments as follows: “baseline” 

assessment as “T0”; “eight week” assessment as “T1”; and “six month” 

assessment as “T2”. The protocol also specified a final follow-up visit at up to 

one year after randomisation (Bhakta et al., 2014). These data are not 

available at the time of writing, so the latest end-point which will be considered 



77 
 

here is T2. For consistency, the “twelve month” follow-up will where necessary 

be referred to as “T3” (Figure 2.1.). 

 

Figure 2.1. Summary of timeline for screening, recruitment, treatment, and 
follow-up of DARS participants. 

2.2.2. Summary of outcome measures used in the DARS trial 

2.2.2.1. Overview of data collection 

The outcome measures used in DARS, and the timing of their collection, are 

summarised Appendix C. The primary outcome measure was the RMI (Collen 

et al. (1991); see Appendix D) This was collected at T0, T1, T2, and T3. Data 

Day 0: patient presents with new stroke symptoms 

Day 0-5: screening 

Day 5-42: recruitment 

T0 assessment on day of randomisation  

Up to six weeks of rehabilitation in conjunction with co-

careldopa 100/25mg OR matching placebo  

Day 61-96: T1 assessment (eight weeks after randomisation) 

Day 178-229: T
2
 assessment (six months after randomisation) 

Day 363-414: T
3
 assessment (one year after randomisation) 
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were also collected on possible modifiers of levodopa effect, including 

psychological morbidity (the 12-item version of the General Health 

Questionnaire: GHQ-12) (Goldberg and Blackwell, 1970, Goldberg and Hillier, 

1979); musculoskeletal pain (the Musculoskeletal Signs, Symptoms, and Pain 

Manikin: MSK-SSP, Keenan et al. (2006)); fatigue (the Fatigue Assessment 

Scale: FAS, Michielsen et al. (2003)); and cognitive impairment (the Montreal 

Cognitive Assessment: MoCA, Nasreddine et al. (2005)). Each will be 

described below. A range of secondary outcome measures were also 

collected, encompassing other aspects of physical function (the Abilhand 

scale; Penta et al. (1998)), independence in activities of daily living (a postal 

version of the BI (pBI) (Gompertz et al., 1994, Mahoney and Barthel, 1965); 

and the Nottingham Extended Activities of Daily Living scale (NEADL; Nouri 

and Lincoln (1987)); health-related quality of life (the EuroQol EQ-5D; Rabin 

and de Charro (2001)); and global disability (the mRS; Bonita and Beaglehole 

(1988)). These secondary outcome measures did not form part of the analysis 

presented here, and thus will not be described in detail. 

2.2.2.2. Clinician-reported and self-reported Rivermead mobility Index 

The RMI score at T0 was crucial both for confirming eligibility and for the 

stratification of participants during randomisation. For this reason, a clinician-

completed RMI was obtained at T0. This was filled in by the patient’s therapist, 

based upon their knowledge of the patient’s capabilities. The RMI was also 

the primary outcome measure at T1, T2, and T3. However, it was deemed 

impractical to collect therapist-completed RMI scores at these times, since a 

proportion of patients (particularly at T2, and T3) would have been discharged 

from therapy by the time of follow-up. A patient self-reported RMI was 

therefore collected at T1, T2, and T3 as an outcome measure, and also at T0 

to facilitate comparison with the self-reported RMI. Clinician-reported and self-

reported versions of the RMI were identical in all respects, with no difference 

in the wording of items or in their scoring. Nevertheless, the abbreviations C-

RMI (for the clinician-scored RMI administered only at T0) and SR-RMI (self-

reported RMI collected at T0, T1, T2, and T3) will be used in order to make 

explicit how they were completed. The abbreviation “RMI” will also be used, 
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when referring to the Rivermead Mobility Index in a context in which it is not 

necessary to specify the manner of its completion. 

2.2.3. Assessment at T0 and treatment regimen 

2.2.3.1. Assessment at T0 

The assessment at T0 was conducted after consent had been obtained, but 

prior to randomisation. It included the administration of a basket of 

standardised outcome measures and basic demographic and clinical 

information. The demographic information collected included: initials; date of 

birth; and number of years of formal education. Clinical history included: the 

date and type (ischaemic or haemorrhagic) of stroke; the date and type (CT 

or MRI) of any available neuroimaging; whether the patient had received 

intravenous thrombolysis; and details of the patient’s past medical history. 

Those with ischaemic stroke were prospectively categorised by treating 

clinicians according to the Oxford Community Stroke Project classification 

(Bamford et al., 1991). This categorises the patient’s clinical stroke syndrome 

on the basis of their presenting features as TACS, PACS, POCS, or LACS 

syndromes (Bamford et al., 1991).  

In addition to baseline demographic and clinical information, each patient was 

asked to complete a range of self-reported outcome measures including: the 

SR-RMI; the pBI; the NEADL; the Abilhand, the EQ-5D; the GHQ-12; and the 

MSK-SSP (Bhakta et al., 2014). The NEADL, Abilhand, and MSK-SSP were 

answered with respect to the patient’s pre-stroke status: all other self-reported 

outcome measures were answered in relation to the patient’s current abilities 

(Bhakta et al., 2014). All of these questionnaires could either be self-

completed by the patient or directly administered by the researchers if the 

patient was physically incapable of marking responses. The MoCA was 

supplied separately, and was administered by the DARS researchers during 

a face-to-face visit (Bhakta et al., 2014).  

2.2.3.2. Randomisation and blinding 

Following the T0 assessment, patients were randomised on a 1:1 basis to 

receive either co-careldopa 125mg (levodopa 100mg, and a peripheral DOPA 

decarboxylase inhibitor, carbidopa 25mg) or matching placebo. To ensure that 
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treatment groups were well balanced patients were stratified (Bhakta et al., 

2014) by: recruiting centre; type of stroke (infarct versus haemorrhage); and 

C-RMI score (0-3, 4-6).  

2.2.3.3. Medication regimen 

The medication regimen for DARS has been described elsewhere (Bhakta et 

al., 2014). In brief, one oral tablet of either co-careldopa 125mg or matching 

placebo was taken 45-60minutes before the start of physiotherapy or 

occupational therapy sessions. The medication was administered only prior to 

therapy sessions in which the focus was on motor activity (Bhakta et al., 

2014). The timing of dosing reflected the absorption kinetics of levodopa 

(which reaches peak plasma levels at 30-120minutes after a dose), as well as 

evidence from previous trials of co-careldopa in stroke (Rosser et al., 2008a, 

Scheidtmann et al., 2001). Although the protocol stipulated that trial 

medication should be administered within this optimum time window, it was 

appreciated from the outset that circumstances may not always permit this. A 

pragmatic approach was therefore adopted, under which it was deemed 

permissible to administer the drug between at any time prior to the start of a 

therapy session if necessary (Bhakta et al., 2014). If a patient had two therapy 

sessions within three hours of a first dose, then an additional dose of the drug 

was not given prior to the second session (Bhakta et al., 2014). A maximum 

of two doses were administered in any 24-hour period (Bhakta et al., 2014). 

Sufficient medication was supplied to each patient for a maximum course of 

six weeks of treatment: a duration which reflects that used in previous trials of 

co-careldopa-augmented stroke rehabilitation (Acler et al., 2009a). If a clinical 

decision was taken by the treating team that further rehabilitation intervention 

was no longer required before the conclusion of the six week drug treatment 

period, then the drug was discontinued at the point of discharge from 

rehabilitation services. When patients were discharged to the care of a 

community stroke team, the treating therapist was asked to provide a 

medication prompt by telephone up to an hour before their planned session. 

Adverse events were classified in accordance with definitions laid down by the 

European Union Directive 2001/20/EC (The European Parliament and 

Council, 2001). Responsibility for detecting, managing, and reporting these 
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events rested with local PIs. Adherence to the medication regimen was 

estimated by performing a count of the number of tablets remaining in the 

medication kit at the end of the treatment period, and reconciling this count 

with records of the number of drug-linked therapy sessions the patient had 

received. This was perhaps an imperfect measure of pharmacoadherence, 

since it relied upon a retrospective review of records which were in some 

cases incomplete. Pill counts are also time consuming, and may over-estimate 

adherence since they assume that all tablets that are not present have actually 

been taken (Chisholm-Burns and Spivey, 2008). However, these methods 

were felt on balance to provide a more reliable estimate than direct 

questioning of the patients. 

2.2.3.4. Content of therapy sessions 

The content of drug-linked therapy sessions was entirely at the discretion of 

the treating teams according to their assessment of the patients’ needs and 

their routine clinical practice (Bhakta et al., 2014). Therapists were blinded to 

treatment allocation, and instructions given to ward nurses and therapy staff 

concerning drug administration were the same for both treatment arms 

(Bhakta et al., 2014). After each drug-linked session, therapists were asked 

to complete a short case report form. This detailed the time at which the drug 

was taken (or the reason for omission of the drug), and an approximate 

breakdown of the amount of time devoted to upper limb motor therapy, lower 

limb motor activity, and non-motor work. The purpose of this was to allow the 

amount of therapy intervention delivered to be ascertained, and to verify parity 

between intervention and control arms. 

2.2.4. Follow-up of participants 

2.2.4.1. Follow-up assessment at T1 

Follow-up assessments were conducted by a network of CLRN researchers 

at T1, T2, and T3. Visits at T1 were sometimes conducted whilst the participant 

was still an inpatient. Visits at T2 and T3 were usually conducted in the patient’s 

usual place of residence, but allowance was made for participants to be 

recalled to research clinics where this was local practice. Telephone follow-up 

was permitted only under exceptional circumstances. A booklet of 
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questionnaires for the T1 follow-up was supplied to the patient at the point of 

randomisation, as part of a patient information pack which also contained a 

patient information booklet, DVD, and CRFs for therapists to complete in their 

sessions. The self-reported outcome measures contained in this booklet 

included: the SR-RMI; the pBI; the NEADL; the ABILHAND; the EQ-5D; the 

GHQ-12; the MSK-SSP; and the FAS (Bhakta et al., 2014). All were recorded 

in relation to the patient’s current status. The patient was contacted by the 

researcher prior to the visit, and asked to complete them in advance. If this 

was not possible, they were administered directly by the researcher during 

their visit. The Modified Rankin Scale (mRS) (Bonita and Beaglehole, 1988) 

and the MoCA (Nasreddine et al., 2005) were administered directly (Bhakta 

et al., 2014). Patients were also asked about any adverse events associated 

with treatment.  

2.2.4.2. Follow-up assessment at T2 and T3 

The visits at T2, and T3 were similar in nature. A booklet of patient self-

completed questionnaires was posted out to the patient in advance. As for the 

follow-up visit at T1, these comprised: the SR-RMI; the pBI; the NEADL; the 

ABILHAND; the EQ-5D; the GHQ-12; the MSK-SSP; and the FAS (Bhakta et 

al., 2014). Once again questions were answered with respect to the patient’s 

current status. The patient was asked to complete them within the week before 

the researcher’s visit, but direct administration by the researcher was 

permitted if necessary. The mRS (Bonita and Beaglehole, 1988) and the 

MoCA (Nasreddine et al., 2005) were administered directly by the researcher 

(Bhakta et al., 2014). Patients were also asked if they had experienced any 

new and significant medical or surgical illnesses since the last follow-up visit. 

At the T3 visit an exit poll was also conducted, asking the patient if they thought 

they had been in the active or placebo arm of the trial: the purpose of this was 

to assess the security of blinding procedures. 

The DARS data-set thus comprises an extensive set of outcome measures, 

taken at four time-points. The purpose of the models derived here is to 

establish whether impairment-level variables (depression, fatigue, 

musculoskeletal pain, and cognitive dysfunction) may serve as useful 

predictors of walking ability at T1 and T2. However, in order to understand how 
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these variables were used in analysis, it is important to consider the properties 

of the scales used to measures them. 
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Part 2.3 Outcome measurement in the DARS trial  

2.3.1. The principles of measurement 

2.3.1.1. What is “measurement”? 

It is common to make measurements in medicine. For example, when 

predicting the future risk of stroke in a person with AF, we might wish to 

measure certain biometric parameters such as their SBP, or serum glucose 

levels (Wang et al., 2003). These are all easily observable and can be 

quantified directly by measuring devices, for example a sphygmomanometer, 

or laboratory tests (Hobart and Cano, 2009). The units in which they are 

described have precisely the same interval between each gradation. One can 

therefore be confident that, within the limits of measurement error, a blood 

glucose level of 10mmol/L is twice as great as a level of 5mmol/L. When 

intervening to control risk factors for stroke, one might also define success in 

terms of change in these parameters over time: for example, in reducing a 

patient’s SBP from 180mmHg to 130mmHg (a fall with a magnitude of 

50mmHg). Clinical trials commonly report mean reductions in SBP for different 

treatments (Rashid et al., 2003). A key property of such measurements is that 

the interval between each unit change is a fixed, and known, value. Such 

measurements are thus termed “interval-level”, and can be subjected quite 

legitimately to mathematical operations such as calculation of mean values or 

the change in value between from one measurement to another. 

2.3.1.2. Measuring rehabilitation outcomes 

Unfortunately measuring rehabilitation outcomes is not as straightforward as 

measuring physiological variables, since the property that is under 

consideration is frequently some aspect of a person (or their physical 

performance) that cannot be observed or measured directly: for example 

“mobility,” “fatigue,” “depression,” or “independence” (Hobart and Cano, 

2009). These are termed latent (hidden) traits. Although they are not directly 

measurable, it is often possible to draw inferences about the degree to which 

they are present in an individual or a group (Hobart and Cano, 2009). To do 

this one must first define the property (or “construct”) to be measured, then 

devise a range of questions (“items”) that map out its possible range on a 
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continuum or “lesser” to “greater” (Hobart and Cano, 2009). This is what 

outcome measures such as the RMI, GHQ-12, or FAS seek to do for the 

constructs of “mobility”, “depression”, and “fatigue” respectively. The 

properties of the RMI, GHQ-12, mRS, MSK-SSP, FAS, MoCA will be 

examined below. 

2.3.2. Outcome measures used in the DARS trial 

2.3.2.1. Primary outcome measure: the Rivermead Mobility Index 

The RMI (Collen et al. (1991); Appendix C) was the primary outcome measure 

selected for DARS. It is a fifteen-item scale, with each item having two 

possible responses: “yes” (able to do the task) or “no” (unable to do the task) 

(Collen et al., 1991, Hobart and Cano, 2009). Items are presented in order of 

increasing difficulty, with the first item being turning over from the back to the 

side in bed, and the final item running ten meters in four seconds without 

limping (Collen et al., 1991). Fourteen items rely upon the patient’s self-report; 

one (question 5) requires the interviewer to observe the patient standing 

unsupported for ten seconds. In the DARS trial question 5 was operationalised 

by simply relying upon the patient’s self-report of whether they could achieve 

this. Each “yes” response scores one point, which are then summed to give a 

total score out of 15. 

2.3.2.2. The Modified Rankin Scale (mRS) 

The Rankin Scale is an ordinal hierarchical scale that ranks different levels of 

disability (Rankin, 1957). The original measure was developed in 1957, and 

mapped a continuum from Grade I (“No significant disability: able to carry out 

all usual duties”) to Grade V (“Severe disability: bedridden, incontinent and 

requiring constant nursing care and attention”; Rankin (1957)). This original 

metric has since been modified several times. A Grade 0 (“no symptoms at 

all”) was proposed in 1988 (van Swieten et al., 1988). A Grade VI (denoting 

death) is also sometimes applied (O'Connor et al., 2011, Uyttenboogaart et 

al., 2005), although it is unclear when this modification was made or by whom. 

Here we will use the terms “Rankin Scale” (RS) to denote the original five-

level version described by Rankin (1957), and “Modified Rankin Scale” (mRS) 
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to denote all subsequent variations (Farrell et al., 1991, van Swieten et al., 

1988). 

Although a commonly used outcome measure in stroke research (Banks and 

Marotta, 2007, Quinn et al., 2009b), the original descriptions of the RS and 

mRS did not clearly define parameters for each grade (O'Connor et al., 2011). 

This led to significant inter-observer variability in how the RS/mRS are scored 

(Quinn et al., 2009a, O'Connor et al., 2011, Huppert et al., 1988, Quinn et al., 

2009c), with the obvious potential to confound results (O'Connor et al., 2011). 

Several attempts have been made to improve the inter-observer agreement 

of the mRS: by offering formalised training courses with accreditation on 

completion (Quinn et al., 2007); the use of semi-structured interviews with pre-

specified questions (Wilson et al., 2002, Wilson et al., 2005); and the 

development of a simplified scoring algorithm (Bruno et al., 2010). The 

success of these interventions has been mixed. Even after formal training 

there is considerable inter-observer variability in mRS scores, and also 

between observers from different countries (O'Connor et al., 2011). A 

structured interview has been shown to improve the agreement between 

observers (k=0.25 and weighted k=0.71 for mRS administered conventionally, 

versus k=0.85 and weighted k=0.94 for structured interview; Wilson et al. 

(2005)), but is time-consuming to administer taking around 15 minutes (Wilson 

et al., 2002). Use of a short algorithm to assign mRS scores shows 

comparable reliability to the longer structured interviews, but can be 

completed in less than two minutes (Figure 2.2.; Bruno et al. (2010)). It was 

this version that was adopted for use in DARS (Bruno et al., 2010). It is 

interesting to note that studies validating the use of structured interviews or 

algorithms to administer the mRS all used small numbers of observers, all of 

whom had received prior training In the use of the mRS either delivered “in 

house” as part of the validation study itself (Wilson et al., 2005) or using 

existing training packages developed by others (Bruno et al., 2010). It is 

therefore difficult to unpick the extent to which the observed improvements in 

inter-observer agreement are attributable to the changes made to the way in 

which the mRS is administered, or simply to training of the interviewers. 

Whether similar improvements would be seen if these versions of the mRS 
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were administered in clinical practice without prior training is not known. 

  

Figure 2.2. Simplified algorithm for assigning mRS score.  

Developed by Bruno et al, 2010 

A number of cut-off scores for defining “favourable” outcomes on the mRS are 

reported: ≤1, ≤2 or ≤3 (Sulter et al., 1999, Steiner et al., 2006). The choice of 

which to use may influence the results of a trial. For example, post-hoc 

analysis of a major stroke thrombolysis trial  yielded no significant effect for 

thrombolysis using a cut-off score of ≤1, but a statistically-significant benefit 

when a cut-off of ≤2 was used (Sulter et al., 1999). In trials of interventions to 

prevent an adverse outcome, a score of 6 (“death”) is sometimes appended 

to the standard 0-5 metric of the mRS, and outcomes dichotomised as 

“independent” or “death or dependency”. Several trials in intracerebral 

haemorrhage have taken this approach, utilising scores of 0-3 to denote a 

favourable outcome and 4-6 for death or dependency (Steiner et al., 2006, 

Hallevi et al., 2009). Although adding a “death” term to the metric may appear 

to be a convenient way to capture the full range of adverse outcomes, it is 

illogical to regard “death” as lying on the same continuum as “disability”. This 

illustrates well the perils of arbitrarily altering outcome measures without 

regard for the underlying construct that the scale is supposed to measure. The 

mRS will be used here only to describe the distribution of disability in the 

Are you able to do everything that you 
were doing right before your stroke, 

even if slower and not as much? 

YES 

Could you live alone without any help from another 
person? This means being able to bathe, use the toilet, 

shop, prepare or get meals, and manage finances. 

Are you able to walk without 
help from another person? 

NO 

Are you completely back 
to the way you were right 

before your stroke? 

SCORE 0 SCORE 1 SCORE 2 SCORE 3 

Are you bedridden or needing 
constant supervision? 

SCORE 4 SCORE 5 

NO 

NO YES 

YES 

YES NO 

YES NO 
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sample at T0. It will not be entered as a covariate in analyses, and change in 

mRS scores will not be reported. 

2.3.2.3. The GHQ-12 

The General Health Questionnaire (GHQ) was originally developed as a 

global measure of psychological morbidity for use in general practice 

(Goldberg and Blackwell, 1970, Goldberg and Hillier, 1979). Several variants 

are available including 12-, 28-, 30, and 60-item versions. The twelve-item 

version (GHQ-12) was used in DARS. It comprises twelve items: six 

describing positive psychological states (such as “I feel as though I play a 

useful part in things”), and six describing negative states (for example, “I have 

lost sleep over worry”; Hankins (2008a)). The original numerical rating scale 

scoring system asked patients to rank their experience of these states on a 

four-point scale: “no more than usual”; “not at all”; “rather more than usual”; 

and “much more so than usual” (Hankins, 2008b). Each item thus scores 

between 0 and 3 points, for a total possible score of 36 (Kelly et al., 2008). 

This was the scoring system adopted in DARS. However, this structure has 

been criticised for its ambiguity. In particular the response “no more than 

usual”, when applied to a negative psychological state, may actually be 

interpreted as denoting the presence of this state (Hankins, 2008b). For this 

reason, updated scoring systems have been devised. The first collapses 

dichotomises responses as “present” or ”absent” (Hankins, 2008b), resulting 

in a range of scores from 0-12. The second, the “chronic GHQ,” retains the 

usual 0-3-point scoring system for the “positive” items, but adjusts scoring for 

the “negative” items such that only the response “not at all” is regarded as 

healthy (Huppert et al., 1988).  

2.3.2.4. The musculoskeletal signs, symptoms and pain manikin (MSK-

SSP) 

Patients’ self-reported experience of musculoskeletal pain was evaluated in 

DARS using the MSK-SSP (Keenan et al., 2006). This was developed as a 

means to facilitate the self-reporting of joint symptoms. Patients are asked to 

tick boxes on the manikin that correspond to the major joints, to indicate the 

location of musculoskeletal signs such as joint swelling, or symptoms such as 

pain or stiffness (Figure 2.3.; Keenan et al. (2006)). 
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Figure 2.3. The musculoskeletal signs, symptoms, and pain manikin (MSK-
SSP) 

2.3.2.5. The Fatigue Assessment Scale 

A measure of fatigue was included in DARS as a possible effect modifier, 

although the interaction between post-stroke fatigue (PSF), functional 

outcome, and other possible effect modifiers is not straightforward. Although 

there is an association between PSF and dependency in instrumental 

activities of daily living and poor quality of life, these relationships do not 

persist once the presence of depression is controlled for (Mead et al., 2007, 

Wu et al., 2015). There is no apparent association between PSF and cognitive 

impairment on the Mini Mental-State Examination (MMSE): but the limitations 

of the MMSE are well known, and there is a suggestion that PSF may be 

associated with deficits in attention to which the MMSE is relatively insensitive 

(Wu et al., 2015). Both the absence of a unified definition for PSF, and doubts 

over whether “PSF” is truly a single construct are problematic when attempting 

to measure this. Additionally, many of the scales available have been 

developed for other conditions. A review by Mead et al. (2007) found fifty-five 

fatigue scales, none of which had been originally developed in stroke 

populations. Of these, only five (the vitality subscale of the 36-item Short Form 
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Health Survey, Version 2; the fatigue subscale of the Profile of Mood States; 

the Fatigue Assessment Scale; the Multidimensional Fatigue Symptom 

Inventory; and the Brief Fatigue Inventory) had acceptable face validity: other 

scales included items that could be confounded by the neurological sequelae 

of stroke (Mead et al., 2007). The Brief Fatigue Inventory was found to contain 

items that could not be completed easily by patients (Mead et al., 2007). Of 

the remainder, there were no significant mean differences in scores assigned 

by different observers: but the Fatigue Assessment Scale (FAS: (Michielsen 

et al., 2003, Michielsen et al., 2004)) was found to have the narrowest limits 

of agreement and a high inter-class correlation coefficient of 0.77 (Mead et 

al., 2007). Unlike the other three scales, which ask about fatigue simply by 

using a common question stem suffixed by different  descriptors (“in the past 

week I feel run down; worn out; fatigued; sluggish”), the FAS enquires about 

several different aspects of fatigue such as mental and physical exhaustion 

and problems concentrating (Mead et al., 2007). Although it has a lower 

internal consistency than the other scales, it may actually be more useful in 

clinical practice (Mead et al., 2007). The FAS has ten items, five for physical 

fatigue and five for mental fatigue. Each is scored as: never (1); sometimes 

(2); regularly (3); often (4); and always (5). The maximum score is therefore 

50. However, assigning a case definition of fatigue based the FAS is difficult, 

since it depends upon using an arbitrarily-defined cut-off score to distinguish 

between normal “physiological” fatigue and the more debilitating 

“pathological” fatigue that may occur in neurological conditions (Duncan et al., 

2014). A change in FAS score of 4 points or more has been used to define a 

clinically-relevant change in fatigue status (Duncan et al., 2014). However, 

this definition is based upon studies in patients with sarcoidosis (de Kleijn et 

al., 2011): the validity and clinical relevance of this approach in stroke patients 

has not been established.  

2.3.2.6. The Montreal Cognitive Assessment (MoCA) 

When choosing a scale to evaluate cognitive function in DARS participants 

there were several considerations. The scale had to be quick to administer, 

and usable with only brief training. It also had to cover cognitive domains that 

are commonly affected by stroke. As noted above, traditional diagnostic 
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criteria for “dementia” (The World Health Organisation, 2010, The American 

Psychiatric Association, 2012) are based upon impairment in memory 

(O'Brien et al., 2003, Moorhouse and Rockwood, 2008): and yet stroke 

survivors often display more subtle impairments including in executive 

function, praxis, and visuospatial abilities (Barker-Collo et al., 2010). The 

MMSE (Folstein et al., 1975) is amongst the most widely used and cited brief 

cognitive assessments in dementia screening (Ismail et al., 2010), but has 

been heavily criticised for its lack of sensitivity to impairment in executive 

function, visual perception/construction, and abstract reasoning (Nys et al., 

2005). Its performance is also dependent on the educational and cultural 

background of the patients to which it is administered: there is a substantial 

“ceiling effect” in people of high pre-morbid intelligence with the attendant 

possibility of false negatives (Pendlebury et al., 2010), whereas older patients, 

non-English speakers, and those with sensory impairment or a low prior 

educational attainment may be misidentified as impaired due to difficulty 

completing some of the items (Ismail et al., 2010).   

The MoCA (full original version, in English) was chosen for evaluation of 

cognitive function in DARS participants. It was developed by Nasreddine et al. 

(2005) as a screening tool for minor cognitive impairment, and is freely 

available for non-commercial purposes at www.mocatest.org (©Dr Ziad 

Nasreddine, MD: used in DARS with permission). Although originally 

developed for dementia screening, the MoCA has been evaluated for use in 

stroke populations, and has been shown to detect cognitive dysfunction in 

patients who were not identified as impaired on the MMSE (Dong et al., 2010, 

Pendlebury et al., 2010). The assessment takes approximately ten minutes to 

administer (Nasreddine et al., 2005), and covers several domains including: 

executive function; phonemic fluency; abstract reasoning; visuospatial 

functioning; object naming; attention; concentration; working memory; and 

orientation (Nasreddine et al., 2005).  

The maximum total score is 30, with a correction of one point added for 

anybody who has had 12 years or fewer of formal education (Nasreddine et 

al., 2005). The validity of calculating summary scores in this way has not been 

established in stroke patients, although Rasch analysis has demonstrated that 
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the MoCA is capable of providing interval-level measurement in elderly 

patients attending a memory clinic (Koski et al., 2009). Summed scores are 

then typically treated as dichotomous variables, with a cut-off point defined 

below which patients are deemed to have cognitive impairment. The cut-off 

chosen is typically a score of ≤26: but this was derived from a mixed group of 

patients attending a memory clinic, so may not be appropriate for those with 

cerebrovascular disease (Pendlebury et al., 2012). Using the accepted cut-off 

score of ≤26, the MoCA has a sensitivity of 0.97 for minor cognitive impairment 

after stroke, but a specificity of only 0.19 (Godefroy et al., 2011). By 

comparison the MMSE has a lower sensitivity (0.86) but higher specificity 

(0.61) using a  cut-off score of ≤27 (Godefroy et al., 2011). The cut-off scores 

for both measures may be adjusted to confer a different balance of sensitivity 

and specificity: for example, using a cut-off score of ≤20 the MoCA has a 

sensitivity of 0.72 and a specificity of 0.90; using a cut-off score of ≤24, the 

MMSE has a sensitivity of 0.70, and a specificity of 0.94  (Godefroy et al., 

2011).  

The MoCA has been used in the a trial of very early mobilisation after stroke 

(A Very Early Rehabilitation Trial; AVERT) (Bernhardt et al., 2015): interim 

MoCA data from the first 294 patients randomised were reported in 2011 

(Cumming et al., 2011). The distribution of scores in this sample were skewed 

towards the higher end of the range, with a mean of 21.1 (standard deviation 

7.5) and a median of 23 (inter-quartile range 17-27) (Cumming et al., 2011). 

Nevertheless, the majority of this sample (65%) scored below the defined cut-

off score for cognitive impairment (<26) (Cumming et al., 2011). This is in line 

with previous estimates of the prevalence of cognitive impairment after stroke, 

but may also suggest that the accepted cut-off score of <26 is too high for this 

sample (Cumming et al., 2011). The poorest performance was seen on tests 

of executive function (trail making: 50% answered correctly), visuospatial 

function (cube copying: 50% correct responses), and phonemic fluency (just 

over 40% generated eleven or more words), and delayed recall of five objects 

(30% recalled no words, 10% recalled one) (Cumming et al., 2011). 

Orientation questions were generally answered correctly, with 60% of patients 

correct on all six (Cumming et al., 2011).  
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2.3.3. Interpreting the output of rehabilitation outcome measures 

The “output” of rehabilitation outcome measures is often quoted as a 

numerical value. In the case of dichotomous (“yes/ no”) responses such as 

the RMI (Collen et al., 1991), this is typically a simple sum of all questions 

endorsed as “yes” by the patient. Scales that utilise polytomous responses 

(for example the GHQ-12) typically derive a score by weighting responses in 

some way (Goldberg and Blackwell, 1970, Goldberg and Hillier, 1979). The 

MoCA derives a summary score by adding together sub-scores that cover 

several domains of cognitive function (Nasreddine et al., 2005). The summary 

scores thus derived are assumed to correlate with a patient’s true clinical 

impairment.  

2.3.3.1. Interpreting “summary scores” derived from rehabilitation 

outcome measures 

The legitimacy of deriving such “summary scores” must be questioned. The 

RMI, for example, defines a range of items ranging from turning over in bed 

(assumed to be the easiest item on the scale) to running 10m in 4 seconds 

(assumed to be the hardest item). These mark extremes of the metric, and 

represent a progression from “lesser” to “greater” mobility. Each item in 

between marks a greater degree of mobility. The probability that an individual 

will answer “yes” to a given item is assumed to depend upon the level to which 

the latent trait under consideration (in this case mobility) exists in them (da 

Rocha et al., 2013). The items on the scale therefore provide “locations” along 

the continuum, against which an individual’s performance can be measured 

(Hobart and Cano, 2009). However, the location of items along the continuum 

cannot be assumed to be spaced at equal intervals (Hobart and Cano, 2009). 

In other words, the actual magnitude of any clinical change observed for each 

one-point change in score may vary considerably depending upon where on 

the continuum that change occurs. For example, consider two patients whose 

scores on the RMI change by two points. It is illogical to assume that the 

functional implications of a change from a score of 5 (standing unsupported 

for ten seconds) to a score of 7 (ability to walk ten meters or more unaided) 

are the same as a two point gain from an initial score of 1 (able to turn over in 

bed) to 3 (can sit on the edge of the bed for ten seconds). It is equally illogical 
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to state that a patient with a summary score of 10 on the RMI is “twice as 

mobile” as a patient with a RMI score of 5.  

2.3.3.2. Implications for regression modelling 

These scales are thus ordinal measures, and cannot be assumed to provide 

interval-level measurement. Scores derived from such scales should not be 

used in mathematical operations: for example, the calculation of mean scores 

or change in score between two time points. This poses a dilemma when 

utilising such scales as outcome variables in a regression analysis. The 

principles of regression modelling will be described in detail in Part 4: but at 

present it may be noted that two broad categories of model may be fitted. 

Linear regression modelling makes efficient use of available data, but relies 

upon the use of a continuous, as opposed to an ordinal, outcome measure. 

By contrast, logistic regression modelling allows the prediction of a categorical 

outcome (either binary or multinomial). Unlike linear regression models, 

categorical predictors may be fitted to logistic regression models. Such 

categorical variables may be derived from ordinal scales, by pre-specifying 

“cut points” and assigning each participant to one of two or more groups (da 

Rocha et al., 2013). Treating predictor variables in this way dispenses with the 

need to prove that an ordinal scale can provide interval-level measurement. 

However, logistic regression models make a less efficient use of the available 

data than a linear regression models. Furthermore, if the treatment of ordinal 

scales as categorical variables is to yield meaningful results then the cut-off 

point(s) must be selected on logical and clinically-relevant grounds. For the 

RMI, dichotomising scores at <7 or ≥7 has a sound theoretical basis, since 

the ability to walk short distances indoors after a stroke may allow a patient to 

be sufficiently independent to be discharged home as opposed to a care 

facility. However, the reasons for choosing a particular cut-off score is, for 

some scales, not clear. For example, a Barthel Index score of >95/100 is 

commonly cited as signifying almost complete independence in activities of 

daily living (Quinn et al., 2011), and was thus used in two major thrombolysis 

trials (Anonymous, 1995, Hacke et al., 1998). However, the rationale for using 

such a high cut-off score is questionable, particularly since a lower score 
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would still have signified a reasonable degree of independence (Sulter et al., 

1999). 

The methods by which models were constructed in this Thesis will be 

described below. However, the aim of this work was to establish whether a 

combination of clinical and radiological variables might be helpful in predicting 

mobility after stroke. Therefore, before discussing how the models were 

constructed, consideration must first be given to the process for analysing CT 

scans. 
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Part 2.4 Analysis of neuroimaging 

2.4.1. Analysis of imaging in the DARS trial 

2.4.1.1. The need for centralised review of imaging 

Plans for the analysis of scans evolved in the early stages of trial setup, when 

an initial proposal to review imaging at local recruiting centres was found to 

be impractical. A decision was therefore made to undertake centralised review 

of scans, but doing so required a substantial amendment to the protocol. This 

was approved after the trial had opened to recruitment. Imaging could 

therefore not be obtained for some patients who had been recruited using the 

initial version of the protocol, since their explicit consent for centralised 

collation of imaging had not been obtained. For those recruited onto the 

revised protocol, all available neuroimaging performed in the course of the 

index admission was despatched to CTRU. All scans had been acquired in 

the course of the patient’s routine care for the index stroke event. The DARS 

protocol did not stipulate a requirement for additional imaging beyond that 

which was clinically indicated. Nor was the time of imaging in relation to the 

index stroke specified.  

2.4.1.2. Obtaining scans from recruiting sites 

Images were copied to Compact Disc (CD) or Universal Serial Bus (USB) 

memory stick in Digital Imaging and Communication in Medicine (DICOM) 

format (National Electrical Manufacturers Association, 2011) for despatch to 

CTRU. Since both CDs and USB memory sticks were accepted, they will be 

referred to using the generic term “data storage media”. Electronic transfer of 

files by a secure data link was considered, but was deemed impractical in the 

time available due to the requirement to obtain individual permission and set-

up from every participating recruitment centre. Every effort was made to 

redact scans of patient-identifiable information (name, NHS number, and 

treating clinician) prior to despatch. The responsibility for this rested with 

recruiting centres, and was conducted according to their local protocols. 

Where complete redaction was not possible, it was agreed with the ethics 

committee that encryption would be used to protect trial data in transit. 

Passwords for encrypted media were forwarded to the data management 
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team at CTRU by email, separately from the images themselves. The 

possibility that scans would be incompletely anonymised was explained to 

participants in the patient information sheet and as part of the consent 

process. Once anonymised, scans and data storage media were identified 

only by the participant’s unique trial identification number, initials, and date of 

birth. It was the responsibility of the recruiting centres to ensure that the 

correct scans for the correct patient were sent: once anonymised, CTRU had 

no direct means of verifying that the images sent were for a particular 

participant. Data storage media were despatched to CTRU by recorded 

delivery. Receipt was logged by CTRU, who also confirmed passwords for 

encrypted media with the recruiting centre.  

2.4.1.3. Training JP in CT brain scan interpretation 

All scans were co-reported by the Clinical Research Fellow (JP) and one of 

two experienced consultant neuroradiologists (Dr Jeremy Macmullen-Price, 

JMP; and Dr Tufail Patankar, TP) using a standardised Case Report Form 

(CRF) (The Royal College of Radiologists, 2011). Having had no prior 

experience in interpreting neuroimaging, a specific training programme was 

devised to allow JP to undertake this role. The initial training consisted of 

attendance at two organised teaching courses in scan interpretation, The 

Acute Stroke Training and Assessment in Computerised Axial Tomography 

course (Emsley et al., 2013) was a two-day theoretical and practical seminar 

in axial CT interpretation designed to meet the needs of stroke physicians who 

administer intravenous thrombolysis. The course focused primarily on axial 

CT imaging, since this is the modality of choice for the evaluation of acute 

stroke (Emsley et al., 2013). Learning objectives included: recognition of early 

ischaemic change on CT; recognition of primary intracerebral haemorrhage, 

subarachnoid haemorrhage, and infarction with haemorrhagic transformation; 

how to determine the extent of an infarct using the ASPECTS score; and an 

understanding of advanced imaging techniques (CT perfusion) and imaging 

appearances of conditions that may mimic stroke (Emsley et al., 2013). The 

course is accredited by the Royal College of Physicians with ten Continuing 

Professional Development credits awarded for completion. In addition JP 

attended the Leeds Third Surgical Neuroradiology course. This was a two-day 
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course designed to meet the needs of surgical trainees, and covered the 

principles of neuroimaging techniques and sequences. 

2.4.1.4. Procedures for centralised review of scans 

Review of the scans was conducted in Leeds Teaching Hospitals NHS Trust 

(LTHT). Scans were reviewed in small batches, corresponding to the order in 

which they were received by CTRU, not the order of enrolment of participants 

in to the trial. An accountability log was established to monitor their despatch 

from CTRU, receipt by JP, and return to CTRU. Whilst at LTHT data storage 

media were kept in locked filing cabinets in a secure office, in accordance with 

the principles of the Data Protection Act (The Stationary Office, 1998). It was 

not possible to upload scan to LTHT’s Picture Archiving and Communication 

System (Meyer-Ebrecht, 1994, Ratib et al., 1994), since the limited storage 

capacity of these servers was required to meet clinical demands. Scans were 

therefore reviewed directly from the storage media using open-access DICOM 

viewer software. The time to read each scan was not recorded; observers 

were free to take as long as they deemed necessary to review the images. 

Scans were read blinded to clinical information (including the Oxford 

Community Stroke Project classification, the laterality of symptoms, and 

reports issued by local radiologists) and to treatment allocation. Although this 

does not reflect the way in which scans would be interpreted in clinical 

practice, it has been shown that interpreting images with knowledge of the 

patient’s symptoms does not improve detection rates for early ischaemic 

change (Wardlaw and Mielke, 2005). The published validations of the AISCT 

have so far utilised blinded interpretation (Wardlaw et al., 2007, Wardlaw et 

al., 2010). Although observers in validation studies of the AISCT did not 

appear to “over-call” signs of ischaemic change (Wardlaw et al., 2007), it is 

not clear whether rates of over-calling would be higher if clinical information 

were provided.  

2.4.1.5. Management of unexpected radiological findings 

It was anticipated that, in accordance with standard practice, all scans would 

have been subjected to routine reporting by local radiologists in order to guide 

the clinical management of the patient. It was therefore thought unlikely that 

review of scans by the DARS team would yield findings of which local 
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clinicians were not already aware. Since the reporting of scans for DARS 

could be delayed by as much as three years from the point of a patient’s 

enrolment in to the trial, the imaging review provided for the trial could not be 

relied upon to deliver clinically-significant information in a timely manner. It 

was also important that the trial team did not seek to influence or guide the 

clinical management of participants in any way. Feedback on reports was 

therefore not provided routinely to recruiting centres. However, under limited 

circumstances, the research team had an ethical obligation to make the 

treating team aware of certain findings that were unexpected and of clinical 

significance. A list of findings that would be fed back to the recruiting centres 

was not specified a priori: it was left to the discretion of the consultant 

neuroradiologist (JM-P or TP) to decide if notification was necessary. It was 

agreed that information would be communicated to the local PI, with whom 

responsibility for the clinical management and safety of participants at each 

centre rested. It was then the responsibility of the PI to ensure that the findings 

were acted upon appropriately. In practice, this procedure was invoked only 

twice in the course of the trial: the first for a suspected base of skull 

meningioma, and the second for a possible aneurysm at the tip of the middle 

cerebral artery.  

2.4.2. Coding scan findings 

2.4.2.1. The CT Imaging Interpretation Case Report Form (CRF) 

A flow diagram summarising the process of image review is provided in 

Appendix E. For reporting of ischaemic stroke the AISCT, developed by 

Wardlaw and Sellar (1994), was utilised. For ICH some additional elements 

not included in the AISCT were incorporated, due to their prognostic 

importance. These were configured as an image analysis CRF (Appendix F). 

One CRF was used for each sequence acquired.  

2.4.2.2. Initial coding: image quality and presence of any visible 

abnormality  

Review of each scan began by recording the patient identification number and 

date of birth, date and time of image acquisition, the modality used (plain CT 

or CT angiography), and then a subjective judgement of image quality (good, 
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moderate, or poor) (Wardlaw et al., 2010). The first judgement was whether 

there were any abnormal findings (both stroke and others). The presence and 

side of any acute ischaemic lesion was then documented. If more than one 

ischaemic lesion was present, clinical judgement was used to decide which 

was the more recent or (in the case of two infarcts of a similar age) the more 

clinically significant.  

2.4.2.3. Coding of acute ischaemic change 

The main lesion was coded in detail as below, and secondary lesions were 

classified as a “second (minor) acute ischaemic lesion” under question 12. 

Features of early ischaemia were classified as: loss of definition between the 

cortical grey matter and underlying white matter; loss of the outline of the basal 

ganglia; and frank hypodensity (Wardlaw et al., 2007, Wardlaw et al., 2010, 

Wardlaw et al., 2014a). Acute swelling was classified using the AISCT 

framework and reference diagrams (Wardlaw et al. (2010); Appendix B). MCA 

lesions were also classified as involving less than or more than a third of this 

territory (Kaste et al., 1995, Wardlaw et al., 2010). Using the reference 

diagrams developed for the AISCT, MCA lesions were then further classified 

as: small cortical; basal ganglia striatocapsular; lateral to ventricle 

striatocapsular; anterior cortical MCA territory; posterior cortical MCA territory; 

whole of cortical MCA territory; whole of cortical MCA territory with lateral part 

of basal ganglia; and whole MCA territory (Wardlaw et al., 2010). Lesions in 

the ACA and PCA territories were each defined as involving less than 50% of 

that territory, more than 50%, or complete (Wardlaw et al., 2010). Lacunar 

lesions were classified as involving: the internal capsule or lentiform; the 

internal border zone; the centrum semiovale; or the thalamus (Wardlaw et al., 

2010). Infarcts involving the anterior and posterior border zones were noted 

(Wardlaw et al., 2010). Cerebellar lesions were classified as lacunar infarcts, 

or as involving <50% or >50% of the hemisphere (Wardlaw et al., 2010). 

Similarly, brain stem lesions were classified as lacunar or as involving less 

<50% or >50% of the brain stem (Wardlaw et al., 2010). The ASPECTS score 

(Barber et al., 2000) was recorded for all lesions involving the MCA territory 

(Wardlaw et al., 2010). The presence of arterial hyperattenuation (suggestive 

of acute thrombus) (Gacs et al., 1983) in the MCA main stem, the insular 



101 
 

branch of the MCA, the internal carotid artery, the ACA, the PCA, the basilar 

artery, and the vertebral arteries was recorded (Wardlaw et al., 2010).  

2.4.2.4. Coding of ICH 

The location of confluent haematomas was classified as: frontal, temporal, 

parietal, occipital, basal ganglia/ thalamus, internal capsule, brain stem, 

cerebellum (Bhattathiri et al., 2006). The extent of midline shift (in millimetres), 

and the presence or absence of intraventricular extension and hydrocephalus 

were recorded. Haematoma volume was calculated using the formula 

Volume=A×B×C/2) (Kwak et al., 1983, Kothari et al., 1996). Haemorrhage was 

classified as: petechial haemorrhage; significant haemorrhagic transformation 

of an underlying infarct; parenchymal haematoma with no infarct visible; 

parenchymal haematoma clearly remote from infarct; subdural haematoma; 

subarachnoid haemorrhage; and extradural haemorrhage (Wardlaw et al., 

2014a). For confluent haematomas, the maximum diameter of the lesion was 

recorded (<3cm, 3-5cm, 5-8cm, and >8cm) (Wardlaw et al., 2014a). If blood 

was present in more than one location (for example a primary parenchymal 

haematoma with rupture in to the sub-arachnoid space) then the presence of 

both was recorded, and clinical judgement utilised in determining which was 

the most clinically important lesion (Wardlaw et al., 2014a). The presence or 

absence of changes in the anterior and posterior white matter was noted using 

the van Swieten scale as grade of 0 (no white matter change), 1 (change 

restricted to the periventricular region) or 2 (change extending from the lateral 

ventricle to the cortex) (van Swieten et al., 1990).  

2.4.2.5. Coding of other findings 

The presence of a second recent infarct was documented (Wardlaw et al., 

2014a). Old vascular lesions were classified as: old cortical infarct(s); old 

striatocapsular infarct(s); old borderzone infarct(s); old lacunar infarct(s); old 

brainstem/cerebellar infarct(s); and probable old haemorrhage (Wardlaw et 

al., 2014a). Finally non-stroke lesions were classified as: cerebral tumour; 

encephalitis; cerebral abscess; and demyelination (Wardlaw et al., 2014a). 

Brain atrophy was not scored quantitatively, merely recorded as present or 

absent. 
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Part 2.5 Statistical analysis procedures 

2.5.1. An overview of regression modelling 

2.5.1.1. What is regression modelling? 

As discussed previously, the purpose of a prognostic model is to combine 

several predictor variables in order to generate an estimate of the risk of a 

particular outcome for an individual patient (Steyerberg et al., 2013). These 

predictions may be useful in informing patients and their families about the 

likely outcome of their illness, in guiding the treatment of individual patients, 

and in selecting patients for participation in research trials (Moons et al., 

2009b). Two broad types of regression models exist: linear regression, or 

logistic regression (Stoltzfus, 2011). The choice of which to use will depend 

upon the outcome variable chosen (in particular, whether it is continuous, 

binary, or categorical) (Stoltzfus, 2011). In order to understand the rationale 

for choosing  type of model to use, and how its output might be interpreted, it 

is helpful to summarise briefly the mathematics of regression models. 

2.5.1.2. Modelling using continuous predictor and outcome variables: 

linear regression 

Of the two classes of model, linear regression is perhaps the most readily 

understood, and will thus be discussed here as a prelude to an explanation of 

logistic regression. A linear regression model makes two assumptions: firstly, 

that the outcome is a continuous (as opposed to a categorical) variable; 

secondly, that the relationships between the outcome and predictor variables 

can be expressed graphically as a straight line (Stoltzfus, 2011). Plotting the 

relationship between a continuous outcome and a single predictor variable 

might thus yield a graph similar to Figure 2.4. 
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Figure 2.4. Linear relationship between a continuous predictor variable, x, and 
a continuous outcome variable, Y. 

The relationship can be expressed by the equation Y=mx+c: in which m 
is the gradient of the line, and c is its Y-intercept. 

The value of the outcome, Y, for any given value of the predictor, x, can be 

expressed by the equation: 

Y=mx+c 

In this case, c is the point at which the line intercepts the y-axis, and m is the 

gradient of the line (Field, 2013). In linear regression, the analogous term for 

the Y-axis intercept c is β0, also known as the constant for the equation (Field, 

2013). This is, in effect, the predicted value of Y before any predictor variables 

are fitted (Stoltzfus, 2011). Where a single predictor, variable i, is fitted, the 

gradient of the resulting line may be termed βi: also known as the coefficient 

for the variable i (Field, 2013). The values that variable i may assume are 

termed Xi. Hence, a univariate regression equation using the variable i to 

predict an outcome variable, Ŷ, may be expressed as (Field, 2013): 

Outcome 
variable, Y 

Predictor 

variable, x 

C 
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Ŷ= β0+ βiXi 

If several predictor variables are fitted to a model, then the resulting linear 

regression equation may be expressed as (Stoltzfus, 2011): 

Ŷ= β0+ β1X1+ β2X2+… βiXi 

In which β0 is once again the constant (representing the y-axis intercept for a 

regression line with no predictor variables fitted) and xi is the value (x) of the 

ith predictor variable weighted by its coefficient βi (Stoltzfus, 2011).  

Interpreting the output of simple linear regression is comparatively 

straightforward. In essence, the equation returns a predicted value, Ŷ, of the 

outcome variable, given specified values of each predictor variable Xi 

(Stoltzfus, 2011). It is possible to assess the contribution that each predictor, 

i, makes to the model in two ways: firstly, by determining the change in the 

outcome Ŷ for a one-unit change in the value of each variable i (assuming that 

values of all other predictor variables are held constant); secondly by 

examining the coefficient, β, for each variable (the greater the value of βi, the 

greater the contribution made by the variable i to predicting Ŷ) (Stoltzfus, 

2011). 

2.5.1.3. Modelling using categorical predictor or outcome variables: 

logistic regression 

When a binary outcome variable is used, it is obviously impossible to compute 

an absolute value of Ŷ (Stoltzfus, 2011). Instead, the prediction made by the 

model is of the probability (P) of belonging to a specified category (i) of an 

outcome event Ŷ (Stoltzfus, 2011). To facilitate this, the standard linear 

regression equation quoted above must be expressed on a logarithmic scale 

as eβ0+ β1X1+ β2X2+… βiXi. The probability (P) of belonging to category i of a binary 

outcome Ŷ may thus be expressed as (Stoltzfus, 2011): 

P(Ŷi )=eβ0+ β1X1+ β2X2+… βiXi/1+ eβ0+ β1X1+ β2X2+… βiXi 

In which e is the base of the natural logarithm; β0 is a constant (the y-axis 

intercept for a regression line with no predictor variables fitted); and Xi is the 
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value of the ith predictor variable (X) weighted by its coefficient βi (Stoltzfus, 

2011).  

Note that a binary outcome must have a probability that lies between 0 (the 

outcome never occurs) and 1 (the outcome always occurs). Since the 

continuous predictor variables in the above equation may take any value, 

there is a possibility that the equation may yield values of P(Ŷi ) that are <0 or 

>1 (Stoltzfus, 2011). This problem may be circumvented by expressing the 

output of a regression model as an odds ratio: the odds for membership of 

one outcome group (Ŷ) divided by the odds of belonging to the other outcome 

category (1-Ŷ) (Stoltzfus, 2011). This allows a variant of the standard linear 

regression equation to be used (Stoltzfus, 2011).  

Ln(Ŷ/(1-Ŷ)= β0+ β1X1+ β2X2+… βiXi 

This output is expressed on a logarithmic scale, and is therefore a little more 

complex to interpret than standard linear regression (Stoltzfus, 2011). The 

term Ln(Ŷ/(1-Ŷ) is essentially the natural log (the “logit”) of an odds ratio for 

membership of one group versus the other. The influence of each continuous 

predictor variable, i, on the model is thus expressed as the change in Ln(odds) 

of belonging to the specified category of outcome Ŷ for each one-unit change 

in the predictor variable (assuming that values of all other predictor variables 

are held constant) (Stoltzfus, 2011). This may be converted to a simple odds 

ratio by raising the base of the natural logarithm, e, to the power of the 

coefficient β of variable i (Stoltzfus, 2011): 

OR=eβi 

A positive value for the OR suggests that the odds of outcome Ŷ increase as 

the value of variable i increases; conversely, a negative OR implies a negative 

relationship between the odds of outcome Ŷ and variable i (Field, 2013). The 

statistical significance of the OR for each variable may be determined by 

examining 95% confidence intervals and p-values (Field, 2013). The odds of 

the outcome Ŷ following a one-unit change in a continuous variable i may be 

computed by multiplying the “baseline” odds of Ŷ by eβi (Stoltzfus, 2011). 
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Unlike in linear regression, which relies upon a linear relationship between 

continuous predictor and outcome variables, dichotomous or categorical 

predictors may be entered in to a logistic regression model. Where such 

variables are included, the impact of the variable is still expressed in terms of 

an odds ratio for a specified category of outcome Ŷ: but the interpretation of 

that odds ratio is complex. For a dichotomous predictor with two possible 

states (“A” and “B”), one state (for example, A) is nominated as the “basal” 

state, and the value of eβi quoted for state B is the change in odds ratio that 

results when a participant moves from state A to state B. Similarly, for a 

categorical predictor (which includes, for example, states A, B, C, and D) a 

“basal” state is defined to which the odds ratios for all other states are then 

referenced. For example, if the “basal” group is state A, then the values of eβi 

quoted for states B, C, and D will reflect the change in the odds ratio for the 

outcome Ŷ for participants in those states, relative to state A. 

2.5.1.4. Assumptions of logistic regression modelling 

Logistic regression makes no assumptions about the normality of the 

distribution of predictor variables (Bewick et al., 2005). There are, however, 

several key assumptions which must be tested to ensure the validity of any 

models derived from logistic regression. The first assumption is that sample 

group outcomes are uncorrelated, and that there are no duplicated measures 

amongst the sample (Stoltzfus, 2011). In the case of the DARS sample, this 

assumption was met since each individual case within the data-set is 

independent. The second assumption is that there exists a linear relationship 

between any continuous predictor variables and their natural-log transform 

(the “linearity of the logit”) (Stoltzfus, 2011). Thirdly, a high degree of 

correlation between two or more predictor variables (“collinearity”) is 

undesirable, since this may lead to large standard errors for values of βi, 

(Stoltzfus, 2011). Finally, the model must be examined both for adequate fit in 

general, and also to ensure that there are no outlying cases which are 

disproportionately influencing the coefficients (Stoltzfus, 2011). The 

procedure for testing these assumptions will be discussed in detail later. 
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2.5.2. Modelling walking ability at T1 and T2 in the DARS data-set 

2.5.2.1. Summary of the models 

Since Levodopa is not effective in promoting recovery of walking ability after 

a stroke, treatment allocation was disregarded for the purposes of this 

analysis. The DARS cohort was treated as a large observational data-set. 

Using binary logistic regression, a series of six models was developed (Table 

2.1) to predict ability to walk 10m or more independently at T1 and at T2. A full 

definition of this outcome variable is given below in Section 2.5.2.2. 

Table 2.1. Summary of models presented for the “primary infarction, with scan 
available” (IWS), “primary intracerebral haemorrhage, with scan 
available” (HWS) and “whole DARS sample” groups. 

Model Analysis population Outcome 

measured at 

Candidate predictors 

1 Primary infarction, with 

scan available (IWS) 

T1 Demographic variables; Clinical 

impairment at T0; Imaging findings 

2 Primary infarction, with 

scan available (IWS) 

T2 Demographic variables; Clinical 
impairment at T0; Clinical 

impairment at T1; Imaging findings 

3 Primary intracerebral 

haemorrhage, with scan 

available (HWS) 

T1 

 

Demographic variables; clinical 

impairment at T0; Imaging findings 

4 Primary intracerebral 

haemorrhage, with scan 

available (HWS) 

T2 Demographic variables; clinical 

impairment at T0; clinical 

impairment at T1; imaging findings 

5 Whole DARS sample T1 Demographic variables; clinical 

impairment at T0 

6 Whole DARS sample T2 Demographic variables; clinical 

impairment at T0; clinical 

impairment at T1 

Analysis was performed using IBM Statistical Package for the Social Sciences 

(SPSS Statistics), Version 23. Since imaging was not available for a 

proportion of cases, it was necessary to define two analysis sub-groups. The 
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analysis for models 1 and 2 considered a sub-group of DARS participants 

(n=438) who presented with a primary cerebral infarction (as defined by the 

recruiting centre) and for whom a first CT scan was available for analysis. This 

group will be referred to as the “infarct with scan” (IWS) group. The analysis 

for models 3 and 4 considered a sub-group of DARS participants (n=75) who 

presented with a primary intracerebral haemorrhage (as defined by the 

recruiting centre) and for whom a first CT scan was available for analysis. This 

group will be referred to as the “haemorrhage with scan” (HWS) group. Models 

5 and 6 considered predictors of walking ability in the DARS sample as a 

whole (n=593). Since imaging was not available for every patient, only 

demographic and clinical predictors were considered for inclusion in these 

models. 

2.5.2.2. Definition of primary outcome measure: dichotomised RMI 

SR-RMI (Collen et al., 1991) scores were used as the primary outcome 

measure at T1 and T2. When used as an outcome measure, the RMI was 

dichotomised as “able to walk 10m or more independently (yes/no)”. This was 

defined as a score of 7 or more, and item 7 answered “yes”, per the following 

algorithm (Figure 2.5): 

 

Figure 2.5. Algorithm for dichotomising RMI scores. 

Total RMI score 
7 or more? 

Question 7 
answered “yes”? 

Classify as 
unable to walk 

Classify as 
unable to walk 

Classify as able 
to walk 

Yes 

Yes 

No 

No 
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2.5.3. Treatment of predictor variables 

For simplicity, the treatment of predictor variables will be discussed in terms 

of: demographic variables at T0; clinical impairment at T0 and at T1; imaging 

predictor variables in ischaemic stroke; and imaging predictor variables in 

ICH. 

2.5.3.1. Demographic variables 

Age was entered in to the models as a continuous variable. Gender was 

dichotomised as male/female, and administration of thrombolysis (in the case 

of infarcts) as yes/no. The OCSP clinical stroke syndrome (Bamford et al., 

1991) was used for infarcts only, and was entered as a categorical variable. 

2.5.3.2. Clinical impairment at T0 and T1   

The GHQ-12, FAS, and MoCA were analysed as continuous variables. When 

entering variables taken at T0 into models to predict outcomes at T1 and T2, 

the C-RMI was used as a predictor in preference to the SR-RMI. When 

variables at T1 were used as predictors of outcome at T2, only the SR-RMI 

was available. When used as predictors (as opposed to as the outcome 

measure), both C-RMI and SR-RMI were treated as continuous variables. As 

discussed above the assumption that the RMI, GHQ-12, FAS, and MoCA 

provide interval-level measurement (and can thus be treated as continuous as 

opposed to ordinal scales) is not necessarily legitimate. However, ordinal 

scales are frequently analysed as interval-level measures: even in high 

impact-factor stroke and rehabilitation journals (Khan et al., Kozlowski et al., 

Lu et al., Takahashi et al.). At present, the limitations of treating these scales 

in this way will merely be acknowledged here. Consideration will be given in 

the concluding chapter to the principles of psychometrics, including a 

discussion of methods by which interval-level measurement may be derived 

from ordinal scales. 

The MSK-SSP manikin (Hettiarachchi et al., 2011) was treated as a series of 

dichotomous variables. “Any MSK pain” was defined as pain in one or more 

body locus, irrespective of location. Upper-limb pain was defined as pain in 

one or more upper-limb locus (the shoulder, elbow, wrist, or hand). Lower-
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limb pain was defined as pain in one or more lower-limb locus, including hips, 

knees, ankles, or feet. Recognising the possible confounding effect of central 

(neuropathic) post-stroke pain, Hettiarachchi et al. (2011) defined this as pain 

reported in all loci on the side ipsilateral to the clinical stroke syndrome. In 

DARS, the laterality of stroke symptoms was not recorded, so this distinction 

could not be reliably made. All reported pain was therefore assumed to be of 

musculoskeletal origin, whilst acknowledging the limitations of this 

assumption. 

2.5.3.3. Imaging variables in ischaemic stroke 

For the present analyses, only the first available plain CT scan performed after 

stroke was analysed. Wardlaw et al (The IST collaborative group, 2015) used 

the AISCT template to classify infarcts as small, medium, large, or very large. 

The same classification was followed in the present analysis. However, only 

two patients fulfilled the criteria for a “very large” infarct. The categories of 

“large” and “very large” were therefore combined under the heading of “large 

infarct”. A separate category of “no visible infarct” (not originally included by 

Wardlaw et al)  was also added. The definition of these categories is 

summarised in Table 2.2.  
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Table 2.2. Classification of infarct size  

Based on the AISCT template of Wardlaw et al. (The IST collaborative 
group, 2015). The category “no visible infarct” has also been added. 

Classification Scan findings 

No visible infarct No visible acute ischaemic change 

Small infarct Lacunar infarct; small cortical infarct; small cerebellar 

infarct; infarct involving less than half of brainstem, 

ACA territory, or PCA territory 

Medium infarct Striatocapsular infarct; infarct involving anterior or 

posterior half of peripheral MCA territory; infarct 

involving more than half of ACA or PCA territory;  

Large infarct Infarct involving: whole of peripheral MCA territory; 

whole of MCA territory; all of the MCA and ACA 

territory; all of MCA, ACA, and PCA territories. 

Since the basal ganglia and other subcortical structures are thought to play a 

crucial role in motor learning (Penhune and Steele, 2012, Hikosaka et al., 

2002, Doyon et al., 2009), a separate variable was also created which 

classified ischaemic stroke as: no visible infarct; “cortical” (infarct involving the 

cortex only); “subcortical” (infarct involving only the basal ganglia, cerebellum, 

or brain stem); or “both” (infarct affecting both cortical and subcortical 

structures). 

Dichotomised variables were also created for the presence or absence of: any 

visible abnormality (infarct or other abnormality); a visible acute infarct; a 

visible acute infarct in the MCA territory; a visible acute infarct in the ACA 

territory; a visible acute infarct in the PCA territory; a visible acute lacunar 

infarct; a visible acute borderzone infarct; a visible acute cerebellar infarct; a 

visible acute brainstem infarct; a visible old vascular lesion (infarct or 

haemorrhage); any white matter lesions; and any atrophy.  
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2.5.3.4. Imaging variables in intracerebral haemorrhage 

Haematoma volume (in mm3) and midline shift (in mm) were entered as 

continuous variables. Haematoma location was entered as a categorical 

variable (frontal, temporal, parietal, occipital, basal ganglia, internal capsule, 

brain stem, cerebellum). The presence or absence of intraventricular 

extension or hydrocephalus were treated as dichotomous variables. The 

presence or absence of a visible old vascular lesion (infarct or haemorrhage), 

any white matter lesions, and any atrophy were also entered as dichotomous 

variables. 

2.5.3.5. Management of missing data 

Data could be “missing” to varying extents, and for several reasons. Complete 

loss of data occurred when a patient died or withdrew from the trial, or when 

the research team were unable to contact patients to arrange follow-up. Those 

who remained in follow-up may have found it difficult to complete the 

questionnaires due to dominant hand weakness, visuospatial neglect, 

cognitive dysfunction, or fatigue. Short of complete loss of an entire data-set, 

the spectrum of missing data therefore ranged from all questionnaires 

attempted but with some missing items, to non-completion of whole outcome 

measures.  

Up to three missing items on the SR-RMI were imputed, as follows. If items 

above and below the missing item were the same, then the missing item was 

assigned the same value as those items. If the first completed item after the 

missing item had a different value to the items below the missing item, then 

the missing item was assigned the value of the higher item. Dichotomising the 

RMI therefore depended upon having no more than three variables missing, 

and a valid response to question seven. The RMI was therefore classified as 

“missing” if a completed questionnaire was not received, or if a partially-

completed questionnaire was received with more than 3 missing items or 

question 7 unanswered. If the T1 SR-RMI was missing, then the patient was 

classified as “unable to walk” for the purposes intention-to-treat analysis. If the 

T2 SR-RMI was missing, but a completed T1 SR-RMI was available, then the 

assumption was made that no change in function had occurred in the interim 
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and the patient was classified on the basis of their response to the T1 SR-RMI. 

If at T2 both T1 and T2 SR-RMIs were missing, then the patient was classified 

as “unable to walk”. 

2.5.4. Constructing the models: general considerations 

2.5.4.1. Number of predictor variables fitted 

When undertaking logistic regression modelling, it is important to understand 

how many variables it is reasonable to include in the model. Including a large 

number of variables results in a model that is over-fitted, and not generalisable 

beyond the data-set in which it was derived (Stoltzfus, 2011). Including 

variables for which there is an insufficient number of “observed” events may 

result in inflated values of βi, with large standard errors (Stoltzfus, 2011). The 

challenge of model fitting is therefore to construct a parsimonious model, 

which provides a reasonable explanation of observed data whilst avoiding 

over-fitting (Stoltzfus, 2011). As a guide, binary outcomes require a minimum 

of ten outcome events (outcome occurred/did not occur) for each predictor 

variable included in the model (Stoltzfus, 2011). For example, a model to 

predict survival derived from a study in which 50 patients lived and 30 died 

should include at most 3 predictor variables (Stoltzfus, 2011). 

2.5.4.2. Entry of predictor variables in to the model 

Perhaps the most fundamental decision when fitting a regression model is: 

how should the variables be entered, and in what order? Three main methods 

have been proposed for fitting predictor variables (Stoltzfus, 2011). If there is 

no theoretical basis to support the inclusion of any particular variables, then 

all may be assumed to have equal importance and are entered in to the model 

simultaneously. This is the so-called “direct” approach (Stoltzfus, 2011). If 

previous work has suggested that particular predictors are likely to be 

important, then these may be entered first and additional variables entered 

sequentially thereafter. After each variable is entered, the model is re-

evaluated to see if the new variable has improved its performance (Stoltzfus, 

2011). The final method, stepwise regression, uses pre-defined statistical 

parameters to determine both the order in which variables are entered in to 

the model and also whether each variable is subsequently retained or 
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removed (Stoltzfus, 2011). Two variants of stepwise regression are 

recognised: the forward approach, in which variables are entered one at a 

time; and the backwards approach, in which all variables are first forced in to 

the model simultaneously, with subsequent stepwise removal of non-

significant variables until only those that make a significant contribution to the 

model remain (Stoltzfus, 2011). SPSS allows stepwise regression to be 

automated, with variables included or excluded by the software algorithm on 

the basis of their statistical significance. However, this approach removes any 

clinical judgement about what variables are included in the final model 

(Stoltzfus, 2011). Variables that are of clinical importance but which make a 

marginal or non-significant contribution to the model may be excluded; or 

variables that are strongly statistically significant but have little clinically-

plausible relationship to the outcome variable may be included. This may 

result in a model that is over-fitted to the sample in which it was derived 

(Stoltzfus, 2011). Although some have criticised stepwise approaches to 

model building on this basis (Field, 2013), others have argued that it is not the 

stepwise approach per se that is problematic but rather its thoughtless 

application (Stoltzfus, 2011).  

2.5.4.3. Collinearity between predictor variables 

Relationships between two or more variables may also profoundly affect the 

validity of the final model. Two or more predictor variables that are highly 

correlated are said to be “collinear”. Including collinear variables in a model 

may bias the coefficients for the variables concerned, or cause them to display 

a “direction” of effect paradoxical to that which might be expected (O'Brien, 

2007). The possibility of collinearity between pairs of predictor variables was 

therefore explored prior to any formal modelling. A correlation matrix of 

Spearman’s Rho (r) values was constructed, together with associated 

significance levels. Spearman’s r is a non-parametric test of the correlation 

between two variables, and as such does not make an assumption of 

normality in the variable pairs it tests (Field, 2013). Interpretations of 

correlation coefficients vary, but as a guideline values of r of 0.10-0.29 indicate 

a small correlation, 0.30-0.49 a moderate correlation, and 0.50-1.00 a 

substantial correlation (Pallant, 2010). A second means of checking for the 
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presence of collinearity between predictor variables is to calculate tolerance 

values and Variance Inflation Factors (VIF) for each predictor variable entered 

(Field, 2013). Tolerance may be defined as “the proportion of variance of the 

ith independent variable that is not related to the other independent variables 

in the model” (O'Brien, 2007). The VIF is the reciprocal of the tolerance value 

(O'Brien, 2007). It has been suggested that tolerance values of <0.1 and VIF 

values of >10 indicate possible collinearity (Field, 2013), although some 

question the wisdom of rigorously applying such arbitrary “rules of thumb” 

(O'Brien, 2007). 

Establishing that two variables show collinearity is, perhaps, only the first step: 

what is more crucial is how this is managed or mitigated. Although it might be 

tempting to remove one of the pair, there may be equally valid theoretical and 

statistical grounds to support the inclusion of either (Field, 2013). It is 

sometimes possible to include a pair of collinear variables in a model, provided 

that the estimates of βi are plausible with reasonable standard errors and 

narrow confidence intervals (O'Brien, 2007). Finally, addressing collinearity 

does not obviate the need to examine other factors that may influence model 

stability, such as sample size (O'Brien, 2007). 

2.5.5. Procedure for constructing the models 

2.5.5.1. Fitting of predictor variables 

For each of the six models, binary logistic regression was used to construct a 

series of univariate models exploring associations between patients’ clinical 

characteristics and imaging variables (where available, in the case of models 

1-4), and dichotomised ability to walk 10m or more independently at T1 or T2. 

Multivariate models were then built using a forward stepwise approach, with 

manual as opposed to automated selection of variables. In the case of models 

predicting T1 outcome, only demographic variables, imaging variables (where 

available), and T0 predictors were used. Variables were entered in order of 

their statistical significance, with the most strongly significant univariate 

predictor entered first.  
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2.5.5.2. Assessing the contribution of each variable 

After each step, the contribution of each new variable to the model was 

assessed, as was the contribution of each of the other variables already 

included. The significance of individual coefficients was calculated using the 

Wald χ2 statistic (Bewick et al., 2005), in which:  

Wald χ2 = (βi /Standard error of βi) 

The Wald statistic was then compared to the χ2 distribution using one degree 

of freedom, and significance values ascertained (Bewick et al., 2005). A 

threshold significance of p<0.05 was taken to provide evidence that the 

variable made a statistically-significant contribution to the model. The 

magnitude of standard errors for βi were also considered, as were the 95% 

confidence intervals for the odds ratio of each predictor variable.  

2.5.5.3. Estimating the percentage of variance explained by the model 

The overall performance of each iteration of the model was also assessed, by 

determining the percentage of participants correctly classified by the model 

and by using Cox&Snell R2 and Nagelkerke R2 to provide estimates of the 

amount of previously unexplained variance in outcome accounted for by the 

model (Field, 2013). Variables with non-significant coefficients or which did 

not improve the classification frequency or percentage of explained variance 

were deleted, unless there was compelling clinical grounds to justify their 

inclusion. 

2.5.5.4. Managing collinearity between predictor variables 

Where collinearity was known to exist between two variables, a decision was 

taken regarding which to omit. In taking this decision, two models were fitted, 

each identical in all other predictors but containing only one of the collinear 

variables. The properties of each model were examined, including the 

percentage of cases correctly classified and Cox&Snell R2 and Nagelkerke R2 

(as estimates of the variance in outcome explained by each model). 

Consideration was also given to the magnitude of the coefficients, their 

standard errors, and significance levels for each of the collinear variables 

(when fitted to separate models). However, model properties alone were not 
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the sole factor in determining which of the variables to fit to the final model. 

For example, stroke services are typically configured to provide the most 

intensive rehabilitation input in the first few weeks or months after an event. 

The ability to predict outcomes using variables that would be available at the 

time of a patient’s entry in to a rehabilitation programme might therefore be 

more clinically useful than a model which utilises predictors recorded some 

weeks later: even if the latter model has a higher classification rate and 

explains a greater proportion of the variance in outcome. This was an 

important consideration where collinearity existed between serial 

measurements of the same variable. 

2.5.5.5. Managing missing data in categorical variables 

When entering continuous variables, cases with missing data were included 

in the model. However, when dichotomised variables were entered cases with 

missing data were excluded. Recruiting centre was not included as a fixed 

effect in any of the models, since several centres recruited fewer than five 

participants. A significance level of 95% (p=0.05) was used as the threshold 

at which a variable was considered for entry in to a multivariate model.  

Once a candidate model had been constructed, the overall performance of the 

model was assessed using the classification rate, estimates of explained 

variance (Cox&Snell R2 and Nagelkerke R2). Each model was then evaluated 

to ensure that the assumptions of linear regression (Stoltzfus, 2011) had been 

met, before a final version was settled upon. 

2.5.6. Evaluating the models: assumption testing 

2.5.6.1. The Box-Tidwell test for linearity of the logit 

The assumption of linearity of the logit was assessed using the Box-Tidwell 

test (Field, 2013). This test depends upon forcing all continuous predictors 

into a binary logistic model together with their natural-log interaction term 

(predictor*Ln[Predictor]). Failure of the natural-log interaction terms to make 

a statistically significant contribution (at p<0.05) to this model is taken as 

evidence that the assumption of linearity had been met (Field, 2013). 

However, for continuous predictor variables in the DARS dataset (C-RMI, SR-

RMI, MoCA, GHQ-12, and FAS), it was possible for participants to achieve a 
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value/score of 0. Since the natural log of 0 cannot be computed, a visual 

inspection of raw scores for each continuous predictor variable was 

performed. Where necessary, a single point was added to the scores of all 

participants, in order to eliminate values of 0 prior to natural-log transformation 

of the scores. When the Box-Tidwell test was performed, the interaction terms 

used for continuous predictor variables were therefore 

(predictor+1*Ln[predictor+1]). Since all participants were aged ≥18 at the time 

of randomisation, the variable “age” was natural-log transformed without prior 

adjustment. 

2.5.6.2. Howsmer and Lemeshow goodness-of-fit test 

Model fit was assessed using the Hosmer and Lemeshow chi-squared 

goodness of fit test. This test groups observations in to deciles based on the 

predicted probability of the outcome occurring (Bewick et al., 2005). The χ2 

statistic is calculated as follows: 

χ2= ∑(observed – expected)2/expected 

Significance values for χ2 are calculated using eight degrees of freedom 

(Bewick et al., 2005). The null hypothesis for this test is that the model under 

consideration is an adequate fit to the observed data; a p-value of >0.05 was 

therefore taken as evidence of adequate model fit (Bewick et al., 2005).  

2.5.6.3. Testing for the presence of influential cases 

As well as the overall fit of the model to the data, it is important to determine 

if a handful of outlying cases are exerting a disproportionate influence on the 

model. Residual values are a measure of the distance between the “observed” 

location of a case and its “predicted” location on the regression line (Stoltzfus, 

2011). For ease of interpretation they are usually quoted as “standardised” 

values, with values >±2.58 indicating cause for concern (Field, 2013). Case-

wise listings of standardised residuals were derived for all six models, and 

examined for the presence of outlying cases. Where such cases were 

detected, an examination was made of the source data and where possible a 

reason for localised poor fit was determined.  
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Where outlying cases are detected, it is also important to understand how 

much influence they exert over the final model. A small number of outliers may 

influence the gradient of regression lines, and thereby bias estimates of 

coefficients. Several methods exist to detect so-called “influential cases”. 

Cook’s distance (Cook, 1979) is an estimate of the overall influence of a case 

on the model. It is calculated for each case in the data-set; cases with values 

>1 are usually deemed to warrant further examination (Field, 2013). The 

leverage value is an indication of the influence that each observed value of 

the outcome variable exerts over the predicted values of that variable (Field, 

2013). The expected leverage value is calculated as: 

Leverage = k+1/N 

where k is the number of predictors and N is the sample size (Field, 2013). In 

the absence of any influential cases, all values would be close to this value. 

Cases with multiples of 2 or 3 times the “expected” value have been 

suggested as meriting evaluation (Field, 2013). The final method for detecting 

influential cases is to examine the difference between coefficients when one 

case is excluded from analysis, versus when all cases are included (Field, 

2013). These values, known as DFBeta, are calculated for both the constant 

and for each predictor variable for each case. Values of >1 are interpreted as 

giving cause for concern (Field, 2013). 

The dilemma is not in detecting outliers or influential cases, but in deciding 

how they should be managed. When deciding whether to include or exclude 

such cases, it is important to take in to account the magnitude of the observed 

change in model parameters as a result of including these cases. This is 

achieved by fitting a series of models: the first with all cases included, and 

subsequent iterations with each of the influential cases omitted in turn 

(Stoltzfus, 2011). If the effect of including a particular case on the overall 

model parameters is modest, then it is reasonable to retain that case in the 

analysis (Stoltzfus, 2011). Cases with a more dramatic influence may be 

omitted, but reasons for doing so must be fully justified.   
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2.5.7. Summarising the models 

For each model, classification tables (Table 2.3.) were derived, and the 

sensitivity, specificity, and positive and negative predictive values of each 

model were ascertained: 

Table 2.3 Example classification table, illustrating calculation of sensitivity, 
specificity, and positive and negative predictive values. 

  Predicted  

  Not walking Walking % correct 

Observed Not walking A B Y 

Walking C D X 

The sensitivity of a model refers to the percentage of participants with the 

target outcome (in this case, walking) who have been correctly classified by 

the model (Pallant, 2010): value X in the table above. Specificity, or the 

percentage of patients without the target outcome who are correctly identified, 

corresponds to value Y in the table above (Pallant, 2010). The positive 

predictive value is the percentage of patients that the model predicts will have 

the outcome of interest who do indeed have that outcome (Pallant, 2010). It 

is calculated as: 

Positive predictive value = D/B+D 

Conversely, the negative predictive value in the percentage of patients that 

the model predicts will not have the outcome of interest, who actually do not 

go on to display that outcome (Pallant, 2010). It is calculated as: 

Negative predictive value = A/A+C 

2.5.8. Testing assumptions made for missing outcome data 

Where no SR-RMI score was returned at T1 or T2, assumptions were made 

for missing data as outlined above. The impact of these assumptions on model 

parameters was explored by re-fitting each model with alternative 

assumptions made (Table 2.4.). 
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Table 2.4. Summary of alternative assumptions for missing data that were 
tested. 

Condition Assumption Applied to 

1 Those who did not return a SR-RMI 

are excluded from analysis 

Models 1-6 

2 Those who did not return a SR-RMI 

are able to walk independently. 

Models 1-6 

3. Those who did not return a SR-RMI 

are unable to walk independently. 

Models 2, 4, and 6 

Assumption 3 was, in effect, the default assumption made for missing data in 

models derived for T1 outcome (models 1, 3, and 5). This assumption was 

therefore only tested for models predicting outcome at T2 (models 2, 4, and 

6). Coefficients, odds ratios, and 95% confidence intervals were calculated for 

each predictor variable. The percentage of patients correctly classified by the 

model under each condition was calculated as above. Cox&Snell R2 and 

Nagelkerke R2 values were determined, as a measure of the percentage of 

variance explained by each model. Sensitivity, specificity, and positive and 

negative predictive values were calculated as above. 
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Chapter 3. Results 

Part 3.1 Summary of recruitment 

3.1.1. Summary of recruitment, and sample characteristics 

3.1.1.1. Total numbers of participants recruited 

The DARS trial opened in July 2011, and recruitment continued until March 

2014. During the recruitment phase, a total of 19,509 patients were screened, 

of whom 1,547 were eligible. Of these, 599 consented to participate, and 593 

were randomised: 308 to co-careldopa, and 285 to placebo. The mean interval 

between stroke onset and randomisation to the trial was 17 days (range 3-59 

days, SD 10.06). Recruitment to the trial is summarised in Figure 3.1. 
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Figure 3.1. Summary of patients screened, eligible, recruited, randomised, 
and followed up in the DARS trial. 

Cumulative loss to follow-up across both arms of the trial was higher than 

anticipated: 61 patients (10.3%) at T1, and 101 patients (17.0%) at T2. This 

may have resulted in decreased power to detect a difference between the 

intervention and control arms had the original sample size of 572 patients 

been retained. In view of this, an increase in the sample size to 593 

participants was authorised.  

Screened: 19,509 

Eligible: 1,547 

Consented: 599 

Randomised: 593 

Ineligible: 17,962 

 Previously immobile: 8,445 

 Unable to consent: 2,404 

 No continuity of rehabilitation: 1,426 

 Other: 5,687 

Not consented: 948 

 Refused: 495 

 Discharged before consented: 216 

 Died: 187 

 Other: 50 

Follow-up at T1: 532 Cumulative loss to follow-up: 61 

 Withdrawn: 35 

 Died: 7 

 Data lost at site: 4 

 Too unwell: 3 

 Unable to contact patient: 2 

 Moved out of area: 2 

 Refused to complete assessment: 2 

 Unknown: 2 

 Data lost in post: 1 

 Other: 3 

Follow-up at T2: 492 Cumulative loss to follow-up: 101 

 Withdrawn: 45 

 Died: 20 

 Unable to contact patient: 15 

 Moved out of area: 8 

 Too unwell: 5 

 Refused to complete assessment: 2 

 Unknown: 2 

 Refused follow-up visit: 1 

 Data lost at site 1 

 Other: 2 
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3.1.1.2. Availability of SR-RMI scores at T1 and T2 

In addition to patients for whom no data were returned, in some cases 

partially-completed SR-RMI scores were returned for which missing values 

could not be imputed. When these patients are taken in to account, the 

numbers of patients for whom SR-RMI scores were not available at T1 and T2 

are slightly higher than those suggested in Figure 3.1: 69 patients at T1, and 

106 patients at T2. When the characteristics of those who returned a SR-RMI 

score at T1 were compared with those who did not, there was no evidence of 

a statistically significant difference in the age, the balance of males versus 

females, or the spectrum of clinical stroke syndromes (classified using the 

OCSP) between the two groups. There were no statistically significant 

differences in C-RMI, mRS, MoCA, and GHQ-12 scores at T0, nor in the 

presence of musculoskeletal pain at T0 between those who remained in follow-

up at T1 versus those lost to follow-up. Likewise, there was no statistical 

evidence of a difference in demographics or clinical impairment at T0 between 

those who for whom SR-RMI scores were available at T2 versus those who 

did not return a SR-RMI score at this time. 

When impairment at T1 was compared for patients who did and did not return 

SR-RMI scores at T2, some important differences were found. Those who 

remained in follow-up at T2 had slightly higher MoCA scores at T1 than those 

who were lost to follow-up (22.83 for versus 21.06; p=0.037), indicating 

marginally better cognitive performance in this group. The group who 

remained in follow-up at T2 also had lower mean GHQ-12 scores (16.32 

versus 19.42; p=0.002), and lower mean FAS scores (24.49 versus 29.24; 

p<0.0005). This indicates that, in comparison to those who remained in follow-

up, those patients who were lost to follow up at T2 had slightly greater levels 

of cognitive impairment, depression, and fatigue at the last time-point for 

which data were available for them. There was no evidence of a statistically 

significant difference between the group who remained in follow-up at T2 and 

those lost to follow up in SR-RMI scores, mRS, or the prevalence of 

musculoskeletal pain at T1.   
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3.1.1.3. Availability of brain imaging 

The number of patients for whom imaging was available for analysis is 

summarised in Figure 3.2. 

 

Figure 3.2. Summary of the availability of brain imaging for DARS participants 

No imaging could be obtained for 57 of 593 (9.3%) participants. Of note, 24 

patients were consented to the initial version of the protocol (which did not 

explicitly grant permission for despatch of scans to CTRU), and could not 

subsequently be contacted to obtain consent for review of their scans. Of the 

533 patients for whom images were received and reviewed, 20 patients had 

only MRI images available. These patients were excluded from analysis. A 

total of 513 patients thus had a first CT scan available for analysis.  

Comparing the demographic characteristics of those for whom imaging was 

available versus those for whom it was not revealed no evidence of a 

statistically significant difference between the groups in age, gender balance, 

proportion of infarcts versus haemorrhages, or OCSP clinical stroke 

Randomised: 593 

Images received: 536 

 Randomised before protocol change: 24 

 Scans performed at another Trust: 17 

 Unable to obtain scans from site: 7 

 Site unable to download images: 6 

 Imaging not received by CTRU: 2 

 Patient withdrew consent: 1 

Images not received: 57 

Images reviewed: 533 
Images not reviewed: 3 

 Incorrect images sent: 2 

 Site did not respond to request 
for additional information: 1  

Images included 
in analysis: 513 Images not included in analysis: 20 

 Only MRI received, no CT: 20 
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syndrome. Comparison of clinical impairment at T0, T1, and T2 revealed that 

those for whom scans was obtained had slightly lower mean SR-RMI scores 

than those for whom imaging was not available at T1 (mean score 6.71 versus 

8.06; p=0.012) and T2 (6.00 versus 9.43; p=0.016), but there was no 

statistically significant difference in the proportion of either group who were 

walking independently at each of these time-points. Nor was there any 

significant difference in cognitive function, depression, fatigue, or the 

prevalence of musculoskeletal pain at T0, T1, or T2. 

3.1.1.4. Clinical impairment of DARS participants at T0 

The demographics of the DARS sample and the clinical impairment of 

participants at T0 are summarised below in Table 3.1.  
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Table 3.1. Demographic characteristics and clinical impairment in the DARS 
sample at T0. 

Mean age (range, SD) 68 (20-98, SD 13.23) 

Gender  

 Female/ Male (%) 229/ 364 (38.6%/ 61.4%) 

Type of stroke  

 Infarct/ ICH (%) 508/ 85 (85.7%/ 14.3%) 

Clinical stroke syndrome (OCSP)*  

 N (Missing, %)) 508 (1, 0.2%) 

 TACS 161 (27.2%) 

 PACS 178 (30.0%) 

 LACS 116 (19.6) 

 POCS 52 (8.8%) 

Mobility (C-RMI)  

 Mean (range, SD) 2.25 (0-6, 1.791) 

Disability (mRS)  

 0 4 (0.7%) 

 1 25 (4.2%) 

 2 53 (8.9%) 

 3 214 (36.1%) 

 4 172 (29.0%) 

 5 68 (11.5%) 

 Missing 57 (9.6%) 

Cognition (MoCA)  

 N (Missing, %) 580 (13, 2.2%) 

 Mean (range, SD) 20.23 (0-30, 6.308) 

Depression (GHQ-12)  

 N (Missing, %) 570 (23, 3.5%) 

 Mean (range, SD) 19.36 (3-36, 6.848) 

Musculoskeletal pain  

 Missing 10 (1.7%) 

 Any musculoskeletal 
pain1 

236 (39.8%) 

 Upper limb pain2 114 (19.2%) 

 Lower limb pain3 154 (26.0%) 

* Ischaemic stroke only. 1Any musculoskeletal pain (upper limb, lower limb, 
spine). 2 Any upper limb pain (shoulders, elbow, wrist, small joints of hand). 3 Any 
lower limb pain (hips, knees, ankles, feet)  
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3.1.2. The modelling process 

3.1.2.1. Caveats for the models presented here 

As described in Chapter 2, a series of six models were constructed to predict 

dichotomised walking ability in the IWS group, the HWS group, and the whole 

DARS sample at T1 and T2. Before describing the construction of these 

models, some important caveats must be acknowledged. Firstly, the findings 

presented below represent a post-hoc analysis on an existing data-set. As 

such, only predictor variables that were collected as part of the DARS trial will 

be included in these models. Secondly, the numbers of participants available 

for analysis (particularly in the HWS group) are small. Thirdly, no attempt will 

be made here to undertake formal validation of the models derived. All of the 

above limitations will be explored in detail in Chapter 4. 

3.1.2.2. Testing for collinearity between predictor variables 

Prior to model construction, the presence of collinearity between pairs of 

continuous predictor variables was assessed using Spearman’s r (Field, 

2013). A Spearman r of 1 indicate perfect correlation between two variables, 

whereas a Spearman r of 0 indicates that no correlation exists (Field, 2013). 

When interpreting Spearman’s r, values of 0-0.39 are generally considered to 

be evidence of a weak association. For example, the correlation between age 

and FAS score at T1 has a Spearman r of 0.009). Plotting the two variables 

on a scatter plot and fitting a line of best fit to this plot allows the absence of 

any relationship between the two to be visualised clearly (Figure 3.3.): 
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Figure 3.3. Example of a weak correlation between two predictor variables. 

Age, and FAS score at T1.  

Values of Spearman r of 0.4-0.59 are generally taken to imply an association 

of moderate strength. An example of such a relationship is that between SR-

RMI at T1 and MoCA at T1 (r=0.379). Once again, this relationship may be 

visualised using a scatter plot (Figure 3.4.): 
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Figure 3.4. Example of a moderate correlation between two predictor 
variables. 

SR-RMI and MoCA at T1.  

Strong associations are generally held to exist for values of r between 0.6-1.0. 

An example of such a relationship is that between MoCA scores at T0 and T1 

(r=0.750). as demonstrated in Figure 3.5.:   
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Figure 3.5. Example of a strong correlation between two predictor variables. 

MoCA score at T0 and MoCA score at T1. 

The sign of Spearman’s r provides some indication of the nature of the 

relationship between the variables: a positive sign implies a positive 

correlation: i.e. that as the value of one variable increases, so the value of the 

second variable increases. Conversely, a negative sign implies an inverse 

relationship: i.e, that as one variable increases, the second decreases. An 

example of this is the relationship between age and MoCA score at T1 (r=-

0.351), which is summarised in Figure 3.6.:  
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Figure 3.6. Example of a negative correlation between two predictor variables 

Age and MoCA score at T1. 

Although the Spearman’s r provides an estimate of the strength of an 

association between two variables, it does not prove a causal link between 

them. Furthermore, the p-values cited for each value merely provide an 

estimate of the probability that the Spearman r value quoted has been 

obtained by chance: they provide no information about the strength of 

association between the two variables (Field, 2013). The Spearman’s 

coefficient for each pair of predictor variables used in DARS, together with 

with their associated significance levels, are summarised in Table 3.2 
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Table 3.2. Correlation matrix for predictor variables 

  Variables recorded at T0 Variables recorded at T1 

Age C-RMI GHQ-12 MoCA SR-RMI GHQ-12 MoCA FAS 

 

A
g
e

 

r 1.000 -0.186 -0.052 -0.274 -0.265 0.023 -0.351 -0.009 

Sig . * 0.213 * * 0.597 * 0.831 

N 593 593 570 580 524 523 526 523 

V
a
ri
a

b
le

s
 r

e
c
o
rd

e
d
 a

t 
T

0
 

C
-R

M
I 

r  1.000 -0.187 0.229 0.554 -0.080 0.193 -0.002 

Sig  . * * * 0.066 * 0.958 

N  593 570 580 524 523 526 523 

G
H

Q
-1

2
 

r   1.000 -0.104 -0.098 0.343 -0.138 0.251 

Sig   . 0.014 0.027 * 0.002 * 

N   570 562 505 503 508 504 

M
o
C

A
 

r    1.000 0.268 -0.064 0.750 -0.076 

Sig    . * 0.146 * 0.087 

N    580 515 514 520 515 

V
ar

ia
b

le
s 

re
co

rd
ed

 a
t 

T 1
 

S
R

-R
M

I 

r     1.000 -0.293 0.379 -0.202 

Sig     . * * * 

N     524 516 509 517 

G
H

Q
-1

2
  r      1.000 -0.165 0.613 

Sig      . * * 

N      523 509 518 

M
o
C

A
 

r       1.000 -0.143 

Sig       . 0.001 

N       526 510 

F
A

S
 

r        1.000 

Sig        . 

N        523 

* Value of r is significant at a level of p<0.0005 

The correlation matrix presented above shows strong collinearity for several 

pairs of predictors, including: C-RMI at T0 and SR-RMI at T1 (r=0.554); MoCA 

scores at T0 and T1 (r=0.750); and GHQ-12 and FAS at T1 (r=0.613). Moderate 

correlations exist between: age and MoCA at T1 (r=-0.351); GHQ-12 at T0 and 

T1 (r=0.343); and SR-RMI and MoCA at T1 (r=0.379). All of these relationships 

were also strongly statistically significant (p<0.0005). The variable pairs which 

display strong collinearity will not be fitted to the same model concurrently; the 

management of more modest degrees of collinearity is discussed in Chapter 
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2. The fitting of the models themselves will next be discussed, beginning with 

models 1 and 2 (derived in the IWS group). 
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Part 3.2 Modelling walking ability in IWS group 

3.2.1. Characteristics of the IWS group 

3.2.1.1. Comparison of IWS group with the whole DARS sample 

Models 1 and 2 were derived in the IWS group: a sub-sample (n=438) of the 

whole DARS data-set (n=593). Prior to commencing model fitting, the 

characteristics of the IWS group were compared to those of the whole DARS 

sample. There was no evidence of a statistically-significant difference in the 

age profile or gender balance between the two groups. Nor was there 

evidence of a significant difference in any of the major clinical measures 

(dichotomous or mean RMI, mRS, MoCA, GHQ-12, FAS, and the prevalence 

of musculoskeletal pain) at T0, T1, and T2. 

3.2.1.2. Determining how many variables might be fitted  

The proportion of patients in the IWS group who were able to walk 

independently at T1 and T2 is crucial for estimating the number of variables 

that might be fitted to the model. At T1, 176 patients (40.2% of the IWS group) 

were able to walk independently for 10m or more; 262 (59.8%) were unable 

to do so. If a ratio of ten patients per observed outcome is applied to the 

smaller of the two outcome groups, then a maximum of 176/10=17 variables 

may be fitted to model 1. Allowing for a more stringent ratio of 20 patients per 

variable would allow up to eight variables to be fitted (Stoltzfus, 2011). 

Similarly, 221 patients (50.5%) were able to walk independently at T2, and 217 

(49.5%) were unable to do so. This implies that it is reasonable to fit between 

10 to 20 variables to Model 2.  

3.2.2. Model 1: return to walking at T1 in IWS group 

3.2.2.1. Univariate predictors of outcome at T1: demographics, and 

clinical impairment at T0 

Model 1 examined predictors of walking ability at T1. For this reason, only 

demographic variables, clinical impairment at T0, and radiological findings 

were considered as candidate predictors in this model. The modelling process 

began by examining univariate associations between possible predictors and 
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walking ability at T1. The most statistically significant univariate predictors 

were C-RMI score and MoCA score at T0 (p<0.0005) (Table 3.3). Age and 

OCSP clinical stroke syndrome (p=0.005), thrombolysis status (p=0.002), and 

gender (p=0.033) were also statistically significant univariate predictors. 
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Table 3.3. Univariate predictors of independent walking ability at T1.  

Predictors: age, gender, thrombolysis status, OCSP clinical stroke 
syndrome, and clinical impairment at T0. 

 
 N 

Missing 
(%) Mean 

(Range, SD) 

Sig OR 95% CI for OR 

     Lower Upper 

D
e
m

o
g
ra

p
h
ic

 v
a
ri

a
b
le

s
 

Age 438 0 
69.13 

(20-98, 12.874) 
0.005 0.978 0.964 0.993 

Gender 267  0 - 0.033 0.648 0.435 0.965 

Thrombolysis 109  
1 

(0.2%) 
- 0.002 0.479 0.299 0.769 

OCSP 438 0 - 0.005 - - - 

 TACS 145  - - 0.005 - - - 

 PACS 154) - - 0.013 1.839 1.138 2.973 

 POCS 43  - - 0.004 2.820 1.403 5.671 

 LACS 96 - - 0.005 2.164 1.264 3.706 

P
h
y
s
ic

a
l 
im

p
a
ir

m
e

n
t 

a
t 

T
0
 

C-RMI 438 

0 
2.25 

(0-6, 1.809) 
<0.0005 1.719 1.512 1.954 

 

MoCA 429 9 (2.1%) 
20.37 

(0-30, 6.268) 
<0.0005 1.076 1.039 1.114 

GHQ-12 422 
16, 

(3.7%) 

19.13 

(3-36, 6.842) 
0.475 0.990 0.962 1.018 

Any pain 180 
7 

(1.6%) 
- 0.654 0.914 0.618 1.352 

UL pain 82 
7 

(1.6%) 
- 0.786 1.070 0.656 1.745 

LL pain 120 
7 

(1.6%) 
- 0.045 1.572 1.010 2.449 

3.2.2.2. Univariate predictors of outcome at T1: radiological variables 

Univariate associations between walking ability at T1 and imaging findings are 

shown in Table 3.4. None of the imaging predictor variables tested attained 

statistical significance.  
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Table 3.4. Univariate models of ability to walk 10m or more independently at 
T1.  

Predictors: vascular territory of infarct; presence of old stroke, white 
matter lesions, or atrophy; infarct location; infarct size. 

 N (%) 
Missing 

(%) 
Sig OR 95% CI for OR 

     Lower Upper 

Any visible abnormality 379 (86.5%) 0 0.840 0.944 0.538 1.655 

Any acute infarct 225 (51.4%) 0 0.390 0.846 0.577 1.239 

Acute MCA infarct 180 (41.1%) 0 0.510 0.877 0.549 1.295 

Acute ACA infarct 8 (1.8%) 0 0.876 0.891 0.210 3.778 

Acute PCA infarct 16 (3.7%) 0 0.824 0.889 0.317 2.493 

Acute lacunar infarct 13 (3.0%) 2 (0.5%) 0.215 0.438 0.119 1.614 

Acute borderzone infarct 5 (1.1%) 2 (0.5%) 0.999 0.000 0.000 - 

Acute cerebellar infarct 4 (0.9%) 2 (0.5%) 0.072 3.048 0.903 10.28 

Acute brainstem infarct 12 (2.7%) 2 (0.5%) 0.192 4.535 0.468 43.954 

Old vascular lesion 119 (27.2%) 4 (0.9%) 0.615 1.116 0.727 1.713 

Any white matter lesions 189 (43.2%) 3 (0.7%) 0.926 0.982 0.667 1.445 

Atrophy 46 (10.5%) 9 (2.1%) 0.151 1.622 0.838 3.139 

Infarct location 437 1 (0.2%) 0.820 - - - 

 Cortical 89 (20.3%) - 0.514 0.845 0.509 1.402 

 Subcortical 90 (20.5%) - 0.716 0.911 0.552 1.505 

 Both 45 (10.3%) - 0.408 0.754 0.387 1.471 

 No visible infarct 213 (48.6%) - 0.820 - - - 

Infarct size 429 9 (2.1%) 0.951 - - - 

 Small 58 (13.2%) - 0.640 0.867 0.477 1.576 

 Medium 131 (29.9%) - 0.763 0.934 0.598 1.458 

 Large 32 (7.3%) - 0.681 0.851 0.395 1.833 

 No visible infarct 208 (47.5%) - 0.951 - - - 

Of the 225 patients with a visible acute infarct, 180 had a lesion in the MCA 

territory. The observed frequency of infarcts in other vascular territories was 

low. In addition, the proportion of cases with missing data (n=2 for lacunar 

infarcts, borderzone, brainstem, and cerebellum) was high as a proportion of 

the observed frequency of infarcts in these territories. Estimates for odds 

ratios for these variables are therefore likely to be significantly biased, as 

evidenced by their wide confidence intervals. 
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3.2.2.3. Model 1: construction of an initial model 

A multi-variate model was constructed using a forward stepwise approach. 

Based on the p-values outlined in Tables 3.3 and 3.4, C-RMI at T0 was entered 

in to the model first. With the entry of each subsequent variables, the 

contribution of all variables to the model was re-evaluated and predictors that 

did not make a significant overall contribution were removed. The first variable 

to be entered was C-RMI. This made a statistically significant contribution to 

the model (p<0.0005), explained between 17.5% and 23.7% of the variance 

in walking ability, and correctly classified 69.2% of cases as walking or not 

walking independently at T1. The addition of MoCA score at T0 made a 

statistically significant contribution to the model (p<0.017), but this 

combination explained only marginally more variance in outcome (19.6%-

26.4%) and there was no change in the proportion of cases correctly classified 

by the model (69.2%). When added sequentially to the model, age, gender, 

OCSP and thrombolysis status failed to attain statistical significance, nor was 

there any substantial increase in the proportion of cases correctly classified. 

The proposed final iteration model therefore comprised C-RMI and MoCA 

score at T0. 

3.2.2.4. Model 1: model evaluation and testing assumptions of logistic 

regression 

When the Hosmer and Lemeshow goodness-of-fit test was applied to this 

model, a value of p=0.017 was obtained, indicating inadequate fit to the 

observed data. Examination of standardised residuals for evidence of 

localised misfit revealed five participants with values >±2.58. Each of these 

cases was evaluated in turn. Participant 164 had a total SR-RMI score of 13 

at T1, which suggests that he was able to walk independently at this time. 

However, his dichotomised SR-RMI classified him as being unable to walk 

independently for 10m or more. This probably indicates that a response to 

question 7 was not provided: and since missing responses to this question 

were not imputed, he was classified as being unable to walk. Participants 173 

and 312 did not return a valid SR-RMI at T1, and were therefore assumed to 

be unable to walk independently. This may account for the discrepancy 

between their observed (unable to walk) and predicted (able to walk) status. 
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Participants 238 and 563 had a very low C-RMI and MoCA scores at T0, and 

yet were able to walk independently at T1. It is possible that both simply made 

a better-than-expected recovery in the face of profound initial impairment. 

However, their persistently low MoCA scores at T1 raise the possibility that 

cognitive impairment might have led them to over-estimate their physical 

abilities, and thus biased their SR-RMI score at T1. It is equally possible that 

communication impairment compromised their ability to complete the MoCA 

at T0, and thus led to a score that does not reflect their true cognitive ability. 

This could therefore have led the model to predict erroneously that they would 

be unable to walk at T1.  

3.2.2.5. Model 1: revision of model to improve fit 

This evidence of localised misfit prompted a re-evaluation of the variables 

included in the model. On re-evaluating model parameters, the MoCA score 

at T0 made a statistically-significant contribution to the model but its overall 

effect size was small (β=0.044). Removing this variable resulted in a 

univariate model which contained only C-RMI at T0. The Hosmer and 

Lemeshow goodness-of-fit test was non-significant (p=0.270), indicating 

acceptable overall fit. When assessing local model fit, there were no cases in 

which standardised residuals exceeded the threshold level of ±2.58. 

Examining the influence of individual cases, there were no cases in which 

Cook’s distance or values of DFBeta exceeded 1. Leverage values ranged 

from 0.00004 to 0.00962. Sixty-eight patients had leverage values in excess 

of the predicted value (1+1/438=0.00457). The Box-Tidwell test was 

performed to assess the assumption of a linear relationship between predictor 

variables and the natural log of the odds ratio of walking independently at T1. 

Prior to natural-log transformation, a score of 1 was added to all values of C-

RMI, to eliminate scores of 0. C-RMI score was then forced into a model which 

also contained the interaction terms (C-RMI+1*Ln[C-RMI+1]). The interaction 

terms did not make a significant contribution to the model, thus indicating that 

the assumption of linearity of the logit was met. 

3.2.2.6. Model 1: final version 

The final, univariate, iteration of Model 1 is summarised in Table 3.5.  
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Table 3.5. Final version of Model 1. 

Model contains only C-RMI at T0. 

 B S.E. Wald df Sig OR 95% CI for OR 

       Lower Upper 

C-RMI at T0 0.542 0.065 68.608 1 <0.0005 1.719 1.512 1.954 

Constant -1.666 0.189 77.922 1 <0.0005 0.189   

3.2.2.7. Model 1: summary of model characteristics 

This model correctly classified 69.2% of cases, and accounted for 17.5%-

23.7% of variance in outcome. Each one-point increase in C-RMI at T0 

increased the odds of walking independently at T1 by 71.9%. The observed 

versus predicted classification of patients by Model 1 is shown in Table 3.6. 

From this, the sensitivity, specificity, and positive and negative predictive 

values can be ascertained. 

Table 3.6. Classification table for Model 1. 

 Walking independently by T1 (predicted) % correct 

No Yes 

Walking independently 
by T1 (observed) 

No 232 30 88.5 

Yes 105 71 40.3 

Overall %   69.2 

The sensitivity of Model 1 was low (40.3%), but specificity was higher (88.5%). 

The positive predictive value of the model is 70.3%. The negative predictive 

value of model 1 is 68.8%.  

3.2.2.8. Model 1: testing assumptions made for missing data 

Model 1 was constructed on the basis of an assumption that patients who did 

not return a SR-RMI score at T1 were unable to walk independently. This might 

be termed the “default” assumption. To explore the impact of this assumption 

on model parameters, Model 1 was re-fitted with two alternative assumptions 

made. The first (assumption 1) was that patients who did not return a SR-RMI 

score at T1 were excluded from analysis. A total of 393 patients were therefore 

analysed under this assumption. The second (Assumption 2) was that all 

patients who did not return a SR-RMI score at T1 were able to walk 
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independently. The variation in the properties of Model 1 when re-fitted under 

these alternative assumptions are summarised in Table 3.7. 

Table 3.7. Properties of Model 1 when fitted under alternative assumptions 
for missing SR-RMI scores at T1. 

 Default Assumption 1 Assumption 2 

% correctly classified 69.2% 71.2% 67.6% 

Sensitivity 40.3% 62.5% 57.0% 

Specificity 88.5% 78.3% 78.3% 

Positive predictive value 70.3% 70.1% 72.8% 

Negative predictive value 68.8% 72.0% 66.7% 

% Variance  Cox&Snell R2 17.5% 21.2% 16.6% 

% Variance Nagelkerke R2 23.7% 28.3% 22.2% 

C-RMI at T0    

 B 0.542 0.623 0.531 

 OR 1.719 1.865 1.701 

 95% CI for OR 1.512 – 1.854 1.613 – 2.157 1.493 – 1.939 

Model properties changed considerably depending upon what assumptions 

were made for missing data. The possible range for the percentage of cases 

correctly classified is between 67.6% (assumption 2) and 71.2% (assumption 

1). The percentage increase in the odds of walking independently for each 

one-point change in C-RMI at T0 ranged from 70.1% (under assumption 2) to 

86.5% (under assumption 1). Values of sensitivity range from 40.3% (under 

the default assumption) to 62.5% (under assumption 1). Similarly, values of 

specificity range from 78.3% (assumptions 1 and 2) to 88.5% (default 

assumption). Positive predictive values ranged from 70.1% (assumption 1) to 

72.8% (assumption 2); negative predictive values lay between 66.7% 

(assumption 1) and 72.0% (assumption 2). The percentage of variance 

explained by the model ranges from 16.6% (Cox&Snell R2, assumption 2) to 

28.3% (Nagelkerke R2, assumption 1).  
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3.2.3. Model 2: return to walking at T2 in IWS group 

3.2.3.1. Univariate predictors of outcome at T2: demographics, and 

clinical impairment at T0 and T1 

Model 2 aimed to predict walking ability at T2, and thus considered 

demographic variables, clinical impairment at both T0 and T1, and radiological 

findings as possible predictors. Once again, univariate associations between 

these variables and walking ability at T2 were first established. The most 

strongly significant univariate predictors at T0 were age (p<0.0005), and C-

RMI score and MoCA score at T0 (p<0.0005). SR-RMI and MoCA score at T1 

were also highly significant (p<0.0005) (Table 3.8). 
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Table 3.8. Univariate predictors of independent walking ability at T2. 

Predictor variables: age, gender, receipt of thrombolysis, OCSP clinical 
stroke syndrome, impairment at T0, and impairment at T2. 

  N Missing (%) Mean 

(Range, SD) 

p OR 95% CI for OR 

     Lower Upper 

D
e
m

o
g
ra

p
h
ic

 v
a
ri

a
b
le

s
 

Age 438 0 69.13  <0.0005 0.962 0.947 0.978 

   (20-98, 12.874)     

Gender 267 0 - 0.027 1.544 1.049 2.273 

Thrombolysis 109 1 (0.2%) - 0.195 0.750 0.485 1.159 

OCSP 438 0 - 0.008 - - - 

 TACS 145 - - 0.008 - - - 

 PACS 154 - - 0.138 1.413 0.895 2.231 

 POCS 43 - - 0.001 3.557 1.691 7.482 

 LACS 96 - - 0.093 1.561 0.929 2.623 

P
h
y
s
ic

a
l 
im

p
a
ir

m
e

n
t 

a
t 

T
0
 

C-RMI 438 0 2.25  <0.0005 1.506 1.335 1.698 

   (0-6, 1.809)     

MoCA 429 9 (2.1%) 20.37  <0.0005 1.064 1.030 1.099 

   (0-30, 6.268)     

GHQ-12 422 16, (3.7%) 19.13  0.857 0.997 0.970 1.026  

   (3-36, 6.842)     

Any pain 180 7 (1.6%) - 0.238 0.794 0.541 1.165 

UL pain 82 7 (1.6%) - 0.907 0.972 0.601 1.572 

LL pain 120 7 (1.6%) - 0.099 0.700 0.458 1.069 

P
h
y
s
ic

a
l 
im

p
a
ir

m
e

n
t 

a
t 

T
1
 

SR-RMI 393 
45 

(10.3%) 
6.50  <0.0005 1.599 1.457 1.755 

   (0-15, 4.070)     

MoCA 392 46 (10.5%) 22.53  <0.0005 1.119 1.076 1.163 

   (0-30, 6.054)     

GHQ-12 393 
45 

(10.3%) 
16.94  0.004 0.958 0.930 0.986 

   (0-36, 6.993)     

FAS 393 
45 

(10.3%) 
25.24  0.135 0.980 0.955 1.005 

   (10-49, 7.874)     

Any pain 298 40 (9.1%) - 0.185 0.732 0.462 1.160 

UL pain 251 40 (9.1%) - 0.562 1.128 0.750 1.697 

LL pain 177 40 (9.1%) - 0.042 0.662 0.444 0.985 
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3.2.3.2. Univariate predictors of outcome at T2: radiological variables 

Univariate associations between walking ability at T2 and imaging findings are 

summarised in Table 3.9. None of the imaging variables was a statistically 

significant predictor of outcome, and estimates for odds ratios for some 

variables are likely to be biased by low observed event rates and relatively 

high proportions of missing data.  

Table 3.9. Univariate models of independent walking ability at T2. 

Predictors: vascular territory of infarct; presence of old stroke, white 
matter lesions, or atrophy; infarct location; infarct size. 

 N (%) Missing (%) Sig OR 95% CI for OR 

     Lower Upper 

Any visible abnormality 379 (86.5%) 0 0.949 1.018 0.588 1.763 

Any acute infarct 225 (51.4%) 0 0.928 1.107 0.699 1.480 

Acute MCA infarct 180 (41.1%) 0 0.873 0.969 0.663 1.419 

Acute ACA infarct 8 (1.8%) 0 0.167 0.321 0.064 1.609 

Acute PCA infarct 16 (3.7%) 0 0.970 0.981 0.362 2.663 

Acute lacunar infarct 13 (3.0%) 2 (0.5%) 0.753 0.837 0.277 2.532 

Acute borderzone infarct 5 (1.1%) 2 (0.5%) 0.203 0.240 0.027 2.163 

Acute cerebellar infarct 4 (0.9%) 2 (0.5%) 0.103 3.000 0.801 11.235 

Acute brainstem infarct 12 (2.7%) 2 (0.5%) 0.347 2.972 0.307 28.800 

Old vascular lesion 119 (27.2%) 4 (0.9%) 0.992 0.998 0.654 1.521 

Any white matter lesions 189 (43.2%) 3 (0.7%) 0.077 0.709 0.485 1.038 

Atrophy 46 (10.5%) 9 (2.1%) 0.005 0.392 0.203 0.758 

Infarct location 437 1 (0.2%) 0.954 - - - 

 Cortical 89 (20.3%) - 0.876 1.040 0.634 1.706 

 Subcortical 90 (20.5%) - 0.948 1.016 0.621 1.664 

 Both 45 (10.3%) - 0.623 0.851 0.447 1.620 

 No visible infarct 213 (48.6%) - 0.954 - - - 

Infarct size 429 9 (2.1%) 0.877 - - - 

 Small 58 (13.2%) - 0.948 0.981 0.548 1.756 

 Medium 131 (29.9%) - 0.798 1.059 0.684 1.640 

 Large 32 (7.3%) - 0.479 0.763 0.361 1.614 

 No visible infarct 208 (47.5%) - 0.877 - - - 
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3.2.3.3. Model 2: construction of an initial model 

A multi-variate model was constructed using a forward stepwise approach. 

Demographic variables and clinical impairment at T0 were entered first, in 

preference to impairment at T1. C-RMI at T0 made a statistically significant 

contribution to the model (p<0.0005). This variable alone explained 11.1%-

14.8% of variance in walking ability, and correctly classified 63.5% of cases 

as walking or not walking independently at T2. The addition of age explained 

marginally more variance (14.7%-19.6%), and correctly classified 68.5% of 

cases. The addition of MoCA score at T0 did not make a statistically significant 

contribution to a model containing C-RMI and age (χ2=2.687, p=0.101), and 

the resulting model explained only fractionally more variance than a model 

containing C-RMI and age alone (15.9%-21.1%). Nor was there any 

substantial increase in the proportion of cases correctly classified (68.3%). 

However, the prevalence of cognitive impairment after stroke, and its 

theoretical importance in motor learning, justify retention of this variable in the 

model. Neither gender nor OCSP clinical stroke syndrome made a statistically 

significant contribution to the model; and nor did their inclusion increase the 

proportion of variance explained or the percentage of patients classified 

correctly. Both of these variables were removed from the model. 

Having entered all predictor variables measured at T0, the model thus 

contained C-RMI and MoCA scores at T0 and age. Predictor variables 

measured at T1 were next entered. The SR-RMI score at T1 made a highly 

significant contribution to the model (p=<0.0005); in the presence of this 

variable the C-RMI score at T0 became non-significant, indicating that the 

ability of mobility at T0 to predict mobility outcomes at T2 is wholly mediated 

by mobility at T1. C-RMI at T0 was thus replaced in the model by SR-RMI at 

T1. The resulting model explained 38.3% to 51.2% of unexplained variance in 

outcome, and correctly classified 79.7% of cases. The MoCA score at T1 also 

made a significant contribution to the model (p=<0.003). Although MoCA 

scores at T0 retained statistical significance when fitted alongside scores at 

T1, the strong collinearity between scores collected at the two time points 

raised the possibility that model coefficients could be biased if both were 

included. MoCA scores at T0 were therefore removed from the model. GHQ-
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12 scores at T1 did not make a statistically significant contribution to the 

model, and were thus excluded.  

3.2.3.4. Model 2: modification to improve localised misfit 

The working “final” iteration of the model thus comprised age, and SR-RMI 

and MoCA scores at T1. This model correctly classified 80.1% of cases, and 

explained between 38.8% and 51.9% of unexplained variance in outcome. 

However, when the model was examined for evidence of localised misfit, 

twelve patients had standardised residuals of >±2.58. This amounted to 

2.74% of the analysis population. Whilst the percentage of cases affected did 

not exceed the 5% threshold (Field, 2013), the fact that seven cases had 

standardised residuals of >3 was nevertheless cause for concern. 

The variables included in the model were therefore re-evaluated, and an 

alternative model was constructed. Replacing SR-RMI at T1 with C-RMI at T0 

resulted in more acceptable model fit, with seven cases having standardised 

residuals of >±2.58. In this iteration, MoCA scores at T1 remained highly 

significant, and this variable was therefore considered for inclusion in the final 

model. However, in clinical practice the timeframe defined as T0 in DARS (5-

42 days after stroke) typically marks the most intense period of rehabilitation 

intervention. It is desirable to be able to predict medium-term outcomes using 

information that would be available to professionals in the early acute 

rehabilitation period (i.e. within six weeks of a stroke). It could be argued that 

such a model would be more useful in clinical practice than a model which 

incorporated predictor variables acquired at a later date, even if the model 

explains a lower percentage of the overall variance in outcome when 

compared with a model containing variables measured at T1. 

3.2.3.5. Model 2: model evaluation and testing assumptions of logistic 

regression 

Replacing MoCA scores at T1 with values measured at T0 thus resulted in a 

model containing age, and C-RMI and MoCA scores at T0. This model showed 

acceptable fit to the data (Hosmer and Lemeshow goodness-of-fit test 

p=0.488), and only two cases had standardised residuals of >±2.58. Neither 

patient returned a RMI score at T2, and both were therefore assumed to be 
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unable to walk independently at this time point. This may account for the 

discrepancy between their observed (unable to walk) and predicted (able to 

walk) status. The model was also examined for influential cases using Cook’s 

distance, leverage statistics, and DFBeta values for the constant and each of 

the predictors (Table 28). No cases had a Cook’s distance of >1. Leverage 

values ranged from 0.00291 to 0.0445. One hundred and fifty-seven patients 

had a leverage value greater than the expected value of 0.00913). No cases 

returned DFBeta values >1 for the constant or for any of the predictor 

variables. The assumption that a linear relationship exists between each 

predictor variable and the natural log of the odds ratio of walking 

independently at T2 was tested using the Box-Tidwell test. Prior to natural-log 

transformation, a score of 1 was added to all values of C-RMI and MoCA at 

T0, to eliminate scores of 0. The covariates C-RMI, age, and MoCA score were 

then forced in to a model which also contained the interaction terms (C-

RMI+1*Ln[C-RMI+1]), (age*ln[age]), and (MoCA+1*Ln[MoCA+1]). The 

natural-log interaction terms did not make a significant contribution to this 

model (p>0.05), indicating that the assumption of linearity of the logit was met 

for C-RMI, age and total MoCA score at T0.  

3.2.3.6. Model 2: final version 

The final iteration of Model 2 is summarised in Table 3.10.  

Table 3.10. Final version of Model 2 

Predictor variables: C-RMI, age, and MoCA at T0. 

 B S.E. Wald df Sig OR 95% CI for OR 

       Lower Upper 

C-RMI at T0  0.395 0.065 37.107 1 <0.0005 1.485 1.308 1.686 

Age -0.032 0.009 12.977 1 <0.0005 0.969 0.952 0.986 

MoCA at T0  0.029 0.018 2.659 1 0.103 1.029 0.994 1.065 

Constant 0.775 0.759 1.041 1 0.307 2.170   

3.2.3.7. Model 2: summary of model characteristics 

This model accounted for 15.9%-21.1% of the unexplained variance, and 

correctly classified 68.3% of cases. Each one-point increase C-RMI at T0 

increased the odds of walking independently at T2 by 48.5%. Each one-year 
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increase in age decreased the odds of walking independently at T2 by 3.2%. 

The smallest overall effect size was seen for MoCA scores at T0, with each 

one-point increase increased the odds of walking independently by only 2.9% 

at T2. The observed versus predicted classification of patients by Model 2 is 

shown in Table 3.11.  

Table 3.11. Classification table for Model 2 

 Walking independently by T2 (predicted) % correct 

No Yes 

Walking independently 
by T2 (observed) 

No 149 63 70.3 

Yes 73 144 66.4 

Overall %   68.3 

The sensitivity of Model 2 is 66.4%, with a specificity of 70.3%. Its positive 

predictive value was 69.6%, and its negative predictive value was 67.1%.  

3.2.3.8. Model 2: testing assumptions made for missing data 

The default assumption made for missing data in Model 2 was that all patients 

maintained the level of mobility they had reached at T1. Those who had not 

returned a SR-RMI score at T1 were assumed to be unable to walk 

independently at T2. To explore the impact of this assumption, Model 2 was 

re-fitted with three alternative assumptions. Assumption 1 excluded patients 

who did not return a SR-RMI score at T2 from analysis: data from only 364 

participants were fitted under this assumption. Assumption 2 was that all 

participants who did not return a SR-RMI at T2 were able to walk 

independently; conversely, Assumption 3 was that these patients were unable 

to walk independently at this time-point. The properties of the model under 

each of these assumptions are summarised in Table 3.12.  
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Table 3.12. Properties of Model 2 when fitted under alternative assumptions 
for missing SR-RMI scores at T2. 

 Default Assumption 1 Assumption 2 Assumption 3 

% correctly classified 68.3% 68.3% 66.0% 66.7% 

Sensitivity 66.4% 74.4% 85.3% 61.4% 

Specificity 70.3% 60.0% 30.0% 71.6% 

Positive predictive value 69.6% 72.0% 69.4% 66.8% 

Negative predictive value 67.1% 62.9% 52.3% 66.5% 

% Variance  Cox&Snell R2 15.9% 18.3% 11.5% 12.5% 

% Variance Nagelkerke R2 21.1% 24.6% 15.8% 16.7% 

C-RMI at T0     

 B 0.395 0.488 0.378 0.356 

 OR 1.485 1.628 1.460 1.428 

 95% CI for OR 1.308 – 1.686 1.396 – 1.899 1.273 – 1.674 1.264 – 1.613 

Age     

 B -0.032 -0.036 -0.025 -0.021 

 OR 0.969 0.965 0.976 0.980 

 95% CI for OR 0.952 – 0.986 0.946 – 0.985 0.958 – 0.993 0.964 – 0.996 

MoCA at T0     

 B 0.029 0.032 0.017 0.028 

 OR 1.029 1.033 1.017 1.028 

 95% CI for OR 0.994 – 1.065 0.994 – 1.072 0.983-1.053 0.994 – 1.064 

The percentage of cases correctly classified ranged from 66.0% (assumption 

2) to 68.3% (default assumption, and assumption 1). The percentage increase 

in the odds of walking independently for each one-point change in C-RMI at 

T0 ranged from 42.8% (assumption 3) to 62.8% (assumption 1). The 

percentage change in the odds of walking independently with each one-year 

increase in age ranged from 2.0% (assumption 3) to 3.6% (assumption 1). 

The percentage change in odds ratio for independent mobility with each one-

point increase in MoCA score was between 1.7% (assumption 2) and 3.3% 

(assumption 1). The sensitivity of Model 2 ranged from 61.4% (assumption 3) 

to 62.5% (under assumption 1). Values of specificity range from 78.3% 

(assumptions 1 and 2) to 85.3% (assumption 2). Positive predictive values lay 

between 66.8% (assumption 3) and 72.0% (assumption 1); negative 

predictive values between 52.3% (assumption 2) and 66.5% (assumption 3). 
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The percentage of variance explained by the model ranges from 11.5% 

(Cox&Snell R2, assumption 2) to 24.6% (Nagelkerke R2, assumption 1).  
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Part 3.3 Modelling walking ability in intracerebral 

haemorrhage 

3.3.1. Characteristics of the HWS group 

3.3.1.1. Defining the HWS group 

Models 3 and 4 were derived in the HWS group: a sub-group of 75 patients 

(47 men and 28 women) who had sustained a primary intracerebral 

haemorrhage. Of these patients, 58 (77.3%) had radiological evidence of a 

parenchymal haematoma with no infarct visible. However, it must be noted 

that the criterion for inclusion in the HWS group was that the patient had 

sustained a primary intracerebral haemorrhage as defined by the recruiting 

centre. For this reason, the group also contains eight patients who were 

thought by the scan review panel (JP and consultant neuroradiologist) to have 

a parenchymal haematoma clearly remote from a visible infarct, and two who 

were thought to have radiological evidence of haemorrhagic transformation of 

an underlying infarct. 

3.3.1.2. Determining how many variables might be fitted 

It must be acknowledged that the numbers of patients in the HWS group are 

small, and do not support anything other than an exploratory analysis. In 

particular, the number of observed outcome events at each time point limit the 

number of predictor variables which may be fitted. At T1, 36 patients (48.0%) 

were able to walk independently for 10m or more; 39 (52.0%) were unable to 

do so. If a guideline of ten patients per variable is applied to the smaller of the 

two outcome groups, then a maximum of 36/10=3 variables may be fitted to 

Model 3. By T2, 32 patients (42.7%) were able to walk independently, with 43 

(49.5%) unable to do so. Model 4 therefore supports a maximum of three 

predictor variables.  

3.3.2. Model 3: return to walking at T1 in HWS group 

3.3.2.1. Univariate predictors of outcome at T1 

Model 3 examined predictors of mobility at T1, using demographic details, 

clinical impairment at T0, and radiological predictors. Univariate associations 
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between these variables and walking ability at T1 are summarised in Table 

3.13. 
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Table 3.13. Univariate predictors of independent walking ability at T1. 

Predictor variables: age; gender; clinical impairment at T0; haematoma 
volume; presence of midline shift; haematoma location; presence of 
hydrocephalus; presence of intraventricular extension; white matter 
lesions; old stroke lesion. 

 N Missing (%) Mean 

(Range, SD) 

Sig OR 95% CI for OR 

     Lower Upper 

Age 75 0 
65.85 

(32-92 1.501) 
0.030 0.960 0.925 0.996 

Male gender 47 0 - 0.833 0.904 0.354 2.309 

C-RMI 75 0 
1.96  

(0-6, 1.664) 
0.001 1.934 1.312 2.849 

MoCA at T0 72 3 (4%) 
20.17  

(0-30, 5.891) 
0.035 1.102 1.007 1.205 

GHQ-12 at T0 71 4 (5.3%) 
20.84  

(8-36, 6.836) 
0.442 0.973 0.908 1.043 

Any pain at T0 (yes) 21 3 (4.0%) - 0.914 1.058 0.382 2.925 

UL pain at T0 (yes) 12 3 (4.0%) - 0.463 0.625 0.178 2.192 

LL pain at T0 (yes) 14 3 (4.0%) - 0.908 0.933 0.290 2.999 

ICH volume (mm3) 67 8 (10.7%) 
16.58  

(1-88, 17.023) 
0.091 0.973 0.942 1.004 

Midline shift (mm) 66 9 (12%) 
1.99 

(0-44, 5.700) 
0.635 1.025 0.926 1.134 

Haematoma location 64 11 (14.7%) -     

 Frontal 10 - - 0.711    

 Temporal 1 - - 1.000 0.000 0.000 - 

 Parietal 6 - - 0.058 11.667 0.922 147.5 

 Occipital 1 - - 1.000 >1000 0.000 - 

 Basal ganglia 38 - - 0.212 2.593 0.581 11.56 

 Internal 
capsule 

2 - - 0.590 2.333 0.107 50.98 

 Brainstem 0 - - - - - - 

 Cerebellum 6 - - 0.999 >1000 0.000 - 

Hydrocephalus 12 9 (12%) - 0.272 0.941 0.138 1.748 

Intraventricular extension 26 8 (10.7%) - 0.378 0.640 0.237 1.726 

Old vascular lesion 13 2 (2.7%) - 0.335 0.547 0.160 1.866 

White matter lesions 26 0 - 0.090 0.431 0.163 1.142 

Atrophy 5 2 (2.7%) - 0.580 0.593 0.093 3.774 
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The only statistically significant univariate predictors of mobility at T1 were 

age, and C-RMI and MoCA scores at T0. However, the HWS group contained 

only a small number of participants and had a relatively high proportion of 

missing data at T1. The high odds ratios and wide confidence intervals for 

some radiological parameters (in particular, occipital and cerebellar 

haematoma location) indicate that there are insufficient data to support robust 

conclusions about these predictors. Nevertheless, fitting a model to these data 

may generate hypotheses worthy of investigation in a larger data-set.  

3.3.2.2. Model 3: construction of an initial model 

With these caveats in mind, an initial model containing only C-RMI at T0 was 

fitted. This accounted for 18.7%-24.9% of the unexplained variance in 

outcome, and correctly classified 68% of cases. Age did not make a 

statistically significant contribution to the model, and was therefore removed. 

MoCA scores at T0 were of borderline statistical significance (p=0.079), and 

the resulting model accounted for little more variance in outcome (22.7%-

30.3%) than did C-RMI alone. The combination of the two variables correctly 

classified 73.6% of cases. It is therefore possible that this variable might have 

attained statistical significance in a larger sample size. It was therefore 

retained in the model. The proposed final iteration of Model 3 thus contained: 

C-RMI and MoCA scores at T0.  

3.3.2.3. Model 3: model evaluation and testing assumptions of logistic 

regression 

The Hosmer and Lemeshow test indicates acceptable overall model fit 

(p=0.536). No cases had standardised residuals of >±2.58: although this 

implies that there is no evidence of localised misfit, it does raise the possibility 

that Model 3 is over-fitted to the small sample available. The model was 

examined for influential cases using Cook’s distance, leverage statistics, and 

DFBeta values for the constant and each of the predictors. No cases had a 

Cook’s distance of >1. Leverage values ranged from 0.0191 to 0.189. Twenty-

six patients had a leverage value greater than the expected value of 0.04. No 

cases returned DFBeta values >1 for the constant or for either of the predictor 

variables. 
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The Box-Tidwell test was performed to test the assumption of a linear 

relationship between predictor variables and the natural log of the odds ratio 

of walking independently at T1. Prior to natural-log transformation, a score of 

1 was added to all values of C-RMI and MoCA, to eliminate scores of 0. The 

covariates C-RMI and MoCA score at T0 were then forced in to a model which 

also contained the interaction terms (C-RMI+1*Ln[C-RMI+1]) and 

(MoCA+1*Ln[MoCA+1]). The natural-log interaction terms did not make a 

significant contribution to this model (p>0.05), indicating that the assumption 

of linearity of the logit was met for all variables.  

3.3.2.4. Model 3: final version 

The final iteration of Model 3 is summarised in Table 3.14.  

Table 3.14. Final iteration of Model 3.  

Predictor variables: C-RMI and MoCA scores at T0. 

 B S.E. Wald df Sig OR 95% CI for OR 

       Lower Upper 

C-RMI at T0 0.643 0.206 9.704 1 0.002 1.901 1.269 2.849 

MoCA at T0 0.082 0.049 2.814 1 0.093 1.085 0.986 1.193 

Constant -2.721 1.076 6.399 1 0.011 0.066   

3.3.2.5. Model 3: summary of model characteristics 

This model explained 22.7%-30.3% of variance in outcome at T1, and correctly 

classified 73.6% of patients as walking or not walking at this time. Taken at 

face value, Model 3 indicates that each one-point increase in C-RMI score at 

T0 is associated with a 90.1% increase in the odds of walking independently 

at T1, and each one-point increase in MoCA score at T0 is associated with an 

85% increase in the odds of walking independently at T1. However, this 

apparently-impressive effect size is likely to reflect inflation of the coefficients 

due to the small sample size from which Model 3 was derived. Although 

mobility and cognitive function at T0 do seem to be of prognostic importance 

in ICH, these apparent associations must be confirmed in a larger sample 

size. 
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The observed versus predicted classification of patients with ICH as “walking 

independently”/“not walking independently” by T1 is shown in Table 3.15.   

Table 3.15. Classification table for Model 3. 

 Walking independently at T1 (predicted) % correct 

No Yes 

Walking independently  
at T1 (observed) 

No 25 9 73.5 

Yes 10 28 73.7 

Overall %   73.6 

The model had a sensitivity of 73.7% and a specificity of 73.5%. Its positive 

predictive value was 75.6%, and its negative predictive value was 71.4%.  

3.3.2.6. Model 3: testing assumptions made for missing data 

The default assumption made for missing outcome data in Model 3 was that 

patients who did not return a SR-RMI at T1 score were unable to walk 

independently. To explore the impact of this assumption, Model 3 was re-fitted 

with two alternative assumptions made. Assumption 1 was that those who did 

not return a SR-RMI score at T0 were excluded from analysis: this restricted 

the available population to only 60 participants. Assumption 2 was that all 

participants lost to follow-up were able to walk independently at T1. The 

properties of Model 3 under these alternative assumptions are outlined in 

Table 3.16.  
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Table 3.16. Properties of Model 3 when fitted under alternative assumptions 
for missing SR-RMI scores at T1. 

 Default Assumption 1 Assumption 2 

% correctly classified 73.6% 66.1% 70.8% 

Sensitivity 73.7% 81.6% 86.3% 

Specificity 73.5% 38.1% 33.3% 

Positive predictive value 75.6% 70.5% 75.9% 

Negative predictive value 71.4% 53.3% 50% 

% Variance  Cox&Snell R2 22.7% 24.6% 19.8% 

% Variance Nagelkerke R2 30.3% 33.7% 28.3% 

C-RMI at T0    

 B 0.643 0.841 0.904 

 OR 1.901 2.319 2.469 

 95% CI for OR 1.269- 2.849 1.331 – 4.041 1.329 – 4.380 

MoCA at T0    

 B 0.082 0.026 -0.021 

 OR 1.085 1.027 0.979 

 95% CI for OR 0.986 – 1.193 0.914 – 1.153 0.887 – 1.080 

 

The percentage of cases correctly classified ranged from 66.1% (assumption 

1) to 73.5% (under the default assumption). The percentage increase in the 

odds of walking independently for each one-point change in C-RMI at T0 

ranged from 84.9% (default assumption) to 146.9% (assumption 2). The 

coefficients for the MoCA score at T0 were unstable, remaining positive under 

the default assumption and assumption 1, but becoming negative under 

assumption 2. Hence, under assumption 1 each one-point change in MoCA 

score resulted in an increase in the odds of walking independently at T1 of 

2.7%; under assumption 2, each one-point increase in score resulted in a 

2.1% decrease in the odds of walking independently. This instability most 

probably reflects the small sample size in which these estimates were derived. 

The sensitivity of Model 3 ranged from 73.7% (default assumption) to 86.3% 

(under assumption 2). The range of possible values for specificity was broad: 

between 33.3% (assumption 2) and 73.5% (default assumption). Positive 

predictive values lay between 70.5% (assumption 1) and 75.9% (assumption 

2); negative predictive values between 50% (assumption 2) and 71.4% 

(default assumption). The percentage of variance explained by the model 
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ranges from 19.8% (Cox&Snell R2, assumption 2) to 33.7% (Nagelkerke R2, 

assumption 1).  

3.3.3. Model 4: return to walking at T2 in HWS group 

3.3.3.1. Univariate predictors of outcome at T2: demographics, and 

clinical impairment at T0 and T1 

Model 4 predicted return to independent walking at T2 in the HWS group. 

Univariate associations between walking ability at T2, and demographics and 

clinical impairment at T0 and T1 are shown in Table 3.17. 



161 
 

Table 3.17. Univariate models of independent walking ability at T2. 

Predictor variables: age; gender; clinical impairment at T0; clinical 
impairment at T2. 

 N Missing (%) Mean 

(Range, SD) 

p OR 95% CI for OR 

     Lower Upper 

Demographic predictor variables 

Age 75 0 
65.85 

(32-92 1.501) 
0.002 0.937 0.898 0.977 

Male gender 47 0 - 0.611 0.783 0.305 2.012 

Predictor variables at T0 

C-RMI 75 0 
1.96 

(0-6, 1.664) 
0.002 1.896 1.276 2.815 

MoCA 72 3 (4%) 
20.17 

(0-30, 5.891) 
0.006 1.148 1.041 1.267 

GHQ-12 71 4 (5.3%) 
20.84 

(8-36, 6.836) 
0.643 0.984 0.918 1.054 

Any MSK pain 21 3 (4.0%) - 0.307 0.587 0.211 1.634 

Upper limb pain 12 3 (4.0%) - 0.248 0.476 0.135 1.676 

Lower limb pain) 14 3 (4.0%) - 0.241 0.493 0.151 1.607 

Predictor variables at T1 

SR-RMI 60 15 (20%) 
8.12 

(0-15, 4.342) 
<0.0005 1.628 1.271 2.086 

MoCA 64 11 (14.7%) 
23.48 

(8-30, 4.694) 
0.002 1.250 1.084 1.442 

GHQ-12 59 16 (21.3%) 
15.71 

(3-30, 6.734) 
0.072 0.925 0.851 1.007 

FAS 59 16 (21.3%) 
24.23 

(11-40, 6.44) 
0.023 0.896 0.814 0.985 

Any MSKl pain 47 16 (21.3%) - 0.526 1.524 0.415 5.598 

Upper limb pain 33 16 (21.3%) - 0.512 1.437 0.486 4.251 

Lower limb pain 28 16 (21.3%) - 0.413 1.579 0.529 4.710 

3.3.3.2. Univariate predictors of outcome at T2: radiological variables 

Univariate associations between imaging variables and walking ability at T2 

are shown in Table 3.18. 

Table 3.18. Univariate predictors of independent walking ability at T2. 
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Predictor variables: haematoma volume; presence of midline shift; 
haematoma location; presence of hydrocephalus; presence of 
intraventricular extension; white matter lesions; old stroke lesion. 

 N 
Missing 

(%) 
Mean 

(Range, 
SD) 

Sig OR 95% CI for OR 

     Lower Upper 

ICH volume (mm3) 67 
8 

(10.7%) 

16.58 

(1-88, 
17.023) 

0.422 0.988 0.960 1.017 

Midline shift (mm) 66 9 (12%) 

1.99 

(0-44, 
5.700) 

0.492 1.052 0.911 1.214 

ICH location 64 
11 

(14.7%) 
- 0.996    

 Frontal 10 - - 0.996    

 Temporal 1 - - 1.000 0.000 0.000 - 

 Parietal 6 - - 0.790 1.333 0.161 11.075 

 Occipital 1 - - 1.000 >1000 0.000 - 

 Basal ganglia 38 - - 0.734 1.282 0.306 5.366 

 
Internal 
capsule 

2 - - 0.999 >1000 0.000 - 

 Brainstem 0 - - - - - - 

 Cerebellum 6 - - 0.697 0.667 0.087 5.127 

Hydrocephalus 12 9 (12%) - 0.041 0.250 0.066 0.942 

Intraventricular 
extension 

26 
8 

(10.7%) 
- 0.047 0.355 0.127 0.987 

Old vascular lesion 13 2 (2.7%) - 0.363 0.571 0.171 1.910 

White matter lesions 26 0 - 0.157 0.498 0.190 1.307 

Atrophy 5 2 (2.7%) - 0.115 0.165 0.017 1.553 

Once again, attention is drawn to the small overall sample size, and to the 

high proportion of missing data for some T1 predictor variables. As for Model 

3, the numbers of participants with certain radiological features (temporal, 

occipital, capsular, or cerebellar haematomas) were small, and as such 

confidence intervals for these lesions are either implausibly large or 

incalculable. It must again be stressed that models derived from these data 

are exploratory, and should thus be interpreted with caution. 

3.3.3.3. Model 4: construction of an initial model 

The modelling process began by fitting the strongest predictors measured at 

T0. The initial model containing C-RMI at T0 only explained 16.9%-22.8% of 
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variance in outcome, and correctly classified 65.3% of patients. The addition 

of age made a significant (p=0.010) contribution to the model; the combination 

of this and C-RMI accounted for 24.0%-32.3% of unexplained variance, and 

correctly classified 69.3% of patients. The addition of MoCA scores at T0 

resulted in a model that explained 29.9%-40.2% of variance in outcome, and 

correctly classified 75.0% of patients. 

Variables measuring clinical impairment at T1 were next fitted. The addition of 

SR-RMI at T1 was statistically significant (p<0.0005), but the contribution of C-

RMI at T0 was no longer statistically significant (p=0.955). This suggests that 

the effect of C-RMI at T0 are entirely mediated by that of SR-RMI at T1. A 

model containing SR-RMI at T1 explained more variance in outcome (49.0%-

67.9%) and correctly classified a greater percentage of patients (86.4%) than 

the previous iteration containing C-RMI at T0. However, there is a strong 

clinical rationale for including variables measured at T0 in preference to those 

measured at T1, since T0 marks the time at which patients would typically be 

engaged in their early rehabilitation. C-RMI at T0 was retained in the model, 

and SR-RMI at T1 was removed. MoCA score and FAS at T1 and two CT 

variables (presence of hydrocephalus and presence of intraventricular 

extension) all failed to make a statistically significant contribution to the model, 

and were thus removed. The resulting model contained MoCA and C-RMI 

scores at T0, and age. Although this model explained 29.9%-40.2% of 

variance in outcome, and correctly classified 75.0% of patients, the small 

sample size from which it was derived makes it desirable to fit the smallest 

number of predictor variables possible. The variable with the smallest effect 

size was age (coefficient -0.049; odds ratio 0.952). Removing this variable 

resulted in a model containing only MoCA and C-RMI scores at T0: a 

combination which still explained 25.1%-33.8% of variance in outcome, and 

classified 72.2% of patients correctly.  

3.3.3.4. Model 4: model evaluation and testing assumptions of logistic 

regression 

This model showed acceptable fit to the data (Hosmer and Lemeshow 

goodness-of-fit test, p=0.563). Only one case showed evidence of localised 

misfit (standardised residual -2.808). This patient had a comparatively high C-
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RMI score of 5 at T0, and was able to walk independently by T1. By T2 his 

mobility had deteriorated, with a SR-RMI score of 3. It is possible that he 

sustained a further stroke or an intercurrent illness in the intervening period. 

The model was examined for influential cases using Cook’s distance, leverage 

statistics, and DFBeta values for the constant and each of the predictors 

(Table 53). No cases had a Cook’s distance of >1. Leverage values ranged 

from 0.0202 to 0.181. Thirty-three patients had a leverage value greater than 

the expected value of 0.04. No cases returned DFBeta values >1 for the 

constant or for either of the predictor variables.  

The Box-Tidwell test was performed to assess the assumption of a linear 

relationship between predictor variables and the natural log of the odds ratio 

of walking independently at T2. Prior to natural-log transformation, a score of 

1 was added to all values of C-RMI and MoCA at T0, to eliminate scores of 0. 

The covariates C-RMI and MoCA score at  T0 were then forced in to a model 

which also contained the interaction terms (age*Ln[age]), (C-RMI+1*Ln[C-

RMI+1]) and (MoCA+1*Ln[MoCA+1]). The natural-log interaction terms did 

not make a significant contribution to this model (p>0.05), indicating that the 

assumption of linearity of the logit was met for all continuous variables 

included.  

3.3.3.5. Model 4: final version 

The final iteration of Model 4 is summarised in Table 3.19.   

 

 

 

 

Table 3.19. Final version of Model 4. 

Predictor variables: MoCA and C-RMI at T0. 

 B S.E. Wald df Sig OR 95% CI for OR 

       Lower Upper 

MoCA at To 0.127 0.053 5.778 1 0.016 1.135 1.024 1.259 
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C-RMI at To 0.616 0.214 8.305 1 0.004 1.852 1.218 2.816 

Constant -3.298 1.152 8.196 1 0.004 0.037   

3.3.3.6. Model 4: Summary of model characteristics 

Each one-point increase in C-RMI score at T0 appears to result in an 85.2% 

increase in the odds of walking independently at T2. The effect size for MoCA 

score at T0 is smaller, with each one-point increase resulting in a 13.5% 

increase in the odds of regaining independent mobility at T2. The apparent 

effect sizes for these variables are larger than those seen in Models 1 and 2. 

However, this is likely to reflect the smaller sample size in which Model 4 was 

derived. Once again, it must be stressed that the analysis presented here is 

exploratory in nature: the value of these variables in predicting prognosis 

requires confirmation in a larger sample.  

The observed versus predicted classification of patients with ICH as “walking 

independently”/“not walking independently” by T2 is shown in Table 3.20.   

Table 3.20. Classification table for Model 4. 

 Walking independently by T2 (predicted) % correct 

No Yes 

Walking independently 
by T2 (observed) 

No 18 12 60.0 

Yes 8 34 81.0 

Overall %   72.2 

Model 4 had a sensitivity of 81.0% and a specificity of 60.0%. The positive 

predictive value of this model was 73.9%, and its negative predictive value 

was 69.2%.  

3.3.3.7. Model 4: testing assumptions made for missing data 

The default assumption made for missing outcome data in Model 4 was that 

the mobility of patients who did not return a SR-RMI score at T2 was 

unchanged since the score at T1, if this was known. If no SR-RMI score had 

been returned at T1, patients were assumed to be unable to walk 

independently at T2. To explore the impact of this assumption, Model 4 was 

re-fitted with three alternative assumptions made for missing outcome data. 
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Assumption 1 excluded patients who did not return a SR-RMI at T2 from 

analysis, and was thus tested in only 56 of the 75 patients in the HWS group. 

Assumption 2 was that all patients who did not return a SR-RMI at T2 were 

able to walk independently, whilst assumption 3 was that those with missing 

data were unable to walk independently at T2. The properties of Model 3 when 

re-fitted under these alternative assumptions are summarised in Table 3.21. 

Table 3.21. Properties of Model 4 when fitted under alternative assumptions 
for missing SR-RMI scores at T2. 

 Default Assumption 1 Assumption 2 Assumption 3 

% correctly classified 72.2% 76.4% 76.4% 70.8% 

Sensitivity 81.0% 44.4% 98.1% 75.7% 

Specificity 60.0% 91.9% 11.1% 65.7% 

Positive predictive value 73.9% 77.3% 76.8% 70.0% 

Negative predictive value 69.2% 72.7% 66.7% 71.9% 

% Variance  Cox&Snell R2 25.1% 23.1% 9.7% 27.9% 

% Variance Nagelkerke R2 33.8% 32.2% 14.4% 37.2% 

MoCA at T0      

 B 0.127 0.112 0.042 0.160 

 OR 1.135 1.118 1.043 1.174 

 95% CI for OR 1.024 – 1.259 0.993 – 1.260 0.950 – 1.144 1.045 – 1.319 

C-RMI at T0     

 B 0.616 0.655 0.480 0.593 

 OR 1.852 1.926 1.616 1.809 

 95% CI for OR 1.218 – 2.816 1.156 – 3.208 1.034 – 2.525 1.221 – 2.679 

The percentage of cases correctly classified ranged from 70.8% (assumptions 

3) to 76.4% (assumptions 1 and 2). The percentage increase in the odds of 

walking independently for each one-point change in MoCA score at T0 ranged 

from 11.8% (assumption 1) to 17.4% (assumption 3). Each one-point change 

in C-RMI score at T0 resulted in an increase in the odds of walking 

independently at T2 of between 61.6% (assumption 2) and 92.6% (assumption 

1). The sensitivity of Model 4 ranged from 44.4% (assumption 1) to 98.1% 

(assumption 2). The range of possible values for specificity was also broad: 

between 11.1% (assumption 2) and 91.9% (assumption 1). Positive predictive 

values lay between 70.0% (assumption 3) and 77.3% (assumption 1); 

negative predictive values between 66.7% (assumption 2) and 72.7% 
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(assumption 1). The percentage of variance explained by the model ranges 

from 9.7% (Cox&Snell R2, assumption 2) to 37.2% (Nagelkerke R2, 

assumption 3).  
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Part 3.4 Modelling walking ability in the whole DARS sample 

3.4.1. Characteristics of the DARS sample 

3.4.1.1. What predictor variables were fitted to Models 5 and 6? 

Models 1-4 presented above were constructed using two sub-groups (IWS 

and HWS) of the DARS sample. The purpose of examining ischaemic stroke 

and ICH separately, and using only those patients for whom imaging was 

available, was to assesses the importance of imaging variables as predictors 

of mobility. However, none of the CT variables examined had a strong 

univariate association with outcome at T1 or T2. Two additional models were 

therefore constructed, this time utilising all 593 patients in the DARS sample. 

Model 5 predicted recovery of independent mobility at T1; Model 6 predicted 

mobility outcome at T2. Only demographic and clinical impairment recorded at 

T0 were utilised as predictors in these models. Although the inclusion of 

variables recorded at T1 may explain more variance in outcome and correctly 

classify a greater percentage of patients as mobile or immobile at T2, models 

that utilise only information available to the rehabilitation team at the time of 

the patient’s entry in to an acute rehabilitation programme are likely to be more 

useful in a clinical setting.   

3.4.1.2. Determining how many variables might be fitted 

At T1, 252 (42.5%) patients were able to walk independently for 10m or more; 

341 (57.5%) were unable to do so. If a guideline of ten patients per variable is 

applied to the smaller of the two outcome groups, then a maximum of 

252/10=25 variables may be fitted to model 5. Allowing for a more generous 

ratio of 20 patients per variable would allow up to 12 variables to be fitted 

(Stoltzfus, 2011). By T2, 311 (52.4%) patients were able to walk 

independently, with 282 (47.6%) unable to do so. If a ratio of 10 patients per 

variable is adopted, then 28 variables could be fitted to model 6. Allowing a 

more conservative 20 patients per variable would permit 14 variables to be 

fitted (Stoltzfus, 2011).  
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3.4.2. Model 5: return to walking at T1 in the whole DARS sample 

3.4.2.1. Univariate predictors of outcome at T1 

Model 5 sought to predict walking ability at T1 using demographic details and 

clinical impairment at T0. Univariate associations between predictor variables 

and this outcome are summarised in Table 3.22. 

Table 3.22. Univariate predictors independent walking ability at T1.  

Predictor variables: age; gender; OCSP clinical stroke syndrome; clinical 
impairment at T0. 

 
 N 

Missing 
(%) Mean 

(Range, SD) 

Sig OR 95% CI for OR 

     Lower Upper 

D
e
m

o
g

ra
p

h
ic

 v
a

ri
a
b

le
s
 

Age 593 0 

68.42 

(20-98, 
13.232) 

<0.0005 0.971 0.958 0.983 

Gender 
(male) 

364  0 - 0.015 1.542 1.085 2.140 

Infarct 
(versus ICH) 

508  0 - 0.020 0.578 0.364 0.918 

OCSP 592 1 (0.2%) - 0.001 - - - 

 TACS 161  - - 0.001 - - - 

 PACS 178  - - 0.008 1.836 1.172 2.877 

 POCS 52  - - 0.002 2.747 1.446 5.216 

 LACS 116  - - 0.011 1.913 1.163 3.147 

 ICH 85  - - 0.000 2.777 1.612 4.784 

P
h

y
s
ic

a
l 
im

p
a
ir
m

e
n
t 
a

t 
T

0
 

C-RMI 593 0 
2.25  

(0-6, 1.791) 

<0.000
5 

1.714 1.533 1.916 

MoCA 580 
13 

(2.2%) 

20.23  

(0-30, 6.308) 
<0.0005 1.074 1.043 1.106 

GHQ-12 570 
23 

(3.5%) 

19.36 

(3-36, 
6.848) 

0.180 0.983 0.960 1.908 

Any pain 236  
10 

(1.7%) 
- 0.395 0.864 0.618 1.209 

UL pain 114  
10 

(1.7%) 
- 0.950 0.987 0.652 1.493 

LL pain 154  
10 

(1.7%) 
- 0.020 0.636 0.433 0.932 

3.4.2.2. Model 5: construction of an initial model 

The first variable to be fitted was age. Although highly statistically significant 

(p<0.0005), this explained only 3.6%-4.8% of variance in outcome and 

correctly classified 59.9% of participants. The addition of C-RMI to the model 
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explained a much greater percentage of the variance in outcome (18.3%-

24.6%), and correctly classified 70.5% of cases. The addition of MoCA score 

at T0 explained slightly more variance in outcome (19.2%-25.8%), but did not 

improve the classification rate (69.4%). The MoCA score was nevertheless 

retained in the model, due to the theoretical importance of this variable in 

learning processes. 

The OCSP classification was considered for inclusion in the model next. This 

was developed as a clinical classification of ischaemic stroke only (Bamford 

et al., 1991), and typically includes only four categories: TACS, PACS, POCS, 

and LACS. The inclusion of both ischaemic stroke and ICH in the DARS 

sample necessitated the creation of a fifth category, “ICH,” to allow this 

variable to be utilised in a model predicting outcome in a mixed sample of 

stroke patients. However, to enter OCSP with an additional “ICH” category 

alongside the dichotomised variable “infarct versus ICH” risked creating 

collinearity between the two variables. OCSP (with an ICH category) and 

stroke type dichotomised as “infarct versus ICH” were therefore entered in to 

separate models which also included age, C-RMI at T0, and MoCA at T0. 

A model incorporating OCSP with an “ICH” category explained 21.4%-28.8% 

of variance in outcome, and correctly classified 71.0% of cases. This was little 

different from a model including “infarct versus ICH” as a dichotomous 

variable, which accounted for 21.2%-28.5% of variance in outcome, and 

correctly classified 70.3% of cases. When OCSP (with an ICH category) and 

dichotomised “infarct versus ICH” were forced in to the model simultaneously, 

only “infarct versus ICH” retained statistical significance (p=0.001). This 

variable was therefore retained in the model, and OCSP was removed. The 

addition of both gender and the presence of lower limb pain failed to contribute 

significantly to the model, and they were therefore removed.  

3.4.2.3. Model 5: model evaluation and testing assumptions of logistic 

regression 

The final iteration of the model thus contained age, C-RMI and MoCA scores 

at T0, and infarct versus ICH. This model showed acceptable fit to the data 

(Hosmer and Lemeshow goodness-of-fit, p=0.529). Ten cases (1.69% of the 
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total sample) had standardised residuals of >±2.58. These cases were 

examined to explore possible reasons for misfit. Cases 164, 173, 238, 312, 

and 563 all previously showed misfit to Model 1, and the reasons for this have 

been examined above. Participants 28 and 555 both had an initial C-RMI of 

0, and were thus predicted to be unable to walk independently by T1. However, 

both made a better recovery than might be anticipated, with an SR-RMI scores 

at T1 of 10 and 7 respectively. In the case of participant number 28, this gain 

in motor function was sustained at T2 (SR-RMI=12). Patient number 555 

unfortunately failed to sustain this initial recovery, and by T2 had a SR-RMI of 

2. Participants 68 and 532 had a comparatively high C-RMI of 6 at T0, and 

might therefore have been expected to be walking independently at T1. 

However, neither returned an SR-RMI at T1, and both were therefore classified 

as being unable to walk. Patient number 99 had an initial C-RMI of 6, and 

MoCA of 27. Despite being predicted to walk independently at follow-up, his 

scores at T1 were unchanged. It is not possible to determine a reason for this 

with the available data. The model was examined for influential cases using 

Cook’s distance, leverage statistics, and DFBeta values for the constant and 

each of the predictors. No cases had a Cook’s distance of >1. Leverage values 

ranged from 0.00270 to 0.03903; 201 patients had leverage values greater 

than the expected value of 0.00843. No cases returned DFBeta values >1 for 

the constant or for any of the predictor variables.  

The Box-Tidwell test was performed to assess the assumption of a linear 

relationship between predictor variables and the natural log of the odds ratio 

of walking independently at T1. Prior to natural-log transformation, a score of 

1 was added to all C-RMI and MoCA scores, to eliminate scores of 0. The 

covariates age, C-RMI and MoCA score at T0 were then forced in to a model 

which also contained the interaction terms (age*Ln[age]), (C-RMI+1*Ln[C-

RMI+1]) and (MoCA+1*Ln[MoCA+1]). The categorical term “infarct versus 

ICH” was omitted from the model. The natural-log interaction terms did not 

make a significant contribution to this model (p>0.05), indicating that the 

assumption of linearity of the logit was met for age, C-RMI and total MoCA 

score.  
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3.4.2.4. Model 5: final version 

The final iteration of Model 5 is summarised in Table 3.23. 

Table 3.23. Final version of Model 5. 

Predictor variables: age, MoCA and C-RMI at T0, and infarct versus ICH. 

 B S.E. Wald df Sig OR 95% CI for OR 

       Lower Upper 

Age -0.017 0.007 5.179 1 0.023 0.983 0.969 0.998 

C-RMI at T0 0.530 0.060 77.358 1 0.000 1.699 1.509 1.911 

MoCA at T0 0.041 0.016 6.374 1 0.012 1.042 1.009 1.076 

Infarct (versus ICH) -0.805 0.268 9.028 1 0.003 0.447 0.264 0.756 

Constant -0.509 0.691 0.543 1 0.461 0.601   

3.4.2.5. Model 5: summary of model characteristics 

This model explained 20.5%-27.5% of variance in outcome, and correctly 

classified 70.3% of cases. Once again, the largest effect size seen was for C-

RMI. Each one-point increase in score at T0 was associated with an increase 

of 69.9% in the odds of walking independently at T1. The effect of cognitive 

impairment remained more modest, with each one-point increase in MoCA 

score at T0 increasing the odds of walking independently by 4.2% at T1. Each 

one-year increase in age resulted in a 1.7% decrease in the odds of walking 

independently at T1. Finally, at T1 those with an ischaemic stroke had a 44.7% 

reduction in the odds of being mobile when compared with those with 

intracerebral haemorrhage.   

The observed versus predicted classification of patients in the DARS sample 

as “walking independently”/“not walking independently” by T1 is shown in 

Table 3.24. 
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Table 3.24. Classification table for Model 5. 

 Walking independently by T1 (predicted) % correct 

No Yes 

Walking independently 
by T1 (observed) 

No 269 62 81.3 

Yes 110 139 55.8 

Overall %   70.3 

Model 5 had a sensitivity of 55.8% and a specificity of 81.3%. The positive 

and negative predictive values of this model were, respectively, 69.2% and 

71.0%.  

3.4.2.6. Model 5: testing assumptions made for missing data 

The default assumption made for missing outcome data in Model 5 was that 

patients who did not return a SR-RMI score at T1 were unable to walk 

independently. To explore the impact of this assumption, the model was re-

fitted with two alternative assumptions. Assumption 1 excluded patients who 

did not return a SR-RMI at T1 from analysis, and was thus tested in only 393 

of the original 593 participants. Assumption 2 was that all patients who did not 

return an SR-RMI at T1 were able to walk independently. The properties of 

Model 5 when fitted under these alternative assumptions are summarised in 

Table 3.25. 
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Table 3.25. Properties of Model 5 under alternative assumptions for missing 
SR-RMI scores at T1. 

 Default Assumption 1 Assumption 2 

% correctly classified 70.3% 71.7% 69.1% 

Sensitivity 55.8% 68.3% 72.0% 

Specificity 81.3% 74.5% 65.8% 

Positive predictive value 69.2% 71.7% 71.3% 

Negative predictive value 71.6% 71.6% 66.5% 

% Variance  Cox&Snell R2 20.5% 25.0% 19.3% 

% Variance Nagelkerke R2 27.5% 33.4% 25.8% 

Age    

 B -0.017 -0.017 -0.012 

 OR 0.983 0.983 0.989 

 95% CI for OR 0.969 – 0.998 0.967 – 0.999 0.974 – 1.003 

C-RMI at T0    

 B 0.530 0.609 0.518 

 OR 1.699 1.839 1.678 

 95% CI for OR 1.509 – 1.911 1.608 – 2.103 1.487 – 1.893 

MoCA at T0    

 B 0.041 0.041 0.031 

 OR 1.042 1.042 1.031 

 95% CI for OR 1.009 – 1.076 1.007 – 1.077 1.001 – 1.063 

Infarct versus ICH    

 B -0.805 -1.087 -1.063 

 OR 0.447 0.337 0.345 

 95% CI for OR 0.264 – 0.756 0.185 – 0.615 0.199 – 0.598 

The percentage of cases correctly classified ranged from 70.3% (default 

assumption) to 71.7% (assumption 1). The percentage decrease in the odds 

of walking independently at T1 with each one-year increase in age ranged from 

1.1% (assumption 2) to 7.7% (default assumption and assumption 1). Each 

one-point increase in C-RMI score at T0 resulted in an increase in the odds of 

independent mobility at T1 of between 67.8% (assumption 2) and 83.9% 

(assumption 1).  The odds of walking independently increased by between 

3.1% (assumption 2) and 4.3% (default assumption and assumption 1) for 

each one-point increase in MoCA score at T0. The odds of walking 



175 
 

independently for an infarct (versus ICH) were between 34.5% (assumption 

2) and 44.7% (default assumption). 

The sensitivity of Model 5 ranged from 55.8% (default assumption) to 72.0% 

(assumption 2). The range of values for specificity was between 65.8% 

(assumption 2) and 81.3% (default assumption). Positive predictive values lay 

between 69.2% (default assumption) and 71.7% (assumption 1); negative 

predictive values between 66.5% (assumption 2) and 71.6% (assumption 1). 

The percentage of variance explained by the model ranges from 19.3% 

(Cox&Snell R2, assumption 1) to 33.4% (Nagelkerke R2, assumption 1).  

3.4.3. Model 6: return to walking at T2 in the whole DARS sample 

3.4.3.1. Univariate predictors of outcome at T2 

Model 6 predicted recovery of walking ability at T2. Univariate associations 

between this outcome and predictor variables (demographics and impairment 

at T0) are summarised in Table 3.26. 
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Table 3.26. Univariate models of independent walking ability at T1. 

Predictor variable: age; gender; infarct (versus haemorrhage); OCSP 
clinical stroke syndrome; and clinical impairment at T0. 

 
 N 

Missing 
(%) 

Mean 

(Range, SD) 
Sig OR 95% CI for OR 

      Lower Upper 

D
e
m

o
g

ra
p

h
ic

 v
a

ri
a
b

le
s
 

Age 593 0 
68.42 

(20-98, 13.232) 
<0.0005 0.957 0.944 0.970 

Gender 
(male) 

364  0 - 0.011 1.540 1.104 2.147 

Infarct 
(versus ICH) 

508  0 - 0.422 0.827 0.521 1.314 

OCSP  592 1 (0.2%) - 0.018    

 TACS 161  - - 0.018    

 PACS 178  - - 0.110 1.419 0.924 2.177 

 POCS 52  - - 0.001 3.127 1.591 6.146 

 LACS 116  - - 0.163 1.406 0.871 2.270 

 ICH 85  - - 0.066 1.644 0.968 2.793 

P
h

y
s
ic

a
l 
im

p
a
ir
m

e
n
t 
a

t 
T

0
 

C-RMI 593 0 
2.25 

(0-6, 1.791) 
<0.0005 1.519 1.367 1.688 

MoCA 580 
13 

(2.2%) 
20.23 <0.0005 1.080 1.050 1.111 

   (0-30, 6.308)     

GHQ-12 570 
23 

(3.5%) 
19.36 0.609 0.994 0.970 1.018 

   (3-36, 6.848)     

Any pain 236  
10 

(1.7%) 
- 0.246 0.822 0.590 1.145 

UL pain 114  
10 

(1.7%) 
- 0.973 1.007 0.669 1.518 

LL pain 154  
10 

(1.7%) 
- 0.042 0.681 0.471 0.986 

3.4.3.2. Model 6: construction of an initial model 

As for model 5, age made a statistically significant contribution (p<0.0005), 

but explained only a small percentage of the variance in outcome (7.3%-9.8%) 

and correctly classified 63.9% of cases. The addition of C-RMI made a 

statistically significant contribution (p<0.0005) to the model. Alongside age, it 

explained 15.7%-21.0% of the variance in outcome and correctly classified 

68.3% of cases. MoCA score at T0 was next fitted. The resulting model 
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explained 17.5%-23.4% of the variance in outcome and correctly classified 

69.0% of cases. Gender, OCSP clinical stroke syndrome, and lower limb pain 

all failed to reach statistical significance, and did not contribute any additional 

explicable variance. Nor did they improve the percentage of patients correctly 

classified.  

3.4.3.3. Model 6: model evaluation and testing assumptions of logistic 

regression 

The model therefore comprised age, and C-RMI and MoCA scores at T0. This 

model was an acceptable fit to the data (Hosmer and Lemeshow test 

p=0.606). Examination of residuals for individual cases demonstrated 7 cases 

(1.18% of the 593 cases included) in which standardised residuals were 

>±2.58 (Table 78). Two patients (68 and 173) had standardised residuals >3. 

Five participants (numbers 68, 84, 173,532, and 547) had relatively high C-

RMI scores at T0, but failed to return a SR-RMI at T2. All were classified as 

being unable to walk, despite relatively favourable C-RMI scores at T0. 

Participant number 99 had an initial C-RMI score of 6, but failed to achieve 

any improvement in mobility at either T1 or T2. It is not possible to establish a 

definite cause for this with the data available, although the fact that he 

developed both upper and lower limb musculoskeletal pain between the initial 

assessment at T0 and first follow-up at T1 may provide some indication of why 

he failed to progress in rehabilitation.  

The model was examined for influential cases using Cook’s distance, leverage 

statistics, and DFBeta values for the constant and each of the predictors 

(Table 79). No cases had a Cook’s distance of >1. No cases returned DFBeta 

values >1 for the constant or for any of the predictor variables. Leverage 

values ranged from 0.00215 to 0.0327: 202 participants had leverage values 

greater than the expected value of 0.00674.  

The Box-Tidwell test was performed to assess the assumption of a linear 

relationship between predictor variables and the natural log of the odds ratio 

of walking independently at T2. Prior to natural-log transformation, one point 

was added to all C-RMI and MoCA scores to eliminate scores of 0. The 

covariates age, C-RMI, and MoCA score at T0 were then forced in to a model 
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which also contained the interaction terms (age*Ln[age]), (C-RMI+1*Ln[C-

RMI+1]) and (MoCA+1*Ln[MoCA+1]). The natural-log interaction terms did 

not make a significant contribution to this model (p>0.05), indicating that the 

assumption of linearity of the logit was met for age, C-RMI and total MoCA 

score at T0.  

3.4.3.4. Model 6: final version 

The final iteration of Model 6 is summarised in Table 3.27. 

Table 3.27. Final version of Model 6 

Predictor variables: age, C-RMI, and MoCA at T0. 

 B S.E. Wald df Sig OR 95% CI for OR 

       Lower Upper 

Age -0.035 0.007 21.601 1 <0.0005 0.966 0.952 0.980 

C-RMI at T0 0.378 0.057 43.506 1 <0.0005 1.459 1.304 1.633 

MoCA at T0 0.046 0.015 9.219 1 0.002 1.048 1.017 1.079 

Constant 0.747 0.650 1.321 1 0.250 2.111   

3.4.3.5. Model 6: Summary of model characteristics 

This model explained 17.5%-23.4% of variance in outcome, and correctly 

classified 69.0% of patients as walking/not walking independently at T2. Each 

one-point increase in C-RMI at T0 resulted in a 45.9% increase in the odds of 

walking independently at T2. A one-point increase in the MoCA score at T0 

conferred a more modest 4.8% increase in the odds of walking independently 

at T2. Each one-year increase in age was associated with a 3.5% reduction in 

the odds of walking independently at T2. The observed versus predicted 

classification of patients in the DARS sample as “walking independently”/“not 

walking independently” by T2 is shown in Table 3.28.  
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Table 3.28. Classification table for Model 6. 

 Walking independently by T2 (predicted) % correct 

No Yes 

Walking independently 
by T2 (observed) 

No 185 89 67.5 

Yes 91 215 70.3 

Overall %   69.0 

Model 6 had a sensitivity of 70.3%, a specificity of 67.5%, a positive predictive 

value of 70.7%, and a negative predictive value of 67.0%.  

3.4.3.6. Model 6: testing assumptions made for missing data 

The default assumption under which Model 6 was fitted was that patients who 

did not return SR-RMI scores at T2 maintained the same level of mobility that 

had been recorded at T1. Those who had also failed to return a SR-RMI at T1 

were assumed to be unable to walk independently at T2. In order to test the 

robustness of model parameters, Model 6 was re-fitted using three alternative 

assumptions. The first excluded those who had not returned a SR-RMI at T2 

from analysis, and was tested in only 487 of the original 593 participants. The 

second was that all patients who did not return a SR-RMI at T2 were able to 

walk independently at this time. The third was that those who did not return a 

SR-RMI at T2 were unable to walk independently. The properties of Model 6 

when fitted under these alternative assumptions are summarised in Table 

3.29. 



180 
 

Table 3.29. Properties of Model 6 when fitted under alternative assumptions 
for missing SR-RMI scores at T2. 

 Default Assumption 1 Assumption 2 Assumption 3 

% correctly classified 69.0% 60.1% 68.6% 66.4% 

Sensitivity 70.3% 79.5% 88.9% 62.8% 

Specificity 67.5% 57.6% 27.2% 69.9% 

Positive predictive value 70.7% 71.6% 71.3% 67.3% 

Negative predictive value 67.0% 65.1% 54.7% 65.6% 

% Variance  Cox&Snell R2 17.5% 19.0% 11.7% 13.6% 

% Variance Nagelkerke R2 23.4% 25.7% 16.2% 18.1% 

Age     

 B -0.035 -0.036 -0.026 -0.022 

 OR 0.966 0.965 0.974 0.979 

 95% CI OR 0.952 – 0.980 0.948 – 0.982 0.959 – 0.989 0.965 – 0.992 

C-RMI at T0     

 B 0.378 0.461 0.356 0.336 

 OR 1.459 1.586 1.427 1.399 

 95% CI for OR 1.304 – 1.633 1.385 – 1.815 1.264 – 1.610 1.257 – 1.556 

MoCA at T0     

 B 0.046 0.050 0.030 0.046 

 OR 1.048 1.051 1.030 1.048 

 95% CI for OR 1.017 – 1.079 1.017 – 1.087 1.000 – 1.061 1.017 – 1.079 

The percentage of cases correctly classified ranged from 60.1% (assumption 

1) to 68.6% (assumption 2). The percentage decrease in the odds of walking 

independently at T2 with each one-year increase in age ranged from 2.1% 

(assumption 3) to 3.5% (assumption 1). Each one-point increase in C-RMI 

score at T0 was associated with an increase in the odds of independent 

mobility at T2 of between 39.9% (assumption 3) and 58.6% (assumption 1). 

The odds of walking independently increased by between 3.0% (assumption 

2) and 5.1% (assumption 1) for each one-point increase in MoCA score at T0. 

The sensitivity of Model 6 ranged from 62.8% (assumption 3) to 88.9% 
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(assumption 2). The range of values for specificity was between 27.2% 

(assumption 2) and 69.9% (assumption 3). Positive predictive values lay 

between 67.3% (assumption 3) and 71.6% (assumption 1); negative 

predictive values between 54.7% (assumption 2) and 65.6% (assumption 3). 

The percentage of variance explained by the model ranges from 11.7% 

(Cox&Snell R2, assumption 2) to 25.7% (Nagelkerke R2, assumption 1).  
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Chapter 4. Discussion 

Part 4.1 Summary of results 

4.1.1. The aims of this study 

This Thesis sought to develop a series of models to predict return to 

independent walking after stroke at T1 and T2 (roughly eight weeks and six 

months after stroke). Few models have been developed to predict mobility 

outcomes specifically. Those that have tend to rely upon an assessment of 

clinical impairment (van de Port et al., 2006a). Whether or not including an 

assessment of structural brain impairment using imaging variables offers any 

additional predictive value over and above an assessment of clinical 

impairment alone remains uncertain (Stinear and Ward, 2013, Dawes et al., 

2008). However the models derived here examined a series of predictor 

variables including limitation of activity and impairment in brain structure (of 

which CT imaging was a surrogate marker) in the hope of predicting recovery 

of the ability to walk 10m or more independently at up to six months after 

stroke. 

4.1.2. Summary of models 

4.1.2.1. Summary of key findings 

The most striking finding of the work presented here is that none of the brain 

imaging variables examined here predict walking ability at T1 and T2 (up to six 

months after stroke). Whilst the small sample size of the HWS group is 

acknowledged, this suggests that models based upon measures of clinical 

impairment alone might provide a more reliable prediction of rehabilitation 

potential than those incorporating imaging variables. With this in mind, it is 

worth examining in more detail the findings of models 5 and 6, which were 

developed in the whole DARS sample and did not incorporate radiological 

variables. In both of these models the strongest predictor variable was C-RMI. 

In model 5, this variable alone increased the percentage of explicable variance 

from 3.6-4.8% (for age alone) to 18.3-24.6% (for age and C-RMI). The 
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percentage of cases correctly classified increased from 59.9% (age alone) to 

70.5% (age plus C-RMI). Similarly, in model 6 the addition of C-RMI alongside 

age to the model increased the variance explained from 7.3-9.8% to 15.7-

21.0%, although there was a more modest rise in the percentage of cases 

correctly classified (from 63.9% with age alone to 68.3% of cases with age 

plus C-RMI). When additional variables were fitted (MoCA at T0 and infarct 

versus ICH for model 5, and MoCA at T0 for model 6) the final iterations of the 

models explained only marginally more variance than age plus C-RMI (20.5-

27.5% for model 5; 17.5-23.4% for model 6), and resulted in little or no 

improvement in the percentage of patients correctly classified (70.3% for the 

final iteration of model 5; 69.0% for the final iteration of model 6). This 

suggests that a clinician-scored RMI performed within eight weeks of stroke 

(defined here as “T0”, and representing the time window during which patients 

were randomised to DARS) is a useful predictor of independent walking ability 

at up to six months. Depending upon the assumptions that were made for 

missing data, model 5 had a sensitivity of between 55.8-72.0%, and a 

specificity of 65.8-81.3%; model 6 had a sensitivity of 62.8-88.9% and a 

specificity of 27.2-69.9%. 

4.1.2.2. Key predictor variables 

The variables that were most consistently predictive of outcome across all 

models were C-RMI and MoCA scores at T0. Of the two, the largest effect size 

was seen for C-RMI. In the IWS group, each one-point increase in this score 

increased the odds of walking independently at by 71.9% at T1, and 48.5% at 

T2. Estimates in the HWS group are derived from a much smaller sample, and 

must thus be treated with caution. Taken at face value, a one-point increase 

in C-RMI at T0 is associated with a 90.1% increase in the odds of walking 

independently at T1, and an 85.2% increase in the odds of walking 

independently at T2. In the DARS sample as a whole, each one-point increase 

was associated with a 69.9% increase in the odds of walking independently 

at T1, and a 45.9% increase in the odds of walking independently by T2. 

Cognitive function at T0 was also a significant predictor of outcome, albeit with 

a smaller effect size than C-RMI. In the IWS group, each one-point increase 

MoCA score at T0 increased the odds of walking independently by 2.9% at T2. 
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Findings in the HWS group must be viewed with caution, but a one-point 

increase in MoCA scores at T0 was associated with an 8.5% increase in the 

odds of regaining independent mobility by T1 and a 13.5% increase in the odds 

of walking independently at T2 in this group. In the whole DARS sample, a 

one-point increase in MoCA score at T0 was associated with a 4.2% increase 

in the odds of walking independently at T1, and a 4.8% increase in the odds 

of regaining independent mobility at T2. Age at stroke onset attained 

significance only in models 2, 5, and 6. In the IWS group, each one-year 

increase in age was associated with a 3.2% decrease in the odds of walking 

independently at T2. Similarly, in the DARS sample as a whole a one-year 

increase in age was associated a 1.7% reduction in the odds of walking 

independently at T1, and a 3.5% reduction in the odds of walking 

independently at T2. The type of stroke (infarct versus ICH) was a significant 

predictor variable only in Model 5 (outcome at T1 in the whole DARS sample). 

Here, those with an ischaemic stroke had a 44.7% reduction in the odds of 

being mobile at T1 when compared with those with intracerebral haemorrhage. 

4.1.2.3. Classification of patients and percentage variance explained  

The models presented here correctly classified between 68% and 73% of 

participants as walking/ not walking independently at the specified end-points: 

lower than that achieved by other models which successfully predicted RMI 

score to within ±2 points in 81% of patients (van de Port et al., 2006a). They 

also account for only around 20-30% of variance in outcome at best: lower 

than the 50% accounted for in other models (van de Port et al., 2006a). 

The success of the models in classifying patients as walking/not walking 

independently may be judged by examining how accurately an outcome might 

be predicted if no model were fitted at all. For example, in the DARS sample 

as a whole, 42.5% of patients were mobile at T1, and 57.5% were immobile. 

Without any further modelling, one can state that DARS participants have a 

higher prior probability of being immobile at T1 than of being mobile. Thus, if 

an individual were selected from the sample at random and a guess were 

made about their likely mobility at T1, it would be reasonable to predict that 

the participant would be immobile at that time. If the same assumption were 

made for every patient in the sample, then without any further modelling 
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walking ability at T1 would be correctly predicted in 57.5% of patients. Fitting 

Model 5 to the data increases the accuracy of prediction, and allows 70.3% of 

patients to be correctly classified. This sounds impressive: but in reality, only 

12.8% more participants are correctly classified by the model than would be 

the case using prior probability alone.  

Furthermore, a patient’s rehabilitation potential is currently estimated not by 

statistical models, but following an expert assessment by an experienced 

multi-disciplinary team. Little has been published about how such decisions 

are made, and what factors inform therapists’ prognostication. And yet, an 

apparent “educated guess” by skilled therapists may be as reliable in 

predicting recovery of walking ability as a regression model (Kwakkel et al., 

2000). In order to be useful in clinical practice, a prognostic model would not 

only need to result in a much higher rate of correct classification than has been 

achieved here: it must also be demonstrably superior to the judgement of 

experienced therapists.  

4.1.2.4. Sensitivity, specificity, and positive and negative predictive 

values 

If these models are to be used in clinical practice, one must also bear in mind 

the differing balances of sensitivity and specificity that each displays. Models 

1 and 5, both predictive of walking ability at T1, have relatively poor sensitivity 

(40.3% for Model 1, 55.8% for Model 5) but higher specificity (88.5% for Model 

1, 81.3% for Model 5). This implies that both are relatively poor predictors of 

who will return to walking by T1, but more reliably classify those who will not 

do so. Models derived to predict mobility outcomes at T2 (Model 2 and Model 

6) have moderate sensitivity (68.3% for Model 2; 70.3% for Model 6) and 

specificity (70.3% for Model 2; 67.5% for Model 6). They thus perform 

moderately well in predicting both positive (“walking”) and negative (“not 

walking”) outcomes. Models 3 and 4 were derived from a small sample of 

patients with ICH, and must therefore be interpreted cautiously. In Model 3, 

sensitivity and specificity are balanced (73.7% and 73.5% respectively); 

Model 4 has a higher sensitivity (81.0%) than specificity (60.0%), indicating a 

greater reliability in identifying those who will return to walking than those who 

will not. 
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4.1.2.5. Stability of models under alternative assumptions for missing 

data 

Estimates for the effect sizes of each of the predictors fitted changed 

considerably depending on the assumptions made for missing outcome data. 

The most worrying example of this was seen in Model 3, in which a one-point 

increase in MoCA score at T0 was associated with a 2.7% increase in the odds 

of walking independently at T1 under assumption 1, but a 2.1% decrease in 

the odds of independent mobility under assumption 2. This example is 

extreme, and reflects the small sample size from which these estimates were 

derived. Nevertheless, even models fitted to larger samples demonstrated 

changes in effect size when alternative assumptions were made for missing 

data. In Model 5, derived from the whole DARS sample, a single-point 

increase in C-RMI score at T0 was associated with a 67.8% increase in the 

odds of walking independently at T1 under assumption 2, but an increase of 

83.9% under assumption 1. In Model 6 (outcome at T2), effect size estimates 

for C-RMI ranged from 39.9% (assumption 3) to 58.6% (assumption 1). 

Furthermore, the sensitivity and specificity of the models also varied 

considerably when alternative assumptions for missing data were tested. The 

widest ranges were in models predicting outcome at T2, since a greater 

proportion of the sample had been lost to follow-up at this time than at T1. In 

Model 2, sensitivity ranged from 61.4% to 85.3%, whilst specificity lay between 

30.0% and 71.6%. In Model 6, sensitivity was 62.8%-88.9% and specificity 

27.2%-69.9%. Estimates of positive predictive value tended not to vary by 

more than a few percentage points. The greatest ranges of values observed 

was in Models 2 (66.8%-72.0%) and 3 (70.0%-77.3%). The greatest range in 

estimates of negative predictive values was in Model 6 (54.7%-65.9%).  

4.1.3. The need for formal validation of the models 

The models presented above all suggest that a patient’s level of mobility and 

cognitive function early after stroke might be useful in predicting walking 

ability. However, they show marked instability in both estimates of the effect 

sizes of covariates and of other key parameters such as sensitivity and 

specificity when alternative assumptions are made for missing data. This 
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raises concerns that the performance of the models derived here may also 

vary if applied to a different sample.  

Such instability might arise when the characteristics of the sample in which a 

model was developed are different from the population to which it is ultimately 

applied. For example, a model developed in a high-income country might later 

be applied in a low- or middle-income country (Vickers and Cronin, 2010), or 

a model developed in an adult sample might be extrapolated to children 

(Moons et al., 2015, Moons et al., 2009a).  

Over-fitting of a model may also result in the inclusion of predictors that have 

little value beyond the derivation sample or, conversely, exclusion of 

predictors that might be important in a different cohort (Moons et al., 2009a). 

It is therefore recommended that models undergo validation before 

introduction into clinical use. Ideally validation should be conducted in a 

sample different from the original (Altman and Royston, 2000). In practice 

however, validation is more usually performed by splitting the original data set, 

with half of the sample being used for model derivation and half for validation 

(Altman and Royston, 2000, Labarere et al., 2014, Moons et al., 2015). 

Although convenient, this practice is unsatisfactory. Firstly, the sample size 

available for derivation of the model is reduced, resulting in loss of statistical 

power (Altman and Royston, 2000, Labarere et al., 2014, Moons et al., 2015). 

Secondly, unless caution is exercised the characteristics of the “derivation” 

and “validation” samples may be virtually identical (Altman and Royston, 

2000). For these reasons, “split sample” validation was not performed for the 

models presented here. 

When considering whether it might be appropriate to undertake formal 

validation of the models presented here, one must consider what is already 

known about them and their possible clinical utility. The proportion of variance 

in outcome that they explain is relatively modest, and the classification rates 

they achieve are little better than prior probability alone and perhaps no better 

than the clinical judgement of a skilled multidisciplinary team. For these 

reasons, the models developed here cannot at present be recommended for 

use in clinical practice in their current form.  
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In clinical practice knowledge of the variables that might influence recovery, 

and an estimation of their possible effect sizes, might still provide useful 

information to inform the judgement of rehabilitation professionals and thus to 

guide discussions with patients and families. Although the findings presented 

above must be interpreted with caution, they do suggest that those with the 

most profound mobility impairment and cognitive dysfunction after stroke are 

less likely to recover the ability to walk. The development of reliable models 

to predict mobility will depend in part upon identifying the most crucial 

predictor variables. Examining the contribution of the variables included in the 

models presented here might be a starting point for this process. 



190 
 

Part 4.2 Comparing the findings of this study with previous 

literature 

As summarised above, the variables that were included in Models 1-6 were: 

C-RMI (mobility); MoCA (cognitive function); age; and type of stroke (infarct 

or ICH). Several variables that might have been expected to contribute to 

prediction of walking ability did not make a statistically-significant contribution 

to multivariate models. These included gender; OCSP clinical stroke 

syndrome; depression; fatigue; and musculoskeletal pain. Finally, none of the 

imaging predictor variables that were assessed were independent predictors 

of which patients might walk again. 

4.2.1. Variables that were predictors of walking ability in the 

models presented here 

4.2.1.1. Mobility early after stroke 

The variable with the largest effect across any of the models was C-RMI at T0. 

The finding that a patient’s level of mobility in the early stages after stroke is 

predictive of their later ability to walk again was noted previously by Shum et 

al. (2014) who used a modified version of the RMI (M-RMI) (Lennon and 

Johnson, 2000) administered at 3 days to predict walking ability at 28 days 

after stroke. Unlike the original RMI (Collen et al., 1991), which has 15 

questions with binary responses, the M-RMI has eight domains with 

polytomous responses ranging from 0 (unable to perform) to 5 (independent) 

(Lennon and Johnson, 2000). An M-RMI score of ≥18.5 at day 3 predicted 

independent walking ability at day 28 with a sensitivity of 85% and specificity 

of 75% (Shum et al., 2014).  

A patient’s initial level of mobility appears to be an important predictor of not 

only later independent mobility, but also of discharge destination after stroke 

(Sommerfeld and von Arbin, 2001, Brauer et al., 2008). Sommerfeld and von 

Arbin (2001) found that those achieving RMI scores of ≥4 at 10 days after 

stroke had a 29-fold increase in the risk of being discharged home within three 

months (relative to those with scores of <4). A similar pattern was noted by 

Brauer et al. (2008), who utilised a different measure of mobility, the Motor 
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Assessment Score (Carr et al., 1985). Each one-point increase on the “gait” 

sub-scale of this measure increased the odds of stroke survivors returning 

home 1.66-fold, and each single-point increase in the “balance” sub-scale 

increased the odds of discharge home by a factor of 1.28.  

If initial mobility is a useful indicator of long-term outcome, it is useful to ask 

what aspect of “mobility” is of greatest prognostic importance. The DARS trial, 

for example, enrolled only participants who had an initial C-RMI score of <7 at 

T0: and were thus initially unable to walk independently (Bhakta et al., 2014). 

Hence, although the effects of C-RMI in models 1-6 were quoted above as the 

percentage change in the odds of walking independently at follow-up 

associated with a one-point increase in C-RMI score, it is perhaps more 

accurate to specify that this prediction holds true only for values of C-RMI in 

the range of 0-6. Initial differences in low-level mobility functions (short of 

actually walking) may therefore have an important bearing on a patient’s 

subsequent outcome. 

If the RMI is examined more closely, then It could be argued that RMI values 

within the range of 2 (able to transfer from lying to sitting in bed) to 5 (ability 

to stand for 10 seconds unaided) (Collen et al., 1991) appear to measure the 

underlying construct of balance rather than mobility. Indeed, re-establishing 

adequate balance, first in sitting and then in standing, are necessary 

prerequisites for walking. Interestingly, a model constructed by van de Port et 

al. (2006a) to predict RMI scores at one year after stroke found sitting balance 

(measured using the trunk control test) to be a significant predictor of this 

outcome. Indeed, this accounted for 8% of observed variance in RMI scores 

at 12 months (van de Port et al., 2006a). Interestingly, the range of the metrics 

for the “gait” and “balance” sub-scales of the Mobility Assessment Scale (Carr 

et al., 1985), utilised by Brauer et al. (2008) as a predictor of discharge 

destination, do align with the lower-end scores of the RMI (Collen et al., 1991). 

Perhaps future modelling in patients who are initially immobile should include 

specific measures of balance, as opposed to more global measures of mobility 

such as the RMI. 
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4.2.1.2. Cognitive function after stroke 

As described in Chapter 1, the phenomenon of cognitive impairment after 

stroke is complex. It is a common consequence of stroke, both acutely and in 

the longer term (Gottesman et al., 2010). And given the importance of loop 

circuits between cortical and sub-cortical structures in motor learning (Doyon 

et al., 2009, Hikosaka et al., 2002, Penhune and Steele, 2012), and the 

potential for these pathways to become disrupted by both injury to particular 

structures as a result of the stroke itself (Schmahmann and Pandya, 2008, 

Schmahmann et al., 2009) and as a consequence of chronic microvascular 

disease (Iadecola, 2013, Wardlaw et al., 2013b), one might expect cognitive 

function to be a strong predictor of recovery of walking ability. However, 

although MoCA scores did indeed make a statistically significant contribution 

to the models, the effect observed for each one-point increase was relatively 

modest in comparison to C-RMI score. This suggests that any relationship 

between cognition and motor recovery is not straightforward.  

Cognitive dysfunction is associated with a decline in mobility at up to three 

years after stroke (van de Port et al., 2006c), but the precise relationship 

between motor and cognitive functions remains uncertain (Chen et al., 2013). 

Whether “cognition” can be regarded as a single underlying construct is 

debatable: several key cognitive domains are recognised including memory, 

executive function, praxis, and visuospatial function (Barker-Collo et al., 

2010). It is possible that mobility impairment after stroke is due in part to 

difficulty in allocating limited cognitive resources to a complex task such as 

walking, rather than to a failure of learning processes per se. The 

phenomenon of dual-task interference, in which performance of a motor task 

is compromised when the patient is asked to perform a cognitive task 

simultaneously, is well recognised (Chen et al., 2013). This was initially 

attributed to an inability to focus attention to two tasks at once, but there is 

now growing evidence that the underlying impairment is actually in executive 

function (Chen et al., 2013). Interestingly, impairment in motor function 

(measured using the Berg balance score, gait velocity, and “timed up-and-go” 

test) within the first six months after mild stroke also seem to predict the 

development of cognitive dysfunction at up to two years later (Ben Assayag 
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et al., 2015). Giving fewer correct answers to questions asked during walking 

(i.e. under dual-task conditions) also predicted subsequent cognitive decline 

(Ben Assayag et al., 2015). It is therefore possible that aspects of gait and 

motor task performance are influenced by subtle impairments in specific 

cognitive functions, with more florid cognitive dysfunction becoming apparent 

later on. The link between motor and cognitive dysfunction may therefore be 

mediated by impairment in specific cognitive domains such as executive 

function. The MoCA, which was designed as a brief screening test of global 

cognitive function (Nasreddine et al., 2005), may lack sensitivity for more 

subtle domain-specific impairments. Although the MoCA does contribute to 

the overall predictive ability of models 2-5, it is possible that more detailed 

tests of specific cognitive ability, such as executive function, could account for 

a greater proportion of observed variance in outcome. 

4.2.1.3. Age at stroke onset  

Age at stroke onset attained significance only in models 2, 5, and 6. Age has 

been shown to be a negative correlate of mobility at between one and five 

years in several models: (van de Port et al., 2006a, Meyer et al., 2015, 

Sanchez-Blanco et al., 1999) but, in keeping with findings above, its effect is 

modest. It accounts for only 3% of variance in motor outcome (van de Port et 

al., 2006a, Bagg et al., 2002), and each one-year increase in age is associated 

with an increase of only 0.08 points on the leg and trunk function sub-scale of 

the Rivermead Motor Assessment and a 0.13-point increase in the gross 

function subscale of this measure (Meyer et al., 2015). It is likely that the effect 

of age is mediated by other variables such as cognitive impairment or 

comorbidities (Bagg et al., 2002). For this reason, age must not be the only 

criterion in deciding whether a patient might benefit from rehabilitation (Bagg 

et al., 2002).  

4.2.1.4. Type of stroke 

The association between type of stroke and outcome is uncertain. Although 

the early mortality from ICH is high (Dennis, 2003), there have been 

suggestions that those who survive are more likely than those with ischaemic 

stroke to experience a favourable outcome. This was the case in Model 5, as 

discussed above. Several other studies also point to better outcomes following 
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ICH, although the association is by no means proven. A univariate analysis by 

van de Port et al. (2006a) found that the presence of intracerebral 

haemorrhage was associated with an increase of 0.176 points on the RMI at 

one year when compared to ischaemic stroke. Patients with ICH have also 

been shown to have higher RMI scores at discharge from a rehabilitation 

programme (mean RMI=6.57, SD ±4.33) compared with those with ischaemic 

stroke (mean RMI=5.42, SD ±3.90) (Paolucci et al., 2003), and to show a 

greater change in the motor subscale of the Functional Independence 

Measure at discharge from rehabilitation (ΔFIM-motor 22.7±1.1 for ICH; 

20.2±0.5 for ischaemic stroke) (Kelly et al., 2003). However, although these 

findings are all statistically significant it is debatable whether they meet the 

threshold for true clinically significant change. Also, Meyer et al. (2015) did not 

detect statistically significant differences between survivors of ischaemic 

stroke and ICH in Rivermead Motor Assessment (RMA) gross function and 

arm and trunk subscale scores at any time point. Although there was 

statistically significant gain of 1.82 points on the RMA arm function subscale 

for ICH when compared with ischaemic stroke, the clinical relevance of this 

finding is debatable (Meyer et al., 2015).  

A large prospective cohort study also found that patients with ICH were  more 

likely to be dead or dependent at three months and one year (Bhalla et al., 

2013). However, data collection in this cohort spanned a 16-year period 

between 1995 and 2011; hence, not all patients enrolled received what would 

today be regarded as “gold standard” care (Bhalla et al., 2013). For example, 

patients with ischaemic stroke were more likely to be managed in the 

community than those with ICH; a practice that is now regarded as outmoded. 

In short, the evidence that the type of stroke a patient sustains influences 

functional prognosis is mixed. Type of stroke therefore cannot at present be 

used to predict rehabilitation potential. 

4.2.2. Clinical predictor variables that did not make a contribution 

to models 1-6 

Several variables that could plausibly have been predictors of mobility 

ultimately failed to make an independent contribution to the models presented 

above. These will be examined below. 
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4.2.2.1. Gender 

Gender reached statistical significance as a univariate predictor of outcome in 

models 1, 2, 5, and 6, with men having more favourable odds of achieving 

independent mobility at eight weeks and six months than women. However, 

this variable was not statistically significant on multivariate analysis. These 

findings are in keeping with those of previous studies, which showed that 

female gender was associated with a reduction in one-year RMI score 

compared to male (van de Port et al., 2006a). Once again, this finding did not 

reach statistical significance in a multivariate analysis (van de Port et al., 

2006a). Meyer et al. (2015) failed to demonstrate a statistically significant 

influence of gender on outcome at any time point up to five years.  

4.2.2.2. OCSP clinical stroke syndrome 

Clinical stroke syndrome, defined using the OCSP classification (Bamford et 

al., 1991), was only fitted to models that included patients with ischaemic 

stroke but did not attain significance in any of these. The OCSP classification 

has been shown to be of prognostic relevance: but only in the distinction 

between TACS and other syndromes (PACS, LACS, POCS). At six months 

after stroke, those with TACS have lower mean RMA scores, a longer length 

of hospital stay, and greater mortality rates (Pittock et al., 2003). Compared 

with patients who sustain a LACS, at 3 months after stroke those with TACS 

are 3.27 (95% CI 2.30-4.66) times more likely to experience limitation of 

activities (Barthel index of 0-14), and 2.71 (95% CI 1.91-3.85) times more 

likely to be disabled (Rankin scale of 2-5) (Di Carlo et al., 2006). Although 

TACS carries clear prognostic implications, the distinction between PACS, 

LACS, and POCS is uncertain.  

4.2.2.3. Depression and fatigue 

Depression (GHQ-12) did not attain significance in any of the univariate 

analyses presented above. The interaction between mood and motor recovery 

is complex (Chen et al., 2013). Nannetti et al. (2005) found no difference in 

motor outcome (Fugl-Meyer Assessment Scale) three months after stroke 

between patients who had been depressed on admission versus those who 

were not. However, depression has been shown to be associated with long 
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term deterioration in mobility (defined as a fall of ≥2 points on the RMI) at one 

year (OR 3.44; 95% CI 1.57–7.54) (van de Port et al., 2006b) and at two years 

(OR 4.2; 95% CI 1.3-13.2) (van Wijk et al., 2006) after stroke. Fatigue reported 

at T1 (FAS) was a significant univariate predictor for model 4 (p=0.023), but 

failed to reach significance in the final multivariate model. Other studies, 

however, have found the presence of fatigue to be predictive of long-term 

deterioration in mobility: in both a univariate model (OR 3.30; 95% CI 1.09–

9.99) and as part of a multi-variate model (OR 3.30; 95% CI 1.09–9.99) 

alongside depression and cognitive impairment.(van de Port et al., 2006b) It 

is therefore possible that any effects of depression and fatigue on motor 

function are exerted on a timescale longer than the six months post-stroke 

considered here. 

4.2.2.4. Musculoskeletal pain 

In the DARS sample the proportion of patients reporting musculoskeletal pain 

in any locus increased from 39.8% at baseline, to 66.9% at eight weeks and 

63.2% at six months. The percentage reporting pain in any lower limb locus 

was 26.0% at baseline, 40.5% at eight weeks, and 43.2% at six months. This 

is somewhat higher than previous estimates, which indicate that the 

prevalence of any joint pain within two years of stroke is around 55.4% 

(Hettiarachchi et al., 2011). The presence of lower limb musculoskeletal pain 

was a significant univariate predictor in model 1 (assessment at T0; p=0.045), 

model 2 (assessment at T1; p=0.042); model 5 (assessment at T0; p=0.02), 

and model 6 (assessment at T0; p=0.042). However, it failed to achieve 

significance as part of multivariate models. None of the other musculoskeletal 

pain parameters assessed (presence of any pain, and presence of lower limb 

pain) made even a univariate contribution to predicting outcome. This is 

surprising, since previous studies have found that the presence of both stroke-

related impairment and hip pain increased the odds of reporting difficulties in 

standing and mobilising by a far greater magnitude than either of these 

impairments alone (Hettiarachchi et al., 2011). A possible reason for the 

discrepancy between the findings presented here and those of Hettiarachchi 

et al. (2011), may be that the latter study chose to classify pain by laterality 

and as specific loci; for example “left knee”, “right hip”. The absolute numbers 
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reporting pain in each locus are not presented, but the wide confidence 

intervals for some analyses indicate that some combinations of impairments 

included relatively few participants (Hettiarachchi et al., 2011). The present 

study, by contrast, chose to classify pain as “any musculoskeletal pain,” “any 

upper limb pain,” or “any lower limb pain.” This increased the number of 

patients available for analysis in each group, with commensurately narrower 

confidence intervals. However, it is possible that grouping pain loci in this way 

masked clinically significant differences in mobility resulting from pain in 

particular joints. 

4.2.3. Imaging predictor variables 

4.2.3.1. What imaging variables were evaluated? 

A number of imaging variables were considered as possible predictors of 

motor recovery. For ischaemic stroke, these included: the presence of any 

visible abnormality; the presence of visible acute ischaemic change; the 

location of infarcts (cortical, subcortical, or both); the size of an infarct (small, 

medium, or large); the presence of old stroke lesions; the presence of white 

matter lesions; and the presence of atrophy. The ASPECTS score, although 

associated with “death or dependency” outcome (Barber et al., 2000), makes 

no assessment of ischaemic change that lies outside of the MCA territory, or 

of ICH: groups that in total accounted for 69.6% of the DARS sample. For this 

reason, it was not utilised as a predictor here. For ICH, the variables examined 

were: haematoma volume and location; the presence of midline shift, 

intraventricular extension, and hydrocephalus; and the presence of atrophy 

and old stroke lesions. The protocol for image analysis used here was 

developed by Wardlaw et al, and has been used in the IST-3 trial (The IST 

collaborative group, 2015). The predictor variables utilised here for ischaemic 

stroke are therefore those used by Wardlaw et al in an analysis of imaging 

findings from the IST-3 data-set (The IST collaborative group, 2015). This 

presents an opportunity to compare imaging findings between the two data 

sets, before examining why imaging variables failed to make a significant 

contribution to predicting outcome in the present study.  
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4.2.3.2. Comparison of imaging findings in DARS with those of patients 

in the IST-3 trial 

Unlike DARS, the IST-3 trial enrolled only patients with ischaemic stroke, and 

thus resembles most closely the IWS group from which Models 1 and 2 were 

derived. It is to this sub-group of the main DARS sample that imaging findings 

from IST-3 (The IST collaborative group, 2015) will be compared. Firstly, there 

are striking differences in the sizes of ischaemic lesions reported in the two 

samples. In the DARS trial, 47.5% of the IWS group had no visible infarct; this 

was the case in a greater proportion (59%) of the IST-3 sample (The IST 

collaborative group, 2015). When comparing the size of visible infarcts 13.2% 

of the IWS group and only 7% of the IST-3 sample had a small infarct; 29.9% 

of the IWS group and 17% of the IST-3 group had medium infarcts (The IST 

collaborative group, 2015). In DARS, the frequency of “very large” infarcts (as 

defined by Wardlaw et al (The IST collaborative group, 2015)) was small, and 

this category was therefore amalgamated with “large” infarcts to give a total 

prevalence of “large” infarcts of 7.3%. In IST-3, “large” infarcts accounted for 

9% of the total, and “very large” infarcts 8% (The IST collaborative group, 

2015). In short, the IWS group had a greater proportion of small and medium-

sized infarcts, fewer large lesions, and fewer patients with no visible ischaemia 

than the IST-3 sample (The IST collaborative group, 2015). Several 

methodological differences between the two trials may account for these 

findings. Firstly, the DARS protocol utilised the first available imaging that had 

been collected for clinical indications, but did not specify when this should be 

acquired. By contrast, the IST-3 protocol required that imaging be performed 

within 6 hours of stroke onset (The IST collaborative group, 2015). Since early 

signs of early ischaemia on CT are often subtle and difficult to detect (Wardlaw 

and Mielke, 2005) it is possible that, in the IST-3 sample, large or very large 

lesions were more easily detectable from the outset whilst small and medium-

sized infarcts were less obvious and thus more likely to be interpreted as “no 

visible ischaemia”. Aside from radiological considerations the differences in 

size of infarcts could also be accounted for by the differing aims, and thus 

inclusion criteria, of the two studies. DARS randomised patients between five 

and 42 days after stroke (Bhakta et al., 2014). Only patients who were 

expected to survive for >2 months after stroke were recruited (Bhakta et al., 
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2014). By contrast, IST-3 randomised participants within 6 hours of symptom 

onset (Whiteley et al., 2006). The exclusion from DARS of those thought likely 

to die within 2 months, may have biased the DARS sample towards patients 

with more moderate impairment: and hence those with small-to-medium 

infarcts on CT. 

A further interesting and important difference between the two trials is that the 

prevalence of atrophy, previous strokes, and WML were much lower in the 

DARS IWS group than in IST-3. Atrophy was found in 10.5% of DARS 

participants, versus 77% of those randomised in to IST-3; 27.2% of DARS 

patients had evidence of a previous stroke, versus 43% of those in IST-3; and 

43.2% of DARS patients showed evidence of WML, compared with 52% of 

IST-3 patients (The IST collaborative group, 2015). In simple terms, DARS 

participants appeared to have “healthier” brains prior to the index event than 

those randomised in to IST-3. As noted for “infarct size” above, perhaps 

patients with advanced atrophy, multiple old strokes, and WML were excluded 

from the trial: either because they were deemed to have poor rehabilitation 

potential, or because it was thought unlikely that they would survive more than 

two months. However, this observation may also reflect in part differences in 

the age profile of the DARS IWS group, compared with participants enrolled 

in to IST-3. The DARS trial randomised a greater proportion of younger 

patients than IST-3 (8% versus 4% in the 18-50 age group, 16% versus 7% in 

the 51-60 group, 24% versus 12% in the 61-70 group). Peak enrolment for 

DARS was in the 71-80 age group (31% for DARS, versus 24% for IST-3). 

IST-3 by contrast specifically sought to expand the indications for thrombolysis 

beyond accepted parameters, and thus made active attempts to recruit a 

greater proportion of elderly patients in to the trial (Sandercock et al., 2012). 

Hence, 46% of those enrolled were in the age group 81-90 (17% for the DARS 

IWS group), and 7% were aged >90 (2% for DARS IWS group) (The IST 

collaborative group, 2015). The increasing prevalence of atrophy and WMLs 

with age may thus account for the different frequency of these findings in the 

two samples.  
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4.2.3.3. Other studies using imaging variables to predict outcome 

None of the imaging variables considered for inclusion in models 1-6 

contributed to their predictive ability. There is a long history in the stroke 

literature of utilising imaging in outcome prediction: but the most widely-used 

systems for classifying imaging findings were never intended to predict future 

walking ability. For example, the ASPECTS score was developed to decide 

upon eligibility for entry to a thrombolysis trial (Barber et al., 2000), but has 

since been found to predict good versus poor functional outcome (Dzialowski 

et al., 2006, Hill et al., 2003) and the risk of haemorrhagic transformation of 

an infarct following thrombolysis (Hirano et al., 2012). Models to predict 

outcome from ICH have typically focused upon identifying those who might 

benefit from aggressive intervention (Godoy et al., 2006, Ruiz-Sandoval et al., 

2007, Hemphill et al., 2001, Cheung and Zou, 2003, Cho et al., 2008), reliable 

prognostication (Tuhrim et al., 1991, Cheung and Zou, 2003), or stratification 

of patients for entry in to clinical trials (Broderick et al., 1993, Godoy et al., 

2006, Tuhrim et al., 1991, Hemphill et al., 2001, Cheung and Zou, 2003).   

Several studies have evaluated the use of imaging to predict outcome in 

ischaemic stroke. Many were published over ten years ago, and therefore 

utilised imaging technology that is now obsolete (Johnston et al., 2002, 

Wardlaw et al., 1998, Saver JL et al., 1999, Candelise L et al., 1991, Johnston 

et al., 2000). The majority use “death or dependency” as their primary 

outcome: an outcome measure that is too broad to be of genuine use in 

planning a rehabilitation programme. Even using such a general measure of 

outcome, the evidence that neuroimaging variables make a contribution to the 

model beyond that of clinical variables alone is mixed. Whilst some have found 

that the presence of any visible infarct on early imaging is associated with an 

adverse outcome (Wardlaw et al., 1998, Candelise L et al., 1991), more recent 

reports suggest that this variable confers no extra predictive power beyond 

that of clinical variables alone (Reid et al., 2010). Similarly, the volume of an 

infarct on DWI imaging has been shown to be a useful predictor by some 

(Johnston et al., 2000), but not all (Johnston et al., 2009a, Johnston et al., 

2002), studies.  
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4.2.3.4. Implications for the use of imaging in rehabilitation practice 

The role of imaging in predicting specific rehabilitation outcomes therefore 

remains far from certain, and a detailed evaluation of neuroimaging does not 

at present form a routine part of rehabilitation prognostication (Stinear and 

Ward, 2013). Whilst disappointing, the failure of neuroimaging to contribute to 

predicting the functional prognosis of stroke survivors does have important 

implications for how limited resources might be used most efficiently in low- 

and middle-income countries. These nations currently bear the greatest share 

of the global burden of stroke (Johnston et al., 2009b); and yet access to high-

quality acute stroke care is often limited by a combination of cost, lack of 

trained staff, and geographical centralisation of services in major cities that 

are inaccessible to the majority of the population (Mendis, 2010). In the 

absence of acute stroke services, rehabilitation intervention should be the 

mainstay of stroke management. In countries where access to imaging is 

restricted (Mendis, 2010), it is useful to note that a thorough clinical 

assessment of initial impairment, utilising standardised outcome measures, 

may allow prediction of a patient’s prognosis without the need for imaging.  
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Part 4.3 Limitations of this Thesis 

The models described above must be interpreted in the light of several major 

limitations. Crucial amongst these are: the post-hoc nature of the analysis 

presented here; the degree to which DARS participants may be regarded as 

representative of stroke survivors entering rehabilitation programmes in the 

UK or worldwide; the high rate of loss to follow-up in the DARS sample; and 

the nature of the outcome measures used and the manner in which they were 

analysed. All of these limitations will be discussed in the coming section. The 

analysis of scan findings will be considered separately in Part 4.4. Although 

all of these factors may ultimately restrict the use of these models in clinical 

practice, it is perhaps legitimate to regard the findings presented here as an 

exploratory analysis from which hypotheses worthy of future investigation 

might be generated.  

4.3.1. Analytical considerations 

4.3.1.1. Limitations of post-hoc analysis 

The first, and possibly the most crucial, limitation of the analysis presented 

here is that it was conducted post-hoc in a data set originally collected as part 

of a randomised controlled trial of the effects of administering co-careldopa on 

motor recovery from stroke. The dangers of such analyses are well 

recognised. Firstly, the statistical testing of large numbers of predictors 

increases the potential for type 1 errors to occur: i.e. that a false hypothesis is 

accepted as correct. This arises when tests of multiple hypotheses yield 

results that are statistically significant by chance alone (Rothwell, 2005). After 

all: a p-value of <0.05 merely implies that there is a 95% probability that the 

null hypothesis can be rejected. In some cases this can produce results for 

which there is no rational scientific basis: for example, that patients who were 

born under the star signs Libra or Gemini do not benefit from aspirin after 

myocardial infarction (p=0.02) (Collins and MacMahon, 2001). In other cases, 

the consequences for clinical practice can be more profound and even 

dangerous: for example, the spurious finding that men, but not women, derive 

benefit from aspirin in ischaemic stroke (Anonymous, 1978) led to the under-

treatment of women for at least a decade before new evidence emerged to 
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challenge this result (Rothwell, 2005). In order to guard against the possibility 

of type 1 errors a Bonferroni correction may be undertaken, in which the 

significance level that is accepted is adjusted for the number of hypotheses 

under test (Dunn, 1961). Such a correction was not undertaken here, and this 

could have led to variables being included in some models inappropriately. 

For example, when fitting Model 5, the variable “infarct versus ICH” was 

significant at the level p=0.02 in a univariate analysis. It was thus fitted to the 

model, where it achieved statistical significance at a level of p=0.003. And yet, 

as discussed above, there is scanty evidence at best to support a hypothesis 

that this variable is of clinical significance in predicting motor recovery from 

stroke (Bhalla et al., 2013, Meyer et al., 2015, van de Port et al., 2006a). 

Models that contain such variables are likely to be over-fitted to the data set 

in which they were derived, and may thus generalise poorly when applied to 

other groups.  

A second limitation of post-hoc analyses is that any sub-groups that are 

specified are almost always under-powered in relation to the main sample 

(Rothwell, 2005): a situation well-illustrated here by models 3 and 4, which 

were developed in the HWS group. This group consisted of 75 patients, or 

12.6% of the whole DARS sample. On univariate analysis, the small number 

of observed events for some parameters (for example, haemorrhage involving 

the parietal lobe), resulted in wide confidence intervals and unreliable 

estimates of their coefficients and odds ratios. Furthermore, instability was 

also seen in parameters for the final models: most markedly Model 3, in which 

the MoCA score was by turns both a negative and a positive predictor of 

walking ability depending upon the assumptions that were made for missing 

data. Such models may therefore be unreliable, and require formal validation 

before clinical use.    

The derivation of models post hoc from an existing data set also limits the 

variables that can be fitted to the model to those that have already been 

collected. These may not be the ones that best predict the outcome in 

question. This is illustrated well by considering the percentage of variance 

explained by the models derived above. The largest percentage of variance 

explained by any of the models above was seen for Model 4 (33.8%, 
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Nagelkerke R2); estimates for other models were more typically in the range 

of 15-25%. The fact that the majority of the variance in mobility outcome 

remains unexplained by these models indicates that key predictor variables 

have not been included. The models presented here ultimately included a 

combination of impairment in bodily functions (mobility, cognition, and type of 

stroke) and contextual factors (age), although other impairments in brain 

structure (radiological findings) and in bodily function (pain, fatigue, 

depression, OCSP), and contextual factors (gender) were also considered for 

inclusion. It is likely that other impairment-level variables that were not 

collected here might have been significant predictors of mobility. For example, 

initial severity of leg weakness (Sanchez-Blanco et al., 1999, Patel et al., 

2000, Veerbeek et al., 2011, Wandel et al., 2000),  the presence of 

hemianopia (Sanchez-Blanco et al., 1999, Patel et al., 2000), urinary 

incontinence (Wade and Hewer, 1987), impairment in sitting balance (Wade 

and Hewer, 1987, Veerbeek et al., 2011)  or standing balance (Kollen et al., 

2005), and time between stroke and mobility assessment (Preston et al., 

2011, Kwakkel et al., 2006), and activities-level measures such as the BI 

(Kollen et al., 2006, Paolucci et al., 2008)  have all been shown to be 

associated with limitation of walking ability at six months (Kollen et al., 2005, 

Patel et al., 2000, Sanchez-Blanco et al., 1999, Veerbeek et al., 2011, Wade 

and Hewer, 1987, Wandel et al., 2000) or at the time of discharge from 

inpatient rehabilitation (Paolucci et al., 2008). The National Institute of Health 

Stroke Scale (NIHSS) (Brott et al., 1989) is a measure of clinical impairment 

after stroke that is widely used in acute stroke services. It has been shown to 

be predictive of early mortality after ischaemic stroke (Fonarow et al., 2012) 

and ICH (Cheung and Zou, 2003), and of functional outcomes (measured 

using the mRS) (Saver and Altman, 2012). Its relationship to motor outcomes 

is less certain. A small study of 200 patients (114 of whom were non-ambulant 

at enrolment) has shown that a combination of age and NIHSS score predict 

both independent ambulation and recovery of upper limb function at six 

months (Kwah et al., 2013). The DARS trial might have presented an 

opportunity to examine the ability of the NIHSS to predict recovery of walking 

ability in a larger sample; but unfortunately this variable was not collected. 

Furthermore, in ICF terms recovery from stroke represents a complex 



205 
 

interaction between patients’ physical impairments and their 

environmental/societal contexts (Gutenbrunner et al., 2006, The World Health 

Organisation, 2011, Dahl, 2002). Although early physical impairment might be 

important in predicting recovery of mobility, it is likely that factors such as the 

support from a spouse or partner and family, friends, or carers that a patient 

is able to access, their home environment and financial situation, and the 

availability of community resources such as clubs and social groups ultimately 

have a much greater impact upon a person’s quality of life and independence 

(Meijer et al., 2004).  

A final limitation of post-hoc data analysis is that data sets obtained for other 

purposes may contain biases and can reflect poorly the characteristics of the 

population to whom a prognostic model might be applied. This issue will be 

discussed in detail below. 

4.3.1.2. Representativeness of the DARS sample 

The models developed here were developed in a data-set collected as part of 

the DARS trial: to date, the largest-ever trial of co-careldopa-augmented 

stroke rehabilitation. There is, however, a fundamental tension between the 

requirements of a randomised controlled trial and those of prognostic 

modelling. When designing a clinical trial, the imperative is to maximise the 

potential for a true treatment effect to be observed by rigorously controlling for 

possible confounding variables. For this reason, trials typically set rigid 

inclusion/exclusion criteria: for example, all DARS participants were expected 

to survive for more than two months after stroke, and be able to access 

ongoing rehabilitation on discharge (Bhakta et al., 2014). Practical constraints, 

such as the requirement for patients to be able to provide informed consent 

or to be able to swallow medication, further limited the pool of eligible 

participants. As a result the sample that was ultimately obtained may reflect 

poorly the whole population of stroke survivors in the UK or worldwide. This 

poses a problem when interpreting trial results (Rothwell, 2005), since the 

evidence base for an intervention does not encompass the patients or 

situations that are commonly encountered in clinical practice.  
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The lack of generalisability of such data sets also poses a problem for any 

prognostic models derived from them, since such models are most reliable 

when derived in samples whose characteristics closely resemble those of the 

population to which they will ultimately be applied. It is also difficult to control 

retrospectively for biases that might have been introduced at the time of data 

collection. In order to understand how useful (or otherwise) the models 

developed here might be in clinical practice, it is important to understand the 

DARS sample and how closely it might reflect the population of stroke 

survivors as a whole. 

Around 20-30% of patients who sustain a stroke will die within three months 

(Department of Health, 2007); and yet, in the DARS trial, all participants were 

expected to survive for >2 months after recruitment (Bhakta et al., 2014). Just 

as patients with severe life-limiting strokes were excluded, so those with more 

minor impairment were excluded by the protocol requirement that participants 

be unable to walk 10m or more independently at the point of entry in to the 

trial (Bhakta et al., 2014). The distribution of mRS scores at T0 indicates that 

36.1% of participants had a score of 3, and 29.0% had a score of 4. This 

indicates a sample with moderate initial impairment. Enrolment of patients with 

certain other impairments was also impractical. Although around 30% of 

patients experience cognitive impairment after stroke and 33% have aphasia 

(The Stroke Association, 2016), those with the most severe degrees of these 

impairments were excluded from DARS by their inability to give informed 

consent. Similarly, 45% of stroke survivors experience swallowing problems 

(The Stroke Association, 2016). In DARS, patients with dysphagia that did not 

resolve before the end of the recruitment window were excluded, since the 

trial drug could not be crushed for administration by a nasogastric or 

gastrostomy tube.  

Patients from certain ethnic groups (Afro-Caribbean and South Asian) are 

more likely to experience strokes at a younger age than those of Caucasian 

heritage, and are twice as likely to have risk factors for stroke such as diabetes 

or hypertension (The Stroke Association, 2016). Nevertheless, patients from 

ethnic minorities are often under-represented in stroke research trials (Cruz-

Flores et al., 2011). This is a cause for concern. Firstly, research findings or 
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prognostic models derived in samples with a non-representative ethnic mix 

may not be generalisable to patients from minority communities. Secondly, 

failure to collect data from those from certain communities/backgrounds may 

limit the ability of clinicians firstly to detect and secondly to understand and 

mitigate inter-racial differences in rehabilitation outcomes. In DARS, data on 

patients’ ethnic background was not collected: it is therefore not possible to 

ascertain whether patients enrolled fully represent the ethnic diversity of those 

who survive a stroke in the UK. 

In short, the DARS trial recruited a sample with moderate, predominantly 

motor, impairment. Patients with more severe degrees of aphasia, cognitive 

impairment, and dysphagia were not recruited. This sample is therefore not 

representative of the whole population of people who sustain a stroke 

worldwide. However, the population of patients who sustain a stroke each year 

is, perhaps, not an appropriate comparator for the DARS sample. In clinical 

practice, motor rehabilitation is neither appropriate nor necessary for all those 

who survive a stroke. For those who sustain a catastrophic stroke, palliative 

care or planning for discharge to a nursing home might be most appropriate. 

Conversely, those who sustain a minor stroke with little motor deficit and 

minimal loss of function will still require rigorous investigation and control of 

risk factors, but might recover with early supported discharge, without the 

need for a longer period of inpatient rehabilitation. Hence, although the DARS 

sample does not reflect the full spectrum of post-stroke impairment, it may 

more accurately reflect those who enter rehabilitation programmes in the UK. 

This is an important distinction, since the models developed here will 

ultimately be applied to patients on rehabilitation units: i.e., who are judged to 

have the potential to benefit from a period of predominantly physical inpatient 

rehabilitation. 

In DARS, the mean age at randomisation to the trial was 68 years (SD 13.23 

years). In a survey of four stroke rehabilitation services in Europe, the mean 

age of patients on admission to the UK centre was 72.0 (SD 9.5 years) (De 

Wit et al., 2007). In DARS, 85.7% of patients had an ischaemic stroke and 

14.3% of patients had an ICH. Survey data from other UK rehabilitation units 

indicate that ischaemic stroke accounts for 87% of admissions, and ICH 11% 
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(De Wit et al., 2007). At the time of enrolment, 13.8% of DARS participants 

had a mRS score of ≤2, indicating no to moderate disability; this is slightly 

greater than data from other UK centres, in which 7-11% of patients had a 

mRS score of ≤2 (Putman et al.). In DARS, all patients were unable to walk 

10m or more at baseline, with a mean RMI score of 2.25 (SD 1.791). The RMA 

Leg and Trunk subscale score for patients admitted to rehabilitation 

programmes in other UK centres is 4, and the mean RMA gross function 

subscale score was 2 (De Wit et al., 2007): these values indicate respectively 

an ability to transfer from sitting to standing (equivalent to an RMI score of 4-

5) and an ability to transfer from lying to sitting on the side of the bed 

(equivalent to an RMI score of 2). The baseline level of mobility impairment 

seen in DARS is therefore comparable to that seen at entry in to inpatient 

rehabilitation programmes in other UK centres.  

Although the baseline characteristics of the DARS sample do reflect those of 

samples drawn from other rehabilitation units, the proportion of DARS patients 

who regained independent mobility at T1 and T2 is somewhat lower than might 

be expected. In DARS, 42.5% of patients were walking independently at T1 

and 52.4% at T2; estimates from other studies indicate that 60%-80% of 

patients are independently mobile at six months post stroke (T2 in the DARS 

trial) (Kwakkel and Kollen, 2013). However, such estimates may be 

confounded by inclusion of patients who were ambulant at the time of 

enrolment (Preston et al., 2011). The DARS trial enrolled only patients who 

were unable to walk 10m or more at baseline (Bhakta et al., 2014). Systematic 

reviews which consider only patients who were non-ambulant at baseline have 

estimated the probability of walking independently as 0.39-0.60 at three 

months, and 0.65-0.69 at six months, depending upon whether the patient 

was managed in a rehabilitation unit or an acute stroke (Preston et al., 2011). 

The distinction between “acute” and “rehabilitation” units this Australian study 

makes does not reflect UK practice, in which patients typically receive both 

acute care and early rehabilitation on an acute stroke unit. Nevertheless, 

these estimates, derived in patients who were non-ambulant initially, indicate 

that the proportion of DARS patients who were able to walk independently at 

T2 is lower than one might expect. One possible reason for this discrepancy 

is the comparatively high proportion of DARS patients lost to follow-up at T2.  
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4.3.1.3. Loss to follow-up in the DARS sample 

DARS was the first trial of pharmacologically-augmented rehabilitation in 

which extended follow-up (up to one year) was attempted. However, the 

proportion of patients lost to follow-up at all end-points was higher than 

anticipated. By T1, 61 patients (10.3%) were lost to follow-up and a further 

eight did not return a SR-RMI score. Hence, the primary outcome measure 

was unavailable for 69 patients (11.6% of the total sample). By T2, the 

cumulative loss to follow-up was 101 patients (17.0%), and a further five did 

not return usable six-month SR-RMI scores. The total number for whom a SR-

RMI was not available at T2 was therefore 106 patients (17.9% of the total 

sample enrolled). The primary reasons cited for loss to follow-up at T2 were: 

withdrawal from the trial (n=45); death of a patient (n=20); inability of the trial 

team to contact the patient (n=15); and the patient moving to an area no longer 

covered by the trial team (n=8). 

The percentage of patients lost to follow-up in DARS is higher than in 

comparable rehabilitation trials. The FLAME trial (Fluoxetine for motor 

recovery after acute ischaemic stroke) (Chollet et al., 2011) examined the 

impact of fluoxetine upon motor recovery from stroke. In total 118 patients 

were randomised across both arms, with 113 remaining in follow-up by 90 

days. Only five patients (4.2%) were lost to follow-up (Chollet et al., 2011).  A 

second large multi-centre rehabilitation trial of very early mobilisation after 

stroke (AVERT) randomised 2104 participants across both arms, to either 

early mobilisation or usual care (Bernhardt et al., 2015). At three months, 181 

(8.6%) were lost to follow-up (Bernhardt et al., 2015). The mortality rates for 

DARS participants (7 patients (1.1%) at T1 and 20 patients (3.3%) at T2) are 

however lower than that seen in AVERT (160 patients, 7.6%, at 3 months) 

(Bernhardt et al., 2015). 

The DARS intervention was complex (Craig et al., 2008), in that for each 

participant its successful delivery depended upon an interaction between a 

number of individuals, spanning several professional disciplines and 

sometimes two or more services. It is therefore perhaps remarkable that the 

intervention was delivered successfully in the majority of cases. However, the 

impact of such high loss rates on the models presented here cannot be 



210 
 

ignored. In particular, the instability in model parameters that was seen when 

they were fitted under alternative assumptions for missing data has been 

highlighted above. 

4.3.1.4. Outcome measures used 

As has been alluded to above, the predictor variables utilised in these models 

were analysed under an assumption that they provide interval-level 

measurement: i.e. that a one-point change in their score equates to precisely 

the same magnitude of clinical change no matter where a patient is located 

on the metric. However, as illustrated in Chapter 2 using the example of the 

RMI, this assumption is illogical. This poses a particular problem for 

regression analysis. When the variables used here were fitted to the models, 

the output quoted was the change in odds of walking (versus not walking) for 

each one-point change in a covariate (Stoltzfus, 2011). However, if one cannot 

be sure that a one-point change in score measured in different patients 

represents the same magnitude of clinical change, then the face validity of 

such findings is called into question. Nor is it legitimate to perform 

mathematical operations on ordinal scales, such as the calculation of mean 

values and standard deviations. 

The fundamental difference between ordinal and interval-level measurement 

is perhaps not as widely appreciated as it should be. And yet, the 

consequences of making an unfounded assumption that an outcome measure 

provides interval-level measurement are profound for clinical practice, 

commissioning of rehabilitation services, and research. This is well illustrated 

in another field of rehabilitation practice: the management of chronic pain 

(Kersten et al., 2014). The Pain Visual Analogue Scale (VAS) is a widely-used 

method for documenting a patient’s experience of pain (Kersten et al., 2014). 

It consists of a line ten centimetres long, with each end of the scale typically 

anchored with statements such as “no pain” or “worst pain imaginable” 

(Kersten et al., 2014). Patients are invited to indicate the severity of their pain 

by placing a mark along the line. Pain severity is typically quoted as a score 

out of 100, which represents the distance along the scale in millimetres that 

the mark is positioned (Kersten et al., 2014). Since scores are quoted as a 

distance in millimetres, they are often assumed to have interval-level 
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properties and are therefore interpreted as such: for example in the calculation 

of “change” scores (the difference in VAS scores taken at two time points) 

(Kersten et al., 2014). The assumption that the pain VAS provides interval-

level measurement has recently been challenged. In particular, patients report 

difficulty in conceptualising their pain as a point on a linear continuum, and 

thus responses tend to be “clustered” rather than spread evenly along the 

length of the metric (Kersten et al., 2014). An analysis by Kersten et al. (2014) 

has recently confirmed that the pain VAS actually behaves as an ordinal scale. 

This fundamentally undermines the assumption that parametric statistics can 

be applied to this measure.  

This is more than just an arcane statistical argument. When results from two 

randomised controlled trials that had utilised the VAS as an outcome measure 

were re-analysed, the change in VAS scores quoted in the original papers 

were found to greatly over-estimate the true change observed when the VAS 

was first converted to an interval-level measure (Kersten et al., 2014). The 

impact of these findings cannot be over-stated. Firstly, a change in the VAS 

score of equal magnitude, but at different locations on the scale,  may have 

fundamentally different clinical implications (Kersten et al., 2012). Secondly, 

change scores calculated from the VAS may under- or over-estimate true 

clinical change (Kersten et al., 2012). Thirdly, if change in VAS scores do not 

reliably measure true clinical change, then the use of this measure to inform 

decisions about the commissioning of services is questionable (Kersten et al., 

2012). Fourthly, if estimates of clinical change derived from the VAS are 

unreliable, then utilising this measure in sample size calculations may result 

in under- or over-powered trials from which inappropriate conclusions may be 

drawn (Kersten et al., 2012).  

Caution must therefore be exercised when interpreting the output of Models 

1-6. Although the direction and magnitude of effects for each of the covariates 

fitted to the model may be indicative, they are likely to under- or over-estimate 

the magnitude of true clinical change. If models are to be derived that reliably 

predict true clinical change after stroke, then there is a pressing need for 

robust interval-level scales to measure both key rehabilitation outcomes and 

predictor variables. The means by which this might be achieved will be 
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discussed below in Section 5. First however, the limitations of the analysis of 

brain scans that is presented here will be considered. 

4.3.2. Imaging considerations 

This study sought to examine whether the characteristics of the stroke, as 

seen on imaging, contributed to the ability of models to predict motor recovery. 

Although centres of excellence in imaging research exist (notably the Brain 

Research Imaging Centre (BRIC) in Edinburgh: www.sbirc.ed.ac.uk), at the 

time the DARS protocol was under development there was surprisingly little 

in the published literature to guide non-radiologists who wished to include a 

secondary analysis of brain imaging in a trial. The Acute Stroke Imaging 

Research Roadmap (Wintermark et al., 2008), published in 2013, provides a 

helpful guide to some of the central methodological considerations of robust 

radiological research and is strongly commended to interested readers. 

However, it is clear in hindsight that a failure to address some basic 

considerations when writing the protocol for imaging analysis subsequently 

led to unanticipated difficulties. The following paragraphs will reflect upon 

some of the difficulties encountered in this work, and highlight its 

methodological flaws and their impact upon the models presented here. 

Although it may also serve as a useful guide to non-experts, those who wish 

to include an analysis of imaging in a trial are strongly advised to consult 

experienced academic neuroradiologists from the earliest stages of protocol 

design. 

4.3.2.1. Proportion of scans not available for analysis 

A delay in obtaining ethical approval for the centralised review of scans 

resulted in a failure to collect imaging from the first 24 participants randomised 

in to the trial. A further 36 scans could not be obtained for other reasons, and 

20 were excluded since only MRI imaging and not CT was sent. Hence, 80 

participants (13.5% of the DARS sample) did not have imaging available for 

analysis. Formal testing for differences in the clinical characteristics of those 

for whom imaging was and was not obtained revealed slightly higher mean 

SR-RMI scores at T1 and T2 in those for whom imaging was not available; 

however, there was no evidence of a statistically-significant difference in the 
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proportions of the two groups who were walking independently at eight weeks 

and six months. Nor were there any other statistically-significant differences 

in the characteristics of the two groups.  

4.3.2.2. The use of routinely-collected as opposed to protocol-specified 

imaging 

Perhaps the most fundamental decision to make when planning an analysis 

of imaging is whether to utilise scans acquired routinely for clinical purposes, 

or to stipulate the acquisition of additional imaging beyond that which would 

normally be considered to be clinically indicated. This will of course depend 

upon the research question (Wintermark et al., 2008). For example, MRI 

sequences that are known to have a greater sensitivity and specificity for white 

matter lesions and lacunes than CT (O'Brien et al., 2003). A study examining 

the prevalence of these lesions, or changes in them over time, would thus 

specify that MRI imaging be used. However, requesting additional imaging 

exclusively for trial purposes inevitably incurs additional costs, which must be 

included in any grant proposal. As a guide, in 2015-16 NHS England set a 

funding tariff of £77 for a non-contrast CT of one body area in an adult patient, 

with an additional £20 for reporting; the tariff for a non-contrast MRI was 

higher, at £123 plus £22 for reporting (NHS England, 2015). The costs of 

acquiring and reporting more complex sequences (such as angiography) are 

commensurately greater. The cost of radiographers’ time and patient transport 

or travelling expenses to and from the scanning facility must also be 

accounted for.  

In DARS, analysis was restricted to the first available CT scan acquired for 

routine clinical purposes. This pragmatic approach has several advantages: 

the costs of acquiring imaging specifically for trial purposes are mitigated, and 

no additional radiation exposure to patients is required. Furthermore, if the 

clinical utility of a model depends in part upon the predictor variables it utilises 

being readily collectable in practice (Altman and Royston, 2000), then it is 

advantageous to construct a model using scans that are already collected 

routinely. However there are also some clear disadvantages to this approach, 

including an inability to guarantee that the scanners on which images are 
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taken are appropriately calibrated, and difficulty in standardising the time at 

which imaging is acquired in relation to the onset of stroke symptoms.  

4.3.2.3. The timing of imaging acquisition 

Failing to standardise the time of acquisition of scans has crucial implications 

for the reliability of reporting, since any scan is only ever a static 

representation of what is a highly dynamic process. For example, early 

ischaemic changes on CT are subtle (Grotta et al., 1999, Wardlaw and Mielke, 

2005) and may easily be overlooked (Wardlaw et al., 2007). Re-scanning the 

same patient some weeks later is likely to reveal a mature area of hypodensity 

typical of an established infarct. Scans acquired within a few hours of stroke 

onset may thus under-estimate the true structural impairment. 

Just as it is difficult to predict the final extent of brain injury from an initial scan, 

so it may also be difficult to determine the nature of an initial lesion when 

presented with a scan taken some time after an event. For example, ICH 

initially returns a hyperdense appearance on CT, but later become hypodense 

and may closely resemble an old infarct (Macellari et al., 2014, Balami and 

Buchan, 2012). Similarly, small subcortical infarcts or haemorrhages may give 

rise to a range of final appearances including: no visible abnormality; a lacune; 

or white matter lesions (Wardlaw et al., 2013b). In the absence of previous 

imaging (for example, showing an intracerebral haemorrhage) or a 

corroborating clinical history (for example, suggesting a lacunar stroke 

syndrome), clinical judgement must be used to come to a view on the likely 

clinical significance of scan findings. In DARS, the fact that the timing of 

imaging in relation to stroke onset was not standardised raises the possibility 

that patients with very similar patterns of clinical impairment could have 

displayed markedly different scan findings, depending upon the timing of the 

imaging. Standardising the timing of imaging may have reduced some of the 

heterogeneity in this analysis: for example, the true extent of an infarct may 

have been more easily appreciated had delayed imaging been specified. 

4.3.2.4. Expert review of scans 

A key requirement for any trial data is that they be collected in a robust and 

reproducible manner (Wintermark et al., 2008). If scans are to be used to 
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determine eligibility for participation in a trial, then there may be insufficient 

time to obtain an expert centralised review by a consultant neuroradiologist. 

In such cases it may be acceptable to rely upon the interpretation of local 

stroke physicians, provided that adequate training is provided (Barber et al., 

2000). The use of a standardised template may help to improve the reliability 

of non-expert reports, by drawing the reviewer’s attention to each relevant 

area in turn (Wardlaw et al., 2007, Wardlaw et al., 2010). 

If imaging is to be used as a variable in a subsequent analysis, or if advanced 

imaging techniques are to be used, then reporting by an experienced 

consultant neuroradiologist is advisable. Centralised review of imaging is 

recommended, with radiologists blinded to clinical information and treatment 

allocation (Wintermark et al., 2008). In DARS, the initial grant proposal was 

for a Research Fellow to code scan findings using written reports from local 

radiologists. This procedure was later modified to specify centralised review 

of imaging, since it was recognised that written reports alone were unlikely to 

be sufficiently detailed to allow accurate coding of findings. However, the 

additional costs of radiology time had not been included in the original grant 

application. It was therefore necessary to divert funds from elsewhere in the 

grant to support this work. As a result, there was sufficient funding to allow 

scans to be reviewed by JP plus only one consultant neuroradiologist. 

Consensus reporting by a panel of experts, with formal arbitration 

mechanisms to settle disagreements between them, might have been more 

robust. The requirement for centralised reporting of scans also necessitated 

the establishment of secure procedures for the despatch of scans to CTRU. 

4.3.2.5. Data management and quality control 

Any systems put in place for receiving images at a centralised reporting facility 

must be secure, and subject to robust quality control mechanisms 

(Wintermark et al., 2008). The option of establishing a secure data link 

between recruiting centres and LTHT was considered, but was deemed 

impractical given the time taken to approve and establish such links with such 

a large number of sites. However, the despatch of scans using electronic 

storage media proved difficult to standardise, and presented several 

difficulties.  
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Firstly, a number of sites would only approve transfer of data in encrypted form 

despite this not being a protocol requirement. Obtaining passwords from sites 

therefore presented an additional administrative burden. However, the more 

crucial consideration was that the trial team were unable to implement robust 

verification procedures for images sent in anonymised form, and were 

therefore wholly reliant upon quality control procedures at local site to ensure 

that the correct imaging for the correct patients was downloaded. This had a 

number of important consequences. Once images had been redacted of 

patient-identifiable information, they were identifiable only by the participant’s 

trial identification number. There was no way for CTRU to verify that the 

images had been correctly identified at source. Indeed, a number of cases 

were noted in which obviously incorrect imaging had been sent. In one case, 

the same sequence of images was for the same patient was copied to two 

different CDs, each labelled with the trial identification number of a different 

participant: the error was noticed only because a distinctive necklace the 

patient was wearing appeared in the scout image. In a second case a CT of 

the thorax, performed on an earlier occasion for an indication unrelated to the 

patient’s presenting stroke, was sent.  

In patients who had had previous neuroimaging studies, the onus was upon 

the recruiting centre to ensure that only imaging relating to the index stroke 

(the event for which they were randomised in to the DARS trial) was sent. 

However, when the dates of image acquisition (as recorded on the images 

themselves) were compared to the dates of the index stroke, it was noted that 

in 32 participants the date of imaging pre-dated the index stroke. In 24 cases, 

the recorded scan date preceded the stroke by more than 7 days, with the 

longest recorded interval being 395 days pre-stroke. At the other extreme, 19 

patients had imaging that was apparently conducted >14 days after the index 

stroke, with the longest time interval being 163 days. The reasons for these 

discrepancies were impossible to determine. It is possible that, in some cases, 

the “date of stroke” entered on to the CRF is incorrectly stated, and in fact 

represents the date on which the patient was transferred from another 

hospital. It is equally possible that the “first available” imaging may not 

correspond with the “first imaging performed”: in cases where patients were 

transferred from a regional “hyperacute” stroke unit and subsequently 
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recruited on a local “acute” stroke unit, imaging performed at the hyperacute 

centre may not have been made available at the time of transfer. Finally, it is 

possible that recruiting centres interpreted the instructions to anonymise the 

images as requiring that all clinical information be redacted from the scans, 

and that a false date of image acquisition was substituted. Ultimately, this 

situation illustrates the need for robust quality control procedures in 

despatching and receiving imaging. 

4.3.2.6. Storage and archiving of images 

All data collected as part of a clinical trial must be archived securely. The 

archiving of scan images presented a particular challenge. Although LTHT 

has a secure Picture Archiving and Communications System, storage 

capacity for this server was limited and the cost of administrator time to upload 

images to it could not be met. The trial team were thus obliged to archive 

images on CDs: a format which may degrade over time. It was therefore 

agreed that completed radiology CRFs would also be archived as source data, 

to ensure that a contemporaneous paper-based record of scan findings was 

retained. However, if archiving of original images is required then the costs of 

doing so and of preserving the data in a usable format must be included in the 

initial grant application. 

Part 4.4 Directions for future work. 

4.4.1. The need for prognostic modelling in stroke 

The need for robust models to predict specific rehabilitation outcomes after 

stroke has, arguably, never been greater. In recent years, many major 

advances have been made in acute stroke care. In some cases, such as the 

introduction of thrombolysis for acute ischaemic stroke, the development of 

simple and reliable prognostic models has been crucial in differentiating those 

patients who might benefit from the intervention from those at risk of 

sustaining harm as a result of treatment (Barber et al., 2000).  

Although the benefits of acute interventions in stroke care are evaluated 

largely in terms of preventing death or dependency (Stroke Unit Trialists 

Collaboration, 2013, Early Supported Discharge Trialists, 2009, Wardlaw et 
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al., 2014b), such broad outcomes provide very little useful information about 

specific functional outcomes such as recovery of walking (Preston et al., 2011, 

Kwakkel and Kollen, 2013). And yet these are precisely the outcomes that are 

of greatest use when planning a rehabilitation intervention. 

4.4.1.1. The possible uses of prognostic models in clinical practice 

The development of models to predict specific rehabilitation outcomes may be 

useful in several respects. Firstly, a model that is able to predict reliably who 

might walk again could allow more accurate prognostic information to be 

provided to patients and their families (Craig et al., 2011). This could in turn 

facilitate goal-setting and discharge planning (Kwakkel and Kollen, 2013). 

However, in order to be truly useful in this setting any such model would need 

to offer predictive accuracy superior to that of the clinical judgement of a 

skilled multi-disciplinary team (Kwakkel et al., 2000), include predictor 

variables that can easily be collected (Altman and Royston, 2000), and have 

a scoring system that is simple to apply (Moons et al., 2015).  

A second important role for prognostic modelling in rehabilitation practice 

might be in tailoring the intervention that is delivered to the needs of individual 

patients. This might sound like an unusual, even counter-intuitive, point to 

assert: after all, rehabilitation by its nature consists of a “personalised” 

package of interventions aimed at achieving goals that are specific to an 

individual (Gutenbrunner et al., 2006). And yet, considerable uncertainty 

remains about what rehabilitation strategies are most appropriate for 

individual patients. A good example of such a controversy in stroke care is in 

deciding the intensity of rehabilitation that should be offered. Although more 

intensive rehabilitation is associated with shorter lengths of stay in hospital 

(Slade et al., 2002), recent evidence from a major randomised controlled trial 

has raised concerns that offering very intensive mobilisation within the first 48 

hours of stroke actually results in a reduction in the odds of a favourable 

outcome at three months, and no net benefit in terms of mobility outcome 

(Bernhardt et al., 2015). This finding is surprising, and merits further 

consideration. Since the trial enrolled participants with a range of initial clinical 

impairment from mild to severe (Bernhardt et al., 2015), it is plausible that 

those with mild initial impairment may in fact benefit from early intensive 
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mobilisation, whilst those with more severe impairment may be harmed by 

such an approach. A model to predict who might recover the ability to walk 

again could thus allow the intensity of rehabilitation that is offered to be 

tailored to the patient’s prior probability of regaining independent mobility. 

Thus, those with mild initial impairment and a high prior probability of walking 

again could be targeted for early intensive rehabilitation; those with an 

intermediate probability of walking and moderate impairment may still benefit 

from active rehabilitation, but at a lesser intensity; those with a low probability 

of walking (and the most profound impairment) may benefit from a focus upon 

compensatory rehabilitation strategies, with the aim of maximising 

participation by modification of contextual factors. An ability to predict future 

recovery reliably may thus allow the delivery of rehabilitation interventions to 

be tailored to a patient’s prior probability of attaining a specified level of 

functioning  (Steyerberg et al., 2013, Dorresteijn et al., 2011, Kwakkel and 

Kollen, 2013) thereby allowing resources to be used more efficiently 

(Steyerberg et al., 2013). 

4.4.1.2. Possible uses of prognostic modelling in rehabilitation 

research 

Perhaps the greatest potential of prognostic modelling in rehabilitation lies not 

in clinical practice, but in research. A number of promising novel rehabilitation 

strategies are now emerging, such as the use of robotic interventions to 

augment the intensity and frequency of task-specific practice that can be 

delivered by therapists (Kwakkel et al., 2008, Sivan et al., 2014), the use of 

electrical stimulation of peripheral nerves to enhance plasticity in the central 

nervous system (Dimyan and Cohen, 2011, O'Connor et al., 2014), or direct 

stimulation of the motor cortex either by magnets or by implanted electrodes 

(Dimyan and Cohen, 2011). The benefits of these strategies remain as yet 

unproven, and large-scale trials will ultimately be necessary to establish 

whether or not they have a place in clinical practice. Having models to predict 

rehabilitation outcomes such as walking ability might allow patients to be 

selected for these trials based on their prior probability of benefitting from the 

intervention. Prognostic modelling may also play a role in the design of future 

stroke research trials.  
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As was alluded to in Chapter 1, randomised controlled trials enrol a 

heterogeneous sample of participants (Dorresteijn et al., 2011). Inherent in 

the interpretation of their results are the assumptions that each participant has 

an equal probability of benefitting from the intervention, and that the 

magnitude of any effect size observed is, on average, uniform across the 

entire sample (Dorresteijn et al., 2011). End-points are often dichotomised in 

to favourable versus unfavourable outcomes, and are applied to the trial 

population as a whole. Doing so assumes that the population to which the 

intervention is applied is homogeneous, and that the direction and magnitude 

of any treatment effect will be roughly the same for the whole group. And yet, 

sub-groups within a sample may vary considerably: both in their baseline 

clinical characteristics and in their response to the intervention (Dorresteijn et 

al., 2011). Presenting results as an “average” effect size may therefore fail to 

account for clinically important differences in trial participants (Young et al., 

2005). For example, those with profound disability may consider even a 

modest improvement to be a “good” outcome, whereas those with minor 

impairment may be dissatisfied with anything less than complete recovery 

(Young et al., 2005). Furthermore, the existence of significant heterogeneity 

in a trial sample may compromise statistical power to detect the primary 

outcome (Makin et al., 2013). Sample size calculations are generally based 

upon an assumption about the baseline probability of patients developing the 

outcome of interest: if a sample contains a significant proportion of patients at 

one extreme of the prognostic spectrum (very good or very poor), then the 

statistical power to detect a treatment effect will be attenuated (Makin et al., 

2013). Perhaps a first step towards improving the design of future 

rehabilitation trials would be to account for the heterogeneity of trial 

participants (Dorresteijn et al., 2011). Prognostic models to predict key 

outcomes of interest (Steyerberg et al., 2013) such as mobility may be used 

to recruit in to trials only those patients who stand the best chance of 

benefitting from an intervention (Makin et al., 2013). Doing so may reduce the 

sample size required, but at the expense of decreased recruitment and 

prolongation of the study (Makin et al., 2013). An alternative approach would 

be to pre-specify a range of possible trial outcomes, and assign patients 

differential end-points dependent upon their prior probability of achieving a 
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specified level of function (Makin et al., 2013). This approach, though not 

presently used widely in stroke rehabilitation, has the potential to reduce the 

sample sizes required whilst not impacting upon recruitment (Makin et al., 

2013). It is, of course, reliant upon the development of reliable prognostic 

models.  

Models to predict outcomes such as walking may thus have a considerable 

impact upon both stroke rehabilitation in clinical practice, and rehabilitation 

research. However, this potential will only be realised if the models developed 

are able to reliably predict the outcome of interest with a high sensitivity and 

specificity. A striking, and perhaps important, finding of this study is that a 

combination of simple clinical measures of impairment that one might expect 

to find in use on UK stroke units actually explained comparatively little 

variance in outcome, and correctly classified only marginally more patients as 

walking/not walking at T1 and T2 than prior probability alone. This raises two 

important questions. Firstly: what might the implications be for the way in 

which teams arrive at a rehabilitation prognosis? Secondly: what variables 

might prove to be better predictors of motor outcome? 

4.4.1.3. Is statistical modelling any more reliable than “team opinion” in 

predicting recovery? 

As discussed above, if a model is to be useful in clinical practice then it must 

offer a more reliable prediction of outcome than the opinion of an experienced 

multi-disciplinary team. It has been suggested previously that models to 

predict walking ability after stroke offer no greater predictive value than a 

therapist’s assessment (Kwakkel et al., 2000). And yet, the same study 

revealed that physiotherapists accurately predicted a patient’s future walking 

ability only 48% of the time (Kwakkel et al., 2000). Around 26% of predictions 

made at five weeks about a patient’s walking ability at six months were over-

optimistic, whilst 26% underestimated the final level of mobility achieved 

(Kwakkel et al., 2000). Recovery of arm function was more reliably predicted, 

with 63.6% of physiotherapists and 59.1% of occupational therapists 

accurately predicting six-month prognosis on the basis of an assessment at 

five weeks (Kwakkel et al., 2000). However, this apparent improvement in 

reliability relative to prediction of walking ability is most likely due to the well-
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recognised tendency for arm function to recover incompletely (Kwakkel et al., 

2000). It therefore appears that neither existing prognostic models nor clinical 

judgement alone are reliable predictors of future prognosis. One possible 

explanation for this finding is that both prognostic models and a professional’s 

clinical judgement depend, either explicitly or implicitly, upon a combination of 

measures of physical impairment that themselves explain comparatively little 

variance in outcome. There is therefore a need to understand better the basis 

upon which a team’s prognostic decisions are made and how reliable those 

decisions might be in predicting key outcomes.  

There is also a need to identify variables that might explain a greater 

proportion of variance in outcome. It is possible that measures focusing upon 

very specific impairments such as balance (van de Port et al., 2006a) or of 

executive function might yield more accurate predictions than scales that 

measure the broader constructs of “mobility” and “cognition”. However, the 

identification of constructs that might be predictive of key rehabilitation 

outcomes is merely a first step towards model development. Perhaps a more 

fundamental and urgent imperative is for robust scales with which to measure 

these constructs. 

4.4.1.4. What is the future role of brain imaging in predicting 

rehabilitation outcomes? 

This study aimed to evaluate whether variables derived from early CT imaging 

made a contribution to models predicting walking ability beyond that achieved 

by measures of clinical impairment alone. The choice of CT imaging was a 

pragmatic one, since this modality is already routinely used to guide a patient’s 

acute management, is cheap and quick to acquire in comparison with MRI 

modalities, and has fewer contra-indications than MRI imaging. However, CT 

is an imperfect surrogate for a patient’s functional impairment (Kobayashi et 

al., 2009). Nor does structural imaging provide useful information about how 

different brain structures interact to shape recovery (Dayan and Cohen, 2011). 

It is therefore perhaps unsurprising that CT findings do not contribute to the 

prediction of a specific functional outcome (recovery of walking ability). 
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Functional MRI provides a dynamic picture of brain metabolic activity that is 

assumed to reflect activation of brain structures (Arthurs and Boniface, 2002). 

This may offer some insight in to the biological basis of recovery from stroke, 

by elucidating how network interactions between spatially-distributed brain 

structures facilitate learning. However, although much work has already been 

done to understand the processes that underpin motor learning (Doyon et al., 

2009, Hikosaka et al., 2002, Penhune and Steele, 2012), theoretical models 

developed in healthy participants cannot be assumed to translate directly to 

those recovering from stroke. At present, functional imaging remains largely 

a research tool, and is not performed routinely in clinical practice. 

If this modality is to prove useful in predicting rehabilitation outcomes, then 

the key questions for research are perhaps: what brain structures interact to 

facilitate motor learning in healthy individuals; how do these processes differ 

in those with structural brain injury as a consequence of stroke; do specific 

patterns of disruption of network interactions between brain structures 

correlate with limitation of motor recovery; does functional MRI imaging allow 

a more accurate prediction of prognosis to be made than would be obtained 

using clinical judgement alone or models based on robust measures of clinical 

impairment; and what are the costs versus benefits of using this technique 

more widely in clinical practice.     

4.4.2. The need for robust outcome measurement in stroke 

research 

4.4.2.1. Why is outcome measurement important? 

The need for robust outcome measurement in stroke is urgent and pressing: 

both for research, prognostic modelling, and for clinical practice. 

Rehabilitation interventions are, by their nature, complex (Craig et al., 2008): 

they depend upon a team of professionals working together to restore physical 

function and modify a patient’s social and environmental context, with the 

overall aim of mitigating disability (a construct defined in terms of limitation of 

activities and restriction of participation) (Gutenbrunner et al., 2006). 

However, the efficacy of particular elements of a rehabilitation programme 

may be hard to discern. Randomised controlled trials, long regarded as the 
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gold standard of scientific evidence, are by their nature a reductive process 

that seek to isolate and examine one component part of a wider package of 

measures (Gutenbrunner et al., 2006). Any genuine effect of such 

interventions may be small, and difficult to differentiate from that of the wider 

rehabilitation programme. The ability to detect reliably small changes in 

function is therefore crucial to evaluating novel rehabilitation interventions. 

The development of new rehabilitation interventions will also depend upon an 

understanding of how different physical impairments may interact to influence 

recovery. Utilising modelling techniques to explore the process of recovery 

may allow the identification of key variables that strongly influence outcome. 

This might, in turn, provide information that will be of value in planning a 

rehabilitation programme, and also in the development of new interventions 

that specifically target key components of recovery. Models that are 

developed in order to predict prognosis may not only enable more reliable 

information to be provided to patients and families, but could also allow the 

stratification of patients in to research trials or the differential selection of end-

points for trials based upon a patient’s prior probability of attaining a specified 

level of functioning. However, the interpretation of such models depends upon 

knowing the magnitude of true clinical change that such models are able to 

predict.     

In clinical practice, the ability to detect true clinical change is important not 

only in planning a package of rehabilitation interventions for individual 

patients, but also for the commissioning of services. Rehabilitation is known 

to be effective in reducing physical dependency after stroke (O'Connor et al., 

2011). However, demonstrating the cost-effectiveness of such services 

depends upon the ability to detect change in a patient’s level of functioning. 

Robust outcome measurement is, once again, critical for this process. For 

example, some scales such as the Barthel Index are known to be insensitive 

to true clinical change in patients with the highest and lowest scores (Quinn 

et al., 2011). Such “floor” and “ceiling” effects mean that, in the most- and 

least-disabled patients, it is possible for clinically-significant changes in 

performance to occur despite minimal or no change on the BI score (Quinn et 

al., 2011). The ability to evaluate the success of a rehabilitation intervention, 
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and its cost-effectiveness, may therefore be compromised if outcome 

measures are used that do not appropriately target the population in question. 

The ability to detect small changes in function, both in rehabilitation trials and 

in clinical practice, depends upon the use of sensitive, psychometrically-

robust outcome measures that are appropriately applied, analysed, and 

reported. Here, unfortunately, much work remains to be done.  

4.4.2.2. The current status of outcome measurement in stroke research 

A bewildering array of outcome measures exists, measuring a wide variety of 

constructs. A recent systematic review found 47 different outcome measures 

used in 126 stroke trials (Quinn et al., 2009b). The numbers of measures in 

use for specific impairments (upper limb function, aphasia, and cognition) is 

larger still (Ali et al., 2013). Despite several calls for standardisation of 

outcome measurement (Langhorne et al., 2009, Lees et al., 2012), no 

consensus has been reached on which measures are the most appropriate 

and standards for a minimum data-set for rehabilitation trials have not been 

agreed (Lees et al., 2012, Ali et al., 2013). In 2012 the European Stroke 

Outcomes Working Group (Lees et al., 2012) suggested that the mRS be 

adopted as the primary outcome measure in stroke trials. Unfortunately this 

measure is far too broad in scope to be of use in rehabilitation trials. The wide 

variety of outcome measures used in stroke trials greatly impedes meta-

analysis and comparison of trial data (Ali et al., 2013). Worse still, the scales 

themselves are often arbitrarily changed with scant regard for the impact of 

those changes on their properties.  

A good example of the confusion that surrounds outcome measurement in 

stroke is the Barthel Index (BI). This is a measure of global physical 

functioning, covering a number of activities. Since its first publication in 1965 

(Mahoney and Barthel, 1965), it has become one of the most widely-used 

outcome measures in clinical practice (Quinn et al., 2011). Although designed 

neither for clinical trials nor specifically for stroke, its adaption in to stroke 

research has been enthusiastic with only the mRS proving more ubiquitous 

(Quinn et al., 2009b). The original version described ten items: feeding, 

dressing, grooming, bathing, bladder and bowel continence, toileting, 
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transfers, mobility, and stair use (Quinn et al., 2011). Each item is scored 

according to a weighted scale: total scores are out of 100, with higher scores 

denoting greater independence (Quinn et al., 2011). The BI has been modified 

several time, including changes to the weighting of items, or alterations to the 

definitions of items (Quinn et al., 2011). There are presently at least four 

versions which return summary scores out of 100, all of which are referred to 

in the literature as the “Barthel Index” (Quinn et al., 2011). A number of 

expanded versions have been suggested which incorporate items not 

included in the original score (such as tracheostomy management or cognitive 

function), apparently in response to local needs (Quinn et al., 2011). Attempts 

have also been made to derive “short-form” indices, by removing all but the 

most discriminating items. Interestingly, the items chosen for inclusion or 

removal seem to vary (Quinn et al., 2011). The construct validity and clinical 

utility of these “modified” versions cannot be assumed (Quinn et al., 2011). 

Versions of the BI have been developed for administration by face-to-face 

interview, direct observation, by telephone, or by self-report (including by 

post).(Quinn et al., 2011, Gompertz et al., 1994) There is no consensus about 

which version is the most appropriate for use in stroke trials (Quinn et al., 

2011).  

4.4.2.3. What are the key properties of a rehabilitation outcome 

measure? 

As we have discussed above rehabilitation outcome measures seek to define 

a construct, to develop a list of items that range in order from “easiest” to 

“hardest” or “less” to “more”, and then to determine the position of a patient 

along the metric according to the location of the items that they endorse 

(Hobart and Cano, 2009). If the output of such scales is represented as a 

summary score, then it cannot be assumed that such scores provide interval 

level measurement.  

Furthermore, unless all items contained within a scale measure a common 

underlying construct, the legitimacy of deriving a summary score from them 

may be called in to question. This property is termed unidimensionality. 

Attempts to measure rehabilitation outcomes may be further compounded by 

the inter-dependence of the scale used, and the characteristics of the people 



227 
 

in the sample it seeks to measure (Hobart and Cano, 2009). The apparent 

performance of a group of patients may change depending upon the scale 

that is used to measure them. For example, when measuring physical 

functioning in Multiple Sclerosis, a sample of moderately-disabled patients will 

return a high score on the BI, a mid-range score on the Multiple Sclerosis 

Impact Scale physical functioning subscale, and a low score on the Medical 

Outcomes Study 36-item Short Form Health Survey physical functioning 

dimension (Hobart and Cano, 2009). The apparent performance of an 

individual patient on any given scale will also depend upon the characteristics 

of the other patients in the sample. If measured within a sample containing 

predominantly severely-disabled patients, a person with moderate disability 

will score within the higher percentiles for physical functioning; conversely the 

same patient, measured using the same scales but this time amongst a mildly-

disabled sample, will score within the lower percentiles (Hobart and Cano, 

2009). Put simply, the apparent performance of an individual depends upon 

the properties of the scale used to measure them, and on the characteristics 

of the sample of which they are part (Hobart and Cano, 2009). This poses a 

problem for outcome measurement in rehabilitation practice: unless a means 

can be found to isolate genuine change in the performance of individual 

patients from variation in the characteristics of a scale, one cannot be 

confident that true clinical change has been measured. Ideally, the 

performance of an individual should be independent of the scale used to 

measure them, and the properties of a scale should not vary depending upon 

the characteristics of the sample it is used to measure. This concept is termed 

invariance. Interval-level measurement, unidimensionality, and invariance are 

sometimes referred to as the key tenets of measurement (Hobart and Cano, 

2009). Fortunately, it is possible to evaluate scales systematically to establish 

whether they meet these requirements. 

4.4.2.4. Methods for the formal evaluation of outcome measures 

The science of measuring rehabilitation outcomes, a field termed 

psychometrics, has developed enormously in recent years. Traditionally, the 

validation of a new outcome measure would focus upon three domains: 

reliability (the extent to which measurements are influenced by random error); 
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validity (whether a scale actually measures the property it purports to 

measure); and responsiveness (whether a scale reliably detects clinical 

change) (Hobart and Cano, 2009). However, classical methods for evaluating 

scales offer no means of determining whether an outcome measure provides 

interval-level measurement or displays invariance (Hobart and Cano, 2009). 

They also depend upon the scale satisfying several assumptions which in fact 

cannot be mathematically tested, and are therefore considered to be met for 

most data-sets (Hobart and Cano, 2009). 

More recently, a range of rigorous methods have been developed for the 

evaluation of outcome measures. Amongst them are a series of models 

proposed by Georg Rasch, and Item Response Theory (Hobart and Cano, 

2009). A detailed discussion of these models is beyond the scope of this 

thesis: interested readers are referred to a comprehensive monograph by 

Hobart and Cano (2009). Suffice to say that Rasch proposed a set of 

mathematically-testable hypotheses which, if satisfied, indicate that a scale 

can be assumed to fulfil the key tenets of measurement (Hobart and Cano, 

2009). Unlike Item Response Theory, which seeks to derive models from 

observed data, Rasch analysis gives primacy to the model itself (Hobart and 

Cano, 2009). The data obtained from a rating scale are fitted to the Rasch 

model, and the observed fit is then compared to what would be expected if the 

scale fulfilled the criteria for optimum measurement (Hobart and Cano, 2009). 

Any misfit between observed and expected values prompts not a re-evaluation 

of the model, but a further examination of the data to determine why an item 

(or set of items) is not performing as expected (Hobart and Cano, 2009). 

Rasch analysis allows for the systematic examination of scales to establish if 

they fulfil the criteria of unidimensionality and invariance. It also allows the 

appropriateness of the order in which items are arranged in a scale to be 

evaluated, and for items that do not fit the model to be identified (Tennant and 

Conaghan, 2007). Bias that arises as a result of differences in the response 

to individual items between different patient groups within the sample 

(differential item functioning) can also be evaluated (Tennant and Conaghan, 

2007). Crucially, the location of items on an ordinal scale can be mapped to a 
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logarithmic scale: thereby providing true interval-level measurement (Tennant 

and Conaghan, 2007).  

4.4.2.5. The Virtual International Stroke Trials Archive: an opportunity 

to evaluate outcome measures used in stroke?  

Rasch analysis may be used to build scales de novo, or to evaluate the 

properties of existing scales (Tennant and Conaghan, 2007). The systematic 

evaluation of rehabilitation scales that are commonly used in stroke would be 

of enormous value, since having available a battery of validated outcome 

measures that are proven to fulfil the key tenets of measurement would 

provide a solid foundation from which research and modelling could then 

proceed. Such work would, of course, rely upon the existence of a large bank 

of data derived in stroke patients and covering a variety of relevant outcome 

measures. The VISTA archive may be such a resource.  

VISTA was set up in 2007 to bring together data from major clinical trials, in 

the hope that doing so would facilitate exploratory analyses of existing data-

sets.(Ali et al., 2007)  By 2013, its rehabilitation trials offshoot (VISTA-Rehab) 

contained data-sets from 38 trials, enrolling a total of 10,244 participants (Ali 

et al., 2013). A total of 44 different outcome measures are included, 

encompassing both impairment and activities/ participation levels of the ICF 

(Ali et al., 2013). Unfortunately, the promise of this resource has yet to be 

realised. Differences in characteristics of the samples from which these 

measures were recorded confounds any meta-analysis of these data (Ali et 

al., 2013). If, however, it could be established that the outcome measures 

contained within VISTA-Rehab display invariance, then exploratory analyses 

and statistical modelling using pooled data from the VISTA-Rehab bank could 

proceed with confidence. Furthermore, if the outcome measures contained 

within VISTA-Rehab could be proven to provide interval-level measurement, 

then the result would be a large bank of scales for which the magnitude of 

change can be measured quantitatively. This would be an enormously 

powerful resource for the design of future rehabilitation trials, since the 

appropriate measure could be selected from a battery of scales with known 

psychometric properties and proven validity. The ability to provide interval-

level measurement would also allow more accurate power calculations to be 
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made, since the number of patients enrolled could be tailored to the magnitude 

of true change anticipated to result from an intervention. This may ultimately 

reduce the cost of clinical trials: either by preventing the wastage of resources 

on under-powered trials that are likely to return inconclusive results, or in 

some cases by allowing the reduction of sample sizes (thereby minimising the 

time and costs of recruitment). The systematic application of Rasch methods 

to scales in the VISTA-Rehab bank and the DARS data-set therefore offers a 

means to establish whether the most commonly used stroke outcome 

measures fulfil the key tenets of measurement. This work could be completed 

using existing data; yet its possible impact is substantial. 

Part 4.5 Concluding remarks 

4.5.1. Potential future uses of outputs from this Thesis 

4.5.1.1. Reflections on a complex trial 

At the time of its inception DARS was the largest-ever multi-centre 

randomised controlled trial of a pharmacological intervention to enhance 

physical recovery after stroke. Delivery of the DARS intervention (a single 

dose of co-careldopa 45min to 1hour before the start of each therapy session) 

seems straightforward when set down as a short paragraph in the trial 

protocol. As Bipin Bhakta himself, ever the optimist, might have said: “How 

hard can it be?”. 

In reality, ensuring the reliable delivery of this ostensibly-simple intervention 

turned out to be a major challenge for the trials team. There is no absolute 

definition of what constitutes a “complex” intervention, but the Medical 

Research Council have suggested that the characteristics of a such an 

intervention include: a large number of interacting components within the 

experimental and control groups; the number and difficulty of behaviours 

required by those delivering or receiving the intervention; and the degree of 

tailoring or flexibility of the intervention permitted (Craig et al., 2008). In the 

case of DARS, ensuring that the medication was delivered in accordance with 

the trial protocol required an unprecedented degree of liaison and interaction 

between ward nurses and therapy teams (for in-patients), or between 
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community therapy teams and patients or carers (for those discharged from 

hospital before their course of treatment was completed).  

This required an unprecedented level of training in trial procedures for hospital 

and community staff who would be involved in delivering the intervention. This 

was conducted by me and the DARS trial monitor, Lorna Barnard, at a series 

of face-to-face site initiation visits. The provision of face-to-face training in trial 

procedures was felt to be the only way to ensure that staff were trained in trial 

procedures to the standard required for them to deliver the intervention per 

protocol requirements. This was, however, a costly and time-consuming 

exercise that was only compounded by the number of centres that ultimately 

collaborated with DARS. 

It was initially intended that the trial would be conducted across a small 

number of centres within the Yorkshire area. However, when feasibility 

assessments were requested from potential recruiting centres in the early 

stages of trial setup, it became apparent that anticipated per-centre monthly 

recruitment was lower than expected. This led to an initial expansion in the 

number of centres to 20. Once the trial opened to recruitment, even the 

modest estimates of 1-2 patients recruited per centre each month were found 

to be optimistic. This necessitated a further expansion to a final total of over 

50 centres. Ultimately, the initial recruitment target was met and exceeded; 

but maintaining currency in trial procedures for staff at centres that rarely 

recruited patients was a significant challenge. This was compounded by the 

tendency of junior therapists to rotate to different posts every 4-6months. 

DARS was an ambitious trial, which overcame a number of significant 

challenges to deliver a robust answer to an important clinical question. In this 

respect, it stands not only as a lasting tribute to Bipin, but also as a benchmark 

for other complex rehabilitation trials. Although the process of setting up and 

running the DARS trial has not been discussed in detail previously in this 

Thesis, it is clear that a reflective paper setting out the challenges that were 

faced by DARS and how they were overcome has much to offer the design of 

future complex rehabilitation trials.  
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4.5.1.2. Incorporating analysis of imaging in to a trial  

It is not unusual for randomised controlled trials to include an analysis of 

imaging. This might be as a direct inclusion/exclusion criterion (as for trials of  

thrombolysis in stroke), or as an outcome measure in itself (for example 

measuring tumour regression in cancer chemotherapy trials). In DARS, the 

incorporation of an analysis of brain imaging in to the protocol stemmed 

initially from a desire to explore the mechanism by which co-careldopa might 

influence recovery. Although centres of excellence in brain imaging research 

do exist, there is surprisingly little published literature to guide non-radiologists 

looking to include imaging analysis in a trial. When designing the DARS 

protocol, several important radiological considerations were therefore 

overlooked. For example, the cost of centrally collating imaging and 

subsequent expert review by experienced neuroradiologists was not 

incorporated in to the original grant application. Due to the limited funding 

available, reporting was performed by a single expert plus JP, not by a panel 

of experts. Information that might have been useful to the radiologists when 

interpreting scans (for example, the laterality of stroke symptoms) was not 

collected, as trial paperwork and procedures had been largely finalised by the 

time the need to do so was identified. Nor were quality control procedures for 

ensuring that the correct scans were sent to CTRU as robust as they ought to 

have been. A paper laying out the basic considerations when including 

imaging analysis in a grant proposal would be useful in the design of future 

trials.  

4.5.1.3. Rasch analysis of outcome measures from the DARS data-set 

This Thesis sought to develop a series of models to predict walking ability at 

up to six months after stroke. However, any such models must be founded 

upon the rock of robust outcome measurement, rather than the shifting sands 

of ordinal scales. An enormous variety of outcome measures are currently 

used in stroke medicine, few of which have been validated using modern 

psychometric techniques. The manner in which these measures are then 

analysed and interpreted, for example in the derivation of mean scores or in 

quoting changes in scores over time, is questionable. This situation is an 
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impediment to the design, interpretation, and meta-analysis of high quality 

rehabilitation trials. 

There is a need in stroke research and in clinical practice for robust outcome 

measures that fulfil the key tenets of measurement: interval-level 

measurement, unidimensionality, and invariance. The use of scales that are 

proven to be interval-level would allow more efficient linear regression models 

to be fitted: and their output could legitimately be expressed as the change in 

the value of an outcome variable for each unit change in a predictor variable. 

Interval-level outcome measurement will also allow more reliable estimation 

of effect sizes: when fitting predictor variables statistical models, and when 

measuring the impact of rehabilitation interventions in clinical practice.  

The DARS trial acquired outcome measures covering a variety of impairments 

and activity limitations at four time points (baseline, eight weeks, six months, 

and one year after stroke). The systematic application of rigorous 

psychometric techniques such as Rasch analysis to such a rich data-set would 

allow a series of outcome measures to be made available that are proven to 

fulfil the key tenets of measurement.   

4.5.2. The implications of this Thesis for clinical practice and 

research 

4.5.2.1. Implications for clinical practice 

Although brain imaging findings may have a role in predicting broad outcomes 

such as death or dependency following stroke, the models presented above 

cast doubt upon the ability of CT imaging to predict more specific rehabilitation 

outcomes such as ability to walk independently; at least as far as ischaemic 

stroke is concerned (models 1 and 2). The models presented for ICH (models 

3 and 4) are derived in a smaller sample, with commensurately wide 

confidence intervals for some imaging variables. By contrast models 5 and 6, 

based on clinical impairment assessed within the first few weeks after stroke, 

correctly classified up to 70.3% at T1 and 69.0% of patients at T2. This implies 

that, in clinical practice, a reasonably accurate estimation of prognosis may 

be made based on initial clinical impairment alone. Although plain CT imaging 

remains crucial in guiding the acute management of stroke patients, it cannot 
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at present be deemed useful for rehabilitation prognostication. This finding is 

of potential significance in low-resource settings, in which brain imaging might 

not be readily available. 

Advanced imaging techniques such as fMRI have been used to explore the 

interactions that take place between brain structures during the learning 

process. However so-called “functional” imaging actually detects an increase 

in blood oxygen diffusion in to tissues, a finding that is purported to correlate 

with an increase in neuronal metabolic activity. The actual “function” of those 

brain areas and how they actually interact to shape learning remains a matter 

for inference and speculation. Nor is it necessarily legitimate to assume that 

learning processes in a healthy volunteer under experimental conditions are 

analogous to those of a stroke patient participating in a rehabilitation 

programme. Functional imaging therefore remains at present primarily a 

research tool with little role in routine rehabilitation practice.   

The models presented here would certainly require validation in an 

independent sample prior to clinical use. However, models that are to be used 

in clinical practice must also be easy to apply, and deliver an output that is 

readily interpretable by staff. Although binary logistic regression modelling 

gives some indication of the relative importance of each predictor variable (as 

measured by the percentage of variance that each predictor explains and the 

change in odds of the outcome of interest for each one-point change in a 

predictor variable), the output that they deliver is neither intuitive for a clinician 

nor easily applicable to an individual patient. A “decision tree”, in which each 

node is a binary choice and the output is the odds of walking independently at 

T1 and T2, might allow outcome predictions to be made in a more readily 

interpretable manner. 

4.5.2.2. Implications for research 

Perhaps the greatest potential of the models presented here is in rehabilitation 

research. A model that is able to correctly classify around 70% of patients as 

able or unable to walk at T1 and T2 with a sensitivity of 55.8-72.0% at T1 and 

62.8-88.9% at T2 might allow patients recruited in to future rehabilitation 

research trials to be assigned different end-points at the time of 
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randomisation, based on their prior probability of walking again. There are 

several advantages to such an approach. Firstly, the sample size required to 

detect a treatment effect could be reduced, thereby reducing the cost of 

setting up and running trials. Secondly, accounting for differences in 

anticipated prognosis would allow researchers to assign outcome measures 

that are of practical importance to patients. For example, a patient who is 

unlikely to return to walking might consider achieving independent sitting 

balance to be an important goal, whereas for those patients who are expected 

to be able to walk 10m or more an outcome centred around higher levels of 

mobility (such as walking outdoors, climbing stairs, or running) might be pre-

specified. Ultimately such an approach would allow trials to adopt a range of 

outcome measures that are of direct relevance to pre-specified sub-groups of 

patients. This approach may also allow detection of more subtle treatment 

effects than would be apparent if results are analysed based on a single 

dichotomous outcome. 

A further implication of this Thesis is that it calls in to question how useful brain 

imaging is in predicting rehabilitation potential. Although models incorporating 

imaging variables are of value in predicting mortality or broad categories such 

as “independent”/”dead or dependent”, the findings of routinely-acquired CT 

imaging appear to add nothing beyond an assessment of clinical impairment 

when predicting more nuanced rehabilitation outcomes such as walking 

ability. Is it reasonable to continue to fund studies aiming to predict 

rehabilitation outcomes using imaging variables, when clinical impairment 

alone appears to be a more reliable predictor of rehabilitation potential? 
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List of abbreviations 

ACA Anterior cerebral artery territory 

Act FAST Facial drooping, Arm weakness, Speech slurred - time to call 999 

(public health campaign) 

AF Atrial Fibrillation 

AISCT Acute ischaemic stroke classification template 

ASPECTS Alberta Stroke Program Early CT Score 

BI Barthel Index 

BOLD Blood oxygen level dependent signal 

BRIC University of Edinburgh Brain Research Imaging Centre 

CD Compact Disc 

CE-CT Contrast-enhanced computerised tomography scanning 

CLRN Comprehensive local research network 

C-RMI Clinician-completed Rivermead Mobility Index 

CT Computerised tomography scanning 

CTRU The Clinical Trials Research Unit, University of Leeds 

DALY Disability-Adjusted Life Year 

DARS Dopamine Augmented Rehabilitation in Stroke (clinical trial) 

DICOM Digital Imaging and Communication in Medicine 

DMEC Data monitoring and ethics committee 

DTI Diffusion tensor imaging 

DWI Diffusion-weighted imaging 

FAS Fatigue assessment scale 
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fMRI Functional Magnetic Resonance Imaging 

GCS Glasgow Coma Scale 

GHQ General Health Questionnaire 

GHQ-12 Twelve-item version of the General Health Questionnaire 

GOS Glasgow Outcome Scale 

HWS "Haemorrhage with scan available" (analysis sub-group) 

ICF The World Health Organisation International Classification of 

Functioning, Disability, and Health 

ICH Intracerebral haemorrhage (here used specifically in reference to 

primary haemorrhage, not traumatic haemorrhage) 

ISRCTN International standard randomised controlled trial number database 

IWS "Primary infarction, with scan available" (analysis sub-group) 

JMP Dr Jeremy Macmullen-Price, consultant neuroradiologist, Leeds 

Teaching Hospitals NHS Trust 

JP Dr John Pearn, Clinical Research Fellow to the DARS trial 

LACS Lacunar stroke syndrome 

LTHT Leeds Teaching Hospitals NHS Trust 

MCA Middle cerebral artery 

MMSE Mini mental-state examination 

MoCA Montreal cognitive assessment 

MRI Magnetic resonance imaging 

M-RMI Modified version of the Rivermead Mobility Index 

mRS Modified Rankin scale 

MSK-SSP Musculoskeletal signs, symptoms, and pain manikin 

NEADL Nottingham extended activities of daily living scale 
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NHS National Health Service (United Kingdom) 

NIHSS National Institute of Health Stroke Scale, 

NOAC Non-vitamin K oral anticoagulants 

OCSP Oxford Community Stroke Project clinical classification of stroke 

syndromes 

PACS Partial anterior circulation stroke syndrome 

pBI Postal version of the Barthel Index 

PCA Posterior cerebral artery 

PI Principle Investigator 

POCS Posterior circulation stroke syndrome 

PSF Post-stroke fatigue 

RMA Rivermead Motor Assessment 

RMI Rivermead Mobility Index 

RS Rankin scale (original version) 

SBP Systolic blood pressure 

SR-RMI Patient self-reported Rivermead Mobility Index 

STICH Surgical Trial in Intracerebral Haemorrhage (clinical trial) 

TACS Total anterior circulation stroke syndrome 

TP Dr Tufail Patankar, consultant interventional neuroradiologist, Leeds 

Teaching Hospitals NHS Trust 

TSC Trial steering committee 

UK United Kingdom 

USB Universal Serial Bus 

VAS Visual Analogue Scale 
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VBM Voxel-based morphometry 

VCI Vascular cognitive impairment 

VIF Variance Inflation Factor 

VISTA Virtual International Stroke Trials Archive 

VISTA-Rehab Stroke rehabilitation trials sub-section of the Virtual International 

Stroke Trials Archive, 

WHO World Health Organisation 
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Appendix A. Table summarising prognostic models for 

predicting outcome following ICH 

Table A.1. Summary of prognostic models for predicting outcome following 

ICH. 

Author Type of ICH Outcome 

predicted 

Predictors included in 

multivariate model 

Results 

Hemphill et 

al. (2001) 

Supratentorial 

and 

infratentorial 

haemorrhage 

30-day 

mortality 

ICH Score: GCS (score 

3-4, 5-12, 13-15); age 

(<80, ≥80); haematoma 

volume (<30ml, ≥30ml); 

intraventricular 

haemorrhage (yes/no) 

30-day mortality was 13% 

for score of 1; 26% for 

score of 2; 72% for score of 

3; 97% or score of 4 

p<0.0005 for trend). No 

patients with a score of 0 

died. No patient attained 

the maximum score of 6. 

Cho et al. 

(2008) 

Basal ganglia 

haemorrhage 

Six-month 

mortality, 

and Glasgow 

Outcome 

Scale and 

Barthel Index 

at one year 

Modified ICH Score 

(MICH): GCS (score 13-

15, 5-12, 3-4); 

haematoma volume 

(≤20ml, 21-50ml, 

≥50ml); presence of 

intraventricular 

haemorrhage or 

hydrocephalus (yes/no) 

For prediction of good 

functional outcome: score 

≥2.  

At score of 0-1, conservative 

management achieved a 

better functional outcome 

than surgical intervention. 

Score 3-4: six-month 

mortality was higher for 

conservative treatment 

than surgical management. 
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Lisk et al. 

(1994) 

Hemispheric 

haemorrhage 

Model 1: 

good 

outcome 

(mRS 0-2) 

Model 2: 

poor 

outcome 

(mRS 5 and 

death) 

Model 1: age; 

haemorrhage 

diameter; presence of 

intraventricular 

haemorrhage 

Model 2: GCS; age; 

gender; haemorrhage 

volume  

Both models generated 

a predicted probability 

of achieving the 

specified outcome. 

Model 1: predicted 

probability of ≥0.32 results 

in a sensitivity of 100% and 

specificity of 91% for good 

outcome. 

Model 2: predicted 

probability of >0.60 results 

in a sensitivity of 62.1% 

and specificity of 95% for 

poor outcome. 

Ruiz-

Sandoval et 

al. (2007) 

Supratentorial 

and 

infratentorial 

haemorrhage 

Glasgow 

Outcome 

Scale at 30 

days. 

In-hospital 

and 30-day 

mortality 

ICH Grading Scale (ICH-

GS): Age (<45, 45-64, 

≥65); GCS on admission 

(13-15, 9-12, 3-8); ICH 

location (supratentorial 

or infratentorial); 

haematoma volume 

(for supratentorial ICH: 

<40ml, 40-70ml, 

>70ml); for 

infratentorial ICH: 

<10ml, 10-20ml, 

>20ml); intraventricular 

extension (yes/no). 

Model explained 44.2% of 

variance in in-hospital 

mortality, 43.8% of 

variance in 30-day 

mortality, and 33.2% of 

variance in functional 

outcome.  

Sensitivity for in-hospital 

mortality 78.2%, and 30-

day mortality 78.5%. 

Tuhrim et 

al. (1991) 

Supratentorial 

haemorrhage 

30-day 

survival. 

Barthel 

Index, 

Activities of 

Daily Living 

Score 

Pulse pressure (≤40, 

41-65, ≥65); GCS (≤8, 

≥9); volume of 

haematoma (<27cc, 27-

72cc, >72cc); 

intraventricular 

extension (yes/no) 

Model correctly classified 

94% of patients as dead or 

alive at 30 days, and 95% 

of patients as having a 

good or poor outcome. 
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Cheung and 

Zou (2003) 

Supratentorial 

and 

infratentorial 

haemorrhage 

30-day 

mortality. 

30-day 

Modified 

Rankin Scale 

score 

Model 1 (30-day 

mortality): NIHSS score; 

pulse pressure; 

subarachnoid 

extension; 

intraventricular 

extension. 

Model 2 (favourable 

outcome): low 

admission 

temperature; low 

NIHSS   

For 30-day morality: 

sensitivity of model 91.3%, 

specificity 72.7%. Positive 

predictive value 50.0%, 

negative predictive value 

96.6% 

For favourable outcome: 

sensitivity 70.0%, 

specificity 91.7%, positive 

predictive value 84.8%, 

negative predictive value 

82.1%. 

Godoy et al. 

(2006 

Supratentorial 

and 

infratentorial 

haemorrhage 

30-day 

mortality. 6-

month 

Glasgow 

Outcome 

Scale score. 

Two modified ICH 

(mICH) scores were 

created: 

Version A: GCS (13-15, 

5-12, 3-4); ICH volume 

(≥30cc, <30cc); 

intraventricular 

haemorrhage (yes/ 

no); Graeb’s score (1-

4, 5-8, ≥9); 

infratentorial origin 

(yes/ no); age (<80, 

≥80). 

Version B: as above, 

but excluding 

“infratentorial origin” 

item. 

Version A: cutoff score of 4 

best predicted mortality 

(sensitivity 0.79, specificity 

0.80, positive predictive 

value 0.68, negative 

predictive value 0.88). 

Score of 3 best predicted a 

good outcome (sensitivity 

0.85, specificity 0.73, 

positive predictive value 

0.62, negative predictive 

value 0.9). 

Version B: cut-off score of 

3 was optimum for 

predicting both mortality 

(sensitivity 0.85, specificity 

0.73, positive predictive 

value 0.62, negative 

predictive value 0.90) and 

good outcome (sensitivity 

0.70, specificity 0.90, 

positive predictive value 

0.92, negative predictive 

value 0.66). 
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Berwaerts 

et al. (2000) 

Any ICH 

related to use 

of oral 

anticoagulants 

(included post-

traumatic ICH) 

In-hospital 

mortality; 

functional 

recovery by 

time of 

discharge 

(none, 

partial, full). 

Model 1: predicts in-

hospital mortality. 

Variables included: 

type of haemorrhage 

(presumably refers to 

supratentorial/ 

infratentorial location, 

but the authors do not 

specify what is meant 

by this); admission 

within 12 hours of 

onset of symptoms; 

and GCS score <14. 

Model 2 (radiological 

predictors of in-

hospital mortality). 

Variables included: 

diameter of ICH 

(continuous variable); 

presence of ischaemic 

change (yes/ no). 

Model 3 (in-hospital 

mortality): presence of 

ischaemia on CT; 

intraventricular 

haemorrhage; 

displacement of 

midline; location in 

posterior fossa; 

haemorrhage diameter 

(10mm, ≤30mm, 30-

50mm, >50mm). 

GCS score alone predicted 

in-hospital mortality with 

sensitivity of 46% and 

specificity of 83%. 

Model 1: sensitivity of 

74%, specificity of 100% 

for prediction of in-

hospital mortality. 

Model 2: predicted in-

hospital mortality with a 

sensitivity of 73%, 

specificity of 89%, positive 

predictive value of 80%, 

negative predictive value 

of 85%. The sign for the 

categorical predictor 

“presence of ischaemic 

change” was negative, 

suggesting that in this 

sample the presence of 

ischaemic change 

protective against 

mortality. 

Values of sensitivity/ 

specificity were not 

presented for model 3. 

Odds ratios (with 95% CI) 

were: ischaemia on scan 

OR 0.053 (0.003-0.979); 

intraventricular blood OR 

10.21 (0.49-211.81); 

displacement of midline 

OR 2.89 (0.04-212.98); 

location in posterior fossa 

OR 1.71 (0.06-45.39); 

haemorrhage diameter OR 

93 (OR 0.70-5.33). 
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Fogelholm 

et al. (1997) 

First-ever 

supratentorial 

ICH 

28-day 

survival 

Level of consciousness 

(alert, somnolent/ 

disorientated, 

unconscious/ 

comatose); mean 

arterial pressure on 

first day (continuous 

variable); spread of 

haemorrhage in to the 

subarachnoid space 

(yes/no); shift of 

midline structures 

(yes/no); blood glucose 

level on admission 

(continuous variable); 

vomiting on admission 

(yes/no). 

Model predicted 28-day 

survival with a sensitivity 

of 78%, specificity of 90%, 

positive predictive value of 

80%, and a negative 

predictive value of 85%. 

Hallevy et 

al. (2002) 

Spontaneous 

supratentorial 

ICH 

mRS at 

discharge 

(cut-off score 

of ≤3 for 

good 

outcome and 

≥4 for poor 

outcome). 

Age (<60, ≥61); severity 

of hemiparesis (none-

moderate [Medical 

Research Council grade 

3-5/5]; severe [grade 0-

2/5]); level of 

consciousness (alert 

versus drowsy or 

comatose); presence of 

mass effect (yes/ no); 

size of 

haematoma(small 

versus medium or large 

according to radiology 

opinion); presence of 

intraventricular 

extension (yes/ no). 

Percentages of patients 

achieving good outcome: 

82% for score of 0-1; 53.7% 

for a score of 2; 23.3% for 

a score of 3; 0% for a score 

of 4-6. 

Mase et al. 

(1995 

Primary ICH 30-day 

mortality 

Intraventricular 

extension of 

haemorrhage (yes/no); 

haematoma “size” 

(used in this context to 

refer to volume, not 

Model correctly identified 

93% of patients who 

survived and 88% of 

patients who died. 
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maximal dimension: 

<8.3cc, 8.3-20.4cc, 

20.5-47.7cc, >47.7cc); 

GCS score 

Nilsson et 

al. (2002) 

Primary ICH 30-day and 

one-year 

mortality 

Model 1 (30-day 

mortality): level of 

consciousness on 

admission (alert, [GCS 

14-15] drowsy [GCS 8-

13], comatose (GCS 3-

7]); haematoma 

volume (<30cc; 30-

60cc; >60cc); history of 

heart disease prior to 

ICH (yes/no). 

Model 2 (one-year 

mortality): level of 

consciousness on 

admission (alert, [GCS 

14-15] drowsy [GCS 8-

13], comatose (GCS 3-

7]); age (0-54; 55-74; 

≥75); haematoma 

location (lobar, central, 

cerebellar, brainstem). 

Patients who were drowsy 

on admission had a 5.2-

fold increase in the odds of 

death at 30days compared 

with those who were alert 

(95% CI 2.3-11.6). Those 

who were unconscious had 

a 42-fold increase in the 

odds of death at 30days 

(95% CI 15.6-113.3). 

Haematoma volume of 

>60cc conferred a 3.2-fold 

increase in the odds of 30-

day mortality compared 

with haematomas of 

<30ml (95% CI 1.5-9).  

At one year, patients who 

were drowsy on admission 

had a 3.6-fold increase in 

the hazard of death 

compared with those who 

were alert (95% CI 2.1-6.1). 

Those who were 

unconscious had a 15.2-

fold increase in the hazard 

of death at 30days (95% CI 

8.8-26.3). Age of ≥75 

conferred a 3.3-fold 

increase in the hazard of 

death compared with 

those in the 0-54 age 

group (95% CI 1.6-6.9). 

Passero et 

al. (2002) 

Primary 

intraventricular 

haemorrhage 

In-hospital 

mortality 

GCS (≤8, >8); early 

hydrocephalus 

(yes/no). 

Odds of death were 4.67-

fold greater for patients 

with GCS ≤8 compared 

with those with GCS >8 
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(95% CI 1.22-17.92). Odds 

of death were increased 

4.93-fold for those with 

hydrocephalus versus 

those without (95% CI 

1.13-21.59) 

Phan et al. 

(2000) 

Deep ICH. 

Divided in to: 

caudate/ 

thalamic ICH 

(“medial” 

group) and 

putaminal ICH 

(“lateral” 

group) 

30-day 

mortality 

mRS (good 

outcome <2; 

moderate to 

poor 

outcome 2-4; 

dependency 

5; death 6) 

Model 1 (30-day 

mortality for both 

medial groups): GCS 

(≤8, >8); presence of 

hydrocephalus on 

visual inspection 

(yes/no). 

Model 2 (30-day 

mortality in medial 

group): only GCS (≤8, 

>8) was a significant 

predictor variable. 

Model 3 (30-day 

mortality in lateral 

group): GCS (≤8, >8); 

presence of 

hydrocephalus on 

visual inspection 

(yes/no). 

Model 1: sensitivity of 55% 

and specificity of 90%. 

Positive predictive value 

70%, negative predictive 

value 83%. 

Model 2: sensitivity and 

specificity not quoted. 

Patients with GCS≤8 had 

16.5-fold increase in the 

odds of 30-day mortality 

compared with patients 

with GCS>8 (95% CI 3.7-

73.4). 

Model 3: sensitivity of 57% 

and specificity of 91%. 

Positive predictive value 

73%, negative predictive 

value 84%. 

Portenoy et 

al. (1987) 

Spontaneous 

supratentorial 

ICH 

Good 

outcome (no 

deficit to 

moderately 

dependent) 

versus poor 

outcome 

(severely 

dependent, 

persistent 

vegetative 

state, or 

death). 

Model for prediction of 

good (versus poor) 

outcome: GCS; size of 

haematoma (a 

calculated index value 

based on maximal 

haematoma 

dimensions. 

Categorised as: 4-19; 

20-28; 29-44; 45-81); 

intraventricular 

extension (yes/no). 

Model correctly identified 

87% of patients with good 

outcomes and 88% of 

patients with poor 

outcomes. 
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Qureshi et 

al. (1995) 

Spontaneous 

ICH 

Deterioration 

from an 

initial GCS of 

>12 by ≥4 

points within 

the first 24 

hours of 

admission; 

in-hospital 

mortality. 

Model 1 (prediction of 

early deterioration): 

presence of 

intraventricular 

extension (yes/no); ICH 

volume (<30cc, ≥30cc). 

Model 2 (prediction of 

mortality): presence of 

intraventricular 

extension (yes/no); ICH 

volume (<30cc, ≥30cc); 

initial GCS (≤12, >12). 

Model 1: odds ratio for 

early deterioration with 

(versus without) 

ventricular extension was 

4.67 (95% CI 1.30-16.72). 

Odds ratio early 

deterioration with ICH 

volume ≥30cc (vesus 

<30cc) 6.78 (95% CI 1.89-

24.35). 

Model 2: odds ratio for 

death with (versus 

without) intraventricular 

extension 4.23 (95% CI 

1.82-9.82); odds ratio for 

mortality with ICH volume 

≥30cc (vesus <30cc) 6.66 

(95% CI 2.85-15.58); odds 

ratio for mortality with 

initial GCS ≤12 (versus >12) 

3.23 (95% CI 1.46-7.14) 

Razzaq and 

Hussain 

(1998) 

Spontaneous 

ICH 

30-day 

mortality 

Model 1 (clinical 

predictors): GCS score 

(≥12, 9-11, ≤8); paresis 

(yes/no); 7th nerve 

palsy (yes/no). 

Model 2 (CT 

predictors): ventricular 

enlargement (yes/no); 

haematoma size 

(<3cm, >3cm); 

intraventricular 

extension of 

haemorrhage (yes/no). 

Model 3 (combined 

clinical and CT 

predictors): GCS score 

(≥12, 9-11, ≤8); history 

of hypertension 

Model 1: patients with GCS 

≤8 had 7.6-fold increase in 

the odds of dying 

compared with patients 

with GCS ≥12. 

Model 2: patients with 

intraventricular extension 

of the haemorrhage had a 

3.5-fold increase in the 

odds of death compared 

with those without. Those 

with ventricular 

enlargement had a 2.6-fold 

increase in the odds of 

death compared with 

those without. 

Model 3: patients with GCS 

≤8 had 11-fold increase in 
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(yes/no); pulse 

pressure (continuous); 

haematoma size (<3cm, 

>3cm); intraventricular 

extension of 

haemorrhage (yes/no). 

the odds of death 

compared with patients 

with GCS ≥12. Patients 

with hypertension had a 3-

fold increase in the odds of 

death compared with 

those without. Each unit 

increase in pulse pressure 

conferred a 1.3-fold 

increase in the odds of 

death. Those with a 

haematoma size of >3cm 

had a 2.9-fold increase in 

the odds of death 

compared with those with 

a haematoma of <3cm. 

Patients with 

intraventricular extension 

of the haemorrhage had a 

2.9-fold increase in the 

odds of death compared 

with those without. 

Schwarz et 

al. (2000) 

Spontaneous 

supratentorial 

ICH 

Glasgow 

Outcome 

Scale at 72 

hours. Poor 

outcome 1-2; 

moderate or 

favourable 

outcome 3-5 

Model for prediction of 

poof outcome: 

ventricular 

haemorrhage (yes/no); 

haematoma 

enlargement or 

secondary 

haemorrhage (yes/no); 

initial GCS (14-15; 8-13; 

3-7); haematoma 

volume (<25ml; 25-

60ml; >60ml); duration 

of elevation in blood 

pressure (<24hrs; 24-

48hrs; >48hrs); 

duration of elevated 

blood glucose levels 

>11mmol/l (never; 

<24hrs; >24hrs); 

duration of 

Presence of ventricular 

haemorrhage conferred a 

five-fold increase in the 

odds of a poor outcome. 

Haematoma expansion 

increased the odds of a 

poor outcome seven-fold. 

An initial GCS of 3-7 

increased the odds of an 

unfavourable outcome by 

a factor of 18.34 compared 

with an initial GCS of 14-

15. A haematoma volume 

of 25-60ml increased the 

odds of an unfavourable 

outcome by a factor of 

1.75 compared with a 

volume of <25ml; 

haematoma volumes of 

>60ml conferred a 13.9-
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temperature >37.5C 

(<24hrs; 24-48hrs; 

>48hrs). 

fold increase in the odds of 

an unfavourable outcome. 

Elevation in blood pressure 

for >48hrs conferred an 

8.42-fold increase in the 

risk of an unfavourable 

outcome compared to a 

rise in blood pressure of 

<24hrs duration. Elevated 

blood glucose levels for 

>48hrs increased the odds 

of an unfavourable 

outcome by a factor of 

13.53 compared with 

those who had never had 

high blood glucose levels. 

A body temperature of 

>37.5C for >48hrs 

conferred a 13.52-fold 

increase in the odds of an 

unfavourable outcome 

when compared with 

those who had an elevated 

body temperature for 

<24hrs.   

Shaya et al. 

(2005) 

Non-traumatic 

first-time ICH. 

Glasgow 

Outcome 

Scale at 6 

months 

Haematoma volume 

(<20ml 1 point; 20-

50ml 2 points; >50ml 3 

points); hydrocephalus 

(1 point if present); 

focal neurological 

deficit (1 point if 

present) 

Score derived from model 

was used to predict six-

month GOS (no detail 

provided on how this was 

accomplished). Spearman 

correlation coefficient 

between observed and 

predicted values was 0.76 

(p=0.0001). 
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Appendix B. The AISCT template for coding ischaemic stroke 

lesions 

The Acute Ischaemic Stroke Classification Template (AISCT) was developed 

by Professor Wardlaw et al, of the University of Edinburgh Brain Research 

Imaging Centre (BRIC), Neuroimaging Sciences, Edinburgh 

(www.bric.ed.ac.uk) (Wardlaw and Sellar, 1994). The BRIC is part of the 

SINAPSE (Scottish Imaging Network–A Platform for Scientific Excellence) 

collaboration (www.sinapse.ac.uk) funded by the Scottish Funding Council 

and the Chief Scientist Office. The AISCT is available to download from: 

http://www.bric.ed.ac.uk/research/imageanalysis.html#ais 

The AISCT was used in DARS with the permission of Professor Wardlaw 

(private communication with author). 
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B.1. AISCT template for coding acute ischaemic change in 

the MCA territory  

The AISCT classifies acute ischaemic change within the MCA territory using 

the eight template diagrams shown below (© Professor J.M. Wardlaw, 

University of Edinburgh, Brain Research Imaging Centre; reproduced here 

with permission). 

 

Table B.1. Key for template images coding ischaemic change in the MCA 
territory  

Template Finding represented 

1 Small cortical infarct 

2 Basal ganglia infarct (>2×2×2cm) 

3 Infarct of the white matter lateral to the ventricle (>2×2×2cm) 

4 Infarct of anterior half of the peripheral MCA territory 

5 Infarct of the posterior half of the peripheral MCA territory 

6 Infarct of whole of peripheral MCA territory 

7 Infarct of posterior half of MCA territory plus lateral part of basal ganglia 

8 Infarct of whole MCA territory 
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B.2. AISCT template for lacunar lesions and border zone 

ischaemia  

The AISCT classifies lacunar lesions and border-zone ischaemia using the 

template diagrams shown below (© Professor J.M. Wardlaw, University of 

Edinburgh, Brain Research Imaging Centre; reproduced here with 

permission). 

 

Table B.2. Key for template images coding lacunar lesions and border-zone 
ischaemic change 

Template Finding represented 

9 Lacune in internal capsule/ lentiform nucleus 

10 Lacune in internal border zone 

11 Lacune in centrum semiovale 

12 Lacune in thalamus 

13 Lacune in brainstem, including pons (not shown) 

14 Anterior border zone infarction 

15 Posterior border zone infarction 
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B.3. AISCT template for tissue swelling  

The AISCT classifies the extent of tissue swelling in acute ischaemic stroke 

using the template diagrams shown below (© Professor J.M. Wardlaw, 

University of Edinburgh, Brain Research Imaging Centre; reproduced here 

with permission). 

 

Table B.3. Key for template images coding extent of tissue swelling in acute 
ischaemic stroke 

Template Finding represented 

0 No swelling 

1 Effacement of sulci overlying the infarct 

2 1+minor effacement of adjacent lateral ventricle 

3 1+complete effacement of lateral ventricle 

4 1+effacement of lateral and third ventricle 

5 4+shift of midline away from the side of the ventricle 

6 5+effacement of basal cisterns (not shown) 
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Appendix C. Summary of standardised outcome measures 

used in the DARS trial 

A range of measures were used in the DARS trial, to capture not only the 

primary outcome (mobility) but also other functional outcomes (such as upper 

limb function and independence in activities of daily living), general disability, 

and other variables that could modify a patient’s response to rehabilitation 

(such as musculoskeletal pain, fatigue, and depression). These outcome 

measures are summarised below in Table C.1. 

Abbreviations used in this table: 

PO:  Primary Outcome 

EM:  Effect modifier 

SO:  Secondary outcome 

A/P:  Activities/participation 

I:  Impairment 

SR:  Patient self-report 

CR:  Clinician report 

RI:  Researcher interview 

Y: Yes 

N: No 
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Table C.1. Standardised outcome measures used in the DARS trial. 

Outcome measure Analysis Construct ICF 
domain 

Method T0 T1 T2 T3 

Rivermead Mobility 
Index (RMI) (Collen 

et al., 1991) 

PO Mobility A/P SR, CR Y Y Y Y 

General Health 
Questionnaire, 12-
item version (GHQ-
12) (Goldberg and 

Hillier, 1979) 

EM Psychological 
morbidity 

I SR Y Y Y Y 

Musculoskeletal 
signs/ symptoms 
and pain manikin 

(MSK-SSP) 
(Keenan et al., 

2006) 

EM Musculoskeletal 
pain 

I SR Y Y Y Y 

Fatigue 
Assessment Scale 
(FAS) (Michielsen 

et al., 2003) 

EM Fatigue I SR N Y Y Y 

Montreal Cognitive 
Assessment 

(MoCA) 
(Nasreddine et al., 

2005) 

EM Cognitive 
function 

I RI Y Y Y Y 

Postal version of 
the Barthel Index 
(Gompertz et al., 

1994) 

SO Independence in 
activities of daily 

living 

A/P SR Y Y Y Y 

Nottingham 
Extended Activities 
of Daily Living Scale 
(NEADL) (Nouri and 

Lincoln, 1987) 

SO Independence in 
activities of daily 

living 

A/P SR Y Y Y Y 

ABILHAND scale 
(Penta et al., 1998) 

SO Hand function A/P SR Y Y Y Y 

EuroQol EQ-5D 
(Rabin and de 
Charro, 2001) 

SO Health-related 
quality of life 

A/P SR Y Y Y Y 

Modified Rankin 
Scale (mRS) 
(Bonita and 

Beaglehole, 1988) 

SO Global disability A/P RI N Y Y N 
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Appendix D. The Rivermead Mobility Index 

The RMI (Collen et al., 1991), reproduced in full below, was both an inclusion/ 

exclusion criterion and the key outcome measure for DARS. The RMI was 

used here as both a professionally-completed (C-RMI) and as a patient self-

report (SR-RMI) measure. Both were identical in every respect, other than the 

manner in which they were completed.   

At the time of enrolment, all patients had a C-RMI score of ≤6, and had 

answered “no” to question 7 (highlighted below in red). When used as an 

outcome measure, the SR-RMI was dichotomised as “able to walk 10m or 

more with an aid if necessary but no standby help” (“yes” or “no”). 
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1. Do you turn over from your back to your side without help? 

2. From lying in bed, are you able to get up to sit on the edge of the bed on 

your own? 

3. Could you sit on the edge of the bed without holding on for 10 seconds? 

4. Can you (using hands and an aid if necessary) stand up from a chair in less 

than 15 seconds, and stand there for 15 seconds 

5. Observe patient standing for 10 seconds without any aid. 

6. Are you able to move from bed to chair and back without any help? 

7. Can you walk 10 metres with an aid if necessary but with no standby 

help? 

8. Can you manage a flight of steps alone, without help? 

9. Do you walk around outside alone, on pavements? 

10. Can you walk 10 metres inside with no calliper, splint or aid and no standby 

help? 

11. If you drop something on the floor, can you manage to walk 5 metres to 

pick it up and walk back? 

12. Can you walk over uneven ground (grass, gravel, dirt, snow or ice) without 

help? 

13. Can you get in and out of a shower or bath unsupervised, and wash 

yourself? 

14. Are you able to climb up and down four steps with no rail but using an aid 

if necessary? 

15. Could you run 10 metres in 4 seconds without limping? (A fast walk is 

acceptable.) 
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Appendix E. Flow diagram summarising the process of 

image analysis 

Figure E.1. Summary of the process of imaging analysis in the DARS trial. 
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Image quality 

1. All images normal? 

2. Any acute ischaemia? 3. Side of ischaemia 

4. Classify features 

of early ischaemia 

5 Size and site 

of acute infarct 
5a Tissue swelling 

5b MCA ischaemia 5c Size and site 

of MCA lesion 

5d ACA ischaemia 

5e PCA ischaemia 

5f Lacunar infarcts 

5g Border zone infarcts 

5h Cerebellar infarcts 

5h Brainstem infarcts 

6 ASPECTS score 7 Abnormal vessel 

sign 

8 Any haemorrhage 

(indicate location) 
9 Volume, hydrocephalus, 

intraventricular extension, midline shift 

10 Type and maximum diameter 

11 Does haemorrhage contribute 

to overall burden of brain injury? 
12 White matter lesions 

13 Second (minor) acute infarct 

14 Old vascular lesion 

15 Non-stroke lesion 

End 

Yes Yes 

Yes 

No 

No 

No 
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Appendix F. CT Image Interpretation Case Report Form 

The CT Image Interpretation Case Report Form. One form was completed for 

every scan analysed. This protocol was developed by Wardlaw et al for use 

in the Third International Stroke Trial (Wardlaw and Sellar, 1994). 
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“Job done.” 

- Bipin Bhakta 


