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Abstract

Generalised cohomology theories are a broad class of powerful invariants in

algebraic topology. Unstable cohomology operations are a useful piece of

structure associated to a such a theory and as a result the collection of these

operations is of interest. Traditionally, these operations have been studied

through the medium of Hopf rings. However, a Hopf ring does not readily

admit algebraic structure corresponding to composition of operations.

Stacey and Whitehouse showed that the unstable cohomology operations nat-

urally admit the structure of an esoteric algebraic gadget termed a plethory.

This plethory contains all the information of the Hopf ring together with

additional structure corresponding to the composition of operations.

In this thesis, I shall introduce the algebraic theory of plethories and extend

with results which will aid computations. I will then illustrate, in a direct

fashion, how the unstable cohomology operations admit the structure of a

plethory and discuss the implications in this context. Finally, I shall perform

some computations of the plethory of unstable cohomology operations for

some familiar cohomology theories.
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Introduction

The raison d’être of algebraic topology is to find computable algebraic invariants that

classify topological spaces up to homeomorphism: deformations under which we are al-

lowed to stretch and bend our object, but crucially not pinch or tear. A common ‘joke’

states that a topologist is a mathematician who cannot tell a donut from a coffee mug.

The problem of finding such invariants has proved very difficult and we can only com-

pute reasonable algebraic invariants in very special cases. However, great progress has

been made towards the easier problem of classifying spaces up to homotopy equivalence:

deformations under which we are additionally allowed to pinch solid regions down to a

point.

Rather powerful homotopy invariants of a based space X are the homotopy groups de-

noted πn(X) and defined for all integers n ≥ 0. These have the property that if f : X → Y

is a continuous map of spaces then we have an induced map f∗ : πn(X) → πn(Y ) in a

way which respects composition. Thus if X is homotopy equivalent to Y then we have

induced isomorphisms πn(X) ∼= πn(Y ) for all n. If we exclude somewhat pathological ex-

amples the converse statement is true by the Whitehead theorem and thus the homotopy

groups provide a method to prove a continuous map is a homotopy equivalence. Unfor-

tunately, the homotopy groups are extremely difficult to compute and even for simple

spaces such as n-dimensional spheres some of the homotopy groups are still unknown.

The computation of the homotopy groups of spheres is in some sense the holy grail of

algebraic topology.

The homology groups of a space X are much more computable homotopy invariants

denoted by Hn(X) and defined for all integers n ≥ 0. Just as for the homotopy groups

maps of spaces induce maps of homology groups in a manner which is compatible with

the composition. There are many powerful results which make such groups amenable

to calculation and given a combinatorial expression of X we have efficient algorithms

for computing the homology groups. Moreover, the homology groups are sufficient to

answer many basic questions in algebraic topology. As an example, consider the problem
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of finding a retraction of the solid n-dimensional ball Dn onto its boundary Sn−1. That is

to find a continuous map r : Dn → Sn−1 such that Sn−1 ↪−→ Dn r−→ Sn−1 is the identity on

Sn−1. It is straightforward to compute that Hn−1(Dn) ∼= 0 and Hn−1(Sn−1) ∼= Z. Thus

if such a retraction were to exist then the identity map on the integers must factorise

via zero, an impossibility.

Despite many uses, homology is not a complete invariant; there exist non-homotopy

equivalent spaces which have isomorphic homology groups. Consider the torus S1 × S1

and the wedge of spheres S2 ∨ S1 ∨ S1. Computing homology we have the following

result.

Hn(S1 × S1) ∼= Hn(S2 ∨ S1 ∨ S1) ∼=


Z n = 0, 2

Z× Z n = 1

0 otherwise.

However, the spaces S1×S1 and S2 ∨S1 ∨S1 are not homotopy equivalent as we would

intuitively expect.

The singular cohomology groups Hn(X) are defined in a categorically dual sense to

the homology groups and in particular nice cases are just the linear duals of the ho-

mology groups. Not only are they also easily computable, they admit cup products

or multiplications Hn(X) × Hm(X) → Hn+m(X) making the collection of cohomol-

ogy groups H∗(X) into a graded (commutative, unital) ring. Moreover, these maps

are natural with respect to X and thus continuous maps f : X → Y induce maps of

graded rings f∗ : H∗(Y ) → H∗(X). Since a map of graded rings is at least a map

of groups in each dimension, we expect this extra structure to strengthen our invari-

ant. Computing the cohomology rings for the torus and our wedge of spheres we have

H1(S1 × S1) ∼= H1(S2 ∨ S1 ∨ S1) ∼= Z×Z. Letting α and β denote generators for Z×Z
then in H∗(S2 ∨ S1 ∨ S1) we have αβ = 0, but in H∗(S1 × S1) we have αβ = γ, a

generator for H2(S1 × S1) = Z. Hence these two spaces are not homotopy equivalent.

This is the first example we meet of our general motivation: the more algebraic structure

we can pack into an invariant in a natural fashion, the stronger it becomes.

Abstracting some key properties of singular cohomology into a categorical setting we

obtain the definition of a generalised cohomology theory. It turns out that many other

important invariants in algebraic topology naturally fit into this framework. We work

with “Quillen’s homotopy category” Ho which will exclude the pathological examples

alluded to earlier and can be taken to consist of spaces X which are weakly homotopy

equivalent to CW complexes and homotopy classes of continuous maps.
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Definition 1. A (generalised) cohomology theory is a sequence of abelian group val-

ued contravariant functors En(−) : Ho → Ab for each n ∈ Z which satisfy properties

known as the Eilenberg-Steenrod axioms. We say E∗(−) is multiplicative if it naturally

takes values in (commutative, unital) E∗-algebras where E∗ = E∗(pt) is known as the

coefficient ring of E∗(−).

In addition to singular cohomology, familiar examples of multiplicative cohomology the-

ories include real and complex topological K-theory, the Morava K-theories, complex

cobordism, and many others. We shall henceforth assume all our cohomology theories

are multiplicative. Continuing our theme of studying additional natural structure of our

invariants leads to the notion of cohomology operations, a particular ubiquitous form of

structure associated to a cohomology theory.

Definition 2. Let E∗(−) be a cohomology theory. An (unstable) cohomology operation

is a natural transformation r : U ◦ En(−) → U ◦ Em(−) for some n,m ∈ Z where U

denotes the forgetful functor Ab→ Set. Explicitly, for each space X we have a set map

rX : En(X) → Em(X) such that if f : X → Y is a map of spaces, then the following

diagram commutes.

En(Y ) Em(Y )

En(X) Em(X)

rY

f∗ f∗

rX

For brevity, we shall denote a cohomology operation r : En(−) → Em(−) and leave it

implicit that we are viewing En(−) and Em(−) as set-valued functors.

Familiar examples of cohomology operations are the Steenrod squares Sqn : H∗(−;F2)→
H∗+n(−;F2) for singular cohomology with coefficients in F2, the field with two elements.

With this extra structure we can distinguish some non-homotopy equivalent spaces which

have isomorphic cohomology rings. For example, consider the reduced suspension of

the real projective plane ΣRP 2 and the wedge of spheres S2 ∨ S3. The singular F2-

cohomology rings of these spaces are both 1-dimensional vector spaces in cohomological

dimensions 0, 2 and 3 and trivial in other dimensions. Moreover, both cohomology rings

have no non-trivial products. However, if we let α, β denote the canonical basis element

in dimensions 2 and 3 respectively, then we have Sq1(α) = β in H∗(ΣRP 2;F2) but

Sq1(α) = 0 in H∗(S2∨S3;F2) and thus by naturality of the operations we see that these

spaces cannot be homotopy equivalent.

The Steenrod squares have a very special property, they commute with the suspension

isomorphism in the sense that ΣSqn(x) = Sqn(Σx) for all x ∈ H∗(X). Such operations
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are known as stable cohomology operations and in singular cohomology it turns out

that all unstable cohomology operations are generated by stable operations in a suitable

context. However, in general we have truly unstable operations such as the λ-operations

in topological K-theory which do not arise naturally from stable operations.

As we have seen, the unstable cohomology operations are a useful piece of structure

on our cohomology theories and utilising these increases the strength of our invariants.

As a consequence, it seems prudent to study the collection of all unstable cohomology

operations. By a famous theorem of E.H. Brown, generalised cohomology theories can

be represented by Ω-spectra and this leads to a concise way of discussing cohomology

operations.

Definition 3. An Ω-spectrum E is a sequence of based spaces En for n ∈ Z together

with homotopy equivalences ΩEn+1 ' En where Ω denotes the loop space functor. We

say E is a ring spectrum if it is equipped with a unital multiplication. In this case, we

have induced maps on the representing spaces En × Em → En+m.

Theorem 4 (Brown’s representability theorem). Any graded cohomology theory E∗(−)

is represented in Ho by an Ω-spectrum E in the sense that we have universal elements

ιn ∈ En(En, o) ⊆ En(En) and isomorphisms Ho(X,En) ∼= E∗(X) given by f 7→ f∗ιn

for all n. Moreover if E∗(−) is multiplicative then E is a ring spectrum.

Brown’s representability theorem together with Yoneda’s lemma allows us to view a

cohomology operation in the following equivalent ways, and we shall frequently pass

between these.

1. As a cohomology operation r : En(−)→ Em(−).

2. As a cohomology class rιn ∈ Em(En).

3. As a representing map rU : En → Em in Ho.

As a consequence, understanding the collection of the cohomology operations is tan-

tamount to understanding the bigraded object E∗(E•). This object is very highly

structured. Not only is each E∗(En) naturally a graded E∗-algebra, but the repre-

senting spaces En of our cohomology theory are equipped with corresponding maps

En × En → En and En × Em → En+m.

In nice cases additional structure on a space X induces additional structure on the

cohomology E∗(X). For example, the diagonal map ∆: X → X × X induces a map
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E∗(X × X) → E∗(X). In a multiplicative cohomology theory, we have an external

product map E∗(X) ⊗E∗ E∗(X) → E∗(X × X). The cup product multiplication on

E∗(X) is given by the following composition.

E∗(X)⊗E∗ E∗(X)→ E∗(X ×X)→ E∗(X)

Now suppose X is an H-space with multiplication µ : X × X → X. For example

X = En ' ΩEn+1 with µ given by composition of loops. Now looking at the map

on cohomology induced by µ we have the following maps.

E∗(X)
µ∗−→ E∗(X ×X)←− E∗(X)⊗E∗ E∗(X)

Hence we see that we can only equip E∗(X) with additional internal structure from µ in

this way when the external product map is an isomorphism. In this case, the external

product map is known as a Künneth isomorphism but sadly this very rarely holds.

To cope with this lack of Künneth isomorphisms, the historical approach to studying co-

homology operations is to instead study the homology of the representing spaces E∗(E•)

and leads to the notion of homology cooperations. The advantage of this approach is

that homology groups are in general significantly smaller than cohomology groups and

thus we much more frequently have a Künneth isomorphism in homology. Moreover, in

sufficiently nice cases, the collection of cohomology operations is the linear dual of the set

of homology cooperations and thus these objects encode precisely the same information.

It has been known since the work of Ravenel and Wilson [40] in 1976 that the homology

cooperations naturally admit the structure of a Hopf ring. The theory of Hopf rings is

very well developed [54] and is amenable to computations. In particular, Hopf rings can

be neatly expressed in terms of generators and relations and the Hopf ring of homology

cooperations has been calculated for many important cohomology theories. A summary

of these results can be found in [15].

A fundamental piece of structure on the set of cohomology operations is composition.

Given two operations r : Ek(−) → Em(−) and s : En(−) → Ek(−), composition yields

an operation r ◦ s : En(−)→ Em(−). More generally, the cohomology operations act on

the cohomology of a space X in the sense that if x ∈ Ek(X) then r(x) ∈ Em(X) and

we can realise the composition via the relation (r ◦ s)ιn = r(sιn) ∈ Em(En). However, a

Hopf ring contains no information which is naturally dual to the notion of composition

and thus we cannot see arguably the most important piece of the structure.

A 1995 paper of Boardman, Johnson and Wilson [15] attempts to rectify this issue.

In this work, they attempt to understand the action Em(En) × En(X) → Em(X) by
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studying the adjoint form E∗(X)→ C(E∗(E•), E∗(X)) where C is a suitable category of

E∗-algebras. Under this point of view, the functor C(E∗(E•),−) forms a comonad on

C and cohomology algebras together with the action of the operations can be realised

as coalgebras for this comonad. In some sense this completes the study of cohomology

operations as it gives a compact categorical representation that encodes all the structure

we have. Unfortunately, this definition is somewhat opaque and does not lend itself to

computations. To combat this, Boardman et al. unpack this comonadic information by

equipping the homology cooperations with the structure of an enriched Hopf ring : the

augmentation of a Hopf ring by additional structure encoding the composition. Sadly,

this additional structure is not internal to the homology cooperations and in particular

we cannot express the entire enriched Hopf ring neatly in the language of generators and

relations.

The more direct approach of studying the actions Em(En) × En(X) → Em(X) was

abandoned by Boardman et al. due to the perceived lack of a monoidal structure which

would suitably encode the non-linearity of this action. However there is a somewhat

esoteric algebraic gadget which encodes precisely this information.

Abstractly, the collection of cohomology operations is an object which acts non-linearly

on the cohomology algebras E∗(X). In the same way that k-algebras are precisely the

structure which act linearly on k-modules, we can ask what structure acts non-linearly

on k-algebras. It turns out that in the ungraded setting this answer has been known in

the universal algebra world since Tall and Wraith’s work [50] in 1970. In 2005, Borger

and Wieland [17] gave a more detailed treatment of such objects and coined the term

plethories. A 2009 paper of Stacey and Whitehouse [43] generalised the notion of a

plethory to the graded, topologised setting and show that this object naturally encodes

the structure of the cohomology operations. Moreover, the action of the cohomology

operations on a cohomology algebra can be encoded by a map E∗(E•)�E∗(X)→ E∗(X)

where � is a non-linear analogue of the tensor product.

There are technical difficulties that arise when constructing plethories in a topological

setting. Stacey and Whitehouse take an aggressive approach to this problem, completing

all the cohomology algebras. While this allows the theory to work smoothly, in general

taking the completion of a cohomology algebra destroys information; we are unable

to detect cohomology classes known as phantoms. In [11], Bauer takes a more subtle

approach, working over categories of pro-algebras. Following this strategy to its natural

conclusion leads to the notion of a formal plethory which encodes all the information

of a plethory but can also detect phantoms. However, the extra complexity of formal
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plethories makes computations difficult. Moreover, in many cases of interest we can

prove that no phantoms exist and so these two approaches encode the same information.

In the first chapter of this thesis, I give a detailed exposition of the theory of plethories

in an abstract algebraic setting, building on the work of Tall and Wraith [50] and Borger

and Wieland [17]. The main aim of my work is to be able to perform calculations with

plethories and with this in mind I develop the computational theory of plethories. In

particular, Proposition 1.2.16 gives an explicit formulation of the structure maps on the

composition product and in Section 1.3.4 I detail the duality between enriched Hopf rings

and plethories. In Section 1.4, I extend the definitions and basic results to the graded

context, which has applications to the study of cohomology operations.

The second chapter extends the plethystic framework to a topological context and intro-

duces the technical machinery necessary for formulating cohomology operations in this

context. Theorem 2.1.59 gives a direct proof of an abstract result of Stacey and White-

house [43] which makes precise how the cohomology operations admit the structure of

a plethory which acts on cohomology algebras. We then turn our attention to topologi-

cal properties such as the suspension isomorphisms and complex orientation and detail

the ramifications these properties have for our plethories. In particular, Theorem 2.2.16

illustrates how the looping of operations behaves with respect to the plethystic struc-

ture and Theorem 2.3.30 details the effects of complex orientation on the plethory of

cohomology operations.

In the final chapter I compute examples of the plethory of cohomology operations for

singular cohomology with coefficients over Q (Theorem 3.1.4), Fp (Theorem 3.1.25 and

Theorem 3.1.55) and for topological complex K-theory (Theorem 3.2.34). In the process

we illustrate the applications of the computational framework developed in the first

chapter. In Section 3.3, I give partial results for the computation of the plethory of

cohomology operations for the Morava K-theories and detail potentially fruitful lines of

attack for future calculations.
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Chapter 1

Abstract plethories

Plethories are fairly esoteric algebraic objects, but arise in a very natural context. Fix

a commutative ring k. In the same way we realise commutative k-algebras as precisely

the structure that acts linearly on k-modules, we can realise k-plethories as precisely

the structure that acts non-linearly on commutative k-algebras. These objects were first

studied by Tall and Wraith [50] in the case k = Z and in the case of general k by Borger

and Wieland [17].

To best understand the structure of a plethory, we begin by studying representable

endofunctors on the category of commutative k-algebras. This category admits a non-

symmetric monoidal structure, corresponding to the composition of endofunctors and

plethories are monoids in this category. I provide a detailed exposition of this construc-

tion, expanding on the work of [50] and [17] and introduce new results which will ease

computations such as Proposition 1.2.16.

In the next section, we study the theory of plethories. I elaborate on many constructions

of both [50] and [17] and introduce many new results with a focus on being able to perform

computations. For example, in Section 1.3.4 I develop a purely algebraic description of

an enriched Hopf ring introduced in [15] to study homology cooperations and detail the

duality between such objects and plethories.

Finally, I detail the extension of plethories to the graded setting where we will be work-

ing for our main applications. However, much of this grading is superficial and it is

more illuminating to study the theory in the ungraded case before highlighting the dif-

ferences that arise in the graded context. It is my hope this chapter will provide a good

introduction to the subject for those interested in both the graded and ungraded settings.

Throughout this thesis, all rings and algebras will be assumed to be commutative and

unital and all coalgebras cocommutative and counital unless otherwise specified. When

9



this will not cause confusion, unadorned tensor products will be assumed to be taken

over the obvious ground ring.

1.1 Algebraic objects in categories

Consider the elementary definition of an abelian group: a set G with a specified unit

element e ∈ G such that for all elements x, y ∈ G there exists a product xy ∈ G and an

inverse x−1 ∈ G satisfying for all x, y, z ∈ G,

1. xy = yx,

2. (xy)z = x(yz),

3. xx−1 = x,

4. ex = x.

We can express this categorically by saying G is a set G equipped with set maps µ : G×
G→ G, ω : {∗} → G and ν : G→ G, such that the following diagrams of sets commute.

G×G G×G

G
µ

τ

µ

G×G×G G×G

G×G G

1×µ

µ×1

µ

µ

G G×G

G G×G

ω◦t

∆

1×ν
µ

{∗} ×G G×G

G

∼=

ω×1

µ

(1.1)

where ∆: G → G × G is the diagonal map x 7→ (x, x), t : G → {∗} the unique map

x 7→ ∗, and τ : G×G→ G×G the twist map (x, y) 7→ (y, x).

If G and H are abelian groups then a group morphism is a map f : G → H such that

f(xy) = f(x)f(y), f(x−1) = f(x)−1, and f(e) = e for all x, y ∈ G. The latter two

properties are a consequence of the first, but this will not always be true in a more general

context. Equivalently a group morphism is a map such that the following diagrams of

sets commute.

G×G H ×H

G H

µ

f×f

µ

f

G H

G H

ν

f

ν

f

T

G H

ω ω

f

(1.2)
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We can now generalise the definition of an abelian group from the category of sets to

arbitrary categories with finite products, and this methodology will work for a wide class

of algebraic objects, not just abelian groups.

1.1.1 Group objects

Throughout the next 3 sections suppose C is a category with finite products × and a

terminal object T .

Definition 1.1.1. We define an abelian group object in C to be an object G ∈ C together

with the following morphisms.

µ : G×G→ G

ω : T → G

ν : G→ G.

satisfying the commutative diagrams expressing the associativity, commutativity, inverse

and unit axioms (1.1).

A morphism of abelian group objects in C is a morphism f : G1 → G2 which commutes

with the structure maps (1.2).

Example 1.1.2. The category of abelian groups is the category of abelian group objects

in Set. The terminal object in Set is the one point set {∗} and the product is the

Cartesian product. We typically write µ(x, y) = x+ y, ω(∗) = 0 and ν(x) = −x.

Example 1.1.3. In Coalgk, the category of cocommutative counital coalgebras over a

ring k, the terminal object is k and the product is the tensor product ⊗k. The category

Hopfk of bicommutative Hopf algebras over k is the category of abelian group objects

in Coalgk. If H is an abelian group object in Coalgk then µ : H ⊗k H → H is the

multiplication, η : k → H the unit and ν : H → H the antipode.

Example 1.1.4. The category of abelian topological groups is the category of abelian

group objects in Top, the category of topological spaces and continuous maps.

1.1.2 Ring and algebra objects

Definition 1.1.5. A ring object in C is an abelian group object R together with two

additional morphisms

φ : R×R→ R

η : T → R

11



satisfying relations expressing associativity, unit and the two distributive laws. A mor-

phism of ring objects is a morphism of group objects which commutes with φ and η.

Following the notation of Boardman [14], we now introduce the analogue of a k-linear

structure in our category C.

Definition 1.1.6. A k-module object in C is an abelian group object M together with

a group object morphism

ξλ : M →M

for each λ ∈ k such that ξ : k → C(M,M), λ 7→ ξλ is a map of rings. The ring structure

on C(M,M) has addition given by

f + g : M
∆−→M ×M f×g−−→M

µ−→M

and multiplication given by composition. A morphism of k-module objects is a morphism

of abelian group objects which commutes with each ξλ.

Definition 1.1.7. A k-algebra object in C is a ring object A which is also a k-module

object such that the two structures are related by the following commutative diagram.

A×A

AA×A A×A

A

ξλ× 1
φ

1× ξλ

φ
ξλ

φ

(1.3)

A morphism of k-algebra objects is a morphism of ring objects which is also a morphism

of k-module objects.

It will often be useful to consider the composition ηRλ = ξλ ◦ η which yields a map

ηR : k → C(T,A) given by λ 7→ ηRλ. The following commutative diagram shows we can

recover ξ from ηR as the composition ξλ = A ∼= T ×A ηRλ×1−−−−→ A×A φ−→ A.

T ×A A×A A×A

A A

η×1

∼=
φ

ξλ×1

φ

ξλ

(1.4)

Proposition 1.1.8. The map ηR : k → C(T,A) defined by λ 7→ ξλ ◦ η is a map of rings,

where the ring structure on C(T,A) is induced by the ring object structure on A.
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Proof: Since (η × η) ◦ ∆ = ∆ ◦ η, we have ηR(λ + λ′) = ηRλ + ηRλ
′ in C(T,A). The

statement ηR(λλ′) = (ηRλ)(ηRλ
′) in C(T,A) is equivalent to commutativity of the outer

rectangle of the following diagram.

T A A A

T × T A×A A×A A×A

η

∆

ξλ ξλ′

η×η ξλ×1

φ

1×ξλ′
φ φ

The first inner square commutes by the unital property, and the latter two commute by

(1.3). Therefore the outer rectangle commutes. Finally, by definition, ηR1 = η which is

the unit in C(T,A). Hence ηR is a ring map.

We reinterpret what it means to be a morphism of k-algebra objects with respect to this

alternative structure map ηR.

Proposition 1.1.9. A morphism f : A→ A′ of ring objects is a morphism of k-algebra

objects if and only if the following diagram of rings commutes.

k C(T,A)

C(T,A′)

ηR

ηR C(T,f) (1.5)

Proof: Suppose f is a morphism of k-algebra objects. We have f◦ξλ◦η = ξλ◦f◦η = ξλ◦η
for all λ ∈ k. Hence f ◦ ηRλ = ηRλ and thus (1.5) commutes. Conversely, if (1.5)

commutes then using (1.4) we see f ◦ ξλ = ξλ for all λ.

1.1.3 General algebraic objects

All these constructions naturally fit into an abstract framework known as general algebra

or universal algebra. Using this theory we can prove useful statements regarding our

various types of algebraic objects all at once. Following [14] we will be slightly lax with

the technical definitions, for a rigorous treatment close to our point of view see [43] or

for a broad overview of the subject refer to [12].

It is worth mentioning that there are two main approaches to these constructions. We

shall follow the variety of algebras method, although there is an equivalent approach

using Lawvere theories as introduced in [33] with an expository treatment in [28].

Definition 1.1.10. A variety of algebras V is a collection of operations Ω, with an arity

map n : Ω→ N and a set of identities J expressing relations between the structure maps.
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A V-algebra structure on an object A ∈ C is a collection of morphisms A×n(ω) → A for

each ω ∈ Ω which satisfy the relations expressed by J .

A morphism of V-algebra objects f : A→ B is a morphism in C such that the following

diagram commutes for all operations ω.

A×n(ω) B×n(ω)

A B

ωA

f×n(ω)

ωB

f

We denote the category of V-algebra objects in C and V-algebra morphisms by VC.

Example 1.1.11. The variety of abelian groups has 3 operations µ, η, σ ∈ Ω with n(µ) =

2, n(η) = 0, n(σ) = 1. The identities in J are the axioms encoding the associativity,

commutativity, inverse and unit properties (1.1).

Lemma 1.1.12 ([14, Lemma 7.6]). Let A be a V-algebra object in C. If F : C → D
preserves products then F induces to a functor VF : VC → VD.

Corollary 1.1.13 ([14, Lemma 7.7]). Let A be an object in C. There is a bijec-

tion between V-algebra object structures on A and lifts of the contravariant functor

C(−, A) : C → Set represented by A to a functor C → VSet.

Explicitly, the correspondence works is given as follows. Given an n-ary operation

ω : A×n → A the corresponding operation C(B,A)×n → C(B,A) sends (f1, . . . , fn) to

the composition

B
∆−→ B×n

f×n−−→ A×n
ω−→ A.

Conversely, given an n-ary operation ω : C(B,A)×n → C(B,A), the corresponding op-

eration A×n → A is given by ω(π1, . . . , πn) ∈ C(A×n, A) where πi ∈ C(A×n, A) is the

canonical projection onto the i-th factor.

1.1.4 Coalgebraic objects

There is a dual notion of coalgebraic objects in arbitrary categories. We construct

these simply by ‘turning around the arrows’, replacing products with coproducts and

exchanging terminal objects for initial objects.

In this section suppose C is a category with finite coproducts ⊗ and an initial object I.
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Definition 1.1.14. Let V = (Ω, n, J) be a variety of algebras. A co-V-algebra object in

C is an object A together with co-operations

α : A→ A⊗n(w)

satisfying the categorical duals of the relations expressed in J .

A morphism of co-V-algebra objects is a morphism such that categorical duals of the

diagrams for a morphism of V-algebra objects commute for all co-operations α.

We denote the category of co-V-algebra objects in C and co-V-algebra morphisms by

VcC.

This produces definitions of co-(abelian group), co-ring and co-k-algebra objects in C.

Example 1.1.15. The category Hopfk of (bicommutative) Hopf algebras over k is the

category of co-(abelian group) objects in the category of (commutative) k-algebras Algk.

We give the dual results to Lemma 1.1.12 and Corollary 1.1.13.

Lemma 1.1.16. Let A be a co-V-object in C. If F : C → D preserves coproducts then F

induces a functor VcC → VcD.

Corollary 1.1.17. Let A be an object of C. There is a bijection between co-V-algebra

object structures on A and lifts of the covariant functor C(A,−) : C → Set represented

by A to a functor C → VSet.

1.2 Birings, plethories and P -algebras

A k-algebra is precisely the structure which acts linearly on k-modules. By this state-

ment, we mean that for a finite k-module M , Modk(M,M) naturally has the struc-

ture of a non-commutative k-algebra where addition is pointwise and multiplication

is given by composition. An action of a k-algebra A on M is a map of k-algebras

φ : A→Modk(M,M). If N is another k-module with an action of A, then a k-module

map f : M → N respects the action if the following diagram commutes for all a ∈ A.

M M

N N

φa

f f

φa
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We denote the category of k-modules equipped with an action of A by ModA. We can

identify A with Nat(U,U), the set of natural transformations from the forgetful functor

U : ModA →Modk to itself: we have an isomorphism of k-modules ModA(A,M) ∼= M

for all k-modules M and so by the Yoneda embedding Nat(U,U) ∼= ModA(A,A) ∼= A.

The above discussion relied on us having prior knowledge of the structure of a k-algebra.

Recall that a k-k′-bimodule M naturally represents a functor Modk(M,−) : Modk →
Modk′ . Hence, given a k′-k′′-bimodule N it is natural to consider the composition

Modk
Modk(M,−)−−−−−−−−→Modk′

Modk′ (N,−)
−−−−−−−−→Modk′′ .

This functor is represented by the k-k′′-bimodule M⊗k′N . Now ⊗k makes the category of

k-k-bimodules monoidal and k-algebras are precisely monoids in this category. Moreover,

if A is a k-algebra then A ⊗k − forms a monad on Modk and A-modules are precisely

Eilenberg-Moore algebras for this monad. In other words, an A-module is a k-module

equipped with an associative unital k-module map A⊗M →M .

We wish to generalise this to the setting of non-linear actions on commutative k-algebras.

We consider representable functors Algk(B,−) : Algk → Algk′ . It turns out that the

composition of such a functor with another functor Algk′(B
′,−) : Algk′ → Algk′′ is

representable by a non-linear analogue of the tensor product, denoted B �k′ B′. The

functor �k makes the category of representable functors Algk → Algk monoidal and

a k-plethory is a monoid in this category. If P is a k-plethory, then P �k − forms a

monad on Algk and we denote the category of Eilenberg-Moore algebras for this monad

by AlgP .

By an operation on a P -algebra, we mean a natural transformation from U : AlgP → Set

to itself. It turns out this functor is represented by P and so by the Yoneda embedding

we have natural isomorphisms Nat(U,U) ∼= AlgP (P, P ) ∼= P . Therefore viewing r ∈ P
as a natural transformation U → U , for each P -algebra A we have a map P → Set(A,A)

given by r 7→ rA. Hence we have realised k-plethories as precisely the structure which

acts non-linearly on k-algebras.

Plethories were first introduced in 1970 by Tall and Wraith [50] under the name of a

biring triple. They were given a more modern treatment in 2005 by Borger and Wieland

[17]. In this section I will give a more detailed exposition of the basic definitions and

properties of plethories. Along the way I will introduce some new results with a focus

on being able to perform computations.
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1.2.1 Birings

As discussed, we would like to study representable functors Algk → Algk′ for commu-

tative rings k and k′. By Corollary 1.1.17 this is equivalent to studying the co-k′-algebra

objects in the category of k-algebras.

Definition 1.2.1. Define the category of k-k′-birings Biringk,k′ to be the category of

co-k′-algebra objects in Algk. Explicitly, a k-k′-biring is a k-algebra (B,φ, η) together

with the following k-algebra morphisms.

∆+ : B → B ⊗B (co-addition)

ε+ : B → k (co-zero)

σ : B → B (co-additive inverse)

∆× : B → B ⊗B (co-multiplication)

ε× : B → k (co-unit)

and for each λ ∈ k′,

γλ : B → B (co-k′-linear structure)

satisfying the relations for a co-k-algebra object, i.e. (B,φ, η,∆+, ε+, σ) is a bicommuta-

tive Hopf algebra, ∆× is coassociative, cocommutative with counit ε×, ∆+ co-distributes

over ∆× and the γλ respect the co-ring object structure suitably. For completeness, we

list all these relations as commutative diagrams in Appendix A.

By the dual result of Proposition 1.1.8 we can encode the co-k′-linear structure as a map

of rings

β : k′ → Algk(B, k)

where βλ = ε× ◦ γλ. The ring structure on Algk(B, k) is induced by the co-ring object

structure on B. We shall use this structure map more frequently than γ.

A map of k-k′-birings is a map of k-algebras f : B → B′ respecting the additional

structure in the sense that the diagrams in Appendix A commute.

Notation 1.2.2. We shall make frequent use of Sweedler notation by writing

∆+(b) =
∑
(b)

b(1) ⊗ b(2),

∆×(b) =
∑
(b)

b[1] ⊗ b[2].
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When this will not cause confusion (for example when working with linear maps) we shall

omit the summation symbol. We shall write ∆+
(n) for the iterated co-addition B → B⊗n

and similarly ∆×(n) for the iterated co-multiplication.

The structure maps of the co-k′-algebra object may appear somewhat unnatural. The

following example illustrates how these can arise by considering non-linear maps between

two commutative rings.

Example 1.2.3. Let k and k′ be commutative rings, and suppose k′ is finite. Consider

B = Set(k′, k). Since k is a k-algebra object in Set, B is naturally a k-algebra by

Corollary 1.1.13. Now k′ is finite and so we have an isomorphism Set(k′ × k′, k) ∼=
Set(k′, k) ⊗ Set(k′, k). Hence by Lemma 1.1.16, B is naturally a k-k′-biring. The

structure maps are given as by

∆+ : Set(k′, k)
Set(+,k)−−−−−→ Set(k′ × k′, k) ∼= Set(k′, k)⊗ Set(k′, k)

ε+ : Set(k′, k)
Set(0,k)−−−−−→ Set({∗} , k) ∼= k

σ : Set(k′, k)
Set(−,k)−−−−−→ Set(k′, k)

∆× : Set(k′, k)
Set(×,k)−−−−−→ Set(k′ × k′, k) ∼= Set(k′, k)⊗ Set(k′, k)

ε× : Set(k′, k)
Set(1,k)−−−−−→ Set({∗} , k) ∼= k

βλ : Set(k′, k)
Set(λ·,k)−−−−−→ Set(k′, k)

ε×−→ k

and the relations between these maps are satisfied as a result of the relations between the

structure maps on k′. The finiteness assumption is necessary so that Set(−, k) preserves

coproducts. We are able to relax this condition later when we introduce topological

plethories.

The view of birings as representable functors gives us more examples of birings, and we

can use Corollary 1.1.17 to compute the corresponding structure maps.

Example 1.2.4. The initial k-k′-biring is k with the identity as each structure map. This

represents the zero functor sending each k-algebra to the k′-algebra with one element.

Example 1.2.5. Consider the identity functor on Algk. This is represented by the
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k-k-biring, I with underlying k-algebra, k[ι]. The structure maps are given by

∆+(ι) = 1⊗ ι+ ι⊗ 1

ε+(ι) = 0

σ(ι) = −ι

∆×(ι) = ι⊗ ι

ε×(ι) = 1

βλ(ι) = λ.

Example 1.2.6. Consider the functor A 7→ A[[t]], taking a k-algebra to the k-algebra of

power series over a single variable. This is represented by the k-algebra B = k[x0, x1, . . . ].

The isomorphism θ : Algk(k[x0, x1, . . . ], A) ∼= A[[t]] is f 7→
∑
f(xi)t

i and the inverse is

θ−1(
∑
ait

i)(xn) = an. Now the coaddition on B is the map i1 + i2 ∈ Algk(B,B ⊗ B)

which we can compute by noting

(i1 + i2)(xn) = θ−1(θ(i1) + θ(i2))(xn)

= θ−1
(∑

(xi ⊗ 1)ti +
∑

(1⊗ xn)ti
)

(xn)

= θ−1
(∑

(xi ⊗ 1 + 1⊗ xi)ti
)

(xn)

= 1⊗ xn + xn ⊗ 1.

Arguing similarly for the other structure maps we have

∆+(xn) = 1⊗ xn + xn ⊗ 1

ε+(xn) = 0

σ(xn) = −xn

∆×(xn) =
∑
i+j=n

xi ⊗ xj

ε×(xn) =

{
1 n = 0

0 otherwise

βλ(xn) = λ.

Example 1.2.7. The k-algebra k[t, t−1] does not admit the structure of a biring since

Algk(k[t, t−1], A) = A×, the set of invertible elements of A, and this does not naturally

admit a ring structure. For example, there is no choice for the zero element.

Definition 1.2.8. Let B and B′ be k-k′-birings. We define their tensor product to be

the biring with underlying k-algebra B⊗B′ and the structure maps defined analogously

to the structure maps in the tensor product of Hopf algebras. This is the coproduct in

Biringk,k′
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1.2.2 The composition product

Let B be a k-k′-biring and A a k′-algebra. Consider the composition of the functors

represented by these objects

Algk
Algk(B,−)−−−−−−−→ Algk′

Algk′ (A,−)
−−−−−−−→ Set.

We now define the non-linear analogue of the tensor product which will represent this

composition.

Definition 1.2.9. Define the composition product �k′ : Biringk,k′ ×Algk′ → Algk on

objects by setting B �k′ A to be the free k-algebra on the generators

{b� a : b ∈ B, a ∈ A}

quotiented by the ideal generated by relations

(b1 + b2)� a = b1 � a+ b2 � a

(b1b2)� a = (b1 � a)(b2 � a)

λ� a = λ

b� (a1 + a2) =
∑
(b)

(b(1) � a1)(b(2) � a2)

b� (a1a2) =
∑
(b)

(b[1] � a1)(b[2] � a2)

b� λ = βλ(b).

For morphisms (f, g) : (B1, A1)→ (B2, A2) we define f � g to be the algebra map

B1 �A1 → B2 �A2

(b� a) 7→ f(b)� g(a).

In the linear setting, evaluation naturally gives a map of k-modules Modk(M,N) ⊗
M → N . Similarly, in the non-linear setting evaluation gives a map of k-algebras

Set(k′, k)� k′ → k, r � λ 7→ r(λ) where Set(k′, k) is the k-k′-biring of Example 1.2.3.

Recall the tensor-hom adjunction: for a k-k′-bimodule M the functor M⊗k′− : Modk′ →
Modk is left adjoint to Modk(M,−) : Modk → Modk′ . We have the following non-

linear analogue.
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Proposition 1.2.10. Let B be a k-k′-biring. The functor B � − : Algk′ → Algk is

left adjoint to the (lift of the) functor represented by B, Algk(B,−) : Algk → Algk′.

Moreover, for a k-algebra A and k′-algebra A′ the hom-set bijection is given by

Algk(B �A′, A) ∼= Algk′(A
′,Algk(B,A))

f 7→
[
a′ 7→

[
b 7→ f(b� a′)

]]
[
b� a′ 7→ g(a′)(b)

]
←[ g.

Proof: It is straightforward to check the given maps are well-defined, mutually inverse

and are natural in A and B.

Corollary 1.2.11. For a k-k′-biring B and a k′-algebra A′, the functor Algk
Algk(B,−)−−−−−−−→

Algk′
Algk′ (A

′,−)
−−−−−−−−→ Set is represented by B �A′.

Proof: For a k-algebra A, we have Algk(B �A′, A) ∼= Algk′(A
′,Algk(B,A)).

This adjunction allows us to easily compute some examples of the composition product.

Example 1.2.12. Let B be a k-k′-algebra. For all k-algebras A, we have

Algk(B � k′[x], A) ∼= Algk′(k
′[x],Algk(B,A)) ∼= Algk(B,A)

Thus B � k′[x] ∼= B.

Since B � − is a left adjoint, it preserves colimits. It will prove useful for calculations

to compute some of these isomorphisms explicitly.

Proposition 1.2.13. For a k-k′-biring, B, and k′-algebras A, A′ we have the following

isomorphisms of k-algebras.

B � (A⊗A′) ∼= (B �A)⊗ (B �A′)

B � k′ ∼= k

These isomorphisms are determined on the algebra generators by

b� (a⊗ a′) 7→ (b[1] � a)⊗ (b[2] � a′)

(b� (a⊗ 1))(b′ � (1⊗ a′))←[ (b� a)⊗ (b′ � a′)

b� λ′ 7→ βλ′(b)

λ←[ λ.
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Proof: From the standard proof of left adjoints preserving coproducts, we have the

following isomorphisms.

Algk(B � (A⊗A′), X) ∼= Algk(A⊗A′,Algk(B,X))

∼= Algk(A,Algk(B,X))⊗Algk(A
′,Algk(B,X))

∼= Algk(B �A,X))⊗Algk(B �A′, X)

∼= Algk((B �A)⊗ (B �A′), X).

To obtain the isomorphism (B�A)⊗ (B�A′)→ B� (A⊗A′), we set X = B� (A⊗A′)
and track the image of the identity map through this composition. The appearance of

∆× in the reverse direction comes from the ring structure on Algk(B,X). The initial

object case is similar.

Given a k-k′-bimodule M and a k′-module N , the tensor product M ⊗ N is a priori a

k-module. However if N is not just a k′-module but a k′-k′′-bimodule, then M ⊗N is a

k-k′′-bimodule. Similarly, we have additional structure on B �B′ when B′ is not only a

k′-algebra, but a k′-k′′-biring.

Proposition 1.2.14. The composition product −�− : Biringk,k′ ×Algk′ → Algk lifts

to a functor Biringk,k′ ×Biringk′,k′′ → Biringk,k′′.

Proof: Let B be a k-k′-biring and B′ be a k′-k′′-biring. Using our adjunction we see

Algk(B �B′,−) ∼= Algk′(B
′,Algk(B,−)) ∼= Algk′(B

′,−) ◦Algk(B,−).

Hence Algk(B � B′,−) lifts to a functor Algk → Algk′′ and so B � B′ admits the

structure of a k-k′′-biring.

Corollary 1.2.15. Let B be a k-k′-biring, B′ a k′-k′′-biring and A a k-algebra. The

hom-set bijection Algk(B � B′, A) ∼= Algk′(B
′,Algk(B,A)) is an isomorphism of k′′-

algebras.

Proof: The k′′-algebra structure on Algk(B � B′, A) is induced by the co-k′′-algebra

object structure on B�B′ which is in turn induced by the co-k′′-algebra object structure

on B′.

This abstract approach is very succinct but obfuscates the structure of the biring B�B′

which will be useful for performing calculations. In the following result we explicitly

detail the structure maps on B �B′.
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Proposition 1.2.16. Let B be a k-k′-biring and B′ a k′-k′′-biring The structure maps

on the k-k′′-biring B �B′ are given by the following compositions.

∆+ : B �B′ 1�∆+

−−−−→ B � (B′ ⊗B′) ∼= (B �B′)⊗ (B �B′)

ε+ : B �B′ 1�ε+−−−→ B � k′ ∼= k

σ : B �B′ 1�σ−−→ B �B′

∆× : B �B′ 1�∆×−−−−→ B � (B′ ⊗B′) ∼= (B �B′)⊗ (B �B′)

ε× : B �B′ 1�ε×−−−→ B � k′ ∼= k

βλ : B �B′ 1�βλ−−−→ B � k′ ∼= k

Proof: Let i1, i2 be the canonical inclusions B�B′ → (B�B′)⊗(B�B′). The coaddition

on B �B′ is given by i1 + i2 in the k′′-algebra Algk(B �B′, B �B′ ⊗B �B′). Now we

have an isomorphism of k′′-algebras

θ : Algk(B �B′, (B �B′)⊗ (B �B′))
∼=−→ Algk′(B

′,Algk(B,B �B′ ⊗B �B′))

and so i1 + i2 = θ−1(θ(i1 + i2)) = θ−1(θ(i1) + θ(i2)). Here θ(i1) and θ(i2) are the maps

θ(i1) : b′ 7→ [b 7→ b� b′ ⊗ 1B�B′ ]

θ(i2) : b′ 7→ [b 7→ 1B�B′ ⊗ b� b′].

Now addition in Algk(B,B � B′ ⊗ B � B′) is induced by the coaddition on B′ and so

θ(i1) + θ(i2) is given by the composition

B′
∆+
B′−−→ B′ ⊗B′

θ(i1)⊗θ(i2)−−−−−−−→ Algk(B,B �B′ ⊗B �B′)⊗Algk(B,B �B′ ⊗B �B′)
φ−→ Algk(B,B �B′ ⊗B �B′)

where φ is the multiplication on Algk(B,B �B′ ⊗B �B′). Hence,

(θ(i1) + θ(i2))(b′) =
∑
(b′)

θ(i1)(b′(1))θ(i2)(b′(2)).

Now since the multiplication in Algk(B,B �B′ ⊗B �B′) is induced by the comultipli-

cation on B, we have

θ(i1)(b′(1))θ(i2)(b′(2))(b) =
∑
(b)

(b[1] � b′(1) ⊗ b[2] � b′(2)).
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However, we have a sum of these maps across the coaddition of b′. Suppose ∆+(b′) =
m∑
i=1

b′i(1) ⊗ b
′i
(2), and ∆+

(m)(b) =
n∑
j=1

bj(1) ⊗ b
j
(2) ⊗ · · · ⊗ b

j
(m). By the definition of addition in

Algk′(B
′,Algk(B,B �B′ ⊗B �B′)) we have

(θ(i1) + θ(i2))(b′)(b) =

n∑
j=1

m∏
i=1

∑
(bj

(i)
)

(bj(i))[1] � b′i(1) ⊗ (bj(i))[2] � b′i(2) = ∆+(b� b′).

It is straightforward to check this is the same as the composition

∆+ : B �B′ 1�∆+

−−−−→ B � (B′ ⊗B′) ∼= B �B′ ⊗B �B′.

The other structure maps are similar.

As is the case with bimodules, specialising to the case k = k′ = k′′ yields a monoidal

structure on our category. Recall the definition of I from Example 1.2.5.

Proposition 1.2.17. The composition product −�− : Biringk,k×Biringk,k → Biringk,k

is associative with unit I. Hence, (Biringk,k,�, I) is a monoidal category.

Proof: The functor represented by B�B′ is the functor represented by B composed with

the functor represented by B′. Hence the associativity of � follows from associativity

of composition. The unit condition follows from the fact that I represents the identity

functor Algk → Algk.

1.2.3 Plethories

Just as k-algebras, monoids in the category of k-k-bimodules, are precisely the struc-

tures that act linearly on k-modules; monoids in the category of k-k-birings will provide

precisely the structure that acts non-linearly on k-algebras.

Definition 1.2.18. We define the category of k-plethories Plethoryk to be the category

of monoids in Biringk,k. Explicitly, a k-plethory is a k-k-biring P together with two

additional biring morphisms

◦ : P � P → P (composition)

u : I → P (unit)

where I is the biring of Example 1.2.5 and these morphisms satisfy the following relations.

P � P � P P � P

P � P P

◦ � 1

◦
1� ◦ ◦

I � P P � P P � I

P

u� 1 1� u

∼= ∼=
◦ (1.6)
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We will write r◦s for ◦(r�s) and ι for the image u(ι). Hence, composition is associative

and satisfies ι ◦ r = r = r ◦ ι for all r ∈ P .

A morphism of k-plethories f : P → Q is a k-k-biring map such that f(r◦s) = f(r)◦f(s)

and f(ι) = ι.

The following example illustrates how composition can arise in a natural way.

Example 1.2.19. If k is finite then the k-k-biring Set(k, k) of Example 1.2.3 is naturally

a plethory with composition given by composition of maps.

Example 1.2.20. The unit object I in Biringk,k naturally admits the structure of a

k-plethory where the unit u : I → I is the identity and the composition ◦ is the natural

isomorphism I � I ∼= I given by composition of polynomials. By the definitions, I is

the initial k-plethory.

Example 1.2.21. Analogous to the tensor algebra over a k-module we can construct a

functor F : Biringk,k → Plethoryk by ‘freely adding composition’. For a k-k-biring B,

define

T�(B) =
⊗
n≥0

B�n.

The maps

B�r �B�s → B�r+s

(b1 � ...� br)� (c1 � ...� cs) 7→ b1 � ...� br � c1 � ...� cs

induce an associative map

◦ : T�(B)� T�(B) =
⊗
n≥0

B�n �
⊗
n≥0

B�n ∼=
⊗
r,s≥0

B�r �B�s →
⊗
n≥0

B�n = T�(B).

Moreover, we have the unit map

u : I = B�0 → P

For a map of k-k-birings f : B1 → B2, we have a map T�(f) : T�(B1)→ T�(B2) induced

by

B�n1
f�n−−→ B�n2 .

We can justify the analogy to the tensor algebra by noting that T� is left adjoint to the

forgetful functor U : Plethoryk → Biringk,k.
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The following result details the structure of a plethory at the level of the functor repre-

sented by the plethory.

Proposition 1.2.22. Let P be a k-k-biring. There is a bijection between k-plethory

structures on P and comonad structures on Algk(P,−) : Algk → Algk.

Proof: Suppose P is a k-plethory and let A be a k-algebra. We have natural maps

Algk(P,A) → Algk(P � P,A) ∼= Algk(P,Algk(P,A)) induced by the composition and

Algk(P,A) → Algk(I, A) ∼= A induced by the unit. Moreover, since P is a monoid

these equip Algk(P,−) with the structure on a comonad. The converse direction is

similar.

1.2.4 P -algebras

Just as we realised k-modules equipped with an action of a k-algebra A as Eilenberg-

Moore algebras for the monad A⊗k−, we will realise k-algebras equipped with an action

of a plethory as Eilenberg-Moore algebras for a suitable monad. Throughout this section

we suppose P is a k-plethory.

Proposition 1.2.23. P �k − is a monad on Algk with the natural transformations

given by

P � P �A ◦�1−−→ P �A

A ∼= I �A u−→ P �A

Proof: The axioms are satisfied by the definition of P as a monoid in Biringk,k.

Definition 1.2.24. We define the category of P -algebras AlgP to be the Eilenberg-

Moore category of algebras for the monad P �k−. Explicitly, a P -algebra is a k-algebra

A together with a k-algebra map

◦ : P �A→ A

satisfying the usual axioms, namely for all r, s ∈ P , a ∈ A,

(r ◦ s) ◦ a = r ◦ (s ◦ a)

ι ◦ a = a.

A morphism of P -algebras f : A1 → A2 is a map of k-algebras which commutes with ◦
in that for all r ∈ P , a ∈ A,

f(r ◦ a) = r ◦ f(a).
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Unpacking the statement that ◦ is an algebra map gives the following formulae. For all

r, s ∈ P , λ ∈ k, a, a′ ∈ A,

(r + s) ◦ a = (r ◦ a) + (s ◦ a)

(rs) ◦ a = (r ◦ a)(s ◦ a)

λ ◦ a = λ

r ◦ (a+ a′) = (r(1) ◦ a)(r(2) ◦ a′)

r ◦ (aa′) = (r[1] ◦ a)(r[2] ◦ a′)

r ◦ λ = βλ(r).

Let P be a k-plethory. It is straightforward to check that k is the initial P -algebra. The

P -action is given by the isomorphism P � k ∼= k. Similarly, if A and A′ are P -algebras

then the tensor product A⊗A′ of k-algebras is the coproduct in AlgP . The P -action is

given by the composition

P � (A⊗A′) ∼= P �A⊗ P �A′ → A⊗A′.

Proposition 1.2.25. Let A be a P -algebra. The structure maps η : k → A and µ : A⊗
A→ A are maps of P -algebras.

Proof: Let r ∈ P, λ ∈ k. We have r ◦ η(λ) = η(βλ(r)) = η(r ◦ λ). For a, a′ ∈ A,

r ◦ (aa′) = (r[1] ◦ a)(r[2] ◦ a′) = µ(r ◦ (a⊗ a′)).

Several constructions from the linear world have analogues in this setting. Every k-

module has a natural action of k. Given a k-module M we can construct the free

A-module A ⊗M , and A is the universal A-module in that ModA(A,N) ∼= N for all

A-modules N .

Analogously, every k-algebra admits a unique I-algebra structure. Given a k-algebra A

the free P -algebra is the k-algebra P �A with action

P � P �A ◦�1−−→ P �A.

This construction gives a functor Algk → AlgP which is left adjoint to the forgetful

functor U : AlgP → Algk. Any k-plethory P is naturally a P -algebra with the action

P � P → P given by composition.

Proposition 1.2.26. Given a P -algebra A and a ∈ A, there exists a unique P -algebra

map f : P → A such that f(ι) = a. Hence a P -algebra map f : P → A is uniquely

determined by f(ι) and we have an isomorphism of P -algebras AlgP (P,A) ∼= A.
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Proof: Define f(r) = r◦a. This is trivially a P -algebra map with f(ι) = a. If g is another

map with this property then f(r)− g(r) = f(r ◦ ι)− g(r ◦ ι) = r ◦ f(ι)− r ◦ g(ι) = 0.

In many algebraic settings we are often interested in operations on some category of k-

algebras, by which we mean natural transformations from the forgetful functor down to

Set to itself. The study of such operations naturally fits into the framework of plethories.

Definition 1.2.27. An operation on P -algebras is a natural transformation r : U → U

where U is the forgetful functor U : AlgP → Set. Hence an operation r on P -algebras

is a collection of set maps rA : A→ A for all A in AlgP such that if f : A→ A′ is a map

of P -algebras, the following diagram commutes.

A A

A′ A′

rA

f f

rA′

We denote the set of operations on P -algebras by Op(AlgP ). The pointwise operations

naturally make Op(AlgP ) a k-algebra.

Proposition 1.2.28. Op(AlgP ) is naturally isomorphic to P as a k-algebra, and com-

position in Op(AlgP ) corresponds to composition in P .

Proof: Since the forgetful functor U : AlgP → Set is represented by P , by the Yoneda

embedding Op(AlgP ) ∼= AlgP (P, P ) ∼= P .

The following result gives a conceptual way of understanding the co-k-algebra object

structure maps in terms of how the operations respect the k-algebra structure on P -

algebras.

Theorem 1.2.29. Let P be a k-plethory. Then for r ∈ P ,

∆+(r) =
∑
(r)

r(1) ⊗ r(2) ⇐⇒ r ◦ (x+ y) =
∑
(r)

(r(1) ◦ x)(r(2) ◦ y)

ε+(r) = µ ⇐⇒ r ◦ 0 = µ

σ(r) = s ⇐⇒ r ◦ (−x) = s ◦ x

∆×(r) =
∑
(r)

r[1] ⊗ r[2] ⇐⇒ r ◦ (xy) =
∑
(r)

(r[1] ◦ x)(r[2] ◦ y)

ε×(r) = µ ⇐⇒ r ◦ 1 = µ

βλ(r) = µ ⇐⇒ r ◦ λ = µ

for all P -algebras A and all x, y ∈ A.
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Proof: ( =⇒ ) This direction is immediate by the definition of a P -algebra.

(⇐= ) This statement holds for all P -algebras and in particular for P . Hence r◦(x+y) =∑
(r(1) ◦ x)(r(2) ◦ y) for all x, y ∈ P but r ◦ (x + y) = µ(∆+(r) ◦ (x ⊗ y)) and so

∆+(r) = r(1) ⊗ r(2). The remaining maps are similar.

1.2.5 A detailed example: λ-rings

In this section we will expand on a result of Tall and Wraith [50] and show how the

theory of λ-rings fits neatly into the framework of plethystic algebra. A λ-ring is a

commutative ring together with additional operations and these objects arise naturally

in many areas of mathematics including K-theory and representation theory. We recall

the basic definitions and results necessary for illustrating how the theory of λ-rings fits

into a plethystic framework. For a detailed exposition of λ-rings, refer to [58].

Definition 1.2.30. A λ-ring is a ring R together with λ-operations: λn : R → R for

n ≥ 0 such that for all x, y ∈ R we have the following properties.

1. λ0(x) = 1,

2. λ1(x) = x,

3. λn(1) = 0 for n ≥ 2,

4. λn(x+ y) =
∑

i+j=n
λi(x)λj(y),

5. λn(xy) = Pn(λ1(x), . . . , λn(x);λ1(y), . . . , λn(y)),

6. λn(λm(x)) = Pn,m(λ1(x), . . . , λnm(x)).

The polynomials Pn ∈ Z[x1, . . . xn; y1, . . . yn] and Pn,m ∈ Z[x1, . . . , xnm] are the universal

polynomials which can be described as follows. If σ1, . . . , σn are the elementary symmet-

ric polynomials in x1, . . . , xn and τ1, . . . , τn are the elementary symmetric polynomials

in y1, . . . , yn then Pn is the unique polynomial such that Pn(σ1, . . . , σn; τ1, . . . , τn) is the

coefficient of tn in ∏
i,j

(1 + xiyjt).

If σ1, . . . , σnm are the elementary symmetric polynomials in x1, . . . , xnm then Pn,m is the

unique polynomial such that Pn,m(σ1, . . . , σnm) is the coefficient of tn in∏
1≤i1<···<im≤nm

(1 + xi1 . . . ximt).
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We shall write λt(x) =
∑
λn(x)tn. A ring map f : R → S is a map of λ-rings if

λnf(x) = fλn(x) for all x ∈ R and all n ≥ 0. We denote the category of λ-rings by

Ringλ.

Example 1.2.31. The ring of integers Z is naturally a λ-ring with operations given by

λn(k) =

(
k

n

)
.

Example 1.2.32. If X is a compact Hausdorff space then K(X), the complex K-theory

of X, naturally has the structure of a λ-ring. The λ-operations induced by the exterior

power operations on vector bundles and we explain this in more detail in Section 3.2.

The classical reference is [10].

Definition 1.2.33. Let R be a ring. Define the universal λ-ring on R to be the set of

formal power series in R with constant term 1. That is to say,

Λ(R) = 1 + tR[[t]].

The addition, multiplication and λ-operations on Λ(R) are defined by the following

formulae. For f = 1 +
∑

n ant
n, g = 1 +

∑
n bnt

n, we have

f + g = (1 +
∑
n

ant
n)(1 +

∑
n

bnt
n)

fg = 1 +
∑
n

Pn(a1, . . . , an; b1, . . . , bn)tn

λm(f) = 1 +
∑
n

Pn,m(a1, . . . , anm)tn.

Given a map of rings f : R→ S we define a map of λ-rings Λ(f) : Λ(R)→ Λ(S) by

Λ(f)
(

1 +
∑

ant
n
)

= 1 +
∑

f(an)tn.

In particular, we can view Λ as an endofunctor on Ring.

Proposition 1.2.34. The functor Λ: Ring → Ring is represented by the ring of sym-

metric functions Ω = Z[s1, s2, . . . ]. Explicitly, we have natural maps θ : Ring(Ω, R) →
Λ(R) and θ−1 : Λ(R)→ Ring(Ω, R) given by

θ(φ) = 1 +
∑

φ(sn)tn,

θ−1(1 +
∑

ant
n)(sm) = am.

Proof: It is straightforward to check the given maps are inverses.

Hence by Corollary 1.1.17, the ring Ω admits the structure of a Z-Z-biring.
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Corollary 1.2.35. Let B denote the Z-Z-biring which is isomorphic to Z[s1, s2, . . . ] as

a ring and with coalgebraic structure given by the following formulae, where we write

s0 = 1.

∆+(sn) =
∑
i+j=n

si ⊗ sj

ε+(sn) = 0

∆×(sn) =
∑
i+j=n

Pn(s1 ⊗ 1, . . . , sn ⊗ 1; 1⊗ s1, . . . , 1⊗ sn)

ε×(sn) =

{
1 n = 1

0 otherwise.

The antipode is defined inductively by

σ(s1) = −s1

σ(sn) = −sn −
n−1∑
i=1

σ(si)sn−i.

We have an isomorphism of Z-Z-birings

Ω ∼= B.

Proof: Just as in Example 1.2.6, we compute the structure maps via the isomorphism

θ : Ring(Ω, R)→ Λ(R). For the coaddition, note

θ(i1) + θ(i2) = (1 +
∑
i

(si ⊗ 1)ti)(1 +
∑
j

(1⊗ sj)tj)

=
∑
n

 ∑
i+j=n

si ⊗ sj

 tn.

Hence ∆+(sn) = (i1 + i2)(sn) =
∑

i+j=n si ⊗ sj . The remaining results are similar.

However, we have additional structure on the representable functor Λ and this will induce

the structure on a Z-plethory on the representing ring Ω.

Proposition 1.2.36 ([58, Theorem 2.25]). We have natural transfomations ψ : Λ(R)→
Λ2(R) and ε : Λ(R)→ R given by

ψ(1 +
∑

ant
n) = 1 +

∑(
1 +

∑
Pn,m(a1, . . . , anm)tn

)
tm

ε(1 +
∑

ant
n) = a1.

Moreover, the triple (Λ, ψ, ε) forms a comonad on Ring.
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Applying Proposition 1.2.22, we see that Ω admits the structure on a Z-plethory.

Corollary 1.2.37. We have an isomorphism of Z-plethories

Ω ∼= Z[s1, s2, . . . ]

where the Z-Z-biring structure is detailed in Corollary 1.2.35 and the composition is

specified by the following formulae.

sm ◦ sn = Pm,n(s1, . . . , smn)

ι = s1

Proof: We have natural maps

Ring(Ω, R) ∼= Λ(R)→ Λ(R)2 ∼= Ring(Ω,Ring(Ω, R)) ∼= Ring(Ω� Ω, R)

and the composition Ω � Ω → Ω is the image of the identity map Ω → Ω under

this composition. Now the image of the identity in Λ(Ω)2 is the power series 1 +∑
(1 +

∑
Pn,m(s1, . . . , snm)tn) tm which corresponds to the map f with f(sm)(sn) =

Pn,m(s1, . . . , snm). Hence sm ◦ sn = Pm,n(s1, . . . , smn). The unit for the composition u

is the image of the identity Ω→ Ω under the sequence of natural maps

Ring(Ω, R) ∼= Λ(R)→ R ∼= Ring(I, R).

Hence u(ι) = s1.

We can now realise λ-rings as algebras over our plethory Ω.

Corollary 1.2.38. Any λ-ring A is naturally an Ω-ring and vice-versa.

Proof: Given any λ-ring A we make A an Ω-algebra by defining sn◦a= λn(a). Conversely,

if A is an Ω-ring the operations λn(a) = sn ◦ r make A into a λ-ring.

By an operation on λ-rings we mean a natural transformation from the forgetful functor

U : Ringλ → Set as in [58, Definition 1.43]. Denote the collection of such operations by

Op(Ringλ). We can now prove the verification principle for λ-rings which states that

every operation on λ-rings is a polynomial in the λ-operations.

Corollary 1.2.39. We have an isomorphism of rings Op(Ringλ) ∼= Ω. Moreover,

composition of operations corresponds to composition in Ω.

Proof: Apply Proposition 1.2.28.
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1.3 Plethystic theory

We have seen plethories are powerful algebraic objects capable of encoding all the alge-

braic structure of the collection of operations on rings. Unfortunately and unavoidably,

these objects are often extremely large and as a result can be unwieldy. The algebraic

theory of plethories was first studied in detail by Borger and Wieland [17]. In this section

we will study the structure of plethories and morphisms between them in an effort to

isolate important structure of a plethory in a simpler context.

We have natural forgetful functors from the categories of birings and plethories to the

more familiar categories of Hopf algebras, algebras and modules. All of these categories

are extremely well studied and there is a very rich theory underpinning such objects.

A major theme of this section will be extending results from these categories to the

categories of birings and plethories.

The linear dual of a biring is an algebraic object known as a Hopf ring and will be much

more familiar to topologists. However the Hopf ring contains no structure which is dual

to the composition in a plethory. Extending an idea of Boardman and Johnson [15] we

provide additional algebraic structure on a Hopf ring which dualises to the composition

in a plethory.

The theory of Hopf algebras [36] [47] teaches us there is a lot of power in linearisation

methods. These convert a complicated non-linear object, such as a Hopf algebra, and

produce a simpler linear object, such as a module, in a way which hopefully preserves

interesting information from the original object. Two particular useful and tractable ex-

amples of linearisation are the functor of primitives and the functor of indecomposables.

These both map Hopf algebras to modules. Using a forgetful functor to the category

of Hopf algebras, we are able to apply these functors to our categories of birings and

plethories. However it seems natural that some of the extra structure on our objects

may transfer to the image of our linearisation functors. In this section, we will detail

how this works, and also discuss natural generalisations of these functors exclusive to

the world of birings and plethories.

Throughout this section, we introduce several functors to and from the categories of

plethories and related categories. It may prove helpful to refer to appendix Appendix B

where these functors are illustrated diagrammatically.
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1.3.1 Sub-birings and sub-plethories

Given an algebraic object A, a sub-object of A′ is an algebraic object of the same type

with an injective map A′ → A. Many properties of the algebraic object may not depend

on the entire structure, but just that of a small sub-object and many problems are easier

to solve by working with a specific sub-object.

When working with structures involving tensor products of modules there is a technical

point we must be careful with. As illustrated by the following example, if N is a sub-

module of M then in general N ⊗N will not be a sub-module of M ⊗M .

Example 1.3.1. Let M be a k-module with sub-module N
i
↪−→ M . For an arbitrary

k-module X the map N ⊗ X
i⊗1−−→ M ⊗ X is not necessarily injective. For example,

consider k = M = Z, N = nZ ⊆ M,X = Z/nZ then the image of N ⊗X under i⊗ 1 is

zero. This is because in general −⊗X is not left exact.

Definition 1.3.2. Let M be a k-module with sub-module N
i
↪−→ M . For an arbitrary

k-module X, we say P is an X-pure sub-module if N ⊗X i⊗1−−→M ⊗X is injective. We

say P is a pure sub-module if it is X-pure for all X.

This definition is useful for giving a simple classification of sub-coalgebras. Let C be a

k-coalgebra and sub-module C ′ ⊆ C. A priori, ψC(C ′) ⊆ C ⊗ C. However if C ′ is a

k-coalgebra then we have a comultiplication ψC′ : C
′ ⊆ C ′ ⊗ C ′ and counit εC′ : C

′ → k

and we can wonder under what conditions C ′ is a sub-coalgebra of C. The inclusion

i : C ′ → C is a map of k-colagebras if the following diagrams commute.

C ′ C

C ′ ⊗ C ′ C ⊗ C

ψC′

i

ψC

i⊗i

C ′ C

k

εC′

i

εC

The first of these diagrams requires (i ⊗ i)ψC′ to be the restriction of ψC to C ′. If

C ′ is C-pure, then C ⊗ C ′ and C ′ ⊗ C are sub-modules of C ⊗ C and hence so is

C ′ ⊗C ′ = (C ⊗C ′) ∩ (C ′ ⊗C) with inclusion given by i⊗ i. Thus, we require ψC′ to be

the restriction of ψC to C ′. The second diagram simply states that εC′ is the restriction

of εC to C ′. Hence, if C ′ is an arbitrary C-pure sub-module of C then the restriction of

the structure maps on C make C ′ a sub-coalgebra if and only if ψ(C ′) ⊆ C ⊗ C.

Proposition 1.3.3. If M is a flat k-module then every sub-module of M is pure. In

particular, if k is a field then all sub-modules are pure.

34



Proof: This is the definition of a flat k-module. Moreover, over a field every k-module

is flat.

Proposition 1.3.4. Suppose B is a k-k′-biring. Let B′ be a sub-algebra of B which is

B-pure as a sub-module. The k-algebra B′ together with the restrictions of the biring

structure maps to B′ is a sub-biring if and only if the following conditions hold.

1. ∆+(B′) ⊆ B′ ⊗B′.

2. ∆×(B′) ⊆ B′ ⊗B′.

Proof: If i : B′ → B is an inclusion of k-k′-birings, the conditions hold immediately

via the definition of a k-k′-biring map. Conversely, if conditions (1) and (2) hold then

since the structure maps of B′ are the restrictions of the structure maps on B it is

immediate that the inclusion of algebras i : B′ → B satisfies the commutative diagrams

(see Appendix A) necessary to be a map of k-k′-birings.

Finding explicit sub-birings can often by quite difficult due to the vast amount of struc-

ture on birings. It can be easier to determine sub-birings by considering pointwise epi

natural transformations between their representing functors. By the Yoneda lemma such

a natural transformation will induce an inclusion of birings.

Example 1.3.5. Recall the k-k-biring B of Example 1.2.6 which represents the power

series functor. The truncation of power series gives a pointwise epi natural transformation

between the functor represented by B and the functor sending a k-algebra A to the

truncated polynomial algebra A[t]/(tn). This functor is represented by the sub-biring of

B given by k[x0, x1, . . . , xn].

Just as − ⊗ X is not left exact for an arbitrary module X, nor is − � X for a biring

X. As an example, consider the initial Z- Z
nZ -biring Z and the initial Z

nZ -k′′-biring Z/nZ.

The inclusion i : nZ→ Z is a biring map, but the image of nZ�Z/nZ under i⊗1 is zero.

However, as in the case of algebras, this does not cause us problems: given a k-algebra

A and a sub-module A′
i
↪−→ A we can define a multiplication on A′ via the composite

A′ ⊗A′ i⊗i−−→ A⊗A µ−→ A without any need for purity conditions.

Proposition 1.3.6. Let P be a k-plethory and suppose P ′ is a sub-biring of P . The

sub-biring P ′ together with composition given by P ′�P ′ i�i−−→ P�P ◦−→ P is a sub-plethory

if and only if the following two conditions hold.

1. P ′ ◦ P ′ ⊆ P ′.
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2. ι ∈ P ′.

Proof: This is immediate from the definitions.

1.3.2 Augmentations

Recall for a Hopf algebra H, we define the augmentation ideal IH = ker ε and coaug-

mentation quotient JH = coker η. These are very useful constructions that appear in

various results and it turns out that they have natural generalisations to the setting of

birings and plethories.

Definition 1.3.7. Let B be a k-k′-biring, we define the augmentation ideal of B to be

IB = ker ε+.

By construction, IB is an algebra ideal of B. The following results hold in the setting

of Hopf algebras and thus generalise to birings and plethories by applying the forgetful

functor Biringk,k′ → Hopfk.

Proposition 1.3.8. Let B be a k-k′-biring. For x ∈ IB, ∆+(x) is in the image of the

map IB ⊗B ⊕B ⊗ IB → B ⊗B.

Proof: By definition of the co-unit, we have x = ε+(x(1))x(2) and so ε+(x(1))ε
+(x(2)) =

ε+(x) = 0. The result follows.

We can use a similar argument to deduce the behaviour of the co-multiplication on the

augmentation ideal.

Proposition 1.3.9. Let B be a k-k′-biring. For x ∈ IB, ∆×(x) is in the image of the

map IB ⊗ IB → B ⊗B.

Proof: The image of IB⊗B in B⊗B is the kernel of the map ε+⊗1. By the dual of the

relation expressing x0 = 0 in an algebra, we have (ε+⊗ 1)(x[1]⊗ x[2]) = ε+(x[1])⊗ x[2] =

ε+(x) = 0. Thus ∆×(x) is in the image of IB ⊗B → B ⊗B. Similarly we show ∆×(x)

is in the image of B ⊗ IB → B ⊗B and the result follows.

The following statement gives a characterisation of elements of the augmentation ideal of

a k-plethory P in terms of their actions on P -algebras and will be particularly relevant

when we reach the topological setting.

Proposition 1.3.10. Let P be a k-plethory. We have r ∈ IP if and only if r(0) = 0 in

all P -algebras.
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Proof: This is an application of Theorem 1.2.29.

We now study how the composition in a k-plethory P respects the augmentation ideal.

Proposition 1.3.11. Let P be a k-plethory. The following statements are true.

1. If r, s ∈ IP then r ◦ s ∈ IP

2. If s ∈ IP and r ◦ s ∈ IP then r ∈ IP .

Proof: (1) If r, s ∈ IP then for all P -algebras, (r ◦ s)(0) = r(s(0)) = r(0) = 0 and so

r ◦ s ∈ IP .

(2) If s, r ◦ s ∈ IP then for all P -algebras, 0 = r(s(0)) = r(0) and so r ∈ IP .

We remark that since we are dealing with non-linear actions, if r ∈ IP and r ◦ s ∈ IP
then we do not necessarily have s ∈ IP . Indeed, we have 0 = r(s(0)) = β[s(0)](r) for all

P -algebras.

1.3.3 Ideals

Just as in the world of algebras and Hopf algebras, it is useful to study ideals of birings

and plethories. By an ideal of a biring (or plethory), we mean precisely the structure

which upon quotienting the biring (resp. plethory) by we obtain another biring (resp.

plethory). Being able to quotient out structure is extremely useful as it will allow us to

exclude irrelevant information and work in a much simpler setting.

Definition 1.3.12. We define a biring ideal of B to be the kernel of a biring map

f : B → B′.

The following result provides a useful characterisation of biring ideals.

Proposition 1.3.13. Let B be a k-k′-biring, J a sub-module of B and π : B → B/J
the canonical projection. The following statements are equivalent.

1. J is a biring ideal of B.

2. B/J is a k-k′-biring and π : B → B/J is a biring homomorphism.

3. The following conditions hold.

(a) J is an algebra ideal of B.

(b) ∆+(J ),∆×(J ) ⊆ ker(π ⊗ π),
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(c) ε+(J ) = ε×(J ) = 0,

(d) σ(J ) ⊆ J ,

(e) For all λ ∈ k′, βλ(J ) = 0.

If J is B-pure, then condition (a) is equivalent to the following statement.

(a′) ∆+(J ),∆×(J ) ⊆ B ⊗ J + J ⊗B.

Proof: (1) =⇒ (3): Suppose J = ker(f : B → B′) is a biring ideal. Replacing B′ by

Im(f) if necessary we can assume f is surjective.

We have the following commutative diagram of k-algebras.

B/J

J B B′

B ⊗B B′ ⊗B′

B/J ⊗B/J

f̄

f

π

∆+ ∆+

f⊗f

π⊗π
f̄⊗f̄

where f̄ is the k-algebra isomorphism B/J → B′.

Now ∆+(J ) ⊆ ker(f ⊗f). However since f̄ ⊗ f̄ is an isomorphism, we have ker(π⊗π) =

ker(f ⊗ f).

The remaining conditions are similar.

(3) =⇒ (2): The conditions in (3) ensure the obvious structure maps for B/J are well

defined. For example, ∆+ induces a map of k-algebras

B

J
→ B ⊗B

(B ⊗ J + J ⊗B)
∼=
B

J
⊗ B

J
.

(2) =⇒ (1): Simply note J = kerπ.

Example 1.3.14. Recall the k-k-biring I of Example 1.2.5 which represents the identity

functor on Algk. Let B = I ⊗ I ∼= k[x, y]. Then J = (x− y) is a biring ideal of B and

B/J ∼= I.

We now turn our attention to ideals of plethories.
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Definition 1.3.15. We define a plethystic ideal of P to be the kernel of a map of

plethories f : P → Q.

Once again, we have the following useful characterisation of plethystic ideals.

Proposition 1.3.16. Let P be a plethory, J a submodule of P and π : P → P/J the

canonical projection. The following statements are equivalent.

1. J is a plethystic ideal of P .

2. P/J is a plethory and π : P → P/J is a map of plethories.

3. The following conditions hold.

(a) J is a biring ideal of P .

(b) IP ◦ J ◦ P ⊆ J where IP is the augmentation ideal of P .

Remark 1.3.17. If in condition 3 (b) we had the more natural looking P ◦ J ◦ P ⊆ J
then we would have 1 ◦ x = 1 ∈ J and so J = P and all ideals would be trivial.

Proof: (1) =⇒ (3): Suppose J = ker(f : P → Q). Since f is a map of birings, J is a

biring ideal. For r ∈ IP, s ∈ P, x ∈ J , we have

f(r ◦ x ◦ s) = f(r) ◦ f(x) ◦ f(s)

= f(r) ◦ 0 ◦ f(s)

= ε+(f(r))

= ε+(r)

= 0

and so we see r ◦ x ◦ s ∈ J .

(3) =⇒ (2): By Proposition 1.3.13, P/J is a biring. We define the composition

◦ : P/J � P/J → P/J by

(r + J ) ◦ (s+ J ) = (r ◦ s) + J .

We check this map is well defined. Firstly, if r ∈ J then r ◦ s ∈ J . Now suppose

s + J = s′ + J , say s′ = s + j for some j ∈ J . By the counit property, for any r ∈ P ,

(1P ⊗ ε+)∆+(r) = r ⊗ 1 and so ∆+(r)− r ⊗ 1 ∈ ker(1P ⊗ ε+) = P ⊗ IP . We have

r ◦ s′ − r ◦ s = r ◦ (s+ j)− r ◦ s

= µ(∆+(r) ◦ (s⊗ j))− µ((r ⊗ 1) ◦ (s⊗ j))

= µ[(∆+(r)− r ⊗ 1) ◦ (s⊗ j)]

∈ µ[(P ⊗ IP ) ◦ (P ⊗ J )] ⊆ µ(P ⊗ J ) ⊆ J .
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Hence, r ◦ s′ + J = r ◦ s + J thus our map is well defined. This composition clearly

makes π a map of plethories.

(2) =⇒ (1): Simply note J = kerπ.

Just as with finding explicit sub-birings, it can be difficult to find explicit ideals. Once

again, it is often easier to find pointwise mono natural transformations between the

representing functors and appealing to the Yoneda lemma.

Example 1.3.18. Recall the k-k-birings I of Example 1.2.5 which represents the identity

functor and B of Example 1.2.6 which represents the power series functor. We have

a pointwise mono natural transformation from the identity functor to the power series

functor given by inclusion of a k-algebra A into the constant terms of A[[t]]. This induces

a surjective k-k-biring map B → I and we can easily see the kernel is (x1, x2, . . . ), a

biring ideal of B.

1.3.4 Duality

The dual of a projective finitely generated (as a k-module) Hopf algebra is again a Hopf

algebra [36]. Often the dual Hopf algebra, which still encodes the same information, is

a nicer object to work with. An example of this is the Steenrod algebra over F2, the

collection of stable cohomology operations for ordinary cohomology with coefficients in

F2. As an algebra, this is generated by elements Sqn which are subject to the rather

complicated Adem relations,

Sqn ◦ Sqm =

bn/2c∑
i=0

(
m− n− 1

n− 2i

)
Sqn+m−i ◦ Sqi.

However, as shown by Milnor [35], the dual Hopf algebra is just a polynomial algebra and

so has a much simpler algebraic structure. The price we pay is that the comultiplicative

structure becomes more complicated in this setting.

In this section, we study the linear dual of a biring which is an object known as a

Hopf ring and then extend this object with additional structure which is dual to the

composition in a plethory.

Hopf rings have their origins in algebraic topology and are very well studied e.g. [27]

[52] [53] [31]. An exposition of the subject can be found in [54] and we shall just recall

the basic definitions. Knowledge of these objects will allow us to compute plethories of

cohomology operations algebraically without having to delve into the topology, as the

information we need has already been computed for the language of Hopf rings.
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The terminology is somewhat misleading: a (bicommutative) Hopf algebra is an (abelian)

group object in the category of cocommutative k-coalgebras and a Hopf ring is a k-algebra

object in this category. It has been suggested [27] that the terms coalgebraic group and

coalgebraic k-algebra would be more appropriate names for Hopf algebras and Hopf rings

respectively. Unfortunately, history is on the side of the original names and we shall stick

to those to avoid confusion.

Definition 1.3.19. We define the category of k[k′]-Hopf rings to be the category of

k′-algebra objects in Coalgk. Explicitly, a k[k′]-Hopf ring is a k-coalgebra (H,ψ, ε)

together with coalgebra maps.

∗ : H ⊗H → H

χ : H → H

ω : k → H

◦ : H ⊗H → H

η : k → H

and a map of rings

ηR : k′ → Coalgk(k,H)

satisfying the usual relations for a k′-algebra object Definition 1.1.7. It is customary to

write [0] = ω(1), [1] = η(1) and [λ] = ηRλ(1).

There is clearly some sort of duality between Hopf rings and birings. A k[k′]-Hopf ring

is a k′-algebra object in the category of k-coalgebras, and a k-k′-biring is a co-k-algebra

object in the category of k-algebras. For a k[k′]-Hopf ring or k-k′-biring X we define

the linear dual of X to be DX = Modk(X, k). We shall say a Hopf ring (or biring or

plethory) is projective and of finite type if it is projective and finitely generated as a

k-module.

Proposition 1.3.20. If f : B → B′ is a map of projective k-k′-birings of finite type

then DB and DB′ are k[k′]-Hopf rings and Df : DB′ → DB is a map of k[k′]-Hopf

rings. Conversely, if g : H → H ′ is a map of projective k[k′]-Hopf rings of finite type

then g : DH ′ → DH is a map of k-k′-birings.

41



Proof: We know Df : DB′ → DB is a map of Hopf algebras. Moreover, we have induced

maps

◦ : DB ⊗DB ∼= D(B ⊗B)
D∆×−−−→ DB

η◦ : k ∼= Dk
Dε×−−−→ DB

ηRλ : k ∼= Dk
Dβλ−−−→ DB.

Since the relations the structure maps of a Hopf ring satisfy are the categorical duals of

the relations that the structure maps of B satisfy, we see DB is a Hopf ring. Similarly,

DB′ is a Hopf ring. Moreover the conditions for Df to be a map of Hopf rings are

just the duals of the conditions for f to be a map of birings. The reverse direction is

similar.

However the structure of a Hopf ring contains no information which is naturally dual to

composition. To rectify this situation, Boardman et al. [15] introduce the notion of an

enriched Hopf ring in the context of homology operations. We abstract this definition to

a purely algebraic context which makes things more intuitive. We require of Hopf rings

to be projective and finitely generated as modules so that the linear dual is naturally a

biring.

Definition 1.3.21. An enriched k[k]-Hopf ring is a projective k[k]-Hopf ring H of finite

type together with a k-module map

ι : H → k (augmentation)

and for each x in the dual biring DH, a map of coalgebras

x∗ : H → H (induced map)

42



satisfying the following relations. For r, s ∈ DH, x, y ∈ H and λ ∈ k,

ι(x ∗ y) = ε(x)ι(y) + ι(x)ε(y) (1)

ι(x ◦H y) = ι(x)ι(y) (2)

ι([λ]) = λ (3)

r∗(x ∗ y) =
∑
(x)

∑
(y)

n∗
i=1

ri(1)∗x(i) ◦ ri(2)∗y(i) (4)

r∗(x ◦ y) =
∑
(x)

∑
(y)

m∗
i=1

ri[1]∗x(i) ◦ ri[2]∗y(i) (5)

r∗([λ]) = [r([λ])] (6)

(r∗ ◦ s)∗ = r∗ ◦ s∗ (7)

r∗ ◦ ι = r (8)

ι∗ = 1H (9)

and subject to

(−)∗ : DH → Coalgk(H,H) (10)

being a map of k-algebras. The k-algebra on Coalgk(H,H) is induced by the k-algebra

object structure on H by Corollary 1.1.13.

A map of enriched Hopf rings is a Hopf ring map f : H → H ′ such that the following

diagrams commute for all x ∈ DH ′.

H k

H ′

ι

f
ι

H H

H ′ H ′

f

(Df)(x)∗

f

x∗

We can see how the additional structure encodes the dual of composition. The unit for

composition is given by ι ∈ DH and for x, y ∈ DH, we define the composition x ◦ y by

x ◦ y : H
y∗−→ H

x−→ k.

The following example is the motivation for the definition of the enrichment of a Hopf

ring due to [15].

Example 1.3.22. Let h(−) be an ungraded multiplicative cohomology theory (see Ap-

pendix D) with representing space H and denote the corresponding homology theory by

k(−). For example, take h(−) = K(−) to be complex K-theory as detailed in Section 3.2
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and then H = Z × BU . Suppose additionally k(H) is free as an h(T )-module so that

we have duality h(H) ∼= Dk(H). In this case, the homology cooperations k(H) admits

the structure of an enriched h(T )[h(T )]-Hopf ring. The augmentation is given by the

composition

k(H)
π−→ Qk(H)

Q(ε)−−−→ h(T )

where Q : Alg+
h(T ) →Modh(T ) denotes the functor of indecomposables from the category

of augmented h(T )-algebras. The induced map for x ∈ DH ∼= h(H) ∼= Ho(H,H) is given

by x∗ = k(x) : k(H)→ k(H).

The following result details the duality between enriched Hopf rings and plethories. As

we shall see in Chapter 3 this result is extremely useful for computations.

Proposition 1.3.23. If f : H → H ′ is a map of enriched k[k]-Hopf rings then Df : DH ′ →
DH is a map of k-plethories. Conversely, if g : P → P ′ is a map of projective k-plethories

of finite type then Dg : DP ′ → DP is a map of enriched k[k]-Hopf rings.

Proof: Let H be an enriched k[k]-Hopf ring. By Proposition 1.3.20, DH is a k-k-biring.

Define the unit for composition u : I → DH by u(ι) = ι. The conditions necessary for

this to be a map of k-k-birings are precisely [(1), (2), (3)].

For example, for u to be a map of k-k-birings we require the following diagram to

commute.

I DH

I ⊗ I DH ⊗DH ∼= D(H ⊗H)

u

∆× ∆×

u⊗u

The statement ∆×(ι) = ι⊗ ι in DH ⊗DH ∼= D(H ⊗H) is equivalent to commutativity

of the following diagram which precisely expresses the condition ι(x ◦ y) = ι(x)ι(y) for

all x, y ∈ H.

H ⊗H H

k ⊗ k k.

◦

ι⊗ι ι

∼=

We define the composition ◦ : DH �DH → DH for x, y ∈ DH by

x ◦ y : H
y∗−→ H

x−→ k.

For this map to be well defined, we need to show the relations in DH �DH hold. The

relation (x1 + x2) ◦ y = x1 ◦ y + x2 ◦ y holds since addition of maps in DH is pointwise.
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The relations (x1x2) ◦ y = (x1 ◦ y)(x2 ◦ y) and λ ◦ y = λ hold precisely because y∗ is a

map of coalgebras. For example, the relation (x1x2) ◦ y = (x1 ◦ y)(x2 ◦ y) equivalent to

commutativity of the following diagram.

H H k

H ⊗H H ⊗H k ⊗ k

y∗

ψ

x1x2

ψ

y∗⊗y∗ x1⊗x2

∼=

The right hand square commutes by the definition of multiplication in DH and so our re-

lation is equivalent to y∗ respecting the comultiplication. The other relation is equivalent

to y∗ respecting the counit, since λ ∈ DH is the map λε : H → k.

The remaining three relations, x ◦ (y1 + y2) = (x(1) ◦ y1)(x(2) ◦ y2), x ◦ (y1 + y2) =

(x[1] ◦ y1)(x[2] ◦ y2), and x ◦ λ = βλ(x) are satisfied as a consequence of condition (10).

For example, the relation x◦(y1+y2) = (x(1)◦y1)(x(2)◦y2) is equivalent to commutativity

of the following diagram.

H H k

H ⊗H H ⊗H k ⊗ k.

(y1+y2)∗

ψ

x

y1∗⊗y2∗ x(1)⊗x(2)
∗ ∼=

The right hand square commutes since ∗-multiplication induces ∆+ on H∗, so we require

the left hand square to commute. However, the composition in this square is simply

addition in Coalg(H,H). Hence our composition DH �DH → DH is well defined.

The conditions (4), (5) and (6) precisely ensure that the composition is a map of k-k-

birings. For example, consider the relation that composition respects ∆+ in that we

have an equality

∆+(x ◦ y) =
∑
(x)

n∏
i=1

∑
(x(i))

x(i)[1] ◦ yi(1) ⊗ x(i)[2] ◦ yi(2) (1.7)

in DH ⊗ DH ∼= D(H ⊗ H) where ∆+(y) =
n∑
i=1

yi(1) ⊗ yi(2). The multiplication of

f1, . . . , fn ∈ D(H ⊗H) is given by the composition

H ⊗H
ψ
(n)
H⊗H−−−−→ (H ⊗H)⊗n

⊗ifi−−−→ k⊗n ∼= k,

where ψ
(n)
H⊗H is the n-th iterated coproduct on H ⊗ H. Thus the equality (1.7) is is

equivalent to commutativity of the following diagram.
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H ⊗H (H ⊗H)⊗n (H ⊗H)⊗n (k ⊗ k)⊗n

H⊗n

H H k.

ψ
(n)
H⊗H

∗

⊗
i y
i
(1)∗⊗y

i
(2)∗

⊗
i x(i)[1]⊗x(i)[2]

◦⊗n

∼=

∗
y∗ x

The right hand square commutes since
⊗

i x(i)[1] ⊗ x(i)[2] = (∆×)⊗n ◦ (∆+)(n)(x), the

co-multiplication ∆× on DH is induced by the ◦-product in H and the co-addition ∆+

on DH is induced by the ∗-product in H. Hence the equality (1.7) is equivalent to

y∗(a ∗ b) =
∑
(a)

∑
(b)

n∗
i=1

yi(1)∗a(i) ◦ yi(2)∗b(i).

Finally, we need to show that (DH, ◦, u) is a monoid in the category of birings. Asso-

ciativity of the composition follows from (7) and the left and right unit relations follow

from (8) and (9) respectively.

Conversely, for a k-plethory P we will show DP is an enriched k[k]-Hopf ring. By

Proposition 1.3.20, DP is a k[k]-Hopf ring. We define the augmentation DP → k to be

the image of ι ∈ P under the canonical isomorphism P ∼= DDP . For each x ∈ DDP ∼= P

we define the induced map x∗ : DP → DP to be the dual of the map −◦x : P → P . These

maps satisfy the defining properties of an enriched Hopf ring by the defining properties

of a plethory.

1.3.5 Primitives

A useful linearisation functor on Hopf algebras is the functor of primitives. While the

module of primitives is not a complete invariant of a Hopf algebra it contains a lot of

useful information. A famous theorem of Milnor and Moore [36] states that under certain

technical conditions that we can completely recover a Hopf algebra from its primitive

elements. To avoid a clash of notation, in this section and later we will often use the

alternative symbol Π to denote a plethory.

Definition 1.3.24. Let H be a Hopf algebra. We define the k-module of primitives PH

by the exact sequence

0→ PH → JH
ψ−→ JH ⊗ JH

where JH = coker η. Explicitly,

PH = {x ∈ H |ψx = 1⊗ x+ x⊗ 1} .

46



Notice that if x is primitive then by the co-unit and antipode conditions we have ε(x) =

0, σ(x) = −x. Since a map of Hopf algebras necessarily sends primitive elements to

primitive elements, we have a functor P : Hopfk → Modk given as above on objects

and by restriction on morphisms.

We have forgetful functors from our categories Biringk,k′ and Plethoryk to Hopfk

where the comultiplication on the Hopf algebra is the coaddition map on the biring.

Hence if B is a biring (or plethory) an element is primitive if ∆+(x) = 1⊗ x+ x⊗ 1.

If Π is a k-plethory, then by Theorem 1.2.29 the primitive elements in Π are precisely

the maps which are additive on all Π-algebras. That is to say, for all A ∈ AlgΠ we have

r ∈ PΠ if and only if r(x+ y) = r(x) + r(y) for all x, y ∈ A.

However, birings and plethories have much more structure than a Hopf algebra and it is

natural to ask what effect this has on the structure of the primitives.

Proposition 1.3.25. Let B be a k-k′-biring. If x ∈ PB then γλ(x) ∈ PB and ∆×x is

in the image of the map PB ⊗ PB → B ⊗B.

Proof: Let x ∈ PB. Since γλ : B → B is a map of Hopf algebras, we see γλ(x) ∈ PB.

For the comultiplication, we note that the image of the map PB ⊗ B → B ⊗ B is the

kernel of the map f ⊗ 1: B ⊗B → B ⊗B ⊗B where f(x) = ∆+(x)− 1⊗ x− x⊗ 1. By

codistributivity (see Appendix A), we have ∆+(x[1])⊗ x[2] = (1⊗ x[1] + x[1] ⊗ 1)⊗ x[2].

Thus,

(f ⊗ 1)x[1] ⊗ x[2] = (∆+(x)− 1⊗ x− x⊗ 1)⊗ x[2]

= ∆+(x[1])⊗ x[2] − (1⊗ x[1] + x[1] ⊗ 1)⊗ x[2]

= 0.

Hence x[1]⊗x[2] is in the image of PB⊗B → B⊗B. Similarly, x[1]⊗x[2] is in the image

of B ⊗ PB → B ⊗B and the result follows.

We now define some algebraic gadgets which will encode this structure. Since on our

primitives the coaddition, co-zero and co-additive inverse are uniquely determined, we

only need to retain the comultiplication, counit and co-linear structure.

Definition 1.3.26. We define a k-k′-coalgebra to be a k-k′-bimodule which is also a

k-coalgebra. Explicitly, this is a k-coalgebra (C,ψ, ε) together with a right k′-action,

ϕ : C ⊗Z k
′ → C

such that the following diagram commutes.
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C ⊗ k′

C ⊗ k′ ⊗ C B C ⊗ C ⊗ k′

C ⊗ C

(1⊗τ)◦(ψ⊗1)
ϕ

ψ⊗1

ϕ⊗1
ψ

1⊗ϕ

A map of k-k′-coalgebras is a k-k′-bimodule map which is also a k-coalgebra map. We

denote the category of k-k′-coalgebras and maps by Coalgk,k′ .

Proposition 1.3.27. The functor of primitives P : Hopfk →Modk lifts to a functor

P : Biringpurek,k′ → Coalgk,k′

where Biringpurek,k′ denotes the full sub-category of Biringk,k′ consisting of k-k′-birings B

such that the sub-module PB is B-pure.

Proof: Let B be a k-k′-biring. Since PB is B-pure, we have PB ⊗ PB ⊆ B ⊗B. Hence

the content of Proposition 1.3.25 tells us that PB is a k-k′-coalgebra with ψ = ∆×,

ε = ε× and right action given by x · λ = γλ(x). If f : B → B′ is a map of k-k′-birings,

then clearly Pf : PB → PB′ is a map of k-k′-coalgebras.

Example 1.3.28. For the k-k-biring I of Example 1.2.5, PI = 〈ι〉, the free k-module

on a single generator. The structure maps are given by ψ(ι) = ι⊗ ι, ε(ι) = 1, ι · λ = λι.

We now ponder the question of composition of primitive elements. Let Π be a k-plethory.

If r, s ∈ Π are primitive then for any Π-algebra A and any x, y ∈ A, we have (r◦s)(a+b) =

r(s(a+ b)) = r(s(a) + s(b)) = (r ◦ s)(a) + (r ◦ s)(b). Therefore by Theorem 1.2.29, r ◦ s
is primitive. However there exist compositions of non-additive maps which are additive.

For example consider the maps x 7→ x+ 1 and x 7→ x−1 in Set(k, k). Hence at the level

of birings, we should expect a map PB ⊗ PB′ → P (B � B′) for a k-k′-biring B and a

k′-k′′-birings B′ which is not an isomorphism in general.

Proposition 1.3.29. We define the tensor product of a k-k′-coalgebra C and a k′-k′′-

coalgebra C ′ to be the k-k′′-bimodule

C ⊗k′ C ′

with coalgebraic structure given by

ψ : C ⊗ C ′ ψ⊗ψ−−−→ C ⊗ C ⊗ C ′ ⊗ C ′ 1⊗τ⊗1−−−−→ C ⊗ C ′ ⊗ C ⊗ C ′,

ε : C ⊗ C ′ 1⊗ε−−→ C ⊗ k′ −→ C
ε−→ k.
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Proposition 1.3.30. The category (Coalgk,k,⊗k, PI) is monoidal.

Proof: Associativity of ⊗ follows from coassociativity of ψ. Also, C⊗PI ∼= C ∼= PI ⊗C
as k-k-bimodules and it is straightforward to check the maps C ⊗ PI, c ⊗ ι 7→ c and

PI ⊗ C, ι⊗ c 7→ c are coalgebra maps.

It turns out that monoids in Coalgk,k have an equivalent formulation which may be

more familiar. This definition is due to Borger and Wieland [17] and assuming flatness

is the same as a ×k-bialgebra in the sense of Sweedler [48].

Definition 1.3.31. Let A,B be non-commutative k-algebras. Form A⊗kB with respect

to the left action of k on both A and B (so λa⊗ b = a⊗λb). Define the Sweedler product

A ~ B to be the sub-module where the k-action given by right multiplication on A is

equal to the k-action given by right multiplication on B. That is

A~B =
{∑

a⊗ b ∈ A⊗B |
∑

a · λ⊗ b =
∑

a⊗ b · λ for all λ ∈ k
}
.

In fact, A~B is a sub-algebra of A⊗B.

Definition 1.3.32. A twisted k-bialgebra is a not necessarily commutative k-algebra B

equipped with a k-algebra map ψ : B → B~B and a k-module map ε : B → k such that

the following two conditions hold.

1. The composite B
ψ−→ B ~B ↪→ B ⊗B is coassociative with counit ε.

2. ε(1) = 1 and ε(ab) = ε(aηε(b)) for all a, b ∈ B.

A map of twisted k-bialgebras is a map of k-algebras which commutes with ε and ψ. We

denote the category of twisted k-bialgebras by TwBialgk. Notice that if B is a twisted

k-bialgebra and k is in the center of B in that λb = bλ for all λ ∈ k and all b ∈ B then

B is just a (not necessarily commutative) k-bialgebra.

We now give an alternative definition of a twisted bialgebra which is better in keeping

with the rest of our general framework.

Proposition 1.3.33. The category of twisted k-bialgebras TwBialgk is the category of

monoids in Coalgk,k.

Proof: Let (B, ◦, u) be a monoid in Coalgk,k. By definition we have ψ(a◦b) = ψ(a)◦ψ(b),

ε(ι) = ι and ε(a ◦ b) = ε(a · ε(b)). It remains to show ψ factors through the Sweedler

product. Since ◦ is a map of k-k-bimodules, we have a⊗ b ◦ λ = a ◦ λ⊗ b.
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Proposition 1.3.34. The functor of primitives P : Biringpurek,k → Coalgk,k is lax monoidal

and hence lifts to a functor

P : Plethorypurek → TwBialgk

where Plethorypurek denotes the full subcategory of Plethoryk consisting of k-plethories

Π such that the sub-module PΠ is P -pure.

Proof: For a k-k′-biring B and k′-k′′-biring B′, consider the map PB ⊗ PB′ → P (B �
B′), x⊗y 7→ x�y. This is well defined since ψ(x�y) = x[1]�1⊗x[2]�y+x[1]�y⊗x[2]�1 =

ε×(x[1]) ⊗ x[2] � y + x[1] � y ⊗ ε×(x[2]) = 1 ⊗ x � y + x � y ⊗ 1 by the counit property.

In addition it is a map of k-k′′-coalgebras by the definitions. Moreover, PI ∼= 〈e〉 and

these maps satisfy the necessary conditions for a monoidal functor.

As mentioned the primitive elements are precisely the elements which act additively on

P -algebras. We can understand this action independently of the broader context by

defining an additive analogue of �.

Definition 1.3.35. We define the additive composition product � : Coalgk,k ×Algk →
Algk on objects by defining C �A to be the free k-algebra on

{c� a : c ∈ C, a ∈ A}

and taking the quotient by the ideal generated by the following relations.

(c1 + c2) � a = c1 � a+ c2 � a

(λc) � a = λ(c� a)

c� (a1 + a2) = c� a1 + c� a2

c� (a1a2) = (c(1) � a1)(c(2) � a2)

c� λ = (c · λ)� 1

For morphisms (f, g) : (C1,M1)→ (C2,M2) we define f � g : C1 �M1 → C2 �M2 to be

the k-algebra map given by c�m 7→ f(c)� g(m).

Proposition 1.3.36. If B is a twisted k-bialgebra then B �− is a monad on Algk.

Proof: Define B � (B � A) → B � A by b � b′ � a 7→ (bb′) � a and PI � A → A by

ι�a 7→ a. These maps are natural and the required compatibility conditions are satisfied

since they are precisely those which make B a monoid in Coalgk,k.

Definition 1.3.37. Let B be a twisted k-bialgebra. Define the category of B-algebras

to be the category of Eilenberg-Moore algebras for the monad B �− by AlgB.
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The following result shows that this definition encodes the action of the primitive ele-

ments on a Π-algebra.

Corollary 1.3.38. Let Π be a Π-pure k-plethory so PΠ is a twisted k-bialgebra. If

A is an Π-algebra then A naturally admits the structure of a PΠ-algebra such that the

following diagram commutes.

Π�A A

PΠ�A

◦

◦

where PΠ�A→ Π�A is the k-algebra map given by r � a 7→ r � a.

Proof: First note PΠ � A → Π � A is well defined since the relations in PΠ � A are

satisfied in Π � A by definition. Now we simply give A the structure of a PΠ-algebra

via the composition PΠ�A→ Π�A ◦−→ A.

For a twisted bialgebra B, let U : AlgB → Ab denote the forgetful functor. We define an

additive operation on B-algebras to be a natural transformation U → U . In other words,

for any B-algebra, A, we have a map Nat(U,U) → Ab(A,A). We can show that U is

represented by B. Hence, by the Yoneda lemma we have Nat(U,U) ∼= B. Therefore, just

as we realised k-plethories as precisely the structure that act non-linearly on k-algebras,

we have realised k-twisted bialgebras as precisely the structure which acts additively on

k-algebras.

1.3.6 k-Primitives

An element of a k-plethory Π is primitive if it acts additively on all Π-algebras. It is

natural to ask about elements which act as k-linear maps on all Π-algebras.

Definition 1.3.39. Let B be a k-k-biring. We say x ∈ B is k-primitive if it is primitive

and βλ(x) = λε(x). We denote the collection of k-primitive elements by PkB. Since

k-k-biring maps take k-primitive elements to k-primitive elements we have a functor

Pk : Biringk,k → Set given as above on objects and by restriction on morphisms.

If Π is a plethory, then by Theorem 1.2.29 the k-primitive elements in Π are precisely

the maps which are k-linear on all Π-algebras. That is to say, for all A ∈ AlgΠ we have

r ∈ PkΠ if and only if r(ax+ by) = ar(x) + br(y) for all x, y ∈ A and all a, b ∈ k.
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We now wonder what structure we have on the collection of k-primitive elements. Since

a primitive element is the same as a Z-primitive element we expect this to be a very

similar structure to the primitive elements.

Proposition 1.3.40. Let B be a k-k-biring. If x ∈ PkB then ∆×x is in the image of

the map PkB ⊗ PkB → B ⊗B.

Proof: As in Proposition 1.3.25.

Since the co-additive and co-k-linear structure is uniquely determined on the k-primitives,

the co-multiplicative structure is all we need to retain.

Corollary 1.3.41. The functor of k-primitives lifts to a functor

Pk : Biringpurek,k → Coalgk.

Proof: Let B be a k-k-biring. Since PkB is PkB-pure, we have PkB ⊗ PkB ⊆ B ⊗ B.

Hence PkB is a k-coalgebra with ∆ = ∆×, ε = ε×. Moreover, if f : B → B′ is a map of

birings, then clearly Pkf : PkB → PkB
′ is a map of k-coalgebras.

Now since k-primitive elements are primitive, it is natural that the functor of k-primitives

will factor via the functor of primitives.

Definition 1.3.42. Define the action equaliser E : Coalgk,k → Coalgk on objects to

be the sub-k-module where the left and right k-actions agree and on morphisms by

restriction. Explicitly, we have

E(C) = {c ∈ C |λc = c · λ for all λ ∈ k}.

Theorem 1.3.43. The functor of k-primitives Pk factors as the composition

Biringk,k
P−→ Coalgk,k

E−→ Coalgk.

Proof: This is immediate from the definitions of the functors.

Now if r, s ∈ Π are k-primitive then for any Π-ring A, x, y ∈ A and any a, b ∈ k we have

(r ◦ s)(ax+ by) = r(s(ax+ by)) = r(as(x) + bs(y)) = a(r ◦ s)(x) + b(r ◦ s)(y). Therefore

by Theorem 1.2.29, r ◦ s is k-primitive. As in the primitive case however there exist

compositions of non-linear maps which are linear.

Proposition 1.3.44. The functor of k-primitives Pk : Biringpurek,k → Coalgk is lax

monoidal and lifts to a functor

Pk : Plethorypurek → Bialgk ⊆ TwBialgk.
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Proof: By definition E is clearly lax monoidal and thus the result follows from Proposi-

tion 1.3.34 and Theorem 1.3.43.

Exactly as in the case for the primitives we can realise k-twisted bialgebras as precisely

the structure which acts k-linearly on k-algebras.

1.3.7 Super primitives

Just as we have considered elements which act additively or k-linearly on all P -algebras,

we can consider elements which act as k-algebra maps on all P -algebras. This is a

very strong condition and in general there are a lot fewer such elements. Moreover, the

collection of such elements carries much less structure. Nevertheless this can be a simple

but useful invariant of plethories.

Definition 1.3.45. Let B be a biring, we say x ∈ B is super primitive if

∆+(x) = 1⊗ x+ x⊗ 1

ε+(x) = 0

σ(x) = −x

∆×(x) = x⊗ x

ε×(x) = 1

βλ(x) = λ.

We denote the collection of super primitive elements by A(P ). Since biring maps neces-

sarily map super primitive elements to super primitive elements, we have a functor

A : Biringk,k → Set.

Super primitive elements are sometimes refered to as ‘ring-like’ in the case k = Z to

indicate they generalise the ‘group-like’ elements of a Hopf algebra. The analogous name

for general k would presumably be ‘k-algebra-like’. The following result is immediate

from the definitions.

Proposition 1.3.46. Let P be a k-plethory. For r ∈ P , the following statements are

equivalent.

1. r ∈ P is super primitive.

2. If A is a P -algebra, then the map A→ A, a 7→ r ◦ a is a k-algebra map.
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3. The map I → P , ι 7→ r is a map of birings.

As a consequence of (3), we have A(P ) ∼= Biring(I, P ).

Once again, the theory of λ-rings gives us an example of some super primitive elements.

See Section 3.2 for more detail.

Example 1.3.47. Let A be a λ-ring. Recall the Adams operations ψi : A → A are

defined by

−t d
dt

log λ−t(x) =

∞∑
i=1

ψi(x)ti.

It is known that the Adams operations are ring maps. Hence the corresponding element

in the plethory Π is super primitive. For this reason, super primitive elements are

sometimes called Adams operations and this illuminates the choice of notation for the

functor A.

Since the composition of two algebra maps is again an algebra map, the composition on

our biring induces an associative unital binary operation on the set of super primitive

elements given by (x, y) 7→ x◦y. Indeed we have natural maps A(P )×A(P )→ A(P�P )

and AI ∼= {e}. As in the context of primitive elements and linear maps, there exist

compositions of non-algebra maps which are algebra maps and so A(P ) × A(P ) →
A(P � P ) is not necessarily an isomorphism. The content of this is the following result.

Corollary 1.3.48. The functor of super primitives is lax monoidal and hence lifts to a

functor

A : Plethoryk →Monoid.

Proof: The map A(B) × A(B′) → A(B � B′) given by (x, y) → x � y is a natural

map of sets which along with the natural isomorphism AI ∼= {e} satisfies the necessary

conditions for a monoidal functor.

Since all super primitive elements are k-primitive, we expect A to factor via Pk just as

Pk factored via the functor of primitives P .

Definition 1.3.49. Define the group-like functor G : Coalgk → Set on objects to be

the set of group-like elements and on morphisms by restriction. Explicitly,

G(C) = {c ∈ C |ψ(x) = x⊗ x}.
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Proposition 1.3.50. The functor of super primitives A factors as the composition

Biringk,k
Pk−→ Coalgk

G−→ Set

and this factorisation lifts to

Plethoryk
Pk−→ TwBialgk

G−→Monoid.

Proof: The first statement is immediate from the definitions after we note that for a

k-coalgebra, if ψ(x) = x⊗ x then ε(x) = 1. For the second statement, we note that G is

clearly lax monoidal and together with Proposition 1.3.44 we see all our functors lift.

We give a method of constructing simple plethories which generalises the construction

of an algebra over a monoid, due to Tall and Wraith [50].

Definition 1.3.51. We define a functor Ψ: Monoid → Plethoryk. For a monoid G,

the underlying k-k-biring is

Ψ(G) =
⊗
g∈G
I

where the biring structure is induced by the biring structure on I. Explicitly, if we write

ψg for the generator in the g-th copy of I then we have ∆+(ψg) = 1 ⊗ ψg + ψg ⊗ 1,

∆×(ψg) = ψg⊗ψg. We define the composition by ψg ◦ψh = ψgh and hence eΨ(G) = ψeG .

Example 1.3.52. Ψ({ι}) ∼= I.

Proposition 1.3.53. The functor of super primitives A : Plethory→Monoid is right

adjoint to Ψ: Monoid→ Plethory.

Proof: [50, Theorem 3.3] deals with the case when k = Z and the proof passes to the

case of general k without difficulty.

1.3.8 Linear plethories

Similarly to how we constructed the left adjoint to A by forcing all elements to be super

primitive, we can construct left adjoints to the functor of primitives P and the functor

of k-linear primitives Pk by forcing our elements to be additive (resp. k-linear). The

construction for the k-linear case is due to Borger and Wieland [17].

Definition 1.3.54. Define a functor S : Coalgk,k′ → Biringk,k′ as follows. For a co-

commutative coalgebra C, let S(C) denote the symmetric algebra on the k-module C.
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The structure maps are induced by the k-module maps from C given by

∆+ : c 7→ 1⊗ c+ c⊗ 1 ∈ S(C)⊗ S(C)

ε+ : c 7→ 0 ∈ k

σ : c 7→ −c ∈ S(C)

∆× : c 7→ (i⊗ i)ψ(c) ∈ S(C)⊗ S(C)

ε× : c 7→ ε(c) ∈ k

βλ : c 7→ ε(c · λ) ∈ k

where i : C → S(C) denotes the canonical inclusion.

Define Sk : Coalgk → Biringk,k to be the composition

Coalgk → Coalgk,k
S−→ Biringk,k

where Coalgk → Coalgk,k is the functor which equips a coalgebra with the right k-

action c ·λ = λc. In other words, the co-linear structure on Sk(C) is induced by βλ : c 7→
λε(c) ∈ k.

We can lift these functions to monoids in the respective categories and obtain a method

of constructing plethories. Let Bialg¬com
k denote the category of cocommutative but not

neccesarily commutative k-bialgebras i.e. the category of monoids in Coalgk

Proposition 1.3.55. The functors S and Sk are strict monoidal and hence lift to func-

tors

S : TwBialgk → Plethoryk

Sk : Bialg¬comk → Plethoryk.

Proof: For a k-k′-coalgebras B, a k′-k′′-coalgebra B′, and any k-algebra X we have

Algk(S(B)� S(B′), X) ∼= Algk(S(B),Algk(S(B′), X))

∼= Modk(B,Modk(B
′, X))

∼= Modk(B ⊗B′, X)

∼= Algk(S(B ⊗B′), X).

Hence S(B ⊗ B′) ∼= S(B) � S(B′) as k-algebras under the map b ⊗ b′ 7→ b � b′. It

is straightforward to check this is a map of k-k′′-birings. Also clearly S(k) ∼= k[ι] = I.

Hence S is strict monoidal. Moreover, the functor Coalgk → Coalgk,k is strict monoidal

and hence so is Sk.
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Theorem 1.3.56. The functors S and Sk are left adjoint to the functors P and Pk

respectively. These adjunctions lift to monoids in the appropriate categories. Diagram-

matically, we have the following.

S : Coalgk,k � Biringk,k : P

Sk : Coalgk � Biringk,k : Pk

S : TwBialgk � Plethoryk : P

Sk : Bialg¬comk � Plethoryk : Pk

Proof: Let f : S(C) → B be a map of k-k-birings. Define a map g : C → PB by

g(c) = f(c). By definition c ∈ S(C) is primitive and hence so is g(c) = f(c). Moreover,

since f is a k-k-biring map, g is a k-k-coalgebra map. Conversely, if g : C → PB is a

k-k-coalgebra map, then define f : S(C) → B to be the k-algebra map induced by the

k-module map C → PB ↪→ B. We can check this is a map of k-k-birings and these

constructions are mutally inverse. Therefore Biringk,k(S(C), B) ∼= Coalgk,k(C,PB)

and we have shown our first adjunction. For the second we note that Coalgk → Coalgk,k

is left adjoint to the forgetful functor U : Coalgk,k → Coalgk and so since Pk = P ◦ U
we see Sk is left adjoint to Pk. Finally, since S, Sk, P and Pk are lax monoidal both of

these adjunctions lift to monoids in the respective categories.

Plethories generated in this way are entirely trivial in the sense that the action of such

a plethory on an algebra is entirely determined by the action of the generating twisted

bialgebra or cocommutative bialgebra. We give a name to such plethories.

Definition 1.3.57. We say a k-plethory is linear if P ∼= Sk(B) for some cocommutative

k-bialgebra B.

We have the following classification theorem of Carlson. A topological generalisation of

this result will give us a succinct expression for the plethory of cohomology operations

for singular cohomology with rational coefficients.

Theorem 1.3.58 ([20, Theorem 1.1]). Let k be a field of characteristic zero. Then any

k-plethory is linear.

1.3.9 Indecomposables

Another extremely useful functor on Hopf algebras is the functor of indecomposables.

An element is indecomposable if it cannot be expressed as a non-trivial product. Hence
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the indecomposable elements are in some sense a minimal generating set for the Hopf

algebra.

Definition 1.3.59. Let H be a Hopf algebra over k. We define the k-module of inde-

composables of H by the exact sequence

IH ⊗ IH ψ−→ IH → QH → 0

where IH = ker ε denotes the augmentation ideal. Explicitly,

QH = IH/(IH)2.

Since a map of Hopf algebras f : H → H ′ necessarily has f(IH2) ⊆ (IH ′)2, we have a

functor

Q : Hopfk →Modk.

Once again, we can ask what the effect the additional structure of a biring or plethory

has on the structure of the indecomposable elements.

Proposition 1.3.60 ([17, Proposition 8.2]). The functor of indecomposables Q : Hopfk →
Modk lifts to a functor

Q : Biringk,k′ → kModk′

Given a k-k′-biring B, the right k′-module structure on QB is given by

b · λ = γλ(b).

The comultiplication on B is a ring map and by Proposition 1.3.9 we have ∆×(IB) ⊆
IB ⊗ IB. Hence we have a well defined map

QB
∆×−−→ IB ⊗ IB

(IB)2 ⊗ (IB)2
→ IB ⊗ IB

IB ⊗ (IB)2
∼= IB ⊗QB

where the second map is induced by the inclusion. Although the second map has non-

trivial kernel, since ∆× is cocommutative the composition has trivial kernel. It turns

out the image of this map lands in PB ⊗QB and this makes QB into a comodule over

PB.

Proposition 1.3.61 ([17, Proposition 11.1]). There exists a unique map ν : QB →
IB ⊗QB such that the following diagram commutes

IB IB ⊗ IB

QB IB ⊗QB

∆×

q 1⊗q

ν
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Moreover, the image of ν is contained within PB ⊗QB ⊆ IB ⊗QB.

The composition induces a monoidal structure on the module of indecomposables. We

denote the category of not necessarily commutative k-algebras by Alg¬com
k .

Proposition 1.3.62 ([17, Proposition 8.3]). The functor of indecomposables Q : Biringk,k →

kModk is strong monoidal. In particular, Q lifts to a functor

Plethoryk → Alg¬comk

where the algebra structure is induced by the composition on the plethory.

The collection of primitives of a k-plethory Π is a twisted k-bialgebra, in particular it is

a k-algebra and so the Sweedler product PΠ~QΠ is well defined.

Proposition 1.3.63. For a k-plethory Π, the co-action map factors as

ν : QΠ→ PΠ~QΠ ⊆ PΠ⊗QΠ.

Proof: See [17, Prop 11.1].

1.3.10 The Frobenius and Verschiebung maps

Continuing our theme of extending results from the world of Hopf algebras to plethories

and birings, we now focus on the situation where we are working with finite dimensional

objects over fields of characteristic p. For such a Hopf algebra we have two very useful

endomorphisms on Hopf algebras known as the Frobenius and the Verschiebung. More-

over the category of such Hopf algebras forms an abelian category and so Hopf(H,H ′)

is an abelian group. Throughout this section, we fix a prime p.

Definition 1.3.64. LetH be a Hopf algebra over Fp, then the Frobenius map F : H → H

is the Hopf algebra map defined by F (x) = xp. Suppose H is finite dimensional so DH

is also a Hopf algebra and we have a canonical isomorphism H ∼= DDH. We define the

Verschiebung to be the Hopf algebra map given by

V : H ∼= DDH
DFDH−−−−→ DDH ∼= H.

It is well known that the Verschiebung and Frobenius satisfy the relation FV = V F = [p]

where [p] is p-times the identity map in the abelian group Hopf(H,H).
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A more explicit definition of the Verschiebung can be found in [19] or [1]: for a k-module

M , consider the action of the symmetric group Σp on M⊗p. Let SpM i
↪−→ M⊗p be the

fixed sub-module under this action and M⊗p � SympM the quotient module by this

action. We define a k-linear map f : M → SpM by x 7→ [x ⊗ · · · ⊗ x] and [1, Theorem

2.5.6] shows there exists a unique map of k-modules v : SpM →M such that f ◦ v = ji.

The following result shows that for a Hopf ring H if ψ(p)(x) =
∑

i x
i
(1) ⊗ · · · ⊗ x

i
(p) then

V (x) is the sum of the terms xi with xi = xi(1) = · · · = xi(p).

Proposition 1.3.65 ([1, Theorem 2.5.6]). Let H be a Hopf algebra over Fp. Since H is

bicommutative, the p-fold multiplication descends to a map µ : SympH → H and the p-

fold comultiplication factors via a map ψ(p) : H → SpH. The Frobenius and Verschiebung

maps are given by the compositions

F : H
f−→ SympH

µ−→ H

V : H
ψ(p)

−−→ SpH v−→ H.

The Frobenius and Verschiebung are maps of Hopf algebras. We now study how these

maps respect the additional structure on a biring.

Proposition 1.3.66. For a Fp-Fp-biring B, the Frobenius and Verschiebung satisfy the

following conditions.

1. ∆× ◦ F = (F ⊗ F ) ◦∆×.

2. The following diagram commutes.

B B B ⊗B

B ⊗B B ⊗B

V

∆×

∆×

1⊗F
V⊗1

Proof: For a Hopf ring H we have V (x ◦ y) = V (x) ◦ V (y) and Frobenius reciprocity

V (x ◦ F (y)) = V (x) ◦ y (see Appendix E). Our result follows via duality.

The definition of the Verschiebung in terms of the p-fold iterated coproduct ∆+ motivates

an interesting construction. In a biring we have not one but two coproducts, and we can

use the comultiplication ∆× to define a second Verschiebung.

Definition 1.3.67. For a Fp-Fp-biring B, we define the multiplicative Verschiebung

V × : B → B to be the composition

V : B
∆×

(p)−−−→ SpB v−→ B.
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It is clear from the construction that this the multiplicative Verschiebung on a k-k′-biring

is a k-module map, but its behaviour with respect to the Hopf algebraic structure on B

seems hard to deduce. We now study how the Frobenius and Verschiebung maps interact

with the composition in a plethory.

Proposition 1.3.68. Let B and B′ be Fp-Fp-birings. If x ∈ B, y ∈ B′ then writing

∆+
(p)(y) =

∑N
i=1 y

i
(1) ⊗ · · · ⊗ yi(p) and ∆+

(N)(x) =
∑M

j=1 x
j
(1) ⊗ · · · ⊗ xj(N) we have the

following statements.

1. F (x ◦ y) = F (x) ◦ y.

2. V (x ◦ y) =
∑M

j=1

∑N
i=1 V

×(xj(i)) ◦ V (y).

3. V ×(x ◦ y) =
∑M

j=1

∑N
i=1 V

×(xj(i)) ◦ V
×(y).

Proof: The first result is immediate. For the second, identifying (B � B′)⊗p with B �
((B′)⊗p), we have

∆+(p)(x� y) = x� (
N∑
i=1

yi(1) ⊗ · · · ⊗ y
i
(p))

=
M∑
j=1

N∑
i=1

xj(i) � (yi(1) ⊗ · · · ⊗ y
i
(p))

=
M∑
j=1

N∑
i=1

∑
(xj

(i)
)

xj(i)[1] � y
i
(1) ⊗ · · · ⊗ x

j
(i)[p] � y

i
(p) ∈ S

p(B �B′).

Applying the map v : Sp(B �B′)→ B �B′ and noting that x� y = x′ � y′ if and only

if x = x′ and y = y′ we have V (x� y) =
∑M

j=1

∑N
i=1 V

×(xj(i))� V (y). Now since ◦ is a

map of birings, it commutes with V . The final result is proved in the same way.

When we are working over Fp, the collection of primitive elements admits extra structure.

Let H be a Hopf algebra over Fp. We have seen that the module of primitives PH does

not naturally admit a multiplication. However, for x ∈ PH, ψ(F (x)) = F (ψ(x)) =

F (1⊗ x+ x⊗ 1) = 1⊗ F (x) + F (x)⊗ 1 and so we see that the Frobenius on H induces

a Frobenius on PH. Hence, PH admits the structure of an Fp[F ]-module. For an Fp-
plethory, the primitives (and k-primitives) naturally admit the structure of an Fp-twisted

bialgebra (resp. cocommutative Fp-bialgebra), which is also an Fp[F ]-module.

Recall we can form the symmetric Fp-plethory SFp(B) over a cocommutative Fp-bialgebra

B by freely including a multiplication. If B is naturally an Fp[F ]-module, we must take

care to do so in a manner which respects the action of the Frobenius. This produces the

following definition, detailed in [20].
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Definition 1.3.69. Let B be a cocommutative Fp-bialgebra which is also an Fp[F ]-

module. Define the Fp-plethory S[p]B to be the quotient of the Fp-plethory SFp(B) by

the ideal generated by the relations F (x) = xp for all x ∈ B. Now a map of cocommu-

tative Fp-bialgebras B → B′ which respects the action of the Frobenius induces a map

S[p](B)→ S[p](B′) and thus we have a functor

S[p] : Bialg¬com
Fp → PlethoryFp .

Carlson proves the following analogue of Theorem 1.3.58. We should remark that these

constructions and following theorem generalise to the setting of plethories over any per-

fect field of characteristic p.

Theorem 1.3.70 ([20, Theorem 5.3]). If Π is an Fp-plethory with trivial Verschiebung

(V = 0 on Π) then we have an isomorphism of Fp-plethories S[p](PΠ) ∼= Π.

1.4 Graded plethories

While for our main applications we will be working in a graded setting, this grading is

mostly superficial and much of the theory from the ungraded case carries over to the

graded setting without difficulty.

In this section, we briefly recap the definitions necessary for the theory of graded

plethories and highlight any details specific to the graded case.

1.4.1 Graded algebraic objects

Fix some grading set Z, which we will also view as a discrete category. Later we will

require this to be a monoid and we will typically take Z = N,Z or Z/nZ under addition.

Consider the functor category CZ . We can view an object of this category as a collection

of components, objects Cn ∈ C for n ∈ Z. A morphism between two such objects is a

collection of morphisms f : Cn → C ′n for each n ∈ Z. Moreover CZ inherits any colimits

and limits which exist in C.

Definition 1.4.1. A variety of graded algebras V∗ is an ungraded variety (Ω, n, J)

(see Definition 1.1.10) together with an input map i : Ω →
∐
m≥0 Z

m and output map

o : Ω → Z which specify the components the operations act on. The ‘arity’ function

n : Ω→ N is determined by i via the composition

Ω
i−→
∐
m≥0

Zm →
∐
m≥0

{∗} ∼= N.
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A V∗-algebra structure on an object A ∈ CZ is a collection of C-morphisms Ai(ω)1 ×· · ·×
Ai(ω)n(ω) → Ao(ω) for each ω ∈ Ω which satisfy the relations expressed by J .

A morphism of V∗-algebra objects f : A → B is a morphism such that the following

diagram commutes for all operations ω.

A×n(ω) B×n(ω)

A B

ωA

f×n(ω)

ωB

f

We denote the subcategory of V∗-algebra objects and morphisms in C by V∗C.

Example 1.4.2. If (Z,+, 0) is a monoid then we can define the variety of graded

monoids. This has an operation η with i(η) = ∅, o(η) = 0 and for each i, j ∈ Z op-

erations µi,j with i(µi,j) = (i, j), o(µi,j) = i + j. The identities in J are the axioms

encoding the associativity and unit properties.

For C ∈ CZ , the covariant functor represented by C is given by CZ(C,−) : CZ → Set.

By our usual adjunction, we will instead view this as a functor C → SetZ . We have the

graded analogues of Lemma 1.1.12 and Corollary 1.1.13. The correspondences work in

exactly the same way as the ungraded setting.

Lemma 1.4.3. Let A be a V∗-object in C and F : C → D be a product preserving functor.

Then F restricts to a functor

V∗C → V∗D.

Corollary 1.4.4. There is a bijection between V∗-algebra object structures on A and lifts

of the contravariant functor represented by A, C(−, A) : C → SetZ , to a functor C → V∗.

Exactly as in the ungraded case, if C is a category with enough finite coproducts, we can

define co-V∗-algebra objects in C and the same dual results hold.

1.4.2 Graded plethories

Fix Z-graded commutative rings k, k′ where (Z,+, 0) is some monoid. We abuse our

notation and when k is graded we shall write Algk, Coalgk, etc. for the categories of

graded k-algebras, k-coalgebras etc. Given a graded object X, we shall denote the degree

of x ∈ X by |x|.

We construct our algebraic objects as before except now we work with graded algebraic

objects in categories of graded algebraic objects such as Algk. Consequently we have
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two gradings; one arising from the graded objects in the category and another arising

from the construction of the graded algebraic objects in that category.

Definition 1.4.5. A bigraded k-k′-biring is a (graded) co-k-algebra object in the cat-

egory of (graded) k-algebras Algk. Explicitly, this is a collection of graded k-algebras

B• = (Bn)n∈Z together with graded k-algebra maps for each n ∈ Z

∆+ : Bn → Bn ⊗Bn

ε+ : Bn → k

σ : Bn → Bn

∆× : Bn →
∏

i+j=n

Bi ⊗Bj

ε× : B0 → k

and a map of graded rings

β : k′ → Algk(B•, k)

satisfying the relations for a co-k-algebra object. Given x ∈ B we have x ∈ Bn for some

n ∈ Z. We define the •-degree by deg•(x) = n and the ∗-degree to be |x| ∈ Z, the degree

of x in the graded k-algebra Bn. We will sometimes write deg∗(x) = |x|. For each n ∈ Z
and i, j ∈ Z with i + j = n, we write ∆×i,j for the composition Bn

∏
i+j=nBi ⊗ Bj

π−→
Bi×Bj where π is the canonical projection. Moreover, we shall sometimes abuse notation

and consider ε× as a map B• → k which is zero on •-components Bn with n 6= 0.

Example 1.4.6. When Z = Z, the identity functor Algk → Algk is represented by the

k-k-biring I with components

In =

{
k[ιn] n even

Λk[ιn] n odd

where |ιn| = n. The structure maps are given by

∆+(ιn) = 1⊗ ιn + ιn ⊗ 1

ε+(ιn) = 0

σ(ιn) = −ιn

∆×(ιn) =
∑
r+s=n

ιr ⊗ ιs

ε×(ιn) =

{
1 n = 0

0 otherwise

βλ(ιn) =

{
λ |λ| = n

0 otherwise.

Equivalently, the elements ιn are the graded analogue of super primitive.
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Example 1.4.7. Suppose k =
⊕

n∈Z kn, k
′ =

⊕
m∈Z k

′
m where kn, km are homogeneous.

Consider the bigraded set B = Set(k′, k) with grading Bm
n = Set(k′n, km). The pointwise

operations from k′ make each B∗n a graded k-algebra and if k′ is of finite type then the

k-algebra structure on k′ makes B into graded k-k′-biring just as in the ungraded case.

The previous example illuminates what effect the grading on the plethory will have

in terms of operations on k-algebras. An element f ∈ Set(k, k′) with deg•(f) =

n,deg∗(f) = m is a set map Set(k′n, km). Hence f is undefined on elements of k′ not of

degree n. The definitions turn out to be cleanest if we enforce that f(x) = 0 for all x

not of degree n.

Definition 1.4.8. For a graded k-k′-biring B and graded k′-algebra A, we define the

graded composition product to be the ungraded composition product B � A quotiented

by the ideal generated by the relations b� a = 0 whenever deg•(b) 6= |a|.

We define a grading on B � A by setting |b� a| = deg∗(b) = |b| and noting that this is

compatible with the relations. Hence we have a functor

−�− : Biringk,k′ ×Algk′ → Algk.

Exactly as in the ungraded case, the graded composition product lifts to a functor

Biringk,k′ × Biringk′,k′′ → Biringk,k′′ and this makes (Biringk,k,�, I) a monoidal

category.

Definition 1.4.9. We define the category of graded k-plethories Plethoryk to be the

category of monoids in Biringk,k. Hence, a graded k-plethory is a graded k-k-biring P

together with two additional graded biring morphisms

◦ : P � P → P

u : I → P

satisfying the usual axioms for a monoid.

Example 1.4.10. The graded k-k-biring Set(k, k) of Example 1.4.7 naturally has the

structure of a graded k-plethory. For f, g ∈ Set(k, k), say f : ks → km and g : kn → kr,

the composition f ◦ g : kn → km is given by

f ◦ g =

{
f ◦ g r = s

0 otherwise.

Exactly as in the ungraded case, if P is a graded k-plethory then the functor P � −
forms a monad on Algk.
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Definition 1.4.11. Let P be a graded k-plethory. We define the category of P -algebras

AlgP to be the Eilenberg-Moore category of algebras for the monad P �−. Explicitly,

a P -algebra is a graded k-algebra A together with a graded algebra map

◦ : P �A→ A

satisfying the usual axioms.

Example 1.4.12. The graded ring k is naturally a P -algebra for the graded k-plethory

Set(k, k). For f ∈ Set(k, k) we have φ(x) = 0 for all x ∈ k with |x| 6= deg•(φ).

Definition 1.4.13. For n ∈ Z, define the functor Un : AlgP → Set to be the composi-

tion

AlgP
U−→ SetZ

−(n)−−−→ Set

where U is the forgetful functor and −(n) is evaluation at n. We define an operation of

type (n,m) on P -algebras to be a natural transformation r : Un → Um.

We denote the set of operations of all types on P -algebras by Op(AlgP ). This is naturally

a bigraded set by defining for r : Un → Um, deg•(r) = n,deg∗(r) = m and the point

wise operations naturally make Op(AlgP )n = Nat(Un, U∗) a graded k-algebra for each

fixed n.

Exactly as in the ungraded case, we have an isomorphism of bigraded k-algebras Op(AlgP ) ∼=
P and we have realised graded k-plethories as precisely the structure that acts on graded

k-algebras.
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Chapter 2

Plethories in topology

In this chapter I apply plethystic theory to study the unstable operations for a multiplica-

tive cohomology theory satisfying suitable technical conditions. A priori, the unstable

cohomology operations do not admit the structure of a plethory, but with a little tech-

nical machinery we can show they admit the structure of a topologised generalisation

of a plethory. Moreover, in a suitable context, the cohomology algebra of a space is

naturally a topological generalisation of an algebra over plethory. This is a consequence

of an abstract result of Stacey and Whitehouse [43]. In Section 2.1, I motivate and give

a new direct proof of this theorem.

As previously discussed, the approach chosen by Stacey and Whitehouse takes comple-

tions of the cohomology algebras and is therefore unable to detect phantom classes. The

more general but more complex approach of formal plethories due to Bauer [11] gives

a framework which can detect phantom classes. The definition works heavily with ab-

stract categorical and algebro-geometric structures. I outline the details of this theory

and reformulate it in more familiar language to highlight the similarities and differences

to our framework.

In the remainder of this chapter, I discuss common properties of cohomology theories

and analyse the implications of these properties for the plethory of unstable cohomology

operations which has not been done before in a plethystic setting. All cohomology theo-

ries come equipped with suspension isomorphisms, and the effect of these isomorphisms

on the plethory of operations is the focus of Section 2.2. This leads to the new definition

of a plethory with looping, an abstract object which encodes this additional structure.

Many familiar cohomology theories come equipped with extra structure known as a

complex orientation. The effect of this on the Hopf ring of homology cooperations has

been well studied as in [40], [31] and [15]. In Section 2.3 I recall these results and derive
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the natural analogues of these in the dual world of birings before studying the effects on

the monoidal plethystic structure. This leads to the new definition of a complex oriented

plethory which encodes all additional structure induced by the complex orientation at

the level of birings but perhaps only some of the structure at the plethystic level.

2.1 The plethory of unstable cohomology operations

We now turn to our main application of plethystic theory - studying the collection

of unstable cohomology operations. We closely follow Boardman’s definition [14] of

cohomology theories, with details in Appendix D.

Definition 2.1.1. Let E∗(−) : Ho→ AbZ, F ∗(−) : Ho→ AbZ be graded cohomology

theories. An unstable cohomology operation of type (E,F, n,m) is a natural transforma-

tion r : U ◦En(−)→ U ◦Fm(−) where U is the forgetful functor Ab→ Set. Explicitly,

for each space X we have a set map rX : En(X) → Fm(X) such that if f : X → Y is a

representative for a homotopy class of maps then the following diagram commutes.

En(Y ) Fm(Y )

En(X) Fm(X)

rY

f∗ f∗

rX

For brevity, we shall often say an operation r : En(−) → Fm(−) and leave it implicit

that we are viewing En(−) and Fm(−) as set-valued functors.

We wish to study the structure of the collection of unstable cohomology operations.

To have a more concrete form for this, we can apply the Yoneda lemma and Brown’s

representability theorem (Theorem 4) to obtain the following useful identifications.

Proposition 2.1.2. Let E∗(−), F ∗(−) be graded cohomology theories with representing

spaces En, Fn respectively. We have natural identifications between the following 3 sets.

1. The collection of unstable cohomology operations En(−)→ Fm(−).

2. The homotopy classes of maps from En to Fm.

3. The cohomology group Fm(En).

Proof: By the Yoneda embedding, we have Nat(En(−), Fm(−)) ∼= Ho(En, Fm). How-

ever by Brown’s representability theorem this is naturally isomorphic to Fm(En).
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Hence studying the collection of unstable cohomology operations is equivalent to studying

the bigraded collection of cohomology groups Fm(En) for n,m ∈ Z. We shall denote

this object by F ∗(E•).

From this point on, we shall assume all our cohomology theories are multiplicative and

hence naturally take values in algebras. We can ask what structure we have on F ∗(E•).

For all spaces X, F ∗(X) is an F ∗-algebra, in particular F ∗(En) is an F ∗-algebra for all

n ∈ Z. However, our spaces En are not just any spaces. They are very highly structured

representing spaces for the Ω-spectrum E.

If E is an Ω-spectrum with representing spaces En, we have the following structure.

Since E∗(−) : Ho → Alg∗E is representable, by Corollary 1.1.13 we have an E∗-algebra

object structure on E•. We can realise the structure maps as follows.

• For each n ∈ Z, the structure of a group object in Ho on En ' ΩEn+1, induced

by the loop space structure.

• For each n,m ∈ Z, we have multiplication maps φ : En×Em → En∧Em → En+m

and a unit map T → E0 where T denotes the one point space.

• For each λ ∈ E∗ of degree λ = h, we have the λ-action map En
∼= T × En

λ×1−−→
Eh × En

φ−→ En+h.

Thus, if our cohomology theory F ∗(−) : Ho → AlgE∗ mapped products to coproducts

then by Corollary 1.1.17, F ∗(E•) would have the structure of a co-F ∗-algebra object in

AlgE∗ ; an E∗-F ∗-biring. Sadly this is not the case. Fortunately, with a little bit of

extra technical machinery we can derive a setting where under suitable conditions our

cohomology theory will map products to coproducts.

Additionally, if E∗(−) = F ∗(−), then we can naturally compose operations of compatible

bidegrees. This will make E∗(E•) a monoid in our suitable category of E∗-E∗-birings

and have the structure of a generalisation of an E∗-plethory.

2.1.1 Filtrations and topologies

A multiplicative cohomology theory E∗(−) comes equipped with external cross product

maps in both homology and cohomology.

E∗(X)⊗ E∗(Y )→ E∗(X × Y ),

E∗(X)⊗ E∗(Y )→ E∗(X × Y ).
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Given some structure on our spaces X we can often use these pairings to yield internal

structure on the homology or cohomology groups. A simple piece of structure that all

spaces X have is the diagonal map ∆: X → X ×X. The composition

E∗(X)⊗ E∗(X)→ E∗(X ×X)
∆∗−−→ E∗(X)

gives the familiar cup-product multiplication on E∗(X) and makes the cohomology a

graded E∗-algebra. In homology, the story is less straightforward and highlights some

of the issues we will have to circumnavigate. We have maps

E∗(X)
∆∗−−→ E∗(X ×X)←− E∗(X)⊗ E∗(X).

Hence we can only obtain a comultiplication on E∗(X) in this way if the cross product

map is an isomorphism, known as a Künneth isomorphism. Fortunately, this is frequently

the case.

Proposition 2.1.3 ([49, Theorem 13.75]). If E∗(X) or E∗(Y ) is a flat E∗-module, then

the cross product map E∗(X)⊗E∗(Y )→ E∗(X × Y ) is an isomorphism of E∗-modules.

As an immediate corollary we see that if E∗(X) is a flat E∗-module, then E∗(X) is a

E∗-coalgebra. Now suppose X is an H-space and thus comes equipped with a unital

multiplication µ : X ×X → X. On homology this induces a map

E∗(X)⊗ E∗(X)→ E∗(X ×X)
µ∗−→ E∗(X)

and gives E∗(X) the structure of a Hopf algebra. However, the situation in cohomology

is more complicated. We have maps

E∗(X)
µ∗−→ E∗(X ×X)←− E∗(X)⊗ E∗(X).

Once again, we will only obtain a multiplication on E∗(X) in this manner if the cross

product map is an isomorphism. Unfortunately, unlike in homology, this is rarely the

case.

Consider the infinite complex projective space CP∞. If E∗(−) is a complex oriented

cohomology theory (see Section 2.3) then E∗(CP∞) = E∗[[x]] and E∗(CP∞ × CP∞) =

E∗[[x1, x2]]. The cross product map E∗(CP∞) ⊗ E∗(CP∞) → E∗(CP∞ × CP∞) is

determined by x ⊗ 1 7→ x1, 1 ⊗ x 7→ x2. Since elements of the tensor product are finite

linear combinations of pure tensors, this map is far from surjective. For example, the

infinite series
∑

n≥0 x
n
1x

n
2 does not lie in the image of the cross product map. However,

taking increasing finite series
∑N

n=0 x
n
1x

n
2 we can get ‘arbitrarily close’ to this element.
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The above example suggests it will be much more likely that we have a Künneth isomor-

phism in cohomology if we can topologise our cohomology algebras in a suitable manner.

Since E∗[[x1]]⊗ E∗[[x2]] is in some sense dense in E∗[[x1, x2]], we will be able to realise

the infinite series as an element of a suitable completion of the tensor product, denoted

E∗[[x1]]⊗̂E∗[[x2]].

2.1.2 Filtered modules

As discussed, to have any hope of a Künneth isomorphism in cohomology, we need to

equip our cohomology algebras with a topology. A sufficiently general way of equipping

modules and algebras with a topology is via a filtration. In this section, we give a brief

introduction to the subject of filtered modules, closely tailored to our purposes. For a

complete treatment, see [38, Section 9]. We shall assume k to be a graded (commutative,

unital) ring and work in the graded setting, although many results are identical in both

the graded and ungraded contexts.

Definition 2.1.4. Let O be a partially ordered set. A filtered k-module is a (graded) k-

module M together with submodules FαM ⊆M for each α ∈ O satisfying the following

conditions.

1. For all α ≤ β, F βM ⊆ FαM .

2. For all α, β ∈ A there exists γ ∈ A with F γM ⊆ FαM ∩ F βM .

A filtered k-module M is naturally a topological space with basis given by all translates

of the filtration components. Explicitly, {x+ FαM |x ∈M,α ∈ O} is a basis for the

topology on M . We write FModk for the category of filtered k-modules and continuous

k-module maps.

Example 2.1.5. Consider the k-module k[x] with filtration (xn) for n ∈ N. Under this

topology, we have limn→∞ x
n = 0.

Every k-module M can be given a discrete filtration 0 ⊆ M which induces the discrete

topology. Hence we have an inclusion of categories Modk ↪→ FModk which is left

adjoint to the forgetful functor FModk →Modk.

Continuity of a map of filtered k-modules is a purely topological property. However, it

is easier to work with if we restate it in terms of the filtration.
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Proposition 2.1.6 ([38, Section 9, Proposition 8]). Let M and N be filtered k-modules

with indexing sets O and O′ respectively. A map f : M → N of filtered k-modules is

continuous if and only if for all β ∈ O′ there exists α ∈ O such that f(FαM) ⊆ F βN .

The fact that the filtration is by sub-modules forces the k-module structure maps to be

continuous, and as a consequence we have the following result.

Proposition 2.1.7 ([38, Section 9, Propositions 5, 6 and 7]). A filtered k-module M is

naturally a k-module object in Top.

Topological groups and hence k-module objects in Top are examples of uniform spaces.

A uniform space is a topological space with additional structure that allows us to define

uniform properties such as completeness, uniform continuity and uniform convergence. A

reference for the general theory of uniform spaces is [18, Chapter 2]. However, discussing

such spaces in full generality will take us away from our applications and so we will

restrict ourself to just introducing the theory that is directly relevant.

Definition 2.1.8. A sequence of elements (xn) in a filtered k-module M is Cauchy if

for all α ∈ O there exists some N ≥ 0 such that xn − xm ∈ FαM whenever n,m ≥ N .

The filtered k-module M is complete if every every Cauchy sequence is convergent.

We write CModk ⊆ FModk for the subcategory of complete Hausdorff filtered k-

modules and continuous maps and note that the inclusion Modk ↪−→ FModk factors as

Modk → CModk ⊆ FModk.

Example 2.1.9. Recall the filtered k-module k[x] of example Example 2.1.5. This is

not complete: the sequence of partial sums xn =
∑n

k=0 x
k is Cauchy yet not convergent.

As is understood from a first course in real analysis, in general homeomorphisms do

not preserve uniform properties. For example, the complete space R is homeomorphic

to the open interval (0, 1) which is not complete. However, the uniform structure on a

filtered k-module is such that every continuous map is uniformly continuous. To prove

this general statement would require us to delve into the theory of uniform spaces, so we

just give a useful corollary of this fact.

Proposition 2.1.10. Let f : M → N be a homeomorphism of filtered k-modules. If M

is complete, then so is N .

Proof: Let O and O′ denote the indexing sets for the filtrations on M and N respectively.

Write g = f−1 : N → M and let (yn) be a Cauchy sequence in N . Defining xn = g(yn),

72



we claim this is a Cauchy sequence in M . For α ∈ O, by Proposition 2.1.6 there exists

β ∈ O′ such that g(F βN) ⊆ FαM . Since (yn) is Cauchy, there exists N such that for all

n,m ≥ N , yn − ym ∈ F βN . Thus for all n,m ≥ N , xn − xm = g(yn − ym) ∈ g(F βN) ⊆
FαM and thus (xn) is Cauchy. Since M is complete, (xn) converges to some x ∈ M .

We claim (yn) converges to f(x). Let β ∈ O′, by Proposition 2.1.6 there exists α ∈ O
such that f(FαM) ⊆ F βN . Now since (xn) converges to x, there exists N such that for

all n ≥ N , xn − x ∈ FαM . Thus for n ≥ N , yn − f(x) = f(xn − x) ∈ f(FαM) ⊆ F βM

and hence (yn) converges to y.

Any uniform space admits an up to isomorphism unique Hausdorff completion and in

the case of filtered k-modules we have an explicit construction.

Proposition 2.1.11 ([14, Section 6]). Let M be a filtered k-module and consider the

canonical map M → lim←−
α

M/FαM where α ∈ O.

1. M is Hausdorff if and only if M → lim←−
α

M/FαM is injective.

2. M is complete if and only if M → lim←−
α

M/FαM is surjective.

Definition 2.1.12. Define the Hausdorff completion of a filtered k-module M by

M̂ = lim←−
α

M/FαM.

We write c : M → M̂ for the canonical completion map.

Example 2.1.13. Recall the filtered k-module k[x] of Example 2.1.5. The Hausdorff

completion of k[x] is

k̂[x] = lim←−
n

k[x]/(xn) = k[[x]].

The Hausdorff completion has many useful properties (beyond being Hasudorff complete)

which justify the name.

Proposition 2.1.14 ([38, Section 9, Theorem 5]). Let M be a filtered k-module with

filtration indexed by O. The completion M̂ has a canonical filtration with the same

indexing set under which it is complete Hausdorff. Moreover, the following results hold.

1. The completion map c : M → M̂ is continuous.

2. ker c =
⋂
α F

αM .

3. The image of the completion map c(M) is dense in M̂ .
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4. For all α ∈ O, M̂/FαM̂ ∼= M/FαM .

5. If f : M → N is a map of filtered k-modules, there exists a unique map of filtered

k-modules f̂ : M̂ → N̂ such that the following diagram commutes.

M N

M̂ N̂

f

c c

f̂

Corollary 2.1.15. The completion is a functor −̂ : FModk → CModk which is left

adjoint to the inclusion CModk ⊆ FModk.

Proof: Definition 2.1.12 defined our completion on objects and Proposition 2.1.14 defines

it on morphisms. [38, Section 9, Theorem 6] asserts that we have a functor and the

adjunction is a consequence of the uniqueness of the completion.

2.1.3 The filtered tensor product

An essential construction for working with modules and more complex objects is the

tensor product. In this section we generalise this construction to the filtered setting.

Definition 2.1.16. LetM,N be filtered k-modules with indexing setsO, O′ respectively.

For (α, β) ∈ O ×O′, define

Fα,β(M ⊗N) = ker(M ⊗N q⊗q−−→M/FαM ⊗N/F βN).

The collection Fα,β(M ⊗N) gives a filtration on M ⊗N . If each FαM is N -pure (see

Definition 1.3.2) and each F βN is M -pure then we have

Fα,β(M ⊗N) = FαM ⊗N ⊕M ⊗ F βN.

The following result shows that we have a functor −⊗− : FModk×FModk → FModk.

Proposition 2.1.17 ([14, Section 6]). Let f : M → M ′, g : N → N ′ be maps of filtered

k-modules. The map f ⊗ g : M ⊗N →M ′ ⊗N ′ is continuous.

Even if M and N are complete Hausdorff, the filtration topology on M ⊗ N is rarely

complete. For example, recall the complete k-module k[[x]] of Example 2.1.13. The

sequence
∑n

k=1 x
k ⊗ xk ∈ k[[x]]⊗ k[[x]] is Cauchy but not convergent.
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Definition 2.1.18. We define the completed tensor product −⊗̂− : FModk×FModk →
CModk to be the composition

FModk × FModk
−⊗−−−−→ FModk

−̂−→ CModk.

Example 2.1.19. Recall the filtered k-module k[x] of Example 2.1.5. We have

k[x]⊗̂k[y] = lim←−
n,m

k[x]⊗ k[y]

(xn)⊗ k[y]⊕ k[x]⊗ (ym)
∼= lim←−

n,m

k[x]

(xn)
⊗ k[y]

(ym)
∼= k[[x, y]].

The following result shows that completing either M or N before forming the completed

tensor product has no effect on M⊗̂N .

Proposition 2.1.20. For filtered k-modules M and N , we have M̂⊗̂N̂ ∼= M⊗̂N .

Proof: Let M and N be filtered k-modules with filtrations FαM and F βN respectively.

By Proposition 2.1.14,

M̂⊗̂N = lim←−
α,β

M̂

FαM̂
⊗ N

F βN
∼= lim←−

α,β

M

FαM
⊗ N

F βN
= M⊗̂N.

Proposition 2.1.21 ([14, Section 6]). The categories (FModk,⊗, k) and (CModk, ⊗̂, k)

are symmetric monoidal, where k is given the discrete filtration.

2.1.4 Filtered algebras

We would like to generalise our notion of filtered modules to more structured objects such

as algebras, birings and plethories. As we will demonstrate, the categorical constructions

for obtaining these objects from modules naturally respect the filtration.

Definition 2.1.22. We define the category of filtered k-algebras FAlgk to be the cat-

egory of monoids in FModk. Similarly we define the category of complete Hausdorff

k-algebras CAlgk to be the category of monoids in CModk.

Example 2.1.23. The k-module k[x] of Example 2.1.5 together with the usual multi-

plication is a filtered k-algebra. Moreover, the completion k[[x]] of Example 2.1.13 is a

complete Hausdorff k-algebra.

Proposition 2.1.24. The completion functor −̂ : FModk → CModk lifts to a functor

FAlgk → CAlgk.
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Proof: Let A be a filtered k-algebra. A priori, Â is a completed k-module. However,

the multiplication A ⊗ A → A and unit k → A maps are continuous so we take their

completion them to obtain filtered k-module maps Â⊗̂Â→ Â and k → Â. By Proposi-

tion 2.1.14, these maps satisfy the axioms for a monoid in CModk. Additionally, given

a map of filtered k-algebras, taking the completion gives a map of complete Hausdorff

k-algebras.

Unlike for k-modules, the category CAlgk is not a priori a subcategory of FAlgk since

the multiplication in CAlgk is a map A⊗̂A→ A rather than a map A⊗A→ A. However,

if A is a complete Hausdorff k-algebra, we can define a multiplication A⊗A c−→ A⊗̂A→ A

and view A as a filtered k-algebra. Since A⊗A is dense in A⊗̂A, this gives an inclusion

of categories CAlgk ⊆ FAlgk which is right adjoint to the completion FAlgk → CAlgk.

Just as for k-modules, we have an inclusion of categories Algk → CAlgk ⊆ FAlgk giving

a k-algebra the discrete filtration and this inclusion is left adjoint to the forgetful functor

FAlgk → Algk.

Those familiar with filtered rings and algebras may be more familiar with definitions

which require a filtration by ideals, however this property is a consequence of our more

abstract definition which is easier to generalise.

Proposition 2.1.25. If A is a filtered k-algebra then A is isomorphic to a filtered k-

algebra which is filtered by ideals.

Proof: Let O be the indexing set for the filtration on A. Define A′ to be the k-algebra A

filtered by the ideals generated by FαA, that is FαA′ = (FαA) for α ∈ O. We claim the

identity map i : A→ A′ is an isomorphism of filtered k′-algebras. Since µ is continuous,

for each α ∈ O there exists β, γ ∈ O such that µ(F β,γ(A ⊗ A)) ⊆ FαA. However,

F βA′ = (F βA), F γA′ = (F γA) ⊆ µ(F β,γ(A⊗ A)) and thus i is continuous. Conversely,

for each α ∈ O, FαA′ = (FαA) so clearly FαA ⊆ FαA′. This shows i is an isomorphism

of filtered k′-algebras.

Proposition 2.1.26 ([14, Section 6]). In the category FAlgk, the initial object is the

discrete k-algebra k and the coproduct is ⊗. In CAlgk the initial object is again k and

the coproduct is ⊗̂.

2.1.5 Topological filtrations

For our applications we are not considering arbitrary modules and algebras, but coho-

mology algebras of topological spaces. The underlying topology induces a filtration on

the cohomology algebra.
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Definition 2.1.27. Let E∗(−) be a (multiplicative) cohomology theory and X be a

CW-complex. We define the profinite filtration of E∗(X) to consist of the ideals

FαE∗(X) = ker
(
E∗(X)

i∗−→ E∗(Xα)
)

where i : Xα → X is the inclusion and Xα runs through all finite subcomplexes of X.

The resulting topology is called the profinite topology on E∗(X).

The following results show our cohomology functor E∗(−) : Ho → AlgE∗ lifts to a

functor E∗(−) : Ho→ FAlgE∗ .

Proposition 2.1.28. If f : X → Y is a map of CW-complexes then f∗ : E∗(Y )→ E∗(X)

is continuous with respect to the profinite topology.

Proof: Let Xα be a finite subcomplex of X. Since f is cellular, f(Xα) is finite and

hence f(Xα) ⊆ Yβ for some finite subcomplex Yβ ⊆ Y . Now if y ∈ f∗(F βE∗(Y )), the

composition Yβ → Y
y−→ En is null homotopic. Since

X Y En

Xα Yβ

f y

f |Xα

commutes, we see that f∗(y) ∈ FαE∗(X) and hence f∗(F βE∗(Y )) ⊆ FαE∗(X).

The following result combined with Proposition 2.1.11 shows that the profinite topology

is always complete. However, it is not necessarily Hausdorff.

Proposition 2.1.29 ([3, Theorem 1.8]). The completion map E∗(X) → Ê∗(X) =

lim←−
α

E∗(X)/FαE∗(X) is surjective.

As we saw in Proposition 2.1.14, the completion map has kernel
⋂
α F

αE∗(X). The

elements of this kernel are known as phantom classes and are those cohomology classes

which are zero when restricted to any finite subcomplex of X.

Definition 2.1.30. A map of spaces f : X → Y is phantom if the restriction of f to

any finite subcomplex of X is null-homotopic. We say a cohomology class x ∈ En(X) is

phantom if the representing map X → En is phantom and call a cohomology operation

phantom if the corresponding class is phantom.

Example 2.1.31. In [5], Adams and Walker construct a map f : ΣCP∞ →
∨

N S
4 which

is null-homotopic when restricted to any finite subcomplex of ΣCP∞.
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As often occurs in topology, lack of Hausdorff-ness leads to many pathological examples.

To avoid such issues we can take the Hausdorff completion of our cohomology functor.

Definition 2.1.32. Define the Hausdorff completion of E∗(−), denoted Ê∗(−) to be

the following composition.

Ho
E∗(−)−−−−→ FAlgE∗

−̂−→ CAlgE∗ .

Sadly, the Hausdorff completion of a cohomology theory contains strictly less information

than the original theory. Indeed, we are taking the quotient by the ideal generated by

the phantom classes. Fortunately, there are various results which prohibit the existence

of phantom classes and thus in many cases E∗(−) = Ê∗(−).

Theorem 2.1.33 ([14, Theorem 4.14]). If E∗(X) is a free E∗-module then E∗(X) is

complete Hausdorff.

Since over a graded field all E∗-modules are free, this result ensures the absence of phan-

tom classes in the ordinary cohomology theories with field coefficients, H∗(−;Fp), H∗(−;Q)

as well as the Morava K-theories K(n). We remark that for complex K-theory this is

not the case, and there exist spaces X with phantom cohomology classes.

Armed with the Hausdorff completion of our cohomology theory, we can now precisely

state the appropriate Künneth isomorphism. We need the following lemma.

Lemma 2.1.34 ([14, p. 603]). The cross product map × : E∗(X)⊗E∗(Y )→ E∗(X×Y )

is continuous with respect to the profinite topology.

Completing the cross product yields a map E∗(X)⊗̂E∗(Y ) → Ê∗(X × Y ). A sufficient

condition for this to be an isomorphism is that E∗(X) and E∗(Y ) are free E∗-modules. In

that case, E∗(X×Y ) ∼= E∗(X)⊗E∗(Y ), we see that E∗(X×Y ) is also a free E∗-module

and thus E∗(X × Y ) ∼= Ê∗(X × Y ).

Theorem 2.1.35 ([14, Theorem 4.19]). If E∗(X) and E∗(Y ) are free E∗-modules then

we have an isomorphism of complete Hausdorff E∗-algebras

E∗(X)⊗̂E∗(Y )
∼=−→ E∗(X × Y ).

It will prove convenient to have a name for spaces X whose filtered cohomology rings

are complete Hausdorff and on which we have a Künneth isomorphism in cohomology.

Definition 2.1.36. We define the E-Künneth homotopy category Ho∧E to be the full

subcategory of Ho consisting of spaces X such that E∗(X) is a free E∗-module.
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We can now rephrase Theorem 2.1.33 and Theorem 2.1.35 as the following statement.

Corollary 2.1.37. If E∗(−) : Ho→ FAlgE∗ is a cohomology theory then the restriction

of this functor to Ho∧E lifts as E∗(−) : Ho∧E → CAlgE∗. Moreover, this restriction maps

products to coproducts and terminal objects to initial objects.

Now by Lemma 1.1.12, the restriction of E∗(−) to Ho∧E maps algebraic objects in Ho∧E∗

to coalgebraic objects in CAlgE∗ .

Example 2.1.38. Consider the infinite complex projective space CP∞. For a complex

oriented cohomology theory (see Section 2.3), we have E∗(CP∞) ∼= E∗[[x]]. However,

CP∞ has additional structure: it is an H-space with multiplication µ : CP∞ ×CP∞ →
CP∞ . Thus, we have maps

E∗(CP∞)
µ∗−→ E∗(CP∞ × CP∞)

×←− E∗(CP∞)⊗ E∗(CP∞).

As we have seen, the cross product is not an isomorphism. In fact E∗(CP∞)⊗E∗(CP∞) ∼=
E∗[[x1]]⊗E∗[[x2]] ( E∗[[x1, x2]] ∼= E∗(CP∞×CP∞). However, we can equip E∗(CP∞)

with a ‘completed comultiplication’ via the composition

E∗(CP∞)
µ∗−→ E∗(CP∞ × CP∞) ∼= E∗(CP∞)⊗̂E∗(CP∞).

2.1.6 Filtered birings

We can now generalise our definition of a biring to a suitable topological setting. This

will allows us to prove one of our major results: the collection of cohomology operations

between two theories is a topologised version of a biring.

Definition 2.1.39. We define the category of filtered k-k′-birings FBiringk,k′ to be the

category of co-k′-algebra objects in FAlgk. Similarly, we define the category of complete

Hausdorff k-k′-birings CBiringk,k′ to be the category of co-k′-algebra objects in CAlgk.

Proposition 2.1.40. The completion functor −̂ : FAlgk → CAlgk lifts to a functor

FBiringk,k′ → CBiringk,k′.

Proof: As in Proposition 2.1.24.

Unlike with k-algebras, we have no way of viewing the category CBiringk,k′ as a sub-

category of FBiringk,k′ . The comultiplications in CBiringk,k′ are maps B → B⊗̂B and

without losing information we have no way to convert these into maps B → B⊗B. How-

ever, just as for k-algebras we have inclusions of categories Biringk,k′ ↪−→ CBiringk,k′
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and Biringk,k′ ↪−→ FBiringk,k′ giving a k-k′-biring the discrete filtration and the latter

of these is left adjoint to the forgetful functor FBiringk,k′ → Biringk,k′ . We have no

forgetful functor CBiringk,k′ → Biringk,k′ .

As we are interested in topological applications, we work primarily with complete Haus-

dorff birings. Up until now it has been illuminating to understand the complete Hausdorff

setting as a special case of the filtered objects, but this approach will no longer work.

Consequently, much of our plethystic theory from Section 1.3 does not, a priori, make

sense in the setting of complete Hausdorff birings, and we will have similar problems when

we define complete Hausdorff plethories. Fortunately, this theory generalises without

difficulty in the obvious way. For example, we can make the following definition which

naturally generalises Proposition 1.3.13.

Definition 2.1.41. An ideal of a complete Hausdorff k-k′-biring B is a sub-(filtered

module) I satisfying the following conditions.

1. I is an algebra ideal of B.

2. If π : B → B/I denotes the canonical quotient, ∆+(I),∆×(I) ⊆ ker(π⊗̂π) ⊆ B⊗̂B.

3. ε+(I) = ε×(I) = 0.

4. σ(I) ⊆ I.

5. For all λ ∈ k′, βλ(I) = 0.

If I is B-pure with respect to ⊗̂ then condition (2) is equivalent to the statement

∆+(I),∆×(I) ⊆ B⊗̂I ⊕ I⊗̂B.

As in the case of filtered algebras, the categorical definition of filtered birings imposes

strong conditions on the structure of the filtration ideals.

Proposition 2.1.42. If B is a complete Hausdorff k-k′-biring then B is isomorphic to

a complete Hausdorff k-k′-biring which is filtered by ideals of B.

Proof: Let O be the indexing set for the filtration on B. Define B′ to be the complete

Hausdorff k-k′-biring B with filtration FαB′ = ((FαB)) for α ∈ O where ((FαB))

denotes the smallest biring ideal of B containing FαB. Let i : B → B′ be the identity

map. As in Proposition 2.1.25, i is open. We now show i is continuous. Since ∆+

and ∆× are continuous, for each α ∈ O, there exists β, γ ∈ O such that ∆+(F βB) ⊆
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ker(πα⊗̂πβ) and ∆×(F γB) ⊆ ker(πα⊗̂πβ) where πα, πβ denote the canonical projections

B → B/FαB, B → B/F βB respectively. Now by definition, there exists δ ∈ O with

F δM ⊆ F βB ∩ F γB which is a biring ideal. Since ((FαB)) is the smallest biring ideal

containing FαB, we have ((FαB)) ⊆ F δB. This shows i is continuous and is thus an

isomorphism of complete Hausdorff k-k′-birings.

We can now give an elementary proof of a result of Stacey and Whitehouse [43, Corollary

5.4]. The proof found there is simply an application of a much more general abstract

theorem.

Theorem 2.1.43. Let E∗(−), F ∗(−) be (multiplicative) cohomology theories such that

E∗(Fn) is a free E∗-module for each n ∈ Z. Then E∗(F •) is a complete Hausdorff

E∗-F ∗-biring.

Proof: The graded object of representing spaces n 7→ Fn of the spectrum F naturally

admits the structure of a graded F ∗-algebra object in Ho∧E . Now by Theorem 2.1.35,

the Hausdorff complete cohomology functor E∗(−) : Ho∧E → CAlgE∗ takes products to

coproducts and hence by Lemma 1.1.12 E∗(F •) is a co-F ∗-algebra object in CAlgE∗ .

As we saw in the non-topological case, it is illuminating to view birings through the lens

of algebraic geometry and consider instead the functors they represent. The algebraic

geometry in the topologised case is somewhat more complicated, and we follow [46] as our

main reference and a few key results detailed in Appendix C. The topologised analogue

of our discrete result is as follows.

Proposition 2.1.44. Let B be a complete Hausdorff k-algebra. There is a bijection

between complete Hausdorff k-k′-biring structures on B and lifts of Spfk(B) : Algk →
Set to a functor Algk → Algk′

Proof: By Theorem C.0.29 there is a bijection between complete Hausdorff k-k′-biring

structures and k′-algebra objects in the category of solid formal schemes. However by

Proposition C.0.30 the latter is in bijection with lifts of Spfk(B).

Hence if B is a filtered k-k′-biring then for any k-algebra A, Spfk(B)(A) is a k′-algebra.

If A also carries a filtration, the filtration on A induces a filtration on Spfk(B)(A).

Moreover, if A is complete Hausdorff so is Spfk(B)(A).

Proposition 2.1.45. Let B be a filtered k-k′-biring. The functor Spfk(B) : Algk →
Algk′ lifts to a functor FAlgk → FAlgk′ which restricts to a functor CAlgk → CAlgk′.
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Proof: Let O denote the indexing set for the filtration on B. Suppose A is a filtered k-

algebra. The quotient maps πα : A→ A/FαA induce k-algebra maps FAlgk(B/F
βB,A)→

FAlgk(B/F
βB,A/FαA) for all β ∈ B and thus k-algebra maps

π∗α : Spfk(B)(A)→ Spfk(B)(A/FαA). We filter Spfk(B)(A) by the ideals Fα Spfk(B)(A) =

kerπ∗α. Suppose further A is complete Hausdorff. We have

lim←−
α

Spfk(B)(A)

Fα Spfk(B)(A)
∼= lim←−

α

Spfk(B)(A/FαA) ∼= Spfk(B)(lim←−
α

A/FαA) ∼= Spfk(B)(A)

and hence Spfk(B)(A) is complete.

Example 2.1.46. If B is a discrete k-algebra, then Spfk(B) = Speck(B) and so Propo-

sition 2.1.44 is a generalisation of our discrete correspondence between k-k′-birings and

lifts of Speck(B).

Example 2.1.47. Let k′, k be commutative rings. We saw in Example 1.2.3 that

if k′ is finite then Set(k′, k) is a discrete k-k′-biring. For infinite k′, Set(k′, k) is a

complete Hausdorff k-k′-biring. We filter Set(k′, k) by the ideals F a ker(Set(k′, k) →
Set(k′a, k)) where k′a ranges over all finite subsets of k′. Now Spfk(Set(k′, k))(A) =

lim−→a
Algk(Set(k′a, k), A). Each of the terms in this colimit is a k′a-algebra, and thus

Spf(Set(k′, k)) lifts to a functor Algk → Algk′ .

Example 2.1.48. Suppose k has characteristic p. Let B = Set(k, k) ⊗ k[[e]] as a k-

algebra and filter by the ideals FnB = Set(k, k)⊗(en) so B/FnB = Set(k, k)⊗k[e]/(en).

Now B/FnB represents the functor A 7→ Niln(A)∧. Hence Spf(B)(A) = lim−→n
Niln(A)∧ =

Nil(A)∧. Therefore Spf(B) lifts to a functor Algk → Algk and thus B admits the

structure of a complete Hausdorff k-k-biring. We note that FnB is only a biring ideal

when n is a power of p. However, applying the method in the proof of Proposition 2.1.42,

we see that B is isomorphic to B filtered only by F p
n
B.

2.1.7 The filtered composition product

In the discrete case, we saw that the category of birings was monoidal under the composi-

tion product. Just as we filtered the tensor product to generalise to filtered modules, we

can filter the composition product to generalise to filtered birings and filtered algebras.

Definition 2.1.49. Let B be a filtered k-k′-biring and A a filtered k′-algebra with filtra-

tions index by O,O′ respectively. We filter the composition product of Definition 1.2.9

by the ideals

F β,α(B �A) = ker(B �A
πβ�πα−−−−→ B/F βB �A/FαA)

82



for all β ∈ O, α ∈ O′ where πα and πβ denote the canonical projections A → A/FαA

and B → B/F βB respectively.

However, for our applications we are interested in complete Hausdorff k-k′-birings. Since

we have no forgetful functor CBiringk,k′ → Biringk,k′ or inclusion CBiringk,k′ →
FBiringk,k′ , the composition product of a complete Hausdorff biring with a filtered

algebra is not well defined. More explicitly, the relation b � (a1 + a2) =
∑

(b)(b(1) �
a1)(b(2) � a2) produces a possibly infinite sum, suggesting we need a completed version

of the composition product. To motivate the definition, we remark that it is natural

to have an analogous property to Proposition 2.1.20 i.e. completing the biring before

taking the composition product should yield the same result as completing the filtered

composition product.

Definition 2.1.50. Let B be a complete Hausdorff k-k′-biring and A a filtered k′-

algebra. We define the complete Hausdorff composition product to be

B�̂A = lim←−
α,β

B

F βB
� A

FαA
.

We give B�̂A a filtration arising from the canonical projection maps under which is it

clear that B�̂A is complete Hausdorff.

F β,α(B�̂A) = ker(B�̂A→ B/F βB �A/FαA).

If f : B → B′ is a map of complete Hausdorff k-k′-birings and g : A → A′ is a map

of filtered k′-algebras, we define f�̂g to be induced by the maps B�̂A → B′/F βB′ �
A′/FαA′, b� a 7→ b+ F βB′ � g(b) + FαA′.

The following results show that the filtered composition product and complete Haus-

dorff composition product give functors − � − : FBiringk,k′ × FAlgk′ → FAlgk and

−�̂− : CBiringk,k′ × FAlgk′ → CAlgk.

Proposition 2.1.51. If f : B → B′ is a map of filtered k-k′-birings and g : A→ A′ is a

map of filtered k′-algebras then the map f�g : B�A→ B′�A′ is continuous. Similarly,

if f is a map of Hausdorff complete k-k′-birings and g a map of filtered k′-algebras then

f�̂g is continuous.

Proof: Let F β
′,α′(B′�A′) be a filtration ideal of B′�A′. Since f and g are continuous,

there exist α and β such that f(F βB) ⊆ F β
′
B′ and g(FαA) ⊆ Fα

′
A′. Hence f and

g induce maps f̄ : B/F βB → B′/F β
′
B′ and ḡ : A/F βA → A′/F β

′
A′ respectively. The

following diagram commutes.
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F β,α(B �A) B �A B
FβB

� A
FαA

B′ �A′ B′

Fβ′B′
� A′

Fα′A′

πβ�πα

f�g f̄�ḡ
πβ′�πα′

Since the top row is zero, we see that (πβ′ � πα′)(f � g)F β,α(B � A) = 0 and thus

(f � g)(F β,α(B �A)) ⊆ F β′,α′(B′ �A′). Now by Proposition 2.1.6, f � g is continuous.

An identical argument shows the same result for �̂.

We can now prove our motivating property for the definition of the complete Hausdorff

composition product; an analogue of Proposition 2.1.20.

Proposition 2.1.52. The following diagram commutes.

FBiringk,k′ × FAlgk′ CBiringk,k′ × FAlgk′

FAlgk CAlgk

−̂×1

� �̂
−̂

Proof: Let B be a filtered k-k′-biring and A a filtered k′-algebra. We have

B̂ �A = lim←−
β,α

B

F βB
� A

FαA
∼= lim←−

β,α

B̂

F βB̂
� A

FαA
= B̂�̂A.

As we saw in the discrete case for a k-k′-biring B, it is often easier to work with the

adjoint functor Speck(B) rather than the composition product B � −. Unfortunately

this result does not generalise to the topological setting. The obvious result would be

an adjunction between B�̂− and Spfk(B). However, such a result only holds when

restricting to categories of cocompact objects in Algk: those k-algebras A such that

there exist isomorphisms Algk(lim−→α
A′α, A) ∼= lim←−α Algk(A

′
α, A) for all inverse systems

A′α. This condition turns out to be far too restrictive to be of any use.

However, the compact objects in Algk: those k-algebras A such that there exist isomor-

phisms lim−→α
Algk(A,A

′
α) ∼= Algk(A, lim−→α

A′α) for all direct systems A′α are much more

ubiquitous, they are the finitely presented k-algebras. Using this fact, we can show that

in certain contexts, the topological analogue of Corollary 1.2.11 holds. That is to say

the composition product represents the composition of the represented functors.

Corollary 2.1.53. Let B be a complete Hausdorff k-k′-biring and A a filtered k′-algebra

with filtration indexed by O. If A/FαA is a finitely presented k′-algebra for all α ∈ O
then the composition

Algk
Spfk(B)−−−−−→ Algk′

Spfk′ (A)
−−−−−→ Set
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is given by Spfk(B�̂A).

Proof: For a k-algebra X,

Spfk(B�̂A)(X) = lim−→
β,α

Algk(B/F
βB �A/FαA,X)

= lim−→
α,β

Algk′(A/F
αA,Algk(B/F

βB,X)).

∼= lim−→
α

Algk′(A/F
αA, lim−→

β

Algk(B/F
βB,X))

= Spfk′(A)(Spfk(B)(X)).

Our condition that the quotients by the filtration ideals must be finitely presentably is

always satisfied in our applications. Indeed, if X is a topological space and E∗(X) is

given the pro-finite filtration then E∗(X)/FαE∗(X) ∼= E∗(Xα). Since Xα is a finite

subcomplex of X, E∗(Xα) is of finite type and thus finitely presented. From this point

on, we shall assume all our filtrations have quotients which are finitely presented as

algebras.

Corollary 2.1.54. Let B be a complete Hausdorff k-k′-biring. The functor B�̂− : Algk′ →
Algk lifts to a functor CBiringk′,k′′ → CBiringk,k′′.

Proof: Let B′ be a filtered k′-k′′-biring. Since Spfk(B�̂B′) = Spfk′(B
′) ◦Spfk(B) we see

Spfk(B�̂B′) lifts to a functor Algk → Algk′′ and hence B�̂B′ is a complete Hausdorff

k-k′′-biring.

Proposition 2.1.55. The category (CBiringk,k, �̂, I) is monoidal.

Proof: Just as in Proposition 1.2.17, this follows since B�̂B′ represents the composition

Spf(B′) ◦ Spf(B).

2.1.8 Filtered plethories

Definition 2.1.56. We define the category of complete Hausdorff k-plethories CPlethoryk

to be the category of monoids in CBiringk,k.

As for birings, we have an inclusion Plethoryk ↪−→ CPlethoryk, giving a plethory the

discrete filtration. As we have seen before, the categorical construction forces additional

structure on the filtration components.
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Proposition 2.1.57. If P is a filtered k-plethory then P is isomorphic to a k-plethory

filtered by plethystic ideals.

Proof: As in Proposition 2.1.25.

Example 2.1.58. Let k be a commutative ring. We saw in Example 1.2.19 that if

k is finite then Set(k, k) is a discrete k-plethory. If k is infinite then from Exam-

ple 2.1.47, Set(k, k) is a complete Hausdorff k-k-biring. Composition of maps naturally

gives Set(k, k) the structure of a complete Hausdorff k-plethory.

We can now give a direct proof of a major result of Stacey and Whitehouse [43, Corollary

5.4]. The original proof is an application of a very abstract result.

Theorem 2.1.59. Let E∗(−) be a (multiplicative) cohomology theory. If E∗(En) is a

free E∗-module for each n ∈ Z then E∗(E•) is a complete Hausdorff E∗-plethory.

Proof: By Theorem 2.1.43, E∗(E•) is a complete Hausdorff E∗-E∗-biring. We define the

composition ◦ : E∗(E•)�̂E∗(E•)→ E∗(E•) by r ◦s = s∗(r) and the unit u : I → E∗(E•)

by u(ιn) = ιn ∈ E∗(En), the universal class. These maps make E∗(E•) a complete

Hausdorff E∗-plethory by construction.

We also have the analogous result in the ungraded context which is proved in exactly

the same way.

Theorem 2.1.60. Let h(−) be an ungraded (multiplicative) cohomology theory with

representing space H and associated homology theory k(−). If k(H) is a free h(T )-

module then h(H) is a complete Hausdorff h(T )-plethory.

Now we are in a situation to generalise Proposition 1.3.23 to the setting where we are not

necessarily of finite type. This details the duality between homology and cohomology

(Theorem D.0.36) in an abstract context. The analogous result also holds between Hopf

rings and birings.

Theorem 2.1.61. Let H be a enriched k[k′]-Hopf ring which is free as a k-module.

The linear dual DH = Modk(H, k) equipped with the dual-finite topology (see Defini-

tion D.0.35) naturally admits the structure of a complete Hausdorff k-plethory.

Proof: The finite type conditions in Proposition 1.3.20 are to ensure that we have isomor-

phisms D(H⊗H) ∼= DH⊗DH. In general we only have a map DH⊗DH → D(H⊗H)

which is not surjective in general. However, if we take the completion, we have an iso-

morphism DH⊗̂DH ∼= D(H⊗H). The remainder of the proof is analogous to the proof

in the finite type situation.
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2.1.9 Filtered P -algebras

We wish to understand the objects which a complete Hausdorff k-plethory acts on. As

in the discrete case, we realise these as the Eilenberg-MacLane algebras for a suitable

monad.

Proposition 2.1.62. Let P be a complete Hausdorff k-plethory. The functor P �̂− : CAlgk →
CAlgk forms a monad on CAlgk.

Proof: This is immediate since P is a monoid in the category of representable functors

CAlgk → CAlgk where the monoid structure corresponds to composition of repre-

sentable functors.

Definition 2.1.63. Let P be a complete Hausdorff k-plethory. We define the category

of complete Hausdorff P -algebras CAlgP to be category of Eilenberg-MacLane algebras

for the monad P �̂− : CAlgk → CAlgk.

If P is a discrete plethory and A a P -algebra then we can view A as a complete Haus-

dorff i(P )-algebra where i : Plethoryk → CPlethoryk is the inclusion. This yields an

inclusion of categories AlgP → CAlgi(P ).

Proposition 2.1.64. If A is a complete Hausdorff P -algebra then A is isomorphic to a

complete Hausdorff P -algebra with filtration by P -ideals.

Proof: As in Proposition 2.1.25.

Example 2.1.65. If P = Set(k, k) is the complete Hausdorff P -algebra of Exam-

ple 2.1.58 then the discrete k-algebra k is a complete Hausdorff P -algebra.

We can now give a direct proof of how the completed cohomology of spaces naturally

forms an algebra over our plethory of cohomology operations.

Theorem 2.1.66. Let E∗(−) be a (multiplicative) cohomology theory and suppose E∗(En)

is a free E∗-module for each n. For any space X, the completed cohomology Ê∗(X) is a

complete Hausdorff E∗(E•)-algebra.

Proof: An element x ∈ Ê∗(X) is determined by the projections i∗α(x) ∈ E∗(Xα) for each

finite subcomplex Xα
iα
↪−→ X. Given an element xα ∈ En(Xα) viewed as a map Xα →

En, we define r(xα) = x∗αr. These elements are compatible and so define an element

r(x) ∈ Ê∗(X). We now define our action E∗(E•)�̂Ê∗(X) → Ê∗(X) by r ◦ x = r(x). It

is straightforward to show this map satisfies the required properties.
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Suppose E∗(E•) is a complete Hausdorff k-plethory. Recall that ∆× encodes the action of

operations on products in an E∗(E•)-algebra. That is, on the internal product in Ê∗(X)

for any space X. However, since we can recover the external product from the internal

product using natural maps we see that the ∆× also encodes the action of operations

on the external products. Explicitly, if r ∈ E∗(E•), x ∈ Ê∗(X) and y ∈ Ê∗(Y ), we have

r(x× y) = r[1](x)× r[2](y) in Ê∗(X × Y ) for any spaces X and Y .

2.1.10 Formal plethories

Our theory of complete Hausdorff plethories and associated objects is sufficient to per-

form calculations for many cohomology theories as we will see in Chapter 3. Unfortu-

nately, it lacks full generality: due to only working with complete objects, we are unable

to see phantom operations and phantom classes. Moreover, we require the homology of

our representing spaces to be free E∗-modules.

In [11], Bauer manages to circumnavigate some of these issues by working in suitable

categories of pro-objects: systems of objects from which we can recover the phantom

classes as well as the completed cohomology. In this section we quickly introduce some of

his important results which we have translated into a similar framework to our complete

Hausdorff objects to allow for an easier comparison with our theory. For a full treatment

of this approach from an algebro-geometric perspective, refer to [11].

Definition 2.1.67. For an arbitrary category C we denote the category of pro-objects in

C by Pro(C). The objects of Pro(C) are functors A → C (i.e. A-shaped diagrams in C)
where A is some small cofiltered category. If F : A → C, G : B → C are two such objects,

the morphisms are given by

Pro(C)(F,G) = lim←−
β∈B

lim−→
α∈A
C(F (α), G(β)).

We can think of a pro-object as a generalisation of the filtration of a filtered object. A

pro-object contains all the information of the filtration, but has no need for a ‘total’

object which it filters. This philosophy motivates the following definition.

Definition 2.1.68. For a cohomology theory E∗(−), define the profinite cohomology,

E∗(−) : Top→ Pro(AlgE∗) on objects by

E∗(X) : A → AlgE∗

α 7→ E∗(Xα)
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where the objects of A are the finite subcomplexes Xα ⊆ X and the morphisms are the

inclusions of subcomplexes. A map f : X → Y of CW-complexes necessarily maps Xα to

some finite subcomplex Yβ ⊆ Y and thus we have maps E∗(Yβ)→ E∗(Xα). These maps

are suitable compatible and hence f induces a map E∗(f) ∈ Pro(AlgE∗)(E∗(Y ), E∗(X)).

Many properties of a category C pass naturally to the category of pro-objects Pro(C).
We list without proof some relevant properties of Pro(Modk) and Pro(Algk).

Proposition 2.1.69.

1. Pro(Modk) is an abelian category which admits a monoidal structure with unit

object k and product of M : A →Modk and N : B →Modk given by

A× B →Modk

(α, β) 7→M(α)⊗N(β).

2. Pro(Algk) is the category of monoids in Pro(Modk). This has coproduct and

initial object given by ⊗ and k respectively.

The Eilenberg-Steenrod axioms for a cohomology theory make sense in any abelian cat-

egory and the following result shows we have the pro-analogue of a cohomology theory.

Theorem 2.1.70. The functor E∗(−) : Top→ Pro(AlgE∗) is homotopy invariant and

satisfies the Eilenberg-Steenrod axioms on Pro(ModE∗).

Recall the Milnor exact sequence:

0→ lim←−
1
a
E∗−1(X)→ E∗(X)→ lim←−a E

∗(X)→ 0.

We see that from the profinite cohomology, we can recover both the complete Hausdorff

cohomology Ê∗(X) = lim←−aE
∗(X) and the phantom classes ker(E∗(X) → Ê∗(X)) =

lim←−
1
a
E∗(X). Unfortunately this exact sequence is not split in general, and the coho-

mology E∗(X) may be a non-trivial extension. Nevertheless, we have captured more

information with the profinite cohomology than we could with just the complete Haus-

dorff cohomology.

The other major advantage of the profinite cohomology, is that we have a Künneth

isomorphism under much weaker conditions.

Theorem 2.1.71 ([11, Corollary 4.21]). Suppose E∗(X) is pro-flat. We have an isomor-

phism of pro-E∗-algebras

E∗(X)⊗ E∗(Y )
∼=−→ E∗(X × Y ).
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Just as in the complete Hasudorff case, the existence of a Künneth isomorphism allows

us to prove that the cohomology operations admit the structure of a biring.

Definition 2.1.72. The category of formal k-k′-birings is the category of co-k′-algebra

objects Pro(Algk). This is equivalent to Pro(Biringk,k′).

The following result of Bauer illustrates how cohomology operations naturally fit into

this setting of pro-objects. He requires one additional extra condition: the coefficient

ring E∗ must be a Prüfer domain and so in particular sub-modules of flat modules are

flat.

Theorem 2.1.73 ([11, Corollary 4.22]). Suppose E∗(−), F ∗(−) are (multiplicative) co-

homology theories such that E∗ is a Prüfer domain. If E∗(Fn) is pro-flat for each n then

E∗(Fn) is a formal E∗-F ∗-biring.

Just like with the tensor product, since a pro-k-k′-biring is a system of k-k′-birings, the

composition product has a straightforward extension to the world of pro-objects.

Definition 2.1.74. We define the formal composition product of a formal k-k′-biring

B : B → Biringk,k′ and a pro-k′-algebra A : A → Algk′ to be the following pro-k-algebra.

B ×A → Algk

(β, α) 7→ B(β)�A(α).

The formal composition product yields a functor−�− : Pro(Biringk,k′)×Pro(Algk′)→
Pro(Algk) which lifts to a functor Pro(Biringk,k′)×Pro(Biringk′,k′′)→ Pro(Biringk,k′′).

Together with the unit object I, the formal composition product makes Pro(Biringk,k)

a monoidal category.

Definition 2.1.75. The category of formal k-plethories is the category of monoids in

Pro(Biringk,k),

Theorem 2.1.76 ([11, Theorem 8.21]). Suppose E∗(−) is a (multiplicative) cohomology

theory such that E∗ is a Prüfer domain. If E∗(En) is pro-flat for each n then E∗(E•) is

a formal k-plethory.

Just as in the complete Hausdorff setting, for a formal k-plethory the functor P � −
forms a monad on Pro(Algk) and provides a natural definition for algebras over a

formal plethory.
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Definition 2.1.77. Let P be a formal k-plethory. We define the category of formal P -

algebras to the category of Eilenberg-Moore algebras for the monad P�− : Pro(Algk)→
Pro(Algk).

Theorem 2.1.78 ([11, Theorem 8.21]). Suppose E∗(−) is a (multiplicative) cohomology

theory such that E∗ is a Prüfer domain. If E∗(En) is pro-flat for each n then for any

space X, the profinite cohomology E∗(X) is a formal E∗(E•)-algebra.

The benefits of this approach are clear: it provides a framework for understanding coho-

mology operations under weaker assumptions and contains more information. However,

many theories with interesting phantom classes are rather complicated and with current

techniques it may prove too difficult to compute the associated pro-objects. Neverthe-

less, with advances in understanding of such theories this pro-algebraic approach may

allow us to obtain useful insights not seen in the complete Hausdorff approach.

2.1.11 Based and primitive operations

In this section we study two particular types of operations which arise naturally in the

topological context and have a clean expression in the language of plethories. The first

of these are additive operations: those which act as group homomorphisms.

Proposition 2.1.79 ([15, Proposition 2.7]). Let r : En(−) → Em(−) be a cohomology

operation. The following conditions are equivalent.

1. The natural transformation r : En(−) → Em(−) is a natural transformation of

abelian group valued functors.

2. The operation acts as a group homomorphism i.e. r(x + y) = r(x) + r(y) for all

spaces X and all x, y ∈ En(X).

3. As a cohomology class r ∈ PE∗(En) ⊆ E∗(En) where PE∗(En) denotes the module

of primitives Definition 1.3.24.

4. The representing map rU : En → Em is a map of group objects in Ho.

Definition 2.1.80. An additive cohomology operation of type (n,m) is an operation

r : En(−)→ Em(−) satisfying any of the conditions in Proposition 2.1.79.

Applying our plethystic theory of primitive elements Section 1.3.5 yields a slick formu-

lation of the additive operations in an object which encodes all the algebraic structure.
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Corollary 2.1.81. Let E∗(−) be a (multiplicative) cohomology theory such that E∗(En)

is a free E∗-module for each n ∈ Z. The set of additive operations is the twisted E∗-

bialgebra PE∗(E•).

Proof: By definition, the additive operations are simply the primitive elements in E∗(E•).

Since E∗(E•)) is a E∗-plethory by Theorem 2.1.59, the result follows by Proposition 1.3.34.

We remark that an analogous result holds for the additive operations En(−)→ Fm(−)

between two multiplicative cohomology theories.

As is well known, both the relative and reduced cohomology groups are extremely useful

for performing calculations. As a result, it is of interest to know when operations restrict

to relative and reduced cohomology groups.

Proposition 2.1.82. Let r : En(−)→ Em(−) be an operation. The following conditions

are equivalent.

1. r(0) = 0 in E∗(T ) = E∗ where T is the one point space.

2. As a cohomology class, r ∈ En(Em, o) ⊆ En(Em).

3. For any space X with subspace A, rX : En(X) → Em(X) restricts to a map

En(X,A)→ Em(X,A).

4. The representing map r : En → Em is homotopy equivalent to a map which pre-

serves the base point.

Proof: [15, Lemma 2.3] yields the result for the case A = o, the base point. For general

A, we simply recall that E∗(X,A) = E∗(X/A, o).

Definition 2.1.83. An operation r : En(−) → Em(−) satisfying any of the equivalent

properties in Proposition 2.1.82 is called based.

The based operations, despite being inherently topological arise naturally in our plethys-

tic setting. Note that even when E∗(E•) is not a plethory, for example E∗(En) is not a

free E∗-module, it is still an augmented algebra and thus the augmentation ideal IE∗(E•)

(see Definition 1.3.7) is well defined.

Proposition 2.1.84. Let E∗(−) be a cohomology theory. We have IE∗(E•) = E∗(E•, o).
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Proof: Since ε+ : E∗(En) → E∗ is the map induced on cohomology by the inclusion of

the base point T → En, we have IE∗(E•) = E∗(E•, o).

Corollary 2.1.85. An operation r ∈ E∗(E•) is based if and only if r ∈ IE∗(E•).

Proof: This is immediate from Proposition 2.1.82 and Proposition 2.1.84.

Once again, an analogous result holds for the additive operations En(−) → Fm(−)

between two multiplicative cohomology theories.

2.2 The suspension isomorphism

A graded cohomology theory is a collection of functors En(−) : Ho → Ab satisfying

the Eilenberg-Steenrod axioms. As a consequence, for every space X we have the

suspension isomorphisms. These are isomorphisms of abelian groups Σ: En(X) →
En+1(S1 × X, o × X) or equivalently Σ: En(X, o) ∼= En+1(ΣX, o) on reduced coho-

mology for all n ∈ Z where ΣX = S1 ∧ X denotes the reduced suspension. If we

represent E∗(−) by an Ω-spectrum E then the suspension isomorphisms are equivalent

to the homotopy equivalences En ' ΩEn+1 on the level of representing spaces. This

suspension isomorphism is an extra piece of structure on the algebras over our plethory

of unstable cohomology operations. Since plethories are precisely the structure which

acts on algebras, we will need extra structure on our plethory if we are to encode this

additional information.

In a multiplicative cohomology theory, the suspension isomorphism has a simple expres-

sion. Recall that E∗(S1, o) is the free E∗-module on the canonical generator u1 = Σ1E∗ ∈
E1(S1, o) and in the E∗-algebra E∗(S1) we have u2

1 = 0.

Proposition 2.2.1 ([14, Equation 3.24]). Let E∗(−) be a multiplicative cohomology

theory. For x ∈ E∗(X), the suspension of x is given by Σx = u1×x ∈ E∗+1(S1×X, o×
X), where u1 ∈ E1(S1, o) is the canonical generator.

Throughout the remainder of this section, we shall assume that E∗(−) is a multiplicative

cohomology theory and study operations E∗(−)→ E∗(−). Much of the theory will hold

in the study of operations E∗(−)→ F ∗(−) between two different multiplicative cohomol-

ogy theories. However, as we will see the implications of the suspension isomorphisms

are inherently tied to actions on spaces and we can only abstract this to our plethystic

framework in the setting E∗(−) = F ∗(−). It should be possible to also tackle the more

general setting if we were to devise a suitable notion of algebras over a biring which
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would encode the action of the F ∗-E∗-biring F ∗(E•) between completed cohomology

rings Ê∗(X) and F̂ ∗(X) but we have not done this.

An immediate consequence of the suspension isomorphism is the construction of looping

of based operations.

Definition 2.2.2. Let r : En(−)→ Em(−) be a based operation, we define the looping

of r denoted Ωr : En−1(−)→ Em−1(−) by the following commutative diagram.

En−1(X) En(S1 ×X, o×X)

Em−1(X) Em(S1 ×X, o×X)

Σ

Ωr r

Σ

Thus, the looping of an operation encodes how a based operation acts on the suspension

of a cohomology class via the relation Σ(Ωr)(x) = r(Σx). We can only loop based

operations as we require that they restrict to an operation on relative cohomology. The

looping of a based operation is again based, so we can iteratively loop operations any

finite number of times.

Proposition 2.2.3 ([15, Proposition 2.12]). The map Ω: F ∗(En, o)→ E∗(En−1, o) is a

degree −1 map of E∗-modules which is continuous with respect to the profinite topology.

Following the general mantra of our plethystic theory, it will be interesting to understand

how looped operations respect the algebraic structure on general cohomology rings. It

is well known that the looping of any operation is additive and that the looping of a

product is trivial.

Proposition 2.2.4 ([15, Corollary 2.18] ). The map Ω: E∗(En, o) → E∗(En−1, o) fac-

tors as the following composition.

E∗(En, o)
π−→ QE∗(En)→ PE∗(En−1) ⊆ E∗(En−1, o)

where QE∗(En) denotes the module of indecomposables (Definition 1.3.59), PE∗(En−1)

the module of primitives (Definition 1.3.24) and π : E∗(En, o) = IE∗(rEn)→ QE∗(En)

the canonical projection.

It is trivial to show that looping respects composition of operations.

Proposition 2.2.5. For based operations r, s ∈ E∗(E•, o), we have Ω(r◦s) = Ω(r)◦Ω(s).

94



Proof: This is immediate from the definition of looping.

Before computing the action of a looped operation on the multiplicative structure we

first make some useful observations. In a multiplicative cohomology theory, we have

r(Σx) = r(u1×x) = r[1](u1)×r[2](x) and thus understanding the action of operations on

suspensions is equivalent to understanding the action of the operations on u1 ∈ E∗(S1, o).

Definition 2.2.6. We define the u1-evaluation map ω : E∗(E1, o)→ E∗ to be the com-

position

E∗(E1, o)
Ω−→ E∗(E0, o)

ε×−→ E∗.

We will also write ω : E∗(E•, o)→ E∗ for the map which is identically zero on the other

•-components.

The following result motivates this definition.

Lemma 2.2.7. For a based operation r ∈ E∗(E•, o), we have r(u1) = ω(r)u1 ∈ E∗(S1, o).

Proof: We have r(u1) = r(Σ1E∗) = Σ(Ωr)(1E∗) = Σ(ε×(Ω(r))) = ε×(Ω(r))u1 = ω(r)u1.

Proposition 2.2.8. The u1-evaluation map ω : E∗(E•) → E∗ is an E∗-module map

which is zero on products and continuous with respect to the profinite topology.

Proof: By the previous lemma, ω is the composition E∗(E1, o)
u∗1−→ E∗(S1, o) ∼= E∗ and

thus an E∗-module map. Moreover since u2
1 = 0, all products in E∗(S1, o) are trivial.

Finally, since both Ω and ε× are continuous, so is ω.

Corollary 2.2.9. For a based operation r ∈ E∗(E•, o), we have r(Σx) = ω(r[1])r[2](x).

Proof: We have r(Σx) = r(u1 × x) = r[1](u1)× r[2](x) = ω(r[1])r[2](x).

Now to compute the action of a looped operation on the multiplicative structure, we first

recall how the suspension isomorphism respects products. In a multiplicative cohomology

theory, E∗(X) is canonically an E∗(X)-module. Moreover, the projection π2 : S1×X →
X induces a map π∗2 : E∗(X) → E∗(S1 × X). Since E∗(S1 × X, o × X) is an ideal

of E∗(S1 × X), π∗2 induces a E∗(X)-module structure on E∗(S1 × X, o × X) and this

makes Σ: E∗(X) → E∗(S1 × X, o × X) a degree 1 isomorphism of E∗(X)-modules.

Explicitly, we have Σ(xy) = (−1)|x|(π∗2x)Σy for x, y ∈ E∗(X) and as a special case,

Σ(λx) = (−1)|λ|λ(Σx) for λ ∈ E∗, x ∈ E∗(X). This result also holds in completed

cohomology algebras Ê∗(X).
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Proposition 2.2.10. Suppose E∗(En) is a free E∗-module for all n ∈ Z. Let r ∈
E∗(E•, o) be a based operation and X a space. Using the usual notation (∆+, ε+, σ,∆×, ε×)

for the E∗-E∗-biring structure on E∗(En), for all x, y ∈ Ê∗(X) and all λ ∈ E∗ the fol-

lowing statements are true.

1. Ωr(xy) = (−1)deg∗(r[1])(σ|x|r[1])(x)(Ωr[2])(y).

2. Ωr(1) = (−1)|ω(r)|ω(r).

3. Ωr(λ) = β[(−1)|λ|λ](r[1])ω(r[2]).

Proof: For (1), we have

Σ(Ωr)(xy) = r(Σ(xy))

= r((−1)|x|(π∗2x)Σy)

= r[1](π
∗
2((−1)|x|x))r[2](Σy)

= π∗2((σ|x|r[1])(x))Σ(Ωr[2])(y)

= Σ
[
(−1)deg∗(r[1])(σ|x|r[1])(x)(Ωr[2])(y)

]
.

Since Σ is an isomorphism our result follows. For (2), we note Σ(Ωr)(1) = r(u1) =

ω(r)u1 = ω(r)Σ1 = Σ(−1)|ω(r)|ω(r) and our result follows. For (3), we have

Σ(Ωr)(λ) = r(Σλ)

= r((−1)|λ|λΣ1)

= β((−1)|λ|λ)(r[1])r[2](u1)

= β((−1)|λ|λ)(r[1])ω(r[2])u1

= Σβ((−1)|λ|λ)(r[1])ω(r[2]).

The result follows.

We remark that the signs, which also lead to to appearance of the antipode are mostly

superfluous, and in a more abstract context get absorbed into the statement that Ω is a

bidegree (−1,−1) map of modules. We can easily compute how the u1-evaluation map

respects composition.

Corollary 2.2.11. If E∗(En) is a free E∗-module for all n ∈ Z then for based operations

r, s ∈ E∗(E•, o) we have

ω(r ◦ s) = β[ω(s)](r[1])ω(r[2])

ω(ιn) =

{
1 n = 1

0 otherwise.
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Proof: The statement about the unit for composition is immediate. For the composition,

we have

(r ◦ s)(u1) = r(ω(s)u1)

= β[ω(s)](r[1])r[2](u1)

= β[ω(s)](r[1])ω(r[2])u1.

In the plethory of unstable cohomology operations, we can recover the looping from the

much simpler u1-evaluation map.

Proposition 2.2.12. If E∗(En) is a free E∗-module for all n, then the following diagram

commutes.

E∗(En) E∗(E1)⊗̂E∗(En−1)

E∗(En−1) E∗⊗̂E∗(En−1)

∆×1,n−1

Ω ω⊗1

∼=

Proof: For r ∈ E∗(E•), we have Σ(Ωr)(x) = r(Σx) = r(u1 × x) = r[1](u1) × r[2](x) =

ω(r[1])u1r[2](x) = Σω(r[1])r[2](x). The result follows.

2.2.1 Plethories with looping

We abstract the previous observations to a purely algebraic topological context leading

to the notion of a plethory with looping. This will allow us to be cleaner and more flexible

when working with the objects, as well as infer that we have most likely extracted all

the useful information from the suspension isomorphism.

Definition 2.2.13. Let Π be a complete Hausdorff k-plethory. We say Π is a k-plethory

with looping if it is equipped with a S1-action map: a continuous map of k-modules

ω : IΠ → k from the augmentation ideal to the ground ring satisfying the following

properties.

1. If deg•(r) 6= 1 then ω(r) = 0.

2. For all r, s ∈ IΠ, ω(rs) = 0.

3. The composition IΠ
∆×−−→ IΠ⊗̂IΠ

ω⊗̂1−−→ k⊗̂IΠ ∼= IΠ has image contained in PΠ.

4. For all r, s ∈ Π, ω(r ◦ s) = β[ω(s)](r[1])ω(r[2]).
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5. ω(ι1) = 1.

A map f : Π→ Π′ is a map of k-plethories with looping if ωf(r) = fω(r) for all r ∈ Π.

We denote the category of k-plethories with looping by ΩPlethoryk.

If Π is a k-plethory with looping, we define the looping map to be the continuous bidegree

(−1,−1) map of k-modules Ω: IΠ→ IΠ given by the composition

IΠ
∆×−−→ IΠ⊗̂IΠ

ω⊗̂1−−→ k⊗̂IΠ ∼= IΠ.

Proposition 2.2.14. Let Π be a k-plethory with looping. The looping map Ω: IΠ→ IΠ

satisfies the following properties.

1. Ω factors as IΠ
π−→ QΠ→ PΠ ⊆ IΠ.

2. For r ∈ IΠ, ∆×Ωr = r[1] ⊗ Ωr[2].

3. For r, s ∈ IΠ, Ω(r ◦ s) = Ωr ◦ Ωs.

4. For all n ∈ Z, Ω(ιn) = ιn−1.

Proof: (1) Let x, y ∈ IΠ. Since ∆× is a ring map, ∆×(xy) ∈ (IΠ)2⊗̂(IΠ)2. Since

ω[(IΠ)2] = 0 we have Ω[(IΠ)2] = 0 and so Ω factors via QΛ. By construction, the image

of Ω is primitive.

(2) For r ∈ IH and x, y ∈ A in some Π-algebra A, we have

Ωr(xy) = ω(r[1])r[2](xy)

= ω(r[1])r[2](x)r[3](y)

= r[1](x)(ω(r[2])r[3])(y)

= r[1](x)Ωr[2](y).

The result follows by Theorem 1.2.29.

(3) Let r, s ∈ IΠ and x in some Π-algebra. In sumless Sweedler notation, we have

(Ωr ◦ Ωs)(x) = Ωr[ω(s[1])s[2](x)]

= r[1](ω(s[1])) · ω(r[2]) · (r[3] ◦ s[2])(x)

= β[ω(s[1])](r[1]) · ω(r[2]) · (r[3] ◦ s[2])(x).

To compute Ω(r ◦ s), recall

∆×(r ◦ s) =
∑
(r)

n∏
i=1

∑
(r(i))

r(i)[1] ◦ si[1] ⊗ r(i)[2] ◦ si[2]
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where ∆×(s) =
n∑
i=1

si[1] ⊗ s
i
[2]. Since ω((IΠ)2) = 0, we have

(ω ⊗ 1)∆×(r ◦ s) =
∑
(r)

∑
(s)

ω(r ◦ s[1])⊗ r[2] ◦ s[2]

=
∑
(r)

∑
(s)

β[ω(s[1])](r[1]) · ω(r[2])⊗ r[3] ◦ s[2]

The result follows.

(4) This is immediate since ∆×(ιn) =
∑

r+s=n ιr ⊗ ιs.

Proposition 2.2.15. Suppose Π is a k-plethory equipped with a continuous bidegree

(−1,−1) map of k-modules Ω: IΠ→ IΠ satisfying the conditions in Proposition 2.2.14

then the composition IΠ
Ω−→ IΠ

ε×−→ k equips IΠ with the structure of a complete Haus-

dorff k-plethory with looping.

Proof: This is the content of the discussion in Section 2.2.

Theorem 2.2.16. Suppose E∗(−) is a (multiplicative) cohomology theory. If E∗(En) is

a free E∗-module for each n ∈ Z then E∗(E•) is an E∗-plethory with looping.

Proof: Recall that the E∗-module E∗(S1, o) has a canonical generator denoted u1. This

represents a map S1 → E1. The discussion in Section 2.2 showed that the map induced

on cohomology u∗1 : E∗(E1, o)→ E∗(S
1, o) ∼= E∗ satisfies the required properties.

To be confident we have encapsulated all the important implications the suspension

isomorphisms have on the plethory of cohomology operations we can compare our results

to the well-studied implications of suspension on the Hopf ring of homology cooperations.

Consider the canonical generator u1 ∈ E∗(S1, o), this represents a map S1 → E1

which induces a map E∗(S
1, o) → E∗(E1, o). The image of u1 under this map is typ-

ically denoted e ∈ E1(E1, o). In the Hopf ring, we can consider the degree 1 map

e ◦ − : E∗(En) → E∗(En+1) and in cases where we have duality E∗(En) ∼= DE∗(En),

the dual of ◦-multiplication by e is looping of operations. Moreover, this information

is all produced by the map induced on homology by u1. In our plethystic setting, the

information from the suspension isomorphisms is produced by the map induced by u1 on

cohomology. It should also be possible to formulate and prove this entirely abstractly if

we devise a suitable notion of a Hopf ring equipped with the suspension element e.
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2.2.2 Stable operations

Of particular prominence in topology are the stable operations: collections of operations

rn : En(−) → En+h(−) for n ∈ Z which commute with suspension in the sense that

rn(Σx) = Σrn−1(x) for all spaces X and x ∈ E∗(X). Equivalently, we have Ωrn = rn−1.

A stable operation induces a map of spectra E → E which is by definition an element

of our stable cohomology E∗(E, o). Stable operations have interesting relationships with

both the additive and the unstable operations and now we have abstracted our notion

of looping to an algebraic context we can discuss this in detail.

Definition 2.2.17. Let P be a k-plethory with looping. We say a sequence r ∈
∏
n∈Z Pn

is stable if Ωrn+1 = rn for all n. Denote the set of all stable elements in
∏
n∈Z Pn by

Stab(P ). Note by the looping condition, we have deg∗(rn)− n is constant for all n and

this gives a grading on Stab(P ). Given a map f : P → P ′ of k-k′-birings with looping, we

can define Stab(f) : Stab(P )→ Stab(P ′) by Stab(f)(r) = (f(rn))n∈Z. Hence we have a

functor Stab(−) : ΩPlethoryk →Modk.

The following result justifies this definition.

Theorem 2.2.18. Suppose E∗(−) is a (multiplicative) cohomology theory. If E∗(En) is a

free E∗-module for each n ∈ Z then we have an isomorphism of k-modules Stab(E∗(E•))
∼=

E∗(E, o).

Proof: Let r : E → E be a degree h self map of the representing Ω-spectrum for E∗(−).

Define rn : En → En+h to be the component of r on the n-th representing space. Since r

is a map of spectra we have Ωrn+1 = rn. Thus, viewing the rn as elements of En+h(En),

we have (rn)n∈Z ∈ Stab(E∗(E•)). Conversely, if (rn)n∈Z ∈ Stab(E∗(E•)) then we can

define a map of Ω-spectrum E → E on each representing space by the rn. These

constructions are clearly inverses.

Another common used topological property which has a nice algebraic consequence is

the stabilisation map of spectra. Thus induces a map σn : E∗(E, o) → E∗(En) sending

a stable operation to its restriction to the n-th degree cohomology.

Definition 2.2.19. For a k-plethory with looping Π, define the stabilisation map σn : Stab(Π)→
Πn to be the canonical projection.

Proposition 2.2.20. Let Π be a k-plethory with looping. The stabilisation map σn

factors as Stab(Π)→ PΠn ⊆ Πn.
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Proof: Since σn(r) = rn = Ωrn+1, by Proposition 2.2.14 we have σn(r) ∈ PΠn.

As usual, we are interested in the structure on the stable operations. Let Π be a k-

plethory with looping. Since Ω(rs) = 0 for all rs ∈ Π, it is clear that the multiplication

in Π does not induce structure on Stab(Π) in any obvious fashion. Nevertheless, as is

well known from topology, the composition of two stable operations is stable.

Theorem 2.2.21. The functor Stab(−) lifts to a functor ΩPlethoryk → Alg¬comk . If Π

is a k-plethory with looping, the multiplication in Stab(Π) is induced by the composition

in Π.

Proof: Let Π be a k-plethory with looping. Define µ : Stab(Π)⊗ Stab(Π)→ Stab(Π) as

follows. For r = (rn), s = (sn) ∈ Stab(Π), we define rs = µ(r ⊗ s) ∈ Stab(Π) to be the

unique element which has πn(rs) = rn+|s| ◦ sn where πn denotes the canonical projection

Stab(Π)→ Πn. This is well defined since each rn is primitive and

Ω(rn+1+|s| ◦ sn+1) = Ωrn+1+|s| ◦ Ωsn+1

= rn+|s| ◦ sn.

Together with 1 ∈ Stab(Π), defined to be the unique element with πn1 = ιn this forms

a not necessarily commutative algebra.

While the action of a stable operation is a group homomorphism, we have not encoded

how such operations respect the remaining algebraic structure, namely how they act on

products and constants. It is well known [39] that the stable operations of a multiplicative

cohomology theory form a Hopf algebroid. The extra structure provided by a Hopf

algebroid precisely allows us to encode our action of operations on products and constants

and it should be straightforward to show that Stab(−) lifts to take values in the category

of Hopf algebroids.

2.3 Complex orientation

All cohomology theories come equipped with the suspension isomorphisms, allowing us to

compute the cohomology of spheres. Many cohomology theories additionally come with

structure known as a complex orientation, which allows us to compute the cohomology

of complex projective spaces. The implications of a complex orientation have been well

studied, refer to [4, Part II] and [32, Section 4.3 and 4.4] for a complete reference. We

shall introduce only the definitions and results necessary for our purposes. Recall that for

a cohomology theory E∗(−), E∗(S2, o) is the free E∗-module on a canonical generator,

typically denoted u2 ∈ E2(S2, o).
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Definition 2.3.1. A complex orientation on a cohomology theory E∗(−) is an element

x ∈ E∗(CP∞, o) such that i∗x generates E∗(S2, o) ∼= 〈u2〉 where i : S2 ' CP 1 ⊆ CP∞ is

the canonical inclusion.

Note we do not require i∗x = u2 just that i∗x = γu2 where γ is a unit in E∗ and thus x

is not necessarily in degree 2. This extra flexibility can result in cleaner formulae.

Example 2.3.2. Let H∗(−;Z) denote singular cohomology with coefficients in Z as

defined in Section 3.1. It is well known that H∗(CPn;Z) = Z[x]/(xn+1). Hence

H∗(CP∞;Z) = lim←−nH
∗(CPn;Z) = Z[[α]] and x ∈ H̃2(CP∞;Z) serves as a complex

orientation.

Example 2.3.3. Let K∗(−) denote complex topological K-theory as defined in Sec-

tion 3.2. The canonical complex orientation is [ξ] − 1 ∈ KU0(CP∞), where ξ is the

universal line bundle over CP∞.

The presence of a complex orientation leads to many well known and extremely useful

properties. The most immediate consequence allows us to compute the cohomology

algebras for complex projective spaces.

Proposition 2.3.4 ([32, Proposition 4.3.2]). Let E∗(−) be a (multiplicative) cohomology

theory with complex orientation x ∈ E∗(CP∞, o). The following conditions hold.

1. E∗(CPn) ∼= E∗[x]/(xn).

2. E∗(CP∞) ∼= E∗[[x]].

3. E∗(CPn × CPm) ∼= E∗[x1, x2]/(xn1 , x
m
2 ).

4. E∗(CP∞ × CP∞) ∼= E∗[[x1, x2]]

where x1, x2 are the images of x under the maps induced by the projections π1, π2 : CP∞×
CP∞ → CP∞.

We remark that as a corollary of the above result, the degree of the complex orientation

x must be even if the characteristic of E∗ is not equal to 2: for if |x| is odd then x2 = 0.

Corollary 2.3.5 ([4, Part II. Lemma 2.14 and Corollary 2.18]). Let E∗(−) be a (mul-

tiplicative) cohomology theory with complex orientation x ∈ En(CP∞, o). The ho-

mology coalgebra E∗(CP∞) is the free E∗-module on generators βi for i ≥ 0, where

βi ∈ Eni(CP∞) is dual to xi. The coalgebra structure is given by

ψ(βk) =
∑
i+j=k

βi ⊗ βj .
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Another very useful property of the complex orientation is the formal group law for the

cohomology theory. Recall that CP∞ is an H-space: it comes equipped with a continuous

multiplication µ : CP∞×CP∞ → CP∞. There are two illuminating ways to realise this

multiplication. The first identifies CP∞ with C[[x]]/ ∼ where f(x) ∼ g(x) if and only if

f(x) = zg(x) for some z ∈ C. Under this identification, µ is induced by multiplication of

power series. An alternative realisation of µ is to recall that CP∞ is a model for BU(1),

the classifying space of line bundles. If ξ denotes the universal line bundle over CP∞

and πi : CP∞ ×CP∞ → CP∞ the natural projections (i = 1, 2) then π∗1ξ ⊗ π∗2ξ is a line

bundle over CP∞ × CP∞ and thus classified by a map CP∞ × CP∞ → CP∞ which is

the H-space multiplication on CP∞.

Now µ : CP∞ × CP∞ → CP∞ induces a map on cohomology E∗[[x]] ∼= E∗(CP∞)
µ∗−→

E∗(CP∞ × CP∞) ∼= E∗[[x1, x2]] which is determined by the image of x. This map

produces an algebraic gadget known as a formal group law.

Definition 2.3.6. Let F (x, y) =
∑

i,j≥0 aijx
iyj ∈ k[[x, y]] be a power series. We say F

is a formal group law over k if the following conditions are true.

1. F (x, 0) = x and F (0, y) = y. In other words, a00 = 0, a10 = a01 = 1.

2. F (x, y) = F (y, x), that is aij = aji for all i, j.

3. F (x, F (y, z)) = F (F (x, y), z) ∈ k[[x, y, z]].

We will also write x+F y for F (x, y). Under this notation, conditions (1), (2) and (3) say

+F is a unital, commutative and associative binary operation. We shall write [n]F (x)

for the iterated formal group law sum of n indeterminates: x+F · · ·+F x ∈ k[[x]].

Proposition 2.3.7 ([32, Proposition 4.4.3]). Let µ : CP∞×CP∞ → CP∞ denote the H-

space multiplication on CP∞. If E∗(−) is a cohomology theory with complex orientation

x ∈ E∗(CP∞, o) then the power series

F (x1, x2) = µ∗(x) ∈ E∗(CP∞ × CP∞) ∼= E∗[[x1, x2]]

is a formal group law over E∗.

Definition 2.3.8. If E∗(−) is a (multiplicative) cohomology theory with complex ori-

entation x ∈ E∗(CP∞, o) then the power series of Proposition 2.3.7 is called the formal

group law for E∗(−). Notice that the formal group law depends on the choice of complex

orientation for E∗(−).
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Example 2.3.9. The formal group law for ordinary cohomology H∗(−;Z) together with

the standard complex orientation (Example 2.3.2) is given by F (x, y) = x + y. This is

the additive formal group law.

Example 2.3.10. The multiplicative formal group law F (x, y) = x+y+xy is the formal

group law for complex K-theory K∗(−) together with the standard complex orientation

(Example 2.3.3).

We have seen complex oriented cohomology theories give rise to formal group laws. The

Landweber exact functor theorem provides a partial converse; given a formal group law

F , it provides sufficient conditions for constructing a cohomology theory with formal

group law F . This provides a method of constructing complex K-theory K∗(−) via the

multiplicative formal group law.

Finally, we have seen that the H-space structure µ on CP∞ induces a map on cohomol-

ogy E∗(CP∞) → E∗(CP∞ × CP∞) which is encoded by the formal group law. Since

E∗(CP∞) is a free E∗-module, we have a Künneth isomorphism E∗(CP∞ × CP∞) ∼=
E∗(CP∞)⊗̂E∗(CP∞) and we can thus give E∗(CP∞) the structure of a completed Hopf

algebra. Similarly we can consider the map induced by µ on homology and give E∗(CP∞)

the structure of a Hopf algebra.

Proposition 2.3.11 ([40, Lemma 3.3 and Theorem 3.4]). Let E∗(−) be a cohomology

theory with complex orientation x ∈ E∗(CP∞, o) and formal group law F . The co-

homology ring E∗(CP∞) ∼= E∗[[x]] has the structure of a completed Hopf algebra with

comultiplication E∗(CP∞)→ E∗(CP∞)⊗̂E∗(CP∞) given by

ψ(x) = F (x⊗ 1, 1⊗ x).

Moreover, the homology coalgebra E∗(CP∞) ∼= 〈β0, β1, . . . 〉 has the structure of a Hopf

algebra with multiplication given by

β(s)β(t) = β(s+F t)

in the ring in E∗(CP∞)[[s, t]] where β(t) =
∑

i βit
i.

2.3.1 Complex orientation and Hopf rings

The impact of complex orientation on the Hopf ring of homology coooperations has been

well studied, see [40]. We will recall the important results, before abstracting to an

algebraic setting. This abstraction will prove useful when we study the dual world of
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plethories and allow us to show that the dual of the effect of a complex orientation on

the homology cooperations appears in our language of plethories.

Suppose E∗(−), G∗(−) are multiplicative cohomology theories and recall that a complex

orientation xG ∈ Gn(CP∞, o) represents a map CP∞ → Gn and thus induces a map

xG∗ : E∗(CP∞) → E∗(Gn). If E∗(−) is also complex oriented then we can compute the

homology of CP∞. Applying the map xG∗ to elements of E∗(CP∞) defines elements of

E∗(Gn).

Definition 2.3.12. Let E∗(−), G∗(−) be (multiplicative) cohomology theories with

complex orientations xE ∈ Em(CP∞, o), xG ∈ Gn(CP∞, o). Define the elements bi ∈
Emi(Gn) by bi = xG∗ (βi) where βi ∈ Emi(CP∞) is dual to (xE)i.

For notational ease, we define the formal power series b(t) =
∑

i bit
i ∈ E∗(Gn)[[t]].

This construction yields elements of our Hopf ring, but we have no information yet

about the properties of these elements. Fortunately, these bi have been well-studied, for

example see [15, Section 15].

Proposition 2.3.13 ([15, Proposition 15.3]). The elements bi ∈ Emi(Gn) satisfy the

following properties.

1. b0 = 10.

2. ψbk =
∑

i+j=k bi ⊗ bj or equivalently, ψb(t) = b(t)⊗ b(t).

3. εbk = 0 for k > 0 and εb0 = 1 or equivalently, εb(t) = 1.

4. χb(s) = b(s)∗−1 where we can expand the right hand side by writing b(s) = 1+ b̄(s).

The above proposition contains no statement about the interaction between the bi, the

∗-multiplication and the ◦-multiplication. This information is encoded by the formal

group law.

Definition 2.3.14. Let H be a k-k′-Hopf ring and F a formal group law over k. We

shall write

x+[F ] y = ∗
i,j≥0

[aij ] ◦ x◦i ◦ y◦j .

Since ∗-multiplication and ◦-multiplication come from the addition and multiplication

on the k′-algebra object defining a Hopf ring, we can view this as a Hopf ring theoretic

version of the power series x+F y.
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Theorem 2.3.15 ([40, Theorem 3.8]). Let E∗(−), G∗(−) be (multiplicative) cohomology

theories with complex orientations xE ∈ Em(CP∞, o), xG ∈ Gn(CP∞, o) and formal

groups FE , FG respectively. In E∗(Gn)[[s, t]],

b(s+F t) = b(s) +[G] b(t).

Example 2.3.16. Suppose FE(x, y) = FG(x, y) = x+y then we have b(s+t) = b(s)∗b(t),
and comparing coefficients we see, bi∗bj =

(
i+j
i

)
bi+j . Hence, if our map xG∗ : E∗(CP∞)→

E∗(Gn) is an isomorphism, then E∗(Gn) is a divided power series algebra on a single

generator. For example, if E∗(−) = G∗(−) = H∗(−;Z) with the complex orientation in

Example 2.3.2 then x∗ : H∗(CP∞;Z)→ H∗(K(Z, 2);Z) where K(Z, 2) is the representing

space for H2(−;Z). In this case, x∗ is an isomorphism.

Example 2.3.17. For the multiplicative formal group law, FE(x, y) = FG(x, y) = x +

y+xy, the answer is somewhat more complicated. For example, when E∗(−) and G∗(−)

are complex K-theory K∗(−) together with the complex orientation in Example 2.3.3.

We have b(s+ t+ st) = b(s) ∗ b(t) ∗ b(s) ◦ b(t). If we consider the coefficient of sitj in

b(s+ t+ st) =
∑
n

bn(s+ t+ st)n

=
∑
n

∑
α+β+γ=n

(
n

α, β, γ

)
bns

α+γtβ+γ

then we see contributing terms will have α+ γ = i, β + γ = j and n ≤ i+ j ≤ 2n. Since

0 ≤ γ ≤ n, the coefficient of sitj is

i+j∑
n=d i+j

2
e

n∑
γ=0

(
n

i− γ, j − γ, γ

)
bn.

For the right hand side, we note

b(s) ∗ b(t) ∗ b(s) ◦ b(t) =
∑
α,β,γ,δ

bα ∗ bβ ∗ (bγ ◦ bδ)sα+γtβ+δ.

Hence the coefficient of sitj is∑
α+γ=i,β+δ=j

bα ∗ bβ ∗ (bγ ◦ bδ) =

i∑
α=0

j∑
β=0

bα ∗ bβ ∗ (bi−α ◦ bj−β).

Using b0 = 10, we have

i+j∑
n=d i+j

2
e

n∑
γ=0

(
n

i− γ, j − γ, γ

)
bn =bi ◦ bj +

i−1∑
α=1

bα ∗ (bi−α ◦ bj) +

j−1∑
β=1

bβ ∗ (bi ◦ bj−β)

+ bi ∗ bj +

i−1∑
α=1

j−1∑
β=1

bα ∗ bβ ∗ (bi−α ◦ bj−β)
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since b0 ◦ bk = 0 unless k = 0 when b0 ◦ b0 = 10. This gives an inductive formula to

compute bi ◦ bj for any i, j > 0.

We now abstract this information to a purely algebraic setting. To do so, we first recall

the construction of a free Hopf ring, originally due to Ravenel and Wilson [40].

Definition 2.3.18. Let Coalg+
k denote the category of augmented k-coalgebras: k-

coalgebras C with a k-module map η : k → C such that εη = 1k. We write 1 = η(1).

Define the free Hopf ring functor FHR : (Coalg+
k )Z → HopfRingk[k′] as follows. If

C• ∈ (Coalg+
k )Z, identify 1 ∈ Cn with [0n], take all possible ∗ and ◦-products of C• with

itself and the elements [λ] for λ ∈ k′ and then take the quotient by the defining relations

of a Hopf ring, see [40, Lemma 1.12].

Similiarly, we can define the free k[k′]-Hopf ring on a Z-graded collection of Hopf algebras

over k by taking the free Hopf ring on the underlying Z-graded collection of augmented

k-coalgebras and then taking the quotient by the multiplicative relations in the Hopf

algebras. For example, this is used in [52].

The free Hopf ring satisfies the following universal property.

Proposition 2.3.19 ([40]). There is a canonical map of augmented k-coalgebras i : C• →
FHR(C•) such that for any k-k′-Hopf ring H and map of augmented k-coalgebras f : C• →
H, there exists a unique map of k-k′-Hopf rings f̃ : FHR(C•)→ H such that the follow-

ing diagram commutes.

C• FHR(C•)

H

i

f
f̃

The following augmented coalgebra will crop up frequently, so for brevity we give it a

name.

Definition 2.3.20. Define the augmented k-coalgebra C(m) to be the free k-module

on generators βi for i ≥ 0 with |βi| = mi. The coalgebra structure is given by ψ(βk) =∑
i+j=k βi ⊗ βj and the augmentation by β0 = 1. As before, we shall write β(t) =∑
i βit

i ∈ C(m)[[t]].

Definition 2.3.21. Fix integers n,m and define an object of (Coalg+
k )Z by

C• = l 7→

{
C(m) l = n

〈1〉 otherwise.
.
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For formal group laws F1 over k and F2 over k′, let IF1,F2 be the Hopf ring ideal of

FHR(C•) generated by the coefficients of the power series

β(s+F1 t)− [β(s) +[F2] β(t)] ∈ FHR(C•)[[s, t]].

Define the bidegree (n,m) complex orientating k[k′]-Hopf ring with respect to F1 and F2

to be

Hn,m
F1,F2

=
FHR(C•)

IF1,F2

Definition 2.3.22. Let F1, F2 be formal group laws over k and k′ respectively. We say

a k-k′-Hopf ring H is bidegree (n,m) complex oriented with respect to formal group laws

F1 and F2 if there exists a map of k[k′]-Hopf rings Hn,m
F1,F2

→ H.

As Hn,m
F1,F2

is trivial outside of •-degree n, we have a simpler sufficient condition for a

Hopf ring to be complex oriented.

Proposition 2.3.23. Let F1, F2 be formal group laws over k and k′ respectively. A

k[k′]-Hopf ring H is bidegree (n,m) complex oriented with respect to formal group laws

F1 and F2 if and only if there exists a map of augmented k-coalgebras

f : C(m)→ Hn

such that f(β(s+F1 t)) = f(β(s)) +[F2] f(β(t)) in Hn[[s, t]].

Proof: Let φ : Hn,m
F1,F2

→ H be a map of k[k′]-Hopf rings. Let C• be the augmented

k-coalgebras of Definition 2.3.21 and consider the k[k′]-Hopf ring map

FHR(C•)
π−→ Hn,m

F1,F2

φ−→ H.

Restricting to the n-th •-component gives a map f : C(m) → Hn of augmented k-

coalgebras. Moreover, since f factors through Hn,m
F1,F2

we must have f(β(s +F1 t)) =

f(β(s) +[F2] β(t)). For the converse, suppose we have a map f : C(m) → Hn satisfying

our hypothesis. This extends to a map f• : C• → H in the obvious way. Hence we have

a map of k[k′]-Hopf rings

φ : FHR(C•)→ H.

Now,

φ(β(s+F1 t)− [β(s) +F2 β(t)]) = f(β(s+F1 t))− f(β(s)) +F2 f(β(t)) = 0.

Hence φ factors as FHR(C•)→ Hn,m
F1,F2

→ H.

The following result shows our definitions correctly encode the impact of a complex

orientation on the Hopf ring of homology cooperations.
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Corollary 2.3.24. Let E∗(−), G∗(−) be cohomology theories with complex orientations

xE ∈ Em(CP∞, o), xG ∈ Gn(CP∞, o) and formal group laws FE , FG respectively. The

E∗[G∗]-Hopf ring E∗(G•) is bidegree (n,m) complex oriented with respect to FE , FG.

Proof: Apply Proposition 2.3.23 to xG∗ : E∗(CP∞)→ E∗(Gn). The fact this map satisfies

the hypothesis is the content of [40, Theorem 3.8].

2.3.2 The impact on cohomology operations

Let P be a k-plethory and suppose we have a map of P -rings f : k[[x]]→ k[[y, z]] given

by f(x) = F (y, z). By naturality, we require r(f(x)) = r(F (y, z)) = f(r(x)) for all

r ∈ P . Now F (y, z) ∈ k[[y, z]] and thus we can use the structure maps of our plethory

to expand r(F (y, z)) = r(
∑
aijy

izj) in terms of actions of operations on y and z. This

produces a ‘comultiplication’ r 7→ r{1} ⊗ r{2} such that r(y +F z) = r{1}(y)r{2}(z).

Definition 2.3.25. Let F (y, z) =
∑
aijy

izj be a finite formal group law (so only N

coefficients aij are non-zero), n ∈ Z, and B a complete Hausdorff k-k′-biring. Define the

F -comultiplication ∆F : Bn → Bn⊗̂Bn to be the following composition.

Bn
∆+

(N)−−−→
⊗̂

i,j≥0
Bn

⊗̂
i,j∆

×
(1+i+j)−−−−−−−−→

⊗̂
i,j≥0

(
B(i+j−1)n⊗̂B⊗̂in ⊗̂B⊗̂jn

) ⊗̂
i,j

(
βai,j⊗̂1⊗̂i⊗̂1⊗̂j

)
−−−−−−−−−−−−−−→

...−→
⊗̂

i,j≥0

(
k⊗̂B⊗̂in ⊗̂B⊗̂jn

)
∼=
⊗̂

i,j≥0

(
B⊗̂in ⊗̂B⊗̂jn

)
τ−→
⊗̂

i≥0
B⊗̂in ⊗̂

⊗̂
j≥0

B⊗̂jn
µ⊗̂µ−−−→ Bn⊗̂Bn.

Here τ is the twist map which sends all copies of B⊗in to the left and all copies of B⊗jn

to the right. In sumless Sweedler notation, we shall write ∆F (r) = r{1} ⊗ r{2}.

The above definition should pass to the non-finite case by considering finite truncations

of an infinite group law and the passing to the limit.

Example 2.3.26. If F be the additive formal group law, then ∆F = ∆+.

Example 2.3.27. If F is the multiplicative formal group law and n = 0 then ∆F (r) =

r(1)r(3)[1] ⊗ r(2)r(3)[2].

Proposition 2.3.28. Let k[[y, z]] be a P -algebra. For all r ∈ P , we have r(F (y, z)) =

r{1}(y)r{2}(z).
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Proof: Writing ∆+(r) =
⊗

i,j r
(i,j), we have

r(F (y, z)) = r(
∑
i,j

aijy
izj)

=
∏
i,j

r(i,j)(aijy
izj)

=
∏
i,j

r
(i,j)
[1] (aij)r

(i,j)
[2] (y) . . . r

(i,j)
[1+i](y)r

(i,j)
[2+i](z) . . . r

(i,j)
[1+i+j](z)

=
∏
i,j

(βaij)(r
(i,j)
[1] )(r

(i,j)
[2] . . . r

(i,j)
[1+i])(y)(r

(i,j)
[2+i] . . . r

(i,j)
[1+i+j])(z).

Comparing to our definition, we see this is precisely r{1}(y)r{2}(z).

Thus for the multiplicative formal group law, we see that knowing any two of ∆+,∆×

and ∆F is sufficient to determine the third.

Definition 2.3.29. We say a k-k′-biring B is bidegree (n,m) complex oriented with

respect to formal group laws F1, F2 if it is equipped with a map of k-bialgebras

(Bn, µ,∆
F2)→ k[[x]]

where |x| = m and the coalgebra structure on k[[x]] is determined by ψ(x) = F1(x ⊗
1, 1⊗ x).

Theorem 2.3.30. Suppose E∗(−), G∗(−) have orientations xE ∈ En(CP∞) and xG ∈
Gm(CP∞) respectively with formal group laws FE and FG. If E∗(Gn) is a free E∗-module

for each n then the complete Hausdorff E∗-G∗-biring E∗(G•) is bidegree (n,m) complex

oriented with respect to FE , FG.

Proof: The complex orientation for G∗(−) induces a map of E∗-algebras x∗G : E∗(Gm)→
E∗(CP∞). Now E∗(CP∞) ∼= E∗[[xE ]] and has a coalgebra structure induced by µ and

given by ψ(xE) = FE(xE ⊗ 1, 1⊗ xE). Placing the coalgebra structure ∆FG on E∗(Gm)

it remains to show x∗G is map of coalgebras. For r ∈ E∗(Gm), we have (x∗G⊗x∗G)∆FGr =

r{1}(xG) ⊗ r{2}(xG). Also, ψx∗Gr = ψr(xG) and since ψ is induced by the H-space

structure on CP∞ it commutes with r by naturality. Hence ψx∗Gr = r(1⊗ xG +FExG⊗
1)) = r{1}(xG)⊗ r{2}(xG) by Proposition 2.3.28. Hence see x∗G is a bialgebra map.

With these abstract algebraic definitions, we can prove that our definition of a com-

plex orientated biring encapsulates the duals of all the well-studied implications of the

complex orientation on the Hopf ring of homology cooperations.

Theorem 2.3.31. Let H be a k[k′]-Hopf ring which is free as a k-module and bidegree

(n,m) complex orientated with respect to F1, F2. The dual complete Hausdorff k-k′-biring

DH is bidegree (n,m) complex oriented with respect to F1, F2.
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Proof: We have seen from Theorem 2.1.61 that DH is a complete Hausdorff k-k′-biring.

Let f : C(m) → Hn be the complex orienting map for H from Proposition 2.3.23. This

induces a map of algebras Df : DHn → DC(m) ∼= k[[x]] where |x| = m. Moreover,

we have f(β(s +F1 t)) = f(β(s)) +[F2] f(β(t)) in Hn[[s, t]]. Since ◦-multiplication is

dual to ∆× and ∗-multiplication is dual to ∆+, we see equipping DC(m) ∼= k[[x]] with

the comultiplication ψ(x) = F1(x ⊗ 1, 1 ⊗ x) and DHn with ∆F2 that Df is a map of

coalgebras.

Up to this point we have only discussed birings, we now turn to the world of plethories.

On a cohomology theory, complex orientation allows us to compute the cohomology of

the complex projective spaces and thus these cohomology algebras have a natural action

by the operations on our theory.

Definition 2.3.32. We define a degree n complex oriented k-plethory with respect to a

formal group law F to be a complete Hausdorff k-plethory P which is a bidegree (n, n)

complex oriented k-k-biring with respect to F, F and the k-algebra k[[x]] with |x| = n is

a P -algebra.

We have some immediate consequences of this definition.

Proposition 2.3.33. Suppose P is a degree n complex oriented k-plethory with respect

to a formal group law F . The •-degree n component of the unital composition map

u : In → Pn is injective.

Proof: We have In = k[ιn]. Suppose u(ιn)m = 0 for some m. In the P -algebra k[[x]], we

have 0 = u(ιn)m ◦ x = (u(ιn) ◦ x)m = xm 6= 0 a contradiction.

Example 2.3.34. Let k = Fp and consider the algebra ideal J of I given by Jn =

(ιpn). This is a plethystic ideal and the quotient has •-components Fp[ιn]/(ιpn). By

Proposition 2.3.33 we see the Fp plethory I/J does not admit any complex orientations.

While we seem to have discovered all the consequences of a complex orientation on

the biring of cohomology operations by comparing our answer to what is known about

Hopf rings, it seems likely that there should be additional consequences of a complex

orientation on the plethory of cohomology operations.
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Chapter 3

Computations

After setting up a suitable plethystic framework we now turn our attention to our main

application: computing the plethory of cohomology operations for some known cohomol-

ogy theories.

We have two main approaches for performing these computations. If the cohomology

operations have been well studied and there are many useful results, we are able to

argue directly and compute the plethory of unstable cohomology operations just from

this information.

For more esoteric cohomology theories this may not be the case. However, in many

cases the enriched Hopf ring has been computed, usually via complex spectral sequence

calculations. In this case, we can leverage our duality results to compute the plethory.

We recall some useful computational results about Hopf rings in Appendix E.

In this chapter I give a complete description of the plethory of cohomology operations

for singular cohomology with coefficients in Q, F2 and Fp. For each of these examples,

I give two ways to obtain the description. One method uses well-known results about

the cohomology operations and directly computes the plethory. The alternative method

utilises our duality results from Section 1.3.4 and computes the plethory from a descrip-

tion of the enriched Hopf ring. Moreover, I use plethystic theory to make precise the

heuristic that in singular cohomology, the stable operations freely generate the unstable

operations.

I give a complete description of the plethory of cohomology operations for complex K-

theory. As a result, we are able to show that in a plethystic context, the λ-operations

together with looping generate all the unstable operations for complex K-theory.

I conclude the chapter by giving a partial description of the plethory of cohomology
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operations for the Morava K-theories. After pushing the existing plethystic theory as

hard as possible to obtain these partial results, I offer a potential direction for calculating

the remaining information in the plethory via a Hopf theoretic filtration and provide some

conjectural results.

3.1 Singular cohomology

The first cohomology theory encountered in many courses in algebraic topology is known

as singular cohomology. It has the advantage of being geometrically intuitive via the

medium of simplical complexes and is amenable for doing many computations. For a

detailed introduction to singular cohomology refer to [24] or [34].

Definition 3.1.1. Let R be some commutative ring. Define the singular n-chains

Cn(X;R) of a topological space to be the free R-module on the singular n-simplices:

continuous maps σn : ∆n → X where ∆n denotes the standard n-simplex.

The boundary map ∂ : Cn+1(X;R) → Cn(X;R) makes C•(X;R) into a chain com-

plex. We define the chain complex of singular co-chains to be the dual chain complex

C•(X;R) = DC•(X;R) and define the singular cohomology H∗(X;R) to be the homol-

ogy of this chain complex.

The cup product equips H∗(X;R) with the structure of an R-algebra. As these con-

structions are natural in X and homotopy invariant we have a contravariant functor

H∗(−;R) : Ho → AlgR. We denote the corresponding reduced cohomology theory by

H̃∗(−;R).

The Eilenberg-Steenrod axioms were devised by studying the abstract properties of the

singular cohomology functor. As such singular cohomology is tautologically a cohomol-

ogy theory. The representing spaces of singular cohomology are well studied and are

known as the Eilenberg-MacLane spaces.

Definition 3.1.2. A space X is an Eilenberg-MacLane space (or a K(G,n)) for a group

G and non-negative integer n if it satisfies the following.

πk(K(G,n)) =

{
G k = n

0 o.w.

Provided that if n > 1 then G is abelian, there exists a unique up to weak homotopy

equivalence CW-complex which is a K(G,n). We shall abuse notation and denote such a
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CW-complex by K(G,n). As an useful example, we remark that K(G, 0) = G considered

as a discrete space.

If R is a commutative ring, then the Eilenberg-MacLane spaces K(R,n) form the Ω-

spectrum for singular cohomology H∗(−;R). Explicitly, we have homotopy equivalences

ΩK(R,n+ 1) ' K(R,n) and natural isomorphisms H∗(X;R) ∼= Ho(X,K(R,n)).

Now suppose k is a field. Since the coefficient ring, the cohomology of the one-point

space, H∗(T ; k) = k is a field, Theorem 2.2.16 asserts that the unstable cohomology

operations for singular cohomology H∗(K(k, •); k) admits the structure of a k-plethory

with looping.

3.1.1 Singular cohomology with rational coefficients

A widely used coefficient ring for singular cohomology is the field of rationals, Q. The

cohomology theory H∗(−;Q) is simple enough to be amenable to calculations but com-

plex enough to retain important information about the topological spaces. It is known

that in this case we have no interesting cohomology operations but nonetheless it gives

us a suitable example for demonstrating our plethystic framework.

A direct approach

It is well known that in positive degrees the cohomology operationsH∗(−;Q)→ H∗(−;Q)

are multiplicatively generated by the identity operations.

Theorem 3.1.3. For n ≥ 1 we have isomorphisms of Q-algebras

H∗(K(Q, n);Q) ∼=

{
Λ[ιn] n > 0 odd

Q[ιn] n > 0 even

where ιn ∈ H̃n(K(Q, n);Q) is the universal class and represents the identity map K(Q, n)→
K(Q, n).

This information is sufficient to compute the plethory of unstable cohomology operations.

Theorem 3.1.4. Let P be the complete Hausdorff Q-plethory with looping with •-
components

Pn =


Set(Q,Q) n = 0

Λ[ιn] n > 0 odd

Q[ιn] n > 0 even
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where |ιn| = n and Set(Q,Q) is concentrated in degree 0. The plethystic structure on

Set(Q,Q) is given by Example 2.1.58 and ι0 is the identity map in Set(Q,Q). We have

an isomorphism of Q-plethories with looping H∗(K(Q, n);Q) ∼= P•.

We remark that this information completely determines the plethystic structure since the

unit map for the composition I → H∗(K(Q, n);Q) is a map of Q-plethories with looping,

i.e. the operations ιn ∈ H∗(K(Q, n);Q) are super primitive, the units for composition,

and satisfy Ωιn = ιn−1.

Proof: For n > 0, Theorem 3.1.3 gives us an expression of H∗(K(Q, n);Q) as an algebra.

The plethystic structure and looping is immediate since ιn represents the identity map.

For n = 0, K(Q, 0) = Q, a disjoint union of points, and thus H∗(K(Q, n);Q) is concen-

trated in degree 0. Now, H0(Q;Q) ∼= Ho(Q,Q) = Set(Q,Q) and this has the correct

biring structure by definition.

Recall Theorem 1.3.58 which states that every plethory over a field of characteristic 0 is

linear. The following result shows that a topological generalisation of this result holds

for H∗(K(Q; •)). Recall the functor Sk : Bialgk → Plethoryk of Definition 1.3.54. A

topology on a k-bialgebra B induces a filtration on Sk(B) given by the images Sk(U)→
Sk(B) where U ⊆ B ranges over the open sets. Hence composing with the completion,

we can define a functor Ŝk from the category of topological bialgebras to CPlethoryk.

Theorem 3.1.5. Let B• be the bigraded Q-bialgebra such that Bn is the free Q module

on a single group-like generator in degree n for all n > 0 and the multiplication is induced

by multiplication in Q. For n > 0, equip Bn with the discrete topology and equip B0 with

the pro-finite topology.

We have an isomorphism of complete Hausdorff Q-plethories Ŝk(B•) = H∗(K(Q, •);Q).

Proof: Let ιn denote the group-like generator for Bn. We have isomorphisms of Q-

algebras Sk(Bn) ∼= Q[ιn] for n even and Sk(Bn) ∼= Λ[ιn] for n odd. For n > 0, this has

the discrete topology and thus Ŝk(Bn) = Sk(Bn). For n = 0, Sk(Q) = Q[x] has open

sets consisting of polynomials which agree on some finite subset A ⊆ Q. Now for any set

map φ : Q→ Q and finite subset A ⊂ Q we can find a polynomial that agrees with φ on

A. Hence Ŝk(B0) ∼= Set(Q,Q). These algebra maps form a map of Q-plethories by the

definition of Sk.
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Via the enriched Hopf Ring

The enriched Hopf ring of homology cooperations for singular cohomology with ratio-

nal coefficients has been computed and to illustrate our machinery we re-derive Theo-

rem 3.1.4 from this starting point.

Theorem 3.1.6 ([15, Theorem 17.5]). The Q[Q]-Hopf ring H∗(K(Q, •);Q) is the free

Q[Q]-Hopf ring on the primitive generator e ∈ H1(K(Q, 1);Q) subject to the relations

e◦ [λ] = λe. The enrichment is determined by the induced maps r∗e = [〈r, 11〉]∗ [〈r, e〉]◦e
for all r ∈ DH∗(K(Q, •);Q) and the augmentation determined by ι1(e) = 1.

It is useful to convert such global descriptions into a local form, a description ofH∗(K(Q, n);Q)

for each n.

Proposition 3.1.7. We have isomorphisms of Q-algebras

H∗(K(Q, n);Q) ∼=


Q[Q] n = 0

Λ[e◦n] n > 0 odd

Q[e◦n] n > 0 even.

Proof: This is immediate from the definition of a free Hopf ring.

We can now give the following alternative proof of Theorem 3.1.4. For n = 0, H∗(K(Q, 0);Q)

is the group Hopf algebra Q[Q]. Thus H∗(K(Q, 0);Q) ∼= DQ[Q] = Set(Q,Q). For n > 1,

H∗(K(Q, n);Q) is the free Q-algebra on a single primitive generator e◦n. Over Q these

Hopf algebras are self-dual and hence H∗(K(Q, n);Q) is the free Q-algebra on a sin-

gle primitive generator xn which is dual to e◦n. Since e◦n ◦ e◦m = e◦n+m we see that

∆×xn =
∑

i+j=n xi ⊗ xj . This shows we have an isomorphism of complete Hausdorff

Q-Q-birings.

To unpack the composition, we first compute the augmentation ιn as a functional

H∗(K(Q, n);Q) → Q. For n > 0 we take the basis of H∗(K(Q, n);Q) given by pow-

ers of e◦n. Since ε(e) = 0, by Definition 1.3.21 we have 〈ιn, (e◦n)∗k〉 = 1 if k = 1 and 0

otherwise. Thus we see that ιn = xn for n > 0. For the case n = 0, by Definition 1.3.21

we see that ι0 is the identity map in Set(Q,Q).

It remains to understand the composition in DQ[Q]. We take the usual basis of Q[Q]

consisting of [λ] for λ ∈ Q. Now for r, s ∈ DQ[Q], we have 〈r ◦ s, [λ]〉 = 〈r, s∗([λ])〉 =

〈r, [s(λ)]〉. This corresponds to the composition in Set(Q,Q).
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3.1.2 Singular cohomology with mod 2 coefficients

Another common choice of coefficient ring for singular cohomology is F2, the field with

two elements. This is in some sense the simplest choice of coefficient ring where we have

non-trivial cohomology operations and is thus a natural choice for our next plethystic

computation.

Classical results of Steenrod [44] show that there exist stable operations on singular

cohomology with coefficients in F2 which in some sense generalise the unstable oper-

ations given by squaring. These stable operations were given a convenient axiomatic

characterisation in [45].

Theorem 3.1.8. There exist stable operations for n > 0, called the Steenrod squares:

Sqn : H∗(X;F2)→ H∗+n(X;F2)

which can be uniquely characterised by the following axioms:

1. Sqn is a additive homomorphism Hm(X,F2) → Hm+n(X,F2) which is natural in

X.

2. For x ∈ Hn(X;F2), Sqnx = x2.

3. If x ∈ H∗(X;F2) has |x| < n then Sqnx = 0.

4. We have the following Cartan formula. For all x, y ∈ H∗(X,F2),

Sqn(xy) =
∑
i+j=n

(Sqix)(Sqjy). (3.1)

Proof: [45, Chapter VII, Definition 6.1] provides a definition of the Steenrod squares

and [45, Chapter VII, Theorem 6.7] shows they satisfy the desired axioms. A proof of

uniqueness is given in [45, Chapter VIII, Theorem 3.10].

Definition 3.1.9. We define the mod 2 Steenrod algebra A2 to be the Hopf algebra of

stable cohomology operations for singular cohomology over the field with two elements

F2.

It is proved in [42] that the Steenrod squares generate the Steenrod algebra. However,

the Steenrod algebra is far from free on these generators. The relations satisfied by

the Steenrod squares are known as the Adem relations, conjectured in [55] before being

proved by Adem in [6].
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Theorem 3.1.10 ([6, Theorem 1.1]). For all 0 < n < 2m, we have the Adem relations

Sqn ◦ Sqm =

[n/2]∑
i=0

(
m− n− 1

n− 2i

)
Sqn+m−i ◦ Sqi (3.2)

where the binomial coefficients are interpreted mod 2.

In 1953, Serre proved the following result describing the structure of A2.

Theorem 3.1.11 ([42]). The Steenrod algebra A2 is the free graded algebra generated by

Sqn (n > 0) in degree n quotiented by the ideal generated by the Adem relations (3.2).

The Hopf algebra structure is given by

ψ(Sqn) =
∑
i+j=n

Sqi ⊗ Sqj ,

ε(Sqn) =

{
1 if n = 0

0 otherwise

where Sq0 = 1.

To work with the Steenrod algebra, it will be useful to fix a choice of basis. There

are numerous well-studied choices of basis for A2 and an in-depth discussion of these

including change of basis formulae can be found in [37]. For our purposes we shall only

need two of these choices of basis.

The Serre-Cartan basis When computing the structure of the mod 2 Steenrod al-

gebra in [42], Serre found an explicit basis.

Definition 3.1.12. For any finite sequence I = (i1, . . . , in), we define SqI = Sqi1 . . . Sqin .

We say a sequence I is admissible if for each t, it ≥ 2it+1.

We define the excess of a sequence I by e(I) =
∑
it − 2it+1. This quantity measures to

what extent I exceeds the minimal requirement to be admissible.

Proposition 3.1.13 ([42]). The set
{
SqI | I is admissible

}
is a basis for A2.

Given two elements of the Serre-Cartan basis we do not have a closed form for their

product, we must iteratively apply the Adem relations until we end up with a sum of

Steenrod squares indexed by admissible sequences.
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The Milnor basis While the multiplicative structure of the mod 2 Steenrod algebra is

somewhat complex, the comultiplicative structure is straightforward. As a consequence,

the dual Hopf algebra has a simple expression as an algebra due to Milnor.

Proposition 3.1.14 ([35]). The linear dual of the Steenrod algebra, denoted A∗2, is the

polynomial algebra F2[ξ1, ξ2, . . . ], where |ξn| = 2n − 1.

Definition 3.1.15. The dual basis to the monomial basis for A∗2 is known as the Milnor

basis. We write Sq(I) for the basis element dual to ξi11 . . . ξinn .

We are able to express the product of Milnor basis elements by closed (albeit complex)

formulae.

Definition 3.1.16. Consider a matrix of non-negative integers with all but finitely many

entries zero.

X =


∗ x01 x02 . . .
x10 x11 x12 . . .
x20 x21 x22 . . .

...
...

...
. . .

 (3.3)

The first entry is never used and can be taken to be 0. Define sequences I(X) = (i1, . . . ),

J(X) = (j1, . . . ), T (X) = (t1, . . . ) and b(X) ∈ Z as follows.

ir =
∑
s≥0

2sxrs (weighted row sum)

js =
∑
r≥0

xrs (column sum)

tn =
∑
r+s=n

xrs (diagonal sum)

b(X) =

∏
n tn!∏
r,s xrs!

Note that b(X) ∈ Z as it is the product of multinomial coefficients.

Proposition 3.1.17 ([35, Theorem 4b]). For sequences I = (i1, . . . ) and J = (j1, . . . )

Sq(I)Sq(J) =
∑
X

b(X)Sq(T (X))

where X ranges over all matrices of the form (3.3) such that I(X) = I and J(X) = J

and we take b(X) modulo 2.
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A direct approach

We have sufficient knowledge of the cohomology operations for singular cohomology with

F2 coefficients that we can directly understand the plethory of cohomology operations

with a little work. In fact when proving the structure of the Steenrod algebra, Serre

computes the mod 2 cohomology of the Eilenberg-MacLane spaces K(F2, k) for each k.

Theorem 3.1.18 ([42, Théorème 2]). For each k ≥ 0, we have isomorphisms of F2-

algebras

H∗(K(F2, k);F2) ∼= F2[
{
SqIιk : I is admissible and e(I) < k

}
] (3.4)

where ιk ∈ H̃k(K(F2, k);F2) is the universal class which represents the identity K(F2, k)→
K(F2, k).

The condition e(I) < k in the above theorem comes from the following result.

Lemma 3.1.19. Let I be an admissible sequence.

1. If e(I) > k then SqIιk = 0.

2. If e(I) = k then SqIιk = (SqJ ιk)
2j where j is the smallest integer such that

e(ij , ij+1, . . . ) < k and J = (ij , ij+1, . . . ) with e(J) < k.

Proof: [25, Lemma 1.33] provides a slightly weaker statement, but actually proves this

result.

By Theorem 1.2.29, the coalgebraic structure of our biring is equivalent to the action of

the operations on the ring structure of (completed) cohomology algebras. As we saw in

Proposition 2.2.20 the image of a stable operation under the stabilisation map r 7→ rιk

is primitive and thus all our generators for the F2-algebras in (3.4) are primitive. The

action of the operations on products is encoded in the Cartan formula (3.1).

Lemma 3.1.20. Fix a space X and any sequence I. For all x, y ∈ H∗(X),

SqI(xy) =
∑

I′+I′′=I

SqI
′
(x)SqI

′′
(y)

where the sum of two sequences I ′ and I ′′ is defined coordinate-wise after suitably ap-

pending zeros if necessary.

Proof: This is immediate from the Cartan formula and induction.
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Corollary 3.1.21. In the F2-plethory H∗(K(F2, •);F2), we have

∆×(SqIιk) =
∑

I′+I′′=I
k1+k2=k

SqI
′
ιk1 ⊗ SqI

′′
ιk2 ,

ε×(SqIιk) =

{
1 I = 0, k = 0

0 otherwise.

Proof: Apply Theorem 1.2.29 to Lemma 3.1.20.

While this formula completely describes the comultiplicative structure of our plethory it

is not in a closed form: we must repeatedly apply the Adem relations (3.2) to express

the result in terms of our generators for H∗(K(F2, k);F2) (see (3.4)). Noting that stably

SqISqJ = Sqi1 . . . SqinSqj1 . . . Sqjm we see we will have similar issues when discussing

the composition.

We can leverage our plethystic framework to provide a neater expression for the plethory

of unstable cohomology operations. The intuition is that all our generators SqIιk in (3.4)

are composites of ‘atomic’ elements Sqnιk with 0 < n < k. However we note the elements

Sqnιn = ι2n and Sq0ιk = ιk are non-zero.

Definition 3.1.22. Define the bigraded F2-F2-coalgebra C• to consist of the F2-vector

spaces

Ck = 〈Sqnιk | 0 ≤ n ≤ k〉

where deg∗(Sq
nιk) = k + n. The comultiplicative structure is given by

ψ(Sqnιk) =
∑
i+j=n
k1+k2=k
i<k1,j<k2

Sqiιk1 ⊗ Sqjιk2

ε(Sqnιk) =

{
1 if k = 0 and n = 0, k

0 otherwise.

If we freely allow composition of the basis elements of C• then we are clearly going

to obtain all generators of H∗(K(F2, •);F2) as in (3.4). If we subject this composition

to the unstable analogue of the Adem relations, then it turns out we obtain all the

primitive elements of H∗(K(F2, •);F2). We remark that since F2 is in the centre of

PH∗(K(F2, k);F2) we have no twisting and PH∗(K(F2, k);F2) is a cocommutative bial-

gebra under the composition and the comultiplication. Moreover, we are working over

F2 and thus PH∗(K(F2, k);F2) has the structure of an F2[F ] module where F denotes

the Frobenius (see Definition 1.3.64).
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Proposition 3.1.23. As an F2[F ]-module,

PH∗(K(F2, k);F2) ∼= 〈SqIιk | I is admissible and e(I) ≤ k〉.

The action of the Frobenius is given by F (SqIιk) = SqI
′
ιk where I ′ = (k + |I|, i1, . . . ).

Proof: Given an arbitrary monomial m in the terms SqIιk where I is admissible and

e(I) < k, we can see this is only primitive if and only if m = SqIιk or m = FnSqIιk for

some n. The result follows from Lemma 3.1.19.

The bialgebra structure on PH∗(K(F2, k);F2) is induced by the Cartan formula (3.1) and

the composition in the Steenrod algebra A2. Recall that the tensor algebra construction

produces a functor T : CoalgF2,F2
→ TwBialgF2

.

Proposition 3.1.24. Let C• denote the F2-F2-coalgebra of Definition 3.1.22 and let

A denote the two-sided ideal of the cocommutative bialgebra T (C•) generated by the

elements

Sqnιm+kSq
mιk −

[n
2

]∑
i=0

(
m− n− 1

n− 2i

)
Sqn+m+iιk+iSq

iιk and Sq0ιk = 1k

for 0 < n < 2m and for all k ≥ m. Then A is a bialgebra ideal and we have a canonical

isomorphism of bialgebras

T (C•)

A

∼=−→ PH∗(K(F2, •);F2). (3.5)

Moreover, if we equip T (C•) with an F2[F ]-module structure given by

F (Sqn1ιk1 . . . Sq
ntιkt) = Sqk1+n1ιk1+n1Sq

n1ιk1 . . . Sq
ntιkt

then this induces an F2[F ]-module structure on T (C•)/A and makes (3.5) an isomor-

phism of F2[F ]-modules.

Proof: The isomorphism of algebras is just an unstable version of the algebraic result in

Proposition 3.1.13. By definition, the canonical map commutes with the comultiplication

on the generators Sqnιk and thus since ∆× is a map of algebras, our isomorphism is of

bialgebras. Finally, by distributivity F (A ) ⊆ A and by construction the canonical map

T (C•)/A → PH∗(K(F2, •);F2) is a map of F2[F ]-modules.

Now we have an expression for the primitive elements we can invoke Theorem 1.3.70

and make precise the heuristic that the additive operations freely generate the unstable

operations in H∗(K(F2, •);F2). Recall the functor S[2] : Bialg¬com
F2

→ PlethoryF2
of

Definition 1.3.69.
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Theorem 3.1.25. We have isomorphisms of F2-plethories

H∗(K(F2, •);F2) ∼= S[2]

(
T (C•)

A

)
∼=
S[2]T (C•)

(A )

where C• is the F2-F2-coalgebra of Definition 3.1.22, A is the ideal of Proposition 3.1.24

and (A ) is the algebra ideal of S[2]T (C•) generated by the elements of A .

Proof: Since H∗(K(F2, •);F2) is primitively generated, the Verschiebung is zero. Hence

by Theorem 1.3.70 we immediately have the first isomorphism. The second isomorphism

is immediate from properties of the symmetric algebra.

Via the enriched Hopf Ring

The Hopf ring of homology cooperations H∗(K(F2, •);F2) is well understood and has a

relatively simple form. We can leverage our knowledge of this together with our duality

results to compute an alternative expression for the plethory H∗(K(F2, •);F2). We first

recall standard results about the Hopf algebra H∗(K(F2, 1);F2).

The space RP∞ is a K(F2, 1). Moreover, RP∞ admits an H-space structure which can

be realised analogously to the H-space structure on CP∞ (see Section 2.3) and this

models the loop space structure on K(F2, 1).

The homology H∗(RP∞;F2) is the free F2-vector space on the basis c0, c1, . . . where

|ci| = i. The coalgebra structure is given by ψ(cn) =
∑

i+j=n ci ⊗ cj and ε(cn) = 1 if

n = 0 and 0 otherwise. The algebra structure induced by the H-space structure is given

by cicj =
(
i+j
i

)
ci+j . The following result shows that H∗(RP∞;F2) is generated just by

the accelerated elements c(i) = c2i ∈ H2i(RP∞;F2).

Proposition 3.1.26. We have an isomorphism of F2-algebras

H∗(K(F2, 1);F2) ∼=
F2[c(0), c(1), . . . ]

(c2
(0), c

2
(1), . . . )

where |c(i)| = 2i. Moreover, if we give F2[c(0), c(1), . . . ]/(c
2
(i)) the coalgebra structure

induced by H∗(K(F2, 1);F2) then V c(i) = c(i−1) for i ≥ 0 and V c(0) = 0.

Proof: Define a map of algebras φ : F2[c(0), c(1), . . . ] → H∗(K(F2, 1);F2) by φ(c(i)) =

c(i) = c2i . Now φ(c2
(i)) = c2

2i
=
(

2i+1

2i

)
c2i+1 = 0 since

(
2i+1

2i

)
≡ 0 mod 2. Thus φ factors

via a map F2[c(0), c(1), . . . ]/(c
2
(i)) → H∗(K(F2, 1);F2). To see this is an isomorphism

we note that every integer n ≥ 0 has a unique binary expansion n =
∑

i ni2
i where

ni ∈ {0, 1} and φ(cn0

(0)c
n1

(1) . . . ) = cn0

(0)c
n1

(1) · · · = cn.
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This result allows an extremely succinct expression of the Hopf ring of homology coop-

erations.

Theorem 3.1.27 ([54, Page 10]). The Hopf ring H∗(K(F2, •);F2) is the free F2[F2]-Hopf

ring on H∗(K(F2, 1);F2).

The advantage of this expression over the direct approach (Section 3.1.1) is that we will

no longer have to deal with admissible sequences: all ◦-products of the elements c(i) are

algebra generators.

Definition 3.1.28. We define the set of multi-indices to be the union⋃
n≥0

N×n

where the inclusion maps are given by (i0, . . . , in−1) 7→ (i0, . . . , in−1, 0). Hence a multi-

index is a sequence of non-negative integers I = (i0, i1, . . . ) with all but finitely many

in zero. Since each N×n is an abelian monoid under the point-wise operations, so is the

union.

We shall write 0 for the image of the map N×0 →
⋃
nN×n and ∆n for the the image of

(0, . . . , 0, 1) ∈ N×n+1 under the canonical inclusion to
⋃
nN×n.

Given a multi-index I, define the length by |I| =
∑

n in and for p ∈ Z the p-weighted

length by |I|p =
∑

n p
nin.

For a multi-index I, define s(I) = (0, i0, i1, . . . ). If i0 = 0 define s−1(I) = (i1, i2, . . . ).

For any multi-index I = (i0, . . . , in), we define c◦I = c◦i0(0) ◦· · ·◦c
◦in
(n) ∈ H|I|2(K(F2, |I|);F2).

We make the convention that if I = 0 then c◦I = [1] − [0]. Over F2 we have [1] − [0] =

[1] + [0] but this convention will generalise to the case over fields of characteristic other

than 2. Since [0]◦ c(i) = εc(i) = 0, on the augmentation ideal the element [1]− [0] retains

the property of being the ◦-unit but has two major advantages over [1]: it squares to

zero allowing a familiar expression of the algebra structure and the dual of [1] − [0] is

the identity operation on cohomology.

To compute the dual of the Hopf ring of homology cooperations, it proves useful to

unpack the information into a ‘local’ form: a description of the Hopf algebras in each

spacial degree.

Corollary 3.1.29. We have isomorphisms of F2-algebras for all n

H∗(K(F2, n);F2) =
⊗
I

ΛF2 [c◦I ]

where I ranges over all multi-indices with |I| = n.
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Proof: The Hopf algebra H∗(K(F2, n);F2) consists of ∗-products of ◦-products of our

generators. Hence H∗(K(F2, n);F2) is generated by c◦I for all I with |I| = n. The

relations follow from Frobenius reciprocity (see Proposition E.0.42).

We can recover the comultiplicative structure onH∗(K(F2, n);F2) from Proposition 3.1.26

since the comultiplication ψ respects ◦-multiplication. Unfortunately we have no closed

form for the comultiplication on our generators c◦I since we must repeatedly rewrite

elements in terms of the accelerated elements and apply the distributive laws of a Hopf

ring. Nevertheless, we have a nice closed form for the Verschiebung on our generators.

Since V respects ◦-multiplication, we have V c◦I = 0 for i0 6= 0 and V c◦I = cs
−1I for

i0 = 0.

Consider the monomial basis for H∗(K(F2, n);F2) i.e. the basis consisting of elements of

the form c◦I1 ∗· · ·∗c◦IN with |It| = n. Let xI ∈ H∗(K(F2, |I|);F2) ∼= DH∗(K(F2, |I|);F2)

denote the element of the dual basis which is dual to c◦I . The other elements of the dual

basis will remain anonymous.

Theorem 3.1.30. Let B• be the F2-F2-biring with •-components given by

Bn =


Set(F2,F2) n = 0⊗
|I|=n
i0>0

F2[xI ] n > 0 (3.6)

where |xI | = |I|2, Set(F2,F2) has the biring structure of Example 1.2.3 and the remaining

biring structure is specified by the following formulae.

∆+(xI) = 1⊗ xI + xI ⊗ 1

σ(xI) = xI

ε+(xI) = 0

∆×(xI) =
∑

I′+I′′=I

xI′ ⊗ xI′′

ε×(xI) =

{
1 I = 0

0 otherwise.

We have an isomorphism of F2-F2-birings H∗(K(F2, n);F2) ∼= B•.

Proof: For n > 0, π0K(F2, n) = 0 and thus H∗(K(F2, n);F2) is a connected Hopf alge-

bra. By Corollary 3.1.29 we see the Frobenius is trivial. Hence, by Proposition E.0.37,

PH∗(K(F2, n);F2) ⊆ QH∗(K(F2, n);F2) =
⊕

I〈c◦I〉. Since c(0) is primitive, by Proposi-

tion E.0.38, c◦I is primitive whenever i0 > 0. However, if i0 = 0 then V (c◦I) = c◦s
−1I 6= 0.

Hence PH∗(K(F2, n);F2) =
⊕

i0>0〈c◦I〉.
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Now by Proposition E.0.39, QH∗(K(F2, n);F2) = DPH∗(K(F2, n);F2) =
⊕

i0>0〈xI〉.
Now, 〈F kxI , c◦s

kI〉 = 〈xI , V kc◦s
kI〉 = 〈xI , c◦I〉 = 1. Thus F kxI 6= 0 for any k. By

Borel’s structure theorem (Theorem E.0.40), H∗(K(F2, n);F2) is isomorphic as an F2-

algebra to a tensor product of monogenic Hopf algebras. Since we have no nilpotent

elements, these must all be polynomial algebras and so the only possible relations

between our generators would produce redundant generators. Hence as F2-algebras,

H∗(K(F2, n);F2) ∼=
⊗

i0>0 F2[xI ]. Since PH∗(K(F2, n);F2) = DQH∗(K(F2, n);F2), we

see that each xI is primitive.

For the case when n = 0, H∗(K(F2, 0);F2) is the Hopf algebra Λ[y] where y = [1]− [0].

This has basis [0] = 1, y and ψ(y) = [1] ⊗ [1] − [0] ⊗ [0] = (y + 1) ⊗ (y + 1) − 1 ⊗ 1 =

y ⊗ y + 1 ⊗ y + y ⊗ 1. Hence H∗(K(F2, 0);F2) ∼= F2[x0]/(x2
0 − x0) where x0 is dual to

y. However, this is isomorphic to Set(F2,F2) via the isomorphism sending x0 to the

identity map and 1 to the constant map 1.

For the comultiplicative structure, we remark that xI ∈ PH∗(K(F2, n);F2) ∼= DQH∗(K(F2, n);F2)

and thus 〈∆×xI , u ⊗ v〉 = 〈xI , u ◦ v〉 = 0 unless u ◦ v ∈ QH∗(K(F2, n);F2). By Propo-

sition E.0.41, we see u ◦ v ∈ QH∗(K(F2, n);F2) implies u, v ∈ QH∗(K(F2, n);F2). By

linearity it suffices to determine 〈∆×xI , c◦I
′⊗c◦I′′〉 = 〈xI , c◦I

′ ◦c◦I′′〉 = 〈xI , c◦I
′+I′′〉. The

result for ∆× follows. Finally, we have 〈ε×xI , 1〉 = 〈xI , [1]〉 = 1 if and only if I = 0.

To compute the composition, we must understand the enrichment of the Hopf ring which

is most cleanly expressed formally. Hence, we let c(t) =
∑

i cit
i ∈ H∗(K(F2, 1);F2)[[t]].

Theorem 3.1.31 ([15, Proposition 17.7]). For all r ∈ DH∗(K(F2, •);F2) ∼= H∗(K(F2, •);F2),

r∗ck, the induced map applied to ck, is the coefficient of tk in the formal identity in

H∗(K(F2, •);F2)[[t]]

r∗c(t) = ∗
j≥0

c(t)◦j ◦ [〈r, cj〉].

The augmentation is determined by

ι1(c(i)) =

{
1 i = 0

0 otherwise

together with Definition 1.3.21.

It is straightforward to deduce the unit for the composition and this illuminates our

choice of convention for the empty ◦-product c◦0 = [1]− [0].

Corollary 3.1.32. The canonical map I → H∗(K(F2, •)) is given by en 7→ xn∆0.
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Proof: For n > 0, since ιn(x ◦ y) =
∑

r+s=n ιr(x)ιs(y), we have ιn(c◦I) = 1 if and

only if I = n∆0. For the case n = 0, we note that H∗(K(F2, 0);F2) = F2[F2]. We

take the basis [0], [1] − [0] for F2[F2] and x0 is dual to [1] − [0]. Thus 〈x0, [0]〉 = 0 and

〈x0, [1]〉 = 〈x0, [1]− [0]〉+ 〈x0, [0]〉 = 1. Therefore x0 = ι0.

To understand the composition in our plethory, we must compute xI ◦ xJ for all our

generators in (3.6). By Definition 1.3.21, this is equivalent to computing 〈xJ , (xI)∗u〉
for all u ∈ H∗(K(F2, •);F2). It is straightforward to compute the induced maps on the

generators of our Hopf ring.

Corollary 3.1.33. For all multi-indices I, we have

xI∗c(k) =

{
c◦2

i

(k−i) I = ∆i, k ≥ i
0 otherwise.

Proof: For degree reasons, xI∗c(k) = 0 unless |I| = 1 and so I = ∆i for some i. Since

x∆i ∈ PH∗(K(F2, 1);F2) ∼= DQH∗(K(F2, 1);F2), 〈x∆i, cj〉 = 0 unless cj ∈ QH∗(K(F2, 1);F2) =

〈c(0), c(1), . . . 〉. Since x∆i is dual to c(i),

〈x∆i , cj〉 =

{
1 j = 2i

0 otherwise.

Hence from Theorem 3.1.31, x∆i∗ck is the coefficient of tk in c(t)◦2
i
. Since we are working

over F2, the map z 7→ z◦2 is linear and hence c(t)◦2
i

=
∑

j c
◦2i
j tj2

i
. Thus,

x∆i∗ck =

c
◦2i
k

2i

2i|k

0 otherwise.

To compute the induced maps on general elements of our Hopf ring, we can apply

the formulae in Definition 1.3.21. Unfortunately these expressions get unworkable very

quickly. Fortunately there are nice combinatorial results which encode the formulae we

need. These formulae are almost identical to Definition 3.1.16 encoding the multiplication

of the stable Milnor basis elements, but contain a small extra bit of information able to

keep the track of the unstable •-degrees.

Definition 3.1.34. Consider a matrix of non-negative integers with all but finitely many

entries zero.

X =


x00 x01 x02 . . .
x10 x11 x12 . . .
x20 x21 x22 . . .

...
...

...
. . .

 (3.7)
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Define multi-indices I(X) = (i0, i1, . . . ), J(X) = (j0, j1, . . . ), T (X) = (t0, t1, . . . ) and a

coefficient b(X) ∈ Z by

ir =
∑
s≥0

2sxrs (weighted row sum)

js =
∑
r≥0

xrs (column sum)

tn =
∑
r+s=n

xrs (diagonal sum)

b(X) =

∏
n tn!∏
rs xrs!

Example 3.1.35. Consider the following matrix.

X =


1 2 3 0
4 5 6 0
7 8 9 0
0 0 0 0


We have

I(X) = (17, 38, 59)

J(X) = (12, 15, 18)

T (X) = (1, 6, 15, 14, 9)

b(X) ≡ 0 mod 2.

Notation 3.1.36. For a multi-index I = (i0, . . . , in) we have c◦I = c◦i0(0) ◦ . . . c
◦in
(n) .

A different way of discussing such ◦-products proves useful: for 1 ≤ t ≤ |I|, define

ĩt = min{k | t ≤
∑k

j=0 ij}. Conversely, any collection of non-negative integers ĩ1, . . . , ĩN

defines a multi-index I = (i0, i1, . . . ) by defining in = #{t | ĩt = n}.

For example, if I = (1, 2, 0, 0, 3) then c◦I = c(0) ◦c◦2(1) ◦c
◦3
(4) = c(0) ◦c(1) ◦c(1) ◦c(4) ◦c(4) ◦c(4)

and thus ĩ1 = 0, ĩ2 = ĩ3 = 1 and ĩ4 = ĩ5 = ĩ6 = 4.

Theorem 3.1.37. For all multi-indices J,K with |J | = |K|, we have

(xJ)∗c
◦K =

∑
X

b(X)c◦I(X)

where X ranges over all matrices of the form (3.7) such that J(X) = J and T (X) = K

and we take b(X) modulo 2.

Proof: If c◦K = c(k̃1) ◦ · · · ◦ c(k̃N ) then since xJ is primitive, by Definition 1.3.21 we have

xJ∗(c
◦K) =

∑
J1+···+JN=J

xJ1∗c(k̃1) ◦ · · · ◦ xJN∗c(k̃N ).
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For degree reasons xJ∗c(i) = 0 unless |J | = 1 and hence any non-zero summand must

have Jt = ∆j̃t
for some j̃t. By Corollary 3.1.33 we also need j̃t ≤ k̃t for this summand

to be non-zero. For such a non-zero summand we have

xJ1∗c(k̃1) ◦ · · · ◦ xJN∗c(k̃N ) = c◦2
j̃1

(k̃1−j̃1)
◦ · · · ◦ c◦2j̃N

(k̃n−j̃n)
.

We define I = (i0, i1, . . . ) to be the multi-index such that the above expression is c◦I .

Explicitly, in =
∑

t∈Tn 2j̃t where Tn = {t | k̃t − j̃t = n}. We claim I = I(X) for some

matrix X with J(X) = J and T (X) = K. Define X = (xrs) by

xrs = #{t : k̃t = r + s, j̃t = s}.

In words, we are starting with a matrix of zeros and for each t incrementing the entry

in the k̃t-th diagonal and j̃t-th column by 1. For example, if J = (1, 2) and K = (1, 1, 1)

then a non-zero summand could have j̃1 = 0, j̃2 = j̃3 = 1, k̃1 = 0, k̃2 = 1, k̃3 = 2 and

would produce the matrix

X =

1 1 0
0 1 0
0 0 0

 .
Notice

∑
r xrs = #

{
t : j̃t = s

}
= js and

∑
r+s=n xrs = #

{
t : k̃t = n

}
= kn so J(X) = J

and T (X) = K. Moreover,

I(X)r =
∑
s

2sxrs

=
∑
s

2s#
{
t : k̃t − j̃t = r, j̃t = s

}
=
∑
t∈Tr

2j̃t = ir.

Hence each summand is c◦I(X) for some matrix X with J(X) = J, T (X) = K.

Conversely, let X be a matrix with J(X) = J and T (X) = K. Suppose I(X) =

(i0, i1, . . . ). Write X =
∑N

t=1Ertst where Ers is the single-entry matrix with a one in

row r and column s, and zeros elsewhere and (rt, st) are such that rt + st = k̃t. In

words, we start with the matrix X and pick a non-zero row and column index in the

k̃t-th diagonal. We then decrement that entry and repeat until we end up with the zero

matrix. As an example, suppose J = (1, 2), K = (1, 1, 1) and

X =

[
1 1
0 1

]
.
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Since k̃1 = 0, k̃2 = 1, k̃3 = 2, we have the decomposition X = E00 + E01 + E11. Set

j̃t = st. Since js =
∑

r xrs, we have J = ∆j̃1
+ · · ·+ ∆j̃N

. Now,

ir =
∑
s

2sxrs

=
∑
s

2s# {t : rt = r, st = s}

=
∑
s

2s#
{
t : rt = k̃t − j̃t, j̃t = s

}
=
∑
t∈Tr

2j̃t

Hence c◦I(X) = c◦2
j̃1

(k̃1−j̃1)
◦ · · · ◦ c◦2j̃N

(k̃n−j̃n)
, and we see each matrix with J(X) = J and

T (X) = K gives rise to a summand of xJ∗(c
◦K).

However, we made choices when defining our j̃t’s. In choosing the components from the

n-th diagonal, we have (
∑

r+s=n xrs)! = tn! choices. However, if picking two components

from the same row and column this produces the same summand regardless of the order.

So, in total, we have
∏
tn!/

∏
xrs! = b(X) choices.

Therefore,

xJ∗c
◦K =

∑
X

J(X)=J
T (X)=K

b(X)c◦I(X).

Theorem 3.1.38. We have an isomorphism of F2-plethories

H∗(K(F2, n);F2) ∼=


Set(F2,F2) n = 0⊗
|I|=n
i0>0

F2[xI ] n > 0

where the biring structure is given in Theorem 3.1.30 and the plethystic structure is

specified by the following formulae.

xI ◦ xJ =
∑
X

b(X)xT (X)

ιn = xn∆0 .

The sum is taken over matrices X as in (3.7) with I(X) = I, J(X) = J and we take

b(X) modulo 2.
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Proof: The composition xI ◦ xJ is primitive and thus 〈xI ◦ xJ , u〉 = 0 for all indecom-

posable u ∈ H∗(K(F2;n);F2). Moreover from Theorem 3.1.37 we have,

〈xI ◦ xJ , c◦K〉 = 〈xI , xJ∗c◦K〉

= 〈xI ,
∑
X

J(X)=J
T (X)=K

b(X)c◦I(X)〉

=
∑
X

I(X)=I
J(X)=J
T (X)=K

b(X).

Hence, xI ◦ xJ =
∑

X b(X)xT (X).

Example 3.1.39. Suppose I = (0, 1, 2), J = (1, 1) then the only matrix X (up to adding

zero rows and columns) with I(X) = I, J(X) = J is

X =

0 0 0
1 0 0
0 1 0

 .
We have T (X) = (0, 1, 0, 1) and b(X) = 1. Therefore, xI ◦ xJ = x(0,1,0,1).

Example 3.1.40. Suppose I = (4, 2), J = (2, 2) then the matrices Xi with I(Xi) =

I, J(Xi) = J are

X1 =

[
2 1
0 1

]
and X2 =

[
0 2
2 0

]
.

We have T (X1) = (2, 1, 1), b(X1) ≡ 1 mod 2, T (X2) = (0, 4, 0) and b(X2) ≡ 0 mod 2.

Therefore, xI ◦ xJ = x(2,1,1).

This formula for composition is very similar to the product formula for the Milnor basis.

This is because we have xI = Sq(i1, i2, . . . )ι|I| in terms of the Milnor basis. The extra

term in our matrix (3.7) simply allows us to keep track of degrees.

3.1.3 Singular cohomology with coefficients in Fp

While a powerful invariant of homotopy classes of spaces, singular cohomology with

coefficients in F2 is not complete, even when we account for the action of the plethory

of unstable cohomology operations. For certain spaces we can obtain greater insight

by studying singular cohomology over other coefficient rings. In this section we study

singular cohomology with Fp coefficients for an odd prime p. Much of the theory over Fp
is analogous to the F2 setting and so we be will somewhat brief with our results, referring
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to the F2 setting where possible. The Steenrod squares have a natural generalisation,

which is a stable refinement of the p-th power map. Throughout this section, we fix an

odd prime p.

Theorem 3.1.41 ([45]). There exist stable operations for n > 0, called the Steenrod

powers:

Pn : H∗(X;F2)→ H∗+2n(p−1)(X;F2)

which can be uniquely characterised by the following axioms:

1. Pn is a additive homomorphism Hm(X,F2)→ Hm+2n(p−1)(X,F2) which is natural

in X.

2. Pnx = xp whenever |x| = n.

3. If |x| < n then Pnx = 0.

4. We have the Cartan formula,

Pn(xy) =
∑
i+j=n

(P ix)(P jy). (3.8)

Definition 3.1.42. We define the mod p Steenrod algebra Ap to be the Hopf algebra of

stable cohomology operations for singular cohomology over the field Fp.

Unlike in the mod 2 situation, the Steenrod powers do not generate the Steenrod algebra.

We need one additional operation, which arises from a more general context.

Definition 3.1.43. Suppose we have a short exact sequence of abelian groups,

0→ A→ B → C → 0.

If we take the tensor product with C•(X), the singular cochains in X, then the snake

lemma yields group homomorphisms Hn(X;C) → Hn+1(X;A) for all n. These maps

are natural in X and are known as the Bockstein homomorphisms.

Definition 3.1.44. We define the Bockstein operation β : H∗(−;Fp) → H∗+1(−;Fp)
to be the Bockstein homomorphism arising from the following short exact sequence of

abelian groups.

0→ Z/p→ Z/p2 → Z/p→ 0

Proposition 3.1.45 ([45]). The Bockstein operation β : H∗(−;Fp) → H∗+1(−;Fp) is

stable.
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The Adem relations in Ap take the following form.

Theorem 3.1.46 ([6]). In Ap we have, for n < pm,

β2 = 0

PnPm =
∑
i

(−1)n+i

(
(p− 1)(m− i)− 1

n− pi

)
Pn+m−iP i

and for n ≤ pm,

PnβPm =
∑
i

(−1)n+i

(
(p− 1)(m− i)

n− pi

)
βPn+m−iP i

+
∑
i

(−1)n+i+1

(
(p− 1)(m− i)− 1

n− pi− 1

)
Pn+m−iβP i

where the signed binomial coefficients are taken modulo p.

The following result of Cartan shows that the Steenrod powers together the Bockstein

operation generate the mod p Steenrod algebra Ap.

Theorem 3.1.47 ([22]). The Steenrod algebra Ap is the free graded algebra generated by

Pn (n > 0) in degree n and β in degree 1 subject to the Adem relations (Theorem 3.1.46).

Writing P 0 = 1, the Hopf algebra structure is given by

ψ(Pn) =
∑
i+j=n

P i ⊗ P j ,

ψ(β) = 1⊗ β + β ⊗ 1,

ε(Pn) = ε(β) = 0.

The Serre-Cartan and Milnor bases both have generalisations to the mod p case.

The Serre-Cartan basis In the mod p setting, the Serre-Cartan basis generalises the

notion of an admissible sequence to incorporate the Bockstein operation.

Definition 3.1.48. For any finite sequence of non-negative integers I = (ε0, i1, ε1, . . . , in, εn)

with εt ∈ {0, 1}, we define P I = βε0P i1βε1 . . . P inβεn . We say a sequence I is admissible

if for each t, it ≥ pit+1 + εt.

We define the excess of a sequence I by e(I) = ε0 +
∑
it − pit+1 − εt. This quantity

measures to what extent I exceeds the minimal requirement to be admissible.

Proposition 3.1.49 ([22]). The set
{
P I | I is admissible

}
is a basis for Ap.

Given two elements of the Serre-Cartan basis we do not have a closed form for their

product, we must iteratively apply the Adem relations until we end up with a sum of

operations indexed by admissible sequences.
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The Milnor basis Just as in the mod 2 case, while the multiplicative structure of Ap
is somewhat complex, the comultiplicative structure is straightforward. Again, it turns

out that the dual Hopf algebra A∗p has a simple expression as an algebra.

Proposition 3.1.50 ([35, Theorem 2]). The linear dual of the Steenrod Algebra Ap is

the tensor product of a polynomial algebra with an exterior algebra,

A∗p = Fp[ξ1, . . . ]⊗ Λ[τ0, τ1, . . . ]

where |ξn| = 2pk − 2 and |τn| = 2pk − 1.

Definition 3.1.51. The dual basis to the monomial basis for A∗p is known as the Milnor

basis. We write P (I, E) for the basis element dual to ξi11 . . . ξinn ⊗ τ
ε0
0 . . . τ εnn . If we let

Qk = P (0,∆k) denote the element dual to τk, and P (I) = P (I, 0) denote the element

dual to ξi11 . . . ξinn then up to sign we have P (I, E) = Qε00 Q
ε1
1 . . . P (I).

We are able to express the product of Milnor basis elements by closed (albeit complex)

formulae.

Proposition 3.1.52 ([35, Theorem 4a, 4b]). The multiplication of elements of the Mil-

nor basis is determined by the following formulae.

QjQk = −QkQj

P (I)Qk −QkP (I) = Qk+1P (I − pk∆1) +Qk+2P (I − pk∆2) + . . .

P (I)P (J) =
∑
X

b(X)P (T (X))

where X ranges over all matrices of the form (3.3) such that I(X) = I and J(X) = J

and we take b(X) modulo p. It is understood we mean P (I ′) = 0 whenever i′t < 0 for

any t.

A direct approach

Just as in the mod 2 case, we have sufficient knowledge to directly compute the plethory

of cohomology operations for singular cohomology with Fp coefficients. The mod p

cohomology of the Eilenberg-MacLane spaces K(Fp, k) was computed by Cartan while

studying the Steenrod algebra.

Theorem 3.1.53 ([21]). H∗(K(Fp, k);Fp) is the polynomial ring

Fp[
{
P Iιk | I is admissible and e(I) < k or e(I) = k and I = (1, j, J)

}
]. (3.9)
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Although the Hopf algebras H∗(K(Fp, k);Fp) are primitively generated, we cannot easily

write closed formulae for the comultiplication or composition in our plethory since as in

the mod 2 setting we have to invoke the Adem relations (Theorem 3.1.46) to express the

formulae in terms of the generators (3.9). Nevertheless, in a plethystic context we can

express all our elements in terms of the atomic elements βιk and Pnιk.

Definition 3.1.54. Define the bigraded Fp-Fp-coalgebra C• to be the collection of Fp-
vector spaces Ck with bases

{Pnιk | 0 ≤ n ≤ k} ∪ {βιk | k ≥ 0}

where deg∗(P
nιk) = k+ 2n(p−1) and deg∗(βιk) = k+ 1. The comultiplicative structure

is given by

ψ(Pnιk) =
∑
i+j=n
k1+k2=k
i<k1,j<k2

P iιk1 ⊗ P jιk2

ψ(βιk) = 1⊗ βιk + βιk ⊗ 1

ε(Sqnιk) =

{
1 if k = 0 and n = 0, k

0 otherwise

ε(βιk) = 0.

Following the same reasoning as in the mod 2 case, we can find the following succinct

expression of our plethory by freely adding composition via the tensor algebra construc-

tion T , quotienting by the Adem relations and then freely adding multiplication via the

symmetric algebra construction S[p].

Theorem 3.1.55. Let A denote the two-sided ideal of the cocommutative bialgebra

T (C•) generated by the following elements.

1. For k ≥ 0, βιk+1βιk,

2. For n < pm and k ≥ 0,

Pnιk+2m(p−1)P
mιk −

∑
i

(−1)n+i

(
(p− 1)(m− i)− 1

n− pi

)
Pn+m−iιk+2i(p−1)P

iιk,

3. For n ≤ pm and k ≥ 0,

Pnιk+2m(p−1)+1βιk+2m(p−1)P
mιk

−
∑
i

(−1)n+i

(
(p− 1)(m− i)

n− pi

)
βιk+2(m+n)(p−1)P

n+m−iιk+2i(p−1)P
iιk

+
∑
i

(−1)n+i+1

(
(p− 1)(m− i)− 1

n− pi− 1

)
Pn+m−iιk+2i(p−1)+1βιk+2i(p−1)P

iιk,
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4. For k ≥ 0, P 0ιk − 1k.

The ideal A is a bialgebra ideal of T (C•). If we equip T (C•) with an Fp[F ]-module

structure encoding the action of the Frobenius given by

F (Pn1ιk1 . . . ) = P k1+n1ιk1+n1P
n1ιk1 . . .

F (βιk1 . . . ) = P k1+1ιk1+1βιk1 . . .

then this induces an Fp[F ]-module structure on T (C•)/A and we have isomorphisms of

Fp-plethories

H∗(K(Fp, •);Fp) ∼= S[p]

(
T (C•)

A

)
∼=
S[p]T (C•)

(A )
.

Proof: This is analogous to the proof of Theorem 3.1.25.

Via the enriched Hopf ring

Just as in the mod 2 case, the Hopf ring of homology cooperations for singular coho-

mology with coefficients in Fp is well understood and has a relatively simple form. Once

again, we can leverage our theory of duality to compute the plethory of cohomology

operations via the enriched Hopf ring.

The infinite dimensional lens space L(∞, p) is a model for K(Fp, 1). Moreover, L(∞, p)
admits an H-space structure which models the loop-space structure on K(Fp, 1). The ho-

mology H∗(L(∞, p);Fp) is the free F2-vector space on the elements ai ∈ H2i(L(∞, p);Fp)
and ci ∈ H2i+1(L(∞, p);Fp) for i ≥ 0. The coalgebra structure is given by ψ(an) =∑

i+j=n ai ⊗ aj , ψ(cn) =
∑

i+j=n ai ⊗ cj + ci ⊗ aj , ε(an) = 1 if n = 0 and 0 otherwise

and ε(cn) = 0. The algebra structure induced by the H-space structure is given by

aiaj =
(
i+j
i

)
ai+j and ci = eai where e = c0 is the suspension element. The following

result shows that H∗(RP∞;F2) is generated by e ∈ H1(L(∞, p);Fp) together with the

accelerated elements a(i) = api ∈ H2pi(L(∞, p);Fp).

Proposition 3.1.56. We have an isomorphism of Fp-algebras

H∗(K(Fp, 1);Fp) ∼=
Fp[e, a(0), a(1), . . . ]

(ap(0), a
p
(1), . . . )

where |e| = 1 and |a(i)| = 2pi. Moreover, in the Hopf algebra H∗(K(Fp, 1);Fp) we have

V a(i) = a(i−1) for i ≥ 0 and V a(0) = V e = 0.
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Proof: Just as in Proposition 3.1.26.

Wilson showed that these elements together with the elements b(i) induced by the com-

plex orientation generate the Hopf ring of homology cooperations.

Theorem 3.1.57 ([52, Theorem 8.6]). The Hopf ring H∗(K(Fp, •);Fp) is the free Fp[Fp]-
Hopf ring on H∗(K(Fp, 1);Fp) and H∗(CP∞;Fp) ⊆ H∗(K(Fp, 2);Fp) subject to the rela-

tions a(i) ◦ a(j) = −a(j) ◦ a(i) and e ◦ e = −b(0).

To discuss elements of our Hopf ring would be very difficult without some multi-index

notation. From this point on, any multi-index denoted by I (including I ′, I ′′, etc.) will be

a multi-index I = (i0, i1, . . . ) with ik ∈ {0, 1}. We shall denote an arbitrary multi-index

with any non-negative entries by J .

For such a pair of multi-indices I = (i0, . . . , in) , J = (j0, . . . , jm) define

aIbJ = a◦i0(0) ◦ · · · ◦ a
◦in
(n) ◦ b

◦j0
(0) ◦ · · · ◦ b

◦jm
(m) ∈ H2|I|p+2|J |p(K(Fp, |I|+ 2|J |);Fp)

eaIbJ = e ◦ aIbJ ∈ H1+2|I|p+2|J |p(K(Fp, 1 + |I|+ 2|J |);Fp).

Once again we make the convention that a0b0 = [1]− [0] (and so ea0b0 = e), which has

the same advantages as in the mod 2 situation.

Unpacking the information contained within our Hopf ring to a local form yields the

following result. We introduce the notation P1[x] to denote the Fp-algebra Fp[x]/(xp)

and P [x] to denote Fp[x].

Corollary 3.1.58. For all n, we have isomorphisms of Fp-algebras

H∗(K(Fp, n);Fp) =
⊗
I,J

Λ[eaIbJ ]⊗
⊗
I,J

P1[aIbJ ]

where in the first sum I, J ranges over all multi-indices with 1 + |I| + 2|J | = n and in

the second we require |I|+ 2|J | = n. Moreover, in the Hopf algebra H∗(K(Fp, n);Fp), we

have V eaIbJ = 0 and

V aIbJ =

{
as
−1Ibs

−1J i0 = j0 = 0

0 otherwise.

Proof: As in Corollary 3.1.29.

Remark 3.1.59. From this point onwards we shall neglect to specify the conditions on

lengths of the multi-indices required to ensure the •-degrees remain compatible and leave

context to determine the requirements on these.
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Just as in the mod 2 case, it is difficult to find a closed formula for the comultiplication.

Luckily, we can use some Hopf algebraic theory to sidestep this obstacle.

Consider the monomial basis for H∗(K(Fp, n);Fp) i.e. the basis consisting of elements of

the form

eaI1bJ1 ∗ · · · ∗ eaIN bJN ∗ (aI
′
1bJ

′
1)∗k1 ∗ · · · ∗ (aI

′
M bJ

′
M )∗kM

for multi-indices It, Jt, I
′
t, J
′
t and 0 ≤ kt < p. Let xI,J , yI,J ∈ H∗(K(Fp, n);Fp) ∼=

DH∗(K(Fp, n);Fp) denote the elements of the dual basis which are dual to aIbJ and

eaIbJ respectively. Let xn0,0 denote the element dual to (a◦0b◦0)∗n = ([1] − [0])∗n (so

x1
0,0 = x0,0). The other elements of the dual basis will remain anonymous.

We first tackle the sub-plethory of operations of bidegree (0, 0).

Proposition 3.1.60. We have an isomorphism of ungraded Fp-plethories

H0(K(Fp, 0);Fp) ∼= Set(Fp,Fp).

Moreover, under this isomorphism the element x0,0 corresponds to the identity map Fp →
Fp.

Proof: Since H0(K(Fp, 0);Fp) ∼= Fp[Fp] we have H0(K(Fp, 0);Fp) ∼= Set(Fp,Fp). By

definition, the functional x0,0 ∈ DH0(K(Fp, 0);Fp) satisfies

〈x0,0, ([1]− [0])n〉 =

{
1 n = 1

0 otherwise.

We claim 〈x0,0, [n]〉 = n for all n. The cases n = 0 and n = 1 follow since ([1]− [0])0 =

1 = [0]. We have ([1]− [0])n =
∑n

i=0(−1)n−i
(
n
i

)
[i] and so

0 = 〈x0,0, ([1]− [0])n〉

= 〈x0,0,
n−1∑
i=0

(−1)n−i
(
n

i

)
[i]〉+ 〈x0,0, [n]〉

=

n−1∑
i=0

(−1)n−i
(
n

i

)
i+ 〈x0,0, [n]〉

=
n∑
i=0

(−1)n−i
(
n

i

)
i+ 〈x0,0, [n]〉 − n.

Now n(x − 1)n−1 = d
dx(x − 1)n = d

dx

∑n
i=0(−1)n−i

(
n
i

)
xi =

∑n
i=0(−1)n−i

(
n
i

)
ixi−1 and

so setting x = 1 we see for n > 1 that
∑n

i=0(−1)n−i
(
n
i

)
i = 0. Thus, 〈x0,0, [n]〉 = n.

Our claim follows by induction. Since the isomorphism DFp[Fp] = ModFp(Fp[Fp],Fp) ∼=
Set(Fp,Fp) is given by evaluation on the canonical basis elements of Fp[Fp], our result

follows.
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Theorem 3.1.61. We have an isomorphism of Fp-Fp-birings

H∗(K(Fp, n);Fp) ∼=

Set(Fp,Fp) n = 0⊗
i0>0

or j0>0
P [xI,J ]⊗

⊗
I,J Λ[yI,J ] n > 0

where the Fp-Fp-biring structure is specified by the generators being primitive together

with the following formulae.

∆×(xI,J) =
∑

I′+I′′=I
J ′+J ′′=J

xI′,J ′ ⊗ xI′′,J ′′ +
∑

I′+I′′=I
J ′+J ′′+∆0=J

yI′,J ′ ⊗ yI′′,J ′′

∆×(yI,J) =
∑

I′+I′′=I
J ′+J ′′=J

xI′,J ′ ⊗ yI′′,J ′′ + yI′,J ′ ⊗ xI′′,J ′′

ε×(xI,J) =

{
1 I = J = 0

0 otherwise

ε×(yI,J) = 0.

Proof: For n = 0, sinceK(Fp, 0) = Fp is discrete, we haveH∗(K(Fp, 0);Fp) = H0(K(Fp, 0);Fp)
and the result follows from Proposition 3.1.60 . The remainder of the proof is identical

to the proof of Theorem 3.1.30.

To compute the composition, we must understand the enrichment of the Hopf ring. Once

again this is most cleanly expressed formally. Let a(t) =
∑

i ait
i ∈ H∗(K(Fp, 1);Fp)[[t]]

and b(t) =
∑

i bit
i ∈ H∗(K(Fp, 2);Fp)[[t]].

Theorem 3.1.62 ([15, Proposition 17.7]). For all r ∈ DH∗(K(Fp, •);Fp) ∼= H∗(K(Fp, •);Fp),
r∗ak is the coefficient of tk in the formal identity in H∗(K(Fp, •);Fp)[[t]]

r∗a(t) =∗
i
b(t)◦i ◦ [〈r, ai〉] ∗∗

j
a(t) ◦ b(t)◦i ◦ [〈r, ci〉],

r∗bk is the coefficient of tk in the formal identity in H∗(K(Fp, •);Fp)[[t]]

r∗b(t) =∗
i
b(t)◦i ◦ [〈r, bi〉],

and r∗e = [〈r, 11〉] ∗ [〈r, e〉] ◦ e.

The augmentation is determined by ι1(e) = 1 and ι1(a(i)) = ι2(b(j)) = 0 together with

Definition 1.3.21.

As in the mod 2 setting, it is straightforward to compute the identity elements for

composition.
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Corollary 3.1.63. The canonical map I → H∗(K(Fp, •);Fp) is given by

ιn 7→

{
x0,m∆0 n = 2m

y0,m∆0 n = 2m+ 1.

Proof: As in Corollary 3.1.32.

Once again, we can easily compute the enrichment of our operations on the generators

of the Hopf ring H∗(K(Fp, •);Fp).

Corollary 3.1.64. For multi-indices I, J , the induced maps satisfy

xI,J∗a(k) =

{
b◦p

i

(k−i) I = ∆i, J = 0, k ≥ i
0 otherwise

xI,J∗b(k) =

{
b◦p

j

(k−j) I = 0, J = ∆j , k ≥ j
0 otherwise

xI,J∗e = 0

yI,J∗a(k) =

{
a(k) I = J = 0

0 otherwise

yI,J∗b(k) = 0

yI,J∗e =

{
e I = J = 0

0 otherwise.

Proof: For degree reasons, 〈xI,J , a(k)〉 = 0 unless |I| + 2|J | = 1 and hence I = ∆i and

J = 0 for some i. Since, x∆i,0 ∈ PH∗(K(Fp, 1);Fp) ∼= DQH∗(K(Fp, 1);Fp), 〈x∆i,0, aj〉 =

0 unless j is a power of p and 〈x∆i,0, cj〉 = 0 unless j = 0. Since x∆i,0 is dual to a(i),

〈x∆i,0, aj〉 =

{
1 j = pi

0 otherwise

and 〈x∆i,0, cj〉 = 0. Hence from Theorem 3.1.62, x∆i,0∗ak is the coefficient of tk in b(t)◦p
i
.

Since we are working over Fp, the map z 7→ z◦p is linear and hence b(t)◦p
i

=
∑

j b
◦pi
j tjp

i
.

Thus,

x∆i∗ak =

b
◦pi
k

pi

pi|k

0 otherwise.

The remaining results are similar.

By appealing to Definition 1.3.21, we can compute the induced maps on general elements

of our Hopf ring. Once again, these formulae can get unwieldy very quickly. However,

we have xI,J = P ((i1, i2, . . . ), J)ι|I|+|J | and yI,J = P ((i1, i2, . . . ), J)ι|I|+|J |+1 in terms of

the Milnor basis. Thus by utilising Proposition 3.1.52 we should be able to obtain neat

combinatorial formulae as in the mod 2 case.
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3.2 Complex K-theory

K-Theory is a classical and extremely well studied area of topology. It was founded to

study vector bundles over topological spaces. With a little work, we can construct a ring

from the collection of isomorphism classes of vector bundles over some fixed topological

space. This construction gives rise to a functor which satisfies the Eilenberg-Steenrod

axioms and is thus a cohomology theory. We give a brief recap of basic definitions and

results. For a detailed expository treatment, refer to either [10] or [26].

We then turn our attention to operations of this theory. In the ungraded setting, there

are many classical operations and these are detailed in [10]. In the graded setting, the

Hopf ring of homology cooperations has been computed in [15] and [57] reformulates the

framework of Boardman et al. in the more familiar language of filtered λ-rings. However,

to the best of my knowledge, we are able to give a complete description of the cohomology

operations in all degrees for the first time.

The most intuitive definition of K-theory arises from the study of vector bundles. Many

of our constructions only work when our spaces are compact Hausdorff and so in the

following we assume this is the case. For a compact Hausdorff space X, let Vect(X)

denote the set of isomorphism classes of finite-dimensional complex vector bundles over

X. We denote the isomorphism class of a vector bundle ξ by [ξ]. The fibre-wise direct

sum and tensor product of vector bundles equips Vect(X) with the structure of a semi-

ring (a ring without additive inverses) with the classes of the 0 and 1 dimensional trivial

bundles [ε0] and [ε1] acting as the zero and unit elements respectively. Hence we shall

write n = [εn], the class of the n-dimensional trivial vector bundle.

A continuous map f : X → Y induces a map of semi-rings f∗ : Vect(Y ) → Vect(X)

given by pulling a vector bundle back along f and f∗ respects the semi-ring structure.

Moreover, if f and g are homotopic then the pullback bundles are isomorphic.

Suppose X has base point o. Define a map of semi-rings ε : Vect(X)→ N sending a class

of vector bundles [ξ] to the dimension of the fibre at the base point i.e. ε[ξ] = dimπ−1(o).

The lack of additive inverses in Vect(X) can make computations difficult. Fortunately

there is a general construction of freely adjoining additive inverses due to Grothendieck.

Definition 3.2.1. We define the Grothendieck group of a monoid M to be the free

abelian group G(M) consisting of formal differences m − n for all m,n ∈ M subject to

the relations

m− n = m′ − n′ ⇐⇒ m+ n′ = m′ + n.
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If f : M → N is a map of monoids then we define G(f) : G(M)→ G(N) by G(f)(m−n) =

f(m)− f(n).

The Grothendieck group defines a functor G : Monoid → Ab. Moreover, if R is a

commutative semi-ring then we can define a multiplication on G(R) by (x−y)(x′−y′) =

xx′ − xy′ − x′y + yy′. Thus G lifts to a functor SemiRing → Ring. For a monoid (or

semi-ring) M , we have a natural map of monoids (resp. semi-rings) M → G(M) and we

have the following universal property. If f : M → N is a map of monoids (or semi-rings)

then G(f) is a map of groups (resp. rings).

Definition 3.2.2. We define the ungraded K-theory of a compact Hausdorff space X

to be the ring K(X) = G(Vect(X)). A continuous map f : X → Y induces a ring map

G(f∗) : K(Y )→ K(X), which we shall also denote by f∗.

If X is based, our dimension map ε : Vect(X)→ N extends to a ring map ε : K(X)→ Z.

The kernel of this map defines the reduced cohomology K(X, o). For a virtual bundle

x ∈ K(X), we refer to ε(x) ∈ Z as the virtual dimension of x. Hence the reduced

cohomology consists of classes of virtual dimension 0.

A priori, elements of K(X) consist of formal differences of vector bundles [ξ]−[γ] ∈ K(X)

which we call virtual bundles. The following result shows these have a more succinct

representation.

Proposition 3.2.3 ([34, Chapter 24, Section 1]). For compact Hausdorff spaces X,

every virtual bundle x ∈ K(X) can be written as [ξ] − n for some vector bundle ξ and

non-negative integer n.

This result naturally leads us to the representing space for K-theory as follows. Suppose

X is connected and let [ξ] − n be a virtual bundle. Since X is connected, ξ has some

constant dimension m. We can define a map φ : K(X)→ [X,Z×BU ] by φ([ξ]−n)(x) 7→
(m − n, f(x)) where f : X → BU(m) ⊆ BU is the classifying map of ξ. This naturally

extends to a map on all spaces since both K(−) and [−,Z×BU ] map disjoint unions to

Cartesian products. It turns out that φ is an isomorphism.

Proposition 3.2.4 ([34, Chapter 24, Section 1]). For compact Hausdorff spaces X, we

have a natural isomorphism K(X) ∼= [X,Z×BU ].

We have thus far restricted to the full-subcategory of Ho consisting of compact Hausdorff

spaces. To extend our definition to the entire homotopy category we define our functor

by the representing space Z×BU .
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Definition 3.2.5. We define the ungraded K-theory functor K(−) : Ho→ Ring to have

representing space Z×BU . Explicitly, K(X) = [X,Z×BU ] for all CW-complexes X.

Theorem 3.2.6 ([10]). The functor K(−) : Ho→ Ring satisfies the Eilenberg-Steenrod

axioms and is thus a multiplicative ungraded cohomology theory.

3.2.1 Ungraded operations

Cohomology operations of the ungraded cohomology functor K(−) are well studied. For

a detailed reference see [10] or for a more abstract discussion see [58]. In this section

we recall the basic definitions and properties of some well studied operations before

computing the plethory of ungraded cohomology operations.

The λ-operations

Recall the construction of the exterior algebra: given a vector space V , we define the

exterior algebra Λ(V ) to be the quotient of the tensor algebra T (V ) by the two-sided

ideal I generated by the elements v⊗v. We shall write x1∧· · ·∧xk ∈ Λ(V ) for the image

of x1⊗· · ·⊗xk ∈ T (V ) under the quotient map. Let Λk(V ) denote the subspace spanned

by elements of the form v1∧· · ·∧vk. If V has dimension n then Λk(V ) has dimension
(
n
k

)
.

This construction naturally extends to vector bundles over compact Hausdorff spaces.

Proposition 3.2.7 ([10, Chapter 3, §1]). The exterior power bundles satisfy the follow-

ing properties for all vector bundles ξ and ζ over a compact Hausdorff space X.

1. Λ0ξ = ε1, the trivial line bundle.

2. Λ1ξ = ξ.

3. Λnξ = 0 if n > ε[ξ].

4. Λkf∗(ξ) = f∗(Λkξ) for f : Y → X.

5. Λk(ξ ⊕ ζ) =
∑

i+j=k

Λiξ ⊗ Λiζ.

6. If ξ ∼= ζ then Λkξ ∼= Λkζ.

Properties (4) and (6) tell us we have natural transformations Λk : Vect(X)→ Vect(X)

which we can compose with the natural inclusion Vect(X) → K(X). To extend these

to operations λi : K(X) → K(X) via the Grothendieck construction we need a monoid

homomorphism.

144



Define λt : Vect(X)→ K(X)[[t]]× by

λt[ξ] =
∑
i≥0

[Λiξ]ti = 1 + [ξ]t+ [Λ2ξ]t2 + . . . .

By property (5) we have λt([ξ]⊕ [ζ]) = λt[ξ]λt[ζ] and so by the universal property of the

Grothendieck group this extends to a group homomorphism λt : K(X)→ K(X)[[t]]× by

defining

λt([ξ]− [ζ]) =
λt(ξ)

λt(ζ)
.

Definition 3.2.8. Let X be a compact Hausdorff space. We define the λ-operations

λk : K(X)→ K(X) by setting λk(x) to be the coefficient of tn in the power series λt(x).

By the naturality of the exterior power operations, the λ-operations are natural transfor-

mations K(X) → K(X). The properties of these λ-operations are well studied. Recall

the definition of a λ-ring (Definition 1.2.30).

Proposition 3.2.9 ([58, Example 1.16]). If X is any compact Hausdorff space then

K(X) is a λ-ring under the λ-operations and continuous maps induce λ-ring morphisms.

Thus far we have only defined the λ-operations on compact Hausdorff spacesX. However,

these operations naturally generalise to all CW-complexes.

Theorem 3.2.10. The functor K(−) : Ho→ Ring lifts to a functor Ho→ Ringλ

Proof: By the Yoneda lemma, the λ-operations induce (homotopy classes of) maps

Z×BU → Z×BU . These maps induce a λ-ring structure on K(X) = [X,Z×BU ].

At this point it is natural to consider if any other constructions on vector spaces and

vector bundles produce operations in K-theory. Another familiar construction on vector

spaces is the symmetric algebra S(V ) formed by taking the quotient of the tensor algebra

T (V ) by the two-sided ideal generated by the elements v1⊗ v2− v2⊗ v1. We define SkV

to be the subspace spanned by classes of elements of the form v1⊗· · ·⊗vk. This extends

to give a natural transformation Vect(X)→ Vect(X) and just as in the case of exterior

powers, operations sk : K(X)→ K(X). However, it turns out that each sk is expressible

as a polynomial in λ1, . . . , λk and so this construction produces no additional operations.

It will be useful to understand how the λ-operations behave with respect to virtual

dimension on based spaces. In particular, we show that each λ-operation is based.
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Proposition 3.2.11. Suppose X is a based space and x ∈ K(X) has virtual dimension

ε(x) = d. The virtual dimension of λkx is

ε(λkx) =

(
d

k

)
=
d(d− 1) . . . (d− (k − 1))

k!
.

Proof: Let X be a compact Hausdorff space and let x = [ξ] − n ∈ K(X) have virtual

dimension d. Since ε[ξ] = d+ n,

λt(x) =
λt[ξ]

λt(n)
=

λt[ξ]

(1 + t)n
.

Since (1 + t)−n =
∑(−n

i

)
ti, the coefficient of tk in λt(x) is

λk(x) =
∑
i+j=k

(
−n
i

)
Λj [ξ].

Therefore, ε(λkx) =
∑(−n

i

)(
n+d
j

)
. However, this is the coefficient of tk in the power

series (1 + t)n+d(1 + t)−n = (1 + t)d. Hence ε(λkx) has virtual dimension
(
d
k

)
. The

extension to general spaces is immediate since the virtual dimension only depends on a

neighbourhood of the base point.

Important insights can be obtained by understanding the representing maps of the λ-

operations. Let U(n) → U
(
n
k

)
denote the exterior power representation of the unitary

group for 0 ≤ k ≤ n. Composing this with the inclusion yields a map Λk : U(n)→ U . If

we apply the classifying space functor we get a map βkn : BU(n)→ BU which represents

the exterior power construction on n-dimensional vector bundles. Identifying BU with

{0} ×BU , we can view βkn as an element of K(BU(n), o).

Let X be a compact Hausdorff space and x = [ξ]−n ∈ K(X, o). Since X is compact the

representing map for x factors via Z×BU(n) for some n. Hence

X
x−→ Z×BU(n)

Z×βkn−−−→ Z×BU

represents the virtual bundle Λk[ξ]−
(
n
k

)
∈ K(X, o).

Let j : BU(n)→ BU(n+ 1) denote the canonical inclusion. Viewing βkn as an element of

K(BU(n), o) it is natural to study the element j∗βkn+1 ∈ K(BU(n), o). Since j classifies

the construction [ξ] 7→ [ξ⊕ε1] and Λk[ξ⊕ε1] = Λk[ξ]+Λk−1[ξ] we see j∗βkm+1 = βkm+βk−1
m

where we write βkm = 0 for k > m or k < 0.

In the following we will require a result of Anderson [8, Theorem 1], which states that

we have no phantom operations in complex K-theory, and thus we have an isomorphism

K(BU) ∼= lim←−nK(BU(n)).
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Proposition 3.2.12. Let i ∈ K(BU, o) be represented by the inclusion BU ' {0} ×
BU ⊆ Z × BU and let λkn =

∑k
i=0

(−n
i

)
βk−in ∈ K(BU(n), o) where βjn is represented by

BΛj : BU(n)→ BU . The following conditions are true.

1. If j : BU(n)→ BU(n+ 1) is the canonical inclusion then j∗λkn+1 = λkn.

2. The element λki ∈ K(BU, o) ∼= lim←−nK(BU(n), o) is the inverse limit of the λkn ∈
K(BU(n), o).

Proof: (1) We have the following equalities.

j∗λkn+1 =

k∑
i=0

(
−(n+ 1)

i

)
i∗βk−in+1

=

k∑
i=0

(
−(n+ 1)

i

)
βk−in +

k∑
i=1

(
−(n+ 1)

i− 1

)
βk−in

= βkn +
k∑
i=1

[(
−(n+ 1)

i

)
+

(
−(n+ 1)

i− 1

)]
βk−in

=
k∑
i=0

(
−n
i

)
βk−in = λkn.

(2) Let X be a compact Hausdorff space and x = [ξ]−n ∈ K(X, o). Since X is compact,

the representing map for x factors via Z×BU(n) for some n. Now the composition

X
x−→ Z×BU(n)

Z×λkn−−−→ BU

represents the virtual bundle
∑k

i=0

(−n
i

) [
Λk−i[ξ]−

(
n
k−i
)]
∈ K(X, o). However since∑k

i=0

(−n
i

)(
n
k−i
)

= 0 this is precisely
∑k

i=0

(−n
i

)
Λk−i[ξ] = λk(x). The result follows.

We have now understood a family of ungraded K-theory operations. To see how these

realise all ungraded K-theory operations we must understand the K-theory of the rep-

resenting space, K(Z×BU). The following result is well known.

Theorem 3.2.13 ([51, Theorem 4.15]). Let i ∈ K(BU) be represented by the inclusion

map BU ' {0} ×BU ⊆ Z×BU . We have an isomorphism of filtered rings

K(BU) ∼= Z[[λ1i, λ2i, . . . ]].

The filtration ideals on Z[[λ1i, λ2i, . . . ]] are the kernels of the projections Z[[λ1i, . . . ]]→
Z[[λ1i, . . . , λni]].
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We remark that since ε(i) = 0, we have ε(λki) = 0 for all k. Thus given a power

series x = f(λ1i, λ2i, . . . ) ∈ K(BU) we have ε(x) = f(0, 0, . . . ) the constant term of f .

Hence we can understand the elements of K(BU) as self maps of BU together with an

inclusion BU ' {d}×BU ⊆ Z×BU for some d. This geometrically realises the splitting

K(BU) ∼= Z⊕K(BU, o).

Now since Z × BU is a disjoint union
∐
d∈Z{d} × BU we have an isomorphism K(Z ×

BU) ∼=
∏
d∈ZK({d} × BU) given by x 7→ (i∗dx)d∈Z where id : {d} × BU → Z × BU

is the inclusion. Clearly we have isomorphisms θ : K(BU) ∼= K({d} × BU). However,

the image of i under this isomorphism is represented by the map {d} × BU ' BU '
{0} × BU ⊆ Z × BU . It is more natural to work with the element id ∈ K({d} × BU)

represented by the inclusion {d} × BU → Z × BU . By our discussion in the previous

paragraph, id = θ(i) + d. Thus, λkid = θ(λki + d). However, from λkid we can recover

θ(λki) by the relation θ(λki) = λk(id − d) =
∑

i+j=k λ
i(id)

(−d
j

)
and hence the λkid are

an algebraically independent generating set for K({d} ×BU).

Identifying λkid with the sequence (. . . , 0, λkid, 0, . . . ) which is non-zero in the d-th entry,

we can understand the elements λkid ∈ K(Z×BU) as virtual dimension sensitive versions

of the λ-operations. Explicitly, if X is a connected space and x ∈ K(X) has virtual

dimension d′ then we have

λkid(x) =

{
λk(x) if d = d′

0 otherwise.

Equivalently, we can note that λk =
∑

d∈Z λ
kid.

Theorem 3.2.14. We have an isomorphism of complete Hausdorff Z-plethories

K(Z×BU) ∼=
∏
d∈Z

Z[[λ1id, λ
2id, . . . ]]

where id ∈ K({d} × BU) is represented by the inclusion {d} × BU ⊆ Z × BU . Identi-

fying λkid with the sequence (. . . , 0, λkid, 0, . . . ), the plethystic structure is given by the
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following formulae.

∆+(λkid) =
∑

n+m=k
r+s=d

λnir ⊗ λmis

ε+(λkid) = 0

σ(λkid) = Sk(λ
1i−d, . . . , λ

ki−d)

∆×(λkid) =
∑
rs=d

Pk(λ
1ir ⊗ 1, . . . , λkir ⊗ 1; 1⊗ λ1is, . . . , 1⊗ λkis)

ε×(λkid) =

{
1 if d = k = 1

0 o.w.

λk
′
id′ ◦ λkid =

{
Pk′,k(λ

1id, . . . , λ
kk′id) if d′ =

(
k
d

)
0 o.w.

ι =
∑
d∈Z

λ1
d.

Here Pk ∈ Z[x1, . . . , xk; y1, . . . , yk] and Pk′,k ∈ Z[x1, . . . , xkk′ ] are the universal polyno-

mials from Definition 1.2.30 and Sk ∈ Z[x1, . . . , xk] is the antipode defined in Corol-

lary 1.2.35.

Proof: To compute the plethystic structure, we appeal to Theorem 1.2.29. Let X be

a connected space, and fix a choice of base point. Our results will then extend to all

spaces by working on each connected component individually. Suppose x, y ∈ K(X)

have virtual dimension r, s respectively. Since x+ y has virtual dimension r+ s, we have

for d = r + s,

λkid(x+ y) = λk(x+ y)

=
∑

n+m=k

λn(x)λm(y)

=
∑

n+m=k

λnir(x)λmis(y)

and λkd(x + y) = 0 for d 6= r + s. Our formula for ∆+ follows and the result for ∆× is

similar.

For ε+, we note that λkd(0) = 0 unless d = 0 since 0 = ε0 has virtual dimension 0.

Moreover, we have λk0(0) = 0 for n ≥ 0. The result for ε× is similar. The antipode

follows from the relation λt(−x) = λt(x)−1 and virtual dimension considerations.

For composition, if x has virtual dimension d then λm(x) has virtual dimension
(
m
d

)
, and
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so we see λnd′ ◦ λmd whenever d′ 6=
(
m
d

)
. If d′ =

(
m
d

)
, then:

(λk
′
d′ ◦ λkd)(x) = (λk

′ ◦ λk)(x)

= Pk′,k(λ
1(x), . . . , λkk

′
(x))

= Pk′,k(λ
1id(x), . . . , λkk

′
id(x)).

Finally, since λ1 ∈ K(Z×BU) is the identity operation, we see that ι = λ1 =
∑

d∈Z λ
1id.

The λ-operations generate a sub-plethory of K(Z×BU) which has a familiar expression

in terms of operations on λ-rings.

Corollary 3.2.15. If Q denotes the sub-ring of K(Z × BU) generated by the elements

λk =
∑

d∈Z λ
kid then Q is a sub-plethory and we have an isomorphism of Z-plethories

Q ∼= Ω where Ω is the plethory of Corollary 1.2.37.

Proof: This is immediate from the definitions.

An alternative computation gives an alternative expression for the plethory in terms

of familiar structures. First recall that since BU ' {0} × BU represents K(X, o), it

admits an abelian group structure corresponding the direct product of vector bundles.

Moreover, the abelian group object structure on Z×BU is the product structure of the

abelian group objects Z and BU .

Proposition 3.2.16. The Hopf algebraic structure on K(BU) = Z[[λ1i, λ2i, . . . ]] is

given by the following formulae.

ψ(λki) =
∑

n+m=k

λni⊗ λmi

ε(λki) = 0

σ(λki) = Sk(λ
1i, . . . , λki)

where Sk ∈ Z[x1, . . . , xk] is the antipode defined in Corollary 1.2.35.

Proof: See [15, Theorem 5.7] or alternatively note that BU → {0} ×BU ⊆ Z×BU is a

map of abelian group objects.

Theorem 3.2.17. The Künneth isomorphism

K(Z×BU) ∼= Set(Z,Z)⊗̂K(BU)

is an isomorphism of complete Hausdorff Hopf algebras.
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Proof: Since the K-homology of Z and BU are free as abelian groups, we have an

isomorphism of complete Hausdorff rings K(Z × BU) ∼= K(Z)⊗̂K(BU). Now K(Z) =

Ho(Z,Z × BU) ∼= Set(Z,Z) since BU is connected. Since the abelian group object

structure on Z × BU is the product structure of the abelian groups Z and BU the

Künneth isomorphism is an isomorphism of Hopf algebras.

Under the isomorphism K(Z×BU) ∼= Set(Z,Z)⊗̂K(BU), the element λkid corresponds

to the element χd ⊗ λk where χd denotes the indicator function given by

χd(x) =

{
1 if x = d

0 otherwise.

This allows us to pull across the plethystic structure and realise Set(Z,Z)⊗̂K(BU) as a

Z-plethory.

The Adams operations

The λ-operations are neither additive nor multiplicative. Moreover, the composition

of two λ-operations is rather complicated and as a result they can be somewhat un-

wieldy. Adams [2] found particular linear combinations of the λ-operations with pleasing

properties: they act as ring homomorphisms and have straightforward expressions for

composition. In a suitable context, these Adams operations can be viewed as a natural

generalisation of the Steenrod powers to K-theory. The Adams operations can be defined

for any λ-ring and we shall work primarily in this more abstract context.

Definition 3.2.18. Let R be a λ-ring. For k ≥ 0, define the Adams operations ψk : R→
R by ψ0(x) = 1 and for k > 0,

ψk(x) = Qk(λ
1(x), . . . , λk(x))

where Qk ∈ Z[x1, . . . , xk] is the unique Newton polynomial such that if σi denotes the

i-th elementary symmetric polynomial in x1, . . . , xk then

Qk(σ1, . . . , σk) = xk1 + · · ·+ xkk.

Example 3.2.19. For a λ-ring R and all x ∈ R,

ψ0(x) = 1

ψ1(x) = x

ψ2(x) = x2 − 2λ2(x)

ψ3(x) = x3 − 3xλ2(x) + 3λ3(x).
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Theorem 3.2.20 ([58, Propositions 3.6 and 3.7]). Let R be a λ-ring. For all x, y ∈ R
and all Adams operations ψk the following properties hold.

1. ψn(x+ y) = ψn(x) + ψn(y).

2. ψn(xy) = ψn(x)ψn(y).

3. ψn(ψm(x)) = ψn+m(x).

4. For a prime p, ψp(x) = xp + pz for some z ∈ R.

The Adams operations have much nicer computational properties than the λ-operations.

The following result gives conditions under which the Adams operations encode the same

information as the λ-operations.

Proposition 3.2.21 ([58, Theorem 3.15]). Suppose R is a torsion-free λ-ring. The λ-

operations λk can be written as a homogenous polynomial with rational coefficients of

degree k in ψ1, . . . , ψk where ψj is given degree j.

Unfortunately, for many spacesK(X) and hence K̂(X) is not Z-torsion-free (e.g. K(RP 2) =

Z⊕Z/2), and the Adams operations will generate a proper sub-plethory of the plethory

of λ-operations. Nonetheless, this sub-plethory is often sufficient to prove many useful re-

sults (e.g. see [10, Theorem 3.2.3]). Recall the functor of super primitivesA : PlethoryZ →
Monoid of Definition 1.3.45 and the right adjoint Ψ: Monoid→ PlethoryZ of Defini-

tion 1.3.51.

Theorem 3.2.22. We have an isomorphism of monoids A(K(Z×BU)) ∼= {ψk | k ≥ 0}
where the monoidal structure is given by ψkψl = ψk+l for all k, l.

Moreover, the free plethory ΨA(K(Z×BU)) is a sub-plethory of K(Z×BU) and if K̂(X)

is Z-torsion free then the K(Z×BU)-algebra structure of K̂(X) is uniquely determined

by the ΨA(K(Z×BU))-algebra structure.

Proof: By Proposition 1.3.46 the superprimitives are precisely the operations which act as

ring homomorphisms and [30, Chapter IV, Theorem 7.13] asserts that these are precisely

the Adams operations. Since there are no additive or multiplicative relations between

the Adams operations, ΨA(K(Z × BU)) is a sub-plethory of K(Z × BU). Lastly, by

Proposition 3.2.21 if K̂(X) is torsion free then the action of the λ-operations is uniquely

determined by the action of the Adams operations.

152



3.2.2 Graded operations

Given an ungraded cohomology theory h(−), we can extend to a cohomology theory

E∗(−) graded on the non-positive integers by defining E0(X) = h(X) and E−n(X, o) =

h(ΣnX, o) for all n ≥ 0. Moreover the multiplicative structure can be transferred

by the maps E−n(X, o) ⊗ E−m(X, o) = h(ΣnX, o) ⊗ h(ΣmX, o) → h(Σn+mX, o) =

E−(n+m)(X, o). In general there is no way to extend an ungraded cohomology theory to

the positive integers, and the difficulty of the problem is best illustrated on the level of

the representing spaces. When extending to non-positive degrees we take E0 = H and

E−n = ΩnH. To extend to the positive integers would require delooping the space H

i.e. finding spaces En such that ΩnEn ' H and this is in general a very hard problem.

Fortunately, we are able to deloop Z × BU and this is a consequence of Bott’s famous

periodicity theorem.

Lemma 3.2.23 ([26, Corollary 2.3]). We have an isomorphism of rings

K(S2) ∼=
Z[ξ1]

([ξ1]− 1)2

where ξ1 denotes the canonical line bundle over S2 = CP 1.

Theorem 3.2.24 (Bott periodicity, [26, Theorem 2.2]). For all compact Hausdorff spaces

X, the external product map K(X)⊗K(S2)→ K(X × S2) is an isomorphism of rings.

As an immediate consequence of this result, we have isomorphismsK(ΣnX, o) ∼= K(Σn+2X, o)

given by taking the external product with [ξ1] − 1 ∈ K(S2, o). Thus if we extend K-

theory to the non-positive integers by defining K−n(X, o) = K(ΣnX, o) we have pe-

riodicity K−n(X) ∼= K−(n+2)(X) given by multiplication by an element u ∈ K−2(T )

corresponding to [ξ1] − 1 ∈ K(S2, o) where T is the one point space. It is natural to

extend this periodicity to define Kn(X) for positive integer n.

Definition 3.2.25. We define the graded K-theory for compact Hausdorff spaces as

follows. For non-positive degrees, we define K−n(X, o) = K(ΣnX, o). For positive

degrees, we define Kn(X) to be the free K(X)-module on a single generator for n even

and the free K−1(X)-module on a single generator for n odd.

If we write u−1 for the generator of K2(T ) ∼= K0(T ) ∼= Z, then this is compatible with

the multiplicative structure in that uu−1 = 1 ∈ K0(T ) and (u−1)n is the generator for

K2n(T ). Thus we can identify K2n(X) with unK0(X) and K2n−1 with unK−1(X) for

all n.
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Corollary 3.2.26. The coefficient ring of graded K-theory is given by K∗ = K∗(T ) =

Z[u, u−1] where u is the canonical generator [ξ1]− 1 ∈ K(S2, o) = K−2(T ).

Proof: This is an immediate consequence of Definition 3.2.25 and Bott periodicity.

For many applications it simplifies matters to set u = 1 and view K-theory as Z/2-

graded.

It is straightforward to deduce the representing spaces of K-theory via Bott periodicity

which on the level of representing spaces states we that we have a homotopy equivalence

Ω2(Z×BU) ' Z×BU . Recalling that for any topological group G we have a homotopy

equivalence ΩBG ' G. Thus we have Ω(Z × BU) = Ω({0} × BU) ' ΩBU ' U and

ΩU ' Z×BU . This result illustrates how we extend our definition of graded K-theory

to the entire homotopy category.

Definition 3.2.27. We define the graded K-theory K∗(−) : Ho → AlgK∗ to be repre-

sented by the 2-periodic Ω-spectrum with Z×BU in even degrees and U in odd degrees.

Theorem 3.2.28 ([26, Section 2.2]). The functor K∗(−) : Ho → AlgK∗ satisfies the

Eilenberg-Steenrod axioms and is thus a cohomology theory.

We have computed the plethory of unstable cohomology operations for the ungraded K-

theory. We saw in Definition 3.2.25 that due to Bott periodicity we can extend K-theory

to a graded cohomology theory. We now turn our attention to computing the plethory of

operations for this graded theory. It is straightforward to compute the operations with

even source degree.

Proposition 3.2.29. Viewing K(Z × BU) as concentrated in degree 0, we have an

isomorphism of Z[u, u−1]-algebras K∗(Z×BU) ∼= K(Z×BU)⊗ZZ[u, u−1] where |u| = −2.

Proof: Since BU and hence Z × BU has a cell structure consisting only of even-

dimensional cells, the cellular cohomology is concentrated in even degrees and thus so

is K∗(Z×BU). By Bott perodicity we have isomorphisms of Z-modules K(Z×BU) =

K0(Z × BU) ∼= K2n(Z × BU) given by multiplication by u−n. Hence we have an iso-

morphism of Z[u, u−1]-modules K∗(Z× BU) ∼= K(Z× BU)⊗Z Z[u, u−1]. By definition

of the ring structure on K∗(Z×BU) this is an isomorphism of algebras.

We now turn our attention to operations of odd source degree. Since complex K-theory

is represented in odd degrees by the infinite unitary group, we must compute the Hopf

algebra K∗(U). In addition, to be able to understand the whole plethystic structure we
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must understand how these operations relate to the operations of even source degree.

The following result is well known.

Theorem 3.2.30 ([10, Theorem 2.7.17]). Let Λk : U(n)→ U
(
n
k

)
⊆ U denote the exterior

power representation and µkn ∈ K−1(U(n)) denote the cohomology class represented by

the map U(n)
Λk−−→ U

(
n
k

)
⊆ U . The follow statements hold.

1. We have an isomorphism of K∗-algebras K∗(U(n)) ∼= ΛK∗ [µ
1
n, . . . , µ

n
n].

2. If i : U(n− 1)→ U(n) is the inclusion map then i∗(µkn) = µkn−1 + µk−1
n−1.

We remark that the choice of degree for the elements µkn ∈ K∗(U(n)) is arbitrary and

we could choose any odd degree. Our selection is motivated by a relation to the even

degree operations: the looping of the λ-operations will be expressible in terms of the µkn

and we chose the λ-operations to be in spacial degree 0.

In Proposition 3.2.12 we expressed the λ-operations as linear combinations of elements

represented by maps induced by the exterior power representation on the level of clas-

sifying spaces. Since we wish to relate our odd degree operations to the λ-operations it

makes sense to choose the same linear combination.

Proposition 3.2.31. Let lkn =
k−1∑
i=0

(−n
i

)
µk−in ∈ K−1(U(n)) for k ≤ n. The following

statements are true.

1. If i : U(n− 1)→ U(n) is the inclusion map then i∗(lkn) = lkn−1.

2. We have an isomorphisms of K∗-algebras K∗(U(n)) ∼= ΛK∗ [l
1
n, . . . , l

n
n].

3. We have an isomorphism of K∗-algebras K∗(U) ∼= ΛK∗ [l
1, l2, . . . ] where if j : U(n)→

U denotes the inclusion then j∗lk = lkn.

155



Proof: (1)

i∗(lkn) =

k−1∑
i=0

(
−n
i

)
i∗(µk−in )

=
k−1∑
i=0

(
−n
i

)
µk−in−1 +

k−1∑
i=0

(
−n
i

)
µk−i−1
n−1

=
k−1∑
i=0

(
−n
i

)
µk−in−1 +

k∑
i=1

(
−n
i− 1

)
µk−in−1

= µkn−1 +
k−1∑
i=1

(−1)i
[(
−n
i

)
+

(
−n
i− 1

)]
µk−in−1

= µkn−1 +
k−1∑
i=1

(
−(n− 1)

i

)
µk−in−1

= lkn−1.

(2) We can write the µkn as a linear combination of the lkn’s.

(3) By [8][Theorem 1], K∗(U) ∼= lim←−K
∗(U(n)) = ΛK∗ [l

1, l2, . . . ] where lk are the se-

quences (lkn)n>0.

We can prove the result which motivated our definition for the odd degree operations lk:

they can be expressed as the looping of the λ-operations.

Corollary 3.2.32. In K−1(K−1), we have

Ωλkid =

{
lk if d = 0

0 o.w.

Proof: We first show that B : Ho(U(n), U) → Ho(BU(n), BU) is a group homomor-

phism. Let f, g : U(n)→ U . The map f + g is given by the composition

U(n)
∆−→ U(n)× U(n)

f×g−−→ U × U ⊕−→ U

where ⊕ denotes the H-space structure on U given by taking the direct sum of matrices.

Now since B preserves products, B(f + g) is given by the composition.

BU(n)
∆−→ BU(n)×BU(n)

Bf×Bg−−−−−→ BU ×BU ⊕−→ BU

where ⊕ is the H-space structure given by the classifying map of the direct sum of vector

bundles. However, this is precisely Bf +Bg.

Hence, if we identify BU with {0} × BU then by definition we have Blnk : BU(n) →
BU is homotopy equivalent to the representing map of λkni ∈ K(BU(n), o) where i ∈
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K(BU(n), o) is represented by the canonical inclusion i : BU(n) ' {0} × BU(n) ⊆
Z × BU . Moreover, B preserves direct limits and hence Blk is homotopy equivalent to

the map represented by λk ∈ K(BU, o).

Finally, since we have a natural isomorphism ΩB ∼= 1 we have a homotopy equivalence

between lk and the map represented by Ωλki. Moreover since Ω(Z×BU) = Ω({0}×BU)

we have λkid = 0 for d 6= 0.

This result is extremely useful, it illustrates that the λ-operations generate our entire

plethory in a sense that allows looping. Since we are familiar with the properties of the

λ-operations we now have sufficient information to be able to compute the plethory of

unstable cohomology operations for K-theory.

Since our Ω-spectrum for K-theory is 2-periodic in a way which respects the ring spec-

trum structure, we are able to set u = 1 and compute the Z-plethory of cohomology

operations as graded over Z/2 in both the source and target degrees.

Definition 3.2.33. Define the linearisation of the universal polynomials (see Defi-

nition 1.2.30) as follows. The polynomial P̃Ln is the image of Pn under the natu-

ral map to indecomposables Z[x1, . . . , xn; y1, . . . , yn] ∼= Z[x1, . . . , xn] ⊗ Z[y1, . . . , yn] →
QZ[x1, . . . , xn]⊗Z[y1, . . . , yn], the polynomial P̃Rn is the image of Pn under the under the

natural map Z[x1, . . . , xn; y1, . . . , yn] ∼= Z[x1, . . . , xn] ⊗ Z[y1, . . . , yn] → Z[x1, . . . , xn] ⊗
QZ[y1, . . . , yn] and P̃n,m is the image of Pn,m under the natural map Z[x1, . . . , xnm] →
QZ[x1, . . . , xnm].

Theorem 3.2.34. As a Z/2-Z/2-bigraded Z-plethory we have

K∗(Kn) ∼=


∏
d∈Z

Z[[λ1id, λ
2id, . . . ]] n = 0

ΛZ[l1, l2, . . . ] n = 1

where deg∗(λ
kid) = 0 and deg∗(l

k) = 1. The structure of a Z-plethory with looping

is determined by declaring that the lk are primitive, the canonical map K(Z × BU) →
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K∗(K0) is an isomorphism of Hopf algebras and the following formulae.

∆×(λkid) =
∑
rs=d

Pn(λ1ir ⊗ 1, . . . , λkir ⊗ 1; 1⊗ λ1is, . . . , 1⊗ λkis)

∆×(lk) = P̃Rk (λ1i0 ⊗ 1, . . . , λki0 ⊗ 1; 1⊗ l1, . . . , 1⊗ lk)

+ P̃Lk (l1 ⊗ 1, . . . , lk ⊗ 1; 1⊗ λ1i0, . . . , 1⊗ λki0)

ε×(λkid) =

{
1 if d = k = 1

0 otherwise

λk
′
id′ ◦ λkid =

{
Pk′,k(λ

1id, . . . , λ
kk′id) if d′ =

(
k
d

)
0 otherwise

lk
′ ◦ lk = P̃k′,k(l

1, . . . , lkk
′
)

ι0 =
∑
d∈Z

λ1
d

ι1 = l1

Ω(λkid) =

{
lk if d = 0

0 o.w.

Ωlk =
∑
d∈Z

P̃Lk (−1, . . . , (−1)k−1;λ1id, . . . , λ
kid).

Proof: We have already computed the Hopf algebraK∗(K0). Moreover, since lk = Ωλki0,

by Proposition 2.2.4 we see the lk are primitive.

We appeal to Theorem 1.2.29 to compute the comultiplication. For x, y ∈ K0(X) we

have already understood λkid(xy) so it remains to understand the case where x and y

are in odd dimension. Let x, y ∈ K−1(X) and consider Σx,Σy ∈ K0(ΣX+, o). We have

λkid(u
−1xy) = λkid(ΣxΣy)

=
∑
rs=d

Pk(λ
1ir(Σx), . . . , λkir(Σx);λ1ir(Σy), . . . , λkir(Σy)).

However, in K(ΣX+) we have no non-trivial products and thus since Pk contains no

linear terms this expression is zero.

To compute the comultiplication of the lk we appeal to Proposition 2.2.10. For |x| = 0,

|y| = −1 we have

lk(xy) =
∑
rs=d

(1⊗ Ω)Pk(λ
1ir ⊗ 1, . . . , λkir ⊗ 1; 1⊗ λ1is, . . . , 1⊗ λkis)(x⊗ y).

However, since Ω factors via the indecomposables, we have (1⊗Ω)Pn(λ1ir⊗1, . . . , λkir⊗
1; 1⊗λ1is, . . . , 1⊗λkis) = P̃Rk (λ1ir⊗1, . . . , λkir⊗1; 1⊗Ωλ1is, . . . , 1⊗Ωλkis). Our result

follows by cocommutativity.
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We have already understood the composition λk
′
id′ ◦ λkid. For the composition lk

′ ◦ lk,
we have

lk
′ ◦ lk = Ω(λk

′
i0) ◦ Ω(λki0)

= Ω(λk
′
i0 ◦ λki0)

= ΩPk′,k(λ
1i0, . . . , λ

kk′i0).

Now, Ω factors via the indecomposables and so this is precisely P̃k′,k(Ωλ
1i0, . . . ,Ωλ

kk′i0) =

P̃k′,k(l
1, . . . , lkk

′
).

It remains to compute Ωlk = Ω2λki0. By Bott periodicity, we have

Ω2λki0(x) = λki0 [([ξ1]− 1)x]

=
∑
d∈Z

Pk(λ
1([ξ1]− 1), . . . , λk([ξ1]− 1);λ1id(x), . . . , λkid(x)).

Now, λt([ξ1] − 1) = (1 + [ξ1]t)/(1 + t) and so λn([ξ1] − 1) = (−1)n−1([ξ1] − 1). Since

([ξ1]− 1)2 = 0, we have

Ωlk(x) = Ω2λki0(x) =
∑
d∈Z

P̃Lk (−1, . . . , (−1)k−1;λ1id(x), . . . , λkid(x)).

We remark that this plethory is not Z/2-graded as a plethory with looping. For example,

consider the Adams operation ψk viewed as an operation K0(−) → K0(−). If we let

ψk−2 denote the same element but viewed as an operation K−2(−) → K−2(−), then we

have Ω2ψk = kψk−2.

Apparent from Theorem 3.2.34 is that if we were to make a suitable definition of a free

plethory with looping, we should be able to express the plethory K∗(K•) as quotient

of the free plethory with looping on the ungraded operations K(Z × BU). I hope to

formulate this precisely in future work.

3.3 The Morava K-theories

The Morava K-theories are powerful cohomology theories closed related to the theories of

complex cobordism and Brown-Peterson cohomology. First introduced by Jack Morava

in a series of unpublished works to obtain a better understanding of complex cobordism

via the tools of algebraic geometry, they were introduced in the language of algebraic

topology by a paper [29] of Johnson and Wilson in 1975. Since this paper, the deep

relations between these theories and classical problems in algebraic topology have become
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apparent. Moreover, the Morava K-theories are reasonably computable. In this section

we will briefly introduce the Morava K-theories before turning our attention to the study

of their operations. For a more detailed introduction to the Morava K-theories including

applications, refer to [56].

Theorem 3.3.1 ([56, Theorem 1.3]). Let p be any prime. For all integers n ≥ 1 there is

a multiplicative, 2(pn − 1)-periodic complex-oriented cohomology theory K(n)∗(−) with

coefficient ring K(n)∗ = Fp[vn, v−1
n ] where |vn| = −2(pn − 1) and the associated formal

group law Fn(x, y) satisfies the relation [p]Fn(x) = vnx
pn. If p is odd, the product on

K(n)∗(−) is commutative, for p = 2 it is non-commutative.

Our theory of plethories is only applicable to commutative multiplicative cohomology

theories so we shall restrict our attention to the Morava K-theories for p an odd prime.

3.3.1 Via the enriched Hopf ring

Wilson computed the Hopf ring for the Morava K-theories [53]. He gives his description

locally, but we first give a global description of the Hopf ring. The test spaces needed

for computing the Hopf ring are the complex projective space CP∞ together with the

2pn − 1 skeleton of the lens space L2pn−1 ⊆ L(∞, p) = K(Fp, 1).

Proposition 3.3.2 ([15, Theorem 17.16]). We have an isomorphism of algebras

K(n)∗(L
2pn−1) ∼=

K(n)∗[e, a(0), . . . , a(n−1)]

(ap(0), a
p
(1), . . . )

where |e| = 1 and |a(i)| = 2pi. The Hopf algebra structure is induced by the Hopf algebra

structure on H∗(L(∞, p);Fp) (Proposition 3.1.56).

Theorem 3.3.3 ([15, Theorem 17.19]). The Hopf ring K(n)∗K(n)• is the free K(n)∗[K(n)∗]-

Hopf ring on K(n)∗(L
2pn−1) ⊆ K(n)∗K(n)

1
and K(n)∗(CP∞) ⊆ K(n)∗K(n)

2
subject

to the following relations.

e ◦ e = −b(0)

a(i) ◦ a(j) = −a(j) ◦ a(i)

b◦p
n

(i) = vp
i

n b(i) ◦ [v−1
n ]

e ◦ b◦p
n−1

(0) = vne ◦ [v−1
n ]

a∗p(n−1) = vna(0) − a(0) ◦ b
◦pn−1
(0) ◦ [vn].
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Once again, we will need multi-index notation to discuss elements of our Hopf ring. From

this point on, any multi-index denoted by I (including I ′, I ′′, etc.) will be a sequence of n

integers I = (i0, . . . , in−1) with ik ∈ {0, 1} and any multi-index denoted by J (including

J ′,J ′′, etc.) will be a finite length sequence of arbitrarily many integers J = (j0, . . . , jm)

for some m with 0 ≤ jk < pn.

For such a pair of multi-indices I = (i0, . . . , in−1), J = (j0, . . . , jm) define

aIbJ = a◦i0(0) ◦ · · · ◦ a
◦in−1

(n−1) ◦ b
◦j0
(0) ◦ · · · ◦ b

◦jm
(m) ∈ K(n)2|I|p+2|J |pK(n)|I|+2|J |

eaIbJ = e ◦ aIbJ ∈ K(n)1+2|I|p+2|J |pK(n)
1+|I|+2|J |.

As in the case of ordinary cohomology we make the convention that a0b0 = [1]− [0] (and

so ea0b0 = e).

To adequately manipulate these elements we require some additional functions on the

set of multi-indices.

Definition 3.3.4. Define ρ(I) to be the smallest k with in−k = 0. If I = (1, . . . , 1), then

we make the convention that ρ(I) =∞.

Define t0(I) to be the smallest k with in−k = 1. If I = (0, . . . , 0) then we make the

convention that t0(I) =∞.

Define l1(I) to be the smallest k with ik = 0. If I = (1, . . . , 1) then we make the

convention that l1(I) =∞.

Define l1(J) to be the smallest k with jk < pn− 1. Note that since J is a finite sequence

l1(J) is always finite.

Define l0(I) to be the smallest k with ik = 1. If I = (0, . . . , 0) then we make the

convention that l0(I) =∞.

Define l0(J) to be the smallest k with jk > 0. If J = (0, . . . ) then we make the convention

that l0(J) =∞.

Define c(I) = (in−1, i0, . . . , in−2) and c−1(I) = (i1, . . . , in−1, i0).

As in Definition 3.1.28 we define s(J) = (0, j0, j1, . . . ). If in−1 = 0 define s(I) =

(0, i0, . . . , in−2). If i0 = 0 define s−1(I) = (i1, . . . , in−1, 0) and if j0 = 0 define s−1(J) =

(j1, j2, . . . ).

We now unpack the global expression of our Hopf ring into the local form. Following

[53], we exploit the periodicity of the spectrum K(n), identify vn with 1 and view the

Hopf ring K(n)∗(K(n)•) as graded over Z/2(pn − 1) in both degrees. As in the case
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of K-theory, this is sufficient to understand the plethory of cohomology operations and

it is straightforward to convert our answer back into a Z-Z-bigraded object if we wish

to study the action on cohomology algebras. Notice that under this identification the

coefficient ring becomes K(n)∗ = Fp.

For readability, we shall write Λ[x] for the exterior algebra over Fp on a single generator

x and Pk[x] for the truncated polynomial algebra Fp[x]/(xp
k
) with the convention that

P∞[x] = Fp[x].

Theorem 3.3.5 ([53, Theorem 1]). We have an isomorphism of Fp-algebras,

K(n)∗(K(n)
k
) ∼=

⊗
j0<pn−1

Λ[aIbJe]⊗
⊗

i0=0 or
j0<pn−1

Pρ(I)[a
IbJ ]

where the first tensor product ranges over all multi-indices I, J with |I| + 2|J | + 1 ≡ k

mod 2(pn−1) and the second tensor product ranges over all multi-indices with |I|+2|J | ≡
k mod 2(pn − 1).

Remark 3.3.6. From this point onwards we shall neglect to specify the conditions on

lengths of the multi-indices required to ensure the •-degrees remain compatible (modulo

2(pn − 1)) and leave context to determine the requirements on these.

The coalgebraic structure on the Hopf algebras K(n)∗K(n)
k

in general produces rather

complicated formulae. For example, if I = ∆2 and J = 0 we have

ψ(aIbJ) = 1⊗ a(2) + a(2) ⊗ 1 +
∑

i+j=p2

i,j 6=0

(p!)i1

i0!j0!(i1p)!
(a∗i0(0) ∗ a

∗i1
(1))⊗ (a∗j0(0) ∗ a

∗j1
(1) )

where i = i0 + i1p, j = j0 + j1p are the p-adic expansions of i and j respectively. In

spite of this, we have a clean expression for the Verschiebung, which encodes a lot of

important information about the comultiplication.

Proposition 3.3.7. For multi-indices I, J we have

V (aIbJ) =

{
as
−1Ibs

−1J i0 = j0 = 0

0 otherwise

and V (eaIbJ) = 0.

Proof: Immediate from the fact that V respects ◦-multiplication.

The elements aIbJ ∈ K(n)∗K(n)• for i0 = 1 and j0 = pn−1 are non-zero. The following

result computes the Frobenius operator on K(n)∗K(n)• and consequently details how

we can express these elements in terms of our generators. This is a generalisation of a

result of Wilson [53, Proposition 1.2].
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Proposition 3.3.8. For multi-indices I = (i0, . . . , in−1) and J = (j0, j1, . . . ) the follow-

ing holds.

1. If in−1 = · · · = in−m = 1 (i.e. ρ(I) > m) then

(aIbJ)∗p
m

=
∑

K⊆{0,...,m−1}

(−1)m(|I|+1)+|K|ac
mIbs

mJ+(pn−1)∆K .

2. Let m = min(l1(I), l1(J)). Then

aIbJ = (−1)m|I|(ac
−mIbs

−mJ)∗p
m

+

min(m,ρ(I))−1∑
k=0

(aIbJ−(pn−1)∆0)∗p
k
.

Proof: (1) The case for m = 1 is [53, Proposition 1.2]. We now proceed by induction.

(aIbJ)∗p
m+1

= ((aIbJ)∗p
m

)∗p

=
∑

K⊆{0,...,m−1}

(−1)m(|I|+1)+|K|(ac
mIbs

mJ+(pn−1)∆K )∗p

=
∑

K⊆{0,...,m−1}

(−1)(m+1)|I|+m+|K|
[
ac
m+1Ibs

m+1J+(pn−1)(s∆K+∆0) − vnac
m+1Ibs

m+1J+(pn−1)s∆K

]
=

∑
K⊆{1,...,m}

(−1)(m+1)|I|+m+|K|
[
ac
m+1Ibs

m+1J+(pn−1)(∆K+∆0) − vnac
m+1Ibs

m+1J+(pn−1)∆K

]
=

∑
K⊆{0,...,m}

0∈K

(−1)(m+1)|I|+m+1+|K|ac
m+1Ibs

m+1J+(pn−1)∆K

−
∑

K⊆{1,...,m}

(−1)(m+1)|I|+m+|K|ac
m+1Ibs

m+1J+(pn−1)∆K

=
∑

K⊆{0,...,m}

(−1)(m+1)|I|+m+1+|K|ac
m+1Ibs

m+1J+(pn−1)∆K .

Hence our result follows.

(2) We prove the result in the case ρ(I) = ∞ by induction on m. If m = 0, the result

holds trivially. Now suppose m > 0. Since l1(I), l1(J) ≥ m, i0 = 1 and j0 = pn − 1, so

J = ss−1J + (pn − 1)∆0. We now apply (1) to c−1I, s−1J to obtain

(ac
−1Ibs

−1J)∗p = (−1)|I|[aIbJ − aIbJ−(pn−1)∆0 ].

Rearranging yields

aIbJ = (−1)|I|(ac
−1Ibs

−1J)∗p + aIbJ−(pn−1)∆0 .

Now min(l1(c−1I), l1(c−1J)) = m− 1, and so by the inductive hypothesis we have

ac
−1Ibs

−1J = (−1)(m−1)|I|(ac
−mIbs

−mJ)∗p
m−1

+

m−2∑
k=0

(aIbJ−(pn−1)∆0)∗p
k
.
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Therefore, since the map x 7→ x∗p is linear,

aIbJ = (−1)|I|

[
(−1)(m−1)|I|(ac

−mIbs
−mJ)∗p

m−1
+

m−2∑
k=0

(aIbJ−(pn−1)∆0)∗p
k

]∗p
+ aIbJ−(pn−1)∆0

= (−1)m|I|(ac
−mIbs

−mJ)∗p
m

+
m−2∑
k=0

(aIbJ−(pn−1)∆0)∗p
k+1

+ µ∗(vn)aIbJ−(pn−1)∆0

= (−1)m|I|(ac
−mIbs

−mJ)∗p
m

+
m−1∑
k=0

(aIbJ−(pn−1)∆0)∗p
k
.

To prove the result for general ρ(I) we note that for k ≥ ρ(I), (aIbJ−(pn−1)∆0)∗p
k

= 0.

As in the case of singular cohomology, directly computing the dual Hopf algebra of

K(n)∗K(n)
k

is algebraically infeasible but we hope to find a generating set by first com-

puting PK(n)∗K(n)
k

and then applying Proposition E.0.39. To compute PK(n)∗K(n)
k
,

we would like to appeal to Proposition E.0.37 but the algebraic structure on K(n)∗K(n)
k

is not suitable for application of this result. An unpublished result of Tilman Bauer com-

putes a Hopf algebra which is isomorphic to K(n)∗K(n)
k

as an augmented coalgebra

(and thus has the same primitives) but has algebraic structure satisfing the conditions

of Proposition E.0.37.

Proposition 3.3.9. Define the Fp-vector space Mk to be

Mk =
⊗

j0<pn−1

Λ(eαIβJ)⊗
⊗
I,J

P1(αIβJ)

where the first tensor product ranges over all multi-indices I, J with |I| + 2|J | + 1 ≡ k

mod 2(pn−1) and the second tensor product ranges over all multi-indices with |I|+2|J | ≡
k mod 2(pn−1). We have isomorphisms of Fp-vector spaces Mk → K(n)∗K(n)

k
defined

on the monomial basis for Mk by

eαIβJ 7→ eaIbJ

αIβJ 7→ aIbJ

and extending multiplicatively.

Proof: To show surjectivity we note that for any element of the monomial basis for

K(n)∗K(n)
k

we can replace any powers greater than p by using Proposition 3.3.8 (1).

We show this map is injective by constructing a surjection K(n)∗K(n)
k
→ Mk. Since

Mk and K(n)∗K(n)
k

are of finite type, this will show that our map is an isomorphism.

Proposition 3.3.8 (1) defines an obvious map of vector spaces K(n)∗K(n)
k
→Mk. More-

over, Proposition 3.3.8 (2) gives an explicit element which this map will send to αIβJ

for all multi-indices I, J and so this map is surjective.
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We define the coalgebra structure on Mk so that the map in Proposition 3.3.9 is an

isomorphism of K(n)∗-coalgebras. Now consider the basis for K(n)∗K(n)
k

which is

the image of the monomial basis for Mk under the isomorphism Mk → K(n)∗K(n)
k
.

Explicitly it consists of elements of the form

eaI1bJ1 . . . eaImbJm(aI
′
1bJ

′
1)∗k1 . . . (aI

′
nbJ

′
m′ )∗km′

where kt < p for any multi-indices It, I
′
t, Jt, J

′
t provided that the first entry of each Jt

is less than pn − 1. In the dual basis for K(n)∗K(n)
k
, let xI,J denote the element dual

to aIbJ and yI,J denote the element dual to eaIbJ . The other elements will remain

anonymous.

Theorem 3.3.10. We have isomorphisms of Fp-algebras

K(n)∗K(n)
k
∼=



Set(Fp,Fp)⊗
⊗

I 6=I(0)
i0=1 or
j0≥1

Pt0(I)[xI,J ] k ≡ 0 mod 2(pn − 1)

⊗
j0<pn−1

Λ[yI,J ]⊗
⊗

I 6=I(0)
i0=1 or
j0≥1

Pt0(I)[xI,J ] k 6≡ 0 mod 2(pn − 1).

Proof: For k 6≡ 0 mod 2(pn−1), we have PK(n)∗K(n)
k
∼= PMk. By Proposition E.0.37,

PMk ⊆ QMk. Since e, a(0), b(0) are primitive, eaIbJ is primitive for all I, J and aIbJ is

primitive whenever i0 > 0 or j0 > 0. If i0 = j0 = 0 then V aIbJ = as
−1Ibs

−1J 6= 0 and so

aIbJ is not primitive. Now QK(n)∗K(n)
k
∼= DPK(n)∗K(n)

k
and so the elements xI,J

with i0 > 0 or j0 > 0 together with the yI,J generate K(n)∗K(n)
k
.

For the truncations, if t0(I) < ∞ then 〈F t0(I)xI,J , u〉 = 〈xI,J , V t0(I)u〉. Now either

V t0(I)aI
′
bJ
′

= 0 or V t0(I)aI
′
bJ
′

= aI
′′
bJ
′′

with I ′′ = s−t0(I)I ′ and J ′′ = s−t0(I)J ′. In

particular i′′n−t0(I) = 0 and so I 6= I ′′. Since V is an algebra map, we see F t0(I)xI,J = 0.

For k < t0(I), skI is well defined and we have 〈F kxI,J , as
kIbs

kJ〉 = 1 and thus F kxI,J 6= 0.

Just as in Theorem 3.1.30 the result follows by Borel’s theorem.

For k ≡ 0 mod 2(pn − 1), K(n)
k

is not connected, but we can decompose K(n)
k

=

Fp × K(n)′
k

where K(n)′
k

denotes the connected component of K(n)
k

containing the

base point. Now QK(n)∗K(n)′
k
∼= DPK(n)∗K(n)′

k
∼= DPMk and we can compute

K(n)∗K(n)′
k

as before.

Now via the Künneth isomorphism, we have K(n)∗K(n)
k
∼= K(n)∗(Fp)⊗K(n)∗K(n)′

k
.

While the choice of basis for K(n)∗K(n)
k

induced by Mk allowed us to easily compute

K(n)∗K(n)
k

as an algebra using some theoretical results, we have two major and related
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drawbacks. Firstly, it is not clear how the algebraic structure on K(n)∗K(n)
k

respects

our basis. By this we mean given some polynomial in the xI,J and yI,J , we have no

expression for this polynomial in terms of the dual basis. Secondly, to compute the

comultiplication on the Hopf algebra K(n)∗K(n)
k

we must understand the multiplication

in K(n)∗K(n)
k

on our basis elements. This itself is also non-trivial; we must appeal to

Proposition 3.3.8 to express the product of basis elements as a linear combination of

basis elements.

The first of these problems seems unavoidable, the algebraic structure on K(n)∗K(n)
k

is inextricably tied to the coalgebraic structure on K(n)∗K(n)
k
. That said, while the

coalgebraic structure on K(n)∗K(n)
k

is fairly intractable, the Verschiebung has a simple

expression given in Proposition 3.3.7. Hence, we should be able to understand how the

Frobenius on K(n)∗K(n)
k

respects our choice of basis. The following result gives the

required formulae.

Proposition 3.3.11. We have the following formulae in K(n)∗K(n)
k
.

1. If i0 = 1 or j0 ≥ 1 then

FmxI,J =

{
xsmI,smJ m < t0(I)

0 otherwise.

2. If i0 = j0 = 0 and m = min(l0(I), l0(J)) <∞ then xI,J = Fmxs−mI,s−mJ .

Proof: For (1), by Theorem 3.3.10, FmxI,J = 0 for m ≥ t0(I). Let m < t0(I) and thus

smI is well defined. Now for any basis element u of K(n)∗K(n)
k
, we have 〈FmxI,J , u〉 =

〈xI,J , V mu〉. Since V m is a algebra map, this is zero unless u = as
mIbs

mJ .

(2) is an immediate consequence of (1) since if I ′ = s−mI, J ′ = s−mJ then i′0 = 1 or

j′0 ≥ 1 by definition.

For the other problem of computing the comultiplication on the Hopf algebraK(n)∗K(n)
k
,

we can make some progress using theoretical results without explicitly having to under-

stand the multiplication of our basis elements in K(n)∗K(n)
k
.

Proposition 3.3.12. In the Hopf algebra K(n)∗K(n)
k

we have the following formulae.

1. ∆+(yI,J) = 1⊗ yI,J + yI,J ⊗ 1.

2. If i0 = 0 or j0 < pn − 1 then ∆+(xI,J) = 1⊗ xI,J + xI,J ⊗ 1.
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3. If i0 = 1 and j0 = pn − 1

V xI,J = (−1)|I|Fmxs−mc−1I,s−(m+1)(J−(pn−1)∆0)

where m = min(l0(c−1I), l0(s−1(J − (pn − 1)∆0)).

Proof: Since all aIbJe and aIbJ for i0 = 0 or j0 < pn − 1 are indecomposable in

K(n)∗K(n)
k
, by Proposition E.0.39 the corresponding dual elements yI,J and xI,J are

primitive. For i0 = 1 and j0 = pn − 1, let u be an element of our basis for K(n)∗K(n)
k
.

Since xI,J ∈ QK(n)∗K(n)
k
, we have V xI,J ∈ QK(n)∗K(n)

k
∼= DPK(n)∗K(n)

k
. Hence

〈V (xI,J), u〉 = 0 unless u ∈ PK(n)∗K(n)
k
. Now for u = aI

′
bJ
′ ∈ PK(n)∗K(n)

k
∼= PMk,

we have 〈V (xI,J), aI
′
bJ
′〉 = 〈xI,J , FaI

′
bJ
′〉. By Proposition 3.3.8 this is zero if i′n−1 = 0

and if i′n−1 = 1, we have

〈V (xI,J), aI
′
bJ
′〉 = 〈xI,J , (−1)|I|acI

′
bsJ
′+(pn−1)∆0 + (−1)|I|+1vna

cI′bsJ
′〉

= (−1)|I
′|〈xI,J , acI

′
bsJ
′+(pn−1)∆0〉+ (−1)|I

′|+1vn〈xI,J , acI
′
bsJ
′〉.

Since j0 = pn − 1 this second term is always zero. The first term is zero unless I = cI ′

and J = sJ ′+ (pn− 1)∆0 or equivalently I ′ = c−1I and J ′ = s−1(J − (pn− 1)∆0). Thus

V xI,J = (−1)|I|xc−1I,s−1(J−(pn−1)). Appealing to Proposition 3.3.11 to express this in

terms of the generators for K(n)∗K(n)
k

gives the desired result.

Of course, this does not give a complete expression of K(n)∗K(n)
k

as a Hopf algebra;

we have not computed the comultiplication on the non-primitive elements xI,J for i0 = 1

and j0 = pn − 1.

3.3.2 The bialgebra of primitives

Our computational tricks for computing the plethystic structure of our cohomology oper-

ations from the enriched Hopf ring have relied heavily on having primitive generators and

making use of Proposition E.0.39 to make the calculations manageable. Consequently,

the presence of non-primitive generators in K(n)∗K(n)
k

means we will be unable to com-

pute the full plethystic structure by our usual methods. Nevertheless, a large proportion

of our generators are primitive and we can hope to compute the plethystic structure

on these generators. Alternatively, we should be able to compute the structure of the

additive operations as a bialgebra.
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Definition 3.3.13. For multi-indices I, I ′, J and J ′, define multi-indices I t I ′, J+̄J ′

and J+̂J ′ and integers α(J, J ′) by the following formulae.

I t I ′ =

{
I + I ′ it + i′t < 2 for all t

0 otherwise

J+̄J ′ = (j0 + j′0, j1 + j′1, . . . )

J+̂J ′ = (ĵ0 + j′0, j1 + j′1, . . . )

In the above, k̄ = k− r(pn − 1) where r is the least integer such that k− r(pn − 1) < pn

and k̂ = k − r′(pn − 1) where r′ is the least integer such that k − r′(pn − 1) < pn − 1.

The following lemma motivates these definitions. The sign conventions can be worked

out by introducing a minus sign every time we interchange two elements of odd •-degree.

Lemma 3.3.14. In the Hopf ring K(n)∗K(n)• we have

aI1bJ1 ◦ aI2bJ2 = ±aI1tI2bJ1+̄J2

aI1bJ1 ◦ eaI2bJ2 = ±eaI1tI2bJ1+̂J2

eaI1bJ1 ◦ eaI2bJ2 = ±aI1tI2b∆0+̄J1+̄J2

where ∆0+̄J1+̄J2 = ∆0+̄(J1+̄J2).

Proof: This is immediate from the graded commutativity of ◦-multiplication together

with the relations e◦2 = −b(0), a(i) ◦ a(j) = −a(j) ◦ a(i), b
◦pn
(k) = vp

k

n b(k) and e ◦ b◦p
n−1

(0) =

vne.

Proposition 3.3.15. We have an isomorphism of Fp-coalgebras,

PK(n)∗(K(n)
k
) ∼=

⊕
j0<pn−1

〈yI,J〉 ⊗
⊗

i0=0 or
j0<pn−1

〈xI,J〉.

The coalgebraic structure is determined by the following formulae.

∆×(yI,J) =
∑

I1tI2=I
J1+̂J2=J

±yI1,J1 ⊗ xI2,J2 ± vα(J1,J2)
n xI1,J1 ⊗ yI2,J2

∆×(xI,J) =
∑

I1tI2=I
J1+̄J2=J

±xI1,J1 ⊗ xI2,J2 +
∑

I1tI2=I
∆0+̄J1+̄J2=J

±yI1,J1 ⊗ yI2,J2

Proof: The indecomposables of the cooperations QK(n)∗(K(n)
k
) are spanned by the

elements eaIbJ for j0 < pn − 1 and aIbJ for i0 = 0 or j0 < pn − 1. The elements

eaIbJ are dual to yI,J and for i0 = 1 or j0 ≥ 1, the elements aIbJ are dual to xI,J . By
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Proposition 3.3.11, the elements aIbJ with i0 = j0 = 0 are dual to xI,J and are obtained

by taking p-th powers of the xI′,J ′ with i′ = 1 or j′ ≥ 1. Hence since PK(n)∗(K(n)
k
) ∼=

QK(n)∗(K(n)
k
), we have our isomorphism as Fp-vector spaces.

The coalgebraic structure on PK(n)∗(K(n)•) is dual to the ◦-multiplication inQK(n)∗(K(n)•).

Let aI
′
bJ
′
, aI

′′
bJ
′′ ∈ QK(n)∗K(n)

k
and so i′0 = 0 or j′0 < pn − 1 (resp. for i′′0, j

′′
0 ).

Since 〈∆×xI,J , aI
′
bJ
′ ⊗ aI

′′
bJ
′′〉 = 〈xI,J , aI

′
bJ
′ ◦ aI′′bJ ′′〉 the result is immediate from

Lemma 3.3.14.

The multiplication on the bialgebra PK(n)∗K(n)• is induced by the composition on

K(n)∗K(n)•. To understand this we must unpack the enrichment of the Hopf ring

K(n)∗K(n)•. This was computed by Boardman, Johnson and Wilson.

Theorem 3.3.16 ([15]). For all r, r∗ak is the coefficient of xk in the formal identity

r∗a(x) =
pn−1∗
i=0

b(x)◦i ◦ [〈r, ai〉] ∗
pn−1∗
i=0

a(x) ◦ b(x)◦i ◦ [〈r, ci〉],

r∗bk is the coefficient of xk in the formal identity

r∗b(x) = [〈r, 12〉] ∗
∞∗
i=1

b(x)◦i ◦ [〈r, bi〉],

and

r∗e = [〈r, 11〉] ∗ [〈r, e〉] ◦ e.

The augmentation is determined by

ι1(e) = 1

ι1(a(k)) = 0

ι2(b(k)) =

{
1 k = 0

0 otherwise.

It is straightforward to compute the unit for composition for the augmentation.

Corollary 3.3.17. The canonical map I → K(n)∗K(n)• is given by

ιk 7→

{
x0,m∆0 k = 2m

y0,m∆0 k = 2m+ 1.

Proof: As in Corollary 3.1.32.

Just as in the singular cohomology cases, we first understand the enrichment of our

operations on the generators of our Hopf ring in the knowledge that we can appeal to

Definition 1.3.21 to compute the enrichment of our operations on arbitrary elements.
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Corollary 3.3.18. In the enriched Hopf ring K(n)∗K(n)• we have the following formu-

lae.

xI,J∗a(k) =

{
b◦p

i

(k−i) I = ∆i, J = 0, k ≥ i
0 otherwise

xI,J∗b(k) =

{
b◦p

j

(k−j) I = 0, J = ∆j , k ≥ j
0 otherwise

xI,J∗e = 0

yI,J∗a(k) = 0

yI,J∗b(k) = 0

yI,J∗e =

{
e I = J = 0

0 otherwise

Proof: Since deg•(xI,J) = |I|+2|J |, for degree reasons we have 〈xI,J , ai〉 = 〈xI,J , ci〉 = 0,

and thus xI,J∗ak = 0 unless I = ∆i, J = 0. Since x∆i,0 is primitive, 〈x∆i,0, u〉 = 0 if u is

decomposable. Hence

〈x∆i,0, ak〉 =

{
1 k = pi

0 otherwise

〈x∆i,0, ck〉 = 0.

Hence x∆i,0ak is the coefficient of xk in b(x)◦p
i
. Since we are working over a field of

characteristic p, the map z 7→ z◦p is linear, and so

x∆i,0∗(ak) =

b
◦pi
k

pi

pi|k

0 otherwise.

For xI,J∗b(k), we notice for degree reasons we require either I = 0, J = ∆j or I =

∆i + ∆i′ , J = 0. In the former case, since x0,∆j is primitive, we have 〈x0,∆j , bk〉 = 1 if

and only if k = pj and so x0,∆j∗bk is the coefficient of xk in b(x)◦p
j
. In the latter case,

〈xI,J , bk〉 = 0 for all k and so xI,J∗bk = 0. The result for xI,J∗e is trivial.

Since yI,J is primitive, and dual to eaIbJ , the remaining results are immediate.

Just as the case for singular cohomology, using Definition 1.3.21 to compute the enrich-

ment on arbitrary elements becomes complicated very quickly. Nonetheless, we are able

to compute simple compositions by hand.

Proposition 3.3.19. For multi-indices I, J with i0 = 0 or j0 < pn − 1, then

xI,J ◦ x∆i,0 =

{
x∆m+i,0 I = 0, J = pi∆m and m+ i < n

0 otherwise.
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Proof: First note as x∆i,0 ∈ K(n)2piK(n)
1
, for degree reasons the composition xI,J ◦x∆i,0

is zero unless |I|+ 2|J | = 2pi. Moreover, 〈xI,J ◦ x∆i,0,−〉 : K(n)∗K(n)
1
→ K(n)∗K(n)

1
.

Since xI,J ◦ x∆i,0 ∈ PK(n)∗K(n)
1
∼= DQK(n)∗K(n)

1
it suffices to determine 〈xI,J ◦

x∆i,0,−〉 on e and a(k).

We have 〈xI,J ◦ x∆i,0, e〉 = 〈xI,J , x∆i,0∗e〉 = 0 and

〈xI,J ◦ x∆i,0, a(k)〉 = 〈xI,J , x∆i,0∗a(k)〉

=

{
〈xI,J , b◦p

i

(k−i)〉 k ≥ i
〈xI,J , 0〉 otherwise.

Now 〈xI,J , b◦p
i

(k−i)〉 is non-zero if and only if I = 0 and J = pi∆k−i. Our result follows.

The formulae for enrichment are identical to those for singular cohomology with coeffi-

cients in Fp (Corollary 3.1.64). As a result, we should be able to find a combinatorial

expression for the composition which is somewhat related to the product formula for the

Milnor basis elements (Proposition 3.1.52). Unfortunately, I have not been able to do

this.

3.3.3 A useful filtration

The difficulties encountered in computing the plethory K(n)∗K(n)• stemmed from com-

plexity of the coalgebraic structure on the Hopf ring K(n)∗K(n)•. Nevertheless, we have

a reasonable form for the Verschiebung and consequently can show that the non-primitive

elements aIbJ for i0 = j0 = 0 are primitive modulo some iterations of the Verschiebung

operator.

Lemma 3.3.20. If I, J are multi-indices with i0 = j0 = 0 then in K(n)∗K(n)•, we have

(V m ⊗ V m)ψ(aIbJ) = 1⊗ aIbJ + aIbJ ⊗ 1 where m = min(l0(I), l0(J)).

Proof: By the definition of m, we can write I = s−mI ′, J = s−mJ ′ where i′0 = 1 or

j′0 > 0. Hence,

(V m ⊗ V m)ψ(aIbJ) = ψ(V maIbJ)

= ψ(aI
′
bJ
′
)

= 1⊗ aI′bJ ′ + aI
′
bJ
′ ⊗ 1

= 1⊗ V maIbJ + V maIbJ ⊗ 1.
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This suggests that a suitable filtration of K(n)∗K(n)• by kernels of the iterated Ver-

sechiebungs V k might allow us to better understand the coalgebraic structure. We shall

wish to apply homological algebraic techniques to reconstruct K(n)∗K(n)• from the

associated graded object of the filtration and as such we should work in an abelian

category.

Theorem 3.3.21 ([47]). The category of bicommutative Hopf algebras over Fp is an

abelian category. Given a Hopf algebra map f : H → H ′ the kernel and cokernels in

this category, known as the Hopf kernel and Hopf cokernel respectively, are given by the

following expressions.

Hker f = {x ∈ H|(1⊗ f)ψx = x⊗ 1}

Hcoker f =
H

f(IH)H ′
.

Here, f(IH)H ′ denotes the algebra ideal in H ′ generated by the image of the augmenta-

tion ideal IH under f .

Consider the following filtration of K(n)∗K(n)
k

by sub-Hopf algebras.

HkerV ⊆ HkerV 2 ⊆ · · · ⊆ HkerV k ⊆ · · · ⊆ K(n)∗K(n)
k

We can easily compute the algebraic structure of the sub-Hopf algebras HkerV k.

Lemma 3.3.22. If f : H → H ′ is a map of Hopf rings then Hker f is an ideal for

◦-multiplication: for x ∈ Hker f , y ∈ H we have x ◦ y ∈ Hker f .

Proof: Let x ∈ Hker f and y ∈ H. Writing ψ(x) = x(1) ⊗ x(2) and ψ(y) = y(1) ⊗ y(2) in

sumless Sweedler notation we have

(1⊗ f)ψ(x ◦ y) = (x(1) ◦ y(1))⊗ f(x(2) ◦ y(2))

= (x(1) ⊗ f(x(2))) ◦ (y(1) ⊗ f(y(2)))

= (x⊗ 1) ◦ (y(1) ⊗ f(y(2)))

= (x ◦ y(1))⊗ (1 ◦ f(y(2)))

= x ◦ (y(1)εf(y(2)))⊗ 1

= x ◦ (y(1)εy(2))⊗ 1

= x ◦ y ⊗ 1

We provide the following conjectural result computing the sub-Hopf algebras of our

filtration, and give a partial proof.
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Conjecture 3.3.23. We have the following isomorphisms of Fp-algebras. For k < n,

HkerV k ∼=
⊗

j0<pn−1

Λ[eaIbJ ]⊗
⊗

(i0,j0)6=(1,pn−1)
∃t<k : (it,jt)6=(0,0)

Pρ(I)[a
IbJ ]⊗

⊗
(i0,j0) 6=(1,pn−1)

in−1=1

Pρ(I)−1[(aIbJ)∗p],

and for k ≥ n,

HkerV k ∼=
⊗

j0<pn−1

Λ[eaIbJ ]⊗
⊗

(i0,j0)6=(1,pn−1)
∃t<k : (it,jt)6=(0,0)

Pρ(I)[a
IbJ ].

Partial Proof: If x is primitive, then (1 ⊗ V )ψx = x ⊗ 1 and so x ∈ HkerV . Hence

PK(n)∗K(n)
k

= PMk and so eaIbJ ∈ HkerV ⊆ HkerV k for j0 < pn − 1 and aIbJ ∈
HkerV k for all i0 > 0 or j0 > 0. For i0 = 1 and j0 = pn − 1, we use Proposition 3.3.8

(2) to express aIbJ in terms of the generators of K(n)∗K(n)
k

and see (aI
′
bJ
′
)∗p

m
with

(i′0, j
′
0) 6= (1, pn− 1) is primitive whenever m < ρ(I ′). Since HkerV ∼= S[p]PK(n)∗K(n)

k

this proves the result for k = 1.

Now for k > 1, notice that for t < k we have

ψa(t) = 1⊗ a(t) +
∑

i+j=pt

ai ⊗ aj + a(t) ⊗ 1

Since V ka(t) = 0 and for j < pt we can express aj as a ∗-product of a(0), . . . a(t−1) and thus

V kaj = 0 we see that a(t) ∈ HkerV k. Similarly, b(t) ∈ HkerV k. Since HkerV k is closed

under ◦-multiplication by elements in IK(n)∗K(n)
k

we see that aIbJ ∈ HkerV k for I, J

such that there exists t < k with it 6= 0 or jt 6= 0. Moreover, HkerV k ⊆ K(n)∗(K(n)•)

is a sub-Hopf algebra and thus contains the algebra generated by these elements. It

remains to show that this is actually all of HkerV k.

Assuming this conjecture is true, we proceed with our argument. The inclusion maps

ik : HkerV k → HkerV k+1 are monic in our category of Hopf algebras and therefore we

can form short exact sequences.

Fp → HkerV k → HkerV k+1 → Hcoker ik → Fp

In this context, the collection of Hopf algebras Hcoker ik for k ≥ 0 (where Hcoker i0 =

HkerV ) forms the associated graded object of our filtration. These Hopf algebras turn

out to be primitively generated.

Conjecture 3.3.24. For k > 0, if ik : HkerV k → HkerV k+1 denotes the inclusion then

we have isomorphisms of Hopf algebras,

Hcoker ik ∼=
⊗

(i0,j0) 6=(1,pn−1)
t<k⇒it=jt=0
(ik,jk) 6=(0,0)

P1[aIbJ + I]
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where I = (ik(I HkerV k))HkerV k+1 and the generators are primitive.

Proof: The augmentation ideal I HkerV k is generated by the generators of HkerV k.

Hence the ideal generated by the image of I HkerV k in HkerV k+1 is

I = (aIbJe, aIbJ , (aIbJ)∗p
m

)

Ao as algebras we have,

Hcoker ik =
HkerV k+1

I
∼=

⊗
(i0,j0)6=(1,pn−1)
t<k⇒it=jt=0
(ik,jk) 6=(0,0)

P1[aIbJ + I].

It remains to show these generators are primitive. Let aIbJ + I be such a generator.

Suppose ik 6= 0, we have ψ(aIbJ) = ψ(a(k))◦ψ(aI−∆kbJ). Now ψ(a(k)) = 1⊗a(k) +a(k)⊗
1 +

∑
i+j=pk ai ⊗ aj and ai ⊗ aj ∈ I ⊗ I. Hence by Lemma 3.3.22 we have ψ(aIbJ) =

1⊗ aIbJ + aIbJ ⊗ 1 + I ⊗ I and so in Hcoker ik ⊗Hcoker ik ∼= HkerV k+1⊗HkerV k+1

I⊗HkerV k+1⊕HkerV k+1⊗I ,

ψ(aIbJ + I) = ψ(aIbJ) + I ⊗HkerV k+1 ⊕HkerV k+1 ⊗ I

= 1⊗ aIbJ + aIbJ ⊗ 1 + I ⊗HkerV k+1 ⊕HkerV k+1 ⊗ I.

Taking the Fp-linear dual of our descending filtration of K(n)∗K(n)
k

yields an ascend-

ing filtration of DK(n)∗K(n)
k
∼= K(n)∗K(n)

k
. Identifying DHkerV ∼= HcokerDV ∼=

HcokerFK(n)∗K(n)
k
, this ascending filtration can be written as follows.

K(n)∗K(n)
k
� · · ·� HcokerF 2 � HcokerF

Associated to this filtration are the short exact sequences

Fp → Hker qk → HcokerF k+1 � HcokerF k → Fp

where qk : HcokerF k+1 � HcokerF k is the natural quotient map, the linear dual of ik.

Due to the simple structure of the Hopf algebras in our filtration on homology, it is

straightforward to compute the dual Hopf algebras in this filtration on cohomology.

We now turn our attention to the extension problem, and hence recovering K(n)∗K(n)
k

or K(n)∗K(n)
k

from the graded object associated to the filtration. As we have greater

knowledge of the cooperations K(n)∗K(n)
k
, we will attempt to first solve the extension

problem in homology and then take duals, converting this to a solution to the cohomo-

logical extension problem.
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We need some theory on extensions of Hopf algebras. The trivial extension of two Hopf

algebras H and H ′ is given by the tensor product H⊗H ′. However, we can construct non

trivial extensions by introducing a twisting to the multiplication or the comultiplication.

We follow work of Andruskiewitsch and Devoto [9] who studied extensions of Hopf alge-

bras with very few conditions on (co-)associativity, (co-)commutativity and (co-)unitality

building on [13]. Another useful reference is [7], and for a very brief introduction to this

theory see Appendix F.

Conjecture 3.3.25. Let ik denote the inclusion HkerV k ⊆ HkerV k+1. First define

σI,J,I
′,J ′

k : P1[aIbJ + I]⊗ P1[aI
′
bJ
′
+ I]→ Pρ(I)−1[(aIbJ)∗p]

σI,J,I
′,J ′

k ((aIbJ + I)∗i ⊗ (aI
′
bJ
′
+ I)∗j) =


(aIbJ)∗p if (I, J) = (I ′, J ′) and i+ j ≥ p
1 if i = j = 0

0 otherwise.

Now define σk : Hcoker ik ⊗Hcoker ik → HkerV k to be the composition⊗
I,J

P1[aIbJ + I]⊗
⊗
I′,J ′

P1[aI
′
bJ
′
+ I] ∼=

⊗
I,J
I′,J ′

P1[aIbJ + I]⊗ P1[aI
′
bJ
′
+ I]

⊗
σI,J,I

′,J′
k−−−−−−−→

⊗
I,J

Pρ(I)−1[(aIbJ)∗p] ⊆ HkerV k.

For k < n we have an isomorphism of algebras

HkerV k+1 ∼= HkerV k#σk Hcoker ik

and for k ≥ n we have an isomorphism of algebras

HkerV k+1 ∼= HkerV k ⊗Hcoker ik.

Sketch proof: The isomorphism for k ≥ n is clear by inspection of both sides. For k < n,

this is simple a generalisation of Example F.0.52

Of course we have not solved the extension problem as Hopf algebras. However, it feels

like this should be possible if we use the correct co-2-cocycle to twist the comultiplication.

Sadly, I have not been able to do this. We would then be able to study how the extra

structure respects these extensions. We have seen that HkerV k has nice behaviour with

respect to ◦-multiplication (Lemma 3.3.22) and we could hope for similar results in the

dual setting with the comultiplication ∆× and the composition.
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Appendix A

Biring relations

The structure maps of a k-k′ biring B satisfy the following relations.

Four relations expressing that ∆+ is coassociative, cocommutative with counit ε+ and

antipode σ.

B B ⊗B

B ⊗B B ⊗B ⊗B

∆+

∆+ ∆+⊗1

1⊗∆+

B B ⊗B

B ⊗B

∆+

∆+
τ

B k B

B ⊗B B ⊗B
∆+

ε+ η

σ⊗1

µ

B B ⊗B

B ⊗ k

∆+

∼= 1⊗ε+

Three relations expressing that ∆× is coassociative, cocommutative with counit ε×.

B B ⊗B

B ⊗B B ⊗B ⊗B

∆×

∆× 1⊗∆×

∆×⊗1

B ⊗B B ⊗ k

B B

1⊗ε×

∆×

c

∼=

B B ⊗B

B ⊗B

∆×

∆×
τ

One relation expressing that comultiplication codistributes over coaddition.

B B ⊗B B ⊗B ⊗B

B ⊗B B ⊗B ⊗B ⊗B B ⊗B ⊗B ⊗B

∆×

∆+

1⊗∆+

∆×⊗∆× 1⊗τ⊗1

µ⊗1⊗1

Three relations expressing that each γλ is a morphism of cogroup objects.

B B

B ⊗B B ⊗B

γλ

∆+ ∆+

γλ⊗γλ

B B

k

γλ

ε+
ε+

B B

B B

γλ

σ σ

γλ
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Three relations expressing how γλ changes with respect to the ring structure on k′.

B B

B ⊗B B ⊗B

γ(λ+λ′)

∆+

γλ⊗γλ′
µ

B B

B

γλ

γ(λλ′)
γλ′

B B

B

γ1

1

One relation expressing how the colinear structure interacts with the comultiplication.

B

B ⊗B B B ⊗B

B ⊗B

∆×
γλ

∆×

γλ⊗1
∆×

1⊗γλ

A map f : B → B′ of k-algebras is a map of k-k′-birings if the following diagrams

commute.

B B′

B ⊗B B′ ⊗B′
∆+

f

∆+

f⊗f

B B′

k

f

ε+
ε+

B B′

B B′

σ

f

σ

f

B B′

B ⊗B B′ ⊗B′
∆×

f

∆×

f⊗f

B B′

k

f

ε×
ε×

B B′

B B′

γλ

f

γλ

f

If we are using the equivalent co-k-linear structure βλ = ε× ◦ γλ, then we require the

following diagram to commute.

k′ Algk(B, k)

Algk(B
′, k)

β

β Algk(f,k)
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Appendix B

Functor cartography

The following diagram details the domain and codomain relationships between some of

the functors we defined in Section 1.3.

kModk Biringk,k Coalgk,k Coalgk Set

Alg¬com
k Plethoryk TwBialgk Bialg¬com

k Monoid

Q
P

Pk

A

T�

E

S

G

Sk

Q
P

Pk

AU

E

S

G

Sk

Ψ
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Appendix C

A primer on algebraic geometry

We recall a few basic results from algebraic geometry. For a more detailed reference see

[23] or for a reference geared towards applications in algebraic topology, refer to [46].

Definition C.0.26. Let A be a k-algebra, we define the spectrum of A to be the functor

Speck(A) = Algk(A,−) : Algk → Set. Given a functor X : Algk → Set, we define the

ring of functions OX = Nat(X,A1) where A1 = Speck(k[x]).

We define an affine scheme to be a representable functor X : Algk → Set and together

with natural transformations this forms a category.

By the Yoneda lemma, we have OSpeck(A)
∼= A and thus we can recover A from Speck(A).

This leads to the following result.

Proposition C.0.27 ([23]). We have an anti-equivalence of categories from Algk to the

category of affine schemes.

We saw in Chapter 1, viewing k-algebras via their spectrum can be extremely enlight-

ening. However, in the topologised setting, the story is a bit more complicated.

Definition C.0.28. Let A be a filtered k-algebra. We define the formal spectrum of A

by

Spfk(A) = lim−→Algk(A/F
aA,−) : Algk → Set

. We define a solid formal scheme to be a functor X : Algk → Set which is of the form

Spfk(A) for some filtered k-algebra A. Together with natural transformations the solid

formal schemes form a category.

Unlike in the discrete case, in general we are no longer able to recover A from Spfk(A).

Taking the direct limit is a bit too brutal and loses information. In turns out that
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we lose precisely the same information as when taking the completion and we have

OSpfk(A)
∼= Â. Consequently, if A = E∗(X) is a cohomology algebra, we are unable to

see phantom classes in the corresponding solid formal scheme. However, if we are not

interested in phantom classes then we have the following useful result.

Theorem C.0.29 ([23]). The category of solid formal schemes is anti-equivalent to the

category of completed Hausdorff k-algebras CAlgk

Proposition C.0.30. A V-object in the category of solid formal schemes is the same as

lifts of X to a functor Algk → V.

Proof: This is a consequence of Theorem C.0.29 and Corollary 1.1.17.
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Appendix D

Generalised cohomology theories

We follow Boardman’s [14] definitions of generalised cohomology theories and here we

just recall the main results and definitions.

Definition D.0.31. An ungraded cohomology theory is a contravariant functor h : Ho→
Ab satisfying the following two Eilenberg-Steenrod axioms.

1. If X = A ∪ B where A,B are sub-complexes of a CW-complex X, and y ∈ h(A)

and z ∈ h(B) agree on their restrictions to A ∩B then there exists x ∈ h(X) that

lifts both y and z.

2. For any disjoint union X =
∐
iXi, the inclusions Xi → X induce an isomorphism

h(X) ∼=
∏
i h(Xi).

Definition D.0.32. Given an ungraded cohomology theory, and a space X with base

point o, we define the reduced cohomology by the split short exact sequence

0→ h(X, o)→ h(X)→ h(o).

For a space X and a subspace A, we define the relative cohomology by the short exact

sequence

0→ h(X,A)→ h(X)→ h(A).

We remark that we can recover the absolute cohomology of a space X from the reduced

homology by constructing the disjoint union of X with a new base point to form X+.

This yields an isomorphism h(X+, o) ∼= h(X).

Definition D.0.33. A graded cohomology theory E∗(−) is a collection of ungraded co-

homology theories En(−) for each n ∈ Z, connected by natural suspension isomorphisms

Σ: En(X) ∼= En+1(S1 ×X, o×X)
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of abelian groups. On the level of reduced cohomology, we have isomorphisms En(X, o) ∼=
En+1(ΣX, o) where ΣX = S1 ∧X denotes the reduced suspension of X.

We have the following definition of a multiplicative graded cohomology theory, which

has the obvious analogue in the ungraded setting.

Definition D.0.34. A graded cohomology theory E∗(−) is multiplicative if it naturally

takes values in commutative graded E∗-algebras where E∗ = E∗(T ), the cohomology of

the one point space is known as the coefficient ring. Equivalently, we have natural cross

product maps

× : E∗(X)⊗E∗ E∗(Y )→ E∗(X × Y ).

Every cohomology theory has an associated homology theory E∗(−), and in nice cases

these are dual in the following sense.

Definition D.0.35. Let M be an k-module. We define the dual-finite filtration on

DM = Modk(M,k) to consist of the sub-modules FLDM = ker(DM → DL) where

L ranges through all finitely generated sub-modules of M . This topology induces the

dual-finite topology on M .

Theorem D.0.36 ([14, Theorem 4.14]). If E∗(X) is a free E∗-module then we have an

homeomorphism which is an isomorphism of abelian groups E∗(X) ∼= DE∗(X) between

the profinite topology on E∗(X) (see Definition 2.1.27) and the dual-finite topology on

DE∗(X).
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Appendix E

Hopf algebras and Hopf rings

In this section we state some useful results for performing computations involving Hopf

algebras and Hopf rings. For a more detailed reference, refer to [36]. We assume that all

our Hopf algebras are bicommutative and biunital.

Proposition E.0.37 ([36, Proposition 4.20]). If H is a connected Hopf algebra over a

field k of characteristic p 6= 0, then the natural morphism PH → QH is a monomorphism

if and only if FHn = 0 for n > 0 where F : H → H denotes the Frobenius map.

Proposition E.0.38. Let H be a Hopf ring with augmentation ideal IH. If x ∈ PH is

primitive and y ∈ IH then x ◦ y ∈ PH.

Proof: We have the following sequence of equalities.

ψ(x ◦ y) = ψ(x) ◦ ψ(y)

= (1⊗ x+ x⊗ 1) ◦ (y(1) ⊗ y(2))

= 1 ◦ y(1) ⊗ x ◦ y(2) + x ◦ y(1) ⊗ 1 ◦ y(2)

= ε(y(1))⊗ x ◦ y(2) + x ◦ y(1) ⊗ ε(y(2))

= 1⊗ x ◦ (ε(y(1))y(2)) + x ◦ (y(1)ε(y(2)))⊗ 1

= 1⊗ x ◦ y + x ◦ y ⊗ 1.

Proposition E.0.39 ([36, Proposition 3.10]). Suppose H is a Hopf algebra over k. If

DH = Modk(H, k), P denotes the functor of primitives and Q the functor of indecom-

posables then we have PDH = DQH. Moreover, if the underlying k-module of H is

projective of finite type and

IH → IH ⊗ IH → QH → 0
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is split exact then DPDH = QH.

Theorem E.0.40 (Borel’s theorem, [16]). If H is a Hopf algebra over Fp then H is

isomorphic as an algebra to the tensor product of monogenic Hopf algebras.

Proposition E.0.41. Let H be a Hopf ring and let π : IH → QH denote the canonical

projection from the augmentation ideal to the indecomposables. For x, y ∈ IH, if π(x ◦
y) 6= 0 then π(x) 6= 0 and π(y) 6= 0.

Proof: Suppose π(y) = 0 so we can write y = z ∗ z′ for z, z′ ∈ IH. Now, x ◦ y =

x ◦ (z ∗ z′) = (x(1) ◦ z) ∗ (x(2) ◦ z′). However, ε(x(1) ◦ z) = ε(x(1))ε(z) = 0 and similarly

ε(x(2) ◦ z) = 0. Hence π(x ◦ y) = 0 and the result follows.

Proposition E.0.42 ([41, Lemma 7.1]). Let H be an Fp[Fp]-Hopf ring with Frobenius

F and Verschiebung V . For all x, y ∈ H, we have V (x ◦ y) = V (x) ◦ V (y) and the

Frobenius reciprocity equation: F (x ◦ V (y)) = x ◦ F (y).
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Appendix F

Extensions of Hopf algebras

We remark that the following is special case of much more general construction which

relaxes conditions on (co-)associativity, (co-)commutativity and (co-)unitality. We in-

troduce the minimal technical machinery necessary for our purposes while still obtaining

some intuition. For a more detailed treatment refer to [9] and [7].

Definition F.0.43. Let H be a Hopf algebra over k, and A a k-algebra then we call a

map H ⊗A→ A, h⊗ a 7→ h · a an action if the following conditions hold.

1. (gh) · a = g · (h · a).

2. 1 · a = a.

3. h · (ab) = (h(1) · a)(h(2) · b).

4. h · 1 = ε(h)1.

Example F.0.44. For any Hopf algebra H over k and k-algebra A, we have the trivial

action

h · a = ε(h)a.

Definition F.0.45. Given a Hopf algebra H over k and k-algebra A with action H⊗A→
A, we define the smash product of A with H, A#H to be the vector space A⊗H. Writing

a#h for a⊗ h, the multiplication is given by

(a#g)(b#h) = a(g(1) · b)#g(2)h.

This makes A#H a (not necessarily commutative) algebra with unit 1#1.

Example F.0.46. For any Hopf algebra H over k and k-algebra A, if H ⊗ A → A is

the trivial action, then

A#H = A⊗H.
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More generally, we can add a twisting to the multiplication in the smash product.

Definition F.0.47. For a Hopf algebra H over k and a k-algebra A with action · : H ⊗
A → A, a 2-cocycle (relative to the action ·) is a map σ : H ⊗ H → A satisfying: for

g, h, k ∈ H,

1. σ(1⊗ h) = σ(h⊗ 1) = ε(h)1.

2. [g(1) · σ(h(1) ⊗ k(1))]σ(g(2) ⊗ h(2)k(2)) = σ(g(1) ⊗ h(1))σ(g(2)h(2) ⊗ k).

Example F.0.48. For any Hopf algebra H over k and any k-algebra A, we have the

trivial 2-cocycle, H ⊗H → A given by

σ(g ⊗ h) = ε(g)ε(h)1.

Definition F.0.49. Given a Hopf algebra H over k, a k-algebra A together with an

action H ⊗ A → A, and a 2-cocycle, σ, we define the crossed product A#σH to be

the (not necessarily commutative) algebra to have underlying vector space A ⊗ H and

multiplication given by

(a#g)(b#h) = a(g(1) · b)σ(g(2), h(1))#g(3)h(2).

Example F.0.50. For a Hopf algebra H over k and a k-algebra A with action · : H⊗A→
A, if σ is the trivial 2-cocycle, then

A#σH ∼= A#H.

Proposition F.0.51 ([7]). Let A be a k-algebra, H a Hopf algebra over k and σ : H ⊗
H → A a 2-cocycle. The crossed product A#σH is commutative if and only if H⊗A→ A

is trivial and σ is symmetric i.e. σ(g ⊗ h) = σ(h⊗ g).

As a consequence, we shall always restrict to the case where 2-cocycles are symmetric and

the action is trivial. The following example illustrates how we can construct a non-trivial

extension of a Hopf algebra and an algebra.

Example F.0.52. Let A = Fp[x]/(xp), H = Fp[y]/(yp) and suppose H acts on A by the

trivial action. Let σ : H ⊗H → A be the 2-cocycle given by

σ(yi ⊗ yj) =


x if i+ j ≥ p
1 if i = j = 0

0 o.w.
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We claim that (1#y)n = xbn/pc#yn̄ where n̄ denotes the reduction of n modulo p, and

proceed by induction.

(1#y)n = (1#y)(1#y)n−1

= (1#y)(xbn/pc#yn̄)

=
∑
i+j=n̄

(
n̄

i

)(
xbn/pcσ(1, yi)#yj+1 + xbn/pcσ(y, yi)#yj

)
= xbn/pc#yn̄+1 + xbn/pcσ(y, yn̄)#1

=

{
xbn/pc#yn̄+1 if n̄ 6= p− 1

xbn/pc+1#1 if n̄ = p− 1

= xb(n+1)/pc#yn+1

Hence A#σH is a vector space of dimension p2 with an element of order p2, and so

A#σH =
Fp[1#y]

((1#y)p2)
.

There is a analogous construction which takes a Hopf algebra H over k and a k-coalgebra

C, and produces a k-coalgebra which is isomorphic to H ⊗ C as a k-module, but incor-

porates a twisting defined by a co-2-cocycle τ : C → H⊗H. Moreover, this construction

can be combined with a twisting of the multiplication. Thus it is possible to produce

a Hopf algebra over k which is a tensor product of two given Hopf algebras over k as

k-module, but has twisting in both the multiplication and comultiplication. For details

refer to [9, Theorem 2.20].

189



190



References

[1] E. Abe. Hopf Algebras. Cambridge University Press, Cambridge, 2004.

[2] J. F. Adams. Vector fields on spheres. Ann. of Math. (2), 75:603–632, 1962.

[3] J. F. Adams. A variant of E. H. Brown’s representability theorem. Topology, 10:185–

198, 1971.

[4] J. F. Adams. Stable Homotopy and Generalised Homology. University of Chicago

Press, Chicago, 1974.

[5] J. F. Adams and G. Walker. An example in homotopy theory. Proc. Cambridge

Philos. Soc., 60:699–700, 1964.

[6] J. Adem. The iteration of the Steenrod squares in algebraic topology. Proc. Nat.

Acad. Sci. U.S.A., 38:720–726, 1952.

[7] A. L. Agore. Crossed product of Hopf algebras. Comm. Algebra, 41(7):2519–2542,

2013.

[8] D. W. Anderson. There are no phantom cohomology operations in K-theory. Pacific

J. Math., 107(2):279–306, 1983.

[9] N. Andruskiewitsch and J. Devoto. Extensions of Hopf algebras. Algebra i Analiz,

7(1):22–61, 1995.

[10] M. Atiyah. K-Theory : Lectures. W.A. Benjamin, New York, 1967.

[11] T. Bauer. Formal plethories. Adv. Math., 254:497–569, 2014.

[12] G.M. Bergman. An Invitation to General Algebra and Universal Constructions.

Springer International Publishing, 2015.

[13] R. J. Blattner, M. Cohen, and S. Montgomery. Crossed products and inner actions

of Hopf algebras. Trans. Amer. Math. Soc., 298(2):671–711, 1986.

191



[14] J. M. Boardman. Stable operations in generalized cohomology. In Handbook of

Algebraic Topology, pages 585–686. North-Holland, Amsterdam, 1995.

[15] J. M. Boardman, D.C. Johnson, and W. S. Wilson. Unstable operations in general-

ized cohomology. In Handbook of Algebraic Topology, pages 687–828. North-Holland,

Amsterdam, 1995.

[16] A. Borel. Sur la cohomologie des espaces fibrés principaux et des espaces homogènes
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