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Abstract 

The synthesis, characterisation, and catalytic applications of a range of novel iron-N-

heterocyclic carbenes (Fe-NHCs) immobilised on renewable resources (expanded high 

amylose corn starch 4a, Starbon™ 350 4b, Starbon™ 400 4c, mango peel cellulose 4d 

and orange peel cellulose 4e) are reported.  The efficacy of the resultant heterogeneous 

catalysts was measured for their ability to convert: fructose to 5-(hydroxymethyl) 

furfural (HMF); glucose to HMF and glucose to 5-(chloromethyl)furfural (CMF). 

The immobilised catalysts were prepared using a convergent strategy starting from the 

appropriate renewable resource, e.g., (4a-e) and 1-(3-aminopropyl) imidazole (7) to 

afford the precursor nitrogen heterocyclic carbene, e.g., (13a-e), which was treated 

with FeCl3 to furnish the desired Fe-NHC, e.g., (1a-e).  Iron-loadings of 0.68 mmol g-

1 for (1a), 0.31 mmol g-1 for (1b), 0.32 mmol g-1 for (1c), 0.30 mmol g-1 for (1d) and 

0.52 mmol g-1 for (1e) were achieved.  At 100oC and varying reaction time (10 min, 

20 min, 0.5 h, 1 h, 3 h and 6 h), all catalyst types showed good performance for the 

dehydration of fructose to HMF: Fe-NHC expanded HACS (1a), HMF yield 86 % 

(t=0.5 h), TOF=206 h-1; Fe-NHC Starbon™ 350 (1b), HMF yield 81.7 % (t=0.5 h), 

TOF=169 h-1; Fe-NHC Starbon™ 400 (1c), HMF yield 81.0 % (t=0.35 h), TOF= 241 

h-1; Fe-NHC MPC (1d), HMF yield 70.0 % (t=1 h), TOF= 79.2 h-1; Fe-NHC OPC (1e), 

HMF yield 71.7 % (t=0.5 h), TOF= 146 h-1. The catalysts showed very good recycling 

stabilities up to 5 catalytic cycles. 

The fabricated catalysts were also employed in other catalytic application in important 

reactions including glucose dehydration to HMF, and gluose/fructose dehydration to 

CMF.  The supported catalysts slightly effect CMF production from glucose and 

fructose but were ineffective towards amidation reactions of carboxylic acids and 

amines (as higlighted in future work).  
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CHAPTER 1  INTRODUCTION and AIMS 

 

Prelude 

This chapter highlights the aims, objectives and justification of the research within the 

general context of global drivers, sustainability and the 12 Principles of Green 

Chemistry. An overview of NHC’s and Fe-NHC’s is given within the context of recent 

literature with focus on structural properties, synthetic routes and applications.  

Mesoporous materials to be used in this research are discussed, namely: expanded 

starch, Starbon™, orange peel cellulose and mango peel cellulose residue. 
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1.1 Introduction 

Global warming and inter-related climatic in-balances/rapid changes are 

predominantly due to the actions of humans.1,2,3  It has become evident that we 

humans, as species, need to change our lifestyle to ensure future sustainable 

development, i.e., the fulfilment of contemporary needs of the present without 

compromising the ability of the future generations to fulfil their needs.4 To ensure 

sustainable development (Figure 1.1) a subtle balance of three inter-related factors: 

social, economic, and; environmental, is needed. 

 

Figure 1.1 Society, economy and environmental importance in sustainable development. 

However, the UK government reframed the above to a five principles approach to 

incorporate “promoting good governance” and “using sound science responsibly,” 5 

which form a set of shared UK principles to achieve sustainable development (Figure 

1.2). 
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Figure 1.2 UK five principle approach to sustainability. 

In September 2015, the 193 member countries of the United Nations met and agreed 

upon 17 Sustainable Development Goals (SDGs, Figure 1.3),6 which are targets and 

indicators member states are expected to follow as guiding principles.  The SDGs are 

essentially a follow-up and expansion on the millennium development goals (MDGs), 

which expired in 2015. 

 

Figure 1.3 Sustainable Development Goals. 
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SDG 12 seeks to control the environmental impact of wastes and the depletion of 

natural resources, through responsible consumption and production. SDG 12 promotes 

doing more with less and circular- rather than linear-thinking. To this end, the 

principles and practice of green chemistry has become an essential tool to achieving 

responsible consumption and production. 

1.1.1 Green chemistry and sustainable development 

Increased concerns over declining fossil oil reserves and negative environmental 

impact associated with their continued use as a feedstock for chemicals, materials and 

energy, has ignited tremendous interest in developing new processes that both reduce 

energy consumption and minimize pollution.7, 8 The transition from petroleum to bio-

based or bio-renewable feedstocks and the development of circular, bio-based 

economies is a key driver towards a sustainable 21st century.9  The need for materials 

and processes compatible with the environment has motivated the increasingly intense 

study of materials obtained from renewable sources (biomass), and the development 

of recyclable or biodegradable products.10-12 

Green Chemistry, as defined by Anastas and Warner,13 is the design of chemical 

products and processes that reduce or eliminate the use and generation of hazardous 

substances, and is governed by 12 Principles as listed:  

1. Prevention: It is better to prevent waste than to treat or clean up waste after it 

has been created. 

2. Atom Economy: Synthetic methods should be designed to maximise the 

incorporation of all materials used into final products. 

3. Less Hazardous Chemical Syntheses: Wherever practicable, synthetic 

methods should be designed to use and generate substances that possess little 

or no toxicity to human health and the environment. 

4. Designing Safer Chemicals: Chemical products should be designed to affect 

their desired function while minimizing their toxicity. 

5. Safer Solvents and Auxiliaries: The use of auxiliary substances (e.g., 

solvents, separation agents, etc.) should be made unnecessary wherever 

possible and innocuous when used. 
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6. Design for Energy Efficiency: Energy requirements of chemical processes 

should be recognized for their environmental and economic impacts and should 

be minimized. If possible, synthetic methods should be conducted at ambient 

temperature and pressure. 

7. Use of Renewable Feedstocks: A raw material or feedstock should be 

renewable rather than depleting whenever technically and economically 

practicable. 

8. Reduce Derivatives: Unnecessary derivatization (use of blocking groups, 

protection/deprotection, and temporary modification of physical/chemical 

processes) should be minimized or avoided if possible, because such steps 

require additional reagents and can generate waste. 

9. Catalysis: Catalytic reagents (as selective as possible) are superior to 

stoichiometric reagents. 

10. Design for Degradation: Chemical products should be designed so that at the 

end of their function they break down into innocuous degradation products and 

do not persist in the environment. 

11. Real-time analysis for Pollution Prevention: Analytical methodologies need 

to be further developed to allow for real-time, in-process monitoring and 

control prior to the formation of hazardous substances. 

12. Inherently Safer Chemistry for Accident Prevention: Substances and the 

form of a substance used in a chemical process should be chosen to minimize 

the potential for chemical accidents, including releases, explosions, and fires. 

 
Within the context of Principle 7 (Use of Renewable Feedstocks) agricultural wastes 

and industrial wastes have gained tremendous interest due to their high volume,  

availability and low cost.14-18  For example, cellulose is one of the most abundant 

biopolymers on earth which maintains the structural integrity of plants occurring in 

wood, cotton, hemp and food residues.17-21  According to the Pike Report, adoption of 

green chemistry practices and principles through utilisation of renewable feedstocks 

can save the chemical industry $65 billion by 2020.22 
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Within the context of Principle 9 (Catalysis) heterogeneous catalysis which benefits 

from the ease of separation and recycling of catalysts, plays a crucial role in a future 

bio-based chemical economy.  Thus, the search for novel green catalysts that enable 

efficient conversion of naturally abundant carbohydrates in to platform molecules, 

such as the conversion of fructose into 5-(hydroxymethyl)furfural (HMF) attracts 

considerable interest. 23-31 The growing concern over elemental sustainability and 

critical elements has seen the emergence of base-metal catalysis over traditional 

precious metal catalysis because of the relatively abundance and lower cost of the 

former.31 In this context, iron salts and molecular defined iron complexes have 

emerged as interesting and powerful synthetic tools in the chemist’s armory.32-33 

1.2  Aims, Overview of NHCs and Objectives 

1.2.1. Aims 

The overall aim of this research is to synthesise and characterise novel iron-nitrogen 

heterocyclic carbenes (Fe-NHCs) (Scheme 1, 1a-e), immobilized on a variety of 

renewable mesoporous supports (4a-e), in order to investigate their efficacy as 

potential heterogeneous catalysts for dehydration of fructose to 5-(hydroxymethyl) 

furfural (HMF); glucose to HMF, and; glucose to 5-(chloromethyl)furfural (CMF). 

The dehydration of carbohydrates to HMF has attracted increasing attention due to its 

possible application as a substitute for petroleum derived building blocks.34, 35, 36 HMF 

(3) is a versatile and top value-added chemical that has received significant attention 

as a platform chemical essential for the production of broad range of chemicals and 

liquid transportation fuel (Figure 1.4).37 HMF is a key intermediate for the production 

of a wide variety of bio-based chemicals.38-39    It is essential to find new fuels to 

replace existing ones, which can simultaneously meet the energy needs of the 

population and protect the environment.40 Since the identification of HMF as  valuable 

molecule by the US Department of Energy, several attempts have been made to 

produce HMF from fructose and biomass using homogeneous or heterogeneous 

Brønsted acid and Lewis acid catalysts in various reaction media. Qi et al. reported 

conversion of sugars including glucose and fructose into HMF (72 %) in ɤ-

valerolactone using H2SO4.
41 Qi et al. reported the conversion of fructose to HMF in 

DMSO/acetone co-solvent using ion exchange resins.42  Upare et a.l reported the 

conversion of fructose in butanol to HMF (93 %) and subsequently to 2,5-dimethyl 
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furan using double catalyst systems of Amberlyst-15 and Ru-Sn/ZnO catalyst.43 High 

HMF yields (60% to 90%) were also reported in ionic liquids systems. 44-47  

Kim et al. reported good yield (73%) HMF from fructose using an Fe-NHC supported 

on polystyrene beads using DMSO as reaction solvent at 100 oC for 3 hours reaction 

time.48 HMF can be obtained from biomass by hydrolysis followed by dehydration 

(eg. cellulosic biomass),40 or isomerization and dehydration of mono and 

disaccharides,49 or polysaccahrides,50-51 using acid catalyst or base catalyst at lower 

reaction temperatures of 100 to 150 oC. Although the conversion of fructose to HMF 

is autocatalytic,52-53 it is important to note that only low conversions were obtained in 

most solvents in up to six hours reaction times. Hao et al. were able to achieve 73 % 

HMF yield in methyl isobutyl ketone/water biphasic solvent system without any added 

catalyst.54 

However, HMF does have thermal and chemical instability, high solubility in water, 

and low melting point, which in recent years has paved the way for CMF as an 

alternative (Figure 1.3). The advantages of CMF over HMF as an intermediate building 

block include better thermal and chemical stability, lower polarity ( immiscible in 

water), and it can be more readily produced from glucose and cellulose biomass due 

to its lipophilicity.55-56 As reported by Mascal et al. CMF serves as a precursor to the 

new generation bio-fuels and high value chemicals.57 Breeden et al. reported 

conversions of fructose and inulin to CMF with yields >70 %.60  Brasholz et al. 

reported a highly efficient dehydration of carbohydrates to CMF, HMF and levulinic 

acid by biphasic continuous flow processing with yields of up to 76 % at shorter 

reaction times of 5 minutes to 80 minutes depending on substrate and system.58 Gao et 

al. reported an efficient one-pot synthesis of CMF from carbohydrates in mild biphasic 

systems with yields up to 47 %.59 and can be converted to numerous valuable furan 

moieties by means of oxidation, reduction and aldol additions.60  
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Figure 1.4 Example of some important chemicals obtained from HMF and CMF. 

CMF (14) can efficiently be converted into HMF (3) by hydrolysis in water at 100 oC. 

Other top-value added products like levulinic acid (17) and ethyl levulinate (18) can 

then be obtained by reaction with water or alcohols at elevated temperatures.61 (14) 

and (3) can also be converted to 5-methylfurfural (23) by reaction with hydrogen. (3) 

and (14) can also be reduced to 2,5-dimethylfuran (21) or 2,5-dimethyltetrahydrofuran 

(22), both high energy liquids which have been proposed as fuel additives. HMF 3 is 

also a precursor to the polyester monomer furan-2,5-dicarboxylic acid (16).57 Both (3) 

and (14) can also be oxidised to 2,5-diformylfuran (15) with higher yields obtained 

from (3) >70 % while up to 54 % yields were obtained from (14) under microwave 

irradiation.56 (18) has used in the manufacture of various intermediates of 

pharmaceuticals, antifungal agents, organic conductors, cross-linking agents and 

polymeric materials.62-64  
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1.2.2. Overview of NHCs 

1.2.2.1. Carbenes 

Carbenes are species containing a neutral carbon atom with two unshared valence 

electrons having a general formula R=C: or R-(C:)-R'.  Most carbenes are very short-

lived. Depending upon their electronic structure (electron spin), carbenes are classified 

as either singlets or triplets. Up until 1960, there were few reports on nitrogen 

heterocyclic carbenes, perhaps due to the general assumption at the time that carbenes 

were too reactive to be isolated.65  

Wanzlick was first to investigate the reactivity and stability of carbenes in 1960s and 

in 1968 he reported the first application of NHCs as ligands for metal complexes, with 

a report on the direct synthesis of mercury salt carbene complex.66-67 Thereafter, 

surprisingly there wasn’t much research reported on  nitrogen heterocyclic carbenes 

until 1991 when Arduengo et al. reported the first example of a crystalline nitrogen 

heterocyclic carbene. The carbene 1,3-di-l-adamantylimidazol-2-ylidene (Figure 1.4), 

forms colourless crystals with sufficient kinetic and thermodynamic stability to be 

easily isolated and characterized.68 The deprotonation of 1,3-di-1-

adamantylimidazolium chloride in THF at room temperature in the presence of 1 

equivalent of sodium hydride produces the crystalline carbene 1,3-di-l-

adamantylimidazol-2-ylidene. The same deprotonation can also be achieved with 

potassium tert-butoxide in THF (Figure 1.4). 

 

1,3-di-1-adamantylimidazolium chloride  1,3-di-l-adamantylimidazol-2-ylidene 

Scheme 1.1 Synthesis of 1,3-di-l-adamantylimidazol-2-ylidene. 

1.2.2.2. Nitrogen-heterocyclic carbenes (NHCs) 

Nitrogen-heterocyclic carbenes (NHCs) are firmly established as one of the most 

versatile ligands in a synthetic chemist’s toolkit. 69-71 They are electronically and 

sterically tunable and isolable.48,72 NHCs are nucleophilic due the lone pair situated in 

the plane of the heterocyclic ring (Figure 1.5).  NHCs are strong σ-donors and weak 

π-acceptors,73-75 which in turn increases the electron density around the metal center 
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and thus improve its catalytic ability.76-79  The ring size, nitrogen heteroatoms, the ring 

backbone and nitrogen-substituents affects the stability and reactivity of the NHC.  The 

σ-withdrawing and π-donating effects of the nitrogen heteroatoms help to stabilize the 

singlet carbene structure (Figure 1.5).80-83 

 

Figure 1.5. π - electron-donating and σ – electron withdrawing illustrations of NHCs. 

NHCs have also been extensively used in transition metal catalysis.66-67 Reactions 

including but not limited to cross-coupling reactions, olefin metathesis, 

hydrosilylation, cyanosilylation and hydrogenation have been extensively reported to 

be catalysed by transition metal NHC complexes.48, 66 The use of Pd-NHC complexes 

have been widely reported, example include a recent direct Suzuki–Miyaura cross-

coupling of wide range of amides with arylboronic acids in very good yields using 

commercially available, air- and moisture-stable (NHC)Pd(R-allyl)Cl complexes.84 

NHCs have been used as organo-catalysts.  Organo-catalysed reactions represent an 

attractive alternative to metal-catalysed (e.g., Pd, Ru and Ni) processes notably 

because of their lower cost and benign environmental impact in comparison to 

organometallic catalysis.85  Grasa et al. in 2004, reported efficient protocols for 

nucleophilic NHC-catalysed transesterification and acylation reactions.86 In 2007, 

Marion et al. studied the numerous applications of imidazolylidene, 

imidazolinylidene, triazolylidene, and thiazolylidene in organo-catalysis (Figure 

1.6).87 Their use in condensation, transesterification and acylation reaction has been 

widely reported. 87 

 

Figure 1.6. General structures of NHCs used in organo-catalysis. 
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NHCs have been used as stabilizing ligands. Studies show that some NHC ligands play 

a key role as stabilising ligands in palladium oxidation reactions (Scheme 1.2).82 

    

  Scheme 1.2 NHCs as stabilizing ligands for Pd oxidation reactions. 

An example of this stabilisation effect is seen in the rapid fixation reaction of both O2 

and CO2 from air to the palladium (0) complex bearing a novel N-heterocyclic carbene 

[1,3-bis(2,2′′,6,6′′-tetramethyl-m-terphenyl-5′-yl)imidazol-2-ylidene] abbreviated as 

ITmt.88 (Scheme 1.3).        

   

 Scheme 1.3 Rapid fixation of O2 and CO2 from air by NHC. 

NHCs have also been used in biological applications.  A recent study conducted by 

Chen et al. on the synthesis, structure, biological evaluation, and catalysis of two 

pyrazole-functionalized NHC–RuII complexes, shows that the first 

complex [RuCl(L1)(p-cymene)](PF6)  (where L1 = 1-ethyl-3-(N-

mesitylimidazolylidenylmethyl)-5-methylpyrazole]), could efficiently inhibit the 

proliferation of  and destroy cancer cells (Figure 1.7).89 
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Figure 1.7 Cancer inhibiting NHC-RuII complex.  

Recently, Monticelli et al. reported the synthesis, structure and antitumoural activity 

of triazole-functionalised NHC–metal complexes (Figure 1.8).  AgI, AuI and 

RuII complexes with an NHC ligand functionalised in the backbone of the imidazole 

by a triazole ring were synthesised and their in-vitro antitumor activities were 

evaluated towards three different human cancer cell lines (prostate, breast and colon 

cancer). The results confirmed their inhibitory action towards the cancer cells.90 

 

             Figure 1.8 AgI, AuI and RuII NHC complexes having antitumor activity.  

Rieb et al. reported on the influence of wing-tip substituents and reaction conditions 

on the structure, properties and cytotoxicity of Ag(I)– and Au(I)–bis(NHC) 

complexes, also reported potential of certain NHC complexes towards cancer 

treatments.91 

1.2.2.2.1. NHC Ligand synthesis 

NHC ligands can be synthesised by N-alkylation of existing imidazoles with 

appropriate ligands.92   The easiest and most straight forward method to prepare 

imidazole or imidazolium salts is by direct quaternization of N-substituted imidazoles 

or imidazolines with alkyl or aryl halides.93-94 Two different approaches can be 

followed for this type of NHC ligand synthesis; either functionalized alkyl halides are 

reacted with N-substituted imidazoles, or N-functionalized imidazoles react with alkyl 

halides as shown in Scheme 1.4. 
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Scheme 1.4. Synthesis of imidazolium salts by direct quaternization of N-substituted 

imidazoles or imidazolines with alkyl or aryl halides. 

This method is considered efficient since alkyl halides, can effectively react with 

various N-substituted imidazoles or imidazolines under mild conditions to afford the 

quaternized products in good to excellent yields. Secondly the isolation of the products 

from the reaction mixture is relatively easy as the synthesized imidazolium salts 

usually precipitate from the reaction mixture and can be collected by filtration.  

Alternatively, NHC ligands can also be synthesised by building the appropriate NHC 

ring, using either symmetrical or unsymmetrical N-substitution.82 

Synthesis by symmetrical N-substitution: This can be achieved by the condensation of 

symmetrical anilines with glyoxal to produce diimines which are then cyclised by 

chloromethylethyl ether (Scheme 1.5). 

                        

  Scheme 1.5. Synthesis of NHCs by symmetrical N-substitution. 

An example of this symmetrical synthesis of NHC ligands is the acid-catalysed 

condensation of chiral anilines with glyoxal to produce diimines followed by 

subsequent cyclization of the diimines with chloromethylethylether producing the 

corresponding imidazolium chloride (Scheme 1.6).95 



43 
 

 Scheme 1.6. Symmetrical synthesis of imidazolium chloride. 

Synthesis by unsymmetrical N-substitution: Unsymmetrical synthesis of NHC ligands 

can be performed by the halo acid-catalysed condensation of an aniline with glyoxal 

and formic acid to produce the corresponding imidazolium halide (Scheme 1.7). 

           

 

 Scheme 1.7 Unsymmetrical synthesis of NHCs. 

1.2.2.2.2. NHC Ligand Immobilisation 

To immobilize NHCs, three important aspects need to be considered: i. immobilization 

position; ii. immobilization method, and; iii. the support material.96 

Immobilisation position:  The functionalities introduced during the formation of the 

NHC moiety usually predetermined the immobilization position.  As shown in Figure 

1.9 immobilisation may occur via the carbene centre (position c), the C-C bond 

(position b) or the N-centre (position a). 

 

 

Figure 1.9 Position of immobilization of NHCs. 
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Immobilisation methods:  Immobilisation can occur via several methods, for example, 

covalent grafting, non-covalent grafting and ‘self-supporting. 

Covalent grafting is the most commonly employed method of immobilization of 

homogeneous NHC catalysts on a support material. It involves the grafting of ligand 

precursors or metal complexes to a solid support via a covalent bond. The strongest 

binding between support and NHC species is achieved through this method. The 

surface of the support material is usually modified with functionality known to react 

with the functional group on the NHC ligand forming an ether, ester etc. bonds. 96-99 

(see Scheme 1.8 to 1.11). 

 

Scheme 1.8 Immobilization of NHC via the formation of ether bond. 

 

Scheme 1.9 Immobilization of NHC precursor via the formation of ester bond.  

 

Scheme 1.10 Immobilized NHC precursor on silica via direct quaternization of 

benzyl chloride modified materials with N-substituted imidazoles. 
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Scheme 1.11 Immobilization of NHC precursor through atom transfer radical 

polymerisation (ATRP). 

 

Non-covalent grafting involves the immobilization of species including NHC ligands 

via weaker interactions between the species and the support material. These weaker 

interactions include; electrostatic interaction, π−π stacking, physical adsorption and 

entrapment as reported in literature. 100-103   An example of  π−π stacking (Figure 1.10) 

was reported by Lalaoui et al. who showed non-covalent immobilization of OsII-NHC-

based metallopolymers on carbon-nanotube (CNT) electrodes through the interaction 

between the OsII-NHC-based metallopolymers and CNTs’ sidewalls through π−π 

interactions. 
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Figure 1.10 Immobilized NHC complex at the surface of π-extended nanostructured 

electrodes.  

“Self-supporting” involves the immobilization of NHC complexes, ligands, and 

precursors, concomitantly in the construction of the supporting material. “Self-

supporting method” is a general term that refers to a process of coordination and self-

assembly yielding polymeric functional metal−organic assemblies, where metal atoms 

are typically coordinated by ditopic or polytopic ligands.96 As such it is considered 

that the formation of metal−organic assemblies, organic polymerization,104 and sol−gel 

processes are  self-supporting methods.  With self-supporting method, the density of 

the catalytically active centres on the support can be tuned easily, and a homogeneous 

distribution of the reactive centres is ensured. 

Support material: Taking into consideration the type of support material used for 

NHCs immobilization, silica-based materials and organic polymers are the two most 

widely employed solid supports for NHC compounds.105-111 However, carbon-based 

materials (i.e. carbon nanotubes, graphene oxide), as well as coordination polymers 

and metal-organic frame works are also used as supports in a certain number of 

examples.96, 112  An example is the polymer-supported NHC prepared from 

chloromethyl polystyrene resin (CM PS, Scheme 1.12) resin used as the ligand for 

palladium (Pd) catalyzed Suzuki cross-coupling of aryl halides and phenylboronic acid 

in good yields and excellent purities under aqueous conditions.113  
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Scheme 1.12 Polymer-supported N-heterocyclic carbene prepared from chloromethyl 

polystyrene (CM PS) resin. 

1.2.2.3. Fe-Nitrogen Heterocyclic Carbenes (Fe-NHCs) 

Fe-NHCs are highly resistant towards decomposition, as a result of the NHCs strong 

σ-electron-donating ability which makes them form strong bonds with metal 

centers.114 Significant studies have been conducted on Fe-NHCs as homogeneous 

catalysts.115, 69, 77 However, the catalyst post reaction makes it difficult to isolate for 

reuse. The immobilization of Fe-NHCs onto heterogeneous supports represent an 

exciting approach for sustained catalytic use. While most of the NHCs systems use 

ruthenium116 or palladium as metal centers,74, 75, 117-120 our approach prefers the more 

abundant, cheap and environmentally benign Fe as metal center.  Recent research 

shows that, using a bulky N-alkyl substituted group on the heterocyclic carbene 

enhances the catalytic activity of the NHCs.121-125 As such  N-mesityl substituted 

imidazolium was synthesized for the fabrication of the Fe-NHC catalyst. Recently 

however, apart from catalysis, the use of Fe-NHCs as promising photosensitizers has 

also been reported.126  

The early approach to the synthesis of Fe-NHCs involved reacting an Fe-carbonyl 

complex with an imidazolium salt to produce the respective Fe-NHC. In 1969,  Öfele 

reported the first Fe-NHC complex synthesized from K[FeH(CO)4] and 1,3-

dimethylimidazolium iodide.127  

Cardoso et al. reported a direct synthesis of bidentate cyclopentadienyl-functionalised 

NHC–iron(II) complexes by using imidazolium salts and commercially available 

Fe3(CO)12 (Scheme 1.13).128
  

           

Scheme 1.13 Synthesis of Fe(NHC)(CO)4 from iron carbonyl complex. 

Recently, Warratz et al. reported Fe(NHC)(CO)4 complexes formed by direct reaction 

of Fe3(CO)12 with equimolecular amounts of NHC imidazolium halide precursors  

(Scheme 1.14).129 
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Scheme 1.14 Synthesis of Fe(NHC)(CO)4 from iron carbonyl complex. 

The addition of an iron halide to a free carbene marked a breakthrough in Fe-NHC 

synthesis initially adopted by Fehlhammer et al. which involves the deprotonation of 

the respective imidazolium salt by an external base prior to the addition of an Fe-

halide.130 However, this route is used for synthesis of a homogeneous Fe-NHC 

complex. To synthesise a heterogeneous Fe-NHC complex, as in our own case, we use 

a technique that involves the immobilisation of the imidazolium ligand onto a solid 

mesoporous support. The immobilised imidazolium was then deprotonated by a base 

prior to the addition of FeCl3 giving the desired immobilised Fe-NHC complex (see 

Scheme 1.21).  

A similar approach was employed by Kim et al.48 to synthesise a polystyrene supported 

Fe-NHC prepared from chloromethyl polystyrene resin via two-step reaction (Scheme 

1.15). Metals were loaded into 1.6 – 16 mol % of total imidazolium with the remaining 

imidazolium chloride salt providing ionic liquid moiety. The catalyst was used for 

dehydration of fructose to HMF with yields up to 70% in 3 hours reaction time.48 

   

Scheme 1.15 Synthetic route to polystyrene supported NHC-metal complex.  
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1.2.2.3.1. Applications of Fe-NHCs 

Dehydration reactions: Fe-NHCs have recently been utilized as catalysts for the 

catalytic dehydration of fructose to HMF.131-132 Kim et al. recently reported the 

dehydration of fructose to HMF using an Fe-NHC supported on polystyrene beads. in 

which a 73 % HMF yield was obtained.48  

Hydroxylation of arenes: Recently the mechanism of the hydroxylation of benzene by 

an iron(II) bis(NHC) complex, [FeII(NCCN)(CH3CN)2] (PF6)2 (1; NCCN = bis(o-

imidazol-2-ylidenepyridine) methane), in the presence of hydrogen peroxide was 

investigated. The aromatic hydroxylation reaction was proposed to proceed via an 

iron-arene σ-complex as intermediate species (Scheme 1.16).133  

  

 Scheme 1.16 Hydroxylation of arenes an iron(II) bis(NHC) complex. 

C-C bond formation reactions: Diverse types of carbon-carbon bond formation using 

Fe-NHC as catalytic systems has been studied. Fe-NHCs were found to be effective in 

various type of C-C bond formation including the Kumada, Suzuki and Negishi type 

cross coupling reaction.134-135, 127  An example is a novel Fe-NHC catalytic system that 

allows for the Kumada type alkyl–alkyl cross-coupling reaction of alkyl halides and 

alkylmagnesium reagents (Scheme 1.17).136 

 

  Scheme 1.17 Homogeneous Fe-NHC for Kumada type cross-coupling. 
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Reduction reactions: Selective reduction is one of the major challenges in synthetic 

chemistry. Fe-NHCs were found to be effective in certain selective reduction reactions. 

Several application of Fe-NHCs were found in hydrosilylation of ketones, imines and 

sulfoxides, transfer hydrogenation, and hydrogenation reactions.127  An example of 

this is the work reported by Warratz et al. on the hydrosilylation of benzaldehyde and 

its derivatives catalysed by Fe(IMes)(CO)4 (Scheme 1.18).129 

 

Scheme 1.18. Hydrosilylation of benzaldehyde and derivatives catalysed by Fe(IMes)(CO)4.  

Polymerisation reactions: Diverse types of Fe-NHCs were found to effectively 

catalyse polymerisation reaction. Applications were found in both atom radical 

transfer polymerisation (ARTP) and ring opening polymerisation.65, 137  in 2000, 

Grubbs et al. reported an Fe-NHC catalysed Atom Radical Transfer Polymerization 

(ATRP) of olefins (Scheme 1.19).138 

   

Scheme 1.19. Fe-NHC catalysed atom radical transfer polymerization (ATRP) of olefins.  

In 2006, Shen et al. reported NHC complexes of Fe(II) and their catalytic activity for 

ring-opening polymerization of ε-caprolactone.139 They used a synthesise bis-ligand 

Fe(II) complex (Scheme 1.20) to catalyse ring-opening polymerisation reaction  of ε -

caprolactone achieving 100% monomer conversion.140 
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Scheme 1.20. Fe-NHC catalysed ring-opening polymerisation reaction of ε -caprolactone.  

As photosensitizers: Recently the work of Liu et al. on the photophysics and 

photochemistry of transition metal complexes, utilizes strongly σ-donating N-

heterocyclic carbene (NHC) ligands to make strong-field FeIIL complexes with 

significantly extended triplet metal to ligand charge transfer (3MLCT) lifetimes that 

serves as promising photosensitizers.126 This study opens up the possibility of 

developing solar energy-converting materials from Fe-NHCs. Figure 1.11 shows 

examples of three prototypical FeIIL6 complexes.  

 

Figure 1.11. Strong-field FeIIL6 complexes with significantly extended 3MLCT. 
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1.2.3. Objectives 

Thus, the objectives of this research are to: 

1. Synthesise a range of novel Fe-NHC catalysts (Scheme 1) immobilized on 

renewable supports (expanded high amylose corn starch, Starbon™ 350, 

Starbon 400, mango peel cellulose and orange peel cellulose) as outlined in 

scheme 1.21. A convergent strategy will be used starting with the appropriate 

renewable resource support, e.g., (4a-e) and 1-(3-aminopropyl) imidazole (7) 

to afford the precursor nitrogen heterocyclic carbene, e.g., (13a-e), which will 

be treated with FeCl3 to furnish the desired Fe-NHC, e.g., (1a-e).  Scheme 1.21 

is adapted from Kim et al.48 who used non-green solvents (DCM, chloroform) 

in their synthesis of Fe-NHC’s.  In our proposed strategy we have replaced 

these with greener solvents (propylene carbonate and CPME) in order to partly 

adhere with Principle 5 (Safer solvents and Auxillaries) – partly because the 

synthetic strategy still uses many auxillaries to achieve its intended aim). 
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Scheme 1.21. Convergent synthesis of Fe-NHCs (1a-e) immobilised on renewable supports 

(4a-e) 

The support material is a critical aspect in heterogeneous catalysis.141 Functional 

mesoporous materials provide many opportunities in a wide variety of fields including 

catalysis.142 Mesoporous solids present advantages with respect to conventional 

porous solids when they are used as catalyst supports, due to their high surface area, 

large pore size and thermal and hydrothermal stabilities.38, 143-144  In this research 
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expanded high amylose corn starch, Starbon™ 350, StarbonTM 400, mango peel 

cellulose and orange peel cellulose will be exploited. 

Expanded High Amylose Corn Starch:  Starch is one of Nature's three biggest products, 

the other two being cellulose and chitin. Starch is an inexpensive commodity that has 

been used for food and many non-food purposes for centuries.145-147 Starch is 

biodegradable, abundant and a renewable resource. 148-151  

Lots of various chemical modifications can be conducted on starch due to their 

inherently abundant hydroxyl groups.152 However, the accessibility of the hydroxyl 

groups is limited due to the low surface area of native starch (<1 m2 g-1). It has been 

reported that the surface area of native starch could be dramatically increased to around 

180 m2 g-1, via a process known as expansion which involves three steps: i.  

gelatinization; ii. retrogradation, and; iii. solvent exchange, yielding expanded 

starch.153 This process of expansion significantly increases the accessibility of the 

hydroxyl groups and therefore makes expanded starch a cheap, abundant and bio-

renewable support for heterogeneous catalysis. 

Starbons™:  The Clark group has developed a range of  mesoporous carbonaceous 

materials derived from waste polysaccharides termed Starbon™, possessing large 

surface areas ranging from 150 up to 500 m2 g-1 obtained via controlled pyrolysis of 

expanded polysaccharide precursors (Figure 1.12).153 The large surface area and 

mesoporous nature of Starbon™ in addition to its thermal stability makes it an 

important and efficient support for heterogeneous catalysis. 

 

Figure 1.12. Production of Starbon™ through controllable pyrolysis of expanded starch. 
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Orange and mango peel cellulose: Orange peels and mango peels are byproducts of 

orange and mango processing industries, respectively. There is an estimated 70 million 

tonnes of citrus crop of which 60-70% are sweet oranges used mostly for juice 

production.154,155 This leads to about 50 % of their total mass as waste that constitutes 

peels, pulp (juice sac residue), rag (membranes and cores residue) and seeds.156  For 

mango there is an estimated 40 million tonnes production and the number is on the 

rise.157,158 Asian countries produce the largest volumes of mangoes worldwide with 

India as the world’s largest producer by a wide margin, with more than 40% of global 

production in 2013.158 Similar to oranges, the processing of mangoes produced a lot 

of waste in the form of peels and seeds. 

Matharu et al. have recently reported mesoporous cellulose from mango peels159 and 

nanocellulose from depectinated orange peels.160 The availability of these materials in 

the GCCE warranted their use as a potential renewable support.  Cellulose is the most 

abundant natural polymer in nature.161 Cellulose is a homopolymer composed of D-

glucopyranose units linked by β-(1 → 4) glycosidic bonds (Figure 1.13).162 

    

 Figure 1.13 D-glucopyranose units linked by β (1 → 4) glycosidic bonds 

Most cellulosic materials consist of crystalline and amorphous domains, in varying 

proportions, depending on the process of extraction/isolation. The physical properties 

of cellulose, as well as their chemical behaviour and reactivity, are strongly influenced 

by the arrangement of the cellulose molecules with respect to each other and to the 

fiber axis, as well.163 Native cellulose (cellulose I) occurs in two forms: Iα (triclinic) 

and Iβ (monoclinic). The Iα phase contains a single cellulose chain in a triclinic cell, 

while a two-chain monoclinic cell is found for Iβ. The relative ratio of the two forms 

depends on the origins of the cellulose.164 

The low density and high specific surface area of porous cellulose coupled with its 

favourable properties including biodegradability, non-toxicity, low cost, and easy 
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modification has made it to have various applications, such as separation, filtration, 

and load-bearing.165  Due to its porosity, relatively chemical and mechanical stability, 

mesoporous cellulose presents an interesting and cheap bio-renewable support for 

heterogeneous catalysis. This is because in any chemical reaction, the accessibility of 

reactant molecules to the catalytically active site is highly important in the process and 

efficiency of the conversion. Therefore, the mesoporous orange and mango peel 

cellulose were chosen for the fabrication of the catalyst. The network of pores will 

facilitate the diffusion of the reactants to the active Fe catalytic sites located on the 

immobilised Fe-NHC ligand. 

 

2. Fully characterize the synthesized Fe-NHCs (1a-e) using a diverse range of 

complementary analytical techniques: FT-IR (detection of functional groups) 

solid state 13C CPMAS NMR spectroscopy (minimum number of carbons, carbon 

framework and surrounding environment), liquid NMR spectroscopy (1H & 13C) 

(C-H framework), X-ray photoelectron spectroscopy (chemical state and 

electronic state of the elements within a material – direct evidence for C, O, N and 

Fe), Mössbauer spectroscopy (chemical, structural, magnetic and time-dependent 

properties of a material – direct evidence for iron), ICP-MS (elemental 

composition - direct evidence for iron), thermogravimetric analysis (mass loss 

versus decomposition  - evidence of structural changes in the renewable support 

upon modification and indirect evidence for iron), scanning electron microscopy 

and transmission electron microscopy (image the surface of the material and to 

observe porosity), nitrogen adsorption porosimetry (to evidence mesoporosity) 

and CHN elemental analysis (evidence for nitrogen incorporation). 

 

3. Utilize the fabricated Fe-NHCs (1a-e) as potential heterogeneous catalysts for 

the dehydration of fructose (2) (and glucose) to HMF in order to determine 

their efficacy (conversion, selectivity, kinetics, turnover frequency (TOF), 

catalytic cycling). 
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Scheme 1.22. Fructose dehydration to 5-hydroxymethyl furfural using Fe-NHC 

 

4. Apply the catalyst towards glucose dehydration to HMF which still remains 

the stumbling block towards the successful and efficient valorization of 

lignocellulosic biomass.166 The advantages of glucose as a substrate over 

fructose is due to the low cost and abundance of glucose when compared to 

fructose. However, the difficult step towards the conversion of glucose into 5-

HMF is its isomerization to fructose prior to dehydration. As such a 

comprehensive understanding of effective solvent system and catalyst 

characteristics, e.g., active species, active sites, pore size, and surface area, are 

critical to ensure a high-performance heterogeneous catalyst for glucose 

dehydration system to HMF. Research shows that Lewis acids (e.g. AlCl3, 

CrCl3, and Sn-beta) promote isomerization of glucose to fructose.167 

   

5. Preliminary investigate the use of Fe-NHCs (1a-e) in the synthesis of 5-

(chloromethyl) furfural (CMF) (14) from glucose and fructose using the 

immobilized Fe-NHC catalyst (1b) and aqueous HCl as the source of the 

chlorine. 
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Scheme 1.23 Glucose and fructose dehydration to 5-(chloromethyl)furfural using Fe-

NHC. 
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CHAPTER 2. EXPERIMENTAL 
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2.1.  REAGENTS and MATERIALS 

Ethanol, acetone, 1-(3-aminopropyl) imidazole (97%), di-tert-butyl dicarbonate, 

sodium bicarbonate, mesityl chloride (98%), N,N’-disuccinimidyl carbonate (purum, 

≥95.0%) (DSC), propylene carbonate (99%), potassium tert-butoxide (reagent grade, 

≥98%), (KOBut), 4-N,N’-dimethylaminopyridine (DMAP), ferric chloride anhydrous 

(FeCl3), triethylamine (anhydrous, ≥ 99.9 %) (TEA), and cyclopentyl methyl ether 

(anhydrous, ≥ 99.9 %) (CPME), were purchased from Sigma Aldrich, UK (now known 

as Merck). All other reagents and solvents were used as received without further 

purification. Expanded HACS and StarbonTM 350 & 400 were obtained from the Green 

Chemistry Centre, University of York and used as received. Oranges and mangos were 

purchased from Aldi, York, UK.  

2.2. CHARACTERISATION TECHNIQUES 

2.2.1.  ATR-FTIR 

Fourier transform-infrared spectroscopy was conducted on a Bruker Vertex 70 FT-

IR/ATR spectrometer. All the spectra were recorded in attenuated total reflectance 

(ATR) mode, using a resolution of 2 cm-1 and 64 scans each for background and 

sample.  

 2.2.2.   Solid-state 13C CPMAS 

Solid-state 13C CPMAS spectra were acquired using a 400 MHz Bruker Avance III 

HD spectrometer equipped with a Bruker 4 mm H(F)/X/Y triple-resonance probe and 

9.4 T Ascend® superconducting magnet. The CP experiments employed a 1 ms 

linearly-ramped contact pulse, spinning rates of 12000 ± 2 Hz, optimized recycle 

delays of 7 seconds, spinal-64 heteronuclear decoupling (at νrf=85 kHz) and are a sum 

of 600 co-added transients. Chemical shifts are reported with respect to TMS and were 

referenced using adamantane (29.5 ppm) as an external secondary reference.  

2.2.3.  X-ray photoelectron spectroscopy (XPS) 

XPS measurements were performed on the compressed pellets of powdered orange 

peel cellulose, mango peel cellulose and expanded HACS before and after 

modification to detect the presence and state of the coordinated Fe using a VG Escalab 
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250 EPS instrument equipped with a high intensity monochromated Al Ka source 

focused to a spot 120-600 μm in diameter on the sample.   

The pellets were prepared using a KBr press. However, for the Starbon™ 350 and 400 

samples, the powder samples did not compress into suitable pellets and as such the 

powdered samples were dispersed on XPS-suitable carbon tape before analysis. The 

XPS experiments were conducted at room temperature with a base pressure of 9−10 

mbar. The monochromatic Al K X-ray source was operated at 300 W (15 kV, 20 mA). 

Quantitative and qualitative XPS analyses were performed with CasaXPS software 

(version 2.3.16PR1.6). The atomic concentrations were calculated from the 

photoelectron peak areas by using Gaussian–Lorentzian deconvolution. The carbon 1s 

spectra were resolved into different contributions of bonded carbon, namely carbon 

without oxygen bonds (C–C), carbon with one oxygen bond (C–O), carbon with two 

oxygen bonds (O–C–O) and carbon with double bond oxygen (C=O). The chemical 

shifts were taken from the literature and the spectra were charge-corrected by setting 

the carbon-without-oxygen-bond contribution in the C1s emission at 284.5 eV. 

2.2.4.  Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA) was performed on the expanded HACS, Starbon™ 

350 and 400 samples using Netzsch STA 409 instrument at scan rates of 10 oC min-1, 

with typically 20 mg sample under flowing N2 and subsequently air at 100 mL min-1. 

For the mango and orange peel cellulosic samples, thermogravimetric analysis (TGA) 

was performed using Stanton Redcroft STA 625 at heating rates of 20 oC min-1 to 600 

oC, with typically 10 mg sample under a flowing N2 purge at 50 mL min-1. 

2.2.5.  Scanning & Transmission Electron Microscopy (SEM & TEM) 

SEM and TEM were conducted on all the modified and unmodified samples with the 

assistance of Dr Meg Stark from the Department of Biology, University of York.  SEM 

studies were performed on a JEOL JSM-6490LV scanning electron microscope with 

5 kV scanning electron microscope. Samples were put on SEM stubs and coated with 

gold and palladium prior to analysis.  
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TEM studies were conducted on a Tecnai 12 BioTWIN instrument equipped with a 

field emission gun operated at 120 kV, with a SIS megaview 3 camera using A 200 

mesh copper grid with pioloform coating. 

2.2.6.  N2 Porosimetry 

N2 porosimetry were carried out at 77 K using a Tristar volumetric adsorption analyser 

from Micromeritics, and Micromeritics ASAP 2020 surface area and porosity 

analyzer.  All samples were degassed at 120 oC under nitrogen flow (100 mL min-1.) 

for 4 h prior to recording measurements.  Degassing is necessary to remove vapours 

and gases which may have adsorbed onto the surface from the ambient air. Without 

this, the surface area result can be low and non-reproducible since an indeterminate 

amount of the surface will be covered by the vapours or gases.  The surface area of the 

samples was calculated directly by the system software using Brunauer-Emmett-Teller 

(BET) surface area equation (Eq. 1), while the pore size and pore volume of the 

samples were obtained from Barrett-Joyner-Halenda (BJH) pore size and volume 

analysis. 

1

𝑣 [ (
𝑝𝑜

𝑝
) − 1] 

=  
𝑐 − 1

 𝑣𝑚 𝑐 
   (

𝑝

𝑝𝑜

) +  
1

𝑣𝑚 𝑐
… … … … … (𝐸𝑞. 1) 

The BET equation was plotted as an adsorption isotherm typically at a relative pressure 

(P/P0) between 0.05-0.35. According to the BET theory this plot should form a straight 

line. Using which the following are calculated; 

a. Slope (S g cm-3 STP) 

b. Y-intercept (YINT g cm-3 STP) 

c. Error of the slope (SERR g cm-3 STP) 

d. Error of y-intercept (YIERR g cm-3 STP) 

e. Correlation coefficient (Cc) 

Where (p) and (p0) are the equilibrium and the saturation pressure of adsorbates at the 

temperature of adsorption, v is the adsorbed gas quantity (in volume units), vm is 

monolayer adsorbed gas quantity, and c is the BET constant. 

Where 𝑣𝑚 =
1

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
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and    𝐶 =
𝑆+ 𝑌𝐼𝑁𝑇

 𝑌𝐼𝑁𝑇 
 𝑜𝑟 1 +

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
 

The surface area was calculated using the molecular cross-sectional area. 

𝑆𝑡𝑜𝑡𝑎𝑙 =
𝑣𝑚 𝑁𝑠

𝑉
 

Where N is Avogadro’s number, s is the adsorption cross section of the adsorbing 

species, and V the molar volume of the adsorbate gas. The exact form of this equation 

will vary depending on the units being used. 

For ASAP2020 analyser the BET surface area (m2 g-1) is calculated using the BET 

equation (Eq.2). 

𝑆𝐴𝐵𝐸𝑇 = 
𝐶𝑆𝐴 𝑋 (6.023 𝑋 1023)

(22414 𝑐𝑚3  𝑆𝑇𝑃) 𝑋 (1018 𝑛𝑚2 / 𝑚2) 𝑋 (𝑆+ 𝑌𝐼𝑁𝑇)
 … … … … … (𝐸𝑞. 2) 

Where CSA = analysis gas molecular cross-sectional area (nm2), (value entered on the 

Adsorptive properties dialog box). 

Volume of N2 monolayer (cm3 g-1 STP) was calculated as; 

𝑣𝑚 = 
1

𝐶 𝑋 𝑌𝐼𝑁𝑇 
=  

1

𝑆+ 𝑌𝐼𝑁𝑇 
      

where  𝐶 =
𝑆+ 𝑌𝐼𝑁𝑇

 𝑌𝐼𝑁𝑇 
 

Where as the Error of BET surface area (m2 g-1) was calculated as; 

𝐵𝐸𝑇𝐸𝑅𝑅 = 
𝑆𝐴𝐵𝐸𝑇 𝑋 (𝑆𝐸𝑅𝑅

2 + 𝑌𝐼𝐸𝑅𝑅
2 )

0.5

𝑌𝐼𝑁𝑇 + 𝑆
 

 BJH analysis determine pore area and specific pore volume using adsorption and 

desorption techniques. This technique characterises pore size distribution independent 

of external area due to particle size of the sample. 

2.2.7.  CHN and ICP-MS elemental analysis 

Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) 

The loading level of Fe in the fabricated Fe-NHC catalyst (1a-e) was determined using 

an Agilent 7700x instrument fitted with standard Ni sample and skimmer cones and 
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coupled to a Mass Spectrometer (MS). The samples were run in He mode. The sample 

introduction line was rinsed for 60 s between samples using 5% HCl and 2% HNO3 

(30 s with each compound). Typically 50 mg of the sample was digested in 10 mL 

aqua regia (HNO3 : 3 HCl) solution at 80 oC. The digested sample was treated with 

ultrapure deionized water (20 mL), filtered and the filtrate was subjected for ICP 

analysis.  

CHN analysis 

CHN analysis were conducted by Dr Graeme McAllistair, Department of Chemistry, 

University of York using Heraeus Megafuge 40R CHN analyser from 

Thermoscientific. Measurements were conducted in duplicate and the mean is 

reported. 

2.2.8.  High Performance liquid chromatography (HPLC)  

High Performance liquid chromatography (HPLC) was conducted to determine degree 

of fructose conversion using Aminax HPX-87H ion exclusion column (300 mm x 7.8 

mm) with a 0.005 M H2SO4 solution as eluent at a flow rate of 0.6 mL min-1. C18 

standard column was also used with 25:75 % MeCN: H2O solution as eluent at a flow 

rate of 0.8 mL min-1.  

Sugar conversion  𝐶 =  
[𝑠𝑢𝑔𝑎𝑟]𝑖−[𝑠𝑢𝑔𝑎𝑟]𝑓

[𝑠𝑢𝑔𝑎𝑟]𝑖
 𝑋 100 

HMF selectivity 𝑆 =  
[𝐻𝑀𝐹]𝑓

[𝑠𝑢𝑔𝑎𝑟]𝑖−[𝑠𝑢𝑔𝑎𝑟]𝑓
 𝑋 100 

Whereas the HMF yield was calculated from the peak arear using internal standard 

employed.  

2.3.  PROCEDURES 

2.3.1.  Microwave assisted hydrothermal extraction of cellulose from Orange 

and Mango peels 

Fresh wet mango and orange peels were milled (<5 mm) in blender, and the milled 

peels were soaked in warm ethanol at 60 oC (50 mL) and subsequently washed with 

deionized water (4 x 100 mL) before microwave heating (3 g per vessel at a 

temperature of 180 oC for 10 minutes at a peel to water ratio of 1:20, high stirring, 300 
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W). Post the microwave extraction the solid residue was isolated by filtration and 

washed with ethanol (3 x 200 mL), acetone (3 x 200 mL) and dried in a vacuum oven 

at 70 oC to afford the desired orange and mango cellulose as an off-white solid with 

yield of 36 % and 33 %, respectively. 

2.3.2. Convergent synthesis of immobilized Fe-NHCs (Scheme 1.21) 

2.3.2.1.  Synthesis of 1-[(N-tert-butoxycarbonyl)aminopropyl]-  

  imidazole (9) 

In an inert atmosphere of nitrogen, a solution of di-tert-butyl dicarbonate (8) (4.3 g, 

19.7 mmol) dissolved in CPME (25 mL) was added, dropwise, to a stirred mixture of 

1-(3-aminopropyl) imidazole (7) (API, 2.4 mL, 20 mmol), NaHCO3 (4.0 g, 47.6 mmol) 

and CPME (50 mL) and allowed to stir for 4 h.  Thereafter, the reaction mixture was 

extracted with ethyl acetate and water. The combined organic extract was dried 

(MgSO4) and the solvent was removed in vacuo to afford the desired 1-[(N-tert-

butoxycarbonyl)aminopropyl]imidazole (9),  4.1 g (90%), as a pale yellow oil.168  1H 

NMR (400 MHz, CDCl3, TMS): δ (ppm)= (9H, s), 1.94 (2H, tt, J = 6.6, 2.7 Hz), 3.09 

(2H, t, J = 6.6 Hz), 3.95 (2H, t, J = 2.7 Hz), 6.91 (1H, dd, J = 3.4, 1.9 Hz), 7.02 (1H, 

dd, J = 3.4, 1.1 Hz), 7.45 (1H, dd, J = 1.9, 1.1 Hz). 13C NMR (100 MHz, CDCl3, TMS): 

δ (ppm) = 27.57, 28.45, 32.00, 44.43, 56.39, 118.88, 129.65, 137.18, 156.14; HRMS, 

found 226.1554 g mol-1 (C11H19N3O2, [M]+), calculated exact mass = 225.2874 g mol-

1.  

2.3.2.2.  Synthesis of 1-[(N-tert-butoxycarbonyl)aminopropyl]-3- (2,4,6-

trimethylbenzyl)imidazolium chloride (11) 

A mixture of 1-[(N-tert-butoxycarbonyl)aminopropyl]imidazole (9) (2.0 g, 10 mmol), 

2,4,6-trimethylbenzyl chloride (10) (1.86 g, 11 mmol) and CPME (50 mL) was stirred 

at room temperature for 12 h. The resulting crude product was washed with CPME (5 

x 50 mL) and dried under vacuum at 40 oC to afford the desired 1-[(N-tert-

butoxycarbonyl)aminopropyl]-3-(2,4,6-trimethylbenzyl) imidazolium chloride (11), 

3.29 g (84%) as a viscous, dark brown oil/semi-solid.  1H NMR (400 MHz, CDCl3, 

TMS): δ 1.31 (9H, s), 2.07 (2H, tt, J = 6.6, 4.4 Hz), 2.19-2.20 (9H, 2.19 (s), 2.20 (s)), 

3.09 (2H, t, J = 6.6 Hz), 4.36 (2H, t, J = 4.4 Hz), 5.45 (2H, s), 6.85 (2H, d, J = 1.2 Hz), 

6.68 (1H, dd, J = 1.8, 1.0 Hz), 6.71 (1H, dd, J = 1.8, 1.0 Hz), 7.69 (1H, t, J = 1.2 Hz). 

13C NMR (100 MHz, CDCl3, TMS): δ (ppm) = 19.84, 21.09, 28.45, 31.97, 37.63, 
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48.60, 56.37, 82.99, 122.10, 124.63, 125.50, 129.98, 136.80, 137.51, 138.12, 156.11; 

HRMS, found 358.2487 g mol-1 C21H32N3O2, [M]+, calculated exact mass = 358.4976 

g mol-1 

 2.3.2.3  Synthesis of 1-[aminopropyl]-3-(2,4,6-trimethylbenzyl)-  

  imidazolium chloride (12) 

A mixture of 1-[(N-tert-butoxycarbonyl) aminopropyl]-3-(2,4,6-

trimethylbenzyl)imidazolium chloride (1.97 g, 5 mmol) (11), trifluoroacetic acid (10 

mL) and methanol (30 mL) were heated under reflux for 6 h at 50 oC.  The ensuing 

product was obtained after rotary evaporation of the solvent (methanol and residual 

trifluoroacetic acid).  The crude product was washed with CPME (5 x 50 mL) and 

dried under vacuum at 40 oC to yield the desired 1-[aminopropyl]-3-(2,4,6-

trimethylbenzyl) imidazolium chloride (12), 1.18 g (80 %), as a viscous, dark brown 

oil.  1H NMR (400 MHz, methanol-d4, TMS): δ 2.01 (2H, tt, J = 6.8, 6.7 Hz), 2.26-

2.27 (9H, 2.27 (s), 2.27 (s)), 2.97 (2H, t, J = 6.7 Hz), 4.31 (2H, t, J = 6.8 Hz), 5.45 

(2H, s), 6.97 (2H, d, J = 1.2 Hz), 7.44 (1H, dd, J = 1.8, 0.9 Hz), 7.69 (1H, dd, J = 1.8, 

1.2 Hz), 7.76 (1H, t, J = 0.9 Hz).13C NMR (100 MHz, Methanol-d4, TMS): δ (ppm) = 

19.82, 20.97, 29.85, 36.19, 48.51, 118.14, 122.60, 125.74, 129.58, 130.06, 135.65, 

138.20, 139.82; HRMS, found 258.1973 g mol-1 (C16H24N3, [M]+,), calculated exact 

mass = 258.3818 g mol-1 (see Figures F1-F6 in Appendix for NMR spectra).  

2.3.2.4.  Synthesis of succinimidyl carbonate (DSC) activated   

  mesoporous solid support (6a-e) 

4-N,N’-Dimethylaminopyridine (1.2 g, 9.8 mmol) and propylene carbonate (50 mL) 

were added to a mixture of the appropriate mesoporous support (e.g., 4a-e) and N,N’-

disuccinimidyl carbonate (5) in a stoichiometric ratio of 1:1.16 (i.e. with a slight excess 

of 0.16 mol  DSC) contained in a 500 ml round-bottomed flask and heated to 80 oC for 

18 h with constant stirring.  Thereafter, the resultant mixture was centrifuged at 1643 

x g (centrifugal force), the supernatant from each was decanted and discarded whilst 

the pellet was further subjected to centrifugation with deionized water (2 x 40 mL) and 

acetonitrile (2 x 40 mL), in each case decanting and discarding the supernatant.   The 

purified pellet was dried in a vacuum oven at 70 oC for 4 h to afford the desired 

succinimidyl carbonate activated mesoporous support (6a-e) with yields of 456, 398, 

395, 393 and 390 mg, respectively. 
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From the results of the DSC activation, the degree of substitution on the expanded 

HACS were calculated using equation 3. Theoretically, the degree of substitution on 

starch is a maximum of 3. This is with respect to 3 hydroxyl groups per each anhydro 

glucose unit. 

 𝐷𝑆 =  
162 𝑋 𝑊

[100 𝑋 𝑀 − (𝑊 𝑋 𝑀𝑆𝐶)]
 … … … … … (𝐸𝑞. 3) 

Where W is % nitrogen, M is molecular weight of nitrogen, MSC is the molecular weight 

of succinimidyl carbonate groups, 162 is molecular weight of anhydroglucose units 

and 100 is percentage factor. 

2.3.2.5.  Synthesis of NHC ligand grafted mesoporous solid support (13a-e) 

The appropriate succinimidyl carbonate activated mesoporous support (e.g. 6a-e) (300 

mg), 1-[aminopropyl]-3-(2,4,6-trimethylbenzyl) imidazolium chloride (12) (1.2 g, 4 

mmol), triethyl amine (1 mL, 7 mmol) and propylene carbonate (50 mL) were heated 

to 80 oC in a round bottom flask for 24 h. Thereafter, the resultant mixture was 

centrifuged at 1643 x g (centrifugal force), the supernatant was decanted and discarded 

whilst the pellet was further subjected to centrifugation with deionized water (2 x 40 

mL) and acetonitrile (2 x 40 mL), in each case decanting and discarding the 

supernatant.   The purified pellet was dried in vacuum oven at 70 oC for 4 h to afford 

the dried NHC ligand grafted solid support (13a-e) with yields of 484, 453, 426, 420 

and 419 mg, respectively. 

For optimisation purpose, 100 mg of each of the succinimidyl carbonate activated 

support was first reacted with 400 mg of (12), 1 mL of triethylamine in 50 mL 

propylene carbonate. After the successful ligand binding, the process was scaled up to 

300 mg and then 3000 mg of support.  

 2.3.2.6.  Synthesis of Fe-NHCs (1a-e) 

In an inert atmosphere of nitrogen, a stirred mixture of the appropriate ligand grafted 

support material (e.g., 13a-e) (300 mg), KtOBu (75 mg, 0.66 mmol), iron(III) chloride 

(96 mg, 0.60 mmol) and propylene carbonate (50 mL) was heated at 80 oC for 18 h. 

Thereafter, the resultant mixture was centrifuged at 1643 x g (centrifugal force) and 

the supernatant was decanted (and discarded) whilst the pellet was further subjected to 
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washing and centrifugation with brine solution (1 x 40 mL) to ensure removal of the 

uncoordinated FeCl3, deionized water (2 x 40 mL) and with methanol (2 x 40 mL), in 

each case decanting and discarding the supernatant.   The purified pellet was dried in 

vacuum oven at 70 oC for 4 h to afford the desired immobilised Fe-NHC catalysts (1a-

e) with yields of 504, 477, 441, 443 and 456 mg, respectively.  

For optimisation purposes, was first reacted with 400 mg of (12), 1 mL of triethylamine 

in 50 mL propylene carbonate. After the Fe coordination on 100 mg of each of the 

ligand binded support, the process was scaled up to 300 mg and then 3000 mg of ligand 

binded support. The immobilised Fe-NHC catalysts (1a-e), were characterised using 

ATR FT-IR, solid 13C CP-MAS NMR spectroscopy, XPS, Mossbauer spectroscopy, 

ICP-MS and TEM/SEM analysis.  

2.4. Fructose dehydration reaction in DMSO with fabricated Fe-

NHC catalysts. 

The amounts of the catalysts 1a-e in mg equivalent to 0.01 mmol Fe active centre were 

determined from the Fe loading levels of the different catalysts 1a-e. The table below 

shows the amount of each catalyst (mg) equivalent to 0.01 mmol. 

Table 2.1. Amounts of the catalysts 1a-e in mg equivalent to 0.01 mmol Fe centre 

Catalysts Fe loading mmol g-1 Mass (mg) equivalent to 0.01 mmol active 

Fe 

Fe-NHC HACS 1a 0.68 14.7 

Fe-NHC S350 1b 0.31 32.2 

Fe-NHC S400 1c 0.32 31.3 

Fe-NHC MPC 1d 0.30 33.3 

Fe-NHC OPC 1e 0.52 19.2 

 

The appropriate immobilised Fe-NHC catalyst (e.g., 1a-e) (14.7 to 33.3 mg, 0.01 

mmol) was added to a solution of D-fructose (180 mg, 1 mmol) in DMSO (4 mL) 

contained in separate glass vials. The reaction was allowed to run for 6 h at 100 oC, 

from which 0.5 mL samples were taken periodically and immediately quenched with 

ice-cold water to stop further reaction. The samples were then subjected to 1H and 13C 

NMR spectroscopy and HPLC analysis. 

To assess the performance of the Fe-NHC catalysts (1a-e), diverse types of 

heterogeneous catalysts such as ZSM-5, Amberlyst-15, and Montmorillonite K10, 

were employed under the same reaction conditions. For the comparison, 30 mg of each 
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of ZSM-5, Amberlyst-15 and Monmorillonite K10 were measured and added to 1 

mmol of fructose in 4 mL of DMSO. The dehydration was carried out at 100 oC for 6 

hours from which samples were taken at time intervals of 10 min, 20 min, 30 min, 1 

h, 3 h and 6 h.  

Catalyst recycling experiments were also carried out using the same reaction 

conditions (1mmol fructose, 0.01 mmol catalyst, 4 mL DMSO at 100 oC, 1 hour). After 

each cycle the catalyst is recovered by centrifugation, washed 4 times with 20 mL 

ethanol and dried in vacuum oven at 70 oC for 4 hours. The dried recovered catalyst is 

then weighed, and the required amount of fructose is then reacted with the catalyst 

again for another cycle using same reaction conditions. 

Control experiment was also carried out under the same reaction conditions using the 

unmodified support that do not contain the Fe-NHC group. 

2.5. Glucose dehydration reaction in DMSO with fabricated Fe-

NHC   catalysts. 

The appropriate immobilised Fe-NHC catalyst (1a-e) (14.7 to 33.3 mg, 0.01 mmol) 

was added to a solution of D-glucose (180 mg, 1 mmol) in DMSO (4 mL) contained 

in separate glass vials. The reaction was allowed to run for 6 h at 100 oC, from which 

samples were taken periodically and immediately quenched with ice-cold water to stop 

further reaction. The samples were then subjected to 1H and 13C NMR spectroscopy 

and HPLC analysis.  

2.6. Fructose and glucose conversion to CMF with fabricated Fe-

NHC   catalysts and 1M HCl 

The immobilised Fe-NHC catalyst (1b) (64 mg, 0.1 mmol) was added to a solution of 

D-glucose or D-fructose (180 mg, 1 mmol) in DMSO (4 mL) contained in separate 

glass vials. 0.5 mL of 1M HCl was then added and the reaction was allowed to run for 

4 h at 100 oC, from which samples were taken periodically and immediately quenched 

with ice-cold water to stop further reaction. The samples were then subjected to 1H 

and 13C NMR and HPLC. Control experiments were run with only the substrates and 

1M HCl with no catalysts. 
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2.7. Attempted amide synthesis using the fabricated supported Fe-

NHC catalyst (1b) 

A mixture of the appropriate amine (either aniline or benzylamine (12 mmol), 

appropriate carboxylic acid (either acetic acid or benzoic acid) (12 mmol) and Fe-NHC 

catalyst (1b) (0.38 g 0.12 mmol) and toluene (20 mL) contained in a 100 ml round 

bottom flask fixed with a reflux condenser was heated under reflux.  The reaction 

progress was monitored by HPLC at 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 12 h, and 24 h by 

removal of an aliquot (10 μL) which was diluted to 1 mL in methanol before injection.  
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CHAPTER 3. RESULTS and DISCUSSION 
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3.1  Introduction 

This chapter presents and discusses in detail the synthesis, characterisation and 

catalytic applications of novel Fe-NHC heterogeneous catalysts (1a-e) immobilised on 

renewable supports which is the primary aim of this thesis as stated in Chapter 1.  To 

achieve its objectives (also highlighted in Chapter 1), this chapter is sub-divided in to 

three parts, namely: 

i. Part 1: Synthesis and characterisation of Fe-NHCs. The successful 

synthesis (Scheme 1 and as shown by experimental procedures in Chapter 

2) and characterisation of Fe-NHCs immobilised on expanded starch, 

StarbonTM 350, StarbonTM 400, orange peel cellulose and mango peel 

cellulose are discussed.  A diverse range of complementary 

characterisation techniques applied (ATR FT-IR, 13C CP-MAS NMR, 

STA, TGA, CHN and ICP-MS, XPS, Mossbauer spectroscopy, and 

SEM/TEM) during every step of the synthetic strategy for each catalyst 

type (1a-e) is explored. 

ii. Part 2:  Catalytic Study.  This chapter presents and discusses in detail the 

catalytic application of all the supported Fe-NHC heterogeneous catalysts 

synthesised, towards fructose dehydration to produce 5-

(hydroxymethyl)furfural.  The reaction was investigated with respect to 

reaction time at fixed temperature via NMR (1H and 13C) spectroscopy and 

the disappearance of signals for fructose concomitant with the appearance 

of HMF.  HPLC results are discussed with respect to yield, conversion and 

selectivity.  The efficacy of the Fe-NHCs immobilised on renewable 

supports (1a-e) with other heterogeneous catalysts (Amberlyst-15, 

Montmorillonite K10 and ZSM-5) with respect to fructose (2) to HMF (3) 

dehydration is presented.  Catalyst recycling and re-use monitored by NMR 

spectroscopy (qualitative) and HPLC (quantitative) in DMSO-d6 at 100 ◦C 

is discussed. Catalyst leaching, and catalyst reuse is reported to determine 

stability of the catalyst.  A brief kinetic study is reported for Starbon 350 

catalyst (1b) which shows an experimental activation energy (26.8 kJ mol-

1) for Starbon 350 catalyst (1b) to be much lower than that reported in the 

literature for HZSM-5 (Si/Al = 25) (70 kJ mol-1) and MIL-101(Cr)-SO3H 
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(55 kJ mol-1).  To conclude this part a mechanism for fructose (2) to HMF 

(3) dehydration is proposed. 

iii. Part 3:  Glucose and fructose dehydration to CMF (14). This chapter 

presents and discusses in detail the catalytic applications of the supported 

Fe-NHC heterogeneous catalysts synthesised towards; fructose and glucose 

dehydration to 5-(chloromethyl)furfural (14); and glucose dehydration 

reaction to produce 5-(hydroxymethyl)furfural (3). 
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3.2.  Part 1: Synthesis and characterisation of Fe-NHCs (1a-e) 

3.2.1. Fe-NHCS immobilised on expanded HACS (1a)  

Although the use of disuccinimidyl carbonate activation to couple primary amines is 

widely reported in literature,169, 170  to the best our knowledge this is first time this 

reaction has been applied to expanded HACS (4a) in the context of making an Fe-

NHC (see scheme 1.21).  Thus, initially a set of optimisation experiments were 

conducted to ascertain best conditions, i.e., solvent, DSC concentration (mmol g-1), 

reaction temperature, reaction time. 

3.2.1.1. Solvent selection study for the DSC (5) activation of   

  expanded HACS (4a), i.e., preparation of (6a) 

To select the best reaction solvent in terms of reactivity and sustainability, many 

different solvents (propylene carbonate, DMF, ethyl acetate and CPME) were 

employed for the DSC (5) activation of the expanded HACS support (4a) to afford 6a.  

Figure 3.1. ATR-IR spectroscopy of expanded HACS after DSC activation in various solvents. 

ATR-IR spectroscopy (Figure 3.1) was used as a simple probe technique to explore 

the intensity and number of absorbance bands (1813, 1738, 1653 cm-1) in the carbonyl 

region characteristic of imide and carbamate stretching vibration associated with 
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incorporation of DSC (5).  At a simplistic level, it was assumed that the greater the 

area of absorbance bands the greater the amount of DSC activation.  Thus, as shown 

in Figure 3.1  best DSC activation was achieved when DMF or propylene carbonate 

were used as reaction solvent which is also complementary with a decrease in the 

intensity of O-H stretching vibration mode (centred at 3300 cm-1) synonymous 

hydroxyl groups on expanded starch (4a).171-173 There are several absorbance bands 

arising from starch in the region 1000-1200 cm-1, which corresponds to C-O, C-C, C-

O-H bond stretching and C-O-H bending,174 Furthermore,  an absorbance band at 1239 

cm-1 is noted which may be assigned to the imide (C-N) vibration. 175-177 Although, all 

the other solvents show activation, the decrease in intensity of the O-H stretch is not 

as strong and thus assumed not to be as good as propylene carbonate. 

To further investigate the effect of the solvent selection on the DSC activation of 

expanded HACS (4a) to afford (6a) the samples of the latter were submitted for CHN 

elemental analysis (Table 3.1), as an increase in nitrogen content would be indicative 

of succinimyl carbonate loading (mmol g-1) and from which also the degree of OH 

substitution with the succinimidyl carbonate group is also calculated.  

Table 3.1. Succinimidyl carbonate loading (mmol g-1) and degree of substitution in 

(6a) with respect to reaction solvent at 80oC and 24 h reaction time. 

Reaction solvent Yield 

(g) 

Nitrogen 

(%) 

Degree of 

substitution 

(DS) 

Succinimidyl 

carbonate loading 

(mmol g-1) 

Ethyl acetate 0.11 0.90 0.11 0.64 

Cyclopentyl 

methylether 

0.13 1.19 0.16 0.85 

Propylene 

carbonate 

0.15 2.61 0.41 1.86 

Dimethyl 

formamide 

0.16 2.93 0.48 2.09 

 

Assuming that (6a) is pure and dry, i.e., solvent free, then as shown by % nitrogen 

content (Table 3.1) it is evident that dimethyl formamide (2.09 mmol g-1, DS 0.48) and 

propylene carbonate (1.86 mmol g-1, DS 0.41) are far superior than ethyl acetate (0.64 

mmol g-1, DS 0.11) and cyclopentyl methyl ether (0.85 mmol g-1, DS 0.16).  It appears 

that DMF and propylene carbonate, dipolar aprotic solvents, better solvate HACS (4a) 

and DSC (5) than polar aprotic solvents (ethyl acetate and CPME). 
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A plausible mechanism for DSC activation in the presence of DMAP is given in 

Scheme 3.1. The two possible mechanisms A and B are shown below. However, due 

to the tendency of the intermediate in mechanism A to be stabilised in polar aprotic 

solvents, it is more likely that the reaction proceeds via mechanism A due to CPME 

which is a polar aprotic solvent. 

 

 Scheme 3.1. Two plausible mechanisms for DSC activation in the presence of DMAP. 

Although dimethyl formamide gave the highest loading level compared to propylene 

carbonate, the former is a toxic, dipolar, aprotic nitrogen containing solvent. 178, 179 

Solvent waste which is usually removed by washing, creates large volume of waste 

and its incineration produces NOx emissions. Propylene carbonate on the other hand 

is a green(er) alternative produced from (waste) carbon dioxide and propylene oxide. 
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Unlike DMF, incineration of propylene carbonate affords carbon dioxide and water 

only.  Thus, herein, propylene carbonate was chosen as the best solvent for the DSC 

activation of all renewable supports (4a-e) discussed in this thesis. 

3.2.1.2. DSC (5) concentration study for activation of expanded   

  HACS (4a), i.e., preparation of (6a) 

To better ascertain the best succinimidyl carbonate loading (mmol g-1) of the DSC 

towards achieving the best starch OH activation, various loading levels of the DSC 

were employed (10 mmol g-1, 20 mmol g-1, 40 mmol g-1 and 80 mmol g-1). 

Figure 3.2. FT-IR spectra for succinimidyl carbonate derivative of HACS 6a with respect to 

DSC concentration (mmol g-1 starch). 

Figure 3.2. indicates that 40 mmol of DSC for each 1 g of expanded starch is the best.  

The stoichiometry of starch with respect to N,N'-disuccinimidyl carbonate (5) is 1:3 

(on the basis of hydroxyl groups to succinimidyl carbonate). As such the conversion 

to its succinimidyl carbonate derivative (6a) at 40 mmol DSC per g of starch was 

performed using a slight excess i.e., 3.16 molar equivalents or 0.16 molar excess of 

the succinimidyl carbonate.  It is evident from Figure 3.2. that the 10 mmol DSC 

loading is insufficient to result in OH activation as the OH band at 3300 cm-1 does not 

show any significant decrease coupled with an almost absence of the carbonyl 
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absorption band of succinimidyl carbonate groups. 20 mmol show some activation 

with appearance of new succinimidyl carbonate groups absorption bands at 1813, 

1738, 1653 cm-1 and a band at 1239 cm-1 assigned to imide (C-N) vibration and a 

decrease in OH band at 3300 cm-1. Both 40 mmol and 80 mmol DSC loading proved 

the most effective for DSC activation of the expanded HACS as evident by the 

significant decrease in the broad OH absorbance band at 3300 cm-1 with a 

corresponding increase in intensity of newly attached carbonyl bands of succinimidyl 

carbonate180, 181 at 1813, 1738, 1653 cm-1 and a band at 1239 cm-1 assigned to imide 

(C-N) vibration. However, the lack of significant increase in activation on going from 

40 mmol to 80 mmol DSC loading on 1g expanded HACS suggests that the 40 mmol 

DSC loading is probably the optimum DSC loading required for the best DSC 

activation of the expanded HACS under those conditions.  

Table 3.2 shows the succinimidyl carbonate loadings and degree of substitution (based 

on % N as determined by CHN analysis) of the expanded HACS for the different DSC 

loadings (mmol g-1 HACS). 

Table 3.2. Succinimidyl carbonate loadings (mmol g-1) and degree of substitution 

based on varying DSC loadings (mmol g-1 HACS). 

DSC 

(mmol/100 

mg HACS) 

Yields 

(g) 

Nitrogen 

(%) 

Degree of 

substitution (DS) 

Succinimidyl carbonate 

loading 

(mmol g-1) 

2 0.11 0.64 0.08 0.46 

4 0.15 2.93 0.48 2.09 

8 0.16 3.25 0.56 2.32 

Note: 1 mmol not reported due in-significant loading. 

Effort was not made to obtain the succinimidyl carbonate loading of 10 mmol DSC g-

1 of support due to very low activation as evidenced by the FT-IR spectrum (Figure 

3.2). It is evident that 40 mmol and 80 mmol DSC g-1 of support provides the best 

succinimidyl carbonate activation with loadings of 2.09 mmol g-1 and 2.32 mmol g-1 

of expanded HACS, and degree of substitution of 0.48 and 0.56 respectively. A 

significant increase in succinimidyl carbonate loading is achieved from 2 mmol to 4 

mmol DSC g-1 of HACS (0.46 mmol g-1 to 2.09 mmol g-1). However, no significant 

increase in loading is achieved on going from 40 mmol to 80 mmol DSC loading with 

respect to succinimidyl carbonate activation. As such it is considered a waste to 

continue the activation at 8 mmol DSC g-1 of support. Thus, herein, succinimidyl 
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carbonate activation of the all renewable supports (4a-e) were carried out with a 

maximum of 40 mmol of DSC g-1 of renewable support.  

3.2.1.3.  Reaction temperature optimisation study for DSC   

  activation 

The DSC activation was further subjected to temperature optimisation study at fixed 

concentration (4 mmol) for 24 h reaction time. 

Figure 3.3. FT-IR results of the optimisation of DSC activation temperature on Expanded 

HACS. 

 

The FT-IR spectra depicted in Figure 3.3 indicates that 80 oC is probably the optimum 

temperature for the DSC activation reaction. This is evident from the spectra as at 80-

100 oC there exists three absorption bands at 1813, 1738, 1653 cm-1 assigned to 

carbonyl (C=O), and another at 1239 cm-1 assigned to imide (C-N) vibration 

corresponding to newly attached carbonyl and imide groups on HACS surface. At 25 

to 50 oC, only two carbonyl absorption bands at 1813 and 1738 cm-1 were observed, 

indicating that potentially activation of the OH group only occurred at the more 

accessible position 6 rather than the proposed activation at position 2 and 6 of the 

glucose monomer units of the expanded HACS. This observation is further supported 
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by the much-decreased intensity of the broad band at 3340 cm-1 assigned to OH at 80-

100 oC reaction temperature as compared to the 25-50 oC reaction temperature.  

The nitrogen content (as determined by elemental analysis) in 6a at fixed concentration 

(40 mmol) with respect to different reaction temperatures are given in Table 3.3.  It is 

evident that 80 oC and 100 oC give the best succinimidyl carbonate activation with 

loadings of 1.86 mmol g-1 (DS 0.41) and 2.09 mmol g-1 (DS 0.48) of expanded HACS, 

respectively. Thus, the results are complementary with the IR spectra shown in Figure 

3.3 which also suggested 80 oC and 100 oC as optimal temperatures.  A significant 

increase in succinimidyl carbonate loading is achieved on going from 50 oC to 80 oC 

(1.86 mmol g-1 to 2.09 mmol g-1). However, no significant increase in loading is 

achieved on increasing the temperature from 80 oC to 100 oC. 

Table 3.3. Succinimidyl carbonate loading (mmol g-1) and degree of substitution at 

fixed concentration (40 mmol g-1) with respect to temperature (oC) at 24 h reaction 

time. 

Reaction 

temperature 

(oC) 

Nitrogen 

(%) 

Degree of 

substitution 

(DS) 

Succinimidyl 

carbonate loading 

(mmol g-1) 

25 1.80 0.25 1.29 

50 1.88 0.27 1.34 

80 2.61 0.41 1.86 

100 2.93 0.48 2.09 

 

The results above (Table 3.3) shows that even at 100 oC, only about 2.09 mmol g-1 of 

succinimidyl carbonate group reacted with the expanded HACS support, representing 

a 5.2 % incorporation.  

3.2.1.4.  Reaction time optimisation study for DSC activation 

A reaction time optimisation was carried out from 6 h to 24 h at 6 h intervals. FT-IR 

spectroscopy (Figure 3.4) of the succinimidyl carbonate derivatives (6a) shows 

variations in the intensity of the key absorption bands as described earlier.  
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Figure 3.4. FT-IR spectra for optimisation of DSC activation of HACS (4a) with respect to 

reaction time 

As seen in Figure 3.4, only two carbonyl absorption bands at 1813 and 1738 cm-1 were 

observed at lesser reaction times 6-12 h, indicating that potentially activation of the 

OH group only occurred at the more accessible position 6 rather than the proposed 

activation at position 2 and 6 of the glucose monomer units of the expanded HACS. 

However, at relatively longer reaction time 18-24 h all the three absorption bands at 

1813, 1738, 1653 cm-1 assigned to carbonyls (C=O) of the imide and carbamate were 

distinctly evident. No notable change was observed on increasing reaction time from 

18-24 h reaction time, making 18 h as the optimum DSC activation reaction time.   

Similarly, this observation is further supported by the much-decreased intensity of the 

broad band at 3340 cm-1 assigned to O-H stretching vibration mode at 18-24 h reaction 

time as compared to the 6-12 h reaction time. 

Table 3.4 gives the succinimidyl carbonate loadings on expanded HACS (4a) with 

respect to reaction time indicating that 18 h and 24 h gave best succinimidyl carbonate 

loadings of 1.80 mmol g-1, DS 0.39 and 1.86 mmol g-1, DS 0.41 of expanded HACS, 

respectively. Significant increase in succinimidyl carbonate loading is achieved on 

going from 12 h to 18 h (1.47 mmol g-1, DS 0.30 to 1.86 mmol g-1, DS 0.41). However, 
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no significant increase in loading is achieved on increasing the reaction time from 18 

h to 24 h. 

Table 3.4. Results of starch DSC activation at different temperatures. 

Reaction time 

(h) 

Nitrogen 

(%) 

Degree of 

substitution 

(DS) 

Succinimidyl carbonate 

loading 

(mmol g-1) 

24 2.61 0.41 1.86 

18 2.51 0.39 1.80 

12 2.06 0.30 1.47 

6 1.94 0.28 1.38 
 

The combined results of the FT-IR spectroscopy and CHN elemental analysis indicates 

that 18 h is the optimum reaction time for succinimidyl carbonate activation of the OH 

groups on expanded HACS. 

3.2.1.5. Summary of DSC optimisation study 

Thus, to summarise the best conditions for the formation of succinimidyl carbonate 

derivative (6a) of expanded HACS (4a) using DSC (5) as reagent are: DSC 40 mmol 

g-1; reaction time, 18 h; reaction temperature, 80 oC, and; reaction solvent, propylene 

carbonate. 

3.2.1.6. Ligand grafted HACS (13a) and Fe-NHC immobilised on HACS 

(1a) 

FT-IR (Figure 3.5) spectroscopy was used to analyse the modification stages of 

succinimidyl carbonate derivative (6a) to afford ligand grafted HACS (13a) and 

thereafter the desired Fe-NHC immobilised on HACS (1a) (see scheme 1.21).   

Notably, the decrease in the intensity of the O-H absorbance band, and the appearance 

of new carbonyl absorption bands and C-N absorption bands were used to analysed 

and ascertain the successful modification of the expanded HACS support.  
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Figure 3.5 FT-IR spectra of expanded HACS (4a), DSC activated HACS (6a), ligand grafted 

HACS (13a) and Fe coordinated HACS (1a). 

The absorption band patterns of the ligand grafted HACS (13a) with respect to those 

of its precursor (6a) showed significant difference in the carbonyl region. Ligand 

grafted HACS (13a) showed one notable carbonyl absorption band at 1695 cm-1 

corresponding to the carbamate moiety compared to three carbonyl peaks in 6a.  

Although, hidden within the fingerprint region weak absorbance bands characteristic 

of an imidazolium ring (1257, 1192 cm-1)182-184 are observed. After the formation of 

NHC-iron(III) complex (1a), the absorbance band at 1192 cm-1 corresponding to the 

quaternary ammonium of imidazolium disappeared, indicating possible iron(III) 

coordination to the NHC ligand.  However, actual iron incorporation and its oxidation 

state is evidenced later. 
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3.2.1.7. Solid-state 13C NMR spectroscopy investigation for the formation 

of (1a) from (4a) via intermediates (6a) and (13a) 

 

Figure 3.6 13C CPMAS spectra of expanded HACS (4a), succinimidyl carbonate derivative 

(6a), ligand grafted derivative (13a) and Fe-NHC immobilised on HACS (1a). 

Figure 3.6 shows 13C CPMAS spectra of expanded HACS (1a) and chemically 

modified HACS. Signals observed at 61.8, 82.1 and 101 ppm were assigned to C-6, 

C-4 and C-1 in expanded HACS (1a), respectively.185-187 The signal at  72.5 ppm is 

assigned to C-2, -3, -5.  Upon transformation of (4a) in to (6a) new signals at 172 and 

160 ppm characteristic of –C=O moieties within succinimidyl carbonate appear.  

However, C-1 signal of starch was affected by the succinimidyl carbonate groups as it 

shifted from 101 ppm to 98 ppm. After ligand binding (13a), the carbonyl signal at 

172 ppm assigned to the imide of the succinimidyl carbonate disappeared leaving the 

signal at 156 ppm assigned to the carbamate. On the starch support C-2, -3, -5 shifted 

from 72.5 ppm to 75.6 ppm, with C6 also shifted from 61.8 ppm to 65.2 ppm. 

The successful ligand binding was further confirmed by the appearance of signals at 

23, 40-51, 127-133 ppm and 142 ppm corresponding to aromatic CH3, imidazole -

CH2-, carbons of imidazole ring,188 and aromatic carbon of the attached imidazole 

ligand, respectively. 189-192  
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3.2.1.8.  CHN and ICP-MS elemental analysis of succinimidyl carbonate 

activated HACS 6a, ligand binded HACS 13a and Fe-NHC HACS 1a. 

From the results of the CHN elemental analysis of 6a and 13a, the succinimidyl 

carbonate and NHC ligand loadings of the modified expanded HACS were found to 

be 2.09 mmol g-1 and 1.23 mmol g-1, respectively. The presence and quantity of iron 

loaded was determined by ICP-MS elemental analysis which gave and iron loading of 

0.63 mmol g-1 for the desired Fe-NHC immobilised on HACS (1a). 

3.2.1.9. Thermogravimetric analysis of conversion of 4a to 1a via 

intermediates 6a and 13a 

The thermogravimetric behaviour of expanded HACS (4a) and its modified forms, 

i.e.., 6a, 13a and 1a, are shown in Figures 3.7 and 3.8 and key data summarised in 

Table 3.5. 

 

Figure 3.7. Thermograms for expanded HACS (4a) and modified expanded HACS, i.e., (6a), 

(13a), (1a) in N2. 
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Figure 3.8. Differential thermograph (dTG) curves for expanded HACS (4a) and modified 

expanded HACS, (6a), (13a), (1a) in N2. 

For all thermograms (Figure 3.7) and dTG curves (Figure 3.8), the first decomposition 

stage which occurs from ambient to approximately 150 oC is associated with loss of 

physi-sorbed and chemi-sorbed water, and any residual solvent.  Starch is known to 

contain approximately 10% bound water in its native state.  The next major 

decomposition corresponds to the breakdown of the HACS backbone.193  The point of 

inflection for HACS (4a) was 326 oC which decreased by 5 oC upon conversion in to 

its succinimidyl derivative (6a, point of inflection 321 oC) suggesting disruption of 

starch chains leading to a reduction in intermolecular attraction.  Slight variation in 

decomposition is noted in the range 200-270oC which corresponds to derivatisation of 

HACS in to 6a, 13a and 1a.  Modification of 6a in to its ligand grafted derivative (13a) 

and Fe-NHC 1a saw a further decrease in temperature at point of inflection 301 oC and 

thus suggest further weakening of intermolecular interactions 

Moreover, to indirectly determine the presence of iron all samples were additionally 

heated in air (Table 3.5).  Combustion of organic samples in an air atmosphere should 

affords carbodioxide and water thus leaving no residue.  Residues should only be seen 
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for non-combustible materials, in this case iron-containing, which will be present as 

oxides.  As shown in Table 3.4, no residue was obtained for the expanded HACS (4a), 

succinimidyl carbonate derivative (6a), and ligand grafted HACS (13a). However, for 

the Fe coordinated HACS (1a), a reddish-brown residue (approx.3%) was obtained, 

which resembles the colour of iron oxide. 

Table 3.5. Summary of the thermogravimetric data for expanded HACS (4a), 

succinimidyl carbonate derivative (6a), ligand grafted HACS (13a), and Fe 

coordinated HACS (1a). 

Sample Td (oC) 

Residue (%) 

 Water Content 

(%) 
N2 air 

4a 326 18.2 - 9.7 

6a 321 26.1 - 5.5 

13a 301 28.7 - 2.1 

1a 301 33.0 3 9.8 

 

3.2.1.10.  X-Ray Photoelectron Spectroscopy of (13a) and (1a) 

X-Ray photoelectron spectroscopy was used for confirmatory analysis for the success 

of the imidazolium ligand binding (13a) and iron complexation on the expanded 

HACS support (1a).  

 

Figure 3.9. Fitted carbon 1s peaks for the expanded HACS and Fe-NHC expanded HACS. 
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The survey spectra (Figure 3.9), corresponding to the expanded HACS (4a) and the 

Fe-NHC immobilised on HACS (1a) shows an interesting difference with two new 

additional binding energy peaks that appear at 400 eV and 711 eV corresponding to 

nitrogen and iron, respectively, thus re-affirming successful fabrication of material 1a. 

  

Figure 3.10. Fitted carbon 1s peaks for the expanded HACS (4a) and Fe-NHC immobilised 

HACS (1a) 

The deconvolution and fitted XPS spectra (Figure 3.10) for C 1s of the expanded 

HACS (4a) and Fe-NHC immobilised HACS (1a), shows additional carbon binding 

energy peaks at 283.6, 286.1 and 289.2 eV assigned to C-C(Ar), C-N and C=O. 170, 194, 

195 characteristic of compound 12 attached (see scheme 1.21). 

 

Figure 3.11. Fitted oxygen 1s peaks for the expanded HACS and Fe-NHC expanded HACS. 
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The deconvoluted and fitted O 1s spectra for expanded HACS (1a) (Figure 3.11) shows 

two binding energy peaks at 531.5 and 533.5eV assigned to C-O and O-H bonds in the 

expanded HACS (1a). However, the deconvoluted O 1s peak of the Fe-NHC 

immobilised HACS shows two additional binding energy peaks at 533 and 529 eV 

corresponding to C=O and possible metal oxide (iron oxide), respectively.196 Another 

important and striking difference is the decrease in the O-H binding energy peak 

intensity which possibly may be attributed to the loss of some hydroxyl groups from 

the expanded HACS. This decrease in the intensity of the hydroxyl peak in the 

expanded HACS and the corresponding appearance of a new C=O peak in the Fe-NHC 

expanded HACS, indicates and further proves the successful attachment of 12 on the 

expanded HACS surface which leads to the eventual formation of 1a.    

 

Figure 3.12. Fitted nitrogen 1s and iron 2p peaks for the Fe-NHC expanded HACS 1a. 

The appearance of a nitrogen 1s binding energy peak at 400 eV in the XPS survey 

spectra of the Fe-NHC expanded HACS (1a) which was originally absent as can be 

seen in the survey spectrum of the unmodified expanded HACS (Figure 3.12), is a 

clear indication that a new compound containing nitrogen has been attached to the 

expanded HACS. Further deconvolution of the N 1s peak indicates three different 

nitrogen bonding environments at 398.3, 399.2 and 401.3 eV assigned to N-H, C-N, 

and C=N, respectively. This however, is believed to have come from compound 12 

attached to the expanded HACS. 

Importantly, the appearance of a Fe doublet binding energy peaks with the Fe 2p 1/2 

at 711 eV in the spectrum of the Fe-NHC immobilised HACS (1a) confirms the 



90 
 

presence of iron predominantly in the +3 oxidation state.197-199  Mössbauer 

spectroscopy (see section 3.2.1.11) was undertaken to further confirm the presence of 

iron.    

3.2.1.11.  Mössbauer Spectroscopy of (1a) 

Mössbauer spectroscopy is a versatile technique that can be used to provide precise 

information about the chemical, structural, magnetic and time-dependent properties of 

a material. Mössbauer effect is only detected in isotopes with very low energy gamma-

ray and long-lived excited states. Similarly, the resolution is dependent upon the 

lifetime of the excited state. These two factors limit the number of isotopes that can be 

used successfully for Mössbauer spectroscopy. Interestingly, Fe which is the active 

metal chosen for the fabrication of our catalyst, is the most used isotope in Mössbauer 

spectroscopy (57Fe), because it has both a very low energy gamma-ray and long-lived 

excited state, matching both the requirements well. As such, Mössbauer spectroscopy 

was employed to further investigate the presence and state of the Fe in the fabricated 

supported Fe-NHC catalyst (1a).  

 

Figure 3.13. Mössbauer spectrum of Fe-NHC immobilised on HACS (1a) 
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The Mössbauer spectrum of 1a (Figure 3.13), confirms the presence of iron in the form 

of Fe3+.  A characteristic isomer shift of 0.47 coupled with quadrupolar splitting of 

0.81 are representative of Fe3+.200  The presence of iron, as well as oxygen and 

nitrogen, was further evidenced by XPS analysis as discussed earlier in Section 

3.2.1.10.  

3.2.1.12.  Scanning Electron Microscopy (SEM) of (1a) 

Scanning electron microscopy was used to explore the trends in porosity as the 

expanded HACS support undergoes modification to the desired fabricated expanded 

HACS supported Fe-NHC catalyst. This allows for a visible examination into the 

porosity of the support and whether the chemical and mechanical processes during the 

modification has effect on the porosity of the support material in question.   

 

Figure 3.14. SEM micrographs of (A) expanded HACS (4a) (B) Succinimidyl carbonate 

activated HACS (6a) (C) Ligand grafted HACS (13a) and (D) Fe-NHC HACS (1a) 
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The SEM images (Figure 3.14) qualitatively prove that the surface modification 

process on the expanded HACS does not significantly collapse pore structure of the 

expanded HACS. Good network of pores is expected to facilitate diffusion of reactants 

to the catalytically active Fe centre and the diffusion of the products out after reaction. 

3.2.1.13.  Transmission Electron Microscopy (TEM) of (1a) 

The iron complexation reactions were carried out under nitrogen purged conditions to 

prevent the formation of iron oxide nanoparticles. However, to investigate and 

ascertain the absence or otherwise of the formation of iron and iron oxide 

nanoparticles, transmission electron microscopy was employed to visibly investigate 

presence of nanoparticles in the Fe-NHC Starbon™ catalysts. Figure 3.15 shows the 

TEM images of the Fe-NHC expanded HACS. 

 

Figure 3.15. TEM micrographs of  Fe-NHC HACS (1a), at 200 nm (a) and 100 nm (b). 

The TEM images taken at 200-100 nm scale show absence of iron oxide nanoparticles. 

However, the limitation on the ability to zoom further due to the loss of particle of the 

material as a result of higher transmission that causes the particle to heat-up and bust 

prevents from drawing a general conclusion that the measured iron obtained from the 

ICP-MS, and XPS analysis only comes from the intended complexed iron covalently 

bonded to the imidazolium ligand on the expanded HACS support forming 1a.   

3.2.1.14.  N2 Porosimetry of (4a) and (1a) 

The BET surface area, pore diameter and pore volume of expanded HACS (4a) and its 

subsequent Fe-NHC modified form (1a) determined by nitrogen adsorption 

porosimetry are listed in Table 3.6 and their isotherms are shown in Figures 3.16. 
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Figure 3.16. Adsorption/desorption isotherms for expanded HACS (4a) and Fe-NHC HACS 

(1a) 



94 
 

Generally, there are four main adsorption types isotherm plots that help to suggest the 

likely mechanism involved in the adsorption/desorption process.  The isotherms shown 

in Figure 3.16 are characteristic of Type IV isotherm showing mild hysteresis (delay) 

on the desorption isotherm due to possible capillary condensation and typically 

indicating moderate physisorption abilities with mesoporosity of somewhat irregular 

organization.201 More irregular ink bottle type pores with narrow necks and wide 

bodies can cause much larger desorption hysteresis. 

Table 3.6. Summary of the porosity data for expanded HACS and modified forms. 

Sample BET surface 

area 

(m2/g) 

Desorption pore 

volume 

(cm3/g) 

Desorption average 

pore diameter 

(nm) 

Expanded HACS (4a)                186               0.91                18.4 

Fe-NHC expanded 

HACS (1a) 

               135   0.60                16.3 

 

On modification of expanded HACS (4a) through to the desired Fe-NHC immobilised 

on HACS (1a) the BET surface area decreased: 186 m2/g (4a); and; 135 m2/g (1a). The 

subsequent decrease in surface area and pore volume may be explained by the 

attachment of the imidazolium ligand (and iron) on the HACS surface leading to 

blockage and filling of the porous structure. 
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3.2.2. Fe-NHCS immobilised on Starbon 350 (1b) and 400 (1c) 

3.2.2.1  ATR FT-IR Spectroscopy  

As previously discussed the decrease in intensity of the O-H stretching absorbance 

band and the appearance of new C=O stretch and C-N stretch absorption bands were 

used to analysed and ascertain the successful modification of the StarbonTM supports 

4b and 4c and their modification to the desired Fe-NHC catalysts immobilised 1b and 

1c. 

 

Figure 3.17 FT-IR spectra of Starbon™-350 (4b), DSC activated Starbon™-350 (6b), ligand 

grafted Starbon™-350 (13b) and Fe-NHC immobilised on Starbon™-350 (1b) 

The FT-IR spectrum of Starbon™-350 (4b) (Figure 3.17), shows a broad, shallow, O-

H stretching vibration centred around 3300 cm-1, followed by carbonyl stretching 

vibration at 1702 cm-1 and possibly at 1600 cm-1.  However, the latter is more akin to 

C=C stretching. In the DSC activated Starbon™-350 or succinimidyl carbonate 

derivative 6b, a new C=O stretching absorbance band is noted at 1678 cm-1 associated 

with the carbonyl moiety of succinimidyl carbonate. This assigment is also supported 

by a decrease in the intensity of the O-H absorbance band at 3300 cm-1 from 

Starbon™-350 (4b) to the succinimidyl carbonate derivative (6b).  Moreover, the IR 
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spectrum of the ligand grafted Starbon™-350 (13b) indicates a disappearance of a 

band at 1567 cm-1 and a corresponding decrease of the band at 1678 cm-1 assigned to 

the C=O stretching of the carbamate derivative (6b). 

 

Figure 3.18. FT-IR spectra of Starbon™-400 (4c), DSC activated Starbon™-400 (6c), ligand 

grafted Starbon™-400 (13c) and Fe-NHC immobilised on Starbon™-400 (1c).  

The FT-IR spectrum of Starbon™-400 (4c) (Figure 3.18), shows C=C stretching 

vibrational mode at 1599 cm-1 and one carbonyl stretching bands 1703 cm-1. 

Conversion of 4c in to 6c shows appearance of a new absorbance band at 1678 cm-1 

characteristic of the carbonyl moiety of succinimidyl carbonate group.202 The intensity 

of the O-H stretching (3353 cm-1) mode decreases and the intensity of the C-H 

stretching mode at approximately 2900 cm-1 becomes more evident.  Thereafter, 

conversion of 6c in to 13c is characterised by the loss (or reduction in intensity) of the 

carbonyl absorbance band at 1678 cm-1. 



97 
 

3.2.2.2. Solid-state 13C NMR spectroscopy investigation for the formation 

of 1b and 1c from 4b and 4c via intermediates 6b and 6c and 13b 

and 13c 

 

Figure 3.19 13C CP-MAS NMR spectra of Starbon™-350 (blue line), DSC activated 

Starbon™-350 (red line), ligand grafted Starbon™-350 (green line) and Fe coordinated NHC 

Starbon™-350 (purple line).  

The 13C CPMAS spectra of Starbon™350 (4b) and Starbon 400 (4c) and its modified 

forms (Figure 3.19 and 3.20) show similar resonance changes as described for the 

HACS materials earlier (Figure 3.6). The ligand grafted Starbon™ 350 (13b) shows 

new resonances at 23, 40-51 ppm, assigned to aromatic CH3, imidazole CH2, and 

carbons of imidazole ring, respectively. It was difficult to assign all the aromatic 

carbons, and most importantly the carbonyls of the imide and carbamate group of the 

succinimidyl carbonate were masked within the signals for Starbon™ itself.153 
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Figure 3.20. 13C CP-MAS NMR spectra of Starbon™-400 (blue line), DSC activated 

Starbon™-400 (red line), ligand grafted Starbon™-400 (green line) and Fe coordinated NHC 

Starbon™-400 (purple line).  

3.2.2.3. CHN and ICP-MS elemental analysis of Fe-NHC immobilised on 

Starbon-350 (1b) and Fe-NHC immobilised on Starbon-400 (1c) 

Table 3.7. Loading levels (mmol g-1) of succinimidyl carbonate, NHC ligand and Fe 

on Starbon 350 and Starbon 400. 

 Loading level (mmol g-1) 

Support Succinimidyl 

carbonate 

NHC ligand Fe 

 

Starbon™ 350 

(4b) 

1.18 (6b) 0.63 (13b) 0.31 (1b) 

Starbon™ 400 

(4c) 

1.36 (6c) 0.46 (13c) 0.32 (1c) 

 

The loading levels (mmol g-1) as determined by CHN elemental analysis are listed in 

Table 3.7. Slightly higher siccinimidyl carbonate loading is achieved with Starbon™ 

400 (6c) (1.36 mmol g-1) as compared to Starbon™ 350 (6b) (1.18 mmol g-1), which 

may be due to differences in porosity and/or accessibility of OH groups.  However, 

surprisingly the NHC ligand loading of Starbon™ 350 (13b) is slightly higher (0.63 

mmol g-1) as compared to Starbon™ 400 (13c) (0.46 mmol g-1). The Fe loading 
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obtained from ICP-MS on the other hand, indicates almost comparable Fe loading 

between Starbon™ 350 catalyst (1b) and Starbon™ 400 catalyst (1c).  

3.1.2.4. Thermogravimetric analysis of Fe-NHC immobilised on Starbon-

350 (1b) and Fe-NHC immobilised on Starbon-400 (1c) 

The thermograms and differential thermal curves are given in Figures 3.21 – 3.22 for 

Starbon 350 4b and its conversion to 1b and for Starbon 400 4c and its conversion to 

1c. 
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Figure 3.21. Thermal analysis data (TG) of Starbon™ 350 (Top) and Starbon™ 400 (Bottom) 

in N2. 
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Figure 3.22. Thermal analysis data (dTG) of Starbon™ 350 (Top) and Starbon™ 400 (Bottom) 

in N2. 
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The point of inflection which corresponds to the major mass loss temperature, 

signifying the breakdown of Starbon™ back bone, is decreased by the chemical 

modification; 492 oC (Starbon™ 350, 4b), 491 oC (ligand grafted Starbon™ 350, 

(13b)), and 473 oC (Fe-NHC immobilised Starbon™ 350, (1b)). However, an increase 

in the temperature at the point of inflection is observed for succinimidyl carbonate 

derivative (6b) 508 oC. 

A clear difference is observed in the decomposition of Starbon™ 400 which shows 

that the support itself starts to decompose at a very low temperature of about 120 oC, 

a behaviour that is not expected of a material that has been carbonised at 400 oC. This 

unusual behaviour could perhaps be due to different ways in which the materials were 

prepared (e.g. different furnaces used to carbonise the Starbon materials). The exact 

reason may be difficult to prove since the Starbon materials used in this research were 

obtained and used as received.  

In terms of the points of inflection, similar trends were observed with the Starbon™ 

400 and its modified forms: 500 oC (4c), 508 oC (6b), 491 oC (13b), and 498oC (1b).  

All the modified StarbonTM samples analysed showed decompositions at around 220-

300 oC attributed to the decomposition of the various groups (succinimidyl carbonate 

and NHC ligand) attached during modification. This observation further proves the 

successful modification of the supports. 

While heating in air, no residue is obtained for the Starbon™-350, succinimidyl 

carbonate activated Starbon™-350, and Ligand grafted Starbon™-350. However, for 

the Fe coordinated Starbon™-350, reddish brown residue (4%) was obtained 

confirming the presence of iron (see appendix G) in proportion that agrees with the 

reported iron contents from ICP-MS analysis. 

3.2.2.5.  Mössbauer Spectroscopy of (1b) and (1c) 

Mössbauer spectroscopy was used to ascertain the presence of iron and its oxidation 

state in the materials 1b and 1c. 
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Figure 3.23. Mössbauer trace for the fabricated Starbon™-Fe catalyst. 

The Mössbauer spectrum for Starbon™-350 Fe fabricated catalyst (1b) (Figure 3.23) 

confirms the presence of iron in the form of Fe3+.  A characteristic isomer shift of 0.47 

coupled with quad. splitting of 0.81 are representative of Fe3+.200  The presence of iron, 

as well as oxygen and nitrogen, was further evidenced by XPS analyses. 

3.2.2.6.  X-ray photoelectron spectroscopy of 1b, 1c and 4b and 4c 

X-Ray photoelectron spectra (Figures 3.24-3.25) were obtained for both the 

Starbon™-350 (4b) and Starbon™-400 (4c), and subsequently for the Fe-NHC 

Starbon™-350 (1b) and Fe-NHC Starbon™-400 (1c), to evaluate their chemical 

composition before and after modification. 
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Figure 3.24. XPS survey scan for the Starbon™-350 4b and Fe-NHC Starbon™-350 1b. 

 

The survey spectra above (Figure 3.24) corresponding to the Starbon™-350 and the 

Fe-NHC Starbon™-350, shows an interesting difference in the fact that two new 

additional binding energy peaks appear at 400 eV and 711 eV corresponding to 

nitrogen and iron, respectively. The presence of a nitrogen peak at 400 eV confirms 

that the imidazolium ligand was successfully grafted on Starbon™-350 whilst a Fe 

doublet peak at 711 eV entails a successful Fe complexation on the ligand. 

 

Figure 3.25. XPS survey scan for Starbon™-400 4c and Fe-NHC Starbon™-400 1c. 

Figure 3.25 corresponding to the XPS survey scans for Starbon™-400 4c and the Fe-

NHC Starbon™-400 1c, shows similar trends with two newly observed additional 

binding energy peaks which appear at 400 eV and 711 eV corresponding to nitrogen 

and iron, respectively. The presence of a nitrogen peak at 400 eV confirms that the 
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imidazolium ligand was successfully grafted on Starbon™-400 whilst an Fe doublet 

peak at 711 eV entails a successful Fe complexation. 

As discussed earlier for the XPS analysis of Fe-NHCs immobilised on HACS (see 

section 3.1.1.11) the deconvoluted carbon 1s peaks of the Starbon™ 350 and 

Starbon™ 400 (Figure D1 and D4 in Appendix D) shows similar binding energy peaks 

at 289.1, 286.5, 284.7 and 283.6 eV assigned to C=O, C-O, C-C, and C-C(Ar). For the 

Fe-NHC Starbon™ 350 and Fe-NHC Starbon™ 400 additional carbon binding energy 

peaks at 283.9, and 285.6 eV assigned to C-C(Ar), and C-N,195 were observed. These 

additional binding energy peaks are assigned to compound 12 attached on the various 

Starbon™ supports. Another interesting and further supportive evidence of the ligand 

binding on the support material is the decrease in the intensity of the C-O peak at 286.5 

eV and a corresponding increase in C-C(Ar) peak at 283.6 eV, attributed to the 

successful activation of hydroxyl groups on the support and increasing aromatic 

character due to the mesityl group of the imidazole ligand 12, respectively. 

The O 1s spectra of the Starbon™ 350 and Starbon™ 400 (Figure D2 and D5 in 

Appendix D) shows three binding energy peaks at 529.5, 531.5 and 534.2 eV assigned 

to C=O, C-O and O-H bonds respectively.196 However, the deconvolution of the 

oxygen peak of the Fe-NHC Starbon™ 350 shows another important and striking 

difference with the decrease in the O-H peak intensity which confirms the loss of some 

hydroxyl groups from the Starbon™ 350. This decrease in the intensity of the hydroxyl 

peak and the corresponding increase of the C=O peak observed in both the 

deconvoluted oxygen peaks of the Fe-NHC Starbon™ 350 and 400, indicates and 

further prove the successful attachment of 12 on the Starbon™ 350 support which 

leads to the formation of 1b. 

The appearance of a nitrogen 1s peak at 400eV in the XPS survey spectra of the Fe-

NHC Starbon™-350 and Fe-NHC Starbon™-400 (Figure D3 and D6 in Appendix D) 

which was originally absent as can be seen in the survey spectra of the unmodified 

Starbon™ 350 and 400, is a clear indication that a new compound containing nitrogen 

has been attached to the Starbon™-350 and Starbon™-400 supports. Further 

deconvolution of the N 1s peak indicates two different nitrogen bonding environments 

at 398.3, and 401.3eV assigned to C-N and C=N, respectively. This however, is 
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believed to have come from compound 12 attached to the Starbon™-350 and 

Starbon™-400 supports. 

The appearance of an Fe doublet peaks with the Fe 2p1/2 at 711eV in the spectra of 

the Fe-NHC Starbon™-350 and Fe-NHC Starbon™-400 (Figure D3 and D6 in 

Appendix D) confirms the presence of the coordinated iron predominantly in the +3 

oxidation state. 

3.2.2.7.  Scanning Electron Microscopy (SEM) 

Figures 3.26 and 3.27 show the SEM images of the Starbon™ supports and their 

modified forms. 

 

Figure 3.26. SEM micrographs of (A) Starbon™-350 (4b) (B) Succinimidyl carbonate 

activated Starbon™-350 (6b) (C) Ligand grafted Starbon™-350 (13b) and (D) Fe-NHC 

Starbon™-350 (1b). 

Figure 3.26 indicate that both Starbon™-350 and Starbon-400 supports remain 

visually porous and despite the several chemical and mechanical processes they 

underwent during the succinimidyl carbonate activation, imidazolium ligand binding 

and iron coordination reactions. 
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Figure 3.27. SEM micrographs of (A) Starbon™-400 (4c) (B) Succinimidyl carbonate 

activated Starbon™-400 (6c) (C) Ligand grafted Starbon™-400 (13c) and (D) Fe-NHC 

Starbon™-400 (1c). 

3.2.2.8.  Transmission Electron Microscopy (TEM) 

Figure 3.28 shows the TEM images of the FE-NHC Starbon™-350 (1b) and Fe-NHC 

Starbon™-400 (1c). 

 

Figure 3.28. TEM microimages of (A) Fe-NHC Starbon™-350 (1b) and (B) Fe-NHC 

Starbon™-400 (1c). 

The TEM image of the Fe-NHC Starbon™-350 (1b) shows scattered dense particles, 

which are expected to be iron oxide nanoparticles form during the iron complexation 

reaction. This may occur due the rapid oxidation of residual iron particles on exposure 

of the iron coordinated Starbon™-350 to the atmosphere during drying process.  
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Interestingly, the TEM image of the Fe-NHC Starbon™-400 (1c), shows absence of 

nanoparticles as no dense particles were observed. This confirms that the iron 

contained in the Fe-NHC Starbon™-400 (1c) is purely the intended complexed iron 

covalently bonded to the imidazolium ligand (12). 

3.2.2.9.  N2 Adsorption Porosimetry 

Table 3.8 summarizes the textural (surface area (SBET), pore diameter (DBJH), and pore 

volume (VBJH)) properties of the Starbon™-350 (4b), Fe-NHC Starbon™-350 (1b), 

Starbon™-400 (4c) and Fe-NHC Starbon™-400 (1c). 

Table 3.8. Porosity data for the Starbon™ and modified Starbons. 

Sample 

 

Pore 

volume 

(cm3 g-

1) 

Adsorption 

pore diameter 

(nm) 

Desorption 

pore 

diameter 

(nm) 

BET 

surface 

area (m2 g-

1) 

Starbon™-350 (4b) 0.3  11  11  337  

 

Fe-NHC Starbon™-350 (1b) 0.3  9 9 132 

Starbon™-400 (4c) 0.2 64 48 60 

Fe-NHC Starbon™-400 (1c) 0.2  77 48 13 

 

From the unmodified Starbon supports (4b and c) through to the desired Fe-NHC (1b 

and c) the BET surface area decreased; 337 m2 g-1 (4b) to 132 m2 g-1  (1b) and 60 m2 

g-1  (4c) to 13 m2 g-1  (1c). The observed decrease in surface area and pore volume may 

be explained by the attachment of the imidazolium ligand on the StarbonTM surface 

leading to blockage and filling of the porous structure.  

Again, an unusual behaviour in the porosity values is observed in Starbon 400, very 

low surface area and an increase rather than a decrease in the pore diameters with 

modification. This could perhaps be due to different ways in which the materials were 

prepared as mentioned earlier. 
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3.2.3. Fe-NHCS immobilised on mango peel (1d) and orange peel cellulose (1e)  

3.2.3.1.  ATR-FTIR spectroscopy 

 

Figure 3.29 FT-IR spectra of microcrystalline cellulose (black line), mango peel cellulose (4d) 

and orange peel cellulose (4e) 

FTIR spectroscopy was used to investigate the similarity in the structure of the isolated 

mango peel (4d) and orange peel cellulose (4e) in comparison with that of 

microcrystalline cellulose (Figure 3.29). The IR spectra of the mango peel cellulose 

(4d) and orange peel cellulose (4e) as compared to microcrystalline cellulose, shows 

similar absorption bands with only an increase in the intensity of the absorption bands 

at 1650-1750 cm-1 assigned to carbonyl stretching associated with residual 

pectinaceous matter and 2850-2920 cm-1 assigned to CH2 symmetric and asymmetric 

stretching. The broad band at 3600-3100 cm-1 region is due to the OH-stretching 

vibration. The nature of the O-H stretching band gives considerable information 

concerning the hydrogen bonds, and as such can give a useful information regarding 

the crystalline or amorphous nature of the cellulose. The bands characteristic of 

hydrogen bonds from the spectrum of amorphous cellulose became sharper and with 

lower intensity, and usually they are shifted to higher wavenumbers. The absorption 

band at 1430 cm-1 is assigned to a symmetric CH2 bending vibration, it is also known 
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as the “crystallinity band”, indicating that a decrease in its intensity indicates a reduce 

degree of crystallinity of the samples while an increase in its intensity indicates a 

higher degree of crystallinity.163, 203 The various contributions from the glucopyranose 

ring of cellulose (C-O, O-C-O) are at 1250-750 cm-1.204 

 

Figure 3.30 FT-IR spectra of mango peel cellulose (4d), DSC activated mango peel cellulose 

(6d), ligand grafted mango peel cellulose (13d) and Fe-NHC immobilised on mango peel 

cellulose (1d) 

Figure 3.30 shows the FT-IR spectroscopy of the derivatives of 4d leading to the 

formation of 1d.   The appearance of new carbonyl stretching bands at 1601, 1650 and 

1700 cm-1 in the succinimidyl carbonate activated mango cellulose (6d) and a band at 

1239 cm-1 assigned to imide C-N vibration175, 177 are noted.  This is further supported 

by the disappearance of the band at 1601 cm-1 in the spectrum of the ligand grafted 

mango cellulose (13d) due the loss of the carbonyl of the succinimidyl carbonate as 

the ligand is successfully attached. 
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Figure 3.31 FT-IR spectra of orange peel cellulose (4e), DSC activated orange cellulose (6e), 

ligand grafted orange peel cellulose (13e) and Fe-NHC immobilised on orange peel cellulose 

(1e). 

Like the observations made in the FT-IR spectra of mango cellulose and its modified 

forms, the FTIR spectra of orange peel cellulose and its modified forms (Figure 3.31) 

also shows new carbonyl stretching bands at 1650 and 1700 cm-1 in the succinimidyl 

carbonate activated orange peel cellulose. These changes occur due to the additional 

new carbonyl groups from the succimidyl carbonate group attached during activation. 

Displacement of the succininidyl carbonate by the ligand to afford (13e) is less 

discernible by FT-IR spectroscopy but is evidenced by elemental analysis and XPS as 

discussed later.  Conversion of 13e in to 1a interestingly shows an increase in the 

intensity of the carbonyl absorption at 1700 cm-1. 
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3.2.3.2.  13C CPMAS Spectroscopy 

 

Figure 3.32 13C CP-MAS NMR spectra of microcrystalline cellulose (blue line), mango peel 

cellulose (4d) and orange peel cellulose (4e). 

To further characterise the isolated mango peel cellulose, cross polarisation magic 

angle spinning 13C NMR spectroscopy was performed and the result compared to 

commercial grade microcrystalline cellulose (Figure 3.32). The spectra for mango peel 

cellulose (4d) and orange peel cellulose (4e) are similar to that of microcrystalline 

cellulose.  Some evidence, albeit very minor, of residual pectinaceous matter is seen 

in 4d and 4e with signals at 20-30 ppm characteristic of CH3 of rhamnose and at 170 

ppm characteristic of carboxylic acid and ester moieties.  Otherwise, signals observed 

around 65, 88 and 106 ppm are assigned to C-6, C-4 and C-1 of the glucose monomer 

unit of the cellulose, respectively. The major peak in 72.5 ppm is assigned to C-2, -3, 

-5 of the glucose monomer unit of the cellulose.205   Information with respect to 

crystallinity can be gleaned from interrogation of the C-4 and C-6 signals. For C-4, 

signals at 80~86 ppm relate to its amorphous nature whilst signals at 86~92 ppm confer 

more crystallinity.  Similarly, for C-6 signals at 63~65 ppm relate to amorphous 

character but when at 65~67 ppm are akin to crystallinity.206 

These findings however, indicates that the isolated cellulose from the orange peels 

contain almost equal proportions of amorphous to crystalline cellulose. Unlike the 

microcrystalline cellulose which contain only a small proportion of the amorphous 

type. 
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Figure 3.33 13C CP-MAS NMR stacked spectra of mango peel cellulose (4d), DSC activated 

mango peel cellulose (6d), ligand grafted mango peel cellulose (13d) and Fe-NHC 

immobilised on mango peel cellulose (1d). 

 

Figure 3.34 13C CP-MAS NMR spectra of orange peel cellulose (4e), DSC activated orange 

peel cellulose (6e), ligand grafted orange peel cellulose (13e) and Fe-NHC immobilised on 

orange peel cellulose (1e). 
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Figures 3.33 and 3.34 show the 13C CP-MAS spectra of mango peel and orange peel 

cellulose and its conversion in to 1d and 1e, respectively. The spectra of the 

succinimidyl carbonate activated mango peel (6d) and orange peel cellulose (6e) 

showed new signals in the carbonyl region corresponding to carbonyl of the carbamate 

and imide respectively, and the signal at 40 ppm which corresponds to CH2 group of 

the imide thus confirming the successful attachment of the succinimidyl group during 

activation. The spectra of the imidazolium ligand grafted mango peel (13d) and orange 

peel cellulose (13e) showed the loss of carbonyl signal of the imide. The signals 

numbered 8,9 and 10 correspond to CH2 groups of the aminopropyl group of the 

imidazole ligand and peaks at 23 ppm, assigned to aromatic CH3. The spectra confirm 

the successful attachment of the ligand on the activated mango and orange peel 

cellulose support. After modification of the cellulose surface, C-6 (to which the most 

accessible OH is attached to) signal at around 65 ppm was affected by the succinimidyl 

carbonate and imidazole ligand groups, causing a change in the proportion of the 

amorphous to crystalline region, with the cellulose support becoming more 

amorphous. 

3.2.3.3.   CHN and ICP-MS elemental analysis.  

From the results of the CHN elemental analysis of 6d (succinimidyl carbonated 

activated) and 13d (ligand grafted) mango cellulose, the succinimidyl carbonate and 

NHC ligand loadings of the modified cellulose samples were found to be 1.49 mmol 

g-1 and 0.56 mmol g-1, respectively. The Fe loading as determined by ICP-MS for Fe-

NHC immobilised in mango peel cellulose (1d) and orange peel cellulose (1e) were 

0.30 mmol g-1 and 0.52 mmol g-1, respectively. Thus, once again confirming successful 

synthesis of the desired NHC’s despite IR and NMR spectroscopy not always being so 

conclusive. 
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3.2.3.4.   Thermogravimetric Analysis (TGA)  

 

Figure 3.35. Thermograms for mango peel cellulose (4d) and its derivatives 6d and 13d 

leading to Fe-NHC immobilised on mango peel cellulose (1d) in N2. 

 

Figure 3.36. Thermograms for orange peel cellulose (4e) and its derivatives 6e and 13e 

leading to Fe-NHC immobilised on orange peel cellulose (1e) in N2. 
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The thermograms of the mango and orange peel cellulose samples analysed (Figures 

3.35 and 3.36) showed weight loss within the temperature range of 50 to 100 oC owing 

to water loss. Thereafter, both the unmodified mango and orange cellulose were stable 

until the onset of the major decomposition temperature around 300 oC corresponding 

to cellulose decomposition.  However, their chemically modified forms (succinimidyl 

carbonate activated 6d and 6e, ligand grafted 13d and 13e and Fe-NHC immobilised 

1d and 1e), variable decomposition temperatures were observed, with degradation 

starting earlier at 200 oC. This lower temperature decompositions are attributed to the 

breakdown of the succinimidyl carbonate and imidazolium ligand groups attached to 

the cellulosic supports.  These changes in the decomposition profile with modification, 

suggests a successful succinimidyl carbonate activation and ligand binding. The 

increased residual mass at 650oC of 4.8 and 5.0 % in Fe-NHC mango peel cellulose 

(1d) and Fe-NHC orange peel cellulose (1e), respectively, may indicate presence of 

Fe.  

 

Figure 3.37. Differential thermographs for mango peel cellulose (4d) and its derivatives 6d 

and 13d leading to Fe-NHC immobilised on mango peel cellulose (1d) in N2. 

 



117 
 

 

Figure 3.38. Differential thermographs (dTG) for mango peel cellulose (4e) and its 

derivatives 6e and 13e leading to Fe-NHC immobilised on mango peel cellulose (1e) in N2. 

The differential thermograms of the mango and orange peel cellulose samples analysed 

(Figures 3.37 and 3.38), showed that both the mango peel and orange peel cellulose 

togother with their modified forms have almost an identical decomposition profile. 

This further confirms the similarity of the two cellulose supports and the effectiveness 

of the modification process. The major decompostion occurs at 357oC 4d and 359 oC 

4e.  On modification Td decreases and is the same for both supports, e.g., Td for 6d and 

6e is 348 oC.  The Td of the ligand grafted derivatives (13d and 13e) is 303 oC and 

increases upon iron co-ordination to  310 oC for both 1d and 1e.  

3.2.3.5.   X-Ray photo electron spectroscopy 

X-Ray photoelectron spectra were obtained for both the mango and orange peel 

cellulose, and subsequently for the Fe-NHC mango and orange peel cellulose, to 

evaluate their chemical composition before and after modification. 

Figure 3.39 corresponds to the XPS survey scans for mango peel cellulose (4d) and 

orange peel cellulose (4e).  Similar C 1s and O 1s peaks composition were observed 

in both the unmodified supports. Interestingly, N 1s and Ca 2p peaks were also 
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observed which are attributed to possible proteins and calcium deposits160 remaining 

in the cellulose. 

 

Figure 3.39. XPS survey scan for the mango peel cellulose (4d) and orange peel cellulose (4e). 

 

Figure 3.40 showed two newly observed additional binding energy peaks which appear 

at 200 eV and 711 eV corresponding to chlorine and iron, respectively. A significant 

increase in the intensity of the nitrogen peak at 400 eV is also observed confirming 

that the imidazolium ligand was successfully grafted on to the mango and orange peel 

cellulose. Likewise, a Fe doublet binding energy peak at 711 eV and presence of 

chlorine peak at 200 eV entails a successful Fe complexation on the ligand bonded on 

both the mango and orange peel cellulose supports. 

 

Figure 3.40. XPS survey scan for the Fe-NHC mango peel cellulose (1d) and Fe-NHC orange 

peel cellulose (1e). 
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The deconvoluted spectra for both mango and orange peel cellulose together with their 

derivatives are shown in Figure E1 to E6 in Appendix E.  The C1s peak of the mango 

and orange peel cellulose shows various contributions of bonded carbon, namely 

carbon without oxygen bonds (C–C), carbon with one oxygen bond (C–O) and carbon 

with two oxygen bonds (O–C–O) in proportions which are a characteristic of 

cellulose.207 However, the deconvolution of carbon peaks of the Fe-NHC mango 

cellulose and Fe-NHC orange cellulose shows additional peaks at 289.1, 283.9, and 

285.6 eV assigned to C-C(Ar), C=O and C-N.195 These additional peaks are assigned 

to compound 12 attached on the various cellulose supports. Another interesting and 

further supportive evidence of the ligand binding on the support material is the 

decrease in the intensity of the C-O peak at 286.5 eV and a corresponding increase in 

C-C(Ar) peak at 283.6 eV, attributed to the successful activation of hydroxyl groups 

on the support and increasing aromatic character due to the mesityl group of the 

imidazole ligand 12, respectively. 

The O 1s peak of the orange and mango peel cellulose and Fe-NHC modified orange 

and mango peel cellulose shows similar contributions of bonded oxygen, namely 

carbon oxygen bonds (C–O), carbon with double bond oxygen (C=O) and oxygen 

hydrogen bond (O-H). A significant difference that suggests successful modification 

is an increase in the (C=O) peak and a decrease in (O-H) peak due to successful ligand 

bonding on the activated OH group of the cellulose support which lead to loss of OH 

groups. 

The significant increase in the nitrogen 1s peak (Figure E3 and E6 in Appendix E) at 

400 eV in the XPS survey spectra of the Fe-NHC mango peel cellulose and Fe-NHC 

orange peel cellulose which was originally low as can be seen in the survey spectra of 

the unmodified mango and orange peel cellulose, is a clear indication that a new 

compound containing nitrogen has been attached to the cellulose supports. Further 

deconvolution of the nitrogen 1s peak indicates three different nitrogen bonding 

environments at 398, 399, and 401.3eV assigned to N-H, C-N, and C=N respectively. 

This however, is assigned to compound 12 attached to the cellulose supports. 

The appearance of a Fe doublet peaks with the Fe 2p 1/2 at 711 eV in the spectra of 

the Fe-NHC mango peel cellulose (1d) and Fe-NHC orange peel cellulose (1e), (Figure 
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E3 and E6 in Appendix E) confirms the presence of the coordinated iron 

predominantly in the +3 oxidation state. 

3.2.3.6.  Scanning Electron Microscopy   

 

 Figure 3.41. SEM images of commercial microcrystalline cellulose (a) mango peel cellulose 

(b) and orange peel cellulose (c). 

The SEM images (Figure 3.41) shows that the extracted mango and orange peel 

cellulose are visually porous compared to the commercial microcrystalline cellulose 

which appear to be non-porous. However, some of the pores appear to be occluded 

within the cellulose inner structure and not accessible from the external surface. 
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Figure 3.42. SEM images of (a) mango peel cellulose, (b) DSC activated mango peel cellulose, 

(c) IL grafted mango peel cellulose, and (d) Fe-NHC mango peel cellulose. 

 

Figure 3.43. SEM images of (a) orange peel cellulose, (b) DSC activated orange peel cellulose, 

(c) IL grafted orange peel cellulose, and (d) Fe-NHC orange peel cellulose. 

The SEM images (Figures 3.42 and 3.43) of the surface modified mango and orange 

peel cellulose indicates that the porous structure of the mango and orange peel 

cellulose is relatively stable towards the mechanical, chemical and thermal treatment 

it underwent during the modification processes. 
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3.2.3.7.  Transmission Electron Microscopy (TEM) 

 

Figure 3.44. TEM images of (a) Fe-NHC mango peel cellulose, (b) Fe-NHC orange peel 

cellulose. 

The TEM images above for Fe-NHC mango cellulose and Fe-NHC orange cellulose 

(Figure 3.44) showed absence of Fe nanoparticles. However, as earlier stated, the 

inability to zoom further due to the loss of particle of the material as a result of higher 

transmission that causes the particle to heat-up and thus prevents from drawing a 

general conclusion that the measured iron obtained from the ICP-MS, and XPS 

analysis only comes from the intended complexed iron covalently bonded to the 

imidazolium ligand and not from some Fe nano-particles. 

3.2.3.8.  N2 adsorption porosimetry 

The BET surface area, pore volume, adsorption and desorption pore diameters of the 

mango peel cellulose (4d), orange peel cellulose (4e) and their subsequent Fe-NHC 

modified forms, (1d) and (1e) were determined using nitrogen adsorption porosimetry 

(see Table 3.9). From the unmodified mango and orange peels cellulose supports 

through to the desired Fe-NHC (1d and 1e) the BET surface area decreased; 51 m2 g-1 

(4d) to 44 m2 g-1 (1d) and 151 m2 g-1 (4e) to 80 m2 g-1 (1e). The observed decrease in 

the BET surface area and pore volume may be explained by the attachment of the 

succinimidyl carbonate and subsequently the imidazolium ligand on the cellulose 

surface leading to blockage and filling of the porous structure.  
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Table 3.9. Summary of the surface and porosity properties of the samples analysed.  

Sample 

 

Adsorp. 

pore 

diameter 

BJH 

(nm) 

Desorp. 

pore 

diameter 

BJH 

(nm) 

Adsorp. 

pore 

volume 

BJH 

(cm3 g-1) 

Desorp. 

pore 

volume 

BJH 

(cm3 g-1) 

BET surface 

area 

 

 

(m2 g-1) 

(4d) 8.63 

 

6.26 

 

0.13 

 

0.13 

 

51 

 

(6d) 7.05 

 

4.73 

 

0.06 

 

0.06 

 

30 

 

(13d) 7.11 4.82 0.06 0.06 30 

Fe-NHC 

mango (1d) 

5.95 4.32 0.07 0.07 44 

 

(4e) 9.37 

 

8.45 

 

0.34 

 

0.34 

 

151 

 

(6e) 10.31 

 

8.48 

 

0.32 

 

0.30 

 

119 

 

(13e) 9.47 7.97 0.26 0.26 95 

Fe-NHC 

orange (1e) 

9.99 8.22 0.22 0.22 80 
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Figure 3.45: Nitrogen adsorption/desorption isotherm of mango cellulose (4d), DSC activated 

mango cellulose (6d), IL grafted mango cellulose (13d) and Fe-NHC mango cellulose (1d). 

Figures 3.45 shows nitrogen adsorption isotherm obtained by measuring the amount 

of N2 gas adsorbed across a wide range of relative pressures at a constant temperature 

(liquid N2, 77K). Conversely desorption isotherms are achieved by measuring gas 

removed as pressure is reduced. The nitrogen isotherm indicates mesoporosity of 

narrow size distribution across all the samples analysed. However, noticeable changes 

in the desorption pattern can be seen between the mango peel cellulose and the surface 

modified mango cellulose grades. These changes are attributed to the reduction of the 

pore sizes as different groups are attached to the surface of the mango cellulose.   
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Figure 3.46. BJH adsorption dV/dlog(D) pore volume distribution for mango cellulose (4d), 

activated mango cellulose (6d), ligand grafted mango cellulose (13d) and Fe-NHC mango 

cellulose (1d). 

In Figure 3.46 the BJH adsorption pore volume of the mango cellulose shows a mono-

modal distribution around 10 nm while that of the DSC activated, IL grafted and Fe-

NHC mango cellulose each shows a poly-modal distribution between 2-50 nm within 

the mesoporous region. 

The mango peel BET surface area was 51.04 m2 g-1 and pore volume (0.125 m2 g-1) 

with pores confined to the mesopore range. Indeed t-plot analysis showed micropores 

contributed relatively little the porosity, having negligible volume and area. The BJH 

pore volume agreed with the total pore volume from the adsorption isotherm at 0.9935 

P/P0 (<300 nm pore diameter), further highlighting the absence of microporosity. BJH 

size distribution was indeed within a narrow range, having an average diameter of 7.45 

nm. Moreover, the BJH adsorption pore volume of the mango cellulose shows a mono-

modal distribution at 10 nm while the BJH desorption pore volume showing a 

characteristic tri-modal distribution with volume maxima at 2.7 nm and 10 nm.  
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Figure 3.47. BJH adsorption dV/dD pore volume distribution of mango cellulose (4d), 

activated mango cellulose (6d), ligand grafted mango cellulose (13d) and Fe-NHC mango 

cellulose (1d) 

Figure 3.47 shows BJH desorption pore volume of the four samples analysed, with 

mango peel cellulose (4d) showing a characteristic tri-modal distribution with volume 

maxima at 2.7 nm and 10 nm. The other three samples namely; DSC activated mango 

peel cellulose (6d), ligand grafted mango peel cellulose (13d) and Fe-NHC mango 

peel cellulose (1e) shows almost a mono-modal distribution.  
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Figure 3.48. Nitrogen adsorption/desorption isotherms of orange peel cellulose (4e), DSC 

activated orange peel cellulose (6e), ligand grafted orange peel cellulose (13e) and Fe-NHC 

orange peel cellulose (1e). 

Figure 3.48 indicates meso-porosity of narrow size distribution across all the samples 

analysed. However, noticeable slight changes in the desorption pattern can be seen 

between the orange peel cellulose and the surface modified orange peel cellulose 
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grades. These slight changes are attributed to the reduction in the pore sizes as different 

groups are attached to the surface of the orange peel cellulose. In contrast with the 

isotherms of the mango peel cellulose (Figure 3.45), isotherms of orange peel cellulose 

showed only a slight change in the desorption pattern because it has larger pore sizes 

almost twice that of the mango cellulose, as such no great hindrance on desorption 

even after attaching other groups in the modified forms (DSC, IL and Fe-NHC 

modified).   

Figure 3.49. BJH adsorption dV/dD pore volume distribution of orange cellulose (4e), 

activated orange cellulose (6e), ligand grafted orange cellulose (13e) and Fe-NHC orange 

cellulose (1e)  

The BJH adsorption pore volume of the orange peel cellulose and Fe-NHC orange peel 

cellulose shows a mono-modal distribution around 10 nm while that of the DSC 

activated and IL grafted each shows a poly-modal distribution between 2-50 nm. These 
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however, shows that all the samples analysed have pore diameters within the 

mesoporous region. 

Figure 3.50. BJH desorption dV/dlog(D) pore volume distribution of orange cellulose (4e), 

activated orange cellulose (6e), ligand grafted orange cellulose (13e) and Fe-NHC orange 

cellulose (1e).  

Figure 3.50 shows BJH desorption pore volume of the four samples analysed, with 

orange peel cellulose and IL grafted orange peel cellulose showing a characteristic bi-

modal distribution with volume maxima at 2.7 nm and 8 nm. The other two samples 

namely; DSC activated orange peel cellulose and Fe-NHC orange peel cellulose shows 

almost a tri-modal distribution with volume maxima at 2.5 nm and 7 nm.  

The orange peel cellulose was particularly of high surface area (151.12 m2 g-1) and 

pore volume (0.34 m2 g-1) with pores confined to the mesopore range. Similar to mango 

cellulose, t-plot analysis showed micropores to contribute little to porosity, having 

negligible volume and area. The BJH pore volume agrees with the total pore volume 

from the adsorption isotherm at 0.9935 P/P0 (<300 nm pore diameter), further 

highlighting the absence of micro-porosity. BJH size distribution was indeed within a 

narrow range, having an average diameter of about 8 nm. Moreover, the BJH 
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adsorption pore volume of the orange peel cellulose shows a mono-modal distribution 

at 10 nm while the BJH desorption pore volume showing a characteristic bi-modal 

distribution with volume maxima at 2.7 nm and 8 nm.  
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3.3. Part 2: Catalytic study: Fructose (2) to HMF (3) 

conversion 

 

3.3.1. 1H and 13C NMR spectroscopy study of catalytic conversion of fructose (2) 

to HMF (3) with respect to time 

The effectiveness of the catalytic conversion of fructose (2) to HMF (3) using the 

various fabricated Fe-NHC supported catalysts (1a-e) at fixed temperature (100 oC) 

was monitored initially by 1H and 13C NMR spectroscopy. 

Figures 3.52 to 3.54 show stacked 1H NMR spectra for the dehydration of fructose (2) 

in the presence of Fe-NHC catalyst immobilised on expanded HACS (1a), Starbon™ 

350 (1b), Starbon™ 400 (1c), mango peel cellulose (1d) and orange peel cellulose (1e) 

at t= 10 min, 20 min, 0.5 h, 1 h, 3 h and 6 h. As shown in Figure 3.51, qualitatively the 

dehydration of fructose (2) to HMF (3) is characterized by a visible colour change 

from colourless to pale yellow solution (0.5 h), light brown (1 h to 3 h) to dark brown 

(6 h) reaction time. The onset of the dark brown colour is characteristic of HMF 

decomposition to formic and levulinic acid and humins, as discussed below.208,209 

 

Scheme 3.2. HMF rehydration to levulinic acid and formic acid. 

 

Figure 3.51 Colour change as fructose is converted to HMF with time.  From pale straw (LHS) 

to dark brown (RHS). 
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Figure 3.52. Stacked 1H NMR spectra for fructose (2) conversion to HMF (3) with Fe-NHC 

HACS catalyst (1a). 

As can be seen from figure 3.52 corresponding to fructose (2) conversion using the Fe-

NHC immobilised on expanded HACS (1a), weak signals at 7.44 ppm, 6.55 ppm and 

4.46 ppm characteristic of HMF (3) start to appear within 20 minutes reaction time 

which then develop in intensity as the reaction proceeds over time. HMF (3) is clearly 

evident after 30 min ((1 H, H-C=O, 9.49 ppm), (1H, O=C-C=CH, 7.44 ppm), (1H, 

H2C-C=CH-, 6.55 ppm) and (2H, HO-CH2 -C=CH, 4.46 ppm)) coupled with 

significant reduction in the signals for fructose (2). The signal at 8.08 ppm was 

assigned to formic acid which is formed as a consequence of the reverse hydrolysis 

reaction of HMF (3), considered as one of the side reactions of fructose dehydration.210, 

211 While the signal at 2.45 ppm is assigned to DMSO- d6 
212, complex multiplets for 

fructose are in the region 3-5 ppm. 213 Interestingly, as the reaction progresses over 

time, the intensity of HMF (3) signals starts to decline slightly after 1 h reaction time 

which may be due to the re-hydration side reaction to formic acid and levulinic acid as 

mentioned earlier. However, the presence of formic acid and absence of levulinic acid 

suggests that formic acid is formed via a different route that involves breakdown of 

humins to release formic acid, not the rehydration of HMF. The formation of humins 

is further supported by the darkening of the reaction media as shown in Figure 3.51. 
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Figure 3.53 Stacked 1H NMR spectra for fructose (2) conversion to HMF (3) with Fe-NHC 

Starbon™ 350 catalyst (1b, Figure A) and Starbon™ 400 catalyst (1c, Figure B), respectively. 

In Figure 3.53A corresponding to fructose (2) conversion to HMF (3) with Fe-NHC 

Starbon™ 350 (1b), product signals were evident at t= 20 min, coupled with almost 

near disappearance of signals from fructose in the region 3.3-4.3 ppm. Interestingly, 
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the intensity of HMF (3) signals also declined after 1 h reaction time which may be 

due to the re-hydration side reactions. Prolonging the reaction from 1 h through 3 h to 

6 h did not prove beneficial to HMF (3) production, with longer reaction time resulting 

in decrease of the HMF (3) signals and increased intensity of the signal at 8.0 ppm 

assigned to formic acid. Again, this validates the increasing susceptibility of HMF (3) 

re-hydration with respect longer reaction time.  

A similar pattern of fructose dehydration was observed for the corresponding fructose 

(2) conversion with Fe-NHC Starbon™ 400 (1c) (Figure 3.53B).  HMF signals were 

also evident at t= 20 min, coupled with almost the disappearance of the signals from 

fructose at 3.3-4.3 ppm. However, interestingly, for Fe-NHC Starbon™ 400 (1c), at 6 

h reaction time, a much greater decrease in intensity of the HMF (3) signals was 

observed with corresponding increase in formic acid signal (8.1 ppm). 
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Figure 3.54 (C and D). Stacked 1H NMR spectra for fructose (2) conversion to HMF (3) with 

Fe-NHC mango peel cellulose catalyst (1d, Figure C) and orange peel cellulose catalyst (1e, 

Figure C) respectively. 

Figures 3.54C and 3.54D shows the fructose (2) conversion with Fe-NHC mango peel 

cellulose (1d, C), and Fe-NHC orange peel cellulose catalyst (1e, D).  Signals for HMF 

(3) were evident at t= 30 min instead of t= 20 min as observed for expanded HACS 

(Figure 3.52) and Starbon™350 and 400 (Figure 3.53A and B) immobilised Fe-NHC 

counterparts. This indicates that the orange and mango peel Fe-NHC catalysts are 

kinetically slower in activity than expanded HACS (1a) and Starbon™ supported 

catalysts (1b and 1c), which may be attributed to the low porosity of the mango and 

orange peel cellulose support as compared to HACS and Starbon™ supports (see Table 

3.8). Low porosity limits diffusion of molecules towards the catalytically active iron 

centre. The difference in porosity is supported by the lesser perforations of the orange 

and mango peel cellulose as observed from the SEM images and the lower pore 

volume, diameter and surface area as compared to the HACS and Starbon™ supports.    

Similarly, the intensity of HMF (3) signals also declined after 1 h.  
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Figure 3.55. Stacked 13C NMR spectra for fructose (2) conversion to HMF (3) with Fe-NHC 

HACS catalyst (1a). 

Similarly, a supporting 13C NMR spectroscopy study was conducted to evidence 

fructose (2) to HMF (3) conversion.  Figure 3.55 for catalyst (1a) revealed a decrease 

in fructose (2) resonances (60 - 105 ppm) coupled with an increase in those for HMF 

(3) with respect to time. HMF signals were evident at t=0.5 h (56.43 ppm, HO-CH2-

C=CH-), (110.24 ppm, HO-CH2-C=CH-), (152.25 ppm, O=HC-CH=C-), (162.66 

ppm, HO-CH2-C=CH2-) and 178.53 ppm, O=CH-C=CH)).214 The signal at 163.45 

ppm most likely corresponds to formic acid which agrees with its resonance observed 

by 1H NMR spectroscopy at 8.0 ppm. 
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Figure 3.56. (A and B) Stacked 13C NMR spectra for fructose (2) conversion to HMF (3) with 

Fe-NHC Starbon™ 350 catalyst (1b, A) and Starbon™ 400 catalyst (1c, B) respectively. 
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Very few changes were observed in figure 3.56 A and B when compared to Figure 

3.55. All the signals for HMF are evident, with only a decreased in the intensities when 

compared to Figure 3.55.  
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Figure 3.57. (C and D). Stacked 13C NMR spectra for fructose (2) conversion to HMF (3) with 

Fe-NHC mango peel cellulose catalyst (1d) and orange peel cellulose catalyst (1e), 

respectively. 

Similarly, the 13C NMR spectra of fructose (2) conversion to HMF (3) using Fe-NHC 

mango peel cellulose catalyst (1d) and orange peel cellulose catalyst (1e) (Figure 

3.57C and D), fructose loss and HMF production resonances are as discussed for 

catalysts 1a-c earlier.  Interestingly and similar to the complementary proton NMR 

(Figure 3.54 C and D), the intensity of HMF signals also declined after 1 h reaction 

time due to the re-hydration side reactions. 

3.3.2.  HPLC analysis of fructose to HMF 

In order to investigate yield and selectivity the dehydration of fructose (2) to 

HMF (3) was investigated by HPLC. 
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Figure 3.58. HPLC results of fructose conversion to HMF with Fe-NHC HACS catalyst (1a). 

Condition: Fructose 180 mg, catalyst 14.7 mg, DMSO 4 mL, 100 oC. 

For Fe-NHC expanded HACS (1a) (Figure 3.58), at 0.5-1 h, high HMF (3) yield and 

selectivity was obtained thus indicating effectiveness of (1a) as a catalyst for fructose 

(2) dehydration to HMF (3). The high selectivity at this time could be explained by the 

low probability of re-hydration at this point compared to proceeding times. The best 

HMF (3) yield (90%) was obtained at t= 1 h. Thereafter, although fructose conversion 

is the highest (97 %) for 6 h reaction time both HMF yield and selectivity drop 

significantly. As proposed earlier this may be due to re-hydration to formic acid which 

is seen at 4.74 min retention time and supported by NMR (1H and 13C) analysis 

discussed earlier. 
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Figure 3.59. (A and B) Consolidated HPLC results for fructose (2) conversion to HMF (3) 

with Fe-NHC Starbon™ 350 catalyst (1b, A) and Starbon™ 400 catalyst (1c, B), respectively. 

Condition: Fructose 180 mg, catalyst 31 to 32 mg (depending on catalyst Fe loading), DMSO 

4 mL, 100 oC. 
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Figure 3.59A which corresponds to the catalytic conversion using the Fe-NHC 

Starbon™ 350 catalyst (1b) indicates best catalytic activity with HMF yield of 82 % 

(TOF=169 h-1), fructose conversion of 95 % and HMF selectivity of 86 % at t=0.5 h. 

No significant changes occur on taking the reaction further to t=1 h. Thereafter, at t=3 

h and t=6 h, both HMF yield and selectivity drops significantly. As earlier stated, this 

may be due to formation of humins. 

Figure 3.59B on the other hand, corresponding to the catalytic with Starbon™ 400 

catalyst (1c), gave similar conversion, yield and selectivity at 0.5 h to 6 h reaction time 

when compared to its Starbon™ 350 counterpart. However, a significant difference in 

conversion, yield and selectivity is noted at time t = 20 minutes, where Starbon™ 400 

(1c) performs more effectively than the Starbon™ 350 (1b) giving a HMF yield of 

about 80% as compared to 25% obtained with Starbon™ 350 catalyst. This 

observation may be attributed to the absence of iron oxide nanoparticles in Fe-NHC 

Starbon 400 (see TEM, Section 3.1.2.8), suggesting that all the iron present is 

catalytically active coordinated iron. While the presence of nanoparticles (possibly 

iron oxide, see TEM, section 3.1.2.8) in Fe-NHC Starbon 350 means that not all of the 

iron contained is catalytically active. 

A HMF yield of 81 % (TOF=241 h-1), fructose conversion of 87 % and HMF 

selectivity of 98 % at t=0.20 mins were obtained with Starbon™ 400 catalyst (1c). 

Taking the reaction to 0.5 h the yield increases to 88 %. No significant changes occur 

on taking the reaction further to t=1 h. Thereafter, at t=3 h and t= 6 h, both HMF yield 

and selectivity drops significantly, again due to rehydration side reactions. 
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Figure 3.60. (C and D) Consolidated HPLC results for fructose (2) conversion to HMF (3) 

with Fe-NHC mango peel cellulose catalyst (1d, C) and orange peel cellulose catalyst (1e, D) 

respectively. 
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Condition: Fructose 180 mg, catalyst 19 to 33 mg (depending on catalyst Fe loading), DMSO 

4 mL, 100 oC.  

Overall the mango and orange peel cellulose supported catalysts (1d and 1e, 

respectively) showed lower catalytic activity compared to HACS and Starbon™ 

supported catalysts (1a, and 1b and 1c, respectively), which may due to decreased 

porosity (see Table 3.8, in Section 3.1.1.8), therefore creating a barrier to diffusion of 

the reagents to catalytic sites.  However, it seems that given enough time a significant 

increase in HMF yield is noted for mango peel supported catalyst (1d) after 3 h reaction 

time (Figure 3.60C). Thereafter, taking the reaction to 6 h results in significant 

decrease in the HMF yield and selectivity.  Figure 3.60C indicates a HMF yield of 71 

%, fructose conversion of 72.5 % and HMF selectivity of 97.5 % at t=1 h, TOF= 79.2 

h-1 for Fe-NHC mango cellulose catalyst (1d).  Figure 3.60D shows similar conversion: 

HMF yield 71.7 % (t=0.5 h), TOF= 146 h-1 for Fe-NHC orange peel cellulose catalyst 

(1e). 

3.3.3. Comparative study of Fe-NHCs immobilised on renewable supports (1a-

e) with other heterogeneous catalysts (Amberlyst-15, Montmorillonite 

K10 and ZSM-5) for fructose (2) to HMF (3) dehydration 

Figure 3.61 A-C shows the results (yield, selectivity and conversion) for fructose (2) 

dehydration to HMF (3) (determined by HPLC) using a variety of heterogeneous 

catalysts, namely: Amberlyst-15, Montmorillonite K10 and ZSM-5 (SiO2:Al2O3=30) 

and compared with 1a-e.  Thus, to compare activity between all catalysts, a series of 

standard reactions were undertaken using the same amount of fructose and DMSO at 

100 ◦C. To ensure consistency in the amount of Fe added in moles, the amount of 

catalysts added (in mg) changes based on the Fe loading of each catalyst used. 

Literature data was not used because lack of knowledge of exactly how the study was 

performed would add huge uncertainty when trying to compare data. 
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Figure 3.61A-C. HPLC results for fructose conversion (A), HMF yield (B) and HMF 

selectivity (C) for 1a-e and selected commercially available catalysts. Condition: Fructose 180 

mg, catalyst 14 to 32 mg (depending on catalyst Fe loading), DMSO 4 mL, 100 oC.  

For Amberlyst-15, maximum yield of HMF (80%) occurred after 6 h, however, even 

after 20 mins HMF yield had reached 72%.  Thus, it is fair to conclude that no 

appreciable increase in yield occurs after 20 mins. The behaviour of Montmorillonite 

K-10 shows HMF formation at T= 30 mins and longer.  An almost linear increment in 

HMF yield, but with a bit of abnormality at t=1 h at which the yield and selectivity 

seemed to drop a little, was seen up to t=6 h. ZSM-5 catalyst attains a good yield at 

t=6 h but no significant yield up to t=3 h. Expanded HACS supported Fe-NHC catalyst 

(1a) had its highest HMF yield at t= 1 h. However, for Starbon 400 Fe-NHC catalyst 

(1c) the fructose conversion, HMF yield and HMF selectivity, started very high at 

initial reaction time of t=20 min to 1 h and thereafter the HMF yield started to drop 

significantly with increasing reaction time.  

Orange peel cellulose Fe-NHC catalyst (1e) and Starbon™ 350 catalyst (1b) showed 

a near similar activity in terms of fructose conversion and HMF yield and selectivity. 

Fe-NHC mango cellulose (1d) had the lowest activity among the fabricated supported 
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NHC-Fe catalysts which is attributed to its very low pore size making diffusion of 

reactant and product in and out of the active centres very slow. 

Importantly, at highest fructose conversion levels (after t= 1 h, Figure 3.61A), the 

novel Fe-NHC catalysts immobilised on expanded HACS (1a), Starbon 350 (1b) and 

Starbon 400 (1c) show better performance than their commercial counterparts with 

respect to HMF yield (see Figure 3.61B). 

3.3.4.  Catalyst recycling study 

The importance of catalyst recycling is to determine the stability of the catalyst in the 

reaction conditions employed against leaching or poisoning. Catalyst recycling and re-

use was investigated in DMSO-d6 at 100 ◦C with each experiment run for 1 h reaction 

time and monitored by NMR (qualitative) and HPLC (quantitative). As shown by the 

quantitative data. Figure 3.62A shows that the desired Fe-NHC expanded HACS 

catalyst (1a) can be re-used up to four times (4x) without significant loss in 

performance. The other catalysts (1b-e) (Figure 3.62 B-E) however, showed that they 

can be recycled up to five times (5x) without any significant reduction in their catalytic 

activity towards fructose (2) to HMF (3) conversion. 
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Figure 3.62. (A-E) Catalytic (re)use data for fructose conversion, HMF yield and selectivity 

over (A) Fe-NHC expanded HACS (1a), (B) Fe-NHC Starbon™ 350 (1b), (C) Fe-NHC 

Starbon™ 400 (1c), (D) Fe-NHC MPC (1d) and (E) Fe-NHC OPC (1e). 
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3.3.5.  Catalysts leaching test 

In order to confirm that the novel Fe-NHC catalysts are heterogeneous and the iron is 

firmly immobilised, i.e., no or limited leaching, post fructose to HMF conversion (at 

100oC) the reaction mixture was filtered whilst hot and the filtrates were subjected to 

ICP analysis. The leachate showed insignificant amounts of Fe (35-79.49 ppb) 

confirming strong co-ordination on the iron within the NHC. 

3.3.6. Temperature and reaction time study for the catalytic conversion of 

fructose (2) to HMF (3) with Fe-NHC immobilised on Starbon 350 (1b) 

A brief, and partly representative study of the other Fe-NHCs (1a, 1c-e), study of 

optimum temperature for conversion of fructose to HMF (yield, conversion and 

selectivity, Figure 3.63) with respect to Fe-NHC immobilized on Starbon 350 (1b) was 

done. It can be inferred from the results (Figure 3.63) that increasing the reaction 

temperature from 80 to 100 oC for all temperatures except 3 h is beneficial if not crucial 

to achieving higher conversion (max, 96%), yield (max, 82%) and selectivity (max, 

85%), except at 3 h.   Significant differences in fructose conversion, HMF yield and 

HMF selectivity are seen between 20 min to 1 h, thereafter the difference in much less.  

With respect to reaction time, at 100 oC, prolonging the reaction after 1 h did not result 

in any beneficial effect but results in decrease in HMF yield and selectivity. At 80 oC 

reaction temperature however, good fructose conversion, HMF yield and HMF 

selectivity were only achieved after a longer reaction time of 3 h. Prolonging the 

reaction from 3 h resulted in decreasing yield and selectivity. 
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Figure 3.63. A, B and C.  Comparative study of the fructose to HMF conversion with other 

catalysts. Conditions: Fructose 180 mg, Fe-NHC S350 1b 32 mg, DMSO 4 mL, 80 oC then 

100 oC. 
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3.3.7.  Kinetic studies 

 

Figure 3.64. Reaction kinetic curve (yield vs time) for Fe-NHC HACS (1a) and Fe-NHC-

StarbonTM-350 (1b), Fe-NHC StarbonTM 400 (1c), Fe-NHC mango peel cellulose (1d) and 

Fe-NHC orange peel cellulose (1e). Conditions: Fructose 180 mg, catalyst 14 to 33 mg 

(depending on Fe loading in each catalyst), DMSO 4 mL, 100 oC 

The kinetic profile (Figure 3.64) based on HMF yield efficiency for the five different 

supports employed (1a-e), showed a similar pattern. At 20 minutes HMF yield (81%) 

was highest for Starbon-400 support (1c), with Fe-NHC HACS (1a) having the lowest 

yield (3.7%). At 30 minutes good yields were obtained with all the catalysts except 

Fe-NHC mango peel cellulose (1d) with a lower yield of 27 % at 30 minutes reaction 

time. Highest yields were obtained at 1 h reaction time except for the Fe-NHC mango 

peel cellulose (1d) which attained its highest yield at 3 h reaction time. Generally, it 

was noted that for all catalysts employed, prolonging the reaction to 3 h and 6 h 

resulted in decreased yields of HMF. This is attributed possible rehydration to formic 

and levulinic acid or formation of humic substances as evidenced by darkening of the 

reaction mixture. In the absence of catalyst (blank) there were significantly lower HMF 

yields even at longer reaction times of 3 h and 6 h.  
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Further temperature kinetic analysis of fructose dehydration to HMF catalyzed by Fe-

NHC Starbon 350 (1b) was performed using DMSO as reaction solvent. To conduct 

the kinetic studies of the fructose to HMF conversion using the fabricated Fe-NHC 

supported catalyst, it was assumed that fructose (2) to HMF (3) dehydration follows 

pseudo-first order reaction kinetics as there is only one starting material, i.e, fructose 

giving one predominant product (HMF).215 

The rate of fructose conversion (Eq .4) can thus be expressed as: 

     - r[fructose] =  - d[fructose] = k[fructose] = d[HMF]   … … … … … (𝐸𝑞. 4) 

     dt                     dt                          

where [fructose] and [HMF] represents molar concentrations of fructose and HMF 

respectively, k is the rate constant of fructose dehydration at a temperature. 

                                    Ln k = - Ea + ln A … … … … … (𝐸𝑞. 5) 

                                                  RT 

 According to the above Arrhenius equation (Eq. 5), Eq 4 can be transformed in to a 

linear equation of the form y = mx+c (Eq. 6), where X is fructose conversion, t is 

reaction time, k is the rate constant, and C is an arbitrary constant.215 

    -ln(1 - X) = kt + C  … … … … … (𝐸𝑞. 6) 
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Figure 3.65. Kinetic parameters for fructose (2) to HMF (3) conversion at 80 oC and 100 oC 

based on first-order assumption for Starbon 350 (1b). 

The values of ln (1 - X) were plotted against the reaction time (t) to obtain the pseudo 

first-order rate constant (k) (Figure 3.65) which, as expected, shows that k (rate 

constant) for fructose (2) to HMF (3) increases with increase in reaction temperature 

from 80 oC (0.0145 M s-1) to 100 oC (0.0235 M s-1). 

The activation energy was calculated from the observed rate constant k1 (0.0145 ± 

0.00144 M s-1) and k2 (0.0235 ± 0.00375 M s-1) at 80 and 100 oC, respectively using 

the equation 7.  

ln(k2/ K1) = Ea/R x (1/T1 - 1/T2) … … … … … (𝐸𝑞. 7) 

where 

Ea is the activation energy of the reaction in J mol-1 

R is the ideal gas constant = 8.3145 J K-1·mol-1 

T1 and T2 are absolute temperatures 
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k1 and k2 are the reaction rate constants at T1 and T2 

The observed activation energy for Starbon 350 catalyst (1b) is found to be 26.8 kJ 

mol-1. Though the activation energy is lower than that reported in some literature at 

similar reaction conditions, the result only presents very preliminary data but would 

suggest that the catalyst may be superior to those previously reported for HZSM-5 

(Si/Al = 25) (70 kJ mol-1) and MIL-101(Cr)-SO3H (55 kJ mol-1). 215 

3.3.8. Summary 

Thus, in summary although not all the intermediates on route from fructose to HMF 

have been characterised, in comparison with the work of Guan et al.214 the following 

mechanism (Scheme 3.3) for conversion of fructose (2) to HMF (3) is proposed. The 

iron (Fe3+) coordinates with the carbonyl and adjacent OH within fructose to form a 

metal-fructofuranose complex. A series of three dehydrations (-3 H2O) induced by the 

catalyst attaching and detaching the fructose ring structure affords the desired HMF 

(3). This further implies the need for the catalytic centre to be an ion, hence the 

presence of Fe nanoparticles (Fe2O3 or FeO) aren’t catalytically active. 
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Scheme 3.3. Proposed fructose (2) dehydration mechanism to HMF (3) by Fe-NHC catalyst.     
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3.4. Part 3:  Glucose and fructose dehydration to 5-CMF 

The thermal and chemical instability issues, coupled with the high solubility in water, 

and low melting point of HMF have become a hinderance towards the successful 

generation of fuels and chemicals from carbohydrates and other ligno-cellulosic 

materials. This limitation has in recent years paved the way for CMF as better 

alternative to HMF in this regard. CMF has better thermal and chemical stability, lower 

polarity ( immiscible in water), and it can be more readily produced from glucose and 

cellulose biomass due to its lipophilicity.55, 56 As reported by Mascal et al. CMF serves 

as a precursor to the new generation bio-fuels and high value chemicals.57 

NHC metal complexes has been shown to catalyse the conversion of fructose to HMF 

through a mechanism that involves attaching and detaching of the NHC metal complex 

on fructose leading to successive dehydration stages (Scheme 3.3).214 NHC metal 

complexes ability to also catalyse the isomerisation of glucose to fructose (see later 

scheme 3.5) warrants the use of the fabricated Fe-NHC catalyst for glucose to CMF 

conversions.214   

 

Scheme 3.4. Fructose and glucose dehydration to HMF and conversion to CMF. 

 

3.4.1. Application of the fabricated catalyst towards fructose dehydration to 

 5-(chloromethyl)furfural (CMF) 

3.4.1.1. 1H NMR spectroscopy results on the fructose conversions to CMF  
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Figure 3.66 1H NMR of fructose to CMF conversion using aqueous HCl. 

 

Figure 3.67 1H NMR of fructose to CMF conversion using aqueous HCl and Fe-NHC Starbon 

350 catalyst (1b). 
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As can be seen from figures 3.66 & 3.67 corresponding to fructose (2) conversion to 

CMF (14) using HCl and HCl/Fe-NHC Starbon 350 catalyst (1b), CMF (14) is evident 

at 30 min ((1 H, H-C=O, 9.45 ppm), (1H, O=C-C=CH, 7.42 ppm), (1H, H2C-C=CH-

, 6.53 ppm) and (2H, Cl-CH2-C=CH, 4.48 ppm)) coupled with almost depletion of the 

signals for fructose. The signal at 8.08 ppm was assigned to formic acid. While the 

signal at 2.45 ppm is assigned to DMSO- d6. 
212 

The NMR data shows that there is no need to even prolong the reaction above 30 

minutes as the fructose has almost been fully converted to other products including the 

CMF at 30 minutes reaction time. 

 

Figure 3.68 13C NMR of fructose to CMF conversion using aqueous HCl. 
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Figure 3.69 13C NMR spectroscopy of fructose to CMF conversion using aqueous HCl and Fe-

NHC Starbon 350 catalyst (1b). 

The complementary 13C NMR spectroscopy study was conducted simultaneously with 

the 1H NMR to further evidence fructose (2) conversion to CMF (14).  Figures 3.68 & 

3.69 revealed a decrease in fructose (2) resonances (60 - 105 ppm) coupled with an 

increase in those for CMF (14) with respect to time. CMF signals were evident at t=0.5 

h (56.13 ppm, Cl-CH2-C=CH-), (110.47 ppm, Cl-CH2-C=CH-), (152.10 ppm, O=HC-

CH=C-), (162.57 ppm, Cl-CH2-C=CH2-) and 178.77 ppm, O=CH-C=CH)).214 The 

signal at 163.43 ppm most likely corresponds to formic acid which agrees with its 

resonance observed by 1H NMR spectroscopy at 8.0 ppm. 
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3.4.1.2. HPLC results for the fructose conversion to CMF using the 

fabricated supported Fe-NHC catalyst. 

 

Figure 3.70. Fructose conversion to CMF study using aqueous HCl.   

The results in Figures 3.70 shows the HPLC results of the fructose conversion to CMF. 

The fructose has the highest conversion to CMF up to 92 % yield at 1 h reaction time 

using both HCl and the Starbon 350 immobilised catalyst (1b). Without the Fe-NHC 

catalyst however, relatively 10 % lower yields where obtained at 1 h and 2 h reaction 

times.  
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3.4.2. Application of the fabricated catalyst towards glucose dehydration to  5-

(chloromethyl)furfural (CMF) 

The availability and low cost of glucose makes it more sustainable source of platform 

molecules than fructose. As such the research sought to use glucose as a substrate for 

the production of CMF. 

3.4.2.1. 1H NMR spectroscopy results on the glucose conversions to CMF 

 

Figure 3.71 1H NMR of glucose to CMF conversion using aqueous HCl. 
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Figure 3.72 1H NMR of glucose to CMF conversion using aqueous HCl and Fe-NHC Starbon 

350 catalyst (1b). 

In both Figure 3.71 corresponding to glucose conversion to CMF (14) using only HCl 

and Figure 3.72 corresponding to glucose conversion to CMF (14) using the Fe-NHC 

Starbon 350 catalyst (1b), weak signals at 7.42 ppm, 6.55 ppm and 4.56 ppm starts to 

appear at 30 min reaction time which develop in intensity as the reaction proceeds over 

time. CMF (14) was evident at 1 h reaction time (1 H, H-C=O, 9.45 ppm), (1H, O=C-

C=CH, 7.42 ppm), (1H, H2C-C=CH-, 6.52 ppm) and (2H, Cl-CH2-C=CH, 4.57 ppm) 

coupled with much reduction of the signals for glucose at t= 6 h. The signal at 8.06 

ppm was assigned to formic acid. While the signal at 2.45 ppm is assigned to DMSO- 

d6. 
212 

The NMR data shows that prolonging the reaction above 30 minutes is crucial to 

achieving higher yields. After 1 h reaction time, the yields start to reduce with 

increasing reaction time.  
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Figure 3.73 13C NMR of glucose to CMF conversion using aqueous HCl. 

 

Figure 3.74 13C NMR of glucose to CMF conversion using aqueous HCl and Fe-NHC Starbon 

350 catalyst (1b). 
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Figures 3.73 & 3.74 revealed a decrease in resonances (60 - 105 ppm) assigned to 

glucose, fructose (resulting from glucose isomerisation) and other intermediates 

coupled with an increase in those for CMF (14) with respect to time. CMF signals were 

evident at t=0.5 h (56.23 ppm, Cl-CH2-C=CH-), (110.28 ppm, Cl-CH2-C=CH-), 

(152.14 ppm, O=HC-CH=C-), (162.79 ppm, Cl-CH2-C=CH2-) and 178.78 ppm, 

O=CH-C=CH)). The signal at 163.81 ppm most likely corresponds to formic acid 

which agrees with its resonance observed by 1H NMR spectroscopy at 8.0 ppm. 

3.4.2.2. HPLC results for the glucose conversion to CMF using the 

fabricated supported Fe-NHC catalyst. 

 

Figure 3.75. Glucose conversion to CMF study using aqueous HCl with Fe-NHC catalyst (1b). 

Most interesting are the results of the glucose isomerisation and dehydration to CMF 

Figure 3.75. Glucose being a difficult substrate than fructose due to the difficulty to 

isomerise to fructose prior to dehydration. A trend of increasing 5-chloromethyl 

furfural yields by about 10-11% at 1 h and 2 hours reaction time was observed with 

the fabricated Fe-NHC catalyst as compared to the control experiment done without 

the catalyst. After 2 hours of the reaction time the yield starts to reduce with increased 

reaction time, possibly due to the catalyse degradation of CMF into humins. 
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3.4.3.  Application of the fabricated catalyst towards glucose dehydration to  

  5-(hydroxymethyl)furfural. 

The previous section (3.4.2) suggests that the fabricated Fe-NHC catalyst 1b might aid 

the glucose to fructose isomerisation which might be the reason for the increased CMF 

yield when the catalyst is added as compared to the control experiment in absence of 

catalyst. As such herein we investigated the conversion of glucose to HMF using the 

fabricated Fe-NHC catalysts 1a and 1b.  

3.4.3.1.  1H NMR spectroscopy study on the glucose dehydration to HMF. 

Figure 3.76 shows the stacked 1H NMR spectra at 100 ◦C for the isomerisation and 

dehydration of glucose to HMF in the presence of Fe-NHC catalyst at t= 0.5 h, 1 h, 3 

h and 6 h. 

 

Figure 3.76 1H NMR spectra results of glucose dehydration to HMF using Fe-NHC catalyst 

(1a). 
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Figure 3.77 1H NMR spectra results of glucose dehydration to HMF using Fe-NHC catalyst 

(1b). 

The proton NMR spectra of the glucose dehydration to HMF (Figure 3.76 & 3.77) 

using the synthesised immobilised Fe-NHC catalysts (1a) and Fe-NHC catalyst (1b) 

respectively, indicates that, weak HMF signals were only evident at reaction time of 3 

h to 6 h, (1 H, H-C=O, 9.48 ppm), (1H, O=C-C=CH, 7.44 ppm), (1H, H2C-C=CH-, 

6.55 ppm) and (2H, HO-CH2-C=CH, 4.46 ppm). However, the NMR data shows a 

very high yield of formic acid with signal at 8.09 ppm, suggesting that possibly the 

isomerisation of the glucose to HMF proceed very slowly such that the isomerised 

fructose produced continuously undergoes dehydration to HMF and subsequently to 

humins which later produce formic acid (8.08 ppm). 



171 
 

 

Figure 3.78 13C NMR spectra of glucose dehydration to HMF using Fe-NHC catalyst (1a). 

 

Figure 3.79 13C NMR spectra of glucose dehydration to HMF using Fe-NHC catalyst (1b). 
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Figures 3.78 & 3.79 revealed a decrease in resonances (60 - 105 ppm) assigned to 

glucose and other intermediates at 3 h to 6 h reaction time. Very weak, less visible 

HMF signals start to appear at t= 3 h and 6 h (56.23 ppm, HO-CH2-C=CH-), (110.28 

ppm, HO-CH2-C=CH-) and (162.79 ppm, HO-CH2-C=CH2-). The signal at 163.10 

ppm most likely corresponds to formic acid which agrees with its resonance observed 

by 1H NMR spectroscopy at 8.08 ppm. These weaker HMF signals, further supported 

the very poor HMF yields obtained through HPLC analysis of the conversion products. 

3.4.3.2. HPLC results of the glucose dehydration to HMF using the 

fabricated Fe-NHC catalyst. 

To further qualitatively and quantitatively characterise the catalytic glucose to HMF 

conversion using the fabricated Fe-NHC supported catalysts, HPLC was used to 

monitor the progress of the reaction and to obtain conversions and yields. 

 

Figure 3.80. HPLC results of glucose dehydration to HMF using Fe-NHC HACS catalyst (1a). 

The results of the HPLC analysis on the glucose to HMF conversion with the fabricated 

Fe-NHC HACS catalysts (1a) (Figure 3.80), shows that although higher glucose 

conversion was achieved, the HMF yields were quite low (about 2-15%). This 

indicates that the glucose is not successfully isomerised to fructose in good yields at 
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the reaction conditions used. Most of the glucose conversions are therefore into other 

intermediates rather than the fructose as proposed. 

 

Figure 3.81 HPLC results of glucose dehydration to HMF using Fe-NHC Starbon 350 catalyst 

(1b). 

The HPLC analysis on the glucose to HMF conversion with the fabricated Fe-NHC 

StarbonTM 350 catalyst (1b) (Figure 3.81) gives a similar result to that of Fe-NHC 

HACS catalyst (1b) with slight increase in HMF yields at 3 h reaction time obtained 

from the immobilised Fe-NHC Starbon 350 (1b) (18 % HMF yield).  
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3.4.3.3. Plausible mechanism for glucose isomerisation to fructose 

Based on the work of Guan et al.214 we propose the following plausible mechanism for 

isomerisation of glucose to fructose. The iron (Fe3+) coordinates with the adjacent OH 

within glucose to form a metal-glucopyranose complex. A series of rearrangement 

induced by the catalyst attaching and detaching the glucose ring structure affords the 

desired fructose isomer. 

 

 

Scheme 3.5. Plausible mechanism for glucose isomerisation to fructose. 
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CHAPTER 4.  Summary, Conclusions and Future Work 
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4.1.  Summary of Research Findings 

This chapter presented the results on the synthesis of an Fe-NHC catalyst synthesised 

through the alkylation of 1-(aminopropyl)imidazole 7 with 2,4,6-trimethylbenzyl 

chloride 10, to afford the desired NHC ligand precursor  (1-[aminopropyl]-3-(2,4,6-

trimethylbenzyl)imidazolium chloride 12. The desired ligand 12, was immobilised on 

various mesoporous supports which were later reacted with FeCl3 to produce the final 

Fe-NHC catalysts 1a-e. The different synthesised catalysts were characterised using 

diverse techniques including NMR spectroscopy, ATR-IR spectroscopy, XPS, 

Mossbauer spectroscopy, ICP-MS, thermogravimetry and porosimetry etc.  

The results on the characterisation of the various successfully synthesised, 

immobilized heterogeneous supported catalysts and their subsequent application 

towards fructose (2) to HMF (3) conversions is presented below in a tabular form 

(Table 4.1), highlighting the general trends with respect to catalyst nature and activity. 

A general discussion of the trend is presented. 

Table 4.1. Summary of measured parameters of the fabricated Fe-NHC catalysts.  

Parameter Fe-NHC 

HACS 

(1a) 

Fe-NHC 

S350 

(1b) 

Fe-NHC 

S400 

(1c) 

Fe-NHC 

MPC 

(1d) 

Fe-NHC 

OPC 

(1e) 

Surface Area BET (m2/g) 135 132 13 44 80 

Pore Volume (cm3/g) 0.60 0.35 0.19 0.07 0.22 

Pore diameter (nm) 16.30 09.30 48.63 4.32 8.22 

Fe loading (mmol/g) 0.68 0.31 0.32 0.30 0.52 

Fructose convers. (%) 87 95 89 99 75 

HMF yield (%) 86 81 88 70 72 

HMF selectivity (%) 99 85 99 71 95 

Condition: Fructose 180 mg, catalyst 14 to 32 mg (depending on catalyst Fe loading), 

DMSO 4 mL, 100 oC, 0.5 h.  

Note: For Fe-NHC MPC conversions and yields are reported at 1 h reaction time.  
 

The results in table 4.1. indicate that, although all the catalysts have the same Fe-NHC 

complex, the nature of the support plays a very important role in determining the 

loadings of the NHC ligand and subsequently the Fe itself. Fe-NHC HACS has the 

highest Fe loading of 0.68 mmol/g, a feature attributed to the substantial number of 
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OH groups on starch and the large surface area of the expanded HACS that allows for 

higher accessibility of the OH groups to which the ligand is bonded. The StarbonTM 

and cellulose immobilised Fe-NHCs have lower Fe loadings compared to expanded 

HACS due to lower ligand loadings as a result of the former having a limited number 

of OH groups after the carbonisation process and the latter having a more compact and 

partly crystalline nature that limits the accessibility of the OH groups.  

The results on the application of the supported catalysts towards fructose to HMF 

conversions showed that Fe-NHC HACS and Fe-NHC StarbonTM 350 have the highest 

HMF yield at 0.5 h reaction time, both of which have the largest pore diameters and 

good surface area that allow for effective diffusion towards the catalytically active 

sites. 

The two cellulosic supported catalysts (Fe-NHC MPC (1d) and Fe-NHC OPC (1e)) 

which were different in terms of Fe loadings and the surface area and porosity values, 

also showed different catalytic activities towards fructose to HMF dehydrations. Fe-

NHC MPC has the lowest HMF yields (27 %), less than half of the yields obtained 

with Fe-NHC OPC (71 %) at 0.5 h.  The inference here is that Fe-NHC MPC has 

significantly lower Fe loading, surface area, pore size, and pore volume compared to 

the Fe-NHC OPC which resulted in its reduced catalytic activity. The catalytic 

activities of the fabricated supported Fe-NHC catalysts, are very much influenced by 

their Fe loadings and surface area and porosity values, indicating the diverse nature of 

the fabricated catalysts. 

For the glucose and fructose to CMF conversions, the fabricated Fe-NHC catalyst 1b, 

has proven to have some catalytic activity, increasing CMF yields by about 10-11 % 

as compared with control experiments done without the catalyst. However, for the 

glucose conversions to HMF using the fabricated Fe-NHC catalysts 1a and 1b, highest 

HMF yields (15% for 1a and 18 % for 1b) were obtained at 3 h reaction time.  

4.2. Conclusion 

The proposed supported Fe-NHC catalyst (1a-e) were fabricated successfully as 

confirmed by the various characterization techniques employed. All mesoporous 

supports were effective for the immobilization of the Fe-NHC due to accessible OH 

groups and enhanced surface area and porosity. The performance of the catalysts for 
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heterogeneous catalytic conversion of fructose (2) to HMF (3) was investigated with 

good yields obtained. The supported Fe-NHC catalysts were also employed in other 

important catalytic reactions; glucose/fructose to CMF conversions and glucose to 

HMF dehydration.  

4.3. Future work 

Future work can be focused on many areas including; devising better synthetic routes 

to the NHC ligand, utilisation of other types of NHC ligands for the synthesis of the 

Fe catalyst, using other metal centres other than Fe, using other supports like silica, or 

trying other reactions such as the Diels-Alder reaction, and amidation. However, as 

part of the future work, some initial screening was done on amide synthesis using 

carboxylic acids and amines (see appendix A). 
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Appendix A Preliminary Amidation reaction 

 
Preliminary investigation on the use of Fe-NHCs (1a-e) as catalysts for amidation. 

 

Amides are one of the most important classes of organic compounds in the chemical 

and particularly pharmaceutical industries.216 The amide bond is one of the most 

fundamental functional group linkages. It is the single most common synthetic 

transformation used within medicinal chemistry.217 Amide bond has an estimated 

occurrence of 25% in available drugs.218 Roughley’s analysis of the most common 

reactions used within synthetic medicinal chemistry research across three of the largest 

pharmaceutical companies (GSK, AstraZeneca, and Pfizer) indicated that N-acylation 

to prepare amides ranked 1st for frequency of use, accounting for 16% of all reactions 

performed, with the amide linkage present in 54% of the compound set analysed.219  

However, considering the importance of amides, development of efficient 

methodologies for their synthesis becomes necessary.220, 221 

 

The fabricated catalyst Fe-NHC Starbon-350 1b was employed for direct amide 

synthesis from carboxylic acids and amines. 

 

Scheme A1. Amide formation from amines and carboxylic acid. 

Amides were synthesised by reacting acetic acid and benzoic acid with benzyl amine 

to produce benzyl acetamide and benzyl benzamide respectively (Scheme A1). The 

reactions were carried out using toluene as reaction solvent. Two reaction vessels were 

used under the same reaction conditions one serving as a control reaction without any 
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added catalyst and the other reactor containing Fe-NHC catalyst. The reactions were 

heated under reflux toluene for 12 hours with a sample taken after each hour. 

The result of the synthesis of benzanilide shows no conversion even after 12 hours of 

reaction time. The results however, are not very surprising as aniline is a very difficult 

substrate to use in amidation reaction especially when using carboxylic acids rather 

than the more reactive acid halides or anhydrides. This is due to the reduced 

nucleophilicity of aniline because of the delocalisation of the lone pair on the nitrogen 

into the delocalised electrons of the benzene ring. As such this result shows that the 

fabricated Fe-NHC catalyst is not effective in providing alternative pathway through 

which aniline can effectively react with the carboxylic acids to form amides. 

Comparing the results of the amide synthesis, it is apparent that the Fe-NHC catalyst 

does not promote the amidation reaction of the carboxylic acids and amines in 

question. 

The results above on the application of the synthesised supported Fe-NHC catalyst 

informed the decision to stop the investigation on the catalytic ability of the Fe-NHC 

catalyst towards amidation reactions. Focus was diverted on other important reactions 

that the catalyst might be very effective towards.  
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Appendix B  Fe loading calculations 

 

Calculation of the Fe loading of the Fe-NHC HACS from ICP-MS data.   

Table A1. Result of the ICP-MS analysis. 

  56Fe [He]  

Sample Name Conc. [ppb] Conc. RSD 

Fe NHC HACS 37978275.61        3.3 

 

The result of the ICP analysis indicated that the concentration of Fe in the sample is 

37978 ppm. Which is 3.8 % wt. 

Thus; 1 g has 0.038 g of Fe, 

So; 0.038/55.845 = 6.8x10-4 mol g-1 or 0.68 mmol g-1 

 

Calculation of the Fe loading of the Fe-NHC S350 from ICP-MS data. 

Table A2. Result of the ICP-MS analysis. 

  56Fe [He]  

Sample Name Conc. [ppb] Conc. RSD 

Fe NHC S350 17392029.55     2 

 

The result of the ICP analysis indicated that the concentration of Fe in the sample is 

17392 ppm. Which is 1.7 % wt. 

Thus; 1 g has 0.017 g of Fe, 

So; 0.017/55.845 = 3x10-4 mol g-1 or 0.30 mmol g-1 
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Calculation of the Fe loading of the Fe-NHC S400 from ICP-MS data. 

Table A3. Result of the ICP-MS analysis. 

  56Fe [He]  

Sample Name Conc. [ppb] Conc. RSD 

Fe NHC S350 17930914.76     2 

 

The result of the ICP analysis indicated that the concentration of Fe in the sample is 

17930 ppm. Which is 1.8 % wt. 

Thus; 1 g has 0.018 g of Fe, 

So; 0.018/55.845 = 3.2x10-4 mol g-1 or 0.32 mmol g-1 

 

Calculation of the Fe loading of the Fe-NHC mango cellulose from ICP-MS data. 

Table A4. Result of the ICP-MS analysis. 

  56Fe [He]  

Sample Name Conc. [ppb] Conc. RSD 

Fe NHC MPC 1614059.11 2 

 

The result of the ICP analysis indicated that the concentration of Fe in the sample is 

1614 ppm. Which is 0.16 % wt. 

Thus; 1 g has 0.0016 g of Fe, 

So; 0.0016/55.845 = 2.8x10-5 mol g-1 or 0.03 mmol g-1 

However, this sample was unlike the other, has been diluted x10 due to the concern 

expressed by the ICP unit that the samples previously submitted contain too much acid 

from digestion as such it was diluted further. 

Applying the dilution factor for correction; 0.03 x10 = 0.3 mmol g-1  
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Calculation of the Fe loading of the Fe-NHC Orange cellulose from ICP-MS data.   

Table A5. Result of the ICP-MS analysis. 

  56Fe [He]  

Sample Name Conc. [ppb] Conc. RSD 

Fe NHC OPC 29142441.03 2 

 

The result of the ICP analysis indicated that the concentration of Fe in the sample is 

37978 ppm. Which is 2.9 % wt. 

Thus; 1 g has 0.029 g of Fe, 

So; 0.029/55.845 = 5.2x10-4 mol g-1 or 0.52 mmol g-1 
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Appendix C HPLC standard calculation 

 

Quantitative HPLC using internal standard. 

 

The equation below is used for quantitative HPLC using furfural as internal standard.  

 

Area internal standard peak                               Concentration of internal standard 

--------------------------------------             =    F   ----------------------------------------- 

Area of desired product standard peak              Concentration of desired product 

stand. 

 

For our particular system we have, 

  

Area furfural standard peak                   Concentration furfural internal standard 

----------------------------------      =    F   ------------------------------------------------- 

Area of HMF standard peak                  Concentration of HMF standard 

 

Here F is a unitless factor used to correct for sensitivity issues during HPLC. 

58136468                 4 mg 

--------------   =    F   ---------  

25542388                 3 mg 

 

58136468                F x 4 mg 

--------------   =        --------- 

25542388                 3 mg 

 

F= 1.70 
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Appendix D XPS deconvolution of S350 and S400 

Deconvoluted XPS peaks for Starbon 350 (4b), Starbon-400 (4c) and their 

subsequent immobilised Fe-NHC catalysts (1b & 1c) 

 

Starbon 350 Deconvoluted Peaks. 

 
 

Figure D1. Deconvoluted C 1s peaks for Starbon 350 (4b) and Fe-NHC Starbon-350 

(1b). 

 

Figure D2. Deconvoluted O 1s peaks for Starbon 350 (4b) and Fe-NHC Starbon-350 

(1b). 
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Figure D3. Deconvoluted N 1s and Fe 2 p peaks for Fe-NHC Starbon-350 (1b). 

 

Starbon 400 Deconvoluted Peaks. 

 

 

Figure D4. Deconvoluted C 1s peaks for Starbon 400 (4c) and Fe-NHC Starbon-400 

(1c). 
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Figure D5. Deconvoluted O 1s peaks for Starbon 400 (4c) and Fe-NHC Starbon-400 

(1c). 

 

 

 

Figure D6. Deconvoluted N 1s and Fe 2 p peaks for Fe-NHC Starbon-400 (1c). 
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Appendix E  XPS deconvolution of MPC and OPC 

 
Deconvoluted XPS peaks for mango peel cellulose (4d), orange peel 

cellulose (4e) and their subsequent immobilised Fe-NHC catalysts (1d & 

1e). 

Mango Peel Cellulose Deconvoluted Peaks 

 

  

Figure E1. Deconvoluted C 1s peaks for mango peel cellulose (4d) and Fe-NHC 

orange peel cellulose (1d). 

  

Figure E2. Deconvoluted O 1s peaks for mango peel cellulose (4d) and Fe-NHC 

orange peel cellulose (1d). 
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Figure E3. Deconvoluted N 1s and Fe 2 p peaks for Fe-NHC mango peel cellulose 

(1d). 

 

 

Orange Peel Cellulose Deconvoluted Peaks 

 

 

 

 

Figure E4. Deconvoluted C 1s peaks for orange peel cellulose (4e) and Fe-NHC 

orange peel cellulose (1e). 
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Figure E5. Deconvoluted O 1s peaks for orange peel cellulose (4e) and Fe-NHC 

orange peel cellulose (1e). 

 

 

 

Figure E6. Deconvoluted N 1s and Fe 2 p peaks for Fe-NHC orange peel cellulose 

(1e). 
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Appendix F  1HNMR and 13C NMR of ligand synthesis 

 

Figure F1. 1H NMR spectrum of the synthesised NHC ligand (12). Methanol-d4 

 

Figure F2. 13C NMR spectrum of the synthesised NHC ligand (12) Methanol-d4. 
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Figure F3. 1H NMR spectrum of the BOC-protected mesityl-imidazole (11) CDCl3. 

 

 

Figure F4. 13C NMR spectrum of the BOC-protected mesityl-imidazole (11) CDCl3. 
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Figure F5. 1H NMR spectrum of the BOC-protected imidazole (9) CDCl3. 

 

Figure F6. 13C NMR spectrum of the BOC-protected imidazole (9) CDCl3. 



194 
 

Appendix G      S350 thermogravimetry in air 

 

Figure G1. Thermal analysis data (TG) of Starbon™ 350 

 

Figure G2. Thermal analysis data (dTG) of Starbon™ 350 
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