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The detection and quantitation of substances using analytical 
techniques is an important area in many fields. Accuracy, 
dependability, reproducibility, specificity and stability of the 
techniques used are all important. The first three parameters are 
largely operator dependent, however, specificity and stability of the 

components of the tests also play a part. 
The specificity of analysis may be determined chemically or 

biologically by using enzymes, immunological reagents or receptors of 
some sort. However, biological molecules are often unstable in 

purified, isolated forms and must be stabilised in some way to retain 
activity. 

The work reported here attempts to increase the knowledge of 
enzyme stabilisation, using the enzyme alcohol oxidase as a test 

enzyme. 
This enzyme was used in : 

(i) A manual assay for ethanol determination. 
(ii) An automated assay using both soluble and 

immobilised enzyme in segmented flow and flow injection analysis. 
(iii) A dry phase stabilised enzyme based test for 

ethanol in saliva. 
During the course of the work a method for stabilising the enzyme 

was discovered. This has been applied to a number of other enzyme 
systems, successfully stabilising them in most cases. This work forms 
the basis of a patent application for enzyme stabilisation. 

A novel detection system allowing semi-quantitative results to be 
obtained, using stabilised dry phase technology has also been 
discovered. A second patent application has been filed and the system 
has been applied to analytes measured by oxidase enzymes. 

The final area of investigation was to develop an enzymic assay 
for diacetyl. This substance is a contaminant in beer and as such 
requires accurate detection at low levels. The purification and 
characterisation of diacetyl reductase from a new source, (chicken 
liver) enabled various assay formats to be investigated. These 
included dye linked assays and enzyme amplified recycling assays to 
determine diacetyl in aqueous samples. 
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INTRODUCTION. 
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1. A. Enzymes, what are they? 

Enzymes are biological catalysts which are present in all 

living tissues. The concept of catalysis was proposed by Jakob 

Berzelius in 1836. A catalyst may be defined as a substance which 

promotes or accelerates a chemical reaction without any overall 

change itself. 

Some of the earliest evidences of catalytic action of living 

tissues were discovered by Planch in 1810 where plant roots were 

found to promote oxidation of a 
, 

solution of guaiacum, Thenard in 1818 

found hydrogen peroxide could be decomposed by animal tissue and 

Dubrunfaut in 1830 found he could obtain sugars from starch by an 

aqueous extract of barley malt. 

Such biological activity was described as a "ferment" derived 

from the obvious chemical changes during a fermentative process such 

as alcohol production by yeast. However the same term was used to 

indicate the catalyst causing some biochemical change in vitro. Even 

today this nomenclature- lingers on e. g. Zwischenferment, SIGMA 

Catalogue 1990 p514. 

The name, enzyme derived from the greek meaning "in yeast" was 

proposed by Fredrich Wilhelm Kuhne in 1878 as the name for such 

biological substances that showed catalytic activity, (Hoffmann- 

Ostenhof 1978). This name was also used to describe similar 

substances from other organisms, beside yeast itself. The name 

gradually gained acceptance and helped to end misunderstandings and 

disputes over descriptive terminology of the catalysts involved. The 

development of enzymology, as the study of enzymes is called, 

continued-with discoveries of enzymes from many sources such as yeast 

(invertase), pancreas (trypsin), germinating grain (amylase) and also 
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the finding of enzyme activity in blood, (amylase, lipase). 

Enzymes were found to be pH dependent in 1912 by Sorenson, also 

Bertraud in 1897 found certain small molecules were needed for 

catalytic activity the so called co-enzymes, the identity of which 

being discovered in 1935 by Otto Warburg. 

That enzymes were proteins was proved positively by the 

crystallisation of urease by J. B Sumner in 1926, this being followed 

by trypsin and pepsin shortly after. 

From that time to the present many enzymes have been discovered, 

isolated and studied. The chemical reactions of living tissue have 

been found to be almost all enzyme dependent. It has been said that 

the nucleic acids form the molecular basis for life, then it could 

also be said that enzymes provide the workforce for the chemistry of 

life, (all references from Bergm-eyer and Gawehu 1983). 

1. B. 1. How enzymes work. 

The most definitive character of enzymes is their ability to 

specifically recognise and interact with their own particular 

substrate or class of substrates. The recognition of this fact 

inspired Emil Fischer propose the "lock and key" theory of enzyme 

action in 1894. He postulated that enzymes acted rather like a 

template for the specific binding and subsequent reaction to take 

place. The basic concept of the theory helped explain the action of 

enzymes, and in 1959 Koshland added the concept of an "induced fit" 

of the substrate to the enzyme, in which he proposed conformational 

changes in the enzyme upon reaction with its substrate. This has been 

observed by X-ray crystallography for certain enzymes. A more 

detailed account is given in Dixon and Webb (1979). 

The action of the enzyme upon its substrate effectively lowers 
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the energy required to cause a chemical reaction to occur. This is 

the basic feature of a true catalyst, and a good illustrative account 

of this effect is given in Lehninger (1982). 

1. B. 2 Nomenclature 

J. Duclaux in 1883 proposed the naming of enzymes by adding the 

suffix "- ase" to the name root of the, substrate of the enzyme. For 

example, enzymes that hydrolyse lipids become lipases, whilst the 

enzyme that metabolises urea becomes urease. Alcohol, (ethanol) is 

oxidised to acetaldehyde by dehydrogenation of the molecule. The 

enzyme that catalyses the reaction being alcohol dehydrogenase. 

The vast majority of enzymes are named in this way, with a few 

exceptions such as. trypsin, pepsin and papain. As more new enzymes 

were discovered a definitive nomenclature system was proposed by the 

Enzyme Commission set up in 1955. The final report of this body was 

published in 1961 and proposed the classification of nomenclature 

that we know today, yet the general naming of enzymes remains true to 

the proposal of Duclaux, (Enzyme Nomenclature 1974). 

Enzymes are primarily classified according to their main type of 

reaction mechanism. 

1. Oxidoreductases. Oxidation/reduction reactions. 

2. Transferases. Group transfer between molecules. 

3. Hydrolases. Hydrolysis of molecules. 

4. Lyases. Group addition to double bonds or removal, 

(not'hydrolytic), leaving double bonds. 

5. Isomerases. Interconversion of isomers. 

6. Ligases. Synthesis, joining two molecules together 

utilising nucleoside triphosphates and 

breaking the pyrophosphate bond. 
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Within these classes each enzyme is systematically defined by two 

further parameters. 

(a) The nature of the chemical group acted on or type of 

molecule accepted by the enzyme. 

(b) The acceptor group or molecule for the reaction, 

which may be the cofactor for the enzyme. 

The Enzyme Commission nomenclature takes into account the nature 

and type of the overall chemical reaction catalysed. 

e. g. ) Alcohol dehydrogenase is given the designation E. C. 1.1.1.1. in 

this system. E. C. is Enzyme Commission. 

The first 1 is the class of oxidoreductases. 

The second 1 is the subclass of alcohols or hemiacetals. 

The third 1 is the sub-subclass of the acceptor molecule, the 

cofactor NADH. 

The fourth 1 is the number of the enzyme in the sub- subclass. 

The systematic name of the enzyme is alcohol : NAD' oxido- 

reductase. 

Similarly for alcohol oxidase ; E. C. 1.1.3.13. 

1 is class of oxidoreductases. 

1 is the subclass of alcohols and hemiacetals. 

3 is the sub-subclass of molecular oxygen as acceptor 

13 is the number of the enzyme in the sub-subclass. 

The systematic name being, alcohol : oxygen oxido-reductase. 

This systematic nomenclature classification is designed to 

provide insight into the overall reaction catalysed by any enzyme and 

thus eliminate errors in terminology. In practice many enzymes are 

referred to by trivial names or abbreviations, usually this is more 

convenient and causes few problems after the enzyme and its reaction 
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is well defined. 

1. C. 1. General Application of Enzymes. 

The very nature of enzyme catalysed reactions makes them of 

great interest, and they are used in many different fields of study. 

The specificity of the reaction, the ability of enzymes to catalyse 

reactions under mild or moderate conditions of temperature and pH and 

the production of well defined products, with minimal side reactions, 

all contribute to the usefulness of enzymes. The measurement of 

reactions by various methods, may be used as a means of quantifying 

the substrate, product or the enzyme itself, thus enabling analytical 

estimation of the parameter in question. 

Historically, enzymes have been used indirectly for centuries. 

e. g. yeast to produce alcohol in the fermentative process, and CO2 

during baking and the enzymes in germinating seeds during the 

process of malting. Isolated and purified enzymes however, are 

relative newcomers and yet are proving invaluable in many 

applications, some of which are described below. 

1. C. 2. Industrial Uses of Enzymes. 

This area includes the food industry, the beverage industry, the 

chemical and pharmaceutical industries and clothing industries. 

Enzymes are utilised within many areas, a few examples will 

illustrate the diversity of applications. 

(a) Amylases used in the production of malt extracts. 

(b) Glucose oxidase as an antioxidant in fruit or for colour 

control in wine. 

(c) Catalase for. hydrogen peroxide removal in food. 

(d) Proteases for detergent additives. 

(e) Epoxysuccinate hydrolase for tartaric acid production. 
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(f) Tyrosinase and tryptophanase to produce L-tyrosine, L-DOPA 

and L-5-hydroxy tryptophan. 

(g) Diisopropylphosphofluoridase to degrade redundant stocks of 

nerve gas. 

These are but a few of the many industrial uses of enzymes. For a 

more thorough review see Cheetham (1985). 

1. C. 3. Medical use of Enzymes. 

The main medical use of enzymes is in the diagnostic or 

analytical areas which will be discussed in greater detail in the 

next section. Other uses of enzymes in medicine have been reported. 

L-Asparaginase posseses anti-tumour activity, (Mauer and Simone 1976), 

trypsin and collagenase have been used to remove dead tissue from 

wound sites, (Sizer 1972), streptokinase is used for the dissolution 

of blood clots and keratinase for the removal of skin callouses or 

the excess keratin formed in skin diseases such as psoriasis. 

1. D. 1. The Concept and Development of Enzymes as Analytical Reagents. 

Enzymes have been used as analytical reagents as far back as 1862 

when Dragendorff used malt extract to estimate starch concentration 

in grain flour. Other crude enzyme preparations were used by 

Schonbein in 1868 for the detection of hydrogen peroxide to 1 part in 

107 parts and 0' Sullivan in 1875, to detect starch by means of 

purified diastase preparation. Also, the activity of enzymes present 

in body fluids, particularly in blood was suggested by Schmidt in 

1850. Actual enzyme activities were first measured by Wohlgemuth in 

1910 using amylase to measure pancreatic function, (Bergmeyer and 

Gawahu 1983). 

Improved instrumentation, and purified enzyme preparations have 

both contributed to the development of repoducible and accurate 
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enzyme based analytical techniques. The development of enzymes as 

analytical tools may be seen clearly in the published literature. An 

example to illustrate this is the publication entitled " Methods in 

Enzymatic Analysis" edited by Hans Ulrich Bergmeyer. The first 

edition appeared in 1963 in one volume. The second edition in 1974 

in four volumes and the third current edition started in 1983 

consists of twelve volumes, indicating the phenomenal increase of use 

of enzymes as analytical reagents since 1963. 

1. D. 2. Direct Enzyme Analysis. 

The measurement of a concentration of substrate using enzymes, or 

the measurement of an enzyme concentration in which the catalytic 

reaction is directly followed by some means, are examples of direct 

enzyme analysis. The sensitivity of such methods are usually 

dependent on the limit of direct detection of the reactants involved 

and equally the type of detection system used determines the 

concentration that may be detected. Fortunately, the majority of 

biologically important substances assayed using enzymes fall into the 

detection range of such methods and so in practice this type of assay 

is the most widely used. 

End-point or equilibrium assays involve the addition of 

relatively large amounts of enzyme to a limiting amount of substrate 

and the reaction is allowed to proceed to give full, or very nearly 

full, conversion of the substrate to product. 

Kinetic assays involve the addition of substrate to a small 

amount of enzyme, any co-factors needed are added in excess and the 

reaction rate is measured. The former has the advantage of being 

less susceptible to interferences and requires no special equipment 

however, large amounts of expensive enzyme and co-factor may be used 
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and the incubation time may be prolonged. The latter is susceptible 

to any interference in the kinetics of the reaction, so pH and 

temperature must be strictly controlled. This may require specialised 

and dedicated equipment, however the enzyme consumption and time for 

assay are both greatly reduced. A detailed comparison may be found 

in Gould and Rocks (1985). 

Examples of direct enzyme reactions are: 

Glucose + NAD `^ Gluconolactone + NADH +H 

This reaction is catalysed by the enzyme glucose dehydrogenase, 

(Vormbrock 1984) and it is seen that the reaction is in equilibrium. 

In such a case where equilibrium conditions exist, care has to be 

exercised in choosing the reaction conditions that are necessary to 

force the reaction to completion or, alternatively, to remove one of 

the products from the reaction, thereby pulling the reaction to 

completion: e. g. semicarbazide is used to react with the acetaldehyde 

produced in the determination of ethanol by alcohol dehydrogenase, 

(Lundquist 1957). 

Ethanol + NAD ` ---ý Acetaldehyde + NADH +H 

+ Acetaldehyde 

semicarbazide Semicarbazone 

In both of the cases above, detection of the NADH produced gives a 

measure of the original substrate concentration, (see section 1. E. 2). 

Similarly glucose may be estimated by consumption of oxygen, 

(Updike and Hicks 1967) or production of hydrogen peroxide, (Clark 

1970) in the following reaction. 

Glucose +02 Gluconolactone +H202 

catalysed by glucose oxidase. The reverse reaction does not occur in 

this case. 
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Coupled enzyme reactions for direct determinations are used where 

the detection of the products for the primary reaction is difficult. 

Thus, for reactions involving phosphorylations with ATP, a linked 

enzyme system may be used, (Vallins and Baumberg 1985). 

(1) Streptomycin + ATP -. Streptomycin 6-phosphate + ADP 

(2) ADP + Phosphoenolpyruvate ATP + Pyruvate 

(3) Pyruvate + NADH +H' Lactate + NAD 

The enzymes are: (1) streptomycin 6-kinase, (2) pyruvate kinase, 

(3) lactate dehydrogenase and the reaction is followed by the 

removal of NADH from the system. 

Detection of hydrogen peroxide formed from the glucose oxidase 

reaction may be linked to a further enzyme reaction catalysed by 

peroxidase, (Trinder 1969). 

Glucose +02 Gluconolactone +H202 

H202+ acceptor -f 2H20+ Oxidised acceptor 

Usually the oxidised-acceptor is some sort of intensely coloured 

dye, (this chapter, section 1. E. 3). 

More complex coupled reactions are also possible. 

(1) Triglyceride +H20 Glycerol + Fatty acids 

(2) Glycerol + ATP --ý L-(x - Glycerophosphate + ADP 

(3) L -Cl- glycerophosphate + 0z -+ Di OH acetone P+ H202 

(4) H202 + acceptor -----* 2 H2O + oxidised acceptor 

The enzymes are: (1) lipase, (2) glycerol kinase, (3) L-D- 

CY - glycerophosphate oxidase, (4) peroxidase. 

This series of reactions forms the basis of a commercial triglyceride 

assay, (Spayd et al 1978). 
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1. D. 3. Indirect Enzyme Analysis. 

The measurement of a compound which does not take part directly 

in the enzyme reaction occurring or where the enzyme is used as a 

means of detecting a reaction or amplifying a reaction, may be termed 

indirect enzyme analysis. Examples of such assays include: the 

determination of activators of enzyme reactions, such as magnesium in 

the following reaction sequence. 

(1) Glucose + ATP Glucose 6-Phosphate + ADP 

(2) Glucose 6-P + NADP' --'- Gluconate-6-P + NADPH + H` 

Enzymes: 1) Hexokinase (Mg 2. dependent). 

2) Glucose 6-phosphate dehydrogenase. 

The rate of reaction is dependent on the concentration of magnesium 

ions in the solution, (Hoffmann 1984). 

Similarly, the reaction of acetyl cholinesterase on the yellow 

compound indophenyl acetate, produces an intense blue dye. The 

presence of organophosphorus or carbamate pesticides inhibits the 

reaction, the concentration being directly related to the decrease of 

the rate of the reaction, (Huber 1984). 

Immunological reactions, which involve the interaction of 

antibodies with antigens, have been used for many years to quantify 

substances which are not direct substrates for enzymes. Antibodies 

which specifically recognise a particular compound, (the analyte to 

be measured), may be chemically attached to enzymes such as alkaline 

phosphatase, peroxidase and ß =galactosidase. The attached enzymes 

may then be used as a means of quantifying the immunological reaction 

by the amount of associated activity present and so, indirectly, 

the original amount of analyte present. This type of indirect enzyme 

analysis is termed enzyme linked immunosorbance assay or E. L. I. S. A. 
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for solid phase tests and enzyme multiplied immunoassay technique or 

E. M. I. T. for soluble systems, (Oellerich 1984). 

The sensitivity of direct reaction may be enhanced by the use of 

enzymes to cycle a substrate around a reaction sequence and so 

chemically amplify a signal. Various reactions can be employed to 

cycle such compounds as NAD, NADP, glutathione and ATP, (Lowry 1980, 

Blaedel and Boguslaski 1978). Also, enzyme cycling may be used in 

conjunction with E. L. I. S. A. techniques to amplify the signal and thus 

increase sensitivity, (Stanley et al 1985). 

1. E. 1 The Detection and Measurement of Enzyme Reactions. 

To detect and quantify the extent of an enzymatic reaction is a 

prerequisite of analysis. The appearance of product or the 

disappearance of substrate may be measured by a variety of techniques 

including spectrophotometry, fluorometry, lunninometry, reflectometry, 

and electrochemistry. 

The absorption, emission or reflection of light from an enzyme 

system are the basis of measurement of the first four techniques 

respectively. Electrochemistry involves a direct or coupled 

measurement of enzyme activity through some sort of electrical 

sensing system and forms the basis of so called biosensors, (Haar et 

al 1984, Urbank 1984, Wulff 1984, Kricka and Thorpe 1986, Werner and 

Rittersdorf 1984, Vadgama 1986, Turner et al 1987). Probably the 

most commonly used detection system is spectrophotometry, the 

concentration of reactant in a sample being calculated according to 

the Lambert Beer law. 

A= ExCxL. 

A= absorbance, E= molar absorption coefficient, C= 
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concentration and L= pathlength of the optical cell used. 

1. E. 2 The Detection of Pyridine Cofactors. 

Nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP) 

are co factors for a large number of oxidoreductases. NAD(P) occurs 

both in the oxidised and in the reduced (NAD(P)H) forms, this 

interconversion being the fundamental property of the molecule, 

fig 1. 

NAD(P)H has a distinctive absorption spectrum, absorbing in the 

ultraviolet region at a wavelength of 339nm, with an absorption 

coefficient (E) of 6.31 x 103 mol. 1-'. cm-1. NAD(P), however, does not 

absorb at this wavelength, giving a very useful means of detection of 

many enzyme reactions producing or consuming NAD(P)H, (Beutler 1984, 

Smith 1984, Schalhorn and Willman 1984, Vassault 1984, Gould and 

Rocks 1985). Analogues of NAD(H), e. g. 3-iodopyridine adenine 

dinucleotide, (Abdallah and Biellman 1980), and acetyl pyridine 

adenine dinucleotide or APAD(H), (Witt 1974), behave similarly with 

dehydrogenase enzymes. " 

The ultraviolet determination of oxidoreductase reactions is very 

important, especially in clinical assays, but it does necessitate 

instrumentation able to accurately measure absorbance in the U. V. 

region of the spectrum. Combination of NAD(P)H with dye forming 

reactions, enables visualisation of the enzyme reaction and 

measurement in the visible region of the spectrum. Normally this is 

carried out by some sort of hydrogen carrier such as the enzyme 

diaphorase, (Coburn* and Carroll 1973) or phenazonium compounds such 

as phenazine methosulphate, (Babson and Babson 1973, Worsfold 1977) 

or-phenazine ethosulphate, (Ghosh 1979), since NAD(P)H is unable to 

transfer hydrogen ions directly to the commonly used dyes. 
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FIG. 1 NAD / NADH REACTION 
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Nicotinamide Adenine Dinucleotide(NAD) is converted to its reduced 
form (NADH) by addition of hydrogen to the nicotinamide moiety. 
Phosphorylation of the underlined hydroxyl group gives NADP / NADPH. 

FIG. 2 TETRAZOLIUM SALT / FORMAZAN REACTION. 
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2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) 

is reduced to its red formazan by addition of hydrogen. This is usually 
carried out using an auxiliary reaction with hydrogen transfer reagents 
such as phen*zine methosulphate or meidola blue being used. 
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Early work used dyes such as methylene blue and 2,6- 

dichlorophenol indophenol, (Smith and Olson 1975), however these have 

been largely superseded by the use of tetrazolium salts, which are 

substituted 1,2,3,4-tetrazole compounds. These are reduced to 

intensely coloured formazans by the coupled reaction with NAD(P)H, 

(Nineham 1955, Altman 1976). The example in fig. 2 is a 

monotetrazolium salt, 2-(4-iodophenyl), 3-(4-nitrophenyl) 5- 

phenyltetrazolium chloride or INT. The formazan is an intense red 

with an absorption maximum at 500 nm, (Whitaker 1969, Buttery et al 

1977, Michal et al 1983). Ditetrazolium salts tend to give blue or 

black diformazans on reduction. 

Direct estimation of NAD(P)H may be carried out using the dye 

meldola blue, (8-dimethylamino 2,3-benzophenoxazine) in stabilised 

solution, (Orsonneau et al 1982). Other indicator reactions include 

coupling to mono-oxygenase enzymes such as salicylate hydroxylase, 

(Michal et al 1983), the reduction of ferric to ferrous ions and 

subsequent determination with ferrozine, (Fu 1972) or 2,2-dipyridyl, 

(Whitaker 1969) and reduction of 4- nitrosodimethylaniline, ( )' max 

440nM), in a coupled cycling reaction catalysed by liver alcohol 

dehydrogenase, (Skursky et al 1979). 

NAD(P)H also fluoresces when excited by incident light at 340nm, 

emitting light at 460nm, (Lowry and Passoneau 1972). Many analytical 

assays are based on this method of which the assay of D-galactose and 

its 1-phosphate are examples, (Fujimura 1984) and the assay of 

3-hydroxy bile acids is an example of a coupled fluorescence assay, 

(Stava et al 1984). 

Bacterial luciferase isolated mainly from marine bacteria Vibrio 

fisheri and Vibrio harveyi (now classified as Photobacterium) reacts 
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with NAD(P)H in a coupled system containing NAD(P)H : FMN 

oxidoreductase, FMN and n-decyl aldehyde. The reaction produces light 

which may be measured at 460 nm. This type of luminescent system has 

been used to measure 7- hydroxy bile acids, (Roda et al 1984) and 

rubella IgG, (Jablonski 1985). 

one other remarkable property of NAD(P) and its reduced form 

NAD(P)H is their reversal in stability to acid and base. NAD(P) is 

stable in acidic solutions for hours, yet heating to 60°C for 10 

minutes in basic solution at pH 12.0 destroys it. Conversely NAD(P)H 

is stable in basic solution yet incubation for 5 minutes at 25 °C in 

an acidic solution at pH 2 destroys it, (Lowry 1980). 

This fact enables the NAD(P) or NAD(P)H, generated in a primary 

reaction, to be selectively amplified by using an enzyme cycling 

reaction, increasing the sensitivity of the primary reaction 

considerably. Ethanol-has been estimated in this way, (Kovar 1984), 

direct NAD concentrations in single cells, (Kato et al 1973) and 

enhancement of the sensitivity of immunoassays has been suggested by 

Stanley et al (1985). 

Electrochemical detection of NAD(P)H has also been used to 

quantify enzymatic analyses. Direct detection of NAD(P)H is possible 

using modified electrodes, where some sort of electrochemical 

mediator is coupled to the electrode surface: e. g. meldola blue, 

(Emneus et al 1986), 3-0- napthoyl nile blue, (Schelter Graf et al 

1984) or the bis-benzophenoxazinyl derivative of terephthal is acid, 

(Appelqvist 1987). This technique has been used particularly in flow 

systems to determine L-lactate, (Gorton and Hedlund 1988), xylose and 

xylulose, (Dominguez et al 1988) and many substrates of other NAD(P)H 

dependent dehydrogenases, (Schelter Graf et al 1984). In addition to 
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direct electrochemical detection, NAD(P)H can be oxidised by 

molecular oxygen in the presence of the same phenazonium compounds 

used in the colorimetric detection process to quantitatively produce 

hydrogen peroxide, (Huck et al 1984). This has been used to estimate 

blood lactate levels by detecting either 02 consumption or H202 

production with a Clark oxygen electrode, (Vadgama et al 1986). 

1. E. 3. The Detection of Hydrogen Peroxide. 

Hydrogen peroxide is a product of many enzyme reactions, 

generally those catalysed by oxidases which utilise molecular oxygen. 

Hydrogen peroxide may be detected by direct ultraviolet absorbance, 

or by colorimetric, luminometric, fluorimetric or electrochemical 

techniques. U. V. absorbance is little used except to estimate 

catalase activity, (Aebi 1984) as the molar absorption coefficient is 

low, (39.4 mol 1-' cm-1) and the chemical reactivity of H202 is very 

high, accounting for its instability in solution. This reactivity of 

H202 lends itself to its detection by the formation of highly visible 

dyes in a variety of spectrophotometric systems. 

(a) Redox Dyes. 

Redox dyes were among the first type of compounds used to detect 

H202, benzidine, (4-diaminodiphenyl) and related chromagens o- 

tolidine and o-dianisidine being used in the colorimetric detection 

of glucose using the coupled reaction of glucose oxidase and 

peroxidase, (Bergmeyer and Bernt 1973). Similarly galactose was 

estimated using galactose oxidase, (Frings and Pardue 1964). These 

compounds however constitute a health hazard due to their potential 

carcinogenicity and their use has largely been discontinued. 

3,3'5,5'-Tetramethylbenzidine has been claimed to be non-carcinogenic 

and is widely used to detect H202 giving an intensely blue coloured 
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intermediate followed by the fully oxidised brown red products, 

(Josephy et al 1982, Holland 1974, Liem et al 1979), fig. 3. 

2,2' Azino - di (3-ethylbenzothiazoline sulphonic acid) or ABTS 

is a sensitive, stable chromagen producing a stable intense green 

radical cation on oxidation, (Childs and Bardsley 1975), fig. 4. It 

has been used for various assays including ethanol, (Majkic-Singh and 

Berkes 1977), uric acid, (Majkic-Singh et al 1981), glucose, 

(Bergmeyer and Bernt 1973), cholesterol (Majkic and Berkes 1977) and 

in an ELISA for myelin basic protein, (Groom 1980). 

Another redox dye used for a rapid glucose assay was sodium 

diphenylamine sulphonate. This gives a reddish violet dye on 

oxidation, (Morin and Prox 1973). 

(b) Leuco Dyes. 

Leuco dyes, which are effectively the stable reduced derivatives 

of such compounds as methylene blue, (Milke et al 1982) or crystal 

violet, (Mottola et al 1970), have been used as chromagens in H202 

detection. The oxidising system regenerates the dye from the 

colourless leuco derivative. The hydroxydiaryl imidazole derivatives 

used in the Boehringer Reflotron system for uric acid, (Merdes 1986) 

glutamic pyruvic and glutamic oxaloacetic transaminases belong to 

this class, (Deneke 1986). 

(c) Condensation Reactions. 

Oxidative condensation of two reactive molecules constitutes one 

of the largest group of peroxidase development systems. The 

chemistry involved is analogous to the production of coloured images 

in photography, (Bailey and Williams 1971) and the dying of hair with 

peroxide oxidised dyestuffs, (Corbett 1971). 

Heterocyclic compounds such as 4-aminoantipyrine, (4-AAP) and 
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FIG. 3 TETRAMETHYLBENZIDINE REACTION. 
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3-methyl 2- benzothiazolinone hydrazone, (MBTH) will couple with a 

variety of aromatic compounds. Usually the bond is formed opposite 

hydroxy, amino or substituted amino groups in the presence of 

peroxidase and H202, producing intensely coloured dyes. These 

coupled systems tend to be rather more stable than individual 

chromagens especially in formats where the two halves of the dye 

producing reaction are mixed immediately before assay. 

4-Aminoantipyrine was first used in an enzyme reaction by Trinder 

in 1969 to measure glucose in its oxidative reaction with phenol, 

which gives a red quinoneimine dye of molar absorbance 6.9 x 103 mol. 

1-1. cm-' at 505nm, (Trinder 1969), fig. 5. 

Previous to this, 4-aminoantipyrine had been used to detect 

phenols in oxidative conditions with inorganic oxidants, (Emerson 

1943) and further work compared 4-aminoantipyrine to other developers 

with a range of coupling compounds, (Emerson et al 1944). The 

reaction with amines was reported earlier, (Eiesenstaedt 1939). Many 

other couples have since been used in oxidase catalysed reactions, 

table 1. 

The development of hydrazones and specifically MBTH as colour 

reagents stemmed from the work of Hunig and co-workers, (Hunig et al 

1958, Hunig 1969). MBTH was subsequently used to detect aldehydes, 

(Sawicki 1961) and aromatic amines, (Sawicki 1961) using ferric 

chloride as oxidant. The reaction between MBTH and N, N-dimethyl 

aniline was used to measure uric acid using uricase and peroxidase in 

an automated system, (Gochman and Schmitz 1971). Subsequently the 

same reagents were adapted and evaluated in the analysis of glucose, 

(Gochman and Schmitz 1972, Carey et al 1974). Other coupling agents 

have been used such as 3-dimethylamino benzoic acid, (Ngo and Lenhoff 
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Table 1. Chromagens used in Hydrogen Peroxide Detection. 

Coupler. Reference. 

Chlorophenol sulphonic acid 

Chlorophenol sulphonic acid 

Chlorophenol sulphonic acid 

Chlorophenol sulphonic acid 

N, Ethyl N, sulphopropyl 
aromatic amines 

2,4,6'Tribromophenol 

N, N, Diethylaniline 

N, Ethyl N, hydroxysulphopropyl 

aromatic amines 

4-Hydroxybenzoic Acid 

117-Dihydroxy naphthalene 

2,4,6-Tribromo 3-hydroxy 
benzoic acid 

Barham and Trinder 1972 

Fossati et al. 1980 

Grillo et al. 1981 

Artiss et al. 1981 

Tamaoku et al. 1981 

Kabasakalian et al. 1973 

Kabasakalian et al. 1974 

Tamaoku et al. 1982 

Meiatelini et al. 1978 

Curme et al. 1978 

Trinder and Webster. 1984 

Miscellaneous Dves. 

0-Phenylenediamine Wolder et al. 1976 

4-Methoxy 1-naphthol Guilbault and Kramer 1964 

3-Amino 9-ethyl carbazole Graham et al. 1965 

3-Amino 9-ethyl carbazole Kaplow 1975 

4-Chloro 1-naphthol Nakane 1968 

5-Amino salicylic acid Ellens and Gielkens 1980 

3,3-Diamino benzidine Nakane and Pierce 1967 
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FIGS 4-AAP / PHENOL CONDENSATION REACTION. 

ý 
)-,. 

-IH 
f0Nf 2H'`O,. 

N H�N CH, 

Phenol 4-AAP Peroxide 

Pero idase 

4 HA0 

9NN, 

-, + 0 N-C H, 
0 -. 

=N "-CH3 

Quinoneimine dye 

Condensation reactions such as the one above produce intensely 
coloured quinoneimine dyes. The reaction depicted is the well 
known "Trinder" reaction, which uses 4-Aminoantipyrine and Phenol. 

FIG. 6 MBTH / 3-DIMETHYLAMINO BENZOIC ACID 

CONDENSATION REACTION. 

fH3 CH3 
N 

+ Peroxidase I )=N-NH f ZHO >c=N--NHI. + H0 +H s 
Ocs. 

MBTH Peroxide 

CH3 C H3 
4H3 CH3 

N i Oc>NH}) 
OOH S 

+ 
l/ C, 2 Azo dye 

'CH3 COONfH0 

Condensation reactions of this type using MBTH and substituted 
amino compounds are very sensitive. The dye produced is of the azo 
type and is very stable. 
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1980) and 2-hydroxy 3,5 dichloro benzene suiphonic acid, (Artiss et al 

1983). The former dye has a calculated molar extinction coefficient 

of 4.7 x 101 mol. 1-'. cm'1, the reaction is shown in fig 6. 

The reaction of MBTH with aldehydes has been exploited to 

produce a self-coupling reaction which produces a tetra- 

azapentamethine compound, fig 7. The reaction has been used to 

measure H202 , glucose and choline, (Capaldi and Taylor 1982). 

The two developing reagents 4-aminoantipyrine and MBTH are the 

most widely used compounds in analytical condensation reactions, 

producing relatively stable colours, the dyes produced by MBTH being 

the most stable. However oxidative condensation reactions involving 

other molecules are possible. The generation of a quinoneimine 

reactive intermediate, in an enzyme cycling assay for ethanol and its 

subsequent oxidative coupling to salicyaldehyde, (Kovar et al 1983) 

indicated that photographic chemicals of the 1,4-phenylene diamine 

type may be used for peroxidative reactions, (see chapter 6). Also 

substituted N-phenyl p-phenylene diamines have been used in 

histochemical detection of cytochrome oxidase, (Burstone 1960) with 

the suggestion that peroxidase could be detected in a similar fashion 

using H202 as substrate. Various other compounds have been used for 

colour production in the peroxidase system particularly in 

immunoassays, table 1. 

An alternative colour development for H302 has been used to assay 

sulphite using tetrazolium salts, sulphite oxidase and NADH 

peroxidase. This overcomes the interference of sulphite on the normal 

peroxidase catalysed colour reactions, (Beutler 1985). Catalase too 

has been used to measure H203 in the so called "Hantzsch" reaction, 

fig 8. Methanol is utilised to produce formaldehyde which then 
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FIG. 7 MBTH SELF-COUPLING REACTION. 

4N' 4H 
' 1»NNH,. + H1Oj+ Hf (Ocs N+ 

S >==N-NH,. H. C H0 

Perox dase Non -enzymatic 

CH, Y H3 
N >=N-NH 

+ 2H0 O 1jI>N-NCH24 H 
,. 
O 

Azine 

TH3 
CH3 

Iý N-N=C-N=N-< 
N i 

S= s H 
Tetraazopentamethine dye. 

MBTH when reacted with an aldehyde (here formaldehyde) produces 
a reactive azine. In the presence of peroxide and peroxidase this 
couples to give an intense blue tetraazopentamethine dye. 

FIG .8. HANTZSCH REACTION'* 

H2O2 + CH3OH 
Catal: s He " CHO +2 H2O 

Peroxide Methanol Formaldehyde 
0Hs O0 

lie CHO +2 CH3000H2COCH3 + NE3 -. 
H3C " CH3 +3 H2O 

Acetylacetone Ammonia H3C 
IN 

C H3 

®H 
3,5-diacetyl-1,4 dihydrolutidine. 

Yellow (412nm) 

The reaction sequence above is one of the few to use catalase. 
The lower reaction occurs non-enzymatically to produce the yellow 
3,5-diacetyl-1,4 dihydrolutidine. 
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couples with ammonia and acetylacetone to give yellow 3,5-diacetyl 

1,4-dihydrolutidine, (Nash 1953). This reaction has been used to 

assay uric acid in serum, (Kageyama 1971). 

(d) Luminometry. 

Luminometric detection of H203 is primarily chemical in nature, 

the reaction between H202 and a luminescent substrate being catalysed 

by peroxidase. Such substrates are luminol, (5-amino 2,3-dihydro 1,4- 

phthalazinedione) and isoluminol (6-amino 2,3-dihydro 1,4- 

phthalazinedione). These have been used to detect H202 in immunoassay 

procedures where peroxidase is the enzyme label, (Roda et al 1984, 

Thorp et al 1985). Bis (2,4,6-trichlorophenyl) oxalate reacts with 

H202 to generate peroxyoxalate which in conjunction with 

8-anilinonaphthylene 1-sulphonic acid emits light. This system has 

been used in an enzyme immunoassay for phenytoin, (Takayasu et al 

1985). 

(e) Fluorimetry. 

Fluorimetric analysis of H202 depends on oxidative coupling of 

non-fluorescent precursors to give fluorescent products in the 

presence of peroxidase. Homovanillic acid has been used to measure 

oxidative enzyme activity, (Guilbault et al 1967) but p-hydroxy 

phenyl acetic acid was found to be superior, (Guilbault et 

al 1968, Guilbault et al 1969). This method being the basis of a 

fluorimetric immunoassay for insulin in serum, (Hinsberg et al 1981). 

(f) Electrochemistry. 

The electrochemical detection of H202 has been used in 

conjunction with many oxidase enzymes to produce biosensors for many 

analytes. Usually a platinum electrode is used and cellulose acetate 

is employed to reduce interference on the electrode surface, a 
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silver/silver chloride electrode being the reference. This type of 

electrode forms the basis of the Yellow Springs Model 27 glucose 

analyser where a sandwich of glucose oxidase is held in close 

physical contact with the detecting electrode, (Clarke 1970, YSI 

Manual 1988). By varying the enzyme_used, sensors have been made-for 

lactate, (Mascini et al 1988, YSI Manual 1988) pyruvate, (Mascini et 

al 1988), ethanol, (YSI Manual 1988), galactose, (Taylor et al 1977) 

and sucrose, (YSI Manual 1988). Glucose analysis may be carried out 

using this type of system on undiluted samples by using silane 

treated membranes, (Mullen et al 1986). Also electrochemical peroxide 

detection has been employed in flow systems for ethanol, (Gibson and 

Woodward 1988). 

1. E. 4 Miscellaneous Detection Reactions for Enzymes. 

Both NAD(P)H and H. O. are by far the most commonly detected 

species in enzyme reactions and any series of reactions which can be 

coupled to produce them is usually the method preferred. The 

diversity and ease of detection of these species makes them an 

obvious choice for quantitative enzyme analysis. Many other enzymes 

may be detected by using other reactive species produced, or by using 

synthetic substrate molecules designed to make quantification simple. 

Phosphorylation reactions involving ATP may be estimated directly 

by the firefly luciferin / luciferase assay. The luminometric assay 

is one of the most sensitive direct enzyme assays and will measure 

down to 0.3 p mole of ATP, (Carrea et al 1986). 

Enzymes such as creatinine iminohydrolase produce ammonia from 

creatinine. Ammonia has been assayed colorimetrically to give a 

commercial dry test for creatinine, (Sundberg et al 1983) and to 

measure urea electochemically, (Mascini and Guilbault 1977). 
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Thioesters may be used to measure esterases such as 

acetylcholinesterase, the sulphydryl containing products being 

reacted with 5,5'-(dithiobis) 2-nitrobenzoic acid and measured at 

412 nm, (Ellman et al 1961). Also synthetic esters of 2-naphthol and 

other compounds are used, which liberate coloured products on 

reaction with esterases, (Huber 1984, Loyda et al 1973. ) 

4-Nitroaniline and 4-nitrophenyl conjugates of many sugars and 

peptides are used as chromogenic substrates for their respective 

class of enzymes. Hydrolytic cleavage of the ester bond liberates 

the nitro aromatic which is measured around the 400 nm region. Many 

such assays for proteases such as trypsin, (Barns and Elmslie 1975) 

and chymotrypsin, (Del Mar et al 1979) and for disaccharidases such 

as galactosidase, (Buonocore et al 1980) and glucosidase, (Weber and 

Fink 1980) have been described. (For a review on protease substrates 

see Friberger 1982). Substituted Indoxyl reagents have been used to 

demonstrate galactosidase, (Lojda et al 1973). Galactosidase is used 

as an enzyme label in immunoassays, (Oellerich 1984) and a 

fluorogenic immunoassay for gentamycin has been described using 

galactosyl umbelliferone-sisomycin as substrate, (Hurd et al 1977). 

Amylase has been detected using a dye conjugated starch which forms 

the basis for a quantitative amylase assay, (Spayd et al 1978). 

Alkaline phosphatase is another important enzyme used in 

immunoassays. Direct determination may be done by several substrates 

such as 4-nitrophenyl phosphate, (Bessey and Love 1952), 5-bromo 4- 

chloro 3-indoxyl phosphate, (Kohno et al 1983) and phenolphthalein 

monophosphate, (Blake et al 1982). For reviews on enzymes in 

immunoassays see Schuurs and Van Weeman (1977) and O'Sullivan et al 

(1979). 
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Acid phosphatase has been estimated using thymolphthalein 

monophosphate, (Bowers et al 1981). Recent luminometric assays using 

luciferin o-phosphate as a substrate for alkaline phosphatase 

labelled antibodies have been described, (Miska and Geiger 1987, 

Geiger and Miska 1987). 

A direct assay for paracetamol has been described using 

indophenol dye production at 620nm to detect the reaction, (Price et 

al 1986). 

Enzymes amplification reactions other than NAD(P)H have been 

described for reduced / oxidised glutathione and ATP/ADP, (Lowry 

1980). 

The examples given here indicate the scope of analytical 

reactions available for enzyme analysis. They are by no means 

exhaustive and for a more comprehensive overview, reference to the 

literature is necessary, (Bergmeyer 1984-1986). 

1. F The Advantages and Disadvantages of Enzymes as Analytical 

Reagents. 

The main advantages of enzymes as analytical reagents are the 

specific nature of the reaction catalysed and the mild conditions of 

pH and temperature needed for reaction to take place. The 

specificity of enzymes often enables a single analyte to be 

quantified in the presence of many other compounds. It is this 

property which is at the root of all enzymatic analysis. Also the 

specificity may be such that the enzyme will only accept one 

stereoisomer or conformation of a particular compound. Glucose 

oxidase will only accept ß- D- glucose as substrate not the a- D- 

form, (Bergmayer and Bernt 1973). 

Similarly D-aminoacid oxidase is specific for D-amino acids and 
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is used in their analysis, (Hinkannen and Decker 1985), whereas L- 

amino acid oxidase is specific for L-aminoacids. Electrochemical 

sensors for both L and D-aminoacids have been reported, (Guilbault 

1980). 

Enzymes catalyse reactionSin living organisms and therefore most 

of them work within defined limits of pH and temperature. Rapid 

analytical procedures are usually possible in mild conditions, 

minimising risks from harsh reagents. 

The main disadvantage of many enzymes is their relative lack of 

stability. Dry enzyme preparations often show better stability than 

those in solution. Many analytical enzymes used are stored at -20°C 

in a dry state or alternatively supplied as a precipitate in a high 

salt medium to ensure that enzyme activity is retained. Solutions of 

enzymes, particulary if dilute, often exhibit loss of activity 

especially at elevated temperatures. For this reason the external 

enviroment of enzymes is usually controlled by using buffer compounds 

to maintain a constant pH and keeping the reagents cold to minimise 

thermal inactivation. Additives may be present to protect the 

complex protein molecule from such influences as metals, salts, 

oxidisers, reducing agents, free radicals and other enzymes, such as 

non-specific proteases which would attack the protein chain. These 

protective effects are very important for the stability and therefore 

the catalytic activity of enzymes. This process is usually termed 

stabilisation. 

Another disadvantage is the cost of enzymes. The purity required 

for analytical enzymes necessitates thorough procedures to remove 

unwanted material, particulary associated enzyme activities. The 

price of the preparation tends to reflect on the relative expense of 
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isolation and purification of the enzyme. Costs however may be offset 

somewhat by immobilizing the enzyme and its subsequent "re-use", (see 

section 1. G. 3). 

1. G. 1 Stabilisation of Enzymes. 

The stability and consequent retention of catalytic activity of 

an enzyme is of paramount importance in enzyme analysis. Stability 

is a reflection of the amino acid content, sequence and subsequent 

molecular conformation, (tertiary structure) of the enzyme. It is also 

influenced by external factors such as ionic interactions, 

temperature, pH, solvation in various solvents, (usually aqueous), 

detergents, sugars, cofactors, substrate, other proteins, lipids, 

covalent attachments and hydrophobic interactions. The theory and 

processes relating to stability and stabilisation are complex and 

beyond the scope of discussion here, however many reviews and papers 

have been published which give insight into these areas, (Jencks 

1969, Wiseman 1978, Schmid 1979, Torchilin and Martinek 1979, 

Klibanov 1979, Barker 1982, Klibanov 1983, Monsan and Combes 1984, 

Tombs 1985, Martinek and Torchilin 1988, Sadana and Henley 1988). 

Ideally, the enzyme or enzymes that are used for analysis need to 

be stable, which in an analytical context refers directly to the 

retention of catalytic activity upon storage, in use and in the 

presence of possible destabilising agents. The measure of biological 

stability is usually carried out using the technique of accelerated 

degradation, in which samples are incubated at elevated temperatures 

and activity is compared to samples that have been stored under 

optimum conditions to retain activity. Relating the rate of 

inactivation to temperature statistically, a prediction of stability 

for chosen storage conditions can be obtained, (Kirkwood 1977). 
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The various methods which have been used to enhance the 

stability of enzymes are discussed below. Also many enzymes which 

have been isolated from thermophilic microorganisms exhibit natural 

stability under extreme conditions. The study of such enzymes are 

giving insight into mechanisms of stabilisation of proteins. 

1. G. 2 Naturally Stable Enzymes. 

There are a number of microorganisms which thrive in extreme 

environments such as hot thermal springs. Enzymes isolated from such 

organisms usually exhibit enhanced thermal and chemical stability and 

usually catalyse reactions at high temperatures, (Buonocore et al 

1980, Lamed and Zeikus 1982, Oshima et al 1982, Malik 1989, Saha and 

Zeikus 1990). 

Structural studies of such thermostable proteins are giving 

insight into the nature of the stability of enzymes, which appears to 

be related to the hydrophobicity of the internal part of the 

molecule, the ion-paring capability, the interaction of metals and 

the degree of glycosylation. Proteins may be engineered to produce 

changes in amino acid sequence of the primary structure, using 

protein engineering techniques. This can produce enhancement in 

stability due to conformational changes within the molecule, (Yutani 

et al 1977, Ahern et al 1987). For a fuller discussion see Ward and 

Moo-Young (1988) and Ljungdahl (1979). Of the many thermostable 

enzymes isolated and studied, the external factors contributing to 

stability appear to be the same as for their more labile 

counterparts, (Ward and Moo-Young 1988). 

Other sources of thermostable proteins include plants, (Winer et 

al 1984) and yeast, (Johnson and Brougham 1981). Thermostable enzymes 

are of great use industrially where elevated reaction rates, usually 



32 

at elevated temperatures and the stability of enzymes reflect in the 

economy and the feasibility of a process, (Ward and Moo-Young 1988). 

A thermostable alcohol dehydrogenase has been used in the 

construction of an enzyme probe, (Lamed et al 1981), also a 

thermostable NADH oxidase from Thermus species as been used to 

measure NADH and ethanol concentrations amperometrically, (McNeil et 

al 1989). 

1. G. 3 Immobilisation of Enzymes. 

Enzymes, being proteins, are constructed of amino acids which 

contain reactive groups such as; amino (lysine and n-terminus), thiol 

(cysteine), carboxyl (aspartate, glutamate and c-terminus), aromatic 

hydroxyl (tyrosine) and aliphatic hydroxyl (serine and threonine). By 

causing a chemical, ionic or chelation reaction with such groups, (or 

a combination of groups) and an insoluble support, which may include 

glass, nylon, synthetic polymers, natural polymers, ceramics, 

graphite, metals, or even biological materials such as seeds, (Melo 

et al 1986), an enzyme may be immobilised. 

Recently a novel fluorocarbon immobilisation method was proposed, 

using perfluoroalkylating reagents to derivatise the enzyme. The 

perfluoroalkylated enzyme was then adsorbed onto fluorocarbon 

supports, (Kobos et al 1989). Physical methods such as entrapment or 

encapsulation within some gelatinous or membranous material may also 

effectively immoblise an enzyme, (see section 1. G. 6). 

Immobilised enzymes are useful in the sense that they may be 

"re-used" which may amount to a substantial economic saving, 

especially if the free enzyme is expensive. Reviews of enzyme 

immobilisation have been published and for a thorough discussion see 

Kennedy and Cabral (1987). Melrose, (1971) lists 54 enzymes and 
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their respective immobilisation methods and activities. Thirty of 

the immobilised enzymes exhibited a higher stability on 

immobilisation, whereas for the remainder, no apparent differences 

were detected and even in some cases a destabilisation was noted. 

In analysis, immobilised enzymes are commonly used especially in 

flow systems. They have been used to measure a large number of 

substances, a range of which are shown in table 2. 

Nylon tube immobilised reactors for analytical procedures are 

reviewed in Sunderam (1982) and immobilised enzymes for biosensors in 

Guilbault (1980). 

Immunological techniques take advantage of the effect of 

physical adsorption of proteins onto hydrophobic surfaces, 

effectively immobilising the antibody or antigen employed. The 

amount of protein adsorbed is small ( pg), however it is sufficient 

for most immunoassays. Co-valent attachment of antigens to supports 

have been carried out, (Gyenes and Sehon 1960, Saito and Nagai 1983). 

Immobilised enzymes are usually claimed to be more stable than 

the soluble counterparts that they are prepared from, two 

examples being hexokinase and glucose 6-phosphate dehydrogenase, 

(Morris et al 1975). Although this may be the case, immobilisation 

onto some sort of support does not guarantee an increase in 

stability, (Klibanov 1979). A combination of immobilisation and 

formation of a microenvironment around the immobilised enzyme often 

enhances stability, (Kricka and Carter 1977, Onyezili and Onitiri 

1981). 

A thermostable alcohol dehydrogenase has been immobilised onto 

CN-Br Sepharose 4B. It was found to be 2.5 times more stable than 

normal yeast alcohol dehydrogenase, (Johnson and Brougham 1981). The 
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Table 2. Some Analvtes Measured using Immobilised Enzymes 

Analyte Measured. Reference. 

Glucose Campbell et al. 1975 

Glucose Hornby et al. 1977 

Hydrogen peroxide Miller et al. 1976 

Alcohol Kuan et al. 1978 

Alcohol Gibson and Woodward. 1988 

Alcohol Gulberg and Christian. 1981 

Urea / citrulline Sunderam et al. 1978 

Uric acid Sunderam et al. 1978 

Oxalate Bais et al. 1980 

Cholesterol Tabata et al. 1981 

Cholesterol Mascini et al. 1983 

Starch Emneus et al. 1986 

ATP Carrea et al. 1986 

Fructose Matsumoto et al. 1986 

NAD(P)H / FMN Nabi and Worsfold. 1986 

Lactate Gorton and Hedlund. 1988 

Xylose / xylulose Dominguez et al. 1988 
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reagents used for immobilisation are often important factors in the 

stabilisation of individual enzymes. Luciferase immobilised using 

cyanogen bromide exhibited 1000 fold increase in stability compared 

to the free enzyme, but if glutaraldehyde or carbodiimide were used 

for immobilisation, inactivation occurred, (Ugarova 1982). 

1. G. 4 Chemical or Carbohydrate Modification of Enzymes. 

The modification of reactive groups in proteins without 

insolubilisation of the molecule has been used to enhance stability 

of enzymes. Schmid (1979) reviewed a whole range of procedures to 

produce soluble stable enzymes including chemical modification and 

grafting or co-valently linking to polysaccharides or synthetics 

polymers, (pp 68-90). Alkylation, acylation and amino acid 

modifications are described. Other reactive substituents such as 

methyl acetimidate have been used. Lactate dehydrogenase exhibits 

enhanced stability after such modification, (Tuengler and Pfleiderer 

1977). 

Coupling of sugars or polysaccharides to enzymes mimics 

glycosylation in native proteins, which is known to enhance their 

stability, (Pazur et al 1970, Pazur et al 1972). 1-aminoglucose has 

been used to modify chymotrypsinogen, (Wriston 1973), lactose has 

been coupled to albumen, (Grey 1974). Dextran has been covalently 

linked to catalase, this markedly enhanced stability, (Marshall and 

Rabinowitz 1976) and CM cellulose and DEAE dextran were linked to 

amylase, giving elevated stability at neutral pH, (Wykes et al 1971). 

For an overview see Marshall (1978). 

A recent method of enzyme modification forms a molecular cage 

around the protein molecule. The resulting "encäged" enzymes exhibit 

enhanced thermal stabilities, (Tor et al 1989). 
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1. G. 5 Crosslinking of Enzymes. 

Reacting enzymes with bifunctional reagents! (review Wold 1968) 

such as glutaraldehyde (pentanedial), dicarboxylic acids, 

diisocyanates, bisimidates and diamines, has been thought to promote 

crosslinking reactions within the enzyme molecule (intermolecular), 

or across the subunits if the enzyme is oligomeric (intramolecular). 

The stability of such crosslinked enzymes is often enhanced 

considerably, this is thought to be due to the rigidity or clamp-like 

effect of extra molecular bonding. However, Torchilin and Martinek, 

(1979) argue that some crosslinking reactions may be only one point 

modifications and not true crosslinks. Experiments have been carried 

out using bifunctional reagents with increasing chain lengths, such 

as dithiols, (Torchilin and Martinek 1979) and dicarboxylic acids, 

(Torchilin et al 1983). 

The chain length of the bifunctional molecule was found to be 

important for the formation of crosslinks, thus a -chymotrypsin 

showed maximum stabilisation with 1,5 pentamethylene dithiol, i. e. a 

relative chain length of 5 methylene units. In contrast, 

glyceraldehyde 3-phosphate dehydrogenase showed maximum stabilisation 

using succinic acid, i. e. a chain length of 2 methylene units. 

Control reactions using monofunctional derivatives confirmed the 

effect observed was due to crosslinking reactions. 

Glucose oxidase has been crosslinked using glutaraldehyde, 

(Solomon et al 1977) and this method is often used for the 

preparation of biosensors, usually coupled with some sort of membrane 

entrapment, (Taylor et al 1977, Petersson 1988). Crosslinking 

reactions have been reviewed by Martinek and Torchilin (1988). 
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1. G. 6 Physical Entrapment of Enzymes. 

Enzymes may be physically entrapped within the matrices of gels 

or other polymers or sandwiches of membrane systems or 

microencapsulated in micelles. One advantage of this is that the 

enzyme itself is not chemically modified but only restrained. 

Stability may be improved dramatically in such cases, as conformation 

of the molecule is retained by the rigidity of the gel matrix around 

it, (Pennington et al 1968, Martinek et al 1977, Serralheiro et al 

1990). Modification of the protein to produce reactive groups that 

polymerise on gel formation is also a possibility. See reviews by 

Klibanov (1979) pp 5-7, Kennedy and Cabral (1987) pp 384-392 and 

Melrose (1971). 

Glucose oxidase has been sandwiched between dialysis membranes 

for the automated estimation of glucose, (Campbell et al 1977), no 

loss of activity was reported after 10 days at 37°C with intermittent 

use. Entrapment may also be used to form enzyme electrodes, 

(Guilbault 1980). L-lysine was assayed using a gelatin entrapped 

enzyme which was then modified by glutaraldehyde treatment, (Romette 

et al 1983), and oxygen analysis for kinetic measurements in non- 

aqueous solvents was carried out using micellar entrapped enzymes, 

(Escobar et al 1990). 

1. G. 7 Stabilisation with Additives. 

The addition of many different chemical compounds to solutions 

of proteins has been found to enhance stability in many cases. 

Indeed this is probably one of the major areas of enzyme 

stabilisation due to the simplicity of the method. The mechanisms by 

which additives stabilise enzymes are, however, ' far from simple and 

are probably due to several concomitant interactions, see Jencks 
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(1969), Wiseman (1978) pp 283-291, Torchilin and Martinek (1979), 

Schmid (1979) pp 57-68 and Klibanov (1983) pp17-18. 

Neutral salts such as ammonium sulphate and sodium chloride tend 

to stabilise enzymes, probably by their effect on the hydrophobicity 

of the polypeptide chain, (e. g. glucose dehydrogenase, Hornby et al 

1977). If the concentration of salt becomes high enough 

precipitation may ensue, (salting out). This effect has applications 

in the purification of proteins and in stabilisations. Some enzymes 

are sold as a precipitate in salt solutions, necessitating removal of 

the high salt concentration before the enzyme is used for analysis. 

Low concentrations of certain salts may also stabilise enzymes, 

particularly metalloenzymes. Calcium, for instance, is a stabiliser 

for (X-amylase, (Schmid 1979 p64). 

Substrates also may have a pronounced effect on stability. 

Invertase is stabilised by its substrate sucrose when present above a 

concentration of 1.5M, however the enzyme activity is greatly 

reduced, (Monsan and Combes 1984). Co-factors such as NAD, NADH and 

analogues also stabilise enzymes such as glucose 6-phosphate 

dehydrogenase, (Cancedda et al 1973) and diacetyl reductase, (Bryn et 

al 1970). 

Reducing agents such as thiol compounds help to stabilise enzymes 

which contain free sulphydryl residues necessary for catalytic 

activity including D-fructose dehydrogenase, (Ameyana et al 1981), 

diacetyl reductase, (Bryn et al 1970), alcohol dehydrogenase and 

glyceraldehyde 3-phosphate dehydrogenase, (Kricka and Carter 1977). 

Polyhydric alcohols are well known stabilisers of proteins. The 

lower chain length molecules such as ethylene glycol and glycerol, 

are not as effective in stabilising enzymes as molecules of longer 
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chain length alcohols, of which the most effective are those 

of intermediate chain length, i. e. 4-6 hydroxyl units, (Monsan and 

Combes 1984). High concentrations of glycerol are useful in 

stabilising alcohol dehydrogenase, (Brougham and Johnson 1981) and 

have also been used as a cryoprotectant, (Schmid 1979, p61). Various 

studies on the stabilisation effect of polyhydric alcohols have been 

carried out, (Back et al 1979, Fujita et al 1982, Combes and Monsan 

1984, Monsan and Combes 1984). The results in each case indicated a 

greater stabilisation effect as the number of hydroxyl groups 

increased. 

Glucose oxidase has been stabilised in solution using various 

polyhydric alcohols, (Ye et al 1988) and glucosidase by sorbitol, 

inositol and mannitol, (Bernier and Stutzenberger 1988). 

Drying enzymes in the presence of polyhydric alcohols to produce 

dry stabilised preparations has also been used and is of particular 

importance to diagnostic enzymes in various analytical formats, 

(Phillips 1985). 

Sugars have been used to stabilise proteins in much the same way 

as polyhydric alcohols. Their effect is much the same as polyhydric 

alcohols, (Back et al 1979, Arakawa and Timasheff 1982). Drying 

enzymes in the presence of sugars, usually results in enhanced 

retention of enzyme activity, (review Crowe et al 1987). 

Disaccharides, particularly trehalose, which is found in organisms 

where natural dehydration takes place, e. g. brine shrimps, have a 

particularly good stabilising effect. Trehalose has been claimed as a 

stabiliser for proteins, (Roser 1986). 

Polymers which may be natural or synthetic in origin have also 

been used to enhance protein stability. Proteins themselves have been 
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used to enhance stability, e. g. bovine serum albumin or. BSA, (Wolf et 

al 1972). Natural polymers such as soluble celluloses (carboxymethyl, 

ethyl-hydroxypropyl), alginate, polygalacturonic acid, dextrans and 

starches have been used to stabilise enzymes, (Wiseman 1978, Schmid 

1979, Barker 1982). Polyethylene glycols of various molecular weights 

have been used to stabilise invertase, (Monsan and Combes 1984) and 

glucose oxidase, (Ye et al 1988). Polyvinyl alcohol was used to 

stabilise apoglucose oxidase in conjunction with BSA, (Tabb and 

Tyhach 1982). 

A comprehensive review of the technical applications of protein 

stabilisation, and the type of stabilisers, used may be found in 

Schmid (1979) pp 90-103 and 116-118.. Many such stabilisers and their 

applications may be found in the patent literature. 

1. H The Aims of the Work and Diagnostic Development. 

The assay of substances using enzymes is a wide and expansive 

field of work, with new developments occurring frequently. The 

development of analytical techniques with new enzymes is fairly 

frequent in the area of research, but not so common in the commercial 

and industrial fields. The production of very simple, stable, "user 

friendly", analytical tests, is the real object of the work described 

in this report. This type of test involves a substantial amount of 

technology to control parameters within the test format, so making 

the accuracy of the analytical technique more a function of the test, 

not of the person who uses it. Such user independent assays would 

have obvious advantages in the rapid detection and quantitation of 

analytes in real situations, which are not under laboratory 

conditions. 

Oxidoreductase enzymes were chosen for initial study, as it is 
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on this group that the majority of diagnostic tests are based. The 

detection techniques are many and well documented, (sections 1. E. 2 

and 1. E. 3). Stabilisation of such systems are however, relatively 

few, the majority of the literature being concerned with proteases 

and other industrially important enzymes. The stability of diagnostic 

tests is of particular importance to the shelf life of a product and 

perhaps this is one of the major limitations to the production and 

acceptance of many other enzyme based analytical systems. With this 

in mind, the enzyme alcohol oxidase from various sources has been 

chosen as a test enzyme. 

This enzyme is very stable in certain enviroments, such as an 

ammonium sulphate precipitate, however in a purified, ready to use 

format it has a tendency to autoxidise with subsequent inactivation. 

This is probably due to reaction with bound formaldehyde which is 

released on aSeing or drying of the enzyme, (Hopkins and Mueller 

1987). The enzyme has been used to measure ethanol, (Majkic-Singh and 

Berkes 1980, Gulberg and Christian 19.81, Phillips 1984, Barzana et al 

1989) and methanol from hydrolysis of pectins, (Herzenberg and 

Rogerson 1985, Klavons and Bennett 1986). Enzyme electrodes have also 

been produced using alcohol oxidase, (Verduyn et al 1983, Belghith et 

al 1987). 

In our laboratory a prototype, mediator linked, alcohol probe has 

been developed, (Parker, Higgins and Woodward , unpublished results)' 

using N, methyl phenazinium-tetracyano quinodimethane, (NMP-TCNQ) to 

link the peroxidase reaction directly to a glassy carbon electrode. 

The development of a simple enzymic procedure to measure ethanol 

over a wide range of concentration forms the basis of the work, 

(chapter 3). A subsequent stabilisation procedure discovered for the 
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enzyme isolated from the yeast Hansenula polymorpha, was then extended 

to include alcohol oxidases from other sources and a range of other 

enzymes, (chapter 5). The applications of this part of the work have 

been submitted for patent registrations in the area of stabilisation 

of enzymes, (Gibson and Woodward 1989, Gibson and Woodward 1990) and 

the use of stabilised enzymes, in a differential control, dry 

diagnostic test for ethanol and other analytes, (Gibson and Woodward 

1989). The production of dry reagent analytical tests is discussed 

in chapter 6. 

Chapter 4 reports the production of immobilised enzyme 

derivatives, which led to the development of flow analysis for 

ethanol and its application in on-line estimation of analytes during 

fermentation, (Gibson and Woodward 1986, Gibson and Woodward 1988). 

One potential application of the alcohol assay systems produced, 

was to measure alcohol concentration in the drinks industry. In 

communication with breweries during this research, the analysis of an 

important flavour compound, diacetyl, (2,3 butanedione), was 

discussed. This compound is difficult to analyse as it is usually 

present at very low levels (0.05 - 0.5mg. 1-1). Gas liquid 

chromatography is the method most often used for analysis, (Scherrer 

1972). Also chemical methods have been used after some sort of 

extraction procedure, (Westerfield 1945, Owades and Jakovac 1963). 

The development of an enzymic method to quantify diacetyl, using 

the enzyme diacetyl reductase has been carried out. The isolation, 

purification and characterisation of the enzyme from chicken livers 

was undertaken, since the enzymes from microbial sources and beef 

liver were found to be unsuitable for the assay, (chapter 7). This 

work has been submitted and accepted for publication, (Gibson et al 
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1990). 

Further research on commercial products stemming from the 

results obtained in this work is continuing. The stabilisation 

system used for alcohol oxidase has been already adapted for use in 

the Yellow Springs Instruments Ethanol analyser and is currently 

under investigation in antibody-enzyme conjugate dry phase 

stabilisation within a dry analytical format. 
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CHAPTER 2. 

MATERIALS and METHODS. 
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2. A. 1 Bacterial Culture. Klebsiella Aerogenes. FG9. 

This bacterium formerly known as Aerobacter aerogenes was 

cultured in the following medium. 

Tryptone 10g 

Glucose 10g 

Sodium citrate 2H30 20g 

Yeast extract 5g 

K2HPOa 1g 

MgSO4 7H20 1g 

The glucose was normally sterilised separately at 110°C for 15 

minutes and added aseptically to the medium which was sterilised at 

121°C for 40 minutes in 10 litre batches. The organism was either 

grown in shake flasks or in an aerated fermenter at 30°C, at an 

initial pH of 7.0. During growth the pH was maintained around pH 7.0 

by addition of 10% NaOH solution. The pH was monitored by a 

sterilisable pH probe immersed in the media. The organisms were 

harvested after 48 hours using an Alfa-Laval continuous clarifier. 

The cells were washed by centrifugation in 50 mM phosphate buffer pH 

7.0 and resuspended in the same buffer. 

2. A. 2. Streptococcus Lactis Subspecies Diacetylactis 18-16. 

The bacteria were cultured in the following medium which was 

adapted from that of Harvey and Collins (1961). 

Yeast extract 15g 

Tryptone 10g 

KH2PO4 0.5g 

MgSO4 7H20 0.2g 

Glucose 20g 
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Trisodium citrate 2H30 5g 

Sodium acetate 3H20 2g 

The medium was sterilised at 12111C for 15 minutes. The incubation 

was carried out for 18 hours at 30°C in static culture with no 

aeration. The cells were harvested by centrifugation, (MSE Coolspin) 

in 1 litre aliquots at 7250g for 60 minutes at 4°C. They were then 

washed twice with 100mM tris/HC1 buffer, pH 7.3 containing 1.0mM 

Cysteine, (Sorvall RC-5B centrifuge). 

The total yield was 85.8 g for 16 litres medium. 

2. B. 1. Enzyme Purification. Alcohol Oxidase from Hansenula Polvmorpha. 

Frozen yeast cells supplied by Dr J. P. Van Djiken, University of 

Delft, Delft, Holland, (750g) were added to 3 times their weight of 

buffer, (25mM potassium phosphate, pH 7.9 containing phenyl methyl 

sulphonyl fluoride, (PMSF) 25 mM and N-tosyl L-phenylalanine 

chloromethyl ketone, (TPCK) 4 mM as protease inhibitors and thawed at 

4°C overnight. To the thin cream coloured suspension, 1M potassium 

hydroxide was added to give a pH of 8.5 and then the suspension was 

homogenised by passage through a Dyno Mill, bead mill, using 0.4 mm 

glass beads. The chamber was kept at 4-8°C using recirculating ice 

water and the flow rate was kept between 125-175 ml. min-1. The 

thicker effluent was kept at pH 7.5 - 8.5 using 1M potassium 

hydroxide and centrifuged at 17,000g at 4°C in a Sorvall RC-5B 

refrigerated centrifuge for 50 minutes. The supernatant, (cell free 

extract) was decanted and pooled. Volume, protein and enzyme 

activities were recorded at this stage. 

All buffers used from this point forward contained PMSF 25mM and 

TPCK 4mM and all steps were carried out at 4°C. The cell free 

extract was loaded onto Fast Flow DEAE sepharose in a Pharmacia 
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Bio Process column, pre-equilibrated with 25mM potassium phosphate 

buffer, pH 7.9. The column was washed with 5 litres of the same 

buffer and then with buffer containing: 

(a) 0.4% w/v sodium chloride (10 litres) 

(b) 0.6% w/v sodium chloride (10 litres) 

(C) 0.8% w/v sodium chloride (15 litres) 

This removed the main contaminant which was catalase. 

The alcohol oxidase was eluted using buffer containing 4.0% w/v 

sodium chloride. The fractions, (500ml) containing the highest 

activity were pooled, (volume, protein, enzyme activities taken) and 

the enzyme precipitated using ammonium sulphate to 65% saturation, 

(chart Appendix I). 

During precipitation the pH was kept above 7.5 using ammonium 

hydroxide solution. The suspension was held at 4°C for at least 30 

minutes with stirring and then centrifuged at 4°C at 15,000g for 30 

minutes. The pellets were pooled and stored in a sterile glass jar at 

4°C. 

2. B. 2. Diacetyl Reductase from Klebsiella Aerogenes. FG9. 

The cells grown as described in 2. A. 1 were disrupted in a Braun 

homogeniser using 0.1 mm glass beads in 60m1 of 100mM phosphate 

buffer, pH 7.0. The extract was filtered through two layers of muslin 

and centrifuged at 17,500g for 15 minutes. Solid ammonium sulphate 

was added to the supernatant to 32 % saturation and the precipitate 

removed by centrifugation at 10,000g for 15 minutes and discarded. 

Solid ammonium sulphate was then added to the supernatant to 85 % 

saturation and the precipitate collected in the same manner as 

before. The pellets were redissolved in a minimum volume of 50mM 

phosphate buffer, pH 7.0 and dialysed three times against the same 
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buffer at 4°C. 

The dialysate was loaded onto a Pharmacia DEAE Fast Flow 

sepharose column, (45mm x 210mm) pre-equilibrated with the same 

buffer and eluted at 0.7 ml. min-' with a linear gradient of sodium 

chloride, (up to 0.5M), in the same buffer at 4°C. The highest 

activity fractions were pooled and precipitated using solid ammonium 

sulphate at 85 % saturation. The pellets were collected by 

centrifugation at 31,000g for 20 minutes, redissolved in 50mM 

phosphate buffer, pH 7.0 containing 2-mercaptoethanol 10mM and 

glycerol 20% v/v and stored at -20°C. 

2. B. 3. Diacetyl Reductase from S. Lactis sub. Diacetylactis 18-16. 

Tris/HC1 buffer, 100mM containing 1.0mM cysteine was used 

throughout and the temperature was kept at 4°C. The washed cells 

were suspended in 4 times their volume of buffer and homogenised in a 

Braun homogeniser using 0.1mm glass beads. The extract was filtered 

through two layers of muslin and centrifuged at 17,500g for 

15 minutes, (Sorvall RC-5B). Solid ammonium sulphate was added to 

the supernatant to 32% saturation and the mixture was centrifuged at 

10,000g for 15 minutes. To the supernatant, solid ammonium sulphate 

was added to 65% saturation and the mixture centrifuged for 30 

minutes at 17,000g. The pellets were dissolved in buffer and 

dialysed against 100mM tris/HC1 buffer, pH 7.3 with 2 changes of 

buffer. The dialysis time was kept as short as possible, (about 4-6 

hours) and cysteine was added to a final concentration of 1.0mM to 

the to the dialysate immediately after recovery. 

The solution was then loaded onto a column, (45mm x 210mm) of 

DEAE Fast Flow sephrose, (Pharmacia) pre-equilibrated with the same 

buffer and eluted at 0.70 ml. min-' with a linear gradient of sodium 
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chloride from 0.2M to 0.8M in the same buffer. The highest activity 

fractions were pooled and precipitated with solid ammonium sulphate 

at 56% saturation and centrifuged for 20 minutes at 31,000g. The 

pellet was redissolved in buffer and loaded onto a column, (25mm x 

510mm) of Pharmacia sephacryl S-200. Active enzyme was eluted at a 

flow rate of 0.5ml. min-1 with tris/HC1/cysteine buffer. The highest 

activity fractions were pooled and precipitated with ammonium 

sulphate and centrifuged as before. 

2. B. 4. Diacetyl Reductase from Beef Liver. 

The purification procedure according to Burgos and Martin (1972) 

was carried out with the modification of using sepharose ion 

exchanger instead of cellulose. Beef liver, (2.1 kg) obtained from a 

freshly killed bullock was packed in ice and transported to the 

laboratory. This was then decapsulated, finely chopped and 

homogenised for 1 minute in acetone, (4.21) at -15°C in a large 

Waring blender. The suspension was added to a further 16 litres of 

cold acetone and stirred for 30 minutes. The solids were filtered 

under vacuum and rehomogenised in a further 4 litres of cold acetone, 

refiltered and pressed in a vice to remove excess acetone. The flat, 

dry cakes were stored at -20°C where they were stable for 3 months. 

The crude protein fraction was prepared by briefly homogenising 

1 volume of acetone cake with 4 volumes of ice cold distilled water 

and then stirring for 30 minutes at 4°C. The suspension was 

centrifuged at 17,000g for 10 minutes and the precipitate discarded. 

Acetone, (0.95 volumes) at -15 °C was added slowly, with stirring to 

the supernatant. The suspension was centrifuged as before and the 

precipitate discarded. A further 0.35 volumes of acetone at -15°C 

was added with stirring and the mixture stirred for 30 minutes at 
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4°C. The fine suspension was centrifuged at 17,000g for 15 minutes 

and . the precipitate was redissolved in a minimum of ice cold 

distilled water and freeze dried. 

The crude powder fraction was disolved and loaded onto a column, 

(28mmx250mm) of Pharmacia Fast Flow DEAE sepharose, pre-equilibrated 

with 25mM tris/HC1 buffer pH 7.5 containing sucrose, (250mM). The 

protein was eluted with a linear gradient of sodium chloride from 0 

to 500mM in the same buffer at a flow rate of 0.4m1. min-1. Activity 

peaks were pooled, dialysed against 3 changes of the same buffer and 

freeze dried. 

The freeze dried powder was redissolved in a minimum volume of 

ice cold distilled water and loaded onto a column, (16mm x 800mm) of 

Pharmacia sephacryl S-200, pre-equilibrated with the same 

sucrose/tris/HC1 buffer used for ion exchange. The protein was 

eluted using the same buffer at a flow rate of 4. Oml. hr-1, the 

highest activity peaks being pooled and freeze dried. 

2. B. 5. Diacetyl Reductase from Chicken Liver. 

The purification procedure was that of Bernardo et al (1984) with 

certain modifications. Fresh chicken livers were rapidly frozen in 

liquid nitrogen and stored at -70°C until needed. 300g of liver was 

thawed and homogenised in a waring blender with 1200 ml of ice cold 

distilled water. The extract was centrifuged at 20,000g for 50 

minutes at 4°C, (sorvall RC-5B) 1.1 volumes of acetone at -15°C was 

slowly added to the supernatant, the precipitate was removed by 

centrifugation at 13,000g for 10 minutes at 4°C. A further 1.4 

volumes of acetone at -15°C was added and the suspension allowed to 

stand for 10 min. The suspension was centrifuged, (13,000g, 10 

minutes 4°C) and the precipitate dissolved in a minimum of ice cold 
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distilled water and freeze dried. 

A solution of the crude acetone precipitate, (325mg in 3m1 of 

buffer), was loaded onto a column, (26mm x 440mm) of Pharmacia 

sephadex G-100, pre-equilibrated with 5mM sodium/potassium phosphate 

buffer, pH 8.2. The protein was eluted using using the same buffer 

at a flow rate of 10.5m1. hr-1 at 4°C. 

The highest activity fractions were pooled and loaded onto a 

column, (10mm. x 120mm) of Whatman DE-52 DEAE cellulose ion 

exchanger, pre-equilibrated with the same buffer as above. The 

protein was eluted using a concave gradient formed from 120ml of the 

5mM phosphate buffer, pH 8.2 and 60ml of 500mM sodium/potasium 

phosphate buffer, pH 7.0 at a flow rate of 0.175 ml. min-' at 4°C. 

The highest activity fractions were pooled and dialysed against 

3 changes of 5mM ammonium bicarbonate solution at 4°C over 6-8 hours, 

then frozen rapidly and freeze dried. The solids were then dissolved 

25mM imidazole/HC1 buffer, pH 7.4 and applied to a column, (10mm x 

100mm) of Pharmacia polybuffer exchanger 94, (PBE 94), pre- 

equilibrated with the same buffer. The protein was eluted using 

Pharmacia polybuffer 74 at pH 5.0. The highest activity fractions 

were pooled and the protein precipitated with ammonium sulphate at 

100% saturation for 30min at 4°C. The suspension was centrifuged at 

36,000g for 30 minutes at 4°C and the precipitate dissolved in a 

minimum of 5mM phosphate buffer, pH 8.2. This was dialysed against 

2 changes of 5mM ammonium bicarbonate solution at 4°C over 4-5 hours 

and freeze dried. The dry solids were stored at -70°C over silica 

gel. 
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2. C. 1. P. A. G. E. Solutions and Buffers. 

Acrylamide-Bisacrylamide. 

Acrylamide (BDH Electran Grade) 30g. 

N, N, Methylenebisacrylamide. (BAH Electran) 0.8g. 

Distilled water to 100ml. 

The solids were weighed out carefully, dissolved with stirring and 

stored in a cool place out of direct sunlight. 

Stacking buffer. (0.5M Tris/HC1). 

Sigma 7-9 tris (6.0g) was dissolved in 75m1 distilled water and 

the pH was adjusted to 6.8 with concentrated HC1. The volume was 

made up to 100ml with distilled water. 

Resolving buffer. (3.0 M Tris/HC1). 

Sigma 7-9 tris (36.3g) was dissolved in 50-60m1 distilled water 

and the pH was adjusted to 8.8 with concentrated HC1. Because of the 

long equilibrium times of such concentrated tris solutions on some pH 

electrodes, the pH was tested and adjusted after several hours. The 

volume was then made up to 100ml with distilled water. 

Detergents. 

10% w/v solutions of the following detergents were prepared by 

dissolving 10g of detergent in distilled water to a final volume of 

1 00m1. 

Sodium dodecyl sulphate (SDS), triton X-100, sarkosyl NL30 

(all from BDH), sodium dodecyl sulphonate (Sigma) and 3 -(N, N. - 

dimethylmyristylammonio) propane sulphate or DMAPS (Fluka). 

AMPS. 

Ammonium persulphate, (BDH) 100mg was dissolved in 1. Oml of 

distilled water and used immediately. 
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Non-dissociating resolving buffers. 

(1) Tris/phosphate stacking buffer. Sigma 7-9 tris (4.95g) was 

dissolved in 50m1 distilled water and the pH was adjusted to 5.5 

using orthophosphoric acid (BDH). The volume was made up to 100ml 

with distilled water. 

(2) Tris/HC1 resolving buffer ( 2M). Sigma 7.9 tris (24.2g) was 

dissolved in 50-60m1 distilled water and adjusted to pH 7.5 with 

concentrated HM in the same manner as the resolving gel for 

dissociating systems. The volume was made up to 100ml with distilled 

water. 

Reservoir buffers. 

(1) Tris/glycine 10x concentrate. (pH 8.3) 

Sigma 7-9 tris. 30g 

Glycine (Sigma). 
,_ 

144g 

Distilled water up to 1.0 1. 

The stock was diluted in distilled water 1 in 10 before use. 

Detergent was added at this stage at 10ml of 10% w/v per litre of 

diluted buffer. 

(2) Tris/barbitone. (pH 7.0) 

Sigma 7-9 tris 10g 

Diethyl barbituric acid (BDH) 5.52g 

Detergent 10% w/v 10g 

Distilled water up to 1.0 1. 

The buffer was freshly prepared and used undiluted. 
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Sample buffers. 

(1) Dissociating sample buffer. 

Tris/HC1 stacking buffer, (pH 6.8). 0.75m1 

Glycerol ("Analar" BDH) 2. Oml 

SDS 0.8g 

Distilled water up to 9. Oml 

Water soluble bromophenol blue, (BDH) was added to the buffer as 

a marker dye, (about 0.5mg). Just before use 0.1ml of 2- 

mercaptoethanol, (Sigma) was added to 0.9ml of buffer. 

(2) Non-Dissociating Sample buffer. 

Tris/phosphate stacking buffer. 0.75m1 

Glycerol 2. Oml 

Non-ionic or zwitterionic detergent. 0.8g 

Distilled water up to 10. Oml 

Water soluble bromophenol blue was added as before but no 2- 

mercaptoethanol was used. 

2. C. 2. P. A. G. E. Dissociating Gels. 

Dissociating gels were prepared and developed using the method of 

Names and Rickwood (1981). Three types of slab gel apparatus were 

used throughout the work. (a) A commercial system marketed by Bio- 

Rad Ltd and (b)/(c) two homemade systems which produce gels of 160mm 

x 145mm and 80mm x 70mm respectively, (mini gel system). 

The gel composition for the mini gel system is shown below, 

multiply by 4 to obtain values for systems a and b. 
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Table 3. Electrophoresis Gel Composition. 

volumes in ml. 

Solution. Stacking gel. Resolving Gel. 
5% 10% 15% 20% 

Acrylamide-Bisacrylamide. 1.0 1.34 2.66 4.00 5.34 

Stacking buffer. 0.5 ---- 

Resolving buffer. - 2.0 2.0 2.0 2.0 

Detergent 10% w/v. 0.08 0.08 0.08 0.08 0.08 

AMPS 10% w/v. 0.04 . 028 . 028 . 028 . 028 

Distilled water. 4.88 4.56 3.22 1.90 0.56 

TEMED. * 
. 006 . 003 . 003 . 003 . 003 

* N, N, N, N, Tetramethyl ethylenediamine (Sigma) 

The gel components were mixed together, (SDS was used as 

detergent in dissociating gels) and then the TEMED added. The 

solution was then pipetted into the slab gel cassette, formed using 

acetone polished glass plates clamped together with waterproof tape 

or the plastic clamps of the Bio-Rad system and a 1.0mm or 1.5mm 

thick plastic spacers. The surface of the gel solution was quickly 

overlaid with a1 in 4 dilution of resolving buffer to produce a 

smooth top surface and allowed to polymerise. The gels so formed 

could be kept at 4°C covered in clingfilm to prevent dehydration for 

up to 1 week before use. 

Gradient gels were formed using a miniature gradient former 

manufactured in perspex. Half volume of gel solutions were added to 

the two chambers, the higher acrylamide concentrations to the front 

which was stirred. TEMED was added to both chambers, mixed well and 

the solutions were pumped into the gel cassette using a Gilson 
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Minipuls MK 2 pump set at 1-2 ml. min-1. The gradient gel so formed 

was overlaid manually as before, allowed to polymerise and run in the 

same way as the linear gels. The stacking gel was mixed and poured 

on the top surface of the resolving gel. Rinsing of the surface with 

stacking gel solution facilitated a good contact at the interface. 

The combs used to form the wells for protein loading varied in size 

depending on numbers and volume of samples being run. The combs were 

inserted into the stacking gel before polymerisation. After 

polymerisation the comb was removed and the gel inserted into the 

running apparatus, making sure the lower surface of the gel slab was 

exposed to the running buffer. Both the top and bottom tanks were 

filled with running buffer and the apparatus was checked for leaks. 

Samples were prepared by boiling in an equal volume of 

dissociating sample buffer for 10 minutes, cooling and centrifuging 

in an MSE microcentrifuge at 13.500 rpm for 2-3 minutes. The samples 

were then loaded into the wells using a Hamilton syringe. The gel was 

then connected to the power supply and run at 15-20mA through the 

stacking gel and 25-40mA through the resolving gel, according to size. 

2. C. 3. P. A. G. E. Non-Dissociating Gels. 

This method was essentially the same as for dissociating gels, 

(table 3) however the resolving buffer was tris/HC1 pH7.5 and the 

running buffer tris/barbitone pH 7.0. The detergents used were 

either non-ionic, (triton X-100, sarkosyl NL30) or zwitterionic, 

(DMAPS) and the samples were added to non-dissociating sample buffer 

and not boiled. Gels were run in the cold, (4°C) to retain enzyme 

activity during separation. 

2. C. 4. I. E. F. Diacetyl Reductase. 

Isoelectric focusing of purified preparations of chicken liver 
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diacetyl reductase were carried out using pre-cast thin layer 

polyacrylamide gels, (LKB) pH 3.5 - 9.5 in an LKB Multiphor system 

according to the instruction manual supplied, (Winter et al 1977). 

2. C. 5. Gel Activity Staining for Diactyl Reductase. 

Gel Overlay Technique. 

Low melting point agarose, (Sigma) was dissolved to 1% w/v by 

heating in 100mM phosphate buffer pH 6.1 or pH 7.0. This was cooled 

to 45°C in a water bath and poured over a clean glass plate and 

allowed to set. A solution of NADH, (10mg) and diacetyl, (0.3ml, 5% 

w/v), in 4m1, pH 6.1 phosphate buffer was layered on the surface of 

the gel, incubated for 30 minutes and blotted dry. After 

electrophoresis, the non-dissociating gel was briefly washed with 

distilled water, blotted dry and laid on the surface of the agarose 

gel. The sandwich was incubated at room temperature for 30 minutes, 

then the polyacrylamide gel was removed. A solution of 

3- (4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide, 

(MTT, Sigma) 0.40mM and meldola blue 0.01mM (Sigma) in 100mM phosphate 

buffer, pH 8.2 was layered on the surface of the agarose gel. Enzyme 

activity appeared as clear zones on a dark purple background. The 

background intensity w a. s controlled by varying the time of 

incubation in MTT and meldola blue. 

Direct Staining. 

The activity staining technique was a modification of that of 

Provecho et al (1984). After electrophoresis, the non-dissociating 

gel was washed briefly in distilled water and then incubated in 

phosphate buffer 500mM, pH 6.1 or pH 7.0 containing diacetyl, (20mM) 

and NADH, (1.0mM) for 10-15 minutes at room temperature. The gel was 

then blotted dry and incubated for a further 15 minutes in a dry 
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state on moist filter paper to exhaust cofactor in the gel. MTT, 

(0.4mM) and meldola blue, (0.01mM) in phosphate buffer, (100mM, pH 

8.2) were added to develop the colour. Enzyme activity showed up as 

colourless zones on a dark purple background, (see chapter 7). 

Diacetyl Reductase Activity Staining in SDS Gels. 

This method was adapted from Lacks and Springhorn (1980). SDS 

gels were prepared in the normal way with the inclusion of bovine 

serum albumen, (BSA, 10mg/ml, Fraction V Sigma) in the gel matrix. 

Samples were boiled for 2-3 minutes only before applying to gel. 

After electrophoresis the gel was washed 3 times for 30 minutes in 

fresh changes of sodium phosphate buffer, (pH 7.0,50mM). The gel was 

then blotted dry and stained for activity by the direct method. 

2. C. 6. Gel Protein Staining. 

Protein bands were visualised in polyacrylamide gels using 0.1% 

coomassie blue R, (Sigma) in methanol / acetic acid / distilled 

water, (ratio 5: 2: 5 parts respectively). Staining was carried out for 

a minimum of 4 hours at room temperature or 1.5 hours at 60°C. Gel 

destaining was carried out using the same solvent mixture minus the 

dye. Several changes were usually required to give an acceptable 

background. The spent destain was regenerated by passage through an 

activated carbon column and re-used. 

2. D. 1. Buffers used in Analytical Procedures. 

Phosphate. ' 

Recipes for phosphate buffers are given in table 4. The volume is 

kept standard at 1.0 litre. Sodium phosphates, (BDH "Analar") and 

potassium phosphates, (Aldrich) were used. 

Tris/HC1. 

Sigma 7-9 tris, (tris (hydroxy methyl) aminoethane) was used to 
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Table 4. Phosphate Buffers. g. l'' 

pH. Conc NaH2PO42H2O Na2HPOa12H2O KH2PO4 K2HPO4 

6.0 100mM 13.68 4.43 - - 

6.5 100mM 10.69 11.35 - - 

7.0 100mM 6.08 21.85 - - 

7.5 100mM 2.50 30.23 - - 

8.0 100mM 0.83 34.09 - - 

7.0 100mM - - 6.04 9.78 

6.1 100mM - 5.24 11.63 - 

7.5 25mM - 7.07 0.73 - 

8.2 100mM - 34.09 0.73 - 

7.9 25mM 0.36 - - 3.96 

7.9 250mM 3.55 - - 39.60 

7.0 500mM - - 30.20 48.90 

7.1 500mM - 109.80 26.54 - 

7.9 100mM 0.83 33.90 - - 
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produce tris buffers. 

concentrated HC1. 

pH adjustment was made with BDH "Analar" 

Table 5. Tris Buffers. 

pH. Concentration Sigma 7-9 tris g. 1-1 

7.5 25mM 3.03 

8.8 250mM 30.28 

8.8 100mM 12.11 

MOPS 

3-(N-Morpholino) propane sulphonic acid, (MOPS) was prepared by 

two methods. The free acid was dissolved to the required 

concentration and the pH was adjusted using 4M NaOH or the sodium 

salt of MOPS was dissolved together with the free acid to provide the 

required pH. Both methods gave acceptable buffers. 

Table 6. MOPS Buffers. 

pH. concentration. MOPS. 
g. 1-1 

MOPS. NaSalt. 

7.0 100mM 11.13 10.83 

7.8 100mM 4.93 17.63 

7.9 100mM 4.21 18.41 

8.0 100mM 3.55 19.15 

7.0 100mM 20.93 4M NaOH 

7.9 100mM 20.93 to 

7.0 1.0m 209.3 required 

7.9 1.0m 209.3 pH. 

Sucrose buffers. 

Sucrose was added to 25mm phosphate or tris/HC1 pH 7.5 to give a 
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concentration of 250mM, (85.58g 1''). 

Borate buffers. 

Two methods were used to prepare borate buffers. Borate buffer pH 

8.5,200mM was prepared by mixing free acid and the sodium salt as 

follows: - 

Boric acid (FSA Chemicals) 12.4g, di-sodium tetraborate (BDH) 

6.67g dissolved in 1.01 distilled water. 

Other borate buffers were prepared by adding NaOH or HC1 to sodium 

tetraborate. 

Table 7. Borate Buffers. 

pH concentration sodium tetraborate 0.1MNaOH 0.1MHC1. 

g ml 

9.02 100mM 8.925 - 46.0 

9.90 100mM 8.925 183.0 - 

10.65 100mM 8.925 238.0 - 

Citrate/Phosphate buffers. 

Recipes for citrate/phosphate buffers are given in table 8. 

Table B. Citrate/Phosphate Buffers. g. 1-1 

pH. concentration citric acid (BDH) Na2HPO4 12H20. 

4.0 50mM 5.90 13.82 

5.0 50mM 4.67 18.40 

Glycine buffer. 

Glycine buffer 200mM, pH 8.9 was prepared by dissolving 15.01g 

glycine (Sigma) in 800m1 distilled water adjusting the pH to 8.9 with 

0.2M NaOH and making up to 1.01. 
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Carbonate buffer. 

Carbonate buffer 100mM, pH 10.6 was prepared by dissolving 4.505g 

anhydrous sodium carbonate (BDH) and 0.63g sodium bicarbonate in 

distilled water and making up to 1.01. 

pH Profile Buffers. Diacetyl Reductase. 

Small volumes, (50m1) of 0.1M citrate/phosphate or 0.1M phosphate 

buffers were prepared by mixing various proportions of Na2HPO4 12H20 

solution, (35.85g. 1-') with 0.1m citric acid solution, (19.21g 1-') 

or 0.1M NaH2PO4 2H20 solution, (15.60g. 1'1) to give a range of pH's 

from 5.0 to 8.25. 

2. D. 2. Activity Measurement of Oxidase Enzymes. 

A Clark oxygen electrode, (Rank Bros) was routinely used to assay 

oxidase enzymes. For alcohol oxidase, 100mM phosphate buffer, pH 7.0 

was gassed with air for a minimum of 20 minutes before use and 

simultaneously incubated at 37°C. The buffer stock was gassed 

continuously thereafter, 2.96 ml volumes being withdrawn for assay. 

The electrode cell was water jacketed at 37°C and the buffer was 

stirred continuously. The oxygen concentration was monitored using a 

B. B. C. Servogor 120 flat bed recorder with chart speed of 30mm. min-1. 

30 ul of 10% vol/vol methanol solution (BDH) was injected into the 

chamber and a steady baseline recorded, then 10 u1 of a diluted 

enzyme solution, (typically 100x dilution), was added and the initial 

rate recorded. 

For purified enzyme solutions or dried preparations a pre- 

incubation step of 20 minutes at 37°C or 10 minutes at 45°C was used 

to ensure the enzyme had full activity. For enzyme activity 

estimation during purification where catalase was present, 10 ill of 

10.000 U. ml-1. bovine liver catalase, (Sigma) was added and the 
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recorded activity was doubled. (Stoichiometrically catalase produces 

half a molecule of oxygen per molecule of hydrogen peroxide 

decomposed, effectively halving the rate of oxygen consumption). 

Oxidase activity was calculated as follows: - 

Activity = Rate x 02 conc- x dilution x volume 
Units ml'' 100 correction correction. 

where 100 = Full scale deflection of recorder 

Rate = Recorder deflection per minute (slope) 

02 conc2l, = The total oxygen concentration of the 

buffer in u moles. 

1 unit is defined as the amount of oxygen in u moles consumed per 

minute at 37°C at pH 7.0 in phosphate buffer with methanol as 

substrate. ( 02 concentration at 37°C equivalant to 0.21 umol. l-1). 

Changes in buffer composition, temperature, pH and substrate used 

permit a range of oxidases to be estimated using this method. 

2. D. 3. Activity Measurement of Catalase. 

Catalase activity was estimated spectophotometrically by the 

method of Aebi (1983). 100mM phosphate buffer pH 7.0, was used 

containing 160 Ill of 30% wt/vol, (100 volume) hydrogen peroxide 

solution, (BDH) in 100ml. This was incubated at 25°C and 1.0 ml 

aliquots were pipetted into quartz micro-cuvettes. A Pye Unicam PU 

8600 spectrophotometer fitted with a thermostatted cuvette holder and 

connected via a. digital interface to a Phillips PM 8251 chart 

recorder was used to follow the reaction. The intial absorbance was 

approximately 0.5 at a wavelength of 240 nm. Diluted enzyme was 

added, (10 ul) and the initial reaction rate plotted. The catalase 

concentration was calculated using an extinction coefficient of 39.4 

mol. l-'. cm-1. Catalase U. ml-1. = Rate x Dilution x Volume 
39.4 correction correction. 
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2. D. 4. Activity Measurement of Diacetyl Reductase. 

Liver diacetyl reductase activity was measured at pH 6.1 and the 

bacterial enzyme at pH 7.0 in 100mM phosphate buffers containing NADH 

at 0.25mM. The buffer was pre-incubated at 25°C and a 0.98m1 volume 

was pipetted into a quartz micro-cuvette. 10 ul of diluted enzyme 

was added and a baseline rate was recorded, (same equipment as for 

catalase assay). Then 10 ul of 5% wt/vol diacetyl in water was 

added, (5.8mM final conc. ) and the initial rate recorded. The 

activity was calculated from: - 

Diacetyl Reductase = Rate x Dilution x volume 
U. ml'' 6.20 correction correction 

Where 6.20 is the millimolar absorption coefficient of NADH and 

1 unit is defined as the amount that oxidises 1u mole of NADH per 

minute at pH 6.1 and 25111C with diacetyl as substrate. 

2. D. 5. Colorimetric Measurement of Oxidase Enzymes. 

Colorimetric measurement was carried out using the same equipment 

as for catalase. The reaction buffers are shown below. 

Phosphate buffer pH 7.0 (or other) 100mM, 

containing: - 

Peroxidase, (horseradish, Sigma or Biozyme) 2U. m1-' 

4-Aminoantipyrine (Sigma or Aldrich) 0.4mM 

Phenol sulphonic acid Na salt (BDH) 25.0mM 

or alternatively, 3,5-dichloro 2-hydroxybenzene 

sulphonic acid Na salt, (Sigma) 10.0mM 

The buffer was incubated at 25°C and 3.95ml volumes were pipetted 

into disposable macro cuvettes. 100 pl of ehzyme. su6stra&o (2g. 1-1) 

was added and a baseline established. The reaction was started with 

50 pl of diluted enzyme and the initial rate was measured at 500nm or 
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520nm for the dichloro derivative. 

2. D. 6. Quantitative Protein Measurement 

The protein concentrations of enzyme solutions were determined 

using the dye binding assay of Bradford (1976). This is marketed by 

Bio-Rad Ltd as a stock solution which is diluted 5 fold with 

distilled water and filtered. This working solution was then placed 

in a auto-dispenser with a brown glass reservoir, set to deliver 

0.9m1 aliquots. 100 ul volumes of diluted enzyme solutions were 

pipetted into disposable micro-cuvettes and 0.9ml of Bradford reagent 

was added and the cuvette inverted to mix thoroughly. After 5 minutes 

the absorbance was measured at 595nm and protein concentration was 

read off a standard curve prepared using BSA standards, 

(10-80 ug. ml-'), graph 1. 

2. E. 1. Substrate Specificity Measurement. Alcohol Oxidase. 

Both the colorimetric assay procedure using phenolsulphonic acid 

as colour reagent and the Clark electrode oxidase assay were used. In 

the colorimetric procedure substrate concentration was kept constant 

at 100 mg. l-1. 

Assays using formaldehyde as substrate, however, were complicated 

by the fact that solutions of this compound are stabilised by 

methanol, which is itself a substrate for the enzyme. A saturated 

solution of paraformaldehyde, (BDH) in distilled water was therefore 

prepared, (cloudy solution) which releases free formaldehyde 

spontaneously. This was used, (30 ul) in the Clark electrode assay to 

measure the specificity of the enzyme for formaldehyde. 

2. E. 2. Substrate Specificity Measurement. Diacetyl Reductase. 

The standard assay for the enzyme was used to determine substrate 

specificity keeping NADH, (or NADPH) concentration at 0.25mM and the 
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Graph 1. PROTEIN STANDARD CURVE. 
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various substrates tested at 10mM final concentration. 

2. E. 3. Kinetic Affinity Studies. Diacetyl Reductase. 

The affinity of diacetyl reductase to its substrate was measured 

using the standard assay proceedure with one substrate being varied 

in concentration. The relative reaction rates were monitored 

continually using a Beckman DU-50 Spectrophotometer fitted with a 

Beckman Kinetics Soft-Pac Module and a dot matrix printer. Up to 

6 individual reactions could be measured at the same time as the 

machine was fitted with a6 place thermostatted cuvette carriage. 

NADH and NADPH concentrations were varied between 0.01mM and 

0.30mM with diacetyl held constant at 10mM. For the other substrates, 

NADH was held constant at 0.20mM whilst they were varied between 

0.25mM and 55.5mM. Values of V max and Km were estimated from 

Lineweaver-Burke plots of the results obtained. 

2. E. 4. Molecular Weight Estimation. Diacetyl Reductase. 

Native Protein. 

The molecular weight of native diacetyl reductase was measured 

by Sephadex G-200 gel filtration by the method of Andrews (1981). 

The column, (16mm x 462mm) had a void volume of 29.1ml measured by 

blue dextran in 100mM phosphate buffer pH 8.2 at a flow rate of 

50gl. min-I at room temperature. 

Proteins of known molecular weights were passed down the column 

as a mixture in the same buffer to produce a standard curve, graph 2. 

This procedure was repeated several times. Protein peaks were 

measured by absorbance at 280nm and by activity profiles where 

appropriate. Diacetyl reductase samples were run in triplicate, and 

both protein and activity peaks were measured. 
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Subunits. 

Diacetyl reductase subunit molecular weights were measured using 

SDS gradient slab polyacrylamide gel electrophoresis by the method of 

Weber and Osborn (1969). SDS gradient gels were poured according to 

section 2. C. 2. using system B and low molecular weight standards, 

(Pharmacia) were run in duplicate alongside samples to produce a 

standard curve, graph 3. The procedure was repeated to give an 

average value for the subunit size. 

2. E. 5. pH Profile. Diacetyl Reductase from Chicken Liver. 

Buffers of pH range 5.0 to 8.25 were prepared, (section 2. D. 1) 

and pre-incubated at 25°C. Standard diacetyl reductase assay 

conditions were used, (section 2. D. 4) with a rate of reaction 

recorded in duplicate for each buffer used. 

2. E. 6. Temperature Profile. Diacetyl Reductase from Chicken Liver. 

100mM phosphate buffer pH 6.1, was pre-incubated at a set 

temperature in a water bath. 1.0ml aliquots of buffer were added to 

10 - 15 pl of 2 U. ml-' diacetyl reductase and pre-incubated a further 

5 min. 10 µl of diacetyl, (580mM) and 20 ul of 12.5mM NADH were 

added and the reaction rate followed in a thermostatted cell in the 

spectrophotometer, (section 2. D. 3). This procedure was repeated 

several times at the same temperature to give an average rate of 

reaction. The complete process was carried out at a range of set 

temperatures to give a profile of activity in relation to 

temperature. 

2. F. 1. Direct Chemical Measurement of Diacetyl. 

1-Naphthol/Creatine Method. 

The method of Westerfield (1945) was adapted to measure diacetyl 

in aqueous samples. The reagents were as follows: - 
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(a) Creatine (Sigma) 5. Og 

Distilled water up to 100mi 

(b) 1-Naphthol (BDH Analar) 1.0g 

Sodium hydroxide (BDH Analar) 2. Og 

Distilled water up to 20ml 

1.0ml of aqueous sample or standard was added to 0.5 ml of 

(a), followed by 0.5m1 of (b). The assays were mixed well and 

incubated for 10 minutes at room temperature. The absorbance was 

measured at 530nm against a reagent blank. An alternative reagent was 

tested by replacing 1-naphthol with 1-naphthol 2-carboxylic acid 

(Sigma) at the same concentration and with the same method, graph 4. 

Girard T Method. 

This method was an adaptation of that described by Mitchel and 

Birnboim (1977) for the estimation of CY - dicarbonyl compounds by 

Girard T reagent, (trimethylamino acetohydrazide chloride). The 

reaction was carried out at pH 2.9 in formate buffer. 

(a) Sodium formate (Sigma) 0.5 M. 3.40g was dissolved in 50 ml 

distilled water, made to pH 2.9 with 0.5 M formic acid, (BDH, 23g. 1-1) 

and made up to total volume of 100ml with distilled water. 

(b) Girard T reagent (Sigma) 0.1 M. 1.68g was dissolved in 100ml 

distilled water. 

(c) Sodium formate 0.1 M. A1 in 5 dilution of (a) was made in 

distilled water. 

Method. 600 pl of aqueous sample or standard was added to 200 ul of 

(a) and 200 pl of (b). The reactants were mixed and incubated for 

10 minutes at 30°C. 1.0 ml of (c) was added- and the absorbance 

recorded at 262nm against a reagent blank, graph 5. 
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Graph 5. DIACETYL. Girard T Method. 
Absorbance 262nm. 

0.5 , 

0.4 

0.3 

0.2 

0.1 

01 

0 

Graph 6. DIACETYL. Enzymic Analysis. UV Detection. 
Absorbance 340nm. 

0 

-0.1 
  

-0.2 

  
-0.3 

-0.4 

-0.5 

-0.6 

-0.7 
05 

123456789 10 

Diacetyl mg. 1-1. 

10 15 20 25 30 35 40 45 50 

Diacetyl mg. I-1. 



72 

2. F. 2. Enzymic measurement of Diacetyl. 

Diacetyl standards in distilled water were prepared as follows. 

5. Og diacetyl was weighed into a 100ml volumetric flask and dissolved 

in distilled water. This stock solution was stable for 3 months at 

4°C. 

Dilutions were made into distilled water using volumetric flasks 

and bulb pipettes. Concentrations of 2-50 mg. 1-' were made up 

fresh each week and stored at 4111C. Lower concentrations, up to 2.0 

mg. 1-' were made up fresh on the day and discarded at the end of the 

experiment. 

(a) Chicken liver diacetyl reductase preparations were made up 

at 10 U. ml-1 in 5.0 mM phosphate buffer pH 8.2, and stored at -70°C 

in 100 ul aliquots. 

(b) NADH 1.53 mg. ml-' (2mM) was made up fresh in 1. OM phosphate 

buffer pH 6.1. 

(c) NADH 9.55 mg. ml-' (12.5mM) was made up fresh in 1.0m 

phosphate buffer pH 6.1. 

(d) NADH 1.91 mg. ml-' (2.5mM) was made up fresh in 250mM 

phosphate buffer pH 7.1. 

Diacetyl standards or samples were measured by three methods. 

(1) 200 p1 standard or sample was added to 14 pl of (a), 100 pul 

of (b) and 400 pl distilled water. The assays were incubated at 

37°C for 20 minutes in capped tubes and the residual NADH determined 

by the U. V. method, ( section 2. F. 3(i)) against a reagent blank, 

(omit NADH). 

(2) 100 pl standard or sample was added to 10 p1 of (c) and 10 

N1 of (a). Incubation as in (1). The residual NADH was measured 

using formazan, (section 2. F. 3. iii) or meldola blue, (section 
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2. F. 3. iv). 

(3) 100 ul of standard or sample was added to 50 pl of (d) and 

5 ul of (a). Incubation as in (1). Residual NADH was measured using 

meldola blue, (section 2. F. 3. iv. ). 

Recycling techniques are different in the respect that NAD 

production is measured rather than residual NADH. See section 2. F. 4. 

2. F. 3. Measurement of NAD(P)H in Enzyme Methods. 

(i) U. V. Method. 

Direct detection of NAD(P)H was carried out at 340nm using 

quartz cuvettes in a Pye Unicam or Beckman DU-50 spectrophotometer. 

Absorbance was linearly related to residual concentration over the 

range of diacetyl concentration used, graph 6. 

(ii) Iron II formation and detection with 2,2'-Dipyridyl 

and Ferrozine. 

NAD(P)H will reduce iron III to Iron II in the presence of 

electron coupling agents such as phenazine methosulphate, (PMS). The 

final concentration of Iron II in the solution may then be detected 

using complexing reagents such as 2,2'-dipyridyl, (Whitaker 1969) or 

ferrozine, (Stooky 1970, Ceriotti et al 1980). 

(a) Ferric ammonium sulphate 24H20. (Sigma) (i) 482.1 mg 1-' ; 

(ii) 1.21g 1-' in 1,, 0% v/v acetic acid in deionised water. 

(b) PMS. (Sigma) 153.1 mg 1-' in deionised water, stored at 

4°C. 

(C) 2,2'-Dipyridyl (Sigma) 1.0 g. 1-1 in 3% v/v acetic acid in 

deionsed water. 

(d) Ferrozine (Sigma) 1.5 g. 1-1 in It acetic acid in deiorxsed 

water. 

(e) Sodium fluoride (BDH) 1.5g. 1-1 in 3% v/v hydrogen peroxide 
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(BDH) in deionised water. 

(f) Hydrochloric Acid (2M) 205.5 ml concentrated HC1 to 1 litre 

deionised water. 

Dipyridyl reagent was made up by adding equal volumes of a(i), 

(b) and (c) just before use. Ferrozine reagent was made up by 

adding equal volumes of a(ii), (b) and (d) just before use. 

NADH, (sample volume 0.5m1) was measured by adding 2. Oml of 

dipyridyl or ferrozine reagent to dilutions in phosphate buffer pH6.1 

or 7.0, reacting for 1 minute and then adding either sodium fluoride 

reagent, 0.5m1 for the dipyridyl assays or HC1,0.5ml to the 

ferrozine assays. Absorbance was measured at 520nm for the dipyridyl 

reagent or 560nm for the ferrozine reagent against reagent blanks. 

Residual NADH in enzyme assays was measured by the same procedure, 

graphs 7a and 7b. 

(iii) Detection with Formazans. 

The method of Whitaker (1969) was used. 

(a) Tetrazolium salt, (INT, nitroblue or MTT), (Sigma) 800mg 1-', 

PMS, (Sigma) 200mg. 1-' in 1% v/v tween 20, (Sigma) in distilled 

water, stored at 4°C in a foil covered bottle. 

(b) Potassium hydrogen phthalate, (BDH) 10.21g. 1-1 , 204m1 0.1M 

HC1 in 1% v/v tween 20 in distilled water, (pH 3.0). 

NADH, (sample volume 0.5m1) was estimated by adding 0.5ml of (a), 

reacting 1 minute then adding 1.5m1 of (b). The absorbance was 

measured at 500 nm (INT) 540 nm (nitroblue) or 580 nm (MTT), against 

reagent blanks, an example is given in graph 8. Residual NADH in 

enzyme assays was measured by the same procedure. 
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Graph 7a. DIACETYL. Ferrozine Method. 
Absorbance 560nm. 
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Graph 8. DIACETYL. Enzyme Analysis. Formazan 
Detection. (INT). 
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(iv) Meldola Blue Decolourisation. 

This method was adapted from that of Orssoneau et al (1982). 

(a) Meldola blue 3.11g 1-' (10mM) in distilled water. 

(b) Citric acid (BDH) 42.0 g. 1-' (200mM) in 3.75% w/v triton X- 

100 (BDH) in distilled water. 

NADH was measured by adding 1.5 ml of (a) to 98.5 ml of (b), and 

mixing thoroughly. To 0.5m1 volumes of standard or sample 1.0ml of 

the mixed reagent was added. The mixed solution was allowed to stand 

for 2 minutes And the absorbance was measured at 565nm against a 

water blank, graph 9. 

2. F. 4. Enzyme Recycling of NADH. 

The single enzyme methods of Rasmusson et al (1972) and Kovar et 

al (1984) were used, with the modification of using guaiacol 

sulphonic acid as coupling agent as opposed to salicaldehyde. 

(a) 4-Nitroso N, N-dimethylaniline (Sigma) 44 mg was dissolved in 

1. Oml 95% ethanol and added to 1.86m1 cyclohexanol (Sigma). This 

stock solution was stored in the dark, stability 2 weeks. 

(b) Guaiacol sulphonic acid, K salt. (Sigma) 363.4 mg. 1-' in 250 

mM tris/HC1 buffer , pH 8.8. 

(c) Liver alcohol dehydrogenase (equine) 10 units. ml-' in 50% 

v/v glycerol in 250mM tris/HC1 buffer, pH 8.8. Store at -20°C. 

(d) NADH for use as standards and substrate was made up 

according to the method of Payne et al (1982). 3.82 mg NADH in 1.0ml 

carbonate buffer, pH 10.6 were sub-aliquotted, (200ju1) and stored at 

-70°C. The reagent was stable for 3 weeks. 

(e) For use, an aliquot was heated for 20 minutes on a boiling 

water bath and then diluted 1 in 10 immediately prior to use in 0.5 M 

phosphate buffer, pH 7.1. 
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(f) Concentrated HCl (205.5 ml) was diluted to 1.0 1 with 

distilled water. 

Diacetyl samples or standards were measured by the following 

method: - Samples or standards, 50 µl were added to 50 p1 of (e) and 

2 pl diacetyl reductase, (section 2. F. 2, reagent a). Incubation was 

carried out at 37°C in capped tubes for 20 minutes. 20 pl of (f) was 

added and the reagents were completely mixed, (this step is very 

important) and incubated at 37°C for a further 5 minutes. working 

recycle buffer prepared from 236 ul of (a), 100 ml of (b) and 200 µ1 

of (c) was pre-incubated at 37°C for 5 minutes. 1.0 ml of this was 

added to the reactants and incubated for 10 minutes at 37°C. The 

tubes were then cooled on ice and the absorbance measured at 680nm 

against a reagent blank within 2 minutes, graph 10. Alternatively the 

reaction could be stopped by adding NaOH, (100 µl, 2.5M) and reading 

the absorbance within 5 minutes. 

2. F. 5. Measurement of Hydrogen Peroxide. 

(i) Redox dyes. 

ABTS was used to detect hydrogen peroxide produced by oxidase 

reactions, particularly at low substrate concentrations. Also sodium 

diphenylamine sulphonate was tested as a single reagent for glucose 

estimation after Morin and Prox (1973). 

(a) ABTS ammonium salt (Sigma) 1mg. m1-' dissolved in phosphate 

buffer, (various pH's). 

(b) Peroxidase 4000 units. ml-' in 100mM phosphate buffer pH 7.0. 

(c) Alcohol oxidase. Concentration dependent on preparation. 

100ml of (a) was mixed with 60 ul of (b) and sufficient (c) to give 

between 2 and 5 units alcohol oxidase. ml-1.1. Oml aliquots were 

incubated for 30 minutes at room temperature with 50 p1 of sample. 
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Graph 10. DIACETYL. Enzyme Recycling Assay. 
Absorbance 680nm. 
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Absorbance was measured at 410 or 650nm against a reagent blank, 

graph 11. 

(d) Sodium diphenylamine sulphonate 0.9mg . ml-' in 100mM citrate 

buffer, pH 5.5 containing 48U. ml-' peroxidase and 11.4U. m1'' glucose 

oxidase. 

50 ul standard or sample was added to 2.5m1 reagent (d) and incubated 

for 2 minutes at room temperature. Absorbance was measured at 470 nm 

against a reagent blank, graph 12. 

(ii) Condensation Reactions. 

Many Reactions involving condensation of reagents to form dyes 

have been tested in oxidative systems. (Appendices II and III). In 

practice for "wet" enzyme methods only 4-aminoantipyrine was used 

with various different colour coupling reagents. MBTH and 

substituted phenylene diamines were used in dry systems, (see chapter 

6). 

(a) 4-Aminoantipyrine 40mM in distilled water. Stored at 4°C in 

dark bottle, stable 3 months. 

(b) Peroxidase 4000U. m1'' in 100mM phosphate buffer pH 7.0. 

(c) Colour coupler (vary) 25mM in buffer (vary). 

(d) Oxidase enzyme. (Typically 500U. m1'1). 

e. g. Alcohol reagent. 1.0ml of (a), 80 pl of (b) and 50-200 ul 

alcohol oxidase (d) were mixed with 99m1 of (c), (phenolsulphonic 

acid sodium salt in 100mM phosphate buffer, pH 7.0). 100 ul of 

sample or standard was added to 4ml reagent. Absorbance was then 

measured after 5 minutes, (concentration range 1.0 - 5.0g. 1-' 

ethanol) at room temperature or after 30 minutes at 30°C, 

(concentration range 0-1.0g. l-' ethanol) at 500nm against a reagent 

blank, graphs 13 and 14. 
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Graph 12. GLUCOSE. Diphenylamine Sulphonate 
Detection. 

Absorbance 470nm. 
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Graph 14. ETHANOL. End Point Method. 4" 
AAP/Phenoisuiphonic acid Detection. 

Absorbance 500nm. 
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(iii) Electrochemical Detection. 

Peroxide probes , (Yellow Springs Instruments Inc. ) were used to 

measure hydrogen peroxide concentration directly. Proprietary buffer 

salts were used with alcohol and glucose being detected in a flow 

system using immobilised enzyme coils, (sections 2.1.2 and 2.1.4). 

YSI 2357 Buffer. 

Sodium dihydrogen orthphosphate 0.76g. 

Disodium hydrogen orthophosphate 3.47g. 

Sodium chloride 1.37g. 

EDTA dipotassuim salt. 2H20 0.28g. 

Sodium benzoate 0.46g. 

Gentamycin sulphate 0.004g 

The buffer salts were supplied dehydrated in sachet form and were 

dissolved in 450m1 of distilled water before use. 

2. G. 1. Immobilisation Procedures. Nylon Supports. 

Nylon 6 tubing, (Portex) with internal diameters of 1.0mm and 

2.0mm was used. Coils were produced by wrapping the tubing around a 

glass rod or tube as a former and holding in place by tightly 

wrapping autoclave tape along the whole length of tubing. Heating to 

100°C in a boiling water bath for 10 minutes, with subsequent cooling 

under running cold water for 5 minutes, gave helical coils that 

retained their shape at temperatures up to 55°C. These could be 

supported using a central core of cardboard or expanded polystyrene 

before incorporation into a Technicon AutoAnalyzer system. 

Deriveetisation and Immobilisation of Enzymes. 

This was carried out by the method of Morris et al (1975). The 

reaction sequence is shown in fig. 9. 

Triethyloxonium tetrafluoroborate (Fluka) 12.5% w/v in 
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FIG. 9 NYLON ACTIVATION. REACTION SEQUENCE. 

--- C NH -- 

0 

-- C =NH-- 

O OR 

C,,, _NH ___ _" C= NH 
NH Q NH 

CH (I 2)n (I 2)n N 
NHZ CH 

2)3 (& 

&0 
Reagents. 1. Triethyloxonium Tetrafluoroborate. 

2.1, n Diamino-Alkane. Other spacers include, 
3. Glutaraldehyde. Adipic acid dihydrazide. 

Polyamine dextran. 
Pectinamine. 

FIG. 10 CONTROLLED PORE GLASS ACTIVATION. 
REACTION SEQUENCE. 

I 
0 

, ý. glass -0- 
Ai. 

I 
0 

0 

glass -0- Si - (CH2)3NH2 +3 C2H5OH 

10 t 
Alkylamine glass 

NH2(CH2)3Si(OCH2CH3)3 + 311 

3-Aminopropyltriethoxysilane 

0 
1 

glass -0- Si - (CH2)3N = CH - (CHZ)3CN0 + H2O 
0 

Activated glass 

3-Aminopropyltri e thoxysilane reacts with silane groups on the glass 
surface to give alkylamine glass, which is then activated using 
glutaraldehyde. 
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dichloromethane (Fluka) was pumped into dry, formed nylon tubing and 

incubated at 25°C for 15 minutes. The tubing was washed with' 

dichloromethane, (10-15m1) and filled with one of a variety of 

activating compounds, table 9. 

Table 9. Activating Compounds for Nylon Tube Reactors. 

Diaminoethane (Sigma) Undiluted. 

Adipic acid dihydrazide (Fluka) 3% w/v in formamide (Sigma). 

Polyamine dextran, (section 2. M. 4. ) 8% w/v in 200mM borate 

buffer, pH 8.5. 

Pectinamine, (section 2. M. 6. ) 2% w/v in distilled water. 

After incubation for 2 hours at room temperature the tubes were 

washed exhaustively with distilled water and perfused at 1.0ml. min-' 

with 5% v/v glutaraldehyde solution, (Agar Aids) in 200mM borate 

buffer, pH 8.5 for 15 minutes. The tubes were then washed with 

borate buffer containing 150mM sodium chloride at 3. Oml. min-' for 15 

minutes. The activated tubes were then filled with enzyme in 100mM 

phosphate buffer, pH 7.0, table 10. 

Table 10. Enzymes used in Nylon Tube Reactors. 

Enzyme Protein mg. ml-' Activity U. ml-' 

Alcohol oxidase (various preparations) 2-7 18.0 

Glucose oxidase (Sigma Type X) 0.27 30.0 

Cholesterol oxidase (Sigma) * 0.88 20.0 

Cholesterol esterase (BDH) * 2.5 10.0 

* The cholesterol oxidase and cholesterol esterase 
were co-immobilised onto the nylon tube. 

After incubation overnight at 4°C the tubes were washed with 100mM 
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phosphate buffer, pH 7.0 containing 1.0M sodium chloride at a flow of 

3ml. min-' for 10-15 minutes to remove any adsorbed enzyme. After a 

final wash with 100mM phosphate buffer, pH 7.0, (3ml. min-1,15 

minutes) the tubes were ready for use. The enzyme coils were stored 

at 4°C filled with phosphate buffer when not in use. 

2. G. 2. Glass Supports. 

The method of Weetall (1977) was used to immobilise enzymes to 

controlled pore glass, (Sigma). The enzyme - glass was then loaded 

into micro-bore columns of 2 or 3mm internal diameter of various 

lengths (20-80mm) for incorporation into a flow injection system. 

Derivatisation and Immobilisation of Enzyme. 

Various grades of control pore glass from 500 A to 1273 A were 

washed with 5% v/v nitric acid (BDH) at 90°C in a water bath to clean 

the surface. The cleaned glass was washed exhaustively on a sintered 

glass funnel with distilled water and then dried in an oven at 

115°C. 

One gramme of glass was then added to It v/v 3-amino propyl 

triethoxysilane, (Sigma) in distilled water adjusted to pH 3-4 with 

6M HC1. The aqueous silanisation was carried out for 2 hours at 75°C 

in a water bath, then the glass was washed exhaustively with 

distilled water and dried at 115°C. The alkylamine glass so formed 

was stable and could be stored dry indefinitely. 

To 200mg of alkylamine glass, 5ml of 5% w/v glutaraldehyde in 

100mM borate buffer, pH 8.5 was added and the suspension was 

incubated for 1 hour at room temperature with occasional shaking. 

During this procedure a colour change from white to pink or purple- 

brown occurred. The glass was then washed exhaustively with 

distilled water and then rinsed in buffer. The enzyme to be 
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immobilised was then added in a suitable buffer, e. g. 100mM phosphate, 

pH 7.0 at a concentration of 20-40 mg. ml-1, and incubated overnight 

at 4°C. After incubation the glass was washed well with buffer and 

then stored in fresh buffer at 4°C. The reaction sequence is shown in 

fig. 10. 

2. H. 1. Dialysis Probe. Standardisation / Characterisation. 

The dialysis probe was designed in the Biotechnology Unit and 

manufactured in the Biophysics workshop. It was made as an on- line 

sampling device for fermentation analysis. The probe is depicted in 

fig 11. In use, isosmotic carrier solution is pulled through the 

probe, producing a slight negative pressure which keeps the dialysis 

membrane, (Medicell) taut. Low molecular weight analytes cross the 

membrane by dialysis and may be analysed. A range of concentrations 

may be measured directly by this method, the sensitivity may be 

controlled by varying the flow rate of the carrier solution. 

Standardisation of the probe was carried out with mixed standard 

solutions in a thermostatted vessel with stirring. Isosmotic sucrose 

solution was drawn at 0.26ml. min-' through the probe. The probe head 

was immersed in the standard solution and left to equilibrate for 5- 

10 minutes. The effluent solution from the probe was then collected 

and analysed in a flow system, (section 2.1. ). The process was 

repeated for several standards and the results plotted to give 

standard curves for each analyte, graphs 15 and 16. Using the same 

apparatus temperature dependence, response time, pH dependence and 

the response of various analytes were studied and the results are 

reported in chapter 4. 

2. H. 2. Dialysis Probe. Use in fermentors. 

The dialysis probe was used to follow the consumption of glucose 
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Graph 15. DIALYSIS PROBE. Ethanol Standard Curve. 
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Graph 16. DIALYSIS PROBE. Glucose Standard Curve. 
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and the production of ethanol in model fermentations. Two commercial 

home brew kits, (Tom Caxton Bitter and Pains) were used. Aliquots 

were diluted to 1.21 volumes and added to a 21 Applikon fermentor, 

1.0g of yeast slurry was added and sampling was started using 

isosmotic sucrose solution as carrier, flow rate 0.26ml. min-' or 1.0 

ml. min-1. The medium was stirred with minimal aeration, ( >20ml. min-1) 

and sampled intermittently over a 48 - 72 hour period using an auto 

sampler, (Technicon Instruments) fitted with a time switch. After 

each 24 hour period, 100ml glucose, (200g. 1-1) was added to prolong 

the fermentation. 

In addition to these fermentations, a model bacterial 

fermentation, (S. Lactis) was set up according to section 2. A. 2. The 

fermentor containing medium and the dialysis probe was sterilised in 

an autoclave at 121°C for 20 minutes. The medium was inoculated with 

an actively growing culture of S. Lactis, stirred with no aeration and 

diacetyl production and glucose consumption were measured using a 

flow system, (sections 2.1.2 and 2.1.3). 

2.1.1. Segmented Flow Analysis. Soluble Enzymes. 

The manual method for ethanol, ( section 2. F. 5) was adapted for a 

Technicon Auto Analyser Mark II system. The reagent compositions and 

the flow chart are shown in fig. 12. 

The sample was aspirated from the sampler, mixed with diluent and 

the enzyme/aminoantipyrine reagent and the developed colour measured 

in a flow through optical cell at 505nm, the peak height being 

directly related to concentration. Diluent 1 was used for a range of 

50-500mg. 1-' ethanol with a sample flow rate of 0.32ml. min-' and 

0.5g. 1-' to 5.0g. 1-' ethanol with a sample flow rate of 0.05ml. min-1. 

Diluent 2 was used to measure ethanol between 5mg. l-' to 100mg. 1-' 
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FIG. 12 SEGMENTED FLOW ANALYSIS of ETHANOL. 

SOLUBLE METHOD, 

Air 0.42 ml min--I 
Diluent 1.20 ml min-' H3 Smc Smc 

Sample 0.05 ml min -' 1D1 

Enzyme/Aminoantipyrine 1.00 ml min -I 
Water 0.80 ml min "- 1 Dmc To sampler 
Pull-throuah 1.00 ml min -I Waste 

Colorimeter 505 nm 
115 mm FC 

Sampler 
' 50h-' 

2: 1 
Recorder 

Enzyme/Aminoantipyrine: sodium 
phosphate buffer 100 mmol 1-1 pH 7.0 

Alcohol oxidase 76 units I-' 
Peroxidase 2 300 units I-' 
4-Aminoantipyrine 187 mg 1-' 0.92 mmol I-' 

Ranges 50-500 mg I -' EtOH, 0.5-50 g I-' EtOH 
Diluenti. Sodium phosphate buffer 100 mmol 1- ' pH 7.0 

4-Hydroxybenzene sulphonic 
acid sodium salt 47.9 mmol 1-' 

Tween 20 1.0 ml 1-' 

Range 5-100 mg I-' EtOH 
Diluent%Sodium phosphate buffer 100 mmol 1- ' pH 7.0 

3,5-Dichloro-2-hydroxy- 
benzene sulphonic acid, 
sodium salt 9.25 mmol (-' 

Tween 20 1.0 ml 1 -' 
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with a sample flow rate of 0.42ml. min-' and the developed colour was 

measured at 523nm. 

2.1.2. Segmented Flow Analysis. Immobilised Enzymes. 

The nylon tube immobilised enzymes, (section 2. G. 1) were 

incorporated into a flow system and used to measure their respective 

analytes. The reagent compositions and the flow diagram are shown in 

fig. 13. 

The reactions and concentration ranges for ethanol with the two 

colour reagents were the same as for the soluble method, with the 

exception of a less sensitive response at low levels of ethanol, (10- 

120mg. 1 ''). Also the number of samples analysed per hour was reduced 

from 50 to 30. Analysis of glucose was identical to that of ethanol 

using colour reagent 1 over a range of 1- 5g. 1-1. Cholesterol was 

analysed over the range of 0-2.0g. 1-' using cholesterol diluent and 

colour reagent 1. 

2.1.3 Segmented Flow Analysis. Chemical Diacetyl Method. 

The manual 1-naphthol/creatine method for diacetyl, (section 

2. F. 1) was adapted for flow analysis. The reagents are identical to 

those in section 2. F. 1. and the flow diagram is given in fig. 14. 

Diacetyl may be measured at 1- 10mg. 1-' using this system. Adjusting 

the sample flow rate to 1. Oml. min-' and omitting the water line 

enables diacetyl concentrations of 0.1 - 1mg. 1-' to be measured. 

2.1.4. Flow Injection Analysis. Soluble enzymes. 

Flow injection analysis was carried out using the flow system and 

reagents shown in fig. 15. The apparatus used included a Gilson 

Minipuls 3 peristalic pump, an Anachem valve switching module fitted 

with a low pressure Rheodyne injector valve, a Jencons colorimeter 

with an 18 ul, 10mm pathlength Hellma glass flowcell and a Gallenkamp 
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FIG. 13 SEGMENTED FLOW ANALYSIS of ETHANOL. 

IMMOBILISED . METHOD. 

Air 0.32 ml min-' 
Diluent 1.20 ml min-' 

ý, 

Sample 0.05 ml min-' 
Colour reagent 0.60 ml min- 

1.0 mm i. d. 
8 turns Enzyme 'coil 

01 

Water 0.80 ml min -' To sampler 
Pull-through 1.00 ml min--' 

Waste 
Dmc 

Colorimeter 505 nm 
15 mmFC 

' Sampler 
30h' 

1: 1 

Recorder 

Diluent: Sodium phosphate buffer 
100 mmol I-' pH 7.0 

4-Aminoantipyrine 
(125.2 mg I- ') 0.62 mmol I-' 

Tween 20 

Enzyme coil 0.5 m, Nylon 6, i. d. 1.0 mm 
containing 0.454 units alcohol oxidase 

Range 50-500 mg I' EtOH 
0.5-5.0 gI-I EtOH 

Colour reagent: Sodium phosphate 
buffer 100 mmol I-' pH 7.0 

4-Hydroxybenzene 
sulphonic acid 
sodium salt 73.9 mmol I-' 

Peroxidase 3080 units I -' 

Range 10-120 mg I' EtOH 
Sodium phosphate buffer 100 mmol I-' pH 7.0 
3.5-Dichloro-2-hydroxybenzene sulphonic 

acid sodium salt 15.4 mmol I 
Peroxidase 3080 units I-- 
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FIG. 14 SEGMENTED FLOW ANALYSIS of DIACETYL. 

Creatine 0.23m1, min-1. 

Water 0.32ml. min-1 
Sample 0.42ml. min'17 H3 Smc Smc D1 

J Dl Air 0.23ml. min-1. 
KOH/1-Naphthol 0.23ml. min'1. 
Water 1.0ml. min`1. _ 

Dmc 
--- To sampler Waste Pullthrough O. Sml. min 1_ 

C- 

Creatine. 

Sampler 
50 h-1 
2: 1 

Colorimeter 523 nm 115mmFCFe1ay 

__. ý Coil. 

El lý 
Recorder 

1.0% w/v in distilled water. 

KOH/1-Naphthol 5.0% w/v I-Naphthol in 2.5M 

Potassium hydroxide in 

distilled water. 
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FIG. 15 FLOW INJECTION ANALYSIS of ETHANOL. 

SOLUBLE METHOD. 

Recorder 

Injection Valve. 2M Reaction Coil. 

Waste. 

Water Jacket. 
25 °C. 

Colorimeter. 

* The same system is used for both single reagent 

and double reagent methods. 
Single Line. Flow Rate 1.90ml. min-1 
Double Line. Flow Rate 1.0.95ml. min-1 

Flow Rate 2.0.95m1. min 
1 

Single Reagent. 

Alcohol Oxidase 

(or Glucose Oxidase 

Peroxidase 

4-Aminoantipyrine 

Phenol Sulphonic Acid 

100mM Na Phosphate buffer 

5000 U. 1-1 

10,000 U. 1-1) 

2000 U. 1-1 

81.3mg. 1-1(0.4mM) 

5.80g. 1-1 (25mM) 

pH 7.0 up to 1.01. 

Double Reagent. 

Line I. Alcohol Oxidase 10,000IJ. 1-1 

(or Glucose Oxidase 20,000U. 1-1) 

Peroxidase 4000U. 1-1 

4-Aminoantipyrine 162.6mg. 1-1(0.8mM) 

100mM Na Phosphate buffer pH 7.0 up to 1.01. 

Line 2. Phenol Sulphonic Acid 11.68.1-1(50mM) 

100mM Na Phosphate buffer pH 7.0 up to 1.01. 
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Datatrace flat bed recorder. Tubing was 0.8 mm ID teflon, (Omnifit) 

and connections were made using 1/4 - 28 thread low pressure HPLC 

unions, nuts and ferrules, (Upchurch). The mixer blocks were made out 

of perspex by the Biophysics workshop. Pump tubing was accurated 

auto analyser tubing, (Elkay). 

2.1.5. Flow Injection Analysis. Immobilised Enzyme. 

The flow system and reagents are shown in fig. 16. The glass 

immobilised enzyme, (section 2. G. 2) was packed in a microcolumn, (2mm 

ID x 20-80mm) which was inserted between the two mixing coils. 

2. J. 1. Preparation of Dry Alcohol Oxidase. Vacuum Drying. 

Alcohol oxidase, (40 units, 4-5mg protein) in buffered solution 

was mixed with stabiliser. The resulting solution was sub-aliquotted, 

(100 ul) into disposable polystyrene macro-cuvettes using a Gilson 

adjustable pipette or a Gilson repetman pipette. The water was 

removed under vacuum in a heated vacuum oven, (Gallenkamp) at 30°C, 

0. lmbar for 4 hours, with silica gel as desiccant. The resulting dry 

enzyme films were then stored desiccated over silica gel and 

reconstituted with colour reagent before assay by the standard 

technique described in section 2. F. 5. (ii). 

This basic procedure was employed using a range of compounds as 

stabilisers, table 11 

Bulk preparation of the dry enzyme was carried out using the same 

drying procedure with enzyme / stabiliser solution being spread 

evenly on a glass plate. The dry film produced was ground to powder 

using a mortar and pestle and stored dry as before. 

2. J. 2. Preparation of Dry Alcohol Oxidase. Freeze Drying. 

Enzyme / stabiliser solutions were prepared as before and frozen 

using dry ice. The frozen solutions were then dried in a Chemlab 
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FIG. 16 FLOW INJECTION ANALYSIS of ETHANOL. 

IMMOBILISED METHOD. 

Recorder. 

Enzyme Column. 
CPG immobilised lm Reaction 

Injecti Valve. Coil. 

5iul. 
Di1ue t. r 
Flow ate 0.95ml. min-1, 

Colon Reagent. Waste. 
Flow ate 0.95ml. min-1. 

L --j 1$ul Flow 
Cell. 

Colorimeter. 

Pump. 
Water Jacket. 

25 CC. 

Diluent. 

Phosphate buffer (Na) 100mM, pH 7.0. 

Colour Reagent. 

Peroxidase 

Phenol Sulphonic Acid 

4-Aminoantipyrine 

100mM Na Phosphate buffer 

4000U. 1-1 

11.6g. 1-1 (50mM). 

162.6mg. 1-1(0.8mM). 

pH 7.0 up to 1.01. 
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Table 11. Potential Stabilisers for Dry Alcohol Oxidase. 

Compounds. Source. Concentration. Type of drying. * 

Monosaccharides. 

Glucose BDH 10% w/v V 

Fructose SIGMA 10% w/v V 

Galactose SIGMA 10% w/v v 

Xylose SIGMA 10% w/v V 

Sorbose SIGMA 10% w/v V 

Disaccharides. 

Sucrose SIGMA 10% w/v F/V 

Lactose BDH 10% w/v V 

Maltose May & Baker 10% w/v V 

Trehalose SIGMA 5% w/v V 

Cellobiose SIGMA 5% w/v V 

Trisaccharides. 

Raffinose BDH 5% w/v V 

Sugar Alcohols. 

Mannitol SIGMA 10% w/v F/V 

Dulcitol SIGMA 5% w/v V 

Sorbitol SIGMA 10% w/v V 

Lactitol BIO- KITS, CORTECS Ltd. 1%-10% w/v F/V 

Maltitol SIGMA 5% w/v v 

Cyclic Polyalcohol. 

Inositol'(Meso) BDH 1% - 10% w/v F/V 

Neutral Polymers. 

Dextran Mol wt. 500,000 SIGMA 1% w/v V 

Dextran Mol wt. 150,000 SIGMA 1% w/v v 
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Table 11, CONTINUED. 

Compound Source. Concentration. Type of Drying* 

Dextran Mol wt. 17,900 SIGMA 1% w/v V 

Dextran Mol wt. 5-40 x 106 Sigma 1% w/v V 

Dextran T10 Pharmacia 1-5% w/v F/V 

Dextran T40 Pharmacia 1% w/v V 

Dextran T70 Pharmacia 1% w/v V 

Dextran T500 Pharmacia It w/v V 

Dextran T2000 Pharmacia 1% w/v V 

Polyethylene glycol Mwt 6000 BDH 10% w/v V 

Polyethylene glycol Mwt 10000 BDH 10% w/v V 

Polyethylene oxide BDH 1% w/v V 

Polyvinyl pyrollidone Sigma 5% w/v V 

Ficoll 400 Pharmacia 5% w/v V 

Dextrin Type 1 Sigma 5% w/v V 

Dextrin Type III Sigma 5% w/v V 

Soluble starch Sigma Saturated V 

B-Cyclodextrin Sigma 1% w/v V 

Xylan Sigma 0.5% w/v V 

Cationic Polymers. 

DEAE dextran Pharmacia 1% w/v V 

Polyethyleneimine Sigma 1% w/v V 

Chitosan Protan 0.5% w/v V 

Anionic Polymers. 

Carboxymethyl cellulose Sigma 1% w/v V 

Dextran sulphate Pharmacia it w/V V 

Sodium alginate BDH 0.5% w/v V 
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Table 11. CONTINUED. 

Compound. Source. Concentration. Type of Drying* 

Fucan A Dr. W. Mackie 0.5% w/v V 

Fucan B Dr. W. Mackie 0. 5% w/v v 

Combinations. 

Lactitol / DEAE dextran 0.1 - 10% /0 
. 01-1% w/v F/V 

Lactose / DEAE dextran 5% / 1% w/v v 

Sucrose / DEAE dextran 5% / 1% w/v V 

Maltose / DEAE dextran 5% / 1% w/v V 

Inositol / DEAE dextran 5% / 0.01-1% w/v V 

Maltitol /DEAE dextran 5% / 1% w/v V 

Lactitol/Carboxymethyl cellulos e 2.8- 5% /0.6-1 % w/v V 

Lactitol / Sodium alginate 2.8% / 0.24% w/v v 

Lactitol / Dextran sulphate 5% / It w/v V 

Lactitol / Chitosan 5% / 0.01 - 1% w/v V 

Lactitol / Polyethyleneimine 5% / 0.01 - 1% w/v V 

V= Vacuum drying. 

F= Freeze drying. 
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freeze drier. When dry, the resulting powdery product was stored 

over silica gel until use. 

Bulk freeze dried preparations were prepared in a similar fashion. 

Typically, 1000 units of alcohol oxidase was mixed with 5.0ml of 

stabiliser solution, (20% w/v) and frozen. The mixture was then 

freeze dried and thoroughly powdered using a thick glass rod. 10mg 

samples were weighed out and reconstituted in 1.0ml of 100mM 

phosphate buffer pH 7.0.40 Ill aliquots were then assayed using 

standard assay techniques described. 

2. K. 1. Stability of Enzymes. Dry Preparations. 

The stability of dry enzyme preparation was estimated using the 

technique of elevated temperature testing. The dry preparations 

produced by vacuum or freeze drying were stored desiccated over 

silica gel at 37°C. Samples were removed, (individual cuvettes or 

10mg samples from bulk enzymes), at various timed intervals usually 

over a period of days and assayed using standard assay techniques, 

(sections 2. D. 2,2. D. 4. or 2. F. 5). The residual enzyme activity 

measured was taken as an indication of the stability of the enzyme in 

the dry form. 

2. K. 2. Stability of Enzymes. Wet Stabilisation. 

Wet stability of enzymes was carried out using elevated 

temperature testing as before. Enzyme solutions were incubated with 

stabilisers at a range of temperatures, (37,50 or 60°C) and the 

residual activity measured as before. Enzymes and stabilisers are 

shown in table 12. 
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Table 12. Wet Stabilisation of Enzymes. 

Enzyme Stabiliser Concentration 

Alcohol oxidase H. Polymorpha. 
_ 

Lactitol Saturated 

Alcohol oxidase H. Polymorpha. Sorbitol Saturated 

Cholesterol oxidase Nocardia Lactitol Saturated 

Cholesterol oxidase Nocardia Sorbitol 1M to Saturated 

Cholesterol esterase Pancreatic Sorbitol 1M 

2. K. 3. Stability of Immobilised Enzymes. 

Nylon or glass immobilised enzymes "in - use" in flow systems, 

(sections 2.1.2 and 2.1.5) were continually perfused with buffer 

solution over a period of days. Standards were assayed intermittently 

and the residual activity of the enzyme detected by the reduced 

recorder response. 

2. L. 1. Dry Enzyme Tests. Paper Supports. 

Dry reagent analytical strips employing all buffers, enzymes, 

colour reagents, stabilisers and additives were fabricated by both 

single saturation or multiple saturation of various grades of filter 

papers with a cocktail of pre-mixed ingredients. The following 

typical procedure will illustrate the process. 

Filter paper. Whatman 3MM Chr 5cm x 5cm. 

1.0ml Enzyme cocktail. Alcohol oxidase 200 Units. 

Peroxidase (Sigma or Biozyme) 100 Units. 

4-Aminoantipyrine (Sigma or Aldrich) 20 mM. 

N, N Bis(hydroxyethyl)aniline (ICI) 25 mM. 

Inositol (BDH) 5% W/V. 

Bovine serum albumin (Sigma) 3% w/v. 
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Cysteine (Sigma) 4.2 mg. 

MOPS buffer pH 7.9 (BDH) 50 M. M. 

The alcohol oxidase was freshly prepared by dialysis against 10mM 

MOPS buffer, pH 7.9. The enzymes, inositol, BSA, cysteine and buffer 

were mixed well and the colour reagents added. The cocktail was 

quickly mixed, poured on a clean glass plate and absorbed thoroughly 

onto the filter paper, making sure the paper was evenly saturated. 

Excess liquid was drained onto soft tissue and the saturated filter 

paper was placed flat in a vacuum oven at 30 - 35°C where it was 

dried at 0. lmbar for 30 minutes, with silica gel as desiccant. The 

dry paper was then stored over silica gel. In use, 4-5 mm diameter 

discs were cut from the paper using a paper punch and developed with 

aqueous ethanol solutions. 

Multiple saturation of paper supports was carried out when one or 

more of the colour reagents or additives were insoluble in aqueous 

solvents. e. g. The dry enzyme paper was prepared as before but 

omitting the N, N, bis(hydroxyethyl) aniline. A 10mM solution of 2,4,6- 

triiodophenol, (Sigma) in 1,1,1-trichloroethane, (BDH) was then 

poured over the enzyme paper in a fume cupboard and the excess liquid 

blotted off. The solvent was then evaporated in an air stream and 

the paper stored and developed as before. 

Microporous films of polymer-solutions were also applied to the 

paper supports using a similar solvent coating technique. Ethyl 

cellulose, (Sigma) was dissolved in toluene, (BDH) to It w/v. The dry 

enzyme paper was dipped in this solution, the excess was blotted off 

and the solvent evaporated in an air stream. The dry paper was then 

stored and developed as before. Variations in cocktail composition 

and technique will be discussed in more detail in chapter 6. 
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2. L. 2. Dry Enzyme Tests. Gel Films. 

Multiple layer dry enzyme tests were constructed using dry enzyme 

papers prepared as described below, laminated onto a film of gelatine 

containing the colour detection chemistry. 

Dry paper layer. Whatman 4 Chr. 5cm x 7cm 

1. Oml Enzyme cocktail Alcohol oxidase 200 units 

Inositol 5% w/v 

MOPS buffer pH 7.9 100 mm 

Cysteine 4.2 mg 

BSA 3% w/v 

The paper is saturated, drained and dried as before. 

1.0 ml Gel layer. 
Gelatine 300 bloom (Sigma) 15% w/v 

4-Aminoantipyrine 20 mM 

N, N Bis(hydroxyethyl) aniline 25 mM 

Peroxidase 100 Units 

Cysteine 4.2 mg 

Mops buffer pH 7.9 100 mm 

The gelatine is prepared by dissolving-3g of solid in 10 ml of hot 

distilled water at 55°C to give a 30% solution, this is kept molten 

at 55°C. The peroxidase, colour reagents and buffer were made up to 

double concentration and heated to 40°C just before use. Equal 

volumes of gelatine and colour reagents were then mixed and poured as 

a thin band onto one edge of a piece of gel bond transparent 

membrane, (Sigma). A grooved metal rod, so constructed to have an 

isosceles triangular thread profile of known thread depth was then 

quickly drawn across the molten gel mixture to produce a thin film. 

This technique was a variation of the Meyer Rod method for producing 
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thin films, (Walter 1988). The film was allowed to become tacky, (1-2 

minutes) and the dry enzyme paper prepared previously was laid on the 

gel and rolled flat on a silicon rubber surface using an artists 

rubber roller. This procedure caused the gel layer to laminate 

evenly with the enzyme paper. The composite element is air dried at 

20-35°C, with the paper side uppermost and developed as before. The 

test is illustrated in fig 17. The developed test was observed from 

the back through the transparent support. Variations in this process 

are discussed in chapter 6, section 6. C. 

2. L. 3. Dry Enzyme Tests. Stability. 

The storage stability of dry enzyme tests was estimated by the 

same type of elevated temperature testing as for the dry enzyme 

preparations. Enzyme papers were stored over silica gel at 37°C and 

small samples were developed using aqueous standards. The time taken 

to produce a detectable response was used as indication of the 

stability of the test paper. 

2. L. 4. Dry Enzyme Tests. Reflectance Measurement. 

Dry, enzyme paper or gel laminate test strips were punched out to 

give either 5 or 7 mm discs using a hole punch. Paper discs were 

mounted on pieces of white card using a solution of plastic in 1,1,1- 

trichloroethane as a glue, (plastic glue) or double sided tape, 

(Sellotape). Gel laminates were developed upsidedown on a white card 

backing and the colour viewed through the transparent base. 5 to 10 

ul of solution, (standard or sample) were applied to the discs using 

a Gilson micro pipette and the development of colour recorded using 

a Dr. Lange Microcolor reflectometer. 

2. L. 5. Dry Enzyme Tests. Formats. 

(1). A dry alcohol test card prototype was constructed using 
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FIG. 17 DRY PHASE 

SAMPLE 

MULTILAYER TESTS. 

Lnate Interface. 
'satin bonded directed 
filter paper). 
Transparent Base. 
Sigma Gel Bond. 

Filter Paper Layer, containing: - 
(a) Enzymes/Buffers/Stabilisers/ 

Mediators. 

(b) Enzymes/Buffers/Stabilisers/ 
Coupler/Mediators. 

(c) Enzymes/Buffers/Stabiliers/ 
Developer/Mediators. 

Gelatin Layer, containing: - 
(a) Developer/Coupler/Mediators. 

(b) Developer/Mediators. 

(c) Coupler/Mediators. 

Multilayer tests formed from laminates of filter paper and gelatin 
allow combinations of sensitive reagents / enzymes to be used in a 
single test format, thereby largely eliminating unwanted interactions. 
Addition of sample caused solubilisation of the components of the 
system and subsequent reaction, producing colour formation in the gel 
layer, which was then viewed through the base. 
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multisaturated paper supports on Whatman 3MM Chr filter paper. One 

paper was prepared as described in section 2. L. 1, with 4.2 - 4.5 

mg. ml'' cysteine and another using 6.2 - 6.5mg. m1-' cysteine, with 

all other components being the same.. 

The dry papers were overlaid with 1% ethyl cellulose in toluene 

as described. 5mm discs were cut and mounted using plastic glue into 

a dry, double laminate card, fig 18a. The top layer contained two 

wells in which to mount the discs. The card was absorbent in 

character. The completed tests were foil packed with silica gel 

sachets and heat sealed to produce a moisture free environment. The 

dry tests when developed with ethanol standards or saliva samples, 

gave a purple colour above 500mg. 1-' ethanol for the first disc and 

above 800mg. 1-' ethanol for both discs. 

(2). A second type of test was constructed using the same 

multiple saturation technique. 2,4,6-Tribromo 3-hydroxy benzoic acid 

at a final concentration of 10mM replaced the N, N Bis(hydroxyethyl) 

aniline as chromagen and the cysteine concentration was varied to 

give three levels of 5.0mg. m1-', 7.25mg. m1-' and 11.15mg. ml-1. The 

filter paper used was Whatman 541 grade or Whatman 54 grade and the 

resulting dry papers were overlaid with 1% ethyl cellulose in toluene 

as before. The dry papers were then cut into 1.5 mm strips using a 

new scalpel blade and mounted to a strip of double sided tape, 

(Sellotape) which in turn was mounted onto a white adhesive label, 

(Lakeland Plastics). Three enzyme paper strips each of the different 

cysteine levels comprised the analytical element. This was then cut 

across the strips to give rectangular pads of 4mm x 7.5mm which were 

mounted on printed card backings, the lowest cysteine concentration 

at the top. Each whole pad was then covered by a 10mm square of 
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FIG. 18a DRY ALCOHOL TEST. ORIGINAL FORMAT. 

Enzyme Discs. 

Card Support. 
Double Layer. 

Enzyme Discs. 

The enzyme discs were medilted to give a positive response at 
ethanol levels of 500mg. 1- 

. and 800mg. 1- . The card support was absorbant in nature and was designed to 
remove excess sample away from the enzyme discs. 

tL 

FIG. 18b DRY ALCOHOL- TEST. PEEL OFF FORMAT.. 

Membrane. (Nucleopore) 

Wat roof Peel-off 
Strip. 

Enzyme Papers 
Tab. Three Threshold 

Backing Card. Levels. 
Adhesive Strip. 

Sample was applied to the membrane surface and after development 
(2 mins. ) the tab was peeled off. Developmentof - colour on one bar 

indicates an ethanol concentration of 300mg. 1 j, two bars 500mg. 1 
and three bars 800mg. l`land above. 
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polycarbonate membrane containing 0.4 p pores, (Nucleopore) mounted 

over a window, (5mm x 8mm) cut in the centre of a white adhesive 

label, fig 18b. Light pressure on the membrane covered pad ensured 

an intimate contact between the membrane and the analytical element 

underneath. The completed tests were foil packed with a silica gel 

sachet and heat sealed. 

The tests were developed by application of ethanol standards or 

saliva samples to the membrane area. After 2 minutes the top adhesive 

label was peeled off. The results were interpreted by the number of 

red coloured bars present as follows, top only 300mg. 1' ethanol, top 

and middle bars 500mg. 1-1 ethanol and all three bars 800mg. 1' 

ethanol and above. 

2. L. 6. Dry Enzyme Tests. Artificial Saliva Standards. 

Ethanol standards used to develop and pre-set the threshold 

levels on the dry ethanol tests were prepared by adding set volumes 

of 10g. 1-1 ethanol to a modified artificial saliva preparation, 

(Wiesenfield et al 1983). The composition is given in table 13. 

2. M. 1. Synthesis of N-Ethyl, N-Sulphopropyl 3-Toluidine. 

The method of Tamaoku et al (1982) was followed with slight 

modifications. 12.2g, (0.1mol) of 1,3-propane sultone in 50 ml of 

propan-2-ol was added to a solution of 13.5 g, (0.1mol) of N-ethyl 3- 

toluidine in propan-2-ol and refluxed for 3 hours. The mixture was 

cooled, neutralised with sodium hydroxide solution and evaporated to 

dryness over gentle heat. The dry pale grey residue was dissolved in 

a minimum of water and acetone was added. The mixture was allowed to 

recrystallize and the off white residue was filtered off and dried in 

a vacuum oven. 
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Table 13. Artificial Saliva. Composition. 

Potassium chloride 0.624g 

Sodium chloride 0.865g 

Magnesium chloride 6 H2O 0.059g 

Calcium chloride 2 H2O 0.166g 

Di-Potassium hydrogen orthophosphate 0.804g 

Potassium di-hydrogen orthophosphate 0.326g 

Methyl p-hydroxybenzoate 1.000g 

Sorbitol 29.950g 

Sodium carboxymethylcellulose 10.000g 

Water up to 1.0 1 
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2. M. 2. Synthesis of N-Alkyl N-(2-Hydroxy 3-Sulphopropyl) 

Aniline Derivatives. 

The method of Tamaoku et al (1982) was followed. N-ethyl, N-(2- 

hydroxy 3-sulphopropyl) 3-toluidine; N, n-butyl, N-(2-hydroxy 3- 

sulphopropyl) aniline; N-2 hydroxyethyl, N-(2-hydroxy 3-sulphopropyl) 

aniline and N-2-aminoethyl, N-(2-hydroxy 3-sulphopropyl) aniline were 

prepared by the following general method. 50 millimoles of sodium 

hydroxide, (2.0g) was added to 50 millimoles of sodium 3-chloro 2- 

hydroxy propane sulphonate, (9.8g) in 100ml of distilled water. This 

was added to 50 millimoles of the N-alkyl aniline, (or toluidine) in 

propan 2-01. The mixture was heated during the addition and then 

refluxed for 3 hours. The majority of the propan-2-ol was then 

distilled off and the residual solution was cooled and extracted 

twice with diethyl ether. The water was then evaporated off in a 

shallow crystallization dish in an air stream and the damp residue 

dried in a vacuum oven for 2-3 hours. 

2. M. 3. Synthesis of Dialdehyde Dextran. 

The method of Onyezili and Onitiri (1981) was followed with 

modifications. 8g of Sigma dextran D-4626, mol. wt. 17,900 was 

dissolved in 250 ml distilled water and cooled in ice. 200 ml of 

5.25% w/v sodium periodate, (BDH) was added dropwise with stirring 

the temperature being maintained at 25°C or less. The mixture was 

stirred overnight, (16 hours) in the dark and the mixture was added 

to 500 ml of ethanol and shaken vigorously to precipitate the 

dialdehyde dextran formed. This was redissolved in distilled water 

and reprecipitated with acetone, (1.01) and collected by filtering 

through two layers of muslin. The precipitate was washed with 0.1M 

NaCl, redissolved and reprecipitated twice more with acetone to give 
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an off white amorphous solid. , 
This was redissolved in a minimum of 

water and vacuum dried to give a white powder. 

2. M. 4. Synthesis of Aminodextran. 

Two methods were used to synthesise aminodextran. 

(i) The method of Onyezili and Onitiri (1981) was followed with 

modifications. One gramme of dialdehyde dextran prepared as in 

section 2. M. 3. was dissolved in 200mM borate buffer pH 8.45, and 

1.75g of diaminoethane, (Sigma) was added and the mixture stirred for 

2 hours at 20°C. The aminodextran was precipitated with propan-2-ol 

as for the dialdehyde dextran to give an off white solid which was 

dried in a vacuum oven to give a white powder. 

(ii) The method of Jellum et al (1973) was followed with 

modifications. 10g of Sigma dextran D-4626 mol. wt. 17,900 was 

dissolved in 23. Oml of distilled water containing 9.23g sodium 

hydroxide and 3.07g 2-aminoethyl hydrogen sulphate, (Sigma) to give a 

thick yellow syrup. This was placed in a shallow glass or ceramic 

dish and heated at 115°C in an oven overnight. The dry residue was 

dissolved in a minimum volume of hot distilled water, (50-60°C) with 

stirring and added to 900m1 of propan-2-ol in a wide mouthed bottle 

which was vigorously shaken. The aminodextran precipitated as' a 

yellowish sticky mass. This was redissolved in a minimum of water and 

the process repeated to give a creamy white sticky precipitate which 

was dissolved in a minimum of water and vacuum dried to give a creamy 

white amorphous solid. 

2. M. 5. Synthesis of Mercaptodextran. 

The method of Jellum et al (1973) was followed with 

modifications, 10g of aminodextran, ( section 2. M. 4, method ii) was 

dissolved in 200m1 of distilled water and the pH was adjusted to 7-8 
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with glacial acetic acid. 1.92g of N-acetyl homocysteine thiolactone 

was added and 2. Og silver nitrate in 25ml of distilled water was 

added dropwise with stirring. The pH was maintained at 7.6-8.0 by 

concomitant addition of 1M sodium hydroxide solution. After addition 

of the silver nitrate the reaction mixture was stirred for a further 

2 hours at room temperature. The pH was maintained at 7.8 with 1M 

sodium hydroxide solution. Thiourea was then added to saturation, 

(40g) and the pH adjusted to 1-2 with concentrated nitric acid. The 

mixture was then filtered through a column, (4cm x 50cm) of coarse 

sephadex G-25, (Pharmacia) pre-equilibrated with distilled water. The 

fraction containing mercaptodextran appeared in the void volume and 

the solid product was precipitated by addition of 9 volumes of 

acidified, (HC1) propan-2-ol and vigorous shaking. The white sticky 

precipitate was redissolved in a minimum of distilled water and dried 

in a vacuum oven at 30°C to give a white crystalline solid. 

2. M. 6. Synthesis of Pectinamine. 

1.0g pectin, (methoxy content approx. 60%) was dissolved in 50 ml 

distilled water to give a 2% w/v solution and cooled to 4°C. 25 ml of 

4M, 1,3-diamino 2-hydroxy propane, (9.03g) was added slowly with 

stirring and the solution was stirred for 4 hours at 4°C. The 

pectinamine was precipitated from solution by pouring into ice cold 

acetone, (9 volumes) and the jelly like precipitate was filtered off 

using muslin, redissolved and reprecipitated as before. Excess 

liquid was removed from the precipitate by squeezing between layers 

of filter paper and then drying in a vacuum oven for several hours at 

35°C. The grey, brown flaky product weighed 1.037g. 
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CHAPTER 3. 

MANUAL ASSAY DEVELOPMENT using 
ALCOHOL OXIDASE and GLUCOSE OXIDASE. 
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3. A. 1. Alcohol Oxidase. 

Alcohol oxidase is a large flavoprotein of about Mr 600,000 

composed of eight subunits. It is produced in several species of 

methylotropKic yeasts including Hansenula, Pichia, Torulopis and 

Candida. The enzyme accepts short chain aliphatic alcohols as 

substrates, utilising molecular oxygen to oxidise them to the 

corresponding aldehydes and hydrogen peroxide. The enzyme has been 

used to assay alcohols, produce hydrogen peroxide "in situ" in 

detergents and has been. proposed as the active agent in antimicrobial 

preparations. For a detailed account of the biochemistry and 

applications of the enzyme see Woodward (1990). 

3. A. 2. Alcohol Oxidase. Commercial Availability. 

Commercially available alcohol oxidase is isolated from Pichia 

or Candida species. Provesta, a subsidiary of Phillips Petroleum, 

manufacture and market an enzyme isolated from Pichia pastoris, which 

is supplied frozen in concentrated sucrose solution or as an 

isoelectric precipitate in concentrated sucrose. Both forms of the 

enzyme are azide treated and are bright red in colour. Freeze dried 

preparations are available from a number of suppliers including 

Boehringer and Sigma. Usually they are stabilised with an excess of 

a non-volatile peroxide scavanger such as glutathione, as the enzyme 

has a tendency to spontaneously generate hydrogen peroxide, probably 

from formaldehyde which is bound as an adduct to the free amino 

groups of the enzyme, (Hopkins and Mueller 1987). Hansenula alcohol 

oxidase is not available commercially. 

3. A. 3. Alcohol Oxidase. Hansenula Polymorpha. 

The enzyme prepared from Hansenula Polymorpha, (section 2. B. 1) 

was yellow to deep orange red in colour depending on the 
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concentration. It had a high activity over a broad pH range from 

about 6.0 to 10.5 and was maximally stable above pH 7.5. The 

substrate specificity was found to be relatively narrow being in the 

order of methanol > ethanol > propan-1-ol > butan-1-ol, table 14. 

Table 14. Substrate Specificity. Hansenula 

Alcohol Oxidase 

Substrate. % Activity relative to Methanol 

Methanol 100 

Ethanol 55.2 

Propan-1-ol 20.7 

Butan-1-ol 12.1 

Propan-2-ol - 

Allyl alcohol 31.0 

Benzyl alcohol - 

2 Methyl butan-1-ol - 

3 Methyl butan-1-ol - 

2 Methyl propan-1-ol - 

2 Phenylethanol - 

Ethyl acetate - 

Isoamyl acetate - 

Acetaldehyde - 

Formaldehyde 5.2 

Acetic acid - 

Acetone 

The temperature profile was found to be different from other 

sources the enzyme being maximally active at 40-42°C. Also the enzyme 
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is less susceptable to inhibition by halides than those from other 

sources, (Woodward 1990). 

The enzyme obtained by ion exchange chromatography was 

sufficiently pure to use in the alcohol detection assays that form 

the basis of this work. SDS electrophoresis of the purified protein 

showed one major band corresponding to the subunit of Mr 73-74 x 10'. 

Further purification using gel filtration chromatography on Pharmacia 

CL-4B sepharose and Pharmacia sephacryl S-200 columns did not improve 

the purity appreciably, fig. 19. The major contaminant was catalase, 

however this was present at levels less than 1U. ml1 in fresh 

preparations, which decreased rapidly on storage. 

3. A. 4. Ethanol Assay. ABTS. 

This assay system was very sensitive and tended to develop high 

backgrounds, probably due to low basal rate of hydrogen peroxide. 

I production from the alcohol oxidase. Absorbance was linear up to 200 

mg. 1-' at 650nm or 75mg. 1-1 at 410 nm. Limit of sensitivity was about 

2mg. 1-1, graph 11. 

3. A. 5. Ethanol Assay. MBTH and Colour Couplers. 

Attempts to use the colour development system of Ngo and Lenhoff 

(1980) comprising MBTH and 3-dimethylamino benzoic acid to assay 

ethanol were unsuccessful. The'colour regents were so sensitive that 

upon addition of the enzymes a deep purple colour resulted. The use 

of this method in wet tests for ethanol was rejected. 

3. A. 6. Ethanol Assay. 4-Aminoantipyrine and Colour Couplers. 

The assay system of 4-aminoantipyrine and phenol was one of the 

first to be used to measure oxidative enzyme assays by Trinder 

(1969). Since phenol is very toxic, several substituted hydroxy 

aromatics were tested for use as colour couples, table 15. 
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FIG. 19 SDS ELECTROPHORESIS ALCOHOL OXIDASE. 

LANE 1 

Mol. Wt. ý�. 

Stds. 
94,000 

67,000 

43,000 

30,000 

20,100 

234 S 

r. r 

irr 

14,000 A" 

4I0M 

ýýt 

LANE 1. Crude Cell Free Extract. 10 ug Protein. 

LANE 2. Fraction off DEAE Sepharose Fast Flow Column. 

LANE 3. Fraction off Sepharose CL-4B Column. 

LANE 4. Fraction off Sephacryl S-200 Column. 

The fractions from CL-4B and S-200 steps 

represent further purification steps of the 

enzyme obtained from DEAE Fast Flow. 

LANE 5. Low Molecular Wt. Standards. (Pharmacia). 

Weights given at left of gel.. 

(Lanes 2-4 run with 5.0. ug Protein). 



119 

Table 15. Colour Couplers for Ethanol Assa 

Compound. Wavelength of Measurement. nm. Colour. 

Phenol sulphonic acid 500 Red 
(4-Hydroxy benzene sulphonic acid) 

4-Hydroxy benzoic acid 500 Red 

3-Hydroxy benzoic acid 490 Orange-Red 

Guaiacol (2-Methoxy phenol) 500 Red 

Guaiacol sulphonic acid 500 Red 

3,5-Dichloro 2-hydroxy 520 Pink-Red 
benzene sulphonic acid 

4-Amino salicylic acid 470 Orange 

1-Naphthol 4-sulphonic acid 500 Red 

1-Naphthol 3,6-disulphonic 550 Purple 
acid 

3-Hydroxy 2-naphthoic Acid 410 Green 

8-Hydroxy quinoline 5- 500 Red 
sulphonic acid 
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The sodium salt of phenol sulphonic acid, (4-hydroxy benzene 

suiphonic acid) was chosen as the preferred reagent on the basis of 

low backgrounds, high stability of the assay system, purity, 

availability and cost. 

The red quinoneimine dye formed has an absorption maximum at 

500nm, and appears to be identical to that produced from phenol and 

4-AAP in character, (Artiss et al 1981). 

3. A. 7. Ethanol Assay. Optimisation of Conditions. 

(a) Alcohol Oxidase. 

The initial aim of the wet assay system was to produce a linear 

response to ethanol concentrations up to 5g. 1-' within 5 minutes 

incubation time, between 20-25°C, (rapid assay). An enzyme 

concentration of between 0.5 - 1U. m1-' was found to achieve this. 

For lower concentrations of ethanol using an end point assay up to 

5U. m1'' was used, graph 17. 

(b) Peroxidase. 

Peroxidase concentrations between 0.1 to 3. OU. m1'' were tested 

and reaction rates were measured, graph 18. Peroxidase 

concentrations were set at t. OU. m1''. 

(c) 4-Aminoantipyrine. 

The concentration range of 4-AAP tested in the assay was between 

0.1 to 4.0mM, with a range of ethanol concentrations between 1 to 5 

g. l-', graph 19.4-AAP concentration was standardised at 0.4mM. 

(d) Phenolsulphonic Acid. Na Salt. 

Concentrations between 1 to 50mM were tested with a range of 

ethanol concentrations between 1'to 5g. 1-1, graph 20. Phenolsulphonic 

acid concentration was standardised at 25mM. 
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Graph 17. ETHANOL ASSAY OPTIMISATION. Vary Alcohol 
Oxidase. 
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Graph 18. ETHANOL ASSAY OPTIMISATION. Vary 
Peroxidase. 
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Graph 19. ETHANOL ASSAY OPTIMISATION. Vary 4- 
Amin oan tipyri ne. 

Absorbance 500nm. 

0.9 , 

0.8 

0.7 

0.6 
0.5 

0.4 

0.3 

0.2 

0.1 

0 

0 0.5 1 1.5 2 2.5 3 

Peroxidase U. ml-1. 

0 0.5 1 1.5 2 2.5 3 3.5 4 

4-Aminoantipyrine mM. 



123 

Graph 20. ETHANOL ASSAY OPTIMISATION. Vary 

Phenolsulphonic Acid. 
Absorbance 500nm. 
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Standard wet assay reagent. Rapid ethanol assay. 

Alcohol oxidase (Hansenula) * 0.5-1. OU. ml-l 

Peroxidase. (Horseradish) I. OU. ml-' 

Phenolsulphonic acid. Na salt. 25.0mM. 

4-Aminoantipyrine. 0.4mM. 

in phosphate buffer 100mM. pH 7.0. 

* Up to 5U. ml-' for the end point assay. 

3. A. 8. Ethanol Assay. Comparison with Standard Assay. 

The standard wet assay reagent, (up to 700mg. 1-' ethanol) was 

compared to a standard alcohol dehydrogenase assay kit obtained from 

Sigma, (No. 322-UV). Aqueous ethanol samples were analysed by both 

methods. ' The regression line is shown in graph 21. The correlation 

coefficient (r) was 0.993 and the slope was 0.994. 

3. A. 9. Application of Ethanol Assay to Beer Analysis. 

The standard assay method was used to analyse samples taken from 

an alcoholic fermentation using a home brew kit, (Tom Caxton Lager). 

Samples were withdrawn at intervals, diluted if necessary and 

assayed. The results are shown in table 16. 

Table 16. Analysis of Home Brew Fermentation. 

Time (hours) Dilution Absorbance - Ethanol. g. L 

0 - 0.052 - 

3.42 - 0.280 0.90 

6.17 - 0.620 3.00 

24.00 x10 0.490 25.30 

29.00 x10' 0.540 29.00 

47.83 x20 0.400 41.00 

54.34 x20 0.470 48.00 

79.17 x20 0.500 55.00 
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3. A. 10. Alcohol Oxidase. Analysis of Methanol. 

The standard assay method may be used to assay methanol using a 

sample volume of 25 ul. The results are shown in graph 22. 

3. B. 1. Glucose Oxidase. 

Glucose oxidase and its use in analytical assays is well 

documented, (Trinder 1969, Barham and Trinder 1972, Bergmeyer and 

Bernt 1973, Carey et al 1974). Standard glucose assays typically 

measure clinical levels of glucose, 2.5mM - 5.3mM ( 0.45g. 1-' - 

0.95g. 1-1), however higher levels usually require dilution. The 

following section reports an attempt to use glucose oxidase to 

measure levels of glucose up to 25g. 1-1 without dilution. 

3. B. 2. High Concentration Glucose Assays. 

The components of the standard ethanol reagent were used with 

100mM phosphate buffer, pH 6.0 and alcohol oxidase being replaced by 

glucose oxidase at 1U. m1'1. Aqueous standards of glucose, (100 )a1) 

were added to 5.0 ml of reagent at 25°C, incubated for 5 minutes and 

the absorbance read immediately at 500nm, graph 23. The same reaction 

mix could be used to measure clinical levels of glucose, however 

enzyme levels up to 1OU. ml-' were preferable to reduce the reaction 

time. Use of the redox indicators ABTS and sodium diphenylamine 

sulphonate were useful for clinical levels, (graphs 11 and 12) but 

were too sensitive for high levels of glucose. 
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Graph 22. METHANOL. 4- 
Aminoantipyrine/Phenolsuiphonic Acid Detection. 
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CHAPTER 4. 

AUTOMATED ASSAYS using 
OXIDASE ENZYMES. 
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4. A. 1. Ethanol Analysis using Segmented Flow. Soluble Enzyme Method. 

The wet standard assay for ethanol was adapted for the Technicon 

AutoAnalyzer as described in materials and methods 2.1.1. Typical 

traces are shown in figs 20-22. Successive aspirations of 2g. 1-' 

standards, (n = 16) gave a coefficient of variation of 1.52%. The 

reagents were stable for 1 month if stored at 4°C , protected from 

light. 

4. A. 2. Ethanol Analysis using Segmented Flow. Immobilised Method. 

The immobilised enzyme flow system gave results similar to using 

soluble enzyme, figs 23-25. The advantage was primarily in terms of 

the smaller amount of enzyme used, (between 0.46 and 3.25 units 

against 255 units for 1600 assays). Loading was between 0.92 - 7.21 

U. m-' of tubing depending on which spacer molecule was used. The 

highest activities were recorded with polyamine dextran and 

pectinamine spacers followed by adipic acid dihydrazide and 1,2- 

diamino ethane. Also the stability of the immobilized enzyme was 

higher, (a minimum of 2 months at 4°C) provided the coil was stored 

wet and the buffer changed periodically. " In use " stability for 

various amine spacer molecules is shown in graph 24. The effect of 

ascorbic acid on the response was also estimated, table 17. 

Successive aspirations of 2g. 1-' standards, (n = 16) gave a 

coefficient of variation of 1.20%. 

4. B. 1. Glucose Analysis using Segmented Flow. Immobilised Method. 

Glucose oxidase, (Sigma Type X) immobilised onto nylon was used 

to assay glucose using the same reagents and the same flow chart as 

the alcohol method in 4. A. 2. A linear response up to 3. Og. 1-' was 

observed using this system. The stability of the immobilised enzyme 

was very high, no activity loss being observed after 12 days 
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FIG. 20 SEGMENTED FLOW ANALYSIS TRACE. 
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FIG. 22 SEGMENTED FLOW ANALYSIS TRACE. 
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FIG. 24 SEGMENTED FLOW ANALYSIS TRACE. 
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continual use, 

Ascorbic 
mg. 1'' / 

graph 24. 

Table 17. 

Segmented 

acid 
mM. 

Loading was 4.711. m-1 of tubing. 

The Effect of Ascorbic Acid. 

Flow: Immobilised Method. 

Ethanol g. 1-1 % Decrease 

0 / 0 2.00 0 

5.0 / 0.028 1.98 1.0 

10.0 / 0.057 1.97 1.5 

25.0 / 0.142 1.73 13.5 

50.0 / 0.284 1.41 29.5 

100.0 / 0.568 0.80 60.0 

200.0 / 1.136 0.18 91.0 

500.0 / 2.84 0 100.0 

4. C. 1. Cholesterol Analysis using Segmented Flow. ' Immobilized Method. 

Cholesterol oxidase and cholesterol esterase in a 2: 1 ratio were 

co-immobilised on nylon using adipic acid dihydrazide as the spacer 

arm. Initial oxidase activities of 9.06 and 11.55U. m-' of tubing were 

measured. Cholesterol esterase activity was not measured. 

Immobilisation of cholesterol oxidase alone resulted in lower enzyme 

activities of 4.46-6.3U. m-1 of tubing. The coil was used in the same 

reaction system as 4. A. 2. The response was linear up to 2.0g. 1-' 

cholesterol, however the stability was poor, graph 25. 

4. D. 1. Ethanol Analysis using Flow infection. Soluble Enzyme Method. 

The results for the single and dual reagent systems using the 

flow chart in fig 15 were essentially the same. The method gave 

linear results up to 500mg. 1-' ethanol. The advantage of the dual 

reagent was that no background colour develops with time. The method 
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was fast, (100 samples. hr-1) and accurate in use. 

4. D. 2. Ethanol Analysis using Flow Injection. Immobilised Enzyme 

Method. 

This method offered the advantage of a reduction in enzyme used 

and very high stability of the immobilised enzyme. Glass bound 

enzyme, stored for over 12 months at 4°C in buffer, shows minimal 

loss of activity. In use, the enzyme exhibited a half life of 10 

days, the activity loss after this time was negligible, graph 26. The 

enzyme-glass was kept at room temperature throughout the whole period 

of analysis. Typical traces of both the soluble and immobilised 

methods are shown in figs 26-27. The method gives a linear response 

up to 400mg. 1-1 ethanol. 

4. E. 1. Glucose Analysis using Flow injection. Immobilised Enzyme 

Method. 

F. I. A. methods for glucose have been described, (Gorton and Ogran 

1981, Ho and Asouzu 1984). The method used the same colorimetric 

system as for ethanol and was used to estimate glucose concentrations 

in the dialysis probe tests. The method is linear up to 800mg. 1-1 

glucose. 

4. F. 1. Automated Analysis Application. Dialysis Probe 

Characterisation. 

The dialysis probe described in materials and methods, section 

2. H. 1. was designed to measure analyte concentrations in fermentors 

in conjunction with some form of automated analytical method. Initial 

standardisation was carried out using segmented flow analysis using 

apparatus described in section 2. H. 1. Discrete samples were analysed 

to produce standard curve responses shown in graphs 15 and 16. The 

rapidity of the F. I. A technique allowed measurement of the time 
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FIG. 26 FLOW INJECTION ANALYSIS TRACE. 

ETHANOL SOLUBLE METHOD. 
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FIG. 27 FLOW INJECTION ANALYSIS TRACE. 

ETHANOL IMMOBILISED METHOD. 

Recorder Response. 
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dependence of the probe to reach a steady state response when exposed 

to solutions of various concentrations of ethanol and glucose. Direct 

injections of the carrier solution were analysed using the soluble 

enzyme system at set times after exposure of the probe surface to the 

standard solutions. The results are shown in graph 27. F. I. A was also 

used to measure the temperature dependance of the probe, graph 28. 

There was no effect in the response of the probe to variations in 

the pH or to the presence of solid material, (microcrystalline 

cellulose) in the samples analysed. Also, the viscosity of the 

standard solutions analysed was varied using differing concentrations 

of high molecular weight dextran, (5-40 x 106). No effect was noticed 

on the response of the probe. 

4. F. 2. Automated Analysis Application. Fermentation Experiments. 

Both segmented flow and F. I. A. systems were used to follow model 

fermentations of brewers yeast with malt extract substrates. Glucose 

and ethanol levels were monitored using immobilized enzyme methods 

in segmented flow systems, (section 2.1.2) and soluble enzyme 

methods in F. I. A. systems, (section 2.1.4). The soluble and the 

immobilised enzyme methods for ethanol gave reproducible, consistent 

results, however some loss of activity of the glucose oxidase was 

noticed in the immobilised glucose method. This was especially 

apparent on analysis of the samples of fermentation media taken by 

direct sampling. A comparison was made between direct sampling of 

the media, followed by dilution if necessary, and samples obtained 

using the dialysis probe. Calorimetric detection was used as the 

standard technique however, in a separate experiment, incorporation 

of a Yellow Springs Instruments peroxide electrode into the system 

was also investigated. This was fitted with, (a) a glucose oxidase 
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9 

membrane to measure glucose and, (b) an alcohol oxidase membrane to 

measure ethanol. The results are shown in graphs 29 - 32. 

In addition to the model fermentations a bacterial culture of 

S. Lactis 18-16 was prepared. The dialysis probe was pre-standardised 

and sterilised at 121°C for 20 minutes in the medium. Diacetyl and 

glucose levels were measured using segmented flow analysis, graph 33. 
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CHAPTER 5. 

STABILISATION of ALCOHOL OXIDASE 
and OTHER ENZYMES. 
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5. A. Hansenula Alcohol Oxidase. 

5. A. 1. Stability of the Native Enzyme. 

Native alcohol oxidase was found to be very stable when stored as 

a precipitate in ammonium sulphate solution. Fully active enzyme was 

recovered after 2 years storage at 4°C in this form. Frozen enzyme, 

(-20°C) was also relatively stable, however buffered solutions of 

the enzyme deteriorated over a period of several days, usually with 

the formation of an insoluble precipitate, which was probably 

aggregated and inactive protein, (chapter 8, section 8. C). 

Precipitate formation may be due to spontaneous formation of low 

levels of hydrogen peroxide, which was more apparent in aged 

solutions of enzyme. When present in fairly dilute concentrations as 

part of an analytical reagent the enzyme was fairly stable, (up to 1 

month at 4°C and 1 week at room temperature), however high background 

values occurred, presumably from the peroxide liberated. 

Freeze dried native enzyme was difficult to prepare and was very 

labile, the activity remaining was usually lost within a few days. 

Air or vacuum dried native enzyme was somewhat more stable, however 

an unacceptable loss of activity occurs on drying and over the 

subsequent weeks of storage. Accelerated degradation testing shows 

this clearly, graph 36. 

5. A. 2. Stabilisation Using Additives. "Wet" enzyme. 

Solutions of alcohol oxidase could be partially stabilised by 

addition of high concentrations of lactitol and sorbitol to the 

solution. Graph, 34 shows the degradation of the native enzyme at 50°C 

and 60°C with respect to time. The initial rise after 5 minutes of 

incubation was probably due to the destruction of small amounts of 
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catalase, this effect was smaller when the stabilisers were present, 

graph 35. 

5. A. 3. Stabilisation Using Additives. Dry Enzyme. 

Dry enzyme powders of alcohol oxidase were prepared using a large 

range of different potentially stabilising compounds listed in table 

11. Because of the observation that vacuum dried native enzyme 

retained higher activity than freeze dried preparations, the initial 

trials were carried out using this method. The effects of the 

various stabilisers were determined by accelerated degradation 

testing of the dry enzyme. The results were plotted, using the 

initial dry activity as the 100% reference value, graphs 36 - 47. 

As can be seen from the graphs, various compounds have a 

beneficial effect on enzyme stability, whilst others actually 

destabilise. Disaccharides and their alcohol derivatives predictably 

enhanced stability of the enzyme, however destabilisation occurred 

with monosaccharides, possibly due to the reducing power of the 

molecules. Trehalose in particular enhanced stability confirming the 

claims of Roser, (1986). The cyclic polyalcohol inositol was 

exceptional in its ability to stabilise the enzyme, unlike linear 

polyhydroxyl compounds such as mannitol and sorbitol. These compounds 

did not stabilise alcohol oxidase efficiently, contrary to the claims 

of Phillips (1985). Dextrans, which are polymers of glucose with 

predominantly c e-116 linkages are also good stabilisers, however the 

sulphate and diethylaminoethyl derivatives appear to lose this 

ability to some extent. 

The most unexpected discovery was to find that combinations of 

such polyelectrolyte derivatives and related molecules such as 

chitosan, alginate, carboxymethyl cellulose and polyethyleneimine 
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with disaccharides or sugar alcohols produced almost total 

stabilisation. Extended tests on such combinations have shown that no 

loss of activity occurred even after 1-2 months at 37°C and only 15- 

20% loss after 11.5 months at 37°C. 

During this work it was noticed that large losses in enzyme 

activity were sometimes noticed immediately after the drying step. 

Such initial losses were decreased on adding the stabilisers but not 

eliminated. Subsequent experiments revealed the pH of the enzyme 

solution to be dried was extremely important, (section 5. A. 4). A 

comparison of freeze drying to vacuum drying was also carried out in 

the presence of stabiliser, (section 5. A. 5). 

5. A. 4. Effect of pH on Stability of Dry Enzyme. 

Variation of the pH of the buffer system affected the activity of 

the dry enzyme produced. The main effects appeared to be on the 

initial loss of activity on drying. However, some effects were seen 

on the overall stability of the dry enzyme produced. The results 

were plotted with the initial activity of the wet enzyme cocktail, 

(lactitol / DEAE-dextran stabilisers) taken as 100% activity, graph 

48. In this way the initial loss of activity on drying was seen 

clearly. The optimum pH to reduce loss of activity on drying was 

found to be 7.87 for Hansenula alcohol oxidase. 

5. A. 5. Comparison of Vacuum vs Freeze Drying. 

Both type of drying techniques were carried out on the enzyme in 

the presence of stabilisers. The results were plotted using initial 

dry activity as 100% reference value, graph 49. Stabilised freeze 

dried enzyme exhibited some loss of activity over the time period of 

the experiment, whereas vacuum dried enzyme retained full activity. 

Earlier attempts at freeze drying the unstabilised preparations of 
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enzyme resulted in 92% inactivation. Vacuum drying unstabilised 

enzyme gave fully active preparations and in some cases slight 

stimulation of activity, however the activity decreased rapidly on 

storage, graph 36. 

5. B. Pichia Alcohol Oxidase. 

5. B. 1. Characteristics and Stability of Native Enzyme. 

Pichia Pastoris alcohol oxidase was found to be similar to the 

Hansenula enzyme however it differed in its pH and temperature 

ranges. Also it differed in its solubility characteristics in that 

at low ionic strength it precipitated from solution, (Hopkins and 

Mueller 1987). The enzyme has also been found to be very sensitive to 

halide ion inhibition, much more so than the Hansenula enzyme, 

(Woodward 1990). 

The stability of the native enzyme in "wet" preparations was 

poor, over 50% being inactivated within 10 minutes at 50°C and nearly 

90% inactivated after 1 hour. Hansenula enzyme under the same 

conditions retained full activity, (Woodward 1990), graph 34. 

Stabilisation of the Pichia enzyme in solution was not attempted. 

Similarly dry preparations of the enzyme exhibited 40-45% loss of 

activity on drying with a further loss of 23% activity after 15 days 

at 37°C, graph 50. 

5. B. 2. Stabilisation using Additives. Dry Enzyme. 

Pichia alcohol oxidase was supplied from the Provesta coporation 

as a gift. Two preparations were'tested. One was an isoelectric 

precipitate slurry and the other the conventional solution of enzyme. 

Both were in 50mM phosphate buffer and preserved with sodium azide, 

(0.02%) and sucrose, 35% w/v for the slurry and 60% w/v for the 

soluble enzyme. The results obtained for both forms of enzyme were 
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identical, so no distinction between the original preparations was 

made in the data shown. 

The enzyme was dialysed exhaustively against 200mM phosphate 

buffer, pH 7.0 to produce enzyme solutions free from sucrose and 

azide, before stabilisers were added. Only the stabilisers which 

produced stable preparations of Hansenula enzyme were tested, with 

the exception of sucrose. The buffer was phosphate at pH 7.0. The 

results were plotted using the activity of the wet enzyme as 100% 

reference value, graph 50. 

5. B. 3. Comparison of Vacuum vs Freeze drying. 

Identical samples of Pichia alcohol oxidase were either vacuum 

dried or freeze dried with and without stabilisers. The results were 

plotted using the activity of the wet enzyme as 100% reference value, 

graph 51. Both types of drying inactivate the enzyme to some degree, 

however freeze drying retains higher initial activities overall than 

vacuum drying. This is particularly noticeable in the unstabilised 

enzyme, with a 24% loss in the case of the freeze dried enzyme and a 

44.5% loss on vacuum drying. 

5. C. Stabilisation of other enzymes. 

The discovery of successful stabiliser combinations and the 

technique to produce a dry stable preparations of alcohol oxidase led 

to the attempt to stabilise five other enzymes, using the same 

techniques and stabilisers. These are shown as the top five enzymes 

in table 18. Also included in this table are results obtained by 

workers other than myself, using the same stabilisation techniques 

with a range of other enzymes. The results clearly indicate 

enhancement of enzyme stability in nearly all cases. 
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5. D. Summary of effective stabilisers. 

The compounds which stabilise activity in the enzymes tested were 

predictably rich in hydroxyl groups. Sugars, sugar alcohols and other 

polyhydroxyl compounds are well known for their effect of protein 

stabilisation, (Back et al 1979, Combes and Monsan 1984, Ye et al 

1988). 

The enhancement of such stabilising effects by the inclusion of 

polyelectrolytes such as DEAE - dextran, chitosan, dextran sulphate, 

sodium alginate, sodium carboxymethyl cellulose and polyethylene 

imine, (PE imine) was unexpected and appears to be effective for a 

wide range of enzymes. The stabilisers used in further work on the 

preparation of dry phase diagnostic tests were routinely classified 

into three groups. 

(1) Polyelectrolyte / sugar or sugar alcohol combinations 

e. g. DEAE-dextran / lactitol, sodium alginate / lactitol. 

(2) Cyclic polyalcohols or sugars, (particularly disaccharides) 

e. g. inositol, trehalose. 

(3) Neutral polymers 

e. g. dextrans from various sources. 

The results of this work form the basis of two patent 

applications on enzyme stabilisation. 
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CHAPTER 6. 

The DEVELOPMENT of DRY PHASE 
ALCOHOL TESTS and COLOUR 

THRESHOLD SYSTEM. 
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6. A. Dry Phase Tests: Overview. 

Dry phase or dry reagent tests are basically complete analytical 

systems in a discrete single use format. Sometimes they incorporate 

all the necessary chemical reagents and / or enzymes in a single 

format such as a dry filter paper disc. Such tests require only the 

addition of the sample to be analysed to produce a result. Other 

tests incorporate part of the analytical chemistry and require 

sequential additions of reagents for analysis. The former type of 

test is becoming much more widespread and more generally accepted 

as a valid means of analysis. 

The earliest reported dry test was the glucose oxidase - 

peroxidase reaction for blood glucose (Free et al 1957). Many 

variations of this type of test are cited in the patent literature, 

the majority using highly visible chromagens as the detection method. 

Table 19 lists a selection of applications of such techniques. 

More complex single use dry tests have since been developed, 

particularly using the photographic technique of producing thin 

reactive films or emulsions. The "Kodak" Ektachem system is a 

product of such technology, where multiple layers are sequentially 

built up on a transparent base each containing specific components 

required for the final analytical reaction, fig 28a. One advantage 

of such a system is that controlled micro environments may be 

produced, suitable for the individual reaction components of the 

test. Mixing and subsequent reaction only occurs during the actual 

analysis, thus enhancing storage stability. 

The "Boehringer Mannheim" Reflotron system is similar in that the 

analytical element is a composite of several discrete layers of 

material which are saturated and compressed together during analysis, 
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Table 19. Analysis Using Dry 

Analyte Enzymes Author 

Tests. 

Patent No Date 

Cholesterol Cholesterol Goodhue U. S. 3,983,005 1976 
Oxidase C. T et al 
Lipase 
Peroxidase 

Glucose Glucose Genshaw U. S. 4,211,845 1980 
Oxidase M. A. and 
Peroxidase White W. I. 

Digoxin Tyrosinase Duffy P. W. 081/00725 1981 

Laccase 

Occult Blood - Burkhardt EP. 0,041,188 1981 

Haemoglobin A. E. and 
Tideman A. M. 

Glucose Glucose Shuenn- U. S. 4,36,648 1982 
Cholesterol Oxidase Tzong C. 

Cholesterol 
Exterase 
Cholesterol 
Oxidase 
Peroxidase 

Phenytoin Apoglucose Tabb D. L. U. S. 4,362,697 1982 
Oxidase Tyhach R. J. 
Peroxidase 

Glucose Glucose Shuenn- U. S. 4,427,770 1984 

Oxidase Tzong C. 
Peroxidase et al. 

Glucose Glucose Phillips EPA. 0,110,173 1984 
Alcohol Oxidase R. C. et al. 

Alcohol 
Oxidase 

Cholesterol Cholesterol Arai F. EPA. 0,256,562 1988 
Esterase and 
Cholesterol Kondo A. 
Oxidase 
Peroxidase 
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FIG. 28a KODAK EKTACHEM DRY PHASE TEST. 

SAMPLE 

Spreading Layer. 

Separation/Reflecting Layer. 

Indicator Layer. 

Slide Mount. 

Transparent Base. 

The Kodak Ektachem multilayer system incorporates a series of 
layers each with its own specific function. The spreading layer 
delivers the sample evenly to the underlying reactive layers 
which are formulated to detect and quantify specific analytes. 
The reflectance is measured through the back of the slide. 

FIG. 28b BOEHRINGER REFLOTRON DRY PHASE TEST. 

Reagent Layer. Reagent Layer. 

Transparent SAMPLE Foil. 

Film. \ . /ý 
liii 

Blood Separating 
Layer. 

Magnetic Code. 
Plastic Base. 

Auxiliary Reagents. 

Plasma Reservoir (glass fibre). 

The Reflotron system incorporates a blood separation layer which 

removes the erythrocytes and delivers the plasma via the plasma 

reservoir to the reagent layers. During analysis these are crushed 
by the reflectometer onto the plasma. This is indicated by the 

curved arrow. The indicator reaction takes place in the reagent 
layers and the reflectance is measured through the top of the 

transparent film. 
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fig 28b. 

Quantification of analyte concentration using these dry phase 

systems may be carried out by using fairly sophisticated instruments 

specifically designed to measure reflected light, these are known as 

reflectometers. Recently, a simple hand held reflectometer has been 

introduced, which in conjunction with specific test strips, provides 

an accurate measurement of glucose concentration in blood, (Brodrick 

et al 1987, Begley and Forrest 1988). In the absence of such 

instrumentation, semi-quantitative analysis can be performed by 

visual comparison of the developed test with a colour bar chart, 

which is usually supplied printed on the test strip container. 

Accurate comparison using such a technique is highly operator 

dependent, thus producing large errors. 

Certain tests, such as pregnancy tests, which utilise a positive 

or negative end point are definitive and largely free from operator 

error, if they are made in the single addition analytical format. 

e. g. "Clearblue" from Unipath, (May et al 1988). 

A recently published series of patents, (Palmer and Timmerman 

1988, Palmer et al 1989, Palmer and Timmerman 1989) disclosed 

diagnostic systems based on a range of enzymes which give a clear cut 

positive or negative end point. The concentration of analyte may be 

quantitated using such a system by varying the concentration of the 

components during manufacture to internally set the end point 

required. 

The work reported here has developed from early trials in 1986 

and the observance that peroxide scavengers such as ascorbate, 

cysteine and other reducing agents, destroyed the colour formed in 

enzyme / chromagen systems during drying procedures using cellulose 
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filter papers as supports. This phenomenon was reported earlier by 

Phillips (1985). Some of the reducing agents have also been found 

to be substrates in the peroxidase reaction, (Randell 1946, Stonier 

and Yang 1972). 

The inclusion of this type of reaction into dry enzyme - 

chromagen systems, in conjunction with the effective stabilisers 

found earlier, produced an analytical test system which could be pre- 

set to develop colour at a range of analyte concentrations. This 

type of detection system produces definitive yes/no results thereby 

largely eliminating operator error. 

The prototype systems developed were based on the Hansenula 

alcohol oxidase - peroxidase coupled reaction with ethanol as the 

variable analyte. 

6. B. 1. Dry Alcohol Tests. Early Models. 

The earliest model systems fabricated, were designed to produce a 

graduation of colour when developed with ethanol concentrations of 100 

mg-1-1 up to 1000mg. 1-1. Graph 52 shows a reflectance plot of the 

colour bars as a function of ethanol concentration up to 400mg. 1-1. 

The graduation was improved if ascorbate was added to the system and 

in some cases, no colour was formed due to an excess of ascorbate 

being added. The stability of the enzymes was poor, as the effective 

stabilisation systems had not yet been discovered. 

The next series of trials -involved incorporation of the 

stabilisers into the enzyme system, with a variation in ascorbate 

concentration. The formulation, (1) is shown below: 

Hansenula alcohol oxidase 40U. m1-' 

Peroxidase 25U. m1-' 

Lactitol 5% w/v 
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Graph 52. DRY PHASE GRADUATED ETHANOL TEST. 
Reflectance Value 

10 

20 

30 

40 

50 

60 

COLOUR REAGENTS. 

4-AMINOANTIPYRINE 

3-HYDROXY 2,4,6-TRIBROMO BENZOIC ACID. 

10 50 100 200 500 1000 

Log. Ethanol Concentration mg. 1-1. 
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DEAE-dextran 1% w/v 

N, ethyl N, sulphopropyl 3-toluidine 10.0 mM. 

4-Aminoantipyrine. 1.0 mM. 

Phosphate buffer, pH 7.0 approx. 100 mM. 

Ascorbic acid variable see table 24. 

This cocktail was absorbed on Whatman 3MM Chr paper and dried in 

a vacuum oven at 30°C for 30 minutes. The results on development 

with aqueous ethanol solutions are shown in table 20. Full 

development of the deep purple colour is indicated by +, partial 

development by +- and no colour by 

Table 20. Colour Development. Ethanol Dry Phase 

Test. Ascorbate Concentration Varied. 

Ascorbic Acid mg. ml-' 

Ethanol mg. l-' 0.2 0.4 0.6 0.8 1.0 1.2 1.4 2.25 

100 -------- 

200 + +- ------ 

300 +++----- 

400 +++ +- +- --- 

500 ++++ +- +- -- 

800 +++++ +- -- 

1000 ++++++ +- - 

2000 +++++++ +- 

4000 ++++++++ 

Time for Full Colour 2min I 5min 110min 

Further trials using the same formulation, with the exception of 

an increase in alcohol oxidase concentration up to 60U. ml ' and 100 
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U. ml-', met with little success in reducing the time taken to develop 

full colour. Replacement of the ascorbate with cysteine produced an 

almost identical result. The development time was 5-10 minutes at an 

alcohol oxidase concentration of 60U. m1-1, table 21. 

Table 21. Colour Development. Ethanol Dry Phase Test 

Cysteine concentration varied. 

Cysteine mg. ml-' 

Ethanol mgl-' 0.5 1.0 1.5 2.0 2.5 4.0 4.5 7.0 8.0 

200 +- -------- 

300 + +- ------- 

400 +++ +- ----- 

500 +++++---- 

800 ++++++ +- -- 

1000 +++++++ f- - 

2000 ++++++++ +- 

Replacement of the Hansenula alcohol oxidase with the enzyme from 

Pichia supplied by Provesta Corporation in a similar system, (colour 

coupler, N, N bis(hydroxyethyl)aniline) gave similar results. However 

the system was more sensitive to the mediator, giving no colour at 

concentrations of 3.5mg. m1'' cysteine. 

The susceptibility of the-Pichia enzyme to chloride inhibition 

and its relative instability led to its use being discontinued in the 
, 

dry test development. 

6. B. 2. Dry Alcohol Tests. Mediation of the Colour Reaction. 

From earlier observations, mediators, such as cysteine and 

ascorbate which react readily with hydrogen peroxide, (being oxidised 

to cystine and dehydroascorbate) may be used to inhibit colour 
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formation in dry phase tests which rely on hydrogen peroxide 

detection for the final colour reaction. The sequential 

increase' in concentration of the mediator appeared to offer a 

means of quantitation of the analyte being detected, by 

generating a concentration threshold. Above this threshold 

colour developed rapidly, whereas below the threshold, no colour 

was formed. An example of this effect in the dry phase threshold 

test for ethanol is given in fig 29. The colour coupler was 10mM 

2,4,6-tribromo 3-hydroxy benzoic acid and the mediator was cysteine 

at concentrations of 1.0,2.0,3.0,4.0,5.0 mg. m1-1. The 

support was Whatman 3MM Chr paper. 

A series of potential mediators were tested in the basic 

formulation (2) given below, to ascertain their effectiveness in 

generating a concentration threshold. 

Alcohol oxidase 100-2000. ml-' 

Peroxidase 100U. m1-' 

Inositol 5% w/v 

N, N, Bis(hydroxyethyl) aniline 25 mM 

4-Aminoantipyrine 20 mM 

N-(Morpholino) propane sulphonic acid, 

(MOPS) buffer, pH 7.9 100 mm 

The improvements made to the earlier enzyme / colour reagent cocktail 

involved various stages: - 

1) Higher enzyme levels to reduce reaction times and give rapid 

results. 

2) Replacement of lactitol / DEAE-dextran by inositol to avoid 

the precipitation of the enzymes. 

3) Alternative colour couple which was; (a) less soluble to 
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FIG 29. DRY PHASE ALCOHOL THRESHOLD TEST. 

ALCOHOL 

CYSTEINE mg. m1-1 

1.0 2.0 3.0 4.0 5.0 

100 '0 

200 " 

T 
300 

400 
s " 

500 

0.06 

o. cs 

0.04 

o. 03 

r 0. t 

M 
t" 

ALCOHOL 

i 3m 3M I 

Alcohol ( F21,. rno, 1)cacantritim ., I+ 
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prevent excessive leaching, (b) sensitive to mediation, (c) produces 

a very intense purple colour on development and (d) was cheap and 

readily available. 

4) Phosphate buffer was replaced by MOPS to ensure complete and 

almost instantaneous solubilisation of the buffer system. Also 

enhanced enzyme activity was noticed in this buffer and at this pH. 

The mediators used and their effects are listed in table 22. 

Ascorbate and cysteine are included in the table for completeness. 

6. B. 3. Dry Alcohol Tests. Colour Reagents. 

A large selection of colour reagents were tested in the dry phase 

system. An overview of the colours and susceptibility of the dyes 

produced to bleaching by ascorbate or cysteine is reported in 

appendices II and III. In addition to this, general observations and 

rationales are reported below for the various classes of 

chromogenic systems tested. 

(a) Redox dyes. 

Benzidine type dyes are used in many dry enzyme systems 

especially 3,3', 5,5'-tetramethyl benzidine (TMB), which is reported 

to be non-carcinogenic, (Holland 1974, Liem et al 1979, Josephy et al 

1982). The colour change is from colourless through to green-blue 

with a further brown-orange oxidation state, fig 3. Most tests are 

fabricated to stop at the green-blue stage, the chromagenic species 

being stabilised by some sort of additive e. g. pyridine N-oxides, 

(Magers and Tabb 1981). 

Ascorbate or cysteine may be used to mediate the colour 

development of TMB. The main drawback using TMB was its very low 

solubility in water, which necessitated preparation of the enzyme 

paper plus mediators, stabilisers, buffers, etc. which was then dried 
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and overlaid with a solution of TMB in 1,1,1-trichloroethane and 

allowed to air dry. The water soluble hydrochloride salt of TMB 

proved difficult to mediate and invariably the colour development 

continued to the brown-orange state. For these reasons, TMB was not 

used routinely in the threshold development system. 

ABTS proved unsuitable as a chromagen in the dry phase system as 

instead of the blue-green radical formed in solution, a pale purple 

grey colour resulted on development. 

Sodium diphenylamine sulphonate was also tested. This compound 

gave a dirty, brown-grey colour on development, which was not 

suitable for routine use. 

(b) Condensation reactions. 

The majority of colour producing reactions tested belong to the 

class where two separate intermediate molecules form a dye 

molecule under oxidative conditions. These conditions are provided 

by a peroxidase catalysed reaction of one of the intermediates with 

H202, thus giving a reactive species. Subsequent colour generation 

occurs as the second intermediate reacts, producing the final dye. 

This type of reaction is analogous to colour generation in 

photographic films and in peroxide catalysed hair dyes. 

Four types of reactive compounds which, for ease of 

identification, are termed developers, are listed below. These, in 

combination with various other coupling compounds, produced a wide 

range of dyes, differing in stability and spectral properties. 

The dyes so formed were produced in a "wet" enzyme system and are 

listed in appendix II. A variety of these systems have been tested in 

a dry format. 
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(i) 4-Aminoantipyrine (4-AAP). 

This compound was a very soluble pale straw coloured hygroscopic 

solid. It gradually oxidised in air, with subsequent generation of a 

deep yellow colour. It appeared to be compatible with all the enzyme 

systems used, producing a variety of red, purple, and violet colours. 

The colour systems based on this compound were the most stable tested 

and gave very pale background colours with a sharp clear cut off at 

the threshold. Colour generation tended to be slow, such as in the 

case of cholesterol and at low enzyme concentrations. 

Stoichiometrically the reaction requires two molecules of 

hydrogen peroxide to form one molecule of dye, fig 5. This was an 

advantageous feature of the colour reactions -based on 4-AAP, 

because threshold generation was dependent on the amount of hydrogen 

peroxide present. An analogous non-hygroscopic compound, 4-dimethyl- 

aminoantipyrine was also tested in the dry phase system. This gave a 

similar response to 4-AAP, however the dyes formed were not as 

intensely coloured and the reactions were much slower. 

(ii) 3-Methyl 2-Benzothiazolinone Hydrazone (MBTH). 

The hydrochloride salt of MBTH was a pale cream, aromatic 

crystalline solid. It was soluble in water, but not very soluble in 

the common buffer systems used in the dry phase tests. Addition of 

MOPS buffer to a solution of MBTH in water produced a copious 

crystalline precipitate. For this reason alone it was not used very 

frequently in dry phase tests. The dyes produced using MBTH were very 

intensely coloured and resistant to bleaching. Some of these dyes 

were sparingly soluble and precipitated out of aqueous solution on 

reaction. Mediation of MBTH reactions was found to be fairly 

difficult, with higher concentrations of mediators being required, 
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the best results being obtained using ascorbate. 

MBTH itself could be used to produce a blue/green coloured dye on 

development in the ethanol system. This was presumably due to self- 

coupling as reported by Capaldi and Taylor (1983), fig 7. Dry test 

cards containing MBTH were air and light sensitive, darkening from a 

pale straw colour to orange yellow or green yellow over a period of 

time. Background development of dye in the absence of analyte was 

also noticed, particularly in the test cards stored over long 

periods. 

(iii) N, N, Disubstituted 1,4 Phenylene Diamines. 

These compounds form the basis of the colour photography 

industry, being used as colour developers with a variety of colour 

couplers. The synthesis and toxicity of a large number of such 

compounds has been investigated in detail, (Bent et al 1951). A 

typical reaction is shown in fig 30. A variety of compounds from 

several different sources were tested in dry phase tests, these 

are listed in table 23. The dyes produced were very intensely 

coloured and stable. Mediation of the colour reaction was good, 

however, development of background colour was a serious problem. The 

reactivity of the compounds was very high and they were also air 

and light sensitive. A typical example of such compounds is N, N 

diethyl 1,4-phenylene diamine sulphate (Fluka). This was used to 

produce the data in appendix II. 

An advantage of compounds of this type is the rapidity 

of the colour reaction on development. The extreme sensitivity 

of the system precluded its use routinely. 

(iv) Substituted Pyrimidines. 

These are listed in table 24. Their reaction with a range of 
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Table 23. N, N Diatkyl Substituted Phenylene Diamines. 

Compound Source 

N, N, Dimethyl 1,4 phenylene diamine sulphate. Lowenstein & Son Inc. 

N, Phenyl 1,4 phenylene diamine sulphate. Lowenstein & Son Inc. 

N, N Bis(2-hydroxyethyl) 1,4 phenylene Lowenstein & Son Inc. 
diamine sulphate. 

N, N Diphenyl 1,4 phenylene diamine. Aldrich. 

N, N Diethyl 1,4 phenylene diamine sulphate. Fluka. 

N Ethyl, N(2-hydroxyethyl) 1,4 phenylene Fluka. 
diamine sulphate. 

2-Amino, 5-diethylamino toluene HC1 (CD-2). Kodak. 

4-Amino, N, ethyl, N, ( methane sulphamido ethyl) Johnson. 
3-toluidine sesquisulphate (CD-3). 

4-(N, Ethyl N, 2-hydroxyethyl) 2-methyl phenylene Kodak. 
diamine sulphate (CD-4). 

4-(N, Ethyl N, 2-methoxyethyl) 2-methyl phenylene Kodak. 
diamine di p-toluene sulphonate. 

Table 24. Substituted Pyrimidines. 

Compound. Source. 

2,4,5,6 Tetra-amino pyrimidine sulphate. Sigma 

2,5 Diamino 4,6 dihydroxy pyrimidine Sigma. 
hemisuiphate. 

5,6 Diamino 2,4 dihydroxy pyrimidine. Sigma. 

6 Hydroxy 2,4,5 triamino pyrimidine Sigma. 
sulphate. 
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couplers produced dyes which were easily mediated, the exception 

being the reaction with 3-aminophenols which produced very intense, 

stable violet-red dyes, (appendix III) for which mediation was 

found to be difficult. This was thought to be due to the formation 

of a three membered heterocyclic ring system on reaction. 

The major drawback of these compounds was their solubility and 

the sensitivity of the colour reaction, which produced high 

background colours in some cases. 2,4,5,6-Tetraamino pyrimidine has 

itself, an intense yellow colour which produced a yellow background 

in dry phase tests. 

(c) Miscellaneous reagents. 

Histological reagents, used to demonstrate peroxidative activity 

were also tested in dry phase enzyme systems. 4-Chloro 1-naphthol 

gave a deep blue black dye when oxidised and mediates very well. 

However, the reagent was air and light sensitive and discoloured 

badly on storage. 

Colour couplers which were insoluble in water were dissolved in a 

suitable solvent and overlayed on enzyme/developer loaded paper. 

One advantage of this method was the dye formed was non-leaching, 

however such systems were slow to develop colour, presumably due to 

the partitioning between the soluble and insoluble phases. Examples 

include; tribromophenol, triodophenol, 3-diethylaminophenol and 

several substituted pyrazolones, (appendix II). Leuco crystal violet 

dissolved in 1,1,1-trichloroethane and overlayed on enzyme paper 

proved insensitive on development, giving only a very pale lilac 

colour at ethanol levels above 800mg. 1-1. 

Attempts to produce a threshold test for uric acid using 

uricase were complicated by the fact that uric acid itself has a 
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tendency to bleach chromagen systems, (Phillips 1985). A suitable 

dye system that was resistant to the uric acid and yet sensitive to 

mediation was not identified. Most attempts resulted in colour 

graduation rather than a definite threshold response. 

6. B. 4. Dry Alcohol Tests. Miscellaneous Effects. 

(a) Buffers. 

Buffers were primarily included in enzyme based systems to 

provide a constant pH which maintained enzyme activity, usually at 

an optimum level. Variations in buffer composition and pH markedly 

affected the enzyme activity retained on drying, which has been 

discussed in chapter 5, ('section 5. A. 4). In colorimetric tests the 

buffers also influenced the colorimetric reaction in some cases. 

Acidic pH was necessary to produce dyes from certain aniline 

derivatives and 4-AAP, (Tamaoku et al 1982) whereas alkaline pH 

favoured the condensation of phenols with 4-AAP. In this case acidic 

pH destroyed the colour formed, (Michal et al 1984). 

In dry phase tests it was also important to use a buffer system 

which was very soluble to promote rapid dissolution and subsequent pH 

control. Phosphate buffer was used in early experiments, however it 

became clear, enhanced reaction rates could be obtained using a range 

of substituted organic sulphonic acid derivatives, the so called 

"Good" buffers, (Good et al 1966, Good and Izawa, 1968, Ferguson and 

Good 1980). These were very soluble in water and covered a wide 

range of pH, table 25. 

Routinely, MOPS buffer, pH 7.9 was used for the alcohol dry 

tests. This pH gave maximum enzyme activity retention, the enzymes 

were sufficiently active in use, the colour reaction was rapid and 

the buffer was almost instantaneously soluble. 
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Table 25. "Good" Biological Buffers. 

Compound. Abbreviation pKa pH range 

2-(N-Morpholino) ethane 
sulphonic acid MES 6.1 5.5-6.7 

3-(N-Morpholino) propane 
sulphonic acid MOPS 7.2 6.5-7.9 

N-(2-Hydroxyethyl) piperazine 
-N-(2-ethanesulphonic acid) HEPES 7.5 6.8-8.2 

3-[(1,1-Dimethyl 2-hydroxy ethyl) 
amino]-2-hydroxy propane 
sulphonic acid AMPSO 9.0 8.3-9.7 

2-(N-Cyclohexylamino)-ethane 
sulphonic acid CHES 9.3 8.6-10.0 

3-(Cyclohexylamino)-1-propane 
sulphonic acid CAPS 10.4 9.7-11.1 

Table 26. Whatman Filter Papers. 

Grade. Thickness(mm). Filtration Rate Surface. 

3MM Chr. 0.34 4.3mm. min-' Medium. 

4 Chr. 0.21 6. Omm. min-' Smooth. 

31 ET. Chr. 0.50 7.5mm. min-' Smooth. 

SG - 81 0.27 3.7mm. min-' Medium. 

(Silica Gel Loaded) 

52 0.18 25.5ml. min-' Smooth. 

54 0.19 153.9ml. min-' Smooth. 

541 0.16 176.5ml. min-' Smooth. 

542 0.15 2.4ml. min-' Smooth. 
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(b) Support Matrix. 

The majority of the matrices used in the production of dry phase 

tests were cellulose based filter materials. Whatman filter papers 

of various types were chosen as readily available supports and the 

grades commonly used are listed in table 26. 

The thickness and type of paper used affected the mediation of 

the colour reaction. A formulation absorbed onto 3MM Chr paper would 

generate a threshold at a different ethanol level to the same 

formulation absorbed on 542 grade. The thickness and texture of each 

grade influenced the amount of components absorbed and retained on 

the support and the subsequent effects noticed when the tests were 

developed. 

Special grades of paper containing reactive groupings, (DEAE, - 

carboxymethyl- or phosphate-) appeared not to influence the 

development of colour appreciably. Such papers may have some 

influence on enzyme stability but this was not tested. 

Glass based matrices were not used as supports, mainly due to 

uneven absorption of the reaction components and subsequent uneven 

development of colour. They were also very fragile when wet. 

Particulate material such as cellulose or silica gel which is 

used to make supports for thin layer chromatography may also be used 

to produce mediator generated colour thresholds. 

Gel layers produced from gelatine or similar gel forming 

compounds have also been tested. This is reported in section 6. C. 

(c) Enzyme Concentration. 

The concentration of the enzyme used influenced the rate of 

development of the colour and consequently the rapidity of the test. 

Low levels of alcohol oxidase produced prolonged reaction times 
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whereas increasing the concentration reduced the reaction time to a 

finite level, table 27. Variation in the peroxidase level from 6.25 

U. ml-' up to 100U. ml-' did not influence development time 

appreciably, however colour intensity and evenneSS of development were 

superior at the higher enzyme levels, table 27. 

(d) Colour Reagent Concentration. 

Variations in colour reagent concentrations influenced the 

intensity of the colour produced and also the eveness of the colour 

formed on the dry phase. Initially concentrations of 1mM 4-AAP and 

10-25mM coupler were used which approximated to the "wet" analytical 

reagent concentrations. Development of colour tended to be patchy at 

these concentration ratios. 

Increasing the 4-AAP to 20mM and holding the coupler 

concentration at 10-25mM resulted in more intense colour development 

and also a more even colour throughout the matrix. This increase in 

the ratio of developer to coupler is common practice in dry phase 

tests, (Phillips 1985). 

(e) Microporous Overlay. 

Certain polymeric materials such as ethyl cellulose (Sigma) or 

cellulose acetate (BDH) were dissolved in organic solvents and 

applied to dry phase enzyme tests and dried. This produced a 

microporous layer surrounding the fibres of the support matrix which 

contained the enzyme based colorimetric test. This had the effect of 

rendering the test impermeable to blood cells and large 

macromolecules and so prevented interference from such substances 

when the dry test was developed, (Phillips 1985). 

Application of a 0.5% w/v solution of ethyl cellulose in toluene 

(GPR, low sulphur grade, BDH), to dry phase tests containing 1000. m1-' 
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Table 27. Enzyme Concentrations. Influence on Dry Test. * 

Alcohol Oxidase. Peroxidase. End Point. Colour. 
U. m1-1. U. ml-1. min. 

40 25 5 - 10 Purple 

60 25 5 - 10 Purple 

100 25 5 -6 Purple 

150 25 3- 5 Purple 

200 25 3- 4 Purple 

250 25 3- 4 Purple 

300 25 3- 4 Purple 

100 6.25 5 -6 Blue 

100 12.50 5 -6 Blue/ 
Purple 

100 25.00 5 -6 Purple 

100 100.00 5 -6 Deep 
Purple 

* This was carried out using formulation (1) described 

in section 6. B. 1 , absorbed onto 3MM Chr. paper and 

developed with aqueous ethanol solutions at 21°C ( f/- 

2°C). 
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alcohol oxidase prepared as formulation (2) and absorbed onto 3MM Chr 

paper, gave tests which reacted fully in 2 minutes instead of the 3-4 

minutes of untreated cards. Later tests with 1.0% w/v ethyl 

cellulose and 2000. ml-' enzyme, consistantly produced tests which 

developed fully in 1.5-2 minutes. 

A more rapid reaction time and enhanced colour formation was also 

noticed, when a microporous overlay was applied to a test made with a 

thin layer of particulate cellulose as the support matrix. 

(f) Bovine Serum Albumin (BSA). 

When BSA was added to formulation (2) to a concentration of 3% 

w/v it was found that a much more even and rapid colour development 

ensued. This, in conjunction with the ethyl cellulose overlay, gave 

a threshold test of even colour, very clear cut off points on the 

threshold and a rapidity of reaction which was acceptable as a rapid 

on/off semi-quantitative dry phase test for ethanol in saliva. 

(g) Standardisation of the test. 

Threshold levels of mediator were set using either human saliva 

or artificial saliva ethanol standards, (table 13) rather than 

aqueous ethanol standards. Colour development was consistent using 

the former, whereas aqueous ethanol standards tended to produce 

patchy and variable colour development. 

6. B. 5. Dry Alcohol Tests. Stability. 

The stability of the compounds of the dry phase test with respect 

to time of storage is particularly important for the use of such a 

system to measure ethanol accurately. 

The enzymes themselves remain stable for weeks at 37°C 

individually and in combination, in the presence of the stabilisers 

reported in chapter 5. In the presence of 4-AAP they are also 
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stable, graph 53. The full dry phase system retained enzyme stability 

for 21 days at 37°C when stored desiccated in the dark. Inositol at 

5% w/v and 10% w/v was used as stabiliser in formulation (2) absorbed 

on 3MM Chr paper. The development time was 5 minutes, both for the 

fresh and the incubated tests. The threshold was set at 500mg. 1-' 

and 800mg. 1-1 ethanol. Incubation of the same tests for a further two 

months at 37°C increased the development time to 10 minutes 

indicating an approximate 50% loss of enzyme activity. 

Mediator stability appeared to be mainly dependent on the 

humidity under which the tests were stored. Damp conditions caused 

marked deterioration within several hours, indicated by 

dissappearance of the threshold. Incubation under inert gas, (N3) as 

opposed to air appeared to offer no advantages. Foil sachets gave 

the best overall protection against photodeterioration of mediators 

such as ascorbate and sensitive colour reagents. However, the majority 

of the colour reagents used were stable in all conditions tested. 

6. C. Multilayer Tests. 

Gelatine films produced by the Meyer Rod technique, (chapter 2, 

section 2. L. 2) were made containing the colour reagents and the 

mediators. Dry phase enzyme paper, (4 Chr grade paper) was laminated 

to the upper surface, as in fig 17. Development of such a system gave 

a threshold effect within the gel layer when viewed through the 

transparent base, table 28. 

The development time was slow, (5-10 minutes) possibly due to the 

relatively slow diffusion of oxygen into the gel layer. 

This type of system was tested for sensitive colour reagents such 

as those of the photographic class, (table 23). The developer was 

incorporated in the gel layer and the enzyme / coupler / stabiliser 
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Table 28. Gel Threshold Alcohol Test. 

Cysteine mg. ml-' 

Ethanol mg. 1-1 1.0 2.0 3.0 4.0 5.0 6.0 

100 +- ----- 

200 +- +- ---- 

300 + +- +- --- 

400 ++ +- +- -- 

500 +++ +- +- - 

mixture on 4 Chr paper was laminated on the top surface. Also the 

reverse system was tried with colour coupler in the gel layer and 

developer / enzyme / stabiliser in the paper. In both cases the 

mediator used, (cysteine or ascorbate) was present throughout and 

discolouration of the dry test was noticed on storage. However, this 

effect took significantly longer, (7-14 days) than when the whole 

enzyme/coupler/developer/stabiliser system was only present in the 

paper, (1-2 days) under the same storage conditions. If both 

developer, (CD-2, table 23) and coupler, (2,6-diaminotoluene) were 

present in the gel layer and the enzymes / stabilisers were loaded 

and dried onto 4 Chr paper which was then laminated on top, no 

appreciably discolouration appeared for several weeks and the test 

was still active after 5 months at room temperature. 

Two disadvantages of these type of tests were the inability to 

overlay using ethyl cellulose, as the gel base does not hydrate on 

development, and the long development times, (5 minutes or more). 

Two distinct advantages were the ability to use the same gel 

layer for different enzyme loaded papers, which allowed a variety of 

analytes to be determined using the same colour system, and the 
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separation of the colour detection layer from the enzyme layer which 

may enhance stability of the enzyme and/or colour reagents. 

6. D. 1. Alternative Analytes. Dry Phase Tests. 

Dry phase tests using many different enzymes to assay many 

different analytes have been reported widely in the literature, (see 

table 19). The application of the basic dry system devised for 

ethanol analysis was then adapted for analysis of cholesterol, uric 

acid, hydrogen peroxide and glucose using the corresponding enzymes 

and buffers. Reflectance plots of graduated enzyme tests are shown 

in graphs 54-57. 

6. D. 2. Alternative Analytes. Threshold Tests. 

Replacement of alcohol oxidase with other oxidase enzymes in the 

threshold system described, allowed the detection and quantitation of 

alternative analytes. The specificity of the test is dependent on 

the oxidase enzyme used. The threshold generation is a function of 

the hydrogen peroxide detection reaction catalysed by peroxidase. 

This may be seen to be the case in fig. 31 which shows the threshold 

test for hydrogen peroxide alone. Peroxidase was the only enzyme 

present and the dry system was developed by aqueous hydrogen peroxide 

solutions. 

The formulation was as follows: - 

Peroxidase 100 U. ml-, 

Lactitol 5% w/v 

DEAE-dextran it w/v 

4-Aminoantipyrine 20 mM 

N, N, Bis(hydroxyethyl) aniline 25 mM 

MOPS buffer pH 7.0 ) 100 mm 

Cysteine 1,2,3,4. mg ml-' 
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Graph 54. DRY PHASE GRADUATED CHOLESTEROL 
TEST. 
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Graph 55. DRY PHASE GRADUATED URIC ACID TEST. 
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Graph 56. DRY PHASE GRADUATED PEROXIDE TEST. 
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Graph 57. DRY PHASE GRADUATED GLUCOSE TEST. 
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FIG 31. DRY PHASE PEROXIDE THESHOLD TEST. 
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The cocktail was absorbed onto 4 Chr filter paper and vacuum 

dried at 35°C for 30 min. 

Dry tests containing cholesterol oxidase, (Enzymatix Ltd, 

Nocardia Species) using ascorbate as mediator and a colour developer 

/coupler combination of MBTH and 3-dimethylamino benzoic acid gave 

the results depicted in fig 32. The test was rather slow to develop 

taking 10 minutes at 22°C. This was thought to be due to; (1) low 

enzyme activity and; (2) the limitation of oxygen solubility in the 

system, (Palmer et al 1989). The formulation for the cholesterol 

test was as follows: - 

Cholesterol oxidase 50U. m1-' 

Peroxidase 1000. m1-' 

4-Aminoantipyrine 20mM 

3-Dimethylamino benzoic acid 10mM 

Triton X-100 1. W/V 

AMPSO buffer pH 9.0 > 100mM 

Lactitol 5% w/v 

DEAE-dextran 1% w/v 

Ascorbate 0.4,0.5,0.6,0.7,0.8 mg. ml-' 

The cocktail was absorbed onto Whatman 4Chr filter paper and 

vacuum dried at 35°C for 30 minutes. 

Similarly a threshold test for glucose was formulated using 

glucose oxidase. 

Glucose oxidase 200U. ml-' 

Peroxidase 1000. m1-' 

4-Aminoantipyrine 20mM 

2,4,6-Tribromo 3-hydroxy 

benzoic acid 10mM 
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FIG 32. DRY PHASE CHOLESTEROL THRESHOLD TEST. 
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MOPS buffer pH 7.0 > 100mM 

inositol 5% w/v 

Cysteine 1.0,4.0,6.0,8.0 mg. ml-' 

The cocktail was absorbed onto Whatman 4 Chr filter paper and 

vacuum dried at 35°C for 30 minutes, the results are shown in fig 33. 

6. E. 1. Application of the Threshold Reaction. Alcocard 1 

The formulation for the enzyme discs used in the first saliva 

alcohol test card developed using the threshold generation system was 

almost identical to formulation (2), but with the addition of BSA. 

Alcohol oxidase 2000. m1-1 

Peroxidase 100U. m1-' 

4-Aminoantipyrine 20mM 

N, N, Bis(hydroxyethyl) aniline 25mM 

Inositol 5% w/v 

BSA 3% w/v 

MOPS buffer pH 7.9 > 100 mm 

Cysteine 4.2 or 6.2mg. ml1 

The cocktail was absorbed onto Whatman 3MM Chr filter paper and 

vacuum dried at 35°C for 30 minutes. The dry paper was then 

overlaid in 1% w/v ethyl cellulose in toluene and air dried. The 

fabrication of the test was described in detail in section 2. L. 5. The 

developed test gave a positive purple response at saliva 

ethanol concentrations of 500mg. 1-' and above for the first disc and 

800mg. 1-' and above for the second disc, fig 34. 

Comparison of the response of the alcocard using saliva samples 

from 10 individuals who had been drinking, with the ethanol 

concentration determined by a "wet" alcohol dehydrogenase method 
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FIG 33. DRY PHASE GLUCOSE THRESHOLD TEST. 

GLUCOSE 
CYSTEINE mg. ml-1 

1.0 4.0 6.0 8.0 

1 

sa 

°1 4 

u u 
"". 

9 
.S 

""w 

GLUCOSE 
0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

9 

ý' 
ý' 

_ 

Glucose Concentration g l" 

colon 

!b c1 x 

1.0 2.0 3.0 4.0 5.0 



2 17 

FIG. 34. ALCOCARD 

l 

Alcocard 

0,5 0,8 
1 

Alcocard 

0,5 0,8 



218 

(Sigma Ethanol 332-UV) gave an 86% correlation of positive 

results on the card, corresponding to ethanol concentrations 

above the lower threshold level set at 500mg. 1-1, (the first disc). 

Only one subject gave a positive response on both threshold levels at 

the correct concentrations. When using this test format lower 

concentrations of ethanol tended to give positive responses on 

both discs, which was especially noticeable when large sample 

volumes were used. This indicated a dose dependent response of the 

test, which was found to be the main drawback for this type of test 

format. However, provided a metered dose was applied to the discs, 

(usually 10 ul), the response was very reproducible giving virtually 

100% correct results. If a larger volume was applied, (20 al and 

above) the response was almost random in nature. Attempts were made 

to adjust this defect by mounting the enzyme discs on absorbent 

cards. This produced the correct response, however obtaining 

the necessary reproducibility was difficult. 

The stability of the test cards was estimated by accelerated 

degradation testing as before. 100% of cards, (n = 25) retained full 

activity after incubation for 7 days at 37°C, giving correct 

threshold responses in two minutes at 21°C. Longer incubation 

times, (up to several weeks at 37°C) tended to inactivate the 

enzymes, which gave longer development times of up to 5 minutes. 

6. E. 2. Application of Threshold Reaction. Alcocard 2. 

To overcome the problem of metering a controlled dose onto the 

enzyme discs a second format was devised and employed. This is 

described in detail in chapter 2, section 2. L. 5, part 2 and 

illustrated in fig 18b. 

The second format consisted of a base card, three absorbent 
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rectangles of filter paper, (Whatman grade 54 or 541) of an average 

area of 8-12 square mm. The filter papers were loaded with enzyme 

cocktail set to respond at 300,500 and 800 mg. 1-1 ethanol. The 

rectangles were mounted underneath a peel off strip containing a 

membrane. The membranes chosen were nucleopore and more recently, 

isopore from the Millipore Corporation. The membrane allowed a finite 

loading of saliva onto the enzyme loaded papers, which produced a 

dose independent system, provided a minimum amount, (20-30 pl) of 

saliva was applied to the top surface of the peel off membrane. The 

completed tests were sealed in foil sachets containing desiccant for 

storage. Peel off membranes of this type have been reported before, 

particularly in the area of blood separation, (Kennedy et al 1987, 

Kennedy et al 1989). 

A series of developed tests are shown in fig 35. This format of 

test card is currently undergoing modification with regard to 

chromagens and the supports used for the enzyme elements. 

Application of the enzyme / stabiliser / colour reagent / 

mediator cocktail onto microcrystalline cellulose thin layers and 

subsequent drying and overlaying with It ethyl cellulose in toluene 

produced the characteristic, mediator concentration dependent, 

threshold response. Further work is continuing in this area to 

establish the correct parameters for such a system, which will be 

used in the commercial production and exploitation of the threshold 

generated response. 
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CHAPTER 7. 

DIACETYL ANALYSIS using DIACETYL 
REDUCTASE ENZYMES. 
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7. A. Diacetyl and Diacetyl Reductase. Overview. 

Diacetyl, (2,3 butanedione) is a volatile potent flavouring and 

aroma substance in foods and beverages. It imparts a buttery or 

toffee like flavour, and is one of the most important aroma 

substances in butter and fermented milk products such as yoghurt, 

(Scherrer 1972). However, above a certain level of concentration, 

diacetyl imparts an undesirable flavour to beers and lagers, 

producing an unpleasant aroma and taste, the so called "Sarcina 

sickness" of beer. 

Diacetyl is produced in bacteria and yeast both enzymatically and 

spontaneously by various metabolic pathways associated with amino 

acid biosynthesis, particularly valine, (Seitz et al 1963, Inoue et 

al 1968, Speckuran and Collins 1968, Lopez and Fortnagel 1972, 

Scherrer 1972, Wainwright 1973). 

The analysis of diacetyl has been carried out by physical methods 

such as headspace gas liquid chromatography (GLC). Chemical analysis, 

using a variety of methods, were routinely used before GLC became 

widely available, table 29. 

These methods have been used extensively to quantify diacetyl in 

various foodstuffs and beverages, usually after some sort of 

separation step such as distillation or gas stripping of the volatile 

substances from the sample. (Pack et al 1964, Ault 1968). There is 

evidence that such procedures influence the final diacetyl 

concentration, as it is spontaneously formed from a-acetolactate 

during sample preparation, (Inoue and Yamamoto 1970, Wainwright 1973). 

Enzymes that metabolise diacetyl are found in various organisms 

such as bacteria, yeasts and animal tissues. These are listed in 

table 30. The reaction mechanism is almost identical in all organisms 
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Table 29. Analysis of Diacetyl. 

Method. Reference. 

Headspace G. L. C. 

Flow through G. L. C. 

Colorimetric using 1-naphthol/ 
creatine 

U. V. using Girard T reagent 

Colorimetric using urea/ 
hydroxylamine 

Colorimetric using hydroxy- 
lamine / ferrous ions 

U. V. using thiosemicarbazide 

Scherrer. 1972 

Rayner et al 1980 

Westerfield 1945 

Mitchel and Birnboim 1977 

White et al 1945 

Owades and Jakovac 1963 

Olea et al 1979 

with diacetyl being reduced to acetoin in all cases. 

(1) CH3. C. C. CH3 + NADH + H` .. ---. -º CH3. C. CH. CH3 + NAD` 

I1 11 11 I 
00 0 OH 

Diacetyl Acetoin 

The enzymes which catalyse this irreversible reaction are 

systematically known as acetoin: NAD oxido reductases EC. 1.1.1.5. or, 

colloquially, diacetyl reductase. A further reversible reduction 

step converting acetoin to 2,3 butanediol is catalysed by some 

bacterial diacetyl reductases. (Bryn et al 1971, Gibson et al 1990). 

(2) CH3. C. CH. CH3 + NADH + H` CH3. CH. CH. CH3 + NAD` 
11 111 

0 OH On OH 

The application of such enzymes has been limited to the enzymic 

removal of excess diacetyl in beers, (Bavisotto et al 1964, Tolls et 

al 1970, Thompson et al 1970). Enzymic analysis of diacetyl using 

diacetyl reductase has not been reported to date. 
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Table 30. Occurrence of Diacetvl Reductase. 

Organism. Reference. 

Bacteria. 

Aerobacter aerogenes Bryn et al 1971 

Klebsiella pneumoniae Shimiza et al 1977 

Bacillus polymyxa Ui et al 1987 

Escherichia coli Silber et al 1974 

Lactobacillus casei Branen and Keenan 1970 

Staphylococcus aureas Strecker and Harery 1954 

Streptococcus diacetylactis Seitz et al 1963 

Streptococcus diacetylactis Cogan 1981 

Various other species. Seitz et al 1963 

Yeast. 

Saccharomyces cerevisiae Gupta et al 1973 

Mammalian Tissue. 

Beef liver Burgos and Martin 1972 

Rat liver Gabriel et al 1971 

Hamster liver Sawada et al 1985 

Avian Tissue. 

Pigeon liver Diez et al 1974 
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7. B. Bacterial Diacetyl Reductases. 

Two organisms which produced diacetyl reductase were used, 

Klebsiella aerogenes, strain FG9. and Streptococcus lactis subspecies 

diacetylactis 18-16. These correspond to the organisms used by Bryn 

et al (1971) and Seitz et al (1963). Partial purification was 

initially carried out in each case, however the streptococcus enzyme 

was later purified to homogeneity by another member of the unit. 

7. B. 1. Purification of Klebsiella Aerogenes Diacetyl Reductase. 

The preparation is described in detail in chapter 2, section 

2. B. 2. The column elution profile is shown in graph 58. The 

preparation gave a clear solution which was enzymically active with 

diacetyl as substrate. Little work was carried out using this enzyme 

except to test the feasibility of diacetyl analysis using enzymes. 

Substrate specificity tests concurred with the findings of Bryn et al 

(1971), that acetoin was also accepted as a substrate. 

7.8.2. Purification of Streptococcus Lactis subsp. Diacetylactis 

18-16 Diacetyl Reductase. 

The preparation is described in detail in chapter 2, section 

2. B. 3. The column elution profiles are shown in graphs 59 and 60. 

Again a clear solution of enzyme was obtained, which was active with 

diacetyl, 2,3 pentanedione and acetoin as substrates. This activity 

was shown to be associated with the same enzyme by further 

purification of this preparation as mentioned in section 7.8. The 

additional purification procedure and the characterisation of the 

enzyme was reported in Gibson et al, (in press). 

7. B. 3. Use of Bacterial Enzymes in the Analysis of Diacetyl. 
_ 

Both bacterial enzymes were tested in an quantitative assay 

system for diacetyl, similar to the one described in chapter 2, 
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section 2. F. 2. Larger volumes of enzyme solutions were used, (100 ul) 

to obtain acceptable reaction rates. The pH of the reaction was held 

at 7.0, the time of the reaction was 20 minutes and the temperature 

was held at 30°C. The results obtained were similar to the standard 

curves shown in graphs 6-9. 

The principle in using the enzyme reaction to assay diacetyl was 

the same in all cases. The NADH remaining after enzymic reaction was 

inversely related to the original amount of diacetyl in the 

sample. These conditions hold true when the enzyme used catalyses a 

single reaction and that reaction is essentially irreversible. In 

such cases one substrate (the analyte) is catalysed to give one 

product and no further reaction occurs, which allows quantitation of 

the original concentration of analyte. In the cases of the bacterial 

enzymes the results obtained were not accurate as the product of the 

first reaction shown in section 7. A, (acetoin) was also a substrate 

for the enzymes, (reaction 2 in section 7. A). Consequently the 

amount of NADH remaining after reaction was a measure of both enzymic 

steps and could not be directly related to the original diacetyl 

concentration. 

Also due to the rather non-specific nature of the bacterial 

enzymes, analysis of diacetyl in "real" samples was inaccurate. This 

was especially noticeable in samples containing high levels of 

acetoin. For these reasons the bacterial enzymes were considered 

unsuitable for enzymic diacetyl analysis. 

7. C. Liver Diacetyl Reductases. 

Diacetyl reductases isolated from mammalian or avian liver have 

been reported to have no specificity for acetoin as a substrate and 

appear only to react with diketones and certain other dicarbonyl 
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compounds. (Burgos and Martin 1972, Diez et al 1974, Martin- 

Sarmiento and Burgos 1982, Provecho et al 1984, Bernardo et al 1984). 

For this reason the isolation and purification of two liver enzymes 

was undertaken. 

Chicken was chosen as a readily available source of avian liver, 

and fresh beef liver as the source of a mammalian liver enzyme. 

7. C. 1. Purification of Beef Liver Diacetyl Reductase. 

The purification procedure carried out according to the method of 

Burgos and Martin (1972) was described in chapter 2, section 2. B. 4. 

The column elution profiles are shown in graphs 61 and 62. The final 

preparation after the S-200 step gave a series of bands on an SDS 

gel, fig 36. The enzyme was not homogeneous. This was similar to 

the result reported in Provecho et al (1984), where final 

purification was attained using a preparitive electro-focusing 

column. 

In the preparation so obtained, no activity could be detected 

using acetoin as substrate, however activity was found using ethyl 

pyruvate, diacetyl and 2,3 pentanedione as substrates. These results 

were entirely consistent with those reported previously, (Provecho et 

al 1984). 

7. C. 2. Purification of Chicken Liver Diacetyl Reductase. 

The purification procedure carried out according to the method of 

Bernardo et al (1984) was described in chapter 2, section 2. B. 5. The 

column elution profiles are shown in graphs 63-65. The enzyme was 

purified to electrophoretic homogeneity as can be seen in fig 37. 

Activity staining on a non-denaturing gel or after subunit 

reconstitution on a modified SDS gel, (chapter 2, section 2. C. 3) showed 

one band of activity associated with one band of protein, fig 38. 
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FIG. 36 SDS ELECTROPHORESIS DIACETYL REDUCTASE. 

BEEF LIVER. 

LANE 1234S6 

Mol. Wt. 

Stds. 

94,000 �m, 

67,000 

43 , 000 
110 ..... 

I 

�urrar 

30,000 

"rrr 

20,100 

mmumwa 14,400 

LANE 1. Acetone Precipitate, Crude Enzyme. 15-20 Ng Protein. 

LANE 2. Eluate from DEAE Cellulose column, (as comparison). 

LANE 3. Low Molecular Wt. Standards (Pharmacia). 

Weights given at left of gel. 

LANE 4. Pooled Fractions 31-36 off DEAE Sepharose. 

10 mg Protein. (Graph 61). 

LANE 5. Pooled Fractions 41-51 off DEAE Sepharose. 

10 mg Protein. (Graph 61). 

LANE 6. Pooled Fractions 41-44 off Sephacryl S-200 

10 mg Protein. (Graph 62). 
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FIG. 37 SDS ELECTROPHORESIS DIACETYL REDUCTASE. 

CHICKEN LIVER. 

LANE 12345 

Mol. Wt. 

Stds. 

94,000 ++ 

67,000 
too 

43,000 ! ri 

loom 
30,000 'so 

20,100 

14,400 

LANE 1. Acetone Precipitate of Aqueous Liver Extract. 

LANE 2. Pooled Fractions 34-48 off Sephadex G-100 

4.0 µg Protein. (Graph 63). 

LANE 3. Pooled Fractions 21-26 off DEAE Cellulose, 

2.5 Vg Protein. DE-52. (Graph 64). 

LANE 4. Pooled Fractions 19-26 off Chromatofocusing 

2.4 pg Protein. PBE-94. (Graph 65). 

LANE 5. Low Molecular Wt. Standards. (Pharmacia). 

Weights given at left of gel. 
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FIG. 38 NATIVE GEL ACTIVITY STAINING. 

CHICKEN LIVER DIACETYL REDUCTASE. 

LANE 12345 

Mol. Wt. Stds. 
94,000 
67 , 000 

43,000 

30,000 

20,100 

14,000 

PROTEIN STAIN. 

6789 

LANE 1. Low Molecular Wt. Standards. (Pharmacia). 

LANES 2,3,6 and 7. Pooled Fractions off Chromatofocusing. 

PBE-94, (Graph 65). Lanes 2 and 6.0.6 pg Protein. 

Lanes 3 and 7.0.3 pg Protein. 

LANES 4 and 8. Pooled Fractions 21-26 off DEAE Cellulose. 

DE-52, (Graph 64). Lane 4.1.65 pg Protein. 

Lane 8.0.83 pg Protein. 

LANES 5 and 9. Pooled Fractions 34-48 off Sephadex G-100. 

(Graph 63). Lane 5.3.0 pg Protein. 

Lane 9.1.0 pg Protein. 

ACTIVITY STAIN. 
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The purification procedure is summarised in table 31. 

Table 31. Chicken Liver Diacetvl Reductase. Purification. 

Step. Total Total Specific Purif- Yield. 
Activity. Protein. Activity. ication. 

(units) (mg) (units. mg-1) (2) (%) 

(1) 
Supernatant 
50min 891.0 33,550 0.027 1.2 58.0 
20,000g 

Crude aceton e 
precipitate 788.0 511.0 1.54 70.0 51.0 

Sephadex 384.0 30.5 12.3 560.0 25.0 
G-100 

DE-52 239.6 7.3 35.3 1604.0 15.6 
cellulose 

Chromato- 50.7 1.2 42.2 1918.0 3.3 
focusing 

1/ Preparation from 300g liver. 

2/ Relative to aqueous extract of liver, 1g to 4m1 H2O. 

7. C. 3. Characterisation of Chicken Liver Diacetyl Reductase. 

(a) Isoelectric Focusing. (IEF) 

IEF of the purified protein gave one major band at pI 6.2 and a 

very faint minor band at pI 6.05, (chapter 2, section 2. C. 4). 

Activity staining of IEF gels was unsuccessful due to broad diffuse 

bands developing during the staining technique. 

(b) Molecular Weight Determination. 

The molecular weight of the native protein was found to be Mr 

81,000, (chapter 2, section 2. E. 4). 

The molecular weight of the subunit was found to be Mr 28,000, 

(chapter 2, section 2. E. 4). The ratio of these estimated weights 

suggests that the enzyme occurs as a trimer. 
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(c) Effect of Temperature on Activity. 

The activity curve relative to temperature is shown in graph 66. 

The enzyme is maximally active at 35°C, (chapter 2, section 2. E. 6). 

(d) Effect of pH on Activity. 

The activity curve relative to pH is shown in graph 67. The 

enzyme is maximally active at pH 6.1, (chapter 2, section 2. E. 5). 

(e) Reversibility of Reaction. 

Addition of NAD to 0.2mM and acetoin to 11.3mM to the purified 

enzyme followed by incubation at both pH 6.1 and pH 8.8 at 35°C for 

up to five hours gave no evidence of the reversibility of reaction 1 

shown in section 7. A. of this chapter. 

(f) Co-factor and Substrate Specificity. 

The purified enzyme accepted both NADH and NADPH as co-factors. 

Higher activities were seen with NADPH. A range of potential 

substrates was incubated with the enzyme and both co-factors, 

(chapter 2, section 2. E. 2). The results are shown in table 32. 

The purified enzyme has no activity with acetoin as substrate 

however it did react with both methyl and ethyl pyruvates and 2,3 

pentanedione as well as diacetyl. Low activity was noted with methyl 

glyoxal and glyceraldehyde. 

(g) Kinetic Affinity Studies. 

The purified enzyme was incubated with various concentrations of 

co-factors or substrates as described in chapter 2, section 2. E. 3. 

The results are expressed in terms of the apparent affinity constant, 

(Km-'PP) in table 33. The purified enzyme had an affinity for NADPH 

which was some 29 times higher than that for NADH. Also the best 

substrate for the enzyme appeared to be 2,3 pentanedione. Diacetyl 

itself was the second most favoured substrate. 
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Graph 66. CHICKEN LIVER DIACETYL REDUCTASE. 
Effect of Temperature on Activity. 

f LLIVIIy U IIIUJ D. 
NADH. min-1. 
2 

1.8 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

0.2 

0 

20 25 

Graph 67. CHICKEN LIVER DIACETYL REDUCTASE. 

Activity u moles. 
Effect of pH on Activity. 

NADH. min. -1. 
4.5   

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0 

pH 

30 35 40 45 50 55 60 

Temperature oC. 

5 5.5 6 6.5 7 7.5 8 8.5 
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Table 32. Chicken Liver Diacetyl Reductase. 

Substrate and Coenzyme Specificity. 

Substrates 10mM. NADH NADPH 

Acetone 0 0 

Pyruvic Acid 0 0 

2,4 Pentanedione 0 0 

Glyoxal 0 0 

Methylglyoxal 13 95 

Diacetyl 1000 1594 

2,3 Pentanedione* 369 413 

Glyceraldehyde 4 191. 

Acetoin 0 0 

Methyl pyruvate 527 953 

Ethyl pyruvate 650 905 

Ethyl acetoacetate 0 0 

The results are expressed in n moles of substrate reduced 

per unit enzyme under standard assay conditions, (chapter 

2, section 2. D. 4 ). 

* Substrate concentration of 10mM inhibitory. Gave 

higher activity at lower concentrations. 
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Table 33. Chicken Liver Diacetyl Reductase. 

Kinetic Affinity Studies. 

Variable Substrate Fixed Substrate K'u* mM. 

NADH Diacetyl (10mM. 1-1) 0.501 

NADPH Diacetyl (1OmM. 1'') 0.017 

Diacetyl NADH (0.2mM. 1-1) 1.8 

2,3 Pentanedione NADH 0.29 

Methyl pyruvate NADH 4.6 

Ethyl pyruvate NADH 6.5 

Methyl glyoxal NADH 22.1 

Glyceraldehyde NADH 42.6 

7. C. 4. Use of Liver Enzymes in Analysis of Diacetyl. 

The lack of purity of the beef liver enzyme preparation precluded 

its use in the enzymic analysis of diacetyl. 

Initial results using the enzyme in the recycle assay described 

in chapter 2, section 2. F. 4 and shown in fig 39, indicated that 

diacetyl levels down to 0.2mg. 1-1 could be detected, however the 

assay was not reproducible. The use of this enzyme was discontinued 

in the analytical system. 

The chicken liver enzyme was used to analyse aqueous diacetyl 

standards. The results of these analyses are shown in chapter 2, 

graphs 6-10. 

The responses to aqueous diacetyl solutions were linear in all 

cases, however the sensitivity varied considerably, being dependent 

on the type of detection method used for the residual NADH, or in the 

case of the recycling method, the NAD produced. 

The purified chicken liver enzyme preparation gave reproducible 



244 

FIG. 39 RECYCLING ASSAY. DIACETYL ANALYSIS. 

Primary reaction (a) Diacetyl Diacetyl 
reductase H 

C113-C- -CHg + NADH + H+ CH3- -6-CH3 

00 dOH 
+ NADf 

Direct determination of residual NADH or insert NAD into 

reactions b&c 

Cycling reaction (b) 

cyclohexanone cyclohexanol 

Liver 
NADH Alcohol NADf 
+ H+ Dehydrogenase # 

4-Nitroso Quinonediimine 
Dimethyl aniline intermediate (colourless) 
(NDMA) 
(Yellow 440nm) 

t 

Indicator Reaction (c) Deep blue dye Coupler (Cuiacol 
Spontaneous. max 680 nm sulphonic 

acid) 
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and representative results for the aqueous standards used, provided 

care was taken in analytical technique and the standards were freshly 

prepared. Aged standards showed a variation in results due to the 

volatility and instability of diacetyl in dilute solution. 

Routine determination of the residual NADH after enzymic reaction 

was attempted using the methods described in chapter 2, section 

2. F. 3. The method using 2,2-dipyridyl or ferrozine and ferrous ions 

was found to be impractical due to the instability of the working 

reagents. This effect gave spontaneous colour generation in the 

solutions used, which resulted in high background readings. 

Detection of NADH using formazan production was a trouble free 

method, however the standard curve produced had a negative slope and 

the sensitivity was fairly low, graph 8. 

Decolourisation of meldola blue resulted in a positive response 

curve. High diacetyl concentrations gave correspondingly low 

residual NADH concentrations, resulting in a high absorbance. The 

opposite being true for low diacetyl standards. Also, assays carried 

out in pH 7.1 buffer gave superior sensitivity to those incubated in 

pH 6.1 buffer, graph 9. This method also required fewer additional 

steps than the previous methods described and was the method of 

choice for diacetyl concentrations between 5-50mg. 1''. The reaction 

sequence is shown in fig 40. 

The use of chicken liver diacetyl reductase in the recycling 

method, (chapter 2, section 2. F. 4) for detection of the NAD produced 

from the reduction of diacetyl gave consistent and reproducible 

results for diacetyl concentrations between 0.1-1.5mg. 1-'" graph 10. 

Because of the sensitivity of the assay accurate pipetting was 

essential to ensure errors were minimised. 
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Also, thorough mixing was necessary, particularly after the 

addition of the HC1 so that the residual NADH was completely 

destroyed. The method was more accurate and sensitive around pH 7.0 

than at pH 6.1, (the pH at which the enzyme was maximally active). 

It was thought that at acid pH's some non-enzymatic destruction of 

NADH occurred which affected the enzymic reaction and produced 

erroneous results. 

Direct estimation of diacetyl in real samples which usually 

contain low levels, (milligrams per liter or less) has only been 

possible so far by using GLC methods. The sensitivity of the 

recycling asssay is sufficient to measure such levels of diacetyl 

accurately. 

One disadvantage of the liver enzyme was the lack of absolute 

specificity for diacetyl. Interference by ketoesters, (e. g. methyl 

and ethyl pyruvate) could be removed by pre-incubation with esterase. 

However, the interference produced by other diketones such as 2,3 

pentanedione could not be removed. Because of this, the enzyme 

method may be more accurately described as a diketone assay, rather 

than a diacetyl assay. 

7. D. 1. Application of Enzymic Assay to Analysis of Diacetyl in 

Fermentation Media. 

Samples of dialysate obtained from the bacterial fermentation set 

up as described in section 2. H. 2 were analysed by the meldola blue 

decolorisation method and the results compared to those obtained by 

the automated chemical method described in section 2.1.3. The 

results are shown in table 34. The enzyme method consistently gave 

lower results than the Westerfield method. This was found to be due 

to high levels of acetoin in the samples, (determined by an acetoin 
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Table 34. Comparison of Diacetvl Estimation in 

Fermentation Broth Dialysate Using Chemical and 

Enzymic Analysis. 

Concentration Diacetyl (mg. 1'') 

Sample Fermentation Westerfield Enzyme Method 
Time (hrs. ) Method Method (b) 

Meldola Blue 

Blank 0 0 0 

1 2.5 0 0 

2 5.5 0 0 

3 7.5 0 0.7 

4 10.5 5.9 N/A 

5 13.5 23.7 4.2 

6 16.5 22.0 5.6 

7 18.6 23.0 1.2 

8 20.6 23.0 1.9 

9 22.6 22.0 N/A 

N/A not assayed due to lack of sample. 
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accepting enzyme) which reacted in the Westerfield method in the same 

way as diacetyl but at a reduced rate, (Speckman and Collins 1982). 

The rapidity of the automated method only allowed a proportion of the 

acetoin present to react, so giving an apparent high diacetyl 

content. 

The enzyme method does not detect acetoin and the results 

obtained reflected a truer measure of the diketone content of the 

samples. 

7. D. 2. Application of Enzyme Assay to Analysis of Diacetyl in Beer. 

Several attempts to analyse beer samples, (lager, bitter, brown 

ale and stout) for diacetyl by the enzyme method resulted in failure. 

Both the meldola blue and the recycling assays were used and in 

both cases large false positive values were recorded. These results 

only occurred in the presence of both enzyme and NADH. No 

false positive values occurred using enzyme in the absence of NADH or 

using NADH in the absence of enzyme. 

It was concluded that the probable reason for such false 

positives was interference in the enzyme reaction itself. Substances 

such as glyceraldehyde are present in beer in relatively large 

amounts compared to diacetyl and even though the reaction rate is 

slow, (section 7. C. 3, table 33) the interference would be 

significant. Ketoesters are also present in beer, but although 

treatment of beer samples with esterase, (to destroy such esters) 

tended to reduce the interference, it did not eliminate it. 

For enzymic analysis of diketones in beer, it will be necessary 

to use some sort of separation to provide a suitable aqueous sample, 

thereby removing the interference effects. In this respect, no 

advantage will be gained over conventional analytical methods. 
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CHAPTER 8. 

DISCUSSION. 
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8. A. Alcohol Oxidase as an Analytical Enzyme. 

Enzymes which are used for analytical purposes are required to 

possess several characteristics before they are generally considered 

acceptable. These include the specificity of the reaction catalysed, 

the irreversibility or apparent irreversibility of the reaction 

catalysed, the stability of the purified enzyme, the purity of the 

enzyme, the availability and the subsequent cost of the enzyme. 

Specificity of Reaction. 

The specificity of any particular enzyme is of major importance 

to the accuracy of the analysis being carried out. The ideal 

situation is where only one specific substrate is recognised by the 

one enzyme. In practice this is not always the case, as many enzymes 

have some activity on other substrates, albeit at a reduced rate to 

the preferred substrate. 

e. g. Alcohol dehydrogenase is not specific for ethanol, it also 

accepts a wide range of other compounds, (Sund and Theorell 1963). 

However, the usual finding in such cases is that the alternative 

substrates recognised by the enzyme are not present in biological or 

real samples, thus rendering an effective 100% specificity for the 

required substrate. 

In the case of alcohol oxidase the specificity range is narrow, 

(section 3. A. 3, table 14). Methanol, propan-1-ol, butan-1-ol, 

formaldehyde and allyl alcohol are not present in body fluids to any 

appreciable extent and so any enzyme reaction is specifically due to 

ethanol, giving a quantitative test for ethanol in body fluids. 

Similarly alcoholic beverages are relatively free of large 

quantities of the interfering substrates and are usually very high 

in ethanol content. Dilution of such solutions is usually necessary 
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before analysis; again causing a specific response for ethanol. Where 

other types of sample are analysed, e. g. bacterial ferments, etc. 

care is needed to ensure the response is due to a specific substrate. 

Reversibility of Reaction. 

The reaction catalysed by an enzyme needs to be irreversible in 

nature to give accurate results, as reversible reactions usually do 

not go to completion and are in an equilibrium state. Some 

reversible reactions may be made apparently irreversible by altering 

the pH. e. g. Lactate dehydrogenase at pH 7.0 specifically catalyses 

the conversion of pyruvate to lactate. However, if the pH is adjusted 

to 8.9 and above the enzyme specifically converts lactate to 

pyruvate. 

Alternatively, removal of one of the products formed by chemical 

or enzymatic means can have the same effect. e. g. The 

determination of ethanol using the enzyme, alcohol dehydrogenase 

produces acetaldehyde, which can be removed from solution using 

semicarbazide and in the lactate to pyruvate reaction above at pH 

8.9, the pyruvate produced can be removed by its reaction with 

L-glutamate, catalysed by the enzyme, alanine, aminotransferase. 

In the case of alcohol oxidase and oxidases in general, the 

reaction is essentially irreversible and proceeds to completion. This 

gives the ideal type of reaction for an analytical enzyme. 

The detection reaction for ethanol using alcohol oxidase was 

optimised using standard reagents developed from the basic "Trinder" 

assay, graphs 17-20, (Trinder 1969). The responses of the optimised 

assay system are shown in graphs 13-14 and are linear over the 

concentration ranges shown. Phenolsulphonic acid was chosen in 

preference to phenol itself as it is far less toxic and much more 
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stable. The reagents may, therefore, be packaged as an analytical 

enzyme kit for ethanol. The correlation of the oxidase method using 

Trinder detection chemistry compares very favourably to the standard 

alcohol dehydrogenase method marketed by Sigma. The correlation 

coefficient (r) was 0.993 with a slope of the regression line of 

0.994, graph 21. 

Stability of Enzyme in use. 

The stability of enzymes is of prime importance in their use as 

analytical reagents. This is arguably the major area of difficulty 

regarding the use of enzymes as analytical reagents. The stability 

of the enzyme used often dictates the effective shelf life of the 

analytical system. 

Alcohol oxidase is very stable in conditions of low water 

activity, (Woodward 1990) hence the storage of the enzyme as a 

precipitate in ammonium sulphate solution. Dilute solutions of the 

enzyme are fairly stable for short periods, however there is a slow 

production of hydrogen peroxide presumably from formaldehyde, which 

appears to be bound as an adduct onto free amino groups, (Hopkins and 

Mueller 1987). Hydrogen peroxide appears to have a particular effect 

on the enzyme, causing aggregation and subsequent inactivation of the 

enzyme upon storage. 

It is not clear whether the loss of activity is due to enzyme 

destruction or just the production of an insoluble precipitate from 

the enzyme solution thus reducing the concentration of the soluble 

enzyme. Also the aggregation and subsequent precipitation of protein 

occurs more rapidly in more concentrated solutions of enzyme in 

buffer and is more noticeable in aged enzyme preparations. 

Hopkins and Mueller (1987) reported aged preparations to be more 
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completely succinylated than fresh enzyme when reacted with succinic 

anhydride, indicating a removal of formaldehyde from the free amino 

groups. If more free formaldehyde is produced in aged samples, it is 

reasonable to assume a higher concentration of peroxide is produced, 

which in turn promotes a higher degree of aggregation. This may be 

due to the formation of disulphide bridges between the free 

sulphydryl groups of the enzyme, as peroxide will spontaneously 

oxidise such reducing groups to produce the more stable disulphides. 

(This has been tested with some of the sulphydryl containing 

mediators listed in table 22 and is found to be the case). This 

theory of aggregation is supported by the fact that incubation of 

precipitated aged enzyme solutions with 2-mercaptoethanol and sodium 

mercaptoethane sulphonate results in complete dissolution of the 

precipitate to give clear solutions. No enzyme activity could be 

demonstrated in the solutions so prepared, which may indicate 

inactivation occurs as a result of precipitation in aged solutions. 

Solutions of alcohol oxidase may be stabilised by the addition of 

high concentrations of polyhydroxyl compounds such as lactitol or 

sorbitol, graph 35. This is discussed more thoroughly in section 

8.2. For storage purposes, such concentrated solutions may be of use 

provided dilution of the enzyme is carried out prior to assay. Assays 

are difficult in high concentrations of stabilisers usually due to 

viscosity effects. Long term stability studies of solutions of 

alcohol oxidase have not been carried out but incubations of enzyme 

solutions for 5 days at 37°C indicated enhancement of enzyme activity 

retention in the presence of some polyhydroxyl compounds. 

The stability of alcohol oxidase in a dry state, as in a 

reagent/enzyme dipstick format has long been a major source of 
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difficulty. Similarly, dry lyophilised preparations of the enzyme 

from various sources are notoriously unreliable for retention of 

activity. Various stabilised preparative techniques have been 

claimed, (Phillips 1985, Hopkins 1988, Adams 1988) however the source 

of the enzyme used was Pichia pastoris and the same stabilising 

techniques appear to be ineffective for the Hansenula enzyme. Dry 

stabilisation is discussed in detail in section B. C. 

It may be concluded then, that whilst solutions of alcohol 

oxidase may have a reasonable working life, long term storage of the 

enzyme is a major drawback in its use as an analytical enzyme. The 

enzyme must be stored frozen or as an ammonium sulphate precipitate 

or may be stabilised as described in chapter 5, to retain enzyme 

activity. Commercially available dry preparations are unreliable and 

are not to be trusted. 

Enzyme Purity. 

The purity of the enzyme is important in determining the 

specificity of the analytical reaction. Associated enzyme activities 

in any analytical enzyme assay are undesirable. The major 

contaminant of alcohol oxidase is catalase. This may be seen clearly 

in fig 19, lane 1. The purification steps carried out give an enzyme 

of sufficient purity to use in analytical methods, fig 19, lane 2. 

Availability of Enzyme. 

The cost of the commercially produced enzyme from the Provesta 

Corporation, (a subsidiary of Phillips Petroleum), varies from $8 to 

$20 per 1000 units depending on the amount bought. Other sources 

include Sigma at £29 for 1000 units and Boehringer at £26 for 50 

units, (the enzyme from Hansenula is not commercially available). As 

can be seen, the enzyme is relatively expensive, which may be one 
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reason why the enzyme is not widely used in analytical techniques. 

Also the quality and stability of the commercial enzyme is not 

adequate for routine enzymic analysis. 

Conclusions. 

The overall conclusions that may be drawn from the above 

discussion are that the purity, specificity and type of reaction 

catalysed are. adequate for the Hansenula enzyme to be used as an 

analytical tool. The availability and subsequent cost are fairly 

high, but with careful analytical design are not excessive. The 

stability of the enzyme is poor and on this point alone the enzyme 

fails in producing an acceptable, widespread, analytical method for 

ethanol. 

8. B. Immobilised Enzyme and Use in Flow Systems. 

Immobilising enzymes onto insoluble supports, offers certain 

advantages over soluble enzymes, which include increased stability, 

multiple use of the same enzyme for many assays and thus a saving in 

cost of the enzyme. Co-immobilisation of two or more enzymes together 

also allows multiple reaction sequences to take place in one "enzyme 

reactor". 

Nylon Immobilisation. 

Alcohol oxidase immobilised on the internal wall of nylon tube 

using the reaction sequence in fig 9, gave a usful method to analyse 

ethanol using a flow system. The responses of the nylon immobilised 

enzyme reaction in a segmented flow analytical system are shown in 

figs 23-25. These are comparable to those obtained from the soluble 

enzyme systems, figs 20-22. The amount of enzyme used was very small 

indeed, being less than 0.5 units. The enzyme coils were stable for 1 

month's use provided they were well washed and stored in phosphate 
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buffer, pH 7.0 at 4°C. after each days work, (average running time 

per day 5-6 hours). Continuous perfusion over several days at an 

average room temperature of 21°C, reduced the activity of the same 

coils by half in 5 days, (half life). An increase in stability was 

noticed when other amino group containing spacer arms were used in 

place of 1,2 diaminoethane, graph 24. Polymeric amino compounds gave 

the highest stability under continuous flow conditions, with a half 

life of 7 days. 

Nylon immobilised enzymes are subject to nucleophilic cleavage of 

the co-valent bond formed between the nylon imidate and the amino 

spacer molecule, (Sunderam 1979). The reduction of activity under 

continuous flow conditions may be partly due to removal of bound 

enzyme by this process, however the retention of glucose oxidase 

activity under the same conditions, (having been immobilised by the 

same reaction sequence), points away from this explanation. 

Inactivation of the enzyme during the prolonged conditions of the 

test is a more likely possibility. 

It was noticed that the enzyme exhibited a better stability 

profile when itwas exposed to substrate. Enzyme coils which were 

continuously used for assays and then washed and stored overnight in 

buffer at 4°C before being used again, retained activity longer than 

those perfused continuously with few estimations of substrate. Newly 

prepared enzyme coils also exhibited an increase in activity after 

exposure to substrate. This normally reached a plateau after the 

first days use and from then on activity gradually decreased. 

The probable explanation of these phenomena is the orientation of 

the immobilised enzyme with respect to the solid support and the 

maximum availability of "active" enzyme molecules for the substrate. 
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On immobilisation a proportion of the enzyme may be bound in such a 

way as to become unavailable for catalysis to take place. In the 

presence of substrate some of the bound, unavailable enzyme may be 

able to reorientate itself to become available and thus apparent 

enzyme activity increases. This also appears to be true for pyruvate 

oxidase in membrane entrapped systems and glucose oxidase immobilised 

on nylon, (personal communications from Dr. R. Spokane Y. S. I. Inc. and 

ChemLab. Instruments Ltd. ). 

Cholesterol esterase and cholesterol oxidase co-immobilised on 

nylon, exhibited a half life of about 2.5 days in continual use with 

cholesterol as substrate. The total activity of the coil made, 

(section 2. G. 1) was fairly low and was found to be unsuitable for 

routine use. Higher activity enzyme reactors have been made using 

controlled pore glass as the solid support, (Tabata et al 1981). 

Glass Immobilisation. 

Alcohol oxidase immobilised on control pore glass was used to 

make enzyme columns for use in flow injection systems. The response 

of the glass immobilised enzyme is shown in fig 27 and is linear to 

300mg. 1-1. For comparison the soluble method is shown in fig 26 and 

is linear to 500mg. 1-1. Further work to optimise the immobilised 

system may extend the linearity of the. method, however, due to time 

and lack of suitable controlled pore glass samples, this was not 

carried out. 

The stability of such columns is remarkable. The enzyme half life 

was about 10 days, (graph 26) but thereafter no loss in activity was 

noticed during 35 days continuous use at room temperature, graph 26. 

The essential loss of activity has been attributed to much the 

same process as that of the nylon immobilised enzyme, however the 
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residual enzyme is far more stable than that immobilised on nylon. 

It is probable that the enzyme activity remaining after the 

initial loss is due to enzyme bound in the pores of the glass. This 

would probably result in multiple attachments between the enzyme and 

the activated glass support, fig 10. 

As it has already been reported by Martinek et al (1977), 

multipoint attachment of enzymes to supports markedly enhance their 

stability. The result observed with glass immobilised alcohol oxidase 

becomes even more remarkable, when it is considered that the data 

obtained in graph 26 was from enzyme that had first been immobilised 

12 months previously and stored in phosphate buffer pH 7.0 at 4°C. 

Recent tests have shown the same glass immobilised enzyme column has 

retained the same residual activity for a further 2 months at room 

temperature. 

Use in Flow Systems. 

Both the nylon and glass immobilised enzymes have been used to 

quantify ethanol in fermentation experiments using flow systems, 

figs 13 and 16. The main development for such measurements was the 

use of a dialysis probe as a sampling device in the fermentation, 

fig 11. 

The characterisation of the probe was carried out using the flow 

injection soluble method for glucose and ethanol, (fig 15) to 

determine the temperature dependence, graph 28 and the maximum 

steady state response of the probe with respect to time, graph 27. 

Because the probe gave a dynamic response, the equilibration time of 

the analyte across the dialysis membrane, between the bulk solution 

and the carrier solution was relatively short. For ethanol this was 

approximately 2 minutes and for glucose approximately 3 minutes, 
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graph 27. The size and shape of the molecule determined the speed of 

dialysis. The rapidity of equilibrium was much shorter for calcium 

ions being approximately 1 minute. Also the flow rate of the carrier 

solution influenced the equilibration time, a higher flow rate gave a 

shorter time and a slower flow rate gave a higher one, (unpublished 

results). 

Using the probe in actual fermentation systems and analysing the 

effluent carrier stream using the enzyme flow systems, gave the 

results obtained in graphs 30-33. In graph 33 the diacetyl was 

estimated using the chemical method flow system, fig. 14. In the case 

of graph 32 the H202 produced by the immobilised enzyme was detected 

electrochemically rather than spectrophotometrically using a Yellow 

Springs Instruments Inc. peroxide probe. 

As a comparison to the results obtained using the dialysis probe 

shown in graph 30, direct sampling of the same fermentation gave the 

results shown in graph 29. It as noticed that at higher analyte 

concentrations interference in the colour reaction occurred. Dilution 

of these samples gave an apparent increase in the observed values 

for ethanol produced towards the end of the fermentation, indicating 

a diluting out effect of the interfering compounds in the 

fermentation broth. It was also noticed that nylon immobilised 

glucose oxidase was subject to irreversible inactivation after 

several consecutive analyses of the fermentation broth obtained by 

direct sampling. The activity decreased approximately 70-80% over 

the course of one experiment, (48hrs). The reason for this 

inactivation was not elucidated. Alcohol oxidase coils were 

unaffected by the same samples. 
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B. C. Stabilisation of Alcohol Oxidase and Other Enzymes. 

One major problem in using enzymes as reagents for quantitative 

estimation of analytes is their lack of stability and consequently 

the effective long term storage, (shelf life) of enzyme based 

diagnostic tests is often fairly short and may require specialised 

storage conditions. Also the stability of the enzyme component within 

such a test system will tend to dictate the types of analytical tests 

that become available commercially. Many tests that are suitable for 

a laboratory environment become unusable when taken into the field. 

The effective stabilisation of the active components of such tests 

would be of great advantage in the production and shelf life of the 

tests produced. 

The stabilisation of alcohol oxidase was carried out using a 

variety of techniques and then identifying those which were 

effective. Further development on the effective methods produced the 

results that form the basis of the patent application on enzyme 

stabilisation, (Gibson and Woodward 1989). 

Wet Stabilisation. 

It was noticed early on in the work that alcohol oxidase when 

bound electrostatically to DEAE-sepharose, (or DEAE derivatised 

supports) became very stable with respect to activity retention with 

time. Storage of bound enzyme for up to 2 years with 100% retention 

of activity was common. 

As has already been mentioned, free enzyme solutions form a 

precipitate on aging with subsequent partial loss of activity. 

Elevated temperature testing of alcohol oxidase solutions from 

Hansenula polymorpha and Pichia pastoris showed a marked difference 

in the stability of the two enzymes, graph 34. At a temperature of 



262 

50°C Pichia enzyme was 80% inactivated after 30 minutes whilst 

Hansenula enzyme was stable for many hours. Elevating the temperature 

to 60°C inactivated the Hanensula enzyme, the curve was similar to 

that of the Pichia enzyme at 50°C, graph 34. 

Effect of Additives. 

Addition of polyhydroxyl compounds to enzyme solutions have been 

shown to increase the stabilities of enzymes, (Back et al 1979, 

Arakawa and Timasheff 1982, Fujita et al 1982, Monsan and Combes 

1984, Combes and Monsan 1984, Ye et al 1988). This is thought to be 

due to the interaction of the polyhydroxyl compound, (e. g. sucrose, 

polyethylene glycols, sugar alcohols, etc), with water in the system. 

This effectively reduces the protein - water interactions as the 

polyhydroxyl compounds become preferentially hydrated and thus the 

hydrophobic interactions of the protein structure are effectively 

strengthened. This leads to an increased resistance to thermal 

denaturation of the protein structure, and in the case of enzymes, an 

increase in the stability of the enzyme, shown by retention of 

enzymic activity at temperatures at which unmodified aqueous enzyme 

solutions are deactivated. 

This effect of polyhydroxyl compounds may not be quite as simple 

as it has been described, as the structure of the polyhydroxyl 

compound may play some part in effective stabilisation of enzymes in 

"wet" systems. Thus Fujita et al, (1982) reported that inositol was 

more effective than sorbitol in stabilising lysozyme in aqueous 

solutions. Both compounds contain six hydroxyl groups, but inositol 

is cyclic in structure whereas sorbitol is linear, fig 41. The 

interaction of polyhydroxyl compounds with water promotes a change in 

the molecular structure of water. Inositol was reported to have a 
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larger structure-making effect than sorbitol, which accounted for the 

greater stabilisation effect of this compound. 

Similarly Ye et al, (1988) reported that glucose oxidase was 

stabilised in solution by a variety of compounds which included 

polyhydroxyls, (xylitol being the most effective), polyethylene 

glycols, (PEGs) and inorganic salts, all of which showed the ability 

to affect the structure of water by making it more "organised". 

This effect was not purely dependent on the hydroxyl content of the 

additive used, as PEG molecules only have two free hydroxyls and 

inorganic salts have none, yet both gave stabilisation effects. Also 

solutions of glucose oxidase in D20, which was reported to be a more 

structured solvent than water, showed enhanced thermal stability when 

compared to aqueous solutions. 

The conclusion that was drawn for the stabilisation of protein 

structure in aqueous solvent systems was as follows: the type of 

protein, the hydrophilic or hydrophobic character and thus the 

subsequent interaction of the protein with, (i) water and, (ii) the 

additives themselves, all play an important part in the stabilisation 

process. 

Aqueous stability of enzymes was not of great interest to this 

work, so no exhaustive stability trials were conducted on aqueous 

enzyme solutions. However in short trials using alcohol oxidase, both 

sorbitol and lactitol showed a distinct effect on the "wet" stability 

of the enzyme, graph 35. Lactitol showed a greater stabilisation 

effect than sorbitol. This was thought to be due to the larger number 

of hydroxyl groups present, (fig 41) and consequently the interaction 

of the molecule with water should be of a greater magnitude than that 

of sorbitol. Lactitol may also interact with the enzyme 
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in some way, as an enhanced stabilisation effect was noticed on 

drying the enzyme with lactitol, but not with sorbitol, see below 

and graph 39. 

It was also noticed that using cholesterol oxidase and 

cholesterol esterase, sorbitol appeared to stabilise aqueous 

solutions more effectively than lactitol. This possibly reflects some 

sort of specific interaction of the enzymes with sorbitol. 

Dry Stabilisaton. General. 

The preparation of dry enzymes is of great commercial use, in 

that dry systems are generally much more stable and consequently much 

easier to store. The increase in stability associated with drying of 

proteins may be predicted from the understanding of the interaction 

of water with the protein molecules. As mentioned earlier reducing 

the interaction of water with proteins effectively stabilises them by 

strengthening the intermolecular forces associated with protein 

structure. -The removal of water from a protein should therefore have 

much the same effect as addition of polyhydroxyls to an aqueous 

solution. Generally this is found to be true. Removal of water, 

particularly, by techniques that do so under conditions of low 

temperature, such as freeze drying, often result in very high enzyme 

activity retention in the dry product produced, which remains for 

extended periods of storage, (Potthast 1978). 

The removal of water from purified enzymes by similar techniques 

is usually accompanied by some loss in activity, probably due to 

denaturation of the protein molecule. However, the activity 

remaining is usually quite stable to thermal denaturation and may be 

stored for extended periods of time with minimal loss of activity. 

The product from the drying procedure used is almost always 
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associated with water molecules which are "bound" to the protein. 

Such "bound" water appears to be vital for the activity to be 

preserved, presumably by stabilising the structure of the protein 

into the configuration required for activity. The losses of activity 

noticed on drying may therefore be associated with removal of "bound" 

water, with the end result of producing dentured, inactive protein. 

This effect has been noticed'in many cases, (Hellman et al 1983, 

Carpenter et al 1986, Crowe et al 1987). 

Addition of sugars and other agents to enzyme solutions before 

the drying step usually enhances the stability, which is reflected in 

the retention of activity of the enzyme, (Phillips 1985, Kishore 

1985, Crowe et al 1987, Roser 1987, Hopkins 1988). This area of 

additive inclusion to stabilise proteins in the dry state is a large 

and growing field, particularly in the patent literature, for reviews 

see Barker (1978) and Schmid (1979). 

Dry Stabilisation of Alcohol Oxidase. 

All previous literature reporting the production of dry stable 

preparations of alcohol oxidase was based on the enzyme isolated from 

Pichia pastoris. Additives such as mannitol and other polyhydroxyl 

compounds were reported to stabilise the enzyme in a dry chemistry 

format, (Phillips 1985). Also al'gin, (sodium alginate) has been 

used, (Adams 1988). Alternative non-carbohydrate stabilisers selected 

from the group; peroxidase, catalase, cytochrome C or myoglobin have 

been claimed, (Hopkins 1988). In all reported cases the enzyme / 

stabiliser mixture was dried as a liquid preparation by water removal 

in an air stream or under low pressure conditions using a vacuum 

oven. Freeze drying was not used. 

Attempts to reproduce the stabilisation using mannitol, sorbitol, 
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peroxidase or alginate with Hansenula alcohol oxidase met with 

limited success, graphs 39 and 45. The enzyme was vacuum dried as 

described in section 2. J. 1. The test system with peroxidase, (100 

fold excess) was not plotted graphically. The alcohol oxidase 

retained 50% activity after 1 day at 37°C decreasing to 37.3% after 9 

days incubation. This approximates to the values for unstabilised 

enzyme over the same time interval, graph 36. Inositol, however, was 

found to stabilise the enzyme considerably, graph 39. 

From these results it became clear that Hansenula alcohol 

oxidase differed in some respects to Pichia alcohol oxidase and a 

more comprehensive survey of potential stabilising compounds was 

neccesary. These are listed in table 11. 

Effective Stabilisation of Hansenula Alcohol Oxidase. 

It was thought initially that a soluble DEAE-derivatised polymer 

might produce a similar stabilising effect on the enzyme as that seen 

using DEAE-Sepharose. When DEAE-dextran was tested, however, the 

stabilising effect was insignificant as compared to an unstabilised 

control, graph 36. Various other polyhydroxyl compounds were tried 

including sugars, sugar alcohols, neutral polymers, cationic and 

anionic polymers. Various degrees of success were found using these 

compounds, graphs 36-45. 

Monosaccharides were unsuitable, possibly due to their reducing 

action, graph 37. 

Disaccharides were found to be generally effective particularly 

trehalose and cellobiose, graph 38. 

Sugar alcohols partially stabilised in most cases, with the 

exception of inositol and sorbitol. The former conferred high 

stability, the latter destabilised the enzyme, graph 39. 
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Dextrans tended to stabilise quite well, graphs 40 and 41, 

whereas synthetic polymers tended to have little effect, graphs 42 

and 43. 

Other charged polymers had various effects when tested, graphs 44 

and 45. 

The most unexpected discovery was found when combinations of 

charged polymers and sugar alcohols or sugars were tested. The 

combination of DEAE-dextran and lactitol produced a stabilisation 

effect exceeding 100%. Graph 36 shows activity up to 16 days 

incubation at 37°C. Further incubation of such preparations has been 

carried out. No loss of activity was found up to 2 months incubation 

at 37°C and only 15-20% loss on 11.5 months incubation at 37°C. Other 

combinations of cationic or anionic polymers and polyhydroxyls have 

been tested, graphs 46 and 47, but as yet a thorough detailed study 

has not been carried out. In most cases tested to date, effective 

stabilisation with respect to blank values has been noticed. 

As may be expected in dealing with charged species the 

effectiveness on the stabilisation seen is dependent of the pH of the 

buffer system in which the enzyme is dried, graph 48. This effect is 

probably due to the ionisation changes of the protein rather than the 

polymers used, as in most cases the pKa values of the charged species 

on the polymer surface are outside of the range of buffer conditions 

tested, thus the polymer groups remain ionised at all times. Table 

35 lists the structure and the pKa values of the polymers used. 

Possible Mechanism. Role of the Charged Polymer. 

The overall surface charge of a protein is determined by the pH 

of the buffer environment in which it is dissolved and the 

isoelectric point or p1 of the protein. For buffers whose pH is above 
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Table 35. Charged Groups in Cationic and Anionic Polymers 

Structure Group Polymer pKa 

- NH3+ Cl- Amino Chitosan 7-8 

- C00' Na` Carboxyl Alginic acid 3-3.5 

-O-CHX000- Na` Carboxymethyl CM cellulose 3.5 -4 

OSO, ̀  Na'' Sulphate Dextran sulphate 

(i) C2H3 
(3 Group Types) 

OCH=CH2NH' Cl- 
I amino 

and C2H5 ethyl (DEAE) DEAE 
dextran 

(ii) C2H5 C2H5 (iii) 

OCH2CH2N'CH2CH2NH' C1' 

II 
C2H5 C2H5 

CH2-N-(C2H4)-NH-CH2Polyethylene 
I- imine 
CHZCH2-NH-(C2H. )-NHJ n 

3 Amino group types in ratio. 
(i) Primary 1 

(ii) Secondary 2 
(iii) Tertiary 1 

i 2.0 

(i) 9.2 

(ii) 14.0 

(iii) 5.5 

Overall value 

8.9 - 9.5 
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the pI, the protein becomes negatively charged overall and similarly, 

for buffers whose pH is below the pI the overall charge is positive. 

This effect forms the basis of protein separation by ion exchange 

chromatography, (Pharmacia Technical Booklet, Ion Exchange 

Chromatography). 

For alcohol oxidase the pI is about 5.7-6.2 depending on the 

source of the enzyme, so at pH's above this, the enzyme is negatively 

charged overall and interacts electrostatically with the DEAE groups 

on the soluble polymer. This interaction may be demonstrated to occur 

by adding DEAE-dextran to alcohol oxidase solution in low ionic 

strength, (20mM) phosphate buffer at pH 7.0, when a precipitate 

forms. Raising the ionic strength above 100-200mM produces a clear 

solution. The electrostatic interaction of the negatively charged 

protein and the positively charged polymer produces ionic complex 

formation and subsequent aggregation, causing precipitation to occur. 

Increasing the ionic strength weakens the electrostatic interaction, 

dissociates the ionic complexes and resolubilisation occurs. This 

ionic interaction is analogous to the precipitation of certain 

lipoproteins using polyanions, (Burstein et al 1970). Similarly 

precipitation of negatively charged nucleic acids using polycations, 

such as protamine, is another example of electrostatic interactions 

inducing ionic complexes. Many such ionic interactions occur with 

biological molecules including proteins and nucleic acids. This area 

of polyelectrolyte interaction with macromolecules has been reviewed 

by Elbein (1974). 

The increase in ionic strength of the medium affects the nature 

of the structure of the charged polymers in solution, (Pharmacia 

Technical Booklet on Dextrans). At low ionic strengths the charges 
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interact minimally with counter ions in solution and therefore repel 

one another strongly, forming long chain like molecules. Addition of 

such a molecule to a protein solution would favour electrostatic 

crosslinking and subsequent aggregation and precipitation. At higher 

ionic strengths the charged groups dynamically interact with ions in 

solution and the polymer chain tends to be more random in nature, 

(Katchalsky 1964). 

In such solutions, interaction of the charged polymer with the 

protein would tend to be limited and formation of large 

electrostatically bound aggregates would be less favourable, thus no 

precipitation is seen. Where a precipitate has been formed at low 

ionic strength, increasing the ionic strength causes redissolution to 

take place, probably due to the smaller molecular shape of the 

polymer and the dynamic interaction of counter ions in solution on 

the protein-polyelectrolyte complex. This is similar to the release 

of electrostatically bound proteins on ion exchange gels by exposure 

to high salt media. However, it would be expected some electrostatic 

interaction between charged polymer and protein will take place, even 

at higher ionic strengths, as multiple positive groups on the surface 

of the polymer will associate with multiple negative charges on the 

protein surface. 

It is postulated that the soluble alcohol oxidase becomes 

enveloped or "caged in" by one or a number of positively charged 

polymer molecules, fig 42. The type of interaction which is 

suggested here has been observed to occur at the surface of 

ultrafiltration membranes where combinations of enzyme and 

polyelectrolyte appear to form a type of polymeric network similar to 

that of used in gel entrapment techniques, (Gianfreda et al 1989 and 
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section 1. G. 6). Drying the enzyme in this state, however, gradually 

removes the aqueous environment necessary for such electrostatic 

interactions to take place with the subsequent effect that no real 

stabilisation of the enzyme is seen, graph 36. 

Possible Mechanism. Role of Polyhydroxyl Compounds. 

Polyhydroxyl compounds when dried with enzymes tend to stabilise 

activity. This is thought to be due to the hydroxyl groups holding 

or substituting for the "bound" water which is necessary for the 

retention of the tertiary structure of the protein and the subsequent 

activity of the molecule, Moser 1987). Similarly removal of the 

carbohydrate, (polyhydroxyl) side chains of certain fungal enzymes 

rendered them susceptible to the effects of dehydration, in that 

enzyme activity was lost compared to untreated controls with intact 

carbohydrate side chains. The water - carbohydrate interaction was 

thought to be necessary for stability of the enzymes, (Darbyshire 

1974). When drying a protein in the presence of polyhydroxyl 

compounds which tend to interact with and order the structure of 

water, it may be envisaged that the molecules may "coat" the surface 

of the protein with a layer or layers of polyhydroxyl - water 

complexes. The polyhydroxyl compounds used are usually small 

molecules and as such, will probably penetrate into the protein 

structure. 

Such infiltration of the protein structure and subsequent drying 

may account for the increase in stability with certain small 

polyhydroxyl molecules such as inositol. The efficiency of this 

proposed process may depend on molecular size, molecular shape, 

charge and chemical properties of the molecule. This may account for 

the fact that linear polyhydroxyl compounds, (e. g. sorbitol, 



274 

mannitol) do not stabilise to the same extent as the cyclic molecule 

of inositol. 

If the association of the polyelectrolyte with the enzyme 

occurs as suggested, then it may be reasonable to assume that the 

protein molecule is held by a fairly rigid electrostatic interaction, 

allowing a greater degree of infiltration of the polyhydroxyl 

compounds present in solution, fig 42. Drying such a mixture produces 

a high stabilisation effect on the enzyme. This may reflect on a more 

efficient "layering" of the polyhydroxyl compounds within the three 

dimensional structure of the protein molecule, which is able to take 

place as a result of the molecule being "anchored" to some extent by 

the polyelectrolyte. (This effectively replaces the "free" water 

within the protein structure). Dehydration of the protein- 

polyelectrolyte-polyhydroxyl-water complex so formed, effectively 

removes the electrostatic interaction between the protein and 

polyelectrolyte as described before, but now the protein is packed 

internally with polyhydroxyl compounds and retains a stable 

configuration. 

If this mechanistic theory is correct, at least in part, then 

other polyelectrolyte / polyhydroxyl compound combinations should 

also stabilise alcohol oxidase. This appears to be the case, graphs 

46 and 47. 

Stabilisation of Other Enzymes. 

This type of electrostatic interaction of enzymes with charged 

molecules is not restricted to alcohol oxidase. Many enzymes are 

purified by ion exchange chromatography and therefore it would be 

expected that they will interact with soluble polyelectrolytes also. 

If this is the case, it may be expected that stabilisation of the 
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enzyme structure and consequent retention of activity in the dry 

enzyme may be achieved. 

The effect of four stabilisers on the activity of dried Pichia 

alcohol oxidase is shown in graph 50. Stabilisation was observed in 

all cases, however it would seem that in the case of this enzyme, 

sucrose was found to be a more efficient stabiliser. Vacuum drying 

is less effective than freeze drying in the case of the Pichia enzyme 

graph 57, whereas the converse is true for the Hansenula enzyme. 

Such results indicate the two enzymes though similar are not 

identical in structure or biochemistry. 

Testing several enzymes using various combinations of 

polyelectrolytes and polyhydroxyl compounds gave the data recorded in 

table 18. In the majority of cases a positive stabilisation effect 

on enzyme activity was observed, indicating a general effect of the 

stabilisers on a variety of enzymes. 

This principle of stabilisation using combinations of 

polyelectrolytes and polyhydroxyl compounds would appear to apply to 

a large range of enzymes. Recent work indicates that immunoglobulins 

are also stabilised with retention of antigenic properties. 

Further work to discover the nature of the electrostatic 

interactions with respect to a larger range of charged polymers of 

known struttgre and properties, and the use of purified proteins with 

well defined properties would be of great interest. An investigation 

of the effect of structure, charge, molecular shape, hydroxyl content 

and water interaction of polyhydroxyl compounds would also be 

necessary to give understanding of dry enzyme stabilisation and its 

mechanism of action. Understanding the mechanism of stabilisation 

would enable confident prediction of which stabiliser combination to 



276 

use with which protein/enzyme system. 

8. D. Dry Phase Enzyme Detection Systems. 

Graduated Tests. 

Effective stabilisation of the enzyme component of any analytical 

system is a great advantage in the production and storage of such a 

system. In the area of analysis the basic requirement is to detect 

and quantify the analyte of interest. Dry chemistry tests where all 

the necessary reactants are present in a dry, ready to use format 

usually meet this need by some sort of comparison method, where an 

unknown response is related to responses given from calibrated 

values, thus -giving the concentration of analyte in the original 

sample. 

Comparison by eye of a colour produced by the unknown against a 

colour chart, has been used frequently in this type of dry test, 

(e. g. pH papers, Merck inorganic test papers, glucose dipsticks, 

etc). This method is particularly open to operator error and 

depending on the colour response of the test and the colour vision of 

the operator, may be of no use whatever, (e. g. in cases of colour 

blindness). Reflectometers, which measure reflected light from the 

surface of the developed test strips and electronically interpret the 

result to give a measured concentration, are now available for use. 

However, they are expensive or limited to one or two particular 

tests. They do give accurate results when used with care and the 

range of analytes being estimated using these machines is growing 

quickly. Alcohol and other analytes may be estimated in a dry phase 

format using such methods, (sections 6. B. 1 and 6. D. 1) and linear 

reflectance plots for ethanol, uric acid, glucose, cholesterol and 

hydrogen peroxide in dry test cards have been constructed as examples 



277 

of the feasibility of such a system, graphs 52 and 54-57. 

Threshold Systems. 

Alternative dry phase systems using chemical or enzymic 

techniques to produce a definite positive signal or a definite 

negative signal have been devised during this work. The development 

of this method has been reported in chapter 6, and the principle is 

illustrated in figs 29 and 31-33. 

The method was originally thought to work by means of a 

competition reaction between the mediator present and the colour 

reagents. This explanation appears to be basically correct in the 

light of several recent experiments carried out, (see below) but also 

a direct effect on the dye produced has been observed in some cases. 

This type of effect has also been observed in a similar threshold 

generating system using different mediator substances, (Hochstrasser 

1977, Palmer and Timmerman 1989). 

The mediators used in generating colour thresholds are listed in 

table 22. All the compounds listed that are effective in generating 

a colour threshold response have a fairly high reducing capacity. 

In the case of sulphydryl compounds and ascorbate this may be 

seen as the capacity to donate protons, fig 43. Inorganic sulphites 

and related salts are strong reducing agents in solution. The 

chemistry is fairly complex, with several different ionic species 

being present in solution, (Cotton and Wilkinson 1966). 

Probable Mechanism for Colour Threshold Generation. 

Based on laboratory observations and reference to the literature 

it would seem that at least four interacting effects occur in 

generating a threshold response. 
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FIG. 43 REACTIONS of MEDIATORS. 

Ascorbate 

HOCH2 
0 

HC 
C=9 

H C= ; 
OH OH 

Dehydroascorbate 

HOH2 
0 

HCý 

C=O 
H 

/IC -C+2H 
00 

The reaction of ascorbate shown above involves the donation of 
protons with the subsequent formation of Dehydroascorbate. 
This type of reducing reaction was utilised in the generation 
of colour thresholds in dry phase tests, chapter 6. 

+2H+ 
HpC-SH HpC-S-S-CHZ 

H? NH2 = H? NH2 H2NH 

COOH COOH COOH 
L-Cysteine L-Cystine 

The reaction of sulphydryl compounds is illustrated by that of 
cysteine. This type of reaction was the same for other sulphydryl 
compounds such as dithiothreitol, glutathione, etc. 
The reaction generates protons with the subsequent formation of 
a disulphide bridge. 
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(i) Direct Chemical Interaction of Mediator with Peroxide. 

This has been demonstrated in the laboratory recently by 

incubation of mediators, particularly sulphydryl containing 

compounds, with hydrogen peroxide solutions. Residual estimation of 

mediator concentrations, using a specific assay procedure for 

sulphydryl groups, (Ellman et al 1961) indicated a direct chemical 

reaction had taken place. When cysteine was tested, a fine white 

precipitate of cystine was formed, (The Merck index, n° 2775). This 

confirmed the findings of Randell (1964), where thiourea and 

dithiouracil were shown to react with hydrogen peroxide. 

(ii) Enzymatic Enhancement of Mediation / Peroxide Reaction. 

Thio compounds were also shown by Randell to be substrates in the 

peroxidase catalysed breakdown of hydrogen peroxide. The basal rate 

of peroxide removal due to chemical interaction could be stimulated 

by adding peroxidase to the system. This type of reaction was also 

reported by Stonier and Yang (1972), where glutathione was oxidised 

rapidly by peroxidase in the presence of manganese ions and 

dichlorophenol. Non-enzymatic reduction of glutathione was minimal 

in this system. 

Olsen and Davis (1976) reported that dithiothreitol was oxidised 

in the presence of peroxidase and hydrogen peroxide and Brooks (1983) 

also reported that dithiothreitol was oxidised using peroxidase and 

hydrogen peroxide and that this reaction was stimulated by phenols 

and hydroxamates. 

This type of reaction has been demonstrated with cysteine, 

cysteine ethyl ester, sodium 2-mercaptoethane sulphonate and 

dithioerythritol. The rate of reaction of mediators and hydrogen 

peroxide in the presence of peroxidase was approximately twice the 



280 

rate when no enzyme was present. 

(iii) Mediators as Substrates for Peroxidase in the Absence of 

Hydrogen Peroxide. 

Peroxidase will react with dithioerythritol, cysteine and 

glutathione in an oxygen consuming reaction in the absence of 

hydrogen peroxide, (Olsen and Davis 1976). This has been recently 

confirmed using an oxygen electrode with peroxidase in phosphate 

buffer. Several mediators were tested and the results are shown in 

table 36. 

Table 36 Reaction of Mediators with Oxygen Catalysed 

by Peroxidase. 

Mediator. Reaction Rate, A Mole. 02. min- '. 

Cysteine 16.07 

Cysteine ethyl ester 36.54 

Cysteamine 10.08 

Ascorbic acid 0 

Dithioerythritol 11.34 

Glutathione 1.58 

Sodium mercaptoethane sulphonate 2.21 

Thiourea 0 

2-Thiouracil 0 

1. Peroxidase concentration constant at IOU. m1''. 

2. Mediator concentrations constant at lmg. ml-'. 

Sulphydryl compounds were proposed to produce hydrogen peroxide in an 

oxidase type reaction, (Olsen and Davies 1976) shown in the following 

reaction sequence. 
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HH 

-C-SH Peroxidase -C-S 
+ 02 (+ H202 

-C-SH-C-S 

HH 

The production of hydrogen peroxide in this system was likened to 

the intial reaction of dihydroxyfumaric acid with peroxidase. Direct 

evidence for the production of hydrogen peroxide in this reaction has 

not been reported, however stoichiometric measurements using 

dithiothreitol as substrate indicates an initial 1: 1 ratio of 

dithiothreitol oxidised to oxygen consumed. This ratio changes as the 

reaction proceeds probably due to the reaction of the peroxide 

produced with dithiothreitol as described previously, section 8. D. ii 

and Olsen and Davis (1976). 

(iv). Direct Reaction of the Mediator with the Dye Molecules. 

Appendix II lists over 200 compounds used to form dye molecules 

with 4 different developers. The dyes produced were treated with 

both cysteine, (5mg. ml-1) and ascorbate, (1.0mg. ml-'). Direct 

reaction of the mediators with the dye molecules, shown by 

decolourisation of the dye, was seen in several cases. 

It was noted that particular combinations of couplers and 

developers were more susceptible to decolourisation than others, e. g. 

dyes formed from 4-AAP and anilines show particular susceptibility to 

decolourisation, whereas MBTH and anilines are very resistant to 

decolourisation. 

Redox dyes which are not listed in appendix II also exhibit rapid 

decolourisation with the mediators used. The choice of dye precursors 

will influence the participation of the dye molecule in the overall 
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threshold generation reaction. 

The overall mechanism of threshold generation would appear to be 

quite complex depending on the mediators, dyes and corresponding 

interaction of the enzymes present. The reactions thought to be 

occurring are summarised in fig 44. Not all mediators tested take 

part in all the reactions shown, e. g. ascorbate does not appear to 

react with oxygen in the presence of peroxidase and resistant dye 

molecules do not directly react with mediator. 

The direct reaction of mediators with oxygen introduces a 

competition reaction for the available oxygen present, as the oxidase 

enzyme also requires oxygen as a substrate. Avoidance of the use of 

mediators which react with oxygen may increase the efficiency and 

rapidity of the oxidase reaction and promote a more rapid response of 

the complete system, thus lowering incubation times of dry phase 

threshold tests. 

Also it has been noticed that ascorbate and sodium mercaptoethane 

sulphonate mediate efficiently at lower final concentrations than 

other mediators such as cysteine. This may be explained by, (a) 

little or no reaction with oxygen and peroxidase, (b) a more rapid 

reaction with hydrogen peroxide and, (c) the solubility of the 

molecules. Point (a) is a fact, (table 36), point (b) may be true, 

experimental work is in progress to verify this possibility and point 

(c) is very likely. Cysteine does not dissolve easily, whereas both 

ascorbate and sodium mercaptoethane sulphonate dissolve very rapidly. 

In a support matrix certain effects were noticed in the threshold 

system using buffers of various solubilities, chapter 6, section 

6. B. 4. It was found that MOPS was a more effective buffer in the dry 

phase tests than phosphate. This was thought to be due to its 
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superior solubility, which enabled more rapid dissolution and 

subsequent pH control. 

It would be reasonable to suppose that a mediator of higher 

solubility would dissolve more rapidly on application of the sample 

to be analysed, and thus would be more effective in generating a 

threshold' response than one of lower solubility, because of the 

higher initial concentration of mediator in the developing test. 

Effect of Microporous Overlay. 

The main effect noticed using overlays such as ethyl cellulose or 

cellulose acetate was a decrease in the development time of the test. 

This was especially noticeable using microcrystalline cellulose as the 

support for threshold generated tests and is probably due to an 

increased ratio of oxygen to hydrated support. 

This explanation is based upon the observation that developed 

tests having a microporous overlay show colour only at the upper 

surface of the support where the sample was applied, indicating that 

only the surface layers of the test became hydrated. Consequently 

the reaction volume is smaller and the relative amount of oxygen 

available to the system is increased. 

Also the microporous layer may hinder the passage of large 

macromolecules into the test which tend to inhibit the reaction, 

(e. g. proteins present in saliva). Certainly such a layer excludes 

cells, (Phillips 1985) so oral bacteria would be excluded from the 

test. 

Application of the Threshold System. 

In practice two types of threshold test format have been 

produced, figs 18a and 18b. The completed tests are shown developed 

in figs 34 and 35. The major area of difficulty in the development 
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of these tests was in the regulation of a metered dose of sample to 

the reactive element of the system. Too large a sample volume caused 

a leaching effect of the soluble components of the system and also an 

oxygen depletion effect. Too small a sample does not solubilise the 

components sufficiently for reaction to take place. 

The first format of Alcocard, (fig 34) was very susceptible to 

overloading with sample. Some protection was afforded using 

absorbent card, but saliva tended to "sit" on the upper surface of 

the card and prevent colour development. This was probably due to 

oxygen starvation of the oxidase reaction, because when the sample 

was wiped off, very rapid colour development took place. This 

occurred at ethanol levels below the pre-set values. To overcome 

this problem the second format incorporated a thin, (10 p) porous 

polycarbonate membrane such as nucleopore, to deliver a set sample 

volume to the enzyme cards. Also an extra set concentration level was 

added and the colour reagent was changed to produce a dye which was 

more resistant to decolourisation, fig 35. 

The stability, reproducibility and speed of the second test 

format is as yet unsuitable for a commercial product. The area of 

difficulty was found to be mainly due to aged preparation of the 

alcohol oxidase used in the card. This is currently being rectified 

and a series of trials of a modified format of Alcocard 2 will soon 

be made. 

Also mass production of this format, using filter paper strips as 

supports for the mediated enzyme reaction is impractical. Direct 

deposition of the enzyme cocktail onto a particulate support material 

is under investigation as a viable alternative to the original 

method. 
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Threshold tests are currently being developed for cholesterol, 

HDL cholesterol, lactate and glucose. Such tests will form a range of 

simple, user friendly assays, the results of which may be interpreted 

rapidly without the use of sophisticated instrumentation. 

8. E. Diacetyl Analysis and Diacetyl Reductases. 

The original connection of diacetyl analysis and the development 

of stabilised enzyme based analyses was from the estimation of both 

alcohol and diacetyl in beer samples. The occurrence of diacetyl and 

diketones in beer is required by law to conform to minimum allowable 

levels, therefore the analysis of diacetyl is very important in this 

industry. The various methodologies are discussed in chapter 7 and 

the final conclusions drawn from the various analytical formats using 

diacetyl reductase are that: - 

(i) The enzyme method is not specific but measures total 

diketones in the sample. 

(ii) The enzyme. method is a viable method if it is presented with 

suitable aqueous samples. Beer and other complex mixtures of 

compounds contain substances which interfere with the enzyme assay. 

(iii) The enzyme recycling system is quite sensitive enough to 

estimate the low concentration of diketones normally present in beer. 

(iv) The method is reproducible and applicable to multiple 

samples if care is taken with the analysis. 

The major problem associated with the enzymic assay technique is 

that of providing a suitable aqueous sample, largely free from 

interfering contaminants of the enzyme reaction. This has been 

overcome for G. L. C. methods by sampling the headspace of the sample, 

diacetyl and related diketones being volatile in nature. During a 

recent conference, (ANABIOTECH '90) a technique was disclosed to 
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selectively dialyse diacetyl from the gas phase of a sample into a 

smaller volume of carrier liquid, using special membranes. This had 

the effect of concentrating the sample and also it produces an 

aqueous solution free from the major contaminant species. Subsequent 

analysis of the dialysate was by F. I. A. techniques using diacetyl 

reductase. 

The example shown in section 7. D. 1, using the dialysis probe to 

produce samples was analogous to the above procedure, however the 

dialysis was performed in the aqueous phase which allows other non- 

volatile small molecules to dialyse and also the sample obtained was 

diluted rather than concentrated. These two effects render the 

aqueous dialysis method unsuitable for beer samples. 

Diacetyl Reductase. 

The preparation of the various diacetyl reductases and the 

subsequent evaluation of the enzymes, alongside the published results 

from other workers revealed several interesting observations 

concerning diacetyl reducing enzymes in general. 

They would all appear to be diketone reductases accepting a 

variety of uncharged dicarbonyl compounds as substrates using NADH or 

NADPH or both NADH and NADPH as cofactors. The molecular weights of 

the enzymes range from Mr 10,000 for the E. Coli enzyme, (Silber et al 

1974) up to Mr 120,000 for the enzyme from Bacillus Polymyxa, (Ui et 

al 1987). Liver enzymes were between Mr 78,000 for beef, (Provecho 

et al 1984) and Mr 110,000 for pigeon, (Diez et al 1974). The larger 

molecular weight enzymes are all reported to consist of subunits 

around Mr 23-28,000, however the enzymes differ from one another in 

the number of subunits present. 

The enzymes from S. Lactis, A. Aerogenes, pigeon liver and 
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hamster liver are all reported to be tetramers, whilst the enzymes 

from beef liver and chicken liver appear to be trimers. The enzyme 

from beef liver is found largely associated with subcellular 

particles, (Martin and Burgos 1970). Sedimentation studies and 

activity estimation on the chicken liver enzyme also indicated that 

the enzyme was associated with subcellular particles. The pigeon 

liver enzyme is, however, reported to be predominantly cytosolic in 

nature. Perhaps the structural differences noticed in terms of 

subunit composition are related in some way to their association or 

lack of association with subcellular particles. This possibility may 

only be resolved by further work on various diacetyl reductases to 

confirm their association with particulate material and the molecular 

subunit composition. 

8. F. Conclusions. 

The overall nature of the work reported here leads to yet more 

questions that remain to be answered. The continuation of the work is 

probably best centred on two main areas: (a) The understanding of the 

molecular basis for the stabilisation of proteins and other 

biological materials with a view to efficiently predict a regime of 

stabilisation for any given biological molecule and, (b) The 

continuing development of novel detection systems for detection and 

quantitation of analytes of particular interest. 

Enzyme based tests remain a very important area of analysis, yet 

many enzymes which have been reported in the literature have not been 

exploited, particularly in the analytical field. The use of new 

techniques to produce stabilised enzyme based diagnostics is 

necessary to expand the range of analysis and also to simplify 

existing technology. For progress to be made in any field it is not 
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enough merely to know about something, it is necessary to apply the 

knowledge to make it work in practice. The work reported here has 

attempted to do just that. 
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AMMONIUM SULPHATE SATURATION TABLE. 
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APPENDIX II 

DEVELOPER / COLOUR COUPLER OXIDATIVE 
CONDENSATION REACTIONS. 

KeYtov 

P 

bo1_s. 

Pink 

R Red 

V Violet 

G Green 

B Blue 

0 Orange 

S Sand 

Y Yellow 

T 

L 

dp 

vdp 

t 

PI 

dt 

bt 

ppt 

Turquoise 

Lilac 

Deep 

Very Deep 

Tinge 

Pale 

Dirty 

Bright 

Precipitate 

PI Purple 

Gr Grey 

Br Brown 

Bg Beige 

Gd Gold 

Sg Sage Green 

N No Colour 

+ No Decolourisation 

+- Partial Decolourisation 

- Decolourisation 
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The appendix is arranged by class of compound with the names of 

compounds in the first column. Subsequent columns show the colour 

produced with four different developers given below. The columns 

are divided into three, the first letters show the colour produced 

according to the symbols given. The two following symbols indicate 

the dyes susceptibility to decolourisation by (a) cysteine (C) 

5.0 mg. ml'1 and (b) ascorbate (A) 1.0 mg. ml"1. 

DEVELOPERS, 

4- AAP 4- Aminoantipyrine 

MBTH 3- Methyl Benzothiazolinone 

Hydrazone 

NNPD N, N Diethyl 1,4 Phenylene 

Diamine 

TAP 2,4,5,6 Tetraamino Pyrimidine 
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APPENDIX III 

COLOUR REACTIONS using SUBSTITUTED 
PYRIMIDINES as COLOUR DEVELOPERS. 

Key to Symbols as APPENDIX II 
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DEVELOPER. 2.5-DIAMINO 4,6-DIHYDROXY PYRIMIDINE. 
COLOUR COUPLER CA 

3-Dimethylamino Phenol pIRPl - +- 

3-Diethylamino Phenol GrP GY +- 

6-Hydroxy 2,4,5-Triamino Pyrimidine SO4 P1 - + 

2,4,6-Triamino Pyrimidine plP1 - + 

4,5,6-Triamino Pyrimidine SO4 tY + + 

2,6-Diamino Toluene plYBr y +- 

2,6-Diamino Pyridine PGr y tGr 

2,4-Diamino Phenol dpBr + + 

3-Acetamido Aniline plPI - - 
N, N, Diethyl 3-Amino Acetanilide HC1 N - - 

1,3-Phenylene Diamine HCI plBr - 

2,4-Diamino Toluene BrY Y 

3,5-Diamino Benzoic Acid p1P tY +- 

4,6-Diamino 2-Hydroxy Pyrimidine SO4 p1PP1 - 

3,5-Diamino 1,2,4-Triazole p1P1 - 

3-Dimethylamino Anisole plPl - 

3-Hydroxy Diphenylamine plPl - + 

Resorcinol Gr +- +- 
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DEVELOPER 5,6-DIAMINO 2.4-DIHYDROXY PYRIMIDINE. 
COLOUR COUPLER CA 

3-Dimethylamino Phenol RP1 +- +- 

3-Diethylamino Phenol RV +- +- 

6-Hydroxy 2,4,5-Triamino Pyrimidine SO4 N -- 

2,4,6-Triamino Pyrimidine Yppt +(ppt)+ 

4,5,6-Triamino Pyrimidine SO4 N -- 

2,6-Diamino Toluene dtPlppt ++ 

2,6-Diamino Pyridine RVppt ++ 

2,4-Diamino Phenol Br ++ 

3-Acetamido Aniline Y -- 

N, N, Diethyl 3-Amino Acetanilide HC1 p1B -- 

1,3 -Phenylene Diamine HC1 BrPlppt V(ppt)+ 

2,4-Diamino Toluene Brppt plBr(ppt)+ 

3,5-Diamino Benzoic Acid btY ++ 

4,6-Diamino 2-Hydroxy Pyrimidine SO4 ply -- 

3,5-Diamino 1,2,4-Triazole ply -- 

3-Dimethylamino Anisole B 

3-Hydroxy Diphenylamine dtV +- +- 

Resorcinol 0 +- +- 
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DEVELOPER. 6-HYDROXY 2.4.5-TRIAMINO PYRIMIDINE. 
COLOUR COUPLER CA 

3 -Dimethylamino Phenol vdpPl +- +- 

3-Diethylamino Phenol vdpPl +- +- 

6-Hydroxy 2,4,5-Triamino Pyrimidine SO4 pip - - 

2,4,6-Triamino Pyrimidine Yppt + + 

4,5,6-Triamino Pyrimidine SO4 p1P - - 

2,6-Diamino Toluene P1PPt + + 

2,6-Diamino Pyridine btVppt + + 

2,4-Diamino Phenol dpBrppt + + 

3-Acetamido Aniline p1BrP - - 

N, N, Diethyl 3-Amino Acetanilide HC1 p1B pip pip 

1,3-Phenylene Diamine HCl dtPlppt + + 

2,4-Diamino Toluene RP1 +- +- 

3,5-Diamino Benzoic Acid dpOY +- +- 

4,6-Diamino 2-Hydroxy Pyrimidine SO4 pip - - 

3,5-Diamino 1,2,4-Triazole ply - - 

3-Dimethylamino Anisole vdpB PiP PiP 

3-Hydroxy Diphenylamine dpV +- +- 

Resorcinol dpR + + 


