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Abstract

Single photon avalanche detectors (SPADs) have uses in a number of applications, includ-

ing time-of-flight ranging, quantum key distribution and low-light sensing. Germanium

has an absorption edge at the key communications wavelengths of 1.3-1.55 µm, and can

be grown epitaxially on silicon, however, SiGe SPADs exhibit a number of performance

limitations, including low detection efficiencies, high dark counts and afterpulsing. Un-

intentional doping may affect electronic performance, and band-to-band tunnelling at

high operational voltages SPADs may lead to noise currents. Additionally, defects in the

Si/Ge interface lead to trap states within the bandgap and contribute to afterpulsing.

This work investigates a range of critical performance parameters in SiGe SPADs. The

effect of intentional and unintentional doping in SPADs on electric fields, potential pro-

files and carrier transport in the device is investigated, and optimal dopant profiles for

a SiGe SPAD discussed. The dependence of band-to-band tunnelling currents in Ge on

bias voltage, Ge thickness and temperature is investigated, and these currents are com-

pared to other sources of noise currents in SPADs. DFT calculations of misfit dislocation

structures in Ge are undertaken, to establish electronic bandstructures and optimised ge-

ometries for these defects, and identify trap states in the bandgap, which may contribute

to afterpulsing and dark counts in SPADs. A number of directions for continuing work

are identified, to progress understanding of noise currents and afterpulsing in SPADs.
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Chapter 1

Introduction

This work discusses the development and optimisation of silicon-germanium (SiGe) sin-

gle photon avalanche detectors (SPADs). A single-photon detection device is a crucial

component in a number of applications including quantum key distribution, and in ap-

plications where resolution of very low-level light or photon-counting is required, such

as in a number of imaging and sensing technologies. including time-of-flight ranging,

time-resolved photoluminescence and optical-time-domain reflectometery [1, 2].

Challenges to the development of viable high-efficiency SiGe SPADs arise from a num-

ber of sources. There is a 4.2% lattice mismatch between silicon and germanium, and

defects within the SiGe heterointerface disrupt theoretical descriptions of bandstructure

and electron transport, leading to localised band gap states and trapping and detrapping

of carriers, with effects on device performance such as amended generation-recombination

rates, missed detection events and afterpulsing [1].

The need to operate SPADs at high bias voltage precipitates sources of current other

than those related to a detection event. Band-to-band tunnelling currents, as first de-

scribed by Zener [3] become more significant at higher bias voltages. Doping densities

and distributions in the material system lead to further non-linear fields from which a

tunnelling current may arise.

1



2 1.1. Motivation and Applications

This work investigates the contributions made to the performance of SiGe SPADs from

field distributions caused by varying doping densities and types in the material, from

the effect of band-to-band tunnelling at high bias voltages, and from electronic states

due to crystalline defects. A number of simulation methods are employed to evaluate

impacts on the performance of SPAD devices in this material system, from full-device

carrier models, to quantum simulations and atomistic calculations.

1.1 Motivation and Applications

Single photon detection systems play an important role in a number of applications.

Components for quantum communication systems, such as quantum repeaters and qubit

amplifiers, and the implementation of optical quantum computing all require a single-

photon source and a subsequent detector, which must be integrated into circuitry for

successful implementation; furthermore, monolithic integration of a single-photon de-

tector is required for large-scale reproducible systems [1, 4]. Quantum key distribution

is the most developed quantum technology, and involves encoding of information on

a single particle — such as a photon — and then subsequent detection and decoding

[5]. Quantum computing, where calculations are performed using superposed states of

quantum particles, promises significantly faster computation, but also demands highly

sensitive and accurate integrated detectors for successful implementation at usable scales

[6–9].

Single-photon detectors also have utility in applications where very low level light detec-

tion. Fluorescent dyes are frequently used in biological imaging, including tracking of

neuronal activity, drug uptake and bloodflow, and are increasingly being used in novel

microscopy techniques. Detection of the rate of decay of a fluorphore or investigation

of fluorescence at the molecular level requires the use reliable single photon detectors

[10, 11].
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Time-correlated single-photon counting is a technique that has been applied to a number

of fields, including fluorescence lifetime imaging microscopy [10, 12–14] and time-of-flight

ranging for sensitive low-light imaging at distance. Time-of-flight ranging depends on

direction of a photon source, typically a pulsed laser, towards a non-reflective target,

and time-sensitive detection of the scattered photon. From this information, detailed

imaging of the target can be achieved. The technology has applications across fields

such as manufacturing, defence and environmental monitoring [1, 15–18],

Traditionally, photonic technologies have relied on the use of bulk devices, however,

more recently, integrated circuits on a number of material systems have improved the

stability and scalability of these applications [19]. Integration of electronic circuits pro-

vides improved device performance through reduced use of interconnects and greater

reliability, as components are fabricated in the same controlled conditions, and losses

due to electrical circuitry transmission may be reduced, leading to few delays and larger

bandwidth density [20] Silicon complementary metal–oxide–semiconductor (CMOS) is

the dominant technology for microelectronics production and there are advantages as-

sociated with leveraging this mature bulk production route for photonics components,

including low-cost and and high production volumes [21–23].

Development of photodetection systems that operate at wavelengths of 1.3 and 1.55 µm

provides compatibility with existing telecommunications infrastructure. Silicon becomes

transparent at wavelengths above ≈1.1µm, however, and photoabsorption at higher

wavelengths requires either modification of silicon or use of some other material. Ger-

manium has an absorption edge at a photon energy of around 0.8eV, corresponding

to a wavelength of 1.55 µm and can be grown on a silicon substrate within established

CMOS fabrication techniques; germanium on silicon therefore presents a suitable mate-

rial system for investigation and development of single photon detectors at these relavant

infrared wavelengths. A number of other material systems, including III-V SPADs us-
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ing InGaAs/InP — which has an absorption edge at 1.55 µm — have been applied to

development of single photon detectors at infrared wavelengths [1].

1.2 Single Photon Detection Methods

1.2.1 Photomultiplier Tubes

A number of methods for detection single photons have been developed, amongst these,

the most mature technology is the photo multiplier tube (PMT). PMTs work on the

principle of emission of an electron from a photocathode following a collision with an

incident photon, and subsequent acceleration of emitted electrons in an electric field,

and then amplification of the current when these electrons collide with a second dynode,

where multiple electrons are knocked out. PMTs provide low noise and low timing

jitter, with very high current amplification and large optical collection areas, however

they have limited detection efficiency and are physically bulky and mechanically fragile

[1, 24]. They, are, nonetheless, widely used in a number of applications including medical

and particle physics [25–27]. The timing jitter of PMTs may be improved by combining

them with an avalanche photodiode (APD), to provide current amplification, in a device

known as a hybrid photodetector [1].

1.2.2 Superconducting Nanowires

Superconducting nanowire single photon detectors (SNSPDs) have recently emerged as

a promising photon detection technology for the target infrared wavelengths. Their

mechanism of action involves a nanowire maintained below the critical temperature for

superconduction; a single incoming photon can create a nanoscopic region of resistivity

in the wire, and joule heating in this region will expand the resistive region, leading to a

measurable voltage pulse. SNSPDs show excellent detection efficiencies — consistently

over 70% and as high as 90% — low noise and precise timing resolution [28–31]. However,

the need to operate SNSPDs at cryogenic temperatures and their small absorption area

limits their applicability in integrated circuits [24].
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1.2.3 APDs and SPADs

The principle mode of operation of an APD is that of a p-n junction under a reverse bias

voltage; light incident on the depleted region of the junction will generate electron-hole

pairs, and translation of these pairs into a measurable current will create a photodetec-

tor (photodiode) [32]. An APD operates through accelerating photogenerated electrons

or holes sufficiently that they create additional carrier pairs, and create an avalanche

current [33]. Single Photon Avalanche Detectors (SPADs) consist of an APD operated

above breakdown voltage. If a sufficiently high reverse bias voltage is applied across

the diode, avalanche multiplication will occur from a single incoming photon, and a self-

sustaining avalanche current generated. The device is then ’reset’ to enable a subsequent

detection event, known as ‘Geiger mode’ operation. Alternatively, the device may be

operated in ‘gated mode’ whereby the bias voltage is pulsed such that the diode is only

above breakdown voltage for the times where a photon is expected, to limit runaway

thermal generation of carriers and decrease dark counts and afterpulsing effects. This

may be exploited in applications such as QKD, where the arrival time of a photon is

known with reasonable accuracy [1, 24].

The detection efficiency of a SPAD increases with excess bias voltage, however this

comes at the expense of excess noise, since high bias voltages are more likely to lead to

generation of carriers through tunnelling current, and hence high dark currents [24]. One

implementation of an SPAD intended to mitigate this is the separate absorption and

charge multiplication (SACM-SPAD) device, with photon absorption and generation

of an electron/hole pair taking place in one region of material which has an absorp-

tion edge at the required energy, and a second multiplication layer providing a region

for avalanche multiplication. In this implementation a doped charge layer is usually

present at the interface between the two regions, which regulates the electric field be-

tween the absorption layer (in which the electric field should ideally be low to limit

dark current) and the multiplication layer which requires high electric field for impact

ionisation to occur. Implementations of SACM-SPAD devices include those where the
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absorption/multiplication regions are of the same material, but more commonly differ-

ent materials are used for each region to optimise device performance for each of these

processes. Material structures for SACM-APD devices in the infrared include use of

the InGaAs infrared absorption edge alongside InP as a multiplication layer, and ger-

manium absorption with charge multiplication in silicon. Other alloy systems include

AlGaAs/GaAs, AlGaSb/GaSb and InGaAsP/InP [33].

1.3 SPAD Performance

A number of parameters are employed to assess the performance of SPADs. The detec-

tion efficiency is of primary importance and measures the likelihood that an incoming

photon will generate a current pulse. Timing jitter measures the uncertainty between the

arrival time of an incoming photon and the corresponding current pulse, and may have

implications in applications such as time-of-flight ranging and QKD. The dark count

rate (DCR) arises from thermally generated or field- or impurity- induced carriers caus-

ing an avalanche current outside of a detection event. Finally, afterpulsing occurs when

mid-band trap states are occupied with carriers, which later detrap causing secondary

current pulses after the detection event [1, 24].

1.3.1 Silicon-only SPADs

Silicon-only SPADs have been used commercially for a number of years in the 0.4-1 µm

wavelength region. High detection efficiencies of up to 65-70% have been reported, and

low timing jitter of around 20ps. Dark count rates can be obtained under 100 counts

s−1 at room temperature, and as low as 5 100 counts s−1 after cooling, however Si-only

SPADs can not detect photons in the infrared region between 1.3-1.55 µm [1, 24, 34].

1.3.2 Germanium-only SPADs

Germanium-only SPADs have been produced commercially for a number of years. How-

ever, these demonstrate relatively low detection efficiencies of under 10% when operated
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in gated mode under cryogenic conditions, and suffer from high dark counts and after-

pulsing. Timing jitters of under 100ps have been reported [1, 35]

1.3.3 SPADs in III-V Materials

A number of III-V materials have been used for development of SACM-SPADs, particu-

larly utilising InGaAs as an absorber in the 1.55 µm region and InP as a multiplication

region. There is a band discontinuity in the interface between these materials, which may

be mitigated by growth of an InGaAsP grading layer to aid transport of carriers over

the interface [1]. InGaAs/InP SPADs have been demonstrated with detection efficiencies

of 10-20%, [2, 36–38], however one limitation of InGaAsP SPADs is high DCR — 8000

counts s−1 have been reported for 20% detection efficiency under cryogenic conditions

[38], and typical rates can be of the order of hundreds to thousands of counts per second

in Geiger mode. Timing jitter is usually high, in the region of hundreds of picoseconds

[2], although jitter as low as 50ps has been reported with high performance circuits [39].

Additionally further work is required to limit defects in growth structures and reduce

afterpulsing [1].

1.3.4 SiGe SPADs

The SiGe SPAD utilises a separate absorption and multiplication approach. A low

electric field in the Ge absorber suppresses dark counts, while a high electric field in the

Si region promotes carrier multiplication by impact ionisation. The regions are separated

by a highly doped ’charge layer’, regulating the optimal electric field in each operating

region. Germanium on silicon, as a material system, also offers the possibility of on-chip

integration with photonics components. However, SiGe SPADs currently demonstrate

high DCR, and low detection efficiencies. The devices currently developed within the

SPADs project have demonstrated detection efficiences of around 10% at 1.31µm and

100K, dropping to 0.15% at 1.55 µm. Timing jitter was measured at 420ps and dark

counts of 106−107s−1 were observed, increasing with increasing excess bias voltage [40].

Challenges to the development of SiGe SPADs include reducing sources of dark counts,
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improvement of the detection efficiency and reducing defects, and hence trap states which

contribute to afterpulsing.

1.4 Structure of the Thesis

The aim of this thesis is to investigate critical performance characteristics of SiGe

SPADs. A number of investigations are undertaken and models developed which may be

applied to further characterisation of dark counts, afterpulsing and electronic transport

in germanium. The structure of the thesis is as follows:

In Chapter 2, the relevant theory and physics underpinning the operation of SPADs

is introduced, as well as a discussion of the sources of dark currents and afterpulsing

events. Theoretical models for device simulation, tunnelling and modelling of the elec-

tronic structure of defects are described.

In Chapter 3, the effect of variable types and densities of charge and absorption layer

doping is investigated, for a typical SPAD device. IV characteristics, electric field and

potential profiles, and carrier concentrations are generated using semiconductor device

simulation software, to establish optimal intentional and background doping profiles for

SPAD devices, to promote photon detection limit dark counts.

Chapter 4 investigates the effect of band-to-band tunnelling in bulk Ge, in relation

to a number of parameters. Since SPADs are operated at high bias voltages, tunnelling

between the valence band and conduction band within the Ge absorber may result in

generation of carriers outside of photon detection events and lead to additional noise

currents. The effect of increasing bias voltage, increasing Ge thickness and increasing

temperature on the band-to-band tunnelling current are simulated and discussed.

In Chapter 5, the electronic structure of defects in bulk Ge is investigated. Density
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functional theory is used to perform ab initio calculations of Ge bandstructures for cells

including misfit dislocations. Energy minimisation is applied to optimise the cell geom-

etry, and a preliminary model to identify bandgap states due to misfit dislocations in

bulk Ge — potential sources of afterpulsing in SiGe SPADs — is developed.

Finally, conclusions and suggestions for further work are discussed in Chapter 6.





Chapter 2

Theory of Silicon-Germanium

Single Photon Avalanche

Detectors

2.1 Avalanche Photodiodes and SPADs

2.1.1 p-n Junctions and Photodiodes

A p-n junction is formed when a material or region with an excess of electrons (n-

type material) and a material with an excess of holes (p-type material) form an abrupt

boundary. At this p-n junction, the gradient of chemical potential causes a transfer of

electrons to the p-type region where they will recombine with holes — resulting in a

‘depletion layer’ containing very few free carriers. The n-region of the junction will be

positively charged and the p-region will be negatively charged, and the junction hence

has a ‘built-in potential’ caused by this shift in carrier types.

The carrier concentrations and subsequent charge density profiles lead to the field and

potential profiles for a p-n junction shown in Figure 2.1 If a positive voltage (opposing

the built-in voltage) is applied across the p-n junction (forward bias), the depletion

11



12 2.1. Avalanche Photodiodes and SPADs

Figure 2.1: Charge profile, electric field and potential for a pn-junction [41]

region will decrease in size and under sufficient bias voltage a current will flow. In

reverse bias, the depletion region will be widened and the p-n junction will be resistive.

Hence, a p-n junction may be used as a basic diode—a directional current device with

a characteristic I-V profile wherein a current may flow under an applied voltage in one

direction, but no current flows under the reverse voltage (up to some breakdown point).

The characteristic I-V profile for a p-n junction diode is shown in Figure 2.2. If light

of frequency ~ω > Eg is incident upon a semiconductor material, electron-hole pairs

will be generated by promotion of electrons across the band gap of the material. To

create a photodetector (photodiode), these photogenerated carriers must translate into

a measureable current. If the semiconductor material forms part of a pn junction, the

built-in potential will separate the photogenerated carriers, and an electromotive force

will be generated, in a phenomenon known as the photovoltaic effect [32]. Hence, a pn

junction may be used as a simple photodetector.
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Figure 2.2: IV characteristic For a pn-junction diode

Illumination of a pn junction with constant light intensity would lead to a steady state,

homogenous carrier generation rate G(x, t) = G0, from which it is possible to derive a

current relationship for the diode. The photocurrent I is linearly proportional to G0

which is proportional to the optical power P0. Carriers will be generated both within the

depletion layer and within a diffusion distance L from the edge of the depletion region.

The diffusion distance (for electrons or holes) is given by:

L =
√
Dτ (2.1)

where D is the diffusion co-efficient for electrons or holes, and τ is the lifetime of the

electron/hole.

Hence, for a generation rate Gext per unit volume of depletion layer, the photocur-

rent is given by:

Iphoto = qAjGext(wd + Lp + Ln) (2.2)

where Aj is the cross–sectional area of the diode, q is the unit charge of the carriers, wd

represents the width of the depletion region and Ln and Lp the diffusion distance on the
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n and p sides of the junction respectively [42].

Quantum efficiency η is a useful parameter for understanding photocurrent, as it quan-

tifies the likelihood that an incoming photon will be detected by the diode. The internal

quantum efficiency ηi is the probability of an incoming photon generating an electron–

hole pair, and this is related by the device characteristics to the external quantum

efficiency ηe, which is the probability of a incoming photon resulting in a measurable

electron-hole pair [43]. The responsivity R of a photodiode is defined as the ratio of the

current to the optical power [33]:

R =
ηeq

~ν
=

ηeλ(µm)

~ν
(2.3)

In a pn junction diode the usuable region for optical absorption leading to photocurrent

is too narrow for practical use. To create a usuable photodiode, the responsivity of the

diode may be increased by adding an additional layer of intrinsic semiconductor between

the n- and p- doped regions to make a p-i-n diode. This maintains the basic field and

potential profiles present in pn-junction diode, but creates a considerably wider region

of photoabsorption in the intrinsic layer, resulting in an area of high carrier injection.

A key figure of merit for photodiodes is the noise equivalent power (NEP), which is

useful for characterising the signal-to-noise ratio of a detector, and gives the optical

power required to achieve an rms signal-to-noise ratio of 1 at a bandwidth of 1 Hz:

NEP =
hc

ληe

√

2Ieq
q

(2.4)

where λ is the wavelength of the incident photon, and Ieq is the dark current [43]

2.1.2 Impact Ionisation

Impact ionisation — a generation process — occurs where a sufficiently energetic carrier

promotes an electron across the band gap, creating and electron-hole pair and thus

generating further carriers. If these carriers are themselves sufficiently energetic they
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may promote further electrons across the bandgap and initiate an avalanche of carriers.

Impact ionisation processes proceed while conserving both energy and momentum. The

mechanism and likelihood of impact ionisation occurring is characterised by a number

of parameters including the threshold energy Eth for impact ionisation to occur and the

related impact ionisation rate Wii.

The threshold energy must exceed the band gap energy Eg for an indirect band gap

material. Furthermore, values for Eth and Wii depend on the availability of initial and

final states for carriers [44] and numerical calculation methods for impact ionisation

parameters are therefore dependent on the bandstructure.

One simple formulation for the threshold energy uses a weighted average of band gaps

for symmetry directions:

Eth =
1

8
(EΓ

g + 3EX
g + 4EL

g ) (2.5)

where EΓ
g , EX

g , and EL
g are the band gaps between the Γ, X,and L-valleys and the

valence band maximum at Γ [45].

The Keldysh model also provides a straightforward formulation for threshold energy;

this assumes a simple parabolic bandstructure model and is suitable for low electron en-

ergies and direct band gap materials. The approximation yields a quadratic dependence

of impact ionisation rate on the energy E of the initiating particle:

Wii = pWEth

(

E − Eth

Eth

)2

(2.6)

where WEth
is the total phonon scattering rate at the threshold energy Eth and p is

a prefactor obtained by fitting to experimental data. However, this model does not

account for momentum dependence in energy transitions and deviation of the band

structure from a simple parabolic model. For higher energies, where bandstructures are

no longer well–approximated by parabolic models, impact ionisation parameters must

be calculated using methods which include full band structure calculations and conserve
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both energy and momentum in transitions. Fermi’s Golden Rule is often employed for

calculation of impact ionisation rates by integration over all possible initial and final

states where energy and momentum are conserved, and involves integration over all

possible initial and final states for the process [46].

Impact ionisation threshold energies have been studied numerically in silicon ([47], [48],

[49]) [50]) but less so in germanium ([45]). The electron impact ionisation rate in silicon

was studied in Ref [47]. An empirical pseudopotential method was employed to calculate

the full band structure for silicon, and Fermi’s Golden Rule was used to calculate the

impact ionisation rate. A ‘soft’ threshold for impact ionisation was identified, whereby

the impact ionisation rate increased gradually with increasing electron energy and no

sharp threshold was identified. The impact ionisation rate was found to be strongly

anisotropic particularly at low energies when conservation rules for both energy and

momentum were accounted for. A later calculation of the impact ionisation rate and

primary hole energy threshold for silicon found a threshold energy of around 1.5 eV for

hole–initatiated impact ionisation—although it was noted again that this was strongly

anisotropic. Impact ionisation rate was calculated using 1st order perturbation theory

for direct impact ionisation only, and the impact ionisation rate was found to be an

exponent of 3.4 of the hole energy, in contrast to the simple Keldysh model which uses

an exponent of 2 [48]. A soft-threshold energy for silicon of 3 eV has also been calculated

[50].

2.1.3 Avalanche Breakdown

The process of avalanche breakdown occurs when a particle initiating impact ionisa-

tion is sufficiently energetic, that the particle it ionizes itself gains enough energy to

ionize another particle, and an avalanche of current results. The process of avalanche

multiplication is shown in schematically in Figure 2.3. If a semiconductor material is

subjected to a high reverse bias, a single electron–hole pair may be sufficiently energetic

that the process of impact ionisation leads to a self-sustaining avalanche current, with
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Figure 2.3: Avalanche breakdown [51]

both electrons and holes contributing to the avalanche gain. This results in a feedback

mechanism which couples the gain from each carrier type, providing significant non-

linear amplification and a sudden and significant increase in current. This effect may

be exploited in an avalanche photodiode—APD— where a photodiode is operated at

voltages close to the breakdown voltage to provide amplification of the photocurrent [32].

Within an APD, if amplification occurs with only one carrier type a linear response

between the incident light intensity and photocurrent for a uniform electric field and

dopant profile results. The likelihood of impact ionisation can be described by αn and

αp, the ionisation co-efficients for electrons and holes respectively, defined as the num-

ber of electron–hole pairs generated by a single carrier per unit distance, and strongly

related to the electric field. α is generally different for holes and electrons so avalanche

multiplication with one carrier type only can be observed within a selected field regime.

The avalanche gain is defined by a multiplication factor M determined by the carrier

ionisation co-efficient, and, formally, breakdown occurs where the multiplication factor

M approaches infinity; this can be seen in the I-V characteristic for a p-n junction

shown in Figure 2.2 for higher reverse bias voltage. The expression for responsivity of
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an APD is modified, such that the ratio of output current to optical power includes the

multiplication factor [33]:

R = M
ηeq

~ν
=

ηeλ(µm)

~ν
(2.7)

Under the right bias conditions, the generation of a single electron–hole pair through

photoabsorption can result in an individual large and measurable current pulse. Here,

an APD may be used to provide a current response to a single incoming photon, and is

hence termed a single photon avalanche detector, or SPAD. SPADs are typically operated

above breakdown voltage and may be considered to have a digital response, in contrast

to a device which simply provides amplification of photocurrent. The depletion layer

initially contains no free carriers; an incoming photon will create an electron-hole pair

which will be rapidly accelerated in the high-field region, and provide a self-sustaining

avalanche current. This current must then be ‘quenched’ by an external quenching cir-

cuit to prepare the diode for the next detection event. This operating regime is known

as ‘Geiger mode’ [24].

A SPAD may be characterised by a detection efficiency η, defined as the probability

that an incoming single photon results in a measurable current spike. Dark current for a

SPAD is described by the dark count rate (DCR) - the number of counts registered with

no incident light, ND. The detection efficiency in Geiger mode increases with increasing

excess bias (above breakdown) voltage, although this is concomitant with an increase

in dark count due to increased avalanche triggering probability and field enhanced dark

count generation. Hence, the choice of optimum bias depends on the application for

which the detector is designed. The expression for noise-equivalent power for a SPAD

may be re-rendered in terms of ND [1]:

NEP =
hc

ληi

√

2ND

q
(2.8)

Timing jitter is commonly employed in measures of repetition rate and resolution in

SPADs, and characterises the delay time between the arrival of a photon at the detector

and the output of a measurable electrical pulse. Ordinarily a number of measurements
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of this delay will be taken and the timing jitter will be given as the full width at half

maximum (FWHM) of the resultant histogram [1].

A typical current–bias voltage relationship for an APD is shown in Figure 2.4, indi-

cating the breakdown region in which the device may be operated as a SPAD and the

associated increase in DCR. The operation mode of a SPAD, biased above breakdown,

Figure 2.4: Dark current and photocurrent in an APD [1]

can generate additional sources of noise current. Addtional available energy states within

the bandgap, caused by, for example, defects in the crystal structure, may act as carrier

traps; carriers trapped during detection pulses may become subsequently de-trapped

and trigger a further avalanche, resulting in ‘afterpulsing’, with a probability dependent

on the location of the additional energy states [24].

SPADs must be operated at a voltage above which avalanche breakdown can occur

and trigger a current pulse from a single detection event; however, this voltage may give

rise to a number of ‘false’ detection events and dark currents, as discussed above. One

mechanism for circumventing these performance issues is to fabricate SPADs with differ-

ent absorption and multiplication regions, constructed of different materials, separated

by a highly-doped ’charge layer’ which may enable different fields to be applied across

each material. Hence, an absorption material may be selected with the bandgap required

for the target wavelength, and then maintained under a field which is sufficient to allow
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generated photoelectrons to pass into the multiplication region, but still sufficiently low

to suppress noise currents and dark events. In the multiplication region, the second ma-

terial may be maintained under high field conditions to initiate the avalanche current.

The silicon-germanium SPAD is one such separate multiplication and absorption region

device.

2.1.4 Band-to-Band Tunnelling

At the high operating fields associated with SPADs, a significant noise current may be

generated through Zener (tunnelling) breakdown, where quantum mechanical tunnelling

of carriers from the valence band to the conduction band leads to a rapid increase in

current [32]. The mechanism of tunnelling as a source of electrical breakdown was de-

scribed by Zener in 1934 [3]. The rate at which an electron may escape from one energy

band into a higher energy band under the influence of an electrical field was calculated

for the one-dimensional case. A simple representation of electron tunnelling from one

band to another under the influence of an electric field is shown in Figure 2.5.

The mechanism discussed by Zener assumed electron wavefunctions with the periodicity

of the crystal lattice, which have real solutions when electrons reside inside a permitted

energy band. Upon encountering a potential barrier – in this case the forbidden band

gap – the electron wave is largely reflected, however a small proportion of the wave will

pass through the potential barrier. By considering an applied electric field, Zener was

able to calculate the probability of an electron wave passing through a barrier of given

width to the upper band. Solutions to the Schrodinger equation within the band gap

are found to be complex, implying an exponentially decreasing wave function, with an

associated probability of transition to the upper band dependent on the decay rate of

the wave function. Currents due to this effect were found to become considerable above

a characteristic threshold ‘breakdown field’. Breakdown fields for a number of semicon-

ductor materials are established in the literature. Ioffe [52] cite the breakdown field for

silicon to be 3× 105V/cm and that of germanium to be 105V/cm. This, however, only



2.2. Silicon-Germanium Heteroepitaxy 21

Ec

Ev

Energy Range

for Band-to-Band

Tunnelling

Figure 2.5: Band-to-band tunnelling under the influence of an electric field

represents the field at which a sudden and dramatic increase in current is observed; as

quantum mechanical tunnelling is a probabilistic effect, noise currents due to tunnelling

may be observed at lower fields.

Direct tunnelling can occur between electronic states which are matched in momen-

tum; alternatively, ‘indirect’ tunnelling occurs where the initial and final states of the

electron do not possess the same momentum; in this case, the difference in momentum

must be provided by phonons or impurities [53]. Only the direct case will be approached

in this work.

2.2 Silicon-Germanium Heteroepitaxy

2.2.1 Silicon and Germanium Crystal Structures

Both silicon and germanium have a diamond crystalline structure, consisting of two in-

terlocking face centred cubic (FCC) cells, and characterised by a primitive rhombohedral

cell, or a conventional cubic cell, as shown in 2.6.
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Figure 2.6: The rhombohedral primitive unit cell of silicon and germanium, and the con-

ventional cubic cell

A Bravais lattice describes repeated points over all space that may be used to con-

struct an entire crystal; these points may represent atoms, groups of atoms, ions or

molecules, and in the case of elemental silicon or germanium, the positions of each

primitive unit cell are represented. The general form of a Bravais lattice is:

R = n1a1 + n2a2 + n3a3 (2.9)

where a1 a2 and a3 are any three vectors not in the same plane, the n span over all

integers and each R is a lattice vector. Silicon and germanium are constructed of lattice
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(2.10)

where a0 represents the lattice constant: 5.434 Å and 5.658 Å for silicon and germanium,

respectively, and the basis is a two–atom one, with atoms at (0, 0, 0) and (14a1,
1
4a2,

1
4a3.

The reciprocal lattice is a useful fomulation for crystal lattices that plays a role across

studies of crystalline materials, from diffraction to calculation of periodic wavefunctions

for electrons. In general, the reciprocal lattice vectors are defined by

b1 = 2π
a2 × a3

a1.(a2 × a3)
b2 = 2π

a3 × a1

a1.(a2 × a3)
b3 = 2π

a1 × a2

a1.(a2 × a3)
(2.11)

and any general reciprocal lattice vector can be given by:

G = n1b1 + n2b2 + n3b3 (2.12)

in common with the description of a lattice vector provided above. More formally

eG.Ri = 1 (2.13)

The unit cell in reciprocal space is known as the Brillouin Zone, and takes the shape of

a truncated octohedron for the primitive unit cells of silicon and germanium. A number

of other conventions are applied to the description of crystal planes and spaces. The

integers n1, n2 and n3 from the definition of a lattice vector R provided above can be

used to define a ‘Miller Index’ for a plane; a plane with a Miller Index (n1n2n3) is in

the direction normal to the lattice vector R given by these integers. Directions in the

lattice are specified using square brackets, as [n1n2n3] [54], and those in the reciprocal

lattice using curved brackets: n1n2n3

The Brillouin zone has a number of characteristic symmetry directions and points.

The Γ point lies at the centre of the Brillouin zone 0 0 0 and there are 6 X points, which
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Figure 2.7: The Brillouin zone and symmetry directions for a diamond lattice [55]

lie in each of the 1 0 0 directions (including the negative directions) in 3 dimensions. The

8 L points lie in each of the 1 1 1 directions. Each point has a corresponding direction.

The ∆ direction lies along the line from the Γ point and the X point and the Λ direction

lies along the line from the Γ point to the L point. The symmetry points and directions

for the silicon and germanium Brillioun Zone are shown in Fig. 2.7.

2.2.2 Growth Techniques

Germanium on silicon SPADs are grown epitaxially using molecular beam epitaxy (MBE)

or chemical vapour deposition (CVD). CVD is now the preferred method for fabrication

of silicon devices, due to its superior uniformity and reproducibility [56]. CVD is a

process for creating materials by reaction of chemical constituents in the vapour phase,

to form solid films, and consists of six key phases: diffusion of gaseous reactants to the

surface; adsorption of the reacting species onto surface sites, often after migration on

the surface; surface chemical reaction between the reactants, usually catalysed by the

surface; desorption of the reaction by-products; diffusion of the by-products away from

the surface and incorporation of the condensed solid product into the microstructure of
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the growing film [57].

For fabrication of silicon–on–germanium heterostructures, silane gas (SiH4) as a sili-

con source and germane gas (GeH4) as a germanium source are the gaseous reactants.

Silicon and germanium are adsorbed onto their respective surfaces, possibly after diffu-

sion across the surface, and in both cases, hydrogen is desorbed after reaction. For the

simplest case, where silicon is grown upon a silicon reaction surface - the substrate -

silicon atoms diffuse and react across the silicon wafer, and form a growth layer, without

strain. The diffusion distance depends on the kinetic energy of the atoms, and as such,

substrate temperatures of between 100°C and below 1250°C are required. However,

at temperatures above 700°C diffusion of dopants may result, and temperatures below

300°C may result in poor growth, with islands forming rather than layers. Germanium

has a similar structure to silicon, and although these elements have a lattice mismatch

of 4.2%,germanium layers may be grown on a silicon substrate or silicon thin film, with

increasing strain within the germanium layer as the thickness of the germanium layer

increases [56].

One method for reducing the required epitaxy temperature and increasing the growth

speed is the use of plasma-enhanced CVD (PE-CVD). Here, charged plasmas rather

than gaseous particles are used for epitaxy, and a voltage discharge arc is used to disso-

ciate SiH4 and GeH4. PE-CVD was primarily developed for use in fabrication of SiGe

alloy layers, where the lattice mismatch necessitated growth of layers with low surface

roughness and low density of defects [58]. Diffusion and defects are suppressed at the

lower temperatures used for PE-CVD [59], and the use of PE-CVD offers a number

of other advantages over thermal CVD, including control of the microstructure of the

film, directionality in film deposition and independence of growth speed from substrate

temperature. PE-CVD removes H2 efficiently, resulting in fast growth rates, and the

composition of SiGe layers is controlled only by the gas composition, hence, sharp inter-

faces can be formed [60, 61], although layer thickness precision may be poorer.
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Doping of growth layers may be unintentional, from impurities in the CVD atmosphere,

or intentional, where dopant atoms are introduced to growth layers for engineering of

the material properties, such as doping of the charge layer in a SPAD. Doping may

be undertaken using in-situ doping, where dopant atoms are introduced to the gaseous

epitaxy environment. This process may be used to give localised doping, where partic-

ular layers are doped. However, dopants may not remain uniformly distributed in the

target regions and may become segregated, forming dopant islands on the surface of

the layer, particularly for n-type dopants. Diffusion doping occurs when dopant atoms

are introduced to the epitaxially grown wafer; however, dopant diffusion varies strongly

with temperature, and hence high temperatures are required, In addition, dopants are

diffused from the top down and hence the highest concentrations are usually found in

surface layers and there is limited control over the depth and dose of doping [62].

Ion implantation may also be used for doping. In this technology, dopant atoms are

accelerated through a voltage towards the wafer. Ion implantation may cause a dopant

profile which decreases in concentration through the doped layer, and the high speed of

the dopant atoms can cause significant damage to the wafer [62], making this method

unsuitable for use in SPADs, where a low defect density is required to prevent dark

counts and other noise phenomena. Hence, although diffusion doping has broadly fallen

out of use for most applications, it is still the preferred method for SPAD doping.

The 4.2% lattice mismatch between silicon and germanium, with germanium having

the slightly larger lattice constant, means that germanium grown epitaxially on silicon

will be strained for germanium growth layers below some critical thickness, and there

will be defects within some distance from the interface for layers thicker than the criti-

cal thickness, where the strain is no longer able to accommodate the additional energy

introduced [63, 64]. The lattice constant of germanium is 5.658 Å and that of silicon is

5.431 Å; from energy balance calculations, it can be found that a thickness of Ge greater
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than ≈ 6.5 nm will result in defect formation along the silicon–germanium interface,

with defect structures formed according to the energy relaxation of the interface [65].

Operation of a Ge–on–Si SPAD requires an absorption layer which is typically at least an

order of magnitude larger than this critical thickness for efficient collection of photons,

so the formation and density of defects at the silicon–germanium interface is of critical

importance to the operation of a Ge–Si SPAD. Although growth on silicon substrates

may conducted on a number of possible planes ((001), (110) and (111)) substrates ori-

ented to the (001) plane are most commonly used and offer the most well developed

techniques for heteroepitaxy [66].

Heteroepitaxy of germanium on silicon has proceeded in a number of directions to

limit the formation of defects at growth thicknesses above the critical thickness. Tech-

niques include growth of a silicon–germanium graded alloy layer, where a progressively

higher concentration of germanium in each growth layer is included up to some useable

structure on which pure Ge layers may be grown. Graded layers allow relaxation to

occur over an extended distance, and permit dislocations to glide, although they also

increase surface roughness, requiring further processing such as chemical polishing or

annealing [66]. Alternative techniques involve growth of a high–defect Ge buffer layer—

the seed layer—at low temperature, on which a further layer of low defect Ge can be

added at high growth temperatures, to contain defects within a known region and relax

strain progressively. Further processing of epitaxially grown layers, by thermal cycling

or annealing can ‘glide’ defects towards particular regions of the material, most usefully

towards the wafer edges where they may annihilate, providing a low–defect region within

a heterojunction which may be sufficient for a given application [67], [66, 68].

2.2.3 Dislocations in Silicon-Germanium Heteroepitaxial Interfaces

Although point defects may be formed in crystalline structures during growth, defects

formed at the interface due to lattice mismatch are most likely to be dislocations—lines

or planes of defects propagating through the structure which form as a result of built-up
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strain greater than the lattice is able to absorb. Dislocations are characterised by their

topology as screw or edge dislocations, although in reality the full form of an individual

dislocation may be a combination of these two structures. A screw dislocation occurs

where shear stress in a crystal plane causes a displacement between adjacent sections

of crystal lattice (Figure 2.8) and a helical path is traced around the resultant linear

defect by the surrounding atoms. Pure screw dislocations thus propagate at 90° to

the interface plane for a heteroepitaxial interface. Edge dislocations are significant in

lattice-mismatched epitaxial growth, and occur when an unmatched plane terminates

between two completed planes, as shown in Figure 2.9 [69, 70]. Dislocations may

Figure 2.8: Screw dislocation [71]

be characterised mathematically using Burgers vectors and Burgers circuits. A Burgers

circuit is an atom-to-atom path taken through a crystal which contains one or more

dislocations. The Burgers vector is then the vector difference between this circuit for the

defected and undefected crystal – the additional path needed to ‘close’ the circuit and

provide the identical atom-to-atom path in the undefected crystal. Figure 2.10 shows

the Burgers circuits and Burgers vector describing an edge and a screw dislocation, [69].
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Figure 2.9: Edge dislocation [72]

For practical Si–Ge heteroepitaxy, dislocations are usually characterised in the form

of misfit and threading dislocations. Misfit dislocations are lines of dangling bonds (in

3–dimensions) where the basal line of an edge dislocation plane terminates, parallel to

the heterointerface, caused by the built-up strain in the mismatched interface. Threading

dislocations then occur where the side edges of the edge dislocation plane terminate, and

usually glide at 60° to the interface plane, in the (1 1 1) plane of the lattice for diamond

cubic structures such as silicon and germanium. Threading dislocations will terminate

the total defect structure either at a surface or at another threading dislocation, and are

structurally a combination of both screw and edge dislocations. [74], [65]. An idealised

diagram of misfit and threading dislocations for germanium grown on silicon is shown in

Figure 2.11. Since a threading dislocation is then an inherent rectifying structure for any

lattice-mismatched heteroepitaxy, the total threading dislocation density—or TDD—is

a useful measure of the quality of a heterointerface [70]. Threading dislocations may be

visualised in heterointerfaces through tunnelling electron microscopy imaging, see Figure

2.12 and achievable defect densities for germanium–on–silicon growth are of the order of

below 1× 107cm−2 [75].
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Figure 2.10: Burgers vector and Burgers circuits for edge and screw dislocations [73]

2.2.4 Interface Traps

Dislocations leave a number of atoms with a mismatched dangling bond, which can

create a one-dimensional energy band within the band gap of semiconductor materials,

from hybridization of the orbitals of the unbonded atoms. These can act as ‘trap states’

in the band gap, with consequences for the electronic and photoelectric properties of

a material, and the effects of these states have been widely studied, both experimen-

tally and theoretically. Changes in conduction and absorption/emission with increasing

plastic deformation (i.e. greater dislocation density) of semiconductor materials has

confirmed that these defects can be critical to device performance, and studies using

photoemission and photoluminescence spectra, and Hall measurements have been used

to characterise defect states [76–80].

Trap states are characterised by their energy relative to the valence and conduction

band edges and are usually defined in terms of a density Nt and characteristic energy
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Figure 2.11: Misfit and threading dislocation [74].

Et [81]. In general, traps closer to the conduction band will tend to trap and re-emit

electrons from the conduction band, while traps close to the valence band will tend to

trap and re-emit electrons into the valence band. Traps close to the band edges are

denoted ‘shallow’ states, from the smaller energies needed for electrons and holes to

interact with these energy levels, and defect states near the middle of the band gap are

known as ‘deep’ states, and can perform both functions – trapping and re-emission of

electrons or holes from either band. Hence, these can also act as recombination centres,

since a two–level recombination process mediated by a trap is more energetically likely

than a single step process, and have significant effects on the recombination rates of

carriers within a semiconductor material or device [24]. In addition, deep states impact

on optical absorption and emission characteristics [77]. Occupied trap states may also

result in space charge, affecting the local electric field.

Efficient operation of a SiGe SPAD relies on photo-absorption, followed by impact

ionization and rapid conduction of generated carriers over the SiGe interface and then

quenching of this current; defects at the heterointerface may contribute significantly to

performance deterioration in SPADs across these stages, and the possibility of defect
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Figure 2.12: TEM image showing threading dislocations [74].

states in the band gap, and their energies, should be included in any model attempting

to identify the effects of dislocations on SPAD performance.

2.3 Bandstructure Models for Simulation

The simplest formulation for electronic bandstructure is one where two permitted energy

bands are assumed, separated by a band-gap, and this may be employed in commercial

software (e.g. Silvaco), with single values for the energies of the valence and conduction

band edges for a given material. This approach is computationally straightforward and

adequate for simulation of processes where we are concerned with what happens at

band edges, and with direct transfer of electrons from band–to–band, however, there

are a number of limitations. For many materials (including silicon and germanium) the

minimum energy in the conduction band exists at a different electron momentum to

the maximum energy of the valence band; the smallest energy gap between the valence
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and conductions bands is ’indirect’, and transfer of electrons between bands requires

a change in momentum as well as energy. If we wish to calculate processes between

the conduction and valence band that do not involve a change in momentum then the

‘direct’ gap must be used (and hence the appropriate energies values for the valenceand

conduction band edges). Additionally electrons/processes away from band edges (i.e.

high–energy processes) may not be adequately characterised by a single energy for each

of the conduction and valence band. In these cases a more complex bandstructure model

is required.

2.3.1 Analytical Bandstructures

For a free electron moving in a constant uniform electrostatic potential, the E–k disper-

sion relation relating the energy E to the momentum wavevector k is quadratic:

E(k) =
~
2|k|2
2m0

(2.14)

The most straightforward deviation from a simple band model towards a description of

multiple bands and valleys uses this quadratic relationship and assumes that close to

the band edges the dispersion relationship maintains this parabolicity; the curvature of

individual bands is then amended by amending the dispersion relation obtained for free

electrons through the use of a variable ‘effective mass’ m∗ (which may be smaller or

larger than me) for each valley or band [82]:

E(k) =
~
2|k|2
2m∗

(2.15)

where the effective mass is derived from the dispersion relation:

1

m∗
=

1

~2

d2E(k)

dk2
(2.16)

In general, the effective mass may also vary in different lateral directions i,j and so the

full form is tensorial with components [33]:

1

m∗
ij

=
1

~2

δ2E(k)

δkiδkj

(2.17)
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At low energies (i.e. close to the band edges) this parabolic approximation works well;

however further away from band edges (e.g. in a high energy/high field regime) a non-

parabolicity factor α may be included to account for the deviation from purely parabolic

band behaviour:

E(k)(1 + αE(k)) =
~
2|k|2
2m∗

(2.18)

where α has units of inverse energy and relates to the degree of admixture of valence band

and conduction band states. α has an analytical expression derived from the effective

mass and the width of the material band gap:

α =
(1− m∗

m0
)

Egap

2

(2.19)

This non-parabolic expression for the band structure introduces a small degree of extra

complexity, but may be suitable for high–energy device simulation (where the αE(k2)

term in Equation 2.18 may dominate) or for materials with a small band gap where α

becomes larger.

The methods discussed thus far offer relatively easily-calculable analytical band struc-

tures for bulk material or device simulations. However, for simulations where the only

the entire energy dispersion relation provides the required accuracy, a full band model

should be employed. Full electronic bandstructure calculations are usually complex,

and numerical methods for these calculations can be broadly categorised into empirical

methods which include fitting parameters from experimental data and ab initio atomistic

methods, which are computationally expensive for anything more than a few atoms [82].

2.3.2 Periodic Structures and the Brillouin Zone

Calculation of a full bandstructure for a crystalline material in principle requires solution

of the Schrodinger equation in 3 dimensions, and consideration of the the full potential

under which electrons move. However, since, as discussed above, crystals may be de-

scribed as a periodic repetition of units, the potential experienced by an electron in a

periodic structure may be amended to take the form of a periodic potential with the
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same periodicity as the the crystal lattice. Bloch’s theorem states that a wavefunction

for a single electron moving in this periodic potential takes the form of a Bloch function,

composed of a plane wave envelope function and a periodic function with the periodicity

of the lattice. Using index numbers n for electrons of identical momentum vector k but

different energies, the Bloch eigenstates may be written as:

Ψn,k = un,k(r)e
ik.r (2.20)

where the wavefunctions Ψn,k and un,k are periodic in the direct lattice. Proofs of this

theorem [83] show that the wavefunctions in a position r are equal to those at positions

r+R, whereR is a lattice vector. The energy solutions are also periodic in the reciprocal

lattice [33, 54], and as a result it is only necessary to consider the electronic structure

in the Brillouin Zone.

This, still, however, leads to a Schrodinger equation with a number of potential terms

— those describing the interaction between the electrons and the periodic potential

given by the nuclei, those describing nucleus–nucleus and electron–electron interactions,

and exchange/correlation interactions arising from the Pauli Exclusion Principle. The

problem is a many-body one, with no straightforward analytical solution [84].

2.3.3 Full Bandstructure Models

A number of approximations have been developed to simplify this many–body prob-

lem and yield computationally–achievable solutions that nonetheless provide sufficient

accuracy in predicting the behaviour of real systems. The Born–Oppenheimer approxi-

mation assumes that, since electrons are much lighter than ions, they move much more

quickly and follow ionic cores adiabatically, essentially treating the ions as static. This

allows separation of ionic and electronic wavefunctions for solution of the Hamiltonian.

The problem is still, however, complex, and must take account of ion–ion interactions,
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ion–electron interactions, and electron–electron interactions [84, 85].

A further approximation involves treating the system as a set of independent elec-

trons, acting under some overall potential provided by all other electrons in the system,

and yielding the electronic Hamiltonian:

HΨn =

(

− ~
2

2m
+ Vext + Veff

)

Ψn = ǫiΨn (2.21)

where the Ψn are the wavefunctions of n independent electrons, Vext is the external

potential under which the electrons move (due to the ionic cores) and Veff is the ef-

fective potential given by the average interaction with all other electrons. The Hartree

potential treats Veff as the average of the Coloumb potential of all other electrons, and

this was expanded by inclusion of Fermi–statistics to provide the Hartree–Fock poten-

tial, which includes the effect of electron exchange — the requirement that electrons

remain antisymmetric under exchange, a form of additional non–local potential under

which electrons act. This still, however, omits the effects of correlation — the poten-

tial arising from screening of exchange effects, and provides only approximate solutions

[84, 85]. Overall, ab initio methods rely on schemes to approximate the forms of these

two potentials Veff and Vext while still yielding accurate calculation results.

2.3.4 Pseudopotentials

The use of a pseudopotential – an approximate potential describing the most significant

interactions experienced by an electron – was first introduced by Fermi, and almost

simultaneously by Hans Hellman [86, 87]. The basis for the method is that we are

generally interested only in the behaviour of the valence electrons, as these are the

most chemically active, and that some approximations can be used to deal with the

core electrons, and the pseudopotential method provides approximate solutions, which

nonetheless have provided sufficiently accurate results in real systems for considerably

less computational effort.
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Development of the form of this pseudopotential, and of computationally–efficient

schemes for calculation of electronic structures has proceeded in a number of directions.

Calculation of the form of the pseudopotential may be purely ab initio, or empirical,

where fitting to experimental data is used to adjust the pseudopotential.

Ab Initio Pseudopotentials

The pseudopotential method originated from the orthogonal plane wave (OPW) method

developed by Herring [88]. This method relies on separation of core and valence states,

and construction of valence electron wavefunctions from a basis set of plane waves that

must be orthogonal to those of the core electron wavefunctions [54]. The core wavefunc-

tions are assumed to be known, and under the ‘true potential, the rapidly oscillating

inner core potential creates a large kinetic energy pressure on the valence electrons from

the need to maintain the orthogonality. This generates a form of Pauli repulsion term,

which approximately cancels out the Coulomb potential, leading to an overall weak re-

pulsive core potential: the frozen core approximation [86, 89]. The complex and varying

core potential can then be replaced, to a good approximation, with a simpler form, and

Phillips and Kleinman [90] further developed this method by suggesting that the core

term in the orthogonalisation equation could be replaced by smooth analytic functions,

with limited impact on the calculation results for valence electrons.

Construction of an ab initio pseudopotential in practice proceeds by first selecting a

reference atomic configuration, then performing an all–electron calculation using an

atomic simulation. Next, a pseudo–wavefunction is constructed that matches that from

the all–electron wavefunction as closely as possible: the parameters for matching de-

pend on the requirements for the pseudopotential, but must include that the valence

eigenvalues match those from the all–electron calculation, and that the continuity of the

wavefunctions and their first derivatives are matched across the core–valence boundary.

Once these parameters have been satisfied the Schrodinger equation is then inverted to

obtain the pseudopotential [84, 91].
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The choice of cutoff radius rc for the pseudopotential, i.e. the radial distance r at

which the potential is assumed to be core for r < rc and valence for r > rc will de-

termine the number of plane waves used to construct the pseudopotential, and hence

the computational burden. Pseudopotentials should ideally be as ‘soft’ as possible, i.e

use as few plane waves in their construction as possible, while reproducing the valence

charge density as accurately as possible. Two significant formulations for the calculation

of pseudopotentials have been developed to meet these requirements. Norm–conserving

pseudopotentials are based on the principle that the pseudo wavefunctions and eigenval-

ues, and the logarithmic derivatives and energy derivatives of the wavefunctions must

match those from the all–electron calculation for r > rc, and that the integrals from 0

to rc of the charge densities must match (norm–conservation). Norm–conserving pseu-

dopotentials maintain the same scattering properties at valence energies as the ‘true’

core potentials that they are approximating [84, 91, 92]. Ultrasoft pseudopotentials

were developed for systems with highly–localised valence orbitals, and relax the norm–

conservation requirement, and the scattering properties and energy derivatives of the

valence wavefunctions match only at a set of chosen reference valence energies. Ultrasoft

pseudopotentials use a limited number of plane waves and are soft as possible within the

core, with an additional core augmentation charge term [84, 91, 93, 94].

In practice, pseudopotentials for many materials have been calculated and tabulated

under a range of conditions, and it is possible to perform electronic structure calcula-

tions either using this existing data or by constructing a pseudopotential ab initio with

existing software.

Empirical Pseudopotential Method

In the Empirical Pseudopotential Method (EPM), pseudopotentials are constructed

based on empirical data (measured bandstructures, spectral data) and adjusted using a
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series of fitting parameters. The Hamiltonian for solution is

H =
~
2

2m
∇2 + V (r) (2.22)

where V (r) is a weak position-dependent potential. The potential can be expressed as

the product of a structure factor S(G) and a form factor V (|G|):

V (r) =
∑

G

S(G)V (|G|)ei.G.r (2.23)

The structure factor S(G) is determined from the structure of the crystal lattice, and the

form factors V (|G|) are determined empirically. From here, the EPM proceeds through

a matrix solution of the Hamiltonian, with initial values of these form factors used to

calculate quantities, such as direct or indirect bandgaps, reflectivities, or densities of

states that have been observed experimentally. The form factors are then adjusted until

the calculated quantities are in closest possible agreement with the experimental values.

In practice, only a certain number of the form factors need be used and adjusted. The

contributions from the first five G vectors, with squared magnitudes of 0, 3, 4, 8 and

11, are useful to consider; the structure factor for |G2|2 = 4 is zero, leaving only form

factors V3, V8 and V11 to be determined. Although further form factors can be deter-

mined, these are likely to represent smaller contributions to the overall potential, and

can usually be ignored; for example, for silicon, the V3, V8 and V11 form factors have

yielded band structure results to within a few percent accuracy [86, 95]. The method

is well–developed and has been widely applied, and significant work in calculating form

factors for individual semiconductor materials now means that the method can be ap-

plied using literature values for the form factors [86].

This formulation is, however, local — the pseudopotential is assumed to be a sim-

ple function of position and the energy and angular momentum dependence of the core

region is ignored. A further non–local formulation takes account of the first three angular

momentum terms and applies a correction factor [96].



40 2.3. Bandstructure Models for Simulation

2.3.5 Density Functional Theory

Density Functional Theory (DFT) is a powerful method for solution of the many-body

problem in solid state physics. The basis for DFT is that the total ground state energy

of the system of n electrons that we are concerned with is a unique functional of the

electron density; this also implies the converse, that if the eletron density is known, then

the ground state energy of the system can be determined. This basis, however, gives

no indication of the form of the functional. The second, variational principle, of DFT,

states that the electron density that minimizes the energy of the overall functional is

the true electron density; hence, if the form of the functional was known, it would be

possible to vary the electron density until the energy was minimised, giving the true

electron density [97].

The relationship between the energy and the electron density takes the form

E = E [ρ(r)] =

∫

drVextρ(r) + F [ρ(r)] (2.24)

where ρ is the electron density, Vext is the external potential, and F is the functional

term given by the effective potential in the Hamiltonian.

The Kohn-Sham Equations

The effective tool for solution in DFT calculations usually takes the form of the Kohn-

Sham equations. In this formulation, the density is written in terms of the wavefunctions

of the n non-interacting electrons:

ρ(r) =
∑

Nn = 1Ψ∗
n(r)Ψn(r) (2.25)

F may be further broken down into three components:

F [ρ(r)] = EK [ρ(r)] + Exc[ρ(r)] + EH [ρ(r)] (2.26)

where EK , Exc and EH represent the kinetic energy of the electron, the energy due to the

exchange–correlation potential, arising from the Pauli principle and electron statistics,
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and the energy due to the Hartree potential, respectively. The effective potential Veff

in Equation 2.21 is given by the Kohn–Sham potential VKS:

VKS(r) =
∂

∂ρ(r)
(Exc[ρ(r)] + EH [ρ(r)]) = VH(r) +

∂EXC [ρ(r)]

∂ρ(r)
(2.27)

Solutions using this formulation are then found by solving the one–electron wavefunctions

Ψn and the charge density self–consistently over a number of iterations using the Kohn–

Sham equations, until agreement is found to within some defined convergence tolerance.

[84, 85, 97]. In practice, calculations proceed using wavefunctions expanded in a plane

wave basis set as described above, and using pseudopotentials to describe the interactions

between electrons and the ionic core.

XC Functionals

Although a self–consistent formulation for calculating the electron density and one–

particle wavefunctions is described above, this still requires knowledge of the form of

EXC , or the electron–electron interactions due to the effects of the exchange and cor-

relation forces. In principle, there is no straightforward ab initio formulation for this

interaction for most systems, however, in practice, a number of simple formulations

provide sufficiently accurate results and act as a ‘correction factor’ in DFT calculations.

The Local Density Approximation (LDA) assumes that the electron density behaves

as that from a uniform electron gas of density ρ [84, 85]:

EXC =

∫

drρ(r)ǫXC(ρ(r)) (2.28)

Though this approximation ignores all spatial variations in density, it frequently provides

good results in many systems. An alternative formulation is the Generalised Gradient

Approximation (GGA). Functionals based on this semi–local approximation are based

on a slowly–varying electron density, and improve on the simplicity of the LDA by in-

cluding the gradient of the density [98].
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Despite the successes of these functionals, they have a number of limitations, in partic-

ular for DFT calculations with semiconductors. The use of a uniform or slowly–varying

electron density introduces artificial electron self–interactions, and does not take ac-

count of occupation numbers of electrons in bands. These effects create an additional

deocalisation in occupied states, which increases their energy, and hence, GGA and LGA

functionals usually inherently underestimate the band gap in semiconductor materials,

or provide calculations with zero band gap when used without correction [77] A number

of corrections to this self–interaction have been applied to mitigate the zero-bandgap

problem [99].

Cut–off Energy and Sampling Grids

Blochs Theorem (Equation 2.20 also allows construction of electronic wavefunctions in

terms of a basis set of plane waves with co-efficients un,k(G):

Ψn,k =
∑

G

un,k(G)ei(k+G).r (2.29)

where the G are the general reciprocal lattice vectors described above. In this case, G

may relate to the reciprocal lattice of an entire supercell used for a DFT calculation,

rather than simply any primitive crystal cell. In principle, there are an infinite number of

k-vectors in the expansion, however, in practice, the k-vector grid can be sampled, since

two k-vectors very closely spaced will lead to only an neglible change in Ψn,k and some

plane waves with an energy greater than some cutoff–energy can excluded, with limited

effects on the accuracy of the calculation. The choice of cut–off energy and sampling

grid is therefore critical to DFT calculations. The cutoff energy determines the number

of plane waves used in the basis set, and the size of the Fourier transform (FFT) grid

used in calculations.

A number of k-point sampling methods exist. The Monkhorst–Pack formulation is

commonly used, which identifies a set of special points in the reciprocal lattice that

improve the accuracy of the calculation with minimum sampling, by meeting a number
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of conditions, which guarantee that quantities such as charge densities or energies can

be more accurately averaged over the Brillouin Zone [100, 101].

Typical bandstructures for silicon and germanium are shown in Figures 2.13 and 2.14.

Figure 2.13: Typical bandstructure for silicon (with direct and indirect bandgap energies)

[102]

2.4 Electron Transport in Semiconductors

Modelling electron transport in a semiconductor device requires a self-consistent solution

for a number of equations [104]. Poisson’s equation relates the electrostatic field to the

space charge density:

∇.(ǫ∇Ψ) = −ρ (2.30)

where Ψ is the potential, ǫ is the local permittivity and ρ is the local space charge density.

The space charge density includes all contributions from mobile and fixed charge and
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Figure 2.14: Typical bandstructure for germanium (with direct and indirect bandgap

energies) [103]

other sources such as ionized impurities.The electric field E can then be obtained from

the potential by:

E = −∇Ψ (2.31)

The continuity equations describe the conservation of carriers:

δn

δt
=

1

q
∇.Jn +Gn −Rn (2.32)

δp

δt
= −1

q
∇.Jp +Gp −Rp (2.33)

where J represents the current densities of electrons and holes respectively and G and

R are the carrier generation and recombination rates; q is the electronic charge.

For modelling the distribution of carriers, a kinetic theory approach is usually adopted

for carrier densities, where the probability of finding a carrier with a given momentum k

at position r at time t is calculated stochastically using a distribution function. This is
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the basis of the Boltzmann transport equation (BTE), which considers the total number

of particles entering and leaving a region of phase space, and is given in totality by:

∂f(r,k, t)

∂t
+

1

~
∇k.E(k).∇rf(r,k, t) +

F

~
.∇kf(r,k, t) =

∂f

∂t
|coll + s(r, k, t) (2.34)

The first, second and third terms on the left hand side represent, respectively, the rate

of change of the particle distribution due to the action of the Lorentz force, the rate of

change of the distribution due to the action of diffusion, from temperature, concentration

or other thermodynamic gradients and the rate of change of distribution due to the action

of collisions—the total of in-collision forces and out-collision forces. A detailed derivation

of the BTE and a breakdown of terms can be found in Reference [82]. In general a full

solution of the BTE is not practical and the collision term in particular may take an

integro-differential form which is computationally complex to solve [105]

2.4.1 The Drift Diffusion Approximation

The most straightforward method for approximate solution of the BTE is the drift–

diffusion approach. This approach is attractive, since no independent variables are in-

troduced beyond Ψ, n, and p [104]. Some further simplifying assumptions are applied

to the BTE to obtain the drift–diffusion approximation:

• It is assumed that all collisions are elastic.

• It is assumed that the carrier velocities adjust instantaneously in the local electric

field, hence detail about short-scale interactions is neglected.

• Since the model uses near-equilibrium conditions, it is only valid for small pertu-

bations from equilibrium.

• Only a value rather than a distribution function for the velocity is extracted, hence

the model does not take account of noise well.

• The model cannot describe transients.
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A mobility term µ is introduced, given by:

v = µE (2.35)

which relates the velocity of carriers v to the electric field E. At low field, µ may be

assumed constant and the relationship between carrier velocity and electric field is linear.

At higher fields, a number of physical effects will affect this linear relationship, including

scattering from optical phonons and ionised impurites and the carrier velocity may sat-

urate. More complex models of mobility may be developed analytically or empirically

to take account of high fields [82].

The drift diffusion approximation is then developed by expressing the current densi-

ties using the quasi-Fermi levels for electrons and holes, which are then linked to the

carrier concentrations and potential through the Boltzmann approximations. Effective

electric fields, En and Ep are defined, and amended expressions for the the current

densities can be derived:

Jn = qnµnEn + qDn∇n (2.36)

Jp = qpµpEp − qDp∇p (2.37)

These are the drift-diffusion equations, where the first term in each represents the effect

of drift on carrier densities and the second gives the effect of diffusion, where Dn and

Dp are the diffusivities of electrons and holes, respectively. A full derivation is given

in [104]. These expressions for current density can then be applied to the continuity

equations 2.32 and 2.33, and then solved self-consistently with Poisson’s equation 2.30

to model electron transport in a semiconductor device. The choice of timestep for

Self–consistent solutions of this set of equations requires separation of the device or

material in which transport is being studied into a mesh of spatial units. The total

charge in the device must be conserved, and the current on the boundaries of each mesh

box is defined, with the requirement that the current entering each box must be equal

to the current exiting within each simulation time step. The choice of timestep must be
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sufficient to meet the relaxation condition relating to the approximation that interac-

tions are instantaneous, and the choice of mesh size must be smaller than the range of

electrostatic interaction of each particle. [82].

A number of simulation packages can be used to solve these equations self–consistently

and provide calculations of carrier densities, electric fields and other parameters on the

device scale.

2.5 Conclusion

This chapter introduces the basic solid state physics and electronics theory relevant to

development of SPADs, including the principles of photodiodes, and the operating con-

ditions specific to use of photodiodes as single photon detection devices. A number

of sources of performance limitation for SPADs are discussed, including noise currents

from Zener tunnelling, arising as a result of the high fields needed for operation of a

photodiode as a SPAD, and defects in the crystal structure due to the lattice mismatch

between silicon and germanium. A number of considerations for modelling the perfor-

mance limitations of SPADs are discussed, as well as the equations required to simulate

semiconductor materials and full semiconductor devices. In the following sections, these

models and equations will be applied to investigate the performance of SPADs, includ-

ing modelling of fields and carrier densities in a SPAD, an assessment of band-to-band

tunnelling currents in germanium under a range of field conditions and the electronic

and geometric structure of defects in bulk germanium.





Chapter 3

Electron Transport in SPADs

3.1 Introduction

In this chapter, a number of SPAD devices are investigated, using the Silvaco simulation

software. The software enables simulation of whole devices and an extensive number

of thermal, electrical and optical models and inputs are available for device character-

isation. The approach followed that discussed in the previous chapter, applying the

drift–diffusion model and solving the carrier continuity equations self-consistently with

the Poisson equation for whole SPAD devices. From here, IV curves, electric field pro-

files, carrier density profiles and other device parameters can be calculated. Silvaco’s

ATLAS solver was used to undertake modelling of the device in two dimensions - the

longitudinal direction of the growth axis and one lateral axis perpendicular to this across

the width of the device. Device characteristics in the third width direction, also perpen-

dicular to the growth axis, were assumed to be identical to those in the second lateral

direction.

The SPAD devices under investigation are silicon-germanium SACM-APDs operated

under breakdown conditions to act as Geiger–mode single photon detectors. The de-

vice follows the mode of operation of the p-i-n photodiode discussed earlier, with an

additional highly-doped charge layer which regulates the electric field between the ger-

manium absorption layer (where a low field is desirable to limit noise and dark count due

49
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to carrier tunnelling and other effects) and the silicon multiplication layer, where a high

field is required to achieve avalanche multiplication. The doping profile of the SPAD

devices may be of a ‘PiPiN’ scheme, (with highly p++ and n++ doped end regions in the

germanium and silicon respectively, and a p doped charge layer) or a ‘NiNiP’ scheme,

with the reverse doping profile. Previous SPAD fabrication has indicated that a PiPiN

structure is easier to grow, as p-type dopants are less susceptible to surface segregation

in silicon and germanium, hence maintaining the doping density in the charge layer as

close to the target density as possible, and reducing the possibility of background doping

in the ideally–intrinsic germanium absorber. Transport from the germanium to the sili-

con layer may be inhibited by the band offset between these materials, particularly for

transport between the L and Γ valleys, where a potential barrier is presented between

the germanium and silicon layers, as shown in Figure 3.1. A typical PiPiN SPAD struc-

ture is shown in Figure 3.2, including indicative design thicknesses. In principle, the

absorption and multiplication layers are intrinsic, but may in reality be unintentionally

doped. Here, the effects of background doping type in the absorption layer are also in-

vestigated, to establish IV-curves, carrier distributions and the influence of background

doping in the absorber layer on transport over the heterojunction interface.

3.2 Investigation of Doping Profiles

Although the germanium absorption layer is ideally intrinsic, some background doping

of unknown concentration is likely. Background doping in the germanium absorption

layer may be n–type or p–type. This background doping will affect the electric fields and

carrier transport across the device and have an impact on device performance. Addi-

tionally, the intentional doping in the silicon charge layer can be varied to optimise fields

and device performance. A number of permutations of these possible doping profiles

have been simulated and device characteristics (electric field, potential, carrier concen-

trations) calculated for each. It was assumed that background doping in the silicon

multiplication layer is low (1× 1015cm−2) and of n-type.
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Table 3.1: Doping profiles for SPAD device simulations

Simulation Charge Layer Absorption Layer Absorption Layer

Doping Density (cm−2) Doping Density (cm−2) Doping Type

1 5× 1017 (high) 1× 1016 (high) p-type

2 5× 1017 (high) 1× 1016 (high) n-type

3 5× 1017 (high) 1× 1015 (low) p-type

4 5× 1017 (high) 1× 1015 (low) n-type

5 2× 1017 (medium) 1× 1016 (high) p-type

6 2× 1017 (medium) 1× 1016 (high) n-type

7 2× 1017 (medium) 1× 1015 (low) p-type

8 2× 1017 (medium) 1× 1015 (low) n-type

9 1× 1017 (low) 1× 1016 (high) p-type

10 1× 1017 (low) 1× 1016 (high) n-type

11 1× 1017 (low) 1× 1015 (low) p-type

12 1× 1017 (low) 1× 1015 (low) n-type

The combinations of doping profile in the charge layer and absorption layer simulated are

listed in Table 3.1; these permutations of dopant type and density result in 12 distinct

simulations. Two-dimensional device simulations were carried out using Silvaco’s ATLAS

device simulator, implementing a drift diffusion model with field-density-dependent and

carrier-density-dependent mobility terms, and including the effects of Shockley-Read-

Hall generation/recombination processes. The device width was 20 µm and simulations

in this direction were conducted using a regular 2 µm mesh. The total height of the

device was 2.2 µm, and a 0.01 µm mesh size was used along this length, to fully elucidate

the carrier concentrations, and field and potential effects along the critical transport di-

rection for electrons. The Okuto-Crowell model [107] was used to simulate the effects of

impact ionisation; this method is based on pseudolocal impact ionisation co-efficients for
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electrons and holes that depend on both electric field and position, and is particularly

suitable for high electric fields.

3.2.1 Breakdown and Punchthrough Voltage

IV profiles for the devices under increasing reverse bias voltage were produced for PiPiN

devices with the range of doping profiles listed in Table 3.1. As a SPAD operates above

reverse breakdown voltage, the breakdown voltage for each doping profile across the

device was a critical parameter of interest from the simulations; ideally, the IV curves

should show an identifiable breakdown point with a sudden increase in current. In addi-

tion, the voltage at which the device showed full carrier depletion of the absorber layer

was also sought from the simulation results. This has a critical impact on the ability

of the device to act as a SPAD: insufficient carrier depletion in the absorber layer will

lead to additional dark currents. This effect can be observed from a small but noticable

increase in the current at some voltage below the breakdown voltage, commonly referred

to as the ‘punchthrough’ voltage from the phenomenon observed in FET structures,

although the mechanism in a SPAD is not identical.

IV curves for all combinations of doping density and both n– and p–type doping in

the absorption layer are provided in Figures 3.3, 3.4 and 3.5, and the breakdown and

punchthrough (where observed) voltages are provided in Table 3.2.

Broadly, the breakdown voltage increased with decreasing charge layer doping. This

is to be expected, since the charge layer doping distributes the total potential difference

between the absorption layer and the multiplication layer. A higher dopant concentra-

tion in the charge layer increases the proportion of the total potential difference which

appears across the silicon multiplication layer, meaning that carriers in the multiplica-

tion layer are already more energetic than in the lower-field case, and a smaller reverse

bias voltage is required to initiate avalanche breakdown.

The relationship between breakdown voltage and absorption layer dopant density and
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Table 3.2: Simulated breakdown and punchthrough voltages for SPAD device simulations

Simulation Breakdown Punchthrough

Voltage (V) Voltage (V)

1 35 (none)

2 35 (none)

3 35 (none)

4 35 (none)

5 38 (none)

6 48 30

7 40 40

8 40 30

9 48 18

10 60 13

11 52 16

12 52 14
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type is slightly more complex. p-type doping and n-type doping will tend to change the

direction of the electric field gradient across the absorption layer; assuming the highly-

doped charge layer produces (for any given doping density) a fixed difference in electric

field between the absorption and multiplication regions, the electric field at the interface

of the absorption and charge layers (and hence the direction of the electric field gradient

across the absorber) determines the electric field across the multiplication region. From

the results in Table 3.2, it can be seen that n-type absorption layer doping produces a

significantly higher breakdown voltage than p-type doping, with a higher doping density

in the absorption region leading to a greater difference between breakdown voltages for

each type.

A number of other characteristics can be seen in the IV curves for each doping pro-

file. The phenomenon of punchthrough was observed in a number of simulations, and

the voltages at which this was observed are summarised in Table 3.2. This current

increase is only observed for medium and low charge layer doping and is occurs at a

higher voltage when the absorption layer is p-doped than when it is n-doped. This

sudden increase in current below the breakdown voltage is most likely related to carrier

transport in the charge layer interface and is discussed in more detail later in alongside

simulations of electric field and carrier concentrations.

The IV curve for simulation 2 shows an additional increase in current at a higher voltage

than the breakdown voltage—at 38V reverse bias voltage compared to a breakdown

voltage of 35V. This may be related to breakdown in the Ge absorption layer.

3.2.2 Electric Field Profiles

Electric field profiles at increasing bias voltages have been produced for all doping pro-

files. The direction of growth is from left to right along the horizontal axis (silicon to

germanium) of the graphs, and the silicon–germanium interface is marked as a thick

black line. Broadly, they show the effect of the charge layer doping density in distribut-
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ing the electric field between the absorption and multiplication layers, and the impact

of n-type and p-type doping in the absorption layer on the electric field gradient. The

breakdown field in germanium is 105Vcm−1 and that in silicon is 3× 105Vcm−1. Fields

in the absorption and multiplication regions should be distributed with these breakdown

fields in mind to remain below breakdown in the germanium layer, and above it in the

silicon layer. For high charge layer doping of 5 × 1017cm−2 a number of characteristics

can be observed in the electric field profiles:

• Electric fields in the silicon multiplication layer are high (relative to the absorption

layer) for all permutations of absorption layer doping. The electric field is consis-

tently above the silicon breakdown field for bias voltages above the breakdown

voltage observed in the IV curves.

• Electric fields in the absorber layer are consistently below the breakdown field of

germanium.

• Electric fields in the absorber layer are zero for all bias voltages below breakdown

when the absorber is p-doped, regardless of the doping density in the absorption

layer, and also for the condition where the absorber is n-doped at the lower density

of 1× 1015cm−2.

• When the absorption layer is n-doped at the higher density (1×1016cm−2), there is

a shallow electric field gradient in the absorption layer even at bias voltages below

breakdown, nonetheless, this is small and remains below the breakdown field for

germanium.

• These field profiles are reflected in the low breakdown voltages for these simulations,

and the similar breakdown voltages for all simulations in which high charge layer

doping has been implemented.

Electric field profiles for the case of high charge layer (5×1017cm−2) and high absorption

layer (1×1016cm−2) doping are shown in Figures 3.6 and 3.7, demonstrating the effects
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discussed.

Notably, for the case of medium charge layer doping density (2× 1017cm−2, simulations

5-8), the density and type of absorption layer doping begins to play a more significant

role in device characteristics. For low absorption layer doping (1×1015cm−2, simulations

7 and 8) fields in the absorption layer are close to zero, fields in the silicon multiplica-

tion region are relatively high and breakdown voltages are similar for both the n- and

p-doped absorption layers, as in the case of high charge layer doping. However, for high

absorption layer doping (1 × 1016cm−2) of n-type (simulation 6), the electric field due

to the doping profile of the absorption region becomes significant. At increasing bias

voltage, the depletion of carriers in the absorber leads to an extending region of negative

space charge; this in turn creates an electric field which opposes that set up by the bias

voltage, and in which the field is lower at the interface between the charge layer and

the absorption layer than at the top contact. In addition, medium charge layer doping

produces a smaller field difference between the absorption layer and the multiplication

than for higher charge layer doping. As a result electric fields in the multiplication

layer are significantly lower than for the doping profiles discussed so far, and there is a

significant increase in breakdown voltage. In contrast, electric fields in the absorption

layer begin to approach the breakdown field in germanium; for higher bias voltages, in

cases where the absorption layer doping is high (1 × 1016cm−2), the breakdown field is

exceeded at sharp points in the germanium layer for p-type doping, and exceeded con-

sistently at for n-type doping. The electric field profiles for medium charge layer doping

and high absorption layer doping (simulations 5 and 6) are shown in Figures 3.8 and 3.9.

For low charge layer doping (1 × 1017cm−2, simulations 9-12) this effect is more

pronounced still: breakdown voltages are higher overall compared to devices with higher

dopant densities in the charge layer (since a smaller proportion of the total potential

difference is distributed across the multiplication layer and thus a higher bias voltage
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is required to initiate breakdown). For the case where the charge layer doping is low

and the absorption layer doping is high, dopant type has a significant impact on the

breakdown voltage due to the space charge field set up in the absorption layer— with a

decreasing absorption layer field gradient for p-type and an increasing field gradient for

n-type absorption layer doping. Electric field profiles for low charge layer doping and

high absorption layer doping (simulations 9 and 10) are shown in Figures 3.10 and 3.11.

The field in the germanium layer exceeds the breakdown field for higher bias voltages in

all cases where the charge layer doping is low (simulations 11 and 12).

3.2.3 Potential Profiles and Carrier Concentrations

A potential profile for a typical PiPiN device in which the absorption and multiplication

regions are purely intrinsic will contain a potential well for holes in the interface between

the charge layer and multiplication layer, which will inhibit the movement of holes when

the electric field is not sufficiently high to overcome this well, and cause removal of holes

to ionized acceptors in the depleted p-type region. Increasing bias voltage might be

expected to flatten the potential barrier entirely for some doping profiles and at this

voltage a small increase in current due to movement of electrons and holes with uninhib-

ited transport would be observed. This phenomenon is observed in MOSFET devices,

where it is denoted ‘punchthrough’. At significant bias voltage (towards the region of

punchthrough for those profiles it is present in) the punchthrough voltage is consistent

with the voltage at which the potential barrier is removed, and this effect is shown in

Figure 3.12 for the simulation with low charge layer doping and high n-type absorption

layer doping (simulation 10). Alternatively, this ‘punchthrough’ voltage may represent

the bias at which the device becomes fully depleted, and depletion could also be the

source of the small current increases (this depletion is also known as ‘punchthrough’

when applied to SPADs) observed in the IV curves for some doping profiles. In gen-

eral, depletion is likely to occur in a device where there is sufficient electric field across

the absorption layer to remove all carriers before the device breaks down; hence, under

this definition, the simulations including high charge layer doping (simulations 1-4), and
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that including medium charge layer doping with high p-type absorption layer doping

(simulation 5) will have an insufficient field in the germanium for full depletion before

breakdown. Any device in which breakdown occurs before punchthrough will not func-

tion effectively as a SPAD device: the residual carriers in the device will lead to large

dark currents [40]. In contrast to the trend observed between the multiplication layer

electric field and the breakdown voltage, where a higher field results in a lower breakdown

voltage, punchthrough is only observable where the electric field across the multiplica-

tion layer is relatively low, from a combination of a number of doping profiles, as listed

in Table 3.1, which distribute the electric field in this way:

• low charge layer doping density (1×1017cm−2, simulations 1-4), meaning there are

fewer carriers to deplete from the charge layer, and punchthrough can be achieved

at a lower voltage.

• medium doping density in the charge layer (1×1017cm−2), and a low dopant density

in the absorption layer (1× 1015cm−2, simulations 7 and 8);

• medium doping density in the charge layer (1 × 1017cm−2), and high absorption

layer doping density (1× 1016cm−2) of n-type (simulation 6), opposing the field in

the multiplication layer.

Doping profiles which reduce the electric field across the multiplication region and in-

crease the field in the absorber will act to lower the bias voltage required to remove the

potential barrier in the charge layer and achieve punchthrough.

Electron and hole concentrations were calculated for a range of bias voltages for all

simulation cases. Breakdown is evident in electron concentration profiles for simulations

1-5, 10 and 12 where a significant increase in electron concentration in the multiplica-

tion layer at voltages above the breakdown field can be seen. Figures 3.13 and 3.15

demonstrate this effect. For simulations 6-8, the simulation voltage did not exceed the

breakdown voltage observed in the IV curves, and this effect can not be seen. For simu-

lations 9 and 11, which both included the lowest charge layer doping density simulated,
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a drop in electron concentration was observed in the multiplication layer, close to the

charge layer, at voltages above breakdown, however, the electron concentrations are so

low that these data are likely not significant, and may be the product of numerical noise.

An interesting effect is observed in all simulations, when comparing electron concen-

trations to hole concentrations. Within the first section of the multiplication layer, a

‘spike’ in hole concentration is observed, indicating that the effect of the field and charge

layer is to sweep holes into the absorption layer. These peaks can be observed even

when the applied bias voltage is below the breakdown field. A corresponding drop in

electron concentration is seen at this locale, indicating recombination of electrons and

holes in this space charge region. Further into the multiplication layer, the electron

and hole concentration profiles are dependent on the dopant type and density in the

multiplication layer, as may be expected. n–type doping produces a flattened hole con-

centration profile, and an electron concentration profile wherein electrons are distributed

according to the potential profile, while the converse is true for p–type doping. These

effects can be seen in Figures 3.15, 3.15, 3.17 and 3.18 In the IV curve for high

charge layer doping and high n-type absorption layer doping (simulation 2), there is

what appears to be an additional breakdown event at around 38V reverse bias voltage,

after the initial breakdown. The high hole concentration in the absorption layer for

biases (Figure 3.18) above this voltage indicate that this secondary breakdown may be

caused by hole-initiated impact ionisation in the germanium absorber.

3.2.4 Experimental Measurements

A number of SPAD devices have been fabricated, processed and characterised based on

device design undertaken as part of the SPADs project. The breakdown characteristics

and doping profiles of these devices have been investigated and can be compared to the

target profiles simulated here.

A first set of SPAD measurements were taken for three fabricated devices at Heriot-Watt

in November 2011; the target charge layer doping for these PiPiN devices corresponded
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to the low, medium and high doping densities simulated above. A schematic of these

devices is shown in Fig 3.19. Reverse bias current-voltage curves were produced for

these devices, and are shown in Figure 3.20. The reverse bias characteristics of device

11-141 with medium charge layer doping were measured twice, once immediately after

fabrication and again in the main characterisation run. The reverse bias characteristics

of this device changed between these two measurements. None of the devices showed any

breakdown up to 40V, and punchthrough was only observed in device 11-141 during the

first measurement, at a voltage of around 10V. This punchthrough voltage correlates

most closely to the simulation for low doping in the charge layer with high background

n-type doping in the intrinsic germanium (simulation 10), that predicted a punchthrough

voltage of 13V. This indicates the possibility that the target doping concentrations in

these devices have not been met, although the lack of replication of this IV curve for

the second measurement on 11-141 suggests that the devices are not stable. It also is

predicted from the simulation results that breakdown would be measured in the device

with high charge layer doping (Device 11-167, simulations 1-4) at a voltage of below

40V—the absence of measured breakdown in this device re-enforces the conclusion that

the absorption layer has a background concentration of n-type dopants, possibly oppos-

ing the high electric field across the multiplication layer. Overall, these devices were

not stable, and this limits any further conclusive comparison of device performance with

simulation results.

Two further SPAD devices were fabricated and characterised in 2012, with low and

medium charge layer doping in the charge layer — 1× 1017cm−2 and 2× 1017cm−2, re-

spectively. Schematic diagrams of these devices are shown in Figure 3.21. Reverse–bias

IV characterisation for these devices is shown in Figure 3.22. The curves in Figure

3.21 show a distinct breakdown, but at significantly lower voltage than would be ex-

pected from the simulations. Device 12-026 with a target charge layer doping density

of 1 × 1017cm−2 demonstrated breakdown at around 22V and device 12-027 with a

target charge layer doping density of 2 × 1017cm−2 at around 27V. From the target
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design doping profiles and the earlier simulations, it would be expected that breakdown

be observed in these devices at a minimum of 52V for low doping in the charge layer

(Simulations 11 and 12, with low background doping in the absorption layer) and a

minimum of 40V for a high doping density in the charge layer (Simulation 5, with high

p–type background doping in the absorption layer). In addition, the higher of these two

measured breakdown voltages corresponds to the higher charge layer doping density —

the opposite effect to that observed in the simulations. No punchthrough was observed

in either of these devices, though the simulations predicted punchthrough at a maximum

voltage of 18 V for the devices with a low charge layer doping density. The simulations

for the medium charge layer doping density predicted punchthrough at voltages higher

than the measured breakdown voltage here.

This lack of correlation between simulated IV profiles and experimental measurements

suggests that target doping profiles may not have been obtained during device fabrica-

tion, and in particular, from the observed breakdown voltages in these devices, that the

charge layer doping density was significantly higher than the target density — the earlier

simulations show lower breakdown voltages for high charge layer doping. In addition,

a higher-than-expected density of p-type doping in the absorber layer would suppress

the emergence of punchthrough before breakdown in the device with a low charge layer

doping: Simulation 9 shows that the highest punchthrough voltage was obtained with

low charge layer doping for high p-type doping, and Simulations 1-8 show, in general,

the increase in voltage for, or complete loss of punchthrough (i.e. full depletion of the

absorber layer) with increasing charge layer doping density. It is hence likely, from ex-

amining the phenomena identified from the simulations, that target doping profiles were

not present in the fabricated devices. In addition to the effects on punchthrough and

breakdown voltages, this has knock–on effects on the electric field profiles and, hence,

detection efficiency and SPAD performance.

A further generation of SPAD devices was fabricated in 2013, and those with dop-
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ing profiles expected to produce working SPAD devices are shown schematically in

Figure 3.23. Secondary ion mass spectrometry (SIMS) measurements were conducted

on these devices and those from the second set discussed above (shown in Figure 3.21,

to establish the doping profiles and investigate any deviation from target doping density

values. A number of conclusions were drawn from the SIMS analysis results:

• There was a low concentration of n–type (Arsenic) dopant in the absorber layer of

the second set of SPAD devices — 1× 1015cm−2.

• There was significant diffusion of Boron (p–type dopant) from the top contact into

the Ge absorber layer in the third set of devices, with variable concentrations of

between 1× 1016cm−2 and 1× 1017cm−2. It is reasonable to assume, as they were

fabricated at similar growth temperatures, that this diffusion also occurred in the

second set of devices.

• The overall doping in the absorber layer in these devices was hence high, and of

p–type.

• The doping profile in the absorber layers was not uniform, and varied throughout

this layer through uncontrolled dopant diffusion.

• Significant diffusion of n–type dopants (Phosphorus) was also observed from the

substrate into the silicon multiplication layer, further affecting the segregation of

the electric field across the absorption and multiplication regions, and limiting the

depletion of the absorber layer.

The presence of a high concentration of p–type dopants in the absorber and diffusion of

n–type dopants into the multiplication layer would indicate that the devices fabricated

were not fully depleted, and hence could not demonstrate efficient SPAD operation.

From the IV results from Simulation 1, it can be seen that such a profile is likely to lead

to low breakdown voltages prior to full depletion of the device, and poor SPAD operation.

Although a total of six batches of SPAD devices were fabricated and processed across
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four institutions within the SPAD project, characterisation results varied significantly

between devices, fabrication of devices to the target dopant profiles provided by the

simulations proved difficult, and significant dopant diffusion from the substrate and the

top contact hindered the development of a working SiGe SPAD with good single–photon

detection efficiency. Although a detection efficiency of 4 % was eventually acheived in

Geiger mode using the second set of devices (comparable to the best results for Ge-only

SPAD devices), this required measurement at 77K, and could only be obtained at a

wavelength of 1310nm; efficiencies at the target wavelength of 1550nm were over a factor

of ten lower, due to reduced absorption in this range at low temperature. Very high

dark count rates of the order of 106 to 107s−1 were also observed [40]. Overall, good

performance in a SPAD device is critically dependent on a number of factors – dopant

distributions in the operational layers and precise layer thicknesses, and the electrical

characteristics arising from these parameters, and although the simulation results can

provide good target doping profiles and thicknesses to achieve these characteristics,

fabrication of devices to this specification is more challenging.

3.3 Conclusion

A number of doping profiles for a PiPiN SPAD device were simulated, to establish IV

curves, field and potential profiles, and carrier concentrations for these devices under

a range of doping conditions. The charge layer doping is intentional: doping of this

separation feature distributes the electric field across the device in a number of ways

depending on the density and type of charge layer doping. In addition, background

doping in the ideally-intrinsic absorption layer may affect the characteristics of a SPAD

device. It was found that breakdown voltage increases with decreasing charge layer

doping, which is to be expected since the a higher charge layer doping density increases

the overall proportion of the electric field across the device which occurs across the

multiplication layer, and hence decreases the voltage required to achieve breakdown. At

high charge layer doping, the type of absorption layer doping (p-type or n-type) plays
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no significant role in the breakdown voltage. At lower charge layer doping densities,

p-type absorption layer doping results in a lower breakdown voltage than n-type, since

the gradient of the electric field in the absorber determines the size of the electric field

in the multiplication layer, and these different doping types produce opposite field gra-

dients in the absorber. This effect becomes more pronounced when the absorption layer

doping density is higher. ‘Punchthrough’ — the effect where the potential barrier at

the interface is removed for higher bias voltages — was observed for devices with low

charge layer doping, with medium charge layer doping but low absorption layer doping,

and with medium charge layer doping and high, n-type absorption layer doping. This is,

as expected, in line with those simulations where a higher breakdown voltage is observed.

Potential profiles show a potential well in the multiplication layer, which is removed

after punchthrough. Electron and hole concentrations showed the effect of breakdown

in most simulations, where a significant increase in electron concentration was observed

after breakdown voltage. For some simulations which included the lowest charge layer

doping density simulated, a drop in electron concentration was observed in the multi-

plication layer close to the charge layer, indicating that hole-initiated impact ionisation

may have occured in the absorption layer in these simulations. This is consistent with

the high fields shown in the multiplication layer for these simulations, where the electric

field segregation between the absorption and multiplication layer was not ideal for SPAD

operation.

Effective operation of a SACM-SPAD requires control of fields between the absorption

and multiplication layers. From these simulations, it can be seen that low absorption-

layer fields and high multiplication layer fields can best be achieved with high charge layer

doping. However, the effect of punchthrough should also be considered. If punchthrough,

as defined from the application to SPADs, is the voltage at which carriers are depleted,

then a device in which punchthrough is achieved is necessary for effective operation

without dark counts or noise. From these simulations, this is achieved only when the
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charge layer doping is at an medium (2×1017cm−2) density and fields in the germanium

absorber are sufficient to deplete the region. In this case, a low absorption layer doping

density (1× 1015cm−2) of n-type is desirable to limit dark counts due to excess fields in

the germanium, while ensuring full depletion of the absorber before breakdown.

Experimental fabrication of Si/Ge SPADs proved difficult throughout the project, and

experimental measurements frequently varied significantly from the simulated charac-

teristics, indicating that target dopant profiles had not been achieved. SIMS analysis of

samples from the project confirm this conclusion, indicating that dopant diffusion from

the substrate and bottom contact and wide spatial variations in dopant distributions

within each operational layer severely inhibited the performance of the Si/Ge SPAD

fabricated, leading to low detection efficiencies and high dark count rates.
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Figure 3.1: Schematic of the band offsets between the silicon and germanium layer in a

SiGe SPAD in the flat-band case, highlighting the potential barriers for electrons traversing

from Ge into Si in the L or Γ minima [106]
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Figure 3.2: PiPiN SPAD structure
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(a) IV curve for high (5× 1017cm−2) charge and high (1× 1016cm−2) absorption layer doping –

simulations 1 and 2

(b) IV curve for high (5 × 1017cm−2) charge layer doping and low (1 × 1015cm−2) absorption

layer doping – simulations 3 and 4

Figure 3.3: IV curves for simulations including high charge layer doping
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(a) IV curve for medium (2×1017cm−2) charge layer doping and high (1×1016cm−2) absorption

layer doping – simulations 5 and 6

(b) IV curve for medium (2× 1017cm−2) charge layer doping and low (1× 1015cm−2) absorption

layer doping – simulations 7 and 8

Figure 3.4: IV curves for simulations including medium charge layer doping
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(a) IV curve for low (1 × 1017cm−2) charge layer doping and high (1 × 1016cm−2) absorption

layer doping – simulations 9 and 10

(b) IV curve for low (1×1017cm−2) charge layer doping and low (1×1015cm−2) absorption layer

doping – simulations 11 and 12

Figure 3.5: IV Curves for simulations including low charge layer doping
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Figure 3.6: Electric field profile for SPAD device with high charge layer doping and high

p-type absorption layer doping — simulation 1

Figure 3.7: Electric field profile for SPAD device with high charge layer doping and high

n-type absorption layer doping — simulation 2
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1

Figure 3.8: Electric field profile for SPAD device with medium charge layer doping and

high p-type absorption layer doping — simulation 5
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1

Figure 3.9: Electric field profile for SPAD device with medium charge layer doping and

high n-type absorption layer doping — simulation 6
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1

Figure 3.10: Electric field profile for SPAD device with low charge layer doping and high

p-type absorption layer doping — simulation 9

1

Figure 3.11: Electric field profile for SPAD device with low charge layer doping and high

n-type absorption layer doping — simulation 10
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8

Figure 3.12: Potential profile for SPAD device with low charge layer doping and high

n-type absorption layer doping, showing the removal of the potential barrier at the interface

at the punchthrough voltage (13V) — (simulation 10)
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Figure 3.13: Electron concentration profile for SPAD device with medium charge layer

doping and high p-type absorption layer doping, showing an increase in electron concentra-

tion at the breakdown voltage — simulation 5
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Figure 3.14: Hole concentration profile for SPAD device with low charge layer doping and

high p-type absorption layer doping, for voltages in the range 34-52V - breakdown voltage

is 48V — simulation 9
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Figure 3.15: Electron concentration profile for SPAD device with high charge layer doping

and high p-type absorption layer doping — simulation 1
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1

Figure 3.16: Hole concentration profile for SPAD device with high charge layer doping and

high p-type absorption layer doping — simulation 1
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Figure 3.17: Electron concentration profile for SPAD device with high charge layer doping

and high n-type absorption layer doping — simulation 2
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Figure 3.18: Hole concentration profile for SPAD device with high charge layer doping and

high n-type absorption layer doping — simulation 2

Figure 3.19: Schematic of the 1st set of SPAD devices fabricated and characterised, in

November 2011
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Figure 3.20: Reverse biased current–voltage (IV) characteristics for the 1st set of SPAD

devices fabricated and characterised in November 2011
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Medium Charge 

Layer Doping
 Low Charge 

Layer Doping

Figure 3.21: Schematic of the second set of SPAD devices fabricated and characterised in

2012
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Figure 3.22: Reverse biased current–voltage (IV) characteristics for the second set of

SPAD devices fabricated and characterised in 2012. Device identification and doping profiles

correspond to the schematic structures shown in 3.21
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Figure 3.23: Schematics of SPAD devices fabricated in 2013, with target doping profiles





Chapter 4

Band-to-Band Tunnelling in

Germanium

At the high bias voltages associated with SPAD operation, there is a significant possi-

bility of band-to-band tunnelling, wherein an electron can pass through the forbidden

band gap under the influence of a high electric field, and contribute to noise currents in

the absence of an incoming photon [1, 32]. Whereas tunnelling currents in silicon have

been studied previously [108, 109] and a number of studies have reported tunnelling cur-

rents under a range of conditions in Ge and Si based MOSFETs and TFETs,[110–113],

there are limited studies on the tunnelling currents generated in bulk germanium [114].

Although in the ideal SPAD device, the field across the germanium layer is sufficiently

low that noise currents through tunnelling and other mechanisms are suppressed, an un-

derstanding of the contribution of the tunnelling current to noise current in SiGe SPADs

is useful for development of performance. In this chapter, the band-to-band tunnelling

contributions in bulk germanium are studied under a number of conditions, using the

empirical pseudopotential bandstructure calculation method described in Chapter 2 and

a band–matching technique.

87
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4.1 Band-to-Band Tunnelling Model

The band-to-band tunnelling model used combines calculation of wavefunctions using

an empirical pseudopotential method, and band-matching to identify states which may

propagate through the bandgap to the valence band.

Calculation of band-to-band tunnelling currents in a single semiconductor material re-

quires consideration of the initial (valence band) states and the final (conduction band)

states, and the potential barrier between them, in this case the ‘forbidden’ band gap.

However, for consideration of a bulk semiconductor under the influence of an electric field,

a number of wave functions must be calculated, under each potential condition. Though

the potential is, in practice, continuous, the simulation model considers a discretized

number of equally-spaced sections of the material and of the band gap, with a step-size

determined by considering the largest step size at which the results of the calculation

converge to an acceptable limit. Each step is considered to be at some potential offset

relative to the previous step, and the Schrodinger equation within this step is solved with

in-plane wavefunctions eik||c|| assumed to have wholly real k||, and wavefunctions eik||c|| in

the z -direction permitted to have complex k||; the potential term is given by the constant

potential within this step. The appropriate form of the wavefunctions is given by Bloch’s

theorem, discussed later, and the Schrodinger equation must include a potential with

the periodicity of the lattice, given by the atomic spacing of the crystalline material [115].

For the one-dimensional case, in the z-direction, states propagate in the bands, or

exponentially decay within the barrier in both the forward and backward directions,

with coefficients in these directions given by a and b, respectively. Matching between

states in the nth and n+1 th step is given by an interfacial matrix, I, which matches

states at the interface between steps, and is given by [116]:





an+1

bn+1



 = I(n+ 1)





an

bn



 (4.1)
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Where, here, an and bn represent the vector of coefficients of all incoming and outgoing

states of the nth layer, respectively. For material under a further external potential,

incoming and outgoing wavefunctions must be coupled at the interface, which may be

undertaken using a transfer matrix, T(0,N) for N total steps, which couples all states

on the left and all states on the right:




a0

b0



 = T (0, N)





aN

bN



 (4.2)

However, this formulation may lead to numerical instability, and an alternative formu-

lation, using a scattering matrix S(0,n) couples incoming states to outgoing states from

the 0th layer to the nth layer successively:




an

b0



 = S(0, n)





a0

bn



 (4.3)

The scattering matrix after adding each successive layer n may be combined with the

interface matrix, to yield the total scattering matrix S(0, N) across the system of N

layers. The total transmission and reflection coefficients may then be calculated from

the coefficients of the incoming and outgoing states for the whole system using the

scattering matrix from the 0th to the N th layer [116], by setting an arbitrary value to

the initial incoming state a0 and calculating the right propagating states aN, which are

transmitted. Similarly, the left propagating state bN is assumed to be zero, from here

b0 gives the total reflection coefficient:




aN

b0



 = S(0, N)





a0

bN



 (4.4)

Following calculation of one-dimensional transmission coefficients across all energies in

the bandstructure, and across a grid of all possible values of the in-plane wave vector

in the remaining two dimensions, the total tunnelling current may be calculated using

[117]:

j =
(−e)

(2π)3~

∫

BZ||

dk||

∫ +∞

−∞
dE ×

∑

k−j

∑

k+i

T(L,k−j →R,k+j )(k||, E)[fR(E)− fL(E)] (4.5)
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where the outer integral extends over all 2-dimensional wavevectors in the plane per-

pendicular to the direction of current flow, within the first Brillouin Zone. k|| represents

the integral across in-plane k-vectors in the x and y directions, E represents the integral

across all energies in theory, but is applied to the energy range used in the simulations

in practice, T are the transmission coefficents between states on the left and states on

the right, and fL and fR are the Fermi-Dirac distributions for the left and right states,

respectively. The difference between the Fermi-Dirac distributions of these states may

be set to 1, since the summation in Equation 4.5 applies only across all propagating

states on the left and all propagating states on the right. These states can be assumed

to have an occupancy of 1 on the left and 0 on the right for an undoped semiconductor,

and are the only current carrying states; all other states may be assumed to have equal

occupancies, and hence lead to a value of [fR(E) − fL(E)] of zero. Although some dif-

ference in Fermi occupancy of the left and right states may exist at temperatures of above

In summary, in this formulation, the calculated, ‘allowed’ states in the conduction

and valence bands will take the form of plane waves, and the tunnelling states in the

bandgap will be evanescent states decaying in either the forward or reverse direction.

Matching of these wavefunctions across steps in the semiconductor structure, using the

technique described above [116], leads to calculation of the probability of tunnelling un-

der a given set of conditions, and the associated transmission coefficient for each energy

in the bandstructure.

The complex band structure of Ge was calculated using the local empirical pseudopo-

tential method [115]. Although addition of the nonlocal part in real band structure

calculations can improve the accuracy of the calculations somewhat, in typical semi-

conductors, such as Ge, good accuracy can be obtained using a local potential only;

in addition, for calculation of complex bandstructures adding nonlocality results in a

nonlinear eigenvalue problem (with complex wavevectors in the z-direction), which is

much more difficult to solve than the linear problem arising from the use of a local
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Simulation Parameter Setting

k-parallel Range 0.0/0.0 - 0.2π
a

/0.2π
a

Lattice Constant 5.658 Å

Monolayer Thickness 2.829 Å

Table 4.1: Simulation parameters for band-to-band tunnelling calculations on bulk Ge

pseudopotential. The scattering-matrix method discussed above was used to calculate

transmission co-efficients [116]. The calculation method used to generate currents from

transmission coefficients is described in equation 4.5 and explained in detail in [117].

The spin-orbit interaction was included in the calculation, as this is significant in Ge,

and does not add significantly to the computational burden.

A number of simulation parameters were applied to the calculations, including the

types, parameters and thicknesses of material layers, the applied reverse bias voltage,

the in–plane k-grid point (expressed as fractional coordinates in the x - and y- direc-

tions), the energy range over which which transmission coefficients are to be calculated

and pseudopotential formfactors. Spin-orbit interaction parameters and the V3, V8 and

V11 form factors were obtained from [118], and layer thicknesses are expressed in num-

bers of monolayers, equivalent to 0.5 of a lattice constant for a cubic cell of germanium

- 2.829 Å. The basic parameters used in the simulations are shown in Table 4.1. For

simulation of direct band-to-band tunnelling, where no change in momentum occurs,

the total bias voltage should exceed the bandgap. Initial high-resolution calculations

on bulk germanium with a thickness of 10 monolayers (28.29 Å) and no applied voltage

were undertaken to identify the empirical location of the bandgap for bulk germanium.

This was identified to be between 9.429eV and 10.550eV at Γ - a gap of 0.713eV. Hence,

the applied bias voltage lower limit was set to this bandgap to ensure that band-to-

band tunnelling was possible. Simulations were conducted within an energy range up to

the valence band edge. Figure 4.1 shows the range of energies selected for simulation

schematically. The software required calibration over a number of parameter grids, to
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Figure 4.1: Schematic of the energy range selected for band-to-band tunnelling simulations

identify the appropriate ranges and grid sizes for simulation.

4.2 Calibration and Optimisation of Simulation Grids

The calculation requires calibration over a number of parameters: energy grid size, k-

grid size and digitising step size, which determines the number of ‘slices’ into which the

total thickness of the simulation cell is divided, by defining an energy step over which

the applied potential is discretized. Calibration of energy grid size was undertaken by

calculating the total tunnelling current for a single in–plane k-grid point (0, 0), for 354

monolayers with a total bias voltage across this thickness of 1V, for a range of energies

from 8.5-9.5 eV. The calibration was undertaken for a range of energy divisions from

21 to 201, and the result is shown in Figure 4.2. The calculation was performed for

tunnelling current in arbitrary units – physical constants were not included. The cal-

ibration converged at an energy division of around 91, where a less than 2% variation

between results was observed. An energy grid density of 101 energy points per 1V of

bias voltage, rounded to the nearest odd number for each bias voltage used, was chosen

for further simulations.
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Figure 4.2: Energy grid calibration curve for band-to-band tunnelling simulations

Calibration of k-grid size was undertaken by calculating the total tunnelling current

for all in–plane k-grid points between 0.0/0.0 and 0.2π
a

/0.2π
a

(where a is the lattice con-

stant of germanium) with a grid spacing of between 0.01 and 0.001, for 80 monolayers

with a total bias voltage across this thickness of 2V, and a range of energies from 8.0-9.5

eV. The result is shown in Figure 4.3. The calibration showed some convergence at a

k-grid size of 0.005, where the variation between this result and subsequent results was

around 12%. As the simulation time scales quadratically with k-grid size, maintaining

the largest possible grid spacing is essential for computational efficiency. The k-grid size

of 0.005 is approximately similar to that used in other studies ([117] and was chosen to

optimise calculation time and result precision.

Calibration of digitizing step size was undertaken by calculating the total tunnelling

current for one in–plane k-grid point (0.0/0.0) for 354 monolayers with a total bias

voltage across this thickness of 1V (giving an overall field equal to the breakdown field),
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Figure 4.3: k-point grid calibration curve for band-to-band tunnelling simulations

for a range of energies from 9.0-9.5 eV. The calibration was undertaken for a range of

digitizing step sizes from 0.01 eV to 0.10 eV, and the result is shown in Figure 4.4. A

digitising step size of 0.01 eV was used in the calculations.

4.3 Variation of Total Tunnelling Current with Bias Volt-

age

The total tunnelling current over a range of bias voltages was simulated, for 800 mono-

layers (0.226 µm) of bulk germanium, in a range from 1.5 to 6.4V in 0.1V steps, across

an energy range equivalent to the size of the bias voltage, as indicated in Figure 4.1,

to just over the valence band edge. Within this range, as shown in Figure 4.1, the

transmission current calculated will be that only due to band-to-band tunnelling (rather

than those due to transport wholly within the valence or conduction bands) as the

Fermi occupancies of any other initial and final states would be be equal, giving zero

contribution to the Fermi occupancy difference in Equation 4.5. This calculation was
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Figure 4.4: Digitizing step size calibration curve for band-to-band tunnelling simulations

undertaken at a fixed energy-grid size of 101 points, for computational efficiency, as cal-

culation of transmission coefficients becomes more computationally expensive for high

bias voltages. The tunnelling current with respect to bias voltage is shown in Figure

4.5, plotted on a logarithmic scale. Tunnelling currents were found to be negligible for

lower bias voltages, falling consistently below 1× 10−4Acm−2 for voltages up to 3.5V —

150% of the breakdown field in germanium — with only minor numerical instability in

an otherwise slowly rising current. The tunnelling current rises rapidly above around 5V

— corresponding to electric fields more than double that of the breakdown field — and

continues to rise steeply to significant currents up to the final simulated voltage of 6.4V,

or close to 300% of the breakdown field. The current showed a steadily increasing rela-

tionship when plotted on a logarithmic scale, which approached near linearity above 4V,

indicating an exponential dependence of the current on bias voltage. Hence, operation

of a SPAD at voltages significantly above the breakdown field may be expected to lead

to significant tunnelling currents in bulk germanium. Effective partition of the electric

field, as discussed in Chapter 3, is essential to maintain low fields in the germanium
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Figure 4.5: Band-to-band tunnelling current with changing bias voltage for a 0.266 µm

thickness of bulk Ge

absorption layers and prevent high dark counts through tunnelling currents.

The total current between different regions of the bandstructure was calculated, by

extracting transmissions between regions from the full set of transmission data. Here, a

Γ state in the valence or conduction band was defined to be any state where the real part

of kz was less than ±
π
a
and an X-state was one where the real part of the kz was greater

than π
a
or less than −

π
a
. In either case, the complex part of the k-vector should be zero,

indicating a plane wave in the valence or conduction band rather than an evanescent

tunnelling wave, as discussed above. Although the entire bandstructure was divided

evenly between Γ and X states using these definitions, the energy range used, shown

schematically in Figure 4.1, covering the bandgap region, excludes states too far distant
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from the Γ and X valleys at lower bias voltages as these would fall, in the conduction

band, at an energy higher than the simulation range. The tunnelling between different

bandgap regions is shown in Figure 4.5.

The analysis showed that the largest contribution to the tunnelling current calculated

above was due to transmission between Γ valence states and Γ conduction band states,

as may be expected. The next greatest contribution came from current between X and

Γ, and tunnelling currents arose almost entirely from the contributions between these

two sets of regions. The X to Γ contributions increased sharply after a bias of around

2.2V. The Γ to Γ bandgap is around 0.713eV, and the X valence band to Γ conduction

band gap is 0.781 eV, hence these transitions are easily accessible for tunnelling, with

the former having a higher tunnelling probablity at lower voltages. Significantly smaller

(by one or two orders of magnitude) contributions from the valence band at Γ to the

conduction band at X, and from the valence band at X to the conduction band at X

were observed, reflecting the larger energy gap for these transitions — over 1eV. Broadly,

the transitions between individual bandstructure regions followed the same exponential

trend as the overall tunnelling current. A number of small peaks are observed across

all curves, but may be most likely attributed to numerical noise arising from the lower

resolution of this calculation. No transitions to the L–valley were observed in these simu-

lations; the 100 germanium orientation used in the simulations precludes any transitions

in this direction.

4.4 Total Tunnelling Current with Changing Thickness

The total tunnelling current over a range of thicknesses of bulk germanium from 550

to 1550 monolayers (0.156 µm to 0.438 µm) in 50-monolayer steps, was calculated, for

an energy range equivalent to the applied bias voltage, as discussed above. The bias

voltage for the simulations was adjusted such that the total field across the germanium

thickness was maintained at 100% of the breakdown field for germanium. The tunnelling
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current with respect to germanium thickness is shown in Figure 4.6, plotted on a loga-

rithmic scale. The total tunnelling current in Figure 4.6 shows a broadly linear trend.

Figure 4.6: Band-to-band tunnelling current with changing thickness at 100% of Ge break-

down field

Increasing the thickness introduces a greater number of states for tunnelling on both the

valence band and conduction band sides of the calculation, and this effect results in this

upward trend. An analysis of tunnelling between bandstructure regions was conducted

for thickness dependence, and is shown in Figure 4.6. For thicknesses below 850 mono-

layers, the current arises almost entirely from Γ to Γ transitions. Between 850 and 1550

monolayers — bias voltages of 2.26 to 4.38 V — an increasing contribution from X to

Γ transitions is observed, indicating the availability of further valence band states for

tunnelling at increasing thickness. Γ to Γ and X to Γ transitions are easily accessible

for tunnelling at this field. Deep valence band states and high conduction band states
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are only at higher thicknesses – reflected in the small contributions made by Γ to X and

X to X transitions to total tunnelling current. The X to X tunnelling current was zero

up to a thickness of 850 monolayers, indicating that tunnelling between these valence

and conduction band states is only instigated above a critical thickness of germanium.

For sufficiently thick samples, a saturation in the tunnelling current should be observed,

where no further valence band states become available for tunnelling. Additionally, teh

transmission coefficients will reduce with increasing thickness. Ideally, the calculation

should be run for a greater number of monolayers.

4.5 Temperature Dependence of Tunnelling Current

The temperature dependence of the tunnelling current was calculated. As the simulation

code has no direct method for adjusting temperature data, a method based on adjustment

of form factors and calculation of the associated change in bandgap was used. The

formula developed by Varshni [119] calculates the adjustment in bandgap due to a change

in temperature:

Eg(T ) = E0 −
αT 2

T + β
(4.6)

Where α and β are empirical fitting parameters, and E0 denotes the bandgap at zero

temperature. Hence, the change in bandgap ∆Eg arising from a change in temperature

may be given by:

∆Eg(T2 − T1) =
αT 2

2

T2 + β
− αT 2

1

T1 + β
(4.7)

Applying Varshni coefficients for germanium obtained from literature [52] to Equation 4.7

provides a relationship between the temperature change and the change in bandgap, and

allows modelling of the effects of change in temperature, by changing the bandgap. The

fitting parameters used in Equation 4.6 are listed in Table 4.2. The indirect bandgap

obtained using the original form factors corresponds to a temperature of T1=270K, using

these fitting parameters. As the temperature dependence of the tunnelling current was

sought, the bandgap shift, and hence the formfactor adjustments, were performed relative

to this reference temperature. The range of temperatures T2 over which the bandgap
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Table 4.2: Fitting parameters applied to the Varshni formula for calculating bandgap

dependence on temperature

α at Γ 5.82 × 10−4

β at Γ 296

α at X 4.73 × 10−4

β at X 636

α at L 4.77 × 10−4

β at L 235

adjustment was made corresponded to T=170-470 K in 20 K steps. The change in

bandgap due to variations in temperature was implemented by determining the appro-

priate change in form factors required to implement this bandgap in the pseudopotential

code. Initial inputs to the code included the V3, V8 and V11 form factors, and any

change ∆V in these can be related to a change in the bandgap at X, L or Γ using the

following matrix relation:











∆V3

∆V8

∆V11











=











aΓ3 aΓ8 aΓ11

aX3 aX8 aX11

aL3 aL8 aL11











−1 









∆EΓ
g

∆EX
g

∆EL
g











(4.8)

Here, the coefficients a of the matrix are determined by examining the simulated band

gap change observed when making a small change in each form factor individually. To

determine these coefficients, each form factor was changed separately by 1%, and the

bandgap changes at X, L and Γ for each case were examined. The coefficients axn may

then be calculated using the following formula:

axn =
∆Ex

g

∆Vn

(4.9)

Where ∆Eg is given by:

∆Ex
g = ∆Ex

c −∆EΓ
vb (4.10)
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Table 4.3: Coefficients calculated for each bandgap change by changing V3, V8, V11

formfactors

Γ X L

a3 -1.2800 -12.994 -15.566

a8 -93.061 -148.98 -117.96

a11 -102.17 -79.924 -81.709

and ∆Ex
c , ∆Ex

vb, with x =L, X Γ, refer to the conduction and valence band edges at

different symmetry points in k-space, respectively. The coefficient inputs to equation 4.8

derived from the bandstructure calculations undertaken after changing each form factor

individually are shown in Table 4.3: From here, the form factors may be adjusted using

Equation 4.8, to obtain the required change in bandgap. It is notable that the bandgaps

assigned to the original form factors, obtained from literature values, were calculated

for an arbitrary value of temperature. However, form factors represent empirical fitting

data which may be specific to the computational method originally used to obtain them.

For example, a limited plane–wave basis set, used for computational efficiency, may be

adjusted by the use of appropriate form factors such that a simulated bandstructure

matches experimental data as closely as possible. Furthermore, the number of form

factors used (in this case 3) reflects the accuracy of the fit to experiment, and the use

of more form factors may reflect the need to fit more closely to experimental parame-

ters, while the use of fewer may indicate that the data is fitted to a limited number of

degrees of freedom of the experimental data, though it may be sufficiently accurate for

the required use.

A change in temperature would result in a change in the the Fermi occupancies fL

and fR given in Equation 4.5. However, within this temperature range, for an un-

doped semiconductor, these changes in occupancies may be considered insignficant. A

calculation of the change in the Fermi occupancy difference at the highest temperature

simulated, 470K, at the Γ point yielded a difference ∆(fR − fL) of around 0.03%, in-
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dicating that the assumption of filled valence band states and empty conduction band

states throughout the temperature range considered.

A number of other factors may be affected by a change in temperature, including lattice

constant. The low thermal expansion coefficient of germanium (5.9 × 1016C−1, linear)

suggests that, within the temperature range studied, the change in lattice constant will

be negligible compared to the order of change of bandgaps applied; nonetheless the

lattice constant was adjusted for simulations at each temperature using this linear ex-

pansion coefficient. Hence the method used here, changing only the bandgap in response

to a change in temperature, represents a simple but fast technique for investigating the

tunnelling dependence on temperature.

The results of the calculation of the tunnelling current vs temperature dependence

on a logarithmic scale are shown in Figure 4.7, for a temperature range of 270–470K

under a bias voltage of 2.362V over 800 monolayers, a field equivalent to 100% of the

breakdown field for germanium. The tunnelling current shown on Figure 4.7 shows

a linear trend, indicating an exponential relationship between increasing temperature

and tunnelling current.The effect of increasing temperature, given by Equation 4.6 and

considering the range of coefficients α and β used, should be a first-order decrease in

bandgap. Hence, this result also implies an inverse exponential relationship between

the bandgap size and tunnelling current. A comparison between the calculated target

bandgap changes for each temperature, given by Equation 4.6 and the bandgap output

from the simulations indicated a maximum deviation between these numbers of 0.87%,

indicating that this provides an accurate method of simulating the effect of temperature

on tunnelling current.

An analysis of tunnelling between bandstructure regions was conducted for thickness

dependence, and is shown in Figure 4.7. By far the greatest contribution to total tun-

nelling current was transitions between the valence bands and conduction bands at Γ.
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Figure 4.7: Band-to-band tunnelling current with increasing temperature at 100% of Ge

breakdown field

From the previous discussion of the effect of the bandgap at these regions, and given

that these simulations were undertaken at a bias voltage at which Γ to Γ transitions have

dominated in previous calculations, this result is to be expected. A smaller contribution

from the X to Γ region, following broadly the same trend as the total tunnelling current,

was also observed. No X to X transitions were observed at this bias voltage, and this

is again consistent with previous calculations — in the calculation of tunnelling current

with bias voltage given in Figure 4.5, no X to X transitions were observed until a voltage

of 2.4V, and the narrowing of the bandgap with increasing temperature does not appear

sufficient to initiate X to X transitions at this bias voltage, for this range of tempera-

tures. Γ to X transitions showed significant fluctuations, and the current between these

regions frequently lay above that observed from the X to Γ transitions, in contrast to



104 4.6. Conclusion

the previous results, where this transition showed only a small contribution to the total

tunnelling current. The Γ to X transmission current rises to peaks at 330K and 430K

and drops to troughs at 390K and 450K. Assigning states to either Γ or X relies on an

arbitrary separation of states either side of the mid-point between Γ and X; if there are

a large number of states close to the mid-point, this may result in fluctuations in the

current calculated for each transition.

4.6 Conclusion

In this chapter, band-to-band tunnelling currents for bulk Ge were calculated for a range

of parameters, including the bias voltage across the germanium, changing Ge thickness,

and the change in bandgap due to a change in temperature. Since SPADs are operated

above breakdown voltage, band-to-band tunnelling within the Ge absorption layer may

present a significant source of noise currents and dark counts. Bias voltage was found to

have a significant impact on band-to-band tunnelling currents, with an exponential in-

crease in tunnelling current with increasing bias voltage. As bias voltage was increased,

tunnelling between deeper states, such as valence band X to conduction band Γ was

observed. At above 200% of the breakdown field for Ge, the tunnelling current was

found to rise rapidly, hence, operation of a SPAD considerably above breakdown voltage

may lead to significant noise currents.

The variation in tunnelling current with increasing thickness of the Ge layer was calcu-

lated, for a fixed electric field. The tunnelling current was found to rise broadly linearly

with increasing layer thickness, indicating that a greater number of valence and conduc-

tion band states become available for tunnelling with increasing thickness. In particular,

deeper transitions such as those between valence band X and conduction band Γ were

found to increase at higher thicknesses. The tunnelling current is expected to plateau
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above a certain thickness of Ge, where no further states are available for tunnelling,

however this effect was not observed within the thickness range simulated. The thick-

nesses simulated here — up to 0.44 µm — remain below the indicative thickness of the

Ge absorption layer for the current SPAD designs of 1µm indicating that a significant

contribution to tunnelling current from all regions of the bandstructure may be expected

in all regions of the Ge absorber if the electric field is sufficiently high.

The temperature dependence of the tunnelling current was calculated, by adjusting the

formfactors used in the empirical pseudopotential calculation to generate an adjusted

bandgap at each temperature, according to Varshni’s [119] formula. An exponentially

increasing relationship between temperature and tunnelling current was observed, indi-

cating that the decrease in bandgap with increasing current results in a higher probability

of tunnelling between all regions of the Brillouin Zone. The greatest contribution to the

tunnelling current in this case arose from valence band Γ to conduction band Γ tran-

sitions. This method represents a simple formulation for calculation the temperature

dependence of the tunnelling current.

From the IV curves given in Chapter 3, simulated avalanche currents in SPADs range

from orders of 102 to 10−4 Acm−2. Band-to-band tunnelling currents simulated here at

the Ge breakdown field are of the order of 10−12 Acm−2, and increase with bias voltage

beyond this point, approaching the lowest orders of the avalanche current for fields at

around 150% of the nominal breakdown field for Ge. Hence, band-to-band tunnelling

currents will become significant contributors to noise currents at voltages significantly

above breakdown, but are likely to make only a small contribution to noise current pulses

at lower fields. However, band-to-band tunnelling may be important at high fields in

samples thinner than the characteristic ionisation length, where carriers are not in the

sample for a sufficient length of time to undergo impact ionisation processes.

[40] characterise dark count rates for SiGe SPADs grown within the SPADs project.
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At room temperature, dark currents ranged from 0.04 to 0.4 Acm−2 with increasing bias

voltage. Again, band-to-band tunnelling currents will be observed within an order of

magnitude of these values only at 160% of breakdown field — band-to-band tunnelling

currents may contribute significantly to the overall dark current at very high bias volt-

ages, considerably above breakdown, but are likely to make only a small contribution to

the dark current at lower fields.



Chapter 5

Electronic Structure of Defects in

Bulk Germanium

In the work presented in previous chapters, models were developed to describe the the

electronic characteristics of SPADs with different doping profiles, and to quantify the ef-

fect of band-to-band tunnelling in germanium. However, these models used a germanium

layer that was assumed to be free from defects, with an ideal bandstructure generated

on this assumption. As discussed in Chapter 2, in realistic silicon-germanium heteroepi-

taxy the lattice mismatch between silicon and germanium results in strain within the

germanium layer up to some critical thickness [65] and defects within the germanium for

layers grown above this thickness [66] — a situation that is applicable to the germanium

thicknesses used in SPADs.

The structure of defects has been discussed in Chapter 2. A number of previous

studies have been conducted to establish the atomic and electronic behaviours of defects

in semiconductor materials, and point defects and insterstitials have been studied exten-

sively both experimentally and theoretically [120–128]. Broadly, work in this area has

provided significant background on the nature of point defects and interstitials, confirm-

ing the presence and energetics of the dangling bonds around these defects in diamond

107
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structures, and describing the effect on strain, lattice distortions, dopant diffusion and

electronic properties, particularly in silicon.

A number of works have discussed the structure and electronic properties of dislocations

in diamond structures, using ab initio and experimental approaches [129, 130].[131]

notes that studies on the electronic structure of defects in Ge are limited, although

some experimental work has been undertaken on irradiation induced point defects and a

trap centre 0.31eV below the conduction band identified [132–134]. Other studies have

identified bandgap states 0.82 eV above the valence band minimum, from an ab initio

study of germanium interstitials [135], and [136] identified defect levels in germanium at

0.05 eV and 0.11 eV above the valence band edge at the Γ point for hydrogen-passivated

dangling bonds. However, the ab initio method used in the latter calculations was found

to underestimate the Ge band gap, and a number of empirical corrections were applied.

These values have nonetheless been used in device-level simulations of SiGe SPADS [137].

DFT has attracted attention as a highly-powerful and computationally efficient tech-

nique for calculating electronic structures for a range of materials [138], however, there

have been limitations to the application of DFT to semiconductor materials, particu-

larly Ge, because of the narrowing or disappearance of the band gap, a phenomenon

discussed in 2. A number of techniques have been applied to address this limitation,

including the use of fitting parameters, adjustments to the self–interaction introduced

by the use of LDA or GGA functionals, or development of physically ‘good’ potentials

for the system [99, 136, 138–141]. A further difficulty in calculating bandstructures for

crystalline materials containing defects arises from the periodic supercell formulation

used in DFT: insufficiently small supercells can lead to interaction between adjacent

cells and interference in energy minimisation or electronic structure calculations [77].

In this chapter, DFT simulations using the CASTEP software are conducted, to identify

optimised geometric configurations of misfit dislocations in Ge, and the additional band
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gap states that arise from these.

5.1 The CASTEP Software

The CASTEP software [142] was used to perform geometry optimisations and calcu-

late electronic bandstructures for Ge cells containing a misfit dislocation. The DFT

method implementation within CASTEP involves formulation of a set of one-electron

Kohn-Sham equations, which are then are solved using the plane-wave pseudopotential

approach. As described in 2, Blochs theorem is applied to expand the wavefunctions in

a plane-wave basis set, the electron-ion potential is described using a pseudopotential,

and interactions between each electron are encapsulated in an exchange–correlation func-

tional. A self-consistent energy-minimisation algorithm is used to solve the electronic

wavefunctions and the corresponding charge density, and a number of other corrections

and parameters may be applied in the software [142].

One initial step for development of a simulation model for bulk germanium contain-

ing defects is the development of a set of parameters applicable to the simulation. These

were developed using a primitive cell of undefected germanium.

5.2 Simulation Models

Germanium has a diamond structure with a primitive rhombohedral cell and a conven-

tional cubic unit cell, as shown in Figure 5.1. The CASTEP software uses periodic

boundary conditions, and hence any supercell provided for simulation will be replicated

periodicially across all 3–dimensional space. Simulation of bulk germanium therefore

requires only provision of a single primitive cell to reproduce the full structure of bulk

germanium. The primitive cell was provided to the CASTEP input file using Cartesian

lattice vectors and the relative positions of the two Ge atoms within the cell, and a

number of parameters were established using this initial cell.
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Figure 5.1: The rhombohedral primitive unit cell of silicon and germanium, and the con-

ventional cubic cell

The cutoff energy which would yield sufficient accuracy while minimising computational

requirements was determined using a calibration on the primitive cell. A single-point

energy minimisation was calculated for the primitive cell using a Monkhorst-Pack grid

[100] with a spacing of 0.04 Å−1 (usually sufficient for most calcuations), using default

parameters and a range of cutoff energies to either side of the default value of 300 eV.

The cutoff energy at which the single–point energy calculation showed convergence was

found to be 400 eV. Further calculations were carried out using a ‘FINE’ basis set pre-

cision, indicating a convergence of atomic energies of about 0.1eV/atom.

Since the number of plane waves used in the basis set will vary with cutoff energy,

depending on the density of the k-point grid defining reciprocal space, a correction fac-

tor may be applied, accounting for the difference in the number of plane waves in a basis
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set using an infinitely dense k-point grid, and that using a discrete k-point grid. The

correction is based on the derivative of the total energy of the system with respect to

the natural logarithm of the cutoff energy [143]:

dEtot

dlnEcut

(5.1)

Applying this basis set correction was found to yield slightly more accurate results and

was therefore applied to all further simulations. The convergence tolerance for simula-

tions — the difference in energy between successive self-consistent calculations at which

the simulation was assumed to be fully converged — was set to 1× 10−4 eV for geome-

try optimisation calcuations, and 1× 10−7 eV for electronic structure calculations, and

calculations were performed without spin polarisation.

As discussed, loss of bandgap is common problem in DFT calculations performed for Ge.

Here, the choice of pseudopotential and exchange–correlation functional was considered

to minimise this problem and produce a Ge bandstructure with bandgaps matching

experimental values as closely as possible. Pseudopotentials may be norm–conserving,

wherein the requirement that the calculation of valence orbital energies must match

those achieved from an all–electron calculation is maintained, or ultrasoft, which re-

laxes this requirement. Initial calculations were undertaken using the norm–conserving

pseudopotential Ge 00.recpot provided with CASTEP. This pseudopotential treats the

3d10 electrons as core, and has been previously successfully applied to calculations of

Ge–dimer relaxation on Si(100) [144] and Ge bonding on the Si(100) surface [145]. The

treatment of the 3d10 electrons as core makes this pseudopotential extremely com-

putationally efficient, however, it may also introduce significant inaccuracies into the

calculation of electronic valence wavefunctions, by incorporating valence electrons into

the core part of the pseudofunctions.

A number of LDA and GGA exchange–correlation functionals are available within the

CASTEP software. Here, the Revised-Perdew-Burke-Ernzerhof (RPBE) functional [146]
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was used. The original Perdew-Burke-Ernzerhof functional [147] was designed to satisfy

conditions that are energetically significant for a uniform electron gas, and neglecting

conditions, such as second-order gradient co-efficients in the slowly–varying limit, that

have little effect on energetics of the system, in contrast to earlier functionals. The

RPBE functional was further developed along the same principle as PBE, but with

parameterisations applied to match chemabsorption data.

The bulk Ge bandstructure produced using these parameters is shown in Figure 5.2

and Table 5.1 compares the established experimental bandgaps for bulk Ge with those

obtained from the simulation using these parameters. Using this set of parameters, the
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Figure 5.2: Optimized bandstructure for bulk Ge

bandgap found at Γ varied by within 1% of the experimental values and that at L by

around 5%. There was a greater discrepancy in the bandgap at X, of around 23%.

Further simulations were undertaken with a more computationally–expensive pseudopo-

tential in which the 3d orbital electrons are treated as valence, and these results are

shown in Figure 5.3. Use of this pseudopotential leads to loss of the bandgap at Γ
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Table 5.1: Comparison of experimental and simulated bandgaps for bulk Ge [103]

Bandgap Experimental eV Simulated eV % Change

EL 0.66 0.628 5%

EX 1.2 0.972 23%

EΓ 0.8 0.808 1%
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Figure 5.3: Optimized bandstructure for bulk Ge, using a pseudopotential in which the 3d

electrons are treated as valence

and a signficant increase in computational time — from around 200 seconds to in excess

of 3 hours for this primitive cell. The descrepancies in the bandgaps at X and L were

broadly of the same order as those observed using the Ge 00.recpot potential. Although

treatment of the 3d10 orbitals as core rather than valence may introduce some inaccu-

racies to a full–bandstructure calculation, here, the representation of the bandgap, and

the ability to complete calculations with limited computational burden were key compe-

nents of the modelling approach, and the more computationally–efficient Ge 00.recpot

pseudopotential was therefore retained for further simulations.
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Simulation of misfit dislocations in bulk germanium requires development of a cell con-

taining an artificially –placed dislocation. This was obtained by removing atoms from a

supercell of bulk germanium. The periodic boundary conditions used by the CASTEP

software mean that this cell will be replicated across 3–dimensional space, so one require-

ment for the simulation supercell was ideally that the cell should be sufficiently large

that adjacent cells, containing a dislocation each, replicated the defect density found in

physical systems. The dislocation density for realistic heteroepitaxially–grown germa-

nium is of the order of 1 × 107cm−2 [75] or about one every million atoms. However,

DFT calculations can be computationally–expensive and require, even ordinarily, high

performance computing (HPC) resources for anything other than very basic simulations.

Additionally, the presence of the defect within the cell disrupts the inherent symmetry

found in bulk germanium, and further increases the computational load, as symmetric

cells may be computed more efficiently by applying symmetry operations to simplify

the calculation. Hence, simulation of Ge with physically–realistic defect densities is not

possible at this level of theory.

Instead, 2–dimensional supercells of Ge, in which as many atoms as possible are used

in two lattice directions, (designated x and y) while maintaining a cell only one lat-

tice vector deep, and with a missing atom, in the third dimension, designated z were

used. Tesselation of the cell through space to maintain periodic boundary conditions will

propagate a misfit dislocation in this z–direction in a physically–realistic way. Hence,

the limitation placed on the number of atoms for practical simulation may be applied

optimally to separation of adjacent dislocations, in the x– and y– directions, since no

spacing is required in the z– direction.

A number of supercells of germanium containing a line of missing atoms across half

the x–length of the cell were simulated.The supercell sizes are described by the num-

ber of primitive unit cells they were composed of in the x– and y– directions, and are

shown in Figure 5.4, and an of a representative supercell propagated through space is
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(a) 8× 6× 1 supercell (b) 12× 8× 1 supercell

(c) 16× 10× 1 supercell (d) 20× 12× 1 supercell

Figure 5.4: Germanium supercells with misfit dislocations used for DFT calculations

shown in Figure 5.5. A number of calculations were perfomed using these cells and

the parameters discussed above: geometry optimization was conducted for each cell,

to establish what cell size began to yield convergent optimized geometries and provide

an amended structure for subsequent bandstructure calculations. These geometry opti-

mized cells were then used to calculate bandstructures for the defected cells. From here,

a post-processing step was used to identify electronic states arising from defects in each

cell at the Γ point, and calculate the energies of each defect state.

Geometry optimisation in CASTEP establishes a ground state energy for the electrons,

then optimises the ionic positions, within, in this case, a fixed unit cell size and shape.

The minimum energy and enthalpy configuration for the ionic system corresponds to

zero force and stress; the forces arise from the pseudopotential applied to the calculation,
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Figure 5.5: 12× 10× 1 supercell of Ge containing a misfit dislocation, propagated across

3–dimensional space

and from the ion-ion Coulomb interaction, while contributions to stresses arise from the

kinetic energy of the ions and the Hartree energy. Within the DFT framework, the opti-

mised geometry is obtained by finding a global minimum in the overall multi-dimensional

potential energy surface constructed from the basis sets discussed previously [148].

Geometry optimisation was performed for all cells containing a defect to obtain an

energy-relaxed structure for the manually-placed misfit dislocations. It was necessary

to maintain the size and shape of the unit cell (i.e. the lattice vectors) and optimise

within this structure, as the post–processing algorithm used for calculation of Γ–point

energies requires that the supercell lattice vectors are integer multiples of the unit cell

lattice vectors.
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5.2.1 Geometry Optimisation Parameters

The BroydenFletcherGoldfarbShanno (BFGS) algorithm was used for the geometry op-

timisation calculations. This is a quasi-Newtonian method that uses the approximation

that the energy surface is quadratic about an energy minimum, and thus attempts to

minimise the second derivative of the energy potential surface to find optimised atomic

configurations [148].

5.2.2 Geometry Optimisation Results

The result of the geometry optimisation for the 8×6×1 supercell containing a misfit dis-

location is shown in Figure 5.6. A small number of atoms around the misfit dislocation

show significant movements, while others have remained close to their original positions.

Overall, the 8×6×1 geometry optimisation yielded large atomic movements around the

Figure 5.6: Geometry optimised 8 × 6 × 1 supercell of Ge containing a misfit dislocation,

with original input cell inset

dangling germanium atoms found along the misfit line, and smaller movements in the

remainder of the cell. Qualitatively, the optimised geometry for this supercell showed

that dangling bonds were retained within the dislocation core, and little reconstruction
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was observed.

A calculation of the changes in bond angles from the theoretical crystalline structure for

Ge, with a bond angle of 109.47°, showed that all bonds showed some deviation from the

theoretical value, although for the majority of these — 345 of the total of 518 bond sets

— this deviation was less than 1°, and for 53 bonds the deviation was less than 0.1°. The

largest deviations were observed around the dislocation line, with angles ranging from a

maximum of 123.22°(a 12.6% deviation) to a minimum of 79.2°(28% deviation) for one

bond within the dislocation core. These maximum and minimum values are both lower

than those observed in previous studies of dislocation structures in diamond structures

for well–reconstructed dislocations (around 135-138 °maximum and 95-96 °minimum),

however bond–angles as low as 50°have been observed for ‘kink’ structures in dislocations

in diamond materials [149–151].

The deviations in bond length for this configuration were calculated, and a bond

stretched by 11.5% compared to the theoretical value for bulk Ge of 2.45 Å was ob-

served for one bond in the dislocation core, with a number of other bonds stretched

by up to around 5-6% within the dislocation core for Ge atoms with dangling bonds.

Compressed bonds were also observed, generally adjacent to the stretched bonds, but

with a maximum deviation from the theoretical value of 2.7%. Compared to previous

calculations of changes in bond lengths in dislocation structures in diamond materials,

which generally showed discrepancies of less than 3%, [149–151], a small number of

bond–length changes calculated here were considerably higher, and most likely indicate

that the cell is not relaxed to physically–realistic structures around the dislocation at

this cell size. It has been observed that incomplete reconstruction of dislocation cores in

small supercells can lead to additional stresses within the cell, and formation of stress–

induced electronic bands in electronic calculations [130], and this cell size is therefore

unlikely to yield electronic structure results that adequately reproduce the band gap

states arising from dislocations in bulk Ge.
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The geometry–optimised 12 × 8 × 1 supercell is shown in Figure 5.7. Again, for

Figure 5.7: Geometry optimised 12× 8× 1 supercell of Ge containing a misfit dislocation,

with original input cell inset

the 12 × 8 × 1, a number of distorted bonds were found around the dislocation core,

with a maximum bond angle of 125°and a minimum of 72°. However, this was for a

small number of angles, and 868 out of the total of 1082 angles showed a less than 1%

deviation from the theoretical value for bulk Ge. The deviation in bond lengths was also

smaller for this cell size, with a maximum stretch of 2.93% and a maximum compression

of 4.36%, beginning to approach values observed in previous studies. Qualitatively, a

closed pentaring — a structure formed of a five–membered ring of atoms — was ob-

served in this structure alongside stretched bonds and evidence of reconstruction across

the dislocation core.

The geometry optimised structure for the 16 × 10 × 1 supercell is shown in Figure

5.8. Here, the dislocation structure can be seen to take on a regular converged pat-
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Figure 5.8: Geometry optimised 16×10×1 supercell of Ge containing a misfit dislocation,

with original input cell inset

tern, with repeated pentaring–structured germanium, alongside alternate stretched and

compressed bonds surrounding the dislocation. The maximum bond angle here was

123°and the minimum was 71°. The maximum bond compression was by 4.7% however

the maximum stretch was only 2%, indicating that, in these simulations, relaxation

around the dislocation can generate structures similar to ‘kink’ structures found in other

studies of dislocations and faults in diamond structures. Generally, the configurations

of atoms around the dislocation showed the formation of pentarings and 60°glide and

shuffle sets commonly observed in previous studies on the structure of diamond materials

[129, 130, 149–151].

The geometry optimised structure for the 20 × 12 × 1 supercell is shown in Figure

5.9. This dislocation structure mirrors the regular converged pattern observed for the

16× 10× 1 cell, extended along the greater dislocation length. The repeated pentaring–

structured germanium pattern is observed, alongside alternate stretched and compressed
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Figure 5.9: Geometry optimised 20×12×1 supercell of Ge containing a misfit dislocation,

with original input cell inset

bonds surrounding the dislocation. The maximum bond angle here was 123°, again, and

the minimum was 71°, conistent with the previous results. The maximum bond com-

pression was by 4.5% with a maximum stretch of 2.2%, again, consistent with the results

of the 16× 10× 1 simulation, and indicating, that, for this dislocation structure in a cell

with fixed dimensions, the geometry optimisation results converged at the 20 × 12 × 1

cell size for these simulation parameters.

The structures in these geometry optimisation simulations replicate those observed in a

number of other studies on dislocations in diamond structures, including the presence

of pentarings and glide and shuffle sets [129, 130, 149–151], and convergence of the

structure was observed with increasing cell size, although no complete reconstructions

across the dislocation core were observed. This indicates that, within the parameters

employed within these simulations, the 20×12 cell represents a fully–relaxed structure;

however, the need to maintain the supercell lattice dimensions during geometry optimi-
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sation may have induced additional non-physical stresses within the calculation, leading

to incomplete reconstruction of the dislocation core and indicating that these may not

yet be fully–relaxed structures. Ideally, simulations on larger supercells still should be

conducted to identify or confirm a fully–relaxed structure with these parameters.

5.3 Bandstructure Calculations

Electronic bandstructure calculations were performed for the geometry optimised cells,

using the parameters described earlier, and taking a k–point pathway along the direc-

tion of propagation of the misfit dislocation — equivalent to the [100] direction in the

cubic cell. The electronic bandstructure calculation for the 6×8×1 geometry optimised

supercell failed to converge, even after increasing the number of SCF iterations to 200,

and decreasing the convergence tolerance to 1 × 10−6, possibly indicating that the re-

laxed structure at this cell size represents a cell so disordered that obtaining an energy

minimisation and bandstructure is not possible.

5.3.1 The Brillouin Zone and Folded Bandstructures

A supercell bigger than the primitive unit cell for germanium will have a set of reciprocal

lattice vectors, and hence a Brillouin Zone, smaller than that of the primitive cell. In

bandstructure simulations, the effect of this BZ contraction is folding of the bands at the

BZ edge, with the number of folds dependent on the size of the supercell in 3–dimensions

relative to the primitive cell. The folded bandstructure for the 12× 8× 1 supercell after

geometry optimisation is shown in Figure 5.10 alongside the bandstructure between Γ

and X for the undefected primitive cell of Ge. The effect of the contracted Brillioun

Zone on the simulated bandstructure can clearly be observed: clusters of folded bands

obscure any attempt to visualise the conventional E-k relationship, and the identity of

any additional bandgap states arising from the dislocation structure is also lost. Recov-

ering an unfolded bandstructure from this folded structure requires mapping of folded

band sections back to their origin in the expanded primitive Brillouin Zone. A number
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Figure 5.10: Folded bandstructure in the [100] direction for the 12 × 8 × 1 supercell

of Ge containing a misfit dislocation after geometry optimisation. The bandstructure for

undefected bulk germanium is also presented

of methods for obtaining an unfolded bandstructure from a supercell calculation have

been proposed [152–155]. This may be achieved exactly for an undefected supercell, and

the bulk Ge bandstructure shown in Figure 5.2 can be recovered exactly for a supercell

of bulk Ge simulated with these parameters.

Unfolding of defected cells is more complicated—the defect structures within the su-

percell mean that these cells are not exact multiples of any primitive unit cell, and

translational symmetry is lost. In this case, reproduction of a typical E-k dispersion

relationship directly is not possible, however the folded bandstructure can be mapped
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probabilistically back to states referenced from a primitive unit cell to produce a ‘effective

bandstructure’ (EBS) comparable to that of undefected Ge [155–157].

5.3.2 The Unfolding Algorithm

[155] describes a theoretical method for unfolding bandstructures for alloy materials or

materials with defects, to produce an EBS that can be used for comparison with ‘classic’

bandstructure pictures. Using a capitalisation convention wherein the real and recipro-

cal lattice vectors of the primitive cell are denoted as k and g, respectively, and those

in the supercell as K and G,respectively, the g-vectors associated with the primitive

cell will be a subset of the supercell lattice G-vectors. A wavevector k of the primitive

cell will fold into a wavevector K of the supercell if there is a single G-vector G0 which

may be subtracted from k to obtain K. However, a given wavevector of the supercell

K unfolds into the primitive cell Brillouin zone by addition of a number of possible

supercell G-vectors, to yield a number of possible k states. Hence, while folding maps

a given state in the primitive cell directly to a single state in the supercell, the reverse

process of unfolding has no such unique relationship.

A given supercell, with lattice vectors described by A1,A2,A3 is constructed from

a set of primitive cell vectors a1,a2,a3 by stacking in 3–dimensions, with a matrix

transformation given by:











A1

A2

A3











=











m11 m12 m13

m21 m22 m23

m31 m32 m33





















a1

a2

a3











(5.2)

where the mij are obtained from the fact that the supercell lattice vectors should be

integer multiples of the primitive cell vectors, and represent the stacking of the unit

cell in 3-dimensions to form the supercell. The Brillouin Zone of the supercell may

be mapped to the Brillouin Zone of the primitive cell using the inverse matrix, where,

similarly b1,b2,b3 are the reciprocal lattice vectors of the primitive cell and B1,B2,B3
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are those of the supercell:










B1

B2

B3











= M−1











b1

b2

b3











(5.3)

In the case used for simulations here, the primitive cell and supercell are collinear, and

the matrix will be diagonal.

The unfolding process used here requires calculation of the eigenvalues of both a reference

primitive cell (pc) and of the supercell (SC) containing defects. Any SC eigenvector can

be expressed as a linear combination of pc eigenvectors, and projection of each supercell

eigenstate 〈Km| onto all primitive Bloch states of a given k–vector | kin〉 at the same

energy will allow calculation of the amount of ‘Bloch character’ of each pc state kin

that is preserved in the SC states 〈Km| at an energy Em = En, or, which of the set of

pc kin that map to a single SC 〈Km| show contributions to an energy eigenvalue. The

‘spectral weight’ PKm(ki) is given by:

PKm(ki) =
∑

n

〈Km| kin〉2 (5.4)

and this quantity represents the probability of finding a set of pc states contributing to a

given SC state. From here, a spectral function of the energy E as a continuous variable

may be calculated, by summing across all energies Em at each value of ki:

A(ki, E) =
∑

m

PKm(ki)δ(Em − E) (5.5)

to produce an effective E − k bandstructure relationship for the supercell [155, 157].

This method is particularly applicable to SC calculations based on plane–wave pseu-

dopotential methods, where eigenfunctions represented as plane wave coefficients and

band energies as eigenvalues are readily accessible. It has hence been implemented as

the bs sc2pc tool in CASTEP , drawing the relevant information from bandstructure

calculations, and has been demonstrated thus far for supercells of defected graphene
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[157]. This mapping of the spectral function A(ki, E) can provide a visual picture of the

bandstructure that can be directly compared to the classic bulk bandstructure, however,

here, the objective was to identify individual bandgap states that may indicate the ener-

gies of defect levels arising from misfit dislocations in Ge. To achieve this, the bs sc2pc

tool was amended at the code level to calculate the spectral weights of individual folded

Γ states, and extract potential ‘true’ Γ states from the folded bandstructures for the

defected supercells. Broadly, this required identification of the possible pc states ki that

may fold into a specific Γ state K, and unfolding of these K individually into these ki

states, to identify those with a high spectral weight at Γ in the pc, compared to those

with a high spectral weight at other pc locations, and hence identify those SC states

likely to represent ‘true’ Γ states.

Figure 5.10 shows that there are number of states in the nominal bandgap at Γ, based on

the primitive undefected calculation, for this electronic structure calculation. However,

these energy levels that appear to exist in the bandgap at Γ may have folded from other

regions of k-space. The amended bs sc2pc tool was used to produce a spectral weight

for these individual folded Γ states for the 12×8 and 16×10 supercells, with respect to Γ

states in the pc. This was achieved using the following procedure: The set of reference

primitive–cell k-points to which the folded Γ states should be matched was obtained by

calculating the set of locations in the primitive cell which could fold exactly to Γ in the

supercell. In general, for an x × y × z supercell, the number of points m which may

fold into Γ from the primitive cell is m=x × y × z. The foldpoints were calculated by

establishing which G-vectors of the reciprocal space of the supercell fell inside the first

Brillouin zone of the primitive cell. This may be achieved by calculating G-vectors from

integral numbers of reciprocal lattice vectors of the supercell, and finding the equivalent

vectors in the basis of the reciprocal lattice vectors of the primitive cell:

b
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(5.6)
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Here, the array N represents iteration over a range of positive and negative integers used

to generate the g-vectors of the supercell from the reciprocal lattice vectors B1, B2, B3

of the supercell, given in the matrix B . Similarly, b represents the matrix formed from

the primitive cell reciprocal lattice vectors, and the vector n1, n2, n3 gives the relative

position of each supercell g-vector within the primitive cell reciprocal lattice for any

given set of N. Hence:

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
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(5.7)

If the elements n1, n2, n3 are in the range 0 ≤ nx<1 then the supercell G-vector falls

within the Brillouin Zone of the primitive cell. The modified bs sc2pc tool was used

to match all folded SC Γ states within the bandgap of the pc at Γ to all possible pc

eigenstates within this range of G-vectors.

The range of bands to be unfolded was identified from the bandgap of the primitive

cell, which lay between 1.364 eV and 2.173 eV. Using a convention where bands are

indexed from 1 for the lowest valence band state, bands 374 to 390 at Γ were unfolded

for the geometry optimised 12×8 supercell, with energies from 1.444 to 2.163 eV and

bands 624 to 647 were unfolded for the 16×10 supercell with energies from 1.382 to 2.157

eV.

The results of the unfolding calculation on these bandgap states for the 12×8 supercell

is shown in Table 5.2. The energy of the band above the valence band edge is provided,

as a conventional reference for bandgap states, and the spectral weight of each band at

Γ (i.e. the proportion of pc Bloch character at Γ found in each SC Γ state) is identified,

alongside an indication of whether the spectral weight at pc Γ was the highest spectral

weight found for each bandgap state, or whether higher weights were found for other

pc states, indicating that these bandgap states were more likely folded from elsewhere.

Band 374, at 0.080 eV above the pc valence band edge, and band 382, at 0.625 eV above
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Table 5.2: Unfolding results for the 12×8 supercell

Band Energy above Spectral Highest

Number VB edge eV Weight at Γ at Γ?

374 0.0795 0.01147 YES

375 0.2794 0.00102 no

376 0.3300 0.00511 no

377 0.4029 0.00329 no

378 0.4343 0.00128 no

379 0.4788 0.00103 no

380 0.5780 0.00106 no

381 0.5950 0.00726 no

382 0.6246 0.05204 YES

383 0.6522 0.00359 no

384 0.6722 0.00497 no

385 0.7008 0.00492 no

386 0.7212 0.00149 no

387 0.7358 0.00089 no

388 0.7446 0.00061 no

389 0.7566 0.00284 no

390 0.7985 0.00041 no
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the valence band edge (or 0.183 eV below the conduction band edge at Γ, exhibited their

highest spectral weights at Γ, possibly indicating that these may be ‘true’ Γ states. For

other bands, spectral weights were often widely distributed, with results suggesting a

number of possible other pc locations for the origin of the folded Γ states. For example,

four different pc locations away from Γ were the highest–weighted states for band 381,

with equal spectral weights each of 0.05148, and, similarly, for both bands 378 and 385,

four possible pc states away from Γ were suggested with spectral weights greater than

0.028. It was noted in the geometry optimisation results, however, that the 12×8 super-

cell is unlikely to represent a fully–relaxed structure, and the analysis of the mapping

of SC Γ states to pc Γ locations was repeated for the 16×10 supercell. The results are

shown in Table 5.3. Here, the highest–weighted Γ states were found at band 625, at

0.069 eV above the valence band edge, and band 644, at 0.755 eV above the valence

band edge (or 0.053 eV below the conduction band edge). There is some consistency

in the results — both cells exhibited two likely ‘true’ Γ states, one close to the valence

band edge and one closer to the conduction band edge — however there was a significant

discrepancy in the energies of these states between the two cells. This is perhaps to

be expected, as no convergence in geometry had been identified between these two cells

based on earlier results, and this is likely to lead to significant discrepancies in electronic

structure calculation results. In addition, [130] notes that insufficiently large supercells

generate artificial stresses that lead to additional stress-induced electronic bands, and it

is likely that this effect is present in the 12×8 supercell, at least.

Convergence in these results could be demonstrated through completing the analysis

using the geometry–optimised 20×12 supercell, however, the cell of this size presented

a significant computational burden to the CASTEP software, and it was not possible to

produce and electronic bandstructure for this cell size using this method.

Comparison with other results obtained for bandgap states due to defects in Ge shows

limited consistency. [136] identified defect levels in germanium at 0.05 eV and 0.11 eV
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Table 5.3: Unfolding results for the 16×10 supercell

Band Energy above Spectral

Number VB edge eV Weight at Γ

624 0.0183 0.00222

625 0.0691 0.01988

626 0.0940 0.00754

627 0.2674 0.00109

628 0.2707 0.00096

629 0.3806 0.00028

630 0.4043 0.00016

631 0.4168 0.00022

632 0.4391 0.00089

633 0.4613 0.00016

634 0.4905 0.00013

635 0.5255 0.00221

636 0.5431 0.00006

637 0.6279 0.00052

638 0.6453 0.00448

639 0.6539 0.00008

640 0.6681 0.00325

641 0.6714 0.00012

642 0.6755 0.00119

643 0.7211 0.00022

644 0.7545 0.07083

645 0.7620 0.00238

646 0.7870 0.00004

647 0.7922 0.00722
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above the valence band edge at the Γ point for hydrogen-passivated dangling bonds,

and the results for both supercells here identified a state close to the valence band edge,

with that at 0.069 eV for the 16×10 supercell lying closest to this previous result. It is

notable that the increase in cell size from 12×8 to 16×10 had the effect of lowering the

energy of the state nearest the valence band edge and increasing the energy of the state

closest to the conduction band edge, and it would be useful to investigate whether this

separation of states, and identification of states closer to the band edges is observed for

larger supercell sizes.

The investigation of bandgap states in diamond with defects presented in [129] indi-

cated that mixed–type dislocations, with reconstruction of the dislocation core, yielded

stress-induced bandgap states close to the band edges, while pure edge dislocations

containing unsaturated dangling bonds lead to more deep states within the centre of

the bandgap. It is possible that with a larger supercell size, further dislocation core

relaxation and pairing of dangling bonds during geometry optimisation may lead to a

similar result, of fewer deep states, and defect states closer to the band edges. [158] also

provides electronic structure results for diamond, and a similar pattern is observed – that

poorly-reconstructed dislocations with dangling and stretched bonds yield deep states

close the centre of the bandgap, while reconstructions wherein atomic co-ordination

numbers are maintained demonstrate perturbations in electronic structure close to the

band edges. The method described here should ideally be applied to larger Ge cells con-

taining a misfit dislocation to confirm this effect, and establish the electronic structure

in the bandgap for defect densities approaching physically–realistic values.

Although reasonable–to–good parallelisation efficiencies were often obtained in the cal-

culations, simulation of cells larger than the 16 × 10 defected cell used here were not

possible due to the excessive computational time, and limitations to the amount of

parallel computing resources available. The use of the pseudopotential discussed above

was extremely computationally efficient, and, allowed calculations up to this cell–size.
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In addition, development of the CASTEP software has proceeded in a number of direc-

tions recently to address the need for greater memory efficiency and to calculate larger

supercells, including implementation of process threading, band parallelism and more

efficient memory allocation, and these developments, in combination with greater super-

computing power may enable the method to be developed to simulate larger defected

supercells to identify convergence in the calculation of bandgap states at Γ or simulate

SiGe interfaces containing defects.

Future work could progress these larger supercells or interfaces, and continue to inves-

tigate the utility of the unfolding method provided in [156] and [157], and the bs sc2pc

tool implementation in CASTEP for investigation of the gap states arising from the

defects inherent in SiGe epitaxy.

5.4 Conclusion

In this chapter, DFT implemented using the CASTEP software was used to perform

geometry optimisation on supercells of germanium containing a misfit dislocation, to

obtain a minimum-energy structure for the defects, and to calculate bandstructures for

these relaxed cells. The simulations were calibrated against a number of criteria, and

simulation parameters were selected based on those which gave the best agreement be-

tween calculated and experimental values for a primitive cell of bulk germanium, while

maintaining attainable computational efficiency.

Geometry optimisation yielded structures with some deviation from the manually-placed

defect cells, including both distortions of the crystal structure — changes in bond angle

and length — and a number of other structures including pentarings and glide and

shuffle structures, which broadly correlated with previous experimental results.

An unfolding algorithm described by [156] for alloys and implemented in CASTEP as
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the bs sc2pc tool was used to unfold the defected supercell bandstructures, and identify

the likelihood that states found at Γ in the folded supercell bandstructure represented

‘true’ Γ bandgap states in the unfolded regime. A number of gap states at Γ were iden-

tified and compared to experimental values, and some consistency was observed with

increasing supercell size: both calculations yielded two likely ‘true’ Γ states, one close to

the valence band edge and one closer to the conduction band edge. However, the energie

of these states were not highly consistent with each other or with previous experimental

results, and it is likely that the method needs to be applied to larger supercell sizes to

confirm the relaxation of the dislocation structure and identify bandgap states arising

from dislocations in Ge.

Trap states contribute to afterpulsing in SPADs, by providing sites for carriers in

the bandgap which may detrap outside of a detection event, and should be included

in device simulations. This chapter investigates a preliminary method for identifying

such states, however, the cell sizes used here may be insufficiently large to provide a

physically-realistic separation between adjacent defects, and the method should ideally

be progressed with bigger supercell sizes and SiGe interfaces to establish the utility

of the CASTEP software (in light of further developments in memory and parallelism

capacity) and the bs sc2pc tool for identifying bandstructure effects in Ge and SiGe

interfaces containing misfit dislocations.





Chapter 6

Conclusion

A range of simulations effecting electron transport in SPADs has been investigated

across a range of scales from simulation of full-device-thicknesses, to ab initio calcula-

tions of defect states in bulk Ge. Doping profiles in the charge and absorption layers

were simulated, to investigate the effect on IV curves, electric field and potential profiles

and carrier concentrations, to establish ideal intentional and background doping types

and densities for these layers, to promote carrier transport and suppress noise currents.

The effect of increasing bias voltage, layer thickness and temperature on band-to-band

tunnelling currents was simulated, and compared to calculations using other methods,

and to other sources of noise currents in SPADs, to establish the likely contribution of

these parameters to noise currents in SPADs. Finally, DFT calculations of the electronic

structure of misfit dislocations in bulk Ge, as well as symmetric energy minima for

these defects was simulated, to gain insight into the energies of trap states introduced

by defects, which are significant in dark counts and particularly afterpulsing effects in

SPADs.

Simulations on SPADs structures using the ATLAS solver within the Silvaco software

[104] It was found that breakdown voltage increases with decreasing charge layer doping,

which is to be expected since the a higher charge layer doping density increases the over-

all proportion of the electric field across the device which occurs across the multiplication
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layer, and hence decreases the voltage required to achieve breakdown. For high charge

layer doping, the type of absorption layer doping played no significant role in the break-

down voltage, however at lower charge layer doping densities, p-type absorption layer

doping results in a lower breakdown voltage than n-type, because different doping types

produce opposite field gradients in the absorber. Punchthrough, indicating full depletion

of the device, and removal of the potential well for carriers at the interface was observed

for a number of doping profiles. Ideally, device doping should facilitate punchthrough, as

full depletion of the device enables operation as a SPAD, where the only carriers should

be generated through incidence of an incoming photon — carriers remaining within the

device will contribute to the DCR. From this results, the ideal doping profile for a SPAD

would be one with a charge layer doping density of 2×1017cm−2 and an absorption layer

doping density of 1×1015cm−2) of n-type, to limit dark counts due to excess fields in the

germanium, while ensuring full depletion of the absorber before breakdown. Fabrication

of SiGe SPADs is, however, difficult, and experimental measurements frequently varied

significantly from the simulated characteristics, indicating that target dopant profiles

had not been achieved.

The dependence of band-to-band tunnelling currents in Ge on bias voltage, sample

thickness and temperature was simulated, using an empirical pseudopotential method

and a band-matching technique. Band-to-band tunnelling currents were found to in-

crease exponentially with bias voltage, indicating that operation of a SPAD at increas-

ing reverse biases will result in increasing noise current contributions from band-to-band

tunnelling. A breakdown of tunnelling currents between different regions in the Brillouin

Zone indicated that, at lower biases, tunnelling was entirely between valence band Γ and

conduction band Γ, whereas at higher biases, a further contribution from valence band

X to conduction band Γ was observed, in keeping with the slightly larger energy gap for

these transitions. Other transitions made only small contributions. Tunnelling currents

increased with increasing thickness, since the number of available states for tunnelling

increases with sample thickness, this was confirmed by the increasing contributions from
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deeper valence band states with increasing thickness. The tunnelling current may be

expected to saturate with thickness, since at some point no further states for tunnelling

will be available, and transmission currents will decrease with increasing germanium

thickness. Tunnelling currents were found to increase with increasing temperature —

equivalent, in this method, to a decreasing bandgap. Calculated tunnelling currents were

composed almost entirely of valence band Γ to conduction band Γ transitions. Com-

parison of simulated band-to-band tunnelling currents indicated that, at voltages below

breakdown, band-to-band tunnelling was likely to be insignificant relative to avalanche

currents and dark currents. However, at fields considerably higher than breakdown —

above 150% of the breakdown field — the simulated band-to-band currents begin to ap-

proach the order of these other currents, indicating that at voltages significantly higher

than breakdown, band-to-band tunnelling may result in noise currents. However, at

lower voltages, it is likely that noise currents arise from sources other than band-to-band

tunnelling.

Defects in semiconductor materials induce perturbations to bandstructures that can

lead to additional energy states in the bandgap, which may contribute to afterpulsing

in SPADs. DFT implemented using the CASTEP software was used to perform geom-

etry optimisation on supercells of germanium containing a misfit dislocation, to obtain

a minimum-energy structure for the defects, and to calculate bandstructures for these

relaxed cells. A number of gap states at Γ were identified and compared to experimental

values, and some consistency was observed with increasing supercell size, however, the

method should be applied to larger supercell sizes to identify bandgap states arising

from dislocations in Ge at physically–realistic densities. Additional energy states in the

bandgap can contribute to afterpulsing in SPADs, by providing sites for carriers in the

bandgap which may detrap outside of a detection event, and should be included in device

simulations.

The work presented here addresses a number of challenges and performance param-
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eters in development of SiGe SPAD performance: control of field properties and carrier

behaviour through doping profiles across the device, calculation of the voltage, thickness

and temperature dependence of band-to-band tunnelling, and its contribution to overall

noise currents, and development of a method for establishing the energies of trap states

in Ge, which contribute to afterpulsing. Further work can progress in a number of

directions. The ab initio calculations of the energies of bandgap states in Ge should be

applied to larger cell sizes to establish whether the geometries, dislocation reconstruc-

tions and energies of the bandgap states converge with increasing cell size and smaller

dislocation densities. Further studies could also focus on defect structures in a SiGe

interface model. A number of alternative calculation methods could be investigated —

though DFT provides one theoretical approach, it is computationally expensive, even

with the use of a very efficienct pseudopotential, and other methods, including empirical

pseudopotential methods, may yield accurate results for larger cell sizes, approaching

those needed for physically-realistic defect densities. Definitive values for bandgap en-

ergies induced by defects will enhance the full-device model considered in Chapter 3,

and allow trap energies to be incorporated into the model, as well as into other studies

of devices based on epitaxially grown germanium.

Band-to-band tunnelling has been shown here to provide only a small contribution

to noise currents at lower bias voltages. However, the simulations considered only un-

doped Ge, and hence little change in Fermi occupancy from 1 in the valence band to

0 in the conduction band. A more complex model could consider the effect of varying

doping types and densities, incorporating the effects of both changing occupancies and

of doping on the electric field across the sample. This work is also applicable to other

devices, particularly tunnel FETs, and the model may be extended to consider band-to-

band tunnelling currents in these structures. This would require modelling of a pn or

pin structure, and require a 2- or 3-dimensional transport and electrostatics simulation

to determine potential profiles. Here, band-to-band tunnelling would depend on gate

bias as well as source-drain bias.
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More investigation into other sources of noise currents would progress understanding

of SPAD performance. Avalanche breakdown is of particular interest, and calculations

of impact ionisation for Ge — which has been only briefly studied compared to the

same phenomenon in Si — would be a useful theoretical area for future study. The

full-zone empirical pseudopotential method for bandstructure calculations used in this

thesis could be applied to calculations of impact ionisation in Ge. Additionally, edge

breakdown has been suggested as a possible source of noise currents in SPADs, and

further investigations into this effect should be undertaken.
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