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Abstract

Statistical Model Checking (SMC) blends the speed of simulation with the rigorous analyt-

ical capabilities of model checking, and its success has prompted researchers to implement

a number of SMC tools whose availability provides flexibility and fine-tuned control over

model analysis. However, each tool has its own practical limitations, and different tools

have different requirements and performance characteristics. The performance of different

tools may also depend on the specific features of the input model or the type of query to

be verified. Consequently, choosing the most suitable tool for verifying any given model

requires a significant degree of experience, and in most cases it is challenging to predict

the right one.

The aim of our research has been to simplify the model checking process for researchers

in biological systems modelling by simplifying and rationalising the model selection process.

This has been achieved through delivery of the various key contributions listed below (p. vii;

see also Sect. 1.3 for a more detailed discussion).
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Contributions

• We have developed a software component for verification of kernel P (kP) system

models, using the NuSMV model checker. We integrated it into a larger software

platform (www.kpworkbench.org).

• We surveyed five popular SMC tools, comparing their modelling languages, external

dependencies, expressibility of specification languages, and performance. To best of

our knowledge, this is the first known attempt to categorise the performance of SMC

tools based on the commonly used property specifications (property patterns) for

model checking.

• We have proposed a set of model features which can be used for predicting the fastest

SMC for biological model verification, and have shown, moreover, that the proposed

features both reduce computation time and increase predictive power.

• We used machine learning algorithms for predicting the fastest SMC tool for verifica-

tion of biological models, and have shown that this approach can successfully predict

the fastest SMC tool with over 90% accuracy.

• We have developed a software tool, SMC Predictor, that predicts the fastest SMC

tool for a given model and property query, and have made this freely available to the

wider research community (www.smcpredictor.com). Our results show that using

our methodology can generate significant savings in the amount of time and resources

required for model verification.
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• We have disseminated our findings to the wider research community in a co-authored

collection of peer-reviewed conference and journal publications.
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Chapter 1

Introduction

1.1 General overview

The structures and functionalities of biological systems, ranging from DNA to entire organ-

isms, are extremely complex and dynamic. Their behaviours are hard to predict, because

multiple components simultaneously perform an enormous number of reactions, and inter-

act with other spatially distributed components under a wide variety of often unpredictable

environmental conditions [11, 46]. Having a better understanding of the intra- and inter-

component relations, and the working mechanisms of biological systems, would help us

better understand the causes of diseases and develop effective treatments. Gaining in-

sights into the complex behaviour of biological systems can also inspire researchers to infer

new computational techniques and apply these methods widely across different scientific

disciplines. Since, however, the capacity of the human brain alone is not enough to com-

prehensively understand the functionality and complexity of biological systems, researchers

have increasingly turned to machine-executable models.

These models provide an abstract representation of the essential parts of real systems,

such as living cells. They usually capture elements of interest at different levels of ab-

straction (rather than the system as a whole), and neglect less important details whenever

possible [28, 60, 81]. Computational models can be used, in particular, to provide insights
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into the fine-grained spatial and temporal dynamics of biological systems. The machine-

readable and executable attributes of computational models also empower researchers to

carry out in silico experiments, including hypothesis testing, in a faster, cheaper, and more

repeatable way than the corresponding in vivo and in vitro experiments [11, 12].

It is important, of course, that models are representative, i.e. they should accurately

represent the aspects of the modelled system that are of interest to researchers. In the

context of the bio-computational models discussed in this thesis, two powerful and widely

used approaches to validation and verification are simulation and model checking. Other

approaches are also possible, for example, testing (see Section 3.5.2).

• Simulation works by generating and analysing a representative set of execution paths.

It can generate paths relatively quickly, but does not guarantee the exhaustive gen-

eration of all possible paths, especially in large non-deterministic models [11].

• Model checking demonstrates formally that a model exhibits specified properties by

exhaustively investigating its entire state space [7, 35, 64]. As this method guarantees

the correctness of the specified property by this exhaustive exploration, it is called

exact model checking. However, the exhaustive analysis suffers from the well-known

state-space explosion problem, i.e. the state space to be analysed grows exponentially

as the size of the model increases, which means that model checking techniques can

only be used for the verification of relatively small models. Model checking has been

used extensively throughout this study; we provide a formal outline in Section 3.1,

and discuss practical aspects in the published papers in Part II.

To mitigate the state explosion problem associated with the exact model checking and

so enhance scalability, a less resource-intensive statistical model checking (SMC) approach

may be employed, which attempts to combine the speed of simulation with the intensive

analytical capabilities of model checking. Instead of examining the entire state space, SMC

investigates only a subset of the possible execution paths, and performs model checking

through approximation (this approach has many parallels with software testing, and sim-

ilar concerns as to coverage and integration apply (see Section 3.5.2)). The considerably
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decreased number of execution paths allows the verification of much larger models with less

computational resources, but does so by introducing a small amount of uncertainty [12].

These powerful features of model checking techniques have led researchers to implement

new model checking tools for use across a variety of fields [48, 70, 71, 103]. However,

this piecemeal approach means that the requirements for one tool can be different to

those for another [11]. For example, different tools may employ different modelling and

specification languages. Thus, to use a combination of different model checkers, users must

first be familiar with a range of different model checker languages and know how to use the

associated checkers—this can be a cumbersome task, especially for those biologists who

are not already experts in the methods involved.

To streamline the model checking process, various integrated software suites have been

developed. Of particular relevance for our purpose is the kPWorkbench [41, 72], but some

other frameworks also exist, for example, Infobiotics Workbench [24, 25] (see Section 4).

These tools enable the integration of different simulation and model checking tools on a sin-

gle platform, and simplify model checking by providing high-level modelling and property

specification languages—these are internally translated into the formats required by the

user’s selected model checker, and the corresponding verification process can be automati-

cally initiated [12]. Nonetheless, these integrated suites still rely on the user’s expertise in

selecting the most appropriate model checker. Users need to know which model checker is

best for their particular model and the properties to be checked, and this in itself requires

significant verification experience [12].

1.2 Motivation and aims

The existence of multiple variants of statistical model checking tools gives flexibility and

allows users to perform fine-tuned analysis of models. However, it comes at the cost of lack

of clarity as to which tool is best for verifying any particular model, because each tool has its

own practical limitations, and different tools have different requirements and performance

characteristics. Moreover, the best tool for analysing any given model may also depend
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on other factors, such as the queried property type or the population of molecules. Thus,

users must consider a wide range of trade-offs and drawbacks when selecting the most

appropriate SMC tools for the particular scenarios in which they are interested. This is

not an easy task and requires a significant degree of verification experience, because [12]:

• Each tool typically employs different modelling and property specification languages,

and tools differ as to which properties can be expressed. That is, a property which is

easy to express and verify using one tool may not be expressible at all using another

tool. In order to verify multiple properties, users may therefore need to learn a

range of model checking technologies, as well as multiple modelling and property

specification languages.

• Some tools are self-contained, while others rely on external third-party tools to carry

out pre-processing of the models to be investigated, which means that users need to

become acquainted with the external tools as well.

• The performance of different tools may vary significantly depending on the charac-

teristics of the input model and the property type. While one tool may verify certain

models and properties efficiently, another may require more computational power

and time for the same task, or even fail to complete the verification altogether. In

one particular scenario, an SMC tool may run for hours or days to complete its task

while simultaneously taking control of almost all of the available resources, whereas

another SMC tool may be able to accomplish the same task both faster and using

fewer resources; but conversely, in another scenario, the first tool may accomplish its

task faster than the second one.

Therefore, identifying the most suitable SMC tool is an error-prone, cumbersome, and

time-consuming process. Given the difficulties associated with using multiple model check-

ers, it is currently common practice to verify models using whichever SMC the user is most

familiar with, whereas another tool might actually be more effective, for example, the time

differences between the default and the actual best one can be orders of magnitude. These
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complications can dissuade researchers from analysing complex models or verifying fine-

grained properties. We argue, therefore, that it is desirable to minimise human intervention

by developing techniques for automatically identifying the most suitable SMC tool for a

given biological model and property specification prior to the verification [11]. Automating

tool selection in this way should, we believe, significantly decrease the consumed cost, time,

and effort for model verification. As a result, it should enable easier verification of complex

models, and thereby lead to a better and deeper understanding of biological systems [12].

As an alternative approach, we could run all SMC tools in parallel, and once the fastest

one completes its execution, it could be made to raise a flag so that we can halt the

remaining running tools. However, as SMC tools are resource intensive, if we run several

of them in parallel each of them will demand a significant amount of resources, and taken

together we risk blocking all available resources throughout the execution. Blocking so

many computational resources will potentially increase the individual verification time of

each tool, which means that even the fastest tool would run slower than if it had run alone.

The use of so many unnecessary resources also increases environmental impact in terms of

energy consumption. In contrast, by using our approach of automatic fastest tool selection

we can rapidly decide the best solution and use just a single SMC tool, thereby saving

significant time and resources which can be used for other purposes.

Aim and objectives. Our fundamental aim is to simplify the model checking process

for researchers in biological systems modelling.

Our initial objective was to investigate the use of exact model checking for verifying

biological models; a key part of this approach was the development of a software component

that can map a high-level modelling language to an exact model checker language (see

Section 4.1.1.1). It became apparent, however, that the exact model checking approach is

unable to cope with the demands of larger models.

We accordingly shifted focus to look at statistical model checkers, since these are well

known to be more capable of dealing with large models. However, even here there were

shortcomings since different tools had different performance characteristics and it was not
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possible to know with any certainty which SMC would be best for each combination of

model and query. This informed our second objective: to develop a system which can

predict, for the verification of any given model and property combination, which SMC is

the fastest choice.

1.3 Contributions

1.3.1 NuSMV translator

kPWorkbench (see Section 4.1.1) is an integrated software framework which aims to provide

a set of tools to help researchers in their modelling and analysis of kP systems (these are

a special type of P systems, a general computational model inspired by the structure and

functionality of living cells [41, 72]). For further details, including the formal definition of

kP systems, see Section 2.2.

Initially, kPWorkbench had support only for the Spin model checker [113], in that it

included a component (the Spin translator) for translating kP system models expressed

using its domain specific language, kP-Lingua (see Section 2.3), into Spin model checker

specifications expressed in Promela (Process Meta Language) [113]. However, the way in

which Spin builds entire state spaces and performs searching limits it to verifying only very

small kP system models. Inevitably, therefore, the Spin translator component adopted a

strategy to restrict the generation of too large a state space, and did this by adding an upper

bound variable to the Spin specification, which restricts the number of computation steps

permitted. By design, however, this means that only part of a state space is generated and

investigated. This is a fundamental issue, because these restrictions mean that we longer

have full confidence in the results of the ensuing model checking. Another restriction

stemming from the use of Spin is that it only allows the verification of model properties

that can be expressed using Linear-Time Temporal Logic (LTL) (a formalism for specifying

model features; see Section 3.2).

To avoid these issues relating to the Spin translator, I decided instead to employ the
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NuSMV model checker [79]. NuSMV is a symbolic model checker, which means it does

not construct individual states explicitly; rather, it symbolically represents sets of states

by using ordered binary decision diagrams, which allows the representation of larger state

spaces in a compressed form [64]. In addition to LTL, NuSMV supports Computational

Tree Logic (CTL), which is another formalism for querying model properties (again for more

information on CTL, see Section 3.2). To support my work, I have accordingly developed

a software component – now integrated into kPWorkbench – which can translate models

specified in kP-Lingua into NuSMV specification language. Performing this translation is

not a simple and straightforward process; indeed, we had to address a number of interesting

challenges:

• One challenge is inherent in the model checking strategy itself. Because the size of

the state space is one of the primary problems of the model checking method, the

translation process should carefully construct conditional rules that determine the

possible values of constructed variables. For example, kP system objects do not have

implicit bounds, but we nonetheless need to identify upper and lower bounds for

each of the corresponding NuSMV variables, and also include options to explicitly

change those bounds. The state space of the translated model eventually determines

the feasibility of the verification, the translation procedure is explained in Section

4.1.1.1.

• Next, there were challenges associated with NuSMV model checker specifications:

NuSMV allows defining arrays, but (unlike Promela) it does not allow using a vari-

able as an index for accessing or assigning arrays values. Additionally, the array size

has to be a constant and cannot be changed after declaration. This is unfortunate,

as the structuring of a kP system’s compartments resembles a graph which can be

stored using two dimensional arrays, provided these can be modified – so the lack

of array support makes it hard to achieve a complete translation from kP systems

to NuSMV specifications (see Section 4.1.1.1 for more information concerning these

translation limitations). Another challenge that stemmed from the nature of NuSMV
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specification is the lack of non-determinism, because most kP system rules are ex-

ecuted non-deterministically, whereas NuSMV always deterministically selects the

first applicable rule. In some model checkers (for example, Spin), non-deterministic

selection is internally enabled, but for NuSMV I had to find a workaround to achieve

this.1

• Finally, there was the challenge posed by the complexity of the structure and the

behaviour of kP systems. The kP systems formalism not only allows the formation

of complex structures, e.g. the network structure linking compartments, but also

allows these structures to be modified dynamically. Moreover, some kP systems

rules are expected to run in parallel, whereas NuSMV runs rules sequentially. To

overcome these issues, I had to design the translated model so that NuSMV runs

sequentially but presents apparently parallel behaviour.

These constraints made it very difficult to achieve a complete translation from kP sys-

tems to NuSMV specifications. It became possible only after introducing and orchestrating

numerous new rules and variables—for example, the kP system model of Example 2 on page

31 has fewer then 30 lines of kP-Lingua code, but its translated NuSMV model requires

more than 400 lines.2 Currently, the NuSMV translator is the largest component of the kP-

Workbench in terms of lines of code, and it has successfully been used to verify a number of

models from different fields, including biology and engineering; see, e.g., [9, 51, 53, 54, 74].

We always update the website that we have built for kPWorkbench.3 It internally accom-

modates the latest version of the NuSMV translator. The website also includes several

case studies which are modelled in kP-Lingua and their translated NuSMV models.

1Roughly speaking, whenever a non-deterministic behaviour is required, we have to combine the set of
applicable rules and exclude the default true rule (a default rule is required by the NuSMV specification
[34]). This raises another issue, in that NuSMV supports the set union operation for rules, but it does
not have a set difference operation to exclude the default true rule. I used NuSMV invariants (which are
propositional formulas that hold invariantly [79]) to assert that if any rule is applicable then the default
rule is not applicable.

2These models are available online at: http://www.github.com/meminbakir/kernelP-store.
3http://www.kpworkbench.org
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1.3.2 Comparative analysis of SMC tools

Selecting the most suitable SMC tool for a given task is not easy, especially for non-expert

users (including typical biologists). Our work ([11]) is meant to help guide researchers

in choosing proper SMC tools for biological model verification, without the need for any

third-party application. To this end I surveyed five popular SMC tools by comparing their

modelling languages, external dependencies, expressibility of specification languages, and

performances on verification of 475 biological models and 5 property patterns. To the best

of our knowledge, this is the first attempt to categorise the performance of SMC tools

based on the commonly used property specifications (commonly called property patterns,

or just patterns [42, 58]).

This study resulted in two main contributions of knowledge to the field. First, the

study identified the boundaries where the fastest model checker can be determined by

examining just the model size and the property pattern. For example, when the model size

is very small or large, users can quickly decide which model checker will be the fastest tool

for their experiments, based simply on model size and the property pattern. We showed,

however, that there are cases where the fastest tool cannot be determined by examining

these two parameters alone, and that a more extensive investigation is required. Second,

the study made clear for the first time the relationship between property patterns and

the performance of SMC tools, by showing that the type of queried properties remarkably

affects the total verification time. These findings convinced us that we should group the

performance of the tools on a per-pattern basis, and take the property pattern type into

account when predicting the fastest tool. Later, I extended this study substantially by

considering a much broader set of models (675 models in total) and property patterns (11

patterns); this more comprehensive experiment and its prediction results are reported in

Section 7.

The benchmarking of overall performance was very time consuming. We ran each tool

three times for the verification of each model and the property pattern. Although we

limited each run to a maximum verification time of one hour, this still gave a worst-case
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scenario of requiring 111, 375 hours’ total verification time (i.e. more than 12.7 years).4

Fortunately, however, smaller models were verified faster, and using my default computer

settings (see Section 7) I managed to complete all executions within 5-6 months—while

considerably shorter than the worst-case scenario, this remains a significant amount of time.

These performance results are publicly available online at http://www.smcpredictor.

com/data.html.

1.3.3 A set of model features for SMC performance prediction

The features used for prediction are typically crucial for determining the success of projects

that rely on machine learning algorithms [39]. In the context of predicting the fastest SMC,

we need to determine which model features most influence the performance of the various

tools; this is vital for correctly predicting the fastest SMC. Identifying these features is

relatively easy when only a small number of parameters are relevant for prediction and the

problem domain is well known. In such cases, we can simply program a typical algorithm

for the task and machine learning is unnecessary. For more complex cases, when many

factors determine the outcome that we want to predict, it may no longer be intuitively

obvious how to identify the right number of features, and machine learning can be useful.

As I mentioned earlier, the type of property being queried is one factor that affects the

performance of SMC tools [11]. In related work [12] I have shown that the characteristics of

the input models, such as the number of species and reactions, also affect the performance of

the tools. I therefore investigated 12 new model features for predicting the fastest SMC tool

for verification of biological models, and showed that using this new feature set increases

predictive accuracy (the ratio of correct predictions (true positives) to total sample size)

and yields algorithms that are fast to compute; see Chapter 7, Figure 2. Additionally,

I conducted comparative experiments that demonstrated that the proposed features can

also improve on previously reported accuracy of predicting the fastest Stochastic Simulation

Algorithms (SSAs) used for simulating biological models.

4The time required for the worst-case scenario is given by: 5 SMCs × 675 models × 11 property patterns
× 3 executions per combination × 1 hour per execution = 111,375 hours.
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1.3.4 SMC performance prediction

In summary, predicting the fastest SMC tool requires us to consider more features than

just the model size and property patterns involved. However, when the number of the

model features increases, it becomes harder to formulate the relationship between those

features and system performance. Machine learning algorithms are suitable candidates

(sometimes the only viable choice) for such problems (see Section 4.2)—for example, su-

pervised machine learning algorithms can gradually learn from data how to map inputs

to desired outputs. So-called regression algorithms are used if the desired output belongs

to a continuous distribution, while for discrete distributions (or categorical variables) clas-

sification algorithms are more appropriate. In our case, for predicting the fastest SMC,

the desired output is a categorical variable (its value can be one of five candidate model

checkers), so we have focused our attention only on classification algorithms.5

After benchmarking the performance of SMC tools against different property patterns

and identifying the model features which are important for performance prediction, I used

the property patterns and the model features as input for five machine learning algorithms

that are known to be appropriate for classification problems, and used them to predict

the fastest SMC tool. I compared the accuracy of each algorithm for different property

patterns. The experiment details and the results are reported in Section 7. The results

showed that Extremely Randomized Trees (ERTs) [50] were the best classifier for six

property patterns, while Support Vector Machines (SVMs) [33] were best for the other

five property patterns. The best classifier for each property pattern type could predict

the fastest SMC tool with over 90% accuracy. I also demonstrated that using the best

classifiers can save users a significant amount of time—up to 208 hours!

5Note, our goal was not the construction of new classification algorithms, but the use of existing
classification techniques in constructing a prediction algorithm. The classification algorithms we used are
all well-known in the community.
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1.3.5 SMC Predictor tool

SMC Predictor is a standalone application designed to automate the prediction of the fastest

SMC tools for a given model and property query. Figure 1.1 shows the tool architecture

and demonstrates its work-flow. The tool accepts a biological model in the Systems Biology

Markup Language (SBML) format, an XML based format for describing and exchanging

biological processes [63], and a property pattern file specified in the Pattern Query Lan-

guage (PQL) 6, a high-level domain specific language for formulating model properties with

natural-like keywords [82]. SMC Predictor modifies the SMBL model, such as by removing

multiple compartments and fixing the population of species, then delivers the modified

model to Model Topological Analysis component. The Model Topological Analysis com-

ponent translates the model to species and reaction graphs and extracts graph-related

features (e.g. number of vertices and edges, graph density), and non-graph features (e.g.

number of non-constant species, number of species multiplied by number of reaction) of the

model (see Chapter 7). The Predictor component accommodates the pre-trained machine

learning algorithms, it takes the topological features of the model and property pattern

and delivers them to the machine learning algorithm. The machine learning algorithm

evaluates the model features and predicts the best SMC tool accordingly. More detail on

the prediction and the SMC Predictor tool are provided in Chapter 7, and its dedicated

web site www.smcpredictor.com. Its code is also publicly available and free to use, on

www.github.com/meminbakir/smcp.

1.4 Structure of thesis

This thesis structure follows the Alternative Format Thesis scheme. The alternative format

thesis scheme allows composing chapters from academic publications, alongside with the

traditional thesis sections. Part II composed of some academic papers.

Part I outlines the background for modelling, analysis and automating the model

6PQL grammar can be accessed from www.smcpredictor.com/pqGrammar.html
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Figure 1.1: SMC predictor architecture and work-flow (taken from [12]).

checking, which covers the overview of: (i) modelling concept, different modelling for-

malisms (particularly kernel P systems) which are used for describing biological systems;

(ii) a biomolecular system example for concretizing some of the computational modelling

formalisms; (iii) the analysis methods used for investigating model properties, especially

the property specification languages, some of the model checking tools, and simulation and

testing as alternative analysis methods; (iv) and the integrated software suites which inte-

grate modelling, simulation and model checking of biological systems on a single platform,

it especially focuses on the NuSMV translator . (v) machine learning, and how it is used

for predicting the fastest SMC tool.

Part II binds together our various publications used to support this thesis, and provides

a narrative explaining how the work in each paper leads on to the next. The summaries

of the papers are in the next section.

Part III comprises a single chapter (Chapter 8), in which we summarise our research,

present our conclusions, and suggest possible avenues for further research.
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1.5 Publications used in this thesis

Chapter 5, 6, and 7 (in Part II) are in academic publication format. Although each paper

in these chapters represents novel results, the papers investigate similar fields. Therefore,

some degree of duplication exists, particularly in the background sections.

Chapter 5 presents two conference papers which focus on computational models, and

their analysis with model checking and simulation. The papers show how the simulation

and exact model checking approaches complement each other, thereby providing a better

understanding of the functionality of systems.

First paper: Mehmet E. Bakir, Florentin Ipate, Savas Konur, Laurentiu Mierla, and Ionut

Niculescu. Extended simulation and verification platform for kernel P systems. In Marian Gheo-

rghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sośık, and Claudio Zandron, editors, Membrane

Computing: 15th International Conference, CMC 2014, Prague, Czech Republic, August 20-22,

2014, Revised Selected Papers, pages 158–178. Springer International Publishing, Cham, 2014.

This paper presents two computational modelling formalisms and their analysis using

model checking and simulation methods. It begins by describing and formally defining

two types of P system used for modelling, namely kernel P (kP) systems and stochastic

P systems, as well as two finite state machine extensions, namely the stream X-machine

(SXM) and communicating stream X-machine (CSXM), which constitute the formal basis

of the FLAME (Flexible Large-scale Agent Modelling Environment) simulator. This leads

into our presentation of two novel extensions to the kPWorkbench software framework: a

formal verification tool based on the NuSMV model checker, called NuSMV translator (see

Section 4.1.1.1), and a large-scale simulation environment based on FLAME.

In this paper we model an example biological system as both a kP system and as a

stochastic P system, and then show how to analyse it using model checking and simu-

lation components of kPWorkbench. Analysis with model checking was not immediately

possible for the original model, with its many rules and compartments, because of the

state explosion problem. The paper therefore introduces a compact representation (with
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fewer compartments and rules) of the model, which is more suitable for verification, and it

also demonstrates the use of simulation as a complementary analysis technique. We show

that the compact model reproduces the same behaviour as the original one. Therefore, al-

though model checking is applicable only for relatively small models, our compactification

technique can help to verify larger systems.

Second paper: M. E. Bakir, S. Konur, M. Gheorghe, I. Niculescu, and F. Ipate. High

performance simulations of kernel P systems. In 2014 IEEE Intl Conf on High Performance

Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security,

2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS), pages 409–412,

2014.

The first study showed that when the model size is large, we cannot use model checking

without compactification, so that simulation is more appropriate in this situation—we

accordingly investigated how to use two simulation tools, kPWorkbench Simulator [8] and

FLAME [37] to analyse a sample biological system. In this second study, we compared

the performance of these two simulators (with default settings) by executing them on a

large synthetic biology model coded as a kP system. The results highlight the performance

difference between using a general-purpose simulator (FLAME) as opposed to a custom

kP systems simulator (kPWorkbench Simulator).

Chapter 6 (Third Paper): Mehmet Emin Bakir, Marian Gheorghe, Savas Konur, and

Mike Stannett. Comparative analysis of statistical model checking tools. In Alberto Leporati,

Grzegorz Rozenberg, Arto Salomaa, and Claudio Zandron, editors, Membrane Computing: 17th

International Conference, CMC 2016, Milan, Italy, July 25-29, 2016, Revised Selected Papers,

pages 119–135. Springer International Publishing, Cham, 2017.

In the previous studies, we focused on expressing biological systems as computational

models and analysing them using both simulation and model checking techniques. However,

model checking can be applied either exhaustively or approximately. Since exact model

checking suffers from the state explosion problem, it can be used in practice only on small
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models. On the other hand, statistical model checking blends the simulation and model

checking approaches by considering a fraction of simulation traces, rather than all traces,

and provides approximate correctness of a queried property. Typically, statistical model

checkers can verify larger models, and they are faster than exact model checkers. These

advantages of statistical model checking have persuaded scientists to develop a number of

tools to implement this formalism. Although the diversity of the tools gives flexibility to

users, it is not clear which statistical model checking tool is going to be fastest for a given

model and property pattern.

In this third study we reviewed five statistical model checking tools by comparing their

modelling and specification languages, as well as the property patterns that they support.

We also examined their usability regarding expressibility of property specification, and

benchmarked the performance of the tools on verification of 465 biological models against

five property patterns. The experiments showed that the performance of different tools

significantly changes for different property pattern types, and also as model size changes.

We found that in some cases the best model checker can be identified by considering only

the model size and the property pattern, and for those cases we provide guidance for those

scenarios where a user can spot the fastest SMC tool without using any third-party tool.

The study also identified boundaries where the best choice is less clear-cut. For such cases,

examining the model size and property pattern parameters alone is not enough, and the

fastest SMC tool cannot be identified intuitively. The findings point to a clear need for

automating the SMC tool selection process, as well as the need to explore additional model

features that might be relevant to simplifying this task.

Chapter 7 (Fourth Paper): Mehmet Emin Bakir, Savas Konur, Marian Gheorghe, Na-

talio Krasnogor, and Mike Stannett. Performance benchmarking and automatic selection of

verification tools for efficient analysis of biological models. Unpublished, 2017.

This unpublished paper presents an initial, and in some respects more comprehensive,

account of work subsequently accepted (after formal submission of this thesis) for publica-

tion in revised form as [13].
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In this study, we proposed and implemented a methodology for automatically predicting

the most efficient SMC tool for any given model and property pattern. Machine learning

algorithms usually generate better results if they have more data, so as part of this study

we significantly extended the data set used in our previous paper [11] by performance

benchmarking a much larger set of biological models and verifying them against more

property patterns. In all, we recorded the performance of 5 SMCs for 675 models verified

against 11 property patterns. While our earlier work aimed to help users manually identify

the most appropriate SMC tool whenever possible, this study focuses on how to automate

the model checker selection process, and the efficiency our approach.

To match the best SMC tool to a given model we proposed a novel extended set of model

features, and showed that the proposed features are computationally cheap and important

for prediction of the fastest SMC tools and SSAs. Using several machine learning algo-

rithms, we were able to successfully predict the fastest SMC tool with over 90% accuracy

for all pattern types. We developed a software utility tool, SMC Predictor, which predicts

the fastest SMC tool for verification of biological models. Finally, we demonstrated that

using our SMC predictor tool provides real benefits to users in terms of time savings.

1.6 Publications arising from this research

1. Mehmet Emin Bakir, Savas Konur, Marian Gheorghe, Natalio Krasnogor, and Mike

Stannett. Automatic selection of verification tools for efficient analysis of biochem-

ical models. Bioinformatics, 2018. Available online: https://academic.oup.com/

bioinformatics/advance-article/doi/10.1093/bioinformatics/bty282/4983061.

2. Raluca Lefticaru, Mehmet Emin Bakir, Savas Konur, Mike Stannett, and Florentin

Ipate. Modelling and validating an engineering application in kernel P systems. In

Marian Gheorghe, Savas Konur, and Raluca Lefticaru, editors, Proceedings of the

18th International Conference on Membrane Computing (CMC18), pages 205–217.

University of Bradford, July 2017
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3. Mehmet Emin Bakir, Marian Gheorghe, Savas Konur, and Mike Stannett. Com-

parative analysis of statistical model checking tools. In Alberto Leporati, Grzegorz

Rozenberg, Arto Salomaa, and Claudio Zandron, editors, Membrane Computing: 17th

International Conference, CMC 2016, Milan, Italy, July 25-29, 2016, Revised Selected

Papers, pages 119–135. Springer International Publishing, Cham, 2017

4. Mehmet E. Bakir and Mike Stannett. Selection criteria for statistical model check-

ing. In M Gheorghe and S Konur, editors, Proceedings of the Workshop on Mem-

brane Computing WMC 2016, Manchester (UK), 11-15 July 2016, pages 55–57, 2016.

Available as: Technical Report UB-20160819-1, University of Bradford

5. Marian Gheorghe, Savas Konur, Florentin Ipate, Laurentiu Mierla, Mehmet E. Bakir,

and Mike Stannett. An integrated model checking toolset for kernel P systems. In

Membrane Computing: 16th International Conference, CMC 2015, Valencia, Spain,

August 17-21, 2015, Revised Selected Papers, pages 153–170. Springer International

Publishing, Cham, 2015

6. M. E. Bakir, S. Konur, M. Gheorghe, I. Niculescu, and F. Ipate. High perfor-

mance simulations of kernel P systems. In 2014 IEEE Intl Conf on High Perfor-

mance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace

Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst

(HPCC,CSS,ICESS), pages 409–412, 2014

7. Mehmet E. Bakir, Florentin Ipate, Savas Konur, Laurentiu Mierla, and Ionut Niculescu.

Extended simulation and verification platform for kernel P systems. In Marian Gheo-

rghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sośık, and Claudio Zandron, editors,

Membrane Computing: 15th International Conference, CMC 2014, Prague, Czech

Republic, August 20-22, 2014, Revised Selected Papers, pages 158–178. Springer In-

ternational Publishing, Cham, 2014
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Chapter 2

Modelling

In order to understand the structure and working mechanism of biological systems, for

years, biologists have utilised diagrammatic models, which could only provide very limited

information [46, 94]. However, to gain comprehensive insights into such systems, more ad-

vanced techniques, which can highlight the spatial and temporal evolution of the systems,

are required. Scientists start to harness computers to get a better and deeper understand-

ing of the spatial and time-dependent behaviour of biological systems [46]. Therefore,

machine-executable mathematical and computational models and specification languages

for biological systems are developed.

Models are an abstract representation of the real-systems, such as living cells. They

usually capture the essence of the interest in the different levels of abstraction, but not

the whole system, and neglect less critical details whenever possible [28, 60, 81]. The

machine-readable and executable attributes of models empower researchers to carry out in

silico experiments in a faster, cheaper, and more repeatable way than the similar wet-lab

experiments [11]. Models are useful for hypothesis testing, cause-and-effect chain tracing,

and for gaining new insights [29]. The verified models help to redesign the wet-lab ex-

periments and inspire further tests. The virtuous circle between modelling and wet-lab

settings enables incrementally getting a better understanding of biological phenomena, see
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Figure 2.1. Furthermore, models permit investigating systems that are difficult to explore

in real-world settings, due to practical constraints, such as cost, size, and ethics [4].

Wet-Lab 

Experiment
Model

Predictions and 

Interpretations

Data and 

Hypotheses

Figure 2.1: Virtuous circle between modelling and wet-lab experiments (adapted from [4]).

Key. Wet-lab experiment proposes a new hypothesis which can be specified and verified with the models. The model will

either prove or refute the hypothesis, and it can help to generate further predictions, which can be used as input for the next

iteration of wet-lab experiments.

Models can be described in equation-based (e.g., ordinary differential equations), graph-

ical (e.g., Petri nets, statecharts) or textual (e.g., rule-based system) representation [15].

They can represent either continuous, discrete, or hybrid systems, and can be executed

deterministically (fixed execution path) or stochastically (random execution path) [4]. In

the following sections, we summarise some of these methods and we present some examples

to explain them further.

2.1 P systems

Membrane Computing [65, 84] is a branch of Natural Computing inspired by structure and

functioning of living cells. It focuses in particular to the features that originate from the

presence and functionality of membranes. The computational models used for describing
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membrane computing are called P systems, which are, in general, distributed and parallel.

P systems can be categorized as (i) cell-like P systems which imitate the hierarchical

and selectively permeable membranes (eukaryotic cells) and form tree-like structures, (ii)

tissue-like P systems have a colony of one-membrane cells living in the same environment,

all cells can communicate via environment, only specific cells can communicate each other,

and they form a graph-like structure, and (iii) neural-like P systems, which are inspired

by the neurons interacting in neural nets, they are similar to tissue-like P systems, in

addition, they have a state which controls the system evolution [65, 84, 85]. For a formal

account of general P system models (including standard mathematical concepts like strings,

multisets, and the encoding of transition rules as rewrite systems) we refer the reader to [83].

Our focus in these chapters is the particular variant known as kernel P systems, which is

introduced in detail in the following section.

P systems consist informally of membrane structures (each membrane can contain zero

or more further membranes), multisets of objects (multiple instances of the same object),

which are placed in the compartments delimited by the membranes, and a set of rules for

processing objects and membranes as time passes [65, 70, 71, 83, 85]. Various execution

strategies can be used to define the behaviour of compartment types, that is, how the rules

will be applied. The application of rules in a P system is traditionally done in a maximally

parallel way, which means that at each time step a (typically randomly selected) maximal

collection of applicable rules will be applied simultaneously, and then the system moves to

the next time step.

For computational purposes, the initial distribution of objects represents the system

input, and the final distribution (more specifically the number of objects in some pre-

selected compartment) represents the corresponding output. From the computational point

of view, most variants of the basic P system model can simulate arbitrary Turing machines,

that is, they are computationally complete (Turing complete) [85], and much work has

been carried out to find the number of membranes in a P system that are sufficient to

characterise the power of Turing machines [65, 84, 85]. P systems are also computationally

efficient because they are inherently parallel computing devices, that is, all membranes
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Biological Systems P Systems
Compartment Membranes
Molecule Objects
Molecular population Multisets of objects
Biochemical transformation Rules
Compartment translocation Rules

Table 2.1: Mapping between biological systems and P systems

and their objects evolve simultaneously. This feature is mainly achieved by membrane

division and membrane creation operations. However, there remains a trade-off between

time and space, with space requirements for some models often increasing exponentially in

linear time; this makes it possible to get polynomial-time (even linear-time) solutions to

NP-complete problems [41, 65, 84, 85].

Membrane computing has been applied to a wide range of fields from biology, linguis-

tics, economics, to computer science (in devising sorting and ranking algorithms), and

cryptography [41, 65, 68, 84, 85]. It has been developed at various levels, with the follow-

ing dimensions: (a) the newly introduced concepts, or a new manner in this area, (b) the

mathematical formalism of membrane computing, and (c) the graphical language, the way

to represent membrane structures, together with the contents of the compartments and

the associated rules. [65, 85].

2.2 Kernel P (kP) systems

In this thesis, our focus is on a relatively recently introduced variant of the P system model,

namely kernel P (kP) systems [41, 52]. kP systems encapsulate features of many other P

system variants, but whereas standard P systems generally adopt maximal parallelism, kP

systems allow a choice of different execution strategies for defining how the rules will be

applied. We now provide a formal account of kP systems; in general our definitions and

terminology follow those of [51, 52].
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2.2.1 Preliminaries

A string over a finite alphabet A, where A = {a1, . . . , ap}, is a sequence of symbols from

A. A∗ denotes the set of all strings over A, λ denotes the empty string, and A+ = A \{λ}
denotes the set of non-empty strings. The length of a string u, where u ∈ A∗, is denoted

by |u| , and |u|a denotes the number of a ∈ A in u. For a subset S ⊆ A, |u|S denotes

the number of occurrences of the symbols from S in u. The length of a string u is given

by
∑

ai∈A |u|ai . The length of the empty string is 0, i.e. |λ| = 0. A multiset over A is a

mapping f : A→ N. For an element a ∈ A, f(a) is the multiplicity of a in f . The support

of f is defined as supp(f) = {a ∈ A|f(a) > 0}. For supp(f), the multiset is represented as

a string af(ai1 ) . . . af(aip ), where the order is not important.

Molecules in cellular systems can be represented by the multiset of objects in the kP

systems. Objects in the multisets symbolise different molecules, and the multiplicity of

objects represents the population of the corresponding molecule types.

2.2.2 kP systems definitions

Let’s begin with compartment types which will be used for defining the compartments of

the kP systems.

Definition 1 T is a finite set of compartment types, T = {t1, . . . , ts}, where ti = (Ri, σi),

1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi, defined over Lab(Ri),

the labels of the rule Ri.

The compartments of the kP systems are constructed from the compartment types.

Each compartment, C, is a tuple (t, w), where the compartment type t ∈ T and w is its

initial multiset. The rules and the execution strategies are discussed later.

In biological cells, molecular interactions can be delimited by membranes. The func-

tionality of different membranes can be different for different organisms, cells or cell regions.

Different membranes are specified as compartment type (see Definition 1) in kP systems
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which can have its own strings (molecules), rules and execution strategies (molecular in-

teraction) [19].

Definition 2 A kP (kΠ) system of degree n is a tuple

kΠ = (A, µ,C1, . . . , Cn, i0) (2.1)

• where A is a finite set of elements, called objects.

• µ defines the initial membrane structure of the kP system. µ is an undirected graph,

(V,E), where V are vertices that signify the compartments, and E are edges that

indicate the links between the compartments.

• Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting of a compartment

type from T , ti ∈ T (see Definition 1), and an initial multiset, wi over A.

• i0 is the output compartment where the result is received.

2.2.3 kP systems rules

The kP system rules may have a guard g, the standard form of a rule is r {g}, where

r is the rule, and g is its guard. The guards are constructed using multisets over A, as

operands, together with the relational or Boolean operators, as explained below.

For a multiset w over A and an element a ∈ A, we denote by |w|a the number of objects

a occurring in w. Let us denote Rel = {<,≤,=, 6=,≥, >}, the set of relational operators,

γ ∈ Rel, a relational operator, and an a multiset with multiplicity n and r {g} a rule with

guard g. Let’s first introduce the abstract relational expression.

Definition 3 If g is the abstract relational expression denoting γan and w is the current

multiset, then the guard g applied to w denotes the relational expression |w|aγn.

The abstract relational expression g is true for the multiset w, if |w|aγn is true.

An abstract Boolean expression is defined by one of the following conditions:
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• any abstract relational expression is an abstract Boolean expression.

• If g and h are abstract Boolean expressions then ¬g, g ∧ h and g ∨ h are abstract

Boolean expressions, where ¬ is negation, ∧ is conjunction and ∨ is disjunction

Boolean operators, in decreasing precedence order.

Definition 4 If g is an abstract Boolean expression containing gi, 1 ≤ i ≤ q where q ∈ N,

abstract relational expressions and w is a multiset, then g applied to w means the Boolean

expression obtained from g by applying gi to w for any i.

The guard g is true for the multiset w, if the abstract Boolean expression g applied to w

is true.

Example 1 For the abstract Boolean expression > k ∧ ≥ 4l ∨ ¬ > 2m defined the guard

g and its multiset w, then g applied to w is true if the multiset contains more than 1 k’s

and at most 4 l’s or no more than 2 m’s.

Definition 5 A rule of a compartment Cli = (tli , wli) can either have the type of a rewrit-

ing rule, that of a communication rule, or that of structure changing rule:

• (a) rewriting and communication rules: x→ y {g}, where x ∈ A+ and y has

the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A and tj, 1 ≤ j ≤ h, is a compartment

type from T (see Definition 1) of compartments linked to the current one; tj can be

the same type of the current compartment, Ctli ; if a link does not exist (i.e. there is

no edge between the two compartments in E) then the rule is not applied; if a target,

tj, refers to a compartment type that has more than one compartments linked to Cli,

then one of them will non-deterministically be selected.

• (b) structure changing rules: the following types of rules are considered:

– (b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g} , where x ∈ A+

and yj ∈ A∗, 1 ≤ j ≤ p; the compartment Cli will be replaced by p number of

compartments; the j-th compartment, 1 ≤ j ≤ p, of type tij contains the same
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objects as Cli, except x, which will be replaced by yj; all the links of Cli are

inherited by each of the newly created compartments.

– (b2) membrane dissolution rule: []tli → λ {g}; the compartment Cli will

be destroyed together with its objects and the links.

– (b3) link creation rule: [x]tli ; []tlj → [y]tli−[]tlj {g}; the current compartment

is linked to a compartment of type tlj and x is transformed into y; if more than

one compartment of type tlj exist and they are not linked with Ctli , then one of

them will non-deterministically be selected.

– link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g}; is the link between com-

partments are removed that is the compartments are disconnected.

The kP system rules represent molecular interaction or chemical reactions inside com-

partments. If the products of a reaction remain inside the same compartment, then the

reaction is expressed with the rewriting rules, but if a product needs to be transferred to

another membrane, then communication rules should be used. The rewriting and com-

munication rules do not change the structure and the number of the compartments. The

membrane division rules can model the proliferation of the biological systems, e.g. cells,

whereas the membrane dissolution models the termination of membrane functionality or

cell death. The link creation and destruction rules enable dynamically changing the con-

nections between the compartments, which may happen in living cells when a cell changes

its location.

2.2.4 kP systems execution strategies

Execution strategies define how the rules will be executed for each compartment type t

from T—see Definition 1.

Definition 6 For a compartment type t = (R, σ) from T and r ∈ Lab(R), r1, . . . , rs

∈ Lab(R), the execution strategy, σ, is defined as follows:

• σ = λ means no rule from the current compartment will be executed.
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• σ = {r} means the rule r is executed.

• σ = {r1, . . . , rs} means one of the rules labelled r1, . . . , rs will non-deterministically be

chosen and executed; if no rule is applicable then nothing is executed. This execution

strategy is called alternative execution strategy or choice execution strategy.

• σ = {r1, . . . , rs}∗ means an arbitrary number of time the rules will non-deterministically

be chosen and executed. This is called arbitrary execution strategy.

• σ = {r1, . . . , rs} > all applicable rules will be executed until no applicable rule re-

mains. This is the maximal parallelism execution strategy.

• σ = σ1& . . .&σs, applies the execution strategies sequentially σ1, . . . , σs, where σi,

1 ≤ i ≤ s, describes any of the aforementioned execution strategies; if one of σi fails

to be executed then the remained σi . . . σs will no longer be executed. This is called

sequential execution strategy.

• for any execution strategy σ, only one single structure changing rule is allowed.

Choice execution strategy non-deterministically selects and applies only one rule among

the applicable rules. Arbitrary execution strategy, at each step, an arbitrary number of

times non-deterministically chooses and applies the applicable rules. Maximal parallelism

execution strategy applies all rules at each step, the order of applying the rules is not

important. Sequence execution strategy applies all rules sequentially, namely, the rules are

applied in the same order as they are defined.

A configuration of a kP system with n compartments, C1, . . . , Cn, is a tuple c =

(u1, . . . , un), where ui is a multiset of compartment Ci, 1 ≤ i ≤ n. Structure chang-

ing rules might be executed which may change the compartment number. A configuration

c′ = (v1, . . . , vm) follows in one step from c = (u1, . . . , un), if in each Ci the σi is applied

to ui. A computation is a finite sequence of steps starting from the initial configuration,

(w1, . . . , wn), and at each step applying the rules of the execution strategies of each com-

partment.
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2.3 kP-Lingua

kP-Lingua is the modelling language of kP systems which can express the kP systems

specifications in a machine-readable format. kP-Lingua expresses kP system models in

an unambiguous, concise and intuitive manner [41, 52, 70, 71]. kP-Lingua can express

non-deterministic systems, but it does not support stochastic systems.

Example 2 illustrates how a kP system can be modelled with the kP-Lingua. The

example is remodelled by adding new rules, execution strategies, and a new compartment

instance to the example in Section 5.

C1 and C2 are two compartment types in Example 2. C1 has one compartment instance,

m1, and C2 has two instances m2 and m3. m1 starts with a multiset of two a objects and

one b. One a and five a are the initial multisets of m2 and m3, respectively. m1 is linked

to m2 and m3, but there is no link between m2 and m3. The C1 compartment type has

four different execution strategies. The scopes of the execution strategies are determined

with the curly brackets, except the sequence strategy, which is the last strategy, and it

does not have a reserved keyword.

The first execution strategy of C1 is a choice strategy which non-deterministically

selects and applies only one rule at each step. The first rule has a guard, to apply the

rule the guard should be true; namely, there should be more than two b objects in the

compartment. The first rule also a communication rule, if the rule is applied, then one b

and one a objects will be produced and the object b will remain in the same compartment,

but the object a will be sent to an instance of C2 compartment type. As there are two

instances of C2 (m2 and m3) are connected to m1, one of them will randomly be selected as

the target for transmitting the object. The second rule of the choice strategy is a rewriting

rule; it indicates that if the rule is applied one b object will be consumed and two b objects

will be produced. The objects will remain in the same compartment.

The second execution strategy in the compartment type C1 is an arbitrary execution

strategy, the rules in this scope are a random number of times will non-deterministically

be selected and applied. If the first rule of the arbitrary execution strategy is applied, then
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one b will be consumed, and nothing will be generated. It represents the degradation of

the molecules. The other two rules inside arbitrary execution strategy are also rewriting

rules.

The third strategy is a maximum parallelism which is specified by ‘max’ keyword. The

strategy contains the same rules of the arbitrary strategy. The rules inside this block are

exhaustively applied until no applicable rule remains.

The last execution strategy inside C1 compartment type is a sequential execution strat-

egy. The sequential execution strategy applies rules in the same order as they are defined.

If one of the rules is not applicable, then the rest of the rules will not be applied. The

first rule of the sequential execution strategy is a simple rewriting rule. The second rule

is a dissolution rule which is a structure changing rule associated with a guard. If a com-

partment contains exactly three a objects and at least two c objects, then the rule will be

applicable, and hence, the compartment will dissolve, and it will not function anymore.

The compartment type C2 has only one choice execution strategy which has two com-

munication rules. If the first rule is applied, the compartment will try to transmit two c

objects to a C2 type compartment. However, in the example, there is no link between m2

and m3; therefore, even after the rule is executed one a will be consumed, but the c objects

cannot be transmitted to any target compartment instance. The second rule is the same

as the first one, except it will send the c objects to an instance of C1 compartment type.

Therefore, both m2 and m3 compartments will send their c objects to m1.

As a case study, a biomolecular system example modelled in kP-Lingua is demonstrated

in Section 2.5.1. Additionally, the description of the kP-lingua language with a synthetic

biology example is provided in Section 5. For further kP system models, please see the

kPWorkbench website [72] where you can find various case studies, and you can download

their models described in kP-Lingua. The grammar of kP-Lingua in Extended Backus-Naur

Form (EBNF) form provided in [52].
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Example 2 Modelling a kP system using kP-Lingua.

1 //compartment type C1

2 type C1 {

3 choice {

4 > 2b : 2b -> b, a(C2).

5 b -> 2b.

6 }

7 arbitrary {

8 b -> {}.

9 a, b -> c.

10 c -> a, b.

11 }

12 max {

13 b -> {}.

14 a, b -> c.

15 c -> a, b.

16 }

17 a-> b.

18 =3a: 2c ->#.

19 }

20 //compartment type C2

21 type C2 {

22 choice {

23 a -> {2c}(C2).

24 a -> {2c}(C1).

25 }

26 }

27 //compartment instantiation

28 m1 {2a, b} (C1).

29 m2 {a} (C2).

30 m3 {5a} (C2).

31 //linking compartments

32 m1 - m2.

33 m1 - m3.

2.4 Stochastic P systems

Stochastic P systems (SP systems) are the probabilistic variant of P systems. As we stated

previously, P systems apply rules in a maximally parallel way. However, the maximal

parallelism execution strategy has drawbacks. For example, all rules have equal time steps
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which do not represent the real system reactions [19, 55]. Therefore, the stochastic variant

of P systems has been devised, which associates stochastic constants to rules. The stochas-

tic constants are used for calculating the probability of a rule to be chosen and applied, and

it is also used for measuring the required time for applying the rules [9, 19, 55]. Although

the first paper in Chapter 5 has the formal definition of Stochastic P systems, for the sake

of completeness and consistency, we added it here too. Therefore, whenever possible, we

used the same symbols that are used for defining the preliminaries in 2.2.1 and the kP

systems in 2.2.

Definition 7 A stochastic P system (SP system) with a single compartment is a tuple:

SP = (A,w,R) (2.2)

where A is a finite set of objects, i.e. alphabet; w is the finite initial multiset of objects

of the compartment, an element of A∗; R is a set of multiset rewriting rules, of the form

rk : x
ck→ y, where x, y are multisets of objects, x ∈ A+ and y ∈ A∗ (y might be empty).

A finite set of labels is L, and a population of SP systems indexed by this family is SPh,

h ∈ L. A lattice, denoted by Lat, is a bi-dimensional finite array of coordinates, (a, b),

with a and b positive integer numbers. Now we can define a lattice population P system.

Definition 8 A lattice population P system (LPP system) is a tuple

LPP = (Lat, (SPh)h∈L, Pos, Tr) (2.3)

where Lat, SPh and L are as above and Pos : Lat→ {SPh|h ∈ L} is a function associating

to each coordinate of Lat a certain SP system from the given population of SP systems.

Tr is a set of translocation rules of the form rk : [x]h1
ck→ [x]h2 , where h1, h2 ∈ L; this

means that the multiset x from the SP system SPh1, at a certain position in Lat, will move

to Lat that contains an SP system SPh2.
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ck that appears in both definitions above is the stochastic constant which is used for

computing the next rule to be applied in the system.

The lattice population system can be seen as the tissue structures in the biological

systems, where an SP system can represent a cell. The compartments can interchange

molecules only with their neighbours, namely east, west, south and north neighbours.

In Section 5 a synthetic biology example modelled in stochastic P system is provided

in greater details.

2.5 Case Study - Gene expression

In this section, we want to concretise the computational model approaches with a biomolec-

ular system example, which has been previously studied in [19]. The example represents

constitutive, down-regulation and up-regulation of gene expression. The gene expression

system starts with a gene and optionally with transcriptional factors (either activator or

repressor which are DNA or RNA binding proteins). The gene produces (transcripts) the

messenger RNA (mRNA) molecule. The activator molecules can promote the transcription

process or the repressor molecules can block it. Finally, mRNA translation produces the

target protein. For the sake of simplicity, we assume the whole process occurs inside one

membrane.

We will model this example with two classes of P systems, namely kernel P systems,

and stochastic P systems, and also in the following section, we will use this example for

explaining two other formalisms, namely the π-calculus and Petri-nets. We have designed

the kP system model of the example from scratch. The stochastic P systems model in

Table 2.3 and π-calculus models in Table 2.3 are taken from [19]. We have also adapted

the Petri-nets model in Figure 2.2 from [19].
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2.5.1 kP Systems (kP-Lingua)

The model in [19] associates constants with rules, which are used for calculating the prob-

ability of a rule to be applied, and the time required for applying the rules [19]. However,

kP systems only support deterministic and non-deterministic systems, and do not support

stochastic systems. Therefore, we ignore these constants to model the non-deterministic

variant of the system. Table 2.2 represents the kP System of the gene expression example

which is described with the kP-Lingua modelling language.

kP-Lingua requires specification of compartment types. Therefore we introduced com-

partment typeB which is specified at the first line of the model. The compartment type

is instantiated with the compartment b, in the last line. The initial content of the com-

partment consists of a gene molecule and multisets of the transcriptional factors, namely

10 activator (act) and 10 repressor (rep) molecules. The rewriting rules within the max-

imal parallelism block, which is specified with the max keyword, are applied in the non-

deterministic and maximally parallel way. That means that at each time step all applicable

rules are non-deterministically chosen and exhaustively applied until there is no applica-

ble rule remaining. The first and the second rewriting rules represent the transcription

and translation processes, respectively. Rules r3 and r4 represent molecule degradation

where an RNA or a protein molecule is consumed, but nothing produced. The rules r5,

r6 are reverse of each other and in r7 act gene produces an RNA but it does not change.

Therefore, r5, r6 and r7 express that the activator molecules (act) can increase protein

translation. Whereas r8 and r9 express how the repressor molecules (rep) postpone the

transcription of the gene molecule into RNA. The kP-Lingua model is accessible from

www.github.com/meminbakir/kernelP-store.

2.5.2 Stochastic P Systems

Similar to the kP systems, the stochastic P systems represent the initial condition of the

system and the molecules with multiset of objects. The rewriting rules represent the

transcription and the translation processes, but now the rules have constants that are used
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type B { //compartment type
max { //execution strategy
// Rewriting rules
/* r1 */ gene → gene, RNA .
/* r2 */ RNA → RNA, protein .
/* r3 */ RNA → {} .
/* r4 */ protein → {} .
/* r5 */ act, gene → act gene .
/* r6 */ act gene → act, gene .
/* r7 */ act gene → act gene, RNA .
/* r8 */ rep, gene → rep gene .
/* r9 */ rep gene → rep, gene .
}

}
b {gene, 10act, 10rep}(B).

/* b is the compartment, {gene, 10act, 10rep} is its initial content, and B is its type,

namely compartment type */

Table 2.2: kP-Lingua model of the gene expression.

for determining the probability and the time required for applying the rules according to

Gillespie algorithm [19, 56]. Table 2.3 shows the stochastic P system model of the gene

expression system [19].
∏

represents the stochastic P System model. The system has a

single compartment, labelled b, and can be in three distinct initial multisets of objects,

which are denoted by M0,1, M0,2, M0,3 which has the gene molecule alone or together with

the transcriptional factors, 10act or 10rep. The constitutive gene expression is represented

by r1− r4 rules, which simply consists of the transcription and the translation processes,

and the degradation of RNA and protein molecules. The rules r5 − r7 represent that

the activator molecules promote the translation, whereas the rules r8 and r9 inhibit the

transcription, and hence, the translation process.

2.6 Other formalisms

In the previous sections, we introduced two variants of P systems. kP systems and its
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∏
= ({gene, RNA, protein, act, act gene, rep, rep gene}, b, [ ]b , (b, Mi), r1, . . ., r9)

M0,1 = gene
M0,2 = gene + 10act
M0,3 = gene + 10rep
Rules:

r1 : [gene]b
c1→ [gene + RNA]b c1 = 0.347 min−1

r2 : [RNA]b
c2→ [RNA + protein]b c2 = 0.174 min−1

r3 : [RNA]b
c3→ [ ]b c3 = 0.347 min−1

r4 : [protein]b
c4→ [ ]b c4 = 0.00116 min−1

r5 : [act + gene]b
c5→ [act gene]b c5 = 6.6412087 molec−1min−1

r6 : [act gene]b
c6→ [act + gene]b c6 = 0.6 s−1

r7 : [act gene]b
c7→ [act gene + RNA]b c7 = 3.47 min−1

r8 : [rep + gene]b
c8→ [rep gene]b c8 = 6.6412087 molec−1min−1

r9 : [rep gene]b
c9→ [rep gene + gene]b c9 = 0.6 min−1

Table 2.3: Stochastic P model of the gene expression, taken from [19]

modelling language kP-Lingua are particularly relevant to this thesis. However, there are

many other formalisms established which can be used for describing the biological systems.

In the following sections, we will briefly outline some of these formalisms and some of the

specification languages which are used for specifying and designing biological systems.

2.6.1 Petri nets

Petri nets are a mathematical and computational modelling language which form directed

graphs. A Petri net consists of two types of nodes, places are signified by circles and

transitions are signified by bars (or boxes) [98]. The edges which connect transitions to

places or vice versa are called arcs, and each arch is associated with weights. If an arc

directs from a place to a transition, the place is called input place, and if it directs from

a transition to a place, the place is called output place. Places may contain token which

creates a configuration of the system, called marking. A transition can be enabled if the

input places have enough tokens (not less than the weight of its outgoing arch), after a

transition fires the required number of tokens will be consumed from input places, and
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Biological
System

Petri nets

Molecule Place
Molecular
population

Marking

Biochemical
transformation

Transition

Reactant Input place
Product Output place

Table 2.4: Mapping between biological systems and Petri nets [19].

tokens will be produced in output places. If a place is the input of multiple transitions,

i.e. multiple transitions are enabled, then one of the transitions will be selected and fired

non-deterministically. If a transition is enabled and it has more than one output place,

then all output places will get the corresponding number of tokens, which represents par-

allel execution.

Petri nets are suitable formalism for modelling unpredictable (non-deterministic, and

stochastic), and concurrent biological systems [46, 61]. A Petri net model assigns each

molecular species of a biological system to a place and the population of molecules at a

specific time are represented by markings [19, 46, 61]. Transitions represent the biochemi-

cal transformations and reactions. Table 2.4 describes mapping between biological systems

and Petri nets.

Figure 2.2 demonstrates the Petri net model of the gene expression example introduced

in Section 2.5. Each molecule is represented by a place, and the transformation rules are

represented by transitions ri, 1 ≤ i ≤ 9. Each arch has a weight which signifies the required

number of tokens to enable the transition. Constitutive gene expression is set as the initial

marking where only the gene place has one token. If the place act has 1 ≤ n ≤ 10 then

the system will have positive regulation, whereas if the place rep has 1 ≤ n ≤ 10 then

the system will have negative regulation [19]. The model is designed using the Platform
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Figure 2.2: Stochastic Petri net model of gene expression (adapted from [19])

Independent Petri Net Editor 2 (PIPE2) tool [92].

2.6.2 π−calculus

π-calculus (or pi-calculus) is a member of process calculi which is designed for modelling

concurrent system. π-calculus provides a high-level description for introducing parallel

processes, new channels, communication between processes via channels, replication of

processes, and non-determinism [77, 94, 105]. The π-calculus formalism is a good candi-

date for describing biological systems because the nature of biological systems is massively

concurrent, and we can define a one-to-one mapping between two systems. To represent

biological systems behaviour; each molecule is assigned to a process, and the quantity of

molecules can be imitated by running replication of process in parallel. Molecule interac-

tion is modelled with communication between processes via channels [19, 46]. Table 2.5
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Biological System π-calculus
Compartment Private communication channel
Molecule Process
Molecular population Systems of communicating processes
Biochemical
transformation

Communication channel

Compartment
translocation

Private channel scope extrusion

Table 2.5: Mapping between biological systems and π-calculus [19]

represents mapping between biological systems and π-calculus. π-calculus allows develop-

ing models incrementally and composing them to build larger models. For more details

on π-calculus and different extensions of π-calculus, such as stochastic π-calculus [93], κ-

calculus, which have been used for modelling wide range of biological phenomena, please

refer to [38, 46, 95, 96].

Figure 2.3 shows the π-calculus representation of the gene expression example from

Section 2.5. This model is taken from [19]. Each process definition represents a molecule

and its interactions with other molecules. The first order reactions, transformation and

degradation, are assigned with a stochastic delay τk [19, 99]. For example, the gene process

has been associated with τc1, after that time delay gene turns into gene and RNA. Similarly,

the protein process corresponds degradation mechanism by becoming an inert process after

τc4 time delay. The higher order reactions have complementary communication channels,

e.g., ac5?, ac5!, which processes represent the reactant molecules. The processes and reac-

tants interact with the c5 constant.

2.6.3 Mathematical models

Until recently, the vast majority of biological systems have been modelled on the mathemat-

ical theory of differential equations, mostly using ordinary differential equations (ODEs)

though sometimes using partial differential equations (PDEs) [11, 19, 25, 99]. Differential
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S0,1 = gene
S0,2 = gene + act + . . . + act
S0,3 = gene + rep + . . . + rep

Component processes
gene := τc1. (gene | RNA) + ac5?. act gene + rc8?. rep gene
RNA := τc2. (RNA | protein) + τc3. 0
protein := τc4. 0
act := ac5!.0
act gene := τc6. (act | gene) + τc7. (act gene | RNA)
rep := rc8!. 0
rep gene := τc9. (rep | gene)

Figure 2.3: π-calculus model of gene expression (taken from [19]).

equations are well suited for modelling molecular interactions (or chemical reactions) in

cellular systems [46]. ODE defines each model species as a variable which represent the

concentration (population) over time [25]. The realisation of the models relies on two as-

sumptions [19, 25, 99]: The first assumption is that the concentration of the molecules does

not change with respect to space, that is, the number of each molecule is large enough, and

they are well mixed. The second assumption is that the concentration changes smoothly

over time.

When the number of reacting species is low, the reactions are slow and separated by

irregular intervals, which is a general case in biological systems, these assumptions are

no longer valid, and this approach becomes problematic [25, 99]. In such a situation, the

reactions do not take place continuously which means the system represents discrete and

stochastic behaviour [25, 99]. The Chemical Master Equation (CME) is a system of many

coupled ODEs that describes the evolution chemical reactions as a stochastic system (in a

well-mixed, fixed temperature and fixed volume) [111, 117]. Therefore, The ODEs based

on CME can capture the stochastic behaviour of the reacting system which is a more usual

case in real systems. However, as CME is a formulation of many ODEs they can be solved

efficiently only for a few simple systems [25].
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2.6.4 Specification languages

In the previous sections, we summarised some of the computational modelling formalism

for describing the biological systems. In addition to computational models, there are some

attempts to describe and design biological systems with high-level languages, especially

with the growth of synthetic biology these languages are more utilised [88].

GenoCAD [30, 49] is the first computer-assisted-design (CAD) application for synthetic

biology, built upon the foundation of the theory of formal languages [17, 30]. DNA seg-

ments are called parts, such as promoters, transcription terminators, genes, protein do-

mains, which are defined as the terminals of the language [116]. Design strategies have

rules to specify which parts and classes of parts, called categories (non-terminals), can be

combined. The design strategies also make sure that the categories can be used only in

correct order [116]. GenoCAD is implemented as a web-based tool. GenoCAD library in-

cludes numerous distinct basic parts. Also, it allows users to create or import their private

parts without having to share them with other users [49, 116]. The web application guides

the users to form constructs through a comfortable “point and click” fashion. The appli-

cation recently has been extended to allow designing BioBrick [22] constructs compliant

with different assembly standard [17, 31].

Eugene is a human and machine readable language developed for designing biologi-

cal DNA sequences, parts, devices (composite of multiple fundamental parts), and Sys-

tems [17, 21, 45]. Eugene is inspired by the approach used by the Electronic Design

Automation (EDA) industry (e.g. Verilog, VHDL); it provides a biological design netlist

(a collection of abstract components and their connections) which can be transformed into

corresponding physical implementations [21]. The essential features of Eugene include: (i)

Specifying synthetic biological components at the various level of abstraction, e.g., prop-

erties, part instance, parts, devices. (ii) Defining constraints and rules on the component

composition, the constraint system allows the automatic generation of composite devices

from a set of separate parts. (iii) Eugene can directly interact with some external design

applications, which extract data from repositories of biological parts and encapsulate that
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data as Eugene “header files”. The header files provide modularity feature to Eugene.

Eugene ultimately produces collections of devices which are composed of specific con-

straints, and parts and properties. Eugene tool does not have a built-in simulation tool,

but it translates the custom Eugene data structures to an exchange format for external

simulators [21].

Genetic Engineering of Cells (GEC) is another high-level language that aims to facili-

tate the design, analysis, and implementation of biological devices. GEC utilises previous

research in the synthetic biology field, includes integrating MIT Registry of Standard

Biological Parts (http://parts.igem.org) notions with experimental techniques to combine

these parts into higher-level devices [86, 87]. GEC enable users to design devices with basic

knowledge of the available part (elementary) types, namely promoters, ribosome bindings

sites, protein coding regions and terminators [17, 86, 87]. The elementary parts (devices)

can be combined, and the properties of the parts can be expressed as constraints [17, 86, 87].

The tool based on GEC is called as Visual GEC, which provides designing and simulation

functionalities of biological parts [87].

In this section, we summarised three widely-used high-level languages for specifying

biological part and devices. But there are some others such as, Kera [114], Antimony [110],

Proto [16]. They are beyond the scope of this thesis. However, interested reader can refer

to [17] which summarises some of these languages.
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Chapter 3

Analysis

After specifying a model, usually, the next objective is to analyse it. Thanks to the

executable feature of computational models, we can test hypotheses and analyse interesting

model properties [11]. This research mainly investigated the model checking techniques for

analysis purpose. We cover the methods and tools used for model checking in the following

sections and the Part II that subsume our published studies.

3.1 Model checking

Model checking is a powerful verification technique, which has been widely used in com-

puter systems, as well as for biological system models [41]. It formally demonstrates the

correctness of desired properties of a model by exhaustively investigating its entire state

space, namely, considering all execution paths. Therefore, the approach guarantees the

accuracy of the properties. This approach is called exact model checking and the model

checking tools that implement this feature is called exact model checkers.

Model checking comprises three basic steps [7, 11, 64].

Modelling:

The system is expressed in a high-level modelling language accepted by the model

checking tool, which provides an unambiguous representation of the input system.
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Specification:

The desired properties are specified with temporal logic formulas which enable query-

ing model behaviour over time. This is covered in the next section.

Verification:

The validity of each property is verified on the model. For a modelM and a property

φ, the model checking algorithm decides if φ is valid on M, which can be denoted

as M |= φ. For non-probabilistic models, the verification output is, typically, either

‘true’ or ‘false’. If the property is false, then a counter-example may be produced.

For probabilistic systems, the output can be some estimate of the ‘probability of

correctness’ [11].

Model checking was initially implemented for analysing transition systems. A transition

system regards time as discrete, and describes a set of states and the possible transitions

between them, where each state represents some instantaneous configuration of the system.

Formally, a transition system is defined as follows [64].

Definition 9 A transition system is M = (S,→, L) where S is the set of states, and →
represents the binary transition relation, such that every s ∈ S goes to some s′ ∈ S with

s → s′, and a labelling function L : S → P(Atoms) where P (Atoms) denotes the power

set of atomic propositions.

More recently, model checking has been extended by assigning probabilities to state

transitions (probabilistic model checking). In the probabilistic version of transition sys-

tems, the transition from the current state to target states are determined by some prob-

abilities, rather than deterministic or non-deterministic choices. Probabilistic models are

useful for verifying quantitative features of systems. Markov chains (MCs) are typical

models for presenting such systems [7]. Markov chains are transition systems where each

state has a probability distribution that specifies the transition probabilities from the cur-

rent state to its successors. The probability distribution from the current state to the next

state only depends on the current state, namely not on the history of how the system got
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there from the initial state[7]. This distinguishing feature of MCs is known as memory-

less property[7]. In practice, the probabilistic model checking commonly implements the

discrete-time Markov chains (DTMC), and continuous-time Markov chains (CTMC) for

representing probabilistic systems. Now we shall formally introduce them first, and then

we can move to temporal logics to show how they are verified.

Definition 10 A labelled discrete-time markov chain (DTMC) is;

a tuple M = (S, P, si, AP, L) where S is a finite set of states, si ∈ S is the initial state,

P : S × S → [0, 1] is the transition probability function such that ∀s, ∑
s′i∈S

P (s, s′) = 1. AP

is a set of atomic proposition and L is a labelling function such that L : S → 2AP , assigns

true atomic propositions to the related states.

Similar to the DTMC, the CTMC also have discrete state space, but the transition

time between states of a CTMC system occurs in real-time, namely continuously (as its

name indicates), whereas in DTMC it corresponds to a discrete time step [73]. CTMCs

are also memoryless, namely the probability of moving from the current state to the next

state depends only on the current state. Let’s first introduce the formal definition of a

CTMC [6, 73, 108].

Definition 11 A labelled Continuous Time Markov Chain (CTMC) is a tuple M =

(S, si, R,AP, L) where S is finite set of states, si ∈ S is the initial state, R : S × S → R≥0

is transition rate matrix. AP is a set of atomic proposition and L is a labelling function

such that L : S → 2AP which assigns the set of atomic propositions L(s) that true in each

state s ∈ S.

Different from a DTMC model, each pair of states in the CTMC are assigned with a

rate R(s, s′), and a transition between each pair of states s, s′ can occur only if R(s, s′) > 0.

If R(s, s′)= 0 transition between s and s′ is not possible. If s has only one successor, s′,

and R(s, s′) > 0, then the probability of a transition occurring between s and s′ within

t time-units equals 1−e−R(s,s′).t. However, generally in CTMCs there are more than one
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successors of the state s, which is known as race condition. To identify the next state

of s in a race condition case, we need to determine the probability of transition to each

successor of s, i.e. s′. The total transition rates from s is, E(s) called as the exit rate s

which is:

E(s) =
∑
s′∈S

R(s, s′) (3.1)

If a state s has no outgoing transitions it is called absorbing, that is E(s) = 0. The

probability of moving from s to s′ within t time units, when s is not absorbing, is denoted

as P (s, s′, t) where:

P(s, s′, t) =
R(s, s′)

E(s)
·
(
1− e−E(s)·t) . (3.2)

Basically, by the probability P (s, s′, t) the winner successor state of s is chosen [6]. Fur-

thermore, the probability of transition from s to s′, P (s, s′), can be specified by converting

the CTMC to a DTMC, whereby ignoring the time spent at any state, more details on this

conversion can be found at [6, 73].

Before starting the temporal logics section which is used for specifying model proper-

ties, it might worth mentioning that we have extensively used different model checking

approaches and tools during this study, some of the findings have been published and re-

ported in this thesis. For less formal but more practical usage of model checkers, we refer

readers to Chapter 5, 6, and 7.

3.2 Temporal logics

Model checking uses temporal logics as property specification language. Temporal logics

are an extension of propositional logics. The difference is that temporal logics formulas can

be true in some states and may be false in others which means that the truth of formulas

may change from state to state. Regarding the structure of time, temporal logics can be

either linear time or branching-time. Linear-time represents the time as a set of paths, for

each time instant, there is a single successor. Hence, a path is a sequence of time instances.
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Branching-time represents the time as a tree-like structure, where the root is the current

time, and the branches go to future [7, 64].

In order to demonstrate each temporal logic formula, we will verify some properties of

the gene expression model, described in Section 2.5. In the temporal logic formulas, we

will refer the number of molecules with their name, for example, instead of “the number

of protein molecules”, we will use “protein” only, therefore, protein > 5 is a propositional

atom, because it means that the number of protein molecules is greater than 5.

3.2.1 Linear-Time Temporal Logic (LTL)

Linear-Time Temporal Logic (LTL) is used for querying transition systems (see Definition

9). LTL models the possible future of a system as a sequence of states, which is called

path or computational path.

Definition 12 A path of model a transition system M (see Definition 9) is an infinite

sequence of states s1 → s2 → . . ., si ∈ S where, for i ∈ N+, si → si+1. A path is specified

as s1 → s2 → . . .

Let π = s1 → s2 → . . . be a path, and πi means the starting state of the path is si.

Now, we can introduce the syntax of LTL, the BNF form LTL is as follows [7, 64]:

φ ::= > | ⊥ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) |
(φ→ φ) | (Xφ) | (Fφ) | (Gφ) | (φUφ) | (φWφ) | (φRφ)

where p is any propositional atom, and φ, φ1, and φ2 are LTL formulas. The G,F,X,U,R,

and W operators are called temporal connectives. G stands for “Globally”, which includes

current state and all future states of a path, and Gφ means that all states of a path satisfy

φ. F means “eventually”, and Fφ states that some states in future will satisfy φ. X stands

for “Next”, and Xφ means that the second state of a path satisfies φ. U stands for “Until”.

Until is a binary operator and φ1Uφ2 means that φ1 holds and it will keep holding until φ2

holds. That is, φ2 must eventually hold. R means “Release”, φ1Rφ2 states that φ2 holds

until φ1 becomes true, namely φ2 releases φ1. W stands for “Weak-until”, φ1Wφ2 it is like
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Until operator but it does not require φ2 eventually hold. [7, 18, 44, 64]. In the following

section we provide the formal semantics of the LTL formulas.

Semantics of LTL AssumeM = (S,→, L) is a transition system and π = s1 → s2 → . . .

is a path, where πi starts at state si, i ∈ N+. We define the satisfaction relation of LTL

on π as follows [7, 18, 64]:

• π |= >

• π 2⊥

• π |= p iff p ∈ L(s1), where s1 is the first state

• π |= ¬φ iff π 2 φ

• π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

• π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2

• π |= φ1 → φ2 iff π |= φ2 whenever π |= φ1

• π |= Xφ iff π2 |= φ

• π |= Gφ iff , for all i ≥ 1, πi |= φ

• π |= Fφ iff there is some i ≥ 1 where πi |= φ

• π |= φUψ iff there is some i ≥ 1 where πi |= ψ and for all j = 1, ..., i − 1 we have

πj |= φ

• π |= φRψ iff either there is some i ≥ 1 where πi |= φ and for all j = 1, ..., i we have

πj |= ψ, or for all k ≥ 1 we have πk |= ψ.

• π |= φWψ iff either there is some i ≥ 1 where πi |= ψ and for all j = 1, ..., i − 1 we

have πj |= φ; or for all k ≥ 1 we have πk |= φ
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Example 3 LTL examples for verifying the gene expression model (see Section 2.5).

Property 1: “Eventually the protein molecule will be generated.”
LTL: F (protein > 0)

Property 2: “Protein will not be produced before an RNA molecule is produced.”
LTL: ¬(protein>0) U RNA>0

Example 3 demonstrates how to model check the gene expression model in Section 2.5

with LTL formulas the informal description of the properties are also provided. The LTL

formulas are specified based on NuSMV language specification (please see [79] for the

details of NuSMV language). For the first property a model checker will check all paths,

for every path if there is a future state where the number of proteins is greater than zero,

then the property will hold for the model, does not otherwise. For the second property

to hold, again, the model checker expects for all paths the number of proteins is zero and

remains zero until an RNA molecule is produced.

3.2.2 Computational Tree Logic (CTL)

Computational Tree Logic (CTL) is also used for querying the transition systems, and it

considers time as branching. We define CTL in BNF as follows [64]:

φ ::= > | ⊥ | p | (¬φ) | (φ1 ∧ φ2) | (φ1 ∨ φ2) |
(φ1 → φ2) | AXφ | EXφ | AFφ | EFφ | AGφ | EGφ | A[φ1Uφ2] | E[φ1Uφ2]

CTL has G,F, U, and X of temporal operators, in addition, it has A,(All) and E (Exists)

path quantifiers which means “all paths” and “exists a path” respectively. CTL operators

cannot exist without being preceded by one of the path quantifiers [7, 18, 44, 64]. Infor-

mally, AXφ says: “for all paths the state after the initial state φ holds”, whereas EXφ

says: “there exists a path such that the state after the initial state φ holds ”. Similarly, as

informal descriptions of the rest of the operators (the formal descriptions are provided in

the following section) [7, 18, 64, 69]:
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• AGφ : for all paths the property φ globally holds.

• EGφ: there exists a path such that φ holds globally along the path.

• AFφ: for all paths there will be some future state where φ holds.

• EFφ: there exists a path such that φ holds in some future state.

• A[φ1Uφ2]: all paths satisfy φ1Uφ2 on them.

• E[φ1Uφ2]: there exists a path such that φ1Uφ2 holds on it.

Semantics of CTL AssumeM = (S,→, L) is a model of transition systems and s ∈ S,

φ is a CTL formula. For the paths in M starting at s, M, s |= φ is defined as following

[7, 18, 64, 69]:

• M, s |= > and M, s 2⊥

• M, s |= p iff p ∈ L(s)

• M, s |= ¬φ iff M, s 2 φ

• M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

• M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

• M, s |= φ1 → φ2 iff M, s 2 φ1 or M, s |= φ2

• M, s |= AXφ iff ∀s1, where s→ s1 and M, s1 |= φ.

• M, s |= EXφ iff ∃s1, where s→ s1 and M, s1 |= φ.

• M, s |= AGφ holds iff for all paths s1 → s2 → s3 → . . ., where s1 equals s, and

all si along the path, where i ∈ N+ and M, si |= φ.

• M, s |= EGφ holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals s,

and all si along the path, i ∈ N+ and M, si |= φ.
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Example 4 CTL examples for verifying the gene expression model (see Section 2.5).

Property 1: “There exists a path which eventually lead to the production of the protein
molecule.”

CTL: EF (protein >0)
Property 2: “For all paths protein will not be produced before an RNA molecule is

produced.”
CTL: A[¬(protein>0) U RNA>0]

• M, s |= AFφ holds iff for all path s1 → s2 → s3 → . . ., where s1 equals s, there

is some si, i ∈ N+, such that M, si |= φ .

• M, s |= EFφ holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals s,

and for some si along the path, i ∈ N+ and we have M, si |= φ.

• M, s |= A[φ1Uφ2] holds iff for all paths s1 → s2 → s3 → . . ., where s1 equals

s, that path satisfies φ1Uφ2 , i.e. there is some si along the path, i ∈ N+, where

M, si |= φ2, and, for each 1 ≤ j < i, we have M, sj |= φ1.

• M, s |= E[φ1Uφ2] holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals

s, and that path satisfies φ1Uφ2 as specified previously.

Similar to the LTL example, Example 4 provides exemplary CTL formulas for ver-

ification of the gene expression example in Section 2.5, with informal description of the

properties. Since the first property has Exists (E) path quantifier, the model checker starts

from a given state and checks all paths, if there exists a path where the number of proteins

eventually becomes greater than zero, then the property will hold. The path quantifier of

the second property is All (A); therefore it will be same as the second property of LTL, in

Example 3.

As another example, the verification of a kP System model with CTL provided in Section 5.
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3.2.3 Probabilistic Computation Tree Logic (PCTL)

Probabilistic temporal logics formulate conditions on the probabilistic version of transition

systems where the transition from the current state to target states determined by some

probabilities, rather than deterministic or non-deterministic choices. Probabilistic Com-

putational Tree Logic (PCTL) is used for verifying Discrete Time Markov Chain (DTMC)

models—see Definition 10.

Paths represent the executions of DTMC models. A path of a DTMC model is defined

as infinite sequences, more formally; for a DTMC M = (S, P, si, AP, L), a path π is a

sequence of s1, s2, . . . , such that si ∈ S where i ∈ N+ and P (si, si+1) > 0. πi means that

the starting state of the path is si, and the set of paths of a DTMC model M starting in

state s is denoted PathM(s) [7, 73].

Now we shall continue with the description and the formal definition of PCTL which

is used for formulating conditions on DTMCs. PCTL is an extension of CTL temporal

logic, the most prominent difference is that PCTL excludes the path quantifiers. Instead,

it introduces probabilistic quantification with the probabilistic operator [7, 73]. The syntax

of PCTL over state and path formulas in BNF form is like the following [7, 73]:

φ ::= true | a | (φ1 ∧ φ2) | ¬φ | P∼p(ψ)

ψ ::= Xφ | φ1Uφ2 | φ1U
≤nφ2

where a is an atomic proposition, φ, φ1, and φ2 are state formulas, ψ is a path formula,

∼∈ {<,>,≤,≥}, p ∈ [0, 1] interval, and n ∈ N. X (neXt), and U (Until) temporal

operators have the same meaning as CTL operators, namely Xφ is true if φ holds in the

next state of the path and φ1Uφ2 is true if φ2 holds in a step in the future and φ1 is true up

until that step [73]. Different from CTL, in PCTL they are always preceded by probabilistic

operator, i.e. P∼p[·]. U≤n operator is bounded until operator, and the φ1U
≤nφ2 formula

asserts that φ1 is true and it will stay true until it reaches a φ2-true state within n states

of the path.
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Semantics of PCTL Given a DTMC modelM = (S, P, si, AP, L), s ∈ S and φ, φ1, φ2

are PCTL state formulas, and ψ be a PCTL path formula. The satisfaction relation |= is

defined as [7, 73]:

• s |= true for all s ∈ S

• s |= a ⇐⇒ a ∈ L(s)

• s |= ¬φ ⇐⇒ s 2 φ

• s |= φ1 ∧ φ2 ⇐⇒ s |= φ1 and s |= φ2

• s |= P∼p[ψ] ⇐⇒ ProbM(s, ψ) ∼ p

where ProbM(s, ψ)
def
= Prs{π ∈ PathM(s)|π |= ψ}

Given any path π ∈ PathM(s):

π |= Xφ ⇐⇒ π2 |= φ

π |= φ1Uφ2 ⇐⇒ ∃j ∈ N+ such that πj |= φ2 and 1 ≤ i < j πi |= φ1 for i ∈ N+

π |= φ1U
≤nφ2 ⇐⇒ ∃j ∈ N+ such that j ≤ n and πj |= φ2, and 1 ≤ i < j

πi |= φ1 for i ∈ N+

Remark 1 Before starting the PCTL examples, we want to note that one can easily derive

false, ∨, → logical operators from the ¬ and ∧ operators. Additionally, F (Eventually)

temporal operator, where Fφ means that φ will eventually hold, and G (Globally) temporal

operator, where Gφ means φ holds in every state of the path, can be derived from U operator

like the following [58, 73]:

• false ≡ ¬true

• φ1 ∨ φ2 ≡ ¬(¬phi1 ∧ ¬φ2)

• φ1 → φ2 ≡ ¬φ1 ∨ φ2

• P∼p[F ψ] ≡ P∼p[true U ψ]
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Example 5 PCTL examples for verifying the the gene expression model in Section 2.5.

Property 1: “The probability that the system will eventually produce a protein molecule
is greater than 0”

PCTL: P>0[true U protein>0]

Property 2: “It is certain that protein will not be produced before an RNA molecule is
produced”

PCTL: P≥1[¬(protein>0) U RNA>0]

• P∼p[G ψ] ≡ P∼(1−p)[F ¬ψ]

where ∼ is the logical inverse of ∼ which is defined as: > = <, ≥= ≤, < = >, and ≤ =≥.

Example 5 provides PCTL formulas for verification of the gene expression example (see

Section 2.5), with their informal description. In parallel to the previous example (Example

4), for the first property to be true, the model checker will start from one of the initial

states, and if there is a path such that the number of protein molecules eventually becomes

greater than 0, then the property will hold. The second property indicates that, for the

property to hold, in all paths, the number of protein molecules should be zero and remain

zero until some RNA molecules are produced.

3.2.4 Continuous Stochastic Logic (CSL)

Continuous Stochastic Logic (CSL) also extends from CTL temporal logic and operates

on probabilistic transition systems. CSL is used for specifying probabilistic properties of

Continuous Time Markov Chains (CTMCs)—see Definition 11.

For a CTMC M = (S, si, R,AP, L) an infinite path π is a sequence of s0
t0→ s1

t1→ . . .

where R(si, si+1) > 0 and ti ∈ R>0, ∀i ≥ 0. ti is the amount of time spent at si. If there is

an absorbing state sk such that k ≥ 0, then the path is finite. πi means that the starting

state of the path is si, and the set of the paths of a CTMC model M starting in state s

is denoted by PathM(s). Additionally, the state occupied at time instant t is denoted as

π@t. Now we can focus on CSL definition and its semantic. The BNF syntax of CSL is
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defined as follows [5, 73]:

φ ::= true | a | (φ1 ∧ φ2) | ¬φ | P∼p(ψ) | S∼p(φ)

ψ ::= Xφ | φ1Uφ2 | φ1U
Iφ2

Similar to PCTL, where a is an atomic proposition, φ, φ1, and φ2 are state formulas,

ψ is a path formula, ∼∈ {<,>,≤,≥}, p ∈ [0, 1]. I is a non-negative real number, namely

I ∈ R≥0 [5, 73]. φ1U
Iφ2 formula asserts that φ1 is true and it will stay true until it reaches

a φ2-true state at some time instant in the interval I. S is steady-state, i.e. long-run,

operator and S∼pr[φ] formula indicates that the steady-state probability of being in a state

satisfying φ is in the bound ∼p. The steady-state is used for querying the behaviour of the

system in the long run until the system reaches a balance. For example, when a chemical

reaction is in the equilibrium state, which the rate of the forward and reverse reactions are

equal so that the concentrations of reactants and products does not change in time, we

can use S operator to query the property of the system in this state [73].

Semantics of CSL Let a CTMC model M = (S, si, R,AP, L), and s ∈ S, φ, φ1, φ2 are

CSL state formulas, and ψ be a CSL path formula. The satisfaction relation |= is defined

for state formulas by [7, 73]:

• s |= true for all s ∈ S

• s |= a ⇐⇒ a ∈ L(s)

• s |= ¬φ ⇐⇒ s 2 φ

• s |= φ1 ∧ φ2 ⇐⇒ s |= φ1 and s |= φ2

• s |= P∼p[ψ] ⇐⇒ ProbM(s, ψ) ∼ p

• s |= S∼p[φ] ⇐⇒ ∑
s′|=φ π

M
s (s′) ∼ p

where:

ProbM(s, ψ)
def
= Prs{π ∈ PathM(s)|π |= ψ}

and for any path π ∈ PathM(s)
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Example 6 CSL examples for verifying the the gene expression model in Section 2.5.

Property 1: “The probability that the system eventually produces the protein molecule
within first 5 time units is greater than 0”

CSL: P>0 [F<=5 protein > 0]

Property 2: “It is possible that in long-run the concentration of RNA molecules is less
than the concentration of protein molecules.”

CSL: S>0 [RNA < protein]

• π |= Xφ ⇐⇒ π1 is defined and π1 |= φ

• π |= φ1U
Iφ2 ⇐⇒ ∃t′ ∈ I.(π@t′ |= φ2 ∧ ∀t ∈ [0, t′).(π@t |= φ1)).

Remark 2 Note that, the logical operator and the temporal operator of CSL can be ex-

tended in the same way as we did in PCTL, please see Remark 1.

Example 6 provides CSL formulas for verification of the gene expression example in

Section 2.5, with the informal description of the properties. The formulas are specified

based on PRISM language specification [100]. The first property is similar to the first

property of Example 5, however, here the number of future states is bounded, therefore,

the number of protein should be greater than zero within five steps, on at least one path.

Please note that we did not introduce the ‘F (Eventually)’ operator explicitly, but it can

be derived from ‘U(Until)’ operator, see Remark 1. For the second property to hold, at

least for one path, the number of protein molecules should be greater than the number of

RNA molecule, and this should be preserved for forever.

We have listed a few property specification languages, but there are several other prop-

erty languages, such as Probabilistic LTL, PCTL*, and probabilistic LTL with numerical

constraints (PLTLc) [7, 40] which are specialised for querying specific type of models.

Although the diversity of the dedicated property specification languages is useful for inves-

tigating various model features, learning their syntax and understanding the underlying

logic is not intuitive. Therefore, especially for non-expert testers such as biologists, it is

challenging to know how to formalise the property queries correctly.
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Recently, efforts have been made to facilitate property specifications by identifying

frequently used property queries, called property patterns or patterns [42, 58]. Patterns

are commonly represented by natural-like keywords, for example, the reachability of pro-

tein molecule property can be expressed as “eventually protein > 0”. In Chapter 6 and

Chapter 7, we present widely used property patterns and we compare pattern support of

different model checking tools.

3.3 Statistical model checking

Statistical model checking (SMC) investigates a subset of the execution paths of the models

for model checking. The general idea of SMC is that it compares the number of execution

paths on which a property holds with the total number of the execution paths, and tries to

statistically infer the satisfaction of the property. Although the verification on the subset of

traces is less precise and does not guarantee the correctness of system, the reduced number

of paths enables verification of larger models and mitigate the state explosion problem.

SMC technique can be seen as a model-independent approach. Because it can be applied

to any discrete event system as long as the execution paths of the system can be obtained

[107, 120].

A discrete event system consists of states, and the system remains in a state for a while

before an event triggers a transition from the current state to the same state or to a new

state. Therefore, both DTMC and CTMC are discrete event systems. As SMC method is

model independent, it is better not to pick any specific model type here, though, DTMC

and CTMC definitions can be found in Definition 10 and 11, respectively. Instead, we will

introduce the definition of execution paths which can be obtained from any discrete event

system [1]. In the following, we will mainly use the definitions given by the two early SMC

studies [120] and [107].

Let assume S is the set of the states of a discrete event system M, where the system

occupies some state s ∈ S.
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Definition 13 An execution path, π of the a discrete event system, M, is a sequence

π = s0
t0→ s1

t1→ s2
t2→ . . . (3.3)

where s0 is the initial state, and si is the system state after ith events, and the time

spent in state si is ti. If the kth state is absorbing, then for all all i ≥ k , si = sk and

ti =∞.

For a given discrete event systemM, SMC checks whether a property ψ, e.g. a property

specified in a PCTL formula for a DTMC system or a CSL formula for CTMC system,

holds on the execution paths of the system. An analysed execution path π provides an

observation of a Bernoulli random variableX, which is 1 if the property ψ holds, 0 otherwise

[1, 75]. Of course, to make this approach works, the execution paths should be generated

in a finite amount time [75].

SMC uses hypothesis testing to determine whether the probability of ψ, i.e. Pr(ψ), is

below or above of a threshold θ [1, 75, 107, 118, 120]. Therefore, to determine whether

Pr≥θ(ψ) holds, we need to check ψ satisfaction on each execution path. Let the ‘null

hypothesis’ H0, namely what is initially accepted until proved to be otherwise, be p >= θ,

where the probability measure p of ψ is greater than or equal θ, hence H0 : p >= θ [1].

The alternative hypothesis H1 is the complementary hypothesis of H0, which states that p

is less than θ, that is H1 : p < θ. As the problem solution is based on statistical analysis,

the result is not guaranteed to be correct; rather we need to know that the statistical test

technique has a probability of accepting a wrong hypothesis, however, this is tolerable as

long as it is low enough. Now, if we incorrectly reject a true null hypothesis, then we make

a Type I error which is also called a false positive finding. In other words, we claim H0 is

false and then we accept H1, while H0 is true. If we accept H0 while it is false and H1 is

true, then we make a Type II error, known as the false negative.

The strength of the test is determined by the probability of making Type I and Type II

errors, which are denoted by α and β, respectively. Ideally, we want to keep them as low

as possible. However, this may mean a larger set of samples are required. Also, we should
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realise that there might be a trade-off between the error types.

For example, let assume we have a null hypothesis which claims that a cell is healthy,

and the alternative hypothesis says the cell is cancer. If SMC erroneously suggests that a

cell has cancer, while it is not, this can result in undesirable consequences, such as wrong

and expensive treatments. A possible solution to the problem might be being less strict

when categorising a cell as cancer if we are not sure, this means we increase the α value.

On the other hand, this decision may lead to erroneously categorising some cancer cells as

healthy, that β value will increase, which can cause even worse consequences.

The test would have ideal performance if the probability of making Type I error is

exactly α, and the probability of making Type II error is exactly β. However, getting

low probability simultaneously for both error types is very hard, the detail of the problem

is explained in [119, 120]. The study [120] proposed relaxing the test by introducing an

indifference region which boundaries encapsulates θ. In [118] the authors used half-width

of the indifference region, denoted as δ, such that (p − δ, p + δ) forms the indifference

region. Generally, user specifies the δ value. By respecting the indifference region now the

acceptance of the null hypothesis H0 : p >= θ changed to H0 : p ≥ θ + δ, and conversely

H1 : p < θ is adjusted to H1 : p ≤ θ − δ [1, 118]. If p is inside the indifference region a

conclusion cannot be driven, namely neither H0 nor H1 is true, this generally means that

more samples are needed.

In the early work of SMC [120] used the Wald’s Sequential Probability Ratio Test

(SPRT) [115] for accepting hypothesis testing. SPRT does not require a fixed size of

the predetermined set of execution paths, instead performs statistical testing on sample

collection until it reaches a decision, while also respecting the error probabilities. The

following SPRT equation for SMC hypothesis testing is taken from [1].
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Let p0 = θ + δ, and p1 = θ − δ, and the probability of Type I error and Type II errors are

α and β, respectively. After gaining m execution paths, i.e. x1, . . . , xm that made in the

SPRT, let
∑m

i=1 xi,

fm =
m∏
i=1

Pr[Xi = xi|p = p1]

Pr[Xi = xi|p = p0]
=
P dm

1 (1− p1)m−dm

P dm
0 (1− p0)m−dm

(3.4)

For example (from [1]), when m = 2, that is x1 = 1 and x2 = 0; then Pr[X1 = x1|p =

p1] = p1, P r[X2 = x2|p = p1] = 1 − p1, and similarly for p0, so that fm = p1(1−p1)
p0(1−p0)

. Then,

after fm has been calculated using Equation (3.4), H0 is accepted if fm ≤ β/(1−α), or H1

is accepted if fm ≥ (1− β)/α, or none of the conditions are satisfied then SPRT moves to

next execution path.

There are some other methods used for accepting the hypothesis test, for example [62]

used Chernoff-Hoeffding bounds, more recently [67] adopts a Bayesian approach for testing,

namely Sequential Hypothesis Testing. We want to refer readers to the following studies

for getting broader overview of SMC approaches [1, 75, 118], and Sections 6 and 7 for the

details of different SMC tools.

3.4 Model checking tools

Model checking is a powerful method, and there are several tools implemented this ap-

proach. In this section, we will summarise some of the popular model checkers which are

widely used in academia and industry. We will limit this section by summarising the exact

model checkers(which investigates whole state space and provides exact result), especially

that are used for deterministic and non-deterministic systems. Detailed information on

probabilistic and statistical model checkers, such as PRISM, is provided in Chapter 6 and

Chapter 7.
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Spin Spin is a widely used open-source model checking tool and is particularly suited for

models of multi-threaded software applications and distributed systems, described through

interleaved atomic instructions. It features a high-level modelling language to specify sys-

tems descriptions, called PROMELA (PROcess MEta LAnguage) [113]. A practical feature

of the language is the use of discrete primitive data types and custom data types similar

to those in C, allowing fine-grain model details or low-level implementation features to be

directly expressed as part of the model [41, 71, 113]. Moreover, Spin provides support for

the use of embedded C code, which allows to directly verify the implementation level soft-

ware specifications. Spin provides complete support for Linear-time Temporal Logic (LTL)

and it does not require pre-constructing a global state graph or Kripke structure prior to

the search for satisfiability [41, 70, 71, 113].

NuSMV NuSMV is a popular symbolic model checker designed to describe Finite State

Machines (FSMs) which range from synchronous to asynchronous, and from the detailed

to the abstract systems[79]. NuSMV tool uses NuSMV language which introduces mod-

ular hierarchical descriptions and allows the definition of reusable components. NuSMV

supports the analysis of specifications expressed in the Computational Tree Logic (CTL)

and Linear Temporal Logic (LTL) [9, 79]. It employs symbolic methods, provides a com-

pact representation of the state space by using Binary Decision Diagram (BDD)-based and

Boolean Satisfiability Problem (SAT)-based model checking techniques, which increase the

efficiency and performance. The tool also has a built-in simulator. It also provides option

for generating the execution traces interactively or randomly [9, 79].

nuXmv nuXmv is the successor of NuSMV, and it inherits most of its functionalities.

Regarding the input language, nuXmv introduces two new types of variables, namely

real and integer. This new feature enables nuXmv to support infinite-state transition

systems as well. To analyse infinite-state transition systems nuXmv has employed several

new verification algorithms based on Satisfiability Modulo Theory (SMT), more details

on the extension of previous algorithms (for finite-state transition systems) and the new

61



adapted algorithms can be found in nuXmv manual [80]. We also want to note that

NuSMV supports both synchronous and asynchronous transition systems, but nuXmv

only supports synchronous fair transition systems.

Concerning the usability and functionality, nuXmv includes all the interactive commands

provided by NuSMV. Additionally, it supports a set of new commands to enable users

to utilise its new features, and the new model checking algorithms for finite-state and

infinite-state transition systems [80].

Although the model checking approach relies on mathematically rigorous procedures

and formal methods, they may differ in requirements, for example, different model checkers

may require different input models and properties expressed for their custom modelling

and property specification languages [11]. Therefore, to be able to use different model

checkers, scientists need to be familiar with the various modelling and property specification

languages. However, describing models in different modelling languages and formulating

properties are usually a challenging, cumbersome, error-prone, and time wasting tasks.

3.5 Other analysis methods

3.5.1 Simulation

Simulation is one of the widely-used analysis methods. The simulation of mathematical

models involves building a kinetic model of the network and solving the resulting differen-

tial equations numerically [106]. Whereas, the simulation of computational models involves

obtaining the execution paths of a model. The simulation approach is relatively fast, and

it is suitable for analysis of relatively large models. However, typically, it is not possi-

ble to exhaustively analyse all computational paths with the simulation. Instead, only a

fraction of potential computational paths can be utilised [11]. In non-deterministic and

stochastic systems, each state may have more than one successor states, namely different

model runs can produce different computational paths. Therefore, some computational

paths and model properties may never be reveal, and their conformance to requirements
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cannot be determined which makes the simulation approach questionable [11]. In Section

5, we demonstrate the potential of simulation techniques for computational model analy-

sis, by presenting two simulators integrated to the kPWorkbench platform. In addition,

numerous simulators have been developed to simulate different type of models, such as,

Biocham [23] and Simpathica [3, 32] tools simulate biological systems which are defined as

ODEs, and PIPE2 is used for modelling, analysis and simulation of Petri Nets, SPiM [91] is

used for simulating stochastic π-calculus models [93], and BioSimWare [20], MeCoSim [90].

3.5.2 Testing

Testing is another widely used method for verifying software systems and computational

models. Testing is used for confirming a program fulfils its requirements (does it do what

is expected to do?), and also discover program bugs, preferable before its release [112].

While model checking and simulation typically verifies an abstraction of a system, i.e. its

model, testing is conducted on the actual software product (of course, the former methods

can be applied to actual software programs, and the later can be applied to models, too)

[36].

In the testing approach, the key validation technique is executing the system using

test data that is produced for certain scenarios (system execution paths) and exploring

the corresponding output. However, checking all possible scenarios and potential bugs are

generally not possible with testing which leaves doubts if the unexplored paths may contain

errors [36]. Therefore, this approach shares same concerns with simulation and statistical

model checking as to coverage apply.

63



Chapter 4

Automating The Model Checking

Process

In this chapter, we start with the integrated software platforms which semi-automate

the model checking process by employing a high-level language modelling language and

demand the users to decide which model checker they prefer to verify their model with.

These platforms internally translate the models from the high-level language to the selected

model checker specification. Our primary focus will be the NuSMV translator which is an

output of this research. In the end, we discuss the shortcomings of such platforms. In

the later section, we introduce to the machine learning approach which can be applied for

automating the SMC selection that also addresses the drawbacks associated with integrated

software suites.

4.1 Integrated software suites

Recently, several state-of-the-art frameworks have been developed to facilitate the mod-

elling and property specification task. They integrate modelling, simulation and model

checking on a single platform. Typically, they accommodate more than one simulator and

model checker for analysis purpose. The model checkers are not implemented freshly as
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part of the tools; instead, they are employed as third-party components. The frameworks

receive a computational model and high-level language queries as inputs. After the user

selects the desired target model checker for verification, the frameworks translate the pro-

vided model and queries to the selected model checker specification and deliver them to

the target model checker for verification. [25, 41]. In the following section, we give the

details of two frameworks which are developed for modelling, simulation, and analysis of

different P system models.

4.1.1 kPWorkbench

kPWorkbench is a software framework that aims to provide a set of tools to facilitate the

analysis and formal verification of the kP systems models [41, 72]. The tool translates a

kP model specified in kP-Lingua into an internal data structure, where objects represent

compartments, multisets of objects, rules, and their connections between compartments

(see Figure 4.1). The architecture of the framework allows developers to modify, or extend

the internal data structure, and add new model checker translators.

The tool has a custom simulator tool, called kPWorkbench Simulator [8]. It interprets

step by step the traces of execution of a kP systems model. The simulator provides a

command line user interface displaying the current configuration (the content of each com-

partment) at each step. The simulations can be output on command prompt or can be

redirected to a file [8, 9]. The tool also integrates a third party agent-based modelling

framework Flame [47] used for simulating kP-Lingua specification [8, 9, 37].

In addition, the specifications written in kP-Lingua can be formally verified using Spin

model checker. The tool translates the kP system model into Spin model checker spec-

ifications. The detailed model translation mechanism is described in [41]. Mainly, due

to the space space limitation of Spin, and less support for temporal logics, we have ex-

tended the kPWorkbench to accommodate another verification mechanism based on the

65



Property Pattern Language Construct LTL formula CTL formula

Next next p X p EX p
Existence eventually p F p EF p
Absence never p ¬(F p) ¬(EF p)
Universality always p G p AG p
Recurrence infinitely-often p G F p AG EF p
Steady-State steady-state p F G p AF AG p
Until p until q p U q A (p U q)
Response p followed-by q G (p→ F q) AG (p→ EF q)
Precedence p preceded-by q ¬(¬q U (¬q ∧ p)) ¬(E (¬q U (¬q ∧ p)))

Table 4.1: The LTL and CTL property constructs currently supported by the kP-Queries
file (taken from [53]).

NuSMV model checker. Technical details of translation from kP systems into the NuSMV

specification are described in the next section.

Recently, the kPWorkbench has been enriched with a new component, called kP-Queries

which enable users to query models written in kP-Lingua. The kP-Queries component ac-

commodates a custom editor for specifying properties written in the kP-Queries language.

The kP-Queries language is an intuitive and coherent property specification language com-

posed of natural language statements based on predefined property patterns. The kP-

Queries component can automatically convert properties specified in the kP-Queries lan-

guage to CTL and LTL specifications. The kP-Queries component reduces the intricacy of

building logical formulas directly in CTL or LTL formalism. The patterns supported by

the kP-Queries and corresponding LTL and CTL constructs are listed in Table 4.1. The

formal definition and the syntax of the kP-Queries are beyond the scope of this thesis. For

more information, please see [53].

4.1.1.1 NuSMV translator

NuSMV translator is developed as a component of kPWorkbench, for translating kP sys-

tems model expressed in kP-Lingua into the NuSMV model checker specifications. kP-

Workbench automatically verifies the translated NuSMV model by explicitly invoking the
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Figure 4.1: kPWorkbench Architecture (taken from [53]).

NuSMV model checker. In this section, we will cover how the models specified in kP-Lingua

are translated into the NuSMV specifications.

The translation from a kP system model written in kP-Lingua to a NuSMV model is

identified with the following procedure:

Compartments: The kP systems have compartment types and compartments. Com-

partments are the instances of the compartment types. In NuSMV translation we do not

create a NuSMV module for the compartment types, instead, we create a module for each

instance of the compartment types, namely for the compartments. The contents of the

compartment types, i.e. multisets of objects, rules, execution strategies, are translated

as the content of the modules. The initial contents of the kP-Lingua compartments are

translated as the parameters of the modules.

Multisets of objects: NuSMV represents models as finite state machines, where the

states comprise sets of variables and their associated values (these value sets are required

to be bounded), and transitions indicate how inputs cause these values to change. The
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multisets of objects are translated as NuSMV variables. Roughly speaking, variables in

NuSMV involve in two stages, declaration and assignment. As its name indicates, the

variables are introduced in the declaration stage. NuSMV accepts various variable types,

for example, integer, boolean, enumeration, and there are some other types (see [34]). The

NuSMV variables should be bounded. That means, they should have a lower and an upper

bound, and their bound should be specified during the declaration. Variables are declared

after the reserved keyword VAR.

Example 7 creates an enumeration, a boolean and an integer variable (it is a snippet

from the NuSMV translation of the Example 2, the NuSMV translation is in Appendix

A). Some of the NuSMV variables have ‘ ’ (underscore) prefix, we used this convention to

indicate that the variable is not part of kP-Lingua model, but they are custom variables that

we created for achieving kP systems behaviour. The status variable is an enumeration,

and it can have one of the three values on the right-hand side. The guard1 is a boolean

variable, hence, it can have either true or false values. ‘a’ is an integer variable, and it

can have integer values from 0 to 5.

Example 7 NuSMV variable declaration.

VAR

_status : {_ACTIVE, _willDISSOLVE, _DISSOLVED};

_guard1 : boolean;

a : 0 .. 5;

NuSMV restricts the upper bound and the lower bound of the integer variables, how-

ever, the size of the multisets of objects are not limited in the kP systems. Therefore, the

translation has to define an initial bound for each integer variables. Instead of assigning

some constant default values to the bounds of the variables, the translator scans the com-

partments and tries to determine a minimal upper bound value for the variables (indeed,

the lower bound is always zero), which is done by following the steps below:

1 For each object;

2 Set the initial upper bound to 1;
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3 max1 = the maximum multiplicity of the object from the initial

multisets of objects;

4 max2 = the maximum multiplicity of the object from the multisets of

objects of the rewriting rules of the current compartment;

5 max3 = scan the object multiplicity from another compartment:

6 If the current compartment linked to the other compartment , and ,

7 if the other compartment has a communication rule and the current

compartment type is one of the target compartment type of the

rule , and ,

8 if the object exists on the right -hand side of the rule (it is a

product of the rule),

9 then return the maximum multiplicity of the object from the rule.

10 The new upper bound is the maximum of the max1 , max2 and max3.

Listing 4.1: Variable upper bound assignment

After calculating the upper bounds of the variables, the NuSMV translator dumps them

to an XML file, so that user can change their values.

In the assignment stage, the initial values of the variables, and the conditions, which

define the future values of the variables, are specified. The assignment stage starts with

ASSIGN keyword. The initial values are translated from the multiplicity of the initial

multisets of the objects from the kP-Lingua model. If the initial value of a variable is

not explicitly set, then a random value within its bound is assigned. The initial value of

a variable specified by init keyword. For example, init ( status) := ACTIVE, indicates

that the status variable starts in the ACTIV E state.

After initialising a variable, the translator assigns a new value based on the satisfaction

of some conditions, which are mostly constructed via NuSMV case statements. Each

statement consists of a condition and the value that it may return on the satisfaction of

the condition. Typically, the conditions of the statements are corresponding to the rules

of the kP systems. The basic structure of case statement is like the following:

case

condition_1 : value_1;
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condition_2 : value_2;

...

condition_n : value_n;

esac;

The value j is returned if j ≤ n, where n ∈ N+, such that for all i, 1 ≤ i ≤ j − 1,

condition i is false, and condition j is true. Please note that if there exists a condition k,

for j < k ≤ n such that condition k is also true, then the value k will be ignored, as the

case statement always (deterministically) returns only the value of the first ‘true’ condition.

Also, at least one condition has to evaluate to true, otherwise it is an error. To prevent

this error, the translator adds an extra statement to the end, we call it default statement,

which has a constant boolean true condition and, as usual, a value to return. Therefore,

all case statements end with (the nth statement) the default statement, which syntax is

TRUE : value n;.

Rules and guards: The rewriting rules are translated as conditions of case statements

inside the modules. If the rewriting rule is a communication rule, then the rule goes into

the main module of the NuSMV model. The main module is a default NuSMV module

where the module instances are initiated and invoked. The membrane dissolution rules

are also translated as conditions of the case statements, additionally, a special variable

named status is introduced which indicates whether the compartment is active. If the

corresponding case statement of a dissolution or a division rule is satisfied (evaluated to

true), then the status variable becomes inactive that prevent the module from evolving.

The current translator partially supports the membrane division rule, but it does not

support the link creation and destruction rules.

The membrane division rule is supported only for the kP system models which should

always reach the same final compartment and content set. That is, regardless of the ex-

ecution order, the systems should always end with the same set of compartments and

contents. Even the models which may fulfil this constraint would still require many inter-

mediary variables. However, since the final state of the systems is always going to be the
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same, these variables would become extra burdens for the state space. Therefore, comput-

ing the final set outside of the model checker state space would reduce the complexity of

the problem and it could help us to save some time and memory. We used the C# pro-

gramming language to externally execute the membrane division rules and obtain the final

compartments and contents set of the kP system model. Only the final set is translated to

the NuSMV modelling language for further investigation.

Execution Strategies: To implement different execution strategies and to trace their

execution order a set of custom variables are introduced. As we explained in Section 2.2,

choice, arbitrary, and maximal parallelism strategies execute rules non-deterministically,

in NuSMV translation they represented with variables which have names starts with cho,

arb, and max prefixes, respectively.

One of the challenges that associated with execution strategies was the non-deterministic

selection of the rules. Since NuSMV always selects and returns the first true case state-

ment, we had to implement a custom solution to achieve the non-deterministic behaviour.

For each rule of a kP system inside an execution strategy, we create a case statement.

Therefore, each case statement will have the corresponding case statement of the rule and

the default statement. For example, if there are three rules inside a maximal parallelism

execution strategy, we need to create one case statement for each rule (three case state-

ments in total), and also each case statement has to have the default statement, too. As

each case statement will return a single value, we then combine them in a set by using set

union operation (specified with union keyword), like the following:

_max := case

condition_1 : new_value_1;

TRUE : new_value_n;

esac union case

condition_2 : new_value_2;

TRUE : new_value_n;

esac union case
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condition_2 : new_value_2;

TRUE : new_value_n;

esac;

By using the set union operation now, we can have more than one true statement, and

NuSMV selects the set elements non-deterministically [34], and assigns it to max variable.

We are close to the solution but not yet, because for each case statement, if the first

statement is not true, then the default statement will be used, whereas for the other case

statements their first statement may evaluate to true. This will lead the final set to contain

the default statement value as well as the other true evaluated case statements’ values,

and NuSMV will non-deterministically select one of them. This is a problem, because

NuSMV may select the value of default statement value, which implicitly means there

was no other case statements were true, other than the default statement, whereas in fact

there were some other conditions were true. Therefore, we need to exclude the default

statement if there is at least one of the other statements are evaluated to true. A natural

solution would be using the set difference operation to exclude the default statement value

when there exists a statement condition other than the default statement evaluates to true.

Unfortunately, NuSMV set operations do not have the set difference operation. Instead,

we used the NuSMV INVAR expression, which is used to constrain the set of states (the

variable values in our case) based on the evaluation of some conditions. Therefore, we used

the INVAR expression with case statement like the following:

INVAR case

condition_1 | condition_2 | condition_3 : _max != value_n

TRUE : _max = value_n;

esac;

Please note that ‘|’ is logical or operator and, ! = is not equal operator. Therefore, if any

of the conditions is true, then the result of default statement (value n), cannot be assigned

to max value, that means if it is included in the case union operation, now via INVAR

expression it will be forced to exclude. Therefore, now, NuSMV will non-deterministically
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select a value from the set of the true conditions such that the value of the default statement

is not in the set.

Parallel behaviour from sequential model: The kP system execution strategies may

run rules in a maximally parallel way (see Section 2.2). However, the NuSMV models

evolve sequentially. To achieve the parallel behaviour, NuSMV translator sequentially

executes each compartment rules until all execution strategies are completed. These steps

are hidden intermediary steps which are not regarded as the kP systems’ steps. Note

that, if a compartment completes its intermediary steps earlier, it waits for the other

compartments to complete their intermediary steps. Additionally, for each compartment,

a copy of its multiset of the objects are created (NuSMV translator adds cp postfix to

the name of the copy variables). During the intermediary steps, the rules operate on the

original multiset of objects and consume their values, and the copy multisets of objects

temporarily accumulate the produced objects. The copy multisets of the objects dumped

to the original multisets of objects after all compartments complete the intermediary steps,

then the next step is a kP system step. A global boolean variable that belongs to the main

module (called pInS, in NuSMV translator) is used for indicating the execution is either

in intermediary steps, or in kP system steps.

Remark 3 The network of compartments resembles a graph structure, which could be

stored and modified in two-dimensional arrays. However, NuSMV has limited array sup-

port. Although it allows defining arrays, it does not allow using a variable index for access-

ing an array content or assigning a value to it. Additionally, the structure changing rules

potentially can be applied infinite times which means we need the dynamic data structure;

however, in NuSMV, the array size has to be a constant. The NuSMV array limitations

make very difficult to achieve a complete translation from kP systems to NuSMV speci-

fications. Therefore, the link creation and link destruction rules were not possible to be

translated, and the division rule partially implemented.

Remark 4 We regularly update kPWorkbench website (www.kpworkbench.org) which in-
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cludes the latest version of NuSMV translator accommodated in kPWorkbench. You can

also find several cases studies modelled in kP-Lingua and their corresponding NuSMV

models.

4.1.2 Infobiotics Workbench

The Infobiotics Workbench (IBW) [66] is another integrated in silico platform for modelling,

simulation, verification of large-scale systems and synthetic biology models. Additionally,

it provides optimization functionality [24]. IBW uses Lattice Population P systems (LPP

systems) which allows to model stochastic P systems on 2D geometric lattices [24, 25].

IBW allows simulating models either using deterministic numerical approximation with

standard solvers or stochastic simulation. The simulator can execute quite large models

which can have thousands of compartments with many reactions and species. Simulation

results can be displayed, plotted or exported in text and Excel formats for further analy-

ses [24, 25].

The workbench accommodates two third-party model checkers, PRISM as a numeric

model checker and MC2 as a statistical model checker. The tool translates LPP models into

selected one of the model checker specification. In addition, similar to kPWorkbench, it

accommodates a natural language based specification language component, called Natural

Language Query (NLQ). The natural language queries are based on predefined patterns.

NLQ internally translates the natural language queries to PRISM and the MC2 property

specification language [24, 25]. More information on IBW functionality and architecture is

provided in [25].

In this section, we summarised two integrated software suites which are used in the sys-

tem and synthetic biology domain, but there are also some other web-based or standalone

integrated tools, such as Biocham [23], Genetic Network Analyzer (GNA) [57], Taverna
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Workbench [14, 101]. Although such platforms significantly decrease the intricacies and

complexities of modelling and analysing biological systems, they can only semi-automate

the analysing process. Because users still need to know which of the candidate model

checker best fits to their needs, and eventually they need to manually select the target

model checker, which still requires a significant degree of experience [11]. Therefore, it

was highly desirable to have another layer which can automatically match the best model

checker to a model and a property query. Machine learning algorithms are suitable candi-

dates (sometimes the only viable choice) for such problems.

4.2 Machine learning

Typically, we implement set of instruction to solve a given task with computers, so-called

programming. However, sometimes implementing a program for certain tasks can be hard

or even impossible when the problem is complex. For example, maybe we do not have

enough expertise in the problem domain, or the solution may require considering too many

parameters [109]. Sometimes it is easier to use a statistical approach to gradually improve

the performance of such a task with data, that is without explicitly programming an

algorithm for the task [102]. This method is called machine learning. There are different

classes of machine learning algorithms, in this thesis we used supervised machine learning

algorithms which works with the data where each sample (example) of the data should

have an input and an output pair. In the following, we explain the supervised machine

learning algorithms, for the other machine learning classes we refer readers to [2, 109].

Supervised machine learning: At a more detailed level, a supervised machine learning

algorithm receives a set of samples as input, which is called training set and denoted by

Xtrain = (xi, yi) i ∈ N≥0, where (xi, yi) is an ordered pair, and xi is called input or features

and it is represented by a row vector xi = [v1, . . . , vj] where j ∈ N≥0, each element of x, vj,

is a feature (i.e. independent variable), and y is the output variable (i.e. dependent variable,

or target variable), in this thesis we prefer to call it as target variable. The size of training
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dataset is denoted as |Xtrain|. The machine learning algorithms can be grouped further

based on the type of the target variable. Regression algorithms are used if the target

variable, y, is a continuous number, otherwise, if y is a discrete number (or categorical

variable), then classification algorithms are the appropriate option. The machine learning

algorithms start with some initial parameters, and it learns by optimising its parameters

based on the samples in the training set [2]. Therefore, we may sometime use the term

learner to refer a machine learning algorithm, and use classifier if it is trained, i.e. learned.

A learned algorithm is basically a function that maps the input to the target variable,

therefore, yi = f(xi). Since now we have the function f , we can use it for new samples to

get their target variables, this process is called prediction.

We may sometimes refer to the fastest SMC prediction study, in Section 7, to explain

some machine learning related contexts, hence, please have a quick look before proceeding

further. The dataset has 675 biological models (|Xtotal| = 675) for prediction of the fastest

SMC. Each biological model is a sample, and Figure 4.2 represents one of the samples.

The features of the sample contain model properties, such as, number of nodes, vertices,

and the target variable is the SMC tool that could verify the corresponding model fastest.

Since the target is a categorical variable (its value can be one of five candidate model

checkers, namely PRISM, PLASMA-Lab, Ymer, MRMC, and MC2), we can use only

the classification algorithms for this problem. Otherwise, if the target was a continuous

variable, for example, it could be the execution time of each model checker, then we had

to use the regression algorithms.

Figure 4.2: A sample of data for machine learning is an ordered pair of a row vector of
features (input) and a target variable (output).
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Testing: After training a machine learning algorithm, we will like to know how accurate

are its predictions. As the machine learning algorithm is optimised for the training dataset,

we cannot use the same dataset for testing, too. Thus, a different dataset should be used

for testing, let denote it as Xtest. The most commonly used measurement for testing the

exactitude of a classifier is accuracy, which is the ratio of true positive prediction over

the total test sample size [89]. We will sometimes use predictive power term to refer the

accuracy. Let say we have Xtest samples for testing, and ntest = |Xtest|, the accuracy of a

classifier is
∑ntest

i=1
I(f(xi),yi)
ntest

, where yi is the actual target variable and f(xi) is the predicted

target variable, and I(f(xi), yi) = 1 if f(xi) = yi, 0 otherwise. That is (f(xi), yi) = 1 if

the ith sample is correctly predicted [89].

Figure 4.3 provides an overview of the stages that the supervised machine learning

algorithms involve. The input dataset is a matrix of known features and targets. In the

training stage, the supervised machine algorithms learn how to map the features to the

targets. After the training, we expect the classifier to identify the target variables the for

new, unseen, features.

Figure 4.3: An overview of supervised machine learning algorithm.
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Cross-validation: Training a machine learning algorithm with more data almost always

provides better prediction [39]. Therefore, we would like to use all data for training to

improve the accuracy of machine learning algorithms, rather than splitting it into training

and test sets. However, as we previously stated, since the algorithm adjusted on the training

set we cannot use the same dataset for testing, too, which would probably produce a

distorted high accuracy. Fortunately, there is a statistical procedure called cross-validation

which enables using the same dataset for training and testing. It divides data into blocks,

let’s say k blocks, k − 1 blocks are used for training and one block is used for testing. In

the successive rounds another block is used testing data and the rest of the blocks are used

for training. This procedure is repeated until each block used exactly one time for testing,

which also means that the process needs to be repeated k times, then the average accuracy

of the rounds is regarded as final accuracy. The explained procedure is a special form of

cross-validation which is known as k-fold cross-validation. Figure 4.4 demonstrates how k-

fold cross validation works. k defines the number of blocks that the dataset is divided. For

example, if a dataset segmented into 5 blocks (k = 5), it is called as 5-fold cross-validation,

or if the number of blocks is 10 (k = 10), then it is 10-fold cross-validation, which is the

most common form used in data-mining and machine learning studies [97]. We also used

the 10-fold cross-validation in Section 7, to assess the accuracy of various machine learning

algorithms.

Feature selection “At the end of the day, some machine learning projects succeed and

some fail. What makes the difference? Easily the most important factor is the features

used.” [39]. Identifying important features which affect the target variable at most are

crucial for achieving better prediction accuracy. The important features are those not cor-

related with each other features but well correlated with the target variable. Identification

of the important features are easier when the problem domain is well known, and only

a small number of parameters are enough to get good accuracy. However, in such cases,

we can just program an algorithm for the task, and we will not use the machine learning.

However, for more complex cases when many factors determine the target variable, it may
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Figure 4.4: k-fold cross-validation.

Key. The green blocks represent training data, and the orange blocks are the testing data. The training and testing data

changes after each iteration. After k iteration, all available data is used for both training and testing. For the fastest SMC

prediction study, we chose k=10.

not be intuitive identify relevant features. Therefore, to improve the algorithm’s predictive

power, one can attempt to provide many features to the algorithm by believing that they

can contribute to the predictive power. However, this brings the risk of learning a wrong

thing that does not reflect the real relationship between the features and the target. In

such a case, the training accuracy can be very high, but the prediction for unseen data can

be weak. This problem is called overfitting. Overfitting is a well-known and serious prob-

lem in machine learning. One way of reducing the risk of overfitting is keeping the model

simple by eliminating the uninformative (less important) features. Feature selection is a

broad topic in machine learning, a useful review of various approaches is discussed in [59].

Here we will present a short introduction to the topic and what method we followed for

the fastest SMC prediction.

One approach to eliminate less important features or the redundant features could be

by brute force, that is trying all subsets of the features and picking the one that gives the

highest accuracy. However, it is not hard to see that when the number of the features are

high this method is not feasible. Another method is progressively removing a feature at a

time and testing whether the prediction accuracy drops, if so, then the feature is important
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and it should remain; otherwise, we may consider the feature unimportant or redundant.

The drawback of this approach is that sometimes a feature that looks irrelevant in isolation

may be relevant in combination [39]. There are also methods that enable feature selection as

part of the learner construction process. For example, the depth of tree Decision Trees [27]

—predicts a target variable by learning simple rules derived from the data—inherently

contains information about the importance of the features, more important features are

closer to the root of the tree, and less important are closer to the leaves. Identifying the

features regarding the depth of the trees is called feature importance. Random forest [26]

and Extremely randomized trees (ERT) [50] algorithms internally use the decision trees.

Hence, the feature importance algorithm can also be utilised here for feature analysis. In

Section 7, we used feature importance algorithm of Extremely randomized trees (ERT) [76]

for eliminating less important features. Additionally, we validated the importance of the

features by conducting systematic empirical comparisons with and without the features

that suggested by ERT feature importance algorithm. We showed that the final feature

set we used for the fastest SMC prediction leads very high accuracy. Additionally, they

can be used for the fastest stochastic simulation algorithm (SSA) prediction, too (see the

Feature Selection part of Section 7).

Machine learning algorithm selection: Usually, different machine learning algorithms

can be the best learner in different scenarios. That is, no single machine learning algorithm

can be considered as superior to the other learners for all problems. Once the features are

identified and the dataset is ready for learning, the systematic empirical comparison of

many learners should be conducted. For the fastest SMC prediction, we compared the pre-

dictive power of five commonly used machine learning algorithms that are appropriate for

classification problems; a support vector classifier (SVM) [33], logistic regression(LR) [121],

a nearest neighbour classifier (KNN) [78] and two types of ensemble method, namely, Ex-

tremely Randomized Trees (ERT) [50] and Random Forests(RF) [26]. The results showed

that ERT and SVM were two most frequently winners. The best classifier for each prop-

erty pattern type could predict the fastest SMC tool with over 90% accuracy. Therefore,
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we employed this two learner in our final product, SMC Predictor (see Section 7, and

www.smcpredictor.com).
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Chapter 5

Modelling and Analysis

This chapter contains two papers which cover some computational models and their anal-

ysis by using simulation and model checking techniques.

First paper: Mehmet E. Bakir, Florentin Ipate, Savas Konur, Laurentiu Mierla, and Ionut

Niculescu. Extended simulation and verification platform for kernel P systems. In Marian Gheo-

rghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sośık, and Claudio Zandron, editors, Membrane

Computing: 15th International Conference, CMC 2014, Prague, Czech Republic, August 20-22,

2014, Revised Selected Papers, pages 158–178. Springer International Publishing, Cham, 2014.

This study provides the definition of membrane computing and its central model, P sys-

tems. More specifically it focuses on two subsets of P systems, namely stochastic P systems

and kernel P systems. Additionally, it introduces the concepts of stream X-machine and

communicating stream X-machine and how they are implemented in the FLAME (Flexible

Large-Scale Agent Modelling Environment) simulator. For model analysis, we introduced

an initial version of the NuSMV translator tool which can translate kernel P system models

to NuSMV model checker specifications. However, the tool was restricted to the non-

deterministic choice strategy translation. Later, we improved the NuSMV translator to

cover all kernel P system execution strategies. We also introduced the FLAME translator

which translates kernel P system models to FLAME specifications. We illustrated how a

synthetic biology example can be modelled in kernel P systems, simulated with the FLAME
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simulator, and verified with the NuSMV translator.

Second paper: M. E. Bakir, S. Konur, M. Gheorghe, I. Niculescu, and F. Ipate. High

performance simulations of kernel P systems. In 2014 IEEE Intl Conf on High Performance

Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security,

2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS), pages 409–412,

2014.

The second study highlighted a complementary analysis method to model checking,

simulation. Additionally, it examined the performance of a custom kPWorkbench Simu-

lator [8] and FLAME [37] on a synthetically constructed pulse generator model which is

coded as a kernel P system. The result shows that in their default settings a custom kP

systems simulator can outperform a general-purpose simulator.
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Abstract. Kernel P systems integrate in a coherent and elegant manner many of the fea-
tures of different P system variants, successfully used for modelling various applications. In
this paper, we present our initial attempt to extend the software framework developed to
support kernel P systems: a formal verification tool based on the NuSMV model checker
and a large scale simulation environment based on FLAME. The use of these two tools for
modelling and analysis of biological systems is illustrated with a synthetic biology example.

1 Introduction

Membrane computing [16] is a branch of natural computing inspired by the hierarchical structure
of living cells. The central model, called P systems, consists of a membrane structure, the regions
of which contain rewriting rules operating on multisets of objects [16]. P systems evolve by re-
peatedly applying rules, mimicking chemical reactions and transportation across membranes or
cellular division or death processes, and halt when no more rules can be applied. The most recent
developments in this field are reported in [17].

The origins of P systems make it highly suited as a formalism for representing biological systems,
especially (multi-)cellular systems and molecular interactions taking place in different locations of
living cells [7]. Different simple molecular interactions or more complex gene expressions, com-
partment translocation, as well as cell division and death are specified using multiset rewriting
or communication rules, and compartment division or dissolution rules. In the case of stochastic
P systems, constants are associated with rules in order to compute their probabilities and time
needed to be applied, respectively, according to the Gillespie algorithm [18]. This approach is based
on a Monte Carlo algorithm for the stochastic simulation of molecular interactions taking place
inside a single volume or across multiple compartments.

The recently introduced class of kernel P (kP) systems [8] integrates in a coherent and elegant
manner many of the features of different P system variants, successfully used for modelling various
applications. The kP model is supported by a modelling language, called kP-Lingua, capable of
mapping a kernel P system specification into a machine readable representation. Furthermore, the
KPWorkbench framework that allows simulation and formal verification of the obtained models
using the model checker Spin was presented in a recent paper [5].

In this paper, we present two new extensions to KPWorkbench: a formal verification tool
based on the NuSMV model checker [4] and a large scale simulation environment using FLAME
(Flexible Large-Scale Agent Modelling Environment) [6], a platform for agent-based modelling on
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parallel architectures, successfully used in various applications ranging from biology to macroeco-
nomics. The use of these two tools for modelling and analysis of biological systems is illustrated
with a synthetic biology case study, the pulse generator.

The paper is structured as follows. Section 2 defines the formalisms used in the paper, stochastic
and kernel P systems as well as stream X-machines and communicating stream X-machine systems,
which are the basis of the FLAME platform. Section 3 presents an overview on the kP-lingua
language and the simulation and model checking tools. The case study and the corresponding
experiments are presented in Section 4 and 5, respectively, while conclusions are drawn in Section
6.

2 Basic definitions

2.1 Stochastic and kernel P systems

Two classes of P systems, used in this paper, will be now introduced. The first model is a stochastic
P system with its components distributed across a lattice, called lattice population P systems [18,
3], which have been applied to some unconventional models e.g. the genetic Boolean gates [13, 12,
19]. For the purpose of this paper we will consider stochastic P systems with only one compartment
and the lattice will be regarded as a tissue with some communication rules defined in accordance
to its structure.

Definition 1. A stochastic P system (SP system) with one compartment is a tuple:

SP = (O,M,R) (1)

where O is a finite set of objects, called alphabet; M is the finite initial multiset of objects of the
compartment, an element of O∗; R is a set of multiset rewriting rules, of the form rk : x

ck→ y,
where x, y are multisets of objects over O (y might be empty), representing the molecular species
consumed (x) and produced (y).

We consider a finite set of labels, L, and a population of SP systems indexed by this family, SPh,
h ∈ L. A lattice, denoted by Lat, is a bi-dimensional finite array of coordinates, (a, b), with a and
b positive integer numbers. Now we can define a lattice population P system, by slightly changing
the definition provided in [3].

Definition 2. A lattice population P system (LPP system) is a tuple

LPP = (Lat, (SPh)h∈L, Pos, Tr) (2)

where Lat, SPh and L are as above and Pos : Lat → {SPh|h ∈ L} is a function associating to
each coordinate of Lat a certain SP system from the given population of SP systems. Tr is a set of
translocation rules of the form rk : [x]h1

ck→ [x]h2
, where h1, h2 ∈ L; this means that the multiset

x from the SP system SPh1, at a certain position in Lat, will move to any of the neighbours (east,
west, south, north) in Lat that contains an SP system SPh2

.

The stochastic constant ck, that appears in both definitions above, is used by Gillespie algorithm
[9] to compute the next rule to be applied in the system.

One can see the lattice as a tissue system and the SP systems as nodes of it with some com-
munication rules defined according to the neighbours and also to what they consist of.

Another class of P systems, called kernel P systems, has been introduced as a unifying
framework allowing to express within the same formalism many classes of P systems [8, 5].
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Definition 3. A kernel P system (kP system) of degree n is a tuple

kΠ = (O,µ,C1, . . . , Cn, i0) (3)

where O is a finite set of objects, called alphabet; µ defines the membrane structure, which is a
graph, (V,E), where V are vertices indicating compartments, and E edges; Ci = (ti, wi), 1 ≤ i ≤ n,
is a compartment of the system consisting of a compartment type from T and an initial multiset,
wi over O; i0 is the output compartment where the result is obtained (this will not be used in the
paper).

Definition 4. T is a set of compartment types, T = {t1, . . . , ts}, where ti = (Ri, σi), 1 ≤ i ≤ s,
consists of a set of rules, Ri, and an execution strategy, σi, defined over Lab(Ri), the labels of the
rules of Ri.

In this paper we will use only one execution strategy, corresponding to the execution of a rule in
each compartment, if possible. For this reason the execution strategy will be no longer mentioned
in the further definition of the systems. The rules utilised in the paper are defined below.

Definition 5. A rewriting and communication rule, from a set of rules, Ri, 1 ≤ i ≤ s, used in
a compartment Cli = (tli , wli), 1 ≤ i ≤ n, has the form x → y {g}, where x ∈ O+ and y has
the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ O and tj indicates a compartment type from T –
see Definition 3 – with instance compartments linked to the current compartment, Cli ; tj might
indicate the type of the current compartment, i.e., tli – in this case it is ignored; if a link does not
exist (the two compartments are not in E) then the rule is not applied; if a target, tj, refers to
a compartment type that has more than one instance connected to Cli , then one of them will be
non-deterministically chosen.

The definition of a rule from Ri, 1 ≤ i ≤ s, is more general than the form provided above,
see [8, 5], but in this paper we only use the current form. The guards, denoted by g, are Boolean
conditions and their format will be discussed latter on. The guard must be true when a rule is
applied.

2.2 X-machines and communicating stream X-machine systems

We now introduce the concepts of stream X-machine and communicating stream X-machine and
also discuss how these are implemented in Flame [6]. The definitions are largely from [11].

A stream X-machine is like a finite automaton in which the transitions are labelled by (partial)
functions (called processing functions) instead of mere symbols. The machine has a memory (that
represents the domain of the variables of the system to be modelled) and each processing function
will read an input symbol, discard it and produce an output symbol while (possibly) changing the
value of the memory.

Definition 6. A Stream X-Machine (SXM for short) is a tuple
Z = (Σ,Γ,Q,M,Φ, F, I, T,m0), where:

– Σ and Γ are finite sets called the input alphabet and output alphabet respectively;
– Q is the finite set of states;
– M is a (possibly) infinite set called memory;
– Φ is the type of Z, a finite set of function symbols. A basic processing function φ : M ×Σ −→
Γ ×M is associated with each function symbol φ.

– F is the (partial) next state function, F : Q × Φ 7→ 2Q. As for finite automata, F is usually
described by a state-transition diagram.

– I and T are the sets of initial and terminal states respectively, I ⊆ Q,T ⊆ Q;
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– m0 is the initial memory value, where m0 ∈M ;
– all the above sets, i.e., Σ, Γ , Q, M , Φ, F , I, T , are non-empty.

A configuration of a SXM is a tuple (m, q, s, g), where m ∈M, q ∈ Q, s ∈ Σ∗, g ∈ Γ ∗. An initial
configuration will have the form (m0, q0, s, ε), where m0 is as in Definition 6, q0 ∈ I is an initial
state, and ε is the empty word. A final configuration will have the form (m, qf , ε, g), where qf ∈ T
is a terminal state. A change of configuration, denoted by `, (m, q, s, g) ` (m′, q′, s′, g′), is possible
if s = σs′ with σ ∈ Σ, g′ = gγ with γ ∈ Γ and there exists φ ∈ Φ such that q′ ∈ F (q, φ) and
φ(m,σ) = (γ,m′). A change of configuration is called a transition of a SXM. We denote by `∗ the
reflexive and transitive closure of ` .

A number of communicating SXMs variants have been defined in the literature. In what follows
we will be presenting the communicating SXM model as defined in [11] since this is the closest to
the model used in the implementation of Flame [6] (there are however, a few differences that will
be discussed later). The model defined in [11] appears to be also the most natural of the existing
models of communicating SXMs since each communicating SXM is a standard SXM as defined by
Definition 6. In this model, each communicating SXM has only one (global) input stream of inputs
and one (global) stream of outputs. Depending on the value of the output produced by a commu-
nicating SXM, this is placed in the global output stream or is processed by a SXM component. For
a more detailed discussion about the differences between various models of communicating SXMs
see [15].

The following definitions are largely from [11].

Definition 7. A Communicating Stream X-Machine System (CSXMS for short) with n compo-
nents is a tuple Sn = ((Zi)1≤i≤n, E), where:

– Zi = (Σi, Γi, Qi,Mi, Φi, Fi, Ii, Ti,mi,0) is the SXM with number i, 1 ≤ i ≤ n.
– E = (eij)1≤i,j≤n is a matrix of order n× n with eij ∈ {0, 1} for 1 ≤ i, j ≤ n, i 6= j and eii = 0

for 1 ≤ i ≤ n.

A CSXMS works as follows:

– Each individual Communicating SXM (CSXM for short) is a SXM plus an implicit input queue
(i.e., of FIFO (first-in and first-out) structure) of infinite length; the CSXM only consumes the
inputs from the queue.

– An input symbol σ received from the external environment (of FIFO structure) will go to
the input queue of a CSXM, say Zj , provided that it is contained in the input alphabet of
Zj . If more than one such Zj exist, then σ will enter the input queue of one of these in a
non-deterministic fashion.

– Each pair of CSXMs, say Zi and Zj , have two FIFO channels for communication; each channel
is designed for one direction of communication. The communication channel from Zi to Zj is
enabled if eij = 1 and disabled otherwise.

– An output symbol γ produced by a CSXM, say Zi, will pass to the input queue of another
CSXM, say Zj , providing that the communication channel from Zi to Zj is enabled, i.e. eij = 1,
and it is included in the input alphabet of Zj , i.e. γ ∈ Σj . If these conditions are met by more
than one such Zj , then γ will enter the input queue of one of these in a non-deterministic
fashion. If no such Zj exists, then γ will go to the output environment (of FIFO structure).

– A CSXMS will receive from the external environment a sequence of inputs s ∈ Σ∗ and will
send to the output environment a sequence of outputs g ∈ Γ ∗, where Σ = Σ1 ∪ · · · ∪ Σn,
Γ = (Γ1 \ In1) ∪ · · · ∪ (Γn \ Inn), with Ini = ∪k∈KiΣk, and Ki = {k | 1 ≤ k ≤ n, eik = 1}, for
1 ≤ i ≤ n.
A configuration of a CSXMS Sn has the form z = (z1, . . . , zn, s, g), where:
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– zi = (mi, qi, αi, γi), 1 ≤ i ≤ n, where mi ∈Mi is the current value of the memory of Zi, qi ∈ Qi

is the current state of Zi, αi ∈ Σ∗i is the current contents of the input queue and γi ∈ Γ ∗i is
the current contents of the output of Zi;

– s is the current value of the input sequence;
– g is the current value of the output sequence.

An initial configuration has the form z0 = (z1,0, . . . , zn,0, s, ε), where zi,0 = (mi,0, qi,0, ε, ε), with qi,0 ∈
Ii.A final configuration has the form zf = (z1,f , . . . , zn,f , ε, g), where zi,f = (mi, qi,f , αi, γi), with qi,f ∈
Ti.

A change of configuration happens when at least one of the X-machines changes its configura-
tion, i.e., a processing function is applied. More formally, a change of configuration of a CSXMS
Sn, denoted by |=,

z = (z1, . . . , zn, s, g) |= z′ = (z′1, . . . , z
′
n, s
′, g′),

with zi = (mi, qi, αi, γi) and z′i = (m′i, q
′
i, α
′
i, γ
′
i), is possible if one of the following is true for some

i, 1 ≤ i ≤ n:

1. (m′i, q
′
i, α
′
i, γ
′
i) = (mi, qi, αiσ, ε), with σ ∈ Σi; z

′
k = zk for k 6= i; s = σs′, g′ = g;

2. (mi, qi, σαi, γi) ` (m′i, q
′
i, α
′
i, γ) with σ ∈ Σi, γ ∈ (Γi \ Ini); z

′
k = zk for k 6= i; s′ = s, g′ = gγ;

3. (mi, qi, σαi, γi) ` (m′i, q
′
i, α
′
i, γ) with σ ∈ Σi ∪ {ε}, γ ∈ (Γi ∩Σj)∪ {ε} for some j 6= i such that

eij = 1; (m′j , q
′
j , α
′
j , γ
′
j) = (mj , qj , αjγ, ε); z

′
k = zk for k 6= i and k 6= j; s′ = s, g′ = g;

A change of configuration is called a transition of a CSXMS. We denote by |=∗ the reflexive and
transitive closure of |= .

The correspondence between the input sequence applied to the system and the output sequence
produced gives rise to the relation computed by the system, fSn . More formally, fSn : Σ ←→ Γ is
defined by: s fSn

g if there exists z0 = (z1,0, . . . , zn,0, s, ε) and zf = (z1,f , . . . , zn,f , ε, g) an initial
and final configuration, respectively, such that z0 |=∗ zf and there is no other configuration z such
that zf |= z.

In [15] it is shown that for any kP system, kΠ, of degree n, kΠ = (O,µ,C1, . . . , Cn, i0), using
only rewriting and communication rules, there is a communicating stream X-machine system,
Sn+1 = ((Zi,ti)1≤i≤n, Zn+1, E

′) with n+ 1 components such that, for any multiset w computed by
kΠ, there is a complete sequence of transitions in Sn+1 leading to s(w), the sequence corresponding
to w. The first n CSXM components simulate the behaviour of the compartment Ci and the (n+1)th
component Zn+1 helps synchronising the other n CSXMs. The matrix E′ = (e′i,j)1≤i,j≤n+1 is
defined by: e′i,j = 1, 1 ≤ i, j ≤ n, iff there is an edge between i and j in the membrane structure
of kΠ and e′i,n+1 = e′n+1,i = 1, 1 ≤ i ≤ n (i.e., there are connections between any of the first n
CSXMs and Zn+1, and vice-versa). Only one input symbol σ0 is used; this goes into the input
queue of Zn+1, which, in turn, sends [σ0, i] to each CSXM Zi and so initializes their computation,
by processing the strings corresponding to their initial multisets. Each computation step in kΠ is
reproduced by a number of transitions in Sn+1. Finally, when the kP system stops the computation,
and the multiset w is obtained in Ci0 , then Sn+1 moves to a final state and the result is sent out
as an output sequence, s(w).

We now briefly discuss the implementation of CSXMSs in Flame. Basically, there are two
restrictions that the Flame implementation places on CSXMSs: (i) the associated FA of each
CSXM has no loops; and (ii) the CSXMSs receive no inputs from the environment, i.e., the inputs
received are either empty inputs or outputs produced (in the previous computation step) by CSXM
components of the system. As explained above, a kP system is transformed into a communicating
X-machine system by constructing, for each membrane, a communicating X-machine that simulates
its behaviour; an additional X-machine, used for the synchronization of the others, is also used.
In Flame, however, the additional X-machine is no longer needed since the synchronization is
achieved through message passing - for more details see Section 3.1 and Appendix.
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3 Tools used for kP system models

The kP system models are specified using a machine readable representation, called kP–Lingua
[5]. A slightly modified version of an example from [5] is presented below, showing how various kP
systems concepts are represented in kP–Lingua.

Example 1. A type definition in kP–Lingua.

type C1 {

choice {

> 2b : 2b -> b, a(C2) .

b -> 2b .

}

}

type C2 {

choice {

a -> a, {b, 2c}(C1) .

}

}

m1 {2x, b} (C1) - m2 {x} (C2) .

Example 1 shows two compartment types, C1, C2, with corresponding instances m1, m2, respectively.
The instance m1 starts with the initial multiset 2x, b and m2 with an x. The rules of C1 are selected
non-deterministically, only one at a time. The first rule is executed only when its guard is true,
i.e., only when the current multiset has at least three b’s. This rule also sends an a to the instance
of the type C2 linked to it. In C2, there is only a rule which is executed only when there is an a in
the compartment.

The specifications written in kP–Lingua can be simulated and formally verified using a model
checker called Spin. In this paper, we show two further extensions, another verification mechanism
based on the NuSMV model checker [4] and a large scale simulation environment using Flame
[6]. These two tools are are integrated into KPWorkbench, which can be downloaded from the
KPWorkbench web page [14].

3.1 Simulation

The ability of simulating kernel P systems is one important aspect provided by a set of tools
supporting this formalism. Currently, there are two different simulation approaches (a performance
comparison can be found in [1]). Both receive as input a kP–Lingua model and outputs a trace
of the execution, which is mainly used for checking the evolution of a system and for extracting
various results out of the simulation.

KPWorkbench Simulator. KPWorkbench contains a simulator for kP system models and
is written in the C# language. The simulator is a command line tool, providing a means for
configuring the traces of execution for the given model, allowing the user to explicitly define the
granularity of the output information by setting the values for a concrete set of parameters:

– Steps - a positive integer value for specifying the maximum number of steps the simulation
will run for. If omitted, it defaults to 10.

– SkipSteps - a positive integer value representing the number of steps to skip the output gen-
eration. By using this parameter, the simulation trace will be generated from the step next to
the currently specified one, onward. If not set, the default value is 0.



Extended Simulation and Verification Platform for Kernel P Systems 7

– RecordRuleSelection - defaulting to true, takes a boolean value on which to decide if the rule
selection mechanism defined by the execution strategy will be generated into the output trace.

– RecordTargetSelection - if true (which is also the default value), traces the resolution of the
communicating rules, outputting the non-deterministically selected membrane of a specified
type to send the objects to.

– RecordInstanceCreation - defaulting to true, specifies if the membrane creation processes should
be recorded into the output simulation trace.

– RecordConfigurations - if true (being also the default setting), generates as output, at the end
of a step, the multiset of objects corresponding to each existing membrane.

– ConfigurationsOnly - having precedence over the other boolean parameters, sets the value
of the above flags to false, except the one of the RecordConfigurations, causing the multiset
configuration for each of the existing membranes to be the only output into the simulation
trance. The default value is false.

FLAME-based Simulator. The agent-based modeling framework Flame can be used to simu-
late kP–Lingua specifications. One of the main advantages of this approach is the high scalability
degree and efficiency for simulating large scale models.

A general Flame simulation requires the provision of a model for specifying the agents repre-
senting the definitions of communicating X-machines, whose behaviour is to be simulated, together
with the input data representing the initial values of the memory for the generated X-machines.
The model specification is composed of an xml file defining the structure of the agents, while their
behaviour is provided as a set of functions in the C programming language.

In order to be able to simulate kernel P system models using the Flame framework, an au-
tomated model translation has been implemented for converting the kP–Lingua specification into
the above mentioned formats. Thus, the various compartments defined into the kP-Lingua model
are translated into agent definitions, while the rule execution strategies corresponds to the transi-
tions describing the behaviour of the agents. More specifically, each membrane of the kP system
is represented by an agent. The rules are stored together with the membrane multiset as agent
data. For each type of membrane from the kP system, a type of agent is defined, and for each
execution strategy of the membrane, states are created in the X-machine. Transitions between the
two states are represented by C functions that are executed in Flame when passing from one state
to another. Each type of strategy defines a specific function that applies the rules according to the
execution strategy. A detailed description of the algorithm for translating a kP system into Flame
is given in the Appendix.

Each step of the simulation process modifies the memory of the agents, generating at the same
time output xml files representing the configuration of the corresponding membranes at the end of
the steps. The granularity level of the information defining the simulation traces is adjustable by
providing a set of concrete parameters for the input data set.

3.2 Model Checking

KPWorkbench already integrates the Spin model checker [10]. A more detailed account can be
found in [5]. In this paper, we also integrate the NuSMV model checker [4] to the KPWorkbench
platform to be able to verify branching-time semantics. NuSMV is designed to verify synchronous
and asynchronous systems. Its high-level modelling language is based on Finite State Machines
(FSM) and allows the description of systems in a modular and hierarchical manner. NuSMV
supports the analysis of specification expressed in Linear-time Temporal Logic (LTL) and Compu-
tation Tree Logic (CTL). NuSMV employs symbolic methods, allowing a compact representation
of the state space to increase the efficiency and performance. The tool also permits conducting
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(a) Sender cell. (b) Pulsing cell.

Fig. 1: Two cell types of the pulse generator system (taken from [3]).

simulation experiments over the provided FSM model by generating traces either interactively or
randomly.

We note that the NuSMV tool is currently considered for a restricted subset of the kP-Lingua
language, and we only consider one execution strategy, nondeterministic choice.

4 Case study: Pulse Generator

The pulse generator [2] is a synthetic biology system, which was analysed stochastically in [3, 13].
It is composed of two types of bacterial strains: sender and pulsing cells (see Figure 1). The sender
cells produce a signal (3OC6-HSL) and propagates it through the pulsing cells, which express the
green fluorescent protein (GFP) upon sensing the signal. The excess of the signalling molecules are
propagated to the neighbouring cells.

Sender cells synthesize the signalling molecule 3OC6-HSL (AHL) through the enzyme LuxI, ex-
pressed under the constitutive expression of the promoter PLtetO1. Pulsing cells express GFP under
the regulation of the PluxPR promoter, activated by the LuxR 3OC6 2 complex. The LuxR protein
is expressed under the control of the PluxL promoter. The GFP production is repressed by the
transcription factor CI, codified under the regulation of the promoter PluxR that is activated upon
binding of the transcription factor LuxR 3OC6 2.

4.1 Stochastic model

The formal model consists of two bacterial strains, each one is represented by an SP system model.
So, L = {sender, pulsing}, describes these two labels and accordingly:

SPh = (Oh,Mh, Rh), h ∈ L (4)

where
Osender = {PLtetO1 geneLuxI, proteinLuxI, proteinLuxI Rib, rnaLuxI,

rnaLuxI RNAP, signal3OC6}

Msender = PLtetO1 geneLuxI
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Rsender = {r1 : PLtetO1 geneLuxI
k1→ PLtetO1 geneLuxI + rnaLuxI RNAP k1 = 0.1,

r2 : rnaLuxI RNAP
k2→ rnaLuxI k2 = 3.36,

r3 : rnaLuxI
k3→ rnaLuxI + proteinLuxI Rib k3 = 0.0667,

r4 : rnaLuxI
k4→ k4 = 0.004,

r5 : proteinLuxI Rib
k5→ proteinLuxI k5 = 3.78,

r6 : proteinLuxI
k6→ k6 = 0.067,

r7 : proteinLuxI
k7→ proteinLuxI + signal3OC6 k7 = 5}

and

Opulsing = {CI2, LuxR2, PluxL geneLuxR, PluxPR CI2 geneGFP,
PluxPR LuxR2 CI2 geneGFP, PluxPR LuxR2 geneGFP, PluxPR geneGFP,
PluxR LuxR2 geneCI, PluxR geneCI, proteinCI, proteinCI Rib, proteinGFP,
proteinGFP Rib, proteinLuxR, proteinLuxR 3OC6, proteinLuxR Rib, rnaCI,
rnaCI RNAP, rnaGFP, rnaGFP RNAP, rnaLuxR, rnaLuxR RNAP, signal3OC6}

Mpulsing = PluxL geneLuxR, PluxR geneCI, PluxPR geneGFP.

The set of rules (Rpulsing) is presented in Table 6 (Appendix).
The translocation rules are:

Tr = {r1 : [signal3OC6]sender
k1→ [signal3OC6]pulsing k1 = 1.0,

r2 : [signal3OC6]sender
k2→ [signal3OC6]sender k2 = 1.0,

r3 : [signal3OC6]pulsing
k3→ [signal3OC6]pulsing k3 = 1.0}.

The lattice, given by Lat, is an array with n rows and m columns of coordinates (a, b), where
0 ≤ a ≤ n − 1 and 0 ≤ b ≤ m − 1. The values n and m will be specified for various experiments
conducted in this paper. If we assume that the first column is associated with sender SP systems
and the rest with pulsing systems, we formally express this as follows: Pos(a, 0) = SPsender,
0 ≤ a ≤ n− 1, and Pos(a, b) = SPpulsing, 0 ≤ a ≤ n− 1 and 1 ≤ b ≤ m− 1.

4.2 Nondeterministic model

Non-deterministic models are used for qualitative analysis. They are useful for detecting the exis-
tence of molecular species rather than for measuring their concentration. A typical non-deterministic
model can be obtained from a stochastic model by removing the kinetics constants.

More precisely, one can define two types corresponding to the two bacterial strains in accordance
with Definition 4, namely T = {sender, pulsing}, and the corresponding rule sets, R′sender and
R′pulsing. The rules from R′sender are obtained from Rsender and r1, r2 ∈ Tr, and those from
R′pulsing are obtained from Rpulsing and r3 ∈ Tr, by removing the kinetic rates. For each rule

from the set Tr, namely rk : [x]h1

ck→ [x]h2
, the corresponding rule of the kP system will be

rk : x → x(t), where t ∈ T . The execution strategies are those described in the associated
definitions of the kP systems.

The kP system with n×m components is given, in accordance with Definition 3, by the graph
with vertices Ca,b = (ta,b, wa,b), where ta,b ∈ T and wa,b is the initial multiset, 0 ≤ a ≤ n − 1,
0 ≤ b ≤ m − 1; and edges where each component Ca,b, with 0 ≤ a ≤ n − 1, 0 ≤ b ≤ m − 2, is
connected to its east neighbor, Ca,b+1, and each component Ca,b, with 0 ≤ a ≤ n−2, 0 ≤ b ≤ m−1
is connected to the south neighbor, Ca+1,b. The types of these components are ta,0 = sender,
0 ≤ a ≤ n − 1, and ta,b = pulsing, 0 ≤ a ≤ n − 1 and 1 ≤ b ≤ m − 1. The initial multisets are
wa,0 = Msender, 0 ≤ a ≤ n− 1, and wa,b = Mpulsing, 0 ≤ a ≤ n− 1 and 1 ≤ b ≤ m− 1.
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So, one can observe the similitude between the lattice and function Pos underlying the definition
of the LPP system and the graph and the types associated with the kP system.

4.3 Nondeterministic simplified model

In order to relieve the state explosion problem, models can also be simplified by replacing a long
chain of reactions by a simpler rule set which will capture the starting and ending parts of this chain,
and hence eliminating species that do not appear in the new rule set. With this transformation we
achieve a simplification of the state space, but also of the number of transitions associated with
the model.

The non-deterministic system with a set of compacted rules for the sender cell is obtained from
the kP system introduced above and consists of the same graph with the same types, T , and initial
multisets, wa,b, 0 ≤ a ≤ n− 1, 0 ≤ b ≤ m− 1, but with simplified rule sets obtained from R′sender
and R′pulsing, denoted R′′sender and R′′pulsing, respectively, where R′′sender is defined as follows:

R′′sender = {r1 : PLtetO1 geneLuxI→PLtetO1 geneLuxI + rnaLuxI RNAP,
r2 : proteinLuxI→,
r3 : proteinLuxI→proteinLuxI + signal3OC6,
r4 : signal3OC6→signal3OC6 (pulsing),
r5 : signal3OC6→signal3OC6 (sender)}

and R′′pulsing is defined in Table 7 (Appendix).

5 Experiments

5.1 Simulation

The simulation tools have been used to check the temporal evolution of the system and to infer
various information from the simulation results. For a kP system of 5 × 10 components, which
comprises 25 sender cells and 25 pulsing cells, we have observed the production and transmission
of the signalling molecules from the sender cells to the furthest pulsing cell and the production of
the green florescent protein.

FLAME Results. As explained before, in Flame each agent is represented by an X-machine.
When an X-machine reaches its final state, the data is written to the hard disk and then used as
input for the next iteration. Since the volume of data increases with the number of membranes,
the more membranes we have, the more time for reading and writing the data (from or to the hard
disk) is required. Consequently, when the number of membranes is large, the time required by the
read and write operations increases substantially, so the simulation may become infeasible4. For
example, for the pulsing generator system it was difficult to obtain simulation results after 100,000
steps; the execution time for 100,000 steps was approximately one hour.

The signalling molecule signal3OC6 appeared for the first time in the sending cell sender1,1
at the 27th step; after that, it appeared and disappeared many times. In the pulsing cell pulse5,9,
the signalling molecule appeared for the first time at 4963 steps, while proteinGFP was produced
for the first time after 99,667 steps.

The results of the Flame simulation show that the signaling molecules produced in the sending
cells are propagated to the pulsating cells which, in turn, produce proteinGFP. The results of the
simulation are given in Table 1. In 100,000 steps (the maximum number of steps considered for
the Flame simulation), the farthest cell in which proteinGFP was produced was pulse5,9 - this
was produced after 99,667 steps.

4 On the other hand, the distributed architecture of Flame allows the simulation to be run on parallel
supercomputers with great performance improvements, but this is beyond the scope of this paper.
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Table 1: FLAME results.

sender1,1 pulse5,9
Step Interval signal3OC6 signal3OC6 proteinGFP

0 – 10,000 Exist Exist None
10,001 – 20,000 Exist Exist None
20,001 – 30,000 Exist Exist None
30,001 – 40,000 Exist Exist None
40,001 – 50,000 Exist Exist None
50,001 – 60,000 Exist Exist None
60,001 – 70,000 Exist Exist None
70,001 – 80,000 Exist Exist None
80,001 – 90,000 Exist Exist None
90,001 – 99,666 Exist Exist None
99,667 – 100,000 Exist Exist Exist

Table 2: KPWorkbench Simulator results.

sender1,1 pulse5,10
Step Interval signal3OC6 signal3OC6 proteinGFP

0 – 300,000 Exist Exist None
300,001 – 600,000 Exist Exist None
600,001 – 900,000 Exist Exist None
900,001 – 1,200,000 Exist Exist None

1,200,001 – 1,500,000 Exist Exist None
1,500,001 – 1,800,000 Exist Exist None
1,800,001 – 2,100,000 Exist Exist None
2,100,001 – 2,400,000 Exist Exist None
2,400,001 – 2,700,000 Exist Exist Exist
2,700,001 – 3,000,000 Exist Exist None

KPWorkbench Simulator Results. KPWorkbench Simulator is a specialised simulation
tool and provides better results, in terms of execution time, then a general purpose simulation
environment like FLAME. This is mainly due to the fact that this approach makes the simulation
to be performed in a single memory space, that scales according to the number of membranes used
in the model and the number of objects resulting from applying the rules in each simulation step.

Table 2 presents the production and availability of the signaling molecule at the first sender
cell (i.e. sender1,1) and the transmission of the signaling molecule and the production of the green
florescent protein at the furthest pulsing cell (i.e. pulse5,10).

We have run the simulator for 3,000,000 time steps. The sender1,1 cell was able to produce the
signaling molecule at 22 steps, and later produced more signaling molecules. The pulse5,10 cell, as
the furthest pulse generator cell, was able to receive the signaling molecule at the 5474 step. But,
the production of proteinGFP was possible at the 2,476,813 step, and it remained inside the cell
until the 2,476,951 step, then it was consumed.

The simulation results show that the signaling molecule can be produced and transmitted by
a sender cell. In addition, a pulse generator cell can have a signaling molecule only after a sender
cell sends it, and can use the signal for the production of proteinGFP in later steps.
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Table 3: Property patterns used in the verification experiments.

Prop. Informal specification and the corresponding CTL translations

1
X will eventually be produced.

EF X>0

2
The availability/production of X will eventually lead to the production of Y.

AG (X ⇒ EF Y)

3
Y cannot be produced before X is produced.

¬ E (X=0 U Y>0)

5.2 Verification

The properties of the system are verified using the NuSMV model checker, fully integrated into
the KPWorkbench platform. In this section, we first verify individual cell properties, and then
verify the properties of the whole kP system, involving multiple cells that are distributed within
the lattice and interact with each other via the translocation rules.

Our verification results show that when the cell population is small, the properties can be
verified using reasonable computational resources. However, given that the complete rule set is
used, when the number of cell increases, verification becomes no longer feasible due to the state
explosion problem. To mitigate this problem, we have used a simplified rule set to verify the cell
interaction properties when the cell population is large.

Complete Rule Sets. Experiments under this section are conducted on a small population of
multi-cellular systems including the complete set of rules. We have analysed two pulse-generator
systems that differ only in the number of pulse generator cells. The first group consists of one
sender cell and one pulse generator cell, i.e. 1× 2 components, whereas the second group has one
more pulse generator cell, i.e. 1× 3 components.

For our experiments, we use the property patterns provided in Table 3. Table 4 shows the
verification results for the properties given in Table 3 using two different groups. NuSMV has
returned True for all the properties. In the group with 1 × 2 components, we have verified that
the sender cell (sender1) can produce a signalling molecule and transmit it to the pulsing cell
(pulsing1). In addition, the pulse generator cell can use that signal to produce the green florescent
protein (proteinGFP). In the group with 1× 3 components, we have verified similar properties. In
addition, we have verified that the first pulsing cell (pulsing1) can transmit the signalling molecule
to the second pulsing cell (pulsing2).

Reduced Rule Sets. Using a larger sets of components, we want to prove that the signalling
molecules can be transmitted to the furthest pulsing cells. However, when we increase the number
of cells, verification becomes no longer feasible due to the state explosion problem. In order to
achieve the verification results within a reasonable time, we have compacted the rules sets such
that an entire chain of reactions is replaced by a fewer simple rules. Consequently, the overall
number of interactions is reduced and all the species which do not appear in the new set of rules
are removed from the model. These changes are made in the non-deterministic models as these
are used for qualitative analyses where the concentration of certain molecules is not significant or
chain of reaction already analysed can be replaced by some abstractions mimicking their behaviour
through simpler rewriting mechanisms.

Here, we define a group of cells with 1× 5 components, where 1 sender and 4 pulsing cells are
placed in row. For this scenario, we could verify the same properties in Table 4 using the reduced
rule sets (as defined in Section 4.3). In addition, we have verified additional properties to analyse
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Table 4: Verification experiments for the complete rule sets.

Lattice Property X, Y

1× 2

Prop. 1
X = sender1.signal3OC6

X = pulsing1.signal3OC6

Prop. 2
X = pulsing1.signal3OC6, Y = pulsing1.proteinGFP

X = sender1.signal3OC6, Y = pulsing1.proteinGFP

Prop. 3
X = pulsing1.signal3OC6, Y = pulsing1.proteinGFP

X = sender1.signal3OC6, Y = pulsing1.proteinGFP

1× 3

Prop. 1
X = pulsing2.signal3OC6

X = pulsing2.proteinGFP

Prop. 2
X = pulsing1.signal3OC6, Y = pulsing2.proteinGFP

X = sender1.signal3OC6, Y = pulsing2.proteinGFP

Prop. 3
X = pulsing1.signal3OC6, Y = pulsing2.signal3OC6

X = sender1.signal3OC6, Y = pulsing2.signal3OC6

Table 5: Verification experiments for the reduced rule sets.

Lattice Property X, Y

1× 5

Prop. 1
X = pulsing4.signal3OC6

X = pulsing4.proteinGFP

Prop. 2
X = pulsing1.signal3OC6, Y = pulsing4.proteinGFP

X = sender1.signal3OC6, Y = pulsing4.proteinGFP

Prop. 3
X = pulsing3.signal3OC6, Y = pulsing4.signal3OC6

X = pulsing3.signal3OC6, Y = pulsing4.proteinGFP

the other pulsing cells. Table 5 shows these properties, for which NuSMV has returned True.
The verification results show that the sender cell can produce the signalling molecule and transmit
it to the adjacent pulsing cell, and the pulsing cells can use the signalling molecule to produce
proteinGFP and transmit it to the its neighbour pulsing cells.

6 Conclusions

In this paper, we have presented two extensions to KPWorkbench: a formal verification tool based
on the NuSMV model checker and a large scale simulation environment using FLAME, a platform
for agent-based modelling on parallel architectures. The use of these two tools for modelling and
analysis of biological systems is illustrated with a pulse generator, a synthetic biology system.
We have provided both the stochastic model as stochastic P systems and the non-deterministic
model as kernel P systems as well as a reduced model. We have also provided both simulation and
verification results, confirming the desired behaviour of the pulse generator system.

The NuSMV tool currently works for a restricted subset of the kP-Lingua language, and we only
consider one execution strategy, the nondeterministic choice. As a future work, we will extend the
compatibility of the tool to cover the full language and the other execution strategies, e.g. sequence
and maximal parallelism. The future work will also involve modeling, simulation and verification
of even more complex biological systems as well as performance comparisons of simulators and
model checking tools integrated within KPWorkbench.
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Algorithm 1 Transforming a kP Systems into Flame algorithm

1: procedure AddTtransition(startState, stopState, strategy, guard)
. procedure adding the appropriate transition strategy to the current agent stack given as parameter

and FLAME function applying rules conforming to execution strategy

. guard is an optional parameter that represents the transition guard
2: if strategy is Sequence then
3: agentTtransitions.Push(startState, stopState, SequenceFunction, guard)

. FLAME function SequenceFunction applies rules in sequentially mode
4: else if strategy is Choice then
5: agentTtransitions.Push(startState, stopState, ChoiceFunction, guard)

. FLAME function ChoiceFunction applies rules in choice mode
6: else if strategy is ArbitraryParallel then
7: agentTtransitions.Push(startState, stopState, ArbitraryParallelFunction, guard)

. FLAME function ArbitraryParallelFunction applies rules in arbitrary parallel mode
8: else if strategy is MaximalParallel then
9: agentTtransitions.Push(startState, stopState, MaximalParallelFunction, guard)

. FLAME function MaximalParallelFunction applies rules in maximal parallel mode
10: end if
11: end procedure
12:

. main algorithm for traforming a kP system into Flame
13:
14: agentsStates.Clear()
15: agentsTtransitions.Clear()

. empty state and transition stacks of agents
16: foreach membrane in kPSystem do

. for each membrane of kP system build corresponding agent, consisting of states and transitions
17: agentStates.Clear()
18: agentTtransitions.Clear()

. empty state and transition stacks of agent that is built for the current membrane
19: agentStates.Push(startState)

. adding the initial state of the X machine
20: agentStates.Push(initializationState)

. adding initialization state
21: agentTtransitions.Push(startState, initializationState)

. adding transition between the initial and initialization states; this transition performs objects
allocation on rules and other initializations

22: foreach strategy in membrane do
. for each strategy of the current membrane the corresponding states and transitions are built

23: previousState = agentStates.Top()
. the last state is stored in a temporary variable

24: if is first strategy and strategy.hasNext() then
. when the strategy is the first of several, state and transition corresponding to the execution

strategy are added
25: agentStates.Push(strategy.Name)
26: AddTtransition(previousState, strategy.Name, strategy)
27: else
28: if not strategy.hasNext() then

. if it is the last strategy, the transition corresponding to the execution strategy is added
29: AddTtransition(previousState, applyChangesState, strategy)
30: else
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Algorithm 1 Transforming a kP Systems into Flame algorithm (continued)

31: agentStates.Push(strategy.Name)
. add corresponding state of the current strategy

32: if strategy.Previous() is Sequence then
. verify that previous strategy is of sequence type

33: AddTtransition(previousState, strategy.Name, strategy, IsApplyAllRules)
. add transition from preceding strategy state to the current strategy state. The guard

is active if all the rules have been applied in the previous strategy transition.
34: agentTtransitions.Push(previousState, applyChangesState, IsNotApplyAllRules)

. add transition from preceding strategy state to state where changes produced by rules
are applied. The guard is active if not all rules have been applied in the previous
strategy transition

35: else
36: AddTtransition(previousState, strategy.Name, strategy)

. add transition from preceding strategy state to the current strategy state
37: agentTtransitions.Push(previousState, applyChangesState, IsApplyStructureRule)

. add transition from preceding state strategy to state in which changes produced by the
applied rules are committed. The guard is active when the structural rule has been
applied on the previous strategy transition

38: end if
39: end if
40: end if
41: end for
42: agentStates.Push(applyChangesState)

. adding state in which changes produced by the applied rules are committed
43: agentTtransitions.Push(applyChangesState, receiveState)

. adding transition on which changes produced by the applied rules are committed
44: agentStates.Push(receiveState)

. add state that receives objects sent by applying the communication rules in other membranes
45: agentTtransitions.Push(receiveState, s0State)

. add transition that receives objects sent by applying the communication rules in other membranes
46: agentStates.Push(s0State)

. add an intermediary state
47: agentTtransitions.Push(s0State, endState, IsNotApplyStructureRule)

. add transition to the final state in which nothing happens unless a structural rule was applied
48: agentTtransitions.Push(s0State, endState, IsApplyStructureRule)

. add the transition to the final state on which structural changes are made if the structure rule has
been applied

49: agentStates.Push(endState)
. add the final state

50: agentsStates.PushAll(agentStates.Content())
. add the contents of the stack that holds the current agent states to the stack that holds the states

of all agents
51: agentsTtransitions.PushAll(agentStates.Content())

. add the contents of the stack that holds the current agent transitions to the stack that holds the
transitions of all agents

52: end for
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Table 6: Multiset rules (Rpulsing) of the SP systems model of the pulsing cell.

Rule
Kinetic
constant

r1 : PluxL geneLuxR
k1→ PluxL geneLuxR + rnaLuxR RNAP k1 = 0.1

r2 : rnaLuxR RNAP
k2→ rnaLuxR k2 = 3.2

r3 : rnaLuxR
k3→ rnaLuxR + proteinLuxR Rib k3 = 0.3

r4 : rnaLuxR
k4→ k4 = 0.04

r5 : proteinLuxR Rib
k5→ proteinLuxR k5 = 3.6

r6 : proteinLuxR
k6→ k6 = 0.075

r7 : proteinLuxR + signal3OC6
k7→ proteinLuxR 3OC6 k7 = 1.0

r8 : proteinLuxR 3OC6
k8→ k8 = 0.0154

r9 : proteinLuxR 3OC6 + proteinLuxR 3OC6
k9→ LuxR2 k9 = 1.0

r10 : LuxR2
k10→ k10 = 0.0154

r11 : LuxR2 + PluxR geneCI
k11→ PluxR LuxR2 geneCI k11 = 1.0

r12 : PluxR LuxR2 geneCI
k12→ LuxR2 + PluxR geneCI k12 = 1.0

r13 : PluxR LuxR2 geneCI
k13→ PluxR LuxR2 geneCI + rnaCI RNAP k13 = 1.4

r14 : rnaCI RNAP
k14→ rnaCI k14 = 3.2

r15 : rnaCI
k15→ rnaCI + proteinCI Rib k15 = 0.3

r16 : rnaCI
k16→ k16 = 0.04

r17 : proteinCI Rib
k17→ proteinCI k17 = 3.6

r18 : proteinCI
k18→ k18 = 0.075

r19 : proteinCI + proteinCI
k19→ CI2 k19 = 1.0

r20 : CI2
k20→ k20 = 0.00554

r21 : LuxR2 + PluxPR geneGFP
k21→ PluxPR LuxR2 geneGFP k21 = 1.0

r22 : PluxPR LuxR2 geneGFP
k22→ LuxR2 + PluxPR geneGFP k22 = 1.0

r23 : LuxR2 + PluxPR CI2 geneGFP
k23→ PluxPR LuxR2 CI2 geneGFP k23 = 1.0

r24 : PluxPR LuxR2 CI2 geneGFP
k24→ LuxR2 + PluxPR CI2 geneGFP k24 = 1.0

r25 : CI2 + PluxPR geneGFP
k25→ PluxPR CI2 geneGFP k25 = 5.0

r26 : PluxPR CI2 geneGFP
k26→ CI2 + PluxPR geneGFP k26 = 0.0000001

r27 : CI2 + PluxPR LuxR2 geneGFP
k27→ PluxPR LuxR2 CI2 geneGFP k27 = 5.0

r28 : PluxPR LuxR2 CI2 geneGFP
k28→ CI2 + PluxPR LuxR2 geneGFP k28 = 0.0000001

r29 : PluxPR LuxR2 geneGFP
k29→ PluxPR LuxR2 geneGFP + rnaGFP RNAP k29 = 4.0

r30 : rnaGFP RNAP
k30→ rnaGFP k30 = 3.36

r31 : rnaGFP
k31→ rnaX + proteinGFP Rib k31 = 0.667

r32 : rnaGFP
k32→ k32 = 0.04

r33 : proteinGFP Rib
k33→ proteinGFP k33 = 3.78

r34 : proteinGFP
k34→ k34 = 0.0667

Table 7: Multiset rules (R′′pulsing) of the kP systems model of the pulsing cell.

Rule

r1 : PluxL geneLuxR → PluxL geneLuxR + rnaLuxR RNAP

r2 : proteinLuxR →
r3 : proteinLuxR + signal3OC6 → proteinLuxR 3OC6

r4 : proteinLuxR 3OC6 →
r5 : proteinLuxR 3OC6 + PluxPR geneGFP → PluxPR LuxR2 geneGFP

r6 : PluxPR LuxR2 geneGFP → PluxPR LuxR2 geneGFP + proteinGFP

r7 : proteinGFP →
r8 : signal3OC6 → signal3OC6 (pulsing)
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Abstract—The paper presents the use of a membrane com-
puting model for specifying a synthetic biology pulse generator
example and discusses some simulation results produced by the
tools associated with this model and compare their performances.
The results show the potential of the simulation approach over
the other analysis tools like model checkers.

I. INTRODUCTION

Nature inspired computing, including biological and chem-
ical (or molecular) computing, has become a very intensively
investigated research area, with a consistent body of theo-
retical research, and with many interesting applications and
challenging problems [1]. One of the most recently introduced
area of natural computing is membrane computing. This has
been conceived as a computational paradigm inspired by the
structure and behaviour of the living cell [2]. Many models
have been considered and studied, and substantial theoretical
results related to the computational power and complexity
aspects have been obtained [3]. These models are called
membrane systems or P systems. Interesting applications in
systems and synthetic biology have been provided, using a set
of methods and tools based on this computational model [4]. In
the last years there have been attempts to create more general
membrane computing models, which allow the specification of
various classes of problems defined with different membrane
computing models and providing mechanisms to analyse such
systems and simulate their behaviour. One such model, called
kernel P systems [5], [6], has been recently introduced and
some tools for the simulation and verification of the systems
specified with this formalism have been built.

In this paper, we present the use of kernel P systems
for specifying a synthetic biology pulse generator example
and discuss some simulation results produced by the tools
associated with this model and compare their performances.
The results show the potential of the simulation approach over
the other analysis tools like model checkers, which heavily
suffer from the well-known state explosion problem.

In Section II, we very briefly describe kernel P systems. In
Section III, we present the simulation frameworks, supporting
the simulation of kernel P system models. Section IV describes
the synthetic pulse generator, and presents the experimental
results. Section V draws some conclusions and provides some
future research directions.

II. KERNEL P SYSTEMS

Kernel P systems (kP systems for short) are multiset
transformation mechanisms consisting of compartments linked

by some communication channels; each compartment contains
multisets of objects and rewriting and communication rules
which transform the multisets of objects and send them to
neighbour compartments. The system evolves in steps and at
each step, in each compartment the rules are applied in accor-
dance with a certain execution strategy. For the example con-
sidered in this paper, in each compartment a rule is executed
per step, non-deterministically chosen from those applicable at
that moment. The system starts having in each compartment
some initial multiset of objects. A formal definition of these
models is available from [5], [6].

Kernel P systems are supported by a software framework,
called KPWORKBENCH [7], [8], which integrates a set of
tools enabling simulation and model checking of kP systems
(e.g. genetic Boolean gates [9]). The KPWORKBENCH tool
implements several translations that connect several target
specifications employed for kP system models. In [7], the
model checker SPIN is utilised in order to verify properties
of the kP system models. The KPWORKBENCH also consists
of a native simulator which allows the execution of the models
written with the kP system formalism. Recently a translator of
kP system models to FLAME has been produced, based on a
method that allows the expression of kP systems as a set of
communicating X-machines [10].

III. SIMULATION FRAMEWORKS FOR KP SYSTEMS

In [11] we have shown the benefits of using a model
checker for verifying various properties of the system and for
checking the validity of the model. However, we face the well-
known problem of state explosion for such approaches and
we can only model check very simple systems with very few
compartments. The simulation allows us to look at much larger
systems and check various results, either final or intermediary
ones.

Kernel P system models are specified and represented
by a simple and intuitive modelling language, called kP–
Lingua [12]. kP–Lingua provides for a kP system model a
representation into a machine readable format. It also has its
own syntax and specific ways of creating compartment types,
their instances and connections between them.

KPWORKBENCH integrates a simulation tool, KPWORK-
BENCH SIMULATOR, and provides mechanisms to translate
kP–Lingua specifications to FLAME.

A. KPWORKBENCH SIMULATOR

KPWORKBENCH SIMULATOR is a custom simulation tool,
implemented in C# programming language.The tool requires a



(a) Sender cell. (b) Pulsing cell.

Fig. 1: Two cell types of the pulse generator system (taken from [11]).

kP system model specified in kP–Lingua as input and provides
traces of execution for a kP system model. This is translated
into an internal data structure, which allows to represent
compartments, containing multisets of objects and rules, and
their connections with other compartments. The execution
strategy in each compartment is interpreted step by step. The
simulator provides a command line user interface displaying
the current configuration (the content of each compartment) at
each step. The output can be printed on command prompt or
can be redirected to a file. Depending on the starting step and
the granularity of the output, the amount of the printing data
will change, which can significantly affect the execution time.
The tool is particularly useful for quickly running sanity check
on a kP system model, for checking the temporal evolution
of the system and for inferring useful information from the
simulation results.

B. FLAME

FLAME [13] is a general purpose agent based framework,
built on top of the X-machine formalism, a state based model
with transformation functions associated to the transitions of
the model. It represents the structure of the state machine
using an XML format and the transformation functions in
standard C. FLAME has become very popular and widely
used for numerous applications. The latest developments of
FLAME have been focussing on developing variants for high
performance computers [13].

The current translator from kP–Lingua maps kP systems
into FLAME agents with internal behaviour consisting of rule
rewriting and communication. The FLAME environment then
executes the model the requested number of steps, storing
intermediary results that can be afterwards analysed or inter-
preted.

A kP system is transformed into a communicating X-
machine system by constructing, for each membrane, a com-

municating X-machine [10] that simulates its behaviour. An
additional X-machine, that helps the synchronization of the
others, is also built. Each execution strategy of the membrane
corresponds to a transition in the communicating X-machine.
In FLAME, the communicating X-machines are transformed
into agents. Here, the additional X-machine is no longer
needed since the synchronization is achieved through message
passing.

IV. PERFORMANCE COMPARISON

In this section, we will evaluate the performances of two
simulators, integrated into the KPWORKBENCH platform. The
performances are very similar in small models. Thus, the
evaluation should be performed in large systems. We therefore
choose a model from synthetic biology, because synthetic
biology models can be very large and it will be a good test
case for the simulators. Here, we choose the synthetic pulse
generator.

A. Pulse Generator

The pulse generator [14] is a synthetically constructed
colony of bacteria, containing two types of cells: sender and
pulsing (see Figure 1). The sender cells synthesise a signalling
protein, transmitted through the pulsing cells. The pulsing
cells express the green fluorescent protein (GFP) triggered by
the signalling molecules, and propagate the excess signalling
molecules to the neighbouring cells. The biological process
illustrated in Figure 1 can be summarised as follows [11]:

“Sender cells contain the gene luxI from Vib-
rio fischeri. This gene codifies the enzyme LuxI
responsible for the synthesis of the molecular signal
3OC12HSL (AHL). The luxI gene is expressed
constitutively under the regulation of the promoter
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Fig. 2: The comparative simulation results for KPWORKBENCH and FLAME

PLtetO1 from the tetracycline resistance transpo-
son.”

“Pulsing cells contain the luxR gene from Vibrio
fischeri that codifies the 3OC12HSL receptor protein
LuxR. This gene is under the constitutive expression
of the promoter PluxL. It also contains the gene
cI from lambda phage codifying the repressor CI
under the regulation of the promoter PluxR that
is activated upon binding of the transcription factor
LuxR_3OC12. Finally, this bacterial strain carries
the gene gfp that codifies the green fluorescent pro-
tein under the regulation of the synthetic promoter
PluxPR combining the Plux promoter (activated
by the transcription factor LuxR_3OC12) and the
PR promoter from lambda phage (repressed by the
transcription factor CI).”

The bacterial strains above are distributed in a specific
spatial distribution as a lattice with n rows and m columns.
The first two columns consist of sender cells, whereas the
rest are pulsing cells. The behaviour of each sender cell is
described by 7 rewriting and 1 communication rules and that
of the pulsing cell by 34 rewriting and 1 communication rules.
The entire model is described in [11] where different properties
of the system, both quantitative and qualitative, are verified for
small size lattices. Here we consider these two cell types, with
the above mentioned rules, but with various lattices which are
described in the next section.

The pulse generator is a challenging example, as it is
compartmental by design and the dynamic behaviour of each
bacterial strain is governed by a large number of kinetic rules.
When the number of compartments are increased, the size of
the model grows very sharply and the execution of simulations
becomes demanding. This makes the pulse generator a good
test case for our simulators.

B. Experiments

We will consider a simpler lattice with only a sender and
a pulsing cell, but this system will be multiplied by 10, 20,
30, 40, 50, 100, 200, 400, 500, 1000, and 10000 times. For
the purpose of these experiments these systems are equivalent
to lattices with sizes in the range 10 .. 10000, which are
significantly more complex than those described in [11]. Each
case will be executed 5 times and the average time calculated.
These will be executed with the native KPWORKBENCH
simulator and with the FLAME simulator. We note that the
system model is described as a kP system model, which
is automatically translated into the FLAME simulator. Also,
the KPWORKBENCH simulator accepts kP system models, as
input.

The results of the simulations on both the KPWORKBENCH
simulator and FLAME are comparatively presented in Figure 2.
The x axis gives the number of send-pulse pairs of cells, while
the y axis indicates the time in seconds. The experiments were
performed on a PC with the following configuration: Intel(R)
Core(TM)2 Quad CPU - Q6600 2,4Ghz, 4GB RAM. In what
follows we explain the performance difference between the
two simulators.

In the KPWORKBENCH SIMULATOR, each membrane of
the kP system is represented by an instance of a class, trans-
formed from the kP–Lingua language. This approach makes
the simulation to be performed in a single memory space,
that scales according to the number of membranes used in
the model and the number of objects resulting from applying
the rules in each simulation step.

In FLAME each agent is represented by an acyclic X-
machine (no loops are allowed in order to ensure the com-
pletion of the execution of the agent). The agent is executed
by passing from one state to another in the X-machine and
processing data using functions that are attached to the tran-
sitions. When the X-machine reaches the final state, the data



is written to the hard disk and it is then used as input for the
next iteration. An important characteristic of FLAME is that it
first reads the input data, stored in XML format files, from the
hard drive and writes it back at the end of each iteration.

In FLAME, each membrane of the kP system is represented
by an agent. The rules are stored together with the membrane
multiset as agent data. For each type of membrane from
the kP system, a type of agent is defined, and for each
execution strategy of the membrane, states are created in the
X-machine. Transitions between the two states are represented
by C functions that are executed in FLAME when passing from
one state to another. Each type of strategy defines a specific
function that applies the rules according to the execution
strategy.

Given the way the agents for simulating a kP system in
FLAME are defined, the volume of data increases with the
number of types of membranes, the number of their instances
and the size of their multisets. (Note that, since there are
no structural rules in our model, the number and structure
of membranes remain unchanged throughout the simulation,
so the execution time will depend only on the size of the
processed multisets.) Consequently, the more data we have,
the more time for reading and writing data from or to the hard
disk is required. This explains the higher execution time in
the case of the FLAME simulator than for the KPWORKBENCH
SIMULATOR. It is expected that at least for systems of the same
type, i.e., using one single rule per step, the behaviour of the
two platforms will be similar. A better correlation between the
type of the system, the number of compartments and number of
rules, and the behaviour of these platforms will be investigated
in a forthcoming paper.

On the other hand, the distributed architecture of Flame
allows the simulation to be run on parallel supercomputers with
great performance improvements [13]. (For the moment, the
implementation of kP Workbench is not suitable for running on
parallel computers, but this issue may be considered at a later
stage.) Significant performance gains could also be obtained
by using solid-state drives (SSDs) for data storage, with lower
access time than traditional HDDs, but this is beyond the scope
of this paper.

V. CONCLUSION

In this paper we have presented the simulation results of
a synthetic biology model coded as a kernel P system, a
nature inspired computational paradigm, executed under two
different simulation environments. The results presented show
the capability of the simulation environments to deal with
large scale models - up to 10000 components, each with
more than 30 transitions - and consequently with the benefits
of a complementary approach to model verification methods,
already used for such systems.

The experiments performed show some expected be-
haviour, whereby a specialised simulation tool, KPWORK-
BENCH SIMULATOR, provides better results, in terms of ex-
ecution time, then a general purpose simulation environment,
namely FLAME. Both tools produce the same behaviour start-
ing from the same specification, kP–Lingua description, and
the translation process is obtained in an automatic way.

In the long term, we aim to show the way the results of the
simulation and those of formal verification complement each
other for a better understanding of the system behaviour.
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Chapter 6

Comparative Analysis of Statistical

Model Checking Tools

In the previous chapter, we demonstrated how biological systems can be expressed by using

computational models and how they can be analysed with simulation and model check-

ing techniques. Model checking can be applied exhaustively or approximately. The exact

model checking method verifies a property by investigating the whole state space. As a

result, it can suffer from the state explosion problem, and in practice, it can be exercised

only on small models. Alternatively, statistical model checking considers a fraction of sim-

ulation traces rather than all states and can provide only approximate correctness of a

queried property. Typically, statistical model checkers can verify larger models, and they

are faster than exact model checkers. The advantages of statistical model checking have

persuaded scientists to develop a number of tools to embody this formalism. Although the

diversity of the tools gives flexibility to users, it comes with a cost of lack of clarity as to

which statistical model checking tool is best for a given model. The study presented in

this chapter reviewed some of the popular statistical model checking tools, and it is the

third paper included in this thesis.
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Third paper: Mehmet Emin Bakir, Marian Gheorghe, Savas Konur, and Mike Stannett.

Comparative analysis of statistical model checking tools. In Alberto Leporati, Grzegorz Rozen-

berg, Arto Salomaa, and Claudio Zandron, editors, Membrane Computing: 17th International

Conference, CMC 2016, Milan, Italy, July 25-29, 2016, Revised Selected Papers, pages 119–135.

Springer International Publishing, Cham, 2017.

The study introduces five statistical model checking tools, compares their modelling

and specification languages, the property patterns that they support, and their ease of use.

It presents the performance benchmarking of the tools on verification of 465 biological

models against five property patterns.

We developed a custom tool for translating the biological models to different model

checkers’ modelling and specification languages and recording the verification time. The

application is later extended to include more components. The final source code is avail-

able on www.github.com/meminbakir/smcp. The initial components developed and used

for this study are: ‘mce component (1929 lines of code (LOC))’ that manages overall per-

formance benchmarking. ‘modify component (624 LOC)’ modifies the biological model to

be ready for translation, for example, it fixes the stochastic rates of reactions. ‘mchecking

component (7988 LOC)’ translates biological models to model checkers’ specification and

performs verification. ‘output component (183 LOC)’ is responsible for printing out the

messages to the users. 1.

The overall performance benchmarking was very time consuming, we run each tool three

times for the verification each model and the property pattern. Each verification time is

limited to one hour. The worst-case scenario of total verification time is, 1 hour*(5 SMC

X 465 models X 5 property pattern X 3 execution). However, fortunately, small models

verified quite faster, therefore with our computer settings (details are in the Experimental

Findings section), the performance benchmarking process is completed within 3-4 months,

though still a significant amount of time.

The experiments showed that the performance of different tools significantly changes

per property pattern type, and indeed, per model size. The study concludes that in

1Lines of code is calculated with “find . -name ‘*’ | xargs wc -l” MAC command.
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some cases the best model checker can be identified by considering only the model size

and the property pattern. Therefore, this study provides guidance for specific scenarios.

For example, when the model size is very small or large, users can quickly decide which

model checker is going to be the fastest tool for their experiments, by just examining their

model size, and the pattern of the property they want to verify. The study also maps

borders where the best choice is less clear-cut. For such cases, examining the model size

and property pattern parameters alone is not enough. Therefore, we should explore more

model features for determining the fastest model checker. The findings point out to a clear

need for automating the best SMC tool selection process.
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Abstract. Statistical model checking is a powerful and flexible approach
for formal verification of computational models, e.g. P systems, which can
have very large search spaces. Various statistical model checking tools
have been developed, but choosing the most efficient and appropriate
tool requires a significant degree of experience, not only because differ-
ent tools have different modelling and property specification languages,
but also because they may be designed to support only a certain subset of
property types. Furthermore, their performance can vary depending on
the property types and membrane systems being verified. In this paper,
we evaluate the performance of various common statistical model check-
ers based on a pool of biological models. Our aim is to help users select
the most suitable SMC tools from among the available options, by com-
paring their modelling and property specification languages, capabilities
and performances.

Keywords: membrane computing, P systems, statistical model check-
ing, biological models, performance benchmarking

1 Introduction

In order to understand the structure and functionality of biological systems,
we need methods which can highlight the spatial and time-dependent evolution
of systems. To this end, researchers have started to utilize the computational
power of machine-executable models, including implementations of membrane
system models, to get a better and deeper understanding of the spatial and
temporal features of biological systems [21]. In particular, the executable nature
of computational models enables scientists to conduct experiments, in silico, in
a fast and cheap manner.

The vast majority of models used for describing biological systems are based
on ordinary differential equations (ODEs) [9], but researchers have recently
started to use computational models as an alternative to mathematical mod-
elling. The basis of such models is state machines, which can be used to model



numerous variables and relate different system states (configurations) to one an-
other [21]. There have been various attempts to model biological systems from
a computational point of view, including the use of Boolean networks [30], Petri
nets [43], the π-calculus [38], interacting state machines [25], L-systems [36] and
variants of P systems (membrane systems) [37, 22]. A survey of computational
models applied in biology can be found here [21]. These techniques are useful
for investigating the qualitative features of the biological systems, as are their
stochastic counterparts (e.g., stochastic Petri Nets [26], stochastic P systems [7,
41]) or deterministic systems (so called, MP systems [10]) useful for investigating
the quantitative features of computation models.

Having built a model, the goal is typically to analyse it, so as to determine
the underlying system’s properties. Various approaches have been devised for
analysing computational models. One widely used method, for example, based
on generating the execution traces of a model, is simulation. Although the sim-
ulation approach is widely applicable, the large number of potential execution
paths in models of realistic systems means that we can often exercise only a
fraction of the complete trace set using current techniques. Especially for non-
deterministic and stochastic systems each state may have more than one possible
successor, which means that different runs of the same basic model may produce
different outcomes [5]. Consequently, some computational paths may never be
exercised, and their conformance to requirements never assessed.

Model checking is another widely recognized approach for analysis and verifi-
cation of models, which has been successfully applied both to computer systems
and biological system models. This technique involves representing each (de-
sired or actual) property as a temporal logic formula, which is then verified
against a model. It formally demonstrates the correctness of a system by means
of strategically investigating the whole of the model’s state space, considering
all paths and guaranteeing their correctness [4, 15, 28]. Model checking has ad-
vantages over conventional approaches like simulation and testing, because it
checks all computational paths and if the specified property is not satisfied it
provides useful feedback by generating a counter-example (i.e. execution path)
that demonstrates how the failure can occur [28].

Initially, model checking was employed for analysing transition systems used
for describing discrete systems. A transition system regards time as discrete, and
describes a set of states and the possible transitions between them, where each
state represents some instantaneous configuration of the system. More recently,
model checking has been extended by adding probabilities to state transitions
(probabilistic model checking); in practice, such systems include discrete-time
Markov chains (DTMC), continuous-time Markov chains (CTMC), and Markov
decision processes (MDP). Probabilistic models are useful for verifying quanti-
tative features of systems.

Typically, the model checking process comprises the following steps [4, 28]:

1. Describing the system model in a high-level modelling language, so as to
provide an unambiguous representation of the input system.



2. Specifying the desired properties (using a property specification language)
as a set of logical statements, e.g., temporal logic formulas.

3. Verifying whether each property is valid on the model. For non-probabilistic
models the response is either ‘yes’ or ‘no’. For probabilistic systems the
response may instead be some estimate of the ‘probability of correctness’.

“Exact” model checking considers whole state spaces while verifying a prop-
erty, but if the model is relatively large, the verification process can be pro-
hibitively resource intensive and time consuming which is known as ‘state-space
explosion’ problem, so this approach can only be applied to a small number of
biological models. Nonetheless, the intrinsic power of the approach has gained a
good deal of attention from researchers, and model checking has been applied to
various biological phenomena, including, for example, gene regulator networks
(GRNs) and signal-transduction pathways [7, 13] (see [20] for a recent survey of
the use of model checking in systems biology).

To overcome the state-space explosion problem, the statistical model checking
(SMC) approach does not analyse the entire state space, but instead generates a
number of independent simulation traces and uses statistical (e.g., Monte Carlo)
methods to generate an approximate measure of system correctness. This ap-
proach does not guarantee the absolute correctness of the system, but it allows
much larger models be verified (within specified confidence limits) in a faster
manner [12, 35, 47, 49]. This approach allows verifying much larger models with
significantly improved performance.

The number of tools using statistical model checking has been increasing
steadily, as has their application to biological systems [14, 51]. Although the va-
riety of SMC tools gives a certain amount of flexibility and control to users, each
model checker has its own specific pros and cons. One tool may support a large
set of property operators but perform property verifications slowly, while another
may be more efficient at analysing small models, and yet another may excel at
handling larger models. In such cases, the user may need to cover all of their
options by using more than one model checker, but unfortunately the different
SMCs generally use different modelling and property specification languages.
Formulating properties using even a single SMC modelling language can be a
cumbersome, error-prone, and time wasting experience for non-experts in com-
putational verification (including many biologists), and the difficulties multiply
considerably when more than one SMC needs to be used.

In order to facilitate the modelling and analysis tasks, several software suites
have been proposed, such as Infobiotics Workbench [8] (based on stochastic P
systems [9]) and kPWorkbench framework (based on kernel P systems [17]) [17,
32]. As part of the computational analysis, these tools employ more than one
model checker. Currently, they allow only a manual selection of the tools, relying
on the user expertise for the selection mechanism. These systems automatically
translate the model and queries into the target model checker’s specification lan-
guage. While this simplifies the checking process considerably, one still has to
know which target model checker best suits ones needs, and this requires a sig-
nificant degree of experience. It is desirable, therefore, to introduce another pro-



cessing layer, so as to reduce human intervention by automatically selecting the
best model checker for any given combination of P system and property query.

As part of this wider project (Infobiotics Workbench) to provide machine
assistance to users, by automatically identifying the best model checker, we
evaluate the performance of various statistical model checkers against a pool of
biological models. The results reported here can be used to help select the most
suitable SMC tools from the available options, by comparing their modelling and
property specification languages, capabilities and performances (see also [6]).

Paper structure. We begin in Section 2 by describing some of the most com-
monly used SMC tools, together with their modelling and property-specification
languages. Section 3 compares the usability of these tools in terms of express-
ibility of their property specification languages. In Section 4 we benchmark the
performance of these tools when verifying biological models, and describe the
relevant experiment settings. We conclude in Section 5 with a summary of our
findings, and highlight open problems that warrant further investigation.

2 A Brief Survey of Current Statistical Model Checkers

In this section, we review some of the most popular and well-maintained statis-
tical model checking tools, together with their modelling and property specifi-
cation languages.

2.1 Tools

PRISM. PRISM (Probabilistic and Symbolic Model Checker) is a widely-used,
powerful probabilistic model checker tool [27, 33]. It has been used for analysing
a range of systems including biological systems, communication, multimedia and
security protocols and many others [44]. It allows building and analysing several
types of probabilistic systems including discrete-time Markov chains (DTMCs)
and continuous-time Markov chains (CTMCs) with their ‘reward’ extension.
PRISM can carry out both probabilistic model checking based on numerical tech-
niques with exhaustive traversal of model, and statistical model checking with
a discrete-event simulation engine [34, 44]. The associated modelling language,
the PRISM language (a high-level state-based language), is the probabilistic
variant of Reactive Modules [1, 33] (for a full description of PRISMs modelling
language, see [44]), which subsumes several property specification languages,
including PCTL, PCTL*, CSL, probabilistic LTL. However, statistical model
checking can only be applied to a limited subset of properties; for example, it
does not support steady-state and LTL-style path properties.

PRISM can be run via both a Graphical User Interface (GUI) or directly from
the command line. Both options facilitate model checking process by allowing
to modify a large set of parameters. The command line option is particularly
useful when users need to run a large number of models. PRISM is open source
software and is available for Windows, Linux and Mac OS X platforms.



PLASMA-Lab. PLASMA-Lab is a software platform for statistical model
checking of stochastic systems. It provides a flexible plug-in mechanism which
allows users to personalise their own simulator, and it also facilitates distributed
simulations [11]. The tool has been applied to a range of problems, such as
systems biology, rare events, motion planning and systems of systems [42].

The platform supports four modelling languages: Reactive Module Language
(RML) implementation of the PRISM tool language, with two other variants of
RML (see Table 1), and Biological Language [11, 42]. In addition, it provides a
few simulator plug-ins which enable external simulators to be integrated with
PLASMA-Lab, e.g., MATLAB/Simulink. The associated property specification
language is based on Bounded Linear Temporal Logic (B-LTL) which bounds
the number of states by number of steps or time units.

PLASMA-Lab can be run from a GUI or command line with plug-in system,
and while it is not open source it can be embedded within other software pro-
grams as a library. It has been developed using the Java programming language,
which provides compatibility with different operating systems.

Ymer. Ymer is a statistical model checking tool for verifying continuous-time
Markov chains (CTMCs) and generalized semi-Markov processes (GSMPs). The
tool supports parallel generation of simulation traces, which makes Ymer a fast
SMC tool [48].

Ymer uses the PRISM language grammar for its modelling and property spec-
ification language. It employs the CSL formalism for property specification [46].

Ymer can be invoked via a command line interface only. It has been devel-
oped using the C/C++ programming language, and the source code is open to
the public.

MRMC. MRMC is a tool for numerical and statistical model checking of prob-
abilistic systems. It supports DTMC, CTMC, and using the reward extension of
DTMC and CTMC [29].

The tool does not employ a high-level modelling language, but instead re-
quires a sparse matrix representation of probabilities or rates as input. Describing
systems in transition matrix format is very hard, especially for large systems,
and external tools should be used to automatically generate the required in-
puts. Both PRISM and Performance Evaluation Process Algebra (PEPA) have
extensions which can generate inputs for the MRMC tool [50]. The matrix repre-
sentation also requires that state labels with atomic propositions be provided in
another structure. Properties can be expressed with PCTL and CSL, and with
their reward extensions.

MRMC is a command line tool. It has been developed using the C program-
ming language, and the source code is publicly available. Binary distributions
for Windows, Linux and Mac OS X are also available [40].

MC2. The MC2 tool enables statistical model checking of simulation traces,
and can perform model checking in parallel.



MC2 does not need a modelling language, instead it imports simulation traces
generated by external tools for stochastic and deterministic models. The tool uses
probabilistic LTL with numerical constraints (PLTLc) for its property specifica-
tion language, which enables defining numerical constraints on free variables [16].

MC2 can be executed only through its command line interface. The tool was
developed using the Java programming interfaces and is distributed as a .jar

file, therefore the source code is not available to public. The tool is bundled with
a Gillespie simulator, called Gillespie2. As will be explained in the following
section, it is possible to use Gillespie2 to generate simulation traces for the
MC2 tool.

2.2 Modelling Languages

As part of the model checking process the system needs to be described in the
target SMC modelling language. If the SMC tool relies on external tools, as
in the case of MRMC and MC2, users will also have to learn the usage and
modelling language of these external tools as well. For example, if users want
to use the MRMC tool, they also have to learn how to use PRISM and how to
model in the PRISM language.

Table 1 summarises the modelling languages associated with each SMC tool.
The PLASMA and Ymer tools provide fair support for the PRISM language.
MRMC expects a transition matrix input, but in practice, for large models, it
is not possible to generate the transition matrix manually, so an external tool
should be used for generating the matrix. MC2 also relies on external tools,
because it does not employ a modelling language, instead it expects externally
generated simulation traces. If users want to use the MC2 tool, they first have
to learn a modelling language and usage of an appropriate simulation tool. For
example, in order to use the Gillespie2 simulator as an external tool for MC2, the
user should be able to describe their model using the Systems Biology Markup
Language (SBML).

Table 1. Modelling languages and external dependency of SMC tools.

SMCs Modelling Language(s)
Needs an
External Tool?

External Tool
Modelling Language

PRISM PRISM language NO N/A

PLASMA-Lab

RML of PRISM,
Adaptive RML
(extension of RML
for adaptive systems),
RML with importance sampling,
Biological Language

NO N/A

Ymer PRISM language NO N/A

MRMC Transition matrix
YES,
e.g., PRISM

PRISM language

MC2 N/A
YES,
e.g., Gillespie2

Systems Biology
Markup Language (SBML)



3 Usability

Model checking uses temporal logics as property specification languages. In order
to query probabilistic features, probabilistic temporal logics should be used.
Several probabilistic property specification languages exist, such as Probabilistic
Linear Temporal Logic (PLTL) [4], probabilistic LTL with numerical constraints
(PLTLc) [16] and Continuous Stochastic Logic (CSL) [2, 3, 34].

In order to ease the property specification process, frequently used proper-
ties, called patterns, have been identified by previous studies [18, 24]. Patterns
represent recurring properties (e.g., something is always the case, something is
possibly the case), and are generally represented by natural language-like key-
words. An increasing number of studies have been conducted to identify ap-
propriate pattern systems for biological models [23, 31, 39]. Table 2 lists various
popular patterns [24], giving a short description and explaining how they can be
represented using existing temporal logic operators.

Table 2. Property patterns

Patterns Description Temporal Logic

Existence φ1 will eventually hold, within the ./ p bounds.
P./p[F φ1] or
P./p[true U φ1]

Until
φ1 will hold continuously until φ2 eventually holds,
within the ./ p bounds.

P./p[φ1 U φ2]

Response If φ1 holds, then φ2 must hold within the ./ p bounds. P≥1[G (φ1 → (P./p[F φ2]))]

Steady-State
(Long-run)

In the long-run φ1 must hold, within the ./ p bounds.
S./p[φ1] or
P./p[FG (φ1)]

Universality φ1 continuously holds, within the ./ p bounds.
P./p[G φ1] or
P./(1−p)[(F (¬φ1)]

Key. φ1, and φ2 are state formulas; ./ is one of the relations in {<,>,≤,≥}; p ∈ [0, 1] is a probability

with rational bounds; and ./ is negation of inequality operators. P./p is the qualitative operator

which enables users to query qualitative features, those whose result is either ‘yes’ or ‘no’. In order

to query quantitative properties, P=? (quantitative operator) can be used to returns a numeric value

which is the probability that the specified property is true.

The SMCs investigated here employ different grammar syntaxes for prop-
erty specification, which makes it harder to use other tools at the same time.
Although Ymer uses the same grammar as PRISM, it excludes some operators,
such as the Always (G) operator. In addition, different SMCs tools may support
different sets of probabilistic temporal logics. In the following, we compare the
expressibility of their specification languages, by checking if the properties can
be defined using just one temporal logic operator, namely directly supported
(DS), which will be easier for practitioners to express; or as a combination of
multiple operators, indirectly supported (IS); or not supported at all, not sup-
ported (NS). Qualitative and quantitative operators, with five property patterns
which are identified as widely used by [24], are listed in Table 3.

The PRISM, Ymer and MC2 tools directly support both Qualitative and
Quantitative operators, but MRMC supports only the Qualitative operator. While



Table 3. Specifying various key patterns using different SMC tools.

SMCs
Qualitative
Operator

Quantitative
Operator
(P=?)

Existence Until Response
Steady
-State

Universality

PRISM DS DS DS DS NS NS DS

PLASMA-Lab NS NS DS DS IS IS DS

Ymer DS DS DS DS NS NS IS

MRMC DS NS DS DS IS DS DS

MC2 DS DS DS DS IS IS DS

Key. DS = Directly Supported; IS = Indirectly Supported; NS = Not Supported.

PLASMA-Lab does not allow these operators to be expressed directly with B-
LTL, the verification outputs contain information about the probability of the
property, hence users can interpret the results. Existence, Until and Universality
properties are directly supported by all SMCs, except that Ymer does not employ
an operator for Universality patterns (it needs to be interpreted using the Not
(!) and Eventually (F ) operators, i.e. it is indirectly supported). There is no
single operator to represent the Response pattern directly, but it is indirectly
supported by PLASMA-Lab, MRMC and MC2. The Steady-State pattern can
be either represented by one operator, S, or two operators, F and G. Only
the MRMC tool employs the S operator to allow Steady-State to be expressed
directly, while PLASMA-Lab and MC2 allow it to be expressed indirectly.

4 Experimental Findings

The wide variety of SMC tools gives a certain flexibility and control to users,
but practitioners need to know which of the tools is the most suitable for their
particular models and queries. The expressive power of the associated modelling
and specification languages is not the only criterion, because SMC performance
may also depend on the nature of the models and property specifications. We
have therefore conducted a series of experiments to determine the capabilities
and performances of the most commonly used tools [6]. The experiments are
conducted on an Intel i7-2600 CPU @ 3.40GHz 8 cores, with 16GB RAM running
on Ubuntu 14.04.

We tested each of the five tools against a representative selection of 465
biological models (in SBML format) taken from the BioModels database [19] (as
modified in [45] to fix the stochastic rate constants of all reactions to 1). The
models tested ranged in size from 2 species and 1 reaction, to 2631 species and
2824 reactions. Figure 1 shows the distribution of models size, we take “size” to
be the product of species count and reaction count. X-axis (log scale) indicates
the model size and Y-axis represents the frequency of models with their sizes
represented on the X-axis.

Each tool/model pair was tested against five different property specification
patterns [24], namely Existence, Until, Response, Steady-State and Universality.
We have developed a tool for translating SBML models to SMC modelling lan-



Fig. 1. The distribution of models size in the logarithmic scale.

guages, and translating property patterns to the corresponding SMC specifica-
tion languages. For each SMC, the number of simulation traces was set to 500,
and the depth of each trace was set to 5000.

The time required for each run is taken to be the combined time required
for model parsing, simulation and verification. Each SMC/model/pattern com-
bination was tested three times, and the figures reported here give the average
total time required. When an SMC depends on external tools, we also added the
external tool execution time into the total execution time. In particular, there-
fore, the total times reported for verifying models with MRMC and MC2 tools
are not their execution times only, but include the time consumed for generating
transition matrices and simulation traces, respectively. We used the PRISM tool
for generating transition matrices requested by MRMC, and the Gillespie2 for
generating simulation traces utilised by MC2. When the external tool failed to
generate the necessary input for its corresponding SMC, we have recorded the
SMC as being incapable of verifying the model. In order to keep the experiment
tractable, when an SMC required more than 1 hour to complete the run, we
halted the process and again recorded the model as unverifiable.

Table 4 shows the experiment results. The SMCs and the property patterns
are represented in the first column and row, respectively. The Verified columns
under each pattern show the number of models that could be verified by the
corresponding SMC. The Fastest column shows the number of models for which
the corresponding SMC was the fastest tool.

The results show that SMC tool capabilities vary depending on the queried
properties. For example, PRISM was only able to verify 337 models against
Existence, and 435 and 370 models against Until and Universality, respectively.
The main reason PRISM failed to verify all of the models is that it expects user
to increase the depth of the simulation traces, otherwise it cannot verify the



Table 4. The number of model/pattern combinations verified by each SMC tool.

Existence Until Response
Steady
-State

Universality

Verified Fastest Verified Fastest Verified Fastest Verified Fastest Verified Fastest

PRISM 337 15 435 84 NS NS NS NS 370 57

PLASMA
-Lab

465 143 465 54 465 390 465 392 465 80

Ymer 439 304 439 324 NS NS NS NS 439 325

MRMC 75 0 72 0 75 17 57 11 77 0

MC2 458 3 458 3 458 58 458 62 458 3

Key. NS = Not Supported.

unbounded properties with a reliable approximation. In contrast, PLASMA-Lab
was able to verify all of the models within 1 hour. Ymer could verify 439 models
for those patterns it supports, thus failing to complete 26 models in the time
available. MRMC was able to verify relatively few models, because it relied on
the PRISM model checker to construct the model and export the associated
transition matrices. Especially for relatively large models PRISM crashed while
generating these matrices (we believe this is related to its CU Decision Diagram
(CUDD) library). MC2 was able to verify 458 models against all of the patterns
tested, and only failed for 7 of them.

The second column of the patterns shows the number of models which were
verified by the corresponding model checker tools. The distribution of models size
across the fastest model checkers for different patterns are shown in the following
set of violin plots (Figures 2 – 6). Each of the inner swarm points represents a
model. X-axis represents the logarithmic scale of models size. For the models in
the white background region, we can uniquely identify the fastest SMC tool for
their verification, whereas for the models in grey background region the fastest
model checker is not clear.

Ymer was the fastest for most model/pattern pairs (where those patterns
were supported). However, it is the fastest tool only for verification of relatively
small size models. Ymer was the fastest for verifying 304 models against Existence
pattern, the minimum model size verified by Ymer was 2, maximum 2128, mean
256.8 and median 137.5. It was the fastest tool for larger number of models, 324
(min = 2, max = 2128, mean = 312.9, median = 144), against Until pattern
verification, and 325 models (min = 2, max = 2346, mean = 335, median = 144)
against Universality pattern verification. PLASMA-Lab is the fastest tool for
relatively large size models. It was the fastest tool for verifying 143 models (min
= 380, max = 7429944, mean =464498.9, median = 11875) against Existence
pattern, 54 models (min = 1224, max = 7429944, mean = 837193.5, median =
288162) against Until pattern, and 80 models (min = 575, max = 7429944, mean
= 773247.5, median = 43143) against Universality pattern verification. It did
particularly well against Response, 390 models (min = 12, max = 7429944, mean
= 170734.5, median = 604.5) and Steady-State patterns, 392 models (min = 9,
max = 7429944, mean = 169862.1, median = 600), where it was only competing



Fig. 2. The distribution of models size across fastest SMC tools for Existence pattern
verification.

Fig. 3. The distribution of models size across fastest SMC tools for Until pattern veri-
fication.

with MRMC and MC2. PRISM is generally the fastest tool for medium to large
size models. It was the fastest only for 15 models (min = 1023, max = 39770,
mean = 5860.9, median = 2304) against Existence pattern verification, but it was
able to verify larger number of models, 84 (min = 1665, max = 2928904, mean =
253327.3, median = 7395), against Until pattern verification and 57 models (min
= 960, max = 1633632, mean = 92998.4, median = 3364) against Universality
pattern verification. MC2 (with Gillespie2) is the fastest for relatively small size
models. It could verify only 3 models (min = 722, max = 1892, mean = 1138,



Fig. 4. The distribution of models size across fastest SMC tools for Response pattern
verification.

Fig. 5. The distribution of models size across fastest SMC tools for Steady-State pattern
verification.

median = 800) against Existence, Until and Universality patterns, although it
did better with 58 models (min = 2, max = 1892, mean = 103.2, median =
30) against Response pattern, and 62 models (min = 2, max = 1892, mean =
105.9, median = 36) against Steady-State patterns. Finally, MRMC (with PRISM
dependency) was slower than other tools for Existence, Until and Universality
patterns verification, but did better handling Response (fastest for 17 models:
min = 6, max = 42, mean = 18.5, median = 20) and Steady-State (fastest for
11 models: min = 6, max = 42, mean = 22.3, median = 20).



Fig. 6. The distribution of models size across fastest SMC tools for Universality pattern
verification.

As we stated previously, the background color of Figures 2 – 6 gives an
indication of whether the fastest model checker can be identified for the models
within a region of the graph, that is, for models in the white background region,
the fastest SMC tool can be identified, but the models in grey background region
it is less clear-cut. For verification of Existence pattern, we can uniquely identify
the fastest SMC tool for both the 232 smallest models (size ranging from 2
to 380), and the 55 largest models (size = 39984 to 7429944), namely Ymer
and PLASMA-Lab respectively, but for remaining 178 medium-sized models
(size = 380 to 39770), there is no obvious ‘winner’. Similarly, for Until pattern
verification, the smallest 283 models (size ranging from 2 to 714), and only for
the 5 largest models (size = 3605380 to 7429944) we can identify the fastest
SMC tool (Ymer and PLASMA-Lab respectively), but there are more than one
candidates for remaining 177 medium-sized models (size = 722 to 2928904).
Despite, we have only three SMC tools, namely PLASMA-Lab, MRMC and
MC2, which support the verification of Response and Steady-State patterns, their
performance on small and medium size models are close to each other, which
makes harder to identify the fastest tool. Therefore, only for the smallest 4
models (size = 2 to 6) and for the largest 128 models (size= 1927 to 7429944)
the fastest tool (MC2 and PLASMA-Lab respectively) can be identified. Lastly,
for Universality pattern verification, the fastest SMC tool for both smallest 262
models (size=2 to 572) and largest 17 models (size =1823582 to 7429944), Ymer
and PLASMA-Lab respectively, can be identified, for the remained 186 medium
size models we cannot assign a unique model checker tool.



5 Conclusion

The experimental results clearly show that certain SMC tools are best for certain
tasks, but there are also situations where the best choice of SMC is far less clear-
cut, and it is not surprising that users may struggle to select and use the most
suitable SMC tool for their needs. Users need to consider the modelling language
of tools and the external tools they may rely on, and need detailed knowledge
as to which property specification operators are supported, and how to specify
them. Even then, the tool may still fail to complete the verification within a
reasonable time, whereas another tool might be able to run it successfully.

These factors make it extremely difficult for users to know which model
checker to choose, and point to a clear need for automation of the SMC-selection
process. We are currently working to identify novel methods and algorithms to
automate the selection of best SMC tool for a given computational model (more
specifically for P system models) and property patterns. We aim to enable the
integration of our methods within larger software platforms, e.g., IBW and kP-
Workbench, and while this is undoubtedly a challenging task, we are encouraged
by recent developments in related areas, e.g., the automatic selection of stochas-
tic simulation algorithms [45].
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Chapter 7

Automating Statistical Model

Checking Tool Selection

The previous chapter showed that the performance of statistical model checking tools varies

per model size and pattern type, and concluded by emphasising the need to automate the

SMC tools selection process.

Fourth study: Mehmet Emin Bakir, Savas Konur, Marian Gheorghe, Natalio Krasnogor,

and Mike Stannett. Performance benchmarking and automatic selection of verification tools

for efficient analysis of biological models. Unpublished, 2017.

In this paper, we extended the previous study [11] by benchmarking larger sets of

biological models and property patterns, i.e. 675 models and 11 patterns. The instantiation

of the property patterns are provided in Appendix B. Please note that for our study

the actual instantiation is not very important, as we provide the same property instance

and models to all SMC tools and we evaluate their performance. To predict the best

SMC tool, initially, we used topological properties of species and reaction dependency

graphs, e.g. the number of vertices and edges, as initially proposed by [104] for stochastic

simulation algorithm performance prediction. Additionally, we introduced a number of

custom (non-graph related) features, such as the number of variables to be updated when

a reaction triggers. The final set contains both graph and non-graph related features.
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We demonstrated that they are computationally efficient and yet can notably increase

the prediction accuracy. Then, we provided the final feature set as input to a number

of machine learning algorithms. The winner algorithm of each pattern could successfully

predict the fastest SMC tool with over 90% accuracy. We developed a software utility tool,

SMC Predictor, which automatically matches the best statistical model checkers to a given

and property pattern. Finally, we demonstrated that by using our methodology users can

save a significant amount of time. The study in this chapter has been written in a scientific

manuscript format which is a preliminary study for a journal paper. It presents an initial,

and in some respects more comprehensive, account of work subsequently accepted (after

formal submission of this thesis) for publication in revised form as [13].
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Abstract

Simulation and verification, particularly model checking, are two computational

techniques, which have been widely used in the analysis of biological systems. Although

model checking enables the discovery of systems properties, it suffers from performance

issues since it employs mathematical techniques that are computationally very demand-

ing. Statistical Model Checking (SMC) has been introduced to alleviate this issue by

replacing mathematical and numerical analysis with the simulation approach, which is

computationally less demanding. Namely, SMC combines simulation and model check-

ing by leveraging the speed of simulation with the comprehensive analytic capacity of
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model checking. The success of SMC has prompted researchers to implement a number

of SMC tools and apply them to various fields, including systems biology, membrane

computing and synthetic biology. However, while the availability of multiple tools gives

flexibility and fine-tuned control over model analysis, these tools generally have dif-

ferent modelling and specification languages and support different property operators.

More importantly, they differ in their performance characteristics. However, choosing

the most efficient tool for any given model requires a significant degree of experience,

and in most of the cases, it is challenging to predict the right one.

The objective of this study is to automate SMC tool selection to streamline biological

model analysis. Our results suggest it is possible to successfully predict the best SMC

tool for a given biological model with over 90% accuracy.

Abbreviations

Statistical Model Checking (SMC), Stochastic Simulation Algorithms (SSA)

Keywords

statistical model checking, synthetic biology, in silico, biological models, verification

1 Introduction

In order to handle the complex structure and the dynamic functionality of biological systems,

researchers have developed a number of machine-executable mathematical and computational

models to help them understand fine-grained spatial and temporal biological behaviours (1 ).

The executable nature of these models enables researchers to conduct in silico experiments,

which are generally faster, cheaper and more reproducible than the analogous wet-lab exper-

iments, and only validated computational models need be implemented as wet-lab experi-

ments. However, the relevance of any particular in silico experiment depends on whether the
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methods used to validate the models can scale efficiently to handle large problem instances

while maintaining the precision of the results obtained.

Simulation and model checking (2 ), which is an algorithmic formal verification tech-

nique, are two powerful techniques used for analysing computational models. Each has it

own advantages and disadvantages. Simulation works by executing the model repeatedly,

and analysing the result. Each run of the system can be performed relatively quickly, but

– especially in large, non-deterministic models – it is generally not possible to guarantee

that we will execute every possible computation path. In contrast, model checking works

by representing desirable properties of the model using formal mathematical logic, and then

verifying whether or not the model satisfies the corresponding formal specification. This

involves checking the model’s entire state space exhaustively. As a result, unlike simulation,

model checking allows discovering novel knowledge about system properties. However, the

very well-known state-space explosion problem associated with large non-deterministic sys-

tems (as a result of exhaustive analysis using mathematical and numerical methods) means

that the approach can be applied effectively to only a small number of biological models.

Statistical Model Checking (SMC) (3 ) has been introduced to alleviate the state-explosion

problem issue by replacing mathematical and numerical analysis with the simulation ap-

proach, which is computationally less demanding. Namely, SMC combines simulation and

model checking by leveraging the speed of simulation with the comprehensive analytic ca-

pacity of model checking.

Like standard model checking, SMC is essentially a three-step process, involving: (i)

mapping a system to the model checker’s modelling language; (ii) specifying desired prop-

erties using an appropriate property specification language; and (iii) verifying whether the

properties are valid for the model (4 , 5 ). However, since it is not generally possible to

execute every possible run of the system in a reasonable amount of time, instead it anal-

yses a random sample of execution paths and then uses statistical methods – for example,

Monte Carlo methods – to determine the “approximate” correctness of the model to within
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identifiable confidence limits. The greatly reduced number of executions enables verification

of larger models at far lower computational cost, albeit by introducing a small amount of

uncertainty.

The success of statistical model checking has prompted researchers to implement a num-

ber of SMC tools and apply them to various fields, including computer systems, systems

biology(6 ), membrane computing (7 ) and synthetic biology (8 , 9 ). However, while the

availability of multiple variants of these tools and algorithms can allow considerable flexi-

bility and fine-tuned control over the analysis of specific models, it can also be difficult for

synthetic biologists to acquire the knowledge needed to identify clearly which tools are most

appropriate in any given situation. This is because

• different tools typically use different modelling and property specification languages,

and support the analysis of different collections of properties – users therefore need to

familiarise themselves with a range of different technologies;

• while some tools are self-contained, others depend on the use of external third party

applications for pre-processing, which means that the users need to learn the techniques

involved in using these other tools as well;

• the performance characteristics of any given tool may vary significantly according to the

verifications being performed. Where one tool successfully verifies a model’s properties

efficiently, another may fail; and any given tool may succeed in validating certain

properties of a model, but fail to verify others.

Consequently, researchers generally need to use more than one tool to cover their needs,

but may easily lack the knowledge required to do so. Verification using even a single SMC

tool can be an error-prone and time-consuming process, and the difficulties can multiply

considerably when more than one tool is involved. Clearly, this is a very tedious task for

non-experts, including biologists.
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In response to this problem, a number of software suites have recently been developed

to facilitate the model checking process, such as SMBioNet (10 ), Biocham system (11 ),

Bio-PEPA Eclipse Workbench (12 ), Genetic Network Analyzer (GNA) (13 ),

kPWorkbench (14–16 ) and Infobiotics Workbench (17 , 18 ). These tools integrate

a number of model checking tools in a single platform. They abstract the complexity of the

model checker requirements by providing a high-level modelling and property specification

language and by enabling users to select a target model checker for verification. These sys-

tems internally translate from high-level languages to those required by the target model

checker. While this noticeably simplifies the model checking process, users still have to know

which of the target model checkers is best for the model and properties under consideration,

which again requires a significant degree of verification experience. Consequently, it is cur-

rently common practice to verify models with a randomly picked SMC tool, whereas another

tool might actually enable verification to progress significantly faster.

These complications can discourage non-experts – potentially the majority of professional

biologists – from building and analysing large system models. It is therefore desirable to have

a system which can automatically identify the fastest SMC for a given model and property.

Automating this SMC selection process will not only significantly reduce the total time

and effort employed in model verification, but will also enable more precise verifications of

complex models while keeping the verification time tractable. In consequence, we believe, a

deeper understanding of biological system dynamics is more likely to be achieved.

Generally speaking, most of the time involved in executing the SMC verification process

consists in generating simulation traces and verifying the queried property. Therefore, those

factors which most affect simulation and verification time are likely to be the most useful

features to consider when predicting the fastest SMC for a given situation. In a recent work

(5 ), we have shown that the type of property (the property pattern) being queried is an effec-

tive discriminant between SMCs, and is also a significant factor determining the verification

time. Regarding the simulation time, Sanassy et al. (19 ) have shown that the network char-
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acteristics of models are determining factors for the simulation time, and that by analysing

network properties of species and reaction dependency graphs, the fastest Stochastic Simu-

lation Algorithms (SSAs) for a given model can be predicted prior to the model’s execution.

Contributions. The objective of this work programme is to benchmark the performances

SMC tools and to automatically match the fastest SMC tool to any given model and property

pattern by using machine learning. The main contributions reported here are:

• We propose a set of model features which can be used for SMC prediction, reduce the

computation time required for feature extraction, and increase the prediction accuracy.

• We extend our previous performance benchmark study (5 ) by verifying 675 biological

models against 11 well-known property patterns with five SMC tools.

• We have explored the use of 7 machine learning algorithms to predict the fastest SMC

tool by analysing the queried property and the model features, and report our findings.

• To the best of our knowledge, this is the first published attempt to predict the fastest

SMC tools by grouping the tools’ performance with different property patterns.

• We implement our approach and develop a software tool SMC Predictor that predicts

the fastest SMC tool based on a given model and property query.

We have demonstrated that our approach can predict the fastest SMC tool, with over 90% of

accuracy for each property pattern, and can therefore help users to save a significant amount

of time for model verification.

Paper structure. In Section “Statistical Model Checking (SMC) Tools ” we describe some

of the SMC tools we investigated in this study and the commonly used property patterns.

Section “Experiments” explains our experimental findings: in Section“ Feature Selection” we

discuss several new model features, and compare their usage against the network features

for identifying the fastest SSA predictors; in Section “Performance Benchmarking of SMC
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Tools” the performance comparison of SMC tools for different property types is presented;

in Section “Automating SMC Tool Prediction” the prediction accuracies of various machine

learning algorithms are compared; in Section “Performance Gain and Loss” we demonstrate

the amount of time that a user can save by using our automated prediction system; and

in “SMC Predictor Tool” we present the architecture of our software tool, SMC Predictor.

Section “Conclusion” concludes with a summary of our findings, and discusses possible future

directions.

2 Statistical Model Checking (SMC) Tools

In this section we briefly introduce the five widely used SMC tools considered in our exper-

imental analysis: PRISM, PLASMA-Lab, Ymer, MRMC and MC2. They have been used

for analysing a wide range of systems, including computer, network and biological systems.

For comprehensive analysis of the usability and capacity of these tools and their application

for biological systems we refer the reader to (5 , 20–23 ) .

PRISM (Probabilistic and Symbolic Model Checker) is a popular and well maintained

probabilistic model checker tool (24 , 25 ). PRISM implements both probabilistic model

checking based on numerical techniques with exhaustive analysis of model (called numeric

model checking) and statistical model checking using an internal discrete-event simulation

engine (26 , 27 ). PLASMA-Lab is another statistical model checker for analysing stochastic

systems (21 ). In addition to its internal simulator, it also provides a plugin mechanism

to users, allowing them to integrate custom simulators into the PLASMA-Lab platform.

Ymer is one of the first tools that implemented statistical model checking algorithms – its

ability to parallelise the execution of simulation runs makes it a relatively fast tool (28 ).

MRMC (Markov Reward Model Checker) is another tool which can support both numeric

and statistical model checking of probabilistic systems. It is worth noting, however, that

MRMC does not provide a high-level modelling language, but instead expects a low level
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transition matrix to be provided as input. In practice, this means that MRMC users generally

need to use an external tool, such as PRISM, to generate the required inputs (29 ). Finally,

MC2 (Monte Carlo Model Checker) enables statistical model checking over simulation paths.

While this tool does not have an internal simulator, and instead uses simulation paths of

external simulators, it can parallelise the path evaluation process (22 ).

For experimental purposes, we used version 2.0 beta2 of MC2 with the Gillespie2 simula-

tor (which is bundled with the tool), to generate the required simulation traces. We also used:

PRISM, version 4.2.1; PLASMA-Lab, version 1.3.2, with default settings and simulator; and

MRMC version 1.5 together with PRISM 4.2.1 for MRMC performance benchmarking.

2.1 Property Patterns

Model checking uses variants of temporal logics, for example Continuous Stochastic Logic

(CSL) (27 , 30 , 31 ) and Probabilistic Linear Temporal Logic (PLTL) (32 ), to specify desired

system properties and requirements. However, this is a tedious task, because expressing the

requirements in such formal specifications requires expert knowledge of formal languages. In

order to facilitate the property specification process, various frequently used property types

(patterns) have been identified in previous studies (33 , 34 ). Recently, more studies have

been conducted to identify pattern systems that are particularly appropriate for biological

models (35–38 ).

We identified 11 popular property patterns in the literature for use in our experiment

settings. Table 1 lists and describes these patterns, shows how to represent them using

temporal logic operators, and shows which SMC tools currently support the relevant pattern

expressions. Various standard patterns (Existence, Always, Precedes, Never, Until, Release and

Weak Until) are supported by all five SMC tools, whereas the Next pattern is supported by all

tools except Ymer. The Steady State pattern is supported only by PLASMA-Lab, MRMC

and MC2. The Infinitely Often pattern is only supported by PLASMA-Lab and MC2.
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Table 1: Property patterns.

Patterns Description Temporal Logic Supported by
Eventually
(Existence) Within the ./ p bounds, φ1 will eventually hold. P./p[F φ1] or

P./p[true U φ1]
PRISM, PLASMA-Lab,
Ymer, MRMC and MC2

Always
(Universality) Within the ./ p bounds, φ1 continuously holds. P./p[G φ1] or

P./(1−p)[(F (¬φ1)]
PRISM, PLASMA-Lab,
Ymer, MRMC and MC2

Follows
(Response) Within the ./ p bounds, If φ1 holds, then φ2 must hold. P≥1[G (φ1 → (P./p [F φ2]))]

PLASMA-Lab,
MRMC and MC2

Precedes Within the ./ p bounds, φ1 precedes or activates φ2.
P./p[¬φ2 W φ1] or
P./(1−p)[¬φ1 U (¬φ1 & φ2)]

PRISM, PLASMA-Lab,
Ymer, MRMC and MC2

Never
(Absence) Within the ./ p bounds, φ1 will never hold. P./(1−p)[(F(φ1)]

PRISM, PLASMA-Lab,
Ymer, MRMC and MC2

Steady-State
(Long-run) Within the ./ p bounds, in the long-run φ1 must hold S./p[φ1] or

P./p[FG (φ1)]
PLASMA-Lab,
MRMC and MC2

Until Within the ./ p bounds,
φ1 holds continuously until φ2 eventually hold. P./p[φ1 U φ2]

PRISM, PLASMA-Lab,
Ymer, MRMC and MC2

Infinitely
Often
(Recurrence)

Within the ./ p bounds, φ1 repeatedly holds. P./p[G (F φ1)]
PLASMA-Lab
MC2

Next Within the ./ p bounds, φ1 will hold in the next state. P./p[ X φ1 ] PRISM, PLASMA-Lab,
MRMC and MC2

Release Within the ./ p bounds, φ2 holds continuously
until φ1 holds, namely φ1 releases φ2.

P./p[φ1 R φ2] or
P./(1−p)[¬φ1 U ¬φ2]

PRISM,PLASMA-Lab,
Ymer, MRMC and MC2

Weak Until Within the ./ p bounds, φ1 holds continuously
until φ2 holds, if φ2 does not hold, then φ1 holds forever.

P./p[φ1 W φ2] or
P./(1−p)[¬φ2 U (¬φ1 & ¬φ2)]

PRISM, PLASMA-Lab,
Ymer, MRMC and MC2

Key. φ1, and φ2 are state formulas; ./ is a relation of {<,>,≤,≥}; p is probability ∈ [0, 1]; and ./ is negation of the

inequalities.

3 Experiments

In order to identify the performance of SMC tools, we verified instances of the 11 patterns

in Table 1 on 675 up-to-date (August 2016) biological models taken from the BioModels

database (39 ) in SBML format. In order to focus on the model structure analysis, they

have fixed stochastic rate constants of all reactions to 1.0 and the amounts of all species

to 100. Sanassy et al. (19 ) have previously (2015) modified and considered 465 of these

models in a similar fashion. We have made same changes to the 210 new models considered

here. The models tested ranged in size from 2 species and 1 reaction, to 2631 species and

2824 reactions. Figure 1 shows the distribution of model sizes, where we take “size” to be

the product of species count and reaction count. All experiments were conducted on the

same desktop computer (Intel i7-2600 CPU @ 3.40GHz 8 cores, 16GB RAM, running under

Ubuntu 14.04).
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Figure 1: Model size distribution. The X-axis plots the (natural logarithm of) model size
and the Y-axis represents the frequency of models within the corresponding X-axis interval.

3.1 Feature Selection

Network analysis of biological systems is a principal component of systems biology which has

been used to identify complex molecular interactions of the biological systems (40 ). A graph

consists of vertices and edges. Typically, a vertex signifies an entity and an edge represents

the existence of relationship between two entities. In undirected graphs, edges do not have

direction. Thus, the relationship is symmetric. In directed graphs, each edge has a direction

starting from one vertex and pointing to itself or another vertex. One of the basic features

of a vertex is its degree which is the number of edges linked to it. In directed graphs, the

number of edges pointing to a vertex is called in-degree and the number of outgoing edges

is called out-degree. Graph density is the ratio between the number of existing edges and

the total number of possible edges (40 , 41 ). Essentially, it measures how sparse or dense

the vertices are interconnected. A connected component is the maximal subset of vertices

in an undirected graph, where any two vertices are connected by one or more edges (40 ).

More specifically, strongly connected components take the direction of the edges into account,

whereas the weakly connected components ignore the directions (40 , 42 ). A vertex cut or

articulation point is a vertex in a connected component of a graph whose removal causes

the subgraphs becoming separated (43 ). A biconnected component is a subgraph which does
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not have articulation points (43 ). Reciprocity in directed graphs measures the proportion of

mutual connections, i.e. reciprocal edges (40 ).

The verification time expended by SMC tools primarily depends both on the character-

istics of the model, such as the number of species and reactions, and on the property being

queried (5 , 19 ), and it is therefore crucial to identify those model features which effectively

discriminate between different SMC tools’ performance characteristics.

Sanassy et al. (19 ) have previously used topological features from the model’s network to

assist in SSA performance prediction. They represented models using species and reaction

dependency graphs, then used various topological features of these graphs to predict the

fastest SSA among nine algorithms. Initially, they considered 109 features of species and

reaction graph, and they were able to successfully predict the fastest SSA for 380 models

with 65% accuracy. Computing some of these features are computationally demanding and,

therefore, they excluded some of more expensive features and considered only 16 relatively

less expensive features for each graph type, 32 in total, for their second experiment. The

final set of features they used are shown in first column of Table 2. Decreasing the number

of features slightly reduced their accuracy of prediction, to 63%.

In our experiments we aim to increase predictive power without compromising on com-

putation time of the feature extraction. In addition to the graph topological features, we

considered twelve new features which mostly do not require graph construction – these are

listed in the second column of Table 2. The bar chart in Figure 2 shows the average compu-

tational time (in nanoseconds) required when using each topological feature. As the figure

shows, the new topological features are computationally inexpensive. In order to identify

which of the properties are most important for our purposes, we conducted feature selection

analysis with the feature importance algorithm of Extremely randomized trees (44–47 ). The

data points on the line graph in Figure 2 show the ‘percentage importance’ of each feature.

The results show that graph theoretical features like reciprocity, weakly connected compo-

nents, biconnected components and articulation points are computationally expensive but
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Table 2: Topological features of models.

Graph Features used by Sanassy
et al. (19 )

New Features (reported here)

Number of Vertices Number of non-constant species
(regular species whose populations can
change, e.g. catalysts cannot be in this
category.)

Number of Edges (Species * Reactions)
(number of species multiplied by number
of reactions)

Density of Graph Update values
(min/mean/max and total number of
variable changes when reactions trigger)

Degrees
(min/mean/max of incoming, outgoing
and all edges)

Sum of the Degrees
(total number of incoming, outgoing and
all edges, for each graph)

Weakly connected components
Articulation points
Biconnected Components
Reciprocity of Graph

Key. The term “update values” refers to the number of species whose populations change when a reaction triggers. For

example, if the reaction "2A+ 3B → C" triggers, the number of variables updated is 3, namely A, B and C.

actually contribute less to predictive power than the computationally less expensive features.

Hence, we removed these relatively expensive features, and the final properties set used in

our work consists only of computational inexpensive features.

Figure 2: Average computational time and feature importance associated with various topo-
logical properties of models.

We performed a sanity check to show the proposed features are important for the pre-

diction and the expensive features are not contributing much to the prediction, by repeating
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the experiments reported by Sanassy et al. (19 ), but using three different feature groups.

The first group consists of the 32 features proposed by Sanassy et al., the second group

added in the 12 new features we proposed (44 features in total), and the third group is the

same as the second group but excludes the computationally expensive graph-theoretic fea-

tures (reciprocity, weakly connected components, biconnected components and articulation

points)—this third group consists of 36 features. Each of the feature groups of 380 models

were submitted to a linear SVC classifier for predicting the fastest Stochastic Simulation

Algorithm among nine algorithms. The prediction accuracies of 10-fold cross-validation for

each group are shown in Table 3. Using the features of group 2 achieved the highest pre-

diction accuracy (69.7%), but as we already stated these group includes some relatively

computationally expensive properties; on removing these (group 3), the prediction accuracy

dropped just 1% relative to group 2, but the feature computation time was considerably re-

duced. Therefore, to make the automated prediction for large system tractable, we used the

features of group 3 for the rest of experiments reported in this study. The identified feature

group is provided to the machine learning algorithms which is explained in later sections.

Table 3: Accuracies of the three different topological feature groups for predicting SSAs.

Group 1 Group 2 Group 3
Accuracy 63% 69.7% 68.6%

Key. Please note that the results shown here are the fastest Stochastic Simulation Algorithm predictions, the fastest

Statistical Model Checking tool predictions are reported in Section 3.5.

3.2 Performance Benchmarking of SMC Tools

In our previous study (5 ), we benchmarked the performance of five SMC tools for verifica-

tion of 465 models against 5 patterns. Typically, increasing the sample size provides more

reliable predictions with machine learning algorithms. Therefore, we increased the number of

analysed biological models to include all of the up-to-date stochastic SBML formatted mod-

els available in the BioModels Database (39 ). Eventually, we tested each of the five tools
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against the 675 models in SBML format. Each tool/model pair was tested against the 11

property patterns. We developed a tool for translating the SBML models and pattern-based

properties according to each SMC’s specification requirements. For each test the number of

simulation traces was set to 500, and the number of steps for each trace was set to 5000.

Each test was repeated three times and their average time is considered. The elapsed

time for each run includes the time required for model parsing, simulation and verification

times, and where one tool depends on the use of another then the execution time of the

external tool is included in the total execution time. In particular, the total times reported

for MRMC and MC2 are not their execution times only, but also include the time consumed

for generating the transition matrices and simulation traces, using PRISM and Gillespie2,

respectively. In addition, when the external tool failed to produce the required inputs for

the SMC tool, then we consider that the model cannot be verified by the SMC in question.

In order to keep the experiment tractable, we set the upper limit for execution time to one

hour, so if a tool fails to verify the model within the time limit, we say the model cannot be

verified by the tool.

Table 4: The number of models verified with different property patterns by each SMC tool.

PRISM PLASMA-Lab Ymer MRMC MC2
PATTERNS Verified Fastest Verified Fastest Verified Fastest Verified Fastest Verified Fastest
Eventually 364 18 675 248 644 402 116 3 668 4
Always 480 80 675 132 644 457 118 2 668 4
Follows N/A N/A 675 575 N/A N/A 116 39 664 61
Precedes 672 170 675 18 644 486 113 0 664 1
Never 542 103 675 147 644 422 116 1 668 2
Steady
State N/A N/A 675 579 N/A N/A 80 30 668 66

Until 592 125 675 82 644 465 112 0 664 3
Infinitely
Often N/A N/A 675 604 N/A N/A N/A N/A 668 71

Next 658 581 675 17 N/A N/A 118 36 675 41
Release 622 151 675 49 644 472 111 0 664 3
Weak
Until 591 126 675 82 644 465 112 0 664 2

Key. “Verified” columns represent the number of models could be verified by each tool, and “Fastest” columns show the

number of models for which the corresponding tool verified them as the fastest tool. The patterns which are not supported by

corresponding tools are marked as Not Applicable (N/A).

Table 4 summarises the experiment results. The “verified” column for each tool shows the
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number of models that could be verified by the corresponding tool against each property pat-

tern. PLASMA-Lab could verify all models, MC2 could verify most models for all property

patterns, except for Precedes, which PRISM could verify more often than MC2. MC2 failed

to verify only a few models within the available time. Ymer also could verify most of the

models, but couldn’t handle and repeatedly crashed for 31 large models. PRISM’s capacity

for verification depends on the pattern type, for example, it could verify only 364 models

against the Eventually pattern but it could verify almost all models, 672, for the Precedes

pattern. We believe that PRISM fails because in order to have a reliable approximation, it

requires a greater simulation depth for unbounded property verification. MRMC could verify

fewer models than the other SMCs for all property patterns, because it relies on PRISM for

transition matrix generation. However, for medium sized and large models PRISM failed to

build and export the transition matrices – we believe this was due to a CU Decision Diagram

(CUDD) library crash.

The “Fastest” columns in Table 4 show the number of models for which the corresponding

tool verified them as the fastest tool. In addition, Figure 5 illustrates the relationship between

fastest tool and model size. Ymer could verify most of the models fastest (for the supported

property patterns), however, as Figure 5 shows, it was generally fastest for relatively small

sized models. PRISM and PLASMA-Lab are generally fastest for medium to large sized

models. The number of models verified fastest by PRISM and PLASMA-Lab dramatically

change based on the verified property pattern. MRMC and MC2 are the fastest tools for

fewer models and they perform best only for small sized models. They do slightly better for

the Follows, Steady State and Infinitely Often patterns where they compete with fewer tools.
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Figure 3: Performance comparison of each tool against the best performance for verification
of property patterns. Cont.
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Figure 4: Performance comparison of each tool against the best performance for verification
of property patterns.

Key. For Figure 3 and Figure 4, the property patterns are shown on each panel, X-axes represent the model size

(species*reactions) on logarithmic scale (log2), and Y-axes are the SMC tools compared with the fastest tool. Z-axes is the

logarithmic scale (log10) of consumed time in nanoseconds.

Figure 3 and Figure 4 provide complementary information to Table 4 and Figure 5. They

illustrate the verification time of each tool, alongside with the fastest option, against the

model size. MC2 and MRMC support most of the patterns, however, their verification time

is generally higher than the other tools. Especially, MRMC can verify a few small models

and for the larger models, its verification time increases exponentially. The verification time

of Ymer roughly increases linearly. Hence, for the small sized models, the verification time

is short and it steadily increases when the model size increases. Consequently, Ymer usually

performs better for small sized models. For the Follows, Stead-State and Infinitely-Often

patterns, PLASMA-Lab verification time displays approximately an exponential growth, but

it is still the fastest one as it competes only either with MC2 or both MRMC and MC2.
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PLASMA-Lab has a similar verification time curve for the Next pattern too. However, here

it also competes with PRISM, and PRISM mostly presents a better performance for the

Next pattern. PRISM performances for the verification of different model sizes are usually

close to each other. Therefore, like PLASMA-Lab PRISM also is not the fastest option for

small sized models, and it is often better for the larger models.

Figure 5: Fastest SMC tools for verifying each model against each property pattern.
Key. X-axis represents logarithmic scale of model size and Y-axis shows the property patterns. For each model (log-of-size

shown on the X-axis) a one-unit vertical line is drawn against each pattern (shown on the Y-axis), where the line’s colour

shows the fastest SMC. The distribution of the fastest tools are shown in Figure 6.

The results show that the performance of tools significantly changes based on models and

property patterns, which makes it extremely difficult to know which tool is best without the

assistance of an automated system.

3.3 Automating SMC Tool Prediction

A machine learning algorithm (aka ‘learner ’, ‘classifier ’) receives a set of samples where

each sample consists of an ordered pair of a vector of features, called input (or independent

variables), and a variable, called output (or target variable or dependent variable). It starts
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with some initial parameters, and it learns by optimising its parameters based on the samples

(48 ), this is called training the algorithm. A learned, i.e. trained, algorithm is basically a

function, f , that maps an input to a target variable. After having the function, f , it can be

used for getting the output variables of some new inputs, this process is called prediction.

In our study, the machine learning algorithms used a set of 675 samples, which have the

model features (identified in the ‘Feature Selection’ section) as inputs, and the fastest SMC

(identified in the ‘Performance Benchmarking of SMC Tools’ section) as the target variables.

We used 5 machine learning techniques and 2 random selection algorithms (49 ) for pre-

dicting the fastest SMC tool. The random selection algorithms, referred to here as Random

Dummy (RD) and Stratified Dummy (SD), were used for comparing the success rate of each

algorithm with random prediction. The RD classifier ‘guesses’ the SMC tools blindly, that is,

with probability 1/5 picks one of the 5 verification tools at random., whereas the SD classifier

knows the distribution of the fastest SMC tools that is shown in Figure 6, as it is inferred

from Table 4. The RD classifier acts as a proxy for the behaviour of the researchers who do

not know much about model checking tools, while SD can be considered as mirroring the

behaviour of experienced verification researchers who know the patterns supported by each

tool and fastest tools distribution but do not know which tool is best for a specific property

to be checked on a specific model. The remaining five methods are; a support vector clas-

sifier (SVM) (50 ), logistic regression(LR) (51 ), a nearest neighbour classifier (KNN) (52 )

and two types of ensemble method, namely, Extremely Randomized Trees (ERT) (44 ) and

Random Forests(RF) (53 ) (despite their name these are not random classifiers but ensemble

classifiers). We used the scikit-learn library (54 , 55 ) implementation of these classifiers in

our experiments.

We considered three different accuracy scores in our experiments. The first score, ‘S1 ’,

is the regular accuracy score with 10-fold cross-validation. Accuracy is the percentage of

correct estimation of the fastest SMC tool over the sample size (the ratio of true positive

prediction over the sample size). 10-fold cross-validation consists of 10 consecutive rounds.
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Initially, all data is divided into 10 blocks, and 9 blocks are used for training the machine

learning algorithm, and one block is used for testing the accuracy of the algorithm that is

trained over the 9 blocks. Then the testing data is put back to the data set. In the successive

rounds, another block is used as the testing data, and the rest 9 of the blocks are used for

training. This procedure is repeated until every block used exactly one time for testing.

The average accuracy of all rounds is regarded as the final accuracy of the machine learning

algorithm.

The second score, ‘S2’, is calculated by putting a threshold bound for considering a

prediction to be correct, namely, in this case if the time difference of the actual fastest SMC

tool and the predicted SMC tool is not more than 10% of the actual fastest SMC tool time,

then we regard the prediction as correct. In the third score, ‘S3’, instead of time difference,

we set the threshold as the order of the fastest SMC tool. That is, if the predicted SMC tool

is the second fastest tool, then we regard it as the correct prediction.

The experiment results with the first score of each classifier for different property patterns

are shown in Figure 7 and their accuracy values are tabulated in Table 5. The success rates

of all classifiers were higher than the random classifiers. ERT was the most frequent winner,

as it had best prediction accuracy for 6 patterns (for Infinitely Often, ERT and LR both

have highest accuracy, 95%), whereas the SVM classifier was the second best winner with

highest prediction accuracy for 5 patterns, ERT and SVM are here after referred to as the

best classifiers. The accuracies of prediction of the best classifiers were over 90% percent

for all pattern types. We also want to show whether predicting different property patterns

with the same classifier is statistically significant. Therefore, we measured the P-values of

each classifiers across different property patterns, by comparing the accuracy scores of cross-

validation of each classifiers with the Friedman test (56 ) of Python SciPy library (57 ), which

are shown in the last column of Table 5. The result clearly shows same classifier for different

patterns are statistically significant, therefore it would not be the best practice to use just

one classifier type for all pattern types. We also measured the P-values of different classifiers
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for predicting same property pattern, which are shown in the last row of the Table 5. The

low P-values also show that different methods are statistically different.

Figure 6: Distribution of fastest SMC tools for different property patterns.
Key. Distribution of the fastest SMC tools used by Stratified Dummy (SD) classifier. Values in boxes show the number of

models were verified by the corresponding SMC as being the fastest tool.

Figure 7: Accuracies with first score for the fastest SMC prediction with different algorithms.

Table 6 shows the experiment results with different score settings. ‘S2’ rows report

the experiments using the second score settings, and ‘S3’ rows report the third score. The

accuracy of S2 experiment settings is not much higher than the first score which regarded only
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Table 5: Accuracy values with first score.

Eventually Always Follows Precedes Never Steady
State Until Infinitely

Often Next Release Weak
Until

P-
value

SVM 92.4% 88.9% 95.0% 95.4% 88.5% 94.2% 91.0% 91.6% 94.3% 94.2% 90.8% 4.10E-08
ERT 92.2% 90.5% 93.6% 97.2% 91.0% 93.2% 92.8% 95.0% 93.5% 93.8% 92.3% 8.76E-06
RF 91.6% 90.1% 93.9% 97.0% 89.8% 92.6% 92.2% 94.7% 92.9% 93.1% 91.7% 3.27E-05
LR 92.0% 85.9% 92.4% 93.5% 85.6% 93.0% 87.8% 95.0% 92.6% 89.8% 88.8% 1.39E-07
KNN 88.8% 84.7% 92.6% 94.4% 85.2% 92.7% 88.0% 93.6% 93.5% 91.3% 87.1% 2.81E-08
SD 47.7% 53.4% 70.5% 63.3% 48.8% 70.7% 54.7% 81.5% 72.9% 58.8% 57.4% 2.70E-15
RD 12.4% 16.3% 29.1% 27.4% 19.1% 29.6% 28.7% 61.2% 36.9% 28.4% 27.3% 6.62E-13
P-

value 1.28E-08 4.63E-09 8.19E-08 4.75E-04 2.58E-03 2.46E-07 2.61E-04 3.10E-08 9.12E-08 2.82E-08 1.13E-07

the actual fastest tool prediction as correct, but the accuracy of S3 is significantly higher,

because it ‘lumps together’ the fastest and second fastest tools, but the time differences

between the second best and the actual best tool can be orders of magnitude, i.e. much

more than 10%. For the Follows, Steady State and Infinitely Often patterns, the accuracies of

SD and RD are relatively better under these more relaxed scores, because there are fewer

tools which support these patterns, hence they have higher chance of correct prediction. The

P-values of ‘S2’ and ‘S3’ scores are low, like ‘S1’, which shows that different classifiers should

be used for different property patterns, namely single classifier cannot be the best for all

pattern types.

Table 6: The prediction accuracy with different score settings.

Eventually Always Follows Precedes Never Steady
State Until Infinitely

Often Next Release Weak
Until

P-
value

SVM S2 94.1% 91.1% 95.7% 96.6% 89.8% 95.3% 91.9% 92.3% 95.4% 95.4% 92.6% 1.1E-07
S3 98.7% 96.4% 99.1% 98.1% 94.4% 99.3% 95.1% 100.0% 97.2% 97.9% 96.7% 4.1E-08

ERT S2 93.7% 92.2% 94.8% 98.1% 92.7% 94.1% 94.3% 95.9% 94.7% 95.3% 93.9% 2.0E-04
S3 98.4% 96.9% 98.5% 99.6% 96.1% 99.0% 97.8% 100.0% 96.6% 97.8% 97.6% 2.0E-06

RF S2 93.4% 91.8% 95.0% 98.7% 91.5% 93.6% 93.6% 95.4% 94.3% 95.4% 93.2% 2.3E-05
S3 99.0% 97.0% 99.3% 99.9% 96.0% 99.1% 97.3% 100.0% 96.3% 97.6% 97.0% 2.3E-08

LR S2 93.8% 88.6% 93.6% 95.1% 87.5% 94.2% 90.0% 95.9% 93.8% 91.9% 90.4% 2.0E-07
S3 99.0% 95.4% 99.1% 97.3% 93.8% 99.7% 95.1% 100.0% 96.1% 95.1% 95.1% 7.3E-10

KNN S2 90.2% 87.5% 93.6% 96.0% 87.7% 93.6% 90.5% 94.5% 94.7% 92.8% 89.6% 7.0E-08
S3 96.7% 94.5% 98.1% 98.7% 93.2% 98.5% 95.4% 100.0% 96.0% 95.1% 94.4% 3.2E-09

SD S2 49.3% 55.7% 70.5% 64.9% 52.3% 71.4% 56.9% 82.4% 78.1% 60.7% 59.4% 2.7E-15
S3 71.7% 71.9% 90.5% 75.0% 72.4% 90.4% 70.8% 100.0% 86.8% 72.4% 74.8% 1.3E-12

RD S2 13.6% 17.3% 30.5% 31.8% 19.7% 30.7% 30.9% 61.5% 38.4% 31.7% 28.9% 1.6E-13
S3 32.9% 35.0% 65.0% 49.5% 39.4% 64.3% 48.0% 99.3% 56.0% 47.6% 47.9% 8.2E-15

P-
value

S2 1.5E-08 2.7E-08 7.4E-08 8.7E-10 9.8E-09 2.2E-07 4.5E-09 2.0E-08 9.3E-08 7.3E-08 5.5E-08
S3 3.6E-09 1.8E-07 4.0E-08 2.6E-09 4.6E-08 5.1E-08 1.2E-08 6.2E-03 3.6E-08 1.6E-08 2.0E-08

Key. S2 and S3 rows represent the scores.
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3.4 Performance Gain and Loss

For our final experiments we assessed the performance gain and loss associated with using

the classifier with the best prediction (either ERT or SVM) versus the random classifiers for

each property pattern. The performance gain is the time saved by using the best classifier

predictions instead of random choices. In this regard, performance gain is the time difference

between the verification time of the tools predicted by the best classifier and the random

classifiers.

Figure 8 shows the total time consumption for verifying all models with the actual fastest

SMC tools, the best classifier predictions, and the random classifiers predictions. When

a classifier predicted a tool which cannot actually verify the model, then we declared its

execution time to be the experimental upper time limit, namely 1 hour. The time difference

(the performance gain) between the best classifiers and the SD classifier is: minimum 63

with Infinitely Often pattern, maximum 3002 with Always pattern, and average 1848 minutes

for all patterns. The time difference between the best classifiers and RD is even larger: min

528, max 12506 and average 6109 minutes for all patterns. The results show that by using

the best classifier predictions allows a significant amount of time can be saved – up to 208

hours!

Figure 8: Total time consumed for verifying all models.
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Generally, the outcomes of mispredictions can be as important as the correct predictions.

In this regard, we measured the performance loss caused by each inaccurate prediction with

the best classifiers and the random classifiers. Figure 9 shows the time difference between

the actual best SMC tools and the predicted SMC tools of inaccurate predictions. The

minimum performance loss of the best classifier is min 0.3 minutes with Precedes, max 885

with Next, and average 318 minutes for all patterns. Similarly, the performance loss for SD:

min 67, max 3662 and average 2167 minutes; for RD: min 532, max 12567, and average 6427

minutes. As the results suggest the performance losses of the best classifiers are always less

than the random classifiers’ loss. More specifically SD and RD causes performance loss 7,

and 20 times, respectively, more than the best classifiers.

Figure 9: The mean of performance loss when the best classifiers mispredicts.

3.5 SMC Predictor Tool

We developed a software utility tool, SMC Predictor, which accepts an SMBL model and a

property pattern file as input. The property pattern file can include more than one pattern

queries. SMC predictor returns the fastest SMC tool prediction for each pattern. The tool

architecture and work-flow is show in Figure 10 . The tool modifies the received input model
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to focus on model feature analysis. This is done by fixing the stochastic rate constant and

the number of species to 1 and 100, respectively, and removing multiple compartments. The

modified model is passed to the Model Topology Analysis component which extracts the

graph features of species and reactions graphs, such as edges, degrees, and the non-graph

features, such as number of updates (see Section “Feature Selection”). The model features

together with property pattern are delivered to the Predictor component. The Predictor

component initializes the best classifier based on the property pattern, and conveys the

model features to the classifiers to predict the fastest SMC tool, then returns the prediction

result to the user. The grammar of property patterns, experimental data, the tool, its usage

and requirements, and some exemplary models are available at www.smcpredictor.com.

Figure 10: SMC predictor architecture and work-flow.

4 Conclusion

In this paper, we have proposed and implemented a methodology to automatically predict

the most efficient SMC tool for any given model and property pattern. We have proposed a

set of model features which can be used for SMC prediction, reduce the computation time
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required, and increase the prediction accuracy. In this paper, we have also extended our

previous work (5 ) on performance benchmarking by verifying 675 biological models against

11 property patterns. In addition, in order to match the fastest SMC tool to a given model,

we have proposed a new set of model features. We have demonstrated that the proposed

features are computationally cheap and important for the predictive accuracy. Using several

machine learning algorithms we could successfully predict the fastest SMC tool with over

90% accuracy for all pattern types. Finally, we have demonstrated that by using automated

prediction, users can save a significant amount of time. For the next stage of our work,

we are aiming to integrate the automated fastest SMC prediction process into some of the

larger biological model analysis suites, for example kPWorkbench (14 ) and Infobiotics

Workbench (17 ).
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Chapter 8

Achievements, Limitations and

Future Research

8.1 Achievements

At the beginning of this thesis, we set out our main aim: to simplify the model checking

process for researchers in biological systems modelling.

Our initial objective was to investigate the use of exact model checking for verifying

biological models; a key part of this approach was the development of a software component

that can map a high-level modelling language to an exact model checker language (see

Section 4.1.1.1). It became apparent, however, that exact model checking is unable to

cope with the demands of larger models.

We accordingly shifted focus to look at statistical model checkers, since these are well

known to be more capable of dealing with large models. However, even here there were

shortcomings since different tools had different performance characteristics and it was not

possible to know with any certainty which SMC would be best for each combination of

model and query. This informed our second objective: to develop a system which can

predict, for the verification of any given model and property combination, which SMC is

the fastest choice.

162



We believe we have achieved our aim and objectives, albeit with caveats (discussed

below).

8.1.1 Objective 1: Summary of Progress

In the initial stage of this research, we investigated exact model checking for analysis of

biological models. We noted that kPWorkbench facilitates modelling and analysis by pro-

viding a high-level language for modelling (kP-Lingua), and enables analysis with both

simulation and model checking options (see Section 4.1.1). The original model check-

ing component supports verification using the Spin model checker, by accommodating a

translator from kP-Lingua specifications to the Spin language, Promela. However, two

insufficiencies arise from this reliance on Spin. First, as Spin explicitly builds the entire

state space and searches it in an exhaustive brute force manner, it can only verify very

small biological models. This means the Spin translator component of kPWorkbench is

forced to add an upper bound on the generation of computation steps so as to limit the

size of the associated state space. This is a fundamental problem, because this restriction

means we can no longer have the full confidence we would normally expect from using the

model checking technique. Second, Spin supports only LTL for property specification.

To address these Spin-based shortcomings, we decided to employ the NuSMV model

checker [79]. Because NuSMV is a symbolic model checker, it does not construct individual

states explicitly. Instead, it symbolically represents states in the form of tree structures,

which allows representation of larger state spaces in a compressed form [64]. Additionally,

it supports both LTL and CTL for property specification. We accordingly developed

a software component which can translate models specified in kP-Lingua into NuSMV

specification language. The main challenges faced and the details of the translation system

are explained in Sections 1.3.1 and 4.1.1.1. Our NuSMV translator is now the largest

component of kPWorkbench as measured in lines of code, and it has successfully been

used to verify several models from various different fields, including both biology and

engineering; see, e.g., [9, 51, 53, 54, 74].
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We believe that by implementing the NuSMV translator we have achieved our initial

objective; nonetheless, our translator has some limitations – these are discussed in Sections

4.1.1.1 and 8.2.1. To aid dissemination of our work, we also built and continue to maintain

a website for kPWorkbench (www.kpworkbench.org) which internally accommodates the

latest version of the NuSMV translator. The website also includes several case studies

which are modelled in kP-Lingua and their translated NuSMV models.

8.1.2 Objective 2: Summary of Progress

Using the NuSMV translator allows users to verify somewhat larger models (in comparison

with the Spin translator). But like all exact model checkers, NuSMV still faced increasingly

severe state space limitations as the analysed models grew larger. We accordingly shifted

focus to look at statistical model checkers, since these are well known to be more capable

of dealing with large models because they consider only a fraction of execution paths

and perform model checking through approximation using statistical (e.g., Monte Carlo)

methods [12]. The reduced number of paths considered makes the verification of much

larger models possible at lower computational cost while trading only a small amount of

uncertainty. Thus, SMC blends simulation and model checking by harnessing the speed of

simulation and the comprehensive analytical features of model checking.

The encompassing qualities of statistical model checking have led researchers to im-

plement several SMC tools. While this availability of multiple SMC tools provides more

flexibility and control to the users, it is associated with a lack of clarity as to which of

the tools is best for verification of any particular model and property query. The task of

identifying the best SMC tool for a given situation requires a significant degree of verifica-

tion experience, because each tool has different requirements, capabilities, and performance

characteristics. Thus, identification of the best SMC tool becomes an arduous, error-prone,

and time-consuming process. Therefore, it is desirable to have another processing layer

which can automatically identify the best SMC tool for a given model and property query.

Before attempting to automatically identify the fastest SMC tool for verification of a
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given model and property pattern by utilising machine learning algorithms, we checked

whether there is a simpler way of achieving good results. We surveyed five popular SMC

tools by comparing their modelling languages, external dependencies, expressibility of spec-

ification languages, and performances against verification of 475 biological models and five

property patterns (see Chapter 6). Our intention was to see if we could identify the fastest

model checker by considering only a very few features, i.e. model size and property pattern,

so that users could decide which SMC would be the fastest option without needing to use

third-party tools. We believe this to be the first attempt to categorise the performance of

SMC tools based on property patterns. The experimental results showed that there are

cases where we can easily identify the fastest model checker just by looking at the model

size and the property pattern—for example, when the model size is either very small or

large. However, there are cases where the fastest tool cannot be determined by examining

just these two parameters alone. Detailed performance comparisons are provided in Chap-

ter 6 Table 4, Figure [2-6]. These experimental results showed that to identify the fastest

SMC prior to model verification, a more extensive feature-set investigation is required.

However, this means it is no longer feasible to manually identify the fastest SMC, or to

easily formulate the relationship between the features and the fastest SMC.

When the number of the features is high, machine learning algorithms typically offer a

suitable solution—sometimes the only solution (see Section 4.2)—because they can gradu-

ally learn how to transform inputs to outputs, just by analysing the data. For fastest SMC

prediction, the verification result of each model becomes a sample for the machine learning

algorithm to learn from, where each sample consists of the model features (as the inputs)

and the fastest model checker (as output). These algorithms usually give better results if

more data is provided, so we extended the previous performance benchmarking experiment

to include more biological models (675) and property patterns (11) (see Chapter 7). More

importantly, however, when the identified features are well correlated with the outputs, we

are more likely to get better results. Therefore, identifying relevant features is the crucial

factor for getting good prediction results. In our paper [12], we identified 12 new model

features for predicting the fastest SMC tool for verification of biological models.
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To predict the fastest SMC tool for each situation, we provided the performance results

and the identified model features to five machine learning algorithms that were selected for

their known suitability as classifiers (see Section 4.2). The experimental details and the

results are reported in Section 7. The results showed that Extremely Randomized Trees

[50] were the best classifier for six property patterns, and Support Vector Machines [33]

were best for the other five. Our resulting system could successfully predict the fastest

SMC tool for each property pattern with over 90% accuracy, and using our approach also

saves users a significant amount of time—up to 208 hours in the experiments we considered!

Finally, we developed a standalone application, SMC Predictor, for automating the

prediction of the fastest SMC tools for a given model and property query, and developed

a dedicated website for SMC predictors www.smcpredictor.com. Installation details, a

tutorial, and all experimental data (e.g. biological models, performance results, model

features) are available on the website. The predictor’s source code is fully to the public,

at www.github.com/meminbakir/smcp.

This shows, we believe, that we have clearly accomplished our second objective, and

hence also (subject to certain caveats discussed in the next section) that we have essentially

achieved our overall aim.

8.2 Limitations

8.2.1 NuSMV translator

Our NuSMV translator translates kP systems models written in kP-Lingua to NuSMV

modelling language specifications (see section 1.3.1, chapter 5 and [53]). However, some

of the rules of kP systems—membrane division and dissolution, link creation and destruc-

tion rules [53, 74]—can dynamically change the structure of the model, and finding an

appropriate translation from such a complex modelling formalism to the model checkers’

specifications is very challenging. The model checking technique is prone to state explosion

problems, which generally forces us to use bounded variables. Additionally, NuSMV has
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limited support for non-determinism rule execution and array structures. These constraints

restricted us to implement a complete translation from kP systems model to NuSMV spec-

ifications. Regarding the structure changing rules, the current implementation of NuSMV

translator supports membrane dissolution, but only partially supports membrane division,

and it does not support the link creation and destruction rules. The membrane division

rule is supported only for kP systems models which should always reach the same final

compartment and content set. That is, regardless of the execution order, the systems

should always end with the same set of compartments and contents. Even models which

fulfil this constraint may require many intermediary variables, but since the final state of

the systems is always going to be same, these variables would become an extra burden

for the state space. Therefore, computing the final set outside of the model checker state

space would reduce the complexity of the problem and could potentially help us to save

some time and memory. We used the C# programming language to externally execute the

membrane division rules and obtain the final compartments and contents set. Only the

final set is translated to the NuSMV modelling language for further investigation.

8.2.2 SMC prediction

In our research, we used only curated SBML formatted biological models from the BioMod-

els database [43]. In order to focus on the model structure analysis, we have fixed the

stochastic rate constants of the reactions to 1.0, and we set the initial population of each

species to 50. We also set the upper bound of species to 100, because generally, the model

checkers require us to use only bounded variables.

We used 11 of the most-widely used property patterns in our proof-of-concept method-

ology experiment settings. Although the selected patterns are carefully selected, and they

are the most popular patterns, nonetheless the list is not exhaustive. Additionally, we did

not allow the union of patterns, as the different combinations could result in very long and

complicated queries that would make our experiments intractable.
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8.3 Future research directions

Parallelising graph feature analysis: The current implementation of the SMC predic-

tor uses a single thread for feature extraction. It is possible to accelerate the process further

by concurrently building the graphs and calculating their properties. The construction of

species and reaction graphs are independent, which can be parallelised. The calculation of

some of the features also can be parallelised, but not all of them. For example, the node

degrees and graph density features can be calculated in parallel. However, both tasks need

to wait for the edge number calculation to be completed first.

SMC prediction as a service: The SMC predictor is implemented as a standalone

application. As the next step, it can be converted to a web service. This feature will

enable larger model analysis platforms, e.g. kPWorkbench and Infobiotics Workbench, to

easily integrate the SMC predictor into their ecosystem, with a cost of internet dependency

and the relevant issues, such as connection speed.

Different domains: Model checking has successfully been applied to various fields, e.g.

computer and software systems. Our methodology can be adapted to different systems.

For a different domain, researchers would need to develop/employ a high-level modelling

language which will be translated to the candidate model checkers’ input language. Using

the same high-level modelling language will enable extracting the same model features for

all candidate model checkers which should be used as input for machine learning algorithms.

For example, we employed SBML, as the high-level modelling language. Then, they should

identify the most relevant property patterns for the target domain, or they can use the

patterns we assembled. For property patterns, also, a high-level property language which

can abstract the target model checkers’ property languages should be employed. After

performance benchmarking of the tools against different property patterns, they should

try to identify the determining features which can affect the performance at most. We

advise them to experiment with both graph and non-graph related properties. Finally,

they can deliver the identified features to more than one machine learning algorithm for
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analysing their predictive power.

This approach allows users to try as many model checkers as they want, however, for

different systems they will need to develop/employ a custom high-level modelling language.

On the other hand, researchers may consider only a subset of model checkers which supports

the same modelling language. For the same reason as using a high-level language, namely

having the same modelling language will allow extracting the same model features for

different model checker tools. In such a case, they can analyse the topological properties

of the tools? modelling language, e.g. the number of variables and rules, for performance

prediction. Although this approach can accommodate a smaller set of model checker tools,

we believe, it can outline more generalised performance characteristics of the tools.
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Appendix A

A Model Translated using the

NuSMV Translator

The following NuSMV model has been obtained using the NuSMV translator; its corre-
sponding kP-Lingua model is provided in Example 2 on page 31. Space limitations only
allow us to include a fragment of the model here. The complete translated model, alongside
the kP-Lingua model, is available online at www.github.com/meminbakir/kernelP-store.

1 MODULE m1_C1 (p_a , p_b , _sync )

2 VAR

3 _status : {_ACTIVE ,_willDISSOLVE ,_DISSOLVED };

4 _turn : {_CHO0 ,_ARB1 ,_MAX2 ,_SEQ3 ,_READY };

5 _count : 0 .. 3;

6 _connC2 : {to_m2 ,to_m3};

7 _cho0 : 0 .. 2;

8 _arb1 : 0 .. 3;

9 _rand : 0 .. 3;

10 _arb1_guard1 : boolean;

11 _arb1_guard2 : boolean;

12 _arb1_guard3 : boolean;

13 _max2 : 0 .. 3;

14 _max2_guard1 : boolean;

15 _max2_guard2 : boolean;

16 _max2_guard3 : boolean;

17 _seq3 : 0 .. 2;

18 a : 0 .. 5;

19 a_cp : 0 .. 5;

20 a_m2 : 0 .. 5;
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21 a_m3 : 0 .. 5;

22 b : 0 .. 3;

23 b_cp : 0 .. 3;

24 c : 0 .. 2;

25 c_cp : 0 .. 2;

26

27 INVAR case

28 ((_turn = _CHO0) & (((b > 2) & (b >= 2)) |

29 (b >= 1))) : _cho0 != 0;

30 TRUE : _cho0 = 0;

31 esac;

32 INVAR case

33 (_turn = _ARB1) : case

34 (_count = 1) : case

35 (((b >= 1) |

36 ((a >= 1) & (b >= 1))) |

37 (c >= 1)) : _arb1 != 0;

38 TRUE : _arb1 = 0;

39 esac;

40 (_count <= _rand) : case

41 ((( _arb1_guard1 & (b >= 1)) |

42 (_arb1_guard2 & ((a >= 1) & (b >= 1)))) |

43 (_arb1_guard3 & (c >= 1))) : _arb1 != 0;

44 TRUE : _arb1 = 0;

45 esac;

46 TRUE : _arb1 = 0;

47 esac;

48 TRUE : _arb1 = 0;

49 esac;

50 INVAR case

51 (_turn = _MAX2) : case

52 (_count = 0) : case

53 (((b >= 1) |

54 ((a >= 1) & (b >= 1))) |

55 (c >= 1)) : _max2 != 0;

56 TRUE : _max2 = 0;

57 esac;

58 (_count = 1) : case

59 ((( _max2_guard1 & (b >= 1)) |

60 (_max2_guard2 & ((a >= 1) & (b >= 1)))) |

61 (_max2_guard3 & (c >= 1))) : _max2 != 0;

62 TRUE : _max2 = 0;

63 esac;
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64 TRUE : _max2 = 0;

65 esac;

66 TRUE : _max2 = 0;

67 esac;

68

69 ASSIGN

70 init (_status) := _ACTIVE;

71 init (_turn) := _READY;

72 init (_count) := 0;

73 _cho0 := case

74 (_turn = _CHO0) : case

75 ((b > 2) & (b >= 2)) : 1;

76 TRUE : 0;

77 esac union case

78 (b >= 1) : 2;

79 TRUE : 0;

80 esac;

81 TRUE : 0;

82 esac;

83 _arb1 := case

84 (_turn = _ARB1) : case

85 (_count = 1) : case

86 (b >= 1) : 1;

87 TRUE : 0;

88 esac union case

89 ((a >= 1) & (b >= 1)) : 2;

90 TRUE : 0;

91 esac union case

92 (c >= 1) : 3;

93 TRUE : 0;

94 esac;

95 (_count <= _rand) : case

96 (_arb1_guard1 & (b >= 1)) : 1;

97 TRUE : 0;

98 esac union case

99 (_arb1_guard2 & ((a >= 1) & (b >= 1))) : 2;

100 TRUE : 0;

101 esac union case

102 (_arb1_guard3 & (c >= 1)) : 3;

103 TRUE : 0;

104 esac;

105 TRUE : 0;

106 esac;
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107 TRUE : 0;

108 esac;

109 init (_rand) := 0;

110 init (_arb1_guard1) := FALSE;

111 init (_arb1_guard2) := FALSE;

112 init (_arb1_guard3) := FALSE;

113 _max2 := case

114 (_turn = _MAX2) : case

115 (_count = 0) : case

116 (b >= 1) : 1;

117 TRUE : 0;

118 esac union case

119 ((a >= 1) & (b >= 1)) : 2;

120 TRUE : 0;

121 esac union case

122 (c >= 1) : 3;

123 TRUE : 0;

124 esac;

125 (_count = 1) : case

126 (_max2_guard1 & (b >= 1)) : 1;

127 TRUE : 0;

128 esac union case

129 (_max2_guard2 & ((a >= 1) & (b >= 1))) : 2;

130 TRUE : 0;

131 esac union case

132 (_max2_guard3 & (c >= 1)) : 3;

133 TRUE : 0;

134 esac;

135 TRUE : 0;

136 esac;

137 TRUE : 0;

138 esac;

139 init (_max2_guard1) := FALSE;

140 init (_max2_guard2) := FALSE;

141 init (_max2_guard3) := FALSE;

142 _seq3 := case

143 (_turn = _SEQ3) : case

144 (( _count = 1) & (a >= 1)) : 1;

145 (( _count = 2) & ((a = 3) & (c >= 2))) : 2;

146 TRUE : 0;

147 esac;

148 TRUE : 0;

149 esac;
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150 init (a) := p_a;

151 init (a_cp) := 0;

152 init (a_m2) := 0;

153 init (a_m3) := 0;

154 init (b) := p_b;

155 init (b_cp) := 0;

156 init (c) := 0;

157 init (c_cp) := 0;

158

159 next (_status) := case

160 (( _status = _willDISSOLVE) & (_sync = _BUSY)) : _willDISSOLVE;

161 (( _status = _willDISSOLVE) & (_sync = _EXCH)) : _DISSOLVED;

162 ((_seq3 = 2) & ((a = 3) & (c >= 2))) : _willDISSOLVE;

163 TRUE : _status;

164 esac;

165

166 next (_turn) := case

167 (( _status = _ACTIVE) & (_turn = _READY)) : case

168 (_sync = _BUSY) : _READY;

169 (_sync = _EXCH) : _CHO0;

170 TRUE : _turn;

171 esac;

172 (_turn = _CHO0) : _ARB1;

173 (_turn = _ARB1) : case

174 (( _count < _rand) & (_arb1 != 0)) : _ARB1;

175 TRUE : _MAX2;

176 esac;

177 (_turn = _MAX2) : case

178 (_max2 != 0) : _MAX2;

179 TRUE : _SEQ3;

180 esac;

181 (_turn = _SEQ3) : case

182 (_seq3 != 0) : _SEQ3;

183 TRUE : _READY;

184 esac;

185 (( _status = _DISSOLVED)) : _READY;

186 TRUE : _turn;

187 esac;

188 ... //Variables , rules and modules are removed for brevity

189 next (_max2_guard1) := case

190 ((_turn = _MAX2) & ((_max2 != 0) & (_count = 0))) : TRUE;

191 (((( _status = _ACTIVE) | (( _status = _willDISSOLVE))) & (next(_turn) = _MAX2)) & (

_max2 != 0)) : _max2_guard1;
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192 TRUE : FALSE;

193 esac;

194 ... //Variables , rules and modules are removed for brevity

195 next (a) := case

196 ((( _turn = _ARB1) & (_arb1 = 2)) & (((a - 1 >= 0) & (a - 1 <= 5)) & ((a >= 1) & (b

>= 1)))) : a - 1;

197 ((( _turn = _MAX2) & (_max2 = 2)) & (((a - 1 >= 0) & (a - 1 <= 5)) & ((a >= 1) & (b

>= 1)))) : a - 1;

198 ((( _turn = _SEQ3) & (_seq3 = 1)) & (((a - 1 >= 0) & (a - 1 <= 5)) & (a >= 1))) : a

- 1;

199 ((( _status = _ACTIVE) & (_sync = _EXCH)) & ((a + a_cp >= 0) & (a + a_cp <= 5))) :

a + a_cp;

200 ((( _status = _willDISSOLVE)) & (_sync = _EXCH)) : 0;

201 (( _status = _DISSOLVED)) : 0;

202 TRUE : a;

203 esac;

204 next (a_cp) := case

205 ((( _turn = _ARB1) & (_arb1 = 3)) & ((( a_cp + 1 >= 0) & (a_cp + 1 <= 5)) & (c >= 1)

)) : a_cp + 1;

206 ((( _turn = _MAX2) & (_max2 = 3)) & ((( a_cp + 1 >= 0) & (a_cp + 1 <= 5)) & (c >= 1)

)) : a_cp + 1;

207 (( _status = _ACTIVE) & (_sync = _EXCH)) : 0;

208 ((( _status = _willDISSOLVE)) & (_sync = _EXCH)) : 0;

209 (( _status = _DISSOLVED)) : 0;

210 TRUE : a_cp;

211 esac;

212 ... //Variables , rules and modules are removed for brevity

213 ----------------------- MAIN -----------------------

214 MODULE main

215 VAR

216 _sync : {_BUSY ,_EXCH};

217 pInS : boolean;

218 m1 : m1_C1(2,1,_sync);

219 m2 : m2_C2(1,_sync);

220 m3 : m3_C2(5,_sync);

221 ASSIGN

222 init (_sync) := _EXCH;

223 init (pInS) := TRUE;

224 next (_sync) := case

225 (((( next(m1._turn) = _READY))

226 & (next(m2._turn) = _READY))

227 & (next(m3._turn) = _READY)) : _EXCH;

228 TRUE : _BUSY;
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229 esac;

230 next (pInS) := case

231 (_sync = _EXCH) : TRUE;

232 TRUE : FALSE;

233 esac;

234 ...// The rest of the model is truncated.

Listing A.1: Code fragments of NuSMV model of Example 2) which is obtained by using

NuSMV translator.
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Appendix B

Instantiation of the property patterns

The following specifications are used for the instantiation of the property patterns. Please

note that for the fastest SMC prediction study the actual instantiation is not very impor-

tant, as we provide the same property instance to all SMC tools and we evaluate their

performance. Therefore, they are tested under the same conditions, as long as the same

property is provided to the SMC tools, it is not important whether a property result is

‘true’ or ‘false’. Each of the following queries is expressed in the Pattern Query Language

(please see http://www.smcpredictor.com/pqGrammar.html). The ‘firstSpecies ‘ and ‘

lastSpecies’ are placeholders represents the first and the last species that appear in the

biological models.

1 with probability >=1 eventually lastSpecies >=50

2 with probability >=1 always lastSpecies >=50

3 with probability >=1 next lastSpecies >=50

4 with probability >=1 never lastSpecies >50

5 with probability >=1 infinitely -often lastSpecies >=50

6 with probability >=1 steady -state lastSpecies >=50

7 with probability >=1 firstSpecies >=50 until lastSpecies >50

8 with probability >=1 firstSpecies >=50 weak -until lastSpecies >50

9 with probability >=1 lastSpecies >=50 release firstSpecies >=50

10 with probability >=1 lastSpecies >=50 follows firstSpecies >=50
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11 with probability >=1 firstSpecies >=50 precedes lastSpecies >=50

Listing B.1: Instantiation of the property patterns
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Mario J. Pérez-Jiménez. Cellular modelling using P systems and process algebra. Progress

in Natural Science, 17:375–383, 2007.

[100] Probabilistic and Symbolic Model Checker (PRISM). http://www.prismmodelchecker.

org/, n.d. [Online; accessed 08/01/15].
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Marian Gheorghe, Christophe Ladroue, and Sara Kalvala. Modelling and stochastic simu-

lation of synthetic biological Boolean gates. In 16th IEEE International Conference on High

Performance Computing and Communications, HPCC ’14, pages 404–408, Paris, France,

2014. IEEE.

[104] Daven Sanassy, Pawe l Widera, and Natalio Krasnogor. Meta-stochastic simulation of bio-

chemical models for systems and synthetic biology. ACS Synthetic Biology, 4(1):39–47,

2015.

[105] Davide Sangiorgi and David Walker. Pi-Calculus: A Theory of Mobile Processes. Cam-

bridge University Press, New York, NY, USA, 2001.

[106] Herbert M. Sauro and Boris N. Kholodenko. Quantitative analysis of signaling networks.

Progress in Biophysics and Molecular Biology, 86(1):5 – 43, 2004. New approaches to

modelling and analysis of biochemical reactions, pathways and networks.

196

http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/


[107] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of black-

box probabilistic systems. In Rajeev Alur and Doron A. Peled, editors, Computer Aided

Verification, pages 202–215, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[108] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model checking of

stochastic systems. In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided

Verification, pages 266–280, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[109] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory

to Algorithms. Cambridge University Press, New York, NY, USA, 2014.

[110] Lucian P. Smith, Frank T. Bergmann, Deepak Chandran, and Herbert M. Sauro. Antimony:

A modular model definition language. Bioinformatics, 2009.

[111] Stephen Smith and Ramon Grima. Breakdown of the reaction-diffusion master equation

with nonelementary rates. Phys. Rev. E, 93:052135, May 2016.

[112] Ian Sommerville. Software Engineering. Addison-Wesley Publishing Company, USA, 9th

edition, 2010.

[113] Spin - Formal Verification. http://spinroot.com/spin/whatispin.html, n.d. [Online;

accessed 18/07/14].

[114] P. Umesh, F. Naveen, Chanchala Uma Maheswara Rao, and Achuthsankar S. Nair. Pro-

gramming languages for synthetic biology. Systems and Synthetic Biology, 4(4):265–269,

2010.

[115] A. Wald. Sequential tests of statistical hypotheses. Ann. Math. Statist., 16(2):117–186, 06

1945.

[116] Mandy L. Wilson, Russell Hertzberg, Laura Adam, and Jean Peccoud. Chapter eight

- a step-by-step introduction to rule-based design of synthetic genetic constructs using

genocad. In Christopher Voigt, editor, Synthetic Biology, Part B Computer Aided Design

and DNA Assembly, volume 498 of Methods in Enzymology, pages 173 – 188. Academic

Press, 2011.

197

http://spinroot.com/spin/whatispin.html


[117] Verena Wolf, Rushil Goel, Maria Mateescu, and Thomas A. Henzinger. Solving the chemical

master equation using sliding windows. BMC Systems Biology, 4(1):42, Apr 2010.

[118] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. statistical proba-

bilistic model checking. International Journal on Software Tools for Technology Transfer

(STTT), 8(3):216–228, 2006.

[119] H. L. S. Younes. Verification and Planning for Stochastic Processes with Asynchronous

Events. PhD thesis, Carnegie Mellon, 2005.

[120] H̊akan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete event

systems using acceptance sampling. In Proceedings of Computer Aided Verification: 14th

International Conference, CAV 2002 Copenhagen, Denmark, July 27–31, pages 223–235.

Springer, Berlin, Heidelberg, 2002.

[121] Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. Dual coordinate descent methods for

logistic regression and maximum entropy models. Mach. Learn., 85(1-2):41–75, October

2011.

198


	Title Page
	Declaration
	Acknowledgments
	Abstract
	Contributions
	I Background to the Research
	Introduction
	General overview
	Motivation and aims
	Contributions
	NuSMV translator
	Comparative analysis of SMC tools
	A set of model features for SMC performance prediction
	SMC performance prediction
	SMC Predictor tool

	Structure of thesis
	Publications used in this thesis
	Publications arising from this research

	Modelling
	P systems
	Kernel P (kP) systems
	Preliminaries
	kP systems definitions
	kP systems rules
	kP systems execution strategies

	kP-Lingua
	Stochastic P systems
	Case Study - Gene expression
	kP Systems (kP-Lingua)
	Stochastic P Systems

	Other formalisms
	Petri nets
	 -calculus
	Mathematical models
	Specification languages


	Analysis
	Model checking
	Temporal logics
	Linear-Time Temporal Logic (LTL)
	Computational Tree Logic (CTL)
	Probabilistic Computation Tree Logic (PCTL)
	Continuous Stochastic Logic (CSL)

	Statistical model checking
	Model checking tools
	Other analysis methods
	Simulation
	Testing


	Automating The Model Checking Process
	Integrated software suites
	kPWorkbench
	Infobiotics Workbench

	Machine learning


	II The Papers
	Modelling and Analysis
	Comparative Analysis of Statistical Model Checking Tools
	Automating Statistical Model Checking Tool Selection

	III Concluding Remarks
	Achievements, Limitations and Future Research
	Achievements
	Objective 1: Summary of Progress
	Objective 2: Summary of Progress

	Limitations
	NuSMV translator
	SMC prediction

	Future research directions


	Appendices
	A Model Translated using the NuSMV Translator
	Instantiation of the property patterns
	Contribution Statements

	References

