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Abstract 

Macrophages are a highly plastic group of cells which polarise into inflammatory or 

anti-inflammatory subtypes. Independent groups define macrophage subtypes 

differently, creating an inherent bias for subset-specific markers in the literature. Of 

additional interest, macrophages express Fc-Receptors and are hence activated by 

immune complexes (ICs); this has implications for these cells in IC-driven conditions 

such as rheumatoid arthritis. The acute myeloid leukemia derived THP-1 cell line 

provides a genetically identical baseline for studying the effects of ICs on macrophage 

phenotypes. However, a lack of consistency between published protocols on how to 

generate macrophages from these cells introduces technical issues. Hence the aims 

here were to identify a panel of macrophage polarisation markers that could be used to 

optimise a THP-1 cell line model, and to use this system to investigate the effects of 

immune complexes on monocyte and macrophage transcriptomes. 

M1 and M2a markers were isolated from publicly available primary macrophage 

datasets. THP-1 cell differentiation was optimised by titrating PMA concentration and 

recovery time. Concentrations of polarising cytokine and duration of cytokine exposure 

were varied to determine ideal polarisation conditions. RNA-seq was performed to 

validate the model and to test the effects of IgG1-HAGG on macrophage polarisation. 

Novel and established M1 and M2 markers were identified from public datasets. These 

transcripts were used to develop a THP-1 macrophage differentiation protocol; 5ng/ml 

PMA for 24h followed by 72h rest in media and subsequent polarisation with 20ng/ml 

IFNγ + 250ng/ml LPS (M1) or 30ng/ml IL-4 (M2a) for 48h. Comparisons of THP-1 

macrophage and MDM datasets suggested that cell line and primary macrophages 

were similar. Changes in gene expression upon IC treatment appeared to be consistent 

for monocytes but not macrophages. IC treated Monocytes appeared to be enriched for 

some immune related genes, and an increase in target genes for specific transcription 

factors was reported; The IRF3 pathway was highlighted here. 

Overall, reliable macrophage polarisation markers have been identified, a THP-1 

macrophage polarisation protocol mimicking primary cells has been developed and 

some interesting pathways have been highlighted in monocytes upon immune complex 

treatment.  

 

 

 



v 
 

Contents 

Aknowledgements. ....................................................................................................... iii 

Abstract.. .................................................................................................................... ..iv 

Abbreviations.. ......................................................................................................... .xviii 

Chapter 1: Literature Review. .................................................................................... .. 1 

 1.1 Mononuclear phagocyte system. .............................................................. ...1  

1.1.1 Origins and diversity.... ................................................................ .2 

1.1.2 Macrophage polarisation: The bipolar model.... ............................. 2 

1.1.5 Macrophage polarisation: The spectral model.. ........................... ..4 

1.1.6 Polarisation subsets: Identification and definitions.. ..................... .5 

1.1.8. in vitro generation of monocyte derived macrophages and 

investigations of subset-specific functions............................................. .6 

1.1.9 Response to tissue damage/inflammation.... ................................ .7 

1.1.11 Roles in wound healing.. ........................................................... ..8 

1.1.12 Roles in disease......................................................................... .8 

1.2 Macrophage cell lines as in vitro model systems... ................................ ....10 

1.2.1 Different cell line models.... ....................................................... ..10 

1.2.2 THP-1 cell features and comparisons with primary cells. ......... ...11 

1.2.3 Differentiation protocols.... ........................................................ ..13 

1.2.4 M2 polarisation and THP-1 cells.... .......................................... ...15 

1.2.5 Myeloid cell differentiation in the presence of immune complex.. .15 

1.3 Fc-gamma Receptors... ............................................................................. 17 

1.3.1 Subtypes and signalling pathways.. ........................................ ....17 

1.3.2 Genetic variants and disease.... ................................................ ..22 

 1.4 Rheumatoid Arthritis....... ....................................................................... ....24 

1.4.1 Pathophysiology....... .................................................................. .24 

1.4.2 Treatments..... ........................................................................... ..27 

1.4.3 Role of immune complexes....... ............................................... ...27 

1.4.4 Fc receptors in RA......... ........................................................... ..28 

1.4.5 Macrophage and other cell involvement.... ............................... ...29 

1.5 Next generation sequencing technology... .............................................. ...30 

1.5.1 RNA-seq...... ............................................................................. ..30 

1.5.2 Practical considerations.... ...................................................... ....30 

1.5.3 Analysis and applications.. ...................................................... ....33 

1.5.4 Comparisons with microarrays.. .............................................. ....35 



vi 
 

1.5.6 Additional technical issues when analysing RNA-seq data........ ..37 

 1.6 Aims and objectives... .............................................................................. .38 

Chapter 2: Analysis of differentially polarised macrophage transcriptomes using 

publicly available datasets. ..................................................................................... ....39 

 2.1 Introduction.. .......................................................................................... ...39 

2.2 Materials and Methods. .......................................................................... ...41 

2.2.1 Marker literature review... ........................................................ ...41 

2.2.2 Identification of suitable datasets. ............................................ ...41 

2.2.3 Analysis of publicaly available RNA-seq data... ......................... ..41 

2.2.4 Refining gene lists for marker identification.. ............................. ..45 

2.2.5 Identification of markers from microarray datasets.. ................ ....46 

2.2.6 Comparison of RNA-seq and microarray gene lists.. ................ ...47 

2.2.7 Tracking changes in subset specific gene expression over different 

time points... ...................................................................................... ..47 

2.3 Results.... ............................................................................................... ...47 

2.3.1 Markers could be identified through literature review.. .............. ..47 

2.3.2 Datasets were identified through searching Array Express.. ..... ..50 

2.3.3 Fold change analysis of RNA-seq data produced a list of potential 

marker genes.. .................................................................................. ...52 

2.3.4 Analysis validated the use of a number of some frequently used 

literature markers.. ............................................................................ ...54 

2.3.5 Potential novel markers were identified through the analysis. .... .54 

2.3.6 Some markers identified through analysis of RNA-seq data were 

validated or eliminated following cross reference with results from 

microarray analysis.. ........................................................................... .59 

2.3.7 Multiple time points of microarray dataset allowed changes of 

potential markers to be tracked over time course.... ........................... ..65 

2.3.8 Final marker panel..... ................................................................ .67 

2.4 Discussion.... ............................................................................................ .69 

Chapter 3: Optimisation of macrophage differentiation and polarisation protocols. .... .71 

 3.1 Rationale for development of a macrophage cell line model system. ........ .71 

3.2 Materials and methods..... ......................................................................... 74 

3.2.1 Marker panel selection.... ........................................................... .74 

3.2.2 Cell culture..... ............................................................................ .74 

3.2.3 PMA exposure.. ..................................................................... .....74 

3.2.5 Cytokine titration.. .................................................................... ...75 

3.2.4 Rest period.. ............................................................................. ..75 



vii 
 

3.2.6 Cytokine exposure time... .......................................................... .75 

3.2.7 Final tissue culture protocol.... ................................................... .75 

3.2.8. Extraction, polarisation and culture of primary peripheral blood 

derived monocytes for use as positive controls. ................................. ..77 

3.2.9 RNA extraction. ........................................................................ ...77 

3.2.10 Cell viability and RNA yield.. .................................................. ...77 

3.2.11 cDNA synthesis ................................................................... .....77 

3.2.12 Marker panel PCR.. ................................................................ ..77 

3.2.12.1 Primer design... ......................................................... .77 

3.2.11.2 PCR. .................................................................... ......78 

3.2.12.3 Agarose gel electrophoresis.... .................................. .78 

3.2.13 Flow cytometry.. ................................................................... .....78 

3.3 Results...... ................................................................................................ 86 

3.3.1 Phorbol-12-myristate-13-acetate titration identified the lowest 

viable concentration that could be used for generation of macrophages 

as 5ng/ml..... ...................................................................................... ..86 

3.3.2 Optimal cytokine concentrations for gene expression were 

identified. ....................................................................................... ......94 

3.3.3 A 72h rest period was required for the reduction of non-specific 

expression of certain markers, whilst retaining sub-set specific 

expression and sufficient cell and RNA yield... .................................. ...99 

3.3.4 CCL26 expression is induced following increased rest periods 

when PMA spike is at 5ng/ml versus 50ng/ml.... ............................... .100 

3.3.6 Marker expression varied between cytokine exposure times with a 

48h exposure providing the most consistent upregulation for each 

marker... ........................................................................................ ....106 

3.3.6 Final optimised protocol allows specific up regulation of subset 

specific markers...... ........................................................................... 110 

3.3.7 CD14 and CD11b expression was seen on macrophages 

generated using the final protocol. ................................................. ....110 

3.3.8 M2c and TPP cells generated using the optimised protocol also 

show upregulation of specific markers along with additional M1 and M2a 

markers. ....................................................................................... .....114 

3.3.9 Finalised protocol could be used to validate additional markers.136 

3.4 Discussion... ......................................................................................... ...118 

Chapter 4: Validation of THP-1 cell line polarisation protocol using RNA-seq data 

 4.1 Background..... ........................................................................................ 121 

4.2 Materials and Methods.... ........................................................................ 122 

4.2.1 Cell culture. ............................................................................ ...122 



viii 
 

4.2.1.1 Generation of HAGG... ............................................. ..122 

4.2.2 RNA extraction.... ...................................................................... 123 

4.2.3 PCR ...................................................................................... ....124 

4.2.4 RNA library preparation and RNA quality checking.. ............... ..124 

4.2.5 Next generation sequencing... .................................................. 127 

4.2.6 Assessment of read quality.... .................................................. .127 

4.2.7 Read alignment.... .................................................................... .128 

4.2.8 Generation of gene and exon counts Tables... ......................... .130 

4.2.9 Differential expression analysis. ............................................ ....130 

4.2.10 Principle component analysis..... ............................................ .131 

4.2.11 Gene enrichment analysis.... ................................................. ..132 

4.2.12 Transcription factor analysis.. ............................................ .....132 

4.2.13 MA plotting..... ......................................................................... 132 

4.3.14 Venn diagram plotting.... ....................................................... ..132 

4.3 Results..... .............................................................................................. .133 

4.3.1 Quality Control of THP-1 polarisation was performed prior to next 

generation sequencing... ............................................................................. ..133 

4.3.2. Principal component analysis highlighted samples from second 

replicate to be outliers.... .............................................................................. .135 

4.3.3. MDM and THP-1 datasets were found to be comparable... ...... 136 

4.3.4. Inflammatory genes were found to be similarly expressed in THP-

1 and MDM datasets.... ................................................................................. 141 

4.3.5. Marker panel indicated polarisation into M1 and M2a phenotypes 

was achieved... ............................................................................................ .144 

4.3.6. Pairwise comparison demonstrated differentially expressed genes 

in certain subtypes which were enriched for subtype specific functions... ..... .147 

4.3.7. Top 30 most differentially expressed transcripts for differentially 

polarised THP-1 cells were identified... ........................................................ .152 

4.3.8. Some THP-1 markers were validated using MDM datasets......160 

4.4. Discussion.... ........................................................................................ ..163 

Chapter 5: Effect of Immune Complexes on Macrophage Polarisation.. .................. ..166 

5.1. Rationale for investigating effects of immune complexes on monocytes and 

macrophages..... ....................................................................................................... 166 

5.2. Materials and Methods. ....................................................................... ...168 

 5.2.1. Cell culture.. ........................................................................ .....168 

 5.2.2 RNA extraction... ...................................................................... .169 

 5.2.3 Endpoint Polymerase Chain Reaction... ................................... .169 



ix 
 

 5.2.4 Flow Cytometry... ..................................................................... .170 

 5.2.5 Analysis of flow cytometry data... ............................................ ..170 

 5.2.6 RNA library preparation, sequencing, alignment to reference 

genome, adaptor removal, quality checking and production of count Tables.. ......... ..171 

 5.2.7 Principle component analysis... ............................................... ..172 

 5.2.8 Differentially expressed gene identification.. .......................... ...172 

 5.2.9 Analysis of individual replicates............................................... ..172 

 5.2.10 Gene ontology enrichment analysis.. ................................... ...172 

 5.2.11 Transcription factor enrichment analysis.. ........................... ....172 

 5.2.12 Network visualisation... ......................................................... ..172 

 5.2.13 Identifying reads specifically mapping to FCGR genes... ........ 173 

5.3 Results.... ............................................................................................... .176 

5.3.1 Fc-gamma Receptor expression is variable between different 

macrophage subtypes..... ............................................................................. .176 

5.3.2 Macrophage morphology and adherence upon addition of immune 

complexes. .............................................................................................. ......183 

5.3.3 Many macrophage polarisation transcripts retain subset-specific 

expression when treated with immune complexes..... ................................... .183 

5.3.4 Principle component analysis examined how differentially 

polarised cells with and without immune complex treatment clustered according 

to most variable genes.. .............................................................................. ..189 

5.3.5 Clustering varied between different replicates for macrophage 

samples.... ..................................................................................................... 194 

5.3.6 Some genes are differentially expressed between baseline 

monocytes and those treated with immune complexes. ............................. ....196 

5.3.7 Enrichment analysis for genes differentially expressed between 

monocytes with and without immune complex treatment..... ....................... ...199 

5.3.8 Some autoimmune disease related transcription factor target 

genes are enriched in monocytes treated with immune complexes... .......... ..203 

5.3.9 Some differences in transcript expression between monocytes and 

monocytes treated with immune complexes are observed for disease specific 

transcript lists.. ............................................................................................ ..207 

5.3.10 Changes in transcript expression do not appear to be consistent 

between macrophage replicates.. ................................................................ ..209 

5.3.11. Some macrophage replicates were found to have changes in 

gene expression relating to inflammatory functioning... ................................ .220 

5.3.12 Replicates with inflammatory changes demonstrate enrichment 

for some disease specific transcription factors.. ..................................... .......216 

5.4 Discussion. .......................................................................................... ....220 



x 
 

Chapter 6: General discussion and future work...................................................... ...224 

 6.1. Macrophage polarisation and in vitro models.... ..................................... .224 

6.1.1 The spectral model of macrophage polarisation is represented in 

vitro. .......................................................................................................... ....224 

6.1.2 Intermediate phenotypes....................................................... ....225 

 6.2. Fluidity of macrophage markers............................................................. .226 

 6.3. THP-1 cells as a model for primary monocytes and macrophages... ..... .226 

6.3.1. Cell lines as in vitro models for studying macrophage polarisation.

 .................................................................................................................. ....226 

6.3.2 M1 and M2a specific functions for THP-1 macrophages generated 

using the optimised polarisation protocol... .................................................. ..228 

6.4.Macrophage markers: novel and validated ... ........................................ ..228 

6.4.1. Marker validation.. ................................................................ ...228 

6.4.2. Specificity of novel marker expression on THP-1 cells.... ......... 231 

6.4.3. Expression of novel markers in primary monocyte derived 

macrophages...... ........................................................................................ ..234 

6.5. Transcriptomics as a research method..... ............................................. .234 

6.6. Influence of Fc gamma receptor ligation on macrophage polarisation. .. .235 

6.7 Linking Fc-gamma receptor signalling to transcription factor activity in 

immune complex treated myeloid cells..... .................................................... .236 

6.7.1 Examination of promoter sequences for consensus sequences of 

transcription factor activators which are increased upon IC treatment.... ....... 236 

6.7.2. Investigating phosphorylation of transcription factors and their 

activators in immune complex treated monocytes. .................................... ....236 

6.8. Investigating the effects of Fc-gamma receptor blocking agents on effector 

functions in myeloid cells.. .......................................................................... ...237 

6.9 Summary. ............................................................................................ ....237 

Appendix 1: Differentially expressed genes.... ........................................................ ..238 

Appendix 2: LINUX scripts.... ................................................................................... .248 

Appendix 3: R scripts. ............................................................................................ ...250 

Appendix 4: Additional Figures and tables .............................................................. ..262 

Appendix 5: FcγR expression experiments..... .......................................................... 266 

Appendix 6: STRING network data Tables...... .......................................................... 266 

Appendix 7: Summary of marker specificity in various experiments.... ..................... .267 

Bibliography... ......................................................................................................... ..270 

 

 



xi 
 

Figure list 

Figure 1.3.1. A simplified schematic the balance between activating and inhibitory 

signals dictating the threshold for immune complex-driven activation in cells .............. 19 

Figure 2.1.1. Basic bipolar model of macrophage differentiation using standard 

polarising agents… ................................................................................................... ..40 

Figure 2.3.1. Genes identified from publicly available RNA-seq data through analysis. 

(A) Top 300 genes (top 150 M1 and top 150 M2a genes) and (B) top 60 genes (top 30 

M1 and M2a genes)… ............................................................................................... .52 

Figure 2.3.2. Bar charts showing expression of genes selected as candidates for M2a 

macrophages in primary PBMC monocytes and differentially polarised macrophages, 

isolated from the original RNA-seq datasets… ......................................................... …56 

Figure 2.3.3. Bar charts showing expression of genes selected as candidates for M1 

macrophages in primary PBMC monocytes and differentially polarised macrophages, 

isolated from the original RNA-seq datasets……. ....................................................... 58 

Figure 2.3.4. Heatmap showing gene expression according to publicly available 

microarray data for M1, M2a and M0 macrophages. (A) Top 300 genes according to 

M1 (LPS and IFNγ) vs M2a (IL-4) fold change, filtered for transcripts more highly 

expressed in M0 (differentiated, unpolarised) macrophages. (B) Top 30 M1/M2a genes 

according to same criteria…… .................................................................................... 61 

Figure 2.3.5. Genes identified in the initial analysis; rankings in both RNA-seq and 

microarray datasets (A) expression of M1 markers selected from the Beyer et al (2012) 

dataset in differentially polarised PBMC macrophages and monocytes, where 

expression levels are isolated from the Xue et al.,  (2014) microarray dataset; M0, M1 

and M2a cells (B), expression of M2a markers selected from the Beyer et al (2012) 

dataset in differentially polarised PBMC macrophages and monocytes, where 

expression levels are isolated from the Xue et al.,  (2014) microarray dataset; M0, M1 

and M2a cells (C)……… ............................................................................................. 62 

Figure 2.3.6. Heatmap showing gene expression according to publicly available 

microarray data generated by Xue et al.,  (2014) for M1, M2a, M2b, M2c and M0 

macrophages. (A) Top 300 genes according to condition of interest (i.e. M1, M2a, M2b, 

M2c) vs M0 fold change, filtered for genes higher in any condition other than the one of 

interest (B) Top 10 M1/M2a/M2b/M2c genes according to same criteria……. ............. 63 

Figure 2.3.7. Genes identified in the initial analysis; rankings in both RNA-seq and 

microarray datasets (A) expression of M1 markers selected from the Beyer et al (2012) 

dataset in differentially polarised PBMC macrophages and monocytes, where 

expression levels are isolated from the Xue et al.,  (2014) microarray dataset; M0, M1, 

M2a, M2b and M2c cells (B), expression of M2a markers selected from the Beyer et al 

(2012) dataset in differentially polarised PBMC macrophages and monocytes, where 

expression levels are isolated from the Xue et al.,  (2014) microarray dataset; M0, M1, 

M2a, M2b and M2c cells (C)........ ............................................................................... 64 

Figure 2.3.8. Heatmaps showing changes in gene expression of cells exposed to 

polarising cytokine for increasing lengths of time, isolated from data generated by Xue 

et al.,  (2014): (A) M1 markers in macrophages polarised using IFNγ for increasing 

periods of time, shown by heatmap  and (B) M2a markers in macrophages polarised 

using IL-4 for increasing periods of time, according to heatmap)................................. 66 



xii 
 

Figure 3.1.1 workflow for optimisation of THP-1 cell line model to produce M1 and M2a 

polarised macrophages…… ...................................................................................... .73 

Figure 3.3.1. Light microscope images (taken at magnification x20) of THP-1 cells 

treated with different concentrations of PMA and then rested (M0) or polarised using 

IFNγ and LPS (M1) or IL-4 (M2a)……. ........................................................................ 88 

Figure 3.3.2. Viability experiments for THP-1 cells treated with various concentrations 

of PMA; according to trypan blue staining using a countess (A). A summary of trypan 

blue viability and cell counts of samples treated with different concentrations of PMA is 

also given (B)……… ................................................................................................... 89 

Figure 3.3.3. M0 PMA titration; cDNA derived unpolarised THP-1 cells treated with 

different concentrations of PMA tested for expression of M1 specific genes using PCR 

(A) and tested for expression of M2a marker genes using PCR (B)……. .................... 90 

Figure 3.3.4. M1 PMA titration; cDNA derived from LPS and IFNγ polarised (M1) THP-

1 cells treated with different concentrations of PMA tested for expression of M1 specific 

genes (A) and tested for expression of M2a marker genes (B)……… ........................ 91 

Figure 3.3.5. M2a PMA titration; cDNA derived from IL-4 polarised (M2a) THP-1 cells 

treated with different concentrations of PMA tested for expression of M1 specific genes 

using PCR (A) and tested for expression of M2a marker genes using PCR (B).. ........ 92  

Figure 3.3.7. Light microscope images of THP-1 cells treated with different 

concentrations of LPS and a constant concentration of IFNγ……. .............................. 95 

Figure 3.3.8. LPS titration; cDNA derived from LPS and IFNγ polarised (M1) THP-1 

cells treated with different concentrations of PMA tested for expression of M1 specific 

genes (A) and tested for expression of M2a marker genes (B)……. ........................... 96 

Figure 3.3.9. Light microscope images (taken at magnification x20) of THP-1 cells 

treated with different concentrations of IL-4… ........................................................... ..97 

Figure 3.3.10. IL-4 titration; cDNA derived from THP-1 cells primed with PMA and 

treated with different concentrations of IL-4, tested for expression of M1 specific genes 

(A) and tested for expression of M2a marker genes(B)………. ................................... 98 

Figure 3.3.11. Light microscope images taken at x20 magnification of THP-1 cells 

rested for different amounts of time following initial PMA spike and then stimulated 

using IFNγ and LPS (M1) or IL-4 (M2a), or left unpolarised (M0)….......................... .101 

Figure 3.3.12. M0 cell rest titration; cDNA derived from un-polarised (M0) THP-1 cells 

treated with PMA and rested for different amounts of time, tested for expression of M1 

specific genes using PCR (A) and tested for expression of M2a marker genes using 

PCR (B)… .............................................................................................................. ..102 

Figure 3.3.13. M1 cell rest titration; cDNA derived from LPS and IFNγ polarised (M1) 

THP-1 cells treated with PMA and rested for various amounts of time, tested for 

expression of M1 specific genes using PCR (A) and tested for expression of M2a 

marker genes using PCR (B). Figure 3.3.14. M2a cell rest titration; cDNA derived from 

IL-4 polarised (M2a) THP-1 cells treated with PMA and rested for various amounts of 

time, tested for expression of M1 specific genes using PCR (A) and tested for 

expression of M2a marker genes using PCR (B). Figure 3.3.15. M2a cell rest titration 

(50ng/ml PMA); cDNA derived from IL-4 polarised (M2a) THP-1 cells treated with 

50ng/ml PMA and rested for various amounts of time, tested for expression of M1 



xiii 
 

specific genes using PCR (A) and tested for expression of M2a marker genes using 

PCR (B)……… ...................................................................................................... …103 

Figure 3.3.16. Light microscope images taken at x20 magnification of THP-1 cells 

polarised for different amounts of time using IFNγ and LPS (M1) or IL-4 (M2a). ....... 107 

Figure 3.3.17. M1 cell cytokine exposure titration; cDNA derived from LPS and IFNγ 

polarised (M1) THP-1 cells treated with PMA and polarised with cytokine for various 

time periods, tested for expression of M1 specific genes using PCR (A) and tested for 

expression of M2a marker genes using PCR (B)… ............................................... ….108 

Figure 3.3.18. M2a cell cytokine exposure titration; cDNA derived from IL-4 polarised 

(M2a) THP-1 cells treated with PMA and polarised with cytokine for various time 

periods, tested for expression of M1 specific genes using PCR (A) and tested for 

expression of M2a marker genes using PCR (B)…… ............................................. ..109 

Figure 3.3.19. (A) Details of the final optimised protocol for generating polarised 

macrophages from THP-1 cells and (B) 20x magnification of THP-1 cells developed 

using the final protocol…… ..................................................................................... ..110 

Figure 3.3.20. Flow cytometry histograms for surface expression of CD14 and CD11b 

on monocytes (Mono) and differentially polarised macrophages; LPS + IFNγ treated 

(M1), IL-4 treated (M2a), IL-10 treated (M2c) and unpolarised (M0)… ................... …112 

Figure 3.3.21. Final protocol; cDNA derived from THP-1 cells developed using the final 

optimised protocol tested for expression of M1 specific genes using PCR (A) and 

tested for expression of M2a marker genes using PCR (B)…… ............................. ..113 

Figure 3.3.22. Macrophages developed using the optimised protocol, and polarised 

using TNF, PGE2 and Pam3sk4, imaged at 20x magnification to examine cell 

morphology (scale bar is given in bottom left corner of box as a white bar). (A) cDNA 

extracted from these cells run against TPP markers identified from literature using PCR 

techniques (Xue et al., 2014) (B)…… .................................................................... …115 

Figure 3.3.23. cDNA derived from THP-1 cells developed using the final optimised 

protocol run against (A) additional established and novel M1 markers (Beyer et al., 

2012) using end point PCR, (B) novel and additional established M2a markers using 

end point PCR (C) and established M2c markers using end point PCR…… ............. 117 

Figure 4.2.1. Basic workflow for generating cDNA libraries from RNA for application in 

RNA-seq experiments using the Illumina low sample protocol…… .......................... .126 

Figure 4.2.2 Overview of RNA-seq data analysis pipeline……… ............................. 128 

Figure 4.3.1.  PCRs of cDNA derived from RNA-seq samples prior to library 

preparation to examine M1 and M2a marker expression in cDNA synthesised from 

RNA, generated for RNA-seq experiments; gene expression for replicates 1 (A), 2 (B), 

and 3 (C) was examined…… .................................................................................... 134 

Figure 4.3.2.  Principle component analysis plots using top 1000 most differentially 

expressed genes to examine clustering of all macrophage samples from all replicates 

(A) and all macrophage samples in the replicates 1 and 3 (B)……… ....................... 137 

Figure 4.3.3. PCA demonstrating how samples plot according to 1000 most variable 

genes with LPS+HAGG (M2b) samples and no LPS only conditions, and no samples 

from replicate 2 (A). Bar chart for contributions of each principle component of top 1000 

variable genes (B). loading gene analysis (C), x-axis (principle component 1) top ten up 



xiv 
 

and down regulated loading genes (i) top 50 enriched biological processes for all 

genes in PC1 (ii), (D), PC-2 top ten up and down regulated loading genes (i) top 50 

enriched biological processes for all genes in y-axis (ii)……..................................... 138 

Figure 4.3.3. MA plots demonstrating the distribution of monocyte derived 

macrophages (MDM) samples versus THP-1 cells for M1 macrophages (A) and 

distribution of monocyte derived macrophages (MDM) samples versus THP- in M2a 

induced cells (B)…….. .............................................................................................. 140 

Figure 4.3.5.  Venn diagram demonstrating overlap of differentially expressed genes 

between M1 and M2a cells were generated for THP-1 cells and MDMs…….. .......... 142 

Figure 4.3.6.  Dot plots showing biological process gene ontology enrichment terms for 

transcripts appearing in different regions of the venn diagram (Figure 4.3.5.); THP-1 

only region (A), overlap region (B) and MDM only region (C)……. .......................... .143 

Figure 4.3.7. Heatmap showing expression of M1 and M2a marker genes identified in 

Chapter 2 (Table 2.3.4) for all THP-1 cell subtypes……........................................... .145 

Figure 4.3.8. Heatmap of additional known markers used in Chapter 3 to investigate 

THP-1 cell differentiation (A) and heatmap of novel markers of M1 and M2a 

polarisation identified in Chapter 2 and tested experimentally in Chapter 3…… ..... ..146 

Figure 4.3.9. Heatmap of differentially expressed genes between M1 and M2a induced 

THP-1 cells (A), top 100 genes which were found to be significantly upregulated in for 

M2a cells versus M1 cells (B. i) and top M1 genes significantly upregulated for M1 

versus M2a comparison (B. ii)…….. ......................................................................... 149 

Figure 4.3.10. Dot plots for biological process related gene ontology enrichment for 

differentially expressed transcripts up-regulated in M1 condition versus M2a (A) and for 

transcripts up-regulated in M2a condition versus M1 (B)…… .................................. .150 

Figure 4.3.11. Bar charts demonstrating gene ratios and respective p-values for 

transcription factors in lists of genes; those elevated in M1 condition versus M2a (A) 

and for those elevated in the M2a condition versus the M1 condition (B)……. .......... 151 

Figure 4.3.12. Heatmap showing potential markers upregulated in condition of interest, 

and dotplot showing top marker expressions for condition of interest (blue) versus other 

samples (pink) for M1 subtype (A) and M2a subtype (B)……. .................................. 155 

Figure 4.3.13. Heatmap showing potential markers upregulated in condition of interest 

and dotplot showing top marker expressions for condition of interest (blue) versus other 

samples (pink) for M2b subtype (A) and M0/M2c subtypes (B)……. ......................... 156 

Figure 4.3.14. Heatmap showing potential markers upregulated in condition of interest 

and dotplot showing top marker expressions for condition of interest (blue) versus other 

samples (pink) for TPP subtype (A) and monocyte subtype (B)… .......................... ..157 

Figure 4.3.15. Previously identified THP-1 polarisation markers identified in MDM 

RNA-seq dataset for monocytes (A), M1 cells (B) and M2a macrophages (C).. ........ 160 

Figure 4.3.16. Previously identified THP-1 polarisation markers identified in MDM 

microarray dataset for M2b cells (A), TPP cells (B) and M0/M2c cells (C).. .............. 161 

Figure 5.2.1. Alignments of target regions of FCGR2A, FCGR2B and FCGR2C 

demonstrating homology between regions and highlighting differences in sequences..

 ................................................................................................................................. 174 



xv 
 

Figure 5.2.2. Alignments of target regions of FCGR3A and FCGR3B used for the 

remapping analysis (i.e. the UTR) demonstrating homology between regions and 

highlighting differences in sequences that will differentiate the genes… ................ …175 

Figure 5.3.1. Histograms showing surface expression of different Fcγ receptors in 

monocytes and different macrophage subsets according to flow cytometry (A). Bar 

charts illustrating average (by mean) of median fluorescent intensities of three 

independent replicates of flow cytometry experiment (B (i)). Results of ANOVA test for 

each receptor are also given (B (ii)). Bar chart demonstrating mean expression of 

various FCGR transcripts in variably polarised macrophages, grouped by receptor (C 

(i)). P values for ANOVA tests performed for expression of the different receptors 

between groups are given (C (ii)). Heatmap shows the relative expressions of FCGR2 

and FCGR3 transcripts (C (iii)). Heatmap shows the relative expressions of FCGR2 

transcripts only (D (i)), and heatmap shows the relative expressions of FCGR3 

transcripts only (D (ii))… ....................................................................................... ….179 

Figure 5.3.2. Expression of different Fcγ receptor transcripts in monocytes and various 

macrophage subtypes accordion to RNA-seq data (A) and replicate 2 (B)…. .......... .182 

Figure 5.3.3. Morphology of different macrophage subtypes with and without immune 

complex addition taken at 20x magnification on an EVOS light microscope… ........ ..184 

Figure 5.3.4. Expression of M1 marker panel genes in differentially polarised 

macrophages upon addition of heat aggregated gamma globulin according to PCR 

analysis…. ............................................................................................................... .185 

Figure 5.3.5. Expression of M2a marker panel genes in differentially polarised 

macrophages upon addition of heat aggregated gamma globulin according to PCR 

analysis… ............................................................................................................. ….186 

Figure 5.3.6. Expression of M2c marker panel genes in differentially polarised 

macrophages upon addition of heat aggregated gamma globulin according to PCR 

analysis……. ........................................................................................................... .187  

Figure 5.3.7. Quantitative expression of M1 and M2a marker panel transcripts in 

differentially polarised macrophages upon addition of heat aggregated gamma globulin 

(HAGG) according to RNA-seq data… ............................................................... ……188 

Figure 5.3.8. PCA plot indicating how differentially polarised macrophages with and 

without immune complexes cluster according to 1000 most variable genes; for 

replicates 1 and 4 combined (A)  for replicate 2 only (B).Analysis of PCA loading 

genes; (C) for replicates 1 and 3 combined (i), top 10 and bottom 10 loading genes in 

principle component 1 (i) and top 50 enriched biological processes for principle 

component 1 (ii); (D) for replicates 1 and 3 combined (i), top 10 and bottom 10 loading 

genes in principle component 2 (i) and top 50 enriched biological processes for 

principle component 2 (ii). Analysis of PCA loading genes; (C) for replicate 2 (i), top 10 

and bottom 10 loading genes in principle component 1 (i) and top 50 enriched 

biological processes for principle component 1 (ii); (D) for replicate 2 (i), top 10 and 

bottom 10 loading genes in principle component 2 (i) and top 50 enriched biological 

processes for principle component 2 (ii)…. ................................................................ .91 

Figure 5.3.9. PCA plots demonstrating how samples cluster in individual replicates, 

including treatments with and without immune complexes; replicate 1 (A), replicate 2 

(B) and replicate 3 (C)……… .................................................................................. ….95 



xvi 
 

Figure 5.3.10. Heatmaps visualising all differentially expressed genes between 

monocytes and monocytes treated with immune complexes (A), top 100 down 

regulated genes upon immune complex addition (B(i)) and top 100 up regulated genes 

upon immune complex addition (B(ii))… ................................................................. ….97 

Figure 5.3.11. Dot plot detailing the top 50 transcripts found to be induced when 

monocytes are treated with immune complex… ........................................................ ..98 

Figure 5.3.12. enriched terms for genes differentially expressed between monocytes 

with and without HAGG relating to Reactome pathways (A), cellular components (B), 

KEGG pathways (C), biological processes (D) and molecular functions (E)… ...... ….200 

Figure 5.3.13. Transcription factors with a significantly increased number of targets in 

lists of genes that are upregulated upon addition of immune complexes to monocytes 

(A) and genes that are significantly downregulated upon addition of immune complexes 

to monocytes (B)… ................................................................................................ …205 

Figure 5.3.14. STRING plots showing protein interactions for transcription factors IRF3 

(A) and SP1 (B) with top 30 associated proteins according to the Cytoscape STRING 

database… ........................................................................................................... ….206 

Figure 5.3.15. Heatmaps showing differences in gene expression for monocytes with 

and without immune complexes for different gene lists; those inked to the inflammatory 

response (A), those found to be increased in SLE (B) and genes upregulated in RA 

(C)… ........................................................................................................................ .208 

Figure 5.3.16. Table indicating which replicates of various macrophage subsets 

demonstrated differential expression upon addition of immune complexes; those that 

responded are labelled as “Yes” and those that did not as “No”… ........................... .209 

Figure 5.3.17. Enriched biological processes for individual replicates that responded to 

addition of immune complexes; replicates 1, 2 and 3 for M0 cells (A (i), (ii) and (iii) 

respectively). Replicate 2 for M1 cells (B) and replicates 2 (C(i)) and 3 (C(ii)) for M2a 

cells. Replicate 2 for M2c cells (D) and replicates 1 (E(i)) and 3 (E(ii)) for LPS cells. 

Replicates 1 (F(i)) and 3 (F(ii)) for TPP cells… ................................................. …….212 

Figure 5.3.18.  Transcription factors with a significantly increased number of targets 

upon addition of immune complexes to macrophage subsets; samples that showed 

inflammatory changes……… .................................................................................. ..218 

Figure 5.3.19.  Transcription factors with a significantly increased number of targets in 

conditions without immune complexes vs those with; samples that showed 

inflammatory changes… ....................................................................................... ….219 

 

Table list 

Table 1.3.1. Table of expression of different FcγRs on different immune cells, adapted 

from a Figure by Smith and Clathworthy (2010) (Smith and Clatworthy, 2010). ........ ..21 

Table 1.3.2. Table comparing differences in binding preferences for FcγRs in relation 

to the different isotypes of IgG (formed into immune complexes) using CHO 

transfectants… ....................................................................................................... ….22 

Table 1.5.1. Comparison of microarray and RNA-seq experiments in terms of technical 

and analytical issue and performance………… ........................................................... 36 



xvii 
 

Table 2.2.1. Function key for STAR alignment command… ...................................... .42 

Table 2.2.2. Function key for STAR software command… ....................................... ..43 

Table 2.2.3. Function key for Cufflinks software command… ................................... ..44 

Table 2.2.4. Function key for Cuffmerge software command….. ................................ 44 

Table 2.2.5. Function key for Cuffdiff software command…… ................................... .45 

Table 2.3.1. Commonly used M1 markers identified through searching the literature. 

Details of publications of where use of these markers can be seen is also given in the 

“paper” column…… ................................................................................................... .48 

Table 2.3.2. Commonly used M2a markers identified through searching the literature. 

Details of publications of where use of these markers can be seen is also given in the 

“paper” column…… ............................................................................................... …..49 

Table 2.3.3 Different publicly available datasets identified for analysis… ................ …51 

Table 2.3.4. Top 30 M2a marker genes identified through analysis of the Beyer et al.,  

(2012) RNA-seq dataset… ................................................................................... ……55 

Table 2.3.5. Top 30 M1 mar .... ker genes identified through analysis of the Beyer et al.,  

(2012) RNA-seq dataset…… .................................................................................... ..57 

Table 2.3.6 Final marker panel identified from Beyer et al.,  (2012) dataset and 

examined in Xue et al.,  (2014) dataset……… ............................................................ 68 

Table 2.3.7 Additional novel markers to be validated experimentally identified from 

Beyer et al.,  (2012) dataset and examined in Xue et al.,  (2014) dataset ........... …….68 

Table 3.2.1. Panel of M1 and M2a macrophage transcriptional markers identified in 

Chapter 2 (Table 2.3.4) from public datasets or published studies…… ................... ….79 

Table 3.2.2. Details of PCR reagents used in all reactions described in this Chapter.. 80 

Table 3.2.3. M1 transcript marker primer sequences to be used in THP-1 PCR 

experiments. Details of length in base pairs are also given here ............................ …..81 

Table 3.2.4. M2a transcript marker primer sequences to be used in THP-1 optimisation 

PCR experiments. Details of length in base pairs are also given here…… .............. …82 

Table 3.2.4. M2a transcript marker primer sequences to be used in THP-1 optimisation 

PCR experiments. Details of length in base pairs are also given here…… ............... ..83 

Table 3.2.5. Sequences and lengths of other primers; additional M1 and M2a marker to 

further test the final optimised protocol, and TPP and M2c primers to test these 

polarisation states using PCR experiments……… ..................................................... .84 

Table 3.2.6. Summary of cycling conditions used in marker panel PCR experiments in 

this Chapter……… .................................................................................................. ….85 

Table 3.3.1. RNA concentration values taken using a nanodrop-1000 

spectrophotometer for RNA extracted from cells stimulated with different 

concentrations of PMA and polarised into the M1 (IFNγ + LPS) (A), M2a (IL-4) (B) and 

M0 (IL-10) (C) state……… ...................................................................................... ….93 

 

Table 4.2.1. Monocyte and macrophage samples with details of sample name, which 

replicate samples belong to and conditions used to generate the cell type… .......... ..123 



xviii 
 

Table 4.2.2. Key of parameters for STAR genome index command… ..................... .128 

Table 4.2.3. Key of parameters for STAR genome alignment command… ............. ..129 

Table 4.3.1. Conditions in which pairwise comparisons produced a list of differentially 

expressed genes………. .......................................................................................... .152 

Table 5.2.1. Details of all samples sequenced, including treatments which replicate the 

sample was included in and sample name……. ........................................................ 169 

Table 5.2.2 details of antibodies used in flow cytometry experiments to stain THP-1 

monocytes and macrophages for FcγR phenotyping experiments… ..................... ….171 

Table 5.2.3 Genomic coordinates (according to the Hg38 assembly) for specific 

regions of different FCGR genes, used to differentiate them and used as targets when 

reads were mapped to give expression counts……… .......................................... …..174 

 

Abbreviations 

 

ACPA Anti-citrullinated peptide antibody 

ADCC Antibody-dependent cell-mediated cytotoxicity  

AIM2 absent in melanoma 2 protein 

AM Alveolar macrophage 

AML Acute myeloid leukaemia 

AP2 Adipocyte protein 2 

APC Antigen presenting cell 

CCL 

CCR 

Chemokine ligand 

Chemokine receptor 

CD Cluster of Differentiation 

CD200R cluster of differentiation 200 receptor 

ChIP-seq Chromatin immunoprecipitation sequencing 

CNV copy number variation 

CXCL Chemokine (C-X-C motif) ligand 

CXCR Chemokine (C-X-C motif) receptor 

DAMPS Damage-associated molecular pattern  

DC Dendritic cell 

DEG Differentially expressed gene 

DHFR Dihydrofolate reductase 

dNTPs Deoxynucleotide 

DTT Dithiothreitol 

EDTA Ethylenediaminetetraacetic acid  

FCS Foetal calf serum 

FcγR Fc-gamma receptor 

FcγRI Fc-gamma receptor I 



xix 
 

FcγRIIa Fc-gamma receptor Iia 

FcγRIIb Fc-gamma receptor Iib 

FcγRIIc  Fc-gamma receptor Iic 

FcγRIIIa Fc-gamma receptor IIIa 

FcγRIIIb Fc-gamma receptor IIIb 

FDR False discovery rate 

FITC Fluorescein isothiocyanate  

FPKM 
Fragments Per Kilobase of transcript per Million mapped 
reads 

GM-CSF Granulate macrophage colony stmulating factor 

GO Gene ontology 

GPI Glycosylphosphatidylinositol  

GTF General Transfer Format 

HAGG Heat aggregated gamma globulin 

HLA Human leukocyte antigen  

IC Immune complex 

IFNγ interferon-gamma 

IgM Immunoglobulin M 

ITAMi Inhibitory-immunoreceptor tyrosine-based activation motif 

IKZF1 Ikaros family zinc finger protein 1 

IL Interleukin 

IRAK  Interleukin 1 receptor associated kinase 

IRAK2 Interleukin 2 receptor associated kinase 

IRF1 Interferon response factor 1 

ITAM Immunoreceptor tyrosine-based activation motif 

ITIM Immunoreceptor tyrosine-based inhibitory motif  

JAK-1/2 Janus kinase 1/2 

LPS Lipopolysaccharide 

M-CSF Macrophage colony stimulating factor 

MDM monocyte derived macrophage 

MHC Major histocompatibility complex  

MyD88  Myeloid differentiation primary response 88 

NA1 Neutrophil antigen-1 

NA2 Neutrophil antigen-2 

NFκB 
Nuclear factor kappa-light-chain-enhancer of activated B 
cells 

NK Natural killer 

NLRP3 NACHT, LRR and PYD domains-containing protein 3 

NO Nitric oxide 



xx 
 

PAMPS Pathogen-associated molecular pattern  

PBMC Peripheral blood mononuclear cell 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PE Phycoerythrin  

PGE2 Prostaglandin E2 

PH Pleckstrin homology domain  

PI3K Phosphoinositide 3-kinase  

PMA Phorbol myristate acetate 

PMA Phorbol myristate acetate 

PPARγ Peroxisome proliferator-activated receptor gamma 

RA Rheumatoid arthritis 

RANKL Receptor activator of nuclear factor kappa-Β ligand 

RF Rheumatoid Factor 

RIN RNA integrity number 

SH Src Homology 2 

SH2 Src Homology 2 

SHP-1 Src Homology 2 Domain Phosphatase-1 

SLE Systemic lupus erytematosus 

SLE Systemic lupus erytematosus 

SNP single nucleotide polymorphism 

SP1 Specificity Protein 1 

SPI1 Spi-1 Proto-Oncogene 

SPR Surface plasmon resinance 

STAT1 Signal transducer and activator of transcription 2 

STAT2 Signal transducer and activator of transcription 3 

STAT3 Signal transducer and activator of transcription 1  

SYK Spleen tyrosine kinase 

TCA Tricarboxylic acid 

TF Transcription factor 

TGFβ Transforming growth factor beta  

Th2 T-helper cell type 2 

TLR Toll like receptor 

TNF Tumour necrosis factor 

TPP TNF, Prostaglandin E2, Pam3sk4 treated  

VD3 Vitamin D3 



1 
 

Chapter 1: Literature review   

  

1.1 Mononuclear phagocyte system   

1.1.1 Origins and diversity  

The mononuclear phagocyte system is key in maintaining immune processes along 

with other homeostatic events, including metabolism, angiogenesis 

and haematopoiesis (Zhou et al., 2014); (Geissmann et al., 2010); (Murray and Wynn, 

2011a). It is made up of a group of responsive, heterogeneous cells with versatile 

functions. These cells may be divided into circulating monocytes, infiltrating 

macrophages, tissue resident macrophages and dendritic cells (DCs), each with 

distinct subsets demonstrating specific functions (Wermuth and Jimenez, 2015).   

 

1.1.1.1 Circulating monocytes 

Circulating monocytes originate in the bone marrow and have to ability to migrate into 

tissues and differentiate into macrophages in response to environmental signals, such 

as infection or tissue damage. Monocytes are sub classified based on expression of 

cluster of differentiation (CD) 14 and CD16; the classical CD14++/CD16- monocytes 

are considered to be inflammatory and express CCR2 

bind chemoattractive chemokines) and CD62 (adhesion molecule), while the 

CD14+/CD16++ monocytes demonstrate weaker phagocytic ability, produce less 

reactive oxygen species and tend to express more CD32 and major histocompatibility 

complex (MHC)-II. Additionally, CD14+/CD16++ cells selectively produce tumor 

necrosis factor (TNF), interleukin (IL)-1β and chemokine ligand (CCL) 3 in response 

immune complex (IC) stimulation. CD14+/CD16++ cells have also been linked to 

antiviral responses (Cros et al., 2010). An intermediate CD14++/CD16+ phenotype has 

also been reported (Cros et al., 2010); (Geissmann et al., 2003); (Tacke and Randolph, 

2006); these cells have been identified in rheumatoid arthritis (RA) patients, 

and levels appear to correlate with heat-

aggregated gamma globulin (HAGG) induced TNF production (Cooper et al., 

2012). This suggests an inflammatory function for this subtype.  

 

1.1.1.2 Infiltrating Macrophages  

Infiltrating macrophages are generated through maturation of bone marrow-derived 

monocytes; these cells differentiate upon exposure to agents such as Macrophage 

colony-stimulating factor (M-CSF) and granulate-macrophage colony-stimulating factor 

(GM-CSF) (Jaguin et al., 2013); (Vogel et al., 2014). Macrophages are classified based 

on surface marker expression, soluble factor production and response to stimuli (Sica 

and Mantovani, 2012); (Stout et al., 2005); (Zhou et al., 2014). Generally speaking, 
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macrophages polarise into inflammatory or anti-inflammatory cells in response 

to pathogenic and immunological stimuli. However, it should be noted that these cells 

are highly dynamic and reactive, and phenotypes may be altered in response to a 

changing environment (Stout et al., 2005); (Zhou et al., 2014). 

Macrophage polarisation and details of stimuli will be discussed in greater detail 

in Section “1.1.2 Macrophage polarisation: The bipolar model” below.  

In mice, tissue resident macrophages were determined to be mostly derived from the 

yolk sac during embryonic development and were found at multiple sites throughout 

the body (Wermuth and Jimenez, 2015); (Perdiguero and Geissmann, 2016). Using 

fate-mapping studies in murine models, it was reported that these cells were generally 

renewed by their own proliferation, but this capacity was limited, and influx of infiltrating 

bone marrow-derived macrophages was required for replenishment (Yona et al., 

2013); (Wermuth and Jimenez, 2015).   

 

1.1.1.3 Tissue resident macrophages 

The phenotype of tissue resident macrophages is generally site specific; certain 

functions such as clearance of cellular debris (microglia), iron processing (spleen 

macrophages) and immune surveillance (microglia) are described for macrophages in 

some tissues, and it should be noted that these cells cannot necessarily 

be categorised as inflammatory or anti-inflammatory (Davies et al., 2013); (Wermuth 

and Jimenez, 2015). However, previous reports have found that phenotype of these 

macrophages is not fixed and that they may respond to environmental signals such as 

tissue injury or pathogens by altering their phenotype; in response to pathogen these 

cells may provide frontline defense roles (Sica and Mantovani, 2012); (Yona et al., 

2013).   

 

1.1.1.4 Dendritic cells 

DCs are, generally speaking, MHC/CD11c-high cells with a high capacity for antigen 

presentation and phagocytosis. They are broadly divided into plasmocytoid DCs, which 

are long lived and highly responsive to virus, and classical DCs which are short lived, 

highly migratory in lymphoid tissues and are known to regulate T-cell activity (Wermuth 

and Jimenez, 2015), although further subtypes have been proposed (Villani et al., 

2017).  

  

1.1.2 Macrophage polarisation: The bipolar model  

As alluded to previously, the traditional model of macrophage polarisation describes 

induction of cells into inflammatory or anti-inflammatory phenotypes. Standard 

nomenclature denotes these subtypes as M1 and M2 macrophages respectively, 
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following the terminology for T-helper cells. M2 cells are further divided based on 

stimuli used to generate the subtype, gene/protein expression profiles and functional 

variance; M2a, M2b and M2c cells (Zhou et al., 2014).  

M1 macrophages are typically induced from the unpolarised state using interferon 

gamma (IFNγ) and Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). 

There is a school of thought that GM-CSF (vs M-CSF) induces a bias towards 

M1 polarisation, but additional evidence suggests that induction with any colony 

stimulating factor will prime cells for effective stimulation with 

any polarising cytokine (Vogel et al., 2014); (Jaguin et al., 2013). These cells are 

reported to be highly inflammatory, phagocytic, tumoricidal and anti-microbial. They 

characteristically produce large amounts of pro-inflammatory chemokines (CXCL 

(Chemokine (C-X-C motif) ligand) 9, 10, 11) and cytokines (TNF, IL-6, IL1β) and exhibit 

strong antigen presentation and phagocytic capabilities (Zhou et al., 2014); (Jaguin et 

al., 2013); (Arnold et al., 2015); (Ambarus et al., 2012).   

M2a cells are generated through exposure to Th2 cytokines such as IL-4 or IL-13. 

These cells have been linked to Th2 responses and allergy as well as tissue fibrosis, 

wound healing and proliferation (Fraternale et al., 2015); (Ambarus et al., 

2012); (Gratchev et al., 2001).   

M2b macrophages, induced through exposure to ICs in combination with LPS or IFNβ, 

are not defined very clearly for humans in the literature. In mice, these cells adopt a 

phenotype where IL-10 production is high and IL-12 is low hence favoring a Th2 

response, despite some functional similarities with M1 cells (e.g. production of 

cytokines IL-6, IL-1β) (Fraternale et al., 2015); (Anderson and Mosser, 

2002); (Edwards et al., 2006).   

Generation of M2c cells is generally observed following exposure to IL-10, although the 

phenotype may also be achieved in vitro using glucocorticoids or transforming growth 

factor beta (TGFβ). These cells are thought to be involved in removal of cellular debris, 

matrix deposition and tissue remodelling, and have been described as “de-

activated” macrophages (Rőszer, 2015); (Maeß et al., 2014); (Jaguin et al., 2013).   

It should be noted that a poorly characterised sub-group has recently been proposed; 

M2d cells are generated through culture in the tumour microenvironment and are 

thought to have some similarities to tumour-associated macrophages. Precise stimuli 

are not known, but the M2d transcriptional program appears to be driven by over-

expression of Fra-1 in murine monocytic cell lines. These cells are IL-10 high and IL-12 

low and thought to demonstrate immunosuppressive behaviour (Wang et al., 2010b). 

These cells are not directly relevant to this project and so will not be discussed in detail 

in this report.  
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 1.1.5 Macrophage polarisation: The spectral model  

Although the bipolar model of macrophage polarisation is fairly well established, there 

is a growing body of evidence suggesting that it is far too simplistic; macrophages 

express a large number of receptors for various ligands that activate 

distinct signalling pathways and cellular functions upon receptor engagement. These 

stimuli modulate the macrophage transcriptome through inducing signalling cascades 

or by modulating pathways that are otherwise active within the cell (Mosser and 

Edwards, 2008); (Xue et al.); (Stout et al., 2005); (Martinez and Gordon, 2014). For 

instance, characterisation of ex vivo macrophages which have been exposed to a 

variety of stimuli are reported to exhibit a mixed phenotype. Examples of this 

include polarisation following exposure to the cytomegalovirus and polarisation in 

obese tissue in mice; in the latter case macrophages appear to adopt a pro-

inflammatory state, but production of some M2-like transcripts (including arg-1, IL1ra, 

MMP12, ADAM8, VEGF) are seen (Chan et al., 2008); (Shaul et al., 2010). 

Additionally, novel subtypes are continually being identified across a number of 

pathological states (e.g. in obesity, chronic inflammation, atherosclerotic lesions), 

supporting the idea of a spectral model where macrophages can adopt a wide variety 

of phenotypes (Lumeng et al., 2007a); (Xue et al.); (Villani et al., 2017); (Kadl et al., 

2010).  Additionally, macrophages are subject to a number of different signals (both sy

nergistic and opposing) under physiological conditions (Andrea et al., 1995). These 

conditions shift constantly, modulating macrophage phenotypes differentially at 

variable stages of disease progression and different cytokine exposure durations, 

emphasizing plasticity and heterogeneity of macrophages found under physiological 

conditions (Wells et al., 2003). For instance, indistinct, mixed phenotypes have been 

described for macrophages isolated from tumours (Edin et al., 2013) and associated 

ascites (Reinartz et al., 2014) in humans and mice (Biswas et al., 2008); (Biswas and 

Mantovani, 2010). Additionally, adipose tissue macrophage in mice appear to be 

altered in response to obesity signals (Lumeng et al., 2007a), and phenotype switches 

are seen during inflammation resolution (Wermuth and Jimenez, 2015). The latter 

event will be discussed in additional detail in Section 1.1.11 “Roles in wound healing”. 

Hence a spectral model is more appropriate for the study of cells isolated from healthy 

and pathogenic human tissue.  

Despite the oversimplification of the bipolar macrophage model, it is useful for 

provision of certain transcriptomic “landmarks” or signatures and provides useful 

reference points from which comparisons can be made.   

  

1.1.6 Polarisation subsets: Identification and definitions  
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One of the major obstacles for interpreting macrophage polarisation data is that there 

is no consensus of how these cells should be defined. This is possibly due to that fact 

that macrophages are isolated from different tissues and will have an inherently 

variable phenotype, and that a large number of groups perform characterisation studies 

using mouse cells (Joshi et al., 2014); (Fleetwood et al., 2009). One common approach 

utilizes cell surface protein expression or soluble factor production (e.g. TNF, IL-6 for 

M1, IL10 for M2 cells) and identification of corresponding gene transcripts. However, 

there is a lack of consistency in the markers used to indicate different phenotypes.  

Another method that has been described distinguishes macrophages based on their 

ability to metabolise certain molecules; arginine metabolism is reported to vary 

between M1 and M2 induced cells, a switch which supports the phenotype and has 

been well characterised in murine macrophages (Rath et al., 2014); (Mills, 2012). For 

instance, in M1 cells arginine is reportedly metabolised though activity of enzymes of 

the nitric oxide synthase family, leading to the production of nitric oxide (NO). This 

substance is important in the inflammatory response for protection against pathogens 

as well as contributing to a decrease in proliferation. Conversely, arginase is implicated 

in arginine metabolism in M2 macrophages, with subsequent production of ornithine. 

This metabolite assists in the tissue repair response and has proliferative 

properties (Mills, 2012); (Lumeng et al., 2007a). However, in human cells this 

phenomenon has not been consistently reported, with some groups detecting this 

change in differentially polarised macrophages (Thomas and Mattila, 

2014); (Rouzaut et al., 1999); (Babu et al., 2009) and others failing to do so (Munder et 

al., 2005). Some explanations for this discrepancy have been proposed, focusing on 

differences in detection methods (enzyme activity versus protein and 

transcript detection) and source of macrophages (e.g. in vivo vs in vitro 

generated) (Thomas and Mattila, 2014). However, until further research is carried out 

and consistency is achieved, this cannot be considered a reliable standard for 

investigating variably polarised states in human macrophages.  

More recently, attempts to characterise changes in the tricaboxylic acid (TCA) cycle 

between different macrophage polarisation states have been made; the TCA cycle 

remains intact in M2a induced cells and downstream processes such as oxidative 

phosphorylation occurs as expected. However in M1 treated cells, the cycle breaks in 

two places resulting in an accumulation of citrate and succinate and their core 

metabolism is carried out through glycolysis (Tannahill et al., 2013); (O’Neill and 

Pearce, 2016). The former supports the production of prostaglandins (since it 

generates fatty acids) and anti-microbial intermediates (via itaconate) hence promoting 

M1 macrophage activity (Michelucci et al., 2013); (Infantino et al., 2011). 

Succinate accumulations can induce some cytokines such as IL-1β 
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(through stabilisation of HIF-1α which targets IL1B) and these events have been linked 

to nitric oxide production (Tannahill et al., 2013); (Kelly and O'Neill, 2015). This 

mechanistic switch may be an interesting method to distinguish 

differentially polarised macrophages, although it could be argued that additional 

research must be performed to characterise these changes in multiple differentiation 

states.  

One of the major issues faced when studying macrophage biology is the complete lack 

of consistency in markers used to define certain subtypes in different studies. Along 

with the problem described for the standards above, this makes it difficult to determine 

phenotypes experimentally. Attempts have been made to address these issues through 

systematic validation of cell surface markers, but these studies tend to focus on small 

numbers of markers, are often performed on murine cells and can be limited by 

existing knowledge (Ambarus et al., 2012); (Vogel et al., 2014); (Barros et al., 2013). 

Additionally, these findings are often contradictory which could be due to the source of 

the tissue, for instance Ambarus et al.,  (2011) described CD163 as a robust indicator 

of M2c polarisation when performing experiments on peripheral blood mononuclear cell 

(PBMC)-derived macrophages in vitro, whereas another group found this marker to be 

unreliable for identifying alternative polarisation in histological Sections (Barros et al., 

2013). Hence additional efforts must be made to define cells and to confirm which 

markers reliably represent different phenotypes. A summary of experiments aimed at 

determining macrophage function can be found in Appendix 4, Table A4.1 

  

1.1.8. in vitro generation of monocyte derived macrophages and investigations 

of subset-specific functions  

There are a number of different methods that can be used to 

generate polarised macrophages from monocytes isolated from PBMCs. Initial 

differentiation steps require addition of a colony stimulating factor, such as M-CSF or 

GM-CSF to mature monocytes into macrophages (Fleetwood et al., 2009); (Wang et 

al., 2014b); (Vogel et al., 2014). This alone has been found to induce differences in 

gene expression of these cells; GM-CSF has been reported to induce a more 

inflammatory (M1) phenotype whereas M-CSF supports M2 (anti-

inflammatory) polarisation (Hamilton et al., 2014); (Mahdavi et al., 2017); (Jaguin et al., 

2013). However, it should be emphasised that these agents do not 

induce polarisation phenotypes to the same extent as polarising cytokines, and instead 

adopt a more intermediate/primed M1 or M2 phenotype (Vogel et al., 2014). For 

instance, upregulation of M2 factor IL-10 has been reportedly higher for M-CSF treated 

cells (versus GM-CSF treated), and M1 associated agents IL-6, TNF, IL-18 and IL-

1β were found to be higher in GM-CSF primed cells. Beyond this, these cells were 
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considered to be in an unpolarised state; for instance, M1 macrophages required 

stimulation from IFNγ in addition to GM-CSF for induction of IL-12 (Hamilton et al., 

2014); (Verreck et al., 2004). Additionally, it should be noted that cells primed with 

either colony stimulating factor appear to upregulate some subtype specific markers in 

response to additional cytokine polarisation stimuli (e.g. CD40 and CD64 for M1 cells 

following IFNγ stimulation and CD163 for M2c cells following glucocorticoid treatment), 

suggesting a degree of redundancy for these factors. However, it should be noted that 

there are differences in gene expression in these cells which must be considered when 

designing experiments (Hamilton et al., 2014); (Fleetwood et al., 2009); (Vogel et al., 

2014).  

Cell polarisation occurs through interaction of macrophages with agent in their local 

environment. This is discussed in more detail in Section 1.1.2: 

Macrophage polarisation: The bipolar model.  

  

1.1.9 Response to tissue damage/inflammation  

Upon inflammation, damage associated molecular patterns (DAMPS) and pathogen 

associated molecular patterns (PAMPS) including various cytokines and chemokines 

are released from necrotic cells or derived from bacteria respectively (Kawai and Akira, 

2010). Circulating monocytes are recruited to the site and differentiate into 

inflammatory “M1”-like cells. Once induced, M1 macrophages release pro-inflammatory 

cytokines (e.g. TNF, IL-6) and chemokines (e.g. CXCL9,10,11), produce reactive 

oxygen species and other damage molecules such as metalloproteases, serine and 

cysteine proteases and elastases (Bryan et al., 2012); (Wermuth and Jimenez, 

2015); (Reichner et al., 1999). This contributes to destruction and subsequent removal 

of the offending pathogen. Interestingly, mouse models have demonstrated cell 

populations analogous to the CD16+ monocyte (i.e. Gr-1- monocyte) subset patrolling 

the endothelium that become recruited to sites of IC deposition (Auffray et al., 2007). 

Similarly, in humans CD16+ cell infiltrates are found in the inflamed joints of auto-

antibody positive RA patients, suggesting a role for these cells in IC mediated 

inflammation (Kawanaka et al., 2002).  

Additionally, macrophages stimulate apoptosis of invading neutrophils and endocytose 

the cellular debris (Korns et al., 2011). Extracellular matrix degradation is a 

consequence of this destructive inflammatory processes and results in release of a 

number of agents; growth factors (e.g. TGFβ) and chemokines stimulate endothelial 

cell and fibroblast proliferation, and prepare the tissue for repair and 

angiogenesis (Horiguchi et al., 2012); (Butterfield et al., 2006). Immune resolution is 

triggered; pro-inflammatory transcription factors such as interferon response factor 
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(IRF)1 and NFκB are reportedly downregulated, and wound healing related factor IRF4 

is induced here (DiDonato et al., 2012); (Tamura et al., 2005).   

 

1.1.11 Roles in wound healing  

To promote inflammation resolution, macrophages either switch from the M1 to the M2 

phenotype in the tissue, or additional M2 cells are recruited through differentiation 

and polarisation of infiltrating monocytes. Studies into the mechanisms of inflammation 

resolution in mice used labelled monocytes and cytokine profiling to demonstrate this; 

classical Ly6C positive monocytes infiltrated tissue during active inflammation, where 

they matured into M1 macrophages which switched to the M2 state during tissue 

repair (Arnold et al., 2007), and Ly6C negative cells were reported to infiltrate repairing 

tissue and differentiate into M2-like cells (Nahrendorf et al., 2007). Here, M2 cells aid 

immune resolution by producing growth factors and proliferative cytokines, promoting 

the survival of endothelial cells and supporting the generation of myofibroblasts 

(increased collagen production) from fibroblasts for wound healing (Mosser and 

Edwards, 2008); (Koh and DiPietro, 2011); (Wermuth and Jimenez, 2015).   

  

1.1.12 Roles in disease  

Macrophages are frequently observed in many different tissues and their population 

size is found to increase drastically during a number of conditions including infection, 

cancer, obesity, autoimmunity and chronic inflammatory diseases (Laria et al., 2016b). 

The diverse role of macrophages in these different pathological conditions, highlights 

their heterogeneous and dynamic nature, and subsequent consequences in disease.  

Macrophages have some regulatory roles in adipose tissue that are disrupted during 

obesity; under physiological conditions, adipose macrophages adopt an M2-like 

phenotype under the influence of Peroxisome proliferator-activated receptor gamma 

(PPAR-γ) (Lumeng et al., 2007b); (Odegaard et al., 2007); (Murray and Wynn, 2011b). 

These cells secrete IL-10, which supports glucose tolerance and insulin signalling in 

adipocytes (Weisberg et al., 2003); (Murray and Wynn, 2011b). However, during 

obesity, low level inflammation is seen. Here, danger signals lead to NACHT, LRR and 

PYD domains-containing protein 3 (NLRP3) inflammasome activation along with an 

increase in number of tissue macrophages (Weisberg et al., 2003); (Chawla et al., 

2011). These cells are converted to more of an M1-like phenotype under these 

conditions, and subsequent production of pro-inflammatory cytokines (TNF, IL-6, 

Monocyte Chemoattractant Protein-1) reportedly promotes insulin resistance in 

adipose tissue (Lumeng et al., 2007b); (Chawla et al., 2011). This supports the 

development of a diabetic state (Murray and Wynn, 2011b).  
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M2a polarised cells have been reported to be involved in allergic responses in addition 

to their roles in the attenuation of inflammation (Anthony et al., 2006); (Bhatia et al., 

2011). There is, however, some disagreement as to the exact functioning of 

macrophages in these conditions; some reports suggest that they suppress 

inflammation (Lee et al., 2015) whilst others that these cells drive the type-2 

response (Mathie et al., 2015b); (Murray and Wynn, 2011b). Although this could be to 

some degree dependent on disease phase and location of the macrophages. For 

instance, in asthma macrophages found in different lung compartments have been 

observed to have pro and anti-inflammatory functions, although the data surrounding 

this is not completely clear; alveolar macrophage (AM) depletion was found to induce a 

Th-2 allergic response in mouse asthma models which was reversed by adoptive 

transfer of AMs from healthy mice (Mathie et al., 2015a); (Lauzon-Joset et al., 

2014); (Jiang and Zhu, 2016). Conversely, other studies described attenuation of 

allergic (Th-2) inflammation in mouse asthma models upon AM depletion (Lee et al., 

2015). It has been suggested that this could related to the origin of the 

macrophages; (Zasłona et al., 2014) reported that increased infiltrating monocytes in 

the lung contributed to inflammation in murine models, and that this was decreased 

upon depletion of circulating monocytes. Hence different groups of macrophages in the 

lung may have distinct functions.  

Macrophages appear to have altered phenotypes in some autoimmune and 

inflammatory diseases; for instance, SLE macrophages are reported to demonstrate 

defective clearance of apoptotic cells. Evidence for this includes results from SLE 

lymph node biopsies where increased apoptotic cell bodies were found near the 

germinal centers (Ren et al., 2003), and experiments where sera from SLE patients 

decreased phagocytic capacity of healthy control macrophages in vitro (Baumann et 

al., 2002). Additionally, the macrophage phenotype identified in this disease is 

associated with increased production of factors such as TNF, IL-6, IL-10 and type 1 

interferons which can in turn increase auto-antibody production by B cells (Laria et al., 

2016a); (Kavai and Szegedi, 2007).   

Investigations of macrophages in the spondyloarthropathies revealed an increase in 

number of cells in peripheral joints. Interestingly, a larger fraction of macrophages 

expressing M2 associated markers (such as CD200R and CD163) were identified in 

these conditions, versus reports for disorders such as RA. Hence M2 cells and their 

pro-fibrotic functions are implicated in pathogenesis of spondyloarthritis (Baeten et al., 

2002); (Laria et al., 2016b).   

Involvement of macrophages in RA will be discussed in detail in Section 1.4.5: Roles of 

macrophage and other cells in RA.  
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1.2 Macrophage cell lines as in vitro model systems   

1.2.1 Different cell line models   

As mentioned previously, macrophages are characteristically heterogeneous cells with 

phenotypes that vary depending on their origin, location and exogenous signals. It 

should be noted that any variation in genetic background of monocytes from different 

donors may alter responses to stimuli and risk masking any functional changes that 

occur on exposure to different stimuli; variants in genes coding for cytokine receptors 

or FcγRs may affect how cells respond to cytokine or IC stimuli. For instance, 

interferon-γ (IFNγ) polymorphisms have been reported to alter susceptibility to 

infections in Chinese cohorts (Ding et al., 2008). Additionally, physiological factors 

such as diet, exercise and exposure to infectious agents may alter the phenotype of 

CD16+ monocytes (Poitou et al., 2011); (Timmerman et al., 2008); (Kwissa et al., 

2014). Additionally, only limited numbers of tissue macrophages can be isolated from 

human subjects and procedures to do so are by necessity invasive (Daigneault et al., 

2010); (Gordon et al., 2000). In terms of PBMC monocytes, 0.2-0.9 x 10⁶ cells can be 

isolated from 1ml of blood 

(source: https://www.stemcell.com/media/files/wallchart/WA10006-

Frequencies_Cell_Types_Human_Peripheral_Blood.pdf) with 2.2 million being required 

for a 100mm tissue culture plate (according to thermos-fisher scientific, 

source: https://www.thermofisher.com/us/en/home/references/gibco-cell-culture-

basics/cell-culture-protocols/cell-culture-useful-numbers.html). If primary MDMs from 

healthy donors were used, to ensure replicability of experiments, blood from the same 

donor would be required for all experiments to ensure that no genetic variability was 

present to confound results. As approximately 750mls of blood can be drawn every 8-

16 weeks (source: http://www.redcrossblood.org/donating-blood/donation-faqs), this 

would be a major limiting factor when considering experimental feasibility. One way to 

address these inherent challenges in the use of primary cells is to use monocytic cell 

lines as model systems for multiple, replicable experiments with genetically identical 

baselines (Chanput et al., 2013).   

A number of human cells lines have been characterised for the study of human 

monocytes and macrophages; HL-60, U937, KG-1, HEL, ML-2, Mono MAC 6 and THP-

1 are some examples (Auwerx, 1991). Different cell lines are at different stages of 

maturity, dictating their applicability and protocols required to induce a macrophage-like 

state (Chanput et al., 2013). For instance, HL-60 cells are promyelocytic and require 

differential stimuli to achieve a monocyte or macrophage-like phenotype (Collins, 

1987); (Rovera et al., 1979). Conversely THP-1 cells were monocytes derived from 

the blood of an acute myeloid leukemia (AML) patient (Tsuchiya et al., 1980) and U937 

monocytes were originally isolated from tissue and are at a much more mature stage of 

https://www.stemcell.com/media/files/wallchart/WA10006-Frequencies_Cell_Types_Human_Peripheral_Blood.pdf
https://www.stemcell.com/media/files/wallchart/WA10006-Frequencies_Cell_Types_Human_Peripheral_Blood.pdf
https://www.thermofisher.com/us/en/home/references/gibco-cell-culture-basics/cell-culture-protocols/cell-culture-useful-numbers.html
https://www.thermofisher.com/us/en/home/references/gibco-cell-culture-basics/cell-culture-protocols/cell-culture-useful-numbers.html
http://www.redcrossblood.org/donating-blood/donation-faqs
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development (Chanput et al., 2013). Some evidence suggests that Mono MAC 6 cell 

line (isolated from blood of a monoblastic leukaemia patient) is most suitable for the 

study of mature monocytes due to their mature marker expression (not found on other 

cell lines) and abilities to phagocytose opsonised erythrocytes and 

mycobacteria (Friedland et al., 1993); (Ziegler‐Heitbroc et al., 1988); (Shattock et al., 

1994). However, there has not been a great deal of research performed on these cells 

(including induction into macrophages) so reliability for certain assays is unclear, 

particularly with regard to the experiments planned for this project. THP-1 cells appear 

to be the most commonly used line in the literature, followed by U937 cells (Qin, 

2012); (Chanput et al., 2013); (Chanput et al., 2012). Upon stimulation, THP-1 cells are 

reported to adopt a phenotype more closely related to that of PBMC macrophages 

when scrutinised for morphology, gene expression, certain antigens and flow cytometry 

characteristics and will be the cell line of focus here (Chanput et al., 2013); (Chanput et 

al., 2014); (Chanput et al., 2015). It is important to emphasize that these are cancer 

cell lines and that the malignant phenotype has been introduced through different types 

of mutations; generally relating to proliferative capacity or inhibiting a key 

pathway (Adati et al., 2009); (Sharif et al., 2007). Hence specific mutations in cell lines 

of interest must be considered if the study is aimed at examining a particular pathway; 

for instance, the KG-1 cell line has a very high p-Syk/Syk (involved in Immunoreceptor 

tyrosine-based activation motif phosphorylation, and therefore 

activating FcγR signalling) ratio at rest, suggesting that these cells have a mutation 

which will constitutively activate downstream pathways; for instance those related to 

cell cycle (Hahn et al., 2009). Hence use of these cell lines would be inappropriate in 

any studies examining signalling through related receptors (e.g. activating FcγRs).   

It should be noted that although HL-60 cells were isolated from 

a promyeocytic leukaemia patient, these cells resemble banded neutrophils rather than 

fully multilobulated polynuclear cells. Hence, they will not be the most appropriate cell 

line for the study of macrophage differentiation and polarisation (Collins, 1987).  Cell 

line advantages and disadvantages are summarized in Appendix 4, Table 4.2. 

  

1.2.2 THP-1 cell features and comparisons with primary cells  

THP-1 cells tend to mimic the phenotype of primary macrophages upon differentiation; 

an increase in cytoplasm and number of mitochondria and ribosomes have been 

described (Daigneault et al., 2010) along with expression of some macrophage 

receptors (e.g. CD11b, CD14 and CD36) (Schwende et al., 1996); (Park et al., 

2007); (Zhou et al., 2010), reports of morphological similarities and cell 

adherence (Tsuchiya et al., 1982); (Schwende et al., 1996). THP-1 cells also adopt 

some macrophage-related functions such as phagocytosis, lipid accumulation and 
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antigen presentation (Schwende et al., 1996). As with primary macrophages, THP-1 

cells may polarise upon exposure to cytokines; a feature that will be discussed in more 

detail below (Caras et al., 2011); (Spencer et al., 2010).  

Some differences in responsiveness of these cells have however been reported; 

decreased responsiveness to LPS (potentially due to lower CD14 expression) and 

other compounds have been described and must be held in consideration when 

examining macrophage function using these cells experimentally (Heil et al., 

2002); (Bosshart and Heinzelmann, 2016). However, as some of these responses have 

been found to vary following different culture conditions, it is unclear whether this is an 

effect of experimental variance or a cell line limitation.  

Despite the numerous reports highlighting advantages of their use, the malignant origin 

of THP-1 cells should be emphasised and genetic variances between these AML cells 

and MDMs from health donors should be highlighted. A number of leukaemia related 

aberrations were identified in this cell line. For instance, AML related fusion 

of MLL and MLLT3 genes was identified for THP-1 monocytes. The resulting protein is 

documented to prevent the normal maturation of haematopoietic cells which implies 

differences in the maturation of THP-1 monocytes and MDMs, which is likely to affect 

their functioning (Adati et al., 2009); (Odero et al., 2000); (Mueller et al., 2009).  

Deletions in a number of regions have also been reported; cyclin dependant kinase 

coding genes CDKN2A and CDKN2B are credited as tumour suppressing genes, due 

to the involvement of their relative proteins in cell cycle regulation. As in AML, THP-1 

cells are described to have deleterious changes in these regions (Adati et al., 2009). 

Deletions in PTEN have also been identified; as this protein regulates activity of Akt, 

disruption of function will promote cell survival and hence contribute to 

the immortalised THP-1 phenotype (Dahia et al., 1999); (Adati et al., 2009).   

Some additional deletions have also been described for some regions of chromosome 

1 which contain portions of genes KIAA0495 and TP73. The latter is a homologue 

for TP53 which codes for P53, a well-documented protein involved in cell cycle and cell 

death that is linked to numerous cancers (Adati et al., 2009); (Pluta et al., 2006). Hence 

the protein coded by TP73 may have a similar function in malignant cells.   

It is important to consider how immune pathways commonly seen in primary cells are 

represented in THP-1 monocytes; for instance, signalling through the immunoreceptor 

tyrosine-based activation motif (ITAM) (via ICs) (Ghazizadeh et al., 1994) and 

TLR4 (via LPS) has been reported for THP1 cells. For the former, co-precipitation 

studies and in vitro kinase activity assays revealed kinase activity compatible with 

tyrosine phosphorylation of FcγRIIa along with engagement and activity of Src protein 

tyrosine kinases. In terms of LPS signalling, luciferase assays were used to 

examine NFκB activity (used as a reporter of LPS signalling) in a series of THP-1 cells 
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with a number of signalling molecules knocked out; as in primary cells, myeloid 

differentiation primary response 88 (MyD88), interleukin 1 receptor associated kinase 

(IRAK) and interleukin 2 receptor associated kinase (IRAK2) were found to be essential 

for activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) 

via LPS (Zhang et al., 1999). As discussed previously however, cytokine release as a 

product of LPS ligation is lower in THP-1 macrophages versus monocyte derived 

macrophages (MDMs) (Schildberger et al., 2013). It should be noted that the U937 

monocytic cell line have comparatively poor responses to LPS, and would hence be 

less desirable for studies aiming to polarise macrophages into an inflammatory 

phenotype (Sharif et al., 2007). The MAP3K7 pathway, involved in differentiation of 

monocytes to macrophages has been reported in THP-1 cells; here the cell line was 

used to study signalling events through this pathway 

using kinomics and phosphoproteomic technicues (Richter et al., 2016). As these 

pathways appear to reliably represent PBMC macrophages, it is reasonable to use 

THP-1 cells in studies examining macrophage polarisation.   

  

1.2.3 Differentiation protocols  

Due to their frequent use, there is a large amount of information available on the 

culture conditions and methods that can be used to transform THP-1 cells into 

differentially polarised macrophages. One consideration is the agent that should be 

used to differentiate these monocyte-like cells; Phorbol-12-myristate-13-acetate (PMA), 

M-CSF and 1,25-dihydroxyvitamin D3 (VD3) have all been reported to induce a 

macrophage-like phenotype in THP-1 cells (Schwende et al., 1996); (Park et al., 

2007); (Daigneault et al., 2010). These agents activate separate pathways to induce 

monocyte differentiation and so have variable effects on the cells; when treated with 

PMA (a diacylglycerol analogue which activates protein kinase C), THP-1 cells appear 

to adopt a phenotype that more closely resembles PBMC-macrophages. For instance, 

macrophage-like characteristics such as adherence, phagocytic capability, decreased 

proliferation and expression of surface molecules (CD14, CD11b) were all more 

strongly induced using PMA compared with VD3 (Schwende et al., 

1996); (Daigneault et al., 2010); (Qin, 2012). Due to its low efficacy, M-CSF tends not 

to be used as a stimulus for cell lines unless in combination with IFNγ, which would 

only allow induction of M1-like cells (Chanput et al., 2014).   

PMA is generally considered the most effective agent for differentiating monocytes. 

Reports have claimed that macrophage differentiation characteristics such as 

cytoplasmic to nuclear ratio, mitochondrial and lysosomal numbers and differentiation-

dependent cell surface markers are induced in a manner similar to that of 

MDMs (Chanput et al., 2014); (Daigneault et al., 2010). Thus, this agent is frequently 
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used in THP-1 differentiation studies. However, there is no standardised protocol with 

respect to the concentration of PMA that should be used and duration of time that cells 

should be exposed to it for. For instance, huge ranges of PMA have been used to 

induce differentiation that range from 2.5-400ng/ml (Park et al., 2007); (Genin et al., 

2015); (Daigneault et al., 2010); (Lund et al., 2016); (Jiang et al., 2016a); (Jiang et al., 

2017); (Kohro et al., 2004); (Feng et al., 2004); (Tulk et al., 2015); (Hirakata et al., 

2004); (Maeß et al., 2014). In addition, exposure times ranging from 3-72 hours have 

been applied (Chanput et al., 2014); (Daigneault et al., 2010). This will increase inter-

experimental variability as PMA induces a strong activation signal which can lead to 

production of protein kinase C products, not related to 

macrophage polarisation state (Zeng et al., 2015); (Park et al., 2007). Previous reports 

have concluded that concentrations of PMA exceeding 100ng/ml are not 

physiologically relevant, and that applications of high quantities of this agent can 

induce an M1 bias in macrophages (Park et al., 2007); (Maeß et al., 2014). Importantly, 

some studies have reported that reduced PMA induction can render cells more 

responsive to additional stimuli, suggesting a more plastic phenotype (Maeß et al., 

2014). Taken together, this implies that differentiation by PMA is not consistent, and 

that the variability affects the phenotype; an issue that has provided obstacles when 

identifying an optimal protocol in the past.  

 Rest period following initial differentiation is another important aspect of THP-1 

differentiation protocols; the longest described appeared to be 10 days (Solberg et al., 

2015) and some protocols eliminated recovery time completely (Chanput et al., 

2010); (Tulk et al., 2015). Rest period tends to be useful for reducing undesirable 

effects of PMA, but care must be taken not to de-differentiate the cells; due to the 

dynamic nature of these cells, culture in stimulus-free media for extended periods of 

time may result in cells losing their phenotype and becoming detached, particularly if 

initial stimuli were not sufficient to induce a robustly differentiated phenotype (Park et 

al., 2007); (Chanput et al., 2013); (Spano et al., 2013); (Solberg et al., 2015).   

Another discrepancy in THP-1 protocols is that of polarisation treatments. As with 

primary monocytes, M1 polarisation is generally achieved through addition of LPS 

and IFNγ, M2a via IL-4 and M2c with IL-10. However, the concentrations 

of polarising agents are not always consistent; for M1 cells, the majority of protocols 

tend to keep levels of IFNγ consistent at 20ng/ml, but LPS concentrations vary widely; 

some studies exclude this TLR4 agonist completely, whereas others use it in 

concentrations of up to 250ng/ml (Genin et al., 2015); (Chanput et al., 2013); (Sun et 

al., 2016); (EngstrÖM et al., 2014). As LPS induces some pathways that are not 

implicated in interferon signalling, it is likely that its presence as a stimulus would alter 
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the macrophage transcriptome. IL-10 and IL-4 are generally used at 20ng/ml for M2c 

and M2a cells, respectively (Chanput et al., 2013); (Qin, 2012).  

In terms of cytokine exposure duration for macrophage polarisation, times have been 

found to vary between protocols, which may also affect the expression profile of genes 

in these cells, since transcription of different markers will be under variable levels of 

regulation, and hence be affected by degree and duration of cytokine 

exposure (Chanput et al., 2012); (Daigneault et al., 2010); (Solberg et al., 

2015); (Park et al., 2007). Type of plasic used should also be noted as this affects 

macrophage growth and activation (Murray et al., 2014). 

  

1.2.4 M2 polarisation and THP-1 cells  

Generally speaking, reports have suggested that it is more difficult to polarise THP-1 

macrophages into the M2 state than that for the inflammatory M1 cells; reports 

demonstrated decreased induction of cell surface markers and cytokines (including 

CCL1, 16, 17, 18, 22, 24 and CCR (chemokine receptor) 2, CXCR (Chemokine (C-X-C 

motif) receptor) 1 and 2) upon IL-4 stimulation versus primary cells (Chanput et al., 

2013). This could, however, be linked to increased activity of PMA; this agent has been 

found to induce M1 cytokine CCR7 at 100ng/ml, suggesting M1 

macrophage activation (Maeß et al., 2014). Reduction of this stimulant reportedly 

increases responsiveness of THP-1 cells to a number of different polarising signals, 

including IL-10 (an M2 polarising molecule), so the M2 polarisation issue may reflect 

deficiencies in current protocols rather than cell line used (Maeß et al., 2014); (Park et 

al., 2007).  

  

1.2.5 Myeloid cell differentiation in the presence of immune complexes  

Changes in macrophage phenotypes in response to an IC stimulus have not been 

studied in a great deal of detail; most of the literature focuses on the phenotype of M2b 

cells, originally characterised by Anderson and Mosser (Anderson and Mosser, 2002). 

Here, FcγR ligation is described to reverse the TH1-like phenotype in mouse 

macrophages and induce production of IL-10. Additional studies have interrogated the 

transcriptome of human cells induced in this manner, and have characterised this 

phenotype, but not looked in any detail as to how other stimuli interact with this 

signal (Xue et al.).   

Differentiation of FcγR expressing myeloid cells is reportedly influenced by ICs. More 

specifically, introduction of ICs into an in vitro system reportedly affects dendritic cell 

and osteoclast differentiation pathways. In dendritic cells, FcR crosslinking seemingly 

induces more macrophage-like phenotypes, or DCs with reduced antigen presentation 

cell (APC) activity and greater T-cell activating capabilities (Jancar and Crespo, 
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2005); (Laborde et al., 2007); (Köller et al., 2004); (Tanaka et al., 2009). Interaction of 

IC with FcR on myeloid precursor cells has been implicated in osteoclastogenesis in 

studies on mice; increased osteoclast generation has been reported for cells treated 

with IC (Seeling et al., 2013). Dysregulation of osteoclast generation was particularly 

interesting in RA as this may be related to early bone loss and articular 

erosions (Grevers et al., 2013); (Seeling et al., 2013). Some reports claim that 

stimulation of macrophages with ICs cause shifts in cytokine production and even 

expression of some protein markers (Clavel et al., 2008), (Ambarus et al., 

2012); (Barrionuevo et al., 2003), implying a polarising function of ICs.   

Conversely, other studies have examined how engagement of FcγRs affects soluble 

factor production under a variety of conditions, but have only considered a small 

number of chemokines and cytokines (Sironi et al., 2006); (Stone and La Flamme, 

2016); (Ambarus et al., 2012). For instance, one study described production of CCL1 

(a chemokine found in rheumatoid synovium) upon FcγRII (a and b) ligation, in the 

presence of LPS or IL-1β (i.e. M2b stimuli). Additionally, enhanced production of IL-4 

induced CCL22 was also described with FcγRII engagement (Sironi et al., 2006). More 

recently, Stone and Flamme (2016) described an LPS+IC driven induction of IL-17A 

which was not perturbed by addition of IL-10 (M2c cytokine) or IL-12 (a cytokine driving 

the type 1 inflammatory response). Immobilised HAGG may be used as an in 

vitro surrogate for immune complexes bound to tissue (such as the cartilage pannus 

junction in RA); macrophages spread over the surface of these IgG-bound “targets” 

and upon failure to phagocytose them release lytic granules onto the region. This 

process is known as frustrated phagocytosis (Bainton et al., 1989); (Takemura et al., 

1986); (Wright et al., 2014). Ambarus et al.,  (2012) investigated the effect of HAGG 

and immobilised IgG on production of some agents in murine macrophages; HAGG 

appeared to enhance TLR induced IL-10 production, and a modest increase was 

recorded for TNF and IL-6 secretion. All three of these cytokines were significantly 

increased upon exposure to immobilised IgG. As described above, strength 

of signalling is affected by avidity, i.e. degree of crosslinking. Hence, depending on size 

of HAGG molecules, immobilized IgG could be binding more receptors, driving the 

differences in cytokine production (in addition to generation of substances as a 

consequence of frustrated phagocytosis).  

Early reports attempting to characterise the THP-1 cell line described expression 

of FcγRI and FcγRII, but not FcγRIII on these cells, with and without PMA or VD3 as 

differentiation stimuli (Fleit and Kobasiuk, 1991). Polarisation was not examined in this 

experiment, however, and efforts to distinguish the activating FcγRIIa and 

inhibitory FcγRIIb were not made. Additional reports have suggested 

that FcγRIIa recruits Src and induces protein kinase activity upon cross-
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linking (Ghazizadeh et al., 1994). This is the same method of signalling reported for 

primary monocytes, suggesting that this pathway is not perturbed in THP-1 cells.   

  

  

1.3 Fc-gamma Receptors  

Non-classical monocytes and macrophages are known to express all 

activating Fcγ receptors (except FcγRIIIb) along with the inhibitory FcγRIIb (CD32b). 

Classical monocytes, as described above, do not express FcγRIIIa (CD16a) but this 

receptor is upregulated upon macrophage differentiation (Gordan et al., 2015). Taken 

together with the data indicating that ICs influence 

macrophage polarisation (in Section 1.2.5), it may be suggested 

that signalling through FcγRs can have some influence on macrophage development. 

Therefore, these receptors must be considered when studying how macrophages are 

activated under physiological conditions.   

  

1.3.1 Fc receptor subtypes and signalling pathways  

Fc receptors are a family of proteins that bind immunoglobulins and are found on a 

number of immune cells, including monocytes, macrophages, eosinophils, DCs, mast 

cells, natural killer (NK) cells, B cells and T-cells (Barrionuevo et al., 2003); (Hogarth 

and Pietersz, 2012); (Chauhan et al., 2015). Expression profiles of these receptors on 

different immune cells are summarised in Table 1.3.1.   

The Fc receptor subgroup of interest here is that of Fc gamma receptors (FcγRs), 

which bind IgG antibodies by the Fc region and are implicated 

in modulating inflammation and are genetically 

associated with a number of autoimmune diseases such as RA and SLE (Vogelpoel et 

al., 2015); (Hargreaves et al., 2015). There are six different FcγR subtypes in humans 

(FcγRI/CD64, FcγRIIa/CD32A, FcγRIIb /CD32B, FcγRIIc/CD32C, FcγRIIIa/CD16A, 

and FcγRIIIb/CD16B) which can be classified according to affinity for IgG 

and signalling activity.   

FcγRI is a high affinity receptor and can bind both monomeric immunoglobulin G (IgG) 

and IgG-containing ICs (Hargreaves et al., 2015). Conversely, the other receptors 

are low affinity and will hence only bind IC in a multivalent fashion (Nimmerjahn and 

Ravetch, 2010); (Nimmerjahn and Ravetch, 2008).   

With respect to signalling, most of the receptors (FcγRI, FcγRIIa, FcγRIIc and FcγRIIIa) 

are activating; these receptors initiate cellular signalling through the ITAM, which is 

either integral to the cytoplasmic domain of the receptor protein (FcγRIIa, FcγRIIc) or 

through an accessory signalling chain such as the common gamma chain or zeta 

chains (FcγRIIIa, FcγRI) (Guilliams et al., 2014); (Hargreaves et al., 2015). 
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ITAM signalling triggers downstream responses via Syk that contribute to various 

inflammatory functions, such as cytokine release, production of reactive oxygen 

species and increased phagocytosis. It should be noted, however, that responses are 

dependent on cell type and the precise FcγR cross-linked (Nimmerjahn and Ravetch, 

2008); (Hargreaves et al., 2015). Furthermore, these receptors vary in their binding 

preferences for different IgG subclasses according to flow cytometry and surface 

plasmon resonance (SPR) data produced by Bruhns et al.,  (2009) (Bruhns et al., 

2009); these differences are summarised in Table 1.3.2.  

FcγRIIb is the only inhibitory receptor, which signals through an immunotyrosine based 

inhibitory motif (ITIM) in its cytoplasmic tail. Generally speaking, Src protein tyrosine 

kinase will phosphorylate the tyrosine residue in the ITIM sequence. 

The phosphotyrosine subsequently recruits either inositol phosphatase SHIP or SH2 

domain containing protein tyrosine phosphatases SHP-1 and SHP-2. Recruited SHIP 

hydrolyses membrane phosphoinsitide and releases membrane pleckstrin homology 

domain (PH domain) containing molecules. Consequential decreases in calcium 

release from intracellular stores results in a decrease in calcium signalling. SHP-1 

removes phosphate groups from substrate proteins, preventing signalling through 

these molecules. Additionally, upon phosphorylation of FcγRIIb associated ITIM, PH 

domain containing molecule Akt is recruited and interacts with Dok (RasGAP binding 

protein), hence inhibiting Ras and Erk signalling (Billadeau and Leibson, 2002); (Long, 

2008).The overall paradigm is that the ratio of activating and inhibitory receptors on Fc 

receptor expressing cells dictates the threshold for activation and thus cellular 

functions (Nimmerjahn and Ravetch, 2008); (Hargreaves et al., 2015). This 

is summarised in Figure 1.3.1.  

FcγRIIIb is a glycosylphosphatidylinositol (GPI)-linked receptor found on neutrophils 

and eosinophils lacking activating/inhibitory signalling domains; there has been some 

discussion surrounding the function of this receptor; it is possible that it acts as a decoy 

receptor which acts to reduce IgG bound to the activating receptors. Alternative 

theories describe this protein as a molecular trap for ICs in the vicinity of activating 

receptors, hence enhancing their signalling (Kurosaki and Ravetch, 

1989); (Guilliams et al., 2014); (Nagelkerke and Kuijpers, 2014). Earlier reports have 

also suggested that this receptor can signal through complement receptor 3 (Galon et 

al., 1996), through FcγRIIa (Chuang et al., 2000) or via lipid rafts (Fernandes et al., 

2006).   

 

 

 

 



19 
 

Paradoxical inhibitory signalling has recently been reported to be generated through 

ITAM receptors (Ben Mkaddem et al., 2014); (Pfirsch-Maisonnas et al., 2011). This can 

be induced following the binding of monomeric IgG or specific F(ab)2 fragments. The 

high avidity binding with immune complexes, described above, stimulates complete 

phosphorylation of tyrosine residues and subsequent Syk activation (Hirsch et al., 

2017). Inhibitory signals are generated through low avidity binding; 

here, monophosphorylation of the membrane distal tyrosine leads to transient 

recruitment of Syk, actin depolymerisation and translocation of phosphatases SHIP 

and SHP1 into the lipid rafts (Ivashkiv, 2011); (Pfirsch-Maisonnas et al., 2011). These 

enzymes deactivate high-avidity signalling by dephosphorylating signalling molecules 

related to activating pathways (Barrow and Trowsdale, 2006); (Hirsch et al., 2017). 

Furthermore, iITAM signalling induces the formation of large intracellular inhibitory 

complexes, termed inhibisomes, which have the potential to deactivate multiple 

membrane receptors following internalisation. Hence FcγR signalling is under multiple 

complex levels of control that are ultimately dependent on IC composition and local 

environmental factors.   

There are 4 distinct subclasses of IgG which are given in Table 1.3.2; these subclasses 

have variable affinities for the different FcγRs (Bruhns et al., 2009) and some are 

induced by specific stimuli. Examples are given here; production of IgG1 can be 

triggered by soluble and membrane protein antigens, viruses and allergens. The latter 

also induces production of IgG4 (Vidarsson et al., 2014); (Aalberse et al., 1983); 

(Ferrante et al., 1990). IgG2 is induced by bacterial capsular polysaccharide antigens 

(as well as in response to increased levels of IgG1 and 3) (Barrett and Ayoub, 1986); 

(Vidarsson et al., 2014), and IgG3 release can be triggered by viral infection (Ferrante 

et al., 1990).   

 

As different FcγR subtypes are only expressed on certain cell types (Table 1.3.1, Smith 

and Clatworthy et al., 2010), presence of specific IgG subclasses will to some degree 

dictate which cells are activated. For example, as IgG2 is induced by bacterial capsular 

polysaccharides (Barret and Agoub, 1986) and does not preferentially 

bind FcγRIIb,(Bruhns et al., 2009), cells expressing FcγRIIb only (such as basophils 

(Smith and Clatworthy et al., 2010)) will not be as strongly affected by infections with 

pathogens containing this antigen. Additionally, as IgG2 appears to trigger activating 

receptors (Table 1.3.2), it would be logical to assume that this subtype would drive a 

highly inflammatory response.  

IgG glycosylation further controls antibody responses through the FcγRs; glycosylation 

of N297 of the CH2 domain of the IgG-Fc region has been described. Various 

IgG glycoforms have been identified, and confer structural changes which in turn have 
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an impact on antibody effector function. For instance, natural killer (NK) cells treated 

with IgG engineered to have lower levels of fucose or higher levels of bisecting N-

acetylglucosamine (inhibits addition of fucose) in vitro demonstrated increased 

antibody dependent cell cytotoxicity activity (Shields et al., 2002); (Umaña et al., 1999). 

Additionally, removal of terminal galactose from IgG antibodies reduced classic 

complement activation (Boyd et al., 1995), and mouse models demonstrated 

that sialylated IgG may increase expression of FcγRII (orthologue of 

human FcγRIIb) (Anthony and Ravetch, 2010). However, the latter example must be 

considered with caution as there are a number of differences between human and 

mouse FcγRs.   

Differences in glycosylation patterns have been reported for different isotypes (Keusch 

et al., 1996), age differences (Yamada et al., 1997), during pregnancy (KIBE et al., 

1996) or in the case of infection (Ackerman et al., 2013) and inflammation (Irani et al., 

2015); (Malhotra et al., 1995). Of interest here, a distinct glycoform of IgG is reportedly 

increased in RA patients; circulating IgG glycoforms which lack galactose and 

terminate with N-acetyl glucosamine are described, where the N-acetyl glucosamine 

residue appears to be more accessible for interactions with mannose binding protein. 

Subsequent activation of complement is seen, a factor which may further promote 

inflammation in this condition (Malhotra et al., 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.1. A simplified schematic of how the balance between activating and 

inhibitory signals dictates the threshold for immune complex-driven activation in cells. 

FcγRIIa = Fc gamma receptor IIa, FcγRIIb = Fc gamma receptor IIb, IgG= 

immunoglobulin G, ITAM = Immunoreceptor tyrosine-based activation motif, ITAMi = 

inhibitory Immunoreceptor tyrosine-based activation motif, ITIM = Immunoreceptor 

tyrosine-based inhibitory motif, F(ab’)2 = fragment antigen binding 2 
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Table 1.3.1. Table of expression of different FcγRs on different immune cells, adapted 

from a Figure by Smith and Clathworthy (2010) (Smith and Clatworthy, 2010) 

 FcγRI FcγRIIa FcγRIIb FcγRIIc FcγRIIIa FcγRIIIb 

Lymphoid 

cells 

N/A N/A B cells, plasma 

cells 

NK cells NK cells, T 

cells 

N/A 

Myeloid cells Monocytes, 

dendritic cells, 

macrophages 

Monocytes, 

dendritic cells, 

macrophages, 

platelets 

Monocytes, 

dendritic cells, 

macrophages 

N/A Monocytes, 

dendritic cells, 

macrophages 

N/A 

Granulocytes Neutrophil, 

eosinophil 

Neutrophil Neutrophil, 

basophil and 

mast cell 

N/A N/A Neutrophil, 

mast cell, 

eosinophil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Table 1.3.2. Table comparing differences in binding preferences for FcγRs in relation 

to the different isotypes of IgG (formed into immune complexes) using CHO 

transfectants, adapted from a Figure by Bruhns et al.,  (2009). Here, - indicates no 

binding, + low levels of binding, ++ intermediate binding and +++ high levels of binding. 

This was determined using indirect immunofluorescence.  

 IgG1 IgG2 IgG3 IgG4 

FcγRI +++ - +++ +++ 

FcγRIIa (H131) +++ ++ +++ ++ 

FcγRIIa (R131) +++ + +++ ++ 

FcγRIIb + - ++ + 

FcγRIIc + - ++ + 

FcγRIIIa (F158) ++ - +++ - 

FcγRIIIa (V158) +++ + +++ ++ 

FcγRIIIb (NA1) +++ - +++ - 

FcγRIIIb (NA2) +++ - +++ - 

FcγRIIIb (SH) +++ - +++ - 

 

 

1.3.2 Genetic variants and disease 

FcγRs are a highly homologous family of receptors. Single nucleotide polymorphisms 

(SNPs) and copy number variants (CNVs) have been reported for the genes, some of 

which are reported to have a functional impact on IgG interactions. As emphasised 

previously, the balance between activating and inhibitory signalling dictates the 

threshold for IC-driven activation (Figure 1.3.1), and subsequent activity of the cell. 

Hence, variants affecting this balance can influence susceptibility to autoimmunity, 

responses to pathogens and determine response to biologic therapies (i.e. monoclonal 
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antibody treatments) (Willcocks et al., 2008); (Mueller et al., 2013); (Machado et al., 

2012); (Mellor et al., 2013); (Weng and Levy, 2003).  

One example for FCGR2A is the 131H allotype; this is reported to have a higher affinity 

for IgG2 versus the 131R allotype. Expression of genes containing this variant alters 

the FcγR activating/inhibitory balance, and lower the threshold for inflammation and 

onset of autoimmunity (Hargreaves et al., 2015); (Clark et al., 1991); (Duan et al., 

2014); (Lee et al., 2008). This could be the reason for association of this allotype with 

autoimmune conditions such as lupus nephritis (Song et al., 1998) in some 

populations. The absence of the 131H allotype would also reduce immune activation in 

response to IgG2 driven inflammation (e.g.in response to bacterial capsular 

polysaccharides), increasing susceptibility to some infections (Barrett and Ayoub, 

1986). 

For FCGR2B, the 232T allotype produces a protein that does not migrate into 

signalling rafts. As this is an inhibitory receptor, this variant would reduce the level of IC 

signalling required for immune cell activation, hence rendering subjects more 

susceptible to conditions such as SLE (Su et al., 2004); (Bolland and Ravetch, 2000).  

One example for FCGR2C is the Q57X variant; protein is absent when genotype is 57X 

as this change generates a premature stop codon, which can alter the 

activating/inhibitory ratio on immune cells (Van der Heijden et al., 2012); (Hargreaves 

et al., 2015).  

For FCGR3A, the 158 V SNP has been reported; this variant demonstrates higher 

affinity for IgG1 and 3 and binds IgG4 (versus the 158F allotype), lowering the 

threshold for cell activation upon antibody binding. The 158V allele has been 

associated with RA in some populations, and an increased susceptibility to 

inflammatory signals could be the mechanism here (Bournazos et al., 2009) (Li et al., 

2013); (Hargreaves et al., 2015). Additionally, FCGR3A copy number correlates with 

protein expression, and increased expression of this protein confers risk for RA and 

SLE. Again this  through lowering the threshold for activating signalling in FcγR 

expressing immune cells (Hollox et al., 2009).  

There are allotypic variants reported for FCGR3B; neutrophil antigen (NA)1, NA2 and 

SH, where SH is seen in the presence of the NA2 allele. NA1 is reported to have a 

higher affinity for IgG and 3 (Salmon et al., 1990). The functional impact of this variant 

will depend on whether FcγRIIIb acts as a decoy receptor or as part of a molecular trap 

(as described previously). A low copy number of FCGR3B is associated with SLE and 

RA; copy number correlates with degree of protein expression and pathology is thought 

to be related to decreased uptake of IC, hence aggrevating auto-antibody driven 
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conditions such as RA and SLE (Willcocks et al., 2008); (Robinson et al., 2012); (Chen 

et al., 2014b). 

 

1.4 Rheumatoid Arthritis 

1.4.1 Pathophysiology 

RA is a chronic inflammatory disease affecting approximately 1% of the population. 

This condition is characterised by synovial inflammation, synovial hyperplasia, and 

production of autoantibodies such as rheumatoid factor (RF) and anti-citrullinated 

peptide antibodies (ACPA) (Choy, 2012); (McInnes  and Schett 2011). 

Although the exact cause of RA is unknown, genetic and environmental factors are 

thought to contribute to disease susceptibility. There are a number of genes associated 

with RA, the most prominent being HLADRB1, followed by PTPN22 (Burton et al., 

2007). The association with HLA-DRB1 risk alleles is well established, with increased 

susceptibility found in patients with alleles containing a “QKRAA” motif, referred to as 

the shared epitope (Burton et al., 2007); (McInnes  and Schett 2011). (Konda Mohan et 

al., 2016) recently examined these genes in more detail and determined that HLA-

DRB1 *01, *04 and *10 alleles confer risk for RA, were other allotypes are protective 

(HLA-DRB1 *03, *07, *11, *13). Mechanisms have been suggested for this link that 

relate to the role of human leukocyte antigen (HLA)-DRβ in the presentation of 

antigens to T helper cells, triggering an inflammatory response (De Almeida et al., 

2010); (Holoshitz, 2013); (Choy, 2012); (Okada et al., 2014); (McInnes  and Schett 

2011). Recent investigations have attempted to correlate these risk alleles with 

responses to TNF inhibitor therapy but found no associations, even when stratified for 

ACPA status (Jiang et al., 2016b). However, associations have been reported between 

certain HLADRB1 alleles and levels of ACPA; for instance HLADRB1 *04:04, *04:01 

and *01:01 alleles are associated with a significant increase in ACPA in RA patients 

(Gerstner et al., 2016).  

PTPN22 codes for lymphoid protein tyrosine phosphatase (Lyp), a protein tyrosine 

phosphatase which is expressed exclusively in immune cells (Burn et al., 2011). Lyp 

has been reported to act as a regulator of B and T-cell activation and variants in the 

corresponding gene have been linked to RA along with a number of other autoimmune 

diseases (including SLE, autoimmune thyroid disease, type 1 diabetes, idiopathic 

juvenile arthritis) (Hinks et al., 2005). This again places B and T-cells as central to the 

pathogenesis of RA. Additionally, distinct isoforms of Lyp have been identified in tissue 

from patients with inflammatory diseases, which may indicate one mechanism for how 

these mutations contribute to pathogenesis (Diaz-Gallo and Martin, 2012).   
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Over 100 RA associated genes have been identified at genome wide significance 

levels; polymorphisms in agents involved in STAT4 and IL-10 signalling and in 

PSOR1C1, PTPN2, MIR146A, CCR6 and ICAM1 have been reported. Additionally, 

SNPs in PSOR1C1, PTPN2, and MIR146A are seemingly associated with a severe 

phenotype (Angelotti et al., 2017); (Ciccacci et al., 2016); (Lee and Bae, 2016); (Li et 

al., 2016). Of interest to this project, genes coding for the FcγRs were reported to be 

associated with RA, as was discussed in Section 1.3.2 genetic variants and disease.  

It is possible that environmental factors trigger disease in genetically predisposed 

individuals; environmental triggers such as smoking have been linked to citrullination of 

proteins and by extension generation of autoimmunity and ACPAs (Klareskog et al., 

2009);(Klareskog et al., 2011). This is supported by recent findings from a study 

looking at gene-environmental interactions in RA patients using an immunochip array; 

here gene variation patterns involved in gene-smoking interactions were identified for 

ACPA positive but not negative patients, and HLA-DRB1 alleles (along with other 

genes in the MHC II regions) were found to be associated with exposure to cigarette 

smoke (Jiang et al., 2016c). Thus supporting the suggestion that cigarette smoke- 

modified proteins can act as immunogenic antigens resulting in ACPA.  

Infection has also been suggested as a trigger for RA. For instance, peptidyl-arginine 

deiminase, an enzyme released by bacteria in periodontitis converts arginine to 

citrulline, recognised by ACPAs. Relationships described between RA and 

periodontitis, implicate the process described above as a mechanism (Arunachalam, 

2014); (Koziel et al., 2014). Additional infectious agents such as Epstein-Barr virus, 

cytomegalovirus and Escherichia coli have also been associated with RA. The 

evidence here is not completely clear; these pathogens are known to produce heat 

shock proteins which reportedly induce T-cell responses in cells isolated from juvenile 

RA patients. Molecular mimicry of these bacterial products may therefore be a 

mechanism for disease pathogenesis (McInnes  and Schett 2011); (Kamphuis et al., 

2005). Another factor associated susceptibility to RA is the gut microbiome. Some 

microbiome signatures have been reported to correlate with auto-antibody positive RA, 

for instance diversity of microbiota are found to be decreased in patients and 

expansions of some species (e.g. Actinobacter) are reported. However there are 

numerous environmental and genetic associations linked with RA, and the 

pathogenesis of this condition is likely to involve more factors than just gut microbiome 

(Scher and Abramson, 2011); (Chen et al., 2016); (Angelotti et al., 2017). 

Synovial inflammation is characterised by local leukocyte infiltration, supported by a 

number of physiological changes; synovial microvessels are activated, permitting cell 

migration, which is also supported by increased expression of endothelial adhesion 
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molecules (intergrins, selectins) and chemoattractive cytokines (McInnes  and Schett 

2011). Additionally, hypoxia promotes angiogenesis. Increased inflammatory synovial 

tissue is a consequence of these changes and fibroblast activity (Szekanecz and Koch, 

2007); (Polzer et al., 2008). Bringing in ICs, many ACPA Recognise matrix proteins or 

secreted enzymes in the joint, thus lending to soluble and fixed ICs that may lead to a 

vicious cycle by activating FcγR expressing immune cells. 

Associations with the HLADRB1 shared epitope and autoantibody production suggest 

cells related to adaptive immunity are important for RA pathophysiology, specifically 

when considering that auto-reactive ACPA-specific cells are detecTable in this disorder 

(McInnes  and Schett 2011). However, the inefficacy of T-cell targeting drugs (such as 

ciclosporin) seems contradictory (Panayi, 2006). It should be noted that CD28 blocking 

agents (abatacept) that interfere with MHC II costimulation are effective drugs, 

supporting importance of T-cells in perpetuating inflammation following the initial 

breakdown of immune tolerance (Vital and Emery, 2006); (Schiff, 2011); (McInnes  and 

Schett 2011)). The presence of autoreactive antibodies (ACPA and RF) in this 

condition suggest B cells are important in RA pathophysiology, supported by efficacy of 

biologics targeting these cells as a therapy (e.g. anti-CD20 rituximab). 

The presence of innate immune cells and macrophage-derived cytokines in the 

rheumatoid synovium, together with the fact that a number of cells of the innate 

immune system are activated by ICs implicates innate immunity in RA inflammation 

(Gierut et al., 2010). Involvement of these cells will be discussed in detail in the later 

Section “1.4.5 Macrophage and other cell involvement”. 

Bone erosion is a central feature of RA where synovitis leads to bone destruction. It 

reportedly occurs when there is a misbalance between bone resorption by osteoclasts 

and formation via osteoblasts. In RA, production of TNF is thought to support migration 

of osteoclast precursors (i.e. monocytes) to the synovium (Li et al., 2004). Here 

differentiation is triggered by M-CSF and receptor activator of nuclear factor KB ligand 

(RANKL) to form mature osteoclasts (Firestein, 2003); (Schett and Gravallese, 2012). 

Additional disease mediators, including some ACPAs (targeting vimentin), are thought 

to enhance osteoclast differentiation (Harre et al., 2012). Targeting of RANKL 

therapeutically was found to halt bone resorption, but not prevent inflammation, 

whereas treatments aimed to reduce synovitis by targeting cytokines also reduced 

bone destruction. This supports the involvement of cytokines in promoting these 

destructive processes. However it is important to emphasize that treatments aimed at 

decreasing synovitis to effectively reduce bone destruction are not unique to anti-

cytokine therapies; other treatments such as methotrexate and rituximab are also 
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effective for this and will be discussed in Section 1.4.2 Treatments (Schett and 

Gravallese, 2012); (Cohen et al., 2008); (Schett et al., 2008).  

Cartilage damage is another pathological feature in RA; synovial inflammation 

increases production of MMPs and other proteases. Subsequent disruption of cartilage 

collagen network is supported by inability of TIMPs to inhibit the effects and cytokine 

mediated apoptosis of chondrocytes, which regulate matrix formation under 

physiological conditions (Sabeh et al., 2010); (McInnes  and Schett 2011).  

 

1.4.2 Treatments 

The drugs used to modulate the immune system for the treatment of RA are referred to 

as disease modifying anti rheumatic drugs (DMARDs). Methotrexate is the first line 

treatment for RA and this is also commonly used in combination with other drugs.  

Methotrexate inhibits an enzyme (dihydrofolate reductase) involved in the synthesis of 

RNA and DNA, hence blocking proliferation of the rapidly dividing B and T-cells. It is 

also thought to decrease binding of IL-1β (inflammatory cytokine) and cellular adhesion 

molecules (Cutolo et al., 2001). Leflunomide works in a similar way, inhibiting pathways 

required for rapid proliferation (Breedveld and Dayer, 2000); sulphasalazine and 

hydroxychloroquine are also used in some therapeutic combinations (Clements, 2011). 

Some biologics available include numerous TNF inhibitors (golimumab, entanacept, 

infliximab, adalimumab), anti CD20 drugs (rituximab) and cytokine blockers (anakira 

and tocilizumab which are antagonists for IL-1 and IL-6 respectively). Corticosteroids 

and cyclooxygenase inhibitors can also be used as adjunctive therapies to treat RA, 

but have a significant toxicity burden (Lipsky and Isakson, 1997); (Saag et al., 1994); 

(Clements, 2011). 

It should be noted that limited numbers of RA patients improve in response to any 

single therapy (Seymour et al., 2001), emphasizing the heterogeneity in 

pathophysiological mechanisms and clinical need for ongoing target identification, drug 

development and therapeutic stratification. 

 

1.4.3 Role of immune complexes 

The presence of auto-antibodies and consequent production of immune complexes 

(ICs) in the presence of auto-antigens are important pathological processes detectable 

in the majority of RA subjects (Lorenz, 2001). The major auto-antibodies found in RA 

are RF (largely of the immunoglobulin M (IgM) class but IgG and IgA RF are present, 

but not routinely analysed) and ACPAs (largely IgG and to a lesser extent IgA); RF 
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recognises the Fc region of IgG, and ACPA recognise a variety of peptides that have 

undergone citrullination. Some examples in the rheumatoid synovium include 

citrullinated fibrinogen, vimentin and α-endolase (Cantaert et al., 2006); (Willemze et 

al., 2012). Presence of ACPA is strongly associated with disease severity, and is linked 

to increased disease activity, bone destruction, patient disability and reduced 

frequency of remission with treatment (Humphreys et al., 2014); (Hecht et al., 2014); 

(Sokolove et al., 2014). 

ICs exert their effect through ligation of Fc Receptors (FcR), rendering cells expressing 

these receptors sensitive to IC stimulation. IC stimulation of FcR expressing myeloid 

cells (macrophages, monocytes, dendritic cells) induce various responses including 

cell activation, phagocytosis of opsonised pathogens, antibody-dependent cellular 

cytotoxicity (ADCC), release of pro-inflammatory mediators and reactive oxygen 

intermediates, and production of chemokines and cytokines (Laborde et al., 2007). Fc 

gamma receptors (FcγRs), the IgG binding class of FcRs, have been implicated in a 

number of autoimmune diseases characterised by IC accumulation, such as RA (also 

ANCA-associated vasculitis, systemic lupus erythematosus (SLE)) (Cooper et al., 

2012); (Willcocks et al., 2008); (Jancar and Crespo, 2005); (Laborde et al., 2007); 

(Morgan et al., 2005); (Morgan et al., 2006). Additionally, FcγR ligation by IC can affect 

differentiation of some cell types, alter cell cytokine profile, induce different 

phenotypes, be involved in cross-talk with other receptors and modulate signalling 

pathways induced by other ligands and effector molecules. 

 

1.4.4 Fc receptors in RA 

FcγRs are implicated in the pathogenesis of RA. APCA are often IgG and will form ICs 

that bind FcγRs resulting in immune cell stimulation. IgG binding RF also exists as IgG 

but mainly in the IgM isotype, with their pentameric structure contributing to formation 

of large IgG-containing ICs that may crosslink multiple FcRs. Release of inflammatory 

mediators that propagate inflammation (such as TNF and IL-6) by activated cells is one 

consequence of FcγR ligation (Clavel et al., 2008); (Magnusson et al., 2014). Several 

studies demonstrated that activating FcγRs are essential for development of IC-

mediated experimental arthritis in murine models; FcγRI, II, III and IV are described for 

mice, with I, III and IV being activating and II being inhibitory. The inhibitory mouse 

FcγRII has suppressed arthritis in these models (Magnusson et al., 2014); 

(Nimmerjahn and Ravetch, 2008). Protection against arthritic disease has also been 

reported for mice deficient in the FcRγ chain, further implicating activating FcγRs (I, III 

and IV in mice) in arthritis disease pathogenesis, as these receptors cannot induce 

downstream signalling without this accessory signalling chain (Kleinau, 2003). FcγRII 
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has a well-established protective role, highlighted by knock-out studies in mice where 

deficiency of this receptor was associated with increased risk of developing collagen 

induced arthritis (Yuasa et al., 1999). Interestingly, it has recently been reported that 

mice with B cell specific FcγRII knockout are less susceptible to CIA than myeloid cell 

specific and full FcγRII knock-out, suggesting B cell FcγRs are less involved in disease 

susceptibility (Yilmaz-Elis et al., 2014). However, in addition to controlling signalling 

through inflammatory receptors, the human orthologue, FcγRIIb, has a role in inducing 

tolerance in B cells (Sun et al., 2013). Hence decreased expression or functioning of 

FcγRIIb may lead to impaired toleragenic mechanisms; this has been reported in B 

cells derived from SLE patients, emphasising the relevance of this phenomenon in 

auto-immune disease (Mackay, 2008). 

 When considering murine literature, it must be stressed that FcγRs in mice are 

evolutionarily distinct from those in humans and so data produced using murine 

receptors can only be used to give an overall idea of how this class of receptors 

contributes to disease rather than implicating a specific FcγR. As described in Section 

1.3.2 (Genetic variants and disease) a number of FcγR polymorphisms and haplotypes 

have been linked to RA, supporting their involvement in RA pathology.  

 

1.4.5 Macrophage and other cell involvement  

A number of cells are implicated in the pathophysiology of RA; the fibroblast-like 

synoviocytes of the joint interact with cells of both the innate (neutrophils, 

macrophages, NK cells and dendritic cells, mast cells) and adaptive immune system (B 

cells and T-cells) involved in disease onset and progression (Angelotti et al., 2017). 

Neutrophils in the joint are known to produce of a number of agents lending to 

destructive processes that occur in RA including proteases, prostaglandins and 

reactive oxygen species (McInnes  and Schett 2011); (Cascao et al., 2010). 

Additionally, increased numbers of mast cells are found in the joints of RA patients and 

they are thought to have roles in disease given their TLR-mediated production of 

inflammatory agents (chemokines, cytokines, proteases) (McInnes  and Schett 2011); 

(Nigrovic and Lee, 2007). 

Macrophages are thought to occupy a central role in RA pathophysiology. 

Accumulations of macrophages are seen in the synovial lining and cartilage-pannus 

junction during active disease, a feature which can be used to predict patient 

responses to immune modulating therapies and has been associated with disease 

activity score (Lebre and Tak, 2010). Additionally, macrophage-derived cytokines are 

strongly associated with ongoing inflammation, cartilage destruction, remodelling and 
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destructive processes; notably macrophage levels have been found to correlate with 

degree of joint erosion (Kennedy et al., 2011); (Kinne et al., 2007); (Mulherin et al., 

1996); macrophages contribute significantly to extracellular matrix degradation in RA 

through production of proteinases (cathepsins and matrix metalloproteinases) 

(Szekanecz and Koch, 2007); (Nagase and Murphy, 2013). Some reports describe the 

macrophages found in the rheumatoid synovium as “M1” cells due to the high levels of 

GM-CSF in the synovium and production of pro-inflammatory cytokines and reactive 

oxygen species by these cells along with the demonstration of increased phagocytosis 

and antigen presentation capabilities (Laria et al., 2016b); (McInnes  and Schett 2011). 

It has also been suggested that this phenotype is reversed into the M2 state upon 

treatment with glucocorticoids (Laria et al., 2016b). However, this view is over simplistic 

and does not take into account the presence of polarising molecules such as ICs in the 

synovium. Overall, these observations highlight macrophages as therapeutic targets in 

this disorder, but gaps in the literature surrounding their activation limits therapeutic 

application.  

 

1.5 Next generation sequencing technology 

1.5.1 RNA-seq 

Next generation RNA-sequencing (RNA-seq) technology is a powerful tool for 

uncovering important functional aspects of the genome through an in depth 

interrogation of cell transcripts (Wang et al., 2009). Generally speaking, this method 

utilizes next generation sequencing (NGS) techniques to profile RNA-derived cDNA, to 

discover and quantify genes expressed in a given cell or population of cells (Conesa et 

al., 2016); (Guo et al., 2013). Here, given expression levels are determined by the 

number of reads mapped and length of the transcript (Young et al., 2010). In addition 

to  providing higher coverage and greater resolution than previous methods, this 

technology additionally allows the user to investigate splice variants, allele-specific 

expression and RNA editing (Young et al., 2010). It should also be noted that 

microRNA, small non-coding and long noncoding RNA may also be detected using this 

method, which may give further insights into the post-transcriptional landscape and 

additional levels of regulation in certain cell types (Wang et al., 2009).  

 

1.5.2 Practical considerations 

Broadly speaking, library preparation involves isolating RNA from cells, converting 

them to cDNA fragments which are then ligated to adaptors and sequenced to produce 

short reads (Wang et al., 2009). However, there are a number of factors that must be 
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considered at different stages of this process which have an impact on the data 

produced. Some of these may vary depending on the depth of sequencing and 

coverage required in the experiment and others are essential for production of high 

quality data (Kukurba and Montgomery, 2015). For instance, when considering RNA 

extraction, it is important to ensure high quality RNA is entered into library preparation 

stages. One way to do this is to check RNA integrity number (RIN) following extraction 

using a piece of equipment such as a bioanalyser or tape station; here software 

generates an electropherogram representing the RNA sample (Schroeder et al., 2006). 

This estimates the quality of RNA by looking at a complete RNA trace, determining 

ratio of ribosomal bands and detecting degradation products, and assigns the sample a 

score between 1 and 10; here 10 represents the highest integrity and 1 the lowest. 

Values less than 6 are considered to be of poor quality, which may give rise to certain 

biases such as uneven coverage or bias towards the 5’ or 3’ regions (Gallego Romero 

et al., 2014); (Schroeder et al., 2006); (Kukurba and Montgomery, 2015). It should be 

noted that it is not always possible to collect samples with high integrity (e.g. from fixed 

or paraffin embedded samples), but this method is useful as a consistent, reproducible 

way to determine quality of RNA between different laboratories (Kukurba and 

Montgomery, 2015).  

There are a number of different types of RNA that are isolated during extractions. 

Messenger RNA is usually of interest in these experiments, but ribosomal RNA is much 

more abundant in the cell (constitutes 90-95% of total RNA) (Conesa et al., 2016); 

(Kukurba and Montgomery, 2015). Other types of non-coding RNA include transfer 

RNA, small nuclear RNA, small nucleolar RNA, micro RNA and piwi-interacting RNA 

(Stefani and Slack, 2008); (Kukurba and Montgomery, 2015). If not removed, ribosomal 

RNA will constitute the bulk of reads, reducing the read depth for all other RNA types 

and thus reduced sensitivity. Hence RNA-seq library preparation methods commonly 

use ribosomal depletion of poly(A) selection to remove ribosomal RNA. Poly(A) 

enrichment involves using poly(T) oligonucleotides attached to a substrate which will 

bind the poly(A) tail before isolation steps. This method is optimal for experiments only 

interested in mRNA, but tends to require RNA input with a high RIN score, which as 

previously described is not always possible. Additionally this will not be appropriate for 

samples of bacteria for instance which do not have poly(A) tails (Kukurba and 

Montgomery, 2015); (Conesa et al., 2016). Ribosomal depletion is useful for looking at 

expression of lower abundance non-coding RNA and pre-mRNA (not post-

transcriptionally modified) in addition to mRNA. However, it should be noted that 

variances in efficiency of ribosomal depletion and coverage of small transcripts have 

been reported between different kits, which must be considered as part of the 

experimental design (Huang et al., 2011); (Kukurba and Montgomery, 2015). It should 
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be noted that specific protocols have been developed to study expression of small non-

coding RNA species, but these methods are not the focus of this report.  

Depending on the methodology, sequencing can be stranded or non-stranded (i.e. 

information is given on whether reads are derived from sequencing a sense or anti-

sense strand). Non-stranded methods make it impossible to distinguish between reads 

from both orientations which can cause issues when attempting to analyse the data (for 

instance, overlapping reads from alternative strands are required for identification of 

novel transcripts) (Kukurba and Montgomery, 2015). Stranded methods commonly 

incorporate deoxy-UTP labels into the reaction during second strand synthesis followed 

by ligation of “Y-adaptors” which inform on strand orientation. An additional step 

involving degradation of this molecule prior to subsequent PCR amplification allows 

identification of coding strands (Parkhomchuk et al., 2009).  

During sequencing, reads can be paired or single-ended. Paired end reads refer to a 

scenario where both ends of a sequence are read as opposed to just one (i.e. in both 

directions). This is beneficial when sequencing transcripts that will be mapped to poorly 

understood transcriptomes, but may not be essential for differential expression analysis 

on sufficiently annotated genomes (Kukurba and Montgomery, 2015).  

Coverage has been referred to as number of reads, given an assumed number of 

reads of a certain length, and the supposition that the reads are randomly distributed 

across all the genes being sequenced (Sims et al., 2014). Depth of sequencing is the 

redundancy of coverage and these factors are also determined by the methodology 

used. As different samples can be tagged with distinct adaptors (genetic barcodes), 

which may be used to identify them, it is possible to pool different conditions onto one 

lane of the sequencer. There are a number of reads generated per sequencing run for 

different platforms, and so coverage will be dependent on technology used, amount of 

genetic material being sequenced and length of reads produced (Sims et al., 

2014).Hence depth of sequencing required depends strongly on the aims of the 

experiment; for instance if large changes are being detected in overall transcriptome, 

the number of reads per sample does not need to be as high. However, if low 

abundance transcripts are of interest or highly complex regions, a greater depth of 

sequencing is required to ensure accurate detection (Conesa et al., 2016). There is 

also some discussion as to whether deep sequencing may lead to an increase in the 

number of off target transcripts and increase noise (Tarazona et al., 2011). 

A number of different platforms are currently available for RNA-seq, but the majority of 

experiments are currently performed using Illumina based technology.  
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1.5.3 Analysis and applications  

Preparation of RNA-seq libraries are extensive, intricate processes, and issues at 

numerous stages can introduce errors that would affect the quality of the data. 

Subsequent biases and problems with mapping would reduce integrity of results. 

Hence, introduction of a quality control step prior to downstream analysis is essential 

(Li et al., 2015). Raw reads generated by the sequencer can be analysed using 

different bioinformatic programs for quality scores (Conesa et al., 2016); FASTQC, 

TileQC and PIQA are useful programs that can be used to investigate quality of reads 

generated using an Illumina platform and NGS QC is a cross platform tool, i.e. it can be 

used to calculate quality of output from Illumina, Roche and Applied Biosystems 

technologies (Dai et al., 2010); (Patel and Jain, 2012). Different tools can be used to 

remove poor quality sequences from read files; Trimmomatic, FASTX toolkit and Btrim 

are some examples (Chen et al., 2014); (Bolger et al., 2014); (Conesa et al., 2016). It 

should be noted that these technologies tend to determine data quality based on 

similar metrics such as duplication of reads (indicates likelyhood of contamination or 

PCR artefacts for instance), k-mer content, GC levels, sequence quality, sequence 

depth and presence of adaptor sequences (Conesa et al., 2016); (Li et al., 2015). The 

latter may be improved using programs designed to remove adaptor sequences from 

reads such as Cutadapt and SeqPurge, and through applying some of the other tools 

mentioned above that were described to remove low quality sequence reads (e.g. 

Trimmomatic, Btrim) (Chen et al., 2014); (Sturm et al., 2016).  

Counts are produced through mapping reads to a reference genome or transcriptome 

and normalising the output. Generally speaking the choice depends on applications; as 

alignments to a reference transcriptome (versus a reference genome) relies on 

previous knowledge of known exon boundaries and splice variants, this protocol would 

be considered unsuitable for studies interested in identifying novel splice variants 

(Garber et al., 2011). There are a number of factors that require consideration prior to 

this process such as choice of reference genome and software used to perform 

mapping. Choice of alignment software may depend on other aspects of experimental 

design, for instance unspliced aligners (do not allow large gaps) such as Stampy, 

Bowtie, MAQ and BWA may be sui1able for alignment to a reference transcriptome, 

but spliced aligners such as STAR, Tophat, and MapSplice would be required for 

alignment to a genome (Yang and Kim, 2015); (Li and Durbin, 2009); (Langmead and 

Salzberg, 2012); (Trapnell et al., 2009); (Wang et al., 2010a); (Dobin et al., 2013). 

Some differences between these could include factors such as mapping speed, 

mapping biases and error rates and limitations in terms or read length, all of which 

must be considered at the experimental design phase (Dobin et al., 2013). Hence 
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selection of an aligner will depend on complexity of transcriptome being investigated 

and experimental aims. Different reference genomes are available for human samples 

and may vary slightly in terms of annotations, one example of a recent assembly being 

Hg38, which includes annotations from databases such as GENCODE, ClinVar, 

ClinGene and more (Speir et al., 2016). 

Technical differences between RNA-seq and previous technologies required advances 

in analysis techniques to ensure maximal amounts of data could be interpreted from 

outputs of this method (Young et al., 2010). Various software packages have been 

designed to perform various analyses and will be discussed here. It should be clarified 

that there are a number of different ways to analyse RNA-seq data and only some 

options for the more fundamental approaches will be considered in this Section. 

Identification of differentially expressed genes between conditions is one of the main 

analyses performed on RNA-seq data, and is often required for downstream 

investigations. Many packages in R based on different mathematical models can be 

used to identify these gene lists and some of the most popular choices include edgeR 

and DESeq (Robinson et al., 2010); (Anders and Huber, 2010).  

Although differentially expressed gene (DEG) analysis gives an idea of changes that 

are occurring in the transcriptional landscape between different conditions, context is 

required to draw any conclusions or give indications of a direction in which to carry out 

further research. Gene ontology (GO) enrichment analysis can provide insight into 

biological functions that vary between samples from different tissues or with different 

treatments. A number of packages are available to determine which biological 

processes are enriched in different conditions, some commonly used examples being 

the following; ClusterProfiler, BinGO (Yu, 2012); (Maere et al., 2005). These packages 

tend to rely on databases summarising genes annotated for specific terms. Enrichment 

of genes from specific pathways can also be distinguished from a list of DEGs. Some 

commonly used databases to identify genes in the same pathways are KEGG and 

REACTOME (Jin et al., 2014).  

It is possible to plot expression levels of genes which are related to one another as 

networks. This can give insight into functional interactions between similarly expressed 

of counter regulated genes.  

Depending on the experimental design and methods used to map reads, it can be 

possible to identify transcript variants or gene fusions within samples using RNA-seq 

data. These are useful applications but are not directly relevant for this project so will 

not be discussed in detail here; please see Conesa et al.,  (2016) for detailed 

summaries. 



35 
 

1.5.4 Comparisons with microarrays 

Although gene expression profiles generated through both microarray and RNA-seq 

methods show high correlation, a number of differences have been described. Some 

variations between standard microarray and RNA-seq experiments have been 

summarised in Table 1.5.1. 
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 RNA-seq Microarray Reference(s) 

Identification of novel transcripts 
No issues with annotation redundancy Limited by current knowledge of transcripts 

Tiling arrays face problems with cross-
hybridisation affecting reliability 

(Zhao et al., 2014)  

(Wang et al., 2009) 

Differential gene expression 
Detection of more differentially expressed 
genes due to greater dynamic range 

Limited detection range of individual probes (Zhao et al., 2014) 

(Nookaew et al., 2012) 

(Wilhelm and Landry, 2009) 

Low abundance transcripts 
More sensitive detection of low abundance 
transcripts 

Less effective at detecting low abundance 
transcripts vs RNA-seq 

More correlation for longer exons 

(Zhao et al., 2014) 

(Guo et al., 2013) 

(Wang et al., 2014a) 

Splice variants  Mapping of intron/exon boundaries can identify 
splice variants  

Limited by current knowledge- some isoforms 
may be ignored 

(Zhao et al., 2014) 

(Nookaew et al., 2012) 

(Piskol et al., 2013) 

Background signal/off target effects 
Little background as no probe effect Probe cross-hybridisation or non-specific-

hybridisation cause off target effects and 
higher background 

(Zhao et al., 2014) 

Cost  Higher cost of sequencing Less expensive experiment (Zhao et al., 2014) 

Technology More complex analysis vs microarray Less complicated analysis (Zhao et al., 2014) 

(Garber et al., 2011) 

Table 1.5.1. comparison of microarray and RNA-seq experiments in terms of technical and analytical issue and performance. References are 

also given for the source of information 



37 
 

1.5.5 Additional technical issues to be considered when analysing RNA-seq data 

Intrinsic bias towards selecting longer or more highly expressed transcripts as 

differentially expressed may be an issue when analysing RNA-seq data; due to 

increased amounts of mapping to these regions, they will be represented by higher 

statistical power and are hence more likely to be identified through differential 

expression analyses. Normalisation and rescaling are not effective in removing this 

data artefact (Oshlack and Wakefield, 2009); (Young et al., 2010). 

During library construction, some biases can be introduced based on different 

fragmentation methods. For instance, this can be carried out on either RNA or cDNA. 

When performed on RNA there appears to be little bias over the transcript body, but 

depletion at the sequence ends may occur when contrasted with other methods. 

Conversely, cDNA fragmentation creates a bias towards the 3-prime region during 

poly(A) purification (Wang et al., 2010a); (Mortazavi et al., 2008); (Nagalakshmi et al., 

2008). 

Other problems may occur when there is high expression of a short read; this 

phenomenon may accurately represent expression of the mapped gene in the 

transcriptome, but could also occur as a PCR artefact. Replicates are important here 

for such investigations (Wang et al., 2010).  

Another limitation is presented when mapping output sequences to a reference; multi-

mapping can occur where some reads recognise multiple sites on the genome. This 

may be compensated for by proportionally assigning reads based on mapping to 

adjacent sequences, dividing read counts over multiple sites or disregarding multi-

mappers completely (Wang et al., 2010); (Mortazavi et al., 2008). As paired end reads 

detect longer sequences they are less likely to produce this issue, hence steps can be 

taken during experimental design stages to improve this. Additionally, it should be 

noted that complex mutations may create problems with mapping (Wang et al., 2010). 

One problem that may be encountered in this project is mapping-specificity when 

looking at differential expression of the different Fc Receptors; corresponsing gene 

sequences are highly homologous and so only reads mapping to distinctive regions 

may be considered for giving an estimate of expression (Li et al., 2009).  
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1.6 Aims and objectives 

The overall objective of this project was to dissect the role of immune complexes in 

modulating the transcriptome and polarisation state of macrophages using next 

generation sequencing technology. To achieve this a number of smaller objectives 

were required: 

1. To identify a panel of polarisation markers that reliably indicated different human 

macrophage polarisation states 

2. To generate an optimised THP-1 cell line model to study the effects of ICs 

3. Validation of this cell line model using next generation sequencing and comparisons 

with primary cells 

4. Ultimately to examine changes in macrophage transcriptomes following exposure to 

ICs 

These objectives were sequentially addressed in my PhD project. 
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Chapter 2: Analysis of differentially polarised macrophage 

transcriptomes using publicly available datasets 

 

 2.1 Introduction 

Macrophages are a highly heterogeneous group of cells that respond to a variety of 

stimuli; PBMC derived macrophages differentiate from monocytes following activation 

signals from colony stimulating factors, and may polarise variably depending on the 

local cytokine milieu (Zhou et al., 2014). These cells are also reported to demonstrate 

high plasticity in response to environmental changes under physiological conditions 

(Zhou et al., 2014); (Wynn et al., 2013); (Moore et al., 2013); (Murray et al., 2014). 

Traditionally macrophages are classified into the more inflammatory M1 phenotype and 

the anti-inflammatory/wound healing/allergy associated M2 state which is sub-typed 

into M2a M2b and M2c cells (Martinez et al., 2006); (Chinetti-Gbaguidi and Staels, 

2011). Details of polarisation stimuli can be seen in Figure 2.1.1.   

Although these subtypes are frequently referred to in the literature, there is no 

consensus on how to define them; characteristic functions and metabolic differences 

are unclear for human macrophage populations. One explanation for this variability 

could be that experiments are carried out on both peripheral and tissue macrophages 

in human and murine cells and are activated with variable agents (i.e. M-CSF, GM-

CSF) prior to polarisation (Joshi et al., 2014); (Fleetwood et al., 2009). For instance, 

one of the original standards for distinguishing M1 and M2 cells involves examination of 

arginine metabolism in murine cells, but this paradigm does not translate to human 

macrophage phenotypes (Bogdan, 2001); (Murray and Wynn, 2011). More recently, 

alterations in the Krebs cycle were reported for inflammatory macrophages (vs M2 

cells) but again this research was performed using murine macrophages, and is not a 

reliable model for classifying human macrophages (O'Neill et al., 2016). 

For this reason, protein and RNA markers have been adopted as the gold standard for 

distinguishing these cell types in humans. However, different studies tend to use 

different marker panels, which again makes it difficult to define individual subtypes, as 

marker recommendations are often contradictory (Barros et al., 2013); (Murray et al., 

2014). Hence it was deemed necessary to develop a strategy to produce a list of 

markers that can be used to define specific cells types, and subsequently be utilised in 

experiments to optimise monocytic cell line models.  

Next generation RNA sequencing produces vast datasets which can be mined for both 

specific genes and general expression signatures. Generation of lists of potential 
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marker transcripts can be identified in a less biased manner (i.e. not using a marker 

that an individual experiment determined to be accurate) using this methodology than if 

replicating panels used in a specific study.  

However, if genes have frequently been reported as effective markers in different 

studies, it is possible that they may demonstrate robust performance and reliability; 

identification of these markers in this public dataset analysis may be considered as an 

extra level of validation for their use as subset-specific transcripts in experiments. 

Additionally, it may be possible to identify novel markers that may outperform those 

already reported.   

There was no in-house production of ex-vivo macrophage datasets at the time of this 

analysis, so publicly available RNA-seq and microarray datasets were used as a 

preliminary data source. 

In summary, the primary aims of this Chapter were to identify sequencing datasets for 

appropriate macrophage subtypes and isolate potential polarisation markers, some of 

which may be novel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.1. Basic bipolar model of macrophage differentiation using standard polarising 

agents: interferon gamma (IFNγ), interleukin-4 (IL-4), immune complexes (IC), 

lipopolysaccharide (LPS), interleukin-10 (IL-10). 
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2.2 Materials and Methods  

2.2.1 Marker literature review 

Markers frequently used to define different macrophage subsets were identified from 

the literature. Experimentally validated and frequently used genes from the literature 

were summarised into a Table (along with key references) for cross comparison with 

lists produced through public dataset analysis. 

 

2.2.2 Identification of suitable datasets 

Array Express (source: https://www.ebi.ac.uk/arrayexpress/) was searched for both 

RNA-seq and microarray datasets which looked at different macrophage conditions in 

humans, with a primary focus on the classical M1 (IFNγ and LPS) and M2a (IL-4)-

induced cells. Experiments where other basic polarisation conditions such as M2b 

(LPS and ICs) and M2c (IL-10) were included were also searched for. 

 

2.2.3 Analysis of publicaly available RNA-seq data to identify markers 

Datasets E-GEOD-36952 and E-GEOD-37769 which were obtained using Illumina 

HiSeqSQ and Illumina HiSeq2000 platforms, respectively, (in the original studies) were 

selected for analysis (Beyer et al., 2012). Raw, unprocessed data was extracted for in-

house analysis; i.e. for identification and selection of optimal established/novel markers 

 

2.2.3.1 Quality control of public data and adaptor removal 

A pair of gzipped fastq sequence files for each sample were downloaded from Array 

Express. While data for read 1 and read 2 sequences were stored in the different files, 

their order was maintained such that the sequences for each end of an insert could be 

determined. The quality of the base calling for each position and the amount of 

sequencing adaptor present in each file was determined using FASTQC (Andrews, 

2010). Adapter sequences and positions with a low-quality base calling score were 

removed using CUTADAPT (Martin, 2011), which was run using the following 

command line: 

cutadapt -q 10,10 -m 30 -b $read1_adaptorseq -B $read2_adaptorseq -o $trimmed_read1 -p 

$trimmed_read2 $read1 $read2 

Where $read1 and $read2 represent the names of the paired input sequence files, 

$trimmed_read1 and $trimmed_read2 represent the paired files to which the processed 

https://www.ebi.ac.uk/arrayexpress/
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data was saved too. The input for $read1_adaptorseq identifies the sequence of the 

sequencing adaptors to be removed from the data (the preceding flags –b indicates 

that $read1 should be scanned for the following sequence, while –B indicates $read2 is 

the target). The –m 30 parameter results in read pairs with a read less than 30 bp in 

length being discarded. Finally, the –q 10,10 parameter indicates that both the 5’ and 3’ 

ends of each read will be trimmed of base calls with a quality score of less than 10.  

The command simultaneously processed a sample’s read 1 and read 2 data files such 

that the link between an insert’s read 1 and read 2 sequence data was maintained in 

the exported fastq files. The processed files were screened a second time with 

FASTQC to access the efficiency of the quality trimming and adaptor removal, with the 

process reiterated until the data contained no significant amounts of poor quality 

sequence data. 

  

2.2.3.2 Read alignment and production of counts Tables 

Sequencing reads were aligned to the reference human genome GRChg19/hg19. 

Sequence and annotation GTF (general transfer format) files were downloaded from 

the Genome browser web page (http://genome.ucsc.edu/cgi-bin/hgTables). Indexing of 

reference genome was performed using the following command: 

STAR --runThreadN 12 --runMode genomeGenerate --genomeDir STAR_genome/ --
genomeFastaFiles $hg19 --sjdbGTFfile $hg19 --sjdbOverhang 150  

 

A key of parameters for the command is given in Table 4.2.1 

Table 2.2.1. Key of parameters for STAR genome alignment command 
Star flag, parameter pair Description of the option or flag 

--runMode genomeGenerate directs STAR to create a genome index 

--runThreadN  number of threads to be used for the genome index 
generation (number of cores) 

--genomeDir path to the directory where the genome indices are 
stored 

--genomeFastaFiles specifies one or more FASTA files containing the genome 
reference sequences 

--sjdbGTFfile path to the file containing transcripts annotation in the 
standard GTF format 

--sjdbOverhang specifies the length of the genomic sequence around the 
annotated junction to be used in constructing the splice 
junctions database 

 

Alignment of the read data to the indexed reference sequences was performed using 

the STAR software (Dobin et al., 2013) to produce output BAM files, using the following 

command: 

http://genome.ucsc.edu/cgi-bin/hgTables
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STAR --runMode alignReads --genomeDir $StarIndex --runThreadN 4 --readFilesIn $read1 
$read2 --readFilesCommand zcat  --outFileNamePrefix $outDir --outSAMtype BAM 
SortedByCoordinate  

 --outFilterMultimapNmax 50 --sjdbGTFfile hg19.gtf --sjdbOverhang 150 --outReadsUnmapped 
Fastx --outSAMstrandField intronMotif 

The functions for each of the parameters are listed in Table 2.2.1 

 

Table 2.2.2. Function key for STAR software command  

Star flag, parameter pair Description of the option or flag 

--runMode alignReads Instructs STAR to align reads to the genome 

--runThreadN 4 Instructs STAR to run 4 threads when aligning the 
data. 

--genomeDir $StarIndex Identifies the location of genome index files that are 
used to align the data.  

--readFilesIn $read1 and $read2 Identifies the read 1 and 2 fastq files. 

--readFilesCommand zcat Indicates that the sequence files are compressed 
using gzip algorithm. 

--outFileNamePrefix $outDir Gives the ‘base’ name and path to use when saving 
the alignment and associated meta data. 

--outSAMtype BAM 
SortedByCoordinate 

These tell STAR to make a sorted BAM file 

 

--sjdbGTFfile hg19.gtf Name of the annotation file that describes the location 
of known exon positions 

--sjdbOverhang 150 Specifies the length of the genomic sequence around 
the annotated junction to be used when constructing 
the splice junction’s database. 

--outReadsUnmapped Fastx 
Saves unmapped reads to a fasta file 

--outSAMstrandField intronMotif 
Reads with inconsistent and/or 

non-canonical introns are filtered out 

 

Read 1 and read 2 sequences from each insert were alignment together so their 

ultimate location in the genome was based on the quality of the sequence alignment 

and the location of its matched pair mate.    

As described in the key, the parameter --outSAMtype BAM SortedByCoordinate 

instructed STAR to give the output as sorted BAM files. BAM files underwent further 

processing to produce normalised counts Tables. The cufflinks suite (source: 

http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/Cufflinks.c

uffmerge) was used for data normalisation. Cufflinks was used to assemble the bam 

files into transcriptomes; GTF files were formed for each BAM file containing all the 

genes expressed in each sample.   

cufflinks --g hg19.gtf -- M / rRNA_tRNA.gtf --b hg19.fa -u -o $output_directry -p 4 $input.bam 

Command functions are summarised in Table 2.2.2 

 

http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/Cufflinks.cuffmerge
http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/Cufflinks.cuffmerge


44 
 

 

 

 

 

Table 2.2.3. Function key for Cufflinks software command 

Star flag, parameter pair Description of the option or flag 

cufflinks Tell the HPC to run cufflinks 

-g Reference gene annotation in GTF file format, used to guide 
transcriptome assembly 

-M Masked (i.e.) ignored gene annotation in GTF file format 

-b Tells the program the location of multi-fasta reference sequence 
file that contains the genome sequences the reads were aligned 
to. 

-u An option to more accurately weight reads mapping to multiple 
locations in the genome 

-p The number of cores/threads to execute on 

-o Output directory to export the results to 

BAM file Input BAM format file 

 

Cuffmerge combined GTF files generated for each BAM file using the following 

command: 

cuffmerge -s $hg19.fa -g $hg38.gtf -p 10  -o $path to output directory 

 Command functions are summarised in Table 2.2.3 

Table 2.2.4. Function key for Cuffmerge software command 

Star flag, parameter pair Description of the option or flag 

-s  Input reference fasta file that the read data was 

aligned too. 

-g  Input GTF file containing gene annotations 

(original downloaded from UCSC) 

-o  Output directory to put the results in. 

-p  Number of cores/threads to run the program on. 

 

Cuffdiff was used to produce a counts Table from the merged GTF file. Output counts 

file gave counts as FPKM (fragments per kilobase per million mapped reads). The 

following command was used:  

cuffdiff -p 10 -o $hg38.fa -u -v -M $rRNA_tRNA.gtf -g $merged.gtf -L affected,control 

$affected1.bam,$affected2.bam,  $control1.bam,$control2.bam -o $path to output file 

Command functions are summarised in Table 2.2.4 
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Table 2.2.5. Function key for Cuffdiff software command 

Star flag, parameter pair Description of the option or flag 

cuffdiff Tells the HPC to run the program 

-p Number of cores/thread to execute on 

-b Tells the program the location of multi-fasta 

reference sequence file that contains the 

genome sequences the reads were aligned 

too. 

-u An option to more accurately weight reads 

mapping to multiple locations in the genome 

-M GTF file for masking rRNA and tRNA 

-g Assembled merged.gtf file from cuffmerge 

-L Comma separated list of conditions ( i.e. 

groups) 

Control1.bam,control2.bam,control3.bam Comma separated list of bams (from the first 

condition 

S1.bam,S2.bam,S3.bam Comma separated list of bams from the 

second condition 

-o Output directory for storing files in 

 

Normalised counts (as FPKM) were imported into R using the readr package and 

merged with gene name identifiers using data found in the org.Hs.db package 

(Carlson, 2017). Functions from the annotationDBi and clusterProfiler packages were 

also used here (Yu et al., 2012); (Pagès et al., 2017); please refer to complete script in 

Appendix 3 (Script A3.7). Subsequent data was then exported from R for manual 

analysis. 

 

2.2.4 Refining gene lists for marker identification 

Gene Tables were imported into Microsoft Excel for further analysis. Using the data 

functions, potential marker genes were refined prior to analysis according to the 

following criteria: 

-genes with no expression were removed 
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-genes where average counts were <10 in both M1 and M2a conditions were 

discounted 

-if read count was highest in untreated condition, then gene was removed 

-Lower threshold for FPKM counts of genes in the condition of interest was set at 40; 

transcripts with lower read counts were eliminated 

For M1 marker selection, genes were ordered by average M1 count/ average M2a 

count and the top 150 markers were isolated. Similarly, genes were ordered by 

average M2a/ average M1 count to identify the top 150 potential M2a markers. These 

lists were combined and read into R using the readr package, and plotted as heatmaps 

using the heatmap2 package 

Using lists produced in the literature review, established markers appearing in the top 

30 gene lists for M1 and M2a cells were selected as suiTable candidates for marker 

panels in various cell pathways. Additionally, previously unknown genes following a 

similar pattern in these lists were flagged as potential novel markers. 

 

2.2.5 Identification of markers from microarray datasets 

A dataset generated in a study by Xue et al.,  (Xue et al. 2014) (Array Express 

accession number: E-GEOD-46903) was selected for marker validation, and 

identification of additional subset-specific transcripts. 

Pre-processed (normalised) gene expression data files for all conditions of interest 

(monocytes, M0, M1, M2a, M2b and M2c) were downloaded from Array Express 

(source: https://www.ebi.ac.uk/arrayexpress/) in a zipped folder. Individual sample text 

files were extracted manually and imported into R. Data were then merged and gene 

expression Tables were exported as text files at this point. The complete script used 

here can be found in Appendix 3, Script A3.4, along with annotations describing 

command functions. 

The Tables exported as text files were analysed manually in Microsoft Excel using data 

analysis functions, and fold change was used to identify markers that were high in one 

condition only. Genes were then ordered using the ratio of expression for a specific 

treatment vs expression in M0 cells. M1 and M2a cells were also contrasted using fold 

change in the same way using Microsoft Excel.   

 

2.2.6 Comparison of RNA-seq and microarray gene lists 

https://www.ebi.ac.uk/arrayexpress/
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Lists of genes identified following relative selection criteria were ordered and ranked 

according to fold change in Microsoft Excel using the data manipulation functions. 

Ranking for genes of interest were isolated and noted.  

 

2.2.7 Tracking changes in subset specific gene expression over different time 

points  

Microarray data for various cytokine treatment times were identified from 

supplementary data provided by Xue et al.,  (2014), read into R using functions in the 

readr package, and combined into Tables. Heatmaps were generated using the the 

heatmap2 package. The complete script for this can be found in Appendix 3, Scripts 

A3.9.  

 

 

2.3 Results  

2.3.1 Markers identified through literature review 

A large number of genes have been used in previous protocols to define macrophage 

polarisation. Some genes which have previously been linked to the M1 or M2 

macrophage phenotypes were identified here by literature review and were 

summarised for further consideration; Tables 2.3.1 and 2.3.2 (M1 and M2 macrophage 

markers, respectively). The efficacy of these genes as subset markers is unclear, and 

some reports describing specificity of certain transcripts have been contradictory (e.g. 

in the case of CD163 where some groups refer to this marker as M2a-specific and 

others describe it as M2c-specific or even a pan-macrophage marker) (Barros et al., 

2013); (Murray et al., 2014, Hu et al., 2017). Hence these markers were set aside for 

comparisons with transcripts highlighted in the analysis of transcriptome data 

(described in subsequent Sections), and for potential validation.  
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Gene Polarisation 
state 

Reference 

TNF M1 (Soler Palacios et al., 2015); (Martinez et al., 2006); 
(Arnold et al., 2015) 

IL23A M1 (Soler Palacios et al., 2015) 

MMP1 M1 (Chizzolini et al., 2000) 

MMP2 M1 (Chizzolini et al., 2000) 

MMP7 M1 (Chizzolini et al., 2000) 

MMP9 M1 (Chizzolini et al., 2000) 

MMP12 M1 (Chizzolini et al., 2000); (Soler Palacios et al., 2015) 

EGLN3 M1 (Soler Palacios et al., 2015) 

INHBA M1 (Soler Palacios et al., 2015) 

CCR2 M1 (Soler Palacios et al., 2015) 

SLC2A1 M1 (Soler Palacios et al., 2015) 

CCR7 M1 (Soler Palacios et al., 2015); (Martinez et al., 2006); 
(Kittan et al., 2013); (Jaguin et al., 2013) 

IRF1 M1 (Günthner and Anders, 2013) 

IRF5 M1 (Krausgruber et al., 2011); (Günthner and Anders, 2013) 

IRF8 M1 (Günthner and Anders, 2013) 

IL12B M1 (Kittan et al., 2013) 

CXCL10 M1 (Jaguin et al., 2013); (Ambarus et al., 2012); (Martinez et 
al., 2006); (Donlin et al., 2014) 

CXCL9 M1 (Martinez et al., 2006); (Donlin et al., 2014) 

CXCL11 M1 (Martinez et al., 2006); (Jaguin et al., 2013); (Vogel et 
al., 2014) 

SOCS3 M1 (Arnold et al., 2015); (Wilson, 2014) 

STAT1 M1 (Wilson, 2014) 

HLA-DR M1 (Arnold et al., 2015) 

CD80 M1 (Ambarus et al., 2012); (Wermuth and Jimenez, 2015) 

CD86 M1 (Wermuth and Jimenez, 2015) 

CD64 M1 (Ambarus et al., 2012); (Vogel et al., 2014) 

CD40 M1 (Vogel et al., 2014) 

CD180 M1 (Vogel et al., 2014) 

CCL19 M1 (Martinez et al., 2006) 

BCL2A1 M1 (Martinez et al., 2006) 

INDO M1 (Martinez et al., 2006) 

PTX3 M1 (Martinez et al., 2006) 

IL12P35 M1 (Jaguin et al., 2013) 

CCL5 M1 (Jaguin et al., 2013) 

IDO1 M1 (Jaguin et al., 2013) 

CXCL5 M1 (Günthner and Anders, 2013) 

IL1B M1 (Günthner and Anders, 2013) 

NKG7 M1 (Günthner and Anders, 2013) 

IL6 M1 (Arnold et al., 2015) 

GBP5 M1 (Fujiwara et al., 2016) 

Table 2.3.1. Commonly used M1 markers identified through searching the literature. 

Details of publications of where use of these markers can be seen is also given in 

the “Reference” column. M1 refers to M1 macrophages 
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Gene Polarisation 
state 

Reference  

IGF1 M2 (Soler Palacios et al., 2015) 

HTR2B M2 (Soler Palacios et al., 2015) 

IFR4 M2 (Günthner and Anders, 2013) 

STAB1 M2 (Soler Palacios et al., 2015) 

SLC40A1 M2 (Soler Palacios et al., 2015) 

CMKLR1 M2 (Soler Palacios et al., 2015) 

SERPINB2 M2 (Soler Palacios et al., 2015) 

HMOX M2 (Soler Palacios et al., 2015) 

IL10 M2a (Soler Palacios et al., 2015); (Kittan et al., 2013); 
(Nakamura et al., 2015) 

FOLR2 M2/M2a (Soler Palacios et al., 2015); (Kittan et al., 2013) 

CD36 M2/M2a (Soler Palacios et al., 2015); (Martinez et al., 2006) 

CD200R M2a (Ambarus et al., 2012) 

SOCS1 M2a (Whyte et al., 2011) 

CISH M2a (Arnold et al., 2015) 

KLF4 M2a (Liao et al., 2011) 

STAT6 M2a (Wilson, 2014) 

CCL17 M2a (Kobayashi et al., 2010) 

MRC1 M2a (Martinez et al., 2006); (Kittan et al., 2013) 

CHD1 M2a (Kittan et al., 2013) 

ALOX15 M2a (Kittan et al., 2013) 

CCL23 M2a (Chistiakov et al., 2015); (Walker and Lue, 2015) 

CCL26 M2a (David and Kroner, 2011); (Kong and Gao, 2017) 

TGM2 M2a (Rőszer, 2015) 

Table 2.3.2. Commonly used M2a markers identified through searching the 

literature. Details of publications of where use of these markers can be seen is 

also given in the “Reference” column. M2 refers to M2a macrophages 
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2.3.2 Datasets were identified through searching Array Express 

As described previously, although some macrophage subset markers appear to be 

consistently and reliably used in the literature, the specificities of some proteins and 

transcripts are contradictory between reports (Ambarus et al., 2011); (Barros et al., 

2013). Hence it was considered essential to identify a number of genes that could be 

used confidently to indicate the polarisation state of macrophages. Here, sequencing 

data generated using primary macrophages was selected as a potential source for 

subset-marker identification. However, there were no primary polarisation and 

differentiation datasets for macrophages available in-house at the start of my PhD. 

Hence publicly available data was chosen as a suitable source for validating the use of 

existing markers and for identifying novel polarisation markers. Two suitable datasets 

were identified through searching the Array Express databases; one RNA-seq dataset 

which was generated before the start of my study and a microarray dataset released at 

a later time point. Both datasets were generated using human blood MDMs. The RNA-

seq data included reads from both M1 and M2a polarised PMBC macrophages (Beyer 

et al., 2012). A separate RNA-seq dataset representing untreated monocytes was also 

identified and included as a baseline (Pena et al., 2013). The microarray dataset 

comprised 30 different macrophage treatment protocols, including those of the basic 

model (M0, M1, M2a, M2b, and M2c) which were selected for use in these analyses 

(Xue et al., 2014). The different datasets and some methodological details are 

summarised in Table 2.3.3.
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Table 2.3.3 Different publicly available datasets identified for analysis. Details of the 

dataset, associated publication as well as details of the method used to generate the 

cells and sequencing platform used in the experiment are given. 

Data Set Associated 
paper 

Reference 
cell types 

Differentiation 
method used 

Platform 

E-GEOD-
36952 

Beyer et al., 
2012 

PBMC 
derived M1 
macrophages 

RPMI1640 media + 
10% FCS + GM-CSF 
(500 U/ml) for 72h 
followed by IFNγ (200 
U/ml) 

Illumina 
HiSeqSQ 

E-GEOD-
36952 

Beyer et al., 
2012 

PBMC 
derived M2a 
macrophages 

RPMI1640 media + 
10% FCS + GM-CSF 
(500 U/ml) for 72h 
followed by IL-4 
(1000 U/ml) 

Illumina 
HiSeqSQ 

E-GEOD-
40131 

 

Pena et al., 
2013 

PBMC 
Monocytes 

Maintained in RPMI 
media 

Illumina 
Genome 
Analyser 
IIx 
platform 

E-GEOD-
46903 

Xue et al., 
2014 

PBMC 
derived 
macrophages 

(various) 

RPMI1640 media + 
10% FBS, 72h M-
CSF, 72h cytokine  

Illumina 
iScan or 
HiScanSQ 
system 

 

 

 

 

 

 

 

 

  

 

PBMC= peripheral blood mononuclear cells, FCS= foetal calf serum, M1=M1 

macrophages, M2 = M2a macrophages, M-CSF= macrophage colony stimulating 

factor, GM-CSF= granular monocyte stimulating factor, IFNγ= interferon-gama, IL-

4= interleukin-4 
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2.3.3. M1 versus M2a Fold change analysis of RNA-seq data produced a list of 

potential marker genes 

RNA-seq datasets can be vast and produce counts for a large number of transcripts, 

hence it was necessary to develop a list of criteria identifying markers that 

demonstrated the largest changes between conditions being contrasted. Thus, aligned 

and processed RNA-seq data was analysed using an M1 versus M2a fold change 

method to produce a shortlist of filtered transcripts with elevated expression in either 

the M1 or M2a condition. The top 300 differentially expressed genes according to this 

method can be seen in Figure 2.3.1; clusters of transcripts that were high in one 

condition and low in others are seen. This indicated that groups of genes specifically 

enriched for one of the given conditions (M1 or M2a) were present within the gene list.  

Although fold change allows data to be organised, it eliminates some information, such 

as individual replicate expression values and averages. Therefore, it was necessary to 

manually inspect the data for a shortlist of transcripts. Additionally, inspection of lists 

containing gene names allowed cross-referencing with genes that appeared most 

frequently in the published literature (Tables 2.3.1 and 2.3.2).  

To inspect these candidate genes in more detail, the top 30 transcripts for M1 and M2a 

conditions according to the previously described selection criteria were isolated; 

triplicate averages are summarised in Tables 2.3.4 and 2.3.5 for M2a and M1 markers, 

respectively.  
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2.3.4 Analysis validated the use of a number of some frequently used literature 

markers 

As mentioned previously, isolation of the top hits allowed closer inspection of markers, 

including those that are regularly used in published protocols for defining macrophage 

polarisation into the M1 and M2a states. It could be suggested that macrophage 

subtype markers that are frequently described to be effective experimentally in 

published studies should be considered more reliable if they are also identified as one 

of the top hits in the analyses performed here.  

Some genes that appeared frequently in the literature as subset-specific markers also 

appeared in the list of top 30 differentially expressed transcripts for M1 or M2a 

macrophages (e.g. CXCL9, CXCL10 and CCL17) (Tables 2.3.4 and 2.3.5 for M2a and 

M1, respectively- these genes are highlighted in red). Scrutiny of exact expression 

levels of these genes in different polarisation states confirmed enrichment in one 

condition alone, i.e. the condition of interest (Figures 2.3.2 and 2.3.3); this validated 

their use as lineage markers. Other genes that have previously been associated with 

specific conditions, but are not commonly used as marker genes (such as CCL26), 

were also selected. A number of these genes were incorporated into a marker panel to 

be used in the optimisation of a cell-line macrophage model, and are detailed in 

Figures 2.3.2 and 2.3.3.  

 

2.3.5 Potential novel marker genes were identified through the analysis 

It would be beneficial to identify novel markers of macrophage polarisation from 

publicly available datasets which may out-perform those which are currently in use.  

Potential novel marker genes for specific macrophage lineages were also identified in 

the top 30 lists (Tables 2.3.4-5 highlighted in green). These transcripts followed a 

similar expression pattern to the validated genes from literature; i.e. they were high in 

the M1 or M2a samples only, and some transcripts (ANKRD22, TSC22D1, HOMER2, 

AP2A2, and SERPING1) were selected to be incorporated into a panel of potential 

markers to be tested experimentally. 
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Table 2.3.4. Top 30 M2a marker genes identified through analysis of the Beyer et al., (2012) RNA-seq dataset. Established markers of 

interest are highlighted in red and novel markers of interest are highlighted in green. Other markers in table have been identified 

previously but are not frequently used. M1=M1 macrophages, M2 = M2a macrophages, Mono=monocytes. _1, _2, _3 indicate replicates. 
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Figure 2.3.2. Bar charts showing expression of genes selected as candidates for M2a macrophages in primary PBMC monocytes and 

differentially polarised macrophages, isolated from the original RNA-seq datasets. All genes selected from top 30 transcripts according to 

the selection criteria. M1=M1 macrophages, M2 = M2a macrophages, Mono=monocytes 
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Table 2.3.5. Top 30 M1 marker genes identified through analysis of the Beyer et al., (2012) RNA-seq dataset. Established markers of interest 

are highlighted in red and novel markers of interest are highlighted in green. Other markers in table have been identified previously but are not 

frequently used. M1=M1 macrophages, M2 = M2a macrophages, Mono=monocytes. _1, _2, _3 indicate replicates. 
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Figure 2.3.3. Bar charts showing expression of genes selected as candidates for M1 macrophages in primary PBMC monocytes and 

differentially polarised macrophages, isolated from the original RNA-seq datasets. All genes selected from top 30 transcripts according to 

the selection criteria. M1=M1 macrophages, M2 = M2a macrophages, Mono=monocytes 
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2.3.6 Some markers identified through analysis of RNA-seq data were validated 

following cross reference with results from microarray analysis 

As the microarray dataset was not available at the start of my study, marker panels for 

practical investigations were generated using the RNA-seq data only (note that this 

dataset was the only one available with multiple treatments during my PhD). However, 

it was considered useful to investigate the markers in a separate dataset to examine 

reproducibility, and also to determine how markers were expressed in a wider range of 

conditions. These two datasets were generated using different techniques (microarray 

and RNA-seq), using macrophages of unknown quality which were grown under 

variable tissue culture conditions. Hence it was reasonable to suggest that there may 

be some inherent differences in top candidate markers identified between the two 

datasets.  

For the microarray data, two-way comparisons between M1 (IFNγ and LPS treated) 

and M2a (IL-4 induced) datasets (using a manual fold change analysis), produced lists 

of transcripts which were further filtered through removing genes which were more 

highly expressed in the M0 condition to ensure subset-specificity. Subsequent lists 

could be compared to the marker panels suggested from the RNA-seq (Beyer et al., 

2012) dataset analysis. Gene lists produced here may be found in appendix 1 (Tables 

A1.4 and A1.5) and visualised using the heatmaps in Figure 2.4.3. It was clear from the 

heatmaps that genes which are highly expressed in one condition only (i.e. M1 versus 

M2a and M0 or M2a versus M1 and M0) were present in the filtered gene lists.  

As with the RNA-seq dataset, genes were ordered by fold change following filtering. 

Rank of genes in different datasets were compared; Figure 2.3.5 demonstrated that 

markers suggested from the RNA-seq data analysis were expressed most strongly in 

the corresponding (M1 or M2a) condition in the microarray dataset. However, some 

genes (IL6 for M1 and CCL23 for M2a) were not ranked in the top 150 microarray hits 

for the macrophage subset of interest, and may therefore not be as reliable as the 

other markers. This was considered important to have in mind when using these 

markers in Chapter 3 to optimize the THP-1 cell line model. 

M1, M2a, M2b and M2c specific genes were also identified from the dataset by filtering 

for transcripts which were more highly expressed in the condition of interest versus 

others. Top markers (ranked versus M0) can be found in appendix 1, Table A1.5. Top 

M1, M2a, M2b and M2c genes (versus M0) may also be visualised using the heatmaps 

in Figure 2.3.6. Some marker specificity is demonstrated for the different cell types 

here.  
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Lists of M1 and M2a specific genes (filtered for transcripts more highly expressed in 

M2b, M2c and M0 conditions) were also ranked (according to M1 versus M2a 

expression) and compared to the gene rankings generated through analysis of the 

RNA-seq dataset (please refer to Figure 2.3.7). Some of the transcripts used as 

markers in the literature, henceforth known as “literature transcripts” were present as 

top hits in both microarray and RNA-seq gene lists (such as GBP5 and CXCL10, 

ranked 4/4 and 1/28 in RNA-seq/microarray datasets respectively) providing further 

validation for their use as subset-specific markers experimentally. Additionally, the 

presence of novel markers, such as ANKRD22 in the top hits for both proposed panels 

(ranked 10 in RNA-seq data and 16 in stringently filtered microarray data) increased 

confidence in the reliability of the methods used, and highlighted these transcripts for in 

vitro validation as subset-specific genes. However, TNFAIP6 and IL6 which were 

originally described as an M1 marker in the bivalent M1/M2a analysis were found to be 

more highly expressed in M2b cells when this additional condition was taken into 

account. Interestingly the heatmaps in Figure 2.3.6 demonstrated some similarities in 

expression of M1 and M2b transcripts, and so there may be some overlap in 

transcriptional profile of these cell types. This is not necessarily surprising since LPS is 

used in the generation of both of these subtypes and transcripts activated downstream 

of TLR4 (binds LPS) signalling pathways may be similarly induced. CCL23 was also 

found to be M2b-high, rather than M2a-specific, as previously thought. It should be 

noted that markers which were not identified as highly specific (when considering an 

increased number of conditions) may still be useful as part of a panel, or when 

distinguishing M1 and M2a cells only.
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Figure 2.3.4. Heatmap showing gene expression according to publicly available microarray data for M1, M2a and M0 macrophages. 

(A) Top 300 genes according to M1 (LPS and IFNγ) vs M2a (IL-4) fold change, filtered for transcripts more highly expressed in M0 

(differentiated, unpolarised) macrophages. (B) Top 30 M1/M2a genes according to same criteria. Note that top 300 genes are given in 

appendix 1. M1=M1 macrophages, M2a = M2a macrophages, M0= unpolarised macrophages 

B  A  
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B  A  

C  

Figure 2.3.5. Genes identified in the initial analysis; rankings in both RNA-seq and microarray datasets (A) expression of M1 markers selected 

from the Beyer et al (2012) dataset in differentially polarised PBMC macrophages and monocytes, where expression levels are isolated from 

the Xue et al., (2014) microarray dataset; M0, M1 and M2a cells (B), expression of M2a markers selected from the Beyer et al (2012) dataset 

in differentially polarised PBMC macrophages and monocytes, where expression levels are isolated from the Xue et al., (2014) microarray 

dataset; M0, M1 and M2a cells (C). M1=M1 macrophages, M2a = M2a macrophages, Mono=monocytes 
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Figure 2.3.6. Heatmap showing gene expression according to publicly available microarray data generated by Xue et al., (2014) for 

M1, M2a, M2b, M2c and M0 macrophages. (A) Top 300 genes according to condition of interest (i.e. M1, M2a, M2b, M2c) vs M0 fold 

change, filtered for genes higher in any condition other than the one of interest (B) Top 10 M1/M2a/M2b/M2c genes (combined) 

according to same criteria. Note that top 300 genes here are given in appendix 1. M1=M1 macrophages, M2a = M2a macrophages, 

M2b= M2b macrophage, M2c=M2c macrophage, M0= unpolarised macrophages 

B  
A  
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B  A  

C  

Figure 2.3.7. Genes identified in the initial analysis examined in an extended number of polarisation states using microarray datasets; (A) 

rankings in both RNA-seq and microarray datasets. (B) expression of M1 markers selected from the Beyer et al (2012) dataset in differentially 

polarised PBMC macrophages and monocytes, where expression levels are isolated from the Xue et al., (2014) microarray dataset; M0, M1, 

M2a, M2b and M2c cells, (C) expression of M2a markers selected from the Beyer et al (2012) dataset in differentially polarised PBMC 

macrophages and monocytes, where expression levels are isolated from the Xue et al., (2014) microarray dataset; M0, M1, M2a, M2b and 

M2c cells. M1=M1 macrophages, M2a = M2a macrophages, M2b= M2b macrophage, M2c=M2c macrophage, M0= unpolarised macrophages. 

Blue boxes highlight markers that do not follow the pattern of expression indicated by the RNA-seq dataset analysis. 
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2.3.7 Multiple time points of microarray dataset allowed changes of potential 

markers to be tracked over time course 

As the ultimate aim here was to use the genes selected as subset-specific markers to 

optimise a THP-1 macrophage polarisation protocol, it was considered useful to inspect 

changes in expression of these transcripts between different cytokine exposure times. 

The microarray data produced by Xue et al.,  included a number of cytokine exposure 

time points for IFNγ and IL-4 conditions (ranging from 30 minutes to 72 hours). IFNγ-

only treated cells were used to examine changes in gene expression for the M1 

subtype as multiple time points for macrophages polarised using both IFNγ and LPS 

were not available (please see appendix 1 Table A1.5 for raw counts). Based on the 

heatmaps (Figure 2.3.8), some genes (such as ANKRD22 and CXCL10) were 

expressed relatively consistently at different time points. However, other transcripts 

were up-regulated to a greater extent at later exposure times (e.g. IL6). It should be 

noted that some genes in the microarray dataset were represented by more than one 

probe, and separate probes may correspond to different splice variants; hence one 

may be upregulated and another may not be (e.g. TNFAIP6). M2a (IL-4)-induced cells 

also express some genes consistently (e.g. CCL23) and others are upregulated at later 

time points only.  Taken together this data suggests that marker expression fluctuates 

with polarisation time. Hence in an experimental system, cytokine exposure times will 

need to be titrated to determine the optimal exposure time of these agents for inducing 

their particular phenotypes.
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Figure 2.3.8. Heatmaps and line graphs showing changes in gene expression of cells exposed to polarising cytokine for increasing lengths of 

time, isolated from data generated by Xue et al., (2014): (A) M1 markers in macrophages polarised using IFNγ for increasing periods of time, 

shown by heatmap and (B) M2a markers in macrophages polarised using IL-4 for increasing periods of time, according to heatmap. M1=M1 

macrophages, M2a = M2a macrophages, IL-4=interleukin-4, IFNγ=interferon-gamma 
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2.3.8 Final marker panel 

The main aim of this analysis was to identify a marker panel that could be used to 

optimise a monocytic cell line model for macrophage differentiation and to identify 

potential novel markers of M1 and M2a macrophage polarisation. The final marker 

panel is given in Table 2.3.6. The majority of transcripts selected for this list were 

genes that have been frequently used as markers in the literature and validated using 

this approach (appeared as the top hits); identification through both in silico analyses 

and literature search increased confidence in suitability of these genes as polarisation 

markers. Novel transcripts following similar expression patterns were also included in 

the panel (e.g. ANKRD22 for M1 and HOMER2 for M2a). Frequently used literature 

genes that did not appear in the top 30 list but demonstrated an appropriate expression 

pattern according to data analysis were also included (IRF1 ranked at 32, TGM2 

ranked at 330). 

An additional list of novel markers identified that may be validated experimentally but 

were not included in the final panel are given in Table 2.3.7. 
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Table 2.3.6 Final marker panel identified from Beyer et al.,  (2012) dataset and 

examined in Xue et al.,  (2014) dataset M1=M1 macrophages, M2a = M2a 

macrophages 

Marker Subtype Type of marker 

CXCL10 M1 Literature: validated 

CXCL9 M1 Literature: validated 

GBP5 M1 Literature: validated 

ANKRD22 M1 Novel 

TNFAIP6 M1 Literature: validated 

IRF1 M1 Literature: NON-validated 

 

ALOX15 M2a Literature: validated 

CCL17 M2a Literature: validated 

CCL23 M2a Literature: validated 

CCL26 M2a Literature: validated 

HOMER2 M2a Novel 

TGM2 M2a Literature: NON-validated 

 

Table 2.3.7 Additional novel markers to be validated experimentally identified from 

Beyer et al.,  (2012) dataset and examined in Xue et al.,  (2014) dataset, M1=M1 

macrophages, M2a = M2a macrophages 

Marker Subtype 

SERPING1 M1 

TSC22D1 M1 

AP2A2 M2a 
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2.4 Discussion 

Data generated using different methods were combined to generate candidate marker 

panels. RNA-seq was used to assemble initial panels and microarray data then allowed 

expression of these genes to be analysed in the context of an increased number of 

conditions. Studies have generally found high correlation between differentially 

expressed genes when comparing data generated through both of these methods. 

Hence combining findings from these separate experiments was deemed accepTable 

(Zhao et al., 2014, Wang et al., 2014). Generally, discordance is observed when 

examining low abundance transcripts, which were not of interest here (Vinciotti et al., 

2016); (Zhao et al., 2014).  It should be noted, however, that RNA-seq has been 

reported to outperform microarray in terms of differentially expressed gene verification 

by qPCR; validated genes proportions were given at 93% and 75% for RNA-seq and 

microarray, respectively (Wang et al., 2014), potentially due to technical limitations of 

microarray (probe redundancy and annotation issues). Therefore, when looking at 

these datasets it was considered optimal to use the RNA-seq dataset for the initial 

analysis, and supplement using microarray. 

Discordant results between datasets could also be due to protocols used to generate 

macrophage polarisation. For instance, M-CSF was used to prime cells in the 

microarray experiment and GM-CSF was the differentiation stimulus for the RNA-seq 

cells. Although these two agents are reported to prime macrophages effectively for 

polarisation (Vogel et al., 2014), they induce distinct transcriptional events which, in 

addition to methods of sequencing, could account for the inconsistencies in the top 

differentially expressed genes between the subsets (Jaguin et al., 2013); (Vogel et al., 

2014). 

A number of frequently used markers in the literature were not well defined as subset-

specific markers. For instance, CD80 and CD86 are frequently used to differentiate M1 

from M2a cells in published protocols, but these markers were not identified as top hits 

in the analysis here; CD80 was filtered out in the analysis of Bayer et al.,  (2012) data 

as expression was lower than FPKM of 10 in all conditions and CD86 was ranked as 

313 for potential M1 marker genes and was hence not considered to be a top hit. 

Additionally, expression of the gene coding for CD163 is frequently used as a marker of 

M2a polarisation. However, this gene did not appear in the top 30 panel for these cells 

and there is a growing body of evidence that this gene is induced by a variety of agents 

and may be more indicative of the M2c state; considering the Beyer et al conditions 

(M1 and M2a only), expression of this marker did appear to be higher for M2a cells. 

However, CD163 was ranked at 346, suggesting that there are better markers available 
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for identifying M2a cells. Hence this analysis is useful for identifying literature genes 

which have not been misused in previous reports, or are superior to those available. 

Some of the proteins relating to M1 markers described in the literature that were 

validated using RNA-seq data have well defined roles in inflammatory functioning; 

CXCL9 and CXCL10 are potent chemoattractants for a number of immune cells, and 

signalling through their target CXCR3 may promote a Type 1 T-helper cell response 

(Thapa et al., 2008); (Hardison et al., 2006). GBP5 has been reported to promote 

NLRP3 inflammasome assembly and is required for activation of the absent in 

melanoma 2 protein (AIM2) inflammasome in the presence of certain pathogens (Man 

et al., 2015); (Shenoy et al., 2012). IL-6 is a well-defined pro-inflammatory cytokine with 

roles in T-cell activation, acute phase protein production and more (Tanaka et al., 

2014). Hence it reasonable to assume that all of the corresponding genes for these 

agents are reliable candidates for M1 macrophage markers.   

Conversely, it is clear how some of the markers identified for the M2a state would 

correspond to anti-inflammatory functions and wound healing; ALOX15 is a 

lipoxygenase that is reportedly involved in clearance of apoptotic cell bodies, an 

important aspect of tissue repair (Kwon et al., 2016). CCL26 and CCL17 interact with 

CCR3 and CCR4, respectively; receptors involved in inducing Th2 responses and 

activating other cells implicated in allergy (Mackay, 2008); (Berin, 2002). 

In summary, the work in this Chapter provided a panel of M1 and M2a macrophage 

markers from literature and publicly available sequencing datasets that are likely to 

reflect the relevant phenotype under experimental conditions. Hence these markers 

may be used to optimise tissue culture experiments in future work.  
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Chapter 3: Optimisation of in vitro macrophage differentiation 

and polarisation protocols 

 

3.1 Rationale for development of a macrophage cell line model system 

Although PBMC derived macrophages are frequently used in research, studying 

specific cellular functions can be problematic without a genetically identical baseline. 

Limited numbers of monocytes can be isolated from individual donors, with multiple 

blood draws putting stress on the bone marrow and affecting cell phenotype. This is an 

issue when studying conditions where common allelic variants are known to alter 

disease susceptibility and responsiveness to therapies. Hence monocytic cell lines are 

useful in providing robust, homogenous models for studying macrophage physiology 

and pathology in certain diseases. There are a number of human monocytic cell lines 

available that can be differentiated into a macrophage-like state when exposed to 

certain stimuli; the THP-1 cell line was isolated from an acute myeloid leukaemia 

patient and is the most commonly used immortalised model for in vitro representation 

of monocytes. According to reports, induced THP-1 cells resemble primary MDMs 

when scrutinised for morphology, gene expression, certain antigens and flow cytometry 

characteristics, hence their frequent use in in vitro studies. Additionally it should be 

noted that these cells were isolated from blood rather than tissue (unlike the U937 line), 

lending to their plasticity and susceptibility to polarising stimuli (Chanput et al., 2012); 

(Feng et al., 2004); (Auwerx, 1991); (Tsuchiya et al., 1980); (Koeffler, 1986); (Park et 

al., 2007).  

Upon treatment with PMA, these monocytic cells differentiate into a more mature 

macrophage-like state according to defining characteristics (such as adherence and 

phagocytic capacity) and surface marker expression (CD14, CD11b) (Schwende et al., 

1996); (Lund et al., 2016); (Park et al., 2007); (Aldo et al., 2013). 

Although the literature broadly agrees that THP-1 macrophages are induced through 

an initial PMA spike and polarisation occurs with relevant cytokines, similarities 

between published protocols end there. There is little agreement on what concentration 

of PMA should be used, length of time required for differentiation, whether a rest period 

should be given after this induction, duration of this rest and cytokine exposure times 

and dosage (Chanput et al., 2012); (Spencer et al., 2010). 

PMA concentrations ranging from 2.5ng/ml to 400ng/ml have been used in published 

protocols (Park et al., 2007); (Genin et al., 2015); (Daigneault et al., 2010); (Lund et al., 

2016); (Jiang et al., 2016); (Jiang et al., 2017); (Kohro et al., 2004); (Feng et al., 2004); 
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(Tulk et al., 2015); (Hirakata et al., 2004); (Maeß et al., 2014). PMA is a diacylglycerol 

(DAG) analogue, so higher concentrations will upregulate products downstream of 

protein kinase C, some of which are undesirable and may skew the transcriptome; 

PMA reportedly induces an M1 polarisation bias. Some groups have reported difficulty 

in generating M2a macrophages from THP-1 cells following treatments with high 

concentrations of PMA; reduced upregulation of M2a transcripts following cytokine 

stimulation, or a failure to induce this phenotype altogether were described (Chanput et 

al., 2013); (Spano et al., 2013); (Park et al., 2007). Hence a lower concentration of 

PMA should be used, wherever possible, to induce M2a polarisation. However, the 

lowest concentration at which undesired effects of PMA are minimised whilst 

macrophage polarisation and expression of subset-specific markers are retained has 

not previously been explored. 

The effects of PMA may also be reduced through culture in stimulant free media 

following the PMA spike (Park et al., 2007); (Chanput et al., 2012). Again, the 

challenge remains in identifying a rest duration that would reduce non-specific PMA 

effects whilst allowing cells to retain macrophage-like adherence, and as before there 

is little consensus in the literature on the duration of “rest period” (Chanput et al., 

2012); (Daigneault et al., 2010); (Solberg et al., 2015). 

As with other aspects of the protocol, cytokine exposure time varied between reports. 

As some genes are up-regulated for limited periods of time following cytokine induction 

it is necessary to identify a point at which most markers are most strongly induced, to 

confirm the phenotype and identify optimal conditions (Chanput et al., 2012); 

(Daigneault et al., 2010); (Solberg et al., 2015); (Park et al., 2007). 

The aim of the work described in this Chapter was to determine the optimal protocol for 

generation of M1 and M2a THP-1 macrophages (using the workflow in Figure 3.1.1), 

that may also be used to validate subset-specific novel markers identified in previous 

analyses. The workflow used here may be seen in Figure 3.1.1. 
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Figure 3.1.1 workflow for optimisation of THP-1 cell line model to produce M1 and M2a polarised macrophages. PMA=phorbol 

myristate acetate 
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3.2 Materials and methods 

3.2.1 Marker panel selection 

The majority of genes used in the panel were selected through analysis of public 

datasets and appeared in the top 30 differentially expressed gene list according to fold 

change (see Chapter 2, Table 2.3.6). A frequently used literature marker was also 

included for each condition that did not appear in the top 30 transcript list: IRF1 for M1 

and TGM2 for M2a (Xie et al., 2016); (Martinez and Gordon, 2014). A summary of the 

panel is seen in Table 3.2.1. RPL37A, a gene coding for a ribosomal protein was 

included as a loading control (Maeß et al., 2010). 

 

3.2.2 Cell culture 

THP-1 cells (European Collection of Authenticated Cell Cultures, Sailsbury, UK) were 

counted and seeded at a concentration of 300,000 cells/ml in antibiotic-free RPMI 

(Roswell Park Memorial Institute) media + 10% foetal calf serum (FCS) (Sigma-Aldrich, 

Steinheim, Germany) and maintained at 37ºC, 5% carbon dioxide in a humidified tissue 

culture incubator (product code MCO20AIC, Sanyo, Osaka, Japan). All centrifugations 

were performed in an Eppendorf 5810 R centrifuge (Eppendorf, Hamburg, Germany). 

THP-1 cells underwent mycoplasma testing as a quality control measure, and short 

tandem repeat profiling (a method used to compare loci on DNA samples) was 

performed to confirm cell type prior to experiments. 

 

3.2.3 PMA exposure 

The initial protocol considered required addition of 50ng/ml PMA (Sigma-Aldrich, 

Steinheim, Germany) to RPMI media (Sigma-Aldrich, Missouri, USA) + 10% FCS 

(Sigma-Aldrich, Missouri, USA) for 24 hours to mature the THP-1 monocytes into 

macrophage-like cells, 24h rest period in fresh media and exposure to polarising 

cytokines for a further 24h; 20ng/ml IFNγ (Peprotech, NJ, USA) and 250ng/ml LPS 

(Peprotech, NJ, USA) were used for M1 and 20ng/ml of IL-4 (R&D Systems, 

Minnesota, USA) for M2a cells. 

To identify the lowest, effective concentration of PMA that would ensure specificity and 

sensitivity of markers in the protocol, a titration was performed; cells destined to be M1 

and M2a macrophages were incubated at 37ᵒC in 6 well plates (Corning, New York, 

USA) (1 million cells per well, 3ml RPMI media) and differentiated with 2.5, 5, 10, 20, 

50ng/ml PMA for 24h before rest period and polarisation (as described above).  
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3.2.4 Cytokine titration 

THP-1 cells were differentiated here with 5ng/ml PMA (Sigma-Aldrich, Steinheim, 

Germany) for 24h. Initial cytokine concentrations of 250ng/ml LPS (Peprotech, NJ, 

USA) and 20ng/ml IFNγ (Peprotech, NJ, USA) for M1, 20ng/ml IL-4 (R&D Systems, 

Minnesota, USA) for M2a and 20ng/ml IL-10 (R&D Systems, Minnesota, USA) for M2c 

were deduced from the literature.  

For M1 cells, IFNγ concentrations were kept consistent whilst those for LPS were 

varied between 0 and 250 ng/ml, at 50ng/ml increments for the 24h cytokine exposure 

time. 

Potential M2a cells were treated with IL-4 concentrations of 20, 25 and 30ng/ml for the 

24h polarisation period.  

 

 3.2.5 Rest period 

A PMA (Sigma-Aldrich, Steinheim, Germany) concentration of 5ng/ml was given for 24 

hours to differentiate cells. Post PMA-spike rest time was increased incrementally to 

include 24h, 48h, and 96h periods. 

Subsequently, polarising cytokines (20ng/ml IFNγ (Peprotech, NJ, USA) and 250ng/ml 

LPS (Peprotech, NJ, USA) were used for M1 and 30ng/ml of IL-4 (R&D Systems, 

Minnesota, USA) for M2a cells) were given for 24h. 

 

3.2.6 Cytokine exposure time 

Cells were again differentiated with 5ng/ml PMA (Sigma-Aldrich, Steinheim, Germany) 

for 24h and rested in cytokine free media for 72h. THP-1 cells incubated with polarising 

agents for the various sub-types were tested at different time points: 24, 48, 72 and 

96h. Cytokine concentrations of 20ng/ml IFNγ (Peprotech, NJ, USA) and 250ng/ml LPS 

(Peprotech, NJ, USA) were used for M1 and 30ng/ml of IL-4 (R&D Systems, 

Minnesota, USA) for M2a cells 

 

3.2.7 Final tissue culture protocol 

THP-1 monocytes were treated with 5ng/ml PMA (Sigma-Aldrich, Steinheim, Germany) 

for 24h, rested in cytokine free RPMI media (Sigma-Aldrich, Steinheim, Germany) + 

10% FCS (Sigma-Aldrich, Steinheim, Germany) for 72h, and then polarised for 48h 
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with the following; for M1 cells, 20ng/ml IFNγ (Peprotech, NJ, USA) and 250ng/ml LPS 

(Peprotech, NJ, USA), for M2a cells 30ng/ml of IL-4 (R&D Systems, Minnesota, USA), 

for M2c cells 30ng/ml IL-10 (R&D Systems, Minnesota, USA) and for TPP cells, 

800IU/ml TNF (Sigma-Aldrich, Steinheim, Germany), 100ng/ml Prostaglandin E2 

(Sigma-Aldrich, Steinheim, Germany), 100ng/ml Pam3SK4 (Invitrogen, Carlsbad, 

USA). 

 

3.2.8. Extraction, polarisation and culture of primary peripheral blood derived 

monocytes for use as positive controls 

Blood was drawn from healthy volunteers using lithium-heparin containing vacuette 

tubes (Greiner Bio-One, Kremsmünster, Austria) and mixed at a 1:1 ratio with 

Dulbecco’s Phosphate Buffered Saline (PBS) (Sigma-Aldrich, Missouri, USA) 

(formulation for 1 litre is 8 g Sodium Chloride, 0.2 g Potassium Phosphate, monobasic, 

1.15 g Sodium Phosphate, dibasic, and 0.2 g Potassium Chloride). Lymphoprep 

(Stemcell Technologies, Vancouver, Canada) was added to SepMate tubes (Stemcell 

Technologies, Vancouver, Canada) and blood/PBS was layered on top of lymphoprep. 

Sepmate tubes were centrifuged at 1200xg for 10 minutes with the brake set to 4. Red 

blood cells were removed here by density gradient centrifugation and remaining blood 

components were decanted and further diluted using PBS. Samples were centrifuged 

at 300xg for 10 minutes to pellet cells. Supernatant was discarded and cells were 

resuspended in fresh PBS and the step was repeated. Cell pellets were subsequently 

resuspended in RPMI media (Sigma-Aldrich, Missouri, USA) and plated into T75 tissue 

culture plates (Corning, New York, USA) which had previously been coated in a 

10µg/ml solution of fibronectin (Sigma-Aldrich, Missouri, USA) at a concentration of 3 

million cells per flask. Monocytes were left to adhere overnight before a media change 

(fresh RPMI) and 72h rest. As with the THP-1 cells, macrophages were polarised for 

72h with the same cytokine concentrations of 250ng/ml LPS (Peprotech, NJ, USA) and 

20ng/ml IFNγ (Peprotech, NJ, USA) for M1 cells, 30ng/ml IL-4 for M2a cells (R&D 

Systems, Minnesota, USA) and 30ng/ml IL-10 (R&D Systems, Minnesota, USA) for 

M2c macrophages. Use of healthy controls was approved by Leeds Research ethics 

committee (reference number 04/Q1206/107). 

 

3.2.9 RNA extraction 

Cells were washed in PBS and lysed using the Qiagen RLT plus buffer according to the 

Qiagen RNeasy plus kit protocol. Briefly, lysate was added to a genomic DNA 

exclusion column and centrifuged at 10,000xg to remove any genomic DNA. Lysate 
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was then diluted at a 1:1 ratio with 70% ethanol and added to a mini-spin column 

before another 10,000xg centrifugation, adhering the RNA to the column membrane 

and removing the buffer. RNA was then washed once with RW1 buffer (removed 

carbohydrates, protein, fatty acids) and twice in RPE buffer to remove residual salts 

from other buffers. RNA was then eluted using RNase free deionised water, checked 

for purity using the nanodrop and then stored at -20ºC prior to use; here a 260/280 

ratio of approximately 2.0 is considered pure for RNA.  

 

3.2.10 Cell viability and RNA yield 

Once the polarisation protocol was complete, cells were washed with PBS (Sigma-

Aldrich, Steinheim, Germany) and removed from flasks using Trypsin-EDTA (Sigma-

Aldrich, Steinheim, Germany).  

Following resuspension in media, cells were stained with trypan blue (Invitrogen, 

Carlsbad, USA) at a 1:1 ratio and injected into a countess slide chamber. This slide 

was subsequently loaded into the countess where cell counting and viability 

assessment were performed (Invitrogen, Carlsbad, USA). 

 

3.2.11 cDNA synthesis 

cDNA was produced according to the Invitrogen superscript II protocol. Briefly 2.5 μg 

RNA template was mixed with oligo dT (0.5 μg) (Invitrogen, Carlsbad, USA) and 

deoxynucleotides (dNTPs) (Bioline, London, UK) and heated to 65⁰C to remove 

secondary structures. Reactions were put on ice while First Strand buffer and 

dithiothreitol (DTT) (all Invitrogen, Carlsbad, USA) were added, and the mixture was 

heated to 42⁰C for 2 minutes so primers could anneal to RNA template. 1-unit 

Superscript II enzyme (Invitrogen, Carlsbad, USA) was added and the reactions were 

heated to 42⁰C for 50 minutes. The reaction was ended by heating to 70ºC for 15 

minutes.  

 

3.2.12 Marker panel Polymerase chain reaction 

3.2.12.1 Primer design  

Primers producing an amplicon of minimum 100bp were designed for genes identified 

as potential markers in RNA-seq analysis (Chapter 2, Tables 2.3.4 and 2.3.5). Primers 

were designed to span exon junctions so any genomic contamination produced a larger 

amplicon. Primers were designed to have a GC content of around 50%, Tm of 
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approximately 60⁰C, and a GC clamp at the 5’ end. Primers were checked for 

secondary structures using the basic Northwestern oligocalc 

(http://www.basic.northwestern.edu/biotools/oligocalc.html) and specificity was verified 

using the UCSC in silico polymerase chain reaction (PCR) tool 

(https://genome.ucsc.edu). 

Details of primer lengths and sequences can be found in Tables 3.2.3-5. 

 

3.2.11.2 PCR 

See Table 3.2.2 for details of reagents used. All PCRs were run using the M1 and M2a 

primers listed in Tables 3.2.3-5, and using cycling conditions described in Table 3.2.6. 

Generally speaking, template and relevant primers were combined on ice with PCR 

buffer, magnesium, dNTPs and Taq polymerase. Initial denaturation was performed at 

95ºC to remove secondary structures. A short denaturation was included at the start of 

each cycle. An annealing step at a temperature where the primers could bind to the 

cDNA and an elongation phase at 72ºC where the polymerase enzyme amplified the 

target region of the template followed. Generally, 25-30 cycles were used for each 

reaction, i.e. enough cycles to allow expression of a positive control. 

 

3.2.12.3 Agarose gel electrophoresis 

All PCR products were run on a 3% agarose/TAE (W:V) (Sigma-Aldrich, Steinheim, 

Germany) gel for 75 minutes at 120V in TAE buffer, using a Bio rad Laboratories 

(California, USA) electrophoresis system. Gels were imaged using ImageLab software 

and a Bio rad gel doc system (Bio rad Laboratories, California, USA).  

 

3.2.13 Flow cytometry 

Trypsin-ethylene-diaminetetraacetic acid (EDTA) (Sigma-Aldrich, Steinheim, Germany) 

was added to flasks until cells became detached and 10x the volume of RPMI media + 

10% FCS was added to neutralise the effects of the enzyme. The cell suspension was 

centrifuged at 400xg for 5 minutes and resuspended in a lower volume of media 

(generally around 2mls from a T75 tissue culture flask). Cell number was determined 

using the Countess as described above. 200,000 cells were added on to a 96 well plate 

for each sample, blocked in 2ng/ml IgG1 for 30 minutes on ice and stained with anti-

CD14 fluorescein isothiocyanate (FITC)-conjugated (VIM12, Thermo Fisher Scientific, 

Massachusetts, USA) and anti-CD11b allophycocyanin (APC)-conjugated (M5E2, BD 

Biosciences, California, USA) clones in the dark for 1 hour. Cells were subsequently 

https://genome.ucsc.edu/
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washed in FACS buffer (PBS, 2% FCS, 2mM EDTA) and fixed in FACS fix (50% FACS 

buffer, 10% methanol, 2% formaldehyde). Flow cytometry was performed using the 

plate reader arm of a BD Biosciences Cytoflex (California, USA) and data was 

recorded for the APC (785nm) and FITC (520nm) channels. All analyses were 

performed using FlowJo software (flowJo, Oregon, USA). 

 

 

 

Gene Subtype Source 

CXCL10 M1 public datasets 

CXCL9 M1 public datasets 

GBP5 M1 public datasets 

ANKRD22 M1 public datasets 

TNFAIP6 M1 public datasets 

IRF1 M1 Literature marker (Xie et 

al., 2016) 

ALOX15 M2a Analysis marker 

CCL17 M2a Analysis marker 

CCL23 M2a Analysis marker 

CCL26 M2a Analysis marker 

HOMER2 M2a Analysis marker 

TGM2 M2a Literature marker (Rőszer, 

2015) 

Table 3.2.1. Panel of M1 and M2a macrophage transcriptional markers 

identified in Chapter 2 (Table 2.3.4) from public datasets or published 

studies, selected for optimisation of the THP-1 cells line model, M1= M1 

macrophage, M2a= M2a macrophage 
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Reagent Concentration  Volume in 20µl reaction 

dH2O N/A 14.43 µl 

Taq Buffer  20x 2 µl 

Mg2+ (Applied 
Biosystems, CA, USA) 

50mM 1.2 µl 

dNTPs (Bioline, London, 
UK) 

0.4 µM 0.4 µl 

Forward primer (IDT, CA, 
USA) 

0.2µg/ml 0.4 µl 

Reverse primer (IDT, CA, 
USA) 

0.2µg/ml 0.4 µl 

Template 2.5 µl 1 µl 

Taq polymerase 1 unit 0.17 µl 

Table 3.2.2. Details of PCR reagents used in all reactions described in this 

Chapter. dH2O=water, Mg2+=magnesium ions, dNTPs=deoxynucleotides 
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Gene Forward primer 

sequence 

Reverse primer 

sequence 

Product 

length 

(bp) 

CXCL10 dCCTTATCTTTCTGACTC

TAAGTGG 

dCTAAAGACCTTGGAT

TAACAGG 

107 

CXCL9 dGCTGGTTCTGATTGGA

GTGC 

dGAAGGGCTTGGGGC

AAATTG 

124 

GBP5 dCCAGCTATGAACTCCT

TCTCC 

dCTTTGGAATCTTCTC

CTGGGG 

118 

ANKRD22 dGAAGGACCAGCATGG

GAATC 

dGTTGGCATAGCTGCT

GTCTTC 

110 

TNFAIP6 dGGGATGCCTATTGCTA

CAACC 

dCGTACTCATTTGGGA

AGCCTG 

99 

IL6 dCCAGCTATGAACTCCT

TTCC 

dCTTTGGAATCTTCTC

CTGGGG 

118 

IRF1 dGGAAGGGAAATTACCT

GAGG 

dCTCCAGGTTCATTGA

GTAGG 

101 

RPL37A dTTCCGCTCGTCCGCCT

AATAC 

dGGCCAGTGATGTCTC

AAAGAG 

89 

 

 

 

 

Table 3.2.3. M1 transcript marker primer sequences to be used in THP-1 

PCR experiments. Details of length in base pairs are also given here. Bp= 

base pairs 
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Gene Forward primer 

sequence 

Reverse primer 

sequence 

Product 

length 

(bp) 

ALOX15 dCAGATGTCCATCACT

TGGCAG 

dCTCCTCCCTGAACTT

CTTCAG 

123 

CCL17 dCTTCTCTGCAGCACA

TCCAC 

dCAGATGTCTGGTACC

ACGTC 

117 

CCL23 dGAAGCATCCCGTGTT

CACTC 

dCTTATCACTGGGGTT

GGCAC 

119 

CCL26 dGAAGGGCCTGATTTG

CAGCATC 

dCAGGTCTTGGATATG

TCACTCC 

120 

HOMER2 dCCTCAGCTCATGTCA

GAGTGC 

dGCTCTTCAACTCCAC

CTTCAGG 

153 

TGM2 dGCAGTGACTTTGACG

TCTTTGCCC 

dGTAGCTGTTGATAAC

TGGCTCCACG 

269 

CD200R1 dCTGTACATAGAGCTA

CTTCCTGTTCC 

dGCATTTCATCCTCCT

CAACAACTGG 

187 

Table 3.2.4. M2a transcript marker primer sequences to be used in THP-1 

optimisation PCR experiments. Details of length in base pairs are also given 

here. Bp= base pairs 
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Gene Forward primer 

sequence 

Reverse primer 

sequence 

Product 

length 

(bp) 

ABHD dAACCTCTACGCCGA

CATCGAC 

dGACAGTCCCAATGCT

CTGACC 

102 

LAMP3 dGCAGAGATGGGGA

TACAGCTG 

dAGTTCCCAGAGGCTT

GCGTTG 

103 

STAT4 dACAATGGGCTCGAC

CAGCTTC 

dGCATTGGAATGGGAT

CACCTTC 

132 

STAT1 dCAATGCTTGCTTGG
ATCAGC 

dGTGATAGGGTCATGT
TGCTAGG 

130 

INHBA dGATCATCACGTTTG

CCGAGTC 

dGGGACTTTTAGGAAG

AGCCAG 

120 

SERPING1 dGATGTCCAAGTTCC

AGCCCAC 

dCAGCCCACACAGGTT

AAGGTC 

130 

TSC22D1 dCTCTGGTGCAAGTG

TGGTA 

dCCTCCACTTCTTCTCT

GACC 

98 

CD163   214 

CXCL13 dGTATCCATTCAGCT

TGAGGG 

dAAATCTTGCCCCGTG

GGAATG 

99 

SEPP1 dGTGGAGCTGCCAG

AGTAAAG 

dCCAGGCTTCTCCACA

TTGCTG 

86 

Table 3.2.5. Sequences and lengths of other primers; additional M1 and 

M2a marker to further test the final optimised protocol, and TPP and M2c 

primers to test these polarisation states using PCR experiments. Details of 

length in base pairs are also given here. Bp= base pairs 
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F13A1 dATGTCAGAAACTTC

CAGGACCG 

dAGAAACTCTTGCAGG

TTGACGC 

137 

CD206 dCGAGGAAGAGGTT

CGGTTCACC 

dGCAATCCCGGTTCTC

ATGGC 

84 

AP2A2 dGGAGCTGGAATCAT

CCACACG 

dGCTTCCTTACTTGTG

CGCAG 

110 
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Gene Cycling 

conditions 

Annealing 

temperature (ºC) 

Number of 

cycles 

CXCL10 Initial 

denaturation:  

2 minutes/95ºC 

 

Denaturation: 

30s/95 ºC 

Annealing:  

30s 

Elongation: 

30s/72 ºC 

 

Final elongation:  

3 minutes/72 ºC 

55 25 

CXCL9 63 25 

GBP5 60 25 

ANKRD22 60 30 

TNFAIP6 60 25 

IRF1 55 25 

ALOX15 60 30 

CCL17 58 30 

CCL23 60 30 

CCL26 63 25 

HOMER2 60 25 

TGM2 63 25 

RPL37A 63 25 

 

 

 

 

 

 

Table 3.2.6. Summary of cycling conditions used in marker panel PCR 

experiments in this Chapter 
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3.3 Results 

3.3.1 Phorbol-12-myristate-13-acetate titration identified the lowest viable 

concentration that could be used for generation of macrophages as 5ng/ml 

PMA is an effective agent for differentiating THP-1 monocytes into adherent, 

macrophage like cells. However, the interactions of this DAG analogue with elements 

of intracellular signalling pathways may result in the induction of additional, undesirable 

transcriptional events, which may be impossible to account for (Zeng et al., 2015); 

(Park et al., 2007). To address this, PMA concentrations were titrated down to identify 

the lowest concentration where the differentiated state could still be achieved (i.e. 

adherent, viable cells expressing appropriate markers) whilst reducing non-specific 

effects. Some evidence implies that PMA concentrations upwards of 100ng/ml exceed 

physiological concentrations for the in vitro study of macrophages, so an upper limit of 

100ng/ml PMA (previously found to be effective) was selected for experiments on M0 

cells, which could be reduced to 50ng/ml for other experiments if no differences in 

viability or marker expression could be seen between the two increments (Park et al., 

2007).  

M0 THP-1 cells were tested using trypan blue staining to determine the independent 

effect of PMA on macrophage viability (Figure 3.3.1); the scores appeared to be 

consistent throughout the range of concentrations tested with no significant differences 

detected (Figure 3.3.1 A-B), suggesting that healthy cells could be obtained through 

any degree of PMA priming. Once viability was established other parameters (such as 

cellular adherence and marker expression) were then used to determine the lowest 

suiTable concentration of PMA, as all of the experimental conditions were accepTable 

based on viability alone.  

Considering the lowest concentration of PMA used; although the THP-1 cells appear to 

be viable at 2.5ng/ml PMA, compared to higher concentrations (Figure 3.3.2 B-C) 

cellular adherence was affected (Figure 3.3.1); considerably fewer cells remained 

attached to the flask following the PBS wash for both M0 and M2a cells, suggesting an 

unreliable adherence and weaker macrophage phenotype. It should be noted that M1 

cells remained adherent for all PMA titration conditions, possibly due to LPS and IFNγ 

upregulating adhesion molecule expression. Unsurprisingly, lowering the PMA 

concentration appeared to have a detrimental effect on RNA yield of the inherently less 

adherent M2a induced THP-1 cells. For these reasons 2.5ng/ml of PMA was 

discounted as a viable treatment.  

Cell attachment appeared to be improved for concentrations of 5ng/ml PMA upwards, 

and degree of adherence was comparable between these different conditions. 
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Morphologically speaking, M0 and M2a cells have the characteristic rounder 

appearance at the lower concentrations of PMA (5-10ng/ml), but become more spindle-

like at high concentrations, suggesting that they may be becoming more inflammatory, 

although this was difficult to tell based on cell images alone.  

End-point PCRs were performed in this study as transcripts that were induced in one 

condition and completely absent in another were selected as markers, so to give an 

indication of how this expression pattern may correspond to that of protein markers. 

Looking at subset markers, there appeared to be little difference in specific and non-

specific gene expression for both M0 and M2a-polarised cells at different PMA 

concentrations (Figures 3.3.3 and 3.3.6 respectively); in fact, using these initial 

conditions, overall expression of M2a markers appeared quite weak for all given PMA 

concentrations, which was possibly due to cytokine concentration or cytokine exposure 

time factors. Non-specific expression of M2a markers HOMER2 and TGM2 was seen 

for both M1 (Figure 3.3.4) and M0 (Figure 3.3.3) conditions, and M1-specific transcript 

TNFAIP6 was weakly upregulated in M0 and M2a phenotypes at this stage; their 

induction did not appear to be strongly affected by changes in PMA concentration for 

the preliminary protocol.  

M1 markers did not appear to be as strongly up-regulated in M1 cells treated with 

2.5ng/ml PMA compared to other concentrations tested. When the concentration was 

increased to 5ng/ml of PMA, M1 marker expression in LPS/IFNγ treated cells was 

stronger, and consistent with expression seen with higher concentrations of PMA. 

Therefore, 5ng/ml was selected as a suitable level of PMA to be used for downstream 

experiments. 
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Figure 3.3.1. Light microscope images (taken at magnification x20) of THP-1 cells treated with different concentrations of PMA and then rested 

(M0) or polarised using IFNγ and LPS (M1) or IL-4 (M2a). Note that scaling is identical for all images and scale bar is given in bottom left corner of 

top left box as a white bar. PMA = phorbol 12-myristate 13-acetate. M1= M1 macrophage, M2a=M2a macrophage, M0=unpolarised macrophage 
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A B 

Figure 3.3.2. Viability experiments for THP-1 cells treated with various concentrations of PMA; according to trypan blue staining using a countess 

(A). A summary of trypan blue viability data (where % average viability refers to an average of percentage viability according to trypan blue 

staining across three replicates) and cell counts of samples treated with different concentrations of PMA is also given (B) PMA = phorbol 12-

myristate 13-acetate 
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Figure 3.3.3. M0 PMA titration; cDNA derived unpolarised THP-1 cells treated with different concentrations of PMA tested for expression of M1 

specific genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). For both subsets (M1 and M2a) differentially polarised 

monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product is given in bp (base pairs) and amplicon 

is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark. Bp= base pairs, PMA = phorbol 12-myristate 13-acetate. RT 

negative= reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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Figure 3.3.4. M1 PMA titration; cDNA derived from LPS and IFNγ polarised (M1) THP-1 cells treated with different concentrations of PMA tested 

for expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). For both subsets (M1 and M2a) 

differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product is given in bp 

(base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark. Bp=base pairs, PMA = phorbol 

12-myristate 13-acetate. RT negative= reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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Figure 3.3.5. M2a PMA titration; cDNA derived from IL-4 polarised (M2a) THP-1 cells treated with different concentrations of PMA tested for 

expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). For both subsets (M1 and M2a) 

differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product is given in bp 

(base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark bp= base pairs, PMA = phorbol 

12-myristate 13-acetate. RT negative= reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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A B C 

Table 3.3.1. RNA concentration values taken using a nanodrop-1000 spectrophotometer for RNA extracted from cells stimulated with different 

concentrations of PMA and polarised into the M1 (IFNγ + LPS) (A), M2a (IL-4) (B) and M0 (IL-10) (C) state. PMA = phorbol 12-myristate 13-

acetate 

ng/ml ng/ml ng/ml 
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3.3.2 Optimal cytokine concentrations for gene expression were identified  

Suggested concentrations of IFNγ were relatively consistent in the literature at 20ng/ml, 

but amount of LPS used varied between protocols depending on the assay and 

whether or not cell lines or MDMs were used (Genin et al., 2015); (Chanput et al., 

2013); (Sun et al., 2016); (EngstrÖM et al., 2014). To address this variability, LPS was 

titrated to determine which concentration was ideal for upregulation of M1 markers 

(Figures 3.3.7 and 3.3.8). Although the majority of markers were expressed fairly 

consistently across the range, some genes (IL6, TNFAIP6) were only weakly induced 

where LPS concentrations were reduced to levels below 100ng/ml. Additionally some 

markers appear to be upregulated more strongly where the concentration of LPS was 

highest (IL6, CXCL9). Hence, the highest concentration of LPS tested (at 250ng/ml) 

was selected to carry forwards for further experiments and the finalised protocol. All M1 

markers tested were induced at this concentration so potentially toxic higher 

increments of LPS were not tested. IL-4 concentrations were titrated from 20-30ng/ml 

(Figures 3.3.9 and 3.3.10); generally speaking, most published protocols use 20ng/ml 

of this cytokine, but as M2a cells are considered difficult to induce from THP-1 

macrophages, higher concentrations were tested (Chanput et al., 2013). As some of 

the transcripts in the panel were not up-regulated strongly at the 24h time point 

(ALOX15, CCL26, CCL23), no distinctive pattern was identified. Bands for some 

markers (TGM2 and CCL17) however, appeared to become slightly brighter with higher 

IL-4 concentrations, although this was subtle and difficult to judge without quantitative 

measurements. There was no visible change in M1 lineage markers for all of the tested 

IL-4 concentrations; M1 marker TNFAIP6 was weakly expressed for all IL-4 conditions 

tested. The different concentrations of IL-4 did not appear to alter the morphology of 

the cells and in all three conditions tested a rounded morphology was adopted, typical 

of an M2a cell. Based on the subtle changes seen in the gels and as M2a cells are 

reportedly difficult to generate from THP-1 cells, the highest concentration of IL-4 was 

selected.
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Figure 3.3.7. Light microscope images (taken at magnification x20) of THP-1 cells treated with different concentrations of LPS and a constant 

concentration of IFNγ, to examine differences in morphology and cellular adherence between treatments. Note that scaling is the same for all 

images (scale bar is given in the bottom left corner of top, left box as a white bar) PMA = phorbol 12-myristate 13-acetate, LPS=lipopolysaccharide 
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Figure 3.3.8. LPS titration; cDNA derived from LPS and IFNγ polarised (M1) THP-1 cells treated with different concentrations of PMA tested for 

expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). For both subsets (M1 and M2a) 

differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product is given in bp 

(base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark, LPS=lipopolysaccharide. RT 

negative= reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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Figure 3.3.9. Light microscope images (taken at magnification x20) of THP-1 cells treated with different concentrations of IL-4, to examine 

changes in cell morphology and adherence between treatments. Note that scaling is the same for all images (scale bar is given in the bottom left 

corner of left box as a white bar). IL-4=interleukin-4 

IL-4 concentration (ng/ml) 

Scale bar = 100µm 
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Figure 3.3.10. IL-4 titration; cDNA derived from THP-1 cells primed with PMA and treated with different concentrations of IL-4, tested for 

expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). For both subsets (M1 and M2a) 

differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product is given in bp 

(base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark, IL-4=interleukin-4, RT negative= 

reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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3.3.3 A 72h rest period was required for the reduction of non-specific expression 

of certain markers, whilst retaining sub-set specific expression and sufficient 

cell and RNA yield 

The non-specific expression of lineage markers as a result of PMA exposure could 

potentially be reduced by resting the cells for increased periods of time (versus the 24h 

window used in earlier experiments) following the initial priming step. As lengthy rest 

times may result in cells losing their phenotype and becoming detached from culture 

flasks, a range of rest periods were tested. 

Morphologically speaking, M1 cells rested for longer periods of time became rounder 

and lost some of their characteristic spindle-like morphology. Changes in cell shape 

were less apparent in M0 and M2a macrophages between different rest periods (Figure 

3.3.11). 

Cellular detachment did not seem to be an issue for any rest time for M1-induced cells. 

However, for the M0 and M2a conditions fewer cells appeared to remain attached to 

flasks after a 96h rest, so nothing longer than 72h rest was used in downstream 

experiments. 

Not all markers were directly affected by PMA and so the issue of non-specific 

induction did not affect their expression patterns. Therefore, HOMER2 (an M2a marker 

which appeared to be upregulated by PMA as seen in Figure 3.3.5) was used for this 

Section of this report as a representative example when discussing non-lineage-

specific expression of transcripts. For both M1 and M0 conditions (Figures 3.3.12 and 

3.3.13), HOMER2 expression was seen following 24h and 48h rest, but dropped off 

when cells were rested for extended times of 72 or 96h. Additionally, although 

expression of HOMER2 decreased between 48h and 72h rest time for M2a cells 

(Figure 3.3.14), induction of this M2a marker was still seen, suggesting the presence of 

this transcript was more M2a-specific for these given conditions. The M1 marker 

TNFAIP6 also seemed to be downregulated in M2a and M0 sub-types, although some 

non-specific expression was still seen. It should also be noted that when rest periods in 

M2a cells were increased to 48 or 72h, expression of some M2a markers that were not 

previously upregulated (CCL26, CCL23, ALOX15) was seen. 

For M1-like THP-1 cells, there did not appear to be any consistency when considering 

which rest time was optimal; some markers appeared to be more strongly induced with 

increased rest times (ANKRD22 and GBP5) whereas others seemed to be slightly 

downregulated (IL6). However, expression of two lineage markers (ANKRD22 and 

GBP5) was much stronger at 48 h and 72h whereas IL6 gene expression was slightly 
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reduced, so 72h was chosen, since this rest time was also better considering cell 

morphology and adherence.  

 

3.3.4 CCL26 expression is induced following increased rest periods when PMA 

spike is at 5ng/ml versus 50ng/ml  

The potential detrimental effect of PMA on M2a macrophage polarisation was 

determined by directly comparing cells treated with 5ng/ml and 50ng/ml of PMA 

followed by various rest periods (Figures 5.3.14 and 3.3.15 respectively). As movement 

into the M2a state is reportedly blocked by higher levels of PMA, it could be argued that 

decreasing the concentration of this polarising agent and resting the cells for longer 

periods of time may render the cells more susceptible to M2a polarisation. The M2a 

marker CCL26 appeared to be inducible following a rest period of 48h or 72h, and the 

upregulation appeared to be much stronger when the concentration of PMA was 

reduced to 5ng/ml versus 50ng/ml. This supported the use of the lower concentration of 

PMA that was more favourable for alternative activation states. Few markers appeared 

to persist after resting for 96h; as these cells are highly plastic it is possible that they 

require consistent cytokine stimulation to retain expression of certain transcripts. 

Alternatively, these genes could be under tight regulated by cellular machinery, and are 

thus only briefly induced following polarisation challenge.  

 

 



101 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.3.11. Light microscope images taken at x20 magnification of THP-1 cells rested for different amounts of time following initial PMA spike 

and then stimulated using IFNγ and LPS (M1) or IL-4 (M2a), or left unpolarised (M0). Note that scaling is identical for all images and scale bar is 

given in bottom left corner of bottom left box as a white bar. M1= M1 macrophage, M2a=M2a macrophage, M0=unpolarised macrophage 
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Figure 3.3.12. M0 cell rest titration; cDNA derived from un-polarised (M0) THP-1 cells treated with PMA and rested for different amounts of time, 

tested for expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). For both subsets (M1 

and M2a) differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product is 

given in bp (base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark. RT negative= 

reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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Figure 3.3.13. M1 cell rest titration; cDNA derived from LPS and IFNγ polarised (M1) THP-1 cells treated with PMA and rested for various 

amounts of time, tested for expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). For 

both subsets (M1 and M2a) differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of 

PCR product is given in bp (base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark. RT 

negative= reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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Figure 3.3.14. M2a cell rest titration; cDNA derived from IL-4 polarised (M2a) THP-1 cells treated with PMA and rested for various amounts of 

time, tested for expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). For both subsets 

(M1 and M2a) differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product 

is given in bp (base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark, RT negative= 

reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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Figure 3.3.15. M2a cell rest titration (50ng/ml PMA); cDNA derived from IL-4 polarised (M2a) THP-1 cells treated with 50ng/ml PMA and rested for 

various amounts of time, tested for expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). 

For both subsets (M1 and M2a) differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size 

of PCR product is given in bp (base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark. RT 

negative= reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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3.3.5 Marker expression varied between cytokine exposure times with a 48h 

exposure providing the most consistent upregulation for each marker 

Different transcripts will have expression peaks at different time points following 

exposure to the polarising cytokine. Although panel markers were identified from a 

dataset where macrophages were polarised for 72h, the cells used were MDMs; this 

together with the fact that THP-1 cells have a slightly different transcriptional profile and 

are already established under culture conditions mean that it is reasonable to consider 

the possibility that the cell line will respond slightly differently to stimuli (Kohro et al., 

2004). For the M1 polarised cells (Figures 3.3.16 and 3.3.17), only one of the panel 

markers (CXCL9) was up-regulated at a 96h IFNγ/LPS exposure time. Most of the 

markers were induced at 24h, but expression appears to be weaker compared to other 

time points where marker transcription was induced. All of the markers were present at 

the 48h and 72h time points, but expression appeared to be higher for the former. 

There did not appear to be any difference in non-specific expression of M2a markers in 

the M1 polarised cells other than TGM2, and expression of this transcript appeared to 

be much greater in M2a cells (Figure 3.3.18). Not all M2a markers were upregulated at 

the 24h time point (e.g. in CCL17 and CD200R), and expression of the other subset-

specific genes for this condition appeared to be weak versus 48 and 72h IL-4 

treatments. This is consistent with the findings from previous optimisations which 

included 24h polarisations. Mirroring the pattern observed for M1 cells, M2a markers 

appeared to be most strongly up-regulated at 48h (i.e. for CCL17, CCL26 and TGM2) 

and seemed to drop off at 96h exposure times (CCL26, CCL17). Based on these 

findings 48h was selected as the most suiTable cytokine exposure time for both M1 

and M2a cells. 
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Figure 3.3.16. Light microscope images taken at x20 magnification of THP-1 cells polarised for different amounts of time using IFNγ and 

LPS (M1) or IL-4 (M2a), demonstrating cell morphology and cellular attachment under these conditions. Note that scaling is identical for all 

images and scale bar is given in bottom left corner of bottom left box as a white bar. M1= M1 macrophage, M2a=M2a macrophage 
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Figure 3.3.17. M1 cell cytokine exposure titration; cDNA derived from LPS and IFNγ polarised (M1) THP-1 cells treated with PMA and polarised 

with cytokine for various time periods, tested for expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes 

using PCR (B). For both subsets (M1 and M2a) differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. 

For each gel, size of PCR product is given in bp (base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band 

is 100bp mark. IFNγ=interferon-gamma, LPS=lipopolysaccharise. RT negative= reverse transcriptase negative, MDM=monocyte derived 

macrophage, UT=untreated 
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Figure 3.3.18. M2a cell cytokine exposure titration; cDNA derived from IL-4 polarised (M2a) THP-1 cells treated with PMA and polarised with 

cytokine for various time periods, tested for expression of M1 specific genes using PCR (A) and tested for expression of M2a marker genes using 

PCR (B). For both subsets (M1 and M2a) differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each 

gel, size of PCR product is given in bp (base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp 

mark. IL-4=interleukin-4. RT negative= reverse transcriptase negative, MDM=monocyte derived macrophage, UT=untreated 
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3.3.6 Final optimised protocol allows specific up regulation of subset specific 

markers 

To summarise, the final protocol involved 5ng/ml PMA for 24h, followed by a media    

change and 72h rest. Cells were then polarised in respective cytokines for a further 48h 

(Figure 3.3.19 A). Macrophages generated using this protocol adopted the 

characteristic morphology for their phenotype; M1 induced THP-1 cells were classically 

spindle-like and stellate in appearance, versus the alternatively-activated M2 cells 

which were much rounder and typically “fried egg” shaped (Figure 3.3.19 B). The M1 

markers were specifically upregulated for the M1 induced cells for the finalised 

protocols, with no non-specific up regulation in the other conditions. Similarly, up-

regulation of M2a markers was seen for M2a cells generated according to the finalised 

protocol (Figure 3.3.21). Low level expression of some M2a markers (TGM2, 

HOMER2, CCL23) and M1 marker TNFAIP6 could be seen in other polarisation states, 

but transcript induction was stronger in the relevant condition suggesting that 

polarisation to inflammatory and anti-inflammatory states had been achieved. It should 

be noted that for CCL23 in particular, expression seemed to be almost as high for the 

M2c and M0 conditions as the M2a conditions, so although the phenotype has been 

achieved, this may not be an ideal marker for alternative activation in THP-1 cells. 

 

3.3.7 CD14 and CD11b expression was seen on macrophages generated using 

the final protocol  

CD11b and CD14 (an intergrin alpha-M which regulates leukocyte adhesion and LPS 

binding co-receptor for TLR-4 respectively) are frequently described macrophage 

surface markers (3.3.20) (Mittar et al., 2011). To test cell maturity these proteins were 

detected on the surface of cells generated using the final optimised protocol by flow 

cytometry. CD14 is also found on monocytes, so some expression would also be 

expected for untreated cells. Expression of both markers was seen for all cell types 

tested, suggesting that my final protocol produced a mature macrophage phenotype. It 

should be noted that some expression of CD11b was also recorded for non-PMA 

stimulated monocyte-like THP-1 cells, although this was low versus macrophage like 

cells.  
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Figure 3.3.19. (A) Details of the final optimised protocol for generating polarised macrophages from THP-1 cells and (B) 20x magnification of 

THP-1 cells developed using the final protocol demonstrating cellular morphology of these phenotypes. Note that scaling is identical for all 

images and scale bar is given in bottom left corner of left box as a white bar. M1= M1 macrophage, M2a=M2a macrophage, M0=unpolarised 

macrophage. IL-4=interleukin-4, IL-10=interleukin-10, LPS-lipopolysaccharide, IFNγ=interferon-gamma, PMA = phorbol 12-myristate 13-acetate 
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Figure 3.3.20. Flow cytometry histograms for surface expression of CD14 and CD11b on monocytes (Mono) and differentially polarised 

macrophages; LPS + IFNγ treated (M1), IL-4 treated (M2a), IL-10 treated (M2c) and unpolarised (M0). Staining antibodies for CD14 and 

CD11b are shaded in blue and isotype control histograms are given in pink. PMA = phorbol 12-myristate 13-acetate 
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Figure 3.3.21. Final protocol; cDNA derived from THP-1 cells developed using the final optimised protocol tested for expression of M1 specific 

genes using PCR (A) and tested for expression of M2a marker genes using PCR (B). For both subsets (M1 and M2a) differentially polarised 

monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product is given in bp (base pairs) and 

amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark. MDM=monocyte derived macrophage. 

UT=untreated, RT negative= reverse transcriptase negative 
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3.3.8 M2c and TPP cells generated using the optimised protocol also show 

upregulation of specific markers along with additional M1 and M2a markers 

Some M2c markers identified both from the literature and through the analysis 

performed in Chapter 2 were tested against cells generated using the optimised 

protocol, where IL-10 (typical M2c inducer) was used to polarise the cells. CXCL13 (a 

common literature marker) was strongly expressed in M2c cells, although high levels of 

transcription were also seen for other conditions (Figure 3.3.23 C); it was difficult to 

determine whether expression was highest in M2c cells without quantitative 

assessment of transcript expression. Based on these observations, CXCL13 could not 

be considered lineage-specific. SEPP1 was upregulated in both M0 and M2c cells, 

which may be expected due to the description of M2c cells as “de-activated” 

macrophages, which is arguably the phenotype of M0 cells. CD163 is a marker 

commonly used to describe M2c cells in the literature, however, this transcript did not 

appear in the top genes list for this polarisation state (Chapter 2). In my final protocol 

CD163 appeared to be strongly expressed for M2c cells, but was also weakly 

expressed in other polarisation conditions.  

Additional M1 and M2a markers tested in the final protocol appeared to follow the same 

pattern as those used to optimise the protocol (Figure 3.3.23 A-B). Some of these 

markers (e.g. STAT1) appeared to be transcribed in conditions other than the one of 

interest, but non-specific expression was generally low and may have been 

discriminated using quantitative methods. 

TPP polarised macrophages, originally described by Xue et al.,  (2014) were generated 

through addition of prostaglandin E2 (PGE2), Pam3SK4 (a toll-like receptor II agonist) 

and TNF at the point of polarisation, and are thought to represent macrophages found 

in the chronic inflammatory state (Figure 3.3.22 A-B). Morphologically speaking, these 

cells appeared to be spindle-shaped (showing some resemblance to M1 macrophages) 

as may be expected for an inflammatory phenotype. However, although TPP-specific 

markers were expressed in these cells it did not appear to be a lineage-specific up-

regulation. As this is a newly described phenotype there are limited literature resources 

from which to identify transcripts and for corroboration of my results.
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Figure 3.3.22. Macrophages developed using the optimised protocol, and polarised using TNF, PGE2 and Pam3sk4, imaged at 20x magnification 

to examine cell morphology (scale bar is given in bottom left corner of box as a white bar). (A) cDNA extracted from these cells run against TPP 

markers identified from literature using PCR techniques (Xue et al., 2014) (B). For both subsets (M1 and M2a) differentially polarised monocyte 

derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product is given in bp (base pairs) and amplicon is 

indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark 
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Figure 3.3.22. Macrophages developed using the optimised protocol, and polarised using TNF, PGE2 and Pam3sk4, imaged at 20x 

magnification to examine cell morphology (scale bar is given in bottom left corner of box as a white bar). (A) cDNA extracted from these 

cells run against TPP markers identified from literature using PCR techniques (Xue et al., 2014) (B). For both subsets (M1 and M2a) 

differentially polarised monocyte derived macrophages (MDMs) were used as a positive control. For each gel, size of PCR product is given 

in bp (base pairs) and amplicon is indicated by arrow. Left-most lane is DNA ladder where bottom band is 100bp mark, RT negative= 

reverse transcriptase negative, MDM=monocyte derived macrophage 
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3.3.9 Finalised protocol could be used to validate additional markers  

Additional novel M1 and M2a markers that had been identified from publicly available 

datasets were tested against the protocol descried above for validation (Figure 3.3.23 

A-B). M1 markers SERPING1 and TSC22D1, identified in the dataset analysis showed 

a similar expression pattern to the marker panel genes used to optimise the protocol; 

i.e. these genes were up-regulated specifically in the M1 protocol, and may therefore 

be considered appropriate markers of macrophage polarisation. Novel M2a marker 

AP2A2 appeared to be expressed more highly in M2a cells, but some transcription was 

seen for other conditions.
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Figure 3.3.23. cDNA derived from THP-1 cells developed using the final optimised protocol run against (A) additional established and novel M1 

markers (Beyer et al., 2012) using end point PCR, (B) novel and additional established M2a markers using end point PCR (C) and established 

M2c markers using end point PCR. For all subsets (M1, M2a and M2c), differentially polarised monocyte derived macrophages (MDMs) were used 

as a positive control. For each gel, size of PCR product is given in bp (base pairs) and amplicon is indicated by arrow. Left-most lane is DNA 

ladder where bottom band is 100bp mark, RT negative= reverse transcriptase negative, MDM=monocyte derived macrophage 
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3.4 Discussion 

This cell line model showed phenotypic features consistent with primary MDM 

polarised under the same experimental conditions; based on viability, cell surface 

marker expression, morphological features and transcriptomic profile (Daigneault et al., 

2010); (Lund et al., 2016); (Park et al., 2007); (Chanput et al., 2012). This is the first 

time a THP-1 protocol has been described that included optimisation of PMA 

concentration and rest time (to reduce non-specific transcript expression), whilst 

titrating cytokine concentration for both M1 and M2a polarisation states. This unified 

protocol will provide a robust system that may be used to study macrophage behaviour 

in a more consistent fashion than was previously possible. 

Non-specific effects of PMA are effectively reduced by decreasing PMA concentration 

and increasing rest times. HOMER2 has been linked to Phosphoinositide 3-kinase 

(PI3K) signalling and TNFAIP6 is activated downstream of protein kinase C which 

could be why these transcripts appear to be induced by PMA alone (Maier et al., 1996); 

(Cozzoli et al., 2012). The fact that these markers are reduced or absent when the 

concentration of PMA is decreased and when cells are rested for extended periods of 

time implies that the effect of PMA signalling through this pathway is minimalised using 

my finalised protocol.  

It has been reported that THP-1 cells become less adherent if PMA concentrations are 

too low; as this is a characteristic feature of macrophage-like cells, detachment from 

flasks suggests de-differentiation (Lund et al., 2016); (Auwerx, 1991); (Schwende et al., 

1996). Reduction in cellular adherence was seen here at 2.5ng/ml, hence the lowest 

concentration of PMA tested in this study was not adequate for generation of 

macrophages, supporting previous findings (Park et al., 2007).  

Although inclusion of a rest following PMA spike reportedly generates THP-1 

macrophages with lysosomal and granularity properties more similar to MDMs, these 

cells may again become detached from the flask if cultured in PMA free media for 

extended periods of time (Kohro et al., 2004); (Daigneault et al., 2010); (Lund et al., 

2016). Hence, a similar effect was seen in this report for 5ng/ml PMA using rest periods 

exceeding 72h in some subtypes. These combinations of conditions were therefore not 

sufficient for a THP-1 differentiation protocol; although cells may be more susceptible 

to polarising stimuli, they are not in a sTable macrophage-like state. 

The THP-1 cell line has some genetic differences to human circulating monocytes and 

they can respond differently to stimuli; this may be why a 48h cytokine exposure time 

was deemed to be optimal for up-regulation of appropriate transcripts, when most 

markers in the panel were identified from a study where MDMs were polarised for 72h 
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(Khoro et al., 2004). Marker expression in THP-1 cells was not as strong using that 

time scale. Although, it should be noted that the 48h time point was not closely 

scrutinised in other protocols and so it cannot be confirmed that 72h polarisation is 

ideal for MDMs, and must therefore be optimised for other studies. 

The induction of M2a-specific markers on THP-1 cells using IL-4 refuted any previous 

conclusions that this subtype could not be induced from THP-1 monocytes. The 

increase in rest time in particular appeared to render the cells more susceptible to M2a 

polarising stimuli. However, consistent with previous findings, it was much harder to 

induce expression of most M2a markers versus those for M1, and overall M2a 

transcript expression seemed comparatively weaker (Shiratori et al., 2017); (Chanput 

et al., 2013). It is reasonable to assume that this is due to the inflammatory bias of 

PMA; although this effect is reduced by reducing the concentration it cannot be 

completely removed and further reduction of concentration would result in loss of 

macrophage defining properties, as discussed previously (Park et al., 2007). 

Both M2c and TPP cells were generated from THP-1 cells using the optimised protocol. 

M2c cells demonstrated up-regulation of some subset-specific markers. Some degree 

of overlap with the M0 transcriptome was expected as this subtype is often referred to 

as “de-activated” (Maeß et al., 2014). TPP marker expression was not specific for cells 

polarised to this subtype. This could again result from the confounding effects of PMA, 

genetic differences between THP-1 cells and MDMs or subtle changes in transcript 

levels that are not seen using the end-point PCRs that were employed in this study. As 

this subtype has only recently been defined and supporting literature is limited, it is 

difficult to speculate the reasons for this observation without quantitative studies and 

close comparisons with primary MDM (Xue et al., 2014). 

Novel M1 (TSC22D1, ANKRD22 and SERPING1) and M2a (AP2A2) markers identified 

in Chapter 2 were validated using this THP1 model. ANKRD22, a gene recently 

associated with tumour progression was found to be induced in whole blood samples 

following some immunisations along with some inflammatory genes, suggesting a role 

in immunity (Matsumiya et al., 2014); (Yin et al., 2017). TSC22D1 codes for a tightly 

regulated transcription factor that regulates cellular senescence, a process involving 

interactions with some inflammatory genes (IL6, IL8), as well as having a role in C-type 

natriuretic peptide induction, hence describing the complexity of its interactions (Hömig‐

Hölzel et al., 2011); (Mendonça et al., 2010). SERPING1 is a complement activation 

inhibitor so has clearer roles in immune regulation (Wagenaar-Bos and Hack, 2006). 

AP2A2 codes for a subunit of adipocyte protein 2 (AP2), a protein involved in clathrin-

mediated endocytosis so may also have specific roles in the immune system; 

efferocytosis is a feature of M2a polarised cells which may require upregulation of 
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phagocytic machinery, such as the protein coded for by this transcript (Garrison et al., 

2013). 
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Chapter 4: Validation of THP-1 cell line polarisation protocol 

using RNA-seq data 

 

4.1 Background 

Although THP-1 cells appear to represent primary monocytes closely in terms of 

morphology, cell surface expression molecules and general functions (e.g. 

phagocytosis, cytokine production upon stimulation) (Auwerx, 1991); (Tsuchiya et al., 

1982), there are some genetic and functional aspects that are reported to vary between 

these cell types, which need to be considered when establishing a new cellular model 

for translational research studies.  

THP-1 cells were originally isolated from a patient with acute myeloid leukaemia (AML) 

and oncogenic changes are expected. For instance, when this cell line was subject to 

high resolution genomic analysis, some cancer specific variants were identified. Fusion 

of MLL and MLLT3 genes has been verified (Odero et al., 2000); (Adati et al., 2009) 

and deletions of CDKN2A, CDKN2B and PTEN have also been described (Ogawa et 

al., 1994); (Guo et al., 2000); (Adati et al., 2009). Any pathways downstream of these 

variants will consequently be altered when compared with non-AML monocytes, but 

this may not necessarily have a detrimental impact on cell polarisation and 

differentiation. However, validation through comparison with primary cells will improve 

confidence in the use of the THP-1 cell line for immunological studies, in light of these 

mutations.  

In terms of functional differences, decreased responsiveness to LPS has been 

described for THP-1 cells compared with primary monocytes from healthy controls. 

This was suggested to be related to low expression levels of CD14 (constitutes part of 

the LPS receptor) on THP-1 cells versus primary monocytes (Bosshart and 

Heinzelmann, 2016); (Schildberger et al., 2013). However, some reports have 

suggested the level of CD14 expression on THP-1 monocytes is more likely to be a 

consequence of experimental factors, such as the pre-culture density of these cells and 

duration of incubation prior to stimulation (Aldo et al., 2013). Thus, it is unclear whether 

this observation is genuine or a consequence of tissue culture techniques used.  

In spite of the discrepancies between the THP-1 cell line and primary monocytes 

mentioned above, it was demonstrated in the previous Chapter that certain 

inflammatory and anti-inflammatory markers were expressed in THP-1 macrophages 

following exposure to the same stimuli used to polarise primary cells. Therefore, it may 

be suggested that although some genes and pathways may be altered in THP-1 cells 
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due to their malignant origin, those relating to inflammatory functioning may be 

retained. This is supported by some RNA sequencing experiments; for example a 

recent study by Hu et al.,  (Hu et al., 2016) used THP-1 cells to examine effects of 

candida albicans on these cells using microarray experimentally and identified some 

promising targets. However, it should be noted that this experiment is still awaiting 

experimental validation.  

To determine whether these cells accurately represent monocytes in terms of 

inflammatory/anti-inflammatory functioning, I compared public RNA-seq datasets for 

primary monocytes and macrophages (Beyer et al., 2012) with data from polarised 

THP-1 cells that was produced specifically for this study. Such investigations, using 

RNA-seq data to compare macrophage polarisation in primary cells and THP-1 cell line 

models had not previously been carried out. Hence this study is the first of its kind. 

 

4.2. Materials and Methods 

4.2.1 Cell culture 

THP-1 cells were cultured using the optimised protocol described in Chapter 3 Section 

3.2.7 Final protocol; briefly, cells were plated at a concentration of 300,000 cells/ml in 

RPMI (+ 10% FCS) media (Sigma-Aldrich, CA, USA) and activated with 5ng/ml PMA 

for 24h. Cells were then washed and incubated in stimulant free media for 72h before 

polarising cytokines were added for a further 48h. Each sample was produced in 

triplicate; individual replicates were generated on different days in three batches from 

the same stock of cells. Details of stimuli for different samples generated are given in 

Table 4.2.1. In addition to the conditions described in Chapter 3, Section 3.2.7, cells 

treated with 250ng/ml LPS (Peprotech, NJ, USA) were generated with and without 

treatment with IC; here HAGG was generated and used; see Section 4.2.1.1.  

4.2.1.1 Generation of HAGG 

CAMPATH 1H IgG1 antibody (3.8mg/ml) (Therapeutic Antibody Centre, Oxford, UK) 

was heated to 62ºC for 20 minutes. Samples were then aliquotted and centrifuged for 

at  10,000 x g for  10 minutes with the temperature at 4ºC, and insoluble material was 

discarded. Supernatants were collected and stored at -20ºC for future use.  
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Table 4.2.1. Monocyte and macrophage samples with details of sample name, which 

replicate samples belong to and conditions used to generate the cell type 

Condition Treatment Replicate number Sample name 

Monocyte N/A 1 Mono_1 

2 Mono_2 

3 Mono_3 

M0 PMA 1 M0_1 

2 M0_2 

3 M0_3 

M1 IFNγ+LPS+PMA 1 M1_1 

2 M1_2 

3 M1_3 

M2a IL-4+PMA 1 M2a_1 

2 M2a_2 

3 M2a_3 

M2c IL-10+PMA 1 M2c_1 

2 M2c_2 

3 M2c_3 

LPS LPS+PMA 1 LPS_1 

2 LPS_2 

3 LPS_3 

M2b LPS+PMA+ 

HAGG 

1 LPS_IC_1 

2 LPS_IC_2 

3 LPS_IC_3 

TPP TNF+PGE2+ 

Pam3SK4+PMA 

1 TPP_1 

2 TPP_2 

3 TPP_3 

 

4.2.2 RNA extraction 

RNA extractions were performed using the Qiagen (Netherlands, Venlo) RNeasy mini 

plus kit and the corresponding program on a Qiacube (Qiagen, Netherlands, Venlo). 
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Briefly, samples were lysed from tissue culture flasks using RLT plus lysis buffer 

(Qiagen, Netherlands, Venlo). Samples were then placed into a gDNA exclusion 

column (Qiagen, Netherlands, Venlo) and centrifuged for 1 minute at 10,000 x g. 

following this samples were loaded into the Qiacube. Here, samples were combined 

with 70% ethanol (Sigma-Aldrich, Missouri, USA) at a 1:1 ratio (V:V), before being 

transferred into an RNeasy spin column (Qiagen, Netherlands, Venlo) and centrifuged 

for 1 minute at 10,000 x g to adhere RNA to the column membrane. Volumes of RW1 

wash buffer (Qiagen, Netherlands, Venlo) were added to the columns to remove 

biomolecules carbohydrates, fatty acids from the RNA before a 1-minute centrifugation 

at 10,000 x g. following this RPE buffer (Qiagen, Netherlands, Venlo) was added 

before another 1-minute centrifugation at 10,000 x g to remove salt traces. This was 

repeated for a 2-minute centrifugation at 10,000 x g. Concentration and quality of RNA 

samples were determined using a nanodrop-1000 spectrophotometer (Thermo-Fisher 

Scientific, Waltham, Massachusetts). Ratio of absorbance at 260/280nm and 

260/230nm were determined here to indicate purity (with a 260/280 ratio of 

approximately 1.8 being required for pure RNA), and concentration was given as ng/µl.  

4.2.3 PCR 

Reactions were performed as described in Chapter 3, Section 3.3.12 with the same 

primers and cycling conditions (Chapter 3 Tables 3.2.1-3.2.5). This was carried out as 

a quality control step for samples prior to sequencing. 

 

4.2.4 RNA library preparation and RNA quality checking 

Library preparation was performed by the group’s research assistant using the Illumina 

TruSeq stranded sample preparation kit (Illumina, California, USA; all reagents 

mentioned here were purchased from this manufacturer), using the Low Sample 

Protocol. Please refer to 

https://support.illumina.com/downloads/TruSeq_stranded_total_rna_sample_preparatio

n_guide_15031048.html. 

A schematic for this protocol is given in figure 4.2.1 and highlights 8 major steps.  

Firstly, ribosomal (r) RNA was removed from 200 ng of total RNA followed by RNA. 

Firstly, ribosomal (r) RNA was removed and RNA was fragmented; RNA was added to 

plates and diluted with nuclease free water, and rRNA binding buffer to the desired 

concentration. The samples were combined with the rRNA removal mix and incubated 

at 68ᵒC for 5 minutes in a sealed plate before a further incubation at room temperature 

for 1 minute. Following the addition of the rRNA removal beads, the samples were 

https://support.illumina.com/downloads/truseq_stranded_total_rna_sample_preparation_guide_15031048.html
https://support.illumina.com/downloads/truseq_stranded_total_rna_sample_preparation_guide_15031048.html
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incubated at room temperature. The rRNA removal beads and any bound rRNA were 

then separated from the sample by placing the plate on a magnetic plate holder and 

decanting the sample solution to a fresh plate. RNA binding RNAClean XP beads were 

added to the rRNA depleted samples and incubated at room temperature for 15 

minutes, after which the samples were place on the magnetic stand for 5 minutes to 

separate the RNAClean XP beads and bound RNA from the supernatant which was 

discarded. The beads were washed with 70% ethanol before drying for 15 minutes at 

room temperature. The beads were resuspended in elution buffer and incubation at 

room temperature for 2 minutes, followed by 5 a minute separation of beads from the 

supernatant on magnetic stand. The supernatants containing RNA were incubating at 

94ºC for 8 minutes in sealed plates to fragment the RNA.  

For first stand cDNA synthesis, a master mix of SuperScript II enzyme and the First 

Strand Synthesis Act D Mix tube combine at a 1:9 ratio was added to each sample, 

mixed and incubated in a thermal cycler at 25ºC for 10 minutes, 42ºC for 15 minutes 

and 70ºC at 15 minutes.  

Next second stand synthesis was performed by the mixing 5µl of resuspension buffer 

and Second Strand Marking Master Mix to each sample and incubating at 16ºC for 1 

hour before equilibration to room temperature. The cDNA was purified using AMPure 

XP beads which were mixed with each sample and before incubating for 15 minutes at 

room temperature and separation using a magnetic stand for 5 minutes. Beads were 

washed with 80% ethanol, resuspended in resuspension buffer and supernatants were 

collected after another separation step on a magnetic stand.  

The 3’ ends of the cDNA were adenylated by mixing the samples with A-Tailing Mix 

and incubation at 37ºC for 30 minutes followed by 5 minutes at 70ºC.  

Indexed, Illumina sequencing compatible adapters where ligated to the cDNA by 

incubation at 30ºC for 10 minutes following the addition of the ligation mix and 

appropriate adapters to each sample. The Stop ligation mixture was added to each 

sample to terminate the ligation process before the unligated adapters and adapter 

dimers were removed from the unamplified library by preforming two rounds of using 

AMPure XP beads sample justification as described for the second strand synthesis 

step. 

Finally, the library was amplified by PCR to select for inserts to which the adapters 

were correctly ligated. This was done after the addition of the PCR Primer Cocktail and 

PCR Master Mix using the following PCR conditions: 98ºC for 30 seconds, 15 cycles of 

98ºC for 10 seconds, 60ºC for 30 seconds and 72ºC for 30 seconds, and completed 
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Figure 4.2.1. Basic workflow for generating cDNA libraries from RNA for application 

in RNA-seq experiments using the Illumina low sample protocol, detailed in the 

manual here: 

https://support.illumina.com/downloads/truseq_stranded_total_rna_sample_preparat

ion_guide_15031048.html Figure adapted from Figure 2 in the manual. 

with a final 5 minutes elongation at 72ºC. The samples were purified by two rounds of 

AMPure XP beads selection as described. 

Library insert size and distribution were determined using an Agilent Bioanalyser 

TapeStation 2200 instrument (Agilent Technologies, California, USA) by comparing 

each sample to a reference ladder (Agilent Technologies, California, USA). The 

concentration of each library was determined by comparing their fluorescence at room 

temperature in the appropriate Qubit working solution (Thermo-Fisher Scientific, 

Massachusetts, USA) to a known control samples using a Qubit fluorometer (Thermo-

Fisher Scientific, Massachusetts, USA).  

The libraries were diluted in Tris-HCl 10mM, pH 8.5 with 0.1% Tween 20 and combined 

in equimolar quantities to form the required sequencing library pools. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

https://support.illumina.com/downloads/truseq_stranded_total_rna_sample_preparation_guide_15031048.html
https://support.illumina.com/downloads/truseq_stranded_total_rna_sample_preparation_guide_15031048.html
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4.2.5 Next generation sequencing 

All samples in independent replicates were pooled, bound to different lanes  

of a flow cell (i.e. onto 3 lanes) and subsequently analysed using an Illumina HiSeq 

3000 next generation sequencer to generate 151bp paired end data, by the University 

of Leeds’s Next Generation Sequencing Facility. Sample names can be found along 

with the treatment details in Table 4.2.1.  

 

4.2.6 Assessment of read quality 

The complete data analysis pipeline is summarised in Figure 4.2.2. Initial data quality 

control and sequence analysis was performed in a LINUX environment. Briefly, the 

NGS Facility supplied the sequence data as a pair of gzipped fastq sequence files for 

each sample. While data for read 1 and read 2 sequences were stored in the different 

files, there order was maintained such that the sequences for each end of an insert 

could be determined. The quality of the base calling for each position and the amount 

of sequencing adaptor present in each file was determined using FASTQC (Andrews, 

2010). Adapter sequences and positions with a low-quality base calling score were 

removed using CUTADAPT (Martin, 2011), which was ran using the following 

command line: 

cutadapt -q 10,10 -m 30 -b GTATCAACGCAGAGTAC -B GTATCAACGCAGAGTAC -o 

$trimmed_read1 -p $trimmed_read2 $read1 $read2 

where $read1 and $read2 represent the names of the paired input sequence files, 

$trimmed_read1 and $trimmed_read2 represent the paired files to which the processed 

data was saved too. GTATCAACGCAGAGTAC identifies the sequence of the 

sequencing adaptors to be removed from the data (the preceding flags –b indicate that 

$read1 should be scanned for the following sequence, while –B indicates $read2 is the 

target). The –m 30 parameter results in read pairs with a read less than 30 bp in length 

being discorded. Finally, the –q 10,10 parameter indicates that both the 5’ and 3’ ends 

of each read will be trimmed of base calls with a quality score of less than 10.  The 

command simultaneously processed a sample’s read 1 and read 2 data files such that 

the link between an insert’s read 1 and read 2 sequence data was maintained in the 

exported fastq files. The processed files were screened a second time with FASTQC to 

access the efficiency of the quality trimming and adaptor removal, with the process 

reiterated until the data contained no significant amounts of poor quality sequence 

data. 
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4.2.7 Read alignment  

Sequencing reads were aligned to the reference human genome GRChg38/hg38 with 

reference to the splice junctions as descripted in the assembly matched GTF 

annotation file, with both the reference sequences and annotation file downloaded 

using the UCSC Table Browser tool (Karolchik et al., 2004). Indexing of reference 

genome was performed using the following command: 

STAR --runThreadN 12 --runMode genomeGenerate --genomeDir STAR_genome/ --
genomeFastaFiles $GRCh38.fa --sjdbGTFfile $hg38.gtf --sjdbOverhang 150  

A key of parameters for the command is given in Table 4.2.1 

Table 4.2.2. Key of parameters for STAR genome index command 

Star flag, parameter pair Description of the option or flag 

--runMode genomeGenerate directs STAR to create a genome index 

--runThreadN  number of threads to be used for the genome index 
generation (number of cores) 

--genomeDir path to the directory where the genome indices are 
stored 

--genomeFastaFiles specifies one or more FASTA files containing the genome 
reference sequences 

--sjdbGTFfile path to the file containing transcripts annotation in the 
standard GTF format 

--sjdbOverhang specifies the length of the genomic sequence around the 
annotated junction to be used in constructing the splice 
junctions database 

 

Figure 4.2.2. Overview of RNA-seq data analysis pipeline. Steps performed in a 

LINUX environment can be found in the blue shaded region and steps performed in 

R are given in the pink shaded region. PCA=principle component analysis, 

GO=gene ontology, TF=transcription factor. 
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Alignment of the read data to the indexed reference sequences were performed using 

the STAR software (Dobin et al., 2013) to produce output BAM files, using the following 

command: 

STAR --runMode alignReads --genomeDir $StarIndex --runThreadN 4 --readFilesIn $read1 
$read2 --readFilesCommand zcat  --outFileNamePrefix $outDir --outSAMtype BAM 
SortedByCoordinate --sjdbGTFfile hg38.gtf --sjdbOverhang 150 --outReadsUnmapped Fastx --
outSAMstrandField intronMotif 

 

The function of each of the parameters is listed in Table 4.2.2 

Table 4.2.3. Key of parameters for STAR genome alignment command 

Star flag, parameter pair Description of the option or flag 

--runMode alignReads Instructs STAR to align reads to the genome 

--runThreadN 4 Instructs STAR to run 4 threads when aligning the data. 

--genomeDir $StarIndex Identifies the location of genome index files that are used 
to align the data.  

--readFilesIn $read1 and $read2 Identifies the read 1 and 2 fastq files. 

--readFilesCommand zcat Indicates that the sequence files are compressed using 
gzip algorithm and a UNIX zcat command, which 
decompresses the data, should be used to read the input 

--outFileNamePrefix $outDir Gives the ‘base’ name and path to use when saving the 
alignment and associated meta data. 

--sjdbGTFfile hg38.gtf Name of the annotation file that describes the location of 
known exon positions 

--sjdbOverhang 150 Specifies the length of the genomic sequence around the 
annotated junction to be used when constructing the 
splice junction database prior to read alignment. This 
effectively determines how much an aligned read can 
‘overhang’ when aligning to a splice junction. 

--outReadsUnmapped Fastx Saves unmapped reads to a fasta file 

--outSAMstrandField intronMotif Marks splice-junction alignments in the output file with the 
orientation of the donor and acceptor site for canonical 
junctions. Required for compatibility with some 
downstream software. 

--outFilterMismatchNmax controls maximum number of mismatches 

--outFilterMismatchNoverLmax controls proportion of mismatches over read length 
 

--outFilterMultimapNmax controls maximum multi-mapping reads 

 

Read 1 and read 2 sequences from each insert were alignment together so their 

ultimate location in the genome was based on the quality of the sequence alignment 

and the location of it matched pair mate.    

Alignment was performed to be stringent; ideally a cut off of 0 mismatches could be 

set, but STAR parameters allow mismatches based on read length (longer read allows 

more mismatches) and sequencing quality (more mismatches for lower quality). 

Trimming of reads for adaptors and quality results in variable read length by default, 



130 
 

which would have been the case here. The parameters described in Table 4.2.2 to 

control this included –outFilterMultimapNmax (sets a maximum for multimapping reads) 

which was set as 50 here, --outFilterMismatchNoverLmax (controls proportion of 

mismatches over readlength) which was set at 0.01 and –outFilterMismatchNmax 

(controls maximum number of mismatched bases) which was set at 1. For a complete 

example of the script please refer to appendix 2, Script A2.3.  

 

4.2.8 Generation of gene and exon counts Tables 

As described in Table 4.2.4, the parameter --outSAMtype BAM SortedByCoordinate 

instructed STAR to give the output as sorted BAM files. Gene expression data was 

extracted from BAM files and summarised into raw read counts using the Rsubread 

package (Liao et al., 2013). Simply, this package counted alignments to genes and 

gene overlaps to produce gene and exon count Tables. Some non-default parameters 

were applied here; multimapping reads were set to be counted as fractions. The same 

reference genome annotation file (i.e. hg38) was used here as for splice junction 

database during alignment. Tables were transferred into Rstudio for further analyses. 

The script used here along with descriptive annotations may be found in appendix 2, 

script A2.4.  

 

4.2.9 Differential expression analysis 

It should be noted that examples of R scripts used with descriptive annotation may be 

found in Appendix 3.  

Genes which are differentially expressed between conditions of interest were identified 

through pairwise comparisons, performed using the DESeq2 package; the raw counts 

Table generated by Rsubread was imported into R, and a metadata matrix was created 

as a key to subset data. The DESeq command from the DESeq2 was then used to 

generate a Table of normalised DEGs; the raw read counts isolated from BAM files 

using Rsubread are noramlised between samples here. Briefly, a negative binomial 

generalised linear model (takes into account estimates of dispersion, log fold change 

and data-driven prior distributions) is used to generate the data Tables; i.e. Deseq2 

does not use normalised counts, but it incorporates a normalisation factor that is used 

to generate normalised counts. Genes with an adjusted p-value of less than 0.05, and 

a log2 fold change greater than absolute 1 were selected as significant hits (Love et al., 

2017). Heatmaps were drawn to visualise the data using the pheatmap function from 

the pheatmap package. Any data re-formatting was performed using reshape2 and all 
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other plots were drawn using ggplot2 package. Genes were annotated with symbols 

through switching Refseq identifiers with gene names using clusterProfiler functions 

and the org.Hs.eg.db database as a key. 

 

4.2.10 Principle component analysis (PCA) 

The DESeq2 package was used for generating PCA plots for the data. Briefly, the 

complete dataset was summerised into a DeseqDataset object, rlog transformed 

(shrinks values towards gene mean to account for data dispersion) and stored as a 

matrix (for compatibility with downstream functions). PCA plots were then drawn with 

the plotPCA function, using the 1000 most variable genes in the dataset. If only certain 

conditions were of interest, subsets of the data were created using the meta data table 

as a key for selection. 

 Proportion of explained variable was calculated and visualised as scree plots using the 

pcascree function. Top loading (i.e. most variable) genes for each principle component 

were also identified from this object and plotted as graphs. Top loading genes were 

summarised into a Table and enriched biological processes were determined using the 

clusterProfiler package, and plotted as dot plots. Database org.Hs.eg.db was used as a 

source for annotations and a Benjamini-Hochberg was used as a multiple testing 

correction method for these analyses. Adjusted p-value of 0.01 and q-value cut-off of 

0.05 were selected here (Yendrek et al., 2012).  

 

4.2.11 Gene enrichment analysis 

Lists of significantly differentially expressed genes were identified in the analyses 

described in Section 4.2.9 were analysed further here. As described above enriched 

GO terms (biological processes, cellular components, and molecular functions) were 

determined using functions of the clusterProfiler and AnnotationDBi packages (Yu et 

al., 2012); (Pagès Herve, 2017) by comparing genes with significant changes to the 

entire gene list. Bioconductor database org.Hs.eg.db  was used as a source for 

annotations (Carlson, 2017) and Benjamini-Hochberg adjustment was used for multiple 

testing correction. Adjusted p-value of 0.01 and qvalue cut-off of 0.05 were selected 

here. Data were summarised as dot plots. KEGG and reactome pathway enrichment 

analyses were performed in a similar way (Carlson, 2016); (Yu and He, 2016), but both 

involved a change of gene identifiers from symbols to entrez ID. As with the gene 

ontology enrichment, adjusted p-value of 0.01 and qvalue cut-off of 0.05 were used.  
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4.2.12 Transcription factor analysis 

A Table of transcription factors and targets derived from various ChIPseq experiments 

(ENCODE_TF_ChIP-seq_2015) was downloaded from 

http://amp.pharm.mssm.edu/Enrichr/#stats and read into R. Lists of genes differentially 

expressed between conditions of interest were generated as described in Section 

4.2.9. For each TF, the number of target DEGs were counted along with the number of 

genes regulated by TF of interest in a background control set. Enrichment was tested 

for by contrasting these counts using Fisher’s exact test; here, p-value was adjusted 

using the Benjamini-Hochberg method and an FDR cut-off of 0.05 was applied.  

 

4.2.13 MA plotting 

These plots were used to ensure that data for samples from different datasets were 

similarly normalised. BAM files generated from the alignments performed in Chapter 2, 

Section 2.2.3.2 “Read alignment and production of counts Tables”, were analysed by 

Rsubread as described in Sections 4.2.8 to generate a second gene counts Table. The 

two gene expression counts Tables corresponding to two different datasets were read 

into R. Both counts Tables were combined into one large matrix using Refseq 

identifiers as a key. MA plots were plotted between every pair of samples in the Table, 

where M is the logarithm of the intensity ratio and A is the average count for any given 

dot in a plot. The plotMA function was used from the geneplotter package for this. Plot 

demonstrating contrasts of interest were selected.  

 

4.3.14 Venn diagram plotting 

As above, two gene expression counts Tables corresponding to two different datasets 

(one generated from BAM files produced through analysing public datasets in Chapter 

2 and another from data generated in this Chapter) were read into R. Metadata Tables 

were generated for each dataset. Both counts Tables were combined into one large 

matrix using Refseq identifiers as a key, so only genes listed in both datasets were 

considered. Metadata Tables were also combined. Differentially expressed genes 

between M1 and M2a conditions were identified for both publicly available data and 

that generated in this Chapter. These genes were selected as described in Section 

4.2.10 (Differential expression analysis) with adjusted p-value cut-off set to 0.01 (P-

adjust method used was Benjamini Hochberg). Overlapping genes were identified and 

a Venn diagram was plotted using the VennDiagram package. Lists of genes in each 

http://amp.pharm.mssm.edu/Enrichr/#stats
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segment were isolated for downstream enrichment analysis which was performed as in 

Section 4.2.11 (Gene enrichment analysis). 

 

4.3 Results 

4.3.1 Quality Control of THP-1 polarisation was performed prior to next 

generation sequencing 

Prior to performing next generation sequencing, it was considered important to confirm 

that the THP-1 cells had undergone polarisation. This would ensure that the input RNA 

accurately represented the culture conditions which were being investigated. Hence 

samples for each replicate used to generate RNA-seq libraries were tested against a 

small number of M1 and M2a markers that were previously used to optimise the 

protocol. Specific upregulation of markers for appropriate conditions (i.e. CXCL9 and 

GBP5 for M1 induced cells and ALOX15 and TGM2 for M2a cells) indicated that 

polarisation had been achieved and that the samples could be used to generate 

reliable RNA libraries and thus were used for sequencing reactions (Figure 4.3.1) 
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Figure 4.3.1.  PCRs of cDNA derived from RNA-seq samples prior to library 

preparation to examine M1 (CXCL9 and GBP5) and M2a (ALOX15 and CCL17) 

marker expression in cDNA synthesised from RNA, generated for RNA-seq 

experiments; gene expression for replicates 1 (A), 2 (B), and 3 (C) was 

examined. Red band indicates light saturation. IC= immune complex, RT= 

reverse transcriptase, Mono= monocyte. Lane on far left of all gells represents 

ladder with lowest band at 100bp 
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4.3.2. Principal component analysis highlighted samples from second replicate 

to be outliers 

PCA plots cluster data bases on the most variable factors in the dataset, i.e. principle 

components 1 and 2. This gives an indication as to which samples are most similar in 

terms of gene expression and provides some information as to whether replicates are 

consistent within conditions. The plot of all three experimental replicates highlights the 

samples from replicate 2 as outliers (Figure 4.3.2, A); they do not cluster with other 

samples generated using the same experimental conditions, and appear to align at the 

same point on the x-axis. As each of the replicates were run on separate sequencing 

lanes, it is likely that a lane effect skewed the output. For this reason, this replicate was 

excluded from further analyses in this Chapter. Samples were re-plotted without 

replicate 2 (Figure 4.3.2, B); repeats of conditions clustered together appropriately 

here. On these plots, monocytes appeared to separate from the macrophage-like cells 

along the x-axis; scrutinisation of loading components for the x-axis on Figure 4.3.3, C 

(i) + (ii) revealed transcripts involved in the immune response (e.g. IDO1, ACOD1, 

SERPINB7), which may indicate differences in differentiation functions between these 

cells (Figure 4.3.3, C (i)). The PMA-activated cells (macrophages) were divided in a 

linear fashion by the y-axis, with M1 and M2a polarised THP-1 macrophages at either 

end of the spectrum. Other subtypes were found at intermediate points. It is also clear 

based on this analysis that both M2a and M2c cells have similar transcriptomic profiles 

to M0 cells as they cluster fairly closely together. M1 cells appear to be differentiated 

much further from M0 (baseline) macrophages based on this analysis. LPS and TPP-

induced cells were clustered at intermediate points between the M0 and M1 samples. 

One of the “M2b” (treatment with LPS +HAGG) samples mapped with the LPS 

conditions, and the other near the M1 cluster. This could imply a varying response to 

the addition of ICs. Top loading genes for this axis appeared to be inflammatory-related 

(e.g. CXCL9, CXCL10, GBP5, SERPING1), suggesting that y-axis separated samples 

by polarisation state (Figure 4.3.3, D (i)). 

Although the samples appeared to map in a polarisation/differentiation manner, 

additional investigations were performed for confirmation; analysis of most significant 

loading genes for principal component 1 revealed enrichment of functions relating to 

cell activation and migration, implying that this category may separate samples by 

degree of activation, i.e. differentiation state (Figure 4.3.3, D (i) + (ii)). Analysis of top 

loading genes from principle component 2 revealed enrichment of functions relating to 

IFNγ signalling and pathogen responses. This lends to the theory that the y-axis 

separates samples according to polarisation state (Figure 4.3.3, C (i) + (ii)). Hence the 

M2b sample that is skewed further from the LPS conditions may have responded 
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differently to IC (e.g. cells may have adopted some M1-like transcriptomic signatures). 

Varying responses to ICs will be explored in more detail in Chapter 5. 

 

4.3.3. MDM and THP-1 datasets were found to be comparable 

Comparisons between the THP-1 RNA-seq data generated in this Chapter, and 

publicly available MDM RNA-seq data identified in Chapter 2 were considered to be 

useful for validating the THP-1 cell line model as a surrogate for studying the activity of 

primary cells. However, comparing datasets generated in two separate experiments 

can be problematic. MA plots (where M is the binary logarithm of the gene expression 

count ratio and A is the average expression for a dot in the plot) can be used to 

investigate the distribution of genes between two datasets; as x-axis corresponds to 

average expression and y-axis to fold change, a directional skew of data points on the 

y-axis would imply transcriptional or technical bias for one of the samples, making any 

further comparisons unreliable. Thus, MA plots were used here to determine whether 

RNA-seq data derived from publicly available MDM studies (identified and analysed in 

Chapter 2) and that produced in this THP-1 experiment were comparable. Symmetry of 

plots between M1 and M2a samples in both datasets suggested that the samples were 

similarly normalised and could therefore be compared to one another to identify 

parallels in gene expression (Figure 4.3.4, A and B).   
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Figure 4.3.2.  Principle component analysis plots using top 1000 most differentially expressed genes to examine clustering of all macrophage 

samples from all replicates (A) and all macrophage samples in the replicates 1 and 3 (B), i.e. run on lanes 4 and 6 of the sequences 

respectively. PC=principle component  

 

A B 
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Figure 4.3.3. PCA demonstrating how samples plot according to 1000 most variable genes with LPS+HAGG (M2b) samples and no 

LPS only conditions, and no samples from replicate 2 (A). Bar chart for contributions of each principle component of top 1000 

variable genes (B). loading gene analysis (C), see next page; x-axis (principle component 1) top ten up and down-regulated loading 

genes (i) top 50 enriched biological processes for all genes in x-axis (principle component 1)(ii), (D), see next page; y-axis (principle 

component 2) top ten up and down-regulated loading genes (i) top 50 enriched biological processes for all genes in y-axis (principle 

component 2) (ii). PC=principle component  
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Figure 4.3.3. MA plots demonstrating the distribution of monocyte derived 

macrophages (MDM) samples versus THP-1 cells for M1 macrophages (A) and 

distribution of monocyte derived macrophages (MDM) samples versus THP- in 

M2a induced cells (B) 

A 

B 
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4.3.4. Inflammatory genes were found to be similarly expressed in THP-1 and 

monocyte derived macrophage datasets  

After ensuring that the datasets were comparable in Section 4.3.3, it was necessary to 

determine whether gene expression followed a similar pattern in THP-1 macrophages 

and MDMs, with a particular focus on inflammatory functions. Differences in gene 

expression between M1 (inflammatory genes) and M2a macrophages (immune 

resolution related genes) are well documented. Therefore, as a way to normalise genes 

(a factor that may vary between data generated in different experiments), lists of 

transcripts that were significantly differentially expressed between M1 and M2a 

conditions were produced for both THP-1 macrophage and MDM datasets. These gene 

lists were then compared; overlapping and non-overlapping transcripts (between 

datasets) were subject to GO enrichment analyses to inform on which functions were 

similar and different between the two datasets (Figure 4.3.5). The overlapping region 

(containing genes which were differentially expressed in both THP-1 and MDM 

datasets) was heavily enriched for a large number of inflammatory terms, suggesting 

that the markers that are similarly regulated in THP-1 macrophage and MDM datasets 

are involved in immune functioning (Figure 4.3.6, B). Hence these functions are 

represented similarly in both datasets, and THP-1 cells can be considered a reliable 

surrogate for studying these processes. The DEGs that were present in the THP-1 

cells, but not the MDMs were mostly enriched for GO terms related to cell cycle 

checkpoints (4.3.6, A). As the macrophage cell cycles were not synchronised prior to 

RNA extraction, it is possible that the M1 and M2a cells were undergoing different 

cellular processes relating to this cycle, hence the DEGs being enriched for those 

terms. Some of the GO terms enriched for genes only found in the MDM dataset were 

immunity related. However, the gene ratio of enriched terms was fairly low compared to 

the ones seen for the overlap region category, and adjusted P-value was higher for 

overlapping region. For instance, the gene ratio for top enriched terms in the overlap 

region were between 0.1 and 0.15 (10-15%) compared to approximately 0.06 (6%) for 

the MDM only region (figure 4.3.6, B and C respectively), and maximum adjusted P-

value for MDM-only region was around 0.005-0.01 whereas for overlap section was 

less than 2X10ˉ ⁹. Additionally, it is important to bear in mind that the methods used to 

differentiate the THP-1 and MDMs differ; M-CSF was used to generate macrophages 

from PBMC monocytes versus the use of PMA for THP-1 cells, and cytokine exposure 

time was 72h for primary macrophages in contrast with 48h used for THP-1 

macrophages. Therefore, some changes in gene expression profile along these lines 

should be expected. In support of this, the ontology terms in the MDM only category 

appeared to be related to leukocyte development and motility versus top hits in the 
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Figure 4.3.5.  Lists of genes that were differentially expressed between M1 and 

M2a cells were generated for both THP-1 cells and MDMs. Lists were contrasted 

to determine whether there was any overlap between them. Overlapping and 

outlying genes were plotted as a Venn diagram, with THP-1 cell outlier genes in 

blue segment, overlapping region representing genes found in both lists of 

differentially expressed genes (THP-1 and MDM) and non-overlapping pink 

region corresponding to genes found in the MDM differentially expressed gene 

list only. Numbers refer to number of genes represented by the segment. 

MDM=monocyte derived macrophage.  

cross-over section, which were directly associated with response to pathogen (figure 

4.3.6, C).  
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Figure 4.3.6.  Dot plots showing biological process gene ontology enrichment terms 

for transcripts appearing in different regions of the venn diagram (Figure 4.3.5.); 

THP-1 only region (A), overlap region (B) and MDM only region (C) 
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4.3.5. Marker panel indicated polarisation into M1 and M2a phenotypes was 

achieved 

Transcripts for markers used to optimise the polarisation model in Chapter 3 (Tables 

3.2.3 and 3.2.4) were isolated from the dataset to examine expression quantitatively in 

the different macrophage conditions. Generally speaking, the markers followed the 

same pattern for this data that was seen experimentally, with M1 and M2a markers 

being up-regulated specifically for their respective conditions (Figure 4.3.7). The 

exceptions appear to be CCL17, CCL23 and HOMER2. CCL17 did not appear to be 

consistently up-regulated for any of the conditions looking at these data (Figure 4.3.7); 

this transcript only appeared to be weakly induced according to PCR studies, so it is 

possible that it is an unreliable marker that is not consistently and reliably up-regulated. 

CCL23 and HOMER2 did not appear to be M2a specific; this is not necessarily 

surprising as some non-specific up-regulation was seen for these markers (Chapter 3 

Figure 3.3.21). Experimental variability and the fact that PCR products were not 

actually sequenced may also account for this; off target amplification may be an issue 

for the PCR results described in Chapter 3. The remaining transcripts appeared to be 

specific for their respective conditions (Figure 4.3.7). Novel markers identified in the 

previous analysis were also quantified. SERPING1 and AP2A2 appeared to be specific 

for the M1 and M2a conditions, respectively, and may therefore make effective markers 

(Figure 4.3.8, B). TSC22D1 was up-regulated for all macrophage conditions, but was 

highest for M1, making it a marker that may be useful as part of a signature or when 

using quantitative techniques. TSC22D1 was also modestly up-regulated in TPP cells 

versus other conditions tested. As TLR agonists are used to generate both M1 and 

TPP cell types (LPS for M1, Pam3SK4 for TPP), it is unsurprising that there are some 

similarities in terms of transcripts induced.  

M2c and TPP markers which were identified from literature and through data mining 

publicly available microarray sources were also examined in this dataset. Relative, 

quantitative expression of these markers was not possible when using end-point 

assays in Chapter 3 (Figures 3.3.22, A and 3.3.23, C) and so this investigation was 

considered to be essential in these datasets. TPP markers ABHD17C, LAMP3 and 

STAT4 were expressed in TPP induced THP-1 cells here, but expression was also 

reported in M1 cells (Figure 4.3.8, A). This is not necessarily surprising as these cells 

are reported to be both inflammatory in nature and may have some similar gene 

expressions and functions.  

The reported M2c marker CD163 was expressed in M2c cells but also in M2a and M0 

subsets, and another marker, CXCL13 was seen to be expressed in M2c and M0 cells 

as well as the more inflammatory macrophage (M1 and TPP subtypes) (Figure 4.3.8, 
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A). Additionally, no expression of M2c marker SELENOP (SEPP1) was observed for 

M2c cells; this was only up-regulated in M1 cells and monocytes (Figure 4.3.8, A), 

suggesting that this is a poor M2c marker. Similarities between M2c and M0 cells are 

expected as the former subset is described to be “de-activated”. However, non-specific 

expression of some “M2c markers” in other conditions make it difficult to determine 

whether induction of this subtype was successful (Maess et al., 2014). 

Additional M2a markers which were tested included MRC1 and F13A1, which were 

highly expressed in M2a macrophages, but also in monocytes (Figure 4.3.8, A). Hence 

these markers may be most useful when incorporated into a panel containing markers 

which can distinguish monocytes and macrophages. 

Figure 4.3.7. Heatmap showing expression of M1 and M2a marker genes identified 

in Chapter 2 (Table 2.3.4) for all THP-1 cell subtypes. Refseq identifiers (NM_ keys) 

are given alongside gene names for transcripts with more than one identifier  
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Figure 4.3.8. Heatmap of additional known markers used in Chapter 3 to investigate THP-1 cell differentiation (A) and heatmap of novel markers 

of M1 and M2a polarisation identified in Chapter 2 and tested experimentally in Chapter 3. Again, Refseq identifiers (NM_ keys) are given 

alongside gene names for transcripts with more than one identifier and additional identifiers showing consistent patterns may increase confidence 

that the differences are genuine 
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4.3.6. Pairwise comparisons demonstrated differentially expressed genes in 

certain subtypes which were enriched for subtype specific functions 

As stated previously, the most well-defined expression pattern in macrophage 

polarisation exists through contrasting M1 and M2a subsets. Hence these two 

conditions were used for pairwise comparisons and differential gene expression 

analyses to determine whether the pattern observed followed that to be expected; i.e. 

with M1 conditions demonstrating enrichment in more inflammatory pathways and M2a 

showing enrichment for immune resolution and tissue repair pathways. Looking broadly 

at the dataset using heatmaps of all DEGs (Figure 4.3.9), it is clear that there is a large 

distinction in gene expression between the two conditions. When transcripts up-

regulated in the M1 condition were passed through the Gene Ontology enrichment 

pipeline, functions relating to the immune response and pathogen removal were highly 

represented (Figure 4.3.10, A), e.g. defence response to other organism, T cell 

activation response to interferon-gamma are examples of terms given. Conversely, 

genes induced in M2a cells in this comparison were not enriched for biological 

processes relating to typical M2a functions; enriched terms were more cell cycle 

related. The cell cycle is reportedly halted in M1 macrophages and not M2a cells (Xaus 

et al., 1999), but it is impossible to determine whether this difference is responsible for 

these observations as cell cycle of macrophages was not synced prior to cell 

stimulation in this experiment.  

Examining changes in the expression of a small number of genes between 

macrophage subtypes (as in Chapter 3) does not holistically define functional 

differences that occur in response to polarising stimuli. Hence this report aimed to 

discriminate transcriptomic signatures in the cell-line model, by passing genes isolated 

from an M1 versus M2a contrast through a transcription factor enrichment pipeline. TFs 

STAT1, STAT2 and STAT3 are renowned for up regulating inflammatory genes in 

response to signalling through the interferon pathways (Au-Yeung et al., 2013). Targets 

for these factors were found to be enriched in M1 DEGs (vs M2a) (Figure 4.3.11, A), 

suggesting that the THP-1 cells used for this experiment achieved M1 polarisation. 

Targets for MYC (also known as c-MYC) were enriched for M2a genes (Figure 4.3.11, 

B); this TF has been linked to IL-4 signalling and M2a polarisation, hence supporting 

conversion of THP-1 cells into the M2a state in this experiment (Pello et al., 2012).  

DEG and analyses were performed for all other subtypes through pairwise 

comparisons with M1 and M0 cells (Table 4.3.1). Pairwise comparisons with M1 cells 

were included as the anti-inflammatory conditions (M2a, M2c) were clustered closely to 

the M0 cells in the PCA analysis (Figure 4.3.3, A), and so comparisons with these cells 

as a baseline alone may not clearly highlight the most differentiating phenotypic 
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features.  It should be noted that although M0 and M2c cells demonstrated patterns of 

differential expression when contrasted against M1 induced cells, no genes were found 

to be significantly different between these two conditions (p-value given at 0.05, Table 

4.3.1). It is possible that M2c cells did not respond to the IL-10 stimulus and therefore 

did not adopt the appropriate phenotype. However, cells of this subtype have been 

described as de-differentiated macrophages, which could be the reason for 

transcriptional similarities between M2c and M0 cells. 

It should be noted that significantly differentially expressed genes were identified for all 

other comparisons (Table 4.3.1). Tables listing genes which are differentially expressed 

between conditions may be found in Appendix 1.
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Figure 4.3.9. Heatmap of differentially expressed genes between M1 and M2a induced THP-1 cells (A), top 100 genes which were found to be 

significantly up-regulated in for M2a cells versus M1 cells (B. i) and top M1 genes significantly up-regulated for M1 versus M2a comparison (B. ii) 
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Figure 4.3.10. Dot plots for biological process related gene ontology enrichment for 

differentially expressed transcripts up-regulated in M1 condition versus M2a (A) and for 

transcripts up-regulated in M2a condition versus M1  
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Figure 4.3.11. Bar charts demonstrating gene ratios and respective p-values for transcription factors in lists of genes; those elevated in M1 

condition versus M2a (A) and for those elevated in the M2a condition versus the M1 condition (B). Top ten transcription factors were selected for 

each condition when ordered according to p-value  

A B 
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Table 4.3.1. Conditions in which pairwise comparisons produced a list of differentially 

expressed genes; Green indicates that a list of significantly differentially expressed 

genes (p-value threshold set at 0.05) was identified between conditions, red indicates 

that no significantly differentially expressed genes were identified between the 

different conditions (p- value at 0.05). Grey boxes indicate when the same condition is 

given on both axes 

 

 

 

 

 

4.3.7. Top 30 most differentially expressed transcripts for THP-1 macrophage 

subsets were identified 

Some of the transcripts identified through the analysis of public datasets in Chapter 2 

were not considered to be particularly robust markers in THP-1 cells (Chapter 3 Figure 

3.3.21). In addition, it should be noted that there were some differences in the 

transcripts identified as strong candidate markers between both the RNA-seq and 

microarray datasets in Chapter 2 (Figure 2.3.7). Hence efforts were made here to 

identify more reliable marker genes in these datasets that were strongly up-regulated in 

one condition only. Candidates were selected through a pairwise comparison that 

broadly speaking involved contrasting one subtype against all other conditions (e.g. M1 

versus not-M1).  

For the M1 subtype, there were clear distinctions between the top markers and most of 

the other conditions used in the contrasts (Figure 4.3.12, A). Some of the top 30 

transcripts (GBP5, SERPING1) were identified in the MDM dataset analysis in Chapter 

2 (Table 2.3.4), increasing confidence in this approach. There did appear to be some 

overlap between gene expression in the M1 and M2b (LPS+HAGG) samples. These 

cells are both induced using LPS (along with other agents), and subsequent overlaps in 

transcriptomic profiles are to be expected (as seen for SERPING1 and ETV7 in Figure 

4.3.13, A. ii). As some of the genes selected were not expressed in both conditions, it 

is possible that all markers here may be included as part of a panel to identify 

macrophages expressing an M1-like signature; for instance SERPING1 which is seen 

for both M1 and M2b (Figures 4.3.12, A and 4.3.13, A respectively) could be included 

in a panel GBP5 which is highly specific for M1 cells (Figure 4.3.12, A. ii). It should also 

be noted that the expression of these genes in the M2b condition was not consistent 

 Monocytes M0 M1 M2a M2b M2c TPP 

M0        

M1        
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between the two replicates, and so up-regulation of the M1 markers in this subtype 

may not be a reliable observation and further verification would be needed. 

On contrasting M2a induced genes with all other conditions, a list of significantly 

differentially expressed genes were produced as potential markers for this subtype 

(Figure 4.3.12, B); some M2a markers identified through this analysis were also highly 

ranked in the analyses performed in Chapter 2, although some of these markers 

(F13A1, FCER2) were also highly expressed in THP-1 monocytes, so would need to be 

used in conjunction with other markers as part of a panel. Overall there appeared to be 

a number of potential M2a markers that may be cross validated in a MDM dataset. 

As mentioned previously, the two M2b-like conditions were not consistently polarised, 

and so markers identified through contrasting these conditions with the other samples 

should be considered with caution. As expected from other contrasts, there were some 

overlaps with genes identified for the M1 conditions, but others that were high in one 

replicate of the M2b treated cells (versus all other conditions) only (Figure 4.3.13, A); 

these could be considered as candidate markers to be cross-validated in MDM 

datasets. It could be suggested that one of the samples did not react as strongly to IC 

as the other, or polarised differentially in response to the LPS leading to differences in 

transcript expression. Explanations would require validation or repeats of experiments 

to determine correct gene expression profile.  

As there were no significantly different genes expressed between M2c and M0 cells in 

the pairwise analyses, these two conditions were combined in an attempt to identify 

markers relating to these two subsets (Figure 4.3.13, B). A small number of hits (27 

separate refseq identifiers) were identified using this method that appeared to 

represent this subset, although differences between expression in subsets of interest 

and other conditions were not as clear as those seen for M1 and M2a markers (for 

instance) (Figure 4.3.14, B).  It was particularly important for these markers to be 

examined in other datasets, as they were isolated through an analysis spanning two 

different polarisation states (Figure 4.3.16, C).  

Isolation of potential markers for the TPP subtype was of particular interest as these 

cells have only recently been described and relatively little gene expression information 

is available for them (Xue et al., 2014). Upon inspection (Figure 4.3.14, A), some of the 

genes isolated appeared to be related to immunological functioning (e.g. IL23A). 

However, as this list of genes was produced by contrasting with all other conditions 

(including M1 samples which according to the PCA plot shared some similarities with 

TPP cells) some genes relating to characteristic inflammatory patterns may have been 

discounted because of overlapping expression with M1 cells. 
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Monocytic markers were also identified using similar contrast methods (Figure 4.3.14, 

B); SIGLE6C (codes for sialic acid binding Ig-like lectin) (von Gunten and Bochner, 

2008) and MS4A3 (member of a family of four-transmembrane proteins responsible for 

cell surface signalling) (Kutok et al., 2011) were among the top hits for this analysis. It 

is clear when looking at the marker plots (Figure 4.3.13, A) that one of the M2b 

conditions shares some similarities with monocytes. Additionally, according to the PCA 

this sample does not appear to align with other macrophage-like conditions on the x-

axis (previously proposed to relate to differentiation) and is at an intermediate stage 

between these cells and the monocytes. Hence it is possible that cells grown for this 

sample did not effectively differentiate and become macrophage-like, making the 

markers more specific for the monocyte state versus other conditions. However, an 

alternative explanation is that this set of conditions reverses differentiation of 

macrophages to some degree, resulting in a more intermediately activated phenotype. 

Further investigation is required to confirm or rule out either hypothesis. As an 

additional point, the fact that this M2b sample appears to be an outlier in terms of both 

differentiation and polarisation begs the question, does failure to differentiate render 

cells more susceptible to the influence of HAGG or vice versa. As with the previous 

point, more information is required to hypothesize reliably. 
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Figure 4.3.12. Heatmap showing potential markers up-regulated in condition of 

interest, and dotplot showing top marker expressions for condition of interest (blue) 

versus other samples (pink) for M1 subtype (A) and M2a subtype (B) 

 

A 

B 

i) ii) 

i) ii) 
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Figure 4.3.13. Heatmap showing potential markers up-regulated in condition of 

interest and dotplot showing top marker expressions for condition of interest (blue) 

versus other samples (pink) for M2b subtype (A) and M0/M2c subtypes (B) 

 

A 

B 

i) ii) 

i) ii) 
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Figure 4.3.14. Heatmap showing potential markers up-regulated in 

condition of interest and dotplot showing top marker expressions for 

condition of interest (blue) versus other samples (pink) for TPP subtype 

(A) and monocyte subtype (B) 

 

A 

B 

i) ii) 

i) ii) 
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4.3.8. Some THP-1 markers were validated using MDM datasets 

As stated previously, some differences have been described for markers derived from 

MDM and THP-1 datasets due to inherent protocol variations (e.g. use of PMA to 

differentiate THP-1 cells versus M-CSF). Consequently, any markers identified using 

THP-1 cells must be cross validated in primary cell datasets. As comparisons between 

data generated using the same method is more reliable, validations were made by 

cross-referencing THP-1 RNA-seq data with MDM RNA-seq data (identified in Chapter 

2) where possible, i.e. for M1, M2a and monocyte conditions (Beyer et al., 2012). For 

M2c, M2b and TPP subsets RNA-seq data were not available, so findings from 

microarray experiments (identified in Chapter 2) were used to validate potential marker 

transcripts identified from these samples. For the M1, M2a and monocyte conditions, a 

number of genes are specific according to both datasets. These transcripts may be 

tested experimentally to validate their use as marker genes that may be applied to 

distinguish polarisation states in both MDMs and THP-1 macrophages. Transcripts of 

interest for M1 included ETV7 (coding for a transcription factor that has previously been 

associated with LPS signalling), NEURL3 (ubiquitin protein ligase gene which 

undergoes activity change upon cholesterol accumulation) and CD276 (a member of 

the B7 costimulatory family of receptors) (Bobryshev et al., 2016); (Baillie et al., 2017); 

(Mao et al., 2017). Some genes that may make useful markers for the M2a polarisation 

state if validated include HAS3 which codes for hyaluronan synthase-3, a protein 

involved in production of hyaluronic acid, CHN2 (chimerin 2) which codes for a protein 

involved in proliferation and migration and LOX which has been found to be associated 

with atherosclerosis in studies performed on murine macrophages (Chang et al., 2014); 

(Chen et al., 2014); (Ding et al., 2013). 

A number of the transcripts identified for the M2b condition in THP-1 cells were not 

found to be specific in MDM cells. The differences in cytokine exposure time between 

the different cell types (48 in THP1 cells and 72 in MDMs) may contribute to this as well 

as reagents used to induce the formation of macrophages (PMA in THP-1 cells and M-

CSF in MDMs). The transcripts which were expressed in M2b cells had similar 

expression patterns to the M1 polarised primary cells (e.g. expression of ETV7, 

SERPING1). This could be due to use of LPS in cell culture protocols for both of these 

macrophage subtypes. These markers may therefore be used as part of a panel to 

distinguish M2b cells from other phenotypes when combined with M1 specific 

transcripts to negatively select the phenotype (using M1 markers such as GBP5 and 

CXCL10).  

As was the case with the M2b genes, a number of the TPP markers were not specific 

in MDM datasets, which again could be attributed to differences in experimental timings 
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(for instance cytokine exposure times) or other differences in experimental differences 

(PMA versus M-CSF in THP-1 cells and MDMs respectively). Some however looked 

specific (DBH, CSF2) and may be tested experimentally. 

Very few of the M2c/M0 markers identified for THP-1 cells were reflected in the MDM 

dataset, possibly due to the fact that these cells are deactivated/unpolarised and may 

reflect baseline changes between cell lines and primary cells most sensitively. There 

were some markers identified that could be used in combination to deduce cell type; 

ALOX5 and VSIG4 were both present in MDM M0/M2c cells, but also M1 and M2b 

phenotypes. Another M0/M2c marker, EPHB6, was not induced in M1 and M2b cells 

but was present for M2a and monocyte subtypes. Therefore, this panel of markers may 

be used to identify the deactivated sub-type. 

It must be noted that the quality of the MDM datasets is not completely known as they 

were isolated from previously published studies.
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Figure 4.3.15. Previously identified THP-1 polarisation markers identified in MDM RNA-seq dataset for monocytes (A), M1 cells (B) and M2a 

macrophages (C) 

A B C 
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Figure 4.3.16. Previously identified THP-1 polarisation markers identified in MDM microarray dataset for M2b cells (A), TPP cells (B) and 

M0/M2c macrophages (C) 

 

A B C 
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4.4. Discussion 

It appears, based on comparative transcript analyses performed in Section 4.3.4, that 

monocytes derived from THP-1 cells and PBMCs polarise into M1 and M2a 

macrophages in similar manners. It should be noted, however, that actual numerical 

values were not used for this analysis, rather a comparison between lists of genes 

generated by identifying transcripts that were significantly differentially expressed. 

Although this method may exclude some detail, it should be emphasised that a more 

rigorous analysis may not be possible without introducing additional issues; 

traditionally, comparing RNA-seq datasets generated at different times using different 

protocols can be problematic. For instance, issues such as laboratory batch effects, 

variance in methods used to prepare libraries and divergences in bioinformatics 

processing pipelines can have a profound effect on read values, and normalisation may 

not completely correct for this (Danielsson et al., 2015); (Leek et al., 2012). Hence, 

despite limitations, the methods discussed here give a general indication that primary 

macrophages and THP-1 cells generated using the optimised cell line protocol polarise 

comparably.  

The previous Chapter demonstrated upregulation of M1 and M2a markers in relevant 

subsets, but this was restrictive in that only a small number of genes were examined 

and little functional information could be inferred from these findings. Here, however, it 

is clear from the comparative analyses (described above), PCA mapping and gene 

ontology enrichment analysis, that macrophages at apposing ends of the polarisation 

scale (i.e. M1 and M2a cells) can be generated. For instance, some of the transcription 

factors (STAT1, STAT2) highlighted in the analysis of M1 induced genes (versus M2a) 

are strongly associated with interferon signalling (Au-Yeung et al., 2013); (Ivashkiv and 

Donlin, 2014); (Blaszczyk et al., 2016). Additionally, functions such as bacterial killing 

are characteristic for inflammatory macrophages and so presence of biological terms 

relating to this activity (such as “defense response to other organisms”) in enriched 

gene ontology terms increases confidence in this phenotype being achieved 

(Fraternale et al., 2015); (Martinez and Gordon, 2014); (Lam et al., 2016); (Benoit et 

al., 2008). Specifically, some transcripts up-regulated in M1 but not M2a cells constitute 

the GO term “defense response to other organisms”. Examples include CXCL9 and 

CXCL10 which are M1-high and M2a-low, and code for proteins that contribute to 

bacterial killing, as shown by Egesten et al, (2007) who demonstrated the bactericidal 

effects of CXCL9 and CXCL10 on Streptococcus pyogenes in vitro (Egesten et al., 

2007). Follow up functional experiments to test these M1-specific functions (e.g. 

bacterial removal assays) would be beneficial. 
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When samples skewing data with a strong lane effect (lane 5/replicate 2) were 

removed from the analysis, it could be seen that polarisation effects of the cells were 

replicable, suggesting that this model can be used to generate cells of these subtypes 

in future experiments. 

It should be noted that M1 cells appeared to diverge further from the M0 cells than 

those of the M2a phenotype. It was previously observed in Chapter 3 that the M2a 

markers did not appear to be as strongly induced as those for the M1 condition; it was 

discussed that previous reports have described difficulty inducing the anti-inflammatory 

subtype and that this may be a limitation of THP-1 cells (Chanput et al., 2013); (Park et 

al., 2007). This could be the reason for the observations described here.  

Some M2c markers from the literature have been examined in this dataset; CXCL13 

was expressed in M0 and M2c cells, but upregulation was strongest in the M1 

condition; although some studies describe this transcript as an M2c marker, other 

reports have demonstrated its induction in M1 cells, in support of the findings here 

(Martinez et al., 2006); (Wang et al., 2014). CD163 is reportedly up-regulated by both 

IL-4 and IL-10 in macrophages, and was originally described as a marker for all M2 

cells (Zeyda et al., 2007). However, more recent studies have found expression of 

CD163 to be higher in IL-10 induced macrophages, and classified this transcript as an 

M2c marker (Olmes et al., 2016). Some reports have also found this transcript to be 

highly expressed in M0 PBMC macrophages compared to M1 and M2a induced cells 

(Lathrop et al., 2015). According to the data generated for this report, expression of this 

marker was high in M2c and M0 cells, and some expression was seen for the M2a 

condition, corroborating the reports describing PMBC macrophage activity in the 

literature.  

It should be emphasised that no significantly different genes were detected between 

M0 and M2c cells in this study and the latter has previously been described as a 

“deactivated” subtype (Maeß et al., 2014). It currently remains unclear whether IL-10 

induces a transcriptional profile distinct from that of M0 cells; some reports have 

described a separate gene expression profile for this phenotype, but a number of 

studies simply compare M2c cells to M1 and M2a induced macrophages rather than 

M0 cells (Bai et al., 2015); (Yuan et al., 2015); (Jetten et al., 2014); (Szulzewsky et al., 

2015). In these cases it is more difficult to determine whether IL-10 merely reverses the 

effects of other stimuli and restores up-regulation of M0 genes, or induces specific 

pathways. The fact that some transcripts reported to be M2c markers (CD163) are up-

regulated in both M2c and M0 samples in this data supports the idea that these 

phenotypes are very similar. However, the complete absence of some M2c markers in 

these experiments (SEPP1/SELENOP) could indicate failure to induce this phenotype.  
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Some additional experiments could be performed to investigate whether M2c 

polarisation failed or not. In addition to examining larger number of M2c associated 

transcripts, it would be interesting to inhibit some components of the IL-10 signalling 

pathway to determine whether this affects transcript expression. Other experiments 

may include co-stimulating M1 induced cells with IL-10, to determine whether this 

agent will “de-activate” this subtype to a more M0-like state. Comparisons with TGFβ 

and dexamethasone (other agents reported to induce M2c polarisation) may also clarify 

whether this is a separate subtype (Rőszer, 2015). Examination of some of the 

functions described for M2c cells (e.g. Tissue remodelling using scratch assays) 

between IL-10 and unpolarised macrophages may provide further insight into the 

similarities of these cells (Ferrante and Leibovich, 2012); (Jetten et al., 2014). It may 

have been beneficial to test an increased number of IL-10 exposure times to generate 

some clearer conclusions on whether distinct M2c cells are generated here. 

Additionally, a repeat of this experiment may be useful, as a low number of significant 

hits could be a result experimental and technical variability between samples.   

It should be noted that combining the M0 and M2c conditions could bias the selection 

of markers. However as no significantly differentially expressed genes could be 

detected between these two subtypes, it would not be possible to identify any markers 

in an analysis that included all conditions. Additionally, if both of these subsets 

represent a “de-activated” state, if may be considered beneficial to identify transcripts 

which could be used to indicate this combined phenotype. If this is determined to be a 

case of failure to induce the M2c phenotype, then additional efforts must be made in 

future experiments to identify markers for this subtype.  

Based on the PCA plotting and marker panel generation, despite mapping in the same 

direction as M1 cells on the PCA plot (compared to M0 samples) it appeared that 

macrophages treated with LPS and TPP stimuli generated distinct sub-populations and 

so should be considered as independent phenotypes for further study. This may be of 

particular interest for TPP cells when studying chronic inflammatory diseases 

characterised by macrophage infiltration such as atherosclerosis, asthma and some 

cancers (Liu et al., 2014).  

All markers identified in these studies require experimental validation to confirm their 

efficacy before being applied in further investigations. One way to do this would be to 

perform qPCR for quantitative gene expression in differentially polarised THP-1 and 

MDM macrophages. BioMark HD Systems assays from Fluidigm (qPCR based 

methods) may be used to look at a large number of markers, but sensitivity may be 

compromised here (Livak et al., 2013); (Rajkumar et al., 2015). 
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Some of the markers identified in the initial analysis of primary macrophage gene 

expression data were also found in top 30 transcripts (according to Refseq identifiers) 

for polarised THP-1 cells. As changes between different cell culture and sequencing 

protocols can have effects on macrophage transcriptomes (as seen in Chapter 2 with 

microarray versus RNA-seq data) as well as genetic differences between the cell types, 

it was promising to see markers identified from THP-1 data validated in public primary 

cell data. Additionally, it can be suggested from this data that the transcripts cross-

validated in both datasets can be used to indicate polarisation for both PBMC and 

THP-1 derived macrophages.   

Treatment of LPS cells with ICs did not appear to generate consistent results. One 

potential explanation for this could be that there were different sizes of IC in the mixture 

formed by heat aggregated IgG1. This is demonstrated by the coomassie brilliant blue 

R-250 stained gel in Appendix 4 (Figure A4.1) which demonstrates two distinct bands. 

As different sized IC have differential effects on macrophage activity, an uneven 

distribution of different molecular weight complexes between different aliquots could 

have adversely affected the consistency of this experiment (Lux et al., 2013); (Jarvis et 

al., 1999). 

One potential downstream application for these markers is to look at expression of 

these markers at the protein level to investigate macrophage polarisation in healthy 

and disease tissue. This would require validation of marker expression at the protein 

level using techniques such as western blotting or flow cytometry. Another 

consideration for this is whether expression is specific for macrophages in tissues, as 

this would dictate their use. For instance, according to the human protein atlas (source: 

https://www.proteinatlas.org), the corresponding protein for the potential M1 marker 

NEURL3 is also highly expressed in cell lines derived from B lymphocytes and 

pancreatic cells (RPMI-8226 and CAPAN-2 respectively) (Thul et al., 2017). Hence 

when considering macrophage polarisation in any diseases where these cell types are 

also present (e.g. macrophage infiltration in pancreatic cancer, rheumatoid synovium 

where B cells and macrophages are present), it is important to consider the likelihood 

of this marker being cross-expressed. Similarly, the protein for potential M2a marker 

HAS3 is strongly expressed in prostate and urinary bladder tissue cell lines (PC-3 and 

RT4 respectively) (Thul et al., 2017). Hence this may not be the ideal marker for 

identifying M2a macrophages in urinary tissue and male reproductive tissue samples if 

a single specific marker is required. If expression is not specific in a tissue sample then 

it would be necessary to co-stain with a pan-macrophage marker such as CD68 

(Stöger et al., 2012). 

https://www.proteinatlas.org/
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Chapter 5: Effect of Immune Complexes on Macrophage 

Polarisation 

 

5.1 Rationale for investigating effects of immune complexes on monocytes and 

macrophages 

As described in previous Chapters, macrophages are known to polarise into a variety 

of activation states depending on the stimuli they receive, the most commonly 

discussed subtypes being given in the bipolar (M1 vs M2) paradigm (Barros et al., 

2013); (Murray and Wynn, 2011); (Stöger et al., 2012). More recently a spectral 

macrophage activation model has been described which suggests that these cells will 

respond to any agent that they express a receptor for (Xue et al.); (Edwards et al., 

2006); (Stout et al., 2005); (Martinez and Gordon, 2014). Since macrophages are 

subject to an array of stimuli under physiological conditions they may adopt a more 

intermediate phenotype or differentiate into a different subset altogether (Lumeng et al., 

2007); (Xue et al.); (Villani et al., 2017); (Kadl et al., 2010). Hence the spectral model of 

polarisation may be more representative when considering the phenotypes of these 

cells in disease models and in vivo. 

As monocytes and macrophages are known to express a variety of Fc gamma 

receptors (FcγRs), it is possible that they respond to both monomeric IgG (via the high 

affinity FcγRI) and ICs through binding the low affinity FcγRs (FcγRIIa/b/c and 

FcγRIIIa) (Jungi and Hafner, 1986). This may have implications for inflammatory 

diseases where macrophages are key effector cells, and autoantibodies (forming ICs 

with their cognate antigen) are a pathological feature, such as in RA and SLE. 

It should be noted that myeloid cells have been reported to respond to IgG stimuli; 

effects of ICs on both osteoclast and dendritic cell differentiation have been 

investigated previously; IC stimulation was described to induce a more macrophage-

like phenotype in mouse dendritic cells and reduce antigen presentation capabilities 

whilst increasing T-cell activating functions (Jancar and Crespo, 2005); (Laborde et al., 

2007); (Köller et al., 2004); (Tanaka et al., 2009). Additionally, interaction of ICs with 

FcγR on myeloid precursor cells has been implicated in osteoclastogenesis in mouse 

studies (Grevers et al., 2013); (Seeling et al., 2013).  

In terms of macrophages, one study looked at the effect of IgG1-opsonised sheep red 

blood cells on FcγRI knock out in murine monocytes in vitro; some transcriptional 

profiles were retained but others were reportedly altered under these conditions 
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(Bezbradica et al., 2014). Myeloid cells have been reported to release TNF and other 

inflammatory stimuli in response to HAGG or anti-Fc receptor antibodies in previous 

studies, suggesting that an IgG-containing stimulus may drive the inflammatory state to 

some extent; a theory that requires further examination (Clavel et al., 2008); (Ambarus 

et al., 2012); (Barrionuevo et al., 2003); (Stout et al., 2005). Different sized ICs have 

variable effects on activation of FcγR expressing cells. For instance, IL-1β and IL-8 

production is reportedly upregulated in monocytes treated with larger ICs, and binding 

of IC to cells also appears to depend on molecule size (Lux et al., 2013); (Jarvis et al., 

1999). Presence of complement and IgG glycosylation can also have an effect (Jarvis 

et al., 1999); (Lux et al., 2013). This is particularly relevant for diseases such as RA 

where patients are found to have pentameric IgM RF targeting IgG, smaller IgG ACPA 

ICs  or both (Song and Kang, 2010). The latter state is associated with increased 

systemic inflammation and higher disease activity, and in vitro treatment of 

macrophages with both antibodies has been found to induce greater production of 

cytokines (Sokolove et al., 2014).    

Some reports have described frustrated phagocytosis in response to immobilised IgG; 

this occurs when a macrophage (or another phagocytic cell) cannot engulf its IgG-

bound target, and so spreads over its surface and releases secretory granules 

containing lytic substances (Bainton et al., 1989); (Takemura et al., 1986, Bainton et 

al., 1989). Subsequent degradation of the ICs and adherent surface occurs. This can 

occur in vivo, where ICs are bound to tissue and can be replicated in vitro by adhering 

antibodies to plastic tissue culture flasks (Labrousse et al., 2011). This phenomenon 

has been reported in RA at the cartilage-pannus junction, where deposition of IC was 

found to induce frustrated phagocytosis in neutrophils, which release reactive oxygen 

species, cartilage degrading enzymes and other destructive substances, contributing to 

the damage seen in this condition (Wright et al., 2014).  

Macrophages treated with ICs (generally IgG1-HAGG) have been studied in the 

presence of LPS stimuli, i.e. M2b cells. However, the effects of this agent as both an 

independent signal and in the context of additional immune phenotypes has not been 

dissected (Xue et al.).  Although marker panels are useful in identifying presence of 

phenotype-specific pathways, effects of multiple stimuli are better investigated through 

analysis of the entire transcriptome; to identify novel gene signatures. Hence the aim of 

this Chapter was to interrogate the effects of IgG1 HAGG (as a surrogate for IC) on the 

transcriptomes of monocytes and differentially polarised monocytes using next 

generation sequencing techniques. IgG1 was used to generate the ICs as different 

subclasses of IgG have variable affinities for the different FcγR, and use of one 

subclass only in this study was considered essential for making direct comparisons 
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between some conditions. Additionally, IgG1 has been found to bind all 6 FcγRs (see 

Chapter 1, Table 1.3.2). The main hypothesis to be tested here was that IC stimulation 

of monocytes can skew the transcriptome or phenotype of these cells, and that these 

changes may contribute to pathologies in auto-antibody driven conditions where 

macrophages contribute to destructive processes, such as RA and SLE. 

 

5.2 Materials and Methods 

5.2.1 Cell culture 

THP-1 cells were cultured using the optimised protocol described in Chapter 3; briefly, 

cells were plated at a concentration of 300,000 cells/ml in RPMI (+ 10% FCS) media 

(Sigma-Aldrich, CA, USA) and activated with 5ng/ml PMA (Sigma-Aldrich, CA, USA) for 

24h. Cells were then washed and incubated in stimulant free media for 72h before 

polarising cytokines were added for a further 48h. HAGG was prepared as described in 

Chapter 4 Section 4.2.1.1 and added at the same time point as polarising cytokines for 

relevant samples. Details of stimuli for different phenotypes generated are given in 

Table 5.2.1. 

 

Table 5.2.1. Details of all samples sequenced, including treatments which replicate the 

sample was included in and sample name 

Condition Treatment Replicate number Sample name 

Monocyte N/A 1 Mono_1 

2 Mono_2 

3 Mono_3 

Monocytes +HAGG HAGG 1 Mono_IC_1 

2 Mono_IC_2 

3 Mono_IC_3 

M0 PMA 1 M0_1 

2 M0_2 

3 M0_3 

M0+HAGG PMA+HAGG 1 M0_IC_1 

2 M0_IC_2 

3 M0_IC_3 

M1 IFNγ+LPS+PMA 1 M1_1 

2 M1_2 
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3 M1_3 

M1+HAGG IFNγ+LPS+PMA+ 

HAGG 

1 M1_IC_1 

2 M1_IC_2 

3 M1_IC_3 

M2a IL-4+PMA 1 M2a_1 

2 M2a_2 

3 M2a_3 

M2a+HAGG IL-4+PMA+HAGG 1 M2a_IC_1 

2 M2a_IC_2 

3 M2a_IC_3 

M2c IL-10+PMA 1 M2c_1 

2 M2c_2 

3 M2c_3 

M2c+HAGG IL-10+PMA+HAGG 1 M2c_IC_1 

2 M2c_IC_2 

3 M2c_IC_3 

LPS LPS+PMA 1 LPS_1 

2 LPS_2 

3 LPS_3 

LPS+HAGG LPS+PMA+ 

HAGG 

1 LPS_IC_1 

2 LPS_IC_2 

3 LPS_IC_3 

TPP TNF+PGE2+ 

Pam3SK4+PMA 

1 TPP_1 

2 TPP_2 

3 TPP_3 

TPP+HAGG TNF+PGE2+ 

Pam3SK4+PMA+ 

HAGG 

1 TPP_IC_1 

2 TPP_IC_2 

3 TPP_IC_3 

 

5.2.2 RNA extraction 

This was performed as described in Chapter 4 Section 4.2.2 RNA extraction. 

 

5.2.3 Endpoint Polymerase Chain Reaction 

Reactions were performed as described in Chapter 3 with the same primers and 

cycling conditions (Tables 3.2.3, 3.2.4 and 3.2.6). 
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5.2.4 Flow Cytometry 

Cells were digested from tissue culture flasks using trypsin-EDTA solution (0.05% 

trypsin, 0.02% EDTA) (Sigma-Aldrich, Steinheim, Germany), and once detachment has 

occurred, the enzyme was neutralised with RPMI media + 10% FCS (Sigma-Aldrich, 

Steinheim, Germany) at a 1:10 ratio. Cells were subsequently centrifuged at 400 x g for 

5 minutes to a pellet before resuspension in fresh RPMI media. 10µl  aliquots of cells 

were then combined with 10µl trypan blue before being loaded onto an Invitrogen 

countess slide, and counted using an Invitrogen countess (Invitrogen, Carlsbad, USA). 

Cells were added into wells of a 96 well plate at a concentration of 200,000 cells per 

well. On ice, cells were blocked with monomeric human IgG1 at a concentration of 

2ng/ml for 20 minutes before staining antibody at a concentration on 1:100 (antibody to 

media, (V:V) was added and kept in the dark for 1 hour. Details of antibodies can be 

found in Table 5.2.2. Following staining, cells were washed in FACS buffer (PBS, 2% 

FCS, 2mM EDTA) and finally resuspended in FACS fix buffer (50% FACS buffer, 10% 

methanol, 2% formaldehyde). Cells were run on a Cytoflex flow cytometer (BD 

Biosciences, California, USA) using the plate reader arm, set to record data for forward 

and side scatter as well as on the FITC (520nm) and phycoerythin (PE) (578nm) 

channels.  

 

5.2.5 Analysis of flow cytometry data  

FlowJo software (FlowJo, Oregon, USA) was used to gate living cells and plot data into 

histograms. Median fluorescent intensities (MFI) of the appropriate channel for all 

receptors and isotype controls were extracted for the different cell types. This was done 

for three independent (biological) replicates. MFI was selected as this metric 

represents the data more closely. The fluorescence for each receptor was normalised 

for background through subtracting the MFI of the appropriate isotype control from the 

MFI of the marker. ANOVA statistical tests were used to determine whether there were 

any significant changes in expression of a specific protein between different cells types 

using these values. Averages of MFI/isotype control were used to plot bar charts.  
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Table 5.2.2 details of antibodies used in flow cytometry experiments to stain THP-1 

monocytes and macrophages for FcγR phenotyping experiments. 

Antibody 

clone 

Fluorescent 

conjugate 

Isotype  Target Manufacturer 

details 

Isotype 

control 

details  

IV.3 FITC IgG2b FcγRIIa Stem cell 

technologies, 

Vancouver, 

Canada 

IgG2b-FITC 

BD 

(Biosciences, 

California, 

USA)  

3D3 FITC IgG1 FcγRIIb BD 

Biosciences, 

California, USA 

IgG1-FITC 

BD 

(Biosciences, 

California, 

USA) 

DJ130 FITC IgG1 FcγRIIIa Merk Millipore, 

Massachusets, 

USA 

IgG1-FITC 

BD 

(Biosciences, 

California, 

USA) 

Anti-CD64 PE IgG1 FcγRI Bio-Rad, 

California, USA 

PE 

BD 

(Biosciences, 

California, 

USA) 

 

 

5.2.6 RNA library preparation, sequencing, alignment to reference genome, 

adaptor removal, quality checking and production of count Tables 

These processes were performed as described in Chapter 4, Sections 4.2.4-4.2.8. 

 

5.2.8 Differentially expressed gene identification 

Differentially expressed genes between IC treated and non-IC treated samples were 

identified through pairwise comparisons performed using DESeq2 package as 

described in Chapter 4, Section 4.2.9. 
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5.2.7 Principle component analysis 

As highlighted in Chapter 4, all R scripts with annotations describing commands may 

be found in Appendix 3. This was performed as described in Chapter 4 Section 4.2.10 

but with additional conditions included as input, i.e. IC treated samples.  

 

5.2.9 Analysis of individual replicates 

For samples where replicates were not consistent, a script was used that determined 

differential expression between two conditions in the same replicate. Here, samples of 

interest were selected from the counts Table. An exact test was used to determine 

significant differential expression in this list using an arbitrary variance estimate of 0.2. 

Further analyses of DEG lists were performed in the same ways as gene list produced 

using replicates, i.e. as in Chapter 4, Section 4.2.9.  

 

5.2.10 Gene ontology enrichment analysis 

Lists of significantly differentially expressed genes identified in Sections 5.2.5 and 5.2.6 

were analysed here. Analysis of these gene lists were performed as described in 

Chapter 4 Section 4.2.11. 

 

5.2.11 Transcription factor enrichment analysis 

This was performed as described in Chapter 4 Section 4.2.12, using gene lists 

produced through contrasting IC treated and non-IC treated samples (through 

processes described in Sections 5.2.8 and 5.2.9).  

 

5.2.12 Network visualisation 

TFs of interest were entered into STRING app on Cytoscape as a network, and a cut-

off of top 30 interactors was set. A count Table for transcripts which contained columns 

for gene symbols (generated during the steps in Section 5.2.7), log2 fold change and –

log10 adjusted p value was imported. Node parameters were adjusted so colour 

reflected –log10 adjusted p-value and size represented log2 fold change, and gene 

symbols were used as identifiers. Network plots were then exported as images.  
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5.2.13 Identifying reads specifically mapping to FCGR genes 

Discriminating regions were identified for the different FCGR genes using pre-existing 

sequencing data (Robinson et al., 2012). For FCGR2 a region of exon 3 was used; 

there are confirmed paralogous sequence variants (PSVs) specific for FCGR2A (when 

compared to FCGR2B and FCGR2C) in this region. There are no confirmed differences 

in the reference sequences of FCGR2B and FCGR2C in this region, but there are 

confirmed single nucleotide polymorphisms (SNPs) for FCGR2C. As THP-1 cells are 

homozygous for a FCGR2C SNP (rs10917661) which differs from FCGR2B, it was 

possible to use this region to distinguish transcripts from these two genes. SNPs and 

PSVs which were targeted are demonstrated in the alignment in Figure 5.2.1. Regions 

of exon 5 in FCGR3A and FCGR3B and the FCGR3B untranslated region (3’ UTR) 

were used to distinguish these two regions. Genomic co-ordinates are given in Table 

5.2.3 and nucleotide differences between the genes that were targeted by this analysis 

are highlighted in Figure 3.2.2. Co-ordinates for these regions were incorporated into 

the hg38 GTF file, which was used as a modified genome annotation file. Details of 

these regions are given in Table 5.2.3. Mapping was performed using STAR alignment 

software (Dobin et al., 2013) as described in Chapter 4 Section 4.2.7, to produce 

output BAM files. As before, alignment was performed with stringent parameters 

controlling mismatches between read sequences and reference genome (see Chapter 

4, Section 4.2.8). As in Chapter 4, Section 2.4.8, raw counts were added into a Table 

using Rsubread (as in Chapter 4, Section 4.2.8) and read into R for analysis. Counts 

were normalised using functions in the DESeq package and by dividing the read count 

by length of the reference region. Figures were plotted for expression using ggplots2 

and pheatmap packages in R. One-way ANOVA statistical tests were performed in 

Microsoft Excel using the “Data Analysis” add-on to identify any significant changes in 

gene expression in different cell types and subtypes.   
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Table 5.2.3 Genomic coordinates (Hg38 assembly) for specific regions of different 

FCGR genes, used to differentiate them and used as targets when reads were mapped 

to give expression counts.  

Gene Chromosome Start End Length 

(bp) 

Strand  

FCGR2A 1 161506333 161506474 142 + 

FCGR2B 1 161671388 161671546 159 + 

FCGR2C 1 161589562 161589701 140 + 

FCGR3A 1 161541771 161543240 1470 - 

FCGR3B 1 161623138 161624731 1594 - 

 

 

 

 

 

Figure 5.2.1. Alignments of target regions of FCGR2A, FCGR2B and FCGR2C 

demonstrating homology between regions and highlighting differences in 

sequences; SNPs are highlighted in green and conserved differences between the 

genes are in red.  
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Figure 5.2.2. Genomic DNA alignments of regions of FCGR3A and FCGR3B which were used for the remapping analysis, demonstrating 

homology between regions and highlighting differences in sequences that differentiate the genes; PSVs are highlighted in red. 

PSV=paralogous sequence variant, SNPs are in green and indels are blue. All non-highlighted regions are in exon 5 of FCGR3A or FCGR3B. 

Grey box indicates 3’ untranslated region of FCGR3B. Genome co-ordinates are given on top left-hand side. PSV=paralogous sequence 

variant, SNP=single nucleotide polymorphisms. 
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5.3 Results 

5.3.1 Fc-gamma Receptor expression is variable between different macrophage 

subtypes 

To investigate the effects of IgG-ICs on different macrophage sub-types, it was 

important to profile the expression levels of FcγR on these cells. Thus, any differences 

in polarisation or gene signatures observed may be linked to FcγR signalling pathways. 

Flow cytometry was therefore performed to investigate FcγR expression on cell 

membranes (where the interactions with ICs occur) (Figure 5.3.1), and RNA-seq data 

were extracted from a larger dataset to quantify abundance of FcγR transcripts (Figure 

5.3.2). Due to the high homology of the different subtypes of FCGR genes, a stringent 

analysis was performed where reads mapping to specific variable regions only were 

counted. It must be noted that due to the selective nature of this experiment, counts 

were an underestimation of expression for these genes. However, this analysis 

provided an indication of how these transcripts were expressed relative to one another.  

Flow cytometry data demonstrated expression of FcγRI on monocytes and all 

macrophage subtypes (Figure 5.3.1, A). It should be noted however, that the 

expression levels appeared to be lower on the less inflammatory cells (M2a and M2c) 

(Figure 5.3.1, A, left hand side panel) and TPP cells did not appear to express high 

levels of this receptor (Figure 5.3.1, A, bottom left histogram). This could indicate 

distinct functioning in macrophages found in chronic and acute inflammation in terms of 

FcγR responsiveness. ANOVA tests performed on corresponding fluorescent values 

(corrected for isotype control fluorescence) for 3 flow cytometry experiments 

demonstrated a significant difference (p-value <0.05) in the expression of FcγRI 

between the different cell types (Figure 5.3.2). Generally speaking, bar charts of 

averages of fluorescent values (for the 3 experimental replicates) demonstrated a 

similar pattern to histograms, with lowest expression levels of FcγRI seen for M2a, M2c 

and TPP induced cells. Please note that raw fluorescent data for analyses performed 

can be found in appendix A5.  

Comparisons of staining antibodies with isotype controls demonstrated expression of 

FcγRIIa on all cell types (Figure 5.3.1, A). Upon examination of the histograms in 

Figure 5.3.2, A, there was no clear visual difference in the expression levels of FcγRIIa 

between most macrophage subtypes, although the right-shift (of staining antibody 

versus isotype control) appeared to be greatest for M2a cells. Bar charts plotting 

fluorescent values (reflecting protein levels) of 3 experimental repeats also indicated 

increased expression of FcγRIIa on M2a cells (Figure 5.3.2, B). It should also be noted 

here that comparison of FcγRIIa levels between all the samples demonstrated a 
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significant difference (p-value <0.01) in protein expression according to ANOVA (Figure 

5.3.1, B). 

The genotype of THP-1 cells allows distinction of FcγRIIa (131H-corresponding SNP in 

THP-1 cells) and FcγRIIb (131R-corresponding PSV) cells using the 3D3 anti-CD32 

antibody which recognises 131R specifically. Expression of the inhibitory FcγRIIb was 

not found to be significantly different between distinct cell types (Figure 5.3.1, B). 

However, upon inspection of flow cytometry histograms, there did appear to be an 

increase in expression of FcγRIIb on M2a cells (Figure 5.3.1, A). This was reflected on 

the bar chart containing data for the 3 experimental replicates (Figure 5.3.2, A); this is 

interesting as this is an inhibitory receptor and M2a cells are anti-inflammatory. Hence 

this observation may relate to the anti-inflammatory functions of these cells. Future 

experiments with an increased number of replicates may increase statistical power for 

comparisons and reveal a difference in significance of this change.  

Histogram presentation of FcγRIIa revealed consistent lack of FcγRIIIa expression on 

all cells (Figure 5.3.1, A). This was unexpected as this receptor is generally reported to 

be expressed on macrophages (Bhatia et al., 1998); (Albright et al., 2004); (Guilliams 

et al., 2014). However, it should be considered that high levels of background 

fluorescence from presence of the IgG binding FcγRI protein was observed despite 

blocking with monomeric IgG1 antibodies or Fc block. It is possible that high levels of 

this protein on the cell surface may mask any subtle changes in FcγR expression. 

Alternatively, the THP-1 cells may have accumulated mutations preventing the 

expression of this protein.  

RNA-seq data for replicates 1 and 3 (run on lanes 4 and 6 of the sequencer 

respectively) were analysed together as they have previously been shown to be 

consistent (Chapter 4, Figure 4.3.2). Replicate 2 (lane 5) transcript expression was 

provided separately, so FcγR expression in this experiment could be considered, 

without skewing the clustering of samples run on the other lanes. FCGR1A expression 

was high for all conditions (Figure 5.3.2, A), supporting observations for the protein 

surface expression experiment (Figure 5.3.1, C).  

Some finding from the original alignment (non-stringent alignment) of RNA-seq reads to 

reference genome corroborated findings from the flow cytometry experiment; FCGR2A 

expression was reported for all subtypes and was seen to be in M2a cells (Figure 

5.3.2). However, as described previously, additional methods were required to 

differentiate these highly homologous transcripts (Figure 5.3.2, B and C). Normalised 

counts from the stringent alignment experiment were analysed for each region using 

ANOVA tests; Expression levels of FCGR2A were found to be significantly different (p-
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value <0.05) between the different cell types tested. This was not the case for FCGR2B 

and FCGR2C trannscripts (Figure 5.3.2, C). In agreement with the flow cytometry data, 

expression of the FCGR2A transcript appeared to be most highly expressed in M2a 

macrophages (Figure 5.3.2, C (i) and D (ii)).  

FCGR2C  protein is not found on THP-1 macrophages as they are homozygous for the 

STP allele that prevents translation. However, the possibility that non-coding transcripts 

were produced under certain experimental conditions was considered; expression of 

FCGR2C transcripts appeared to be relatively lower than FCGR2B, and FCGR2B 

expression seemed to be decreased when compared to FCGR2A in all conditions 

(Figure 5.3.2, C (i) and D (ii)). This analysis also demonstrated that it is possible to 

distinguish between FCGR2A, FCGR2B and FCGR2C transcripts in these cells. 

Using the stringent realignment method, no significant difference was found in 

expression of FCGR3A or FCGR3B between monocytes and macrophage subtypes 

(Figure 5.3.2, C). As FCGR3B encodes a neutrophil-specific receptor (Smith and 

Clatworthy, 2010) no expression was expected in these myeloid cells. This was 

reflected in the alignment data for this transcript in Figure 5.3.2, D (ii); in terms of 

relative expression, FCGR3B was low versus FCGR3A transcripts in all conditions. 

When comparing these two transcripts, it appeared that there may be some 

transcription of FCGR3A, as normalised counts were higher versus those for FCGR3B 

(Figure 5.3.2, D (ii)). However, when compared to the FCGR2 genes which were 

normalised in a similar way, expression of both FCGR3 transcripts appeared to be 

lower (Figure 5.3.2, C). Hence it is possible that FCGR3A was only expressed at a very 

low level, which may lend an explanation as to why no protein expression was reported 

for the flow cytometry data.  

It must be emphasised that for the stringent analysis, it was only possible to use small 

(distinguishing) regions of the gene. Hence number of reads mapping would be 

inherently lower, and small changes in receptor expression between the different 

FCGR transcripts are less likely to be identified or considered as statistically significant. 

Therefore, this method may underestimate variance between receptor expressions on 

different cells. However, due to the highly homologous nature of the FCGR transcripts, 

use of larger regions would reduce specificity and confound results.   

 

 



179 
 

Overall expression of FcγRs appears to vary between monocytes and different 

macrophage subtypes, suggesting that these cells may respond differently to treatment 

with IC.  Raw data for flow cytometry statistics may be found in appendix 5. 

Figure 5.3.1. Part 1. Histograms showing surface expression of Fcγ receptors in 

monocytes and different macrophage subsets using flow cytometry; staining 

antibody (pink) versus isotype control (blue). Monocytes (top panel), baseline M0 

macrophages (panel 2) and differentially polarised macrophages (panels 3-6) 

were tested. The latter included TPP macrophages differentiated using tumour 

necrosis factor, prostaglandin E2 and toll-like receptor 2 agonist Pam3SK4. 

examples shown are representative of three repeats. Please see Appendix 1 for 

replicates 2 and 3. (A). Vertical axis corresponds to cell frequency, horizontal axis 

represents mean fluorescence intensity. 

A 
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B (i) 

Figure 5.3.1. Part 2. Bar charts illustrating averages (means) of flow cytometry 

median fluorescent intensities (MFIs) of three independent replicates, corrected for 

background by subtracting fluorescence of isotype control. * indicates that a p-value 

less than 0.05 was found when comparing samples using ANOVA tests and ** 

indicates a p-value of less than 0.01 when comparing samples by ANOVA. Error 

bars represent standard error of the mean (B (i)). Results of ANOVA test for each 

receptor are also given (B (ii)).  

B (ii) 
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Figure 5.3.2. Part 3. Mean expression of various FCGR transcripts (normalised by 

dividing by length) in variably polarised macrophages, grouped by receptor. . * 

significant difference < p=0.05 was found between samples according to ANOVA 

statistical tests (C (i)). P values for ANOVA tests performed for expression of the 

different receptors between groups are given (C (ii)). Heatmap of relative 

expressions of FCGR2 and FCGR3 transcripts (C (iii)). Heatmap of relative 

expressions of FCGR2 transcripts only (D (i)), heatmap of relative expressions of 

FCGR3 transcripts only (D (ii)). 
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Figure 5.3.2. Expression of different Fcγ receptor transcripts in monocytes and various macrophage subtypes according to RNA-seq data; 

expression is given in the more consistent replicates 1 and 3 (A) and in replicate 2 separately (B). Refer the reader to the description of 

transcripts. 

A B 
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5.3.2 Macrophage morphology and adherence upon addition of immune 

complexes 

Macrophage morphology for inflammatory and anti-inflammatory subtypes has been 

described consistently in the literature, with the former reported as being more spindle-

like and the latter rounder in shape. Hence morphology may be used to infer the 

polarisation status of cells. As seen in Figure 5.3.3, upon treatment with HAGG the 

different polarisation states appear to retain their subset-specific morphology, but it 

should be noted that a larger number of cells were adhered to the tissue culture flask, 

despite seeding densities of cells and other treatments remaining consistent. It is 

possible that the cells were activated to a more adherent state, or that the HAGG 

coated the plastic allowing more cells to attach to the flask via FcγRs. However, the 

latter is less likely as ICs were not added to the flask first, and instead to the media 

covering the cultured cells. To validate this finding, cell counts following completion of 

the protocols should be performed. 

 

5.3.3 Many macrophage polarisation transcripts retain subset-specific 

expression when treated with immune complexes 

Prior to the sequencing, cells were cultured using the protocol described in Chapter 3 

for the M1, M2a and M2c subtypes, but with an addition of HAGG (IC) at the 

polarisation stage. The aim was to identify any obvious changes in macrophage 

transcriptional profiles in response to IgG1 IC; one isotype was used for simplicity, and 

IgG1 was selected as it is able to bind all classes of FcγR (Bruhns et al., 2009). End-

point PCR did not highlight any major changes in these lineage specific genes (Figures 

5.3.4-5.3.6); some transcripts appeared to be more strongly induced but overall 

expression pattern was not altered. One possible change was in the IC-treated “M1” 

cells; CD163, an M2c marker demonstrated non-specific up regulation in the non-IC 

treated subtype, which was completely abrogated upon IC treatment.  

When examined using RNA-seq data, the different macrophage subtypes appeared to 

follow the same patterns for marker gene expression, regardless of whether IC were 

added for the 48h polarisation phase of the tissue culture experiment or not (Figure 

5.3.7).  

Overall it appears that IC-treatment does not drastically alter polarisation, as 

expression of transcription markers is retained following addition of this stimulus. 
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Figure 5.3.3. Morphology of different macrophage subtypes with and without immune complex addition taken at 20x magnification on an 

EVOS light microscope 
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Figure 5.3.4. Expression of M1 marker panel genes in differentially polarised 

macrophages upon addition of heat aggregated gamma globulin (HAGG, as an 

experiment surrogate for physiological IC) according to PCR analysis. No IC 

referred to differentially polarised cells which were not supplemented with IC and IC 

polarisation indicated that the cells were treated with HAGG/IC during the 48h 

polarisation stage of the tissue culture experiment. 
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Figure 5.3.5. Expression of M2a marker panel genes in differentially 

polarised macrophages upon addition of heat aggregated gamma globulin 

(HAGG, as an experiment surrogate for physiological IC) according to PCR 

analysis. No IC referred to differentially polarised cells which were not 

supplemented with IC and IC polarisation indicated that the cells were treated 

with HAGG/IC during the 48h polarisation stage of the tissue culture 

experiment.  
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Figure 5.3.6. Expression of M2c marker panel genes in differentially 

polarised macrophages upon addition of heat aggregated gamma globulin 

(HAGG, as an experiment surrogate for physiological IC) according to PCR 

analysis. No IC referred to differentially polarised cells which were not 

supplemented with IC and IC polarisation indicated that the cells were treated 

with HAGG/IC during the 48h polarisation stage of the tissue culture 

experiment.  



188 
 

Figure 5.3.7. Quantitative expression of M1 and M2a marker panel transcripts in differentially polarised macrophages upon addition of heat 

aggregated gamma globulin (HAGG) according to RNA-seq data 
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5.3.4 Principle component analysis examined how differentially polarised cells 

with and without immune complex treatment clustered according to most 

variable genes 

As with the differentially polarised subsets in Chapter 4, PCA plotting was used to 

examine dispersion of samples based on the top 1000 most differentially expressed 

genes. As replicate 2 was previously determined to be an outlier (Chapter 4, Figure 

4.3.2), analyses in this Section were performed separately for samples in this replicate 

and those in replicates 1 and 3, which were combined.  

In the PCA plot corresponding to replicates 2 and 3, when the samples treated with ICs 

were added, the overall mapping of differentially polarised cells did not seem to change 

compared to that seen in Chapter 4 (with the non-IC treated samples only, Figure 

4.3.3), but there did appear to be some additional outliers (Figure 5.3.8, A). When 

scrutinised for top loading genes and biological process enrichment terms, it appeared 

that principle component 1 (x-axis) strongly represented cell migration (Figure 5.3.8, C 

(i) and (ii)). As this function discriminates monocytes and macrophages (Tuomisto et 

al., 2005), it could be put forward that this axis represents cell differentiation, as was 

the case with the first principle component in the absence of IC treated samples 

(Chapter 4, Figure 4.3.3). Principle component 2 loading genes appeared to be more 

inflammation related, and enriched biological processes highlighted response to 

pathogens (Figure 5.3.8, D (i) and (ii)). Hence this axis separates cells by inflammatory 

state (i.e. polarisation status), as was the case with basic conditions discussed in 

Chapter 4 (Figure 4.3.3).  

Figure 5.3.8, B indicates how the samples in replicate 2 cluster according to the 1000 

most differentially expressed genes for these samples. Mapping of these genes varied 

greatly from that seen for replicates 2 and 3; here x-axis still demonstrated separation 

of M1, LPS and TPP samples from monocytes (irrespective of IC treatment), but M0 

and M2 conditions appeared to cluster more closely to the monocytes. Analysis of 

loading genes for this component revealed some inflammatory markers (CXCL10, 

CXCL11, CCR7) which would explain this pattern (Figure 5.3.8, E (i)). Some of the 

enriched biological terms referred to functions separating monocytes from 

macrophages (e.g. cell migration, cell chemotaxis), but some were linked to 

inflammatory polarisation (e.g. response to LPS, positive regulation of cytokine 

production) (Figure 5.3.8, E (ii)). Hence this axis may separate samples by both cell 

maturity and whether or not treatments included an inflammatory stimulus. This is 

supported by the fact that inflammatory samples map distinctly from all other samples 
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here, and that monocytes are the cells plotted furthest from M1/LPS/TPP samples 

along the x-axis.  

Based on Figure 5.3.8, B, the y-axis (principle component 2) appeared to separate M1 

cells from those of the TPP and LPS subtype, both of which are inflammatory 

conditions. Monocytes, M0 and M2 conditions appeared to map around the same point 

as the LPS (with and without IC) samples here. Top loading genes again contained 

inflammation-related transcripts (e.g. CXCL9, CXCL10, CXCL11) suggesting again that 

this axis separated samples to some degree by polarisation (Figure 5.3.8, F (i)).  This 

was supported by enrichment of biological processes that again related to cell 

migration and polarisation (e.g. leukocyte migration, response to LPS) (Figure 5.3.8, F 

(ii)). 

Overall this mapping appears to reflect how either M1 or TPP conditions (with or 

without IC) relate to other treatments. Hence it is possible that the most differentially 

expressed genes in this replicate may relate to how transcripts are up/downregulation 

in M1/TPP samples versus others.  
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Figure 5.3.8. (part 1) PCA plot indicating how differentially polarised macrophages with and without immune complexes cluster according to 

1000 most variable genes (A) for replicates 1 and 4 combined (B) for replicate 2 only 

 

 

A 
B 
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Figure 5.3.8. (part 2) Analysis of PCA loading genes; (C) for replicates 1 and 3 combined (i), top 10 and bottom 10 loading genes in principle 

component 1 (i) and top 50 enriched biological processes for principle component 1 (ii); (D) for replicates 1 and 3 combined (i), top 10 and bottom 

10 loading genes in principle component 2 (i) and top 50 enriched biological processes for principle component 2 (ii) 

 

C 

D 

i) 
ii) 

i) 
ii) 
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Figure 5.3.8. (part 3) Analysis of PCA loading genes; (C) for replicate 2 (i), top 10 and bottom 10 loading genes in principle component 1 (i) and 

top 50 enriched biological processes for principle component 1 (ii); (D) for replicate 2 (i), top 10 and bottom 10 loading genes in principle 

component 2 (i) and top 50 enriched biological processes for principle component 2 (ii) 

 

E 

F 

i) ii) 

i) 

ii) 
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5.3.5 Clustering varied between different replicates for macrophage samples 

As described previously, PCA plotting gives an indication of how samples relate to one 

another; this is helpful for inferring functional changes between different samples. As 

the changes seen upon addition of ICs are not consistent, mapping of samples was 

examined for individual replicates (Figure 5.3.9).  

All subtypes in replicate 1 (both with and without IC treatment) appear to follow a 

similar pattern to original PCA plots (discussed for Chapter 4, Figure 4.3.2); principal 

component 1 (x-axis) separates the monocytes from the differentiated macrophage 

samples and principal component 2 (y-axis) discriminates conditions by polarisation 

state, i.e. with M1 and M2a at opposing ends of the scale. This implies that either the 

samples in this experiment did not respond strongly to the IC stimulus or that addition 

of IgG1-IC does not skew polarisation. 

Replicates 2 and 3 show less consistent clustering; it is unclear how the samples in 

these plots map in terms of differentiation and polarisation, but plots do give some 

indication of how similar IC-treated cells are to those of non-IC conditions. For 

instance, subtypes of the same polarisation state +/- IC appeared to map similarly in 

replicate 2, although LPS and M2b conditions show some separation. For replicate 3, 

LPS, TPP and M0 macrophages treated with ICs appear to map completely differently 

to respective parent subtypes. Hence the subtypes in this replicate may have 

responded more to IC-treatment. Other subtypes in this experiment tended to cluster 

together regardless of whether IC was added or not. It is therefore likely that the most 

variable factors between the samples were results of batch effects which arose from 

conducting the experiment at different time points rather than polarisation state of IC 

addition.
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Figure 5.3.9. PCA plots demonstrating how samples cluster in individual replicates, including treatments with and without immune complexes; 

replicate 1 (A), replicate 2 (B) and replicate 3 (C) 

A B C 
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5.3.6 Some genes are differentially expressed between baseline monocytes and 

those treated with immune complexes 

s stated previously, not all of the macrophages appeared to cluster consistently when 

treated with IC, but monocytes in replicates 1 and 3 did (Figure 5.3.8, A). Hence these 

samples were selected as the primary focus for downstream analyses; as in Chapter 4 

the second replicate was not included due to the presence of a strong lane effect. 

Differential gene expression analysis was performed to determine whether there were 

changes upon addition of IC, and to interrogate the inferred functional impact of these 

changes on the cells. A number of genes were found to be high in one condition and 

low in the other (Figure 5.3.10). The top genes found to be significantly differentially 

expressed in monocytes upon the addition of IC were identified. These could potentially 

be used as markers to indicate that the IC driven state has been achieved. 

Examination of differentially induced transcripts has the potential to provide a 

preliminary insight into functional changes in these cells upon IC stimulation. The top 

50 transcripts found to be elevated in the monocytes treated with IC were plotted, and 

upon examination some of these genes were found to be related to immune functioning 

(Figure 5.3.11); CXCR3, a gene coding for a receptor of the same name, is a receptor 

able to recognise pro-inflammatory chemokines (CXCL9, CXCL10 and CXCL11 and 

has been implicated in chemotactic migration (Costa et al., 2016). Another gene 

featured in this list is HSD11B1, a gene coding for an enzyme implicated in the 

activation of cortisol, an agent known to affect immune system functions (Jefferies, 

1991). Although these transcripts can imply changes, it was difficult to draw 

conclusions based on functions of individual markers.   
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Figure 5.3.10. Heatmaps visualising all differentially expressed genes between monocytes and monocytes treated with immune complexes (A), 

top 100 down regulated genes upon immune complex addition (B(i)) and top 100 up regulated genes upon immune complex addition (B(ii)) 
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Figure 5.3.11. Dot plot detailing the top 50 transcripts found to be induced when 

monocytes are treated with immune complex 
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5.3.7 Enrichment analysis for genes differentially expressed between monocytes 

with and without immune complex treatment were immunity related 

GO enrichment analysis and pathway enrichment studies (KEGG, REACTOME) can 

give a clearer overview of global changes in the behaviour of different cell types. GO 

analyses are performed by identifying genes that are differentially expressed between 

two conditions in a pairwise analysis, and isolating GO terms that are enriched in that 

list. Functions identified from this investigation can be divided into biological processes, 

molecular function and cellular components. Here, these aspects were investigated 

separately to examine differences between monocytes with and without ICs (Figure 

5.3.12); some of the top hits relating to biological processes included changes in 

neutrophil and granulocyte function; although this is not a monocyte specific term, there 

are some overlaps of ontology functions with different cell types, and this term implies 

immune-related transcriptional changes. Additionally, processes relating to antigen 

processing and presentation are highlighted here, although the gene ratio and p-value 

are not as high as for the granulocyte activity functions. For molecular function, 

ontology terms relating to microtubules and protein binding are given; this could 

indicate changes in certain immune cell functions, such as migration, antigen 

recognition and phagocytosis that are dependent upon rearrangements of the 

cytoskeleton. However, the fact that the gene ratios and p-values for these terms are 

low, and that no other details are given to put these functions into context make it 

difficult to draw firm conclusions without additional experimental data. 

The top cellular components enriched for the monocyte versus monocyte + HAGG 

comparison were not clearly related to immune functioning; this was surprising 

considering the association between FcγRs signalling and activation of immune 

pathways (Hargreaves et al., 2015). However, there were some terms in the list that 

may be linked to the inflammatory response; vesicle lumen and MHC II protein complex 

are detailed here and could imply changes relating to pathogen removal and antigen 

presentation. Both of these functions are typical for myeloid cells responding to 

activation signals. 

KEGG analysis is useful as there are a number of pathways relating to specific disease 

states stored in this database, as well as some for functional signalling. A number of 

the hits on the list of pathways altered between monocytes with and without HAGG 

were related to the immune system and immune disease; the top pathway identified 

was for SLE, an IC-driven, autoimmune disease. RA was also on the list along with 

phagosome function, antigen processing and presentation and other functions and 
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Figure 5.3.12. enriched terms for genes differentially expressed between 

monocytes with and without HAGG relating to Reactome pathways (A), cellular 

components (B), KEGG pathways (C), biological processes (D) and molecular 

functions (E) 

disorders (e.g. graft versus host disease, Type 1 diabetes mellitus) that could be 

related to immune system modulation.  

Reactome is another pathway enrichment analysis database, with less focus on 

pathologies and a keener interest on pathways relating to cell functioning. A number of 

the top 50 hits detailed in Figure 5.3.12 (a) were not related to immunity, but those that 

were appeared to corroborate the biological process gene ontology terms; there were 

details of neutrophil induction and acti vity as well as antigen presentation on the list. 
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5.3.8 Some autoimmune disease related transcription factor target genes are 

enriched in monocytes treated with immune complexes 

Although the GO analyses provide a broad overview of how the cells treated with 

different stimuli may vary in function, it does not give specific information as to what 

changes are happening in the cell. Additional investigations can be performed to link 

changes in transcripts which appear to be similarly regulated, but do not have any 

obvious functional links. One possible connection is that some groups of genes may be 

induced by the same TF; investigations were performed here using lists of TFs and 

target genes, derived from ChIP-seq experiments. Analysis of the genes up-regulated 

in the condition where monocytes treated with ICs (versus unstimulated cells) revealed 

a number of TFs for which target gene ratio was high, versus background (according to 

Fishers exact test with FDR set as a threshold of 0.05). Please refer to Figure 5.3.13. 

The top ten given TFs include some regulatory elements that are implicated in the 

pathophysiology of autoantibody-driven inflammatory conditions such as RA and SLE. 

For instance, interferon response factor (IRF3), was identified; this TF has previously 

been found to influence gene expression in RA synovial cells (Angiolilli et al., 2016); 

(Sweeney et al., 2010). STRING network plots of proteins (intersected with gene 

expression Tables derived from monocyte versus monocyte + IC pairwise analysis) 

were generated (Figure 5.3.14). Please note that Tables containing raw data 

corresponding to these plots can be found in appendix 6. These network plots 

demonstrated interactions of IRF3 with other proteins (Figure 5.3.14, A); transcription 

of genes corresponding to proteins PRKDC, HERC5, IKBKE and IFIT2 appeared to be 

significantly upregulated in the monocyte + IC condition. Interestingly these factors all 

appear to post-translationally regulate the activity of IRF3; PRKDC enhances 

phosphorylation of IRF3, increasing its time in the nucleus and aids in resistance of this 

TF to degradation (Karpova et al., 2002). HERC5 catalyses the conjunction of IRF3 

with ISG15 hence preventing binding of Pin1 (a peptidyl-prolyl isomerase) and 

subsequent polyubiquitinylation and removal (Shi et al., 2010). IKBKE is involved in 

IRF3 signalling and IFIT2 in IFR3 phosphorylation (Siegfried et al., 2013); (Fitzgerald et 

al., 2003). This is a potential explanation as to why an increased number of targets for 

this TF are found in monocyte + IC samples; although the gene expression levels are 

not significantly different; the activity is enhanced post-translationally. Changes in 

activity at the protein level would not be detected using RNA-seq analysis (Figure 

5.3.14, A). 

Specificity protein-1 (SP1) was another TF identified through this analysis which is 

reported to activate expression of certain genes in rheumatoid joints; in RA synovial 

fibroblasts, this TF is instrumental in activation of angiogenic and arthritogenic 
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phosphorylases (gliostatin/thymidine phosphorylase) through proliferation and 

chemotactic migration of endothelial cells, as well as inducing peptidylarginine 

deaminase-coding genes in other cells which induce citrullination. This protein 

modification is strongly linked to RA pathology (Ikuta et al., 2012); (Dong et al., 2008). 

Therefore, increased activity of these proteins as a result of IC exposure may 

contribute to the pathologies seen in RA. As with IRF3, expression patterns of genes 

relating to proteins interacting with SP1 were plotted as a network (Figure 5.3.14, B); it 

is less clear how expression of these proteins affects cell functioning. Most significantly 

increased genes which interact with SP1 are DHFR (dihydrofolate reductase) and 

HDAC1 (Histone deacetylase 1). The DHFR promoter is a target for SP1 so it follows 

that the transcript for this protein is upregulated where the activity of SP1 is increased 

(Dynan et al., 1986). This molecule has been linked to production of nitric oxide 

through tetrahydrobiopterin which may have some implications for monocyte 

functioning (Chalupsky and Cai, 2005). Additionally this protein is targeted and reduced 

by methotrexate, a drug commonly used to treat RA, emphasizing the relevance of SP1 

as a TF in this disease (Rajagopalan et al., 2002). Reports suggest that in addition to 

its role as a TF, SP1 interacts with HDAC1 to repress activation of gene expression at 

other sites, with targets associated with cell cycle, cell death and anti-viral immunity 

(Jiang et al., 2007); (Waby et al., 2010); (Won et al., 2002).  

As a control, the same analysis was performed on the genes upregulated in the 

unstimulated monocytes versus monocytes treated with HAGG. No overlapping TFs 

were identified for the top 10 hits in both lists. It should be noted that overall FDR and 

P-values indicated lower levels of significance for the results of the unstimulated 

monocyte (versus monocyte + IC) gene analysis (Figure 5.3.13, B). Of interest, STAT3, 

a TF induced by either IL-10-related or inflammatory signalling appears to be enriched 

in lists of genes increased in monocytes vs monocytes + IC (Nakamura et al., 2015). 

However, it is unclear which signalling mechanism is represented here based on this 

data alone.  

It is possible that the activation of these TFs is either supported by or solely due to IC 

stimulation in the RA synovium. However, laboratory experiments must be carried out 

to validate these results experimentally and determine the degree to which this 

stimulus is responsible for the activation of the TFs of interest. 
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Figure 5.3.13. Transcription factors with a significantly increased number of targets in lists of genes that are upregulated upon addition 

of immune complexes to monocytes (A) and genes that are significantly downregulated upon addition of immune complexes to 

monocytes (B) 

 

A B 
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Figure 5.3.14. STRING plots showing protein interactions for transcription factors IRF3 (A) and SP1 (B) with top 30 associated proteins 

according to the Cytoscape STRING database. Node size corresponds with Log2 fold change, with an increase in size representing an increase 

in fold change upon addition of immune complexes and colour corresponding to –log10 adjusted p value where pink represents lower 

significance and white is higher significance 
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5.3.9 Some differences in transcript expression between monocytes and 

monocytes treated with immune complexes are observed for disease specific 

transcript lists 

As changes in gene expression have been observed in monocytes upon addition of IC, 

it is reasonable to consider the possibility that these observations are also present in 

IC-driven diseases. The Broad Institute has generated curated lists of genes identified 

through microarray analysis for a variety of conditions that are freely accessible for 

download and analysis 

(http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=C7). 

Transcripts upregulated in macrophages isolated from SLE and RA patient tissue were 

compared with genes differentially expressed between monocytes and monocytes 

treated with IC. Heatmaps comparing expression of these gene lists in the presence 

and absence of IC demonstrated some clustering (Figure 5.3.15, B and C); there do 

appear to be some consistent changes in gene expression in the transcriptomes of 

monocytes upon IC-stimulation, but overall expression does not appear to be higher in 

one condition versus the other.  

It must be noted that the SLE and RA gene lists were generated from experiments 

using blood myeloid cells and synovial macrophages respectively, and the 

comparisons here are made using monocytes only; some of the genes induced in this 

list may therefore be macrophage-specific. Another factor that needs to be considered 

is that the cells isolated from diseased tissue will be under the influence of a number of 

stimuli, and individual contributions of certain agents (e.g. IC) to this phenotype can 

only be teased out using additional experiments. This could be the reason why some 

genes were upregulated in these conditions and expression of others were found to be 

reduced. 

Genes relating to the inflammatory response (i.e. genes that are induced and depleted 

during this process) were also isolated using GO terms, and plotted (Figure 5.3.15, A); 

as with the disease-specific gene lists some clustering was seen between monocytes 

treated with immune complexes and unstimulated cells. Hence transcription of genes 

relating to the inflammatory response are altered in monocytes upon addition of IC.

http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=C7
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Figure 5.3.15. Heatmaps showing differences in gene expression for monocytes with and without immune complexes for different gene lists; 

those inked to the inflammatory response (A), those found to be increased in SLE (B) and genes upregulated in RA (C) 
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Figure 5.3.16. Table indicating which replicates of various macrophage subsets 

demonstrated differential expression upon addition of immune complexes; those that 

responded are labelled as “Yes” (pink) and those that did not as “No” (blue) 

5.3.10 Changes in transcript expression do not appear to be consistent between 

macrophage replicates 

As demonstrated by the PCA plots, there is little consistency between the replicates 

treated with IC, making comparisons between gene-averages for these conditions 

problematic; when differential gene expression is calculated between specific 

macrophage subsets with and without IC using all of the replicates, no significant 

changes are detected between the groups. Based on the PCA plots, one possible 

explanation is that baseline polarisation and thus transcriptome was variable prior to IC 

addition. Thus, cell phenotypes may have been slightly different, causing the cells to 

respond differently to stimuli.  

When taken as individual experiment (samples with and without ICs from the same 

replicate/lane of sequencer), it appears that some replicates respond to addition of IC, 

demonstrating differential gene expression and some do not. A summary of the 

samples that react to HAGG addition are summarised in Figure 5.3.16
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5.3.11. Some macrophage replicates were found to have changes in gene 

expression relating to inflammatory functioning 

As mentioned previously due to high variability between samples, comparisons 

between macrophages with and without ICs were made by examining separate 

replicates as individual experiments. The samples that did respond to IC stimulation 

were fed through a pipeline to identify DEGs which were subsequently subject to GO 

enrichment analysis. Biological processes which appeared to be significantly changed 

through this analysis were explored for immunological relevance (Figure 5.3.17). 

Although the M0 cells appeared to respond to immune complexes in all experiments, 

the changes observed were not consistent; when subject to enrichment analysis for 

biological processes, different replicates highlighted different terms. For instance, the 

DEGs for these conditions in replicate 1 were related to cell adhesion, developmental 

processes and RNA events. The terms in replicate 2 referred to cell-cell adhesion only. 

More terms were enriched for the differentially regulated genes in replicate 3; there 

were some overlaps with terms mentioned in other replicates but inflammatory 

response was given as one of the top hits. Hence this condition was selected as 

interesting for further investigation. Note that only small numbers of DEGs (<100) were 

identified between conditions with and without IC when triplicates were contrasted 

(data not shown).  

For M1 cells, only replicate 2 demonstrated differential gene expression in the 

presence and absence of IC; enrichment analysis of this DEG list also indicated 

inflammatory response, along with other immunity related terms, including response to 

bacterium, leukocyte migration and more. 

M2a samples treated with IC in both replicates 2 and 3 appeared to respond; 

inflammatory response and other immune related functions were among top hits for 

both experiments when biological process enrichment analysis was performed. As 

these terms were enriched with the highest gene ratios and lowest p-values in replicate 

2, this experiment was selected for use in further investigations. 

For M2c cells, a change upon IC addition was only detected in replicate 2 and 

inflammatory functions were amongst highly enriched terms when differentially 

expressed genes were fed through a gene ontology biological process analysis. 

LPS gene expression was significantly altered in both replicate 1 and 3 upon IC 

induction.  However, the enriched biological processes for DEGs in replicate 1 were 

linked to non-specific terms such as cell adhesion and system development. 

Conversely, top enriched processes in replicate 3 referred to immunological functions, 
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thus this experiment was applied in downstream analyses to investigate effects of IC 

on LPS induced cells. 

DEGs were identified between TPP cells with and without immune complexes for 

replicates 1 and 3. However, only those in the former replicate responded in an 

inflammatory fashion according to GO enrichment investigations. As was the case 

previously, the inflammatory sample was selected as the condition of interest.  

These samples were not investigated in as much detail as the monocytes; the high 

degree of variability between the samples suggested that the IC stimulation may have 

failed for some of the samples, or that technical variability lead to induction of non-

specific genes which may have masked any relevant changes. Hence rigorous 

downstream investigations would not be appropriate for these samples. Selection of 

samples demonstrating immune changes was deemed acceptable as induction of TNF 

and other pro-inflammatory cytokines upon IC ligation has been reported for myeloid 

cells (Ambarus et al., 2012; Santeogets et al., 2014). It should be noted however, that 

the replicates responding in an inflammatory manner may not have necessarily worked 

and may in fact be an instance of experimental failure. However, further investigations 

could not be carried out on cells that did not appear to respond to IC and any 

interesting observations must be tested experimentally for validity.



212 
 

Figure 5.3.17. (Part 1) enriched biological processes for individual replicates that 

responded to addition of immune complexes; replicates 1, 2 and 3 for M0 cells (A (i), (ii) 

and (iii) respectively) 
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Figure 5.3.17. (Part 2) enriched biological processes for individual replicates that 

responded to addition of immune complexes; replicate 2 for M1 cells (B) and replicates 2 

(C(i)) and 3 (C(ii)) for M2a cells  
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Figure 5.3.17. (Part 3) enriched biological processes for individual replicates that 

responded to addition of immune complexes; replicate 2 for M2c cells (D) and replicates 

1 (E(i)) and 3 (E(ii)) for LPS cells  
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Figure 5.3.17. (Part 4) enriched biological processes for individual replicates that 

responded to addition of immune complexes; replicates 1 (F(i)) and 3 (F(ii)) for TPP cells  
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5.3.12 Replicates with inflammatory changes demonstrate enrichment for some 

disease specific transcription factors 

As with the monocytes, TF analysis gives a more insightful indication of the changes 

occurring in IC treated cells; as consistency between replicates was an issue, individual 

experiments were scrutinised for changes using GO analysis. The biological process 

enrichment investigation indicated that only some of the replicates responded to IC in 

an inflammatory or immunity-related fashion. Differences between IC +/- conditions in 

other replicates appeared to be non-specific and could be related to changes in the cell 

cycle. Hence, samples with these enrichments were discounted as it is possible that 

the differences seen were due to not synchronising the THP-1 cells cycle prior to 

stimulation. Given the associations seen with M1/M2a macrophage polarisation and 

cell cycle (that it is halted upon M1 stimulation), it is possible that additional treatments 

(including IC) alter cell cycle-related processes, particularly as ERK-mediated cell cycle 

progression was found to be induced via FcR ligation in murine macrophages (Luo et 

al., 2010). However, this was impossible to determine without synchronisation prior to 

cell induction. As with the monocytes, genes significantly downregulated upon addition 

of IC were subject to TF enrichment as a control.  

For M1 treated cells, it was the second replicate that appeared to respond to IC-

stimulation in an inflammatory manner; inflammatory response was a top hit for GO-

biological process enrichment analysis. Thus, genes elevated in M1 cells + HAGG 

(versus M1 cells) in replicate 2 were selected for TF enrichment analysis (Figure 

5.3.18). One of the most significant hits here was PU.1 (coded for by spi-1 Proto-

Oncogene (SPI1)); this factor has been associated with gene expression during 

myeloid cell development (stimulates expression of the M-CSF coding gene) (Delgado 

et al., 1998), so may influence macrophage phenotypes if activated in disease states. It 

should be noted that this macrophage subtype is the most inflammatory due to 

induction with LPS and IFNγ. Hence activity of inflammatory TFs in these cells will 

naturally be high compared to other polarisation states. Therefore, pro-inflammatory 

changes induced by IC stimulation in this subtype may be masked by a highly 

inflammatory background.    

M2a and M2c cells in replicate 2 cells also demonstrated an enrichment of targets for 

the SPI1 TF upon IC treatment (Figure 5.3.18). Genes upregulated in M2c cells upon 

IC treatment were also linked to ikaros family zinc finger protein 1 (IKZF1), a TF that 

reportedly regulates aspects of the immune response and has been linked to SLE 

(Cunninghame Graham et al., 2011). Hence induction of this factor in the disease state 

could potentially be partly driven by the presence of IC. No significant TF hits were 
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identified from significantly downregulated genes in these macrophage subsets, 

compared to IC treated cells using a cut off 0.05 for FDR (control experiment) (Figure 

5.3.19). 

The M0 cells from replicate 3 responds to IC in the most inflammatory manner for all of 

the replicates from that condition (Figure 5.3.18). The changes seen in this experiment 

are relatively similar to those described for monocytes stimulated with IC; RA-related 

TFs IRF3 and SP1 are implicated and are not identified in the reverse analysis (Figure 

5.3.19). As M0 cells are subject to the least stimuli of all the macrophages subtypes, 

they are most closely related to monocytes in terms of polarisation. Hence it is 

unsurprising that these cells would respond in a similar way when exposed to ICs. 

LPS-treated cells are subtyped into M2b macrophages when IC is included as a 

stimulus. The most responsive sample for this condition was found to be in replicate 3, 

and so this experiment was scrutinised for TF activity (Figure 5.3.18). As with some 

other subtypes, SPI1 and IKZF1 were found to be enriched for genes elevated in the 

IC-treated condition, although the latter TF was also a top hit for genes significantly 

downregulated genes, so this TF may just be elevated in this subset generally (Figure 

5.3.19). In addition to this, certain TFs that are known to be involved in regulation of 

inflammatory genes were identified as top hits; STAT1, STAT2, and IRF1 were listed 

(Au-Yeung et al., 2013); (Ivashkiv and Donlin, 2014); (Blaszczyk et al., 2016). If these 

TFs are activated downstream of IC binding, this interaction could contribute 

significantly to perpetuation of inflammation.  

TPP cells in replicate 3 were identified as samples responding to HAGG in the most 

inflammatory manner. TFs implicated in this investigation included SPI1 and STAT2; 

both have been linked to inflammation or immune system driven disease as discussed 

previously in this Section (Figure 5.3.18). IKZF1 was identified in both IC and non-IC 

treated differentially expressed gene lists, suggesting that (as with LPS treatment) this 

factor is induced in all TPP cells. 

It is important to highlight that any findings discussed here were identified from 

individual experiments and were not reproducible; findings may therefore be invalid. It 

is possible that there were variations between batches of IC used to treat the cells 

which may have caused some samples to respond to this stimulus more strongly than 

others. However, this does not completely eliminate the possibility of the findings 

discussed in this Section being valid; it is simply not possible to identify the samples 

that represents responses to immune complexes most accurately from this data. This 

study would need to be repeated with experimental efforts to validate any inflammatory 

changes seen between samples with and without IC, identified here. 
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Figure 5.3.18.  

Transcription 

factors with 

significantly 

increased 

expression of 

target genes 

upon addition of 

immune 

complexes to 

macrophage 

subsets; data 

from replicates 

showing the 

most 

inflammatory 

changes 
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Figure 5.3.19.  

Transcription factors 

with a significantly 

increased number of 

targets in conditions 

without immune 

complexes vs those 

with; samples that 

showed inflammatory 

changes. Note M2a and 

M2c data are shown in 

tables as no significant 

hits.  
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5.4 Discussion 

Based on flow cytometry analysis and RNA-seq data, expression of FcγRIIb appeared 

to be increased for M2a cells compared with other conditions, although the change did 

not appear to be statistically significant (Figures 5.3.1 and 5.3.2). If an increased 

number of repeats for the flow cytometry experiment (providing higher statistical power) 

demonstrate a more significant change, then this would be an interesting observation; 

FcγRIIb is an inhibitory receptor, known to regulate the activity of immune cells, and 

M2a macrophages are reportedly involved in regulation of the immune response and 

inflammation resolution (Nimmerjahn and Ravetch, 2008); (Fraternale et al., 2015). 

Hence it is possible that the activity of these cells is in part regulated by signalling 

through this receptor. One way to test this may be to perform an M2a activity assay 

(e.g. production of anti-inflammatory cytokines) where IC are present and signalling 

through FcγRIIb is blocked in one condition. If this inhibition alters the functionality of 

M2a macrophages then it would be possible to suggest that the anti-inflammatory 

activity demonstrated by these cells is in part due to FcγRIIb signalling (Bartosh and 

Ylostalo, 2014). Although the stringent FCGR gene alinment allowed transcripts 

corresponding to the different receptors to be distinguished, it meant that reads 

mapping to the more homologous regions were discounted. Hence counts given were 

an underestimation of expression. This meant that although transcription of different 

receptor subclasses could be compared to one another, they could not be compared to 

that of other genes. If this information is required, future studies may use qPCR, with 

primers targeted to PSVs and CSVs, described in this Chapter. Note that in the case of 

FCGR2C the region targeted was a SNP (THP-1 cells were homozygous for this 

allotype) and so may not be applied in cells which do not have the appropriate 

genotype.  

Based on the findings in this Chapter, it can be suggested that although the addition of 

IC to a myeloid culture system does not block or induce any of the polarisation states 

previously described, they do appear to modulate the transcriptional profile of 

monocytes, and perhaps macrophages. In the analyses described here, GO terms 

such as “Neutrophil activation” and “Granulocyte activation” have been highlighted as 

top hits when comparing genes differentially expressed between unstimulated 

monocytes and cells treated with IC. As monocytes and neutrophils share a common 

myeloid origin, it is not necessarily surprising that there are some overlaps in gene 

expression between these phagocytic cell types (Kumar et al., 2016); (Naranbhai et al., 

2015). Some of the genes significantly differentially expressed in monocyte + IC 

samples (versus unstimulated monocytes) relating to the neutrophil enrichment terms 
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described above include C3 and CD55 which contribute to and regulate the 

complement pathway respectively (Terstappen et al., 1992); (Shimizu et al., 1992). 

Other genes include NEU1 and FUCA1, which translate to lysosomal proteins in 

phagocytes (Stamatos et al., 2005); (Panmontha et al., 2016). CYBB is another DEG 

contributing to the neutrophil enrichment terms; this genes codes for a super oxide 

generating enzyme which contributes to the formation of reactive oxygen species, 

which has microbicidal properties (Okura et al., 2015). Expression of these genes and 

subsequent proteins, and respective functions have also been reported in myeloid 

cells, which could be an explanation for why “neutrophil” functions are enriched 

between different populations of monocytes (Stamatos et al., 2005); (Verdugo et al., 

2013); (Terstappen et al., 1992); (Shimizu et al., 1992); (Okura et al., 2015). More 

detailed investigations supplemented with experimental data would be required to 

determine the relevance of expression of these genes in this cell type. 

Myeloid cells are key effectors in auto-antibody driven inflammatory disease, so it is 

possible that the transcriptional changes identified in this chapter are consequences of 

pathological events and may contribute to disease progression. For instance, the TFs 

identified which were linked to autoimmune disease (where autoreactive antibodies are 

a characteristic feature) could be at least in part activated or cooperatively induced by 

ICs (Ikuta et al., 2012); (Dong et al., 2008); (Angiolilli et al., 2016); (Sweeney et al., 

2010). An interesting next step would be to investigate expression of transcripts and 

related pathways downstream of these TFs binding experimentally, and investigate 

whether this gene signature can be induced using ICs isolated from RA or SLE 

patients. Considering up-regulation of TF IRF3 target genes, string network plots for 

IRF3 interactors revealed an interesting pattern; transcription of genes for some 

proteins which increase the activity of IRF3 at the post-translational level was 

upregulated in monocytes treated with IC (versus unstimulated monocytes). As 

transcriptional expression of IRF3 was not increased upon the addition of ICs, these 

findings suggest a mechanism by which activity of the respective protein could be 

increased under these conditions. Links between activity of this TF and RA are also 

interesting as ICs are reportedly found in these patients (Angiolilli et al., 2016). Hence it 

would be a logical step to question the involvement of IC ligation on activating 

monocytes in this way in RA. A potential next step would be to look at promotor regions 

for these genes to identify any common binding sites for agents inducing transcription. 

If this reveals a common activator then chromatin immunoprecipitation could be 

performed to verify this, and further experiments could be performed to link this agent 

to FcγR signalling. These findings highlight another interesting point; a number of 
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changes induced through treatment with immune complexes may actually occur at the 

protein level, which may be indicated by aspects of sequencing data but not clearly 

demonstrated. Hence follow up experiments and additional studies focusing on protein 

changes may be necessary to get a clearer picture of how myeloid cells respond to 

immune complexes.  

Technical issues between repeats were likely to be responsible for lack of consistency 

between macrophage replicates treated with immune complexes; due to the size of the 

experiment, different replicates were prepared separately and run on different lanes of 

the sequencer flow cell. Batch effects are common in samples prepared on different 

days and can be attributed to a number of issues, some as simple as hardware 

differences (Leek et al., 2012). For instance, fluctuations in temperature in a tissue 

culture incubator may alter cell transcriptomes and work towards masking any 

biological differences; there are reported cases of biological variables relating strongly 

to technical variance and normalisation is not always possible (Petricoin et al., 2002); 

(Johnson et al., 2007); (Leek et al., 2012). This could be the case here, so any 

attempts to repeat this experiment should include scaling the experiment down to a 

size at which all samples could be prepared at the same time. Another factor that may 

have contributed to the differential transcriptomes upon immune complex treatment is 

size of IC molecule used. As interactions between FcγRs and IgG are highly co-

operative; size of immune complex is a crucial factor in determining binding strength 

and activation of subsequent signalling pathways (Lux et al., 2013); (Jarvis et al., 

1999). When run on a polyacrylamide gel, two distinct bands were identified, 

suggesting the presence of IgG aggregates of different molecular weights in the IC 

fractions. Although the IC was prepared as a batch, it is possible that upon aliquotting, 

the quantities of different sizes of immune complexes added to each sample were not 

consistent. One way to ensure this issue is avoided in the future would be to mix the 

batch well prior to aliquotting, and run a small amount of each aspirate on a 

polyacrylamide gel to ensure consistency. 

One important consideration here is the lack of expression of FcγRIIIa on the THP-1 

macrophages according to flow cytometry data; tissue macrophages isolated from 

patients with IC driven conditions such as RA are found to express these receptors, 

and subsequent signalling is likely to induce changes in the cell (Laurent et al., 2011). 

As this receptor is important in IC-mediated activation in vitro, it is likely that its 

absence would influence the results generated for this experiment (Nimmerjahn and 

Ravetch, 2008). It could be that the absence this protein in THP-1 macrophages is due 

to a problem with the cell line or is a consequence of experimental factors or a result of 
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a mutation that has been acquired. This could be addressed by purchasing a new 

batch of THP-1 cells or further optimisation of the flow cytometry experiment, aimed at 

reducing background and maturing the macrophages. If further optimisation fails, it may 

be possible to virally transfect these cells to induce production of FcγRIIIa in the 

absence of stimuli. This could be used as model to examine how ligation of this 

receptor with IC influences macrophage functioning.   

Despite the lack of consistency between macrophages replicates, immune changes 

were observed in some samples. Although no definitive conclusions can be drawn from 

this particular analysis, a number of experiments can be designed to interrogate gene 

expression profiles and pathways based on this data. It should also be noted that any 

phosphorylation events which may change cell activity at the protein level would not 

necessarily be detected here; different experiments would be required to investigate 

these changes, such as western blotting (to detect phosphorylation by size change), or 

functional assays to detect changes in activities of enzymes downstream of FcγRs. 

There are other factors that may have compromised replicability of macrophage-IC+ 

conditions including strong cytokine stimuli masking the effects of IC, different fractions 

of HAGG having variable effects on samples, responses being protein related (making 

transcription changes unrelated to polarisation) and type of antibody (anti-CD52) 

having variable effects on cells. One way to help determine whether changes are 

genuine rather than non-specific would be to measure kinetics changes upon IC 

addition (e.g. using a Ligand tracer) alongside other experiments to discern whether an 

interaction has taken place. 

One alternative approach to the analysis may have been to look for DEGs between all 

macrophage subtypes (as a group) with and without IC; consistant differences may 

have been identified this way. However, any co-operative signalling-related or subtype-

specific changes that occur upon FcγR ligation would have been missed. Additionally, if 

any IC-specific gene expression profiles are masked through specific cytokine 

treatments (e.g. IFNγ), this approach may have prevented detection of relevant DEGs 

in the other treatments.  

Notably, effects of FcR pathways are modified through interactions with other signalling 

pathways (e.g. complement) and this may drive the RA macrophage phenotype. Hence 

the absence of other cells and inflammatory agents may be responsible for any limited 

responses from IC ligation compared to pathological states (Del Rio et al., 1999). 

However, testing of individual agent is essential before progression to more complex 

systems, and so the experiments described in this chapter are necessary.  
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Chapter 6: General Discussion and future work 

 

6.1. Macrophage polarisation and in vitro models 

6.1.1 The spectral model of macrophage polarisation is represented in vitro 

Overall, the data generated in this thesis supports the paradigm that macrophage 

polarisation is a diverse and flexible process, with differentially stimulated macrophage 

phenotypes appearing on a spectrum. For instance, there is a great deal of evidence 

that the macrophage transcriptome, and possibly overall phenotype, is dictated by 

more than just the classical stimuli (IFNγ and LPS for M1, IL-4 and IL-10 for M2a and 

M2c, respectively). In Chapter 3 of this report, changes could be seen when cells were 

stimulated with additional stimuli; i.e TNF, PGE2, Pam3sk4, to generate chronic 

inflammatory-like TPP macrophages (Chapter 3, Figure 3.3.22). This subtype was not 

described in the original bipolar paradigm, but was observed here. Chapter 4 confirmed 

a distinct transcriptional profile for these cells when compared to M0 and M1 subtypes; 

significantly DEGs were identified through pairwise comparisons with both of these cell 

types, demonstrating changes in gene expression in response to the TPP stimuli into a 

phenotype distinct from that of the classical inflammatory cells (for DEGs please refer 

to Appendix 1, Tables A1.1 and A1.2). Additionally, transcriptional changes were 

identified for macrophages in Chapter 5 when ICs were included as an additional 

stimulus. However, as described in Chapter 5 these changes were not consistent and 

so it is unclear whether observations are valid markers of IC-skewing, given the large 

amount of variability in the dataset.  

Other studies have demonstrated changes in transcription profiles of macrophages in 

response to non-classical stimuli. For example, novel subtypes have been described 

for cells isolated from adipose tissue in obese mice, for macrophages found during 

chronic inflammation and for cells isolated from atherosclerotic lesions (Lumeng et al., 

2007); (Xue et al.); (Villani et al., 2017); (Kadl et al., 2010). 

It should be noted that although the subtypes of the bipolar model of macrophage 

polarisation may be over simplistic, they are useful as reference points when testing 

the effects of other stimuli. For instance, it is interesting to examine the effect of a 

previously untested stimulus on unpolarised cells to examine which pathways are 

upregulated, but it is also useful to determine how gene expression under these 

treatments relate to that on (for instance) M1 cells. This could be beneficial in giving an 

indication of macrophage function.  
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Taken together these data suggest that macrophages are incredibly versatile and may 

adopt a large number of states. This is particularly relevant when considering 

macrophages in disease and healthy tissue, since these cells will express cell surface 

receptors for many agents present under physiological and pathophysiological 

conditions. It should hence be considered that an increased number of macrophage 

subtypes than those already established may be present in tissue, and (as alluded to 

previously) that physiological subsets should be considered as positions on a 

continuum. 

 

6.1.2 Intermediate phenotypes 

A growing body of evidence suggests that when exposed to two or more different 

stimuli, monocytes and macrophages will demonstrate a combined transcriptional 

profile for these agents (Chan et al., 2008); (Shaul et al., 2010). Multiple signals may 

be co-operative, opposing or independent depending on the stimuli given.  

Some macrophage signals are additive; for instance, M1-THP-1 macrophages were 

induced with both LPS and IFNγ. In Chapter 3 an LPS titration was performed where 

concentrations were increased from 0ng/ml to 250ng/ml (Chapter 3, Figure 3.3.8). Here 

it could be seen that when LPS was added, an increased number of markers was seen 

compared to those expressed when exposed to IFNγ only. Transcription of other M1 

markers (e.g. CXCL9 and TNFAIP6) was consistent upon LPS addition. Hence these 

cells demonstrate a transcriptional profile relating to both of these agents. Additionally, 

in Chapter 4 where LPS only and M1 (LPS+IFNγ) samples were plotted on the PCA 

plot, the y axis appeared to represent polarisation (please see Chapter 4, Figure 4.3.2); 

here LPS-treated samples mapped between M1 and M0 cells, suggesting that LPS 

cells had an intermediate M1/M0 phenotype.  

It should also be noted that in Chapter 5 (Figure 5.3.7), differentially polarised 

macrophages retain expression of subset-specific markers, even upon administration 

of ICs. Although changes in IC-treated samples are inconsistent, the transcriptional 

changes are present. Hence any change in transcriptional profile appears to be in 

addition to polarisation response. Given this, phenotypes identified following the 

addition of ICs may be considered as intermediate or mixed. 

Under physiological conditions macrophages will be exposed to multiple, variable 

stimuli, and so identifying combined phenotypes is highly relevant when considering 

healthy or disease-tissue macrophages.  

Previous reports have taken changes in transcriptional profiles of cells to be indicative 

of an altered monocyte or macrophage phenotype. Terms relating to these two aspects 
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have hence been used synonymously in some reports. Some papers have recently 

veered away from using terms such as M1 and M2a, and instead describe the cells as 

having a specific signature; for instance, a pro-inflammatory IFNγ signature or anti-

inflammatory IL-4 signature. Given that expression of certain cytokine-specific markers 

does not change upon addition of other molecules (e.g. addition of ICs or LPS to IFNγ 

as described earlier in this Section), this may be more appropriate nomenclature to use 

in the future; M1 macrophages may be described as having a combined IFNγ and LPS 

signature for instance.  

 

6.2. Fluidity of macrophage markers 

A large number of studies consider phenotype-specific markers to be absolute. 

However, gene expression is highly dependent on the length of time for which the cells 

are cultured with the polarising stimuli. This appears to be true for both THP-1 cells and 

primary macrophages; for instance, PBMC macrophage microarray datasets published 

by Xue et al. (2014) were analysed in Chapter 2 (Figure 2.3.8), and gene expression 

levels were seen to vary between the shortest (30 minutes) and longest (72h) cytokine 

incubation times. Additionally, THP-1 cells were cultured with M1 and M2a stimuli 

(IFNγ+LPS and IL-4, respectively) for different lengths of time, and this appeared to 

have an effect on gene expression (Chapter 3, Figures 3.3.18 and 3.3.19). Hence, it 

must be emphasised that macrophage markers are considered for a specific time point 

rather than immediately and consistently once a polarising cytokine signal has been 

given.  

 

6.3. THP-1 cells as a model for primary monocytes and macrophages 

6.3.1. Cell lines as in vitro models for studying macrophage polarisation 

The use of cell line models in the study of human disease is a hotly debated topic. On 

one hand, there is an argument that mutations in the cell line will have an effect on the 

results, but homogenous genetic background is essential for running multiple, 

replicable, comparable experiments. This is not always feasible using primary human 

cells and so cell lines have a place when exploring immunological and pathological 

processes. One way to increase confidence in the cell line is to develop a model which 

demonstrates high levels of similarity with primary cells. This study aimed to develop a 

THP-1 cell-line model to these specifications. In Chapter 3 it was clear that M1 and 

M2a THP-1 macrophages expressed some subset-specific markers (Figure 3.3.21) 

identified from a public available dataset generated using PMBC monocytes in Chapter 

2 (Table 2.3.4), suggesting that in terms of polarisation, these cell types followed a 
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similar pattern. This was corroborated in Chapter 4 when genes differentially 

expressed between M1 and M2a cells in both THP-1 and PBMC macrophages were 

correlated, and overlapping genes between the two cell types were found to be related 

to immune signalling (Chapter 4, Figures 4.3.5 and 4.3.6). Hence this cell line model 

would be useful when studying immune pathways. 

Biological processes that vary between M1 and M2a macrophages are fairly well 

established and relate to functions of these cells. Hence gene ontology analysis 

focusing on biological functions was used to indicate polarisation state; functions 

traditionally relating to M1 cells were enriched for lists of significant DEG upregulated in 

M1 cells. Examples of terms which were found in the top ten hits include defense 

response to other organisms, positive regulation of cytokine production, and regulation 

of innate immune response. These functions relate to M1 activities such as bacterial 

killing, cytokine production and activation of macrophage immune responses 

respectively (Arango Duque and Descoteaux, 2014). The terms enriched for the M2a 

genes did not appear to reflect traditional M2a functions to the same degree as those 

identified for the M1 gene list. For instance, top hits generally related to cell cycle 

processes and included terms such as mitotic nuclear division or ribosomal biogenesis. 

In mice, cell cycle is reportedly halted in IFNγ and LPS treated macrophages which 

may account for these findings (Xaus et al., 1999). However, it could be the case that 

transcription of M2a specific genes was not extensive enough due to incomplete M2a 

polarisation (reported to be the case in THP-1 cells), or that there is some redundancy 

of GO annotations. Additionally, as annotations are based on literature there are some 

limitations; for instance, novel ontologies reflecting these phenotypes would not be 

identified here. 

Transcription factor (TF) target analysis provided a method to group transcripts that 

may otherwise appear unassociated. In the analysis of genes upregulated in M1 cells 

versus M2a, enrichment of transcripts induced by STAT1, 2 and 3 TFs was reported. 

M1 polarisation is linked with the activity of STAT1; IFNγ reportedly induces JAK-1/2 

mediated tyrosine phosphorylation and subsequent STAT1 dimerisation and 

phosphorylation. For LPS induced M1 cells, signalling through TLR-4 results in NFκB 

activation and subsequent transcription of IFNβ. Autocrine activity of this cytokine 

results in STAT2 phosphorylation and activation. As described in previous Chapters, 

STAT3 can be induced by IL-10 signalling and subsequently drives an anti-

inflammatory phenotype. Conversely, this TF can also be activated by IFNβ (as with 

STAT2) and promote an inflammatory macrophage phenotype (Tugal et al., 2013). 

Taken together, the activation of the TFs described above supports transition of 

macrophages into an inflammatory, M1-like phenotype.  
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For the genes upregulated in the M2a condition, enrichment of targets for TF MYC was 

observed. MYC (or c-MYC) is a TF known to be induced by IL-4 in macrophages and is 

reportedly responsible for induction of around 45% of M2a associated genes (Pello et 

al., 2012). Specifically, this TF increases transcription of ALOX15 and CD206; two 

genes strongly associated with alternative macrophage activation which were also 

induced in THP-1 M2a macrophages (in Chapters 3 and 4). Additionally, MYC is 

indirectly linked to transcription of CD209, a gene found to be M2a specific in the 

analysis aimed at identifying subset-specific transcripts (Figure 4.3.12) (Pello et al., 

2012). Hence enrichment of targets of this TF is in support of the M2a state being 

achieved by THP-1 macrophages using the protocol developed in Chapter 3.  

 

6.3.2 M1 and M2a specific functions for THP-1 macrophages generated using the 

optimised polarisation protocol 

Although gene expression and morphology suggested that accurate M1 and M2a 

macrophage phenotypes had been achieved, functional assays demonstrating subset 

specific activities in differentially polarised cells would be beneficial for confirmation. 

TNF release assays may be useful for distinguishing M1 and M2 cells as TNF 

production is reportedly higher in the former following subset-specific cytokine 

exposure (Bartosh and Ylostalo, 2014). Conversely, wound healing assays and 

efferocytosis studies can be performed to test M2a functions; wound healing (e.g. 

scratch assays) and removal of cellular debris (assays focused on measuring 

endocytosis of non-bacterial cell bodies), respectively (Zizzo et al., 2012); (Jetten et al., 

2014).  

 

6.4.Macrophage markers: novel and validated  

6.4.1. Marker validation 

As described in previous Chapters, certain transcripts were highlighted as robust 

macrophage polarisation markers. Established M1 markers such as CXCL10, CXCL9, 

IL6, TNFAIP6 and GBP5 were identified from public datasets generated through 

experiments using primary macrophages (Chapter 2 Figure 2.3.2), and were similarly 

upregulated in the M1 condition (versus M0 and M2a) in THP-1 cells according to end-

point PCR (Chapter 3 Figure final). Additional quantitative analysis of gene expression 

using RNA-seq data derived through sequencing differentiated and polarised THP-1 

macrophage transcriptomes confirmed these observations. Hence these markers 

appear to be highly robust for identifying M1 cells in both the THP-1 cell line and 

primary macrophages, suggesting that they strongly reflect the polarisation status of 
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the cells. This is further supported by the functions of proteins translated from these 

transcripts in immunity; CXCL9 and CXCL10 are credited as chemoattractants for 

immune cells via their target receptor, CXCR3, and have roles in promoting a type 1 T-

helper cell response (Thapa et al., 2008); (Hardison et al., 2006), GBP5 promotes 

NLRP3 inflammasome assembly and is required for activation of the AIM2 

inflammasome in the presence of certain pathogens (Man et al., 2015); (Shenoy et al., 

2012), IL-6 is a pro-inflammatory cytokine involved in T-cell activation and acute phase 

protein production (Tanaka et al., 2014) and TNFAIP6 protein interacts with mediators 

of the protease network involved in inflammation (Wisniewski et al., 1996). 

 Similarly, Novel markers M1 ANKRD22 and TSC22D1 were identified from primary 

macrophage data and validated in differentiated THP-1 cells using PCR and RNA-seq 

experiments. Interestingly, the functions of proteins coded by these genes are not well 

studied and so it is unclear how expression of these transcripts relates to macrophage 

functioning. Some studies have linked the activity of ANKRD22 to tumor progression, 

and expression has been demonstrated in human whole blood samples following 

immunisation, suggesting a potential role in immunity (Matsumiya et al., 2014); (Yin et 

al., 2017). However, the role of this gene remains unclear and additional investigations 

(e.g. siRNA knockdown studies in THP-1 macrophages during M1 polarisation) would 

be required to further elucidate its roles in inflammation and macrophage physiology. 

The function of TSC22D1 is more studied; this gene codes for a TF that regulates 

cellular senescence, which (as described in Chapter 3) is a process involving 

interactions with some inflammatory genes (IL6, IL8) (Hömig‐Hölzel et al., 2011); 

(Mendonça et al., 2010). However, as with ANKRD22, further investigations must be 

carried out to determine the role of this gene in macrophage polarisation.  

It should be noted that in Chapter 5 (Figure 5.3.7), examination of marker panel 

transcripts in an increased number of conditions revealed some overlap between gene 

expression in M1, M2b and TPP conditions; for instance, genes IL6 and TNFAIP6 were 

found to be highly expressed in these polarisation states compared with others. As M1 

and M2b conditions share LPS as a common stimulus (a TLR4 agonist) and TPP cells 

include treatment with Pam3SK4 (a TLR2 and TLR4 ligand), it is possible that genes 

upregulated by all of these subtypes are induced by TLR signalling. In fact, expression 

of IL6 has previously been associated with TLR4 signalling in murine T-cells, 

suggesting this is a plausible hypothesis (Wu et al., 2015). 

Interestingly, these markers appeared to retain their expression pattern across the 

different subtypes when all samples were supplemented with ICs in Chapter 5. Hence 

these markers may be used in experiments where macrophages have been exposed to 

ICs to determine whether an M1 signature is present. This may be useful when 
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studying cells isolated from patients with autoimmune diseases, characterised by the 

presence of ICs (SLE, RA) or infections with associated antibody responses. 

In terms of protein expression, markers such as IL6, CXCL9 and CXCL10 may be of 

limited use in histology studies as they are generally secreted. They may, however, be 

useful in experiments involving biochemical examination of macrophage derived media 

or some tissue samples (e.g. synovial fluid or blood or RA patients) to give an 

indication of inflammatory status of cells. Tissue specificity must be considered when 

selecting markers that may be used in studies on patient tissue; although strongly 

expressed by macrophages, these factors can be expressed by other immune-related 

cells (Villiger et al., 1991); (Ohtani et al., 2009); (Spurrell et al., 2005). Therefore, it 

would be necessary to use other means to identify macrophages if examining a mixed 

cell population (e.g. in tissue samples). 

According to the human protein atlas (source: http://www.proteinatlas.org), proteins 

corresponding to GBP5, TNFAIP6, ANKRD22 and TSC22D1 are intracellular and so 

may be detected in tissue or cell lysates, or fixed, permeabilised cells. Tissue 

specificity should also be considered in these cells; GBP5 protein appears to be the 

most specific marker for myeloid cells, although it can be expressed in endothelial cells 

upon IFNγ stimulation (Tripal et al., 2007); (Shenoy et al., 2012). Little information is 

available for ANKRD22 reducing confidence in its use as a tissue specific marker.  

As with the M1 markers, established M2a specific transcripts highlighted in the analysis 

of primary macrophage subtypes in Chapter 2 were tested experimentally using PCR 

and RNA-seq experiments on differentiated and polarised THP-1 cells. Transcripts 

such as ALOX15, CCL26 and CD200R1 were found to be specific when examined 

using both of these techniques in THP-1 cells, emphasising their efficacy. The 

commonly used literature marker TGM2 was also found to be effective for 

demonstrating M2a polarisation in THP-1 cells. Novel transcript HOMER2 was specific 

for M2a cells in the PBMC macrophage dataset and in THP-1 cells. However, in the 

quantitative RNA-seq experiment it appeared to be expressed to some degree in M2c 

and M0 cells. It was also observed to be upregulated for one of the M1 samples, but 

this was not consistent. The lack of consensus between the conditions suggests that 

these reads are not as reliable as for the other genes. The reliability of this marker 

must therefore be determined through additional experiments. CCL23 expression was 

reportedly higher in monocytes versus other cell types, and CCL17 was increased in 

TPP conditions versus other samples (Chapter 5 Figure 5.3.7); this did not correlate 

with the MDM dataset examined in Chapter 2 (Table 2.3.4) and the PCR experiments 

in Chapter 3 (Figure 3.3.21). However, an increased number of conditions were used in 

this analysis versus those in Chapters 2 and 3 which may have confounded the results. 

http://www.proteinatlas.org/ENSG00000149131-SERPING1/tissue
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It should also be noted that expression of CCL17 did appear to be quite weak in the 

PCR experiments in Chapter 3 so it is possible that this is not a robust marker. 

However, in Chapter 4 Figure 4.3.7, CCL17 did appear to be more specific when less 

conditions (i.e. no TPP or M2b cells) were considered. Based on this data CCL23 and 

CCL17 cannot be considered reliable M2a markers (the latter when TPP cells are 

included in the analysis) and further investigations should be performed to determine 

whether they could be used reliably in macrophage polarisation studies or not.  

As with M1 markers, expression of transcripts ALOX15, CCL26, CD200R1 and TGM2 

does not appear to change upon addition of ICs. Hence these markers may also be 

useful for identifying macrophage subtypes in patient tissue where these stimuli are 

found. 

Antibodies against proteins from ALOX15, CCL26, CD200R and TGM2 may also be 

considered here; CCL26 is a secreted chemokine and may be detected in ELISA 

assays performed on macrophage conditioned media to identify polarisation state of 

the macrophages. Conversely CD200R is expressed on the surface of cells so may be 

used as a histology or flow cytometry marker. ALOX15 and TGM2 are localised to the 

intracellular region/plasma membrane or intracellular/extracellular region respectively, 

and so may be used in experiments where tissue is lysed or cells are permeablised. 

However, as with the M1 cells, tissue specificity should be considered. These markers 

are found to be expressed on other cells and so must be used in conjunction with a 

macrophage specific marker if used experimentally (Stubbs et al., 2010); (Shureiqi et 

al., 2005); (Ai et al., 2008). CD200R may be the most appropriate M2a marker 

discussed here due to its cell surface localization and the fact that its expression is 

predominantly restricted to cells of myeloid origin (Minas and Liversidge, 2006).  

 

6.4.2. Specificity of novel marker expression on THP-1 cells 

Some potential markers were identified from the THP-1 RNA-seq dataset and cross-

validated in the PBMC macrophage data which was originally analysed in Chapter 2. It 

should be noted that in contrast to transcripts identified in Chapter 2, potential markers 

in Chapter 4 were selected against M0, M2b, M2c, TPP and monocyte conditions. 

Hence, they may be more specific when considering a larger number of conditions. 

Here, markers were selected if they were subset-specific in both primary and THP-1 

datasets, and if functions were logical for the subset of interest. For instance, potential 

M1 markers included the ETS variant 7 repressor gene (ETV7; coding for a 

transcription factor that has previously been associated with LPS signalling), the 

neuralised E3 protein (NEURL3; ubiquitin protein ligase gene which undergoes activity 
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change upon cholesterol accumulation) and CD276 (a member of the B7 costimulatory 

family of receptors) (Bobryshev et al., 2016); (Baillie et al., 2017). According to data 

available on Protein Atlas (source: https://www.proteinatlas.org), the corresponding 

protein for the potential M1 marker NEURL3 is also highly expressed in cell lines 

derived from B lymphocytes and pancreatic cells (RPMI-8226 and CAPAN-2 

respectively) (Thul et al., 2017). Hence when considering macrophage polarisation in 

any diseases where these cell types are also present (e.g. macrophage infiltration in 

pancreatic cancer, rheumatoid synovium where B cell and macrophages are present), 

it is important to consider the likelihood of this marker being cross-expressed. ETV7 

protein is also expressed in non-hematopoietic cell types in response to inflammatory 

related stimuli (e.g. in hepatic cells in response to hepatitis C virus) and so is likely to 

be unreliable if used as a single marker in inflammatory disease tissue (Ignatius 

Irudayam et al., 2015). Additionally, membrane CD276 protein is an important immune 

checkpoint protein (a member of the B7 and CD28 family) and has been detected on 

the surface of a number of immune cells (including DCs, monocytes, activated T-cells 

and some carcinoma cells) and some other cell types (Picarda et al., 2016). This must 

be considered when examining macrophage polarisation in tissues with multiple cell 

types (Zhang et al., 2008). 

 

Some genes that may make useful markers for the M2a polarisation state if validated 

include HAS3 which codes for hyaluronan synthase-3, a protein involved in production 

of hyaluronic acid (Chang et al., 2014), CHN2 (chimerin 2) which codes for a protein 

involved in proliferation and migration and LOX (encodes lectin like LDL receptor 1) 

which has been found to be associated with atherosclerosis in studies performed on 

murine macrophages (Ding et al., 2013). It should be noted however that expression 

has also been seen for endothelial cells, smooth muscle cells and fibroblasts which are 

also present in atherosclerotic (and other disease) tissue (Draude et al., 1999). HAS-3 

protein was found to be expressed on articular cartilage upon cytokine treatment 

(Hiscock et al., 2000) and so may be problematic as a marker when considering 

inflamed joint tissue (e.g. in RA).  

 

As discussed previously, M0 and “de-activated” M2c cells were not determined to be 

significantly different according to DEG analyses, hence markers were identified to 

represent both of these conditions; ALOX5 and VSIG4 were both present M0/M2c 

cells, but also M1 and M2b phenotypes. Another M0/M2c marker, EPHB6, was not 

induced in M1 and M2b cells but was present for M2a and monocyte subtypes. Hence 

these markers may be incorporated as a panel to identify these subtypes. In terms of 

functions, ALOX5 (arachidonate-5 lipoxygenase) has roles in synthesis of leukotrienes. 

https://www.proteinatlas.org/
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This gene is specifically expressed in bone marrow derived cells, and mutations in the 

promoter region have been linked with decreased response to anti-leukotriene drugs in 

asthma (Mougey et al., 2013). VSIG4 encodes a v-set and immunoglobulin domain 

containing protein that is structurally related to B7 family of immunoregulatory proteins, 

which acts as a receptor for C3b and iC3b and may negatively regulate T-cell 

responses (He et al., 2008); (Van Loo et al., 2010). EPHB6 is a transmembrane 

epherin receptor without a functional kinase domain. Downregulation of this gene is 

seen in metastasis, hence it may inhibit movement of cells when expressed (Wilkinson, 

2001). These genes appear to be linked to inflammatory functioning or cell motility and 

may therefore reflect activity of their relative macrophage subtypes.  

 

All potential M2b markers were also expressed in M1 cells. Hence these markers may 

be used to identify the M2b polarisation state when used alongside M1 specific 

markers (e.g. GBP5, CXCL9). TNFSF10 and SERPING1 were identified as most 

specific in M2b (and M1) THP-1 macrophages along with MDMs. TNFSF10 protein 

(also known as TRAIL) is a member of the TNF superfamily of cytokines and is credited 

with inducing apoptosis in transformed tumor macrophages. It also promotes 

macrophage lipid uptake, supporting foam cell formation (Liu et al., 2014). This 

molecule is secreted and would hence be more useful in biochemical studies 

compared with histology-based experiments. TNFSF10 is expressed on other immune 

cells (including NK cells) and may hence be inappropriate in studies performed on 

whole tissue without a pan macrophage marker. SERPING1 has been discussed 

previously as an M1 marker; the corresponding protein has been described as a 

complement activation inhibitor which has clear roles in immune regulation (Wagenaar-

Bos and Hack, 2006). According to the Human Protein Atlas (source: 

http://www.proteinatlas.org/) this protein is predicted to be both secreted and 

intracellular, and so may be useful in histology studies. However, expression is not 

specific to macrophages and so co-staining with a pan-macrophage marker would be 

necessary.  

 

Potential TPP markers included LMP2 and CSF2. LMP2 codes for the major catalytic 

immunoproteosome subunit, crucial for MHC I activity (Brucet et al., 2004) and CSF2 

codes for GM-CSF, a cytokine which has well documented roles in macrophage 

(particularly inflammatory related) differentiation (Shi et al., 2006). According to the 

human protein atlas (source: http://www.proteinatlas.org) LMP2 protein is found in the 

intracellular compartment and so may be used in experiments where cells are 

permeablised or lysed. However, this protein is expressed in a number of different cell 

types and would therefore not make a specific marker for this polarisation state in 

http://www.proteinatlas.org/ENSG00000149131-SERPING1/tissue
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macrophages. GM-CSF is a secreted protein that is produced by a number of cells 

(macrophages, NK-cells, T-cells, endothelial cells) and so would not be a reliable 

histology marker (Shi et al., 2006). It may however be used in in vitro studies to 

examine macrophage polarity.  

As alluded to previously, in histology studies, it is possible to co-stain a polarisation 

marker with a pan-macrophage marker if the protein is not specific to macrophages. 

One frequently used surface marker for this is CD68; this protein has been used 

reliably in previous investigations (Stöger et al., 2012). Expression of the CD68 

appeared to be consistently high in all of the conditions tested in Chapter 5 (when 

compared to variable expression of CXCL10) which supports its use as a pan 

macrophage marker (Appendix 4, Figure A4.4).  

Although RNA-seq analysis provides large amounts of data, quantitative lab-based 

experiments are often required to validate gene expression in samples of interest prior 

to practical application. Quantitative PCR is a frequently used tool for this (Rajkumar et 

al., 2015); RNA-seq markers validated using this method are generally confidently 

applied for downstream experiments. Hence, this may be a useful technique to validate 

expression of the THP-1 polarisation markers for M0/M2c, M1 M2a and M2b markers 

identified in this report. 

 

6.4.3. Expression of novel markers in primary monocyte derived macrophages 

Although the markers were cross referenced using an MDM dataset, it is also important 

to validate the expression of these genes in primary macrophage cultures. This would 

validate the use of these markers in studies performed on human tissue samples and 

allow them to be applied more confidently.  

Overall, a panel of robust macrophage polarisation markers would be beneficial for 

future research into phenotypes of these cells in human tissue, and a summary of the 

levels of validation for the markers discussed in this thesis may be found in Appendix 

7; Table A7.1 and figure A7.1.   

 

6.5. Transcriptomics as a research method 

Next generation sequencing is hailed as a powerful and highly sensitive tool for 

generating vast amounts of data which can be analysed in a variety of ways to inform 

us about a biological system. However, is it clear from the data generated in this 

project that there can be technical limitations when using these techniques and that 

careful planning is essential to reduce the impact of these factors. One major issue 
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seen here was batch effect; subtle changes in temperature and gas concentrations in 

incubators may affect background RNA expression, and so if replicates are not 

incubated at the same time, this may increase variability between them. Another factor 

may be variability between different batches of cytokines and HAGG; this would alter 

the responsiveness of the different samples to stimuli. 

If this experiment were to be repeated, all replicates should be prepared on the same 

day using the same apparatus and kept in the same incubator. To reduce variability 

between batches of reagents, aliquots of the same substance may be prepared at the 

same time, pooled, mixed thoroughly and re-aliquotted to ensure consistency between 

all stocks. These considerations may reduce variability between replicates and prevent 

masking of biologically relevant changes.  

 

6.6. Influence of Fc gamma receptor ligation on macrophage polarisation 

Expression of different FcγRs on monocytes and macrophages (Chapter 5 Figures 

5.3.1 and 5.3.2) suggested that these cells were susceptible to IC stimulation. This is 

corroborated by the changes seen in macrophage and monocyte transcriptomes in 

Chapter 5, although the differences reported for macrophages were not consistent. For 

monocytes, enrichment of IRF3 targets in a list of genes which were increased upon IC 

treatment and increased transcription of genes positively regulating the activity of this 

protein at the post-translational level suggest FcγR signalling may increase activation 

of this protein. Overall this may provide insight into potential mechanisms in diseases 

characterised by macrophage mediated destruction and the presence of IC, such as 

RA and SLE. Furthering understanding of disease processes is essential when 

considering novel therapies and management strategies. Interestingly, higher activity of 

IRF3 has been identified in RA synovial cells with reports of increased regulation of 

target genes (Angiolilli et al., 2016); (Sweeney et al., 2010). Circulating pDCs isolated 

from SLE patients reportedly demonstrated increased expression of IRF3, and a SNP 

in the corresponding gene has been linked to disease susceptibility (Santana-de et al., 

2014). Hence this transcription factor appears to have some importance for myeloid 

cell biology in IC-mediated disease. However, the degree to which IC ligation drives 

this association remains to be determined. 

As stated previously, the TF IRF3 was highlighted as potentially interesting since a 

significantly increased number of its targets were found to be upregulated upon 

treatment with IC. To confirm the biological relevance, it would be important to validate 

the expression of some of these genes using qPCR as discussed previously (for 

marker validation, Section 7.1) (Rajkumar et al., 2015). ERK pathway related 
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transcription factors E2F1, 4 and 6 were also enriched using this approach; as FcγR 

signaling was found to induce ERK pathways with subsequent activation of E2F TFs in 

murine macrophages, these finding could be considered a validation of this approach 

(Luo et al., 2010). 

As increased binding of IRF3 to targets was only inferred by RNA-seq data, it will also 

be useful to demonstrate this interaction occurring experimentally. Chromatin 

immunoprecipitation assays could be performed for IC treated and non IC treated 

monocytes to confirm modulation of IRF3-target binding on exposure to ICs, hence 

relating the changes in gene expression to activity of this protein (Pillai et al., 2015). 

 

6.7 Linking Fc-gamma receptor signalling to transcription factor activity in 

immune complex treated myeloid cells 

6.7.1 Examination of promoter sequences for consensus sequences of 

transcription factor activators which are increased upon IC treatment 

As discussed in Chapter 5 (Section 5.3.8), IC treatment was shown to alter the 

expression of some genes that code for proteins which positively regulate the activity 

and survival of IFR3 in monocytes. These genes include PRKDC, HERC5, IKBKE and 

IFIT2. It would be interesting to examine promotor regions or enhancer elements for 

these genes to examine whether a common TF is responsible for increasing their 

transcription and hence an increased IRF3 response. If this is the case then such 

experiments would inform on how ligation of FcγR with ICs increases IRF3 activity. It 

should be noted, however, that IRF3 is reportedly activated as a result of TLR 

signalling (Akira and Takeda, 2004). Hence when studying pathophysiology or 

diseases with multiple stimuli, it would be essential to determine whether activity of this 

TF is induced or enhanced by IC binding. As described previously, chromatin 

immunoprecipitation studies could be used here to prove a difference if IRF3 TF 

binding to target genes.  

 

6.7.2. Investigating phosphorylation of transcription factors and their activators 

in immune complex treated monocytes 

The respective proteins for PRKDC and IFIT2 genes (described as increased upon IC 

treatment) reportedly enhance IRF3 phosphorylation (Siegfried et al., 2013); (Fitzgerald 

et al., 2003). Hence it would be interesting to measure and compare levels of 

phosphorylated IRF3 in monocytes treated with IC and unstimulated monocytes. This 

could be performed using western blotting (with a phosphorylation specific antibody) or 
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activity assays, and could inform on changes in signalling downstream of FcγR 

signalling. If these changes can be identified in monocytes, it would be interesting to 

investigate whether this is also a mechanism observed in M0 macrophages and 

possibly inflammatory (M1) cells upon IC treatment. If these experiments demonstrate 

a consistent change, similar experiments could be performed on various M2 

macrophage subtypes to determine whether the observations are independent of 

polarisation state. 

If increased activity or phosphorylation of IRF3 or increased transcription of PRKDC, 

HERC5, IKBKE and IFIT2 can be characterised in monocytic cell lines or PBMC cells, it 

may be interesting to perform experiments on myeloid cells isolated from RA or SLE 

patients with autoantibody positive disease versus cells from an inflammatory condition 

with no ICs present. This may give an indication as to whether ICs induce or contribute 

to this change in IC-driven inflammatory disease. Additionally, RA patients may be 

stratified by RF and ACPA status; these subsets of patients are reported to have 

differences in disease severity, relapse rate and responses to therapy (Aletaha et al., 

2015; Aletaha and Bluml, 2016; Seegobin et al., 2014). Hence it may be informative to 

examine the IRF3-related changes in macrophages treated with ICs derived from 

patients with different auto-antibody combinations, or myeloid cells isolated from these 

individuals.  

 

6.8. Investigating the effects of Fc-gamma receptor blocking agents on effector 

functions in myeloid cells  

Myeloid cells express multiple FcγRs, and ICs formed from IgG1 (used for the 

experiments in this thesis) will bind to most of these receptors. Hence observations 

cannot be attributed to the activity of a single FcγR. To dissect activity of individual 

receptors, gene expression and functional changes in monocytes responding to IC 

stimulation may be incorporated into an assay using agents designed to block specific 

FcγRs and subsequent signalling. This method could be used to test contributions of 

individual FcγRs to the phenotype seen upon treatment with IC, and may have 

implications for auto-antibody mediated conditions such as RA and SLE.  

 

6.9 Summary 

In conclusion, THP-1 cells appear to mimic primary macrophages when generated 

using the protocol described in this thesis. A number of markers have been identified 

and validated and so may be used for macrophage polarisation studies in the future. IC 

treatment appeared to alter the transcriptome of THP-1 monocytes and may increase 
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activity of TF IRF3, although experimental validation is required to demonstrate this 

change. RNA-seq datasets contain rich data that could be used in functional studies. 

Additionally, a number of experiment to validate RNA-seq data generated in this report 

have been suggested that may validate practical applications of findings in the study of 

human disease. 
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Appendix 1: Differentially expressed genes 

Table A1.1. Top 100 significantly differentially expressed genes (according to 

Benjamini-Hotchberg adjusted p-value ordered smallest to largest, maximum threshold 

set to 0.05) identified through pairwise comparisons between M1 cells and other 

subsets using Deseq2 package in R (i.e. a negative binomial distribution method) 

Monocytes M0 M2a M2b M2c TPP 

IL1B 

CXCL8 

IGFBP3 

PTGS2 

MMP1 

TGM2 

THBS1 

MMP9 

TDO2 

PHLDA1 

IFI30 

ITGB7 

RND3 

GBP2 

SPP1 

GBP1 

IDO1 

CCL20 

CXCL1 

RSAD2 

ICAM1 

CCL3L1 

CCL3 

GBP4 

CXCL10 

CCL3L3 

A2M 

IFIT3 

TSC22D1 

SOD2 

PINLYP 

IFI6 

MMP8 

ATF3 

CD274 

COL22A1 

MMP14 

LRRK2 

AMPD3 

GIMAP8 

PLAUR 

CTSL 

MAFF 

DUSP4 

GPR68 

PHGDH 

CXCL10 

GBP1 

IDO1 

GBP2 

HLA-DRA 

GBP4 

RSAD2 

ANKRD22 

WARS 

CCL8 

GBP5 

OASL 

SECTM1 

CXCL9 

IRF1 

IFI44L 

SLAMF7 

CCL2 

IFITM3 

STAT1 

CD74 

GBP3 

LGALS3BP 

CMPK2 

FN1 

HLA-DPA1 

FAM26F 

TRIM22 

TYMP 

ETV7 

TAP1 

HLA-DQB1 

HAPLN3 

HLA-DRB5 

MX1 

TNFAIP6 

BATF2 

ISG15 

HLA-DRB1 

STAMBPL1 

IL10RA 

TNFSF10 

APOL1 

SNX10 

EBI3 

APOL3 

CXCL10 

IDO1 

GBP5 

PDE4B 

GBP4 

IRF1 

HAPLN3 

CXCL9 

GBP1 

P2RX7 

GBP3 

AIM2 

IFIT3 

IL15RA 

CXCL11 

RIPOR2 

LIMK2 

IFIT1 

TNFSF10 

TAP1 

GBP1P1 

ANKRD22 

OASL 

IL32 

FAM26F 

GIMAP1-GIMAP5 

GIMAP5 

ISG15 

APOL3 

EPSTI1 

SNX10 

DDX58 

TNFSF13B 

F13A1 

CFH 

RSAD2 

MEFV 

SERPING1 

OAS1 

LOC100419583 

PSMB9 

IL23A 

BATF2 

STAT2 

CARD16 

CCL2 

CXCL9 

UBD 

ACOD1 

TBX21 

APOL4 

IL31RA 

XIRP1 

HLA-DPB1 

WARS 

CD274 

IRF1 

C1S 

STAMBPL1 

MNDA 

LZTS1 

HAPLN3 

TOP2A 

IL18BP 

ACKR4 

SCARF1 

BIRC5 

HLA-DPA1 

HCAR3 

CIITA 

IDO1 

PIM1 

SLC35F1 

FAM20A 

SOCS1 

HLA-DRA 

GBP4 

GBP6 

KIF20A 

PBK 

GBP5 

HIST2H3D 

HIST1H2BI 

ANKRD1 

FAM26F 

CCNA2 

CDK1 

HIST1H2BB 

CEP55 

MKI67 

SHCBP1 

NUSAP1 

ACOD1 

GBP1 

IDO1 

GBP2 

GBP5 

ANKRD22 

CCL8 

HLA-DRA 

GBP4 

WARS 

CXCL9 

OASL 

IRF1 

CCL2 

CMPK2 

BATF2 

IFITM3 

LGALS3BP 

SECTM1 

FAM26F 

CD74 

HLA-DQB1 

ETV7 

TRIM22 

ISG15 

GBP3 

IFIT3 

FN1 

P2RX7 

STAT1 

PTAFR 

TAP1 

APOL1 

STAMBPL1 

HLA-DQA1 

TYMP 

MX1 

IFI35 

APOL3 

SLAMF7 

CCL5 

HLA-DRB5 

TNFSF13B 

MX2 

AIM2 

TNFSF10 

CXCL10 

ACOD1 

GBP1 

CCL8 

GBP2 

SECTM1 

ANKRD22 

CXCL11 

IDO1 

RSAD2 

IFITM1 

GBP4 

BATF2 

XIRP1 

LGALS3BP 

WARS 

CMPK2 

OASL 

C1S 

FAM26F 

IFITM3 

ISG15 

AIM2 

GBP3 

CCL7 

IFIT2 

ETV7 

IFIT3 

IFI44L 

HAPLN3 

IRF1 

STAMBPL1 

TYMP 

TAGAP 

UBD 

TRIM22 

CD274 

APOL3 

TAP1 

MX1 

SIGLEC1 

STAT1 

IFIT1 

TNFSF13B 

EPSTI1 

FN1 
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SLAMF8 

CD59 

PLEKHO1 

RGS1 

TRIB1 

CD53 

HS3ST3B1 

INHBA 

CSF1 

MYB 

GBP3 

PARM1 

IL1RN 

CHST15 

LGALS3BP 

P3H2 

ANPEP 

S100A9 

AZU1 

FN1 

MYO1B 

DUSP1 

DHRS9 

SMOX 

TAP1 

SORL1 

CDKN1A 

LBH 

C5AR1 

OAS3 

CCL4L2 

CCL4L1 

PSAT1 

GLIS3 

RHOBTB3 

SRC 

CCL8 

IFITM1 

EMP1 

ARMC9 

SLC31A2 

HBEGF 

UPP1 

LOC100419170 

SLAMF7 

MTSS1 

ARID5B 

SYTL3 

IFI44L 

S100A8 

CEMIP 

CXCL9 

MET 

GEM 

CCL5 

EPSTI1 

IL32 

OAS1 

P2RX7 

PSMB8-AS1 

AIM2 

CCL7 

HLA-DQA1 

TAGAP 

SAMD9L 

IFIH1 

NT5DC2 

SIGLEC1 

GIMAP8 

SOCS3 

APOL2 

SOD2 

GBP1P1 

IFI35 

OAS2 

IFIT1 

DDX58 

MEFV 

MX2 

PDE4B 

FBXO6 

LAP3 

OAS3 

SERPINB7 

CFH 

PLSCR1 

IFI44 

TNFAIP2 

APOL6 

TOP2A 

LIMK2 

STAT2 

HELZ2 

CCL1 

PARP9 

GIMAP5 

GIMAP1-GIMAP5 

HLA-DMA 

ISG20 

STX11 

GCH1 

LOC101929319 

XAF1 

IL6 

LOC100419170 

ANKRD1 

IRF5 

IRF7 

IFIT5 

SDS 

APOL1 

PLSCR1 

TAGAP 

XIRP1 

CASP1 

ETV7 

MMP12 

GIMAP4 

TIMP3 

IFI44 

CD80 

PSMB8-AS1 

TNFAIP2 

LAMP3 

GBP7 

UBE2L6 

TNF 

WARS 

IFIT2 

SERPINB7 

UBD 

BTN3A3 

HCAR3 

NAT8L 

MX2 

IL6 

GBP6 

GIMAP8 

TRIM69 

DRAM1 

PARP9 

PTGS2 

TRAFD1 

NLRC5 

IRF7 

SAMD9 

FYB 

USP18 

FRMD4A 

APOL4 

SPN 

SECTM1 

APOL2 

STAT1 

SCO2 

LPL 

SAMD9L 

HELZ2 

CISH 

IL3RA 

CASP5 

TYMP 

PLK1 

KIF11 

GBP2 

IL3RA 

HLA-DQA1 

ASPM 

HIST1H4I 

GTSE1 

TTK 

KIF18B 

CCNB1 

BCAR3 

PROCR 

TYMS 

ANLN 

SHISA2 

KIF4A 

EXO1 

CENPF 

CKMT1B 

HIST1H3H 

CIT 

KIFC1 

ITK 

BUB1 

HIST2H3A 

HIST2H3C 

LOC541472 

LOC100419170 

KIF2C 

HIST1H1B 

HIST1H3F 

IL6 

DLGAP5 

GBP1 

MMS22L 

HIST1H3J 

CYP27B1 

HIST1H2BO 

CCL7 

HIST1H2AJ 

SMCO4 

MYBL2 

HLA-DMA 

BUB1B 

HIST1H2BM 

HIST1H2AI 

FAM111B 

ZWINT 

HMMR 

ANKRD22 

HIST1H2BE 

POLQ 

APOBEC3B 

CFH 

OAS1 

IFI44 

EPSTI1 

IFIT1 

IL10RA 

PSMB8-AS1 

APOL2 

UBD 

C1QB 

LY6E 

HLA-DRB1 

IL32 

FBXO6 

OAS2 

IFI27 

TAGAP 

SIGLEC1 

IFIH1 

SNX10 

IL15RA 

TOP2A 

IL6 

HLA-DPB1 

C2 

IRF7 

LOC100419583 

ISG20 

XAF1 

OAS3 

TRIM69 

SOCS3 

CIITA 

SDS 

SCARF1 

CENPF 

FGL2 

PLSCR1 

TRAFD1 

IFI6 

MEFV 

TNFAIP6 

PDE4B 

HELZ2 

SLC31A2 

SCO2 

NT5DC2 

DDX58 

HLA-DMA 

SAMD9L 

IFIT5 

UBE2L6 

PARP9 

USP18 

MX2 

TBX21 

APOL1 

FYB 

LY6E 

FGL2 

C1QB 

HLA-DPB1 

PSMB8-AS1 

OAS1 

SNX10 

HLA-DRB5 

HLA-DRB1 

P2RX7 

HLA-DPA1 

IFI35 

HLA-DRA 

IFI44 

PTAFR 

IFI6 

USP18 

LRRK2 

IFIH1 

PARP9 

C2 

UBE2L6 

DDX58 

IGFBP5 

OAS2 

SP110 

FBXO6 

SCO2 

IL32 

APOL2 

LAP3 

IFI27 

IL18BP 

SAMD9L 

C1QC 

PSMB9 

GNLY 

CCL5 

HERC5 

MEFV 

CD74 

ISG20 

MSR1 

LOC100419583 

APOL6 

MSRB1 

APOL4 

FABP4 

OAS3 

IRF7 
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Table A1.2. Top 100 significantly differentially expressed genes (according to  

Benjamini-Hotchberg adjusted p-value ordered smallest to largest, maximum threshold 

set to 0.05) identified through pairwise comparisons between M0 cells and other 

subsets using Deseq2 package in R (i.e. a negative binomial distribution method) 

Monocytes M1 M2a M2b M2c TPP 

IL1B 

SPP1 

IGFBP3 

FN1 

THBS1 

MMP9 

TDO2 

MMP1 

CXCL8 

TGM2 

COL22A1 

PHLDA1 

MMP8 

CA2 

CCL20 

CCL3L1 

CCL3 

ITGB7 

MYB 

AZU1 

PARM1 

MS4A6A 

HBEGF 

PINLYP 

ITGB5 

LBH 

DUSP4 

RGS1 

HS3ST3B1 

JAG1 

MET 

CCR2 

IFI30 

EMP1 

CTSG 

PTGS2 

DHRS9 

P3H2 

MMP14 

C5AR1 

SMOX 

RND3 

SLAMF8 

MTSS1 

CHST15 

ICAM1 

CNR1 

NECTIN3 

CXCL10 

GBP1 

IDO1 

GBP2 

HLA-DRA 

GBP4 

RSAD2 

ANKRD22 

WARS 

CCL8 

GBP5 

OASL 

SECTM1 

CXCL9 

IRF1 

IFI44L 

SLAMF7 

CCL2 

IFITM3 

STAT1 

CD74 

GBP3 

LGALS3BP 

CMPK2 

FN1 

HLA-DPA1 

FAM26F 

TRIM22 

TYMP 

ETV7 

TAP1 

HLA-DQB1 

HAPLN3 

HLA-DRB5 

MX1 

TNFAIP6 

BATF2 

ISG15 

HLA-DRB1 

STAMBPL1 

IL10RA 

TNFSF10 

APOL1 

SNX10 

EBI3 

APOL3 

CCL5 

EPSTI1 

ALDH1A2 

CCL5 

FGL2 

TGM2 

LOX 

IGFBP5 

FABP4 

CD209 

F13A1 

FCGR2A 

SLC5A3 

CISH 

THBS1 

IGFBP3 

ANPEP 

CD14 

PTGS2 

IL10RA 

EPAS1 

SERPINE2 

GNLY 

KIAA0040 

LIPA 

COL6A2 

SLC39A8 

COL6A1 

ANKRD1 

SYNJ2 

ARRDC4 

VIM 

NPC1 

FRMD4A 

HMOX1 

CDKN1A 

MME 

S1PR3 

NAT8L 

DCSTAMP 

ALOX5 

SLC7A2 

AQP9 

DCUN1D3 

ANTXR1 

PFKP 

MATK 

NDRG2 

FCRLA 

SLC38A6 

CTNNAL1 

IFI44L 

IFIT1 

SNAR-A3 

SNAR-A4 

SNAR-A5 

SNAR-A7 

SNAR-A11 

SNAR-A9 

SNAR-A6 

SNAR-A8 

SNAR-A10 

SNAR-A14 

IFITM1 

MX1 

RSAD2 

XAF1 

CMPK2 

NEURL3 

HERC5 

IFI6 

IFIT3 

CXCL11 

SIGLEC1 

IFI44 

IFI27 

USP18 

ISG15 

HERC6 

VCAM1 

HBA2 

SNAR-A1 

SNAR-A2 

SNORD3C 

MX2 

OAS3 

LAMP3 

OAS2 

TRIM22 

LY6E 

OASL 

NRIR 

PARP9 

DDX58 

OAS1 

BATF2 

MT2A 

SAMD9L 

HLA-DRA 

N/A CCL1 

IDO1 

IL36G 

SERPINB7 

SHROOM3 

CCL2 

EBI3 

CCL22 

SERPINE2 

HBB 

CXCL1 

MSR1 

CD300A 

DMP1 

ITGA1 

PTGS2 

PCDH17 

FGF2 

RIN2 

SOD2 

FUT7 

GFPT2 

PDE4B 

ITGB8 

CFH 

HLA-DRA 

IL6 

LOXL4 

SERPINB4 

RIPOR2 

S100A8 

RRAD 

SLC7A2 

DAZL 

TNFAIP6 

C1orf162 

CXCL5 

STAT4 

IL11 

CXCL2 

GALM 

CD36 

LOC730338 

IL1A 

GNLY 

CSF3 

CD163 

MERTK 
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DDIT4L 

CCND1 

PLAUR 

ELANE 

GLIS3 

CXCL1 

RGS16 

INHBA 

F13A1 

TRIM2 

CDKN1A 

PCDH20 

FAM129B 

LPL 

GPRIN3 

AMPD3 

ITGB3 

TSC22D1 

MARCKSL1 

NRP1 

ATP9A 

CD59 

PDGFA 

LYZ 

MAFF 

PRTN3 

UPP1 

A2M 

RGCC 

CD53 

CCL4L2 

CCL4L1 

CCL3L3 

IER3 

BCL2A1 

PTPN13 

TMEM158 

NRG1 

CYTIP 

SOX4 

CYP19A1 

ABCC3 

GEM 

TMTC1 

RAI14 

CD14 

ANPEP 

GPR84 

TRIB1 

ADAMTS1 

NT5E 

HMOX1 

IL32 

OAS1 

P2RX7 

PSMB8-AS1 

AIM2 

CCL7 

HLA-DQA1 

TAGAP 

SAMD9L 

IFIH1 

NT5DC2 

SIGLEC1 

GIMAP8 

SOCS3 

APOL2 

SOD2 

GBP1P1 

IFI35 

OAS2 

IFIT1 

DDX58 

MEFV 

MX2 

PDE4B 

FBXO6 

LAP3 

OAS3 

SERPINB7 

CFH 

PLSCR1 

IFI44 

TNFAIP2 

APOL6 

TOP2A 

LIMK2 

STAT2 

HELZ2 

CCL1 

PARP9 

GIMAP5 

GIMAP1-GIMAP5 

HLA-DMA 

ISG20 

STX11 

GCH1 

LOC101929319 

XAF1 

IL6 

LOC100419170 

ANKRD1 

IRF5 

IRF7 

HOPX 

MMRN2 

VIM-AS1 

TGFBI 

GPAT3 

ST6GAL1 

MFHAS1 

MFSD12 

RNASE1 

QSOX1 

NCF1 

CD300LB 

EMB 

MRPS6 

GAS2L3 

CTSC 

NCF1C 

ANXA1 

KITLG 

STK38L 

ATP6V1B2 

ARHGAP25 

ITGA1 

ITGAM 

ATF3 

TTC9 

FAR2 

CCL20 

CCDC85A 

CTSL 

PTAFR 

FCRLB 

IPCEF1 

PCDH20 

CA2 

KLF9 

TDRD9 

CYBB 

CXCL5 

PAPSS2 

ABCA13 

DENND5A 

TMEM123 

LRRC8B 

HS3ST1 

ATP13A3 

NCF1B 

VSIG4 

ATP2B1 

PLEK 
 

GBP5 

IFITM3 

IFIT2 

MT1E 

CCR7 

F13A1 

HBA1 

SNORD3B-1 

SNORD3B-2 

AIM2 

MT1X 

IFIT5 

ISG20 

ETV7 

CA2 

ANKRD45 

RUFY4 

HLA-DPA1 

SNORD3D 

CCL8 

SAMD9 

CCL13 

GMPR 

IRF7 

EBI3 

EPSTI1 

CXCL10 

IDO1 

ATP6V0D2 

LOC100419583 

TNFSF10 

IFIH1 

GBP1P1 

STAP1 

APOBEC3A 

RNVU1-18 

RNU1-3 

RNU1-4 

RNU1-2 

RNU1-1 

SNORD3A 

ZBP1 

SNORA54 

SNORA63 

VSIG4 

STAT1 

TRIM5 

CFH 

DHX58 

IFI35 

MCOLN2 

FCGBP 

NFKBIZ 

LOXL2 

CCR7 

BMP2 

SPP1 

SIGLEC11 

BIRC3 

CCL4 

AMIGO2 

NT5DC2 

IGFBP5 

SCARB1 

NAMPT 

IL1R2 

INHBA 

ADORA2A 

CCL4L1 

CCL4L2 

MIR3142HG 

MGP 

PIM2 

CYFIP2 

ST14 

LAMP3 

S100A9 

KITLG 

CXCL3 

ECE1 

ITK 

FLT1 

IL24 

CD22 

CRLF2 

TRAF1 

MTUS1 

NUDT6 

PXDC1 

CNR1 

SLAMF7 

KYNU 

FYB 

CCL20 

WNT5A 

G0S2 

HECW2 

CACNA1E 

NRG1 

PYROXD2 

CD274 

LOC101929319 

IL23A 

EREG 
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Table A1.3. Top 100 significantly differentially expressed genes (according to 

Benjamini-Hotchberg adjusted p-value ordered smallest to largest, maximum threshold 

set to 0.05) identified through pairwise comparisons between Monocytes cells and 

Monocytes + IC using Deseq2 package in R (i.e. a negative binomial distribution 

method) 

Genes 

STC2 DDIT4 HERPUD1 TRIB3 

GPNMB CDC20 HCK EVI2A 

ASS1 MYBPH DLGAP5 CTSB 

VEGFA SEL1L3 ZWINT CSF2RA 

MLC1 RNASE1 WARS CDCA2 

CADM1 CHAC1 ATF4 SPAG5 

CYBB C5AR1 TGFBR1 BNIP3L 

AOAH PSAT1 FGL2 FASN 

ASAH1 HLA-DRA LAMP5 RRAGD 

LDLRAD4 PAPPA2 SLPI ATF5 

TEX15 NLRP12 GRB10 GTSE1 

C1QA FRMD3 GM2A SYTL1 

SIGLEC6 SCARNA7 CCNA1 SLCO2B1 

ALOX5 P2RX4 KIF23 MAF 

RPS6KA2 DNAAF4-PG1 CENPE SULF2 

ASNS CCPG1 SLC11A1 CAPG 

MAP3K20 PRTN3 FYN KLHL24 

P2RX7 FAM84B KDM7A P2RY6 

MKI67 SLC6A9 APOL6 PADI2 

CBS KIF20A GAS5 
 

CBSL C6orf48 ADAMDEC1 
 

PHGDH SORL1 CCNB1 
 

NUPR1 SNORA103 PLK1 
 

MRC1 BUB1 ADAMTS1 
 

ALDH1L2 AJUBA WT1 
 

F13A1 DDIT3 ADA2 
 

C1QC PSAP CCNF 
 

 

 

Table A1.4. Top 300 M1 and M2a genes isolated from Beyer et al.,  (2012) dataset 

according to fold change analysis, filtered for genes higher in M0 condition. Genes are 

ordered by largest to smallest fold change 

M1 transcripts M2a transcripts 

GREM1 

EDN1 

CXCL10 

CP 

HLA-DRB1 

FCGR1B 

TSC22D1 

GBP5 

GBP5 

VSIG4 

FCGR1A 

CCL7 

GBP4 

CXCL9 

RCAN1 

ACSL1 

MSR1 

SGK1 

SOD2 

RHBDF2 

ATF3 

SERPINA1 

TNFSF10 

FCAR 

SLC11A1 

CYBB 

LYZ 

FOSB 

DNASE1L3 

ALOX15 

DHRS2 

SLC25A48 

CCL23 

CCL26 

FCER1A 

CCL14 

FABP4 

CD1E 

HRH1 

CD1E 

HOMER2 

CD1E 

CST7 

PLTP 

CPVL 

CST3 

MAT2B 

LIPA 

MCUR1 

GCNT1 

MAF 

CLEC4G 

METTL7A 

CTSC 

SCARB1 

NAIP 
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APOBEC3A 

ANKRD22 

CLU 

NCOA7 

IFIT3 

VSIG4 

GBP1 

GPC4 

CA12 

GCH1 

GCH2 

IFI27 

SLAMF7 

CLEC6A 

SERPING1 

BCL2A1 

TNFAIP6 

CA12 

WARS 

IFIT2 

CCL8 

IDO1 

SERPING1 

F3 

IL6 

INHBA 

SLAMF7 

BHLHE41 

IFIT3 

WARS 

OCSTAMP 

CLEC5A 

HAPLN3 

ADAMDEC1 

IRF1 

BATF2 

GPR84 

CLEC5A 

MSR1 

SNX10 

IFI27 

RARRES3 

STAT1 

CLEC4E 

CCL2 

S100A8 

WARS 

CYP27B1 

APOL3 

CLEC12A 

CRISPLD2 

SOD2 

WARS 

ACSL1 

FAM124A 

LRRK2 

FAM26F 

PDE4B 

MT2A 

GBP2 

AQP9 

PTGS2 

FAM107B 

FPR2 

IL1A 

ACSL1 

SLC28A3 

LILRA3 

STAT1 

KYNU 

CRABP2 

PIM1 

STX11 

SPP1 

SERPINE1 

DUSP6 

MT1H 

ITGAL 

TAP1 

C15orf48 

SOD2 

S100A9 

TNFSF14 

APOL6 

SLCO4A1 

C15orf48 

HBEGF 

ITGAL 

SOCS3 

FOS 

ITGB7 

DUSP6 

CXCL2 

VAMP5 

FLT1 

PAG1 

TREM1 

CEBPB 

ATF3 

CD82 

NLRC5 

MT1G 

ATF3 

FAM26F 

SPINK1 

OLR1 

FBP1 

MAFF 

SERPINA1 

P2RX7 

F13A1 

CD1A 

CCL23 

MS4A6A 

CCL17 

CCL13 

CCL18 

CD163L1 

CLDN1 

ADAM19 

MS4A6A 

FOXQ1 

SLC40A1 

GATM 

PALLD 

WNT5B 

STAB1 

CD1C 

RAMP1 

MMP12 

CD180 

SEPP1 

CD1E 

CLEC4A 

ADORA3 

MS4A6A 

GFRA2 

CD200R1 

MS4A6A 

PON2 

FOLR2 

FOLR2 

NDRG2 

MAOA 

FAM126A 

LGMN 

CTSC 

TPM1 

SLC7A8 

BLNK 

AP2A2 

AP2A2 

GPD1L 

PDGFC 

- 

TMEM45B 

AQP3 

CD36 

ARL4C 

TGFBI 

CD1B 

GSTT1 

AP1B1 

ST6GAL1 

SUCNR1 

CD36 

MS4A4A 

CYBRD1 

NAIP 

ZG16B 

MAF 

KCTD17 

PTGS1 

NAAA 

CAMK1D 

Hs.657673 

MS4A4A 

WDFY4 

RNASE1 

ETV3 

ADAM15 

FHOD1 

SEMA4A 

EMB 

Hs.437365 

CLIC2 

CCL22 

CLEC10A 

IRF4 

GPR183 

TREM2 

STK32C 

RNASE1 

MPEG1 

CLEC4A 

TACSTD2 

SPINT2 

CD302 

RNASE1 

OLFML2B 

ANKH 

LIPA 

RGL1 

GAS6 

FGD2 

VCL 

JUP 

EEF2K 

KCNK6 

IL1R1 

ERI1 

RASSF2 

MAT2A 

ARPIN 

TMEM71 

C10orf128 

WIPF1 

FAM198B 

ID3 

ENPP2 



245 
 

CLEC4D 

MT1F 

TM4SF19 

SERPINA1 

TYROBP 

OLR1 

FLT1 

CCRL2 

SLC1A4 

LIMK2 

CSF1 

GIMAP5 

SCARB1 

ABCA6 

AP1B1 

SLCO2B1 

PLAU 

RNASE1 

SNX5 

CLEC4A 

GLIPR1 

AUH 

AKR1B1 

PLCB2 

 

 

Table A1.5. Top 300 M1 and M2a genes isolated from Xue et al.,  (2014) dataset 

according to fold change analysis, filtered for genes higher in M0 condition. Genes are 

ordered by largest to smallest fold change 

M1 transcripts M2a transcripts 

ADAMDEC1.1 

IL1B 

MT1H 

TNFAIP6 

ADAMDEC1 

MT1G 

CXCL5 

SOD2 

CYBB 

GBP5 

MT1E 

CD14.1 

CRISPLD2 

CXCL8.1 

GBP4 

ANKRD22.1 

HLA.A.2 

GBP1.1 

BHLHE41 

GBP1 

NAMPT 

MT1F 

IL1A 

FPR2.1 

ANKRD22 

SLC1A3 

CA12 

PDE4B 

OLR1 

PCNX 

MT2A.1 

MT1A 

GPR84 

CXCL8 

RHBDF2.2 

GCH1 

STAT1 

CYP27B1 

IL7R 

IL2RA 

LAD1 

NA..8681 

PLSCR1 

DFNA5 

AQP9 

IFIT3.1 

IRF1 

CTSL.2 

ALDH1A1 

FPR2 

C15orf48 

BTG1 

MT1X 

LILRB4 

RILPL2 

LYSMD2 

PTGS2 

NFS1.1 

ADORA2A 

MS4A7.1 

MS4A7 

ALDH1A1.1 

NSUN7 

NA..17828 

FAM20A 

CLEC4D 

IFITM1 

CD82 

C1S.1 

IRAK2 

CTSL.1 

CASP4 

MXD1 

FTH1 

ZMYND15 

G0S2 

GK.1 

STX11 

ISG20 

NA..3601 

SEMA6B 

MB21D2 

CD1B 

CD1A 

HLA.DRB5 

NA..60 

CCL22 

FOXQ1 

S100A4.1 

SPP1.1 

CD1C 

FCER1A 

SPP1 

ALOX15 

MMP12.1 

CCL17 

F13A1 

MS4A6A.2 

CD1E.1 

MS4A6A 

PALLD 

HOMER2.1 

MMP12 

IL1R2.1 

TACSTD2 

CD52 

LIPA 

CCL13 

ESPNL 

NFE2 

GPD1L 

MS4A6A.1 

ACOT7.4 

FABP5.1 

GOLGA8B 

NA..17784 

NDRG2.1 

QPRT 

EGR1 

TUBA1A 

PON2.1 

CMTM8 

NA..11983 

RGS18 

CAMK1 

ITGB5.1 

MXD4 

PCED1B 

FHOD1 

RAB33A 

MAP4K1 

CEBPA 

GALNT12 

P4HA2.1 

CPVL.1 

CHCHD10 

DTNA.1 

CLEC10A.1 

MAN1C1 

CD1E 

RASGRP3 

NAPSB.1 

RASSF7 

CD200R1 

ATP5D.1 

NA..1873 

INF2 

ADAM15.1 

TPM2 

CLEC10A.2 

LDLR 

NA..13533 

PRDX2.2 

GALNT18 

NA..18303 

DHRS11 

DUOX1.1 

CHST13 

PTRF 

MAP4K1.1 

MAP1A 

TPM1.3 

TOP1MT 

TBC1D10C 
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CLEC5A 

NA..13172 

RHBDF2 

NAMPT.1 

CXCL10 

PTGES 

EXOG 

CCL5.1 

PSAT1 

STAT1.1 

PIM1 

MT1H.1 

SNX10 

CD300LF 

HBEGF 

MT1IP 

C1QTNF1.1 

ORM1 

TSC22D1.1 

CCL5 

WARS.1 

TMEM176A 

TNFAIP2 

CD48 

DDIT4 

STOM 

PHGDH 

DRAM1 

STAT4 

ACSL1 

SLC5A3.1 

CD14 

ETS2 

HIVEP1 

WARS 

PAG1.1 

HIF1A.2 

TNFAIP3 

NLRP3.1 

CXCL9 

GK 

LPAR1 

NA..289 

PILRA.2 

KYNU 

PILRA 

ARID5B 

APOL3.1 

LILRB3 

ACKR3 

NINJ1 

IRAK3.1 

TSC22D1.2 

PRKCH 

TRAF3IP2.2 

TANK 

DUSP10.2 

RIPK2 

H1F0 

LRRK2.1 

SLC11A1 

TBC1D9 

CES1 

PAG1.2 

NA..17351 

MAP1LC3A.2 

SLC7A5 

SLC3A2.2 

SGK223 

ACOT7.2 

NA..3064 

SOX8 

CTNNAL1 

RAP1GAP 

MAOA 

CXCR2P1 

ATP2B4.1 

PON2 

CST3 

FASN 

CRIP1 

HOMER2 

GATM 

FSCN1 

GAS6.1 

PARM1 

PFKP 

GSTT1 

SCD 

KIAA1671 

ID2 

ATP2B4.2 

ADAM19.1 

GAS6 

PPP1R14A 

RAB7B 

NA..2698 

TSPAN32 

HLA.DRB1 

DCANP1 

CAMK1D.4 

FGD5 

CPVL 

DHRS2 

MKL1 

VCL 

RTKN.1 

COL9A2 

EIF4G1.2 

CBR3 

DDIAS 

ANKRD37 

CCL26 

CDR2L 

INSIG1 

PDXK 

GPBAR1.1 

MYC 

NAIP.2 

APBB1IP 

APEX1 

NA..18577 

GALM 

FAM189A2 

TIFAB 

GPT 

ADCY3 

NA..18056 

NMNAT3 

RAMP1 

MFSD3 

CARD9 

REPS2.3 

CD93 

SPINT2 

PIEZO1 

 

 

Table A1.5. Top 300 M1, M2a, M2b and M2c genes isolated from Xue et al.,  (2014) 

dataset according to fold change analysis (versus M0 cells, genes high in any other 

condition filtered out). Genes are ordered by largest to smallest fold change. 

M1 M2a M2b M2c 

MTG1 

SOD2 

CYBB 

GBP5 

MT1E 

GBP4 

ANKRD22.1 

HLA.A.2 

GBP1.1 

BHLHE41 

GBP1 

NAMPT 

CD1B 

CD1A 

HLA.DRB5 

NA..60 

CCL22 

FOXQ1 

S100A4.1 

SPP1.1 

CD1C 

FCER1A 

SPP1 

ALOX15 

ACKR3 

ACKR3.1 

PTGES 

TNFAIP6 

PTGS2.1 

C1QTNF1.1 

LAD1 

PTGS2 

MUCL1 

MT1H 

CCL20 

IL1A 

SEPP1 

FOLR2 

TMIGD3 

CD163L1 

GADD45G 

FUCA1 

TP53I13 

HNRNPA1P33.1 

NA..13006 

SLC16A5 

LILRB5 

ZNF16 
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FPR2.1 

ANKRD22 

SLC1A3 

OLR1 

PCNX 

MT2A.1 

RHBDF2.2 

GCH1 

STAT1 

CYP27B1 

IL7R 

CLEC5A 

NA..13172 

RHBDF2 

NAMPT.1 

CXCL10 

PSAT1 

STAT1.1 

PIM1 

CD300LF 

ORM1 

WARS.1 

TMEM176A 

TNFAIP2 

DDIT4 

STOM 

PHGDH 

DRAM1 

SLC5A3.1 

CD14 

PLSCR1 

AQP9 

IFIT3.1 

IRF1 

FPR2 

LILRB4 

RILPL2 

LYSMD2 

MS4A7.1 

MS4A7 

ALDH1A1.1 

NSUN7 

FAM20A 

CLEC4D 

IFITM1 

CD82 

C1S.1 

CTSL.1 

CASP4 

MXD1 

ZMYND15 

GK.1 

NA..3601 

HIVEP1 

WARS 

PAG1.1 

MMP12.1 

CCL17 

F13A1 

MS4A6A.2 

CD1E.1 

MS4A6A 

PALLD 

HOMER2.1 

MMP12 

IL1R2.1 

TACSTD2 

CD52 

LIPA 

CCL13 

ESPNL 

NFE2 

GPD1L 

ACOT7.4 

FABP5.1 

GOLGA8B 

NA..17784 

NDRG2.1 

QPRT 

TUBA1A 

PON2.1 

CMTM8 

NA..11983 

SGK223 

ACOT7.2 

NA..3064 

SOX8 

CTNNAL1 

RAP1GAP 

MAOA 

CXCR2P1 

ATP2B4.1 

PON2 

CST3 

FASN 

CRIP1 

HOMER2 

GATM 

FSCN1 

GAS6.1 

PARM1 

PFKP 

GSTT1 

SCD 

KIAA1671 

ID2 

ATP2B4.2 

ADAM19.1 

GAS6 

PPP1R14A 

RAB7B 

NA..2698 

CCL5.1 

TM4SF1 

HEY1 

IL2RA 

IL6 

G0S2 

CCL5 

PDE4B 

MT1H.1 

CRISPLD2 

NFS1.1 

VEGFA 

STAT4 

MAP1LC3A.2 

IL1B 

NA..3957 

NKG7 

PTPRF 

MT1IP 

SIGLEC10 

GPR84 

IRAK2 

MAP3K4.1 

CCR7 

CLLU1OS 

CA12 

NR4A2.1 

ADAMDEC1 

MYH11.1 

ABHD17C 

ADGRE3 

ETS2 

EXOG 

UPB1 

MT1F 

MT1A 

OSM 

MT1X 

NA..418 

LRG1 

SERPINB2 

SLAMF1 

NA..289 

EREG 

THBS1 

ADAMDEC1.1 

GRAMD1A 

ADORA2A 

NA..12990 

NA..17261 

PRDM8 

FOSB 

NLRP3 

SLC2A6 

CXCR5 

ETS1 

VPS16.1 

MAF.1 

RASSF2.2 

HEBP2 

NCF4 

SORL1 

PIK3R2 

ETNK1 

NUDT1.1 

SLC18B1 

RN7SK.2 

CAPN1 

OLFML2B 

TMEM127 

KLF11.1 

NENF 

NA..17082 

BLVRB 

NA..8737 

HAMP 

PSMD8 

CCDC106 

BATF 

TPCN2 

CSF3R.1 

NA..1181 

MMP7.1 

HCFC1R1 

SLC37A4 

PMP22.2 

TLN1 

TUBA3D.1 

ARSA 

MSRB2 

LGMN.2 

GFRA2 

STAB1 

MIDN 

SPRYD3 

TSPAN4 

GPR34.1 

NA..5470 

THOC5 

ELANE 

TRPM4 

NA..8424 

C20orf27 

GABARAP 

DPP7.3 

CHST13 

ASGR1 

SIL1.2 

PRKDC 

MMP7 

ARMC10.3 

CLEC7A 
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M1

30min 1hr 2hr 6hr 12hr 24h 72hr

CXCL10 8.622383 11.74963 11.16476 11.60397 14.14067 13.2259 12.13407

CXCL9 7.076647 8.619637 8.156733 10.61023 12.5909 11.05313 10.19115

ANKRD22 8.143827 9.027877 9.357277 10.64953 11.35327 11.17247 10.55137

ANKRD22.18.320963 9.29633 9.801697 13.00787 11.13893 11.0039 10.7331

GBP5 7.654807 9.93099 10.05694 11.0389 12.41303 12.23887 13.01407

TNFAIP6 6.798347 7.935297 7.814537 6.496573 11.47007 9.54813 10.98807

TNFAIP6.1 6.40316 6.421633 6.408583 6.26342 6.59974 6.24502 6.560133

INHBA 6.295617 6.385097 6.14058 11.53827 6.414727 6.481407 6.40548

IL6 7.1202 8.240917 8.607883 11.53827 9.914383 7.651997 9.609127

M2a

30min 1hr 2hr 6hr 12hr 24hr 72hr

CCL17 6.60918 6.445967 10.65853 6.464023 6.519113 6.519113 6.519113

CCL23 8.531047 8.92514 8.995097 10.01211 8.99656 8.99656 8.99656

CCL23.1 10.55905 11.44093 10.98207 11.85957 11.07376 11.07376 11.07376

CCL26 6.439513 6.205127 7.88156 6.444327 6.408263 6.408263 6.408263

ALOX15 6.340073 6.47347 11.0876 6.340313 6.392627 6.392627 6.392627

ALOX15.1 6.358163 6.321583 6.9072 6.546873 6.368393 6.368393 6.368393

ALOX15.2 6.35188 6.393023 7.661347 6.33015 6.30277 6.30277 6.30277

CD200R1 6.439767 6.37568 8.271803 6.518773 6.670263 6.670263 6.670263

CD200R1.1 6.416697 6.342137 7.766797 6.35836 6.409573 6.409573 6.409573

HOMER2 6.48212 6.318283 8.747857 6.26168 6.36382 6.36382 6.36382

HOMER2.1 6.66511 6.49117 10.26457 6.492627 6.565813 6.565813 6.565813

MR1 7.762953 8.662087 7.809457 7.543933 7.752213 7.752213 7.752213

CXCL9 

GK 

LPAR1 

PILRA.2 

KYNU 

PILRA 

ARID5B 
 

TSPAN32 

HLA.DRB1 

DCANP1 

CAMK1D.4 

FGD5 

RGS18 

CAMK1 
 

NR4A2 

TNIP3 

TNFAIP3 

PRDM1.3 

TNF 

LAMB3 

TWIST1 
 

RHOC.1 

NAPRT 

TMUB2.2 

ARL4C 
TPD52L2.1 

PIP 
NA..16839 

 

 

Table A1.5. Gene expression by microarray of M1 (IFNγ) and M2a (IL-4) treated genes 

for different durations of cytokine exposure. Processed data taken from Xue et al.,  

(2014). 
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Appendix 2: LINUX scripts 

Script A2.1. Assessment of read quality using FASTQC 

mkdir -p /nobackup/NGS_temp/Nikki/reports/ 
mkdir -p /nobackup/NGS_temp/Nikki/temp/ 
 
##runs fastqc software on all fastq files in /raw directory, writes output to /reports directory, uses 4 cores 
 

/nobackup/NGS_Facility/workshop/fastqc/fastqc -o /nobackup/NGS_temp/Nikki/reports/ --threads 4 --dir /nobackup/NGS_temp/Nikki/temp/ 

/nobackup/NGS_temp/Nikki/*.fastq.gz 

 

Script A2.2. Removal of adaptor sequences using CUTADAPT 

module unload python/3.3.6 

module load python/2.7.6 

source /home/marc1_a/msjimc/mypython/bin/activate 

 

outDir=/nobackup/NGS_temp/Nikki/trimmed/ 

 

mkdir -p $outDir 

read1=`sed -n -e "$SGE_TASK_ID p" /nobackup/NGS_temp/Nikki/listOfFiles.txt` 

 

echo $outDir 

 

 read2=$(echo $read1 | sed 's/R1_001/R2_001/g') 

 

 fname=`basename $read1` 

 fname2=`basename $read2` 

 

 trimmed_read1=$outDir$fname 

 trimmed_read2=$outDir$fname2 

 

 cutadapt -q 10,10 -m 30 -a AGATCGGAAGAGC -A AGATCGGAAGAGC -o $trimmed_read1 -p $trimmed_read2 $read1 $read2 

 

Script A2.3. Alignment of reads to reference genome using STAR aligner 

fastaDir=/nobackup/umaan/data/reference_genomes/hg38_analysis_set 

read1=$(ls /nobackup/NGS_temp/Nikki/trimmed/*R1_001.fastq.gz | sed -n -e "$SGE_TASK_ID p") 

read2=$(echo $read1 | sed 's/R1_001/R2_001/g') 

 

fname=`basename $read1` 

 

prefix=/nobackup/NGS_temp/Nikki/aligned_stringent/$fname 

 

gtf=/nobackup/umaan/data/reference_genomes/hg38_analysis_set/hg38.gtf 

 

 

/nobackup/umaan/software/bin/STAR --runMode alignReads --genomeDir $fastaDir --runThreadN 5 --readFilesIn $read1 $read2\ 

 --outFileNamePrefix $prefix --outSAMtype BAM SortedByCoordinate \ 

 --outFilterMultimapNmax 50 \ 

 --outReadsUnmapped Fastx\ 

 --sjdbGTFfile $gtf --sjdbOverhang 150 --readFilesCommand zcat --outFilterMismatchNmax 1 --outFilterMismatchNoverLmax 0.01 
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Script A2.4. Production of count Tables using subread. # precedes descriptive 

annotation  

##install and load required libraries if not already installed 

if(!require(Rsubread)){ 

  source("http://bioconductor.org/biocLite.R") 

  biocLite("Rsubread") 

} 

library(Rsubread) 

 

dir.create("/nobackup/NGS_temp/Nikki/rsubRead", recursive = TRUE) 

setwd("/nobackup/NGS_temp/Nikki/rsubRead") 

 

#path to alignment bam files 

bams <- c("/nobackup/NGS_temp/Nikki/LPS_1C/LPS_1C_Aligned.sortedByCoord.out.bam", 
"/nobackup/NGS_temp/Nikki/LPS_ICR3/LPS_ICR3_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/LPS_ICT2/LPS_ICT2_Aligned.sortedByCoord.out.bam", 
"/nobackup/NGS_temp/Nikki/LPS/LPS_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/LPS3/LPS3_Aligned.sortedByCoord.out.bam", 
"/nobackup/NGS_temp/Nikki/LPST2/LPST2_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/M1_1C/M1_1C_Aligned.sortedByCoord.out.bam", 
"/nobackup/NGS_temp/Nikki/M1_1CT2/M1_1CT2_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/M1IC3/M1IC3_Aligned.sortedByCoord.out.bam", 
"/nobackup/NGS_temp/Nikki/M1/M1_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/M1T2/M1T2_Aligned.sortedByCoord.out.bam", 
"/nobackup/NGS_temp/Nikki/M13/M13_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/M2a_1C/M2a_1C_Aligned.sortedByCoord.out.bam", 
"/nobackup/NGS_temp/Nikki/M2a_1CT2/M2a_1CT2_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/M2aIC3/M2aIC3_Aligned.sortedByCoord.out.bam", 
"/nobackup/NGS_temp/Nikki/M2a/M2a_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/M2a3/M2a3_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/M2aT2/M2aT2_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/M2c_1C/M2c_1C_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/M2c_1CT2/M2c_1CT2_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/M2cIC3/M2cIC3_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/M2c/M2c_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/M2c3/M2c3_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/M2cT2/M2cT2_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/MO_1C/MO_1C_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/MO_1CT2/MO_1CT2_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/MO_ICR3/MO_ICR3_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/MO/MO_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/MO3/MO3_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/MOT2/MOT2_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/Mono_1C/Mono_1C_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/Mono_IC3/Mono_IC3_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/Mono_ICT2/Mono_ICT2_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/Mono/Mono_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/Mono3/Mono3_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/MonoT2/MonoT2_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/TPP_1C/TPP_1C_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/TPP_ICR3/TPP_ICR3_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/TPP_ICT2/TPP_ICT2_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/TPP/TPP_Aligned.sortedByCoord.out.bam",  

  "/nobackup/NGS_temp/Nikki/TPP3/TPP3_Aligned.sortedByCoord.out.bam", 

"/nobackup/NGS_temp/Nikki/TPPT2/TPPT2_Aligned.sortedByCoord.out.bam") 

 

#path to GTF annotation files 

gtf <- "/nobackup/NGS_Facility/workshop/star_ref/hg38.gtf" 

 

## will count reads overlapping genes 

geneCounts <-featureCounts(bams, annot.ext= gtf, isGTFAnnotationFile = TRUE,  

                           useMetaFeatures=TRUE, allowMultiOverlap=TRUE,  

                           countMultiMappingReads=TRUE, 
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                           fraction=TRUE, nthreads=4, ignoreDup=TRUE) 

 

## will count reads overlapping exons 

exonCounts <-featureCounts(bams, annot.ext= gtf, isGTFAnnotationFile = TRUE,  

                           useMetaFeatures=FALSE, allowMultiOverlap=TRUE,  

                           countMultiMappingReads=TRUE, 

                           fraction=TRUE, nthreads=4, ignoreDup=TRUE) 

 

dataGenes <- cbind(geneCounts$annotation, geneCounts$counts) 

dataExons <- cbind(exonCounts$annotation, exonCounts$counts) 

 

 

write.Table(x=as.data.frame(dataGenes), quote=FALSE, sep="\t", file="gene_counts.txt") 

 

Appendix 3: R scripts 

Script A3.1. Identification of differentially expressed genes and gene ontology and 

pathway enrichment analysis. Annotation is given in red and preceded by a “#” symbol 

source("https://bioconductor.org/biocLite.R") 

biocLite() 

biocLite("org.Hs.eg.db") 

 

## load libraries 

library(pheatmap) 

library(readr) 

library(DESeq2) 

library(gplots) 

library(clusterProfiler) 

library(org.Hs.eg.db) 

library(pathview) 

library(ReactomePA) 

library(reactome.db) 

 

##read in raw count data 

counts <- read_delim("C:\\Users\\umnar\\Documents\\RNA_seq\\gene_counts_duplicates.txt","\t", escape_double = FALSE, trim_ws = TRUE) 

## read in meta data Table describing the samples 

meta_data <- read_delim("~/RNA_seq/meta_data.txt",  "\t", escape_double = FALSE, trim_ws = TRUE) 

##convert to data type object 

meta_data <- as.data.frame(meta_data) 

##rename row names in meta data to correspond to sample names 

rownames(meta_data) <- meta_data$Sample_Name 

##convert counts Table to data frame 

counts <- as.data.frame(counts) 

##get sample names 

sample_names <- colnames(counts)[8:length(colnames(counts))] 

##make sure meta data and counts Table is in the same order by reordering 

meta_data <- meta_data[sample_names, ] 

##rename rows to have refseq gene identifiers 

rownames(counts) <- counts$Refseq 

##subset just the raw counts 

matrix <- as.matrix(counts[, 8:length(colnames(counts))]) 

storage.mode(matrix) <- "integer" 
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### convert lane from number to factor 

meta_data$Lane <- as.factor(meta_data$Lane) 

 

## subset data into indexes e.g. differences between M1 and M2a without ic 

indexes <- which(  (meta_data$Subtype == "M0" | meta_data$Subtype == "M2a")  & meta_data$IC == "IC_no" & meta_data$Lane != 5) 

dds <- DESeqDataSetFromMatrix(countData = matrix[, indexes ],colData  = meta_data[indexes, ],design = ~ Lane  + Subtype) 

 

##perform actual DE analysis 

dds <- DESeq(dds ) 

 

##extract results + multiple testing correction 

res <- results(dds, pAdjustMethod = "fdr") 

 

## extract log2 normalised counts into a Table 

log_norm_counts <- rlog(dds, blind = TRUE) 

##actually extract from object to readable Table 

norm_counts_Table<- assay(log_norm_counts) 

## select significantly changed genes 

sig_hits_all <- res[which( res$padj < 0.05 & abs(res$log2FoldChange) > 1 ), ] 

 

## which are DE transcripts at 5% FDR and > 2 fold change 

sig_hits<- res[which(res$padj < 0.05 & abs(res$log2FoldChange) > 1), ] 

##same, but only up 

sig_hits_up<- res[which(res$padj < 0.05 & res$log2FoldChange > 1), ] 

##same, but only down 

sig_hits_down<- res[which(res$padj < 0.05 & res$log2FoldChange < -1), ] 

##select top 100 upregulated 

top100_up <- sig_hits_up[order(sig_hits_up$log2FoldChange, decreasing =TRUE), ][1:100, ] 

##select top 100 downregulated 

top100_down <- sig_hits_down[order(sig_hits_down$log2FoldChange, decreasing =FALSE), ][1:100, ] 

## quick visual of top 100 up/down 

pheatmap(norm_counts_Table[rownames(top100_up), ], scale="row", display_numbers = TRUE) 

##green colour palette 

pheatmap(norm_counts_Table[rownames(top100_down), ], scale="row", display_numbers = TRUE, color = redgreen(50)) 

##check available key types for gene name to identifier mapping 

keytypes(org.Hs.eg.db) 

##fetch REFSEQ to Gene Symbol mappings from org.hs database 

anno<- bitr(rownames(norm_counts_Table), fromType = "REFSEQ", 

            toType = c("SYMBOL"), 

            OrgDb = org.Hs.eg.db) 

##make sure norm counts Table is a data frame type 

norm_counts_Table <- as.data.frame(norm_counts_Table) 

##add a key refseq column 

norm_counts_Table$Refseq <- rownames(norm_counts_Table) 

## merged data frame with gene name column at the end 

merged <- merge(x=norm_counts_Table, y =anno, by.x = "Refseq", by.y="REFSEQ", all.x=TRUE, all.y = FALSE ) 

 

## Make unique row names - incremented gene names with .1 .2, etc 

rownames(merged) <- make.names(merged$SYMBOL, unique = TRUE) 

##rename for clarity 

norm_counts_with_names <- merged 

# plot top 100 downregulated genes with gene names 

top100_down_gene_names <-norm_counts_with_names[ which(norm_counts_with_names$Refseq %in% rownames(top100_down)), ][, 

3:dim(norm_counts_with_names)[2]-1 ] 

top100_down_gene_names <- norm_counts_with_names[which(norm_counts_with_names$Refseq %in% rownames(sig_hits_all)), ] 

## save this as a file 
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png("top100_down_genes_with_names.png", height = 1000, units = "px") 

pheatmap(top100_down_gene_names[1:100, 2:5], scale="row", display_numbers = FALSE, color = redgreen(50)) 

dev.off() 

 

##to save signifcant hits together with normalised values in one big Table, first merge the two Tables as before 

sig_hits$Refseq <- rownames(sig_hits) 

counts_with_changes <- merge(x=as.data.frame(sig_hits), y =norm_counts_with_names, by.x = "Refseq", by.y="Refseq", all.x=TRUE, all.y = FALSE ) 

##write Table to file - can open in excel, but maybe not by default 

write.Table(counts_with_changes, file="sig_hits.txt", sep="\t", col.names = TRUE, row.names = FALSE, quote=FALSE) 

 

## what are different functions that are over-represented in these DE genes: 

## perform erichment for subset of genes for GO domains, biological process, cellular component and molecular function: 

DEGs <- unique(counts_with_changes$SYMBOL) 

universe <- unique(norm_counts_with_names$SYMBOL) 

BP <- enrichGO(keytype = "SYMBOL", 

               gene          = DEGs, 

               universe      = universe, 

               OrgDb         = org.Hs.eg.db, 

               ont           = "BP", 

               pAdjustMethod = "BH", ## multiple testing correction type, BH == Benjamini-Hotchberg 

               pvalueCutoff  = 0.01, ## FDR cutoff  - can change this and p-value together to get more or fewer hits, as required 

               qvalueCutoff  = 0.05) ## p-value cutoff 

#examine the top hits 

head(BP, 50) 

#plot top 50 hits as a dot plot 

dotplot(BP, 50) 

#summarise into a Table 

write.Table(BP, file="enriched_BP_test.txt", sep="\t", col.names = TRUE, row.names = FALSE, quote=FALSE) 

 

CC <- enrichGO(keytype = "SYMBOL", 

               gene          = DEGs, 

               universe      = universe, 

               OrgDb         = org.Hs.eg.db, 

               ont           = "CC", 

               pAdjustMethod = "BH", ## multiple testing correction type, BH == Benjamini-Hotchberg 

               pvalueCutoff  = 0.01, ## FDR cutoff  - can change this and p-value together to get more or fewer hits, as required 

               qvalueCutoff  = 0.05) ## p-value cutoff 

#examine the top hits 

head(CC, 50) 

#plot top 50 hits as a dot plot 

dotplot(CC, 50) 

#summarise into a Table 

write.Table(CC, file="enriched_CC_test.txt", sep="\t", col.names = TRUE, row.names = FALSE, quote=FALSE) 

 

MF <- enrichGO(keytype = "SYMBOL", 

               gene          = DEGs, 

               universe      = universe, 

               OrgDb         = org.Hs.eg.db, 

               ont           = "MF", 

               pAdjustMethod = "BH", ## multiple testing correction type, BH == Benjamini-Hotchberg 

               pvalueCutoff  = 0.01, ## FDR cutoff  - can change this and p-value together to get more or fewer hits, as required 

               qvalueCutoff  = 0.05) ## p-value cutoff 

#examine the top hits 

head(MF, 50) 

#plot top 50 hits as a dot plot 

dotplot(MF, 50) 
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#summarise into a Table 

write.Table(MF, file="enriched_MF_test.txt", sep="\t", col.names = TRUE, row.names = FALSE, quote=FALSE) 

### for KEGG pathways, convert gene symbols to ENTREZ 

entrez_test<- bitr(DEGs, fromType = "SYMBOL", 

                toType = c("ENTREZID"), 

                OrgDb = org.Hs.eg.db) 

universe <- bitr(universe, fromType = "SYMBOL", 

                 toType = c("ENTREZID"), 

                 OrgDb = org.Hs.eg.db) 

 

kegg <- enrichKEGG(use_internal_data = FALSE, ## will fetch latest KEGG annotations 

                   ##instead of using internal database which may be outdated - set to TRUE if having issues with connection, etc 

                   qvalueCutoff = 0.05, 

                   pAdjustMethod = "BH", 

                   keyType = "ncbi-geneid", 

                   gene = unique(entrez_test$ENTREZID), 

                   organism     = 'hsa', ## human 

                   pvalueCutoff = 0.01, 

                   universe= unique(universe$ENTREZID)) 

 

head(kegg, 10) 

#plot top 50 hits as a dot plot 

dotplot(kegg, 50) 

#summarise into a Table 

write.Table(kegg, file="enriched_KEGG_test.txt", sep="\t", col.names = TRUE, row.names = FALSE, quote=FALSE) 

       

##for reactome pathways 

reactome <- enrichPathway(gene = unique(entrez_test$ENTREZID), 

                          organism = "human", 

                          readable = TRUE, 

                          pvalueCutoff = 0.05, 

                          pAdjustMethod = "BH", 

                          qvalueCutoff = 0.05, 

                          universe= unique(universe$ENTREZID)) 

head(reactome, 60)  

#plot top 50 hits as a dot plot 

dotplot(reactome, 50) 

#summarise into a Table 

write.Table(reactome, file="enriched_reactome_test.txt", sep="\t", col.names = TRUE, row.names = FALSE, quote=FALSE) 

 

Script A3.2. Drawing scatter plots for potential new marker genes. Annotation is given 

in red and preceded by a “#” symbol 

## install and load packages 

biocLite("reshape2") 

library(reshape2) 

 

## change data to long format and change orientation 

melted <-t( top100_up_gene_names[1:30, 2:(dim(top100_up_gene_names)[2]-1) ]) 

## combine Table with meta data 

melted <- cbind(melted, meta_data[rownames(melted), ]) 

## note variable lanes 

melted <-melt(melted, id.vars = c ("Sample_Name" ,"Lane",  "Type"  ,  "IC" ,"Subtype")) 

## plot as scatter plot 
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ggplot(melted, aes(as.numeric(value), variable, colour=factor(m2c), shape=factor(Lane))) + geom_point( size= 3, alpha = 0.7) + theme_light(base_size = 16)+ 

labs(y="Genes", x = "Log2 count", shape="Sequencer Lane ", colour = " Subtype", title ="Top 25 up-regulated genes: TPP") 

 

Script A3.3. Looking at expression of potential new marker genes in publicly available 

RNA-seq count data. Annotation is given in red and preceded by a “#” symbol 

# read in counts Table  

counts_old <- read_delim("C:\\Users\\umnar\\Documents\\RNA_seq\\RNA_seq_r_project\\old gene counts\\old_data_gene_counts.txt","\t", escape_double = 

FALSE, trim_ws = TRUE) 

## read in meta data Table describing the samples 

meta_data_old <- data.frame(names = c("M1_2", "M1_3", "M2_1", "M2_2", "M2_3", "monocyte_1", "monocyte_2" ,"monocyte_3","THP1_1","THP1_2" 
,"THP1_3"), 

                        cell_type = c("M1", "M1", "M2a", "M2a", "M2a", "monocyte", "monocyte" ,"monocyte","THP1","THP1" ,"THP1")) 

##rename  columns in count Table to be more sensible 

##rename row names in meta data to correspond to sample names 

rownames(meta_data_old) <- meta_data_old$names 

##convert counts Table to data frame 

counts_old <- as.data.frame(counts_old) 

##get sample names 

sample_names <- colnames(counts_old)[8:length(colnames(counts_old))] 

##make sure meta data and counts Table is in the same order by reordering 

meta_data_old <- meta_data_old[sample_names, ] 

##rename rows to have refseq gene identifiers 

rownames(counts_old) <- counts_old$Refseq 

##subset just the raw counts 

matrix_old <- as.matrix(counts_old[, 8:length(colnames(counts_old))]) 

storage.mode(matrix_old) <- "integer" 

ddss_old <- DESeqDataSetFromMatrix(countData = matrix_old,colData  = meta_data_old, design = ~ cell_type) 

log_norm_counts_for_pca_old <- rlog(ddss_old, blind = FALSE) 

marker_genes_old <- data.frame(Type=c("M1", "M1", "M1","M1","M1","M1","M1", "M1"),  

                            symbol=c( "SERPING1", "FAM26F", "CD274","ETV7", "XIRP1", "ACOD1", "GBP5", "LIMP")) 

marker_genes_old <- data.frame(Type=c("M2a", "M2a", "M2a","M2a","M2a","M2a","M2a"),  

  symbol=c( "CD209", "SPINT2","CHN2","ALOX15","LOX","CHN2","ST8SIA6")) 

anno<- bitr(marker_genes_old$symbol, fromType = "SYMBOL", 

            toType = c("REFSEQ"), 

            OrgDb = org.Hs.eg.db) 

markers <- merge(marker_genes_old, anno, by.x="symbol", by.y="SYMBOL", all.x=TRUE, all.y=TRUE) 

rownames(markers) <- make.names(markers$symbol, unique= TRUE) 

markers_exp <- log_norm_counts_for_pca_old[which(rownames(log_norm_counts_for_pca_old) %in% markers$REFSEQ), ] 

markers_exp <- assay(markers_exp) 

markers_exp <- as.data.frame(markers_exp) 

markers_exp$refseq <- rownames(markers_exp) 

markers_exp <- merge(markers_exp, markers, by.x="refseq", by.y="REFSEQ") 

# check if duplicates first, if yes run this line 

markers_exp <- markers_exp[-which(duplicated(markers_exp)), ] 

#markers_exp <- markers_exp[-which(duplicated(markers_exp)), which(meta_data$Lane != 5)] 

rownames(markers_exp) <- paste(markers_exp$refseq, markers_exp$symbol, sep=" ") 

mat <- markers_exp[ , 2:(dim(markers_exp)[2] -2)] 

subset_something <- mat[, (which(meta_data_old$cell_type == "M1"|meta_data_old$cell_type == "M2"|meta_data_old$cell_type == "monocyte"))] 

zeroPlus <- subset_something[which(rowSums(subset_something[ ,]) != 0), ] 

pheatmap(zeroPlus, display_numbers = TRUE, color= redgreen(50),scale = "row", main = "New M2a markers in MDMs \n") 

write.Table(mat, file="newmarkersolddataset.txt",sep="\t", col.names = TRUE, row.names = TRUE, quote=FALSE) 
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Script A3.4. Looking at expression of potential new marker genes in publicly available 

microarray data. Annotation is given in red and preceded by a “#” symbol 

#check bioconductor website for correct array probe annotation database:  

# https://www.bioconductor.org/packages/3.3/data/annotation/ 

# in this case, it's 'illuminaHumanv3.db' 

# download and load 

source("https://bioconductor.org/biocLite.R") 

biocLite() 

biocLite("illuminaHumanv3.db") 

# other packages, if not installed already: 

biocLite(c("GenomicFeatures", "AnnotationDbi")) 

biocLite("limma") 

biocLite("affy") 

biocLite("biomaRt") 

biocLite("annotate") 

package("gplots") 

library(limma)# for differential expression analysis 

library(affy) # for core expression objects 

library(annotate) # probeset annotations - overlaps with biomaRt, can use either 

library(gplots) # for plotting functions 

library(biomaRt) # for gene and GO annotations 

library(illuminaHumanv3.db) # probe annotation db 

library(AnnotationDbi) 

library(GenomicFeatures) 

# set working directory to location of downloaded unpacked files 

getwd() 

setwd("C:/Users/umnar/Documents/temp/E-GEOD-46903.processed.1 (4)") 

# read in data - e.g samples1-3 are from condition 1 and samples 4-6 are from condition 2 

sample1 <- read.delim("GSM1140744_sample_Table.txt") 

sample2 <- read.delim("GSM1140743_sample_Table.txt") 

sample3 <- read.delim("GSM1140742_sample_Table.txt") 

sample4 <- read.delim("GSM1140499_sample_Table.txt") 

sample5 <- read.delim("GSM1140495_sample_Table.txt") 

sample6 <- read.delim("GSM1140443_sample_Table.txt") 

sample7 <- read.delim("GSM1140602_sample_Table.txt") 

sample8 <- read.delim("GSM1140620_sample_Table.txt") 

sample9 <- read.delim("GSM1140622_sample_Table.txt") 

sample10 <- read.delim("GSM1140644_sample_Table.txt") 

sample11 <- read.delim("GSM1140739_sample_Table.txt") 

sample12 <- read.delim("GSM1140740_sample_Table.txt") 

sample13 <- read.delim("GSM1140602_sample_Table.txt") 

sample14 <- read.delim("GSM1140620_sample_Table.txt") 

sample15 <- read.delim("GSM1140622_sample_Table.txt") 

sample16 <- read.delim("GSM1140486_sample_Table.txt") 

sample17 <- read.delim("GSM1140525_sample_Table.txt") 

sample18 <- read.delim("GSM1140530_sample_Table.txt") 

sample19 <- read.delim("GSM1140445_sample_Table.txt") 

sample20 <- read.delim("GSM1140496_sample_Table.txt") 

sample21 <- read.delim("GSM1140500_sample_Table.txt") 

# create a single data frame with just expression column 

data <- cbind(sample1[, 2], sample2[,2], sample3[,2] 

              , sample4[, 2], sample5[, 2], sample6[, 2], sample7[, 2], sample8[,2],  

              sample9[,2], sample10[, 2], sample11[, 2], sample12[, 2], sample13[, 2],  

              sample14[, 2], sample15[, 2], sample16[, 2], sample17[,2], sample18[,2],  

              sample19[, 2], sample20[, 2], sample21[, 2]) 
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# asign samples as column names and probe ids as row names 

names <- paste("Sample", 1:21, sep="") 

colnames(data) <- names 

rownames(data) <- sample1[, 1] 

#convert data frame to matrix 

data <- as.matrix(data) 

# create meta data matrix 

metaData1 <- cbind("hsapiens", c("mon", "mon", "mon", "M0", "M0", "M0", "M1", "M1",  

                                 "M1", "M2a", "M2a", "M2a", "M2b", "M2b", "M2b", "M2c", "M2c", "M2c",  

                                 "TPP", "TPP", "TPP")) 

colnames(metaData1) <-c("Species", "Treatment") 

rownames(metaData1) <- paste("Sample", 1:21, sep="") 

metaData <- new("AnnotatedDataFrame", data=as.data.frame(metaData1)) 

#create expression set object for limma input 

expressionSet <- ExpressionSet(data, metaData) 

###to extract and reformat all data #loop over all treatments, getting the mean expression: 

#create empty data frame 

results <- data.frame(matrix(ncol = 0, nrow = dim(expressionSet)[1])) 

for (treatment in levels(expressionSet$Treatment)){  

  sub <-expressionSet[, expressionSet$Treatment == treatment] 

  e <- exprs(sub) 

  results <- cbind(results, rowMeans(e)) 

} 

#annotate columns and rows 

rownames(results) <-make.names(getSYMBOL(rownames(expressionSet), "illuminaHumanv3.db"), unique=TRUE) 

colnames(results) <-levels(expressionSet$Treatment) 

markers <- data.frame(Type=c("mon", "mon", "mon", "mon"),  

                                       symbol=c("MS4A6A", "CLEC12A", "MYB","CCR2”)) 

an_object <- results[which(rownames(results) %in% markers$symbol), ] 

an_object <- an_object[which(rowSums(an_object) != 0), ] 

pheatmap(an_object, display_numbers = FALSE, scale="row",  

         #annotation_col = meta_data[, c(2, 4,5)],  

         color=redgreen(50), show_rownames = TRUE, main = "M2c markers in MDM dataset\n") 

write.Table(results, file="NewMarkersXueData.txt", sep="\t", na="NA", row.names=TRUE, col.names=TRUE) 

 

 

Script A3.5. PCA plots and analysis of PCA loadings. Annotation is given in red and 

preceded by a “#” symbol 

##PCA stuff: 

#### create a dds object for all data to be included in the plot 

ddss <- DESeqDataSetFromMatrix(countData = matrix, colData  = meta_data, design = ~ IC + Lane + Subtype) 

log_norm_counts_for_pca <- rlog(ddss, blind = FALSE) 

log_norm_counts_for_pca_matrix <-assay(log_norm_counts_for_pca) 

#### if need to subset, create an index 

indexes_for_pca <- which(meta_data$Lane != 5) 

## PCA plotting 

pca_dat <- plotPCA(log_norm_counts_for_pca[ ,indexes_for_pca ], n = 1000,  intgroup=c("Subtype", "IC"), returnData=TRUE) 

ggplot(pca_dat, aes(PC1, PC2, colour=Subtype, label=name)) + geom_point(size=3)  + geom_text_repel(aes(label=name)) 

library(pcaExplorer) 

## preprocessing of data, need a dds and log-transformed 

indexes <- which(meta_data$Lane == 5) 

dds <- DESeqDataSetFromMatrix(countData = matrix [ ,indexes],  

                               colData = meta_data[indexes, ], 



258 
 

                               #design = ~ Lane + Subtype + IC) 

                              design = ~ Subtype + IC) 

dds <- DESeq(dds) 

rld <- rlog(dds) 

## point of entry for these functions, after DESEQ2 

## pcaExplorer's plot pca function, generic 

pcaplot(rld, intgroup = c("Lane", "Subtype"), ntop = 1000, pcX = 1, pcY = 2, title = "PC1 vs PC2") 

##proportion of variance accounted by each PC: 

gene_to_refseq<- bitr(rownames(assay(rld)), fromType = "REFSEQ", 

                   toType = c("SYMBOL"), 

                   OrgDb = org.Hs.eg.db) 

 

annotated <- as.data.frame(assay(rld)) 

annotated$REFSEQ <- rownames(annotated) 

annotated <- merge(annotated, gene_to_refseq, by.x="REFSEQ", by.y="REFSEQ", all.x=TRUE, all.y=TRUE) 

annotated$Name <- paste( annotated$REFSEQ , annotated$SYMBOL,  sep=" \n ") 

rownames(annotated) <- annotated$Name 

annotated <- annotated[, 2:(dim(annotated)[2]-2)] 

pcaobj <- prcomp(t(annotated)) 

pcascree(pcaobj, type="pev", title="Proportion of explained proportion of variance") 

## plot correlation between a principal component and your covariates: 

cor <- correlatePCs(pcaobj,colData(dds), pcs =c(1, 2, 3) ) 

plotPCcorrs(cor, pc=1) 

## get top 100 loading genes for a PC 

hi_loadings(pcaobj, topN = 10, whichpc = 1) 

loading_Table <- hi_loadings(pcaobj, topN = 100, exprTable=annotated, whichpc = 2) 

## plot heatmap of genes with highest loadings 

pheatmap(loading_Table) 

 

##Refseq genes, can be used as input for GO enrichment, etc/further analysis 

##fetch REFSEQ to Gene Symbol mappings from org.hs database 

anno<- bitr(rownames(loading_Table), fromType = "REFSEQ", 

            toType = c("SYMBOL"), 

            OrgDb = org.Hs.eg.db) 

 

BP <- enrichGO(keytype = "SYMBOL", 

               gene          = unique(anno$SYMBOL), 

               universe      = universe, 

               OrgDb         = org.Hs.eg.db, 

               ont           = "BP", 

               pAdjustMethod = "BH", ## multiple testing correction type, BH == Benjamini-Hotchberg 

               pvalueCutoff  = 0.01, ## FDR cutoff  - can change this and p-value together to get more or fewer hits, as required 

               qvalueCutoff  = 0.05) ## p-value cutoff 

dotplot(BP, showCategory=50) 

write.Table(BP, fileName("BP enriched for L5 IC only")) 

##make sure norm counts Table is a data frame type 

loading_Table <- as.data.frame(loading_Table) 

##add a key refseq column 

loading_Table$Refseq <- rownames(loading_Table) 

## merged data frame with gene name column at the end 

merged_loading_Table <- merge(x=loading_Table, y =anno, by.x = "Refseq", by.y="REFSEQ", all.x=TRUE, all.y = FALSE ) 

rownames(merged_loading_Table) <- make.names(merged_loading_Table$SYMBOL, unique = TRUE) 

hi_loadings(merged_loading_Table, topN = 10, whichpc = 1) 
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Script A3.6. Examination of gene signatures and specific markers. Annotation is given 

in red and preceded by a “#” symbol 

### for gene signatures 

## read in Table of interest  

SLE_genes <- read.delim("SLE_genes.txt") 

SLE_genes <- as.data.frame(SLE_genes) 

## change gene names to refseq identifiers 

anno<- bitr(SLE_genes$symbol, fromType = "SYMBOL", 

            toType = c("REFSEQ"), 

            OrgDb = org.Hs.eg.db) 

markers <- merge(SLE_genes, anno, by.x="symbol", by.y="SYMBOL", all.x=TRUE, all.y=TRUE) 

# isolate genes of interest from counts Table 

markers_exp <- log_norm_counts_for_pca_matrix[which(rownames(log_norm_counts_for_pca_matrix) %in% markers$REFSEQ), ] 

markers_exp <- as.data.frame(markers_exp) 

## add key refseq column and change rownames to gene names 

markers_exp$refseq <- rownames(markers_exp) 

merged_SLE <- merge(markers_exp, markers, by.x="refseq", by.y="REFSEQ") 

rownames(markers_exp) <- paste(markers_exp$refseq, markers_exp$symbol, sep=" ") 

## subset columns wanted and plot as heatmap, removing zero values which do not cluster 

merged_SLE <- markers_exp[ , 1:(dim(markers_exp)[2] -1)] 

merged_SLE2 <- merged_SLE[which(rowSums(merged_SLE) > 0),which(meta_data$Subtype == "Mono" & meta_data$Lane !=5)] 

colnames(merged_SLE2) <- c("Mono_IC_1", "Mono_IC_3", "Mono_1", "Mono_3") 

pheatmap(merged_SLE2, display_numbers = FALSE, color= redgreen(50), scale = "row", main = "RA genes", show_rownames = FALSE) 

 

## marker stuff: 

## genes 

marker_genes2 <- data.frame(Type=c("M1", "M1", "M1", "M1","M1", "M1","M1", "M2a", "M2a","M2a", "M2a","M2a", "M2a","M2a"),  

                           symbol=c( "GBP5", "ANKRD22", "IL6","TNFAIP6","CXCL9","CXCL10", "IRF1", "TGM2", "HOMER2","ALOX15","CCL17","CD200R1", 

"CCL23","CCL26")) 

# subset data as required 

indexes2 <- which(meta_data$Lane != 5) 

# create dds object and log2 normalised counts Table 

ddsss <- DESeqDataSetFromMatrix(countData = matrix[ ,indexes2], colData = meta_data[, ], design = ~ IC + Subtype) 

log_norm_counts_for_markers <- rlog(ddsss, blind = FALSE) 

log_norm_counts_for_markers_matrix <-assay(log_norm_counts_for_markers) 

## change gene names to refseq identifiers to isolates genes opf interest from normalised counts Table 

anno<- bitr(marker_genes2$symbol, fromType = "SYMBOL", 

            toType = c("REFSEQ"), 

            OrgDb = org.Hs.eg.db) 

markers <- merge(marker_genes2, anno, by.x="symbol", by.y="SYMBOL", all.x=TRUE, all.y=TRUE) 

markers_exp <- log_norm_counts_for_pca_matrix[which(rownames(log_norm_counts_for_pca_matrix) %in% markers$REFSEQ), ] 

markers_exp <- as.data.frame(markers_exp) 

## change row names to gene names 

markers_exp$refseq <- rownames(markers_exp) 

markers_exp <- merge(markers_exp, markers, by.x="refseq", by.y="REFSEQ") 

rownames(markers_exp) <- paste(markers_exp$refseq, markers_exp$symbol, sep=" ") 

##subset data as required 

mat <- markers_exp[ , 2:(dim(markers_exp)[2] -2)] 

## draw heatmap for genes  

pheatmap(mat[ , which( meta_data$Lane != 5 & meta_data$IC == "IC_no" )], display_numbers = TRUE, color= redgreen(50),scale = "row", main = "Novel 
markers") 

## save data into Table 

write.Table(mat[ ,(which(mt$IC == "IC_no" & mt$Subtype != LPS & mt$Subtype != TPP) )], file="additional markers basic conditions.txt",sep="\t", col.names = 

TRUE, row.names = FALSE, quote=FALSE) 
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Script A3.7. Intersecting and comparing data with publicly available data; Venn 

diagram and MA plots. Annotation is given in red and preceded by a “#” symbol 

counts_old <- read_delim("C:\\Users\\umnar\\Documents\\RNA_seq\\RNA_seq_r_project\\old gene counts\\old_data_gene_counts.txt","\t", escape_double = 
FALSE, trim_ws = TRUE) 

## read in meta data Table describing the samples 

meta_data_old <- data.frame(names = c("M1_2", "M1_3", "M2_1", "M2_2", "M2_3", "monocyte_1", "monocyte_2" ,"monocyte_3","THP1_1","THP1_2" 

,"THP1_3"), 

                        cell_type = c("M1", "M1", "M2a", "M2a", "M2a", "monocyte", "monocyte" ,"monocyte","THP1","THP1" ,"THP1")) 

##rename row names in meta data to correspond to sample names 

rownames(meta_data_old) <- meta_data_old$names 

##convert counts Table to data frame 

counts_old <- as.data.frame(counts_old) 

##get sample names 

sample_names <- colnames(counts_old)[8:length(colnames(counts_old))] 

##make sure meta data and counts Table is in the same order by reordering 

meta_data_old <- meta_data_old[sample_names, ] 

##rename rows to have refseq gene identifiers 

rownames(counts_old) <- counts_old$Refseq 

##subset just the raw counts 

matrix_old <- as.matrix(counts_old[, 8:length(colnames(counts_old))]) 

storage.mode(matrix_old) <- "integer" 

##genes with identifiers in both lists 

common_refseq <- rownames(matrix)[which(rownames(matrix) %in% rownames(matrix_old))] 

matrix_both <- cbind(matrix[common_refseq, ], matrix_old[common_refseq, ]) 

##merge metadata Tables 

lane <- c(as.character(meta_data$Lane), rep("unknown1", 5), rep("unknown2", 3), rep("unknown3", 3)) 

ic <- c(as.character(meta_data$IC), rep("IC_no", 11)) 

name <-  c( as.character(meta_data$Sample_Name), as.character(meta_data_old$names)) 

subtype <- c(as.character(meta_data$Subtype), as.character(meta_data_old$cell_type)) 

meta_data_both <- data.frame( name=name, 

                              Subtype = subtype , 

                              Lane= lane,  

                              IC = ic) 

## new stuff: 

indexes <- which(meta_data_both$IC == "IC_no" & (meta_data_both$Subtype == "M1" | meta_data_both$Subtype == "M2a") 

                 & (meta_data_both$Lane %in% c( "4", "6"))) 

dds_new <- DESeqDataSetFromMatrix(countData = matrix_both[, indexes],   

                                 colData = meta_data_both[indexes, ], design = ~ Subtype) 

dds_new <- DESeq(dds_new ) 

## old stuff: 

indexes <- which(meta_data_both$IC == "IC_no" & (meta_data_both$Subtype == "M1" | meta_data_both$Subtype == "M2") 

                 & (meta_data_both$Lane == "unknown1")) 

dds_old <- DESeqDataSetFromMatrix(countData = matrix_both[, indexes],   

                                 colData = meta_data_both[indexes, ], design = ~ Subtype) 

dds_old <- DESeq(dds_old ) 

log_norm_counts_old <- rlog(dds_old, blind = TRUE) 

norm_counts_Table_old<- assay(log_norm_counts_old) 

norm_counts_not_log <- counts(dds_old, norm=TRUE ) 

 

## draw MA plots 

setwd("MA_plots") 

for ( i in 1: dim(norm_counts_not_log)[2]){ 

  for ( j in 1: dim(norm_counts_not_log)[2]){ 

   

    ma_plot_df <- data.frame(mean =  rowMeans( norm_counts_not_log[, c(i, j )]),  
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                             FC = log((norm_counts_not_log[, i ] + 1) / (norm_counts_not_log[, j ] + 1)), 

                             sig = rep(FALSE, dim(norm_counts_not_log)[1] ) ) 

   png(paste(colnames(norm_counts_not_log)[j], colnames(norm_counts_not_log)[i], ".png", sep="_")) 

    geneplotter::plotMA(ma_plot_df) 

    dev.off() 

   } 

} 

setwd("../") 

plotGOgraph(BP) 

enrichMap(BP) 

res_old <- results(dds_old,  pAdjustMethod = "BH") 

res_new <- results(dds_new,  pAdjustMethod = "BH") 

r1 <- rownames(res_old[which(res_old$padj < 0.01), ]) 

r2 <- rownames(res_new[which(res_new$padj < 0.01), ]) 

a <- calculate.overlap(list(r1, r2)) 

draw.pairwise.venn(length(a$a1), length(a$a2), length(a$a3), category = c("MDM", "THP-1"),  fill = c("salmon", "light blue") ) 

overlap <- a$a3 

not_overlap_old <- a$a1[-which(a$a1 %in% a$a3)] 

not_overlap_new <- a$a2[-which(a$a2 %in% a$a3)] 

anno<- bitr(not_overlap_new, fromType = "REFSEQ", 

            toType = c("SYMBOL"), 

            OrgDb = org.Hs.eg.db) 

DEGs <- unique(anno$SYMBOL) 

universe <- unique(norm_counts_with_names$SYMBOL) 

BP <- enrichGO(keytype = "SYMBOL", 

               gene          = DEGs, 

               universe      = universe, 

               OrgDb         = org.Hs.eg.db, 

               ont           = "BP", 

               pAdjustMethod = "BH", ## multiple testing correction type, BH == Benjamini-Hotchberg 

               pvalueCutoff  = 0.05, ## FDR cutoff  - can change this and p-value together to get more or fewer hits, as required 

               qvalueCutoff  = 0.05) ## p-value cutoff 

#examine the top hits 

head(BP, 50) 

dotplot(BP, showCategory=50) 

write.Table(BP, file="OLD_VS_NEW_DATASET_M1VM2DEGS.txt", sep="\t", col.names = TRUE, row.names = TRUE, quote=FALSE) 

overlap <- a$a3 

not_overlap_old <- a$a1[-which(a$a1 %in% a$a3)] 

not_overlap_new <- a$a2[-which(a$a2 %in% a$a3)] 

 

 

Script A3.7. Transcription factor analysis. Annotation is given in red and preceded by a 

“#” symbol 

 

###for TF Table 

library(readr) 

### read in encode Table 

TF_Table <- read_delim("~/RNA_seq/RNA_seq_r_project/TF_Table.txt",  

                            "\t", escape_double = FALSE, col_names = FALSE,  

                            trim_ws = TRUE) 

### reformat to gather all non- name columns 

TF_tab2 <- tidyr::gather(as.data.frame(TF_Table), key="TF", value="Target",  2:dim(TF_Table)[2] , na.rm = TRUE, convert = FALSE)[, c(1, 3)] 

##rename columns 
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colnames(TF_tab2) <- c("TF", "Target") 

###add a trimmed  

TF_tab2$TF_trim <- gsub(TF_tab2$TF, pattern = "_.+", replacement="") 

##subset RNA-seq data with names for significant hits in dataset of interest (e.g. genes significantly upregulated in monocytes+IC) 

mono_up <-norm_counts_with_names[ which(norm_counts_with_names$Refseq %in% rownames(sig_hits_up)), ] 

##subset relevant columns 

mono_up <- mono_up[ ,3:dim(mono_up) [2]-1 ] 

mono_up <-mdat2 

all_regs <- TF_tab2[, 2:3] 

some_list_of_interest <-rownames(mono_up)##[1:1000] 

all_genes <- rownames(named_counts) 

regulators_of_my_list <- unique(all_regs$TF_trim[which(all_regs$Target %in% some_list_of_interest)]) 

temp <- list() 

## Loop over all regulators of gene list to feed data into contingency Table 

for ( i in 1:length(regulators_of_my_list)){ 

   regulator <- regulators_of_my_list[i] 

    regs <- all_regs[which(all_regs$TF_trim== regulator),] 

    in_universe <- length(unique(regs$Target)) 

    in_list <- length(which(unique(regs$Target) %in% some_list_of_interest)) 

    total_universe <- length(unique(all_regs$Target)) 

    total_list <- length(unique(some_list_of_interest[which(some_list_of_interest %in% all_regs$Target)])) 

    matrix(c(1,4,7,4), nrow = 2) 

    ratio_list <- in_list / total_list 

  ratio_universe <- in_universe / total_universe 

    contingency <- matrix(c(in_list, total_list, in_universe, total_universe), nrow = 2) 

    fisher <-fisher.test(contingency, alternative = "greater") ##less or greater 

    temp[[i]] <- c(regulator, ratio_list, ratio_universe, in_list,  total_list, in_universe, total_universe, fisher$p.value) 

  } 

## summarise results into data frame 

results <- matrix(unlist(temp), nrow=length(temp), byrow=TRUE) 

colnames(results) <- c("TF", "ratio_list", "ratio_universe", "in_list",  "total_list", "in_universe", "total_universe", "pvalue") 

results <- as.data.frame(results) 

##include p-value column 

results$pvalue <- as.numeric(as.character(results$pvalue)) 

##include adjusted p-value column 

results$FDR <-p.adjust(results$pvalue, method="BH") 

results <- results[ order(results$FDR), ] 

results_p <- results[which(results$FDR < 0.05), ] 

## plot as a bar chart 

ggplot(results_p [1:10,], aes(TF, as.numeric(as.character(ratio_list)), fill=as.numeric(as.character(pvalue)) )) + geom_bar(stat="identity") + labs(fill="P-value", 
y="Ratio in Gene set") + coord_flip() + theme_light()  

## summarise into a Table and save 

write.Table(results, file = ("m2cicTF.txt"), sep="\t", na="NA", row.names=TRUE, col.names=TRUE) 

   

Script A3.8. Drawing heatmaps from FPKM files generated from public data 

 

#gene Table  with refseq identifiers read in 

FPKM <- read.delim("FPKM.txt") 

FPKM <- as.data.frame(FPKM) 

 

##fetch REFSEQ to Gene Symbol mappings from org.hs database 

anno<- bitr(FPKM$Refseq, fromType = "REFSEQ", 

            toType = c("SYMBOL"), 

            OrgDb = org.Hs.eg.db) 
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## merged data frame with gene name column at the end 

merged <- merge(x=FPKM, y =anno, by.x = "Refseq", by.y="REFSEQ", all.x=TRUE, all.y = FALSE ) 

 

## two types of unique row names - either incremented gene names with .1 .2, etc, or a combo between refseq and gene name 

rownames(merged) <- make.names(merged$SYMBOL, unique = TRUE) 

 

# creates a own color palette from red to white 

my_palette <- colorRampPalette(c("red", "yellow", "white"))(n = 299) 

#draw heatmap 

heatmap.2(merged, margins = c(4, 10),col=my_pallet, trace= "none", dendrogram="row", Colv="NA", cexRow=0.8, cexCol=0.8 ) 

Script A3.9. Drawing heatmaps from count files generated from public data 

##read in data 

xue_data <- read.delim("xuetop300.txt") 

## assign gene names as row names 

rownames(xue_data) <- make.names(xue_data$gene, unique = TRUE) 

# creates a own color palette from red to white 

my_palette <- colorRampPalette(c("red", "yellow", "white"))(n = 299) 

# draw heatmap 

heatmap.2(xue_data, margins = c(4, 10),col=my_pallet, trace= "none", dendrogram="row", Colv="NA", cexRow=0.8, cexCol=0.8 ) 

 

Appendix 4: Additional Figures 

 

 

 

 

 

 

Figure A4.1 This gel was run as part of an experiment by a senior post-doctoral 

research scientist in the group; fractions of heat aggregated gamma globulin were 

combined with fractions of EMBREL (as a 150 KDa control) and precipitated with 

different concentrations of polyethylene glycol (given as percentages on the top of the 

image), precipitated at 4ºC overnight, centrifuged at 6000xg before samples from both 

pellet and supernatant were run on a 6% polyacrylamide gel which was stained with 

coomassie brilliant blue R-250 rapid stain. 
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Figure A4.2 Repeat 2 of flow cytometry experiment found in Chapter 5 (Figure 5.3.1). 

Histograms demonstrate staining antibody (blue) versus isotype control (pink). 

 

 

 

 

 

 

 

 

 

Figure A4.3 Repeat 3 of flow cytometry experiment found in Chapter 5 (Figure 5.3.1). 

Histograms demonstrate staining antibody (blue) versus isotype control (pink). 
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Figure A4.4 Heatmap showing consistently high expression of pan macrophage 

marker CD68 in all conditions tested, in comparison to M1 marker which is selectively 

high in one condition only. 

 

 

 

Method Advantages Disadvantages 

Transcriptional markers High throughput methods 
available, gross comparisons with 
primary cells can be made, 
pathway and functional 
differences can be inferred 

Not ideal for demonstrating 
macrophage functional differences, 
transcriptional features do not 
always translate to protein 

Protein markers More reliable for inferring function 
than transcript markers, can be 
used for cellular staining, 
cytometry and cell lysate analysis 

Still not functional assay, not high 
throughput, some overlap with M2 
subtypes 

Cytokine and chemokine 
profile 

Demonstrate some functional 
differences, can be measured 
quantitatively in numerous ways 
(ELISA, bead cytometry), can be 
measured from media 

Not high throughput, some overlap 
with M2 subtypes, secreted so may 
not be detected by some methods 
(flow cytometry for instance), some 
assays have limited detection 
ranges (ELISA) 

Arginine metabolism Clear functional differences have 
been recorded between subtypes 
in mouse macrophages 

Disagreement as to whether this 
translates to human cells 

Glucose metabolism Clear functional differences have 
been recorded between subtypes 
in mouse macrophages 

Not reported in human cells 

Phagocytosis  Well defined macrophage function Occurs in M1 (bacterial removal) 
and M2 cells (efferocytosis); 
differences between activity in 
different subtypes is not clearly 
defined 

Bacterial killing Well defined macrophage function Exposure to bacteria can alter cell 
phenotype 

 

Table A4.1: advantages and disadvantages of frequently used macrophage 

functional assays  

 

(Xue at al., 2014); (Ambarus et al., 2012); (Thomas and Mattila, 2014); (Rouzaut et 

al., 1999); (Babu et al., 2009); (Munder et al., 2005); (O'Neill et al., 2016); (Bartosh 

and Ylostalo, 2014); (Jetten et al., 2014). 
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Cell line Advantages Disadvantages References 

THP-1 Frequently used in 
publications and numerous 
protocols available 
 
Show similar morphology, 
flow cytometry features 
and protein expression to 
primary cells 
 
Immature (blood derived) 
cells; confers plasticity 
 
Can be differentiated into 
macrophages and 
polarised into inflammatory 
and anti-inflammatory 
states 
 
Demonstrate similar gene 
expression profiles 

Evidence of limited 
polarisation into the M2 
state 
 
Mutations in PTEN and 
CDKs may limit some 
research 
 
Some evidence that CD14 
is under-expressed in these 
cells 
 
Numerous protocols 
available do not corroborate 
 
PMA required for 
differentiation; may induce 
non-physiological gene 
expression 
 
 

(Tsuchiya et al., 
1980); (Chanput et 
al., 2013); (Qin, 
2012); (Chanput et 
al., 2012); 
(Chanput et al., 
2014); (Chanput et 
al., 2015) 

U937 Frequently used in the 
literature 
 
Can be induced into 
macrophage state 
 
Some similarities (e.g. cell 
surface marker 
expression) to primary 
cells 

Less similar to primary cells 
than other cell lines 
according to flow cytometry, 
gene expression and 
protein expression 
 
More mature cells (derived 
from tissue) therefore less 
plastic 
 

(Qin, 
2012); (Chanput et 
al., 
2013); (Chanput et 
al., 2012). 

Mono-Mac 6 Gene/protein expression 
highly similar to primary 
cells 
 
Can phagocytose 
opsonised bacteria 
 
Isolated from blood so 
more plastic than tissue 
derived cell lines 

Limited number of studies 
performed on these cells 
(fewer than other cell lines) 
 
Little evidence of 
macrophage differentiation 
or polarisation 

(Friedland et al., 

1993); (Ziegler‐
Heitbroc et al., 
1988); (Shattock et 
al., 1994).  

HL-60 Immature cells susceptible 
to stimuli 

Cells are promyelocytic and 
need stimuli to achieve 
even a monocyte phenotype 
 
Resemble banded 
neutrophils more closely 
than  
 
 

(Collins, 
1987); (Rovera et al., 
1979) 

KG-1 Immature cells that can be 
developed into 
macrophages 

very high p-Syk/Syk so not 
appropriate for use in 
studies looking at IC 
signaling  
 
also generate granulocyte 
like cells 

(Hahn et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A4.2: summary of commonly used monocytic cell lines with 

advantages and disadvantages of their use 
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Replicate Gene LPS_1 M1_1 M2a_1 M2c_1 M0_1 Mono_1 TPP_1

replicate 1 FCGR2A_part_of_exon3_2 0.0412 0.0448 0.0499 0.0454 0.0463 0.0442 0.0455

replicate 3 FCGR2A_part_of_exon3_3 0.0415 0.0423 0.0495 0.0426 0.0417 0.0426 0.0425

replicate 1 FCGR2B_part_of_exon3_2 0.0264 0.0268 0.0272 0.0267 0.0276 0.0263 0.0275

replicate 3 FCGR2B_part_of_exon3_3 0.0273 0.0264 0.0277 0.0269 0.0266 0.0271 0.0269

replicate 1 FCGR2C_part_of_exon3_2 0.0129 0.0130 0.0129 0.0132 0.0132 0.0129 0.0138

replicate 3 FCGR2C_part_of_exon3_3 0.0129 0.0129 0.0129 0.0130 0.0129 0.0130 0.0129

replicate 1 FCGR3B_last_exon_2 0.0022 0.0023 0.0023 0.0023 0.0022 0.0022 0.0023

replicate 3 FCGR3B_last_exon_3 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0023

replicate 1 FCGR3A_last_exon_2 0.0049 0.0052 0.0051 0.0054 0.0054 0.0038 0.0060

replicate 3 FCGR3A_last_exon_3 0.0045 0.0046 0.0048 0.0051 0.0049 0.0042 0.0045

Anova: Single FactorFCGR2A

SUMMARY ANOVA

Groups Count Sum Average Variance Source of Variation SS df MS F P-value F crit

Column 1 2 0.082671 0.041335 6.83E-08 Between Groups 7.89E-05 6 1.31E-05 3.937137 0.04789 3.865969

Column 2 2 0.087073 0.043537 3.26E-06 Within Groups 2.34E-05 7 3.34E-06

Column 3 2 0.099365 0.049682 7.38E-08

Column 4 2 0.087973 0.043986 3.76E-06 Total 0.000102 13

Column 5 2 0.087983 0.043991 1.02E-05

Column 6 2 0.086786 0.043393 1.25E-06

Column 7 2 0.087985 0.043992 4.72E-06

Anova: Single FactorFCGR2B

SUMMARY ANOVA

Groups Count Sum Average Variance Source of Variation SS df MS F P-value F crit

Column 1 2 0.053704 0.026852 4.02E-07 Between Groups 1.1E-06 6 1.84E-07 0.791073 0.604478 3.865969

Column 2 2 0.053225 0.026612 7.1E-08 Within Groups 1.63E-06 7 2.32E-07

Column 3 2 0.054887 0.027444 1.21E-07

Column 4 2 0.053601 0.0268 5.84E-09 Total 2.73E-06 13

Column 5 2 0.054233 0.027116 5.32E-07

Column 6 2 0.05339 0.026695 3.14E-07

Column 7 2 0.05443 0.027215 1.81E-07

Anova: Single FactorFCGR2C

SUMMARY ANOVA

Groups Count Sum Average Variance Source of Variation SS df MS F P-value F crit

Column 1 2 0.025844 0.012922 2.06E-14 Between Groups 2.67E-07 6 4.45E-08 0.73054 0.641035 3.865969

Column 2 2 0.025953 0.012977 5.89E-09 Within Groups 4.26E-07 7 6.09E-08

Column 3 2 0.025844 0.012922 6.79E-15

Column 4 2 0.026223 0.013112 2E-08 Total 6.93E-07 13

Column 5 2 0.026136 0.013068 4.26E-08

Column 6 2 0.025944 0.012972 5.01E-09

Column 7 2 0.026684 0.013342 3.53E-07

Anova: Single FactorFCGR3A

SUMMARY ANOVA

Groups Count Sum Average Variance Source of Variation SS df MS F P-value F crit

Column 1 2 0.009479 0.004739 7.75E-08 Between Groups 2.25E-06 6 3.75E-07 1.617559 0.271063 3.865969

Column 2 2 0.009708 0.004854 1.77E-07 Within Groups 1.62E-06 7 2.32E-07

Column 3 2 0.009927 0.004964 5.98E-08

Column 4 2 0.010452 0.005226 4.35E-08 Total 3.88E-06 13

Column 5 2 0.010362 0.005181 1.37E-07

Column 6 2 0.008033 0.004016 7.14E-08

Column 7 2 0.010518 0.005259 1.06E-06

Anova: Single FactorFCGR3B

SUMMARY ANOVA

Groups Count Sum Average Variance Source of Variation SS df MS F P-value F crit

Column 1 2 0.00444 0.00222 1.12E-09 Between Groups 6.45E-09 6 1.08E-09 1.436536 0.321162 3.865969

Column 2 2 0.00448 0.00224 5.52E-10 Within Groups 5.24E-09 7 7.49E-10

Column 3 2 0.004468 0.002234 5.53E-10

Column 4 2 0.004448 0.002224 1.5E-09 Total 1.17E-08 13

Column 5 2 0.004441 0.00222 4.53E-10

Column 6 2 0.004405 0.002203 6.92E-11

Column 7 2 0.004552 0.002276 9.9E-10

Appendix 5: FcγR expression experiments 

Table A5.1. Counts for specific regions of different FCGR genes, normalised by 

dividing raw count values by length. 

 

 

 

 

 

 

Table A5.2. ANOVA output for analysis of FCGR gene expression, using the 

normalised counts in Table A5.1 with input for each gene being categorised by column.  
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Table A5.3. Raw median fluorescent intensity values for flow cytometry staining for various FcγR antibodies on different cell types, an 

isotype control values for the same cells (top panel), and values normalised by dividing fluorescence by isotype control for each 

sample. Data used to perform ANOVA tests in Chapter 5 Section 5.3.1.  

Table A5.4. Average median fluorescent intensity (normalised by dividing by isotype control) for different proteins on various cell 

types. Data used to plot bar chart in Chapter 5: Figure 5.3.1, B.  
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Gene name log2FoldChange Adjusted p-value (BH) pvalue

TLR4 -1.995609366 2.77E-16 2.42E-18

PRKDC 1.087345491 9.99E-07 4.12E-08

STAT2 -1.205477352 2.96E-06 1.37E-07

HERC5 1.900882663 1.08E-04 7.57E-06

JUN -1.161394409 1.87E-04 1.40E-05

IFIT2 1.372495037 0.00106968 1.05E-04

IKBKE 0.970812323 0.001203558 1.21E-04

MX1 0.846372597 0.061201733 0.014747584

ISG15 0.650788027 0.11261446 0.032244172

RSAD2 -0.681480147 0.160884477 0.052558232

RNASEL -0.386134536 0.264786767 0.105424715

IFIT1 0.548253266 0.381693032 0.18096896

RELA 0.36443476 0.398585623 0.192992581

IRF3 0.286064621 0.408311074 0.199816826

TANK -0.399825996 0.411367099 0.202026028

TMEM173 -0.284364143 0.431939506 0.217295419

MAVS -0.240018721 0.504852857 0.277266425

TICAM2 -0.3798007 0.522584139 0.2928093

TRIM21 -0.207366016 0.598023201 0.366909179

TBK1 0.222830389 0.605456601 0.374772769

CREBBP 0.131819792 0.79689822 0.621848935

DDX58 0.064612613 0.921429556 0.832488136

IRF7 -0.062785972 0.922981992 0.835579433

ISG20 0.165752604 0.942831786 0.873065596

IFIH1 -0.043853327 0.946743906 0.879859102

EP300 -0.016385621 0.977356089 0.946607173

TRAF3 0.011680712 0.981981327 0.959998111

TICAM1 -0.010894755 0.99197221 0.980182191

IFNB1 -0.005423675 NA NA

TLR3 1.843224221 NA NA

ZBP1 0 NA NA

Appendix 6: STRING network data Tables 

 

Table A6.1 Table containing raw data corresponding to STRING network plot for IRF3 

in Chapter 5 (Figure 5.3.14, A) ordered by adjusted p-value. Please note that proteins 

with a positive fold change are highlighted in salmon as these were the changes 

focussed on in this report. 
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Gene name log2FoldChange Adjusted p-value (BH) pvalue

JUN -1.161394409 1.87E-04 1.40E-05

DHFR 0.891682678 2.51E-04 1.94E-05

HDAC1 0.762919706 0.002099221 2.32E-04

HDAC2 0.589096953 0.031957592 0.006390984

MYC -0.549959533 0.045786901 0.010227087

ETS1 -0.644393895 0.050664922 0.011599877

MMP14 -0.477463959 0.084866868 0.022305619

NFYA 0.485281639 0.16685083 0.055419948

CDKN1A 0.417387698 0.206794738 0.074417604

ARNT -0.331742001 0.316731151 0.136878515

POU2F1 0.327318895 0.319179561 0.138548669

HIF1A -0.315149304 0.337459412 0.150182529

TBP 0.370482851 0.377891911 0.178174279

RELA 0.36443476 0.398585623 0.192992581

MAPK1 -0.283282197 0.403725116 0.196570609

SP1 -0.261571364 0.413505427 0.203494935

MAPK14 0.226119257 0.506180117 0.278373451

SREBF2 0.213140571 0.541200614 0.309799081

SMAD3 -0.209494359 0.606817263 0.376237815

NFYB -0.229765542 0.615797587 0.385604253

SMAD4 -0.144286716 0.723434768 0.520534168

MAPK8 -0.13136004 0.786123853 0.606622338

SMAD2 -0.079420753 0.852755254 0.706061783

SP3 -0.076656973 0.860570055 0.71871762

TP53 -0.183178613 0.878954098 0.747549671

GTF2B 0.074794192 0.885708003 0.761864042

RB1 0.059791247 0.895251611 0.781139496

FOS 0.063200623 0.908582579 0.808169597

EP300 -0.016385621 0.977356089 0.946607173

ESR1 1.826571121 NA NA

CDKN2B NA NA NA

Table A6.2 Table containing raw data corresponding to STRING network plot for SP1 

in Chapter 5 (Figure 5.3.14, B) ordered by adjusted p-value. Please note that proteins 

with a positive fold change are highlighted in salmon as these were the changes 

focussed on in this report. 
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Appendix 7: Summary of marker specificity in various 

experiments 

Table A7.1 Table of all genes highlighted as potential markers in this thesis. columns 

refer to specificity of markers in different experiments and analyses in different 

Chapters. A “✓” indicates specificity for a marker in its given condition(s) in the 

experiment/analysis, “X” is given for when the marker was not specific for the given 

condition and “-“ for when the marker was not tested in the experiment/analysis. 

Markers that were specific in every analysis are given in red and markers specific in 

most analyses and untested in others were given in purple.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure A7.1: summary of macrophage polarisation states tested and markers 

identified 
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