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Abstract 

This thesis has investigated and demonstrated the potential for developing 

prediction models using Machine Learning(ML) algorithms on registry 

datasets. Many current Acute Coronary Syndrome (ACS) prediction models, 

were developed using traditional statistical methods. In an era of big-data 

evolution, ML offers a spectrum of algorithms that aid in generating 

prediction models for ACS.  This study has explored 29 algorithms with 

which to build ACS prediction models for Asian (Malaysia) and Western 

(Leeds, UK) registries, covering patients withal types of ACS and those with 

the new standard ACS treatments. The internal and external validation of the 

models present satisfactory calibration measures, indicating the ability of ML 

algorithms to produce competitive models in comparison to traditional 

statistical methods. 

 To achieve simpler, yet competitive predictive performance, 

comprehensive ML feature selection methods have been evaluated, and 

Correlation-Based-Feature-Selection(CFS) emerged as the best method.  

This thesis also has evaluated the potential of predictors of existing ACS 

models to be adapted to other registries‘ data.  Despite different regions and 

different population characteristics, most of the existing predictors remains 

constant with the outcome.  Thus, the findings suggest that, with some 

adjustments customized  to the registry, the existing predictors can be 

adopted to develop a simple model and expedite the model development 

process.  Furthermore, the strength of the predictors of each clinical 

categories has also been evaluated.  The results suggest that, to construct a 

satisfactory ACS model, combination of predictors from various clinical 

events is essential.  At the very least, to achieve a satisfactory model, 

combination of demographic, medical history, and clinical presentation 

information categories is required.  However, predictors from medication 

history category has found to be worthless in terms of contributing to a better 

prediction model. 
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 Next, this study has investigated classifier degradation in ML model 

development.  The findings suggest that the overlapping instances in 

minority class of imbalanced dataset and missing values are the main 

problems of classifier degradation. 

 New methods i.e. the overlapped-undersampling method to handle 

imbalanced dataset and the mean-clustering-imputation method  to handle 

missing values have been introduced.  The overlapped-undersampling failed 

to boost the model performance of the datasets.  Nevertheless, the results 

suggest that more training samples on imbalanced datasets are sufficient to 

produce satisfactory models. The mean-clustering-imputation method 

produced better models compare to the simple imputation method and 

imputation method embedded in an algorithm. However, removing instances 

with missing data resulted in superior models. 
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Chapter 1:  Introduction 

This chapter presents the research background, objectives, and thesis 

overview. It begins with an overview of Acute Coronary Syndrome (ACS), 

the burden of ACS worldwide, and the use of risk prediction models for ACS.  

Next, the chapter discusses the research problem and motivation for the 

study. It ends with an elaboration on the thesis structure. 

1.1. Acute Coronary Syndrome (ACS) 

 Acute Coronary Syndrome (ACS) refers to a heart condition that is 

caused by the blockage of the blood supply to the heart, and is commonly 

due to the development of plaque inside the arteries (atherosclerosis).  

Blockages in the arteries reduce the oxygen supply to the heart, resulting in 

the sudden onset of angina (unstable angina (UA)) to severe chest pain, and 

subsequently, damaging the heart (myocardial infarction (MI) or acute MI).  

This life-threatening condition can become more severe if no early invasive 

management strategy is performed to restore blood flow to the heart.   .    

 Chest pain or pressure in the chest is a vital symptom of ACS.   Other 

symptoms include sweating; dizziness or fainting; difficulty in breathing; pain 

or feeling pressure or a strange feeling in the back, neck, jaw, or either arm; 

and fast or irregular heartbeat.  In addition, several existing risk factors also 

increase the possibility of ACS among patients.  Moreover, the risk factors of 

ACS are mainly the risk factors of cardiovascular disease (CVD), which 

include both non-modifiable risk factors, such as older age, being male, 

family history of CVD, ethnicity, and modifiable risk factors.  Some well-

known modifiable risk factors include excessive total cholesterol, obesity, 

diabetics, hypertension and stress, smoking status, and  a low-quality 

lifestyle(2009, Philip I. Aaronson and Ward., 2007., Swales and P. De Bono, 

1993).   

 The diagnosis of ACS in a patient begins with a thorough assessment 

of visible symptoms, an electrocardiogram (ECG), and measurements  of 

cardiac biomarker levels.  In addition, a patient‘s past medical history and 
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existing risk factors are essential in helping to both diagnose and manage 

ACS. 

 The varied categories of ACS, i.e., ST-elevation myocardial infarction 

(STEMI), non-STEMI(NSTEMI), and UA, distinguish the treatment and  

intensity of therapeutic intervention.  In fact, patients diagnosed with STEMI 

need immediate intervention to restore blood supply to the heart, as such a 

severe condition could lead to death.  After the condition has been 

stabilized, the next step is to prevent recurrence. Percutaneous coronary 

intervention (PCI) and fibrinolytic therapy are the standard treatments for 

patients with STEMI(Smith et al., 2015), while other coronary reperfusion 

may include coronary artery bypass graft (CABG).  On the other hand, 

patients with NSTEMI and UA are treated to stabilize and limit the 

progression of ischemic events.  Moreover, early invasive treatment is 

necessary for patients with a higher risk of NSTEMI/UA.  

1.2. Global Burden of Acute Coronary Syndrome (ACS) 

 ACS is a subgroup of coronary heart disease (CHD).  CHD is a 

leading cause of death worldwide, with 7.3 million deaths recorded in 

2001(Gaziano et al., 2010).  Nonetheless, the mortality rate for CHD has 

witnessed a decreasing trend in North America and many Western countries 

due to better prevention, diagnosis, and treatment, as well as changes made 

towards a healthier lifestyle.   Despite the decrease in mortality rate, it is still 

a major cause of morbidity, and a single cause of death in many nations.  

One out of five deaths in the United States of America(USA) were caused by 

CHD in 2005(Lloyd-Jones et al., 2009).  In addition, CHD also contributes to 

premature death in most European countries.  For instance, 20% of males 

and 18% of females below the age of 75 died of CHD in 2002 (Allender et 

al., 2008).  On top of that, there is evidence that depicts a growing burden of 

CHD in developing nations, mainly due to rapid economic development and 

social transformation (Gaziano et al., 2010).   

 Furthermore, the high rates of morbidity and mortality have become a 

major economic burden factor. More practice guidelines are required to 

provide treatment, care, and support options for managing overall CVD 
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treatment. Apart from the increasing cost in health care, such as treatment, 

medication, and prevention, countries with a high CHD rate also have to 

bear the loss of economically productive resources due to  the inability to 

work and premature deaths.  For example, In 1995, Germany spent USD 26 

billion for the direct cost of hospital care and rehabilitation, whereas it lost 

USD 48 billion due to lost productivity caused by short- and long-term 

disabilities, as well as short-term deaths attributed to CHD(Mackay et al., 

2004).   Meanwhile, Abegunde et al.(2007)discovered that the burden of and 

economic loss due to stroke, heart disease, and diabetes among 23 low- 

and middle-income countries was estimated to be USD 84 billion dollars 

between 2006 and 2015 if no effort was taken to reduce the risk of overall 

CVD. 

 Such concerns have led to constant efforts to improve all spectra of 

ACS treatment, care, and prevention.  The drastic improvement of CHD and 

overall CVD death rates in some regions has been due to prevention and 

treatment (Roth et al., 2015).  Better CHD management, early identification 

of high-risk patients, changes in lifestyle, and public awareness are some 

cost-effective strategies for managing the burden.   

1.3. Prediction Models and Uses of Risk Prediction Models in 

ACS 

 Risk prediction models, clinical prediction models, prediction and 

prognostic models, prediction rules, and risk scores refer to a range of 

terminologies used to describe a model used to predict an outcome. In this 

particular thesis, the notion ‗prediction model‘ is utilized.  A prediction model 

employs a set of predictors in predicting the presence (diagnosis) or the 

occurrence of a certain outcome (Toll et al., 2008).  For reference purposes, 

risk factors generally describe the factors that are causally related to getting 

the disease.  Meanwhile, predictors in a prediction model refer to the 

attributes found in a prediction model that may causally relate to the 

outcome, but not necessarily.  For example, cigarette smoking is associated 

with an increased risk of cancer (good predictor), but has never been 

actually proven to cause cancer. 
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 Prediction models are generally constructed by using standard 

statistical regression approaches, i.e., multiple linear, multiple logistic, or 

Cox regression. The regression approach, in general, has been employed in 

clinical prediction for some time because it generates simple correlations 

between the predictors and outcome. In particular, logistic regression (LG) 

has become a familiar approach that can be easily implemented in most 

statistical packages, such as Statistical Packages for Social Science 

(SPSS), STATA, and R. Linear regression is normally used when dealing 

with a continuous outcome, whereas LG is commonly used to predict a 

binary outcome. On the other hand, Cox or proportional hazard regression is 

normally applied when the effect of the variables is evaluated for a certain 

period of time. Hence, both linear and LG approaches are usually used for 

diagnostic or short-term prognostic model, e.g., predicting in-hospital 

mortality, while Cox regression is widely used for predicting long-term 

events, e.g. predicting a 10-year mortality rate. 

 Techniques based on Machine Learning(ML) have also been used in 

constructing prediction models.  Unlike statistical modelling, ML algorithms 

are used to learn the datasets for prediction purposes. Data Mining (DM) 

using ML (DM-ML) provides a spectrum of learning algorithms comprised of 

non-linear methods, linear methods, and ensemble methods (a combination 

of multiple learning techniques), which may better describe the relationships 

between the identified predictors in building prediction models. In 

comparison to the classical statistical method, although the ML approach 

does not appear to be a popular choice for clinical prediction modelling, the 

potential of these ML algorithms has been established in developing 

prediction models. Two of the most popular ML techniques that have been 

explored, particularly in ACS prediction models, are the artificial neural 

networks (ANN) (Baxt et al., 2002;Harrison and Kennedy, 2005;Green et al., 

2006b;McCullough et al., 2007;Bassan et al., 2004) and decision-tree- 

based algorithms (Karaolis et al., 2010, Lavesson et al., 2009, Fonarow et 

al., 2005). 

 Randomized control trials (RCTs) and registries are where the data is 

to be found when constructing prediction models.  The well-known ACS 

prediction models are generally derived from randomized controlled data 
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(Antman et al., 2000, Boersma et al., 2000, Lee et al., 1995, Morrow et al., 

2001). In RCT study design, more accurate and complete samples are 

collected within a defined prospective, method, and duration. Nonetheless, 

these samples may not represent the real population or scenario, thus 

affecting the generalisability of the model derived from clinical trials. 

Moreover, bias may exist, as the samples for RCT are selected based on 

certain defined inclusion and exclusion criteria. In real hospitals or 

healthcare centres, the practice methods and duration are varied and may 

not strictly adhere to a defined standard procedure. 

 The advent of  the electronic health record (EHR) within healthcare 

organizations has shifted the methodology of deriving, building, and 

validating prediction models(Cooney et al., 2009;Granger et al., 

2003;Hippisley-Cox et al., 2008). At present, the EHR-based registries are 

an essential asset in building prediction models. An EHR is a collection of an 

individual patient‘s records which comprehensively records both clinical 

information and administrative information in digital format.  Example of 

information collected by EHRs are medical histories, progress notes, 

medications/prescriptions, laboratory data and radiology reports, billings, 

and appointments.  On the other hand, a registry is a collection of 

information collected with defined purpose(s) and populations to observe a 

specified health outcome(Gliklich et al., 2014). Many registries are derived 

from EHRs, hence imposing the challenges of working with EHRs data.  The 

main disadvantage of working with EHR-based registry data is the data 

quality issue. More missing data, noise, and dirty data can be expected 

when working with this registry data. Thus, a longer time is needed to 

prepare the data for modelling. However, with proper strategies in data 

cleaning and transformation, this registry data can be advantageous in 

constructing a reliable prediction model. 

 The ACS prediction model aids clinicians in identifying patients at high 

risk for mortality following ACS events.  Patients with high risk can properly 

be advised with adequate and on-time treatment, whilst patients with low risk 

can be assigned less aggressive treatment.  In addition,  a reliable prediction 

model and categorization of summary measures could aid in the realization 
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of stratified medicine to provide individualized treatment and interventions 

according to individual needs. 

 A prediction model can also suggest better resource management, 

result in cost-savings, and minimise unnecessary treatment complications  

(Lloyd-Jones, 2010, SIGN, 2007).   Moreover, utilizing prediction model to 

identify patients with high risk has become an established practice for a cost-

effective and primary prevention strategy (Bassand et al., 2007, SIGN, 2007 

(Updated 2013), Gaziano et al., 2010). Furthermore, prediction models that 

estimate long-term outcomes are useful in managing the long-term care of 

high-risk patients.   

 Prediction models also provide prognostic information that is valuable 

not only to clinicians, but also for patients and their families.  Understanding 

the risk level, as well as the methods of prevention and care, can help in 

managing ACS events and preventing reoccurrence.   

 Furthermore, identification of patients with varying risk levels also 

helps in clinical trial analysis and epidemiological studies for it offers 

information for the examination of treatment effects by the varied risk levels 

of patients.  On top of that, it is also helpful in regulating baseline risk 

factors, as well as screening for both inclusion and exclusion in clinical trials. 

 Hence, a prediction model provides a significant contribution to vital 

prevention strategies, in addition to formulating effective treatment in clinical 

practise and resource management.  Thus, practical, reliable, and accurate 

prediction models are indeed helpful for medical decision-making in 

effectively implementing prevention strategies.  Moreover, a reliable 

prediction model exploits suitable techniques and strategies to build a 

model, which can be quantified by using valid performance measures and 

derived from an appropriate number of samples and risk factors (Cooney et 

al., 2009, Lloyd-Jones, 2010).Nevertheless, a prediction model or any tool 

that is derived from the model can never substitute for the decisions of or 

judgements made by clinicians. 

. 
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1.4. Background : Data Mining (DM) and Machine Learning 

(ML) 

 Data mining (DM) refers to the process of extracting useful knowledge 

from a large dataset by analysing not only the patterns, but also the 

correlations between its attributes (Han and Kamber, 2001). It also offers a 

platform for prediction modelling, in addition to revealing ‗hidden‘ knowledge.  

It employs intelligent techniques and structural methods to not only unravel 

and describe the pattern, but also to evaluate the pattern in accordance to 

several measures.  

 Machine learning (ML), on the other hand, denotes a multidisciplinary 

field of artificial intelligence, statistics, probability, computational complexity 

theory, information theory, learning theory, and other numerous fields 

(Meyfroidt et al.,2009), which is focused on the development of 

algorithms/techniques to learn from experience in the attempt to improve the 

performance of a system over time (Mitchell, 1997).The aims of ML are to 

allow for automatic 'learning' of data using computer algorithms and make 

generalizations on what has been learnt to new, but similar data.  Learning 

can be categorized into supervised and unsupervised learning.  Supervised 

learning identifies an approximate mapping function of input data to the 

output variable.  The tasks of supervised learning include 

classification/prediction, regression, and feature selection.  In contrast, 

unsupervised learning focuses more on learning the data by understanding 

the patterns in the data.  Tasks associated with unsupervised learning 

include clustering and making associations (Witten et al., 2005, Weiss and 

Indurkhya., 1998) 

 In the context of DM, ML offers intelligent techniques and methods for 

mining the data, i.e., for discovering and describing patterns while focusing 

on inductive learning (learning by example).  ML can be considered to be the 

core of DM.  In terms of  predictive modelling, unlike traditional statistics, 

which relies on small samples with pre-defined assumptions on data and its 

distribution, ML models the data on a given task through an heuristic 

approach with minimal pre-assumptions about the data and problem

 Advancements in software and hardware have further allowed vast 
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amount of data to be captured and stored, ranging from simple to complex 

data types. This scenario has created the need to intelligently process data, 

identify interesting patterns, and transform this into useful information and 

knowledge. Therefore, extracting the right and meaningful information is vital 

especially in acquiring economic advantage. As such, DM has appeared to 

be a major evolution in the information industry. Massive data have also 

encouraged the development and the evolution of DM applications.  

Moreover, DM has been applied in many areas, such as marketing and 

retail, finance and banking, engineering, sports, as well as the medical and 

health industry. For instance, DM has been employed to improve a present 

business process or the quality of a product in the attempt to anticipate 

future trends in planning strategies, predicting and identifying risks, 

formulating prevention measures, interpreting images, and recognising 

patterns(Kantardzic and Zurada, 2005, Han and Kamber, 2001, Wang et al., 

2012, Choudhary et al., 2009, Delen et al., 2012a, Witten et al., 2005).   

1.5. Background : DM in the Medical Field 

 The growth of medical data has encouraged the application of DM in 

the medical field.  Outcomes from vast studies in medical DM have 

highlighted a great potential for improving efficiency and cost-saving aspects 

in clinical administration, as well as in clinical treatment and care (Koh and 

Tan, 2011).  For example, the prediction model built by Zhong et al. 

(2012)applied a new hybrid DM using ML (DM-ML) technique, which 

exemplified the potential to improve the management of costs and budgeting 

for hospital administrations. Additionally, Chazard et al. (2011)and Bate et 

al.(2008)used DM to determine adverse drugs events. 

 Furthermore, DM possesses the ability to aid in making decisions for 

prognosis and diagnosis, as well as for treatment options(Pogorelc et al., 

2012, Delen et al., 2005).  DM-ML techniques have also been used in 

various developments of the Decision Support System (DSS) for rule 

generation (Tenorio et al., 2011, Del Fiol and Haug, 2009). In a typical 

medical DSS, rules are generated based on expert knowledge.  However, 

via DM, rules are generated by the system and, later, validated by the 

domain expert, thus promoting efficiency in developing the system.   
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 DM has also made a contribution to evidence-based medicine (Stolba 

and Tjoa, 2006).  Evidence-based medicine is the concept of making 

decisions related to patients‘ health care that integrate clinical expertise, 

patients‘ values, and the best external evidence(Masic et al., 2008).  The 

concept is an application of providing better health care and improving cost 

effectiveness. The knowledge extracted from a large and complex 

healthcare dataset turns out to be important evidence that should not be 

neglected in acquiring the best external evidence. For instance, Delen et al. 

(2010) applied DM to identifying more intricately predictive factors in 

estimating survival time after transplants.  Other than that, Chu et al. (2009) 

utilized the Bayes model in presenting an evidence-based expert system to 

detect CAD from hospital-based data and existing epidemiological study.  The 

evidence based expert system using the Bayes model has achieved 0.86 AUC 

rate on hospital based data and 0.86 on existing epidemiological study. 

 The capabilities of DM in handling huge datasets with tolerable 

performance time have encouraged the continuous employment of DM in 

medical studies(Delen, 2009, Sampson et al., 2011) . For example, Sitar-

Taut et al.(2009)ranked the significance of identifying risk factors for 

coronary artery disease (CAD), stroke, and peripheral artery disease (PAD), 

which concluded that varied CVDs have varying ranks of important risk 

factors.  Meanwhile, Khalilia et al.(2011)used the Mean Decrease Gini 

measure to determine the essential variables linked to various diseases, 

whereas Delen et al. (2012b)employed the sensitivity analysis method to 

identify the most important variables that had an impact upon outcomes of 

CABG surgeries.   

 In addition, DM-ML can also be combined with conventional statistical 

methods to produce more commendable estimations. As such, Tham et 

al.(2003) used ANN to predict CHD by combining a set of gene marker 

attributes with some typical risk factors as predictors. In order to identify the 

gene markers‘ input for ANN, several statistical methods, i.e., principal 

components analysis (PCA) and factor analysis (FA), were used.

 Although a number of studies have demonstrated the potential of DM, 

such as by exhibiting potentially good predictive models or establishing new 

knowledge in the medical field, several works, such as work done by Sami 
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(2006), have been rejected by the medical community.  Sami claimed that 

the work had been rejected due to  the limited number of journals in the area 

of Urology that would consider the DM method that he used.  Medical DM, 

thus, is considered unique because it inherits the complexity of medical data 

and its domain. Medical data is huge and heterogeneous.  It is available in 

many forms, i.e., images, text, ECG readings, or even structured data, and 

comes  from different events (databases/systems) such as administration, 

diagnosis, treatment, and even follow up.  Moreover, there are a large 

number of missing values, inconsistencies, and imprecise and incomplete 

data in a medical dataset(Cios and Moore, 2002).  A substantial number of 

studies have been initiated to investigate the uniqueness of medical DM.  In 

fact, some examined issues surrounding medical DM, such as, privacy, 

ethics, and confidentiality issues; medical data intricacy and quality; and the 

exclusivity of medical approaches(Shillabeer and Roddick, 2007, Cios and 

Moore, 2002, Sami, 2006, Iavindrasana et al., 2009). 

 Thus, mining medical data means being able to handle the 

uniqueness of medical datasets.  The medical field is exclusive in its 

approach as it deals with life or death, which applies to everybody.  For 

example, DM, in general, concerns itself with digging out patterns and trends 

in a dataset.  In contrast, in medical research, more concern is placed on the 

minority events, such as mortality, which does not conform to patterns and 

trends.  As such, it is vital to conform to the medical paradigm in terms of 

measuring the error rate, i.e., the sensitivity and specificity measures of a 

prediction model, rather than measuring the accuracy rate as in general DM 

applications.  Another example is reporting the DM results from a medical 

dataset.  Cautious consideration of the language used is important as any 

information distortion in reporting medical results has the potential to be life 

threatening and have cost and political consequences.  Appropriate and 

precise descriptions of the data source with detailed and defined 

characteristics of populations must be adhered to. This is indeed essential in 

a clinical research setting.  Bouwmeester et al. (2012)concluded that many 

prediction models available in high-impact journals have very limited 

applicability due to not following the recommended methodologies. 
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1.6. Problem Statement  

 As mentioned previously, current prediction models are generally 

constructed by using standard statistical regression approaches, i.e., 

multiple linear, multiple logistic, or Cox regression. In this conventional way, 

the predictors of the models are generally identified from a set of candidate 

variables defined based on clinical expert opinions, risk factor findings from 

clinical studies, and/or previously developed models(Morrow et al., 2000, 

Boersma et al., 2000, Granger et al., 2003).  Univariate LG and multiple LG 

are then run on these potential predictors to identify the significance 

predictors of the model.  With ML, the paradigm of predictor selection is 

different.  In ML, any attributes can be considered as potential predictors, 

potentially suggesting new potential risk factors for diseases like ACS.  In 

this study, all attributes in the registries that fall under the scope of the 

research were considered as potential predictors and further evaluated using 

a comprehensive ML feature selection method to improve the prediction 

performance of the simplest model possible.  

 The huge and intricate registries dataset requires more advanced 

analytics and massive data technologies compared to the standard statistical 

approach. This is because the correlations between the attributes and the 

outcomes may be complex and multivariate, which may violate linearity 

assumptions in a statistical model. Thus, ML algorithms present a new 

opportunity to build clinical prediction models, in general. Hence, DM using 

ML algorithms is a potential alternative approach to the classic statistical 

method.  The two EHR-based registry datasets are the assets of this study 

to practically presents the need and potential of ML in prediction modelling. 

 ML has  been used in a limited way to develop prediction models.  

The earliest study to use ML to construct ACS prediction models was mainly 

focus on a specific ML algorithm.  In fact, one particular novel technique, 

which has been commonly researched, particularly in developing ACS 

prediction models, is ANN (Baxt et al., 2002;Harrison and Kennedy, 

2005;Green et al., 2006b;McCullough et al., 2007;Bassan et al., 2004). Even 

though ANN is an intricate technique, it excels at detecting complex and 

nonlinear correlations. The technique mimics human brain interactions in 
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processing and understanding relationships. In addition to ANN, the 

combined method of genetic algorithm (GA) and fuzzy rule has been utilized 

in developing a UA risk assessment tool(Dong et al., 2014), the decision tree 

(c4.5) was applied in assessing risk factors of CHD(Karaolis et al., 2010), 

and the Classification and Regression Tree (CART) was employed to 

develop mortality prediction models for patients with acute decompensated 

heart failure (ADHF)(Fonarow et al., 2005). However, there are a wide range 

of ML algorithms which can be explored  in building prediction models, as 

there is no one specific ML algorithm that best suits all datasets(King et al., 

1995, Ali and Smith, 2006).  Thus, this study explores a wide range of ML 

techniques suitable for developing ACS prediction models.  

 Limited number of studies has been found comparing ML algorithms 

in developing ACS prediction model.  For example, VanHouten et al. (2014) 

has assessed Random Forest (RF), elastic net, and ridge regression 

algorithms for building ACS prediction models; Hu et al.(2016) evaluated 

Support Vector Machine (SVM), RF, Naive Bayes (NB) and LG models for 

the same task, and Sladojević et al.(2015) compared seven ML algorithms 

for building an ACS prediction model.  These comparison studies were small 

and based on a limited number of ML algorithms.  Considering larger 

comparisons of ML algorithms, Kurz et al. (2009) tested several ML 

algorithms available in Waikato Environment for Knowledge Analysis 

(WEKA) to generate the best ACS prediction models.  However, the models 

that Kurz et al. (2009) developed can only be used for categorical predictors.  

The issue with models that use only categorical predictors is that they 

potentially lead to `loss of information.‘  Attributes, such as heart rate and 

systolic blood pressure (SBP), need to be discretized to a subset of 

categorical values, which generally leads to a loss of information from the 

original data.  For instance, within an interval, two numerical values may be 

at different extremes, but, because they both fall within the interval, the two 

values are considered equal.   Due to this, information is lost which 

eventually effects the predictive performance of a prediction model. On the 

other hand, this thesis includes all ACS- type patients and was able to 

accept both numerical and categorical types of predictors.  Furthermore, 

Kurz et al. (2009) only studied one registry, but our study has two registries 
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to work with simultaneously that will potentially enrich the discussion  on 

developing ACS models using ML from two different regions with different 

patient characteristics. It will also inform a discussion on how the 

characteristics of different datasets could affect the prediction capabilities of 

the different ML algorithms used. 

 Most of the models were found to exclude high-risk patients, such as 

patients with a history of stroke (Lee et al., 1995), patients with a history of 

cerebrovascular disease,  patients with high SBP and  diastolic blood 

pressure (DBP) (Morrow et al., 2001), and patients with persistent ST-

segment elevation(Boersma et al., 2000).   Also, most of the existing models 

were developed for a specific type of ACS, i.e., either STEMI(Lee et al., 

1995, Morrow et al., 2001, Sladojević et al., 2015) or NSTEMI(Antman et al., 

2000, Boersma et al., 2000).  Thus, this study, which presents 

comprehensive coverage with all ACS types and no exclusion of high-risk 

patients, widens the scope of prediction modelling.   

 In addition, the advent of new and standard treatments, such as the 

introduction of potent antiplatelet/antithrombotic agents and the 

establishment of PCI treatment, has become an issue among the present 

models.  Some of these models were developed before the introduction of 

this new and standard treatments and the impact of this on the models is still 

unclear(Kurz et al., 2009).  As such, the latest cohorts of patients in the 

registries used in the study accommodate the current gap in the present 

models.  To the knowledge of the author, this is the first time the Malaysian 

registry has been used to derive an ACS prediction model.  Derivation 

populations  for ACS prediction models have been predominantly Western 

(Antman et al., 2000, Boersma et al., 2000, Dorsch et al., 2001, D'Ascenzo 

et al., 2012, Kurz et al., 2009, Huynh et al., 2013, VanHouten et al., 

2014).The Malaysian and the UK populations used in this study enable 

geographical comparisons and furnish further insight into model 

development for different regions. 
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1.7. Aims and Objectives of The Study 

 The important of a reliable prediction model to support CVD and ACS 

prevention, as well as the availability of vast amount of EHRs within 

healthcare organizations, motivated this particular research. DM-ML 

techniques can possibly transform the paradigms of building ACS prediction 

models in parallel to the future revolution of big data in the medical and 

health industries.  In fact, the growing number of EHRs offers an opportunity 

for DM-ML to further prove its capability as the best computational solution 

for both classification and prediction model development in the medical field. 

Hence, exploring prediction models development for ACS via modern ML 

techniques could potentially enhance the benefits of using DM in the medical 

field, in general.   

This study aims to explore and investigate a practical method for developing 

prediction models for predicting ACS in-hospital mortality using DM and ML 

algorithms on registries‘ datasets. In the context of ML fields, this study also 

explores several ML optimization strategies suitable for registry datasets to 

enhance the overall performance of the developed models.   The objectives 

of the study are listed as follows: 

Objective 1:  To investigate ML methods and techniques suitable for 

developing ACS prediction models from registry datasets. The study also 

aims to establish sets of ML algorithms that are not suitable for building the 

prediction models.  

Objective 2: To investigate ML feature selection methods and techniques 

for building simpler models with improved prediction power. The thesis also 

evaluates the potency of predictors of existing ACS models to be adapted to 

other ACS registries data. Finally, to investigate the strength of predictors 

from different clinical categories in contributing to model development. 

Objective 3:To identify the main causes of misclassification when building 

ACS prediction models using ML, as well as to develop models using ML to 

predict the misclassified cases.  The study focuses on assessing 

misclassified cases in terms of minority class, overlapping class, outliers, 

and missing values.  
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Objective 4: To investigate and evaluate ML optimization strategies to  

address an imbalanced dataset and missing values.  Do these optimization 

strategies help in improving the overall model performance? As such, the 

overlapped-undersampling method is proposed to handle imbalanced 

datasets, while the mean-clustering-imputation approach is proposed to 

handle missing values. 

1.8. Outline of Chapters 

 The rest of this thesis is structured as follows: 

Chapter 2provides the literature review on the currently available ACS 

prediction models. This chapter also presents the review of methods and 

strategies in developing prediction models using DM and ML.   

Chapter 3 describes the relevant methods in achieving the outlined 

objectives. 

Chapter 4 describes and compares the characteristics, patient 

characteristics, patterns of care, and outcomes of the two datasets.  It also 

describes the process of cleansing, preparing, and transforming the raw 

datasets for model development.  The chapter also elucidates the processes 

and results of reviewing model development using WEKA, inclusive of 

several strategies that were employed in developing prediction models. 

Chapter 5 provides full documentation of identifying the best set of 

predictors  using ML techniques and its model development.  The chapter 

also presents the findings on the potency of the existing set of predictors in 

terms of being adapted to other ACS registry data and the strength of 

predictors from different clinical categories in contributing to the model 

development.   

Chapter 6 presents the results obtained from the misclassification analysis 

of the   classification algorithms.  The analysis of the misclassification cases 

was conducted in terms of the distribution of minority classes, overlapping 

classes, outliers, and missing values.  The chapter also introduces the newly 

developed model used to predict misclassified cases. 
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Chapter 7 specifies the optimization approaches used in handling 

imbalanced datasets and missing values. Moreover, this chapter presents 

the results of the strategies and discusses the effectiveness of these 

strategies in contributing to the betterment of the developed models. 

Chapter 8 reports on the model validation approach for the best models, 

specific to Malaysian and UK datasets, as well as the generic models that fit 

both datasets.  Internal validation was performed on each of the best models 

specific to the regions and generic models.  In addition, external validation 

was carried out on the generic models.  Briers scores and calibration graphs 

of these models are presented, compared, and discussed.   

Chapter 9 summarizes and discusses the overall findings.  Implications of 

the study, limitations and future directions are also discussed in this 

concluding chapter. 
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Chapter 2:  Literature Review 

This chapter presents the review of existing and researched ACS prediction 

models, the methods employed in developing clinical prediction models, as 

well as the challenges and issues that revolve around developing clinical 

prediction models using DM and ML algorithms.   

2.1. ACS Prediction Model 

 Prediction has always been a skill set among clinicians. Clinicians 

need this skill set to make decisions about a certain disease or its severity, 

and the most appropriate therapy and treatment based on the symptoms.  

These decisions are normally made based on "intuition" or experience from 

past cases.  Nonetheless, quantifying and rationalising the decisions made 

can only be made possible with rich clinical data and using the appropriate 

method. Statistics has been the most widely used and viable method with 

which to build prediction models up until this time. In addition, clinical 

prediction models are now being applied as prevention strategies to predict 

the existence of a disease or high-risk patients with a disease, or even to 

determine the most suitable therapies for a patient based on diagnosis. 
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Table 1: Summary of several reviewed ACS prediction models 

No Prediction 
Models 

Year of  
Publication 

Study  
Design 

Derivation  
Cohorts 
(Year) 

Derivation  
Cohorts 

(Country) 

n Range of 
ACS 

Predictors Predicted 
Outcome 

Time  
to 

Outcome 

Published  
C-Statistics 

Modelling 
techniques 

1 TIMI 
(Antman 
et al., 
2000) 

2000 RCT 1996-1998 10 
countries 
from North 
America, 
South 
America, 
and Europe 

1957 UA, 
NSTEMI 

* Age 
* 3 risk factors for CAD 
* Prior coronary 
stenosis of>=50% 
* At least 2 angina 
events in prior 24 
hours 
* ST-segment 
deviation  
* Use of aspirin in 
prior 7 days 
* Elevated serum 
cardiac markers 

Death, MI or 
revascularisation 

14 days 0.65 Multivariable 
logistic 

regression 

2 PURSUIT 
(Boersma 
et al., 
2000) 

2000 RCT 1995-1997 28 
countries in 
Western 
and Eastern 
Europe, as 
well as 
North and 
South 
America 

9461 UA, 
NSTEMI 

* Age 
* ST- Segment 
depression 
* Heart rate 
* SBP 
* Heart failure 
* Cardiac enzyme 
* ST-Depression on 
presentation 

Death and MI 30 days 0.81  
(death 
only) 

 
0.67  

(death or 
MI) 

Multivariable 
logistic 

regression 

3 GUSTO-I 
(Lee et al., 
1995) 

1995 RCT 1990-1993 1081 
hospitals 
from 15 
countries in 
North 
America 
and Europe, 
in Israel, 
Australia, 
and New 
Zealand 

41021 STEMI * Age 
* Killip class 
* SBP 
* Heart rate 
* Anterior Infarction 
* Previous MI 

Death 30 days NA Logistic 
regression 
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4 GRACE In-
Hospital 
(Granger 
et al., 
2003) 

2003 MR 1999-2001 14 
countries  
from North 
and South 
America, as 
well as 
Europe 
 
MONICA 
Project - 26 
countries 
from 
Europe, 
North 
America, 
and the 
Western 
Pacific 

11389 STEMI, 
UA, 
NSTEMI 

* Age 
* Killip class 
* SBP 
* ST-Segment 
deviation 
* Cardiac arrest during 
presentation 
* Creatinine level 
* Heart rate 
* Initial cardiac 
enzyme 

Death In-
hospital 

0.83 Multivariable 
logistic 

regression 

5 EMMACE 
(Dorsch et 
al., 2001) 

2001 RR 1995 UK 3684 Acute MI * Age 
* Heart rate 
* SBP 

Death 30 days 0.79 Multivariable 
logistic 

regression 

6 SRI 
(Morrow 
et al., 
2001) 

2001 RCT 1997-1999 Western 
and Eastern 
Europe, 
North 
America 
and Latin 
America 

13253 STEMI * Age 
* Heart rate 
* SBP 

Death 30 days 0.78 multivariable 
logistic 

regression 

7 C-ACS 
(Huynh et 
al., 2013) 

2013 RR 1999-2001 Canada 4627 STEMI, 
NSTE-ACS 

* Age  
* Killip class 
* SBP 
* Heart rate 

Death In-
hospital/ 
30 days 

0.75 Multivariable 
logistic 

regression/H
osmer- 

Lemeshow 
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8 AMIS 
(Kurz et 
al., 2009) 

2012 RR 1997-2005 Switzerland 7520 UA, 
NSTEMI, 
STEMI 

* Age  
* Killip Class  
* SBP 
* Heart Rate 
* Pre-hospital 
cardiopulmonary 
resuscitation 
* History of heart 
failure 
* History of 
cerebrovascular 
disease 

Death In-
hospital 
and 12 
months 

0.875 WEKA - 
Average One-
Dependence 
Estimators 

(AODE) 

9 SD 
(VanHout
en et al., 
2014) 

2014 EHR 2007 - 
2012 

USA 20078 ACS, 
NON ACS 

88 predictors ACS patients NA 0.848 Random 
forest 

10 Serbia 
(Sladojevi
d et al., 
2015) 

2015 EHR 2008-2011 Serbia 2030 STEMI * Age 
* SBP 
* Diastolic blood 
pressure 
* Heart rate  
* Lvef 
* Troponin value 

Death In-
hospital 

0.91 WEKA - 
Alternating 

Decision Tree 
(ADT) 

11 MACE 
(Hu et al., 
2016) 

2016 EHR NA China 2930 ACS 268/284 predictors Adverse 
cardiovascular 
events 

NA 0.724 Random 
forest 
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 Table 1 provides a summary of the reviewed ACS prediction models.  

As presented in the modelling techniques column (last column), 7 out of 11 

reviewed models were developed using a statistical method, i.e., LG.  As 

explained in Section 1.6, when using this conventional method, the 

candidate predictors are generally pre-selected based on clinical expert 

opinions, known risk factors, findings from clinical studies, and/or previously 

developed models.  The actual predictors used to developed the model are 

selected by running univariate and multivariate LG to identify the significance 

of the candidate predictors.  The approach  contrasts with the ML paradigm 

since, in ML, any attributes can be considered as candidate predictors, 

which allows for identification of potentially new potent predictors which can 

subsequently suggest new potential risks for ACS.  

 In a large dataset,  the assumption of data linearity using the 

conventional statistical modelling approach may be violated due to complex 

and multivariate correlations between the attributes and the outcome.  More 

advanced analytics and massive data technologies are required to handle 

the large and intricate data in a registry or EHRs.  Thus, DL-ML presents a 

new advancement in predictive model development compared to the 

statistical approach.  Table 1 demonstrates  that models developed using 

ML techniques such as AMIS, SD, and Serbia have better predictive power 

than models developed using the statistical approach (TIMI, PURSUIT, 

GUSTO-I, GRACE, EMMACE, SRI, C-ACS).  

 ML has  been used in a limited way to develop prediction models.  

The earliest study to use ML to construct ACS prediction models was mainly 

focus on a specific ML algorithm.  In fact, one particular novel technique, 

which has been commonly researched, particularly in developing ACS 

prediction models, is ANN (Baxt et al., 2002;Harrison and Kennedy, 

2005;Green et al., 2006b;McCullough et al., 2007;Bassan et al., 2004). In 

Table 1,the three reviewed ACS models that were developed using ML were 

compared to a limited number of ML techniques i.e., the SD - 1 ML 

algorithm, Serbia - 7 ML algorithms and MACE - 4 ML algorithms.  And, only 

the AMIS model was compared to broad number of ML algorithms from 

WEKA.  However, the AMIS model was only able to handle categorical 
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predictors.  As mentioned previously,  the potential for information loss is 

critical for those predictors that are originally numerical, such as SBP, DBP, 

heart rate, and creatinine level, and this, in turn, eventually affects the 

predictive performance of a model.  

 Different sets of predictors are observed for each of the models in the 

reviewed ACS models.  Each set of predictors seems to fit with the sample 

populations that the model was derived from, and most of the models were 

derived from a particular region, with the exception of TIMI, PURSUIT, 

GUSTO-I, GRACE and SRI.  Regardless of the varied clinical outcome of 

the models,  the most common predictors incorporated in ACS models are 

age, heart rate, SBP, and killip class, which are also the key risk factors for 

ACS and CVD, in general.  The potential predictors for ACS prediction 

models are generally derived based on the availability of information on the 

point in clinical cause, in which the model can be used for prediction or risk 

assessment.  For example, upon admission, any information obtained refers 

to demographic type, such as age, gender, and ethnicity, whereas basic 

clinical presentation denotes heart rate, SBP, height, and weight.  At this 

point, normally, both basic physical examination and typically occurring 

symptoms are assessed.  In addition, the medical history of patients and 

their basic health lifestyle, such as smoking status, is also recorded at this 

point.  Examples of predictors under this category that have been applied in 

the models of Table 1 are history of heart failure, diabetics, and history of 

cerebrovascular disease.  Upon completion of an ECG,  its related 

parameters, such as ST-segment, Q-wave, and T-wave, become another set 

of information that is made available at the first stage of ACS clinical cause.  

In fact, prediction models for use in an emergency department and some 

models  built with the objective of early-risk stratification, such as the C-ACS 

and AMIS models, mainly utilize such first-hand information as their 

predictors (Green et al., 2006b).Other than that, the results of biomarker 

tests offer more useful information in terms of distinguishing between the 

three ACS categories.  Depending on the symptoms and ECG status, 

biomarker tests, such as cardiac troponin and MB fraction of creatinine 

kinase (CK-MB) measurements,  usually take place at a later stage(Bassand 

et al., 2007).  GRACE and SD are examples of models that considered 
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biomarker data as predictors.  Although biomarker tests contain useful 

information with which to identify different categories of ACS, they may not 

be popular with those simple models with the need for early stratification, 

such as AMIS, EMMACE, SRI, and C-ACS.   

 DM-ML  can also be utilized to identify essential predictors in relation 

to the outcome known as feature selection.  Feature selection aids in 

choosing a set of predictors that improves the predictive power with less 

data.   It can identify nonessential, irrelevant, and redundant attributes that 

may affect the accuracy of the model. A model with cost effective predictors 

is preferable due to its simplicity, and ease of understanding and 

explanation(Guyon and Elisseeff, 2003).   Feature selection, when applied, 

needs to be embedded as part of the model selection process.  Models 

applying feature selection or different set feature selection methods and 

models without feature selection should be compared and analysed.   Better 

predictive power indicates the best set of predictors for the model. For 

example, Fonarow et al. (2005)developed a model for risk stratification of in-

hospital mortality for acute decompensated heart failure (ADHF).  They 

employed CART to establish the best predictors for the model, in addition to 

constructing a risk stratification model. Karaolis et al.(2010) evaluated a 

decision tree (DT) model in terms of identifying the significant risk factors for 

myocardial infarction (MI), PCI, and CABG.  The study claimed the 

promising correctly classified rate, indicating that the identified risk factors 

were the most important.  They found that age, smoking, and history of 

hypertension  were important risk factors for MI; family history, history of 

hypertension, and history of diabetes  were important risk factors for PCI and 

CABG; and age, history of hypertension, and smoking were important risk 

factors for CABG. In addition, Vinterbo and Ohno-Machado (1999)built a 

model based on LG and identified a set of predictors using a genetic 

algorithm.  By comparing the AUC results, the study suggested that a 

genetic algorithm was significantly better than the standard backward, 

forward, and stepwise variable selection methods.   

 From Table 1, the implementation of ML feature selection of models 

developed using ML as modelling technique (AMIS, SD, Serbia and MACE) 

was further reviewed.  Even though the Serbia model was developed using a 
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ML technique, the candidate predictors of the model are pre-selected, then 

further reduced using ML techniques.  The AMIS model, on the other hand, 

uses the common feature selection method, i.e., the sequential backward 

deletion method, to determine the best predictors for the model.   Whilst, the 

SD and MACE models do not apply any feature selection method in order to 

make the model simpler.  However, the MACE model is the only model from 

the reviewed list that retrieves its predictors from free text admission 

records.  The extraction of predictors is implemented by combining a rule-

based approach with an ML method known as Conditional Random Fields. 

 Most of the reviewed ACS models were derived either from RCT, 

registry, or EHR data.  RCT, which follows rigorous scientific principles, is 

considered the most powerful tool in clinical research.  The samples 

collected are considered more accurate and complete with defined 

prospective , methods, and duration.  However, the emergence of EHRs in 

medical field has promoted the use of registry or EHR data to derive the data 

for model development.  The registry or EHR-based data fills the gaps in 

RCT, such as not representing real populations and the potential of bias due 

to defined inclusion and exclusion criteria.   Also, a registry based on EHR 

data is considered essential evidence in acquiring the best external evidence 

in evidence-based medical applications.  Thus, many ACS models now 

derived their data from EHR-based registries, as in GRACE, EMMACE, C-

ACS, AMIS, SD, Serbia, and MACE models. 

 Furthermore, most cohorts of the reviewed ACS models in Table 1 

were derived from Western populations.  TIMI, PURSUIT, GUSTO-I, and 

SRI are examples of models derived from mainly Western countries. Other 

models, such as EMMACE, C-ACS, AMIS, SD, and Serbia were derived 

from a specific Western country.  The use of Asian populations has been 

limited in deriving ACS model.  Among the 11 models of Table 1, MACE is 

the only model that was built based on Asian cohorts i.e. China.  However, 

some of cohorts included in GRACE comes from Western Pacific that might 

includes some patients from Asian regions.   

 Mortality among patients with chest pain at varied time points is a 

common outcome in ACS prediction models. Nine out of 11 reviewed 



- 25 - 

models of Table 1 have mortality as the outcome.  Besides than mortality 

outcome, TIMI and PURSUIT also have MI as the end point.  SD, on the 

other hand, distinguishes between ACS and non-ACS patients as the 

outcome of the model, while MACE distinguishes adverse cardiovascular 

events.  

 In Table 1, the ACS models were mainly for selective patients with 

either STEMI or NSTEMI/UA.  Only GRACE, AMIS, and MACE models 

cover all the ACS spectrum.  There were also issues of exclusions of high 

risk patients in some of these models.  For example, the GUSTO-I model 

excludes patients with history of stroke, the SRI model excludes patients 

with high SBP and DBP, and the PURSUIT model excludes patients with 

persistence ST-segment elevation.    

 Among all of these models, the most popular ACS prediction models 

are TIMI and GRACE, as they have been validated by many other 

populations. The following further summarizes each of the reviewed ACS 

models. 

Thrombolysis in Myocardial Infarction (TIMI)  

 The TIMI prediction score appears to be the most widely used model, 

and it is known for its use for patients with NSTEMI and UA.  This prediction, 

or risk,  score was derived from 1957 patients from the TIMI 11B trial, which 

consisted of cohorts from  10 countries, including North America, South 

America, and Europe, in which the samples were given unfractionated 

heparin for the study(Antman et al., 1999).  The TIMI risk score predicts 

mortality, new MI, and urgent need of revascularization within 14 days of the 

event by summing the scores of 7 predictors (Antman et al., 2000).  The 7 

predictors are: age greater than 65 years old, at least three risk factors of 

CAD, prior coronary stenosis of 50% or more, ST Deviation on ECG,  two 

angina events that occur within 24 hours, use of aspirin in the past 7 days, 

and elevated serum cardiac markers. 

 The risk score was built by using multivariable LG and was validated 

with three different groups:1)  an enoxaparin group from TIMI11B  (n=1953), 

2) an unfractionated heparin group from the ESSENCE trial(n=1564), and 3) 

an enoxaparin group from the ESSENCE trial (n=1607).  The c-statistic for 
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the derivation cohorts was 0.65 and fell within the range between 0.65 

and0.59 for the validation cohorts.  Furthermore, the simplicity of the risk 

model has turned it into the present guidelines for admission and treatment 

decisions(Anderson et al., 2007). 

 The TIMI risk score was also used as the platform to generate risk 

score for STEMI patients(Morrow et al., 2000).  In fact, many had validated 

TIMI risk score in various cohorts, end points, and all types of 

ACS(D'Ascenzo et al., 2012).  For instance, TIMI risk score was validated on 

30 days and 1 year mortality of patients suffering from myocardial 

revascularization during their initial hospitalisation (de Araújo Gonçalves et 

al., 2005).  Meanwhile, Morris et al.(2006),  Chase et al. (2006)and  Hess  et 

al.(2010)validated TIMI risk score with patients who had chest pain at the 

emergency department.  As a result, the modified TIMI risk score with extra 

weight on ischemic ECG changes and tropinin elevations displayed better 

risk stratification among the patients with chest pain at the emergency 

department (Body et al., 2009). 

The Receptor Suppression Using Integrilin Therapy (PURSUIT) 

 PURSUIT is another risk model for UA and NSTEMI.  This model was 

derived from 9461 patientsin28 countries in Europe, and North and South 

America (Boersma et al., 2000).  The end point of this risk model is mortality 

or mortality and MI of UA and NSTEMI patients within 30 days.  The 

predictors are age, ST-Segment depression, higher heart rate, lower SBP, 

signs of heart failure, and cardiac enzyme upon admission.  Unlike the TIMI 

score, PURSUIT presents a more complex calculation.  For instance, age 

has a range of 0-6 scores depending on various age ranges to predict 

mortality.  Nonetheless, in a review of validated ACS models performed by 

D'Ascenzo et al.(2012), only two studies had validated the PURSUIT model. 

The Global Use of Strategies to Open Occluded Coronary Arteries 

(GUSTO) 

 The GUSTO risk score was drawn from 1081 hospitals located in 15 

countries in North America and Europe, and including Israel, Australia, and 

New Zealand (Investigators, 1993).  The GUSTO trial was a randomized 

clinical study involving MI patients eligible for fibrinolysis (Lee et al., 1995).  
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The study examined four thrombolytic agents with aspirin and BB.  The 

model predicts1 year and 30 day mortality after MI with the most significant 

predictors, which are age, SBP, heart rate, infract location, and prior MI 

conditions. The GUSTO risk model has been validated in predicting three 

vessel diseases together with the TIMI, GRACE, and PURSUIT models.  

The GUSTO risk model achieved an AUC of 0.63,  lower than the AUC 

scores achieved by TIMI (0.71), GRACE (0.68),  and PURSUIT (0.65) (Isilak 

et al., 2012).  The GUSTO model has also been used to validate the effect of 

medications, such as use of atenolol for acute MI after thrombolysis 

(Pfisterer et al., 1998).   

The Global Registry of Acute Coronary Events (GRACE) 

 The GRACE model is a widely-known ACS model derived from a 

patients‘ registry (n= 11 389) with a complete range of ACS(Granger et al., 

2003).  In addition, the registry was comprised of unselected patients from 

North and South America, Europe, and the Western Pacific region.  The 

primary function of the model is to predict in-hospital mortality.  Furthermore, 

the model was built using multivariable LG and was presented via an 

intelligent scoring system.  In comparison to the TIMI and PURSUIT scoring 

systems, the GRACE risk score presents a more complex calculation with a 

detailed gradation for each predictor.  The predictors for the GRACE model 

are age, killip class, SBP, ST-Segment deviation, cardiac arrest during 

admission, serum creatinine level, heart rate, and initial cardiac enzyme 

level.  Moreover, the model has achieved a rather excellent c-statistic of 

0.83.  The model was further validated in two varied cohorts with c-statistics 

of 0.84 and 0.79.  

 In addition, when compared to the TIMI score, the GRACE model 

emerges as one of the most validated ACS models. Furthermore, D'Ascenzo 

et al. (2012) claimed that the GRACE had been validated in 12 studies within 

multiple clinical settings with a total of 36,517 patients, and that the average 

AUC of the GRACE model in validation studies that consisted of ACS or 

UA/NSTEMI cohorts for both short- and long-term outcomes had been 0.85.  

Due to its exceptional prediction ability in varied clinical settings,  the 
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European Society of Cardiology has recommended GRACE as a suitable 

risk stratification model for NSTEMI patients(Bassand et al., 2008). 

Evaluation of Methods and Management of Acute Coronary Events 

(EMMACE) 

 According to Dorsch et al.(2001), the EMMACE model appears to be 

one of the simplest ACS prediction models with only three predictors, which 

are age, SBP, and heart rate.  In fact, EMMACE was derived from registries 

gathered in the Yorkshire region in the UK that predicted 30 day mortality 

among patients with acute MI.  The model achieved an AUC of 0.79, while 

an AUC of 0.76 was achieved by the tested cohorts. EMMACE has been 

validated over a wider ACS diagnosis and maintained its c-statistics of 0.77 

to 0.78(Gale et al., 2008b). 

Simple Risk Index (SRI) 

 Apart from the EMMACE model, the SRI model is another example of 

a simple and rapid risk score model that predicts 30 day mortality among 

STEMI patients(Morrow et al., 2001).  With predictors similar to those of the 

EMMACE model, the SRI model was derived from 800 hospitals found 

among Western and Eastern Europe, North America, and Latin America 

(Giugliano et al., 2001).  In fact, the c-statistics of the derivation model for 30 

day mortality have been 0.78 and 0.79 when validated on external cohorts. 

The Canada Acute Coronary Syndrome Risk Score (C-ACS) 

 C-ACS model was aimed to serve early risk stratification among 

patients with ACS.  The risk model was derived from two Canadian ACS-1 

(C-ACS) registries(Huynh et al., 2013).  C-ACS was a prospective study for 

STEMI and NSTE-ACS patients.  Additionally, it was claimed that the model 

was simple and had no need of a system or calculator to estimate in-hospital 

or 1 year mortality. It uses only four predictors, i.e., age, killip class, SBP, 

and heart rate.  However, all the predictors are categorical, which might 

result in loss of information, and thus could affect the reliability of the 

performance.  The model was also validated on four other datasets, with an 

average c-statistic of 0.75, for short-term mortality.  
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Acute Coronary Myocardial Infarction in Switzerland(AMIS) 

 The AMIS model was built by using the ML algorithm known as 

―Averaged One-Dependence Estimators (AODE)‖ to predict in-hospital 

mortality of 7520 patients with ACS obtained from the AMIS-Plus registries 

of 2001-2005.  In the study, several other ML algorithms available in WEKA 

were tested, and AODE emerged as the best.  Through the use of minimal 

features available at first patient contact, i.e., age, killip class, SBP, heart 

rate, pre-hospital cardiopulmonary resuscitation, history of heart failure, and 

history of cerebrovascular disease; a c-statistic value of 0.875was attained.  

The model was externally validated on the Krakow cohorts, achieving a c-

statistic of 0.842 (Kurz et al., 2009). 

Vanderbilt University Medical Centre’s Synthetic Derivative (SD) 

 VanHouten et al. (2014)developed ACS prediction models by using 

two ML algorithms, which were elastic net and RF, with 20,038 suspected 

ACS patients from EMRs.  The aim of the model was to provide an 

automated prediction model  where a new prediction is calculated as new 

data is entered into the EMR system.  In the study, all noisy data and 

missing values were embedded in the developed dataset.  The missing 

values were imputed with median value.  As a result, the best model with an 

AUC of 0.848 was built using RF with 88 predictors.  However, the model, 

although it has been internally validated, has never been validated with new 

data. 

The Serbia 

 This ACS model was derived from a cohort in the information system 

of the Institute for Cardiovascular Diseases of Vojvodina, Sremska 

Kamenica, Serbia (Sladojević et al., 2015).  Models were developed by 

using seven ML algorithms from WEKA.  As a result, Alternating Decision 

Tree (ADT) with a cost sensitive classification was found to be the best 

model for estimating mortality among STEMI patients who underwent PCI.  

Cost sensitive classification allows for the re-weighting of instances to reflect 

the defined misclassification cost(Witten et al., 2005). The final model was 

constructed based on 6 predictors.  New data from the same population was 
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used to validate the model.  The model maintained a good performance, with 

an AUC 0.82, when validated with new data. 

Major Adverse Cardiovascular Event (MACE) 

 Hu et al. (2016)employed a dataset derived from 2930 unstructured 

admission records from a Chinese hospital.  Information concerning potential 

predictors was extracted using rule-based medical language processing 

(RBMLP) and CRF, which had been used to develop the models based on 

four various ML algorithms (Hu et al., 2016).  As a result, the RF emerged as 

the best model with an AUC of 0.724.  As future research Hu et al. (2016) 

aim to validate the model on a large scale with an EHR dataset of different 

cohorts. 

2.1.1 The study 

This study is motivated by the belief that DM-ML is able to build a better 

model in terms of predictive power (c-statistic) compared to statistical 

methods.   Although TIMI and GRACE (both models were developed using a 

statistical method) are the most validated and accepted as present clinical 

guidelines, the author believes that DM-ML could produce a better 

discriminatory performance than a statistical method could. Further, by 

presenting a practical way of developing prediction models with application 

of other ML techniques such as feature selection method and ML 

optimization strategies , more validations could be initiated from this study to 

promote models using DM-ML for acceptance in clinical practise and 

preparation of big-data evolution in medical field. 

 Models developed using ML techniques are limited, and most of them 

only compared on limited number of ML techniques .  Although the AMIS 

model compared a broad range of ML algorithms, the model can only handle 

categorical predictors, which may, as mentioned previously, affect the 

performance of the model.  Thus, this study develops ACS prediction from 

29 ML algorithms that are able to handle numerical and categorical 

predictors from two EHR-based registries from Malaysia and Leeds, UK.  

The different region of the registries provide more insight into the different 

characteristics of two registries and the effect on different ML algorithms. 
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 In addition, the study also evaluated a number of ML feature 

selections methods as a way to improve the predictive performance of the 

model, as well as to make the model simpler.  None of the reviewed models 

in Table 1 explored ML feature selection methods as a way to improve the 

performance of the model. In addition, this study also investigates the 

reason for the degradation in performance of models developed using ML 

techniques.  

 The registry datasets used in the study include patients with all three 

types of ACS, patients with new treatment, and do not exclude high-risk 

patients.   Furthermore, the registry datasets used in the study contain the 

challenges found in EHR-based registries and practically present how DM-

ML methods could use strategies for handling the data quality issue in a 

registry dataset, as well as improving the predictive power of the prediction 

model. 

2.2. Medical DM Challenges and DM-ML Optimization 

Strategies 

2.2.1 Complexity of Medical Data  

 The nature of medical data is challenging for DM.  According to 

Fayyad et al. (1996), challenges may arise due to the nature of data and the 

granularities of knowledge to be extracted.  The intricacy of medical data 

mainly originates from the biological and social complexities of a patient 

(Beale, 2005).  Moreover, the growth of data is extremely rapid and sizeable.  

A patient admitted to an intensive care unit (ICU) may have 50 or more 

parameters collected per hour.  Heterogeneity, which lies in different sources 

of data, different kinds of data, and data originating from different systems, 

contributes to data complexity. Such data may originate from doctors, 

clinicians, or even health administrators(Hayrinen et al., 2008). Medical  data 

are captured for varied purposes.  Inputs for diagnosis, prognosis, and 

treatment have their own purposes and meaning in a medical dataset 

(Hayrinen et al., 2008).  Additionally, different types of data are captured in a 

medical database, ranging from numerical values, images, sounds, to 

unstructured free texts (Cios and Moore, 2002). Sounds and free text values 

can easily be ambiguous, inconsistent, and vague.  Thus, medical data, 
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which have no standard or formal structure, render further challenges in 

medical DM. 

 Therefore, it is vital to first comprehend the context of the domain and 

the cohorts involved in the study.   The attributes of the patients involved in 

the study, as well as the inclusion and exclusion criteria, need to be properly 

defined and reported.   The context of the dataset source has to be 

understood and should match with the objectives of the prediction model.  

Furthermore, target outcome, potential predictors, and target user of the 

prediction models are some essential aspects that have to be understood 

and described.  With that, understanding the characteristics of a dataset 

related to a prediction model should also suggest some suitable DM 

techniques and approaches. 

2.2.2 Feature Selection 

 The complexity and rapid growth of medical data have increased the 

dimensionality of the data, thus resulting in irrelevant, redundant, and noisy 

attributes.  In DM, a model built from a large number of attributes  ("curse of 

dimensionality") may possibly have deteriorated predictive power(Nisbet et 

al., 2009).  In fact, the term "curse of dimensionality," coined by Richard 

Bellman (1961), refers to the issue of data when they become sparse as the 

volume of data increases, hence causing inefficient predictive power. 

However, one way to reduce the dimensionality of a dataset in DM is to 

reduce the number of features or attributes to a manageable number without 

jeopardizing its DM objectives.  Moreover, prior studies have shown that the 

selection of a significant set of attributes facilitates data visualization, data 

understanding, reduces overfitting, and  improves the overall prediction 

performance (Das, 2001, Saeys et al., 2007, Guyon and Elisseeff, 2003, 

Tan, 2007, Hall and Smith, 1998, Blum and Langley, 1997, Kotsiantis et al., 

2007). In addition, upon reducing the attributes, a faster training time and 

simpler model can be attained.  Rapid training time is an important 

consideration when dealing with a huge dataset, while a simpler model 

offers deeper insight into the underlying processes that generate the data. 

 Within the context of classification modelling, the feature selection 

method can be classified into three categories: 1) the filter method, 2) the 
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wrapper method, and 3) the hybrid and embedded method.  The filter 

method ranks its features by evaluating an individual feature (univariate-

filter) or by evaluating an entire subset of features (multivariate-filter/subset).   

Some properties used in evaluating the features are information (e.g., 

information gain), distance (e.g., Euclidean distance), consistency, similarity, 

and statistical (e.g., Chi-square) (Jović et al., 2015).  As for the multivariate-

filter method, apart from evaluating features, the selection of a subset of 

feature relies on the search strategy for the set.  Commonly, the search 

proceeds in one of the following ways: 1) it starts with the empty set and 

features are added into the set (forward selection), 2)it starts with a full set of 

features and some are eliminated from the set (backward elimination)3) it 

starts with the empty set and a full set of features, simultaneously from both 

dimensions (bidirectional selection),or 4) it uses a genetic algorithm to 

identify the set of features (heuristic feature subset selection). 

 The main advantage of the filter method is that it does not depend on 

any classification algorithm.  Hence, the method is simple, fast, and can 

easily scale to a high-dimensional dataset.  However, in the univariate-filter 

method, the focus of evaluation is only on an individual feature and the 

outcome, thus dismissing its correlations with other features.  Hence, some 

important information gained by forming a combination of features that could 

generate a better model may be disregarded(Guyon and Elisseeff, 2003, 

Blum and Langley, 1997). 

 An example of the univariate-filter method is Information Gain.  

Information Gain measures the relevancy of each individual feature towards 

its outcome, while ignoring correlations with other features.  In addition, 

Correlation-Based-Feature-Selection (CFS) algorithms are an example of 

the subset approach.  CFS identifies a subset of features via selection with 

high correlation with the class, but low correlation with each feature(Hall and 

Smith, 1998).  Karegowda et al.(2010) stated that the CFS method was 

better than the Gain ratio in comparative studies on varied domains. In 

addition, Zhang  et al.(2008a) proposed a new filter method named the 

Constraint Score, which applied pairwise constraint, instead of class label 

information, when selecting the feature of classification development.  As a 

result, the Constraint Score offered better results compared to the Fisher 
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Score and Laplacian Score algorithms when tested on high-dimensional  

datasets(Zhang et al., 2008a).  Furthermore, Yin et al. (2012) introduced a 

new feature selection method that incorporated Hellinger distance to 

calculate a measure of distribution divergence, which is claimed to be more 

efficient and effective when dealing with high-dimensional datasets. 

 Next, the wrapper method is a method that incorporates a learning 

algorithm into evaluating the selection of features (Kohavi and John, 1997).  

The main advantage of this wrapper method derives from the advantages of 

subset feature selection and the specific classifiers.  Nonetheless, compared 

to the filter method, the wrapper method has a higher computational cost 

due to the additional evaluation of the subset of features with the specific 

learning algorithm.  This method also tends to overfit the learning algorithm 

used to evaluate the subset of features.  Hence, the recommendation is to 

develop the model on other classification algorithm, instead of using the 

algorithm used for feature selection.  For instance, John et al.(1994)wrapped 

around a subset selection with an induction algorithm to consider its 

biasness, in addition to defining two levels of relevancy in selecting a subset 

of features.    Additionally, Maldonado and Weber (2009)introduced a 

wrapped method using a SVM algorithm, which utilizes a sequential 

backward elimination method to remove insignificant features and applies a 

random split in each iteration of subset feature selection.   Therefore, the 

method presents better results than other filter and wrapper methods.  The 

method avoids overfitting and is flexible to any kernel function (Maldonado 

and Weber,2009).  Earlier, Weston et al.(2001)introduced a feature selection 

method on an SVM algorithm that is applicable to a non-linear kernel. 

 A hybrid method, on the other hand, combines both filter and wrapper 

methods.  The filter method identifies the potential subset features, while the 

wrapper method determines the best subset features.  For example, Yang et 

al. (2010) implemented the information gain approach to identify a potential 

of subsets features, and later used the wrapper method with a genetic 

algorithm to identify the best subset features in selecting relevant genes 

from a microarray dataset.  Meanwhile, Bermejo et al.(2012) improved the 

hybrid feature selection method by reducing the use of the wrapper method 

in selecting the best subset features.  Beyond this, the embedded method 
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embeds feature selection into the classification algorithm, hence becoming 

part of the model construction.  This feature selection method, however, 

depends on the classifier used.  The DT filter was used to weigh the 

attributes in the new weighted NB algorithm introduced by Hall (2007), while 

Guyon et al. (2002) incorporated Recursive Feature Elimination (RFE) in the 

SVM algorithm to select the best set of genes for cancer classification. 

 Hence, feature selection offers great utility in finding potential 

predictors in developing a prediction model.   In identifying the best 

predictors for the prediction model, A., Sudha et al. (2012)employed a 

subset feature selection algorithm, Huang et al. (2004)used the ReliefF 

algorithm,  Kurz et al. (2009) applied sequential the backward deletion 

method, and Khosla et al. (2010)proposed a novel feature selection 

algorithm called Conservative Mean feature selection. 

2.2.3 Missing Data 

 Medical databases, in particular, are dense with missing values(Cios 

and Moore, 2002).  Missing data can be completely at random (MCAR), 

missing at random (MAR),or missing not random (MNAR).  MCAR means 

that there is no obvious pattern to the missing values of the observed data, 

for instance, when a clinician unintentionally fails to record the height of a 

patient.  As for MAR, the missing values can be observed in a particular 

subsample or several subsamples, but no missing pattern appears in the 

entire sample, such as information on patients receiving PCI treatment being 

blank for those diagnosed with UA/NSTEMI.  In a standard guideline, PCI 

treatment is a specific treatment for STEMI.   Hence, both MCAR and MAR 

are known as ignorable patterns since any model explaining the missingness 

can be ignored, and the outcome from the analysis is still valid.  Even though 

a model for missingness can be ignored,  appropriate measures, such as 

excluding missing data from the sample or applying an imputation strategy, 

should be implemented to improve model performance(Pedersen et al., 

2017).  MNAR, on the other hand, refers to missingness that depends on the 

missing values or other unobserved predictors.  Hence, for missingness due 

to MCAR, a careful analysis has to be performed so as to understand why 

the data are missing and the probable values.  A model of the missing 
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values must be part of the process of inference to avoid bias. This review 

focuses on strategies for addressing MCAR and MAR.   

 One simple way of handling missing data of the MCAR or MAR is to 

exclude all cases or all features with missing values(if there are many 

missing values of the said feature).   However, this would reduce the total 

number of observations in the training set or remove important features that 

may happen to be crucial predictors.  As such, Delen et al. (2010) took an 

approach of excluding features with 95% missing values from the training 

set, as they were insignificant to the prediction model.  Another way to 

handle missing data is to impute a significant value, such as the mean or the 

common value of the categorical type (Green et al., 2006a, Dangare and 

Apte, 2012, Khosla et al., 2010). Meanwhile, Khosla et al.(2010) employed 

the Linear Regression and Regularized Expectation Maximization methods 

for data imputation. Hruschka et al.(2004)proposed an approach using 

clustering in estimating the imputation values.   In his study,  the approach 

was to first cluster the complete instances by class label, and, then, impute 

the mean of the nearest cluster for each instance that contains missing 

values. In addition, Zhang et al.(2008b) also used the cluster-based 

approach to propose an imputation strategy.   The study proposed a  kernel 

function nonparametric random imputation to estimate the imputation value 

of each cluster, by which the training samples were then clustered using the 

K-Means algorithm and ignoring the class label.  Apart from that, Grzymala-

Busse and Hu(2001) compared nine methods of handling missing data, 

which finally concluded that the C4.5 method, based on entropy and 

splitting, and excluding the missing attributes emerged as the two superior 

methods for addressing missing data.  Reviewing several practical 

imputation methods on risk modelling using real clinical datasets with binary 

outcomes,  Ambler et al. (2007) concluded that models developed by 

ignoring and using only complete instances potentially produce unreliable 

models with substantial bias.  Also, the study suggested that multiple 

imputation by chained equations (MICE) was the best multiple imputation 

method, and that conditional imputation worked well on those datasets with 

the same characteristics as their dataset. 
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 In addition, some ML algorithm can also handle missing values by 

itself, but there is no specific strategy for specific missing patterns (MCAR, 

MAR, or MNAR).  As such, Su et al. (2008) reviewed the methods used in 

handling missing values by each of ML algorithm in WEKA. These can be 

categorized into: 1) ignoring missing values - as applied in NB, DT, 

Projective Adaptive Resonance Theory(PART) algorithms2) imputing 

missing values with the mean or median of  the observed values - as applied 

in LG and RF3) replacing missing values with a default value - as applied in 

SVM and One Rule (OneR)  4) imputing missing values with a distance 

measure - as applied in K-Nearest Neighbour (KNN) and 5) having a specific 

algorithm to handle missing values- as applied in  ANN. 

2.2.4 Imbalanced Dataset 

 An imbalanced or skewed dataset is defined as having an uneven 

distribution between classes, where one class has a lower distribution than 

the other.  An imbalanced class is indeed a concern in DM(Yang and Wu, 

2006).  The imbalanced distribution of the dataset may create biased results.  

In fact, most ML algorithms, such as DT, tend to predict based on the 

majority class data; hence, this results in a higher probability of 

misclassification of the minority class.  Unfortunately, an imbalanced class 

distribution reflects many real-world situations, such as fraud detection in 

banking transactions, facial recognition,  and oil spill detection.  Similar 

scenarios also exist in medical DM, such as identification of a particular 

disease, and prediction of mortality among patients suffering from breast 

cancer.  

 A number of studies have suggested many approaches for handling 

imbalanced classes, which can be categorized into two groups: 1)data- level 

approaches, and  2) algorithm-level approaches.  A data-level approach 

balances the distribution of classes at the processing level (re-sampling), 

and reduces the effect of skewed data during the learning process.  Hence, 

there is no dependence on a learning algorithm.  In general, a balanced 

distribution can be achieved either by reducing the majority class 

(undersampling) or by increasing the distribution of the minority class 

(oversampling).  Meanwhile, an algorithm-level approach involves adjusting 

the decision threshold, specifying costs for each class, enhancing the 
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sensitivity of the existing algorithm towards the minority class, combining 

multiple algorithms for classification, and constructing a new algorithm that 

works better on imbalanced datasets.  Boosting and bagging are examples 

of algorithm-level approaches. 

 Due to a high number of negative classes, Barakat et al.(2010) used a 

K-Means algorithm as a sub-sampling method to select a dataset for 

training.  In addition, Rahman and Davis(2013) suggested a cluster-based 

oversampling method, where the majority and minority classes were 

clustered using K-Means clustering.  Next, the different sets of clusters for 

both the majority and minority classes were combined and learned by DT 

and FURIA classifiers.  The results showed that the whole set of minority 

classes and a cluster of majority classes, as well as two clusters from the 

minority class and a cluster from the majority class, improved the overall 

sensitivity and specificity of the models.  In addition, this method is better 

compared to the cluster-based undersampling approach proposed by Yen 

and Lee(2009). 

 Meanwhile, the Synthetic Minority Over-Sampling Technique 

(SMOTE) method generates synthetic  instances for the minority class by 

learning from examples in the minority class.  The synthetic instances were 

included in the training set to build the classification model (Chawla et al., 

2002).  Additionally, an analysis performed by Han et al.(2005) showed that 

the data points were far from the borderline with minimum impact upon 

classification.  Thus, the study suggested an approach to building synthetic 

instances of the minority class based on the examples of data points near 

the borderline.  This approach is known as borderline-SMOTE. Moreover, 

Ramentol et al. (2012) used SMOTE to create additional samples for the 

minority class, and utilized the Rough Set Theory to improve the quality of 

the minority samples created by SMOTE. 

 Due to the advantages offered by under-sampling and over-sampling 

methods, Batista et al.(2004) combined both methods in solving the issue of 

imbalanced dataset. Meanwhile, Kubat and Matwin(1997) removed 

instances labelled as noise from the majority class to balance the class 

distribution.  Moreover, Khalilia et al. (2011)implemented a repeated sub-
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sampling method based on ensemble learning to handle an imbalanced 

dataset. In addition, Stefanowski (2013) revealed that the small number in 

the minority class was not really due to performance degradation.  Instead, 

the problem lies in a minority class that consists of small sub-parts and 

overlapping borderlines between classes.  Hence, in tackling imbalance 

issue due to borderline examples in minority classes, the study found that 

the under-sampling method using Neighbourhood Cleaning Rule(NCR) and 

hybrid SPIDER techniques (framework that integrates a selective data pre-

processing with the ensemble method) displayed better results in 

comparison to the oversampling method using SMOTE and the one-sided 

method. 

 Boosting refers to a technique that iteratively increases the weight of 

misclassified instances and lowers the weight of correctly classified 

instances(Freund and Schapire, 1996).   Apart from reducing overfitting, the 

bagging technique can also handle an imbalanced dataset.   In the bagging 

technique, various training samples are generated by replacement (Bauer 

and Kohavi, 1999).  Meanwhile, Galar et al. (2012)reviewed the capability of 

varied ensemble methods in handling imbalanced datasets.  The 

combination of undersampling technique with a bagging ensemble algorithm 

led to positive results. 

 Moreover, Japkowicz et al.(2002) concluded that the imbalanced 

dataset issue is more severe when the training set is small, which would 

imply a greater impact on classifiers sensitive to imbalanced datasets.  The 

study also found that compared to multilayer perceptron (MLP)  and SVM,  

the C4.5 algorithm exhibited higher sensitivity towards imbalanced datasets. 

Additionally,  the study also found that a cost-modifying method was better 

at handling an imbalanced dataset than undersampling and oversampling 

methods.  Yin et al.(2012), on the other hand, focused on an imbalanced 

issue at the feature selection phase.  As such, two methods were introduced 

in feature selection for classification of imbalanced datasets: 1)  a 

decomposition-based framework  for any existing feature selection method 

that can be embedded into the framework, and 2)the Hellinger distance-

based methods.  The work showed that the set of features derived from 

these two methods led to a better classification model compared to three 
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existing feature selection methods: the CFS, Fisher, and Mutual Information 

methods.  In addition, Japkowicz(2000), Chawla(2010), and Kotsiantis et 

al.(2006) reviewed different strategies and algorithms in handling imbalance 

datasets. 

 In dealing with an imbalanced dataset, a more appropriate evaluation 

technique is required.  Evaluation based solely on the accuracy rate does 

not present true classification results.  For example, in an extremely 

imbalanced dataset, the accuracy may still be good, even though all the 

correctly classified cases are from the majority class and none are from the 

minority class.  Besides, the accuracy rate does not differentiate the correct 

classification of majority and minority classes.  In fact, the ROC Curve, AUC, 

and F-Score are some instances of evaluation metrics that can be employed 

to evaluate the performance of the model when dealing with imbalanced 

datasets (Witten et al., 2005, Baldi et al., 2000). 
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Chapter 3:  Research Methodology 

This chapter describes the methods employed in the study.  The 

methodology applied in this study was guided by the clinical modelling 

approach as depicted in Steyerberg(2009) and Lee et al. (2016), along with 

standard DM methodology, i.e., CRISP-DM (Nisbet et al., 2009). A summary 

of the methodology used in this research is portrayed in Figure 1. 

 

Figure 1: The research methodology 

3.1. Evaluation of the Present ACS Prediction Models 

 The present ACS prediction models are elaborated in the literature.  

Several aspects, for instance, overall study population, study design, 

predictors and outcome, prediction methods, and model performances were 

identified, evaluated, and compared(refer to Section2.1). 

 



- 42 - 

3.2. Data Extraction 

 The data were extracted from two sources, as follows: 

1) National Cardiovascular Disease Database (NCVD) - The Malaysian 

ACS Registry 

A Malaysian national ACS registry has been recording ACS events 

from 18 hospitals located in Malaysia since 2006. 

2) Improving Prevention of Vascular Events in Primary Care (IMPROVE-

PC) – The UK ACS dataset 

 The dataset is an outcome of the IMPROVE-PC project.  The 

 project-linked registry data is from the Myocardial Ischemia National 

 Audit Project (MINAP) with Hospital Episode Statistics (HES) and 

 Primary Care data extracted from nine General Practices (GP) in 

 Leeds for patients diagnosed with Coronary Artery Disease (CAD) 

 from 2000 until 2010.  For the purpose of this study, the data 

 information derived from the UK dataset has been limited to MINAP 

 and HES.    

The raw datasets retrieved from the two sources were in .csv file format.  

3.3. Data Understanding and Baseline Data Preparation 

 The objective of this phase is to understand the overall population in 

the datasets, potential predictors for model development, and outcomes.  

Hence, the characteristics of each dataset were defined, and the similarities 

and differences were evaluated.  In addition, data dictionaries for each 

dataset were used as the main reference to comprehend the overall context 

of the extracted datasets. The final outcomes of this phase are: 1) the 

baseline datasets - used to define the population characteristics, and 2) the 

baseline modelling datasets - for model development. 

 The summary of baseline datasets and baseline modelling datasets 

formation are illustrated in Figure 2. 
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Figure 2: Formation of baseline datasets and baseline modelling datasets 

 

The baseline datasets were extracted from raw datasets.  In fact, only ACS 

entries that met the criteria for each patient entry to the registry at first 

hospital admission have been considered for this study.  The outcome of the 

model is in-hospital mortality.  Thus, relevant in-hospital outcome attributes 

were identified, coded into binary outcomes, and an appropriate strategy 

was applied to ascertain missing values.  The candidate predictors 

functioned as attributes with regard to patients‘ clinical, demographic, and 

admission information. These attributes were further classified into the 

following categories: 

 Admission 

 Demographics 

 Status Before Event - Smoking Status, Aspirin Used, Past Medical 

History, Past Medical Treatment 

 Clinical Presentation 

 ECG 

 Clinical Investigations and Examinations 

 Clinical Diagnosis 

 Treatment and Interventions 

 Medical - Pre Admission, During Admission, Post Admission 

 Clinical Outcomes 

 Geographical score 
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Other irrelevant attributes were excluded from the baseline datasets.  The 

datasets were then cleaned up and transformed to ensure the quality of 

data.  As such, graphical charts and descriptive statistics were used to 

examine the baseline dataset in light of in-hospital mortality.  Hence, any 

potential outlier or noise (miscoding, suspicious data, or just plain error) 

found within the datasets has been highlighted 

 After that, using the baseline datasets, baseline modelling datasets 

were generated.  The baseline modelling dataset incorporates only attributes 

that were used for model development.  The model is meant to aid doctors 

or medical practitioners in making diagnoses for further treatment.  The 

criterion of choosing the attributes is to include only attributes that were 

captured before making diagnosis or/and any decision regarding the 

diagnosis.  With that, four groups of attributes were excluded, which were: 

 Admission 

 Clinical Diagnosis 

 Treatment and Interventions 

 Medical - During Admission, Post Admission 

 Clinical Outcomes, except for in hospital mortality 

Then, the final baseline modelling dataset was divided into training and 

testing datasets (i.e., 2/3 training dataset, and 1/3 testing dataset). 

During preparation, ‗dirty‘ records and ‗dirty‘ attributes were deleted.  

Additionally, some key attributes were imputed, some values in attributes 

were transformed and several new attributes were created.  

3.3.1 Methodology Review 

 The objective of this task is to review the process of developing the 

model using WEKA.  WEKA is an open-source software developed by the 

University of Waikato, New Zealand using Java (Witten et al., 2005, Hall et 

al., 2009).  The software, under the GNU General Public License,  provides 

a collections of ML algorithms for DM tasks supported by visualization tools.  

The software also provides a platform for a developer to develop new DM 

and ML algorithms.  It is globally accepted for data analysis and predictive 

modelling by many practitioners and research scholars.  
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 A preliminary study was executed using the Malaysia dataset with a 

smaller number of attributes to compare three ML algorithms in WEKA.  The 

preliminary  study was presented in the 33rdd SGAI International Conference 

on Artificial Intelligent(Jaafar et al., 2013). Also, the objectives of the task 

were to identify 'unsuitable' ML algorithms for the datasets derived from 

WEKA involving 29 ML algorithms, explore the effect of missing values in 

developing a model, and evaluate the varied proportions of the random 

sampling method. 

3.4. Feature Selection 

 Each Malaysian and UK baseline dataset exceeded 50 attributes in 

size.  The study employed a feature selection method using ML as a 

technique to simplify the model, yet retain its good predictive power.  

Different sets of predictors were also grouped to achieve Objective 2 of the 

study, i.e., to investigates the potency of the current set of predictors in 

developing ACS prediction using ML techniques, and to investigate the 

strength of predictors from different clinical categories in producing good 

predicting models.  As such, various sets of predictors were established.  

These subsets of predictors were employed as input datasets to build the 

models based on varied learning algorithms.  

3.5. Model Development and Evaluation 

 The complete model development in WEKA embeds the process of 

preparing the input files, inclusive of feature selection, placement of the input 

dataset for training, and training the dataset by using a specified 

classification algorithm (development of a model).  Next,  the model was 

tested for its validity with the testing datasets.  In this study, the AUC was 

employed to measure the discrimination performance of the models. Figure 

3 portrays the feature selection process, model development, model 

evaluation, and model validation implemented in this study.  

  

 



- 46 - 

 

Figure 3: Detailed methodology of model development, model evaluation, and model validation 
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 As depicted in Figure 3, from the baseline modelling dataset, several 

subsets were extracted as a result of the feature selection task.  These 

subsets functioned as the input datasets to develop the ACS prediction 

models on various classification algorithms.  These models were then 

validated by using the validation dataset.  Next, the AUCs of the models 

were assessed and compared to determine the best classification models.  

In fact, some of these models were applied to analyse the reasons for 

misclassification.  Hence, based on the misclassification analysis, the 

models were further optimized by employing some methods to handle 

imbalanced datasets and missing values.  Furthermore, the varied methods 

employed to handle imbalanced datasets and missing values were 

compared with the methods proposed in this study, i.e. the overlapped 

undersampling method and  mean-clustering-imputation method. In addition, 

the prediction models that estimated the misclassification instances were 

also built as a result of the misclassification analysis task.  Later, the best 

classification models were tested on both internal and external datasets (if 

applicable).  Lastly, AUC, Brier score (BS), and calibration plots were 

compared to identify the best classification models. 

3.5.1 Classification Algorithms 

 One of the objectives of this study is to establish the best ML 

algorithms for developing ACS prediction models.  Subsequently, this study 

also identified 'unsuitable' algorithms for the dataset, as set out in Objective 

1 of the study.  As such, 29 ML algorithms with a default parameter setting 

available in WEKA were evaluated.  These classification algorithms 

originated from distinct basic learning concepts, namely, Naive Bayes, 

Linear/Non-Linear, SVM, Neural Networks, Instance-based Rules, and Tree 

models.  These are the basic concepts of learning that ML algorithms are 

developed from. 

 Furthermore, Gibert et al.(2010) asserted that to select potential ML 

algorithms for classification modelling, the primary task of the modelling and 

the dataset structure appear to be the two parameters that must be factored 

in.  In fact, these 29 selected algorithms suit with the study objectives and 

attributes of the datasets.  Moreover, these algorithms support the 

classification task (prediction capabilities with some algorithms supporting 
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description capabilities, in which the patterns could be understood by 

humans) with a dichotomous outcome, as well as both continuous and 

categorical attributes. 

 The 29 algorithms as depicted in Section3.3.1were first evaluated.  In 

addition, the 'unsuitable' classification algorithms for the ACS datasets 

generated in this study were eliminated, while the rest were used for model 

development.  Table 2 presents the evaluated modelling algorithms. 

Table 2: List of evaluated classification algorithms 

Basic Algorithms  WEKA Modelling Algorithms/Classifiers 

Naïve Bayes Learning Bayes Net (BN) 
Naïve Bayes (NB) 

Linear Models/Non-Linear Logistic (LG) 

SVM SMO(SVM) 

Neural Networks MultiLayerPerceptron (MLP) 
VotedPerceptron (VP) 

Instance-Based Learning K-Nearest Neighbour (KNN) 
Locally Weighted Naive Bayes (LWL) 

Rules Conjunctive Rules (CR) 
Decision Table (DT) 
Decision Tables and Naive Bayes (DTNB) 
Repeated Incremental Pruning to Produce Error Reduction (Jrip) 
OneRule (OneR) 
Projective Adaptive Resonance Theory (PART) 
RIpple-DOwn Rule (Ridor)  
ZeroR (ZR) 

Tree-Based Alternating Decision Tree (ADT) 
Bloom-Filter Tree (BFT) 
Decision Stump (DS) 
Functional Tree (FT) 
C4.5 decision tree (J48) 
Grafted C4.5 decision tree (J48Graft) 
Logistic Alternating Decision Tree (LT) 
Logistic Model Trees (LMT) 
Nave Bayes Tree (NBT) 
Random Forest (RF) 
Random Tree (RT) 
REPTree (REPT) 
SimpleCart (SC) 

 

The evaluated ML classification algorithms are grouped into seven basic 

learners as illustrated in Table 2.  Algorithms under the NB learner uses the 

classical statistical theory i.e. Bayes theorem(John and Langley, 1995) as 

the basis of the algorithm.  The LG algorithm in WEKA uses regression 

technique with a ridge estimator(Witten et al., 2005).  On the other hand, 

SVM algorithm uses the maximum-margin hyper-plane to determine the best 
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separation for the classes(Vapnik, 1998).  Neural Network is a learner which 

uses the basis of  human brain interactions in processing and understanding 

relationships.  As for instance based learning, a distance function is used to 

determine the shortest distance between the training samples and test 

samples(Witten et al., 2005).  While rule and decision tree learners are 

based on divide-and-conquer approach which normally work on top-down 

manner.  At each stage, the best identified attribute is split into classes, and 

recursively process the sub problems resulted from the split.  Unlike decision 

tree, rule based learner comes with a rule in selecting the instances at each 

stage.  Thus, the rule based learner will lead to a set of rules rather than a 

decision tree(Witten et al., 2005).  Different rules, different splitting methods 

and different pruning strategies (to reduce number of nodes in a tree) 

differentiate the algorithms under rule and decision tree learners.   

3.5.2 Evaluation Methods 

3.5.2.1 Hold Out Method - Random Sampling 

 Due to the massive size of the dataset to be learnt by the classifiers, a 

hold-out strategy was employed to evaluate performance metrics (Witten et 

al., 2005).  The baseline datasets were randomly divided into two sets: 1) a 

training set - to construct and evaluate the model, and 2) a test set - to 

estimate the final performance of the selected model.  In the methodology 

review, various proportions of both training and validation sets were 

examined for the29 ML algorithms, primarily to identify the best range of hold 

out method for the datasets. 

3.5.2.2 Discrimination 

 In the clinical prediction models, two primary aspects are considered 

for measuring model performance, namely, discrimination and calibration 

(Steyerberg, 2009).  Discrimination refers to the ability portrayed by a 

predictive model in distinguishing outcomes.  A perfect discrimination refers 

to the ability of a model to perfectly place the tested elements into their true 

classes.  One of the widely used performance measures used to evaluate 

discrimination within the context of dichotomous classification is the receiver 

operating characteristics (ROC) curve. The ROC curve presents the relative 

trades-off between true positive (sensitivity) and false positive (1-specificity) 
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(Pepe, 2003).  Apart from a medical clinical decision and diagnostic tests, 

the ML community recommends discrimination as a performance measure 

with which to compare prediction models (Bradley, 1997, Fawcett, 2006, 

Kumar and Indrayan, 2011).  The summary measure of ROC is an area 

under the ROC curve is AUC, which is also known as a c-statistic.  

Moreover,  AUC has been widely used in medical journals to assess 

predictive performance.  Even though some issues have been raised in 

applying AUC, or the c-statistic(Lobo et al., 2008, Cook, 2007),  the 

application of AUC-ROC has been utilized by various disciplines, including in 

recent developments in ACS mortality prediction models (Huynh et al., 2013, 

Kurz et al., 2009).   

 Therefore, the AUC was used in this study to access the 

discrimination capability among the models.  Besides, using AUC, 

comparison in terms of predictive performance between the developed 

models and the existing ACS models is relevant since AUC/c-statistics has 

been the way of measuring the predictive performance of existing ACS 

models.   

3.6. Misclassification Analysis 

 The objective of misclassification analysis is to determine the causes 

of misclassified instances resulted from model development.  Hence, this 

analysis focused on examining misclassified instances in minority classes, 

overlapping classes, outliers, and missing values.  Based on the results 

obtained from the misclassification analysis, a prediction model that 

estimated misclassified instances for ACS was developed.  

3.7. Model Optimization 

 Model optimization refers to applying several strategies to increase 

model performance.  The two methods proposed in this study to improve the 

model performance were: 1) the overlapped-undersampling method - to 

address issues related to imbalanced datasets, and 2) the mean-clustering-

imputation method - to handle missing values. 
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3.8.  Model Validation 

 Model validation validates the best models for the datasets.  The best 

models for the datasets go through internal and external validation 

processes.  The calibration measure of the best models in this study was 

calculated by using the Brier Score (BS).  Additionally, calibration plots were 

applied to illustrate the calibration of these models. 

3.8.1 Internal and External Validation 

 Internal validation incorporates testing a model with similar underlying 

populations, whereas external validation tests a model on other populations.  

As for this study, the testing dataset reserved earlier in the data 

understanding and data preparation processes has been employed to 

internally validate the models.  In order to validate a model, the testing set 

must display similar features to the derived model.  For instance, if the 

model were built with four features: 1) Age,  2) Heart rate,  3) SBP, and 4) 

Height, those features must also exist in the testing set.  Therefore, the 

predictors of the best models were decreased to compromise with the 

external testing dataset.  As for external validation, models built based on 

the Malaysian dataset were tested on the UK dataset, while models 

developed on the UK dataset were tested on the Malaysian dataset. As a 

result, a generic ACS prediction model for both the Malaysian and UK 

datasets had been identified after executing external validation. 

3.8.2 Brier Score (BS) 

 Another essential measurement for prediction models is calibration 

(Steyerberg, 2008, Van Calster et al., 2015).  A well-calibrated model is vital 

for later use in risk adjustment.  In addition, calibration refers to the 

assessment of how well a model could predict, in comparison to the actual 

events.   In this study, the best models were calibrated by using BS.  BS, 

which is a method proposed by Glenn W. Brier in the 1950s,denotes a 

scoring rule based on a simple mean squared error of the predicted value (in 

comparison to the actual outcome).   
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The formula is presented as below: 

𝐵𝑆 =  
1

𝑁
  𝑓𝑡 − 𝑜𝑡 

𝑛

𝑡=1

 

Where, 

N is the number of samples 

f is the predicted probability 

o is the outcome (1 if the event occurred, 0 if did not occur) 

is the summation of the values 

 

A BS value close to zero means good prediction, whereas a score towards 1 

indicates otherwise. 

 In the study, the predicted probability of each instance was obtained 

from one of the output options provided by WEKA. The sample output from 

WEKA is depicted in Figure 4.  The predicted probability is represented in 

the "probability distribution" column of Figure 4 which represents the 

predicted probability of negative and positive cases of each instance. 

 

Figure 4:A snippet of sample output produced by WEKA 
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3.8.3 Calibration Plots 

 A calibration graph was generated for each model to visually illustrate 

models prediction versus the actual outcome.  The graph was plotted with 

the predicted mean values on the x-axis, while the values in the y-axis 

represented the recorded values.   

 Due to the binary outcome, using the actual outcomes of 0 or1 fails to 

provide meaningful variances.  Hence,  a method of binning, as 

recommended by John Tukey, has been adopted in this study.  The binning 

method divides the mean values of predicted probabilities in a number of 

bins with each bin consisting of similar prediction probability values.  In this 

study, the mean values were divided using ten quantiles.  As such, the 

predicted mean value for each of the ten bins was compared with that of the 

actual outcome.  Additionally, a model is said to be well-calibrated if the 

predicted and the actual mean values for each bin are close in value.  

Therefore, a well-calibrated model should show the points on the graph lying 

close to the 45-degreediagonal line. Moreover, plotting these values on a 

graph offers a better view of the ability of the predicted values to calibrate 

the observed values. 
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Chapter 4:  Data Understanding, Data Preparation, and 

Methodology Review 

This chapter describes the characteristics of the two datasets employed in 

this study, derived from Malaysia and the UK.  In addition, the chapter 

elaborates on the processes of preparing the baseline and baseline 

modelling datasets. Furthermore, the chapter explains the process of 

reviewing model development using WEKA, as well as several strategies 

applied in model development. 

4.1. Overview of ACS Datasets 

4.1.1 Malaysian Dataset - National Cardiovascular Disease 

Database (NCVD) 

 The Malaysian ACS registry, which is hosted by NCVD, is supported 

by the Malaysian Ministry of Health (MOH).  This database is central and 

‗live,‘ as it integrates all CVD databases in Malaysia to strategically manage 

CVD treatment and improve overall cardiac services in Malaysia.  Given this, 

the registry is comprised of information pertaining to patients diagnosed with 

ACS, including STEMI, NSTEMI, and UA, aged 18 years old and above, and 

admitted to one of 18 participating sites throughout Malaysia.   

 As a standard procedure in Malaysia, a patient record is created upon 

admission to the hospital.  Additionally, records in the ACS registry are 

captured from patients‘ records at the hospitals.  In fact, it was ascertained 

that these records satisfied the ACS enrolment criteria before being 

transferred to the ACS registry.  Moreover, all the records were first 

validated and cleaned before being transferred into the registry.  The data 

stored in the registry were designed by the content experts in the discipline, 

led by a team from the Cardiology Department of the MOH, universities, 

National Heart Institute, and Department of Medicine at the Kuala Lumpur 

Hospital.  The information was designed based on international registries 

and guidelines issued by the Australian National Data Elements for ACS, the 

European Cardiology Audit and Registration Data Standards (CARDS), as 

well as the American College of Cardiology Clinical Data Standards(Chin et 
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al., 2008).  Follow-up data of 30 days and 12 months upon initial registration 

were also captured in the ACS registry. 

 The information in the registry includes admission details, 

demographics, past medical history, clinical and procedure information, as 

well as pharmacotherapy.  Since the data is derived from the registries of 18 

hospitals that cover all 14 states in Malaysia, both ACS events and trends in 

the registry were assumed to reflect ACS events and trends throughout 

Malaysia, mirroring the varied races and ethnicities in Malaysia(Ahmad et 

al., 2011). 

4.1.2 The Leeds, UK Dataset - Improving Prevention of Vascular 

Events in Primary Care (IMPROVE-PC) 

 The IMPROVE-PC dataset refers to the outcome from a small part 

(Cardiovascular Healthcare Information Linkage Study) of the overall 

IMPROVE-PC project.  The main aim of the IMPROVE-PC project has been 

to promote healthy lifestyles by changing the behaviour among those with a 

high risk of being diagnosed with CVD in the Leeds area.  Hence, to attain 

the aim, it is crucial to find patients at high risk, which can be done by going 

through patient records in GP and/or hospitals.  As such, data recorded in 

both health care systems must be of good quality, reliable, complete, and 

consistent.  Thus, the Cardiovascular Healthcare Information Linkage Study 

is a project that links both primary and secondary care data in Leeds in order 

to evaluate the quality of recorded data in both health care 

systems(CLAHRC for Leeds).   

 In fact, the project linked three databases, which were the: 1) GP - 

SystemOne primary care, 2) MINAP, and 3) HES.  MINAP denotes the 

registry for hospital admission records for all ACS patients in England and 

Wales, whereas HES is composed of details of hospital episodes in NHS 

hospitals within England and all other hospitals that offer services to NHS 

patients.  The selected sample for the linkage studies included patients 

diagnosed with CVD, who had Leeds postcode, were registered under a 

selected GP using SystemOne, and were registered as an inpatient and 

outpatient at the hospitals(House et al., 2011).  
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4.2. Data Extraction 

 Data extraction refers to the process of extracting datasets from the 

registries.   

4.2.1 The Malaysian Dataset 

 In order to employ the Malaysian data for this study, initially, the data 

had to be requested from and approved by the NCVD board.  As such, the 

data were approved on 3rd October 2012 and released on 19th October 2012 

through a secured network protocol equipped with a password.  The secured 

network protocol was open for extraction for 7 days (19thuntil 25th October 

2012), and, on 26th October all the contents were removed.  The dataset 

was securely stored and processed in a private storage (m drive) located at 

the University of Leeds, which could only be accessed by the main 

researcher.  All the records were anonymized and were saved in a csv file.  

In fact, the details of the NCVD have previously been published(Chin et al., 

2008).  A total of 13,591patient records from year 2006-2010 were extracted 

with 215 attributes in each record.   

4.2.2 The Leeds, UK Dataset 

 Similarly,  the UK dataset was requested from and approved by Steve 

Magare, the data manager for the linkage project.  In fact, data were 

requested for HES- and MINAP-linked data for the years 2000 to 2010 for 

first admissions only.  Hence, the dataset only consists of ACS patients 

derived from the MINAP registry, and additional information on the attributes 

obtained was from HES.  The data were approved and released on 

10thOctober 2013 through a secured network protocol, together with secured 

encrypted password.  The data were securely stored and processed in 

private storage located at the University of Leeds (m drive), which could only 

be accessed by the main researcher.  All records were anonymized and 

saved as a csv file.  The total records gathered were 50,588 records with 

236 attributes in each record. 
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4.2.3 Attributes of The Datasets 

 Each entry of the raw dataset (Malaysian and the UK) is identified by 

its unique id.  The attributes of the datasets are inclusive of clinical, non-

clinical, and database-specific data.  The clinical information covers data 

related to admissions, demographics, past medical history, clinical and 

procedure information, as well as pharmacotherapy, which were further 

divided into various clinical categories.  Meanwhile, non-clinical information 

refers to data that are unrelated to ACS, whereas database information 

denotes attributes used for database and meta-data purposes.  The 

attributes are comprised of numerical (discrete and continuous), categorical 

(ordinal and nominal), date, and text data types.  The detailed summary of 

attributes for the raw datasets are summarized in Appendix A, withA.1.1 

Summary of Attributes describing the Malaysian dataset, and A.2.1 

Summary of Attributes describing the UK dataset. 

4.3. Data Preparation 

4.3.1 Baseline Dataset Preparation 

 A baseline dataset was used to comprehend the populations in the 

study, as well as to statistically summarize the characteristics of the study 

populations.  Baseline datasets is a subset of the raw dataset.  Moreover, 

these baseline datasets were the outcome of cases filtered in accordance to 

the study scope, formation of the outcome attribute, and selected candidate 

predictors, as well as the overall cleaned up and transformed datasets. 

4.3.1.1 Study Population 

 The sources of both the Malaysian and UK datasets were registries, 

which were mainly derived from hospital records.  Before the hospital 

records were transferred into registries, specific data validation and cleaning 

procedures were executed  (Gale et al., 2008a, Chin et al., 2008).  Hence, 

an assumption was made that all records in the dataset were related to 

those diagnosed with ACS based on the specification of  the registries.  

Nonetheless, the data were still validated to ascertain that only patients 18 

years old and above and admitted between 2006 and 2010 for Malaysian 
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dataset, and 2000 and 2010 for the UK dataset, were included.  All records 

that failed to meet the criteria were excluded from the dataset. 

4.3.1.2 Selection of First Entry 

 In addition, it is important to note that the study only considered the 

first hospital admission for each patient.  All subsequent entries were 

considered duplicates, and were thus excluded from the dataset. 

 As for the Malaysian dataset, multiple admission dates of a patient 

were used to identify duplicate patients.  As such, 669 patients were 

detected with multiple entries.  Thus, the first admission date was 

considered as the first entry, while the remaining entries were considered as 

subsequent entries, and hence excluded from the dataset.  However, 29 

patients with multiple entries had a similar admission date.  For such cases, 

the entries were first evaluated to determine the available information that 

led to the identification of first entry.  If this did not work, the strategy was to 

look for an entry with more valuable information, for example, fewer missing 

values and less noisy data.  If the entries shared similar valuable 

information, the one with the lowest notification id was selected as we 

assumed that the notification id was generated in an incremental manner. 

There were also 11 cases in which admission was detected at two different 

hospitals either on the same date or  on two consecutive days.  These 

particular cases were due to immediate transfer of patients to another 

hospital.  Hence, the entry for the second hospital was selected, primarily 

because the patients stayed longer at the second hospital, when compared 

to the initial hospital (discharged on the same date or the next after being 

admitted), thus suggesting more data collection during the stay.  Moreover, it 

is also notable that all these cases referred to patients who were transferred 

to the National Heart Institute or a specialized hospital for heart problems.  

Thus, it was assumed that more reliable and thorough data were collected 

from these hospitals. On top of that, records for four patients had similar 

admission dates, but the information between the records were totally 

sparse, thus leading to dead ends.  Hence, these records were excluded 

from the dataset.  Finally, there were two other special cases which, in each 

case, involved the same patient, but had varied admission dates with 
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overlapping durations of stay at two hospitals.  These records were also 

deleted from the dataset.   

 As for the UK dataset, a request was made to only extract the first 

admission entry for each patient.  Therefore, the records retrieved were 

assumed to contain no duplicates.  Besides, no attribute in the dataset could 

function as an indicator of duplicate patients. 

4.3.1.3 Preparation of In-Hospital Outcome 

 The dichotomous, categorical outcome for the prediction model is 

either dead or not dead.  In addition, in supervised learning or classification 

modelling, it is required that there be no missing values for the outcome, as 

the correlations between predictors and outcome cannot be analysed, but 

such relationships are indeed of key interest.  Moreover, in studies 

pertaining to prediction, cases with missing outcomes are generally 

discarded. 

 In terms of the Malaysian dataset, the attribute that reflected the in-

hospital outcome was ptoutcome.  The attribute is of type categorical, with 

two values: 1) Died – indicating that the patient died during his/her stay at 

the hospital, and 2) Discharged – indicating that the patient lived to leave the 

hospital.  Nonetheless, some 353 records were found to have missing 

outcomes in the dataset.  Each record in the Malaysian dataset has dead or 

alive information attached,  that was recorded by the National Registration 

Department of Malaysia (NRDM).  NRDM is a department within the 

Malaysian Ministry of Home Affairs that records and manages each 

important event in the life of an individual in Malaysia, such as birth, death, 

marriage, divorce, and citizenship status.  Therefore, the dead or alive 

information from NRDM was applied to impute the missing in-hospital 

outcome for the dataset.  Nevertheless, only records with ‗Not Died‘ (alive) 

status recorded in NRDM were considered for imputation.  This is because 

those that were listed as deceased could have died for reasons unrelated to 

the ACS event recorded in the registry.  After deliberate consideration, 309 

records with missing outcomes were imputed with a ‗Discharged‘ value, 

while all other records were deleted from the dataset. 



- 60 - 

 When considering  the UK dataset,  the in-hospital outcome attribute 

was referred to asX404.Death.in.Hospital, which was derived from MINAP.  

The attribute is of type categorical with seven different values, namely, 1) No  

- indicating that the patient had not died, 2) From MI – indicating that the 

patient died due to MI, 3) From complication of treatment – indicating that 

the patient died due to complications from treatment, 4) Other cardiac cause 

– indicating that the patient died due to other cardiac issues,  5) Other non-

cardiac cause – indicating that the patient died due to a non-cardiac cause,  

6) Unknown – status is unknown, and 7) NA – unavailable information.  The 

missing values in the attribute are indicated with ‗Unknown‘, ‗NA,‘ or a blank.  

No attributes in the datasets could possibly suggest a reliable imputed value 

for the outcome attribute.  As such, a total of 45,328 records were 

considered as missing and were deleted from the dataset. 

4.3.1.4 Selection of Candidate Predictors 

 Candidate predictors were selected by identifying relevant attributes 

for the research.  All attributes pertaining to ACS and clinical elements were 

considered as potential predictors.  These attributes, even excluded from 

model development ,were important for dataset characteristics and 

generalization analyses.   After careful analysis, six categories of attributes 

were considered to be irrelevant to the research objectives outlined, and 

were thus discarded. 

1. Duplicate attributes 

Some attributes were notably duplicates.  For example, the attributes 

contactinstitutionname and sdpid, in which contactinstitutionname 

reflected the hospital/centre, while sdpid denoted the code for each 

hospital/centre.  They were a one-to-one match. 

Refer to Appendix A for lists of the dataset attributes that were 

duplicates. In particular, seeA.1.2 List of Duplicate Attributes and A.2.2 

List of Duplicate Attributes for the Malaysian and UK datasets, 

respectively. 
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2. Database-related attributes 

These attributes were irrelevant to model development or for any 

analysis purposes. 

Refer to Appendix A for lists of irrelevant attributes. In particular, 

seeA.1.3 List of Database Attributes and  

A.2.3 List of Database Attributes for the Malaysian and UK datasets, 

respectively. 

3. Unknown attributes 

These attributes did not reflect clinical elements and did not provide any 

information.  In addition, these attributes were not described in the data 

dictionary or data definitions. 

Refer to Appendix A for further information. In particular, see 

A.1.4 List of Unknown Attributes and  

A.2.5 List of Unknown Attributes for the Malaysian and UK datasets, 

respectively. 

4. Irrelevant attributes 

These attributes were irrelevant for modelling or generalization in this 

study.  The specific reasons for excluding these attributes are described 

in Appendix A.   

Refer to A.1.5 List of Irrelevant Attributes and 

A.2.5. List of Irrelevant Attributes for the Malaysian and UK datasets, 

respectively
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5. Non-standardized data collection attributes 

This particular category of attributes only existed in the Malaysian 

dataset.  The attributes referred to information in which the values were 

neither standardized nor reliable for this study. For instance, information 

concerning Peak Troponin was captured in various manners, depending 

on the equipment used in the hospitals/centres.  Additionally, different 

equipment led to different values.   

Refer to Appendix A: 

A.1.6 List of Non-standardized Data Collection Attributes. 

6. Dependent attribute for missing values 

This scenario only existed in the Malaysian dataset.  The missing values 

were represented in varied ways, such as specifying the missing value 

with  ―Missing,‖ ―Not Available,‖ ―Unknown,‖ or simply a ‗blank.‘ However, 

missing values were also represented by specifying values in another 

dependent attribute.  In actual fact this dependent attribute is duplicate of 

the actual attribute.  For example, attribute heightna refers to an attribute 

that records the missing values of patient's height.  However, if the height 

of a patient is not captured or found missing, the value was represented 

as ‗blank‘ in the attribute height.  These ‗blank‘ values in height indirectly 

represents the information heightna was supposed to capture. 

Refer to Appendix A:A.1.7 List of Dependant Missing Attributes.. 

4.3.1.5 Data Cleaning and Transformation 

 New attributes were created to simplify the existing information.  Refer 

to Appendix A: A.1.8 List of New Attributes and A.2.7 List of New Attributes 

for the Malaysian and UK datasets, respectively. 

4.3.2 Baseline Modelling Dataset Preparation 

 The baseline modelling dataset refers to baseline datasets meant for 

modelling.  This incorporates a process of reducing the candidate predictors 

in a baseline dataset to suit the objectives outlined for model development.  

In this case, the model is targeted to help doctors or medical practitioners in 

making a diagnosis for further treatment.  Hence, this study only considered 
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attributes that were captured before making any decision on diagnosis and 

decision about the diagnosis. As a result,  attributes from the following 

categories were discarded. 

 Admission 

 Clinical Diagnosis 

 Treatment and Interventions 

 Medical - Post Admission 

 Clinical Outcomes - Advice, Rehab, Therapy(Only applicable in the 

UK dataset) 

4.4. Results 

4.4.1 Baseline Datasets 

 After filtering, selecting, and cleaning up the cases and attributes, a 

total of 12,710 records with 75 attributes were left for the Malaysian baseline 

dataset (down from 13,591 records with 215 attributes),and 5,127 records 

with 65 attributes were left for the UK baseline dataset (from an original  

50,588 records with 236 attributes).  The final baseline dataset resulted from 

the deletion of approximately 90% of the raw dataset.  The large number of 

excluded records from UK dataset was due to quality issues, as mentioned 

earlier.   

 Although a large number of  records were deleted from the raw 

dataset, the sample size of the UK dataset (n=5,127)is still considered 

appropriate for prediction modelling.  In terms of ML classification modelling, 

Mukherjee et al. (2003) identified that, in the treatment outcome problem, the 

minimum size for a training sample for a classification problem is more than 

50 observations (Mukherjee et al., 2003).  For validating a ML classification 

model, Beleites et al.(2013) suggested that, in order to validate a model from 

a small sample (i.e., 25 samples per outcome), a minimum of 75-100 

observations are needed.  Moreover, Hu et al.(2016) demonstrated  how 

they had achieved a good performance model with a small sample size.  The 

study evaluated the effect of different sample sizes on the AUC by modelling 

with different sample sizes.  The result illustrated that at 20% (586/2930) of 
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the sample size, the performance of the models were found to be relatively 

stable.  Thus, the sample size of the UK dataset is  sufficient to produce a 

reliable model.  Two thirds of the baseline datasets were reserved for model 

derivation, while the remaining one third of the datasets were reserved for 

model validation. 

 The variation in attributes between the Malaysian and UK datasets 

was mainly due to the slightly varying levels of information captured from the 

datasets.  Otherwise, most of the attributes reflected standard information for 

ACS.  As such, 31 common attributes were generated from both the 

Malaysian and UK datasets. Refer to Appendix A:A.3The Mapping of 

Malaysian and The UK Datasets for a list of common attributes. 

4.4.1.1 Data Quality Issues 

 Generally, as mentioned, both datasets had issues related to 

duplicates and unknown attributes, as well as missing data.  The 

duplications of attributes in the UK datasets were mainly due to the varied 

sources of data, such as MINAP and HES.  Both sources of data possessed 

their own attributes, which stored similar information.  Meanwhile, unknown 

attributes refer to attributes that are not specifically defined in the data 

dictionary.  In fact, this case could be suggested to the contributors of 

datasets so as to improve their data dictionary specification, and, probably, 

the overall database design.  Furthermore, many attributes had missing 

values for both datasets.  Moreover, after applying missing value analysis to 

the baseline datasets, no complete case was detected in the UK dataset, 

while only 317 complete cases were found in the Malaysian dataset.  The 

UK dataset might not have any complete case due to the lower number of 

cases in the dataset in comparison to that in the Malaysian dataset. 

 The study has identified that, within the Malaysian dataset, several 

attributes,  such as tropinin and creatine kinase MB (CK-MB), were not 

captured via standard metrics, as different hospitals or centres employed 

varying forms of metrics.   Hence, although these attributes were vital as 

candidate predictors, they were discarded mainly for being described by 

non-standardized values.  Furthermore, data standardization is a key 

criterion towards attaining the maximum benefits of a registry (Workman and 
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A, 2013).  Therefore, the findings from this study will be brought to the 

attention of the NCVD in order to improve the overall data collection 

strategy.  On the other hand, for the UK dataset, some attributes only 

consisted of a single value, which was mainly associated with "Not 

Applicable."  This indicates that the attributes might not be applicable for the 

population in the study.  In addition, outliers, such as in the attributes SBP, 

height, weight, and cholesterol reading, were also noted in the UK dataset, 

were eliminated before initiating model development.
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4.4.1.2 Study Population Characteristics 

Table 3: Baseline characteristics of both the Malaysian and UK datasets 

Characteristics  Malaysian dataset UK dataset 

2006 - 2010 2003 - 2010 

Derivation 

(n= 9533) 

Validation 

(n= 3177) 

Derivation 

(n=3845) 

Validation 

(n=1282) 

Age (years) 59.0 (12.1) [0%] 58.7 (11.9) [0%] 68.8 (13.4) [0%] 68.9 (13.2%) [0%] 

Male 7225 (75.8%) [0%] 2439 (76.8%) [0%] 2464 (64.1%) [0%] 817 (63.7%) [0%] 

SBP 139.1 (28.7) [1.7%] 139 (28.7) [1.9%] 147.8 (242.8) [23.1%] 143.5(29.6) [23.8%] 

Height 161.7 (8.3) [45%] 162.2 (8.2) [45.4%] 166.1 (65) [70.9%] 163.1 (26.1) [73.3%] 

Weight 67.6 (14.1) [38.1%] 68.2 (14.1) [38.6%] 78.3 (18.2) [60.6%] 79.4 (42.6) [62.8%] 

Heart rate (beats/mins)  83.6 (21.3) [1.7%] 83.7 (21.3) [1.7%] 83.7 (34.8) [23.1%] 85.2 (27.4) [23.7%] 

Total Cholesterol 5.31 (1.3) [28%] 5.3 (1.4) [27%] 11.8 (140.9) [40%] 6.7 (29.7) [41%] 

Killip:> 1 2264 (23.8%) [24.6%] 758 (23.8%) [10.1%] NA NA 

Previous MI 1569 (16.5%) [20.8%] 524 (16.5%) [21.7%] 2623 (22.1%) [9.7%] 287 (22.4%) [10.9%] 

History of heart failure 616 (6.5%) [17.2%] 208 (6.5%) [18.6%] 207 (6.5%) [17.3%] 75 (5.8%) [18.0%] 

History of stroke(cerebrovascular) 328 (3.4%) [19.5%] 118 (3.7%) [20.6%] 272 (7.1%) [18.1%] 82 (6.4%) [18.7%] 

History of peripheralvascular disease 74 (1.0%) [20.7%] 19 (0.6%) [21.7%] 195 (5.9%) [13.0%] 62 (4.8%) [14.4%] 

History of renal failure 586 (7.6%) [19.4%] 185 (5.8%) [21.0%] 159 (5.0%) [18.0%] 62 (4.8%) [18.3%] 

Aspirin taken  3056 (32%) [9.7%] 990 (31.2%) [10.6%] 815 (21.2%) [6%] 255 (19.9%)[7.4%] 

History of hypertension 5773 (60.6%) [13.8%] 1878 (59.1%) [14.4%] 1566 (40.7%) [10.6%] 513 (40%) [11.9%] 

Current smoker 3231 (33.9%) [5%] 1076 (33.9%) [6%] 1009 (26.2%) [12.7%] 336 (26.2%) [14.2%] 

History of diabetics 3964 (41.6%) [17.1%] 1318 (41.5%) [17.7%] 567 (14.8%) [8.9%] 227 (17.7%) [9.2%] 

BB Given 2269 (27%) [11.9%] 698 (22.0%) [12.5%] 1654(60.5%) [28.9%] 535 (41.7%) [30.5%] 

Statin Given 2724 (32.3%) [11.6%] 874 (27.5%) [12.5%] 1993 (72.6%) [28.6%] 658 (51.3%) [30.7%] 
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Previous PCI  NA NA 348 (9.1%) [18%] 111 (8.7%) [18.6%] 

Previous CABG NA NA 259 (6.7%) [16.8%] 78 (6.1%) [17.7%] 

ECG 
    

ST elevation Level 1 1910 (20%) [0%] 615 (19.4%) [0%] 
1431 (37.2%) [4.7%] 454 (35.4%) [6%] 

ST elevation Level 2 3146 (33.3%) [0%] 1066 (33.6%) [0%] 

Q Wave NA NA NA NA 

ST Depression 2488 (26.1%) [0%] 815 (25.7%) 580 (15.1%) [4.7%] 180 (14%) [6%] 

T Wave 2104 (22.1%) [0%] 684 (21.5%) 530 (13.8%) [4.7%] 180 (14%) [6%] 

BBB 475 (5%) [0%] 136 (4.3%) NA NA 

LBBB NA NA 171 (4.4%) [4.7%] 60 (4.7%) [6%] 

Diagnosis 
    

STEMI 4651 (48.8%) [0%] 1284 (40.4%) [0%] 1342 (34.9%) [15.1%] 414 (32.3%) [17%] 

Non-STEMI 2653 (27.8%) [0%] 695 (21.9%)  [0%] 1811 (47.1%)  [15.1%] 607 (47.3%) [17%] 

UA 2229 (23.4%) [0%] 845 (26.6%) [0%] 116 (3.1%)  [15.1%] 42 (3.3%) [17%] 

No of stays  

in the hospital 
4.9 (3.6) [16%] 4.7 (3.4) [16%] 7.1 (9) [0%] 7.82 (11.6) [0%] 

Treatment 
    

Fibrinolytic therapy 3430 (88.33%) [0%] 1110 (86.4%) [0%] 65 (1.7%)[46%] 24 (1.9%)[45.5%] 

Cardiac catherization 1871 (19.6%) [0%] 609 (19.2%) [0%] NA NA 

CI 1422 (14.9%) [0%] 467 (14.7%) [0%] 534 (13.8%) [46.0%] 164 (12.8%) [45.5%] 

CABG 112 (1.2%) [0%] 39 (1.2%) [0%] 44 (1.1%) [46.0%] 16 (1.2%) [45.5%] 

Died - In hospital 681 (7.1%) [0%] 221 (7%) [0%] 184 (4.8%) [0%] 57 (4.4%) [0%] 

   Values are number (%) or mean (standard deviation) [% of missing values]  
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 As presented in Table 3, Malaysian patients were found to be smaller 

by weight and height, in addition to being strikingly younger (mean age of 58 

years old) when compared to patients from the UK (mean age of 69 years 

old).  Additionally, both populations had a higher proportion of male patients, 

and the Malaysian dataset recorded about 10% more male patients than 

found in the UK dataset.    

 Overall, there were noticeable more patients with a history of MI, 

hypertension, and diabetes than other types of medical  history in both 

populations.  Nonetheless, the Malaysian population had extremely high 

percentages of patients with hypertension (~61%) and diabetes(~42%).  

Meanwhile, the prevalence of hypertension (~41%) was the highest among 

the UK population. 

 Furthermore, patients taking aspirin were more common in the 

Malaysian population, while patients taking statins and BBs were more 

prevalent in the UK population. 

 Other than that, those diagnosed with STEMI (~48%) were more 

noticeable in the Malaysian population, as compared to that in the UK 

(~35%).  In fact, the UK population was found to have more prevalence of 

NSTEMI (47%) cases and a very limited number of UA cases (~3%).  The 

Malaysian population, however, had patients diagnosed with NSTEMI  and 

UA in almost similar percentages (~22-27%). 

 Out of the 4,651 Malaysian patients diagnosed with STEMI, 2,832 

(60.9%) were treated with fibrinolytic therapy, 991 (21.3%) had cardiac 

catherization, 877 (18.9%) had undergone PCI, and only 24 (0.5%) had 

CABG.  Meanwhile, PCI (28.6%) and thrombolytic therapy (13.4%) emerged 

as the main procedures used for those diagnosed with STEMI in the UK 

population. 

 In addition, the mean duration of hospital stay among UK patients was 

higher than that of Malaysian patients.  Nevertheless, in-hospital mortality 

among Malaysian ACS patients was higher (7%) in comparison to that in the 

UK (4%).  Furthermore, among the three ACS spectrums, those diagnosed 

with STEMI and NSTEMI had higher mortality rates in both cohort studies. 
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4.4.1.3 The Leeds, UK  Population Representativeness 

 As the UK dataset only involved patients from a particular part of the 

UK, i.e., Leeds, the sample may not represent the UK as a whole.  To 

validate the representativeness of the studied dataset, the dataset was 

compared to the dataset used in the study by Gale et. al.(2008b), which 

utilized the MINAP dataset covering all patients in England and Wales from 

2003-2005.    As described in Section 4.2.2,the Leeds, UK dataset mainly 

consists of ACS patients from 2003-2010 of MINAP data. Since the datasets 

are from the MINAP registry, the comparison of these two sets of data is 

relevant.  Table 4 compares the demographic characteristics, medical 

history, and presenting clinical features used in Gale et. al.‘s (2008b) study 

and this study. 

Table 4: Comparison of the Gale et. al. (2008b) MINAP dataset and studied 
dataset in terms of demographic characteristics, medical history, and 
presenting clinical features 

Characteristics MINAP (Gale et. al. 
(2008b) 

The Leeds, 
UK 

Demographics   
   Age, years (mean (SD)) 68.9 (13.79) 68.8% (13.4) 
   Female 36 198 (36%) 1381 (35.9%) 
   White 76 111 (76%) 2585 (67.2%) 
   Asian 3234 (3%) 105 (2.7%) 
Medical history   
   Myocardial infarction 22 638 (22%) 2623 (22.1%) 
   Hypertension 42 528 (42%) 1566 (40.7%) 
   Angina 32 029 (32%) 1017 (26.4%) 
Chronic renal failure 3109 (3%) 159 (5.0%) 
Cerebrovascular disease 7482 (7%) 272 (7.1%) 
Peripheral vascular disease 4319 (4%) 195 (5.9%) 
Heart failure 5889 (6%) 207 (6%) 
Diabetes 17 125 (17%) 567 (14.8%) 
Smoking 25 164 (25%) 1009 (26.2%) 
Cardiac enzymes   
Elevated CK or troponin 70 378 (70%) 3103 (80.7%) 
ECG changes   
ST-segment elevation 33 723 (33%) 1431 (37.2%) 
LBBB 5068 (5%) 171 (4.4%) 
ST-segment depression 13 023 (13%) 580 (15.1%) 
T-wave changes only 13 020 (13%) 530 (13.8%) 
Arrhythmia or conduction abnormality 13 248 (13%) 473 (12.3%) 
Normal 8870 (9%) 247 (6.4%) 
Aspirin status   
Already taking aspirin before admission  22 363 (22%) 815 (21.2%) 
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 Comparing these two sets of MINAP data, no obvious differences in 

most of the patients' characteristics were observed.  As illustrated in Table 4, 

the noticeable differences of patients' characteristics are highlighted  in grey. 

Demographically, there were about 10% more white patients in Gale et. al.‘s 

(2008) sample than in the studied dataset. There were also 6% and 3% 

more patients with history of angina and diabetics, respectively, in Gale et. 

al.‘s (2008) dataset.  However, in comparison to Gale et. al.‘s (2008) 

dataset,  the studied dataset has about 10%  more patients with elevated 

cardiac enzymes during an acute phase.  Having more patients with cardiac 

enzyme in the studied dataset may possibly explain the higher number of 

patients with ECG- ST-segment elevation in the studied dataset (>4% higher 

than in Gale et al.‘s (2008) dataset), and the fewer number of patients with 

normal ECG(>3% more with abnormal results than in Gale et. al.‘s (2008) 

dataset).   Thus, from the comparison of these two sets of MINAP datasets, 

the Leeds, UK dataset is assumed to reflect the UK (Western) population, as 

a whole. 

4.4.2 Baseline Modelling Datasets 

 Upon filtering candidate predictors, a total of 75 attributes were 

chosen for the Malaysian baseline modelling dataset, while 65 attributes 

were chosen for the UK baseline modelling dataset.  Each baseline 

modelling dataset had one id attribute and one outcome attribute, whereas 

the remaining attributes were considered as candidate predictors. Figure 5 

illustrates the distribution of candidate predictors by their clinical categories.
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Figure 5: Candidate predictors by clinical categories 

SBE- Status before event; Geo-Score- Geographical Score 

The distinct number of attributes in the clinical category was observed at 

clinical admission, status before event-medical used and ECG categories; 

otherwise they were about the same.  An extensive list of medication history 

for each patient was recorded in the Malaysian dataset, and detailed 

information for clinical admission was captured in the UK dataset.  

Nevertheless, when considering the ECG category, for example, the 

information on the ECG is similar across datasets, and the different number 

of attributes were due to the distinct way of storing the information in the 

registries.  In addition, no geographical score was stored in the Malaysian 

dataset. Approximately 77% of the attributes in the baseline modelling 

datasets were categorical variables, while the rest were numerical. 

 The missing values were highlighted as a quality issue among the 

datasets.  Figure 6 presents the distribution of missing values, while Figures 

7 and 8portray the missing values by their clinical categories. 
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Figure 6: The number of attributes with the given percentage of missing 
values 

 

 

Figure 7: Mean percentage of missing values by clinical category - The 
Malaysian dataset 
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Figure 8: Mean percentage of missing values by clinical category-The UK 
dataset 

 

Overall comparing Figure 7 and Figure 8, the UK datasets had more missing 

values when compared to the Malaysian dataset.  These missing values 

were dominated by attributes in clinical investigations and examinations, 

clinical presentation, and medical status before the event for medical used 

categories. Meanwhile, for the Malaysian dataset, a high percentage of 

missing values were detected for status before the event in terms of past 

medical history and aspirin use.  On the other hand, the UK dataset also had 

notable missing values in attributes under the ECG category. 

4.5. Methodology Review 

 This section describes the findings upon reviewing the model 

development using WEKA classification algorithms, effect of missing values, 

and evaluation of random sampling methods. 
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4.5.1 Prediction Modelling Using WEKA 

 A preliminary study was carried out, and the related paper was 

presented at the 33rd SGAI International Conference on Artificial Intelligence 

(2013) in Cambridge, England.  The study evaluated the process of 

developing prediction models using WEKA.  Hence, some  960 Malaysian 

patients were employed for model development of NB, DT, and MLP.  

4.5.2 WEKA Classification Algorithms 

 The objective of this review was to determine which algorithms were 

'unsuitable' for the datasets as part of the Objective 1 of the study.  

Therefore, in the next phase, the datasets were not trained using the 

'unsuitable' algorithms.  In addition, this serves as a basic guideline for other 

researchers working with datasets that have similar characteristics.  

 Three input datasets were generated for each Malaysian and UK 

dataset, as described in Table 5.  

Table 5: Input datasets for review of classification algorithms 

Input Datasets Descriptions No. of 
predictors 

(Malaysia/UK) 

Baseline modelling datasets These are datasets prepared for model 
development 

75/65 

Common datasets Subsets of baseline modelling datasets that 
included only the common attributes found in 
both the Malaysian and UK datasets. 
Refer to Appendix A:A.4The Common Datasets. 

18/18 

AMIS datasets Subsets of baseline modelling datasets that only  
employed attributes from the AMIS model(Kurz 
et al., 2009). 
Refer to Appendix A: A.5Characteristics of AMIS 
Model Vs The UK and Malaysian datasets. 

6/5 

 

 The three input datasets as presented in Table 5 used for this 

particular task was to have a variation of input datasets as to look into how in 

general, each of the ML algorithm reflect the performance of the model even 

when the predictors is reduced.  Baseline modelling datasets considered all 

the attributes - allow for broad range of possible predictors to predict the 

outcome, and common datasets and AMIS datasets are the datasets with 

pre-selected attributes.  The attributes in common datasets were selected 

solely based on the common attribute in the Malaysia and the UK dataset, 

regardless of its importance to the outcome and without any clinical 
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reasoning. AMIS dataset on the other hand, presented the set of attributes 

that have been used to develop ACS model i.e. AMIS model.  Thus, the set 

of predictors used has been significantly evaluated.  

 In addition, as mentioned previously, two thirds of each dataset was 

used for training, while the remaining one third was reserved for validation.  

The datasets were trained on 29 algorithms and validated. The performance 

of each model was examined using AUC.  As such, an AUC score of 0.65 

and below is considered unsuitable. 

 Four algorithms have obtained an AUC score of 0.5 for all input 

datasets; these algorithms, VP, CR, Ridor, and ZR, were thus considered 

‗unsuitable.‘ Further, the SVM, JRip, OneR, and BFT algorithms were also 

deemed 'unsuitable' as their AUC scores were consistently below 0.6.  

Finally, j48, j48Graft, SC, and KNN resulted in fluctuating AUC scores 

between the three input datasets.  Nevertheless, each of these algorithms 

has an average AUC score of below 0.65 for the three input datasets. 

Hence, j48, j48graft, SC, and KNN were also considered to be 'unsuitable.'  

As a result, only 17 algorithms were found suitable for further evaluation and 

model development.  

 In addition, the study also noted that LWL, MLP, DTNB, BFT, and 

LMT required notably more time for training and validating a model.  On the 

other hand, KNN, RF, RT and PART were notably prone to overfitting.   

 Detailed results can be found in Appendix B: B.1 WEKA Classification 

Algorithms. 

4.5.3 Missing Values 

 Since the datasets consist of a large number of attributes and quite a 

large percentage of missing values, it was not possible to create large 

enough training sets with complete cases.  Therefore, removing incomplete 

cases as a way of handling missing values was not possible. Hence, this 

study explored the possibility of removing attributes with missing values.  As 

such, this exercise explored the effect of removing attributes with various 

percentages of missing values. 
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 The baseline datasets were employed in this exercise.  Another five 

sets of input datasets were formed from the baseline datasets. They were:- 

1) Baseline datasets with no missing values (BD_No_Mssg) - 

Removed all attributes with missing values. 

2) Baseline datasets with 5% missing values (BD_5Prct_Mssg) - 

Removed all attributes with more than 5% missing values. 

3) Baseline datasets with 10% missing values (BD_10Prct_Mssg)  - 

Removed all attributes with more than 10% missing values. 

4) Baseline datasets with 15% missing values (BD_15Prct_Mssg)  - 

Removed all attributes with more than 15% missing values. 

5) Baseline datasets with 20% missing values (BD_20Prct_Mssg) - 

Removed all attributes with more than 20% missing values. 

All the datasets were split into training (2/3) and validation (1/3) sets.  The 

training sets were used to develop the models using 17 algorithms, and the 

validation sets were used to validate the model.  The AUCs of each model 

were then compared and analysed.  

 Collectively, the results suggest that removing all attributes with 

missing values resulted in poor model performance. The performance of the 

models started to improve when more attributes with a larger percentage of 

missing values were included in the datasets.  Generally, most of the 

algorithms in both the Malaysian and UK datasets showed  better AUC for 

the BD_15Prct_Mssg and BD_20Prct_Mssg datasets. This result suggests 

the possibility that most of the attributes with 15-20% missing values are 

indeed important predictors for the model.  Thus, it  does not appear to be 

wise to remove attributes with missing values, as this might remove 

important predictors.  As a result, it was decided to first execute the feature 

selection tasks with all the attributes, including those with missing values.  

Once the attributes were reduced, the incomplete cases were handled 

accordingly.   

 Detailed results can be found in Appendix B: B.2.Missing Values 
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4.5.4 Random Sampling 

 The objective of this section was to determine and confirm the best 

proportion of training and validation sets for the random sampling method.  

Generally, two thirds for training is a common practice with which to 

randomly split datasets.  In this section, nevertheless, different random splits 

were applied to the training and validation sets. The input datasets used for 

the exercise were the baseline modelling datasets. Thus, the input datasets 

were randomly divided into 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 

20:80, and 10:90 proportions for training and validation, respectively.  These 

datasets were trained on 29 algorithms. 

 No pattern emerged that suggested that a specific proportion of 

random splitting was good for both datasets and all algorithms.  The AUC of 

similar algorithms produced good results with varied percentages of random 

splitting when different datasets were applied.  However, the results showed 

that a range of 70:30 to 40:60 splits yielded convincing AUC results on 

almost all classifiers run on both the Malaysian and UK datasets.  As such, 

following the standard practice, this study opted to randomly divide the 

datasets into a2/3 split for model development.   

4.6. Discussion and Conclusion 

 This chapter introduced the derivation cohorts for the study, along with 

a summary of the datasets and populations‘ characteristics. As a result, the 

final outcome of this chapter has been the baseline datasets and baseline 

modelling datasets. Baseline datasets were used to annotate the population 

characteristics, and the baseline modelling datasets were used for model 

development in the study. 

 The cohorts originated from two different regions: Asian and Western.  

The Asian dataset was comprised of Malaysian patients as a whole, while 

the Western dataset contained only a specific part of the UK: Leeds.  

Although, the Leeds, UK dataset represents only part of the UK, the sample 

was assumed to reflect the whole of the UK as there were no obvious 

difference in most of the patients' characteristics between our sample and 

the whole of the UK, as studied by Gale et al. (2008). The Asian and 
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Western datasets resulted in different characteristics within the samples. 

Moreover, the datasets were composed mainly of standard information 

pertaining to ACS, as the registries were developed based on standard 

international registries, as well as guidelines for ACS and CVD. 

 Nevertheless, the sole limitation of these datasets has been their 

quality.  This issue was expected as the data were derived originally from 

EHR.  Although the data had been validated and cleaned before being 

transferred into the registry, the quality of the datasets continued to be an 

issue to be addressed.  The quality issue resulted in excluding 

approximately 90% of the UK records.  However, the number of records left 

in the UK dataset was sufficient for the development of a reliable prediction 

model using ML, as well as for validating the model (Mukherjee et al., 2003, 

Beleites et al., 2013).  Moreover, existing ACS models, such as MACE, were 

developed from samples smaller than the UK dataset (Hu et al., 2016).  The 

quality issue in the datasets also required that a hefty amount of time be 

spent preparing the datasets for model development.  In addition, issues 

related to the quality of the data dictionary were time constraining, especially 

when comprehending the datasets.  It is also important to note the risk in 

having to exclude large number of observations from model development 

when data quality is at stake. 

 From the 29 ML algorithms identified, only 17 displayed the potential 

to be exercised in model development.  In addition, LWL, MLP, DTNB, BFT, 

and LMT were found to be time-consuming in developing models, whilst 

KNN, RF, RT, and PART were inclined to overfitting. 

 Furthermore, as the datasets consists of a large number of attributes 

and contain a large number of missing values, removing all the incomplete 

cases from the datasets was not viewed as a strategic way of handling the 

missing values.  However, removing attributes that hold the missing values  

was also not deemed a worthy strategy.  The investigation into removing 

attributes that contained a certain percentage of missing values revealed 

that, as more attributes were removed (to minimised missing values of the 

datasets), the performance tended to degrade. This result indicates that 

most of attributes with missing values are indeed important predictors.  
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Hence, the study retained all attributes and missing values of the baseline 

modelling datasets when identifying a set of predictors for model 

development (feature selection).   Only after the feature selection had been 

executed for model development, appropriate measures were applied to 

handle  the missing values.  

 Moreover, the findings from reviewing varied proportions of hold-out 

random sampling were consistent with the standard hold-out strategy, i.e., 

the 2/3  distribution.  In addition, the study also found that a range between a 

70:30 split and 40:60 split yielded convincing AUC results. Therefore, this 

study had decided to use a hold-out random sampling method with a2/3 

distribution to evaluate the developed models. 

 The following chapter demonstrates the implementation of feature 

selection methods to generate the input datasets for model development.   
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Chapter 5:  Feature Selection and Model Development 

This chapter describes the process of evaluating various subsets of 

predictors to fulfil Objective 2 of the study.  As a result, varied sets of 

predictors were identified and were further used as input datasets for model 

development.  The predictive performance of the developed models are also 

analysed and presented in this chapter. 

5.1. Method 

 In the data preparation stage, attributes from raw datasets were 

thoroughly scanned and analysed to choose potential predictors that met the 

objectives of developing ACS prediction models.  With that, all attributes that 

were duplicates, database-related, unknown, irrelevant, non-standardised, 

and dependent (functioned as additional attribute to cater missing 

values),have been excluded from the datasets.  However, even after 

eliminating some of these attributes, the remaining number of attributes was 

still considered massive as there were more than 50 attributes.  Therefore, 

to construct a simpler model with good predictive power, feature selection 

was applied in the model development process.   

 As such, in selecting sets of predictors for model development, 

various ML automated feature selection methods were evaluated. The 

potency of predictors from existing ACS models that were appropriate for 

adoption in developing simplified and customized prediction models was 

also assessed. In addition, the strength of predictors from different clinical 

categories in producing good models was also investigated. Sets of 

predictors from these three outcomes were then employed as input datasets 

for model development.  The prediction models were then built on 17 

classification algorithms. The best models for each of the Malaysian and UK 

datasets were chosen by comparing the AUC scores obtained by using the 

validation datasets.   
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5.1.1 Handling Missing Values 

 In the methodology review, specifically Section4.5.3 on missing 

values, it was decided to execute feature selection with all attributes, 

regardless of missing values, and, later, to remove the incomplete cases 

before model development.  For future note, the amount of training and 

testing data was decreased when incomplete cases were omitted.  

Nonetheless, some incomplete cases could not be dismissed as they 

considerably reduced the number of training cases.  As a result, for such 

cases, all the missing values were left for the algorithms to handle, as each 

selected algorithm has a method for handling missing values(Su et al., 

2008). 

5.1.2 Evaluating Automated ML Feature Selection 

 Two main methods from WEKA were employed to assess and identify 

subsets of attributes from both  the Malaysian and UK datasets.  As the 

study evaluated a range of ML algorithms suitable for the datasets, selecting 

a feature selection method that runs together with model development 

process could have been tricky and intricate.   Thus, the chosen feature 

selection methods evaluated in the study were implemented as pre-

processing procedures, i.e., before the model development process.   The 

feature selection methods employed were the subset and wrapper methods. 

The subset method refers to a type of filter method that does not depend on 

any classification algorithm.  This method selects subsets of attributes during 

the pre-processing steps before running the dataset into any classifier 

algorithm.  Two types of filter methods are: 1) univariate-filter, and 2) 

multivariate-filter (subset) methods. The study adopted the latter method 

because it considers the relationship of individual attributes, as well as the 

correlation between attributes towards the outcome. 

 The subset methods applied in the study were: 1) Correlation-Based-

Feature-Selection (CFS), and 2) FilterSubset.  CFS identifies a subset of 

attributes by selecting attributes with high correlation with the class, yet low 

correlation with each other (Hall and Smith, 1998).  In WEKA, this subset 

method is known as CfsSubsetEval. On the other hand, the FilterSubset 
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employs a similar technique to CFS, except that, in selecting the attributes, 

FilterSubset divides a dataset into subsamples. 

 The wrapper method (Kohavi and John, 1997) incorporates a learning 

algorithm in the selection of attributes.  As in WEKA, the subset evaluator 

will first detect all the possible subsets of attributes within the dataset.  Next, 

these sets of attributes are trained on a specified classifier algorithm using a 

cross-validation technique.  The best set of attributes is the one that 

performed the best on the clarification algorithm.  As such, this study 

adopted two classification algorithms for the wrapper method, which were 

NB and LG.  NB and LG retained their exceptional predictive performances 

in the prior task(refer to the Section4.5.2), in which the average AUC scores 

for these two classification algorithms exceeded 0.7.  

 In WEKA, the feature selection method implements a specific search 

method to determine a set of attributes.  The search method utilized in this 

study was the Greedy search strategy using the forward selection approach.  

The Greedy search strategy forms a subset of attributes by progressively 

adding attributes to the subset until the best subset appears.  It has been 

claimed that the Greedy search is computationally advantageous and robust 

against overfitting (Guyon and Elisseeff, 2003). 

5.1.3 Evaluating Predictors of Existing ACS Models 

 Sets of predictors were manually select based on the attributes of the 

existing ACS prediction models.  The ACS prediction models referred to in 

this task were: 1)  TIMI(Antman et al., 2000),2) PURSUIT(Boersma et al., 

2000), 3) Grace (In-hospital) (Granger et al., 2003), 4) GUSTO-I(Lee et al., 

1995), 5) AMIS(Kurz et al., 2009), 6) Serbia(Sladojević et al., 2015), 7) C-

ACS (Huynh et al., 2013), 8) EMMACE (Dorsch et al., 2001), and 9) MACE 

(Hu et al., 2016).  The purpose of this task was to evaluate the potency  of 

the existing sets of predictors to be adopted in building customized 

prediction models on other cohorts (e.g., the Malaysian and UK 

cohorts)using ML algorithms.  A set of predictors was selected from the 

combination of predictors from the selected nine ACS prediction models.  

These predictors were then  matched with the attributes available in the 

Malaysian and UK datasets.    
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 Sets of predictors were also extracted from each of the seven 

selected ACS models, which were: 1) AMIS, 2) EMMACE,3) Canada ACS 

Risk Score, 4) GRACE, 5) PURSUIT, 6) GUSTO-I, and 7) Serbia. 

5.1.4 Evaluating Predictors of Different Clinical Categories 

 In the data processing phase, the datasets were categorised based on 

clinical reasoning.  By categorising these datasets, the clinical data were 

grouped into similar or related items/events for better visualisation and 

understanding of the datasets.  The attributes were grouped into id, 

demographics, status before event (medical history and medication pre- 

admissions), clinical presentation, ECG, and baseline investigations.  The 

purpose of selecting predictors based on clinical categories is to evaluate 

the impact predictors from each clinical category had in constructing good 

prediction models.  Another reason was to assess the effect of having 

predictors concerning medication taken before admission as part of the 

predictors..  

 Thus, sets of predictors were grouped into five combinations of clinical 

categories, which were:- 

CATA1 - demographics and medical history 

CATA2 - demographics, medical history, and medication  pre-admissions 

CATA3 - demographics,medical history,medication pre-admissions, and 

clinical presentation 

CATA4 - demographics, medical history,medication  pre-admissions, clinical 

presentation, and ECG 

CATA5 - demographics, medical history,medication  pre-admissions, clinical 

presentation, ECG, and baseline investigations 

Each combination has its own set of predictors, for which the models were 

then developed. 

 Another set of predictors was also formed using the same approach, 

but also applying the CFS feature selection method.  Predictors in each 

clinical category were filtered using the CFS feature selection method, and 

then all the filtered predictors from each category were combined to form  
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CATA7.  CATA7 was formed to examine the benefits of having fewer 

predictors when using ML feature selection in evaluating predictors from 

different clinical categories. 

5.2. Results 

 This section presents the sets of predictors resulting from the three 

tasks described in Sections 5.1.2 - 5.1.4.  It also demonstrates the results of 

models developed based on the established sets of predictors from these 

three tasks.  The best prediction models for both the Malaysian and UK 

datasets were examined based on their discrimination capability using AUC.  

The best prediction models also subsequently represent the best subsets of 

predictors for each of the datasets.  Lastly, the final part of this section 

describes the performances of the models built by ML algorithms.  

5.2.1 Evaluating Automated ML Feature Selection: Sets of 

Predictors 

 The subsets of predictors chosen by applying CFS, FilterSubset, 

wrapper with LG algorithm (WrapperLG), and wrapper with NB algorithm 

(WrapperNB) methods on the Malaysian and the UK datasets are tabulated 

in Table 6.   
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Table 6: Subsets of predictors selected  by ML automated feature selection 

Automated feature 
selection methods 

Malaysian The UK 

List of predictors List of predictors 

CFS 1) ptageatnotification  1) Age.At.Admission 
2) heartrate  2) X224.Beta.Blocker* 
3) bpsys  3) X220.Systolic.BP 
4)bpdias  4) X314.Where.cardiac.arrest* 
5) ecgabnormtypetwave* 5) X424.Reinfarction* 
6) lvef   

FilterSubset 1) ptageatnotification  1) X314.Where.cardiac.arrest* 
2) heartrate    
3) bpsys   
4)bpdias   

WrapperLG 1) sdpid* 1) ADMISSION_YEAR* 
2) ptageatnotification  2) Age.At.Admission 
3) cdm* 3) X204.Where.Aspirin.Given* 
4) chpt * 4) X314.Where.cardiac.arrest* 
5) canginamt2wk* 5) Clopidogrel* 
6) weight     6) X228.Glucose* 
7) ecgabnormlocationrv* 7) X315.Presenting.Rhythm* 
8) lvef 8) X236.Site.of.Infarction* 

WrapperNB 1) chpt* 1) ADMISSION_YEAR* 
2) ccap* 2) ADMISORC* 
 3) canginamt2wk* 3) X222.Admitting.Consultant* 
4) cpvascular* 4) Age.At.Admission 
5) CNONE* 5) X209.Peripheral.Vascular.Disease* 
6) ACS_SYMPTOMS_BEFORE_ 
ADMISSION* 

6) X211.Asthma.or.COPD* 

7) weight 7) X218.Previous.PCI* 
 8) waistcircumf 8) X219.Previous.CABG* 
9) ecgabnormtypenonspecific* 9)ONSET_SYMPTOMS_BEFORE_ADMISSION* 
10) ecgabnormlocationll* 10) X314.Where.cardiac.arrest* 
11) ecgabnormlocationtp* 11) ATTEND_NON_INTERVENTIONAL_ 

HOSPITAL* 
12)  ecgabnormlocationrv* 12) X238.Thienopyridine.inhibitor.use* 
13) tc 13) X220.Systolic.BP 
14) hdlc 14) X230.Weight 
15) ldlc 15) X315.Presenting.Rhythm* 
16) tg 16) X424.Reinfarction* 
17) asapre* 17) X237.ECG.QRS.Complex.duration* 
18) adpapre* 18) X236.Site.of.Infarction* 
19) gpripre* 19) X215.Cholesterol 
20) heparinpre* 20) X231.LVEF 
21) lmwhpre* 21) X347.Assess.at.non.intevention.hospital* 
22) bbpre*   
23) aceipre*   
24) arbpre*   
25) statinpre*   
26) lipidlapre*   
27) diureticpre*   
28)calcantagonistpre*   
29) oralhypoglypre*   
30) insulinpre*   
31) antiarrpre*   

The underlined predictors represent the predictors from the category of medication 
received before admission; The strikethrough predictors illustrate the 
discarded predictors due to missing values.  The * denotes categorical 
predictors. 
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 Considering Table 6, the WrapperNB method has the most predictors.  

The method identified 31 and 21 attributes as potential predictors for the 

Malaysian and UK datasets, respectively.  In contrast, FilterSubsetreduced 

the attributes to only one potential predictor for the UK dataset. 

 The potential predictors identified in all ML feature selection methods 

reflecta mix of varied clinical categories of clinical admission and 

demographics, past medical history, medication received before admission, 

clinical presentation, ECG, and clinical investigation.  Age was selected by 

all the methods, with the exception of theWrapperNB method; this suggests 

that age is the most essential predictor for the datasets.  In addition, 

predictors under clinical presentation (e.g., SBP, heart rate, and presentation 

of cardiac arrest) and ECG categories emerged as the most selected 

predictors by the four ML feature selection methods.  On the other hand, 

attributes from the category  describingmedication received before 

admission were the least selected by most of the feature selection methods, 

with the exception of theWrapperNBmethod on the Malaysian dataset, for 

which almost all attributes in this category were selected.  Hence, the effect 

of having predictors under the category of medication received before 

admission has been further investigated.  

 As described in Section 5.1.1, to handle missing values, only 

complete cases were considered for model development.  Therefore, the 

missing cases of the datasets from applying CFS and FilterSubsetwere 

excluded before model development.  Nonetheless, the approach to 

addressing the missing values was different for the datasets when applying 

the wrapper methods.  This is because the wrapper method extracted a 

considerably substantial number of predictors with large percentages of 

missing values. Thus, excluding the incomplete cases from the datasets 

applying the wrapper methods was not practical as it reduced a large 

number of cases for model development.  Therefore, the predictors selected 

by the wrapper method were further filtered by discarding predictors with 

missing values >20%. As a result, for the Malaysian dataset, one predictor of 

the eight predictors selected by the WrapperLG method and eight predictors 

from the 31 predictors selected by the WrapperNB method were dismissed.  

Filtering the missing values on the UK dataset, four attributes were excluded 
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from set of predictors selected by the WrapperLG method, while only 11 

predictors remained on the list of predictors selected by the WrapperNB 

method.  All the predictors that had been removed are represented as 

strikethrough in Table 6. After applying the strategy in handling missing 

values for the datasets, the reduced sample size for model development is 

illustrated in Figure 9. 

 

Figure 9 : Sample size for model development of evaluating ML feature 
selection method 

 

5.2.2 Evaluating Automated ML Feature Selection: The 

Prediction Models 

 Tables 7and 8 tabulate the performances of the models developed 

based on sets of predictors extracted from ML automated feature selection 

methods for the Malaysian and UK datasets, respectively. 
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Table 7: The Malaysian models developed based on sets of predictors 
extracted from ML automated feature selection methods 

Models CFS_MY FS_MY WR_LG_MY WR_NB_MY 

BN 0.762 0.765 0.640 0.615 

NB 0.794 0.765 0.667 0.609 

LG 0.801 0.777 0.676 0.605 

MLP 0.773 0.776 0.558 0.549 

LWL 0.500 0.723 0.660 0.524 

DT 0.500 0.768 0.500 0.500 

DTNB 0.500 0.768 0.500 0.500 

PART 0.702 0.616 0.673 0.513 

ADT 0.773 0.768 0.769 0.569 

DS 0.645 0.613 0.626 0.532 

FT 0.500 0.500 0.500 0.500 

LT 0.774 0.787 0.708 0.576 

LMT 0.802 0.776 0.500 0.500 

NBT 0.762 0.767 0.640 0.619 

RF 0.758 0.753 0.731 0.570 

RT 0.533 0.544 0.533 0.499 

REPT 0.500 0.616 0.679 0.500 

The underlined values represent AUC>0.8; the blue-coloured values indicates the 
three best models; the grey-shaded attribute denotes the overall best model 

 

 In Table 7, CFS_MY, FS_MY, WR_LG_MY, and WR_NB_MY 

represent models developed for the Malaysian dataset using CFS, 

FilterSubset, and wrapper methods (WrapperLG and WrapperNB), 

respectively. 

 The results in Table 12 generally suggest that the models developed 

based on predictors from subset methods (CFS and FilterSubset) generated 

better AUC scores in comparison to the wrapper methods (WrapperLG and 

WrapperNB).  In fact, the average AUC scores for WR_LG_MY and 

WR_LG_MY models were 0.621 and 0.546, respectively.  Moreover, the 

lowest AUC score produced by the WR_NB_MY  model may have resulted 

from loss of several essential predictors due to removal of attributes in 

addressing missing values.  The results also showed that having predictors 

from the category of medication received before admission(selected by 

WrapperNB) did not improve the models.   

 Comparing the models developed by predictors of subset methods, 

generally, CFS_MY performed better than FS_MY.  In developing CFS_MY 
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models, two classification algorithms attained an AUC > 0.8, i.e., LG (AUC = 

0.801) and LMT (0.802).  Additionally, NB also displayed a considerably 

good AUC score (0.794) in building the CFS_MY model.  On the other hand, 

the results demonstrated that LT (AUC = 0.787), LG (AUC = 0.777), LMT 

(AUC = 0.776), and MLP (AUC = 0.776) emerged as the best algorithms for 

the FS_MY models. 

Table 8: The UK models developed based on sets of predictors extracted 
from ML automated feature selection methods 

Models CFS_UK FS_UK WR_LG_UK WR_NB_UK 

BN 0.793 0.668 0.789 0.824 

NB 0.889 0.595 0.818 0.847 

LG 0.869 0.706 0.809 0.847 

MLP 0.859 0.609 0.765 0.773 

LWL 0.815 0.702 0.741 0.795 

DT 0.709 0.668 0.798 0.700 

DTNB 0.714 0.668 0.781 0.817 

PART 0.653 0.621 0.779 0.758 

ADT 0.794 0.656 0.807 0.805 

DS 0.628 0.664 0.669 0.695 

FT 0.850 0.706 0.590 0.635 

LT 0.764 0.689 0.780 0.844 

LMT 0.868 0.667 0.807 0.867 

NBT 0.791 0.668 0.795 0.822 

RF 0.713 0.646 0.800 0.778 

RT 0.603 0.583 0.657 0.618 

REPT 0.500 0.651 0.676 0.699 

The underlined values represent AUC>0.8; the blue-coloured values indicate the 
three best models; the grey-shaded attribute denotes the overall best model 

 

 In Table 8, CFS_UK, FS_ UK, WR_LG_ UK, and WR_NB_ UK 

represent models developed for the UK dataset using CFS, FilterSubset, 

and wrapper methods (WrapperLG and WrapperNB), respectively. 

 As in the Malaysian dataset, CFS_UK also exhibited the best 

performance for the UK dataset (Table 8) in comparison to other automated 

feature selection methods by obtaining the highest AUC for NB (AUC 

=0.889).  To the contrary,  models developed with  predictors chosen by  

FilterSubset had the lowest AUC score in most of the algorithms.  In fact, the 

models developed  with predictors selected by the wrapper methods 
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achieved noticeably good AUC scores, with more than half of the algorithms 

hitting AUC> 0.75.  Among the best algorithms that achieved AUC > 0.8 in 

CFS_UK, WR_LG_UK, and WR_NB_UK were NB, LG, and LMT. 

 In conclusion, for both the Malaysian and UK datasets, CFS methods 

appeared to be the best feature selection methods. FilterSubset also 

appeared to be a good feature selection method for the Malaysian dataset, 

unlike the wrapper methods.  Unfortunately, the results showed otherwise for 

the UK dataset, in which wrapper method seemed to produce better models 

than the FilterSubset method.   The results from both tables also indicate 

biasedness on models developed using the same algorithm used by wrapper 

feature selection methods (i.e., NB and LG).Nevertheless, the cases of 

biasedness were not too vivid. 

5.2.3 Evaluating Predictors of Existing ACS Models : Sets of 

Predictors 

 Table 9 presents the sets of predictors derived from extracting 

predictors from ACS models. 
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Table 9: Set of predictors of existing ACS models 

Referred 
ACS 

Models 

Malaysian  The UK  

List of predictors List of predictors 

All_LR 1) ptsex* 1) Age.At.Admission 
  2) ptageatnotification 2) X107_Gender* 
  3) statusaspirinuse* 3) X213.Heart.Failure* 
  4) cheartfail* 4) X204.Where.Aspirin.Given* 
  5) ACS_SYMPTOMS_BEFORE_ADMISSION* 5) X220.Systolic.BP 
  6) heartrate 6) X221.Heart.Rate 
  7) bpsys 7) X314.Where.cardiac.arrest* 
  8) bpdias 8) ST_Segment_Deviation* 
  9) killipclass*   
  10) lvef  ** Attributes lvef was deleted due  

To large amount (94%) of missing 
values 

AMIS 1) ptageatnotification 1) Age.At.Admission 
 2) cheartfail* 2) X210.Cerebrovascular.Disease* 
 3) ccerebrovascular* 3) X213.Heart.Failure* 
 4) heartrate 4) X220.Systolic.BP 
 5) bpsys 5) X221.Heart.Rate 
 6) killipclass* ** No Pre-hospital 

cardiopulmonary  
  ** No Pre-hospital cardiopulmonary 

resuscitation attribute 
resuscitation attribute 

EMMACE 1) ptageatnotification 1) Age.At.Admission 
 2) heartrate 2) X220.Systolic.BP 
  3) bpsys 3) X221.Heart.Rate 

C-ACS 1) ptageatnotification ** Same as EMMACE ** No killip 
class attribute 

2) heartrate   
3) bpsys   
4) killipclass*     

GRACE  1) ptageatnotification 1) Age.At.Admission 
 2) heartrate 2) X221.Heart.Rate 
 3) bpsys 3) X220.Systolic.BP 
 4) killipclass* 4) X314.Where.cardiac.arrest* 
 5) ACS_SYMPTOMS_BEFORE_ADMISSION* ** No killip class attribute 
 ** No  serum creatinine attribute ** No  serum creatinine attribute 
  ** No  positive initial cardiac enzyme 

attribute 
** No  positive initial cardiac 
enzyme attribute 

PURSUIT  1) ptageatnotification 1) Age.At.Admission 
 2) gender* 2) X107_Gender* 
 3) heartrate 3) X221.Heart.Rate 
 4) bpsys 4) X220.Systolic.BP 
 5) st_segment depression* 5) st_segment depression* 
 ** No  sign of heart failure attribute ** No  sign of heart failure 

attribute 
  ** No  cardiac enzyme attribute ** No  cardiac enzyme attribute 

GUSTO-i   ** Same as C-ACS ** Same as EMMACE  
** No  anterior infraction attribute ** No killip class attribute 

   ** No killip class attribute 
      ** No  anterior infraction attribute 

Serbia 1) Ptageatnotification 1) Age.At.Admission 
 2) Bpsys 2) X220.Systolic.BP 
 3) Heartrate 3) X221.Heart.Rate 
 4) Bpdias 4) X231.LVEF 
 5) Lvef ** No  DBP attribute 
  ** No  troponin value attribute ** No  troponin value attribute 

The * denotes categorical predictors 
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Referring to Table 9, the sets of predictors that matched the combination of 

predictors of the nine existing ACS prediction models are represented by 

All_LR.  Ten predictors from the Malaysian dataset, and eight predictors 

from the UK dataset matched the combined set of predictors from the nine 

ACS prediction models (All_LR).  The extra predictor for the Malaysian 

dataset was the Killip class.  For the UK dataset, nine predictors were 

initially matched, but the lvef predictor was discarded due an enormous 

number of missing values(94%).  Predictors with a large number of missing 

values could lead to misleading conclusions from a prediction model.  

Hence, the final set of predictors matching the UK dataset consisted of just 

eight predictors.  

 Meanwhile, the other sets of predictors that were drawn from each of 

the seven ACS models were represented by the names of the ACS models, 

i.e. AMIS, EMMACE, C-ACS, GRACE, PURSUIT, GUSTO-I, and Serbia. 

 As described in Section 5.1.1, in order to handle missing values, only 

complete cases were considered for model development.  Thus, all the 

incomplete cases were removed, and the final sample size for model 

development of each input datasets is illustrated in Figure 10. 

 

Figure 10: Sample size for model development for evaluating predictors of 
existing ACS models
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5.2.4 Evaluating Predictors of Existing ACS Models: The 

Prediction Models 

 The performance of models constructed with sets of predictors 

adapted from existing ACS models are presented in Tables 9 and 10.  Table 

9 represents the results of the Malaysian models, while Table 10 presents 

the results of the UK models. 

Table 9: The performance of Malaysian models adopting predictors from 
existing ACS models 

Models 
 

All_LR_MY AMIS_MY EMMACE_MY C-ACS_MY 
 

GRACE_MY PURSUIT _MY Serbia_MY 

BN 0.843 0.815 0.749 0.813 0.844 0.789 0.763 

NB 0.845 0.829 0.775 0.822 0.906 0.836 0.795 

LG 0.842 0.827 0.773 0.822 0.904 0.826 0.802 

MLP 0.767 0.792 0.771 0.814 0.890 0.811 0.793 

LWL 0.792 0.806 0.729 0.780 0.858 0.741 0.705 

DT 0.500 0.785 0.768 0.795 0.774 0.500 0.500 

DTNB 0.773 0.821 0.768 0.823 0.774 0.500 0.790 

PART 0.669 0.719 0.732 0.730 0.596 0.762 0.674 

ADT 0.807 0.811 0.757 0.794 0.789 0.787 0.773 

DS 0.647 0.593 0.611 0.603 0.684 0.696 0.645 

FT 0.606 0.827 0.500 0.822 0.902 0.500 0.802 

LT 0.811 0.832 0.783 0.824 0.823 0.804 0.774 

LMT 0.861 0.829 0.782 0.823 0.868 0.500 0.802 

NBT 0.768 0.815 0.749 0.813 0.846 0.789 0.763 

RF 0.821 0.806 0.737 0.778 0.828 0.790 0.775 

RT 0.563 0.568 0.542 0.574 0.644 0.549 0.607 

REPT 0.761 0.714 0.717 0.721 0.829 0.500 0.500 

The underlined values represent AUC>0.8; the blue-coloured values indicate the 
three best models; the grey-shaded attribute denotes the overall best model 

 

 In Table 9, All_LR_MY, AMIS_MY, EMMACE_MY, C-ACS_MY, 

GRACE_MY, PURSUIT_MY, and Serbia_MY represent models developed 

for the Malaysian dataset using predictors from a combination of nine ACS 

models, and predictors from each of AMIS, EMMACE, C-ACS, GRACE, 

PURSUIT, and Serbia models, respectively. 

 The overall results of Table 10for the Malaysian dataset indicate that 

the best AUC rate was achieved by adapting predictors from the GRACE 

model, in which three classification algorithms achieved AUC > 0.9, i.e., NB 

(AUC=0.906), LG (AUC=0.904), and FT (AUC=0.902).  AMIS_MY, C-
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ACS_MY, PURSUIT_MY, and Serbia_MY also produced fairly good AUC 

scores, for which at least the best three algorithms of each model achieved 

an AUC score >0.8.  Although EMMACE_MY seemed not to perform as well 

as the other models (AUC>0.8), it still obtained an AUC rate of >0.75 in 

several algorithms, such as NB (AUC=0.775), LT (AUC=0.783), and LMT 

(AUC=0.782). 

Table 10: The performance of the UK models adopting predictors from 
existing ACS models 

Models All_LR_UK AMIS_UK EMMACE_UK GRACE_UK PURSUIT_UK Serbia_UK 

BN 0.872 0.709 0.769 0.818 0.749 0.723 

NB 0.917 0.819 0.829 0.826 0.770 0.783 

LG 0.874 0.844 0.833 0.827 0.775 0.782 

MLP 0.855 0.816 0.819 0.810 0.771 0.787 

LWL 0.850 0.812 0.789 0.783 0.719 0.739 

DT 0.693 0.500 0.500 0.799 0.731 0.500 

DTNB 0.850 0.500 0.500 0.830 0.731 0.500 

PART 0.772 0.643 0.500 0.717 0.752 0.500 

ADT 0.799 0.713 0.793 0.786 0.752 0.736 

DS 0.690 0.718 0.700 0.606 0.611 0.689 

FT 0.902 0.500 0.500 0.827 0.549 0.500 

LT 0.836 0.818 0.804 0.831 0.783 0.735 

LMT 0.639 0.500 0.500 0.826 0.772 0.500 

NBT 0.870 0.709 0.769 0.818 0.749 0.752 

RF 0.840 0.779 0.769 0.782 0.751 0.704 

RT 0.656 0.558 0.535 0.571 0.571 0.621 

REPT 0.696 0.500 0.500 0.729 0.717 0.500 

The underlined values represent AUC>0.8; the blue-coloured values indicate the 
three best models; the grey-shaded attribute denotes the overall best model 

 

 In Table 10, All_LR_UK, AMIS_UK, EMMACE_UK, GRACE_UK, 

PURSUIT_UK, and Serbia_UK represent models developed for the UK 

dataset using predictors from a combination of nine ACS models, and 

predictors from each of AMIS, EMMACE, GRACE, PURSUIT, and Serbia 

models, respectively. 

 Table 10 presents results of the UK models.  All_LR_UK displayed 

outstanding results with two classifiers obtaining AUC>0.9.  In addition, 

another seven algorithms scored AUC>0.8 on All_LR_UK.  On the other 

hand, none of the algorithms obtained AUC>0.8 for PURSUIT_UK and 
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Serbia_UK.   Nevertheless, some of these algorithms on PURSUIT_UK and 

Serbia_UK did gain AUC >0.75.  All in all, a numbers of algorithms achieved 

AUC >0.8 on AMIS_UK, EMMACE_UK, and  GRACE_UK.  

 Furthermore, the performance of the models was then compared with 

the c-statistics of the existing ACS models.  Table 11 presents the 

comparison between the best models derived from this task and published c-

statistics/AUC of existing ACS models. 

Table 11: Comparison of predictive performance of the developed models 
and the existing ACS models 

Prediction Models Published C-Statistics/AUC Malaysian The UK 

AMIS 0.875 ( AODE) 0.832 (LT) 0.844 (LG) 

EMMACE 0.76(Multivariable logistic regression) 0.783 (LT) 0.833 (LG) 

C-ACS 0.75 (Multivariable logistic regression) 0.824 (LT) 0.833 (LG) 

GUSTO-I N/A (Logistic multiple regression) 0.824 (LT) 0.833 (LG) 

GRACE In-Hospital 0.83 (Multivariable logistic regression) 0.906 (NB) 0.831 (LT) 

PURSUIT 0.81 (death only) (Multivariable logistic 
regression) 

0.836 (NB) 0.783 (LT) 

Serbia 0.91 (ADT) 0.802 (LG) 0.787 (MLP) 

The underlined values represent the AUC of developed model and gained better 
performance than the existing model 

 

 Comparing the AUC results obtained from this exercise with those of 

the published c-statistics/AUC of the seven existing ACS models as 

demonstrates in Table 11, the models constructed in this study displayed 

better performance than most of the five existing ACS models developed 

with traditional LG.   In fact, almost half of the ML algorithms used in the 

study performed exceptionally better than the current models developed 

using traditional LG.  As such, the results suggest that ML algorithms 

possessed the ability to construct better ACS prediction models.  

Nevertheless, models developed by adapting predictors from the AMIS and 

Serbia models(AMIS_MY, AMIS_UK, Serbia_MY, and Serbia_UK )showed 

lower predictive power than the AUC of the original AMIS and Serbia 

models.  The AMIS and Serbia models were developed using ML algorithms, 

namely AODE and ADT, respectively. 
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 The best models for the Malaysian dataset were developed by 

adapting predictors from the GRACE model, while the UK dataset achieved 

better models by adopting predictors of the combination of nine existing ACS 

models (All_LR_UK).   To the contrary, employing EMMACE predictors 

resulted in the worst models for the UK dataset, as no algorithm achieved 

AUC>0.8.  A similar scenario was noted when adapting predictors of  the 

PURSUIT and Serbia models for the UK datasets. 

5.2.5 Evaluating Predictors of Different Clinical Categories: Sets 

of Predictors 

 Five subsets of predictors were extracted from five groups of 

combinations of clinical categories.  The groups were CATA1, CATA2, 

CATA3, CATA4, and CATA7.  The detailed predictors for each group are 

tabulated in Appendix C.1 Set of Predictors by Combination of Clinical 

Category. As illustrated in the table in Appendix C.1, the number of 

predictors grew as more predictors of different clinical categories were 

added.  For the Malaysian dataset, CATA1 had 19 predictors, CATA2 had 

34 predictors,  CATA3 had 43 predictors,  CATA4 had 54 predictors, and 

CATA5 had 60 predictors.  In terms of the UK dataset, CATA1 had 18 

predictors, CATA2 had 23 predictors,  CATA3 had 32 predictors,  CATA4 

had 37 predictors, and CATA5 had 40 predictors.  Excluding missing cases 

was not feasible as huge number of cases would need to have been 

removed.  Thus, in this particular case, the missing values were handled by 

the learned algorithm and no exclusion of instances was removed.  All of the 

instances allocated to the training set as reserved in the earlier chapter were 

used for constructing and evaluating the models for this particular case. A 

total of 9533 instances in the Malaysian dataset, and a total of 3793 

instances in the UK dataset were used to develop models with predictors of 

different clinical categories.   

 As described in Section 5.1.4, another set of predictors used in 

evaluating predictors of different clinical categories is represented by 

CATA7.  CATA7 was formed by filtering the predictors from each clinical 

category using the CFS method,  and combined all the filtered predictors of 

each clinical category. Table 12 presents the predictors of CATA7 for the 

Malaysian and UK datasets. 
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Table 12: Subsets of predictors for CATA7 

Malaysian The UK 

List of predictors Clinical Category List of predictors Clinical Category 

1)  yradmit Demographic 1) Age.At.Admission Demographic 

2) ptageatnotification Demographic 2)  X210.Cerebrovascular.Disease Medical history  

3) cpremcvd Medical history  3)  X212.Chronic.Renal.Failure Medical history  

4) cheartfail Medical history  4)  X213.Heart.Failure Medical history  

5) clung Medical history  5)  X217.Diabetes Medical history  

6) crenal Medical history  6)  X216.Smoking.Status Medical history  

7) heartrate Clinical presentation 7)  X204.Where.Aspirin.Given Medical history  

8) bpsys Clinical presentation 8)  X224.Beta.Blocker Medical received 

9) bpdias Clinical presentation 9)  X220.Systolic.BP Clinical presentation 

10)  ecgabnormtypetwave ECG 10)  X314.Where.cardiac.arrest Clinical presentation 

11)  ecgabnormtypebbb ECG 11)  X424.Reinfarction ECG 

12)  ecgabnormtypenonspecific ECG 12)  X203.ECG.Determining.Treatment ECG 

13)  ecgabnormlocational ECG 13) X337.Troponin.Assay Baseline investigations 

14)  ecgabnormlocationrv ECG    
15) ldlc Baseline investigations   
16) fbg Baseline investigations   
17) lvef Baseline investigations   
18) lmwhpre Medical received    
19) aceipre Medical received    
20) diureticpre Medical received    
21) antiarrpre Medical received       

The * denotes categorical predictors 
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 For the CATA7 group, only complete cases were considered for 

model development.  Therefore, all instances with missing values were 

removed, and the final sample size for model development is depicted in 

Figure 11. 

 

Figure 11: Sample size for model development for evaluating predictors from 
the CATA7 group 

 

5.2.6 Evaluating Predictors of Different Clinical Categories: The 

Prediction Models   

 Tables13and 14indicatethe performances of the models with 

predictors of different clinical categories for the Malaysian and UK datasets, 

respectively. 
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Table 13: The Malaysian models with predictors of different clinical 
categories 

Models CATA1_MY CATA2_MY CATA3_MY CATA4_MY CATA5_MY CATA7_MY 

BN 0.665 0.683 0.760 0.780 0.779 0.850 

NB 0.658 0.679 0.758 0.776 0.788 0.789 

LG 0.696 0.701 0.789 0.804 0.808 0.837 

MLP 0.599 0.606 0.758 0.762 0.798 0.647 

LWL 0.663 0.665 0.748 0.753 0.756 0.699 

DT 0.500 0.500 0.783 0.772 0.772 0.500 

DTNB 0.465 0.499 0.479 0.490 0.490 0.750 

PART 0.648 0.635 0.710 0.693 0.731 0.735 

ADT 0.647 0.658 0.795 0.795 0.807 0.801 

DS 0.618 0.618 0.680 0.680 0.680 0.677 

FT 0.500 0.500 0.642 0.690 0.723 0.834 

LT 0.668 0.662 0.735 0.740 0.740 0.743 

LMT 0.500 0.500 0.767 0.768 0.790 0.837 

NBT 0.655 0.675 0.654 0.628 0.798 0.569 

RF 0.618 0.650 0.750 0.774 0.799 0.803 

RT 0.598 0.594 0.678 0.640 0.720 0.515 

REPT 0.618 0.622 0.663 0.659 0.734 0.500 

The underlined values represent AUC>0.8; the blue-coloured values indicate the 
three best models; the grey-shaded attribute denotes the overall best model 

 

 In Table 13, CATA1_MY, CATA2_MY, CATA3_MY, CATA4_MY, 

CATA5_MY, and CATA5_MY represent models developed for the Malaysian 

dataset using the CATA1, CATA2, CATA3, CATA4, CATA5, and CATA7 

groups, respectively. 

 Observing the results of Table 13,the model performances of 

CATA1_MY and CATA2_MY were unsatisfactory. This indicate that the 

combination predictors from the demographic, status before events, and 

medication received before admission categories failed to produce good 

ACS models.  However, the performance of the models started to improve 

when predictors from the clinical presentation, ECG, and baseline 

investigation categories were included (i.e., CATA3_MY, CATA4_MY, and 

CATA5_MY). Nevertheless, only two algorithms managed to achieve 

AUC>0.8 in either CATA3_MY, CATA4_MY, or  CATA5_MY, which were LG 

and ADT.  In fact, the best three classification algorithms for CATA3_MY 

were LG, DT, and ADT with AUC scores of 0.789, 0.783, and 0.795, 
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respectively.  Following the results obtained from CATA3_MY, ADT and LG 

remained as two out of the three best algorithms for CATA4_MY and 

CATA5_MY.  Additionally, BN and RF emerged among the best three 

algorithms for CATA4_MY and CATA5_MY. 

 Meanwhile, overall better models (in most of the algorithms) were 

developed using predictors from CATA7 compared to CATA1_MY, 

CATA2_MY, CATA3_MY, CATA4_MY, and CATA5_MY. This might be due 

to applying the feature selection method, making the CATA7_MY simpler 

than the other models.  However, surprisingly, for several algorithms, such 

as DT, NBT, RT, and REPT, CATA7_MY displayed a sharp plunge in their 

performances to AUC values around 0.500; indicating nil discriminatory 

ability.  Nevertheless, other classification algorithms exhibited improvement, 

with six algorithms achieving AUC scores above 0.8.  All in all, the best 

algorithms were BN (AUC = 0.850), LG (AUC = 0.837), and LMT (AUC = 

0.837) for models with CATA7 predictors. 

Table 14: The UK models with predictors of different clinical categories 

Models CATA1_UK CATA2_UK CATA3_UK CATA4_UK CATA5_UK CATA7_UK 

BN 0.738 0.687 0.812 0.832 0.832 0.808 

NB 0.725 0.738 0.832 0.848 0.847 0.866 

LG 0.746 0.743 0.817 0.820 0.818 0.742 

MLP 0.637 0.762 0.804
*
 0.769 0.798 0.669 

LWL 0.709 0.724 0.693 0.696 0.670 0.741 

DT 0.500 0.500 0.668 0.664 0.664 0.598 

DTNB 0.448 0.500 0.672 0.786 0.774 0.595 

PART 0.700 0.500 0.812 0.798 0.804 0.810 

ADT 0.726 0.735 0.821 0.833 0.841 0.835 

DS 0.689 0.689 0.669 0.669 0.669 0.596 

FT 0.592 0.500 0.824 0.822 0.822 0.565 

LT 0.741 0.752 0.781 0.781 0.781 0.770 

LMT 0.500 0.500 0.824 0.830 0.830 0.888 

NBT 0.725 0.720 0.788 0.825 0.826 0.810 

RF 0.677 0.623 0.802 0.818 0.812 0.693 

RT 0.640 0.570 0.717 0.664 0.740 0.604 

REPT 0.725 0.500 0.676 0.762 0.762 0.548 

 The underlined values represent AUC>0.8; the blue-coloured values indicate 
the three best models; the grey-shaded attribute denotes the overall best 
model 
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 In Table 14, CATA1_UK, CATA2_UK, CATA3_UK, CATA4_UK, 

CATA5_UK,and CATA5_UK represent models developed for the UK dataset 

using the CATA1, CATA2, CATA3, CATA4, CATA5, CATA7 groups, 

respectively. 

 Similar to the results for the Malaysian dataset, the results for the UK 

models showed that CATA1_UKand CATA2_UK were the worst models 

when compared to CATA3_UK, CATA4_UK, and CATA5_UK.  Thus, again, 

suggesting that adding additional predictors, other than predictors of 

demographic, medical history, and medication received before admission 

categories, generally improved the performance of the prediction models.  

Beginning with the addition of predictors from the clinical investigation 

category (CATA3_UK), many algorithms achieved AUC > 0.8, such as BN, 

NB, LG, PART, ADT, FT, LMT, NBT, and RF.  In fact, NB and ADT 

appeared to be the best classification algorithms for CATA3_UK (NB=0.832, 

ADT = 0.821), CATA4_UK (NB=0.848, ADT = 0.833), and CATA5_UK 

(NB=0.847, ADT = 0.841).  Additionally, BN was also identified as the best 

classification algorithm for both CATA4_UK and CATA5_UK. 

 However, the performances displayed by DT, MLP, NBT, RT, and 

REPT dropped for CATA7_UK, which is similar to the scenario observed for 

the Malaysian dataset.   Nonetheless, the best algorithms for CATA7_UK, 

which were NB and LMT, demonstrated improvement in their performances 

from AUC=0.847 to  AUC=0.866, and AUC=0.830 to AUC=0.888, 

respectively. 

 In conclusion, the predictors forCATA1 and CATA2 failed in 

generating convincing AUC results.  In fact, the performances of the models 

began to improve upon inclusion of predictors from varying clinical 

categories.  Furthermore, the results suggest that selecting essential and 

relevant predictors was more substantial than having a simple model with 

meaningless predictors.  The inclusion of predictors solely from the 

demographic, medical history, and medication received before admission 

categories was proven to be insufficient in constructing good ACS models 

 Nevertheless, in CATA7, the number of predictors was reduced after 

filtering the predictors of each clinical category using a ML feature selection 
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method.  Hence, the CATA7 models had been expected to enhance the 

performance of CATA5 via reduction of features.  Although a drop was noted 

in the performances of the models developed on several algorithms, such as 

DT, MLP, NBT, RT, and REPT, most of the algorithms for both the 

Malaysian and UK datasets did show enhanced results, when compared to 

models with CATA5.  Overall, the UK models exhibited more predictive 

scores than the Malaysian models. 

5.2.7 Classification Algorithms on Feature Selection 

 This section presents the model performance of classification 

algorithms for the three main tasks in this chapter.  A total of 16 input 

datasets were used to construct the three tasks using 17 ML algorithms. 

Note that models that achieved AUC>0.8 were assumed to be good.  Thus, 

to reflect the best algorithms for model development, the frequency of each 

algorithm that achieved AUC>0.8 is depicted in Figure 12.  

 

 

Figure 12: Frequency of classification algorithms producing good prediction 
models 

 

 Figure 12 presents the frequency of good models (AUC>0.8) by 

algorithm for the Malaysian and UK datasets.  In total,  79 UK models 

attained an AUC> 0.8 compared to 56 Malaysian models.  The three best 

algorithms for the UK models, based on the frequency of obtaining AUC>0.8, 

were NB, LG, and LMT.  In addition, NB, LG, and LMT also emerged as the 

three best algorithms for the Malaysian models, despite the variability in 

frequency.  Furthermore, DT, DS, RT, and REPT appeared to be unsuitable 

classification algorithms  for both the Malaysian and UK datasets.  
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 From another stance, the performance of ML algorithms was further 

scrutinized from the best models constructed from the three main tasks of 

this chapter.  Table 15 summarizes three best models constructed for the 

three main tasks. 

Table 15: The best models for evaluating ML feature selection method, 
evaluating predictors of existing ACS models and evaluating predictors 
of different clinical categories 

Task Methods Malaysian The UK Comparisons 

Evaluating ML feature 
selection method 

CFS LMT (0.802) LMT (0.868)  

 LG (0.801)    LG  (0.869)    

  NB (0.794)   NB (0.889)     

Evaluating predictors of 
existing ACS models 

GRACE NB (0.906)    0.826 (UK) 

 LG  (0.904)   0.827 (UK) 

  FT   (0.902)     0.827(UK) 

All_LR  NB (0.917)    0.845 (Malaysia) 

  FT (0.902)    0.606(Malaysia) 

    LG (0.874)   0.842(Malaysia) 

Evaluating predictors of 
different category 

CATA7 LMT (0.837) LMT (0.888)   

 BN (0.850)  0.808 (UK) 

 LG (0.837)    0.742 (UK) 

  NB (0.866)  0.789 (Malaysia) 

    ADT (0.835) 0.801 (Malaysia) 

 

 As illustrated in Table 15, in evaluating ML feature selection methods 

for both the Malaysian and UK datasets, the best models were constructed 

by applying the CFS method using the LMT, LG, and NB algorithms. 

 On evaluating predictors of existing ACS models, the best models 

developed for the UK dataset were found when adapting a combination of 

nine ACS models (All_LR), while the best models developed for the 

Malaysian dataset adapted predictors of GRACE models.  Although the 

Malaysian and UK datasets revealed their best models from different sets of 

predictors, predictors of All_LR and GRACE were able to produce good 

models with the same ML algorithms, i.e., NB, LG and FT, with the exception 

of the FT algorithm on the Malaysian All_LR model. 
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 Furthermore, on evaluating the effect of predictors of different clinical 

categories, the best models for the Malaysian and UK datasets were 

produced when predictors from the CATA7 group were used.  The 

algorithms used to develop the Malaysian models were the LMT,BN, and LG 

algorithms, while the LMT, NB and ADT algorithms were used for the UK 

models. 

5.3. Discussion 

 In this chapter, various ML feature selection methods were evaluated 

in order to produce better models.  ML feature selection methods extract a 

set of predictors based on the patterns discovered (learning process of a 

machine) in a modelled dataset in order to simplified the model and gain 

good predictive power.  The study also evaluated the potency of producing 

models by adapting predictors of existing ACS models using ML algorithms.  

Moreover, the effects of predictors from different clinical categories in 

constructing good models were also assessed. 

 Among the evaluated ML feature selection methods, the results 

suggest that CFS as the best method to identify the best set of predictors for 

both the Malaysian and UK datasets. Nevertheless, no clear conclusion 

could be made regarding the subset method being better than the wrapper 

method, mainly because the UK models displayed better discriminative 

ability when using the wrapper methods, as compared to the FilterSubset 

method.  Meanwhile, the results for the Malaysian dataset support the 

findings from the study by Hall (2000), i.e. the filter(which includes the 

subset and filter method) methods performed better than the wrapper 

methods.  Unfortunately, the results proved otherwise for the UK models.  

Nevertheless, this study has demonstrated that models developed based on 

sets of predictors selected by the ML algorithm possess competitive 

discriminative ability upon a number of classification algorithms.  For 

example, among our best models, i.e., model developed based on the UK 

datasets, using sets of predictors identified by CFS method (CFS_UK), 

which were developed using NB, LG, MLP, FT, and LMT had better 

predictive power than TIMI, PURSUIT, GRACE, EMMACE, SRI, and C-

ACS(Antman et al., 2000, Dorsch et al., 2001, Morrow et al., 2001, Huynh et 
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al., 2013, Boersma et al., 2000, Granger et al., 2003).  This study has also 

demonstrated the potential of the ML feature selection method as an 

alternative way of selecting predictors for model development. In traditional 

statistical modelling, potential predictors are commonly pre-selected by 

considering clinical reasoning, reviewing the literature on existing models or 

known risk factors, and opinions from experts(Han et al., 2016). In addition, 

most of the predictors extracted from executing ML feature selection 

methods were also among the predictors of the existing ACS models, such 

as TIMI, GRACE, and PURSUIT, indicating that ML feature selection 

outcomes are consistent with the outcomes from traditional statistical 

modelling. 

 Overall, the results showed that most ML algorithms successfully 

achieved AUC>0.8 when adopting predictors from existing ACS models.  

Although both the Malaysian and UK datasets were inclined towards varied 

sets of predictors, the results indicate that the predictors of existing ACS 

models were indeed important predictors for the study‘s datasets, and, most 

probably, for ACS mortality models, in general.  For Malaysian dataset, the 

best models was constructed adopting predictors from GRACE model 

(GRACE_MY) and for the UK dataset, the best models were constructed 

adopting predictors from a combination of predictors from 9 ACS models.  

Additionally, the models developed using ML algorithms displayed enhanced 

discriminatory ability when compared to those developed using traditional 

statistical methods. In fact, the best models constructed for the Malaysian 

and UK datasets(GRACE_MY and All_LR_UK)achieved competitively better 

predictive power in comparison to all the 11 reviewed ACS prediction 

models.  As such, this study has established important supporting evidence 

of the use of ML algorithm in clinical prediction modelling. 

 Nevertheless, both the Malaysian and UK models adopting predictors 

of AMIS and Serbia models (AMIS_MY, AMIS_UK, SERBIA_MY and 

SERBIA_UK) failed to achieved  better AUC value when compared one to 

one to the AMIS and Serbia model.  Although the best models did achieve 

AUC > 0.8, the scores were still below the published AUCs of AMIS and 

Serbia models.  AMIS model recorded an AUC of 0.875 on the AODE 

algorithm.  AODE algorithm was not evaluated in this research as AODE 
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only accepts categorical attributes(thus suggesting a loss of information 

when dichotomizing continuous attributes, as mentioned previously).  

Additionally, the "pre-hospital cardiopulmonary resuscitation" attribute, an 

attribute in the AMIS model, was unavailable for the datasets employed in 

this study (Kurz et al., 2009).  

 On the other hand, the Serbia model recorded an AUC score of 0.91 

using the ADT algorithm.  The cohorts used for the Serbia model originated 

from ACS patients who had undergone PCI, which reflected cohorts of 

STEMI patients.  Hence, the information in the predictors might not refer to 

the first entry for an event, which was applied as a criterion in this study‘s 

dataset.  In fact, this study considered all ACS patients, including those 

diagnosed with NSTEMI and UA, in addition to STEMI. Furthermore, 

troponin was excluded as a predictor due to the quality issue for this 

predictor in our datasets.  Biomarkers, such as troponin, are considered one 

of the essential predictors for ACS models(Khan et al., 2009, Granger et al., 

2003).  Other than that, the Serbia model applied cost sensitive learner to 

boost the predictive power of the ADT algorithm.   These could be possible 

reasons for the notable differences in the AUC score obtained by the models 

developed in this study, in comparison to the Serbia model.  

 Furthermore, selecting potential predictors based on clinical category, 

which was also implemented by GUSTO-I(Steyerberg, 2009),highlighted that 

selecting predictors based solely on demographic and patients' history 

categories is insufficient in terms of producing a good prediction model.  The 

performance of the model was enhanced after predictors from the clinical 

investigation, ECG, and baseline investigation categories were embedded in 

the model as predictors.  This implies that most of the important predictors 

for an ACS prediction model come from a combination of the clinical 

investigation, ECG, and baseline investigation categories.  Therefore, in 

order to construct a good ACS prediction model, the set of predictors must, 

at least, include predictors from the clinical investigation and ECG 

categories, in addition to the demographic and patient's medical history 

categories.  Besides, the sets of predictors for the nine ACS models 

reviewed in this study were also stretched into a similar combination of 

clinical categories. Furthermore, by applying a feature selection method, i.e. 
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CFS, on these combinations of clinical categories,  better AUC results were 

attained (CATA7).  The model with CFS illustrated a simpler structure with 

less computational cost. 

 Nonetheless, predictors from the history of medication received by a 

patient category  did not enhance the performance of the ACS prediction 

model.  This was demonstrated by reconstructing models using theCATA3, 

CATA4, and CATA5 groups, but excluding the predictors from history of 

medication received by patient category.  To be precise, better models were 

built without predictors from this category.  Moreover, predictors under this 

category were rarely selected by most of the evaluated feature selection 

methods (refer Table 6).  This outcome from the feature selection methods 

indicates additional supporting evidence that the predictors from the history 

of medication received by a patient category are not important for the ACS 

prediction model. 

 As concluded by Ali and Smith(2006),Tomar and Agarwal (2013),and 

Harper (2005),no specific classifier appeared to be best for all datasets.  

However, the findings obtained from this study suggest that a similar 

domain, i.e., ACS, with a similar target outcome and similar target ACS 

patients characteristics (e.g., first entry of ACS patients and all ACS types) 

may lead to the same best classification algorithms for the datasets. 

Perhaps the datasets with characteristics similar to the studied datasets 

would also attain the same best algorithms with which to construct a 

prediction model. Findings from the STATLOG studies, the largest algorithm 

comparison studies on a large number of different types of datasets, also 

concluded that the best algorithm to use mainly depends on the type of 

dataset being used(King et al., 1995).As such, this study concluded that 

LMT, BN, LG, NB, and ADT emerged as useful algorithms for the datasets, 

although slight variations were noted in the actual value of the predictive 

power (AUC).  ADT was also found to be the best algorithm with which to 

construct ACS models for patients submitted for PCI (Sladojević et al., 

2015). Nevertheless, DT, DS, RT, and REPT need to be added to the list 

algorithm found to be unsuitable in the previous chapter, which were VP, 

CR, Ridor, ZR, SVM, JRip, OneR, BFT, j48, SC, and KNN. 
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 Finally, the three best models from each of the three main tasks of this 

chapter have been established.  Although, the sample sizes for model 

development were reduced tremendously (approximately, on average, 

between 40-50% of the total baseline set for both datasets) due to missing 

values, we believe they are still sufficient to build reliable predictors.  

According to Mukherjee et al. (2003), for the ML classification problem, the 

minimum training size for model development in the treatment outcome 

problem is more than 50 samples.  Besides, some well-developed and ACS 

models were also created from small sample sizes, such as the TIMI 

(n=1957) and EMMACE (n=3684) models, and and some of the latest ACS 

models, for instance, the C-ACS (n=4627), Serbia (n=2030), and MACE 

(n=2930) models.  Furthermore, the best models established in this chapter 

have fewer predictors than the baseline models developed in Section 4.5.2.  

Since the dimensionality of the dataset has been reduced, the reduction in 

training sample size may not affect the outcome of the developed model. 

5.4. Conclusion 

 ML feature selection has demonstrated its potential for identifying 

potential predictors for ACS prediction models and eventually constructing a 

competitive model.  Comparing the subset and wrapper feature selection 

methods, the CFS method of subset feature selection emerged as the best 

method with which to determine the best set of predictors for the datasets.  

However, findings from the study are insufficient to conclude that the overall 

subset feature selection method is better than the wrapper feature selection 

method.  In developing good ACS predictors, a combination of predictors 

should embed information, at least, from predictors in the demographic, 

patient medical history, clinical presentation, and ECG categories.  In fact, 

predictors from only the demographic and patient medical history categories 

were proven to be insufficient for building competitive ACS prediction 

models.  Furthermore, predictors from the medication received by patients 

category were found to be not important and had very little impact in terms of 

enhancing the performance of ACS models 

 Overall, this chapter has identified the most outstanding algorithms to 

be LMT, BN, LG, NB, and ADT for both datasets.  And, the best sets of 
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predictors to construct ACS models from Malaysian dataset are : 1) age, 

heart rate, SBP, DBP, ECG Abnormalities - T-Wave inversion, and Lvef  2) 

age, heart rate, SBP, killip class, ACS symptoms before admission 3) age, 

history of premature CVD, history of heart failure, history of lung disease, 

history of renal failure, heart rate, SBP, DBP, ECG Abnormalities - T-Wave 

inversion, ECG Abnormalities - BBB, ECG Abnormalities - Non specific, 

ECG Abnormalities Location - Anterior Leads : V1 and V4, ECG 

Abnormalities Location - Right Ventricle : ST Elevation in Lead V4R, Low-

density lipoprotein cholesterol(LDL-C), FBG, Lvef, Low molecular weight 

heparin (LMWH) taken, Angiotensin converting enzyme (ACE)inhibitors 

taken, diuretics taken, and anti-arrhythmic taken.  As for the UK dataset, the 

best sets of predictors to construct ACS models are: 1) age, BB, SBP, 

cardiac arrest, and reinfarction2) age, gender, history of heart failure, on 

aspirin status, SBP, heart rate, cardiac arrest, ST-segment deviation of ECG  

3) age, history of cerebrovascular disease, history of chronic renal failure, 

history of heart failure, diabetics, smoking status, aspirin status, BB, SBP, 

cardiac arrest, reinfarction, ECG, and tropinin assay.   

 Hence, the best models identified in this chapter were further 

validated and evaluated.   
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Chapter 6:  Misclassification Analysis 

This chapter presents the analyses performed for misclassification instances 

upon the 15 Malaysian and 15 UK models developed in Chapter 5.  The 

objectives of this chapter are to explain the evaluation performed on the 

misclassified instances of these models to determine the reasons for 

misclassification.  Furthermore, a prediction model developed to predict the 

misclassified instances will be presented. 

6.1. Background 

 Performance measurements, such as accuracy, f-measures, 

precision, recall, and the AUC of classifiers, generally focus on the average 

or the overall performance of the constructed model.   However, no 

information is given on misclassified instances and the reasons for 

misclassification.  Misclassification instances generally occur due to 'bad' or 

'noisy' data and/or attributes.  'Bad' data or 'noise,' on the other hand, is 

defined as the factor of confusion in building classification models, a factor 

which could negatively affect accuracy.   Therefore, 'noisy' data or attributes 

must be reduced or eliminated so as to ensure the reliability of the model.  

As such, feature reduction is responsible for reducing 'noise'  at the attribute 

level.  At the instances level, 'noise' can be found mainly in the form of 

outliers (Seiffert et al., 2014) and overlapping classes(Smith, 2009, 

Stefanowski, 2013).  In addition, the performance of a model may also be 

affected due to a skewed dataset (Visa and Ralescu, 2005), as well as the 

existence of small disjoints within a dataset (Jo and Japkowicz, 2004, Weiss, 

2010).  Hence, these are some factors that could contribute to 

misclassification in developing a model. 

 Moreover, upon understanding the reason behind the misclassified 

instances in a specific dataset, appropriate measures can be customised to 

handle a specific problem in a  dataset.  As noted by Smith and Martinez 

(2011), the identification of outliers is rather difficult as there are no generic 

definitions and characteristics of outliers. Thus, this study sought to 
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understand the reasons of misclassification in working with ACS datasets.  

Additionally, this study also explored the predictors derived from ACS 

datasets that contributed to misclassified instances while building the model.   

Predictors  that contributed to misclassified instances for both the Malaysian 

and UK models were identified and used to develop models to predict 

misclassified instances for the datasets. 

 A number of studies have looked into identifying misclassified 

instances from a specific stance of misclassification. Specific to a breast 

cancer dataset, Thongkam et al. (2008)proposed a C-Support Vector 

Classification Filter (C-SVCF) to identify and remove the misclassified 

instances so as to improve model performance.   The study used  C-Support 

Vector Classification (C-SVC) with a radial basis kernel function to identify 

and eliminate outliers.  In comparison to several of ensemble filter methods, 

such as  AdaBoost, Bagging, and SVM ensembles, models using the C-

SVCF method achieved better performance.  In addition, Khoshgoftaar et al. 

(2004)presented a rule-based detection method using Boolean rules 

generated from the measurement data in detecting noisy instances. Earlier, 

Brodley and Friedl(1996) employed ensembles algorithms functioning as a 

filtering mechanism to eliminate misclassified instances of training data 

before actual model development.   Furthermore, Smith (2009)investigated 

misclassified instances in a broader perspective.  Their work analysed 

190,000 instances from 64 datasets developed on nine different 

classification algorithms and concluded that five properties of instances were 

mostly likely to be misclassified.  Moreover, class overlap appeared to be the 

main factor in instances of misclassification. This present research, on the 

other hand, focused on analysing misclassified instances only for ACS 

datasets, but from two varied populations.  This is because understanding 

the clinical characteristics of misclassified instances could shed light on 

automation bias in an ACS clinical DSS.  Eventually, this could further lead 

to the development of rule-based algorithms for DSS to reduce automation 

bias.  



- 112 - 

6.2. Method 

6.2.1 Misclassification Analysis 

 The misclassification analysis was performed upon instances 

extracted from three Malaysian models and three UK models constructed on 

the five best algorithms, which were NB, BN, LG, ADT, and LMT.  The three 

models employed were: 1) baseline models with missing values and outliers, 

2) models developed based on a combination of predictors from 9 selected 

existing ACS models(All_LR),  and 3) models developed based on predictors 

extracted from CFS method (CFS).  These models were retrieved from 

Chapters 4 and 5.  Note that the ALL_LR and CFS models were models 

developed based on datasets that are subsets of the baseline datasets. 

 Next, the identified misclassified instances were categorized as: 1) 

misclassified by > 3 algorithms, 2) misclassified by <3 algorithms, and 3) no 

misclassification by all the algorithms.  Furthermore, the focus of the 

evaluation relied on the instances that were misclassified by at least half of 

the five algorithms.   Therefore, from here on, in order to simplify the terms 

used,  the notion "misclassified instances" or "misclassified cases" refers to 

instances misclassified by at least three algorithms.  Furthermore, this study 

focused on the analysis of misclassified instances in minority classes, 

overlapping classes, outliers, and missing values.  Hence, the frequency of 

misclassified instances against the five algorithms has been recorded. 

 A minority class refers to instances found in the smallest class of an 

imbalance or skewed dataset.  In a classification task, a  skewed dataset 

turns into an issue when the target class becomes the minority class.  As 

such, a tendency to miscalculate the rate of accuracy is present as many 

classifiers only predict the majority class accurately, not the minority class. 

 On the other hand, an overlapping class reflects instances similar to 

those in another class.  These instances were detected by using the 

simplest and widely used clustering method, the K-Means algorithm (using 

Euclidean distance)(Zhang et al., 2008b).  The K-Means algorithm uses 

unsupervised learning, in which it partitions the datasets into k clusters by 

defining the cluster centre or mean (k-centroid) of each cluster.  Thus, an 

initial k-centroid point is identified in the space of dataset objects.  Next, 
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each object in the dataset is grouped based on the closeness of the object to 

a k-centroid point, which is calculated using Euclidean distance.  After that, 

the positions of the k-centroids are recalculated, and the objects of the 

dataset are reassigned until the k-centroid points remain the same. In 

WEKA, the algorithm is called SimpleKMeans.  Hence, to identify overlapped 

instances in the datasets, the instances were clustered based on the classes 

of the datasets. 

 Outliers in the studied context refer to values that were out of range of 

the specified range defined for an attribute.   

 The predictors of the models were also analysed to identify the 

patterns that indicate if a particular predictor could contribute to misclassified 

instances.  The mean of the numerical values or the percentage of  the 

categorical values of each predictor of misclassified instances were 

evaluated and compare against positive instances (died), negative instances 

(discharged), and overlapped misclassified instances.  In addition, the 

missing values of the predictors of misclassified instances were also 

analysed. 

6.2.2 Prediction Models for Misclassified Instances 

 The findings from analysing the predictors of misclassified instances 

turned into potential predictors that could have contributed to predict 

misclassified instances.  These potential predictors were used to construct 

models so as to predict the misclassified instances.  With that, the outcomes 

of the models were: 1) misclassified by > 3 algorithms, 2) misclassified by <3 

algorithms, and 3) no misclassification by all algorithms.  In fact, the 

predictors were obtained from the result of analysing predictors of 

misclassified instances. Furthermore, the models were built by using the five 

best algorithms identified in the previous chapters, which were BN, NB, LG, 

ADT, and LMT.  However, ADT was dropped from the model development 

process as ADT could only accept problems with two classes.  Next, the 

models were measured by using AUC and validated by using external 

datasets (the model developed using the Malaysian dataset was tested on 

the UK dataset and vice versa). 
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6.3. Results 

6.3.1 Overall Misclassification Analysis 

 As illustrated in Figure 13, on average, the total misclassified 

instances were 6.5% for the Malaysian datasetand3% for the UK dataset.  

Hence, the UK models exhibited better overall discrimination power (results 

from Chapters 4 and 5) when compared to the Malaysian models.  The 

following explains the variability in percentage of misclassified instances 

between these 2 datasets.  

 

 

Figure 13: Percentages of Misclassified Instances - Malaysian Vs UK 
models 

 

 In Figure 13, a majority of the same misclassified instances in the 

baseline models had been observed across All_LR and CFS models.  In 

addition, recall, ALL_LR, and CFS are models developed based on dataset 

that is subsets of the baseline dataset.  Thus, for the Malaysian models, 

81.3% of ALL_LR misclassified instances were also found to be 

misclassified in the baseline model, while 95.6% of ALL_LR misclassified 

instances were also misclassified in the CFS model.  Furthermore, 81.7% of 

CFS misclassified instances were also misclassified in the baseline model.  

On the other hand, for the UK models, 69.4% of ALL_LR misclassified 

instances were misclassified in the baseline model, whereas 86.1% of the 

misclassified instances were also misclassified in the CFS model.  

Additionally, 64.1% of CFS misclassified instances were misclassified in the 
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baseline model, while 88.6% of CFS misclassified instances were also 

misclassified in the ALL_LR model. 

6.3.2 Misclassification of Minority Classes 

 The results obtained for misclassification instances were further 

investigated by classes.  The results indicate that the misclassified instances 

for both datasets leant towards the minority class (died).  Furthermore, more 

than 85% of the misclassified instances lay on the minority class for both the 

Malaysian and UK models.  Table 16 presents the details of misclassified 

instances by classes for the evaluated datasets. 

Table 16 : Percentages of misclassified instances by classes 

  Malaysia UK 

  Died Discharged Died Discharged 

  MI Actual MI Actual MI Actual MI Actual 

Baseline 394 
(5.9%) 

476 
(7.1%) 

53 
(0.79%) 

6197 
(92.9%) 

62 
(2.3%) 

122 
(4.5%) 

10 
(0.4%) 

2570 
(95.5%) 

All_LR 155 
(5.6%) 

162 
(5.8%) 

5 
(0.2%) 

2630 
(94.2%) 

41 
(2.5%) 

64 
(3.9%) 

8 
(0.5%) 

1583 
(96.1%) 

CFS 193 
(5.6%) 

202 
(5.8%) 

9 
(0.3%) 

3260 
(94.2%) 

33 
(2.3%) 

45 
(3.2%) 

6 
(0.4%) 

1379 
(96.8%) 

MI signifies misclassified instances 

 

6.3.3 Misclassification on Overlapping 

 Overlapping instances were identified after executing the K-Means 

upon the datasets.  Figure 14illustrates the overlapping percentage for each 

model.  .   

 

Figure 14: Percentage of Overlapping Instances 
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The percentages of overlapping instances for both the Malaysian and UK 

baseline models were similar as presented in Figure 14.  In fact, changes in 

the overlapping percentage were observed for All_LR and CFS models, 

most likely due to the various combinations of predictors for All_LR and 

CFS, thus resulting in varied overlapping instances.  For instance, 39.1% of 

the instances were overlapped in All_LR, while 24.5% of instances were 

found to overlap in CFS of Malaysian models.  In addition, extreme variability 

in overlapped instances was observed in All_LR (0%) and CFS (49.3%) of 

the UK models.  The detailed distribution of overlapping instances by 

classes is shown in Table 17.  Furthermore, Table 18portrays the 

overlapping instances that were misclassified (O-Misclassified).  From here 

on, to simplify, O-Misclassified is referred to overlapping instances that were 

misclassified.  

Table 17: Overlapping instances by classes 

 Malaysia UK 

 Died Discharged Total Died Discharged Total 

Baseline 335 (5.0%) 1921 (28.8%) 2256 (33.8%) 78 (2.9%) 905 (33.6%) 983 (36.5%) 

All_LR 89 (3%) 1002 (35.6.) 1091 (39.1%) 0 0 0 

CFS 168 (5%) 681 (19.7) 849 (24.5%) 25 (1.8%) 677 (47.5%) 702 (49.3) 

 

Table 18: Overlapping instances that were misclassifiedby classes 

 Malaysian The UK 

 Died  Discharge Died  Discharge 

Baseline 276 (4.1%) 15 (0.2%) 41 (1.5%) 4 (0.1%) 

All_LR 86 (3.1%) 2 (0.1%) NA NA 

CFS 160 (4.6%) 2 (0.1%) 15 (1.1%) 2 (0.1%) 

 

Although the percentages of overlapping instances varied in each model 

(Figure 14), for the three Malaysian models and two UK models (dismissing 

ALL_LR for the UK dataset),the percentages of O-Misclassified in each class 

were similar, as illustrated in Table 18.  For the Malaysian models, an 

average of 4% of O-Misclassified reflected cases that involved 'Died,' while 

0.1% of O-Misclassified were on 'Discharged' cases. Meanwhile, for the UK 

models (excluding All_LR), the average percentage of O-Misclassified was 

1.3% in 'Died' cases, whereas it was 0.1% for 'Discharged' cases. 
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 From a different light, by comparing the percentages of overlapping 

instances that were misclassified (Table 18) with the total misclassified 

instances (Table 16), for the Malaysian models, more than half of the 

misclassified instances were found to be overlapped, i.e., Baseline - 65%, 

ALL_LR - 53%, and CFS - 80%. For the UK models, the number of 

misclassified instances that overlapped fluctuated between various models, 

for example, Baseline - 63%, ALL_LR - 0%, and CFS -30%.  Nevertheless, 

in Malaysia and the UK models, more than 60% of overlapped instances in 

the minority class were misclassified.  In conclusion, the results suggest that 

overlapping in the minority class contribute to misclassified instances.  In 

fact, the overlapping instances in the minority class may indeed  be the 

underlying cause of misclassification in the minority class. 

6.3.4 Misclassification on Outliers 

 Outliers were only found in the baseline UK dataset. Table 19 

presents results of outliers versus misclassified instances. 

Table 19: Outlier instances that were misclassified and distributed by 
classes 

 UK 

 Died Discharged Total 

Overall Outliers 3 (0.1%) 30 (1.1%) 33 (1.2%) 

Outliers -Misclassified 1 (0.0%) 0 (0%) 1 (0.0%) 

 

The percentages of outliers were subtle (1.2% of the total dataset).  Thus, 

the results suggestthat outliers did not contribute to misclassified instances, 

as only 3% of the total outliers were found to be misclassified.   

6.3.5 Misclassification on Missing Values 

 Missing values were only available in the baseline models.  Referring 

to Table 16, the comparison of percentages between misclassified instances 

in models with missing values (baseline) and models without missing values 

(All_LR and CFS) showed no obvious variability.  Thus, from a higher level 

of observation, there is no obvious indication suggesting missing values as a 

main factor in misclassified instances.  
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6.3.6 Clinical Predictors on Misclassified Instances 

 This section illustrates the findings obtained from analysing the 

predictors of datasets against positive and negative instances, misclassified 

instances, and O-Misclassified.  The missing values of each analysed group 

were also observed.  Table 20 tabulates several selected key predictors of 

the models that highlight some essential patterns indicating the predictors 

that contributed to misclassified instances.  
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Table 20: Key predictors indicating potential in contributing to misclassified instances 

Characteristics Malaysia The UK 

Died  Discharge Misclassified O-Misclassified Died  Discharge Misclassified O-Misclassified 

n= 476 n= 6197 n=447 n=291 n= 122 n= 2570 n=72 n=45 

Age 65.8 
(0.0%) 

58.6 
(0.0%) 

65.3 
(0.0%) 

65.3 
(0.0%) 

79.9 
(0.0%) 

68.2 
(0.0%) 

80.7 
(0.0%) 

80.1 
(0.0%) 

Male 69.5% 
(0.0%) 

76% 
(0.0%) 

67.6% 
(0.0%) 

63.2% 
(0.0%) 

54.9% 
(0.0%) 

64.4% 
(0.0%) 

52.8% 
(0.0%) 

73.3% 
(0.0%) 

SBP 123.3 
(4.8%) 

140.2 
(1.6%) 

125.7 
(4.9%) 

127.2 
(4.5%) 

124.2 
(29.5%) 

150.6 
(22.8%) 

82.9 
(90.3%) 

96.6 
(86.7%) 

Heart rate 94.9 
(4.0%) 

82.8 
(1.5%) 

94.2 
(4.3%) 

97.2 
(5.2%) 

89.1 
(31.1%) 

83.9 
(1.3%) 

54.9 
(91.7%) 

70 
(88.9%) 

History of MI 13.9% 
(23.5%) 

17% 
(20.8%) 

13.2% 
(23.7%) 

14.8% 
(26.8%) 

27% 
(13.9%) 

21.2% 
(9.8%) 

31.9% 
(13.9%) 

31.1% 
(20.0%) 

History of heart failure 12.2% 
(18.9%) 

6.1% 
(17.2%) 

11.6% 
(19.2%) 

14.4% 
(20.6%) 

9% 
(23.0%) 

5% 
(17.5%) 

9.7% 
(20.8%) 

8.9% 
(28.9%) 

History of cerebrovascular 5.3% 
(21.6%) 

3.2% 
(19.6%) 

5.1% 
(21.5%) 

5.2% 
(24.0%) 

11.5% 
(23.0%) 

7% 
(18.2%) 

12.5% 
(20.8%) 

15.6% 
(28.9%) 

History of renal failure 10.7% 
(21.6%) 

5.9% 
(19.4%) 

10.5% 
(21.3%) 

12.4% 
(24.4%) 

9% 
(24.6%) 

3.8% 
(17.9%) 

12.5% 
(22.2%) 

8.9% 
(31.1%) 

History of hypertension 62.2% 
(17.0%) 

60.6% 
(13.7%) 

61.7% 
(17.9%) 

66% 
(18.2%) 

38.5% 
(18.0%) 

41.4% 
(10.6%) 

37.5% 
(13.9%) 

26.7% 
(22.2%) 

History of diabetics 45.2% 
(21.2%) 

41.4% 
(16.8%) 

45.4% 
(20.8%) 

52.6% 
(23.4%) 

15.6% 
(13.9%) 

15% 
(8.9%) 

18% 
(13.9%) 

0% 
(20.0%) 

History of lung disease 6.9% 
(19.3%) 

2.8% 
(17.6%) 

6.7% 
(19.0%) 

6.2% 
(21.6%) 

NA NA NA NA 

Aspirin taken 30% 
(10.3%) 

32.1% 
(9.6%) 

31.1% 
(9.6%) 

34.4% 
(12.0%) 

28.7% 
(5.7%) 

21.2% 
(5.7%) 

33.3% 
(4.2%) 

35.6% 
(6.7%) 

Current smoker 49.4% 
(7.4%) 

56.7% 
(4.8%) 

48.8% 
(6.7%) 

41.2% 
(7.2%) 

40.2% 
(19.7%) 

57.4% 
(12.6%) 

37.5% 
(19.4%) 

40% 
(26.7%) 

BB taken 19.5% 
(13.4%) 

24.4% 
(11.8%) 

18.6% 
(12.3%) 

22% 
(15.1%) 

23% 
(41.8%) 

43% 
(28.7%) 

20.8% 
(37.5%) 

17.8% 
(42.2%) 

Statin taken 26.3% 
(12.8%) 

28.6% 
(11.5%) 

27.3% 
(11.4%) 

31.3% 
(14.8%) 

36.9% 
(41.0%) 

51.5% 
(28.5%) 

37.5% 
(36.1%) 

40% 
(40.0%) 
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ST elevation  level 1 23.3% 
(0.0%) 

19.5% 
(0.0%) 

22.6% 
(0.0%) 

10.7% 
(0.0%) 

43.4% 
(3.3%) 

35.2% 
(5.0%) 

38.9% 
(4.2%) 

37.7% 
(4.4%) 

ST elevation level 2 39.5% 
(0.0%) 

32.9% 
(0.0%) 

39.1% 
(0.0%) 

37.8% 
(0.0%) 

ST Depression 31.3% 
(0.0%) 

26% 
(0.0%) 

31.1% 
(0.0%) 

30.9% 
(0.0%) 

20.4% 
(3.3%) 

15.8% 
(5.0%) 

25% 
(4.2%) 

26.7% 
(4.4%) 

BBB 8.8% 
(0.0%) 

4.4% 
(0.0%) 

7.8% 
(0.0%) 

9.6% 
(0.0%) 

9.8% 
(3.3%) 

4.6% 
(5.0%) 

8.3% 
(4.2%) 

8.9% 
(4.4%) 

Values are number (%) or mean (standard deviation) [% of missing values] 

The red-coloured values  represent the value of predictors for misclassified or O-Misclassified cases that have the same pattern as the 
minority cases; the blue-coloured values  denote the values of predictors for misclassified or O-Misclassified cases that have 
higher percentages of missing values compared to the minority cases. 
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From earlier findings, misclassified instances were found mostly in the 

minority class.  Therefore, the distribution of predictors of misclassified 

instances was also geared towards the minority class.  In addition, most of 

the O-Misclassified instances also seemed to follow the same pattern. 

Higher percentages of missing values were discovered in the O-

Misclassified instances, as presented in Table 20 (refer to column O-

Misclassified with the blue-coloured values ).  Although no obvious  

differences were found in the percentages of misclassified instances 

between the models with missing values and those without missing values, 

as concluded earlier,  noticeably higher percentages of missing values in O-

Misclassified hinted at the effect of missing values upon misclassified 

instances. 

 In addition, Table 21 lists all the predictors that indicated patterns 

suggesting a contribution to misclassified instances among the evaluated 

models.  As such, they appeared to be potential predictors for constructing 

models meant to estimate misclassified instances.  Twenty-four  and 18 

predictors were determined from the Malaysian and UK models, 

respectively.  Furthermore, the blue-coloured predictors denote generic 

predictors for both the Malaysian and UK datasets. 
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Table 21: Potential predictors for predicting misclassified instances for the 
ACS dataset 

Malaysian  The UK  

Age* Age* 

Gender* Gender* 

SBP* SBP* 

Diastolic BP Heart rate* 

Heart rate* History of MI* 

History of MI* History of heart failure* 

History of cerebrovascular* History of cerebrovascular* 

History of heart failure* History of renal failure* 

History of diabetics* History of hypertension 

History of lung disease History of diabetics* 

Aspirin taken*  Aspirin taken* 

Smoking status* Current smoker* 

BB taken* BB taken* 

Low molecular weight heparin taken Statin taken 

ACE Inhibitors taken ECG - ST Depression* 

Diuretic taken  ECG - BBB* 

ECG - ST elevation Level 1 Cardiac arrest before admission 

ECG - ST elevation Level 2 Reinfarction 

ECG - ST Depression*   
ECG - T-Wave   
ECG - BBB*   
FBG   
Lvef   

The asterisked(*) predictors denote the generic predictors for both the Malaysian 
and UK datasets 

 

6.3.7 Model to Predict Misclassified Instances 

 The potential predictors listed in Table 21 were first fed into the CFS 

feature selection method in WEKA.  The set of predictors that were fed into 

WEKA were identified from: 1) all attributes listed in Table 21 for each of the 

Malaysian dataset (referred as MY_CFS) and the UK datasets (referred as 

UK_CFS),as well as 2) all common attributes of the Malaysian (referred as 

MY_C_CFS) and the UK datasets (referred as UK_C_CFS) listed in Table 

21. The results obtained upon performing the CFS feature selection method 

are presented in Table 22. 
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Table 22: Sets of important features that predicted the misclassified 
instances 

MY_CFS MY_C_CFS UK_CFS UK_C_CFS 

(8 attributes) (5 attributes) (5 attributes) (11 attributes) 

Age Age Age Age 

History of lung 
disease 

History of heart 
failure 

Gender Gender 

Heart rate  SBP History of MI History of MI 

Diastolic BP ECG - BBB History of 
cerebrovascular 

History of 
cerebrovascular 

ECG - BBB Death in hospital History of renal failure History of renal failure 

FBG  History of heart failure History of heart failure 

Lvef  History of diabetics History of diabetics 

Death in hospital  Smoking status Smoking status 

   Aspirin taken  Aspirin taken  

   BB taken BB taken 

   Statin taken Death in hospital 

   Reinfarction   

   ECG - ST Depression   

   ECG - BBB   

    Death in hospital   

 

Additionally, an additional predictor was embedded in  each set of predictors 

identified, which was overlapped, indicating if the instance was indeed 

overlapped or otherwise.  Furthermore, the models were constructed based 

on sets of predictors listed in Table 22.As a result, the related AUC scores of 

the models are presented in Table 23. 

In Table 23, MY_CFS and UK_CFS represent models developed for the 

Malaysian and the UK dataset to predict misclassified instances, 

respectively.  And, MY_C_CFS and MY_C_CFS represent models 

developed for the Malaysian and the UK dataset to predict misclassified 

instances using the common attributes of the two datasets, respectively.  All 

the models were internally validated.  On top of that, MY_C_CFS and 

UK_C_CFS were validated on external datasets.  
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Table 23: Performance of models to predict misclassified instance models 

  Malaysia UK 

  MY_CFS MY_C_CFS  
(internally 
validated) 

MY_C_CFS  
(externally 
validated) 

UK_CFS UK_C_CFS  
(internally 
validated) 

UK_C_CFS  
(externally 
validated) 

BN 0.94 0.907 0.709 0.853 0.845 0.793 

NB 0.953 0.911 0.714 0.859 0.849 0.782 

LG 0.939 0.888 0.755 0.864 0.861 0.804 

LMT 0.94 0.886 0.742 0.863 0.861 0.816 

The blue-coloured values denote the best models 

 

 Referring to Table 23, NB (AUC=0.953 and AUC=0.911) emerged as 

the best algorithm for predicting misclassified instances for the Malaysian 

dataset, while LG (AUC=0.864 and AUC=0.861) appeared to be the best 

algorithm for the UK dataset. Meanwhile, both MY_CFS and UK_CFS were 

revealed as the best models for predicting misclassified instances for each 

dataset.  Nevertheless, when the models were built based on common 

predictors (MY_C_CFS and UK_C_CFS ), their performances displayed a 

slight drop.  Moreover, their performances continued to plunge when they 

were validated on external datasets. Overall, the models developed using 

the Malaysian dataset (MY_CFS and MY_C_CFS) obtained higher AUC 

scores compared to those developed using the UK dataset (UK_CFS and 

UK_C_CFS).  Nonetheless, when tested on an external dataset, UK_C_CFS 

outperformed MY_C_CFS.  Therefore, this study concluded that the best 

model for predicting misclassified instances for both the Malaysian and UK 

datasets was the UK_C_CFS, which was developed by using the LMT 

algorithm. 

6.4. Discussion and Conclusion 

 This chapter concludes that misclassification in the ACS datasets was 

mainly due to an imbalanced dataset, in which most of the misclassified 

instances were derived from the minority class.  In fact, this finding is in line 

with that obtained by Van Hulse et al.(2007), but differed from the results of 

Smith (2009),as his study discovered overlapping to be the main contributor 

to misclassified instances.  Nevertheless, our study found that the 

overlapping instances in the minority class are indeed another major factor 
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in misclassified instances. Furthermore, missing values and outliers had very 

minimal impact upon misclassified instances.  The impact of missing values 

on misclassified instances might be minimised by the strategies embedded 

in each algorithm to address missing values.  Nonetheless, only a few key 

predictors were mostly affected by missing values, such as heart rate and 

SBP from the UK dataset.  

 In addition, potential predictors that predicted misclassified instances 

were determined by investigating the patterns of the predictors on 

misclassified instances.  The outcome showed that each evaluated dataset 

had its own set of predictors to best predict misclassified instances.  

Moreover, the findings from the prior chapter suggested that the same 

classification algorithm performed the best and worst on a dataset from the 

same domain, i.e., ACS, with the same outcome and similar input 

characteristics.  Therefore, the prediction model that predicted misclassified 

instances generally supported both datasets, and could, perhaps, support 

other ACS datasets as well that have characteristics similar to those of this 

study.  However, further validation on the model has to be performed on 

other ACS  datasets. 

 Furthermore, age, gender, history of MI, history of cerebrovascular, 

history of renal failure, history of heart failure, diabetes, smoking status, 

aspirin taken, BB taken, and death in hospital functioned as the generic set 

of predictors that estimated misclassified instances for both the Malaysian 

and UK datasets.  Therefore, a promising prediction model that predicted 

misclassified instances was generated using the UK dataset with these 

predictors.  The model achieved an AUC = 0.861 when validated on the UK 

dataset, while it achieved an AUC=0.816 upon validation on an external 

dataset (Malaysian dataset). Thus, the models may add input to addressing 

the automation bias issue in the context of ACS prediction modelling.  In 

addition, a rule-based algorithm may be developed based on the model and 

findings, primarily to decrease automation biasness in a DSS of ACS 

domain. 

 The findings from this particular chapter highlight the major 

contribution that could affect the performance of ACS prediction models.  In 
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fact, the same issue may affect dataset with similar characteristics to those 

of study.  Hence, further studies concerning ACS prediction modelling 

should be targeted on resolving issues related to imbalanced datasets and 

overlapping of minority classes. 

 The following chapter depicts several strategies that could be 

implemented to address issues related to imbalanced datasets and missing 

values found among key predictors. 
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Chapter 7:  Model Optimization 

This chapter presents the proposed methods for handling imbalanced 

datasets and missing values so as to enhance the performance of the 

models.   

7.1. Background 

 The results obtained from the analysis of misclassification instances 

advocated that the main contributor of misclassified instances within the 

datasets was an imbalanced dataset. In fact, many cases concerning 

misclassified instances involved the minority class.  Besides, this finding was 

supported when a "RemoveMisclassified" function in WEKA was performed 

on the datasets.  "RemoveMisclassified" refers to a function found in WEKA 

that eliminates expected misclassified instances.  Thus, when the function 

was executed on both datasets, all instances of minority instances were 

discarded.  In addition, cases of overlap were also found to have a notable 

contribution to misclassified instances among the datasets. Further, the 

findings obtained by Denil and Trappenberg (2010) and Lopez et. al.(2013) 

implied that overlapped classes do hinder the performance of a classifier.   

Therefore, based on these two factors, this study proposed a new strategy to 

address issues related to imbalance datasets using the undersampling 

method(Liu et al., 2009).  

 Furthermore, the results from misclassification analysis also showed 

that missing values had a very minimal impact on misclassified instances.  

But, some of the key predictors showed a strong effect on misclassified 

instances. Therefore, in handling the missing values of the datasets, this 

study proposed a method called the mean-clustering-imputation method in 

dealing with the missing data. 



- 128 - 

7.2. Method 

7.2.1 Overlapped-Undersampling Method 

 In the undersampling method, the majority class is resampled to 

decrease the biasness of the majority class.  The simplest undersampling 

method refers to the random undersampling method, in which instances in 

the majority class are removed until a fair distribution is achieved. 

 This study proposed a strategy in which the instances to be deleted 

from the majority class were the overlapped instances of the majority class.  

The method is referred as the Overlapped-undersampling method.  

SimpleKMeans was applied to determine the overlapped instances. All of the 

overlapped instances from the majority class were then discarded from the 

training set.  After that, the AUC results of the new strategy were compared 

with the following approaches so as to address the issue of  an imbalanced 

dataset: 

1) No sampling method - the dataset was used as it was 

2) Random undersampling method - the instances in the majority class 

were discarded in a random manner(Yap et al., 2014). The ratio of 

majority and minority classes adhered to the ratio in Overlapped-

undersampling. 

3) Boosting - An ensemble method using similar classifier algorithms.  

The model is iteratively built based on the weight of each instance for 

each iteration, with initially equal weight for all instances. In each 

iteration, each instance is assigned a greater weight for a 

misclassified instance and a lower weight for a correctly classified 

instance.  This method is also called the AdaBoost in WEKA(Freund 

and Schapire, 1996).  The ADT is another Boosting method that uses 

DT based on the classifier found in WEKA. 

4) Bagging - An ensemble method using the same classifier.  This model 

is developed via random sampling replacement in each iteration 

(Breiman, 1996). 
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5) Voting - An ensemble method using different classifier 

algorithms(Kittler et al., 1998).  The classifiers employed in the 

method were BN, NB, LG, ADT, and LMT. 

6) Random Forest (RF) -  An ensemble method using tree classifier 

algorithms.  The model is developed by inducing bootstrap samples 

with random feature selection in the tree induction process (Breiman, 

2001).   

All of the above approaches (except for Voting and RF) were run on the five 

best algorithms determined in this study, which were BN, NB, LG, ADT, and 

LMT. 

7.2.2 Mean-Clustering-Imputation Method 

 One way of handling missing data in predictive modelling is to use the 

imputation method.  The imputation method is a process of substituting a 

missing value with a value.  The value can be decided either by identifying  a 

globally constant or mean value or by identifying the most probable value.  

The constant or mean value assumes the all missing values are of the same 

value, and this may lead to distortions in the data‘s distribution.  On the other 

hand, the proposed method, i.e. mean-clustering-imputation, proposes that 

the mean value (for numerical attributes) or most frequent value (for 

categorical attributes)  is calculated by clustered samples, instead of a single 

value.  This means that the training sample is first clustered using Simple 

EM (expectation maximisation), while ignoring class labels.  Then, for each 

cluster,  the mean (for numerical attributes) or the most frequently occurring 

value (for categorical attributes)are calculated as the imputation values for 

missing data.  Hence, each cluster has its own mean or most frequently 

occurring values to be imputed.  By grouping the instances of similar groups, 

the most probable means or most frequently occurring values can be 

acquired. The approach of the method is slightly different from the latest 

Hruschka et al.(2004) approach.  In their study, the clustering was done 

using a K-Means algorithm, then their method was applied to complete 

instances according to class labels, and the imputed values were calculated 

by finding the means of the corresponding attribute values of similar 

complete instances. 
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 Thus, all the missing values were filled in both datasets with the 

imputation values calculated using mean-clustering-imputation method.  

After that, the AUC results of the proposed imputation method were 

compared with the following approaches so as to address the issue of 

missing values: 

1) Single-imputation used mean values for continuous attributes and 

most frequently occurring values for categorical attributes 

2) removed instances with missing values  

3) allowed the algorithm to handle the missing values. In WEKA, each 

algorithm has its own way of handling missing values.  The strategy 

for handling the  missing values is embedded in the algorithm. 

 BN - uses ReplaceMIssingValuesFilter, which replaces the 

missing values with the mean (for numerical attributes) or the 

most frequent value (for categorical attributes)(Bouckaert, 

2008). 

 NB - ignores the missing 

attributes(weka.classifiers.bayes.NaiveBayes) (John and 

Langley, 1995) 

 LG - uses a ReplaceMIssingValuesFilter, which replaces the 

missing values with the mean (for numerical attributes).  All the 

categorical attributes are transformed into binary attributes 

using a 

NominalToBinaryFilter(weka.classifiers.functions.Logistic)(Le 

Cessie and Van Houwelingen, 1992) 

 ADT - the missing values are not propagated down the 

subtrees(Freund and Mason, 1999). 

 LMT - replaces the missing values with the mean (for 

numerical attributes) or the most frequent value (for categorical 

attributes)(Landwehr et al., 2005) 

The above approaches were run on the five best algorithms determined 

in this study, which were BN, NB, LG, ADT, and LMT. 
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7.3. Results 

7.3.1 Overlapped-Undersampling Method 

 The results that were obtained after applying the approaches in 

handling imbalanced datasets are tabulated in Table 24. 

Table 24:Comparison of model performance with varied approaches in 
handling imbalanced datasets 

 Malaysia The UK 

 BN NB LG ADT LMT BN NB LG ADT LMT 

CATA7 0.850 0.789 0.837 0.801 0.837 0.808 0.866 0.742 0.835 0.888 

CATA7_RM_Ovlp 0.830 0.793 0.811 0.707 0.830 0.808 0.863 0.735 0.846 0.813 

CATA7_RandUdrSmp 0.850 0.786 0.827 0.803 0.833 0.812 0.872 0.754 0.820 0.879 

CATA7_ADA_Boost 0.539 0.714 0.728 0.751 0.734 0.716 0.775 0.702 0.737 0.629 

CATA7_Bagging 0.822 0.789 0.832 0.837 0.769 0.831 0.866 0.776 0.842 0.831 

CATA7_RF 0.803 0.693 

CATA7_Voting 0.830 0.854 

GRACE 0.844 0.906 0.904 0.789 0.868 0.818 0.826 0.827 0.786 0.83 

GRACE_RM_Ovlp 0.692 0.709 0.694 0.681 0.693 0.743 0.766 0.827 0.758 0.72 

GRACE_RandUdrSmp 0.808 0.826 0.826 0.799 0.824 0.843 0.907 0.900 0.789 0.895 

GRACE_ADA_Boost 0.766 0.695 0.713 0.777 0.699 0.713 0.867 0.870 0.842 0.804 

GRACE_Bagging 0.828 0.825 0.825 0.826 0.810 0.890 0.903 0.902 0.886 0.893 

GRACE_RF 0.828 0.782 

GRACE_Voting 0.833 0.879 

ALL_LR 0.843 0.845 0.842 0.807 0.861 0.872 0.917 0.874 0.799 0.639 

ALL_LR_RM_Ovlp 0.696 0.726 0.710 0.678 0.714 NA 

ALL_LR_RandUdrSmp 0.764 0.799 0.793 0.763 0.789 NA 

ALL_LR_ADA_Boost 0.742 0.671 0.721 0.792 0.720 0.743 0.880 0.808 0.855 0.829 

ALL_LR_Bagging 0.787 0.800 0.804 0.792 0.705 0.908 0.917 0.887 0.882 0.881 

ALL_LR_RF 0.821 0.840 

ALL_LR_Voting 0.794 0.883 

CFS 0.762 0.794 0.801 0.773 0.802 0.793 0.889 0.869 0.794 0.868 

CFS_RM_Ovlp 0.679 0.702 0.703 0.698 0.484 0.681 0.726 0.781 0.635 0.607 

CFS_RandUdrSmp 0.766 0.795 0.801 0.763 0.500 0.834 0.890 0.872 0.801 0.848 

CFS_ADA_Boost 0.698 0.705 0.732 0.769 0.681 0.630 0.784 0.800 0.806 0.694 

CFS_Bagging 0.784 0.796 0.801 0.785 0.737 0.846 0.887 0.870 0.848 0.871 

CFS_RF 0.758 0.713 

CFS_Voting 0.798 0.861 

The red-shaded rows are models that were developed without any optimization 
strategy; the grey-shaded rows denote the results of the proposed method; 
the red-coloured values indicate that the models with an optimization strategy 
outperformed the models with anon-optimization strategy. 
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 In Table 24, the extension name attached to each model i.e. 

RM_Ovlp, RandUdrSmp, ADA_Boost, Bagging, RF and Voting represent the 

Overlapped-undersampling,  Random undersampling, Boosting, Bagging, 

Random Forest and Voting approaches, respectively, in handling 

imbalanced dataset.  

 The results of Table 24 show that no improvement was established 

upon implementing the new strategy (rows shaded in grey)to address an 

imbalanced dataset.  In fact, in most cases, they attained the lowest AUC 

score when compare to other approaches. 

 To be precise, all the imbalanced optimisation approaches were found 

to be inappropriate for the Malaysian dataset.  In fact, the Malaysian dataset 

was better enhanced when no optimisation strategy was employed (rows 

shaded in red).  Unlike the Malaysian dataset, the UK dataset demonstrated 

improvement when Bagging and Random undersampling approaches were 

applied. 

7.3.2  Mean-Clustering-Imputation Method 

Table 25 compares the AUC results of the proposed imputation method, i.e., 

mean-clustering-imputation , with single-imputation method, no missing 

values in the datasets, and using the method embedded in a algorithm.    
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Table 25: Comparison of model performance with varied approaches in 
handling missing values 

  Malaysia UK 

  BN NB LG ADT LMT BN NB LG ADT LMT 

  Missing Numerical/Categorical attributes 
- 1/2 

Missing Numerical/Categorical attributes - 
2/1 

GRACE_MEAN_ 
CLSTR_IM 

0.794 0.796* 0.798 0.783* 0.797 0.803 0.830* 0.830* 0.806* 0.828 

GRACE_MEAN_IM 0.793 0.795 0.797 0.783 0.797 0.803 0.833 0.831 0.816 0.827 

GRACE_NO_ 
MISSING 

0.844 0.906 0.904 0.789 0.868 0.818 0.826 0.827 0.786 0.826 

GRACE_ALGRTHM 0.777 0.805 0.797 0.794 0.797 0.791 0.834 0.830 0.808 0.827 

  Missing Numerical/Categorical attributes 
- 4/3 

Missing Numerical/Categorical attributes - 
2/4 

All_LR_MEAN_ 
CLSTR_IM 

0.758 0.730 0.778 0.765* 0.779 0.813 0.826* 0.825 0.803 0.826 

All_LR_MEAN_IM 0.754 0.767 0.776 0.764 0.776 0.804 0.825 0.824 0.806 0.825 

All_LR_NO_ 
MISSING 

0.769 0.800 0.798 0.734 0.793 0.872 0.917 0.874 0.799 0.639 

All_LR_ALGRTHM 0.746 0.776 0.776 0.782 0.776 0.794 0.829 0.824 0.808 0.824 
 
 

  Missing Numerical/Categorical attributes 
- 4/0 

Missing Numerical/Categorical attributes - 
1/3 

CFS_MEAN_ 
CLSTR_IM 

0.771 0.768* 0.774 0.765 0.774 0.787 0.815* 0.797 0.808* 0.825 

CFS_MEAN_IM 0.761 0.503 0.742 0.736 0.742 0.785 0.813 0.822 0.805 0.823 

CFS_NO_MISSING 0.762 0.794 0.801 0.773 0.802 0.793 0.889 0.869 0.794 0.868 

CFS_ALGRTHM 0.751 0.777 0.774 0.760 0.772 0.785 0.828 0.822 0.825 0.822 

 Missing Numerical/Categorical attributes 
- 6/8 

Missing Numerical/Categorical attributes - 
1/11 

CATA7_MEAN_ 
CLSTR_IM 

0.830 0.788* 0.804 0.795 0.801 0.784 0.812 0.780 0.752 0.784 

CATA7_MEAN_IM 0.800 0.785 0.801 0.740 0.790 0.816 0.821 0.806 0.802 0.810 

CATA7_NO_ 
MISSING 

0.850 0.789 0.837 0.801 0.837 0.808 0.866 0.742 0.835 0.888 

CATA7_ALGRTHM 0.776 0.803 0.798 0.773 0.785 0.806 0.834 0.805 0.83 0.81 

The grey-shaded rows denote the results of the proposed method; the blue- 
coloured values indicate the best models for a particular algorithm; the 
underlined values indicate that the proposed method is better than the 
MEAN_MI and ALGRTHM methods; the asterisked (*)  values indicate that 
the proposed method is better than MEAN_MI method 
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In Table 24, the extension name attached to each model i.e. 

MEAN_CLSTR_IM, MEAN_MI, NO_MISSING and ALGRTHM represent the 

mean-clustering-imputation method, single-imputation method, no missing 

values in the datasets, and using the method embedded in a algorithm, 

respectively, in handling missing values.  

 Overall, the results in Table 25show that the best models were 

achieved when all instances with missing values were removed from the 

training sets (NO_MISSING).  This scenario was observed in both the 

Malaysian and UK datasets.   

 Specifically for the Malaysian datasets, the results highlighted that the 

proposed methods were generally better than the MEAN_IM and ALGRTHM 

methods, specifically on the BN, LG, and LMT algorithms. In addition, in 

most of the other algorithms, the proposed methods were better than the 

MEAN_IM method. 

 On the other hand, for the UK dataset,  the proposed methods 

produced the worst models on the CATA7 dataset.  However, for the other 

UK data, the results demonstrate almost similar results to the Malaysian 

data, in which the BN, LG, and LMT algorithms, incorporating the proposed 

imputation method, built better models compared to models built with the 

MEAN_IM and ALGRTHM methods.  And, in most of the other algorithms, 

the proposed method produced better models than models developed using 

the MEAN_IM method. 

 Even though models using the MEAN_CLSTR_IM method built better 

models in most cases compared to the models applying the MEAN_IM and 

ALGRTHM methods, the improvements of these models were not vivid (i.e. 

the AUC score was the same or very minimally increased by 0.001 or 

0.002).This scenario might be due to the fact that the imputed values for 

missing values of categorical attributes in each cluster were the same, i.e. 

the frequent value of the attribute. For example, the most frequent value of a 

categorical attribute in Cluster 1 was 'No.' The value was noted to be the 

same in all other clusters with the same categorical attribute. Hence, all the 

categorical attributes with missing values in Malaysian dataset were had this 

scenario.  Similar scenarios were also observed in all the UK datasets 
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except for the CATA7 datasets. To the contrary, in CATA7, there were three 

categorical attributes with missing values that had various imputed values.  

Surprisingly, applying the MEAN_CLSTR_IM method to theCATA7 dataset 

did not help improve the classification performance.  In fact, the MEAN_IM 

and ALGRTHM methods produced considerably better models on the 

CATA7 dataset.   

 Nevertheless, better models were built with the proposed imputation 

method when the number of numerical attributes with missing values 

exceeded two in a dataset. This scenario was observed in CFS and 

CATA7for the Malaysian dataset.  However, as noted in Table 27, none of 

the UK datasets had more than two numerical attributes with missing values. 

7.4. Discussion and Conclusion 

 From the findings obtained regarding the effect of overlapping 

instances upon misclassified instances, this study suggested a new strategy 

to overcome the issue of imbalanced datasets via the undersampling 

method.  This suggested strategy removed overlapping instances found in 

the majority class from the training set.  Nonetheless, the strategy failed to 

produce satisfactory results.  This was probably due to the removal of 

important information from the training data.  The deleted overlapped 

instances might have actually contained some vital information for training a 

model.   Furthermore, the Malaysian dataset performed better when no 

approach was taken to tackle an imbalanced dataset.  Perhaps, the size of 

the training set for the Malaysian dataset could be the reason for this 

scenario.  As according to Japkowicz et al. (2002), when a sample is large 

enough to represent sub-clusters in each class, an imbalanced dataset does 

not hinder the performance of a classifier.  The sample size of the Malaysian 

dataset was obviously larger than that of the UK dataset.  On the other hand, 

the UK dataset displayed better results when Bagging and Random 

undersampling approaches were applied.   Therefore, UK models with 

applications of Bagging and Random undersampling approaches were 

further validated, with the details presented in the next chapter. 
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 Moreover, in terms of handling missing values, this study proposed a 

method for establishing the imputed value for missing data.  The method 

was named the mean-clustering-imputation method.  In the method, training 

sample were first clustered.  The imputed value was established by 

calculating the mean (for numerical attributes) or the most frequent value (for 

categorical attributes) of each cluster.  The results demonstrated that 

removing instances with missing values resulted in the best models 

produced for both the Malaysian and UK datasets.  However, removing 

instances with missing values could result in reducing the sample size 

enough to affect the reliability of the model.  Thus, in this study, we applied 

feature selection before removing the instances with missing values.  By 

reducing the number of predictors for model development (feature selection), 

the number of instances with missing values were eventually reduced, and, 

thus, an appreciable amount of observations remained for the training 

samples. Nevertheless, this approach is only applicable if a dataset is large 

enough to maintain a reasonable number of observations for the training 

samples after removing the instances with missing values. 

 Better models were constructed with the proposed imputed method 

compared to the single-imputation method and methods embedded in an 

algorithm, specifically  when the models were developed on BN, LG, and 

LMT algorithms.  In fact, the proposed method built notably satisfactory 

models when the number of numerical attributes with missing values was 

greater than two.  Otherwise, the performance of models using the proposed 

imputed method were about the same or slightly better than models 

developed using the single-imputation method and methods embedded in an 

algorithm. However, the performance of the models using the proposed 

imputed method showed no improvement when there were more missing 

values in categorical attributes as opposed to numerical attributes. 
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Chapter 8:  Model Validation 

This chapter presents the model validation process of the best selected 

models from the previous chapter.  The objective of the chapter is to further 

validate the models using internal and external datasets.    

8.1. Method 

 The models were tested for internal and external validation.  Internal 

validation involves testing the models using similar underlying populations, 

whereas external validation denotes testing the models on other populations.  

The final stage is to present the calibration so as to evaluate the 

performances of the predictions versus the actual outcome of the best 

models.  Lastly, the overall calibration performances of the best models are 

measured by using the BS, while the visual agreement of the actual 

outcomes and predictions are presented on calibration plots. 

8.1.1 Internal Validation 

 The best models identified in Chapter 5, which were CATA7, ALL_LR, 

GRACE, and CFS, were validated against the testing dataset using the five 

best algorithms: BN, NB, LG, ADT, and LMT.  The testing set was reserved 

earlier during the pre-processing phase, as elaborated in Chapter 4.  No 

exclusions were made on the testing dataset, except for incomplete cases 

with missing values.   Initially, a total of 3,178 testing observations were 

assigned to testing for the Malaysian dataset, whereas 1,283 observations 

were assigned to testing for the UK dataset. Both of these numbers were 

assigned prior to discarding incomplete cases. Table 26 tabulates the total 

testing samples for each model employed for internal validation after the 

exclusion of incomplete cases. 
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Table 26 : Summary of testing samples for internal validation 

Model Malaysia 
(n) 

UK 
(n) 

CATA7 740 536 

ALL_LR 1353 780 

GRACE 2316 925 

CFS 1656 658 

 

Table 26 illustrated that the testing size for almost all models has been 

reduced to as low as 50% of the originally reserved observations for the 

testing set.  The largest loss of testing observations was observed on the 

Malaysian CATA7 model, which contained only 740 observations.  Despite 

the reduction of the testing set, the sample is still reasonable for validation.  

Results from Beleites et al.‘s(2013) study suggested that a minimum of 75-

100 samples is required to achieve reasonable precision in validating an ML 

classification model.  Thus, the testing samples used to validate our models 

were sufficient.  

 As the UK models exhibited improvements upon applying the random 

undersampling approach, all models developed with the random 

undersampling approach were also validated. 

 The best models (CATA7, ALL_LR, GRACE, and CFS)  was also 

prepared to be validated on the best generic model.  The generic model is a 

model that is suitable for both the Malaysian and  UK datasets.  The 

predictors of the generic model should be common to both datasets. Thus,  

the best predictors were adjusted to only consider common predictors of the 

two datasets.   As such, CATA7_CMM, ALL_LR_CMM, GRACE_CMM, and 

CFS_CMM were referred to as the generic models of CATA7, ALL_LR, 

GRACE, and CFS, respectively.  The same testing samples (as in Table 26 ) 

were also used to validate these generic models. 
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8.1.2 External Validation 

 In order to validate a model, the testing set must have similar 

predictors as those found in the derived model.  For instance, if the model is 

built with four predictors: 1) age,2) heart rate,  3) SBP, and 4) height, similar 

predictors must also exist in the testing set.  Hence, only generic models are 

applicable for external validation.  Among  the generic models 

(CATA7_CMM, ALL_LR_CMM, GRACE_CMM, and CFS_CMM), only the 

best models identified from internal validation were further validated on an 

external dataset.  

8.2. Results 

8.2.1 Internal Validation 

Tables 27,28, and 29present the results of internal validation.  As such, 

Table 27 illustrates the results of the original best models, while Table 28 

shows the results of the best models using the undersampling method, and 

Table 29 portrays the results of the generic models.  In the validation 

process, the study considered a model with an AUC score of 0.75 and above 

as a good model. 

Table 27: Results of internal validation of the best models 

 Malaysia UK 

 BN NB LG ADT LMT BN NB LG ADT LMT 

CATA7 0.798 0.756 0.724 0.765 0.739 0.810 0.772 0.563 0.732 0.679 

ALL_LR  0.781 0.768 0.770 0.733 0.767 0.816 0.836 0.792 0.795 0.639 

GRACE 0.824 **0.827 0.822 0.797 0.822 0.811 0.828 0.773 0.790 **0.847 

CFS 0.753 0.755 0.762 0.733 0.760 0.770 0.781 0.685 0.747 0.786 

The coloured values indicate the models with AUC>0.75; the grey-shaded values 
denote the best model for each set of models; the double asterisked (**)  
values represent the best model for the Malaysian and UK datasets 

 

 The results of Table 27showthat the best models for Malaysian and 

the UK datasets were models adopting predictors from GRACE model 

(GRACE).  The best Malaysian model was developed by using NB, whereas 

the best UK model was constructed on the LMT algorithm.  Nonetheless, NB 

and LMT emerged as the two best algorithms for constructing an ACS 

prediction model for both the Malaysian and UK datasets.  The GRACE of 



- 140 - 

Malaysian model built using LMT algorithm had a slightly lower AUC score of 

0.822in comparison to an AUC of 0.827 for NB.  Similarly, for the GRACE of 

UK model, the NB algorithm also displayed the ability to generate a 

considerably good prediction model with an AUC of 0.828. 

Table 28: Results of internal validation - Models with random undersampling 
method (UK dataset) 

  UK 

  BN NB LG ADT LMT 

CATA7 0.810 0.772 0.563 0.732 0.679 

CATA7 _RandUdrSmp 0.799 0.766 0.526 0.733 0.727 

ALL_LR  0.816 0.836 0.792 0.795 0.639 

ALL_LR _RandUdrSmp NA 

GRACE 0.811 0.828 0.773 0.790 0.847 

GRACE_ RandUdrSmp 0.812 0.828 0.774 0.792 0.840 

CFS 0.770 0.781 0.685 0.747 0.786 

CFS_ RandUdrSmp 0.783 0.781 0.686 0.746 0.777 

The underlined values indicate that the models with the random undersampling 
method are better than the models without the random undersampling 
method; the blue-coloured value represents the best model 

 

 Furthermore, it is important to note here that only the UK models had 

demonstrated improvements when the random undersampling approach 

was implemented.  Although the models with the random undersampling 

approach seemed to have enhanced performance during development, 

these performances were generally at par with those models without the 

random undersampling approach when tested upon testing datasets.  Table 

28compares the results of internal validation of the models for both with and 

without the application of the random undersampling approach. 

CATA7_RandUdrSmp, All_LR_RandUdrSmp, GRACE_RandUdrSmp, and 

CFS_RandUdrSmp represent CATA7, All_LR, GRACE, and CFS models 

with random undersampling approach. 

 Out of the tested 15 models, only seven models appeared to have  a 

higher AUC in comparison to models without the random undersampling 

approach. Furthermore, only CATA7_RandUdrSmpwith the LMT algorithm 

and CFS_RandUdrSmp with the BN algorithm displayed improvements upon 

implementation of the random undersampling approach.  Otherwise, 
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improvement by 0.001 were noted for GRACE__RandUdrSmp on BN, 

CATA7_RandUdrSmp on ADT, and CFS_RandUdrSmp on LG.  In addition, 

eight models exhibited lower performance than those without the random 

under sampling approach.  Therefore, this study concluded that imposing a 

random undersampling approach had no notable contribution towards 

enhancing overall model performance.  

Table 29: Results of internal validation for generic models 

 Malaysia UK 

 BN NB LG ADT LMT BN NB LG ADT LMT 

CATA7_CMM 0.764 0.756 0.749 0.710 0.500 0.744 0.726 0.741 0.645 0.500 

ALL_LR_CMM 0.761 0.759 0.765 0.729 0.500 0.724 0.753 0.767 0.636 0.500 

GRACE_CMM 0.742 0.771 0.754 0.726 **0.773 0.705 0.743 0.747 0.711 0.500 

CFS_CMM 0.713 0.751 0.748 0.704 0.500 0.761 0.774 ** 0.779 0.756 0.500 

The underlined values indicate the models with AUC>0.75; the blue-coloured 
values denote the best model for each set of models; the double asterisked 
(**)  values represent the best model for the Malaysian and UK datasets 

 

 As expected, the performance of the generic models as represented 

in Table 29was lower than that of the models exclusively developed for each 

individual dataset.  Nonetheless, the best generic model developed based 

on the Malaysian dataset was the GRACE_CMM using the LMT algorithm 

(AUC=0.773), whereas the best generic model built based on the UK dataset 

was  the CFS_CMM using the LG algorithm (AUC= 0.779). 

8.2.2 External Validation 

 External validation was performed only on Malaysian generic model of 

GRACE_CMM and the UK generic model of CFS_CMM,  as they appeared 

to be the best generic models discovered from internal validation.  The 

Malaysian generic model was validated on the testing set of the UK dataset 

(n= 925), whereas the UK generic model was validated on the testing set of 

the Malaysian dataset (n=1424).  Table 30 presents the result of external 

validation of the generic models.  As in Table 30, the results of external 

validation are compared with the results of internal validation.   
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Table 30: Results of external validation 

 Malaysia UK 

 GRACE_CMM GRACE_CMM_Ext CFS_CMM CFS_CMM_Ext 

BN 0.742 0.665 0.761 0.607 

NB 0.771 0.708 0.774 0.705 

LG 0.754 0.701 0.779 ** 0.720 

ADT 0.726 0.665 0.756 0.579 

LMT 0.773 0.702 0.500 0.500 

The underlined values indicate the models with AUC>0.7; the blue-coloured values 
denote the best model for each set of models; the double asterisked (**) 
values represent the best generic model 

  

 In Table 30, GRACE_CMM_Ext and CFS_CMM_Ext represent the 

models that have been validated externally for Malaysian and UK models, 

respectively. 

 The AUC scores obtained for the models from external validation were 

anticipated to be lower than those validated on internal datasets.  Thus, an 

AUC score of 0.700 was considered acceptable when tested on externally.  

As presented in Table 30, the best generic models for both the Malaysian 

and UK datasets was CFS_CMM.  CFS_CMM  is  a model developed based 

on UK dataset using LG algorithm has obtained AUC of 0.779 when 

validated on similar cohorts, and an AUC of 0.720 when validated on the 

external dataset. 

8.2.3 Calibration 

 Based on the results derived from internal validation, the best models 

revealed for both the Malaysian and UK datasets were GRACE on the NB 

algorithm (referred to as MY_GRACE_NB) and GRACE on the LMT 

algorithm (referred to as UK_GRACE_LMT).  In addition, the best generic 

model was CFS_CMM, developed on UK datasets using LG algorithm 

(referred to as UK_CFS_CMM _LG).   As such, the BS and calibrated plots 

of MY_GRACE_NB, UK_GRACE_LMT and  UK_CFS_CMM _LG are 

illustrated in Figures 15, 16, and 17, respectively.  Additionally, Figure 16 

portrays the BS and calibration plots for UK_CFS_CMM _LG validated on an 

external dataset(referred to as UK_CFS_CMM_LG_Ext).  
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 As a whole, the BSs of the calibrated models mainly approached zero, 

and all of the BSs of the models were less than 0.07,indicatingthat the 

models were indeed well-calibrated.  In fact, UK_CFS_CMM_LG obtained 

the best BS of 0.025, followed by UK_GRACE_LMT (BS = 0.032),  

UK_CFS_CMM_LG_Ext (BS = 0.062), and MY_GRACE_NB (BS = 0.063). 

  

Figure 15:Calibration plot for the MY_GRACE_NB model 

 

 An obvious miscalibration was noted on bins 10 and 8 of  the 

MY_GRACE_NB model depicted in Figure 15.  This is because the model 

over-estimated the occurrence of the "Died" cases on bin 10, but under-

estimated the same event on bin 8.    

 

Figure 16 : Calibration plot for the UK_GRACE_LMT model 
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 The calibration plot (Figure 16) of the UK_GRACE_LMT  model 

depicts that most of the points for the bins were nearly on the 45-degree line, 

except for bin 10.  Nevertheless, the distance of the point on bin 10 to the 

diagonal line was small.  Therefore, one can claim that the 

UK_GRACE_LMT was calibrated significantly well. 

  

Figure 17 : Calibration plot for the UK_CFS_CMM_LG model 

  

 Likewise, for UK_GRACE_LMT, the calibration plot for the 

UK_CFS_CMM_LG model (Figure 17) also points out good calibration.   

With probability 0.02, an indicator of an over-estimated true value was 

present, but the difference of the estimation from the actual value was only 

0.05.   

 

Figure 18: Calibration plot for the CFS_CMM_LG_Ext model 
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 The calibration plot of UK_CFS_CMM_LG_Ext (Figure 18) signifies 

that the model under-estimated the actual output for all the bin points.  The 

variance in mean predicted probability and actual output was 0.0009 on bin 

1, 0.0149 on bin 2, 0.0251 on bin 3, 0.0314 on bin 4, 0.0595 on bin 5, 0.0362 

on bin 6, 0.0373 on bin 7, 0.0395 on bin 8, 0.0892 on bin 9, and 0.1333 on 

bin 10.  Although the model under-estimated the outcome for all bin points, 

the differences between the predicted and true values were not obvious. 

8.3. Discussion and Conclusion 

 The main objective of this chapter was to identify the best model for 

both the Malaysian and UK cohorts.  For that reason, internal and external 

validation was performed.  The number of predictors for the best models 

identified from internal validation was reduced to allow the external validation 

processes.  Other than that, calibration is another essential measure that 

determines the performance of a prediction model.  This study measured the 

calibration by using BS and projected the calibration on calibration plots.

 As a result, the findings concluded that the best models that predicted 

ACS mortality specific to the Malaysian and UK cohorts were models derived 

from the set of predictors of the GRACE model.  Although the predictors of 

the model were based on those of the GRACE model, only predictors 

available in the Malaysian and UK datasets were incorporated into the 

models.  As such, instead of eight predictors that present in the GRACE 

model (Granger et al., 2003), the best model for Malaysian dataset only 

incorporated five predictors, whereas the best model for UK dataset only 

considered four predictors.  Furthermore, the Malaysian best model 

performed the best on NB (AUC=0.827), while the UK best model performed 

the best on LMT (AUC=0.847).  In addition, the BSs of the models indicated 

that all the models were indeed well-calibrated.  The calibration plots further 

supported the BS results as satisfactory. 

 On top of that, the models that displayed improvement in the model 

optimization process were also validated.   In the previous chapter, the 

results showed that the application of the random undersampling approach 

on the UK dataset had improved the AUC scores of the models.  

Nonetheless, when the models with random undersampling approach were 
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validated, no notable enhancements were observed.  The results further 

signified that, even with an imbalanced dataset, a good AUC (> 0.80) could 

still be attained. 

 Additionally, the external validation emphasised a common best 

model that predicted both the Malaysian and UK datasets.  Therefore, the 

best generic model was constructed based on the UK cohort, using 

predictors extracted from CFS method and developed using the LG 

algorithm (UK_CFS_CMM_LG).  Furthermore, the model was derived from  

a set of predictors determined by the CFS automated feature selection 

approach.  In addition, the predictors of the best generic model were 

comprised of age, SBP, and BB taken.  As a result, the model achieved an 

AUC=0.779 when validated on the same cohorts and an AUC=0.720 when 

validated on external cohorts.  For external validation, the study considered 

an AUC of 0.70 as an acceptable and good model.  Furthermore, the BS of 

the UK_CFS_CMM_LG model suggested good calibration measure.  

Nevertheless,  the calibration plot of the model demonstrated under-

estimated prediction for all the bin points.  Nonetheless, the variance of 

probability predicted and true values was small. 
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Chapter 9:  Discussion, Future Research, and Conclusion 

This chapter presents the summary of the study findings and discusses the 

perspectives derived from the findings. 

9.1. Overall Findings 

9.1.1 ACS Prediction Models on ML Algorithm 

 This study has successfully demonstrated a practical way of 

constructing ACS prediction models by using ML algorithms on registry 

datasets.  The major finding is that ML algorithms present a competitive 

alternative with which to build ACS prediction models.  Furthermore, a 

number of  ML algorithms have exhibited superior discriminative ability when 

compared to existing models developed with traditional statistical methods.  

For example, the models utilizing a CSF feature section method on the UK 

dataset, built using the NB, LG, MLP, FT, and LMT algorithms, achieved 

higher predictive power than TIMI, PURSUIT, GRACE, EMMACE, SRI, and 

C-ACS (Antman et al., 2000, Dorsch et al., 2001, Morrow et al., 2001, Huynh 

et al., 2013, Boersma et al., 2000, Granger et al., 2003). 

 Furthermore, the models built on an ML algorithm with predictors from 

an existing ACS model displayed enhanced performance, in comparison to 

the original model.  As presented in Section 5.2.2,  the best derivation 

models constructed for the Malaysian and  UK datasets attained higher AUC 

values than all the 11 reviewed ACS models (Table 1).  For instance, 11 out 

of 17 algorithms used to developed models adopting predictors from the 

GRACE model, based on the Malaysia dataset, had higher AUC values, i.e., 

c-statistics, than the GRACE model (AUC = 0.83)(Granger et al., 2003).  In 

fact, when validated, the same model, using cohorts from the UK, attained 

reasonable AUC values greater than the cut-off of 0.70.  

 On top of that, different datasets from 2 differing regions presented 

varied patient characteristics due to disparities in the quality of the 

healthcare system, demographic diversity, lifestyle, and other factors.  This 

variability seemed to contribute to the varying performance values among 
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the models.  However, the datasets did have the same range of ACS, 

targeted the same outcomes, and had approximately similar requirements of 

cohorts, so the same classification algorithms resulted in rather similar 

performances.  As noted in the findings from the STATLOG studies, the 

largest algorithm comparison studies on a large number of different types of 

datasets, there is no one best algorithm that best fits all datasets, but the 

same algorithms work best on datasets with similar characteristics (King et 

al., 1995).  These findings were supported by other studies, such as Harper 

(2005) and Ali and Smith (2006).  Thus, this study concludes that NB, BN, 

LG, ADT, and LMT appear to be the range of algorithms best suited for 

prediction modelling on ACS, and they are probably applicable to CVD, in 

general, and other medical datasets with similar dataset characteristics.  

Simple datasets characteristic measures, as outlined by Ali and Smith 

(2006),were made transparent in the study along the model development 

process as reference.  The characteristics are: 1) number of predictors, 2) 

number of samples, 3) percentage of minority and majority classes, 4) 

percentage of categorical and numerical predictors, and 5) percentage of 

missing values.  This set of algorithms (NB, BN, LG, ADT, and LMT) can be 

used as guideline for relatively naive medical users who wanted to attempt 

ML prediction modelling. 

 However, our findings are not consistent with a study by Potter (2007).  

In his study, Potter examined 56 WEKA algorithms on two breast cancer 

datasets.  He found that no single algorithm that worked well for both 

datasets, even though the two datasets were similar and had a similar 

domain.  The best classification algorithms found changed when the number 

of predictors differed.  Even the top five algorithms were different for the two 

datasets.  Our findings, on the other hand, even with slight differences in the 

actual performance values of each dataset, showed that similar domains 

(even with different populations and distributions of samples) and similar 

datasets characteristics resulted in a consistently similar set of classification 

algorithms.  The similar performances of the algorithms were also noticed 

even  when feature selection was applied to the datasets.  In addition, this 

study also found that the same set of classification algorithms was not 

suitable for both datasets (i.e. VP, CR, Ridor, ZR, SVM, JRip, OneR, BFT, 
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j48, j48Graft, SC, KNN, DT, DS, RT, and REPT).  Our results are consistent 

with Harper‘s (2005) study.  Harper‘s study evaluated four classification 

algorithms for four different medical datasets.  The findings indicated CART 

algorithms performed consistently well in terms of the accuracy rate, but that 

regression and ANN had a similar accuracy performance for almost all the 

datasets, and discriminant analysis (DA) as the worst algorithms for all of the 

datasets.   In addition, King et. al (1995) found that the Bayes learner 

seemed to worked best on medical datasets and that NB is one of the best 

algorithms for our datasets. Furthermore, Wu et. al (2010)identified the LG  

algorithm as being better than SVM and boosting algorithms in evaluating 

EHR datasets.  In fact, in the study, SVM was found to be the worst 

algorithm due to imbalanced datasets.  Again, these findings are consistent 

with our study.  In our study, LG was discovered to be one of the best 

algorithms, and SVM was among the non-performing algorithms, most likely 

due to the same reason, i.e., imbalanced datasets. Specifically related to 

ACS prediction modelling, our results showed that ADT was one of the best 

algorithms, which was also claimed by Sladojević et al.(2015)in his study. 

 It  has been found that most highly evaluated classification algorithms 

in the ACS-related domain were DT, NN, SVM, and LG (Yoo et al., 2012, 

Liao et al., 2012, Patel and Patel, 2016). This study, on the other hand, 

evaluated29 ML algorithms on two datasets on the ACS domain derived 

from populations from different regions and with varying combinations of 

predictors.  Furthermore,  the AMIS and Serbia models, which also were 

compared on several WEKA algorithms, were developed from one dataset 

and on one identified set of predictors.   Given this, it is believed that the 

evaluations performed in this study have indeed been thorough and 

extensive. 
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9.1.2 Data Quality 

 Even with adequate validation and cleaning-up processes done prior 

to transferring the data from hospital admission records/EHRs to the 

registries, data quality still appeared to be a challenge when working with 

this EHR-based registry data.  Thus, pre-processing and data preparation 

was time consuming.  Time was also consumed scrutinizing the attributes in 

the datasets so as to ascertain that only valuable attributes were selected for 

research analysis and model development. The study has presented the 

effect on model development time when dealing with issues of data quality in 

a dataset. 

 Furthermore, the study has also presented the effect on quality issues 

when losing a large portion of  a sample.  As specified in Section 4.4.1, 

quality issues in the datasets resulted in losing approximately 90% of the UK 

dataset.  Since we had quite a large raw dataset, the loss did not affect the 

reliability of our models.  But, the risk of losing a large number of 

observations must be considered when dealing with a dataset with quality 

issues that might consist mostly of EHR data or medical data, in general.  

This is an important note. made to encourage better quality of EHR data for 

further utilization of EHR data in research. 

 This study suggests that a good reference for data definition and 

description, such as data dictionary, is indeed an important asset in working 

with registry data.  Incomplete, vague, wrong, and nil descriptions of 

attributes are some instances of issues discovered in the data dictionary of 

the studied datasets.   When the registry is open for research, an extensive 

and detailed data dictionary should be made available, especially for users 

who are unfamiliar with medical data.  The description of  an attribute, 

measurement of a value, and the event or condition, complete with specific 

measurement metrics, have to be clearly defined. In addition, an introduction 

to a specific domain (e.g., ACS) and standard hospital practices would serve 

as added value for the researcher in better comprehending the data. 

 Furthermore, this study also found that the granularity of the 

information and how the ACS data should be stored differed between 

Malaysia and the UK.  In fact, some information was not mutually available 
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in both regions.  Hence, in order to attain the most advantageous prediction 

model, it has been essential to develop a prediction model customized by 

region- either by constructing a model for a specific region or updating the 

model in accordance to that region. 

9.1.3 Predictors of ACS Models 

 Another major finding obtained from this study is related to the 

predictors for constructing ACS prediction models.  In the study,  in addition 

to producing a simpler model,  ML feature selection method has 

demonstrated its capability in identifying a set of predictors able to construct 

a competitive ACS prediction model. For example, the models developed 

with the CFS feature selection method on the Malaysian dataset using the 

LMT algorithm had better predictive power than the TIMI, EMMACE, SRI, 

and C-ACS models (Antman et al., 2000, Dorsch et al., 2001, Morrow et al., 

2001, Huynh et al., 2013).  Even though there is no finding on a totally new 

predictors for ACS mortality, this different set of predictors could suggest a 

better ACS prediction model.  Furthermore, the potential predictors resulting 

from ML feature selections are consistent with the existing risk factors, 

indicating that the ML feature selection method can identify the same risk 

factors as clinical trials/ medical opinions can.  Thus, this study has 

demonstrated that the ML feature selection method could be competitive in 

discovering new sets of predictors for prediction modelling. In traditional 

clinical trial, predictors are determined by pre-selecting several potential 

predictors  and then calculate the coefficient of the pre-selected predictors 

against the outcome to select significant predictors for the model. On the 

contrary, with the advent of the big data era, the growth of medical data is 

extremely rapid and sizeable, ML can be utilized for screening larger risk 

factor collections.  These large datasets can be screened for potential 

predictors, as well as allowing the machine to identify the best set of 

predictors or even new research questions.  With that, any new or vital 

predictors could be easily determined, and the findings can be supported 

and validated by scientific clinical trial. 

 This study concluded that the CFS of filter method is  better than the 

two wrapper methods investigated in the study.  However, this study does 

not totally agree with the finding by Hall (2000), which concluded that, in 
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general, the filter method is better than the wrapper method.  In this study, 

no concrete pattern was found suggesting that the filter method is indeed 

better than the wrapper method. Even though the CFS of filter method 

resulted in better prediction models for both the Malaysian and UK datasets, 

the filtersubset of another filter method produced the worst models when 

compared to the two wrapper methods on the UK dataset. 

 In another perspective, this study showed that most of the predictors 

of the existing ACS prediction model are still good enough to be used as the 

basis of predictors in building prediction models.   In Section 5.2.2, the 

results demonstrated that models developed adapting the set of predictors 

from the GRACE model were able to produce better models than the original 

GRACE model.  In fact, for the Malaysian dataset, almost half of the 

algorithms out of 17 evaluated algorithms were able to construct models with 

better predictive performance than the original model. In addition, models 

developed adopting combination of predictors from nine ACS models also 

resulted in competitive models for both the Malaysian and UK datasets.  This 

is an important message, suggesting that existing predictors can be adopted 

in developing a simple ACS model using ML customized to specific cohorts.  

This will save an extensive amount of model development time.  This finding 

suggests that, despite varying characteristics of the populations and the 

different quality in healthcare systems between Asia and Western regions, 

the effect of traditional risk factors upon the outcome seemed to remain 

constant. 

 On top of that, in evaluating predictors of different clinical categories, 

this study has discovered that, in order to build a good ACS prediction 

model, the predictors must reflect a combination of information from varied 

phases of clinical events.  As the information is varied from multiple clinical 

events, a better model could be developed.  Nonetheless, in order to build a 

good model using basic or first-contact patient information,  the predictors 

must cover at least data from the demographic, medical history, and clinical 

presentation categories.  Moreover, this study also found predictors from the 

medication received before admission category (i.e. specific medicine, such 

as a statin or BB, that was prescribed to a patient before the ACS event) do 

not contribute towards improving the performance of prediction models.  The 
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outcomes of the ML feature selection method support this finding. In all the 

evaluated feature selection methods, with the exception of the wrapper 

method on the Malaysian dataset, predictors from the medication received 

before admission category were hardly selected.  Nevertheless, each 

dataset from a different population had its own preferred set of predictors for 

producing the best models. As a result, the study has found that  the best 

sets of predictors to construct ACS models from Malaysian dataset are : 1) 

age, heart rate, SBP, DBP, ECG Abnormalities - T-Wave inversion, and Lvef  

2) age, heart rate, SBP, killip class, ACS symptoms before admission  3) 

age, history of premature CVD, history of heart failure, history of lung 

disease, history of renal failure, heart rate, SBP, DBP, ECG Abnormalities - 

T-Wave inversion, ECG Abnormalities - BBB, ECG Abnormalities - Non 

specific, ECG Abnormalities Location - Anterior Leads : V1 and V4, ECG 

Abnormalities Location - Right Ventricle : ST Elevation in Lead V4R, Low-

density lipoprotein cholesterol(LDL-C), FBG, Lvef, Low molecular weight 

heparin (LMWH) taken, Angiotensin converting enzyme (ACE)inhibitors 

taken, diuretics taken, and anti-arrhythmic taken .  As for the UK dataset, the 

best sets of predictors to construct ACS models are: 1) age, BB, SBP, 

cardiac arrest, and reinfarction  2) age, gender, history of heart failure, on 

aspirin status, SBP, heart rate, cardiac arrest, ST-segment deviation of ECG  

3) age, history of cerebrovascular disease, history of chronic renal failure, 

history of heart failure, diabetics, smoking status, aspirin status, BB, SBP, 

cardiac arrest, reinfarction, ECG, and tropinin assay.  On the other hand, the 

predictors of the best generic model are  age, SBP, and BB taken.   

9.1.4 Misclassification Instances 

 In evaluating the problem that tempered the performance of the ACS 

model for the datasets, the study identified imbalanced datasets as the main 

problem.  Due to this, a new approach to the undersampling method was 

introduced, i.e. Overlapped-undersampling, to handle the imbalanced 

datasets.  In the Overlapped-undersampling approach, all the overlapped 

instances in the majority class were removed to achieve a fair balance 

distribution as existed in the minority class.  This method was then 

compared with the existing methods for handling imbalanced datasets, such 

as random undersampling, boosting, voting, and using RF algorithms. The 
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study showed that the proposed approach made no obvious improvement 

over the existing approaches on the datasets, with the exception of boosting.  

Even so, the boosting method only worked on the UK dataset and only on 

the BN, ADT, and LMT algorithms.  In fact, this study found that, with 

sufficient sample size, an imbalance dataset could be better addressed 

without the need for these methods. The finding is consistent with the study 

by Japkowicz et al.(2002).  That study concluded that, with a sufficient 

sample size for each sub-cluster in a dataset, imbalanced datasets should 

not pose a problem(Japkowicz et al., 2002).  This is indeed an interesting 

point to make for a registry dataset used for prediction modelling. 

 In addition, this study also discovered that overlapping instances in 

the minority class are yet another reason for performance degradation. 

Nonetheless, we  believed that this reflects the underlying problem of 

imbalanced datasets.  In an earlier study, Denil and Trappenberg (2010) had 

pointed to the same argument. They suggested that, when instances of 

imbalanced and overlapped data are present in a dataset, decline in 

performance could be expected.  Their study evaluated the effect of overlap 

and imbalance issues, as well as their relationships to the size of the training 

set, specifically on the SVM algorithm.  Our study has given a deeper 

perspective on overlapped instances  and imbalanced datasets since our 

study found overlapped instances in minority class is indeed causing the 

problem.  And, unlike Denil and Trappenberg‘s(2010) study, we evaluated 

on five ML algorithms instead of one ML algorithm. 

 As missing values are a major concern when developing models from 

a registry, a proper way of handling these missing values should be carried 

out.  Discarding attributes with missing values is always an unwise strategy 

when dealing with a high-dimensionality dataset with a large number of 

missing data.  A very limited number of complete cases or no complete 

cases can be achieved when trying to remove instances with missing data in 

this case.  As described in Section  4.4.1.1, no complete instances were 

formed for the UK dataset, and only 318 complete instances could be 

extracted.   Thus, as applied in this study, for a dataset that contains a large 

number of attributes with a large number of missing values, it is well-advised 

to first identify the best set of predictors for model development before 
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removing the instances with missing values.  Also, eliminating instances with 

missing values does not hamper the performance of a model if the training 

dataset is of substantial size. 

 On the other hand, the study also has introduced a new approach for 

identifying imputation values for the missing values in a dataset, i.e., the 

mean-clustering-imputation method.  Unlike the simple imputation method, 

which imputes the mean or the most frequent value, our imputation values 

were derived from clusters of the datasets.  The datasets were first clustered 

using Simple EM, and the imputation value derived by calculating the mean 

(for numerical attributes) or the most frequent value (for categorical 

attributes) of each cluster. The mean-clustering-imputation  method attained 

better models compared to the simple imputation method and methods 

embedded in specific algorithms, especially the BN, LG, and LMT 

algorithms. In fact, the mean-clustering-imputation method is more 

competent when more than two numerical attributes with missing values are 

in the dataset.  However, the mean-clustering-imputation method is not 

suitable for use when the missing values are found more frequently in 

categorical attributes. 

 Finally, the study proposes a prediction model to predict misclassified 

instances using clinical properties as the predictors.  The model was 

developed based on the UK dataset, using the LMT algorithm.  Furthermore, 

the model could benefit an ACS DSS by reducing automation bias. 
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9.2. Main Research Contributions 

 The main contributions to research have been to achieve the 

Objectives of the study, as listed in Chapter 1: 

Objective 1:  This research has developed ACS mortality prediction models 

using DM and ML techniques that fit the Malaysian and UK datasets, and a 

generic dataset geared to both demographics. 

Objective 2:  This research has investigated ML feature selection methods 

and techniques for building simpler models with improved prediction power.  

The research also has evaluated the potency of existing sets of predictors to 

be adapted to other ACS registries data.  Furthermore, the strength of 

predictors from different clinical categories in contributing to model 

development has also investigated. 

Objective 3: This research has analysed the misclassification cases in 

constructing the prediction models and has identified the causes of 

performance degradation for the datasets.  A prediction model to predict 

misclassified instances of the dataset using clinical information as predictors 

has also developed. 

Objective 4:  This research has investigated and evaluated ML optimization 

strategies to  address an imbalanced dataset and missing values.  The new 

overlapped-undersampling method to handle imbalanced datasets and 

mean-clustering-imputation method  to handle missing values have been 

developed and compared with existing methods. 

9.3. Limitations and Future Researches 

 Even though we have built competitive models specific to the 

Malaysian and UK datasets, and also a model that can support both cohorts, 

we noted that the models still need further validations on new datasets from 

various cohorts and settings.  Particularly in the case of the Malaysian 

dataset, the collaboration will continue to validate the model on the latest 

NCVD data. 

 The sets of algorithms that best suit the studied datasets need to 

further validated on other medical datasets, as well as datasets of different 

domains but with similar characteristics, to further affirm generalizability of 
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the algorithms towards those datasets which have similar characteristics.  In 

addition, the study has observed the effect of ML algorithms on datasets 

limited to only simple dataset characteristics, such as number of predictors,  

number of samples,  percentages in the minority and majority classes,  

percentage of categorical and numerical predictors, and percentage of 

missing values in evaluating the best set of algorithms for the datasets.  This 

work should be extended further by measuring statistical characteristics of 

the datasets, such as kurtosis, skewness, and correlations, as applied in the 

comparison of ML algorithms studies by King et al. (1995) and Ali and Smith 

(2006). 

 In the misclassification analysis study, the study only evaluated 

misclassified instances limited to the five best algorithms found in this study.  

Misclassification analysis of other popular algorithms, such as NN, RF, and 

DT, should provide deeper insight into the matter.  In fact, the results of 

model development on other algorithms in the study are sufficient to be 

extracted and further analysed the matter. 

 In this study, overlapped instances in the minority class were found to 

be the underlying problem of the minority class.  This is an important finding 

for future research, especially in the context of an imbalanced dataset. 

 Future research also should extend this work to assess the feasibility 

and benefits of the model in a practical clinical setting, especially in 

Malaysia, as the NCVD registry is now more easily accessed by the author 

as a result of this research .  Furthermore, there is a bright opportunity to  

develop further a long-term ACS prediction model for the Malaysian dataset 

after considering the availability of PCI treatment information for ACS 

patients in the NCVD registry.  In fact, PCI-specific prognosis models may 

also be constructed, thus leading to another vital contribution towards 

improving overall cardiac care in Malaysia. 

 On top of that, improvement strategies will also be brought forward to 

the NCVD team based on the findings and experiences gained from this 

study.  The enhancement is targeted mainly on improving the quality of the 

data dictionary and supporting documents to better prepare the registry for 

adverse body of researchers.  
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 In addition, it is suggested that the NCVD dataset to be made publicly 

available.  For instance, with strict de-identification of patients, the sample of 

the dataset can be shared with 

theUCIMLrepository(https://archive.ics.uci.edu/ml/datasets.html).  This 

allows the dataset to be accessed by not only to medical researchers, but 

also by other groups, such as DM and ML communities or those involved in 

big data studies.  Moreover, this offers an opportunity for new and 

unexpected research questions, apart from stimulating innovative ideas.  For 

instance, ML researchers can look further into overlapped instances in 

minority classes so as to address the underlying problem of an imbalanced 

dataset. 

9.4. Conclusion 

 The value of developing ACS prediction models using ML has been 

successfully presented in this study.  Competitive ACS prediction models 

using ML have been developed by demonstrating the practical application of 

different ML algorithms and methods.  Evaluation of predictors of existing 

ACS models, and of different clinical categories, has provided insight into 

how to construct better ACS prediction models.  Misclassification analysis 

has identified the underlying problem of imbalanced datasets as overlapped 

instances in the minority classes.  In addition, missing values were also 

found to be one of the critical problems in misclassified instances in the 

datasets.  The proposed correction method, i.e., the overlapped-

undersampling method, used to handle imbalanced datasets failed to 

improve model performance.  Other existing methods of handling 

imbalanced datasets, such as bagging, random undersampling, and voting, 

also seemed to fail in improving the overall performance of the models.  

Nonetheless, having a larger sample size was found to be a convincingly 

better way to tackle issue of imbalanced datasets.   Furthermore, the 

proposed mean-clustering-imputation method for filling in missing values 

displayed improvement in terms of model performance in comparison to the 

simple imputation method and the algorithms‘ built-in methods.  However, 

removing instances with missing values after feature selection is indeed the 

best way of handling missing values for the datasets. 
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Appendix A : The Datasets 

A.1  Malaysian Dataset 

A.1.1 Summary of Attributes 

No Attributes Description Data Element Clinical Category Data Type 

1 patientid Patient Id DB   ID 

2 patientnotifid Patient Notification Id DB   ID 

3 sdpid Centre/Hospital Id Clinical Admission ID 

4 contactinstitutionname Centre/Hospital Name Clinical Admission Categorical 

5 dateadmission Date of Admission Clinical Admission Categorical 

6 ptdatebirth Date of birth Clinical Demographic Date 

7 yradmit Year admit Clinical Admission Numerical 

8 yrDOB Year date of birth Clinical Demographic Numerical 

9 currentptoutcomeid Outcome id Clinical Clinical Outcome ID 

10 siteid Centre/Hospital Id Clinical Admission ID 

11 patientoutcomeid Outcome id Clinical Clinical Outcome ID 

12 patientfuid **Unknown **Unknown **Unknown ID 

13 ptoutcome30 30 days outcome Clinical Clinical Outcome Categorical 

14 dateoutcome Date of In-hospital outcome Clinical Clinical Outcome Date 

15 jpn_dateofdeath JPN date of death Non-Clinical JPN Date 

16 jpn_causeofdeath JPN cause of death Non-Clinical JPN Categorical 

17 jpnmatchingstatus JPN matching status Non-Clinical JPN Categorical 

18 outdate30 Date of 30 days outcome Clinical 30 days outcome Date 

19 deathdate Death date Clinical Clinical Outcome Date 

20 ptoutcome In-hospital outcome Clinical Clinical Outcome Categorical 

21 yr_outcome Year of outcome Clinical Clinical Outcome Numerical 

22 ptsex Gender Clinical Demographic Categorical 

23 ptrace Race Clinical Demographic Categorical 

24 ptraceothermsian Other Malaysian race Clinical Demographic Categorical 

25 ptraceothermsianspecify Other specified Malaysian race Clinical Demographic Categorical 
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26 ptraceforeignspecify Other specified foreign race Clinical Demographic Categorical 

27 ptnationality Nationality Clinical Demographic Categorical 

28 acsstratum ACS Stratum Clinical Clinical Diagnosis Categorical 

29 troponini Peak Troponin TnI Clinical Clinical Investigations and 
Examinations 

Numerical 

30 troponinive Peak Troponin TnI - Positive Clinical Clinical Investigations and 
Examinations 

Categorical 

31 troponint Peak Troponin TnT Clinical Clinical Investigations and 
Examinations 

Numerical 

32 troponintve Peak Troponin TnT- Positive Clinical Clinical Investigations and 
Examinations 

Categorical 

33 ultroponini Reference upper limit for Troponin TnI Clinical Clinical Investigations and 
Examinations 

Numerical 

34 ultroponint Reference upper limit for Troponin TnT Clinical Clinical Investigations and 
Examinations 

Numerical 

35 ptageatnotification Age at notification Clinical Demographic Numerical 

36 smokingstatus Smoking status Clinical Status Before Event - Smoking 
Status 

Categorical 

37 statusaspirinuse Status of aspirin use Clinical Status Before Event - Aspirin 
Used 

Categorical 

38 cdys History of dyslipidaemia Clinical Status Before Event - Past 
Medical History 

Categorical 

39 cdm History of diabetes Clinical Status Before Event - Past 
Medical History 

Categorical 

40 chpt History of hypertension Clinical Status Before Event - Past 
Medical History 

Categorical 

41 cpremcvd History of premature cardiovascular disease Clinical Status Before Event - Past 
Medical History 

Categorical 

42 cmi History of MI Clinical Status Before Event - Past 
Medical History 

Categorical 

43 ccap History of documented cad > 50% stenosis Clinical Status Before Event - Past 
Medical History 

Categorical 

44 canginamt2wk History of chronic angina more than 2 weeks ago Clinical Status Before Event - Past 
Medical History 

Categorical 

45 canginapast2wk History of chronic angina less than 2 weeks ago Clinical Status Before Event - Past 
Medical History 

Categorical 

46 cheartfail History of heart failure Clinical Status Before Event - Past 
Medical History 

Categorical 

47 clung History of chronic lung disease Clinical Status Before Event - Past 
Medical History 

Categorical 

48 crenal History of renal disease Clinical Status Before Event - Past Categorical 
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Medical History 

49 ccerebrovascular History of cerebrovascular disease Clinical Status Before Event - Past 
Medical History 

Categorical 

50 cpvascular History of peripheral vascular disease Clinical Status Before Event - Past 
Medical History 

Categorical 

51 cnone None of the stated history disease Clinical Status Before Event - Past 
Medical History 

Categorical 

52 dateonsetacs Date on ACS Clinical Onset Presentation Date 

53 timeonsetacs Time onset ACS Clinical Onset Presentation Date 

54 timeonsetacsna (Not Applicable) Time onset ACS Clinical Onset Presentation Categorical 

55 dateptpresented Date presented  ACS Clinical Onset Presentation Date 

56 timeptpresented Time presented ACS Clinical Onset Presentation Date 

57 timeptpresentedna (Not Applicable) Time presented ACS Clinical Onset Presentation Categorical 

58 transferred Is patient transferred from another centre Clinical Onset Presentation Categorical 

59 anginaepisodeno Number of distinct episode of angina in past 24hrs Clinical Clinical Presentation Numerical 

60 anginaepisodena (Not Applicable) Number of distinct episode of 
angina in past 24hrs 

Clinical Clinical Presentation Categorical 

61 heartrate Heart rate Clinical Clinical Presentation Numerical 

62 bpsys SBP Clinical Clinical Presentation Numerical 

63 bpdias Diastolic BP Clinical Clinical Presentation Numerical 

64 height Height Clinical Clinical Presentation Numerical 

65 heightna (Not Applicable) Height Clinical Clinical Presentation Categorical 

66 weight Weight Clinical Clinical Presentation Categorical 

67 weightna (Not Applicable) Weight Clinical Clinical Presentation Categorical 

68 bmi BMI Clinical Clinical Presentation Numerical 

69 waistcircumf Waist Circumference Clinical Clinical Presentation Numerical 

70 waistcircumfna (Not Applicable) Waist Circumference Clinical Clinical Presentation Categorical 

71 hipcircumf Hip Circumference Clinical Clinical Presentation Numerical 

72 hipcircumfna (Not Applicable) Hip Circumference Clinical Clinical Presentation Categorical 

73 whr WHR Clinical Clinical Presentation Categorical 

74 killipclass Killip class Clinical Clinical Diagnosis Categorical 

75 ecgabnormtypestelev1 ECG Abnormalities - ST - segment elevation >=1mm 
in >=2 contiguous limb leads 

Clinical ECG Categorical 

76 ecgabnormtypestelev2 ECG Abnormalities - ST - segment elevation >=2mm 
in >=2 contiguous limb leads 

Clinical ECG Categorical 

77 ecgabnormtypestdep ECG Abnormalities - ST - segment elevation >=0.5mm 
in >=2 contiguous limb leads 

Clinical ECG Categorical 

78 ecgabnormtypetwave ECG Abnormalities - T-Wave inversion Clinical ECG Categorical 
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79 ecgabnormtypebbb ECG Abnormalities - Bundle Branch Block Clinical ECG Categorical 

80 ecgabnormtypenonspecific ECG Abnormalities - Non specific Clinical ECG Categorical 

81 ecgabnormtypenone ECG Abnormalities - None Clinical ECG Categorical 

82 ecgabnormtypenotstated ECG Abnormalities - Not stated Clinical ECG Categorical 

83 ecgabnormlocationil ECG Abnormalities Location - Inferior leads : II, III, 
aVF 

Clinical ECG Categorical 

84 ecgabnormlocational ECG Abnormalities Location - Anterior Leads : V1 and 
V4 

Clinical ECG Categorical 

85 ecgabnormlocationll ECG Abnormalities Location - Lateral Leads - I, sVL, 
v5 and v6 

Clinical ECG Categorical 

86 ecgabnormlocationtp ECG Abnormalities Location - True Posterior : V1, v2 Clinical ECG Categorical 

87 ecgabnormlocationrv ECG Abnormalities Location - Right Ventricle : ST 
Elevation in Lead V4R 

Clinical ECG Categorical 

88 ecgabnormlocationnone ECG Abnormalities Location - None Clinical ECG Categorical 

89 ecgabnormlocationnotstated ECG Abnormalities Location - Not Stated Clinical ECG Categorical 

90 ckmb Peak CKMB Clinical Clinical Investigations and 
Examinations 

Numerical 

91 ulckmb Upper limit Peak CKMB Clinical Clinical Investigations and 
Examinations 

Numerical 

92 notdoneckmb (Not done) Peak CKMB Clinical Clinical Investigations and 
Examinations 

Categorical 

93 ck Peak CK Clinical Clinical Investigations and 
Examinations 

Numerical 

94 ulck Upper limit Peak CK Clinical Clinical Investigations and 
Examinations 

Categorical 

95 notdoneck (Not done) Peak CK Clinical Clinical Investigations and 
Examinations 

Categorical 

96 notdonetroponint (Not done) Peak troponin TNT Clinical Clinical Investigations and 
Examinations 

Categorical 

97 notdonetroponini (Not done) Peak troponin TN1 Clinical Clinical Investigations and 
Examinations 

Categorical 

98 tc Total Cholesterol Clinical Clinical Investigations and 
Examinations 

Numerical 

99 notdonetc (Not done) Total Cholesterol Clinical Clinical Investigations and 
Examinations 

Categorical 

100 hdlc HDL-C Clinical Clinical Investigations and 
Examinations 

Numerical 

101 notdonehdlc (Not done) HDL-C Clinical Clinical Investigations and 
Examinations 

Categorical 

102 ldlc LDL-C Clinical Clinical Investigations and 
Examinations 

Numerical 
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103 notdoneldlc (Not done) LDL-C Clinical Clinical Investigations and 
Examinations 

Categorical 

104 tg Triglycerides Clinical Clinical Investigations and 
Examinations 

Numerical 

105 notdonetg (Not done) Triglycerides Clinical Clinical Investigations and 
Examinations 

Categorical 

106 fbg Fasting Blood Glucose Clinical Clinical Investigations and 
Examinations 

Numerical 

107 notdonefbg (Not done) Fasting Blood Glucose Clinical Clinical Investigations and 
Examinations 

Categorical 

108 lvef Left Ventricular Ejection Fraction  Clinical Clinical Investigations and 
Examinations 

Numerical 

109 notdonelvef (Not done) Left Ventricular Ejection Fraction Clinical Clinical Investigations and 
Examinations 

Categorical 

110 timiscorestemi TIMI Score for STEMI Clinical Clinical Diagnosis Numerical 

111 timiscorenstemi TIMI Score for NSTEMI/UAP Clinical Clinical Diagnosis Numerical 

112 fbstatus Fibrinolytic Therapy status Clinical Treatment and Interventions Categorical 

113 fbdrugused Fibrinolytic Drugs used Clinical Treatment and Interventions Categorical 

114 dateivfb Date intravenous fibrinolytic therapy Clinical Treatment and Interventions Date 

115 timeivfb Time intravenous fibrinolytic therapy Clinical Treatment and Interventions Date 

116 doortoneedletime Door to needle time Clinical Treatment and Interventions Numerical 

117 cardiaccath Patient undergo Cardiac catheterization Clinical Treatment and Interventions Categorical 

118 pci Patient undergo PCI Clinical Treatment and Interventions Categorical 

119 pcistemi Patient received PCI STEMI Clinical Treatment and Interventions Categorical 

120 pcistemiurgent Patient received PCI STEMI - Urgent Clinical Treatment and Interventions Categorical 

121 pcistemielective Patient received PCI STEMI - Elective Clinical Treatment and Interventions Categorical 

122 pcinstemi Patient received PCI NSTEMI Clinical Treatment and Interventions Categorical 

123 pcinstemielective Patient received PCI NSTEMI - elective Clinical Treatment and Interventions Categorical 

124 disvesselno Number of diseased vessels Clinical Treatment and Interventions Numerical 

125 lminvolve Left main stem involvement Clinical Treatment and Interventions Categorical 

126 culpritartery Culprit artery  Clinical Treatment and Interventions Categorical 

127 date1stangioballoon Date of First balloon inflation - for urgent PCI Clinical Treatment and Interventions Date 

128 time1stangioballoon Time of First balloon inflation - for urgent PCI Clinical Treatment and Interventions Date 

129 doortoballoontime Door to balloon time - Urgent PCI Clinical Treatment and Interventions Numerical 

130 iraprepci TIMI flow classification pre-PCI Clinical Treatment and Interventions Categorical 

131 iraintract Present of Intra-coronary thrombus Clinical Treatment and Interventions Categorical 

132 irapostpci TIMI flow classification post-PCI Clinical Treatment and Interventions Categorical 

133 pcitype PCI Type Clinical Treatment and Interventions Categorical 
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134 pcitypestentdirect Is PCI Type (Stenting) - Direct Stenting Clinical Treatment and Interventions Categorical 

135 pcitypestentpredilat Is PCI Type (Stenting) - Pre dilatation Clinical Treatment and Interventions Categorical 

136 pcitypestentbms Is PCI Type (Stenting) - Drug Eluting Clinical Treatment and Interventions Categorical 

137 pcitypestentdes Is PCI Type (Stenting) - Bare-metal Clinical Treatment and Interventions Categorical 

138 cabg CABG therapy given during admission? Clinical Treatment and Interventions Categorical 

139 datecabg Date of CABG therapy  Clinical Treatment and Interventions Date 

140 asapre Aspirin Clinical Medical - Pre Admission Categorical 

141 asa Aspirin Clinical Medical - During Admission Categorical 

142 asapost Aspirin Clinical Medical - Post Admission Categorical 

143 adpapre ADP Antagonist Clinical Medical - Pre Admission Categorical 

144 adpa ADP Antagonist Clinical Medical - During Admission Categorical 

145 adpapost ADP Antagonist Clinical Medical - Post Admission Categorical 

146 gpripre GP receptor inhibitor Clinical Medical - Pre Admission Categorical 

147 gpri GP receptor inhibitor Clinical Medical - During Admission Categorical 

148 gpripost GP receptor inhibitor Clinical Medical - Post Admission Categorical 

149 heparinpre Unfrac Heparin Clinical Medical - Pre Admission Categorical 

150 heparin Unfrac Heparin Clinical Medical - During Admission Categorical 

151 heparinpost Unfrac Heparin Clinical Medical - Post Admission Categorical 

152 lmwhpre LMWH Clinical Medical - Pre Admission Categorical 

153 lmwh LMWH Clinical Medical - During Admission Categorical 

154 lmwhpost LMWH Clinical Medical - Post Admission Categorical 

155 bbpre Beta Blocker Clinical Medical - Pre Admission Categorical 

156 bb Beta Blocker Clinical Medical - During Admission Categorical 

157 bbpost Beta Blocker Clinical Medical - Post Admission Categorical 

158 aceipre ACE Inhibitor Clinical Medical - Pre Admission Categorical 

159 acei ACE Inhibitor Clinical Medical - During Admission Categorical 

160 aceipost ACE Inhibitor Clinical Medical - Post Admission Categorical 

161 arb Angiotensin II Receptor blocker Clinical Medical - During Admission Categorical 

162 arbpre Angiotensin II Receptor blocker Clinical Medical - Pre Admission Categorical 

163 arbpost Angiotensin II Receptor blocker Clinical Medical - Post Admission Categorical 

164 statinpre Statin Clinical Medical - Pre Admission Categorical 

165 statin Statin Clinical Medical - During Admission Categorical 

166 statinpost Statin Clinical Medical - Post Admission Categorical 

167 lipidlapre Other lipid lowering agent Clinical Medical - Pre Admission Categorical 

168 lipidla Other lipid lowering agent Clinical Medical - During Admission Categorical 

169 lipidlapost Other lipid lowering agent Clinical Medical - Post Admission Categorical 
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170 diureticpre Diuretics Clinical Medical - Pre Admission Categorical 

171 diuretic Diuretics Clinical Medical - During Admission Categorical 

172 diureticpost Diuretics Clinical Medical - Post Admission Categorical 

173 calcantagonistpre Calcium antagonist Clinical Medical - Pre Admission Categorical 

174 calcantagonist Calcium antagonist Clinical Medical - During Admission Categorical 

175 calcantagonistpost Calcium antagonist Clinical Medical - Post Admission Categorical 

176 oralhypoglypre Oral Hypoglycaemic agent Clinical Medical - Pre Admission Categorical 

177 oralhypogly Oral Hypoglycaemic agent Clinical Medical - During Admission Categorical 

178 oralhypoglypost Oral Hypoglycaemic agent Clinical Medical - Post Admission Categorical 

179 insulinpre Insulin Clinical Medical - Pre Admission Categorical 

180 insulin Insulin Clinical Medical - During Admission Categorical 

181 insulinpost Insulin Clinical Medical - Post Admission Categorical 

182 antiarrpre Anti-Arrhythmic Clinical Medical - Pre Admission Categorical 

183 antiarr Anti-Arrhythmic Clinical Medical - During Admission Categorical 

184 antiarrpost Anti-Arrhythmic Clinical Medical - Post Admission Categorical 

185 dayccu Number of days in CCU Clinical Clinical Outcome Numerical 

186 dayicu Number of days in ICU Clinical Clinical Outcome Numerical 

187 totaldaystay Total number of stay in the hospital Clinical Clinical Outcome Numerical 

188 diagatdischarge Diagnosis at Discharge Clinical Clinical Outcome Categorical 

189 bleedingepisodecriteria Bleeding Complication Clinical Clinical Outcome Categorical 

190 zdaygenward Number of days in general hospital Clinical Clinical Outcome Categorical 

191 diff_op **Unknown **Unknown **Unknown Categorical 

192 sdpcode Centre/Hospital code Clinical Admission Categorical 

193 state State of the admission centre/hospital Clinical Admission Categorical 

194 agegp Age group Clinical Demographic Categorical 

195 deathcause Cause of death Clinical Clinical Outcome Categorical 

196 deathcausespecify Cause of death - specify Clinical Clinical Outcome Text 

197 transfercentre Transfer centre Clinical Clinical Outcome Categorical 

198 transfercentrespecify Specified transfer centre Clinical Clinical Outcome Text 

199 yeardeath Year of death Clinical Clinical Outcome Numerical 

200 totaladmday total admission day Clinical Clinical Outcome Numerical 

201 ptoutcome1 Patient outcome Clinical Clinical Outcome Categorical 

202 fbstatus_new Fibrinolytic Therapy status Clinical Treatment and Interventions Categorical 

203 dateoutcome30 Date of 30 days outcome Clinical Clinical Outcome Date 

204 deathcause30 Cause of death of 30 days outcome Clinical Clinical Outcome Categorical 

205 deathcausespecify30 Specified cause of death of 30 days outcome Clinical Clinical Outcome Text 
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206 transfercentre30 Transfer centre Clinical Clinical Outcome Categorical 

207 transfercentrespecify30 Specified transfer centre Clinical Clinical Outcome Text 

208 _merge **Unknown **Unknown **Unknown Categorical 

209 ptoutcome30a 30 days outcome Clinical Clinical Outcome Categorical 

210 ind **Unknown **Unknown **Unknown Categorical 

211 admission_revised **Unknown **Unknown **Unknown Numerical 

212 admission_string **Unknown **Unknown **Unknown Categorical 

213 DOB_revised **Unknown **Unknown **Unknown Numerical 

214 DOB_string **Unknown **Unknown **Unknown Numerical 

215 age_admit Age at notification Clinical Demographic Numerical 
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A.1.2 List of Duplicate Attributes 

Set of attributes Description Decision/Action Taken 

contactinstitutionname, sdpid, 
siteid, sdpcode 
 

The attributes represents the 
centre/ hospital that a patient 
admitted to.  

Retained only sdpid.  
However, the reference name 
of each hospital is kept.  The 
name of each hospital is 
represented by attribute 
contactinstitutionname. 

patientidpatientnotifid Since it has been decided to have 
only the first entry of each 
patient, patientid and 
patientnotifid attributes are now 
considered duplicates as they are 
both represents unique values. 

Patientid is used as the 
unique id for each record in 
the dataset. 
 
Removed patientnotifid. 

ptageatnotification, age_admit Both attributes represent the age 
of a patient on admission. 

Ptageatnotification is 
specified in the NCVD data 
dictionary.  Thus, it is 
assumed that 
ptageatnotification is the 
true referred attribute for 
age on admission. 
Removed age_admit. 

ptoutcome/ptoutcome1 The attributes hold the in-hospital 
mortality outcome of a patient. 

ptoutcome is specified in the 
NCVD data dictionary.  Thus, 
it is assumed that ptoutcome 
is the true referred attribute 
in-hospital mortality 
outcome.   
Removed ptoutcome1. 

ptoutcome30, ptoutcome30a The attributes hold the 30 days 
hospital mortality outcome of a 
patient. 

Removed ptoutcome30a. 

dateadmission,Admission_revised The attributes hold the date of 
admission of each patient in the 
dataset. 

dateadmission is specified in 
the NCVD data dictionary.  
Thus, it is assumed that 
dateadmission is the true 
referred attribute for date of 
admission. 
Removed Admission_revised. 

ptdatebirth, DOB_revised The attributes hold the date of 
birth of each patient in the 
dataset. 

ptdatebirth is specified in the 
NCVD data dictionary.  Thus, 
it is assumed that ptdatebirth 
is the true referred attribute 
for date of birth 
Removed DOB_revised. 

totaldaystay, totaladmday The attributes hold the number of 
days stay in the hospital of each 
patient in the database.   

totaldaystay is specified in 
the NCVD data dictionary.  
Thus, it is assumed that 
totaldaystay is the true 
referred attribute for date of 
birth 
Removed totaladmday 

fb_status/fb_statusnew The attributes hold the fibrinolytic 
therapy status of each patient in 
the database.   

Removed fb_statusnew 

outcomedate, deathdate.  The attributes hold the outcome 
date of each patient in the 
database.   
Deathdate - The value is in 
number which cannot be 
identified on the date.  The date 

Values in deathdate are in 
numbers which cannot be 
identified as date.  The date 
of death of a patient is 
actually the outcome date as 
we considered death as one 
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of death of a patient can be 
identified by using dateoutcome 
 
 

of ACS outcome.   
Removed deathdate 

 

A.1.3 List of Database Attributes 

Attributes Descriptions Decision/Action Taken 

patientoutcomeid The id was generated once the 
outcome decision is made. 

Removed. There is no pattern 
that will affect the outcome 

 

A.1.4 List of Unknown Attributes 

Attributes Description 

currentptoutcomeid Value is either 3, 5 or blanks. But no specific 
description of each value representation.   

patientfuid Value is either zero or blanks. But no specific 
description of each value representation.   

outdate30 Each value is  unique in numbers and does not 
represent any pattern 

diff_op Each value is  unique in numbers and does not 
represent any pattern 

admission_string Each value is  unique in numbers and does not 
represent any pattern 

DOB_string Each value is  unique in numbers and does not 
represent any pattern 

_merge Values are either 1, 3 or Blanks 
zdaygenward Probably number of days in general ward.   
ptnationality Probably the nationality of a patient.   The value is 

either 0, 1 or 2.  But no specific description of each 
value representation.   
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A.1.5 List of Irrelevant Attributes 

Attributes Description 

ptraceothermsian The attribute represents a very specific race yet 
minority group in Malaysia.  The filled out value is 
very small i.e. only n=29 which might not effect 
anything towards the outcome.  Also, the attribute is 
very specific towards Malaysian population. 
 

ptraceothermsianspecify The attribute represents a very specific race yet 
minority group in Malaysia.  The value is captured in 
text format which may not have any standard.  The 
existing filled out value is very small i.e. only n=59 
which might not effect anything towards the 
outcome.   
Also, the attribute is very specific towards Malaysian 
population. 

ptraceforeignspecify The attribute represents the race of foreign patients 
that are admitted for ACS The value is captured in text 
format which may not have any standard.  The 
existing filled out value is very small i.e. only n=131 
which might not effect anything towards the 
outcome.   
Also, the attribute is very specific towards Malaysian 
population. 

ptnationality Supposedly, the attribute represents the nationality of 
a patient.  The value is either 0, 1, 2, 8888 or 9999.  
No logical indication can be made from the values and 
it is not specified in the NCVD data dictionary.   
Also, since it is a national registry all, patients are 
mainly Malaysian.  Non-Malaysian can be identified by 
the attribute ptrace.  This attribute may eventually a 
duplicate to ptrace. 
 

fbdrugused, dateivfb, timeivfb, 
pcistemi, pcistemiurgent, 
pcistemielective, 
pcinstemipcinstemi, disvesselno, 
lminvolve, culpritartery, 
date1stangioballoon, 
time1stangioballoon, 
doortoballoontime, iraprepci, 
iraintract, irapostpci, pcitype, 
pcitypestentdirect, 
pcitypestentpredilat, 
pcitypestentbms, pcitypestentdes 
 

These are attributes that describe in details on each 
therapy or procedure given to a patient.  
Therapy or procedure is given after doctor has 
diagnosed the patient.  Since the aim of the models is 
to help doctors or medical practitioners in making 
diagnosis, therapy or procedure information is not 
considered as predictors. 
However, information on type of therapy/procedure a 
patient received can be the marker to in hospital 
mortality.  It will be beneficial as to use the 
information to evaluate/analyse the population 
characteristic.  Thus, the information on basic type of 
therapy/procedure a patient received is remained in 
the dataset. 
 

transfercentrespecify, 
transferredcentre, transferred 
 

 

jpn_dateofdeath, jpn_causeofdeath, 
jpnmatchingstatus 
 

These are attributes that capture information from 
NRDM.  These have no relation to any of ACS event. 

gpripost, heparinpost, lmwhpost 
 

These are attributes that are not captured at all but 
the attributes exists in the dataset.  All values is either 
‘Missing’ or ‘blanks’ 
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A.1.6 List of Non-standardized Data Collection Attributes 

Attributes 

1)    troponini 

2)    troponinive 

3)    troponint 

4)    Troponintve 

5)    Ultroponini 

6)    ultroponint 

7)    ckmb 

8)    ulckmb 

9)    notdoneckmb 

10) ck 

11) ulck 

12) notdoneck 

 

A.1.7 List of Dependant Missing Attributes 

Attributes 

1)    timeonsetacsna 

2)    timeptpresentedna 

3)    heightna 

4)    weightna 

5)    waistcircumfna 

6)    hipcircumfna 

7)    anginaepisodena 

 

A.1.8 List of New Attributes 

No Attributes  Descriptions Type Value 

1 DAYS_ACS_SYMPTOMS_TO
_ADMISSION 

Number of days the patient get the symptoms 
(from the day of admission). 
 
Formula: 
Date of onset of ACS symptoms - Date of 
admission 
 
**NEGATIVE value indicates that ACS 
symptom before the admission 
**POSITIVE value indicates that ACS symptom 
after the admission 

Number 0-365 
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2 ACS_SYMPTOMS_BEFORE_
ADMISSION 

Indicator whether ACS symptoms were 
presented before or during admission 
 
Formula: 
 
   If the 
DAYS_ACS_SYMPTOMS_TO_ADMISSION < 0 
and <=  -30 then 1 
   if ( DAYS_ACS_SYMPTOMS_TO_ADMISSION 
>  0  and  < 30 days) then  2 
   else 99 

Categoric
al 

1- True 
2- False 
99 - 
NA/Invali
d 

3 CNONE No past medical history being recorded for the 
patient. 
 
Formula: 
 
  TRUE - if all past medical history is FALSE 
  FALSE - if any of the past medical history is 
TRUE 
  Unknown - if all past medical history is 
Unknown 

Categoric
al 

1- True 
2- False 
99 - 
Unknown 
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A.2  The UK dataset 

A.2.1 Summary of Attributes 

No Attribute Description Data Source Data 
Element 

Clinical 
Category 

Data Type 

1 ID Id created for the requested dataset Link DB ID ID 

2 Digest Pseudonymised ID  SystemOne DB ID ID 

3 UNID Unique ID  
** Used for information linkage process 

Link DB ID ID 

4 Freq Indicating multiple records in HES Link Clinical Admission Numerical 

5 STARTAGE Age at start of episode  HES Clinical Demographic Numerical 

6 ETHNOS Ethnic category HES Clinical Demographic Categorical 

7 SEX Sex of patient HES Clinical Demographic Categorical 

8 ADMIDATE Date of admission HES Clinical Admission Date 

9 ADMI_CFL **Unknown **Unknown ** Unknown ** Unknown Numerical 

10 ADMIMETH Method of Admission HES Clinical Admission Categorical 

11 ADMISORC Source of Admission HES Clinical Admission Categorical 

12 FIRSTREG First regular day or night admission HES Clinical Admission Categorical 

13 DISDATE Date of discharge HES Clinical Clinical 
Outcome 

Date 

14 DIS_CFL Discharge date check flag HES Clinical Clinical 
Outcome 

Categorical 

15 DISDEST Destination on discharge HES Clinical Clinical 
Outcome 

Categorical 

16 DISMETH Method of discharge HES Clinical Clinical 
Outcome 

Categorical 

17 SPELDUR Duration of spell HES Clinical Clinical 
Outcome 

Numerical 

18 SPELEND End of spell HES Clinical Clinical 
Outcome 

Categorical 

19 EPIORDER Episode order HES Clinical Clinical 
Outcome 

Categorical 

20 DIAG_01 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

21 DIAG_02 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 
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22 DIAG_03 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

23 DIAG_04 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

24 DIAG_05 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

25 DIAG_06 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

26 DIAG_07 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

27 DIAG_08 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

28 DIAG_09 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

29 DIAG_10 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

30 DIAG_11 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

31 DIAG_12 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

32 DIAG_13 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

33 DIAG_14 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

34 DIAG_15 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

35 DIAG_16 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

36 DIAG_17 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

37 DIAG_18 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

38 DIAG_19 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

39 DIAG_20 All diagnosis codes HES Clinical Clinical 
Diagnosis 

Categorical 

40 OPERTN_01 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

41 OPERTN_02 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 
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42 OPERTN_03 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

43 OPERTN_04 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

44 OPERTN_05 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

45 OPERTN_06 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

46 OPERTN_07 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

47 OPERTN_08 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

48 OPERTN_09 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

49 OPERTN_10 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

50 OPERTN_11 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

51 OPERTN_12 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

52 OPERTN_13 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

53 OPERTN_14 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

54 OPERTN_15 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

55 OPERTN_16 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 
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56 OPERTN_17 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

57 OPERTN_18 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

58 OPERTN_19 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

59 OPERTN_20 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

60 OPERTN_21 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

61 OPERTN_22 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

62 OPERTN_23 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

63 OPERTN_24 ** Unknown 
** All values are 'NA' 

** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

64 OPDATE_01 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Date 

65 OPDATE_02 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Date 

66 OPDATE_03 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Date 

67 OPDATE_04 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Date 

68 OPDATE_05 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Date 

69 OPDATE_06 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Date 



- 190 - 

70 OPDATE_07 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Date 

71 OPDATE_08 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Date 

72 OPDATE_09 ** Unknown ** Unknown Clinical Treatment 
and 
Interventions 

Date 

73 Column_70 ** Unknown ** Unknown ** Unknown ** Unknown Categorical 

74 Column_71 ** Unknown ** Unknown ** Unknown ** Unknown Categorical 

75 Column_72 ** Unknown ** Unknown ** Unknown ** Unknown Categorical 

76 Column_73 ** Unknown ** Unknown ** Unknown ** Unknown ** 
Unknown 

77 Column_74 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

78 Column_75 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

79 Column_76 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

80 Column_77 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

81 Column_78 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

82 Column_79 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

83 Column_80 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

84 Column_81 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

85 Column_82 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

86 Column_83 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

87 Column_84 ** Unknown  
All values are 'NA' 

** Unknown ** Unknown ** Unknown ** 
Unknown 

88 Column_85 ** Unknown ** Unknown ** Unknown ** Unknown Categorical 
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89 Column_86 ** Unknown ** Unknown ** Unknown ** Unknown Categorical 

90 Column_87 ** Unknown ** Unknown ** Unknown ** Unknown Categorical 

91 Column_89 ** Unknown ** Unknown ** Unknown ** Unknown Categorical 

92 dthdate ** Unknown 
Used for information linkage process 

Link DB ** Unknown ** 
Unknown 

93 dthcode ** Unknown 
Used for information linkage process 

Link DB ** Unknown ** 
Unknown 

94 ADMDATE_COUNT ** Unknown 
Used for information linkage process 

Link DB ** Unknown ** 
Unknown 

95 CVTD_ADMIDATE ** Unknown 
Formatted date from ADMIDATE by Steve 
mm/dd/yyyy 

Link ** Unknown ** Unknown Date 

96 Ethnicity Ethnicity ** Unknown Clinical Demographic Categorical 

97 X107_Gender Gender MINAP Clinical Demographic Categorical 

98 X306_EventDate Admission date MINAP Clinical Admission Date 

99 AdmissionDate Admission date and time MINAP Clinical Admission Date 

100 X107.Gender Gender MINAP Clinical Demographic Categorical 

101 Ethnic.Group...V83 Ethnic Group ** Unknown Clinical Demographic Categorical 

102 X201.Admission.Diagnosis Initial Diagnosis MINAP Clinical Clinical 
Diagnosis 

Categorical 

103 Method.of.Admission...V83 Method of Admission ** Unknown Clinical Admission Categorical 

104 X203.ECG.Determining.Treatment ECG determining treatment MINAP Clinical ECG Categorical 

105 X204.Where.Aspirin.Given Where was aspirin/other antiplatelet given MINAP Clinical Status Before 
Event - Status 
of Aspirin 

Categorical 

106 X205.Previous.AMI  Previous AMI MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

107 X206.Previous.Angina Previous angina MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

108 X207.Hypertension History of Hypertension MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

109 X208.Hypercholesterolaemia History of  Hypercholesterolaemia MINAP Clinical Status Before 
Event - Past 

Categorical 
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Medical 
History 

110 X209.Peripheral.Vascular.Disease History of Peripheral Vascular Disease MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

111 X210.Cerebrovascular.Disease History of Cerebrovascular Disease MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

112 X211.Asthma.or.COPD History of Asthma or COPD MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

113 X212.Chronic.Renal.Failure History of Chronic Renal Failure MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

114 X213.Heart.Failure History of Heart Failure MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

115 X214.Enzymes.Elevated History of Enzymes Elevated MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

116 X215.Cholesterol Cholesterol MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Numerical 

117 X216.Smoking.Status Smoking Status MINAP Clinical Status Before 
Event - 
Smoking 
Status 

Categorical 

118 X217.Diabetes History of Diabetes MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

119 X218.Previous.PCI Previous PCI MINAP Clinical Status Before 
Event - Past 
Treatment 

Categorical 



- 193 - 

120 X219.Previous.CABG Previous CABG MINAP Clinical Status Before 
Event - Past 
Treatment 

Categorical 

121 X220.Systolic.BP SBP MINAP Clinical Clinical 
Presentation 

Numerical 

122 X221.Heart.Rate Heart Rate MINAP Clinical Clinical 
Presentation 

Numerical 

123 X222.Admitting.Consultant Type of admitting consultant MINAP Clinical Admission Categorical 

124 X223.Place.ECG.Performed Place ECG Performed MINAP Clinical ECG Categorical 

125 X224.Beta.Blocker Beta Blocker MINAP Clinical Medical - Pre 
Admission 

Categorical 

126 X225.ACE.I.or.ARB ACE.I or ARB MINAP Clinical Medical - Pre 
Admission 

Categorical 

127 X226.Statin Statin MINAP Clinical Medical - Pre 
Admission 

Categorical 

128 Clopidogrel Clopidogrel ** Unknown Clinical Medical - Pre 
Admission 

Categorical 

129 X228.Glucose Serum glucose MINAP Clinical Clinical 
Presentation 

Numerical 

130 X229.Height Height MINAP Clinical Clinical 
Presentation 

Numerical 

131 X230.Weight Weight MINAP Clinical Clinical 
Presentation 

Numerical 

132 X231.LVEF Left ventricular ejection fraction MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Categorical 

133 X232.Family.History.of.CHD Family History of CHD MINAP Clinical Status Before 
Event - Past 
Medical 
History 

Categorical 

134 X233.Cardiological.Care.during.Admission Cardiological care during admission MINAP Clinical Treatment 
and 
Interventions - 
Cardiac Care 

Categorical 

135 X234.Creatinine Creatinine MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Numerical 

136 X235.Haemoglobin Haemoglobin MINAP Clinical Clinical 
Investigations 

Numerical 
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and 
Examinations 

137 X236.Site.of.Infarction Site of Infarction MINAP Clinical ECG Categorical 

138 X237.ECG.QRS.Complex.duration ECG QRS Complex duration MINAP Clinical ECG Categorical 

139 X238.Thienopyridine.inhibitor.use Thienopyridine inhibitor use MINAP Clinical Medical - Pre 
Admission 

Categorical 

140 X239.Admission.Method Admission.Method MINAP Clinical Admission Categorical 

141 X240.Patient.location.at.STEMI.onset Patient location at STEMI onset MINAP Clinical Onset 
Presentation 

Categorical 

142 X241.Killip.Class Killip Class MINAP Clinical Clinical 
Presentation 

Categorical 

143 X301.Symptom.Onset Date Symptom Onset MINAP Clinical Onset 
Presentation 

Date 

144 X302.Call.for.Help Date Call for Help MINAP Clinical Admission Date 

145 X303.Arrival.1st.Responder Date Arrival.1st.Responder MINAP Clinical Admission Date 

146 X304.Arrival.Ambulance Date Arrival Ambulance MINAP Clinical Admission Date 

147 X306.Arrival.at.Hospital Date Arrival at Hospital 
 
** Arrival at the hospital is the same as date of 
admission 

MINAP Clinical Admission Date 

148 X308.Reason.Treatment.not.given Reason reperfusion treatment not given MINAP Clinical Treatment 
and 
Interventions 

Categorical 

149 X309.Reperfusion.Treatment Date of Reperfusion Treatment MINAP Clinical Treatment 
and 
Interventions 

Date 

150 X310.Justified.Delay Delay before treatment MINAP Clinical Treatment 
and 
Interventions 

Categorical 

151 X311.Where.treatment.given Where was initial reperfusion treatment given? MINAP Clinical Treatment 
and 
Interventions 

Categorical 

152 Who.took.treatment.decision...V7 ** Person who decide on the treatment ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

153 X313.1st.Cardiac.Arrest Cardiac arrest date/time - FIRST ARREST ONLY MINAP Clinical Onset 
Presentation 

Date 

154 X314.Where.cardiac.arrest Cardiac arrest location MINAP Clinical Onset 
Presentation 

Categorical 

155 X315.Presenting.Rhythm Arrest presenting rhythm MINAP Clinical Onset Categorical 
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Presentation 

156 X316.Outcome.of.arrest Outcome of arrest MINAP Clinical Onset 
Presentation 

Categorical 

157 X317.Admission.Ward Admission ward MINAP Clinical Admission Categorical 

158 Peak.CK...V7 Peak CK ** Unknown Clinical Clinical 
Investigations 
and 
Examinations 

Numerical 

159 X319.Peak.Troponin Peak Troponin MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Numerical 

160 X320.Unfractionated.Heparin Unfractionated heparin MINAP Clinical Medical - 
During 
Admission 

Categorical 

161 X321.Low.molecular.weight.heparin Low molecular weight heparin MINAP Clinical Medical - 
During 
Admission 

Categorical 

162 X322.Thienopyridene Thienopyridine platelet inhibitor MINAP Clinical Medical - 
During 
Admission 

Categorical 

163 Other.Oral.Antiplatelet...V7 ** Other Oral Antiplatelet ** Unknown Clinical Medical Categorical 

164 X324.IV.2B.3A IV 2b/3a agent MINAP Clinical Medical - 
During 
Admission 

Categorical 

165 X325.IV.BBlocker IV beta blocker MINAP Clinical Medical - 
During 
Admission 

Categorical 

166 X327.Calcium.Channel.Blocker Calcium channel blocker MINAP Clinical Medical - 
During 
Admission 

Categorical 

167 X328.IV.Nitrate IV nitrate MINAP Clinical Medical - 
During 
Admission 

Categorical 

168 X329.Oral.Nitrate Oral nitrate MINAP Clinical Medical - 
During 
Admission 

Categorical 

169 X330.Potassium.Channel.Modulator Potassium Channel Modulator MINAP Clinical Medical - 
During 
Admission 

Categorical 

170 X331.Warfarin Warfarin MINAP Clinical Medical - Categorical 
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During 
Admission 

171 X332.Angiotensin Angiotensin MINAP Clinical Medical - 
During 
Admission 

Categorical 

172 X333.Thiazide.Diuretic Thiazide Diuretic MINAP Clinical Medical - 
During 
Admission 

Categorical 

173 X334.Loop.Diuretic Loop Diuretic MINAP Clinical Medical - 
During 
Admission 

Categorical 

174 Spironolactone...V7 ** Spironolactone  ** Unknown Clinical Medical - 
During 
Admission 

Categorical 

175 X336.Thrombolytic.Drug Thrombolytic Drug MINAP Clinical Treatment 
and 
Interventions 

Categorical 

176 X337.Troponin.Assay Troponin Assay MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Categorical 

177 X338.Fondaparinux Fondaparinux MINAP Clinical Medical - 
During 
Admission 

Categorical 

178 X339.Initial.Reperfusion.Treatment Initial Reperfusion Treatment MINAP Clinical Treatment 
and 
Interventions 

Categorical 

179 X340.Additional.Reperfusion.Treatment Additional Reperfusion Treatment MINAP Clinical Treatment 
and 
Interventions 

Categorical 

180 Was.Reperfusion.Attempted...v6 ** Indicator if any reperfusion attempted ** Unknown Clinical Treatment 
and 
Interventions 

Categorical 

181 X341.Inpatient.diabetes.management Inpatient diabetes management MINAP Clinical Treatment 
and 
Interventions 

Categorical 

182 X342.Diabetic.Therapy X342.Diabetic.Therapy MINAP Clinical Clinical 
Outcome - 
Therapy 

Categorical 

183 X343.Oral.beta.blocker Oral beta blocker MINAP Clinical Medical - 
During 
Admission 

Categorical 
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184 X344.Aldosterone.antagonist Aldosterone antagonist MINAP Clinical Medical - 
During 
Admission 

Categorical 

185 X346.Arrival.at.non.interventional.hospital Arrival at non. intervention hospital MINAP Clinical Admission Date 

186 X347.Assess.at.non.intevention.hospital Assess at non-intervention hospital MINAP Clinical Admission Categorical 

187 X348.Assess.at.Intervention.Centre Assess at Intervention Centre MINAP Clinical Admission Categorical 

188 X349.Intended.Reperfusion.Proc Intended Reperfusion Procedure MINAP Clinical Treatment 
and 
Interventions 

Categorical 

189 X350.Proc.Performed Procedure Performed MINAP Clinical Treatment 
and 
Interventions 

Categorical 

190 X351.Why.no.Angio Why no Angio being done? MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Categorical 

191 X352.Why.no.Intervention Why no Intervention MINAP Clinical Treatment 
and 
Interventions 

Categorical 

192 X401.Discharge.Date X401.Discharge.Date MINAP Clinical Clinical 
Outcome 

Date 

193 X402.Discharge.Diagnosis X402.Discharge.Diagnosis MINAP Clinical Clinical 
Outcome 

Categorical 

194 X403.Bleeding.Complications X403.Bleeding.Complications MINAP Clinical Clinical 
Outcome 

Categorical 

195 X404.Death.in.Hospital X404.Death.in.Hospital MINAP Clinical Clinical 
Outcome 

Categorical 

196 X405.Discharged.on.Beta.Blocker Discharged on Beta Blocker MINAP Clinical Medical - 
Post-
Admission 

Categorical 

197 X406.Discharged.on.ACE.I Discharged on ACE.I MINAP Clinical Medical - 
Post-
Admission 

Categorical 

198 X407.Discharged.on.Statin Discharged on Statin MINAP Clinical Medical - 
Post-
Admission 

Categorical 

199 X408.Discharged.on.Aspirin Discharged on Aspirin MINAP Clinical Medical - 
Post-
Admission 

Categorical 

200 X409.Cardiac.Rehab X409.Cardiac.Rehab MINAP Clinical Clinical Categorical 
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Outcome - 
Rehab 

201 X410.Exercise.Test Exercise Test MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Categorical 

202 X411.Echocardiography Echocardiography MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Categorical 

203 X412.Radionuclide.Study Radionuclide Study MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Categorical 

204 X413.Coronary.Angio Coronary Angio MINAP Clinical Clinical 
Investigations 
and 
Examinations 

Categorical 

205 X414.Coronary.Intervention Coronary Intervention MINAP Clinical Treatment 
and 
Interventions 

Categorical 

206 X415.Referral.Date Referral Date MINAP Clinical Admission Date 

207 X416.Discharge.Destination Discharge Destination MINAP Clinical Clinical 
Outcome 

Categorical 

208 X417.Daycase.Transfer.date Day case Transfer date MINAP Clinical Clinical 
Outcome 

Date 

209 X418.Local.Angio.date Local Angio date MINAP Clinical Treatment 
and 
Interventions 

Date 

210 X419.Local.Intervention.date Local Intervention date MINAP Clinical Treatment 
and 
Interventions 

Date 

211 X423.Followed.up Followed up MINAP Clinical Clinical 
Outcome 

Categorical 

212 X424.Reinfarction Reinfarction MINAP Clinical Onset 
Presentation 

Categorical 

213 Discharged.on.Clopidogrel...v7 Clopidogrel (INN) ** Unknown Clinical Medical - 
Post-
Admission 

Categorical 

214 X426.Return.to.Referring.Hospital Return to Referring Hospital MINAP Clinical Clinical 
Outcome 

Categorical 
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215 X427.Discharged.on.Thieno.Inhibitor Discharged on Thieno Inhibitor MINAP Clinical Medical - 
Post-
Admission 

Categorical 

216 X428.Discharged.on.Aldosterone.Antagonist Discharged on Aldosterone Antagonist MINAP Clinical Medical - 
Post-
Admission 

Categorical 

217 X429.Interventional.Hospital.Procedure Interventional Hospital Procedure MINAP Clinical Treatment 
and 
Interventions 

Categorical 

218 X501.Smoking.Cessation.Advice X501.Smoking.Cessation.Advice MINAP Clinical Clinical 
Outcome - 
Advise 

Categorical 

219 X502.Dietary.Advice X502.Dietary.Advice MINAP Clinical Clinical 
Outcome - 
Advise 

Categorical 

220 CTH ** Unknown ** Unknown ** Unknown ** Unknown Numerical 

221 DTN ** Unknown ** Unknown ** Unknown ** Unknown Numerical 

222 CTN ** Unknown ** Unknown ** Unknown ** Unknown Numerical 

223 OTH ** Unknown ** Unknown ** Unknown ** Unknown Numerical 

224 OTN ** Unknown ** Unknown ** Unknown ** Unknown Numerical 

225 Age.At.Admission Age at admission MINAP Clinical Demographic Numerical 

226 Apollo...Pseudonymised.103.NHS.Number Pseudonymised NHS Number Link Clinical ID ID 

227 Hermes...Pseudonymised.101.Hospital.Code Pseudonymised Hospital Code Link Clinical ID ID 

228 Artemis...Pseudonymised.101.Hospital.Code...102.
Hospital.Numbe 

Pseudonymised Hospital Number Link Clinical ID ID 

229 Geo...IMDScore ** Unknown 
Geographical score 

** Unknown Non-Clinical Geographical-
Score 

Numerical 

230 Geo...IMDRank ** Unknown 
Geographical score 

** Unknown Non-Clinical Geographical-
Score 

Numerical 

231 Geo...HealthScore ** Unknown 
Geographical score 

** Unknown Non-Clinical Geographical-
Score 

Numerical 

232 Geo...HealthRank ** Unknown 
Geographical score 

** Unknown Non-Clinical Geographical-
Score 

Numerical 

233 Geo...Easting ** Unknown 
Geographical score 

** Unknown Non-Clinical Geographical-
Score 

Numerical 
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234 Geo...Northing ** Unknown 
Geographical score 

** Unknown Non-Clinical Geographical-
Score 

Numerical 

235 validNHS ** Unknown ** Unknown ** Unknown ** Unknown Categorical 

236 Sex Sex of patient ** Unknown Clinical Demographic Categorical 
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A.2.2 List of Duplicate Attributes 

Set of attributes Description Decision/Action Taken 

STARTAGE, Age.At.Admission Both attributes represent the age 
of a patient on admission. 

Removed STARTAGE. 

SEX, X107_Gender, X107.Gender, Sex All attributes represent the gender 
of a patient 

X107._Gender is from 
MINAP 
Removed SEX, 
X107.Gender, Sex 

ETHNOS, Ethnicity, Ethnic.Group...V83 The attributes hold the information 
about the ethnic group of a patient 

ETHNOS is specified in the 
HES data dictionary.   
Removed Ethnicity, 
Ethnic.Group...V83 

ADMIDATE, 
X306_EventDate,AdmissionDate, 
CVTD_ADMIDATE, 
X306.Arrival.at.Hospital 

The attributes hold the information 
on admission date of a patient 

X306_EventDate and 
AdmissionDate are from 
MINAP.  AdmissionDate is 
selected because it 
provides both date and 
time 
Removed X306_EventDate 
ADMIDATE, 
CVTD_ADMIDATE, 
X306.Arrival.at.Hospital 

ADMIMETH, 
Method.of.Admission...V83, 
X239.Admission.Method 

The attributes hold method of 
admission 

Removed X239.Admission 
Method  because it has all 
blanks values except for 1 
record 
 
Decided that ADMINMETH 
and Method of Admission 
v83 is two different things 

DISDATE, X401.Discharge.Date The attributes hold the date of 
discharge of a patient 

X401.Discharge.Dateis 
from MINAP.   
Since DISDATE is removed, 
DIS_CFL is also removed 
since the attribute relates 
to the existence of 
DISDATE. 
Removed DISDATE 

 

A.2.3 List of Database Attributes 

Attributes 

1)    Digest 

2)    Apollo...Pseudonymised.103.NHS.Number 

3)    Hermes...Pseudonymised.101.Hospital.Code 

4)    Artemis...Pseudonymised.101.Hospital.Code...102.Hospital.Numbe 

5)    ADMDATE_COUNT 

6)    CVTD_ADMIDATE 

7)    UNID 
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A.2.4 List of One-value Attributes 

Attributes Descriptions 

SPELEND All values are ‘Y’ 

DIAG_15 All values are ‘NA’ 

DIAG_16 All values are ‘NA’ 

DIAG_17 All values are ‘NA’ 

DIAG_18 All values are ‘NA’ 

DIAG_19 All values are ‘NA’ 

DIAG_20 All values are ‘NA’ 

OPERTN_13 All values are ‘NA’ 

OPERTN_14 All values are ‘NA’ 

OPERTN_15 All values are ‘NA’ 

OPERTN_16 All values are ‘NA’ 

OPERTN_17 All values are ‘NA’ 

OPERTN_18 All values are ‘NA’ 

OPERTN_19 All values are ‘NA’ 

OPERTN_20 All values are ‘NA’ 

OPERTN_21 All values are ‘NA’ 

OPERTN_22 All values are ‘NA’ 

OPERTN_23 All values are ‘NA’ 

OPERTN_24 All values are ‘NA’ 

Column_73 All values are ‘NA’ 

Column_74 All values are ‘NA’ 

Column_75 All values are ‘NA’ 

Column_76 All values are ‘NA’ 

Column_77 All values are ‘NA’ 

Column_78 All values are ‘NA’ 

Column_79 All values are ‘NA’ 

Column_80 All values are ‘NA’ 

Column_81 All values are ‘NA’ 

Column_82 All values are ‘NA’ 

Column_83 All values are ‘NA’ 
Column_84 All values are ‘NA’ 

ADMI_CFL All values are ‘0’ 

validNHS All values are ‘1’ except for 3 records 

KillipClass All values are ‘NA’ 

 

A.2.5 List of Unknown Attributes 

Attributes Description 

OPERTN_01, OPERTN_02, OPERTN_03, OPERTN_04, 
OPERTN_05, OPERTN_06, OPERTN_07, OPERTN_08, 
OPERTN_09, OPERTN_10, OPERTN_11, OPERTN_12 

Probably the operation procedure 
received by the patient.  Values 
are in specific code but details 
about the attributes are not 
specified in either HES or MINAP 
data dictionary. 

OPDATE_01, OPDATE_02, OPDATE_03, OPDATE_04, 
OPDATE_05, OPDATE_06, OPDATE_07, OPDATE_08, 
OPDATE_09,  

Probably the date of operation 
procedure received by the patient.  
Values are in date format but 
details about the attributes are 
not specified in either HES or 
MINAP data dictionary. 

Column_70, Column_71, Column_72, Values are in date format but 
details about the attributes are 
not specified in either HES or 
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MINAP data dictionary. 
Column_85, Column_86, Column_87, Column_89 Values are in numeric format  but 

details about the attributes are 
not specified in either HES or 
MINAP data dictionary. 

Who.took.treatment.decision...V7 Probably the person who made 
the decision for the treatment.  
But do not sure for which 
treatment and details about the 
attributes are not specified in 
either HES or MINAP data 
dictionary. 

Other.Oral.Antiplatelet...V7 Probably the medication of other 
oral antiplatelet given to the 
patient.  But do not sure when the 
medication is given to the patient 
and details about the attributes 
are not specified in either HES or 
MINAP data dictionary. 

Spironolactone...V7 Probably the medication of 
Spironolactone given to the 
patient .  But do not sure when 
the medication is given to the 
patient and details about the 
attributes are not specified in 
either HES or MINAP data 
dictionary. 

CTH, DTN, CTN, OTH, OTN Values are in numeric format  but 
details about the attributes are 
not specified in either HES or 
MINAP data dictionary. 

Geo...IMDScore, Geo...IMDRank, Geo...HealthScore, 
Geo...HealthRank, Geo...Easting, Geo...Northing 

Probably kind of geographical 
scores or ranks.  But do not sure 
the meaning of the score or ranks 
and  details about the attributes 
are not specified in either HES or 
MINAP data dictionary. 

 

A.2.6 List of Irrelevant Attributes 

Attributes Description 

dthdate, dthcode The attribute was created by the data manager 
for the purposes of linkage procedure and have 
no reference to any of the attributes. 
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A.2.7 List of New Attributes 

No Attributes  Descriptions Type Value 

1 ADMISSION_YEAR Year of admission for the patient Categorical 2003 2010 

2 ADMISSION_MONTH Month of admission for the patient Categorical 01-12 

3 ATTEND_NON_INTERVENTIO
NAL_HOSPITAL 

Indicate that the patient went 
through non interventional hospital 
before the interventional 
 
FORMULA 
Based on 
X346.Arrival.at.non.interventional.ho
spital.  If the date exists, then TRUE 
else FALSE 

Categorical 1-TRUE 
2- FALSE 

4 CALL_FOR_HELP Indicate that the patient has called 
for help 
 
FORMULA 
Based on X302.Call.for.Help  If the 
date exists, then TRUE else FALSE 

Categorical 1-TRUE 
2- FALSE 

5 DEATH_IN_HOSPITAL Indicate whether the patient has died 
in the hospital or not 
 
FORMULA 
Based on X404.Death.in.Hospital.   
    If the (0. No), then 0 else (1. From 
MI, 2. From complication of 
treatment, 4. Other cardiac cause,  3. 
Other non cardiac related cause) 1 

Categorical 0 - Not died 
1- Died 

6 DAYS_ONSET_SYMPTOMS_T
O_ADMISSION 

Number of days the patient get the 
symptoms before the day of 
admission. 
 
Formula:  
    Date of onset of ACS symptoms - 
Date of admission 
 
**NEGATIVE value indicates that ACS 
symptom before the admission 
**POSITIVE value indicates that ACS 
symptom after the admission 
 
if onset of ACS Symptoms is 'blank' 
then 'BLANK' 

Number 0-365 

7 ONSET_SYMPTOMS_BEFORE_
ADMISSION 

Indicator whether the ACS symptoms 
were present before or during 
admission 
 
Formula: 
   If the 
DAYS_ACS_SYMPTOMS_TO_ADMISSI
ON < 0  then 1 
   if ( 
DAYS_ACS_SYMPTOMS_TO_ADMISSI
ON >  0  ) then  2 
   else 99 

Categorical 1- True 
2- False 
99 -NA/Invalid 
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A.3 The Mapping of Malaysia and The UK dataset 

Category Attribute Description The Malaysian Attributes The Malaysian attributes Value The UK Attributes  The UK attributes Value 

Admission 1 Admission Year Yradmit [2006 - 2010] ADMISSION_YEAR [2003 - 2010] 

Demographics 2 Age ptageatnotification Number Age.At.Admission Number 

3 Gender Ptsex [Female, Male] X107_Gender [F,M] 

Status before 
Event - Past 
Medical History 

4 Myocardial Infraction Cmi [Yes, No, Unknown] X205.Previous.AMI [Yes, No, Unknown] 

5 Previous Angina canginamt2wk & 
canginapast2wk 

[Yes, No, Unknown] X206.Previous.Angina [Yes, No, Unknown] 

6 Hypertension chpt [Yes, No, Unknown] X207.Hypertension [Yes, No, Unknown] 

7 Peripheral Vascular 
Disease 

cpvascular [Yes, No, Unknown] X209.Peripheral.Vascular.Disease [Yes, No, Unknown] 

8 Cerebrovascular 
Disease 

ccerebrovascular [Yes, No, Unknown] X210.Cerebrovascular.Disease [Yes, No, Unknown] 

9 Renal Disease crenal [Yes, No, Unknown] X212.Chronic.Renal.Failure [Yes, No, Unknown] 

10 Heart Failure cheartfail [Yes, No, Unknown] X213.Heart.Failure [Yes, No, Unknown] 

11 Diabetics cdm [Yes, No, Unknown] X217.Diabetes [Yes, No, Unknown] 

Status before 
Event - Smoking 
Status 

12 Smoking status smokingstatus [Current (any tobacco use 
within last 30 days), Former 
(quit >30 days), Never, 
Unknown ] 

X216.Smoking.Status [0. Never smoked, 1. Ex 
smoker, 2. Current 
smoker, 3. Non smoker 
- smoking history 
unknown, 9. Unknown] 

Status before 
Event - Medical 
Used 

13 Beta Blocker bbpre [Yes, No, Unknown] X224.Beta.Blocker [1. Yes, 0. No, 9. 
Unknown] 

14 ACE Inhibitor or 
Angiotensin II receptor 
Blocker 

aceipre&arbpre [Yes, No, Unknown] X225.ACE.I.or.ARB [1. Yes, 0. No, 9. 
Unknown] 

15 Statin statinpre [Yes, No, Unknown] X226.Statin [1. Yes, 0. No, 9. 
Unknown] 

Clinical 
presentation 
&Examination 

16 Heart Rate heartrate Number X221.Heart.Rate Number 

17 SBP bpsys Number X220.Systolic.BP Number 

18 Height height Number X229.Height Number 

19 Weight weight Number X230.Weight Number 

20 BMI bmi Number BMI Number 
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ECG 21 ECG Abnormalities 
Type 

ecgabnormtypestelev1 & [TRUE, FALSE] X203.ECG.Determining.Treatment [1. ST segment 
elevation, 2. Left bundle 
branch block, 3. ST 
segment depression, 4. 
T wave changes only, 5. 
Other abnormality, 5. 
Other acute 
abnormality , 6. Normal 
ECG, 9. Unknown] 

ecgabnormtypestelev2 & 

Ecgabnormtypebbb& 

Ecgabnormtypestdep& 

ecgabnormtypetwave 

22 ECG Abnormalities 
Location 

ecgabnormlocational& [TRUE, FALSE] X236.Site.of.Infarction [1. Anterior, 2. Inferior, 
3. Posterior, 4. Lateral, ,  
5. Indeterminate, 9. 
Unknown] 

Ecgabnormlocationil& 

Ecgabnormlocationtp& 

ecgabnormlocationll 

Clinical 
Investigations & 
Examinations 

23 Cholesterol tc Number X215.Cholesterol Number 

Treatment & 
Interventions 

24 PCI pci [Yes, No] X414.Coronary.Intervention [1. Percutaneous 
coronary intervention] 

25 CABG cabg [Yes, No] X414.Coronary.Intervention [2. CABG] 

Medical - During 
Admission 

26 Unfrac Heparin heparin [Yes, No, Unknown] X320.Unfractionated.Heparin [1. Yes, 0. No, 9. 
Unknown] 

27 Low molecular weight 
heparin (LMWH) 

lmwh [Yes, No, Unknown]   [1. Yes, 0. No, 9. 
Unknown] X321.Low.molecular.weight.heparin 

28 Beta Blocker bb [Yes, No, Unknown] X325.IV.Bblocker [1. Yes, 0. No, 9. 
Unknown] 

Clinical 
Outcomes 

29 Overnight Stays totaldaystay Number SPELDUR Number 

30 Bleeding Complication bleedingepisodecriteria [Major, Minor, Missing,  None, 
Not Available, Not 
stated/Inadequately described] 

X403.Bleeding.Complications [0. None, 9. Unknown ] 

31 Outcome ptoutcome [Died, Discharge] DEATH_IN_HOSPITAL [0, 1] 
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A.4 The Common Dataset 

No Predictors Type of Predictors Malaysian Dataset The UK Dataset 

1 Admission year Categorical 9533(100%) [0%] 3845(100%) [0%] 

2 Age Numerical 59.0 (12.1) [0%] 68.8 (13.4) [0%] 

3 Male Categorical 7225 (75.8%) [0%] 2464 (64.1%) [0%] 

4 SBP Numerical 139.1 (28.7) [1.7%] 147.8 (242.8) [23.1%] 

5 Height Numerical 161.7 (8.3) [45%] 166.1 (65) [70.9%] 

6 Weight Numerical 67.6 (14.1) [38.1%] 78.3 (18.2) [60.6%] 

7 Heart rate (beats/mins) Numerical 83.6 (21.3) [1.7%] 83.7 (34.8) [23.1%] 

8 Cholesterol Numerical 5.31 (1.3) [28%] 11.8 (140.9) [40%] 

9 Previous MI Numerical 1569 (16.5%) [20.8%] 2623 (22.1%) [9.7%] 

10 History of heart failure Categorical 616 (6.5%) [17.2%] 207 (6.5%) [17.3%] 

11 History of stroke 
(cerebrovascular) 

Categorical 328 (3.4%) [19.5%] 272 (7.1%) [18.1%] 

12 History of peripheral vascular 
disease 

Categorical 74 (1.0%) [20.7%] 195 (5.9%) [13%] 

13 History of renal failure Categorical 586 (7.6%) [19.4%] 159 (5.0%) [18%] 

14 History of hypertension Categorical 5773 (60.6%) [13.8%] 1566 (40.7%) [10.6%] 

15 Current smoker Categorical 3231 (33.9%) [5%] 1009 (26.2%) [12.7%] 

16 History of diabetics Categorical 3964 (41.6%) [17.1%] 567 (14.8%) [8.9%] 

17 BB given Categorical 2269 (27%) [11.9%] 1654(60.5%) [28.9%] 

18 Statin given Categorical 2724 (32.3%) [11.6%] 1993 (72.6%)[28.6%] 
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A.5 Characteristic of AMIS Model vs. The UK Datasets and Malaysian Datasets. 

 (AMIS)-Plus registry The UK Dataset Malaysian Dataset 

Derivation Population National Registry 

(Switzerland) 
MINAP Registry 
(UK) 

NCVD Registry 
(Malaysia) 

Years 1997 –2005 2003-2010 2006- 2010 

Number of Patients 7520 3846 9533 

Source of Patients 
54 (out of 106) hospitals 
treating STEMI in 
Switzerland 

Leeds -selected GP who are 
using SystemOne, and 
registered as inpatient and 
outpatient in the hospitals 
Leeds 

18 hospitals who serve 
cardiac services in Malaysia 
 

Range of ACS UA, NSTEMI, STEMI UA, NSTEMI, STEMI UA, NSTEMI, STEMI 
Predictors Age >65 

Killip Class >=II 
SBP 
Heart Rate 
Pre-hospital 
cardiopulmonary 
resuscitation 

History of heart failure 
History of cerebrovascular 
disease 

 

Age  
Killip Class  
SBP 
Heart Rate 
History of heart failure 
History of cerebrovascular 
disease 
 

Age  
SBP 
Heart Rate 
History of heart failure 
History of cerebrovascular 
disease 

 

In-Hospital Mortality  7.5% 4.8% 7.1% 
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Appendix B: Results of Methodology Review 

B.1 WEKA Classification Algorithms 

The grey shaded rows are the 'unsuitable' algorithms. 

No ML Algorithms 
Baseline datasets 

Common datasets 
AMIS 

Malaysian The UK Malaysian The UK Malaysian The UK 

1 BN 0.778 0.878 0.747 0.726 0.777 0.722 

2 NB 0.746 0.803 0.754 0.64 0.805 0.656 

3 LG 0.819 0.809 0.781 0.776 0.797 0.78 

4 MLP 0.802 0.818 0.718 0.878 0.761 0.756 

5 SVM 0.500 0.675 0.500 0.500 0.576 0.500 

6 VP 0.500 0.500 0.500 0.500 0.500 0.500 

7 KNN 0.615 0.500 0.512 0.495 0.685 0.621 

8 LWL 0.752 0.849 0.735 0.738 0.762 0.728 

9 CR 0.500 0.500 0.500 0.500 0.500 0.500 

10 DT 0.727 0.673 0.781 0.500 0.741 0.500 

11 DTNB 0.594 0.819 0.435 0.465 0.741 0.500 

12 Jrip 0.533 0.674 0.521 0.500 0.538 0.500 

13 OneR 0.505 0.683 0.512 0.500 0.512 0.500 

14 PART 0.703 0.776 0.761 0.729 0.737 0.500 

15 Ridor 0.500 0.587 0.509 0.500 0.528 0.500 

16 ZR 0.500 0.500 0.500 0.500 0.500 0.500 
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17   ADT 0.813 0.868 0.794 0.772 0.794 0.760 

18 BFT 0.575 0.662 0.589 0.500 0.562 0.500 

19 DS 0.680 0.672 0.68 0.689 0.603 0.689 

20   FT 0.721 0.800 0.625 0.500 0.797 0.500 

21   J48 0.663 0.677 0.615 0.500 0.62 0.500 

22    J48Graft 0.664 0.677 0.615 0.500 0.62 0.500 

23 LT 0.732 0.694 0.745 0.753 0.672 0.737 

24   LMT 0.823 0.851 0.777 0.773 0.797 0.500 

25   NBT 0.631 0.79 0.752 0.748 0.797 0.745 

26 RF 0.760 0.767 0.763 0.738 0.714 0.698 

27 RT 0.638 0.689 0.619 0.648 0.634 0.629 

28   REPT 0.697 0.670 0.755 0.500 0.768 0.629 

29 SC 0.589 0.662 0.589 0.500 0.614 0.500 
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B.2 Missing Values 

Algorithm Malaysian The UK 

BD_No_
Mssg 

BD_5Prct_M
ssg 

BD_10Prct_M
ssg 

BD_15Prct_M
ssg  

BD_20Prct_M
ssg 

BD_No_Ms
sg 

BD_5Prct_M
ssg 

BD_10Prct_M
ssg 

BD_15Prct_M
ssg  

BD_20Prct_M
ssg 

BN 0.702 0.766 0.765 0.775 0.786 0.717 0.746 0.812 0.816 0.739 

NB 0.703 0.779 0.776 0.785 0.796 0.724 0.759 0.824 0.820 0.819 

LG 0.707 0.793 0.793 0.799 0.805 0.728 0.753 0.776 0.769 0.771 

MLP 0.633 0.715 0.738 0.728 0.732 0.693 0.821 0.801 0.772 0.739 

LWL 0.680 0.728 0.719 0.747 0.753 0.712 0.745 0.789 0.779 0.801 

DT 0.500 0.635 0.635 0.647 0.647 0.500 0.500 0.730 0.730 0.730 

DTNB 0.500 0.449 0.481 0.489 0.596 0.684 0.528 0.637 0.792 0.763 

PART 0.626 0.638 0.687 0.639 0.684 0.550 0.633 0.786 0.671 0.738 

ADT 0.682 0.778 0.778 0.778 0.778 0.726 0.736 0.784 0.784 0.805 

  DS 0.618 0.615 0.615 0.615 0.615 0.689 0.689 0.669 0.669 0.669 

  FT 0.538 0.624 0.659 0.734 0.659 0.741 0.606 0.721 0.678 0.718 

LT 0.684 0.751 0.751 0.751 0.751 0.740 0.728 0.780 0.780 0.780 

  LMT 0.700 0.782 0.782 0.773 0.789 0.733 0.755 0.794 0.798 0.787 

  NBT 0.701 0.673 0.637 0.604 0.645 0.715 0.744 0.819 0.818 0.818 

  RF 0.692 0.744 0.757 0.772 0.777 0.673 0.677 0.766 0.762 0.793 

  RT 0.538 0.577 0.584 0.581 0.580 0.512 0.517 0.603 0.610 0.640 

  REPT 0.632 0.664 0.677 0.686 0.686 0.649 0.500 0.676 0.676 0.676 
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Appendix C: Sets of Predictors 

C.1 Set of Predictors by Combination of Clinical Categories 

Subset 
of 

predictors 

Malaysian The UK 

List of predictors Training  
Set 

Validation  
Set 

Categorical 
Predictors 

List of predictors Training  
Set 

Validation  
Set 

Categorical 
Predictors 

CATA1 1) ptsex 6673 2860 18 1) Age.At.Admission 2659 1134 18 

  2) ptrace       2) X107_Gender       

  3) ptageatnotification       3) ETHNOS       

  4) smokingstatus       4) X205.Previous.AMI       

  5) statusaspirinuse       5) X206.Previous.Angina       

  6) cdys       6) X207.Hypertension       

  7) cdm       7) X208.Hypercholesterolaemia       

  8) chpt       8) X209.Peripheral.Vascular.Disease       

  9) cpremcvd       9) X210.Cerebrovascular.Disease       

  10) cmi       10) X211.Asthma.or.COPD       

  11) ccap       11) X212.Chronic.Renal.Failure       

  12) canginamt2wk       12) X213.Heart.Failure       

  13) canginapast2wk       13) X217.Diabetes       

  14) cheartfail       14) X232.Family.History.of.CHD       

  15) clung       15) X216.Smoking.Status       

  16) crenal       16) X204.Where.Aspirin.Given       

  17) ccerebrovascular       17) X218.Previous.PCI       

  18) cpvascular       18) X219.Previous.CABG       

  19) CNONE                 

CATA2 1) ptsex 6673 2860 34 1) Age.At.Admission 2659 1134 23 

  2) ptrace       2) X107_Gender       
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  3) ptageatnotificatin       3) ETHNOS       

  4) smokingstatus       4) X205.Previous.AMI       

  5) statusaspirinuse       5) X206.Previous.Angina       

  6) cdys       6) X207.Hypertension       

  7) cdm       7) X208.Hypercholesterolaemia       

  8) chpt       8) X209.Peripheral.Vascular.Disease       

  9) cpremcvd       9) X210.Cerebrovascular.Disease       

  10) cmi       10) X211.Asthma.or.COPD       

  11) ccap       11) X212.Chronic.Renal.Failure       

  12) canginamt2wk       12) X213.Heart.Failure       

  13) canginapast2wk       13) X217.Diabetes       

  14) cheartfail       14) X232.Family.History.of.CHD       

  15) clung       15) X216.Smoking.Status       

  16) crenal       16) X204.Where.Aspirin.Given       

  17) ccerebrovascular       17) X218.Previous.PCI       

  18) cpvascular       18) X219.Previous.CABG       

  19) CNONE       19) X224.Beta.Blocker       

  20) asapre       20) X225.ACE.I.or.ARB       

  21) adpapre       21) X226.Statin       

  22) gpripre       22) Clopidogrel       

  23) heparinpre       23) X238.Thienopyridine.inhibitor.use       

  24) lmwhpre                

  25) bbpre                

  26) aceipre                

  27) arbpre                

  28) statinpre                

  29) lipidlapre                

  30) diureticpre                

  31) calcantagonistpre                

  32) oralhypoglypre                
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  33) insulinpre                

  34) antiarrpre                

CATA3 1) ptsex 6673 2860 35 1) ID 2659 1134 26 

  2) ptrace       2) Age.At.Admission       

  3) ptageatnotification       3) X107_Gender       

  4) smokingstatus       4) ETHNOS       

  5) statusaspirinuse       5) X205.Previous.AMI       

  6) cdys       6) X206.Previous.Angina       

  7) cdm       7) X207.Hypertension       

  8) chpt       8) X208.Hypercholesterolaemia       

  9) cpremcvd       9) X209.Peripheral.Vascular.Disease       

  10) cmi       10) X210.Cerebrovascular.Disease       

  11) ccap       11) X211.Asthma.or.COPD       

  12) canginamt2wk       12) X212.Chronic.Renal.Failure       

  13) canginapast2wk       13) X213.Heart.Failure       

  14) cheartfail       14) X217.Diabetes       

  15) clung       15) X232.Family.History.of.CHD       

  16) crenal       16) X216.Smoking.Status       

  17) ccerebrovascular       17) X204.Where.Aspirin.Given       

  18) cpvascular       18) X218.Previous.PCI       

  19) CNONE       19) X219.Previous.CABG       

  20) ACS_SYMPTOMS_ 
BEFORE_ADMISSION 

      20) X224.Beta.Blocker       

  21) anginaepisodeno       21) X225.ACE.I.or.ARB       

  22) heartrate       22) X226.Statin       

  23) bpsys       23) Clopidogrel       

  24) bpdias       24) X238.Thienopyridine.inhibitor.use       

  25) height       25) X220.Systolic.BP       

  26) weight       26) X221.Heart.Rate       

  27) waistcircumf       27) X228.Glucose       

  28) hipcircumf       28) X229.Height       
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  29) asapre       29) X230.Weight       

  30) adpapre       30) ONSET_SYMPTOMS_ 
BEFORE_ADMISSION 

      

  31) gpripre       31) X314.Where.cardiac.arrest       

  32) heparinpre       32) X315.Presenting.Rhythm       

  33) lmwhpre                

  34) bbpre                

  35) aceipre                

  36) arbpre                

  37) statinpre                

  38) lipidlapre                

  39) diureticpre                

  40) calcantagonistpre                

  41) oralhypoglypre                

  42) insulinpre                

  43) antiarrpre                

CATA4 1) ptsex 6673 2860 46 1) ID 2659 1134 30 

  2) ptrace       2) Age.At.Admission       

  3) ptageatnotification       3) X107_Gender       

  4) smokingstatus       4) ETHNOS       

  5) statusaspirinuse       5) X205.Previous.AMI       

  6) cdys       6) X206.Previous.Angina       

  7) cdm       7) X207.Hypertension       

  8) chpt       8) X208.Hypercholesterolaemia       

  9) cpremcvd       9) X209.Peripheral.Vascular.Disease       

  10) cmi       10) X210.Cerebrovascular.Disease       

  11) ccap       11) X211.Asthma.or.COPD       

  12) canginamt2wk       12) X212.Chronic.Renal.Failure       

  13) canginapast2wk       13) X213.Heart.Failure       

  14) cheartfail       14) X217.Diabetes       

  15) clung       15) X232.Family.History.of.CHD       
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  16) crenal       16) X216.Smoking.Status       

  17) ccerebrovascular       17) X204.Where.Aspirin.Given       

  18) cpvascular       18) X218.Previous.PCI       

  19) CNONE       19) X219.Previous.CABG       

  20) ACS_SYMPTOMS_ 
BEFORE_ADMISSION 

      20) X224.Beta.Blocker       

  21) anginaepisodeno       21) X225.ACE.I.or.ARB       

  22) heartrate       22) X226.Statin       

  23) bpsys       23) Clopidogrel       

  24) bpdias       24) X238.Thienopyridine.inhibitor.use       

  25) height       25) X220.Systolic.BP       

  26) weight       26) X221.Heart.Rate       

  27) waistcircumf       27) X228.Glucose       

  28) hipcircumf       28) X229.Height       

  29) ecgabnormtypestelev1       29) X230.Weight       

  30) ecgabnormtypestelev2       30) ONSET_SYMPTOMS_ 
BEFORE_ADMISSION 

      

  31) ecgabnormtypestdep       31) X314.Where.cardiac.arrest       

  32) ecgabnormtypetwave       32) X315.Presenting.Rhythm       

  33) ecgabnormtypebbb       33) X424.Reinfarction       

  34) ecgabnormtypenonspecific       34) X237.ECG.QRS.Complex.duration       

  35) ecgabnormlocationil       35) X203.ECG.Determining.Treatment       

  36) ecgabnormlocational       36) X236.Site.of.Infarction       

  37) ecgabnormlocationll       37) DEATH_IN_HOSPITAL       

  38) ecgabnormlocationtp                

  39) ecgabnormlocationrv                

  40) asapre                

  41) adpapre                

  42) gpripre                

  43) heparinpre                

  44) lmwhpre                
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  45) bbpre                

  46) aceipre                

  47) arbpre                

  48) statinpre                

  49) lipidlapre                

  50) diureticpre                

  51) calcantagonistpre                

  52) oralhypoglypre                

  53) insulinpre                

  54) antiarrpre                

CATA5 1) ptsex 6673 2860 46 1) ID 2659 1134 33 

  2) ptrace       2) Age.At.Admission       

  3) ptageatnotification       3) X107_Gender       

  4) smokingstatus       4) ETHNOS       

  5) statusaspirinuse       5) X205.Previous.AMI       

  6) cdys       6) X206.Previous.Angina       

  7) cdm       7) X207.Hypertension       

  8) chpt       8) X208.Hypercholesterolaemia       

  9) cpremcvd       9) X209.Peripheral.Vascular.Disease       

  10) cmi       10) X210.Cerebrovascular.Disease       

  11) ccap       11) X211.Asthma.or.COPD       

  12) canginamt2wk       12) X212.Chronic.Renal.Failure       

  13) canginapast2wk       13) X213.Heart.Failure       

  14) cheartfail       14) X214.Enzymes.Elevated       

  15) clung       15) X217.Diabetes       

  16) crenal       16) X232.Family.History.of.CHD       

  17) ccerebrovascular       17) X216.Smoking.Status       

  18) cpvascular       18) X204.Where.Aspirin.Given       

  19) CNONE       19) X218.Previous.PCI       

  20) ACS_SYMPTOMS_ 
BEFORE_ADMISSION 

      20) X219.Previous.CABG       
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  21) anginaepisodeno       21) X224.Beta.Blocker       

  22) heartrate       22) X225.ACE.I.or.ARB       

  23) bpsys       23) X226.Statin       

  24) bpdias       24) Clopidogrel       

  25) height       25) X238.Thienopyridine.inhibitor.use       

  26) weight       26) X220.Systolic.BP       

  27) waistcircumf       27) X221.Heart.Rate       

  28) hipcircumf       28) X228.Glucose       

  29) ecgabnormtypestelev1       29) X229.Height       

  30) ecgabnormtypestelev2       30) X230.Weight       

  31) ecgabnormtypestdep       31) ONSET_SYMPTOMS_ 
BEFORE_ADMISSION 

      

  32) ecgabnormtypetwave       32) X314.Where.cardiac.arrest       

  33) ecgabnormtypebbb       33) X315.Presenting.Rhythm       

  34) ecgabnormtypenonspecific       34) X424.Reinfarction       

  35) ecgabnormlocationil       35) X237.ECG.QRS.Complex.duration       

  36) ecgabnormlocational       36) X203.ECG.Determining.Treatment       

  37) ecgabnormlocationll       37) X236.Site.of.Infarction       

  38) ecgabnormlocationtp       38) X215.Cholesterol       

  39) ecgabnormlocationrv       39) X231.LVEF       

  40) tc       40) X337.Troponin.Assay       

  41) hdlc                

  42) ldlc                

  43) tg                

  44) fbg                

  45) lvef                

  46) asapre                

  47) adpapre                

  48) gpripre                

  49) heparinpre                

  50) lmwhpre                



- 219 - 

  51) bbpre                

  52) aceipre                

  53) arbpre                

  54) statinpre                

  55) lipidlapre                

  56) diureticpre                

  57) calcantagonistpre                

  58) oralhypoglypre                

  59) insulinpre                

  60) antiarrpre                 

 

 


