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Abstract

The purpose of the thesis was to study the pathogenesis of Autosomal Dominant
Polycystic Kidney Disease, the most common genetic disease affecting the kidney,
using novel bioinformatics and computational approaches combined with experi-
mentation.

A new multi-stage framework for the analysis of time-series microarray data
which identifies a set of possibly relevant genes and then builds a dynamic model for
their regulatory network was produced during this work. The framework combines
statistical filtering, Support Vector Machines, clustering and system identification in
order to achieve these goals. As a practical application, it was employed to analyse
two published microarray datasets derived from genetically modified Pkd1 mice. A
defined set of genes was obtained from this analysis which provided good discrim-
ination for the measurements coming from healthy and diseased animals. Also, it
was noted that some genes previously linked to the disease and others related to
cancer pathogenesis were identified. A potential model for their interactions was
also derived.

In the second part of the project, time-lapse microscopy combined with mathe-
matical modelling was used to study human normal and disease kidney tubular cells
in both low-density migration and wound closure assays. It was found that disease
cells migrated more slowly than normal cells due to a reduction in their velocity and
diffusion coefficient. Of interest, the somatostatin analogue, octreotide, partially re-
stored cell migration in disease cells primarily by increasing cell velocity. Disease
cells also showed a reduced capacity to close a wound in a monolayer and this was
associated with randomisation of the directionality of movement. Using textural
analysis, it was noted that cell tightness appears lower in disease cells during cell
migration after wounding suggesting a reduction in cell-cell adhesion in these cells.
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ẋ derivative in respect to time of x
≺ 0 negative definite
∈ member of set
∪ union of sets
< X2 > raw second moment for random variable X
◦ Hadamard(element-wise) product

Symbols

# number of



Chapter 1

Introduction

1.1 Background

Since the beginning of medicine, cysts have fascinated scientists as well as philoso-
phers, the first accounts about this kind of affection being traceable to Ancient
Greece [358]. They consist of fluid-filled cellular structures that can be localized in
any part of the body [260].

Polycystic kidney diseases (PKDs) are a group of diseases that result in multiple
cysts in the kidneys. Its various forms are responsible for a high number of cases
of renal failure [164], the most common form of the disease, Autosomal Dominant
Polycystic Kidney Disease (ADPKD) being the most prevalent inherited kidney
disease appearing in 1 in 800 live births [383] and the underlying cause for 7-10%
of all renal replacement therapy through the world [266]. An interesting feature
of this disease is its extreme variability between patients with some experiencing
kidney failure when they are below 40 years of age while others never reach this
stage [382].

Due to its prevalence, ADPKD has been extensively studied but no cure has
been developed so far. Many research approaches have been explored, such as
its genetic component, its effect on cellular characteristics such as motility [59],
proliferation [256], apoptosis [105], adhesion [338], planar polarity [226] and the
effects of different drugs in slowing disease progression [357].
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2 1.2. Motivation

1.2 Motivation

In recent years, rapid advancements in analytical fields such as machine learning
or image processing coupled with the capacity to extract vast amounts of biological
data by tools such as microarrays or time-lapse microscopy have started to change
the face of medical research, with laboratory work being aided by computer-based
analysis in order to facilitate new discoveries in the field while being less invasive
and limiting the costs of research. This can be done by either reducing the possible
directions of research to only promising ones as is the case of microarray analysis
where only few genes selected by analytical methods are investigated in the labo-
ratory or by directly characterizing cells or tissue in a non-invasive manner using
imaging as a tool.

Motivated by the fact that a cure for ADPKD was not developed yet, as well
as the incidence of the disease, the overall aim of this thesis was to use the lat-
est advancements in biological data analysis in order to discover new information
about ADPKD while at the same time exploring novel approaches to analytically
studying diseases. As ADPKD is a genetic disease that affects cellular formations,
two directions of investigation were pursued. The genetic component of the dis-
ease was analysed using microarray data on which feature selection, clustering and
classification as well as system identification methods were employed and the cel-
lular behaviour in case of the disease was investigated using high content time-lapse
imaging assisted by computational analysis.

1.3 Thesis Aim and Objectives

The first objective was to investigate which genes are altered by ADPKD on a
genome-wide basis. As the quest to discover the major genes that affect disease
severity and that could lead to novel drug discovery, the first sub-objective was to
use the best performing machine learning techniques to find a small group of genes
whose expression is changed by the disease which could be biologically tested to
reveal their functional role in disease initiation or progression. A secondary sub-
objective was to uncover potential new gene interaction networks through the latest
advances in the modelling of regulatory networks with the final aim of allowing lab-
oratory investigation. For accomplishing the two sub-objectives there is the need for
creating a framework that allows a scientist to both isolate genes that are related to
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a disease and model their interactions. The development of such a framework was a
third objective in this thesis. By studying state of the art feature selection methods
as well as network identification ones, a multi-stage framework for the analysis of
time-series microarray data will be created in this work.

A second objective was to examine the effects of PKD1 and 2 knockdown in a
human kidney cell line model (PTEC) in a time-lapse single cell migration assay.
Two sub-objectives were simultaneously followed ie firstly to study differences in
cell division since the assay allows for precise timing of this phenomenon and sec-
ondly, to computationally study changes in cell migration using advanced mathe-
matical models of diffusion that allow for the quantification of cell speed as well as
directionality. The ability of a promising drug candidate, octreotide, will be tested
in this assay to see if it may correct either changes in cell division or cell migration.

A third objective was to examine the effect of knocking down PKD1 and PKD2
on cell migration in a wound healing assay. The first sub-objective was to discover
the capacity of disease cells to close a wound. The second sub-objective was to
investigate how loss of both genes might alter the directionality of cells migration.
The third sub-objective was to explore how textural analysis could be employed to
extract information about how the disease might alter cellular properties. This sub-
objective has a more wide-range of benefits, by using images for computing textural
features, non-invasive methods for cell studying can be developed that can be used
in various diseases and cell property studies.

1.4 Contributions

The first significant contribution of this thesis, was to create a new framework for the
analysis of time-course microarray gene expression data. The framework is used to
select of potentially relevant genes for a specific condition and model the regulatory
network governing their interactions. The proposed framework was applied to two
different sets of microarray data derived from studies of Pkd1 knock-out mice which
led to the identification of a set of genes previously connected to the disease as well
as some new ones which seem to be promising biomarkers for the condition. The
network analysis revealed some possible regulations that exist between them.

The second significant contribution of the thesis refers to the analysis of division
of ciPTEC cells. It seems that the disease, simulated by knocking down Pkd1 and
Pkd2 increases division time. Also, when testing a drug, octreotide, on diseased



4 1.5. Outline of the Thesis

cells it seems that it does not affect their division capacity.

The third contribution of the thesis regards migration of the ciPTEC cells. Low-
density cell migration experiments were used to show that the disease reduces the
speed of the cells and wound-healing experiments to prove that their directionality
gets impaired.

The last contribution of the thesis is the discovery of a possible correlation be-
tween the value of the Haralick feature Contrast and the tightness of the cell layer.
Considering this result, it was observed that the disease seems to reduce cells adhe-
sion properties.

1.5 Outline of the Thesis

The remainder of the thesis contains 7 chapters and the bibliography.

Chapter 2 presents the biological part of this study by describing in detail the
Autosomal Dominant Polycystic Kidney Disease as well as the current research
that is done on it. Next, the technology for the extraction of microarray data is
introduced and a description of 3 popular platforms used for this operation as well
as the protocols for using them is done. Next, as microarray data is extremely noisy,
a description of the methods used to pre-process it is presented.

Chapter 3 presents an up-to date review on the various techniques that have
been employed through the years to analyse genetic data. The chapter presents
methods used to extract relevant features by employing dimensionality reduction
and clustering. Finally, methods to model the regulatory networks that govern the
interactions between genes are presented and compared.

Chapter 4 consists of a review of methods used to analyse cell migration as well
as cell images textural features. Different types of migration assays are described as
well as their purpose in extracting information about the cells. Next, measures used
to assess the migration capacities of the cells based on their trajectories are pre-
sented that analyse the speed, directionality as well as their diffusion properties. In
the case of diffusion-based methods, a review is done on the models that have been
proposed to extract meaningful parameters from the movement of the cells. The
review then presents in detail studies that have been employed to analyse ADPKD’s
effects on cell migration. Finally techniques for textural analysis are presented.

Chapter 5 introduces a new framework to analyse genetic data and shows the
results obtained when applying it on two publicly available ADPKD datasets. The
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framework was designed to accomplish two objectives: to extract a small set of
genes that are possibly relevant for the disease and to provide an approximation for
the regulatory network that governs it. In the case of gene selection, the chapter
provides a description of the main genes in both sets and connects the findings to
other published studies on ADPKD

Chapter 6 presents the results obtained using low-density motility assays on
PTEC cells that had genes PKD1,2 knocked-down. Two comparisons are provided,
between normal PTEC cells and those lacking both genes and on cells lacking the
genes with or without a drug, octreotide. The division properties of the cells are
analysed by counting the number of frames between the division of a mother cell
and its daughters. Also, state of the art diffusion models are applied to extract
characteristics of the movement of the cells. Comparisons with the results of similar
studies available in the literature are provided.

Chapter 7 presents the outcomes of a wound healing assay study on the same
type of cells. Comparisons are provided between the control and disease cells.
First, the rates at which the different cells close the wound are compared using
segmentation to calculate the area covered by the cells layer. Next, the directionality
of cell migration as examined in the previous chapter is analysed. Finally textural
features are employed to discover properties of the migrating cell layer.

The last chapter present the conclusions of the thesis and possible future work.

1.6 Publications

During the course of the thesis, a poster with the title Discovery of underlying mech-

anisms of genetic diseases using feature extraction and network identification meth-

ods containing part of the work from Chapter 5 of the thesis was presented at the
International Conference on Systems Biology, 2015.



Chapter 2

Pathogenesis of Autosomal Dominant
Polycystic Kidney disease

Being a wide-spread genetic disease, in which the formation of cysts obstruct the
correct functioning of the kidneys, ADPKD has been extensively studied by biolo-
gists. The scientists have tried to understand the disease both at a genetic as well as
a cellular level. This chapter will present in more depth the current knowledge on
the genetic component of the ADPKD as well as the disruptions in the behaviour of
the cells affected by the disease that might be responsible for the creation of cysts
and the drugs that have been proposed to deal with the affection.

The following sub-sections will further describe the disease and some of the
major research findings. Subsection 2.0.1 will describe the phenotype of the dis-
ease, subsection 2.0.2 its genotype and the research taken on its genetic effects,
subsection 2.0.3 on cell division and apoptosis, subsection 2.0.4 will summarise the
literature on its effects on cell migration, subsection 2.0.5 on adhesion and subsec-
tion 2.0.6 on the drugs that have shown to have some effect on the disease.

2.0.1 Disease Phenotype

The disease leads to the development of large multiple fluid filled cysts that appear
in the entire volume of both kidneys resulting in a significant increase in the total
kidney volume and weight. In a study on a large sample of disease sufferers (214) by
[134] the authors show that the average kidney volume for the patients was 1076 ml
with a total cystic volume of 534 ml. By comparison the average human kidney is
196 ml Grantham et al. [134]. In terms of weight, on average normal male kidneys

6
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have a combined weight of 153-455 grams [251] while in the case of ADPKD,
Ekser and Rigotti [110] report a male patient with a combined kidney weight of 22
kg. 2.1 presents a normal kidney next to a diseased one.

Figure 2.1: Normal kidney (right) vs kidney affected by ADPKD (left ). Republished with
permission from PKD Charity Foundation US, 1001 E. 101st Terrace, Suite 220, Kansas
City, MO 64131

2.0.2 Disease Genotype

ADPKD results from germline mutations in one of two genes, PKD1 [77] and
PKD2 [250]. In clinical studies, PKD1 was shown to be responsible for 85% while
PKD2 accounts for 15% of cases [298] . In community based studies, PKD2 muta-
tions may account for more (29-36%) cases [348]. Individual mutations are impor-
tant predictors of disease severity, with the median age of end-stage renal disease
(ESRD) for PKD1-mutant patients being 53 years as opposed to that for PKD2-
mutant of 69 years [164].

Although mutations in both genes are essential for the origin and severity of
disease, they do not completely explain the phenotype in individual patients. In this
regard, other modifying genes acting through independent or interacting pathways
could play major roles in determining disease severity. Examples include genes in
the EGF family, HGF, IGF1 and their receptors [146], HNF family such as Hn f 4−
α [242] and Hn f 1−β [372].

When it comes to dysregulated pathways associated with the disease, a study
by [289] indicates that the Wnt pathway which is involved in signalling between
cells [229] could be responsible for the severity of the cystogenesis produced by the
disease. The cAMP intracellular signalling pathway also seems to be involved in the
disorder as it increases proliferation in disease cells but not in normal cells [394].
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Mutations in both genes were also shown to initiate aberrant G-protein signalling
pathways [89]. In the case of the mTOR pathway, PKD1 mutation was shown
to be associated with its activation and its inhibition led to reduced cytogenesis
[318]. Another pathway that appears to be involved is the AMPK pathway which is
responsible for cellular energy homeostasis [247], its activation being shown to lead
to reduced cystogenesis in part through through inhibition of the mTOR pathway
[346]. There continues to be active research interest in new gene discovery and
novel disease pathways in ADPKD.

2.0.3 Cell Proliferation and Apoptosis in ADPKD

For the normal growth of a kidney capable of maintaining its correct structure after
birth, the balance between cell division and and programmed cell death (apoptosis)
must be strictly controlled [383]. ADPKD seems to alter this primary mechanism
and as a result, many studies have been undertaken to investigate the role of the
ADPKD polycystin proteins in cell proliferation and apoptosis.

2.0.3.1 Proliferation

The consensus in the literature is that deletion or mutation of the 2 genes results
in increased cell proliferation while overexpression of the genes inhibits it. Many
articles have come to backup this claim.

In a study by Nadasdy et al. [256] human ADPKD kidney was shown to have
increased cell proliferation. Of interest, the proliferation rate was similar in cystic
tissue and non-cystic proximal tubular and distal tubules [256]. Increased prolif-
eration was also observed in a Han:SPRD rat model of ADPKD [292]. Similar
observation were made by Tao et al [349][350] in the same rat model in two stud-
ies investigating the effect of the mTOR inhibitor rapamycin [350] and caspase
inhibitor [349].

Chang et al. [65] examined normal or minimally cystic kidney tissue from two
Pkd2 mouse models showing an increase in cell proliferation in cystic and non-
cystic tubules compared to control wild-type animals. They confirmed these find-
ings in human ADPKD kidney. In support of these findings, MDCK cells over-
expressing Pkd1 had a halving of their proliferation rate [41]. Conversely, MDCK
cells in which Pkd1 expression was knocked-down showed an increased basal pro-
liferation rate [22]. Cystic cells also appear more responsive to ligand-activated
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proliferation. In one study, lactosylceramide extracted from ADPKD cells was mi-
togenic while lactosylceramide extracted from healthy cells was not [67]. In an-
other, ADPKD cells were more sensitive than normal cells to the mitogenic effects
of IGF-1 [276].

Cells/Tissue Organism Cell proliferation quantification method Results Reference
Healthy kidney tissue

vs tissue in cystic
kidneys

Human PCNA staining ADPKD increases cell proliferation Nadasdy et al. [256]

Healthy proximal
tubule tissue vs cystic

proximal tubule
tissue

Rat PCNA staining ADPKD increases cell proliferation Ramasubbu et al. [292]

MDCKZeo vs
MDCKPKD1Zeo cell

lines
Canine

BrdU labeling and
detection kit PKD1 overexpression reduces proliferation Boletta et al. [41]

Healthy proximal
tubule tissue vs cystic

proximal tubule
tissue

Rat PCNA staining ADPKD increases cell proliferation Tao et al. [350]

Healthy proximal
tubule tissue vs cystic

proximal tubule
tissue

Rat PCNA staining ADPKD increases cell proliferation Tao et al. [349]

MDCK/E/siLuc vs
MDCK/E/siPKD Canine Culture growth rate PC-1 deletion increases proliferation Battini et al. [22]

Wild mice vs
Pkd2+/- mice tissue

vs
Pkd2WS25/WS25

mice tissue

Human healthy tissue
vs human ADPKD

tissue

Mouse

Human

PCNA and Ki67
staining

Mutation or haploinsufficency of Pkd2
increased proliferation in mice

ADPKD increases proliferation in humans

Chang et al. [65]

HEK293cells vs
HEK293cells -WT

PKD2 vs
HEK293cells -
R742X PKD2

NRK52-E cells -WT
vs PKD2 vs NRK52-

E,-R742X PKD2

Primary healthy rat
cells vs ADPKD
primary rat cells

Human

Rat

propidium iodide
cell cycle analysis

PCNA

Only in the case of primary cells there is a
decrease in proliferation with less cells in

G0/G1 phase
Felekkis et al. [117]

Tubular medula and
cortex kidney tissue
of Healthy mice vs

PKD2 trangenic mice
tissue

Mouse PCNA Increased proliferation in the trangenic mice Park et al. [275]

LCLs healthy vs LCL
PKD1 vs LCL PKD2 Human

Ki67 Duplication
time

LCL cells from patients with PKD2 show
reduced proliferation while the cells from

PKD1 patients do not show changes in
proliferation

Aguiari et al. [4]

Healthy mouse tissue
vs tissue of mice with

Pkd1 deleted
Mouse Ki67

No significant difference was observed in the
proliferative rates of healthy vs cystic mice

tissue
Piontek et al. [284]

OX161/1, SKI-001,
OX938 vs CL-11,

RFH, UCL93
Human

Promega Cell Titer 96
Aqueous One assay

Proliferation is increased in the cystic lines.
IGF-1 further increases proliferation in all

cell lines
Parker et al. [276]

Table 2.1: Summary of the articles on proliferation

While the majority of studies have shown that cell proliferation was inhibited by
both genes, some have presented neutral or opposite results. For example, a study
overexpressing wild type and mutant PKD2 in 3 cell types (human and rat cell lines
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and rat primary epithelial cells) showed conflicting results [117]. In the case of the
cell lines, the overexpression of PKD2 was neutral although proliferation was re-
duced in the primary epithelial cells. A second study showed that transgenic PKD2
expression in mice led to increased cell proliferation and cyst formation [275]. Tam-
cre mice with an inducible kidney-specific deletion of Pkd1 had slightly higher pro-
liferation rates than controls although statistically insignificant [284]. In the case of
lymphoblastoid cells, PKD2 mutation was associated with reduced proliferation [4].
Similar results were observed by Hanaoka and Guggino [143] were primary human
cells coming from patients with ADPKD showed lower numbers than the controls
after a period of 4 days. The authors however do not report the effects on apoptosis
so it is not clear if the observed numbers are due to a reduction in proliferation or
an increased in apoptosis.

It seems likely that the correct dosage of PKD1 and PKD2 is necessary to regu-
late cell proliferation and the threshold requirement may vary depending on tissue,
cell type and stage of maturation. Table 2.1 summarises the articles on proliferation.

2.0.3.2 Apoptosis

The role of apoptosis has also been extensively studied in ADPKD. The first paper to
report increased apoptosis in ADPKD was by Woo [386] who observed apoptosis in
cystic ADPKD but not in control cells or tissues. Similar results have been reported
by others. Ecder et al. [105] and Tao et al. [349] showed increased renal apoptosis
in the rat Han:SPRD model. Shillingford et al. [319] showed that Pkd1 deletion
leads to an increase in apoptosis. Apart from increased proliferation in the kidney
of PKD2 transgenic mice, Park et al. [275] demonstrated increased apoptosis. Of
interest, the same result was observed in a PKD2ws25/−knockout mouse [339]. An
increased apoptotic rate was reported in Pkd1 knockdown MDCK cell lines [22].
Similarly, overexpression of the gene can lead to a similar effect: [318] reported that
MDCK cells overexpressing the tail terminal of PC1 showed increased apoptosis.

As in the case of cell proliferation, not all studies report an increase in the level
of apoptosis in ADPKD models. In a Pkd1 f lox(neo) mouse model, Shibazaki et al.
[317] show that there was almost no difference in the apoptosis level of samples
coming from cystic and non-cystic kidneys. A similar lack of effect on apoptosis
was reported by [284] on a Tam-cre conditional Pkd1 knockout mouse model. In
contrast, mouse proximal tubule cell lines with Pkd1 deleted show a decreased level
of apoptosis compared to normal proximal tubule cells [377].
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Table 2.2 presents a summary of the articles on cell apoptosis.

Cells/Tissue Organism Apoptosis quantification method Results Reference

Primary cells
healthy vs ADPKD Mouse

biotin 16,21-deoxyuridine triphosphate
labelling

terminal transferase labelling

Apoptosis is increased in
ADPKD Woo [386]

Healthy tissue vs
cystic tissue Rat TUNEL assay

Apoptosis is increased in
ADPKD Ecder et al. [105]

Healthy tissue vs
cystic tissue Rat TUNEL assay

Apoptosis is increased in
ADPKD Tao et al. [349]

Healthy tissue vs
tissue from Pkd1-
knockout subjects

Mouse TUNEL assay
Pkd 1 deletion increases

apoptosis Shillingford et al. [319]

Tubular medula and
cortex kidney tissue
of healthy mice vs
PKD2 transgenic

mice

Mouse TUNEL assay
Apoptosis is increased in

PKD2 trangenic mice Park et al. [275]

Renal tissue of wild
type mice vs

Pkd2ws25/- mice
Mouse

ApopTag Peroxidase In Situ Apoptosis
Detection Kit

Apoptosis is increased in
Pkd2ws25/- mice Stroope et al. [339]

MDCK/E/siLuc vs
MDCK/E/siPKD Canine

Vibrant Apoptosis Assay Kit #9
EnzChek Caspase-3 Assay Kit #1

Apoptosis is increased
when PC1 is deleted Battini et al. [22]

NTM-PC1 MDCK
cells vs healthy

MDCK cells
Canine TUNEL assay

Overexpression of the PC1
N-tail induces apoptosis Shillingford et al. [318]

Healthy tissue vs
tissue from Pkd1-
knockout subjects

Mouse TUNEL assay

No significant difference
was observed in the

apoptosis rates of healthy
vs cystic mice tissue

Shibazaki et al. [317]

Healthy tissue vs
tissue from Pkd1-
knockout subjects

Mouse TUNEL assay

No significant difference
was observed in the

apoptosis rates of healthy
vs cystic mice tissue

Piontek et al. [284]

PN18
PN24
PH2
PH3

Mouse
Annexin V labelling

Cell counting
Pkd 1 deletion reduces

apoptosis Wei et al. [377]

Table 2.2: Summary of the articles on apoptosis

2.0.4 ADPKD Effects on Cell Migration

Normal cell migration is thought to play a major role in the homeostasis of the
renal tubules, and its derangement may be involved in the transformation of nor-
mal epithelia into cysts [259]. Several groups have focussed on studying changes
in cell migration in ADPKD as a possible major disease mechanism. Indeed, sev-
eral studies have shown that migration is impaired in disease cells and conversely,
overexpression of full-length or part of Pkd1 may stimulate cell motility.

Some studies have taken a very simple approach to characterizing cell migra-
tion by only measuring the total distance travelled. In an example of this type of
study, mouse mIMCD-3 cells overexpressing the C-terminus of PKD1 had a higher
migration capacity compared to controls. A similar study performed on immortal-
ized human ADPKD cells gave the same results [384]. In a study on 3 cell lines
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[60] , canine MDCK, mouse mIMCD-3 and mouse MEF cells, MDCK cells over-
expressing PKD1 were more motile than control MDCK cells while the murine
Pkd1 cells were less migratory than control cells. Another interesting study of this
type observed kidney rudiments from mouse embryos [300]. In this report, the
area occupied by migrating epithelial cells from the tissue explant was significantly
decreased in ADPKD mice.

The distance travelled by cells in a period of time is a function of two variables,
the speed at which the cells travel and the linearity of their movement. These two
components of migration have been studied in a number of studies by time-lapse
microscopy.

Some researchers have only studied the speed of cell migration. In a 2007 study,
Boca et al. [40] showed that MDCK cells overexpressing PKD1 moved faster than
control cells. Similar results have been observed in YPC1m-HEK cells where cells
with induced expression of PC-1 demonstrated increased migration speed compared
to their control counterparts [226].

In recent years, more complex analyses on cell migration have been performed
in which the directionality of migration has been assessed. In a 2013 study by
Castelli et al. [59], the movement of mouse MEF cells with Pkd1 mutation was
significantly more random compared to control cells. Another study on disease
cells (PKD1 or PKD2) in human lymphatic endothelial cells [270] found that the
directionality of cells with either gene deleted was impaired compared to controls.
Finally, Yao et al. [395] reported that both migration speed and its directionality
were lowered in MEK cells with PKD1 mutations.

Table 2.3 presents a summary of the articles on cell migration.

2.0.5 ADPKD Effects on Cell Adhesion

Changes in cell adhesion has been another major area of research in ADPKD. In an
early paper, Rocco et al. [295] reported lower expression of several epithelial cell
adhesion molecules in ADPKD cells. With the discovery of the genes responsible
of the disease, scientists have been able to show that the polycystin proteins are
localized in several cell adhesion structures including cell-cell junctions and focal
adhesions, the main cellular adhesion complex that mediates cell-matrix adhesion
[99].

Most of the studies on cell adhesion in ADPKD have demonstrated that the
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Cells/Tissue Organism Cell migration quantification method Results Reference

mIMCD-3- CD16.7-positive
vs CD16.7.PKD1-positive Mouse Boyden chamber

Polycystin-1 C-terminal
fragment overexpression

increases migration
Nickel et al. [258]

CI normal vs ADPKD cells Human Boyden chamber
Cells extracted from

ADPKD patients show
decreased migration

Wilson et al. [384]

MDCKZeo vs MDCKPKD1Zeo

mIMCD3-shCtrl vs
mIMCD3-shPKD1

MEF PKD+/+ vs MEF PKD -/-

Canine

Mouse

Boyden chamber

Migration is increased in
MDCK cells

overexpressing Pkd1 and
decreased in the mouse cells

with deleted PKD1

Castelli et al. [60]

Kidney rudiments from
normal vs ADPKD embryos Mouse

Time-lapse on embryonic kidney
explant cultures

Cells from ADPKD mice
cover a smaller area

outside the tissue
Rowe and Boletta [300]

MDCKZeo vs MDCKPKD1Zeo Canine
Boyden chamber

Cells velocity in wound healing
assay

PKD1 overexpression
increases migration and

velocity
Boca et al. [40]

YPC1m-HEK vs YPC1m-
HEK with PC1 induction Human Cell velocity in wound healing assay

PC1 induction increases
cell velocity Luyten et al. [226]

MEF PKD+/+ vs
MEF PKD -/- Mouse

Measurement of the migration
angles in wound healing assays

Loss of PKD1 makes cells
to lose oriented migration

Castelli et al. [59]

Control vs PC1 vs PC2
deficient LEC Mouse

Boyden chamber
Wound closing rate

Directionality and distance
travelled,in time-lapse migration

assay

The PC1 and PC2
defficient cells migrate less

and have impaired
directionality

Outeda et al. [270]

MEK DBA WT vs MEK
DBA Pkd1 -/- Mouse

Migration rate in wound healing
assay

Migration rate and directional
persistence in low density

migration assay

Migration rate and
directional persistence are
impaired in cells without

Pkd1

Yao et al. [395]

Table 2.3: Summary of the articles on cell migration

absence of the polycystins seems to reduce the capacity of cells to adhere to surfaces
or to each other. For instance, Silberberg et al. [324] found that cell-cell adhesion in
primary human epithelial cells derived from ADPKD kidneys was lower compared
to cells from healthy kidneys. Conversely, Castelli et al. [60] report that MDCK
cells over-expressing PC-1 show increased adhesion rates to the substrate compared
to normal MDCK cells. The same effects were observed in another study in which
MDCK and HEK cells overexpressing PC1 showed increased adhesion to substrate,
while in primary mouse tubular epithelial cells lacking Pkd1 there was a significant
decrease in cell adherence [390]. A study on human immortalized cystic kidney
cells showed that the use of a PKD1 antibody led to cell detachment in the case of
normal cells but had no effect on cystic cells [338]. A computer modelling study in
which cell mechanical interactions where simulated, showed that by lowering the
parameter for cell adhesion, the cells start forming cyst-like structures [27].
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Cells/Tissue Organism Adhesion quantification method Results Reference
Healthy vs ADPKD

tissue Mouse
Measurement of adhesion

molecules values
Reduce level of N-CAM and E-

cadherin Rocco et al. [295]

Primary cells from
normal vs ADPKD

individuals
Human Typsinizing and shaking

Cell-cell adhesion is weakened in
ADPKD cells

Silberberg et al. [324]

MDCKZeo vs
MDCKPKD1Zeo

mIMCD3-shCtrl vs
mIMCD3-shPKD1

MEF PKD+/+ vs MEF
PKD -/-

Canine

Mouse

Consecutive washings of
freshly plated cells

Increased adhesion to surface in cells
overexpressing PKD1 while

decreased adhesion in cells with
PKD1 deleted

Castelli et al. [60]

MDCK vs PC1
overexpressing MDCK

HEK293 vs PC1
overexpressing HEK293

Canine

Human

Cell were plated and left
for 30 minutes on 96 well

plates and then washed

Overexpression of PC1 increases
adhesion Wu et al. [390]

M7
M8

OX161/1
Mouse

Washing and counting
after application of IgPKD

antibody

In cells expressing PKD1, the
antibody leads to the cells

detachment while in cells not
expressing it it does not lead to cells

detachment

Streets et al. [338]

- - Virtual simulation
Reduction of the cell-cell adhesion

parameter creates cysts-like
formations

Belmonte et al. [27]

Primary cells from
normal vs ADPKD

individuals
Human

Cell were plated and left
for 60 minutes on 96 well

plates and then washed

No significant change was observed
in adhesion Joly et al. [177]

MDCKZeo vs
MDCKPKD1Zeo Canine

Number of clusters
obtained through

mechanical dissociation
divided by number of cells

obtained throught
trypsinization

Mechanical strength of cell-cell
adhesion is lowered in cells

overexpressing PKD1
Boca et al. [40]

Table 2.4: Summary of articles on adhesion

Although the overall consensus is that the expression of polycystins increases
cell adhesion, there are some studies that do not show this. Joly et al. [177] report
no significant difference of cell adhesion between healthy and cystic cells plated
on plastic, collagen I and collagen IV. Also, Boca et al. [40] report that MDCK
cells overexpressing PC1 show weakened mechanical cell-cell adhesion following
trypsinization.

Table 2.4 summarises the articles on cell adhesion.

2.0.6 Drugs Recommended for the Treatment of ADPKD

Although ADPKD has been studied for a long time, finding a drug that can cure it
or at least slow its progression has been an ongoing research question. A significant
change occurred in 2016 when one of the drugs tested for the disease, tolvaptan
in clinical trials was approved for use in patients in the European Union [2], the
drug being previously approved for use in Japan in 2014 [282] but being rejected by
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FDA in USA [352]. In the pivotal trial which involved over 1300 patients treated
by tolvaptan or placebo [357], total kidney volume increased by around 2.8% per
year as opposed to an increase of an annual increase of 5.5% in the placebo group.
Since this is a modest change and the drug associated with significant side-effects,
there is on-going active interest in finding more effective, safer and better tolerated
compounds.

Another drug that has been tested in patients and shown promising results in
early clinical studies is the somatostatin analogue octreotide. In a one-year long
study on patients with severe Polycystic Liver Disease (PLD) associated with
ADPKD or Autosomal Dominan polycystic liver disease (ADPLD) [154], the au-
thors observed a slight reduction in total kidney volume in the treated patients com-
pared to a significant increase in the placebo group. In the subsequent 4-year follow-
up study, octerotide was associated with stabilisation of liver volume. However, in
the case of kidney volume, there was an increase of 0.7% per year but with a very
high variance (13%). In the case of the placebo group, the average was similar as
the tolvaptan case (around 5.5% per year) but with a lower variance than the oc-
treotide group (around 7% per year). These results were not statistically significant
but since the number of patients was low and the variance is high, it is still possible
that the drug may be effective if tested in larger numbers of patients. A study on the
safety of the drug concluded that it is safe for short-term administration (7 months)
[150].

2.1 Summary

The current chapter presents the state of the art research on ADPKD.

First, the phenotype of the disease is presented, followed by its genotype. The
genes responsible for the disease have been highlighted as well as other genes and
pathways that seem to be affected by it.

The review then moves to present the current knowledge on how the disease
affects cell behaviour. The first subject to be treated is its effect on cell division
and apoptosis. Although thorough the year different studies have presented various
results, the dominant position that appears in most studies is that the disease seems
to increase both proliferation and apoptosis. Next, articles on how migration is
affected by the condition are reviewed, with the conclusion that the disease seems to
reduce the capacity of the cells for directed movement. Last subject to be reviewed
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as far as cell behaviour is concerned, are the effects of ADPKD on the adhesion of
cells. The dominant position in literature is that of the cells adhesion seems to be
weakened by ADPKD.

The last topic treated in this chapter are the effects of different drugs that were
proposed to combat the disease. Two drugs that showed promising results are intro-
duced together with the studies in which they were employed.



Chapter 3

Microarray Data Processing and
Modelling Methods for the Study of
Diseases

3.1 Introduction

As Oswald Avery discovered that the deoxyribonucleic acid (DNA) can transform
the properties of a cell [16] a new era in understanding the functionality of organ-
isms has started. A most important place in this area of research is occupied by the
study of diseases, both common ones and genetically inherited.

Nowadays the focus in research is the identification of biomarkers which are
genes whose changes in expression are signs of the development of certain dis-
eases. Studying the expressions of single genes however is far from sufficient in
understanding the complex mechanism of diseases for which the interactions of
many genes forming regulatory networks are responsible [183]. This means that
the extraction of the topology of these networks is needed to unveil the effects that
various conditions have on the organisms they affect.

The technology that makes such studies possible are the microarrays [51] that
can be used for the measurement of a large number of genes. As microarray data is
extremely noisy [361], various methods have been proposed to clean them. Once the
noise in the data has been reduced, the experimenter is confronted with a complex
data mining problem when wanting to find biomarkers [330], as a few features have
to be selected from tens of thousands of genes. In order to tackle this, methods

17
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from statistics [336], information theory [278] and classification [140] have been
proposed. Another direction for the analysis of data can the use of clustering [174]
for identifying which genes have a similar behaviour as this could be a predictor
for having similar functionality. When a researcher has a set of genes that appear
to be an interest for a specific behaviour of the cell or a condition of the organism,
methods for network identification [183] can be employed to extract their regulatory
network. This chapter provides a review of the microarray technology as well as the
different methods employed for the steps in analysis described above.

The remainder of this chapter is organised as follows: Section 3.2 introduces
the microarray technology while Section 3.3 presents pre-processing techniques
that allow scientists to eliminate the noise that comes from measurement of gene
expression as well as to fuse data coming from similar but different platforms. Sec-
tions 3.4 presents methods for discovering the most interesting features while sec-
tion 3.5 presents classification techniques used to predict phenotypes based on the
level of gene expression. Section 3.6 introduces clustering techniques for discov-
ering similarities between genes. Finally, Section 3.7 describes reverse engineering
techniques used to identify the regulations that exist between genes.

3.2 Microarray Technology

In the beginning of research on gene expression, scientist could analyse only a small
number of genes that made them unable to get the whole picture on the function-
ing of the genome[114]. This changed with the introduction of microarrays which
revolutionised the field by allowing biologists to measure the expressions of tens
of thousands of genes. As a consequence of this novel technology, genome-wide
changes that appear both in healthy and disease states can be tracked [351].

Microarrays make use of nucleic acid hybridization which is the capacity of a
single stranded DNA or ribonucleic acid (RNA) molecule to attach to a complemen-
tary DNA or RNA molecule [118]. For each gene of interest, a probe that contains
copies of a synthetic oligonucleotide[343] or a product of polymerase chain reac-
tion (PCR) generated from complementary DNA templates [392] which encode a
sequence complementary to a unique sequence of the gene is created. The probes
are arranged on a hard surface at known positions on an array [114]. Fluorescent
labelled RNA products from a sample coming from the studied subjects are then
allowed to hybridyze on the arrays and the light intensity exhibited at each probe
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permits the quantification of the abundance of transcripts for the genes correspond-
ing to each probe.

While many methods are used for the creation of new microarrays that try to in-
crease the density of probes while improving their capacity to the accurately reveal
the expressions of different genes, 3 methods are very popular nowadays: Spotted
complimentary DNA (cDNA) arrays, Affimetrix arrays and Illumina arrays [52]. A
presentation of the way they are produced as well as the protocols used to measure
gene expressions with them are presented below.

3.2.1 Spotted Arrays

3.2.1.1 Production

In the glass cDNA technology, the production process starts with the selection of
templates for the genes of interest which are taken from a library of genes. The
templates are then cloned and PCR is used to amplify them. In the next step, purifi-
cation is used to remove impurities from the obtained products. A robotic arm then
prints 5 nl aliquots of the PCR products on a glass slide in a matrix pattern. Finally
the board is dried and ready to be used for experiments[392].

The advantages of the glass slide cDNA microarrays consist in the reduced costs
for their fabrication. Also they are very versatile, the designer of an experiment
being able to customize them for the genes they are interested in. As a result they
are popular in small research laboratories. The disadvantages they come with are
the relatively wide areas between spots which limits the number of genes that can
be measured and the reduced reproducibility between samples [52].

3.2.1.2 Protocol for Gene Expression Measurement

The first step for gene expression measurement is to extract RNA from the test
and control samples, transform it into cDNA using reverse transcriptase and label
it with either Cye3- or Cye5-dUTP. Next, the targets are pooled and they are let
to hybridize to the clones on the glass slide. The intensities for the 2 dyes are
measured with a confocal microscope through laser excitation. Because the 2 dyes
have different wavelengths they can be excited separately producing 2 monochrome
images. Next, the intensity of the 2 dyes for each spot are calculated with a software
and the final results appear as a ratio, Cye3/Cye5.
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A visual representation of the spotted cDNA labelling protocol is available in
Figure 3.1

Figure 3.1: Visual representation of the spotted cDNA preparation for a
cancer vs normal cells experiment. Figure republished from https://upload
.wikimedia.org/wikipedia/commons/c/c8/Microarray-schema.jpg

A full description of the protocol can be found in Shalon et al. [316].
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3.2.2 Affimetrix Microarrays

3.2.2.1 Production

Affimetrix microarrays use photolithographic techniques for artificially creating de-
sired sequences [82]. Hydroxyalkyl groups are placed on a quartz wafer to produce
a surface to which linker molecules with photolabile protecting groups [82] get at-
tached. By shining near-ultraviolet light through a photolithographic mask, precise
areas on the quartz are deprotected. Next, a coupling step takes place in which
the wafer is washed with either A-,C-,G- or T- modified nucleotides. The 2 steps
are repeated alternating the nucleotides until a 25-mer probe is produced. The ob-
tained wafers can be diced and loaded into cartridges. The spacing between probes
is around 5um. Gene expression is measured using 11-20 probe pairs. Each pair
has 2 types of probes, PM (or perfect match) which are the exact probes and MM
(or mismatch probes) which have the exact configuration of a perfect probe except
the nucleotide in the middle. The purpose of the mismatch probes is to quantify
background and non-specific hybridization which allows measurement quality as-
sessment.

3.2.2.2 Protocol for Gene Expression Measurement

The target RNA is extracted from the sample of interest and biotin-labelled comple-
mentary RNA (cRNA) is obtained from it. The obtained solution is spread on the
array and let to hybridize overnight in a hybridization oven.

Once hybridization has finished, the samples are washed in ordered to eliminate
impurities and stained with streptavidin-phycoerythrin conjugate in a fluidics sta-
tion. Once this operations are done, the array is scanned with a laser that excites the
dye and allows the experimenter to measure the light intensity for each probe which
is proportional to the quantity of RNA attached to it. The values obtained this way
are stored into a computer and analysis can be performed on them.

Figure 3.2 contains a visual representation of the sample preparation for Af-
fimetrix array together with a comparison to the glass spotted microarray prepara-
tion process. A complete description of the procedure is available in Auer et al.
[15].
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Figure 3.2: Visual representation of the Affymetrix protocol for sample preparation vs the
sample preparation protocol for glass slide arrays. Reprinted by permission from Springer
Nature Terms and Conditions for RightsLink Permissions, Springer Customer Service Cen-
tre GmbH: Springer Nature ,Leukemia,DNA microarrays for comparison of gene expression
profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: choice
of technique and purification influence the identification of potential diagnostic markers,
Staal et al [333], All rights reserved Springer Nature (2003)
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3.2.3 Ilumina Microarrays

3.2.3.1 Production

In the case of Ilumina microarrays [201], plate production starts by attaching 79-mer
oligonucleotides to 3um silica beads. Of the 79 monomers, 29 represent addresses
which will be used to find the bead on the final slide and 50 monomers represent
probes for a gene of interest. At the same time lithography is used on a glass slide
to create a matrix of 96 arrays, each of them containing 50000 wells arranged in a
honeycomb pattern. Next, for each array a high number of different types of beads
are mixed in equal quantities and applied on it. Each bed will randomly attach to a
single well on the glass plate.

Figure 3.3: Visual representation of the construction of Illumina Array using randomly
located beads. Republished from http://www.ipc.nxgenomics .org/newsletter/no8.htm with
permission by Dr Ken Lain

Figure 3.3 contains a visual representation of how the beads are randomly spread
on the surface of the array. With beds attached, the last part in the production is the
identification of each bead on the slide. For this, a sequential method proposed by
Gunderson et al. [137] is used that consists in labelling the 29-mer address section
of the oligonucleotides on a bead with a different color at each step. The procedure
is done until all the beads with the same oligonucleotide get a unique identifier
consisting of the string of colours applied during identification.
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The advantage of the Ilumina method consists in the very high number of mea-
surements that can be taken. This allows for sequencing of whole genomes with
around 30 beads per probe. The high number of replicates as well as the random-
ness of beads localization which eliminates systematic errors due to local defects of
the plates gives measurements of Illumina microarrays high replicability. The main
disadvantage of the method is the high costs of the product.

3.2.3.2 Protocol for Gene Expression Measurement

The measuring of gene expression using Ilumina microarrays starts with the extrac-
tion of RNA from the samples of interest. Next, cRNA should be obtained from
the RNA of the sample. An optional step at this point is to create biotin labelled
cRNA which will enhance the readings. Hybridization of the assay is done with
cRNA which is added to hybridization chambers provided by ilumina that contain
the BeadChips, each with a specific number of 96-arrays matrices. Once hybridiza-
tion is done, the BeadChips are washed in order to eliminate impurities. The next
step is to add Cye3 dye which will lead to different light intensities for the beads
proportional to the quantity of cRNA they have hybridized. Last a laser scanner
excites the dye and reads the intensities for each probe. A software provided by
Ilumina localizes all beads corresponding to the same probe and stores their corre-
sponding intensities. The full protocol can be found in the Ilumina datasheet[165].

3.3 Data Pre-Processing for Microarrays

In order for raw data obtained using microarrays to be analysed so that relevant
information related to diseases can be extracted, a series of pre-processing steps
have to be taken first. These methods are platform dependent and the remainder of
this subchapter presents them as well as the objectives they try to accomplish for
the 3 types of microarrays presented.

3.3.1 Data Pre-Processing for Spotted Arrays

The main objective when working with cDNA microarrays is to correct for the
various sources of noises that appear with the measurements. In order to do this, 2
types of methods are employed, background correction and normalisation.
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The luminous intensity of a probe on a microarray comes from 2 sources, the
intensity due to hybridization and the intensity of the background in its neighbour-
hood [397]. The objective of background correction is to eliminate the luminous
intensity of the probe that is due to the location on the microarray which it resides
on. A simple way to do this is to subtract the mean or median intensity of neigh-
bouring pixels from the intensity of the probe [294]. The problem with this method
is that it can lead to negative intensities so a few alternative methods have been
proposed for the problem. These include using a threshold to decide if subtraction
should be done[107], use of empirical Bayes models[194] or more recently the use
of background smoothing before background correction is applied [310]. More de-
tails on the background correction methods used with cDNA microarrays as well as
a comparison between them can be found in the review by Ritchie et al. [294].

The second stage in the pre-processing of data coming from cDNA microarrays
is represented by normalisation. In microarray data analysis, normalisation is used
in order to reduce the biologically unrelated variance of measurements between
different arrays. Multiple normalisation methods have been proposed, however they
can be classified in 2 major categories [42]: Complete data methods and methods
using a baseline array. Approaches in the first category use all the information from
the studied arrays in order to obtain normalized values. By contrast, techniques
in the second category choose a baseline array in respect to which the other the
arrays are normalized. A problem introduced by this strategies is the choice of
the baseline.Bolstad et al. [42] provide a comprehensive review of normalisation
methods, in which they prove that complete data methods give better performance.
The conclusion of the review is that quantile normalisation is the best method to be
used for its simplicity and performance.

3.3.2 Data Pre-Processing for Affimetrix Microarrays

Data pre-processing of Affimetrix microarrays has 2 goals: noise filtering similar to
cDNA microarrays and, in addition, summarisation. Summarisation is the operation
through which all the measurements for one probe are brought to a single value
using different averaging methods. Because of the very high density of probes,
background correction methods that are used in cDNA microarrays cannot be used
on Affimetrix slides, the researcher however can make use of the difference between
PMs and MMs.
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One of the first methods that was used to pre-process Affimetrix microarrays is
called AvDiff [1] or MAS4 and was developed by Affimetrix. It is a simple method
of noise filtering and summarizing Affimetrix microarray measurements, by aver-
aging the PM-MM difference for each probe. Li and Wong [214] show that, by
using MAS4 the variations due to probe effects can be up to 5 times higher than the
variations in-between arrays. This suggests that AvgDiff gives poor performance
in reducing the measurement related noise. In response to this problem they intro-
duce a new algorithm called Model-Based Expression Intensities (MBEI) [214] that
solves it by fitting a model through a probe set across all arrays.

Affimetrix came with a new algorithm that corrects most of the problems of
MAS4 called MAS5 [1]. It uses Turkey biweight averaging [142] which leads to
a summarisation method that does better noise filtering than its predecessor and
comes with a new a method for background noise correction. Unlike MAS4 and
MBEI whose final results are on a linear scale, MAS5 uses a log 2 scale which adds
better variance stabilization and easier interpretability of the results. Also MAS5
is the first method to introduce normalisation. Another novelty in this method is
the presence of a signal detection call that can be used to eliminate non-informative
genes when looking for differential expressed ones.

A new method for summarizing Affymetrix microarrays was introduced by Ir-
rizary et al [169] called robust multi-array analysis (RMA). One important differ-
ence between RMA and the previous methods is that it uses only the PM values.
The reason is that MM probes could also contain signal information which will be
lost by subtraction.

When it comes to comparing RMA with MAS 4, MAS5 and MBEI in terms
of detecting changes in differentially expressed genes, RMA outperforms the other
methods in terms of the area under the curve (AUC) [169]. This result appears,
however, because RMA has a significant increase in precision but a small decrease
in accuracy compared to MAS5. A new method proposed to solve the problem
is GeneChip robust multi-array analysis (GCRMA) [391] which is very similar to
RMA but uses information on the specific biding of each nucleotide when back-
ground correction is applied. GCRMA provides accuracy comparable to MAS5
and precision as good as RMA [391]. Its only drawback is that it does not provide
a call detection value such as MAS5.

The high number of summarisation methods for Affymetrix arrays, led to a com-
petition called Affycomp II [78]. A new method called FARMS [153] has outper-
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formed all the others in terms of AUC for detecting differentially expressed genes.
FARMS also uses just PM values but unlike MAS5 and RMA it does not do back-
ground correction, but just clears the data of noise on the same probesets across
different arrays. The authors of FARMS also came with a method for detecting if a
probe is absent, which was named I/NI calls [347].

3.3.3 Data Pre-Processing for Ilumina Microarrays

Illumina technology provides an original approach in the way the results are out-
putted by the machine. Instead of the PM-MM pairs, the users receive the average
and standard deviation of the measurements for each probe on an array as well as
a presence call for the probe so no detection call method has to be implemented.
Because of these factors, the pre-processing for Illumina arrays focuses on variance
stabilization, normalisation and batch effect removal.

The objective of variance stabilization is to correct unwanted dependency be-
tween the variances and the means of the measurements [217]. In the case of Af-
fimetrix arrays the application of more complex variance stabilization methods can
be quite difficult as the number of replicates is quite limited [217]. As with Ilumina
technology more measurements are taken for each probe, advanced variance stabi-
lization techniques become feasible. The simplest method for stabilising variance is
to apply base 2 logarithm on the data, an approach also used in Affimetrix methods
such as MAS5 and RMA. This method though has some significant short-comings
[217]. First it a global solution that ignores the measurement noise characteristics
of different machines and experiments. Also negative measurements coming from
background corrections on low intensity signals have to be changed to 0 before loga-
rithm can be applied. Finally, for values close to 0, the algorithm increases variance
rather than reducing it. In order to solve this problems, a new variance stabilization
method was proposed by Huber et al. [159] based on the model:

Y = α +µeη + ε (3.1)

proposed by Durbin et al. [104], where Y is the raw expression measurement,
α is the background noise, µ is the true expression of the gene and η and ε are
normally distributed error terms with mean 0. The name of the method is variance
stabilizing normalization (VSN) and it solves the problems of log2. Originally, VSN
was developed for Affimetrix arrays so Lin et al. [217], proposed a new method for
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doing variance stabilization on Ilumina chips based on the model 2.1 called VST.
The difference between the 2 algorithms resides in the way in which the parameters
are approximated. Variance stabilizing transformation (VST) relies on the much
higher number of beads per probe in Illumina and uses only intra-array measure-
ments to estimate the parameters. Lin et al. [217] proved that when using Ilumina
data, VST outperforms VSN by improving the signal to noise ratio and reduces the
number of false positives of differentially expressed genes. A presentation of the
VST is provided below. For measurements described with the model 3.1 the mean
is:

E(Y ) = u = α +mη µ (3.2)

And the variance:

Var(Y ) = v = s2
η µ

2 +σ
2
ε (3.3)

where mη and s2
η are the mean and the variance of eη , and σε is the standard

deviation of ε . Now if µ is substituted from the first to the second equation it is
possible to write the variance of measurements as a function of mean which also
shows why the 2 are interdependent.

v(u) = (sη/mη)
2(u−α)2 +σ

2
ε = (c1u+ c2)

2 + c3 (3.4)

The authors use a transformation on Y so that u and v become independent
proposed in [355] which is:

h(y) =
∫ y

1/
√

v(u)du (3.5)

by substituting c1, c2, c3 in this function the resulting function is:

h(y) =

1/c1 arcsinh(c2/
√

c3 + c1 y/
√

c3) when c3 > 0

1/c1 ln(c2 + c1y) when c3 = 0
(3.6)

Of the 3 parameters, c3 is the average of the background probes which are de-
fined as having a detection p-value of higher than a predefined threshold, in general
0.05. The other 2 parameters, c1 and c2 are estimated using linear fitting from the
equation: √

v(u)− c3 = c1u+ c2 (3.7)



Chapter 3. Microarray Data Processing and Modelling Methods for the Study
of Diseases 29

Once the transformation has been applied, the data is summarised by calculating
the mean of the transformed h(y) bead values. As the technologies are similar, using
an array to measure one sample, normalisation methods for Ilumina are the same as
in the case of cDNA or Affimetrix. This means that again quantile normalisation is
the usual choice. In microarray technology, a batch refers to plates prepared in the
same place using the same platform during short periods [68]. When the data is ob-
tained over multiple batches which means that it is measured in different days or the
biological samples are measured using different instruments, differences can appear
that are unrelated to the real biological changes [213]. Normalisation methods are
not enough to remove them [213] so new methods were developed. Different batch
removal procedures use a wide range of techniques. Examples come from algebra
such as singular value decomposition used in Surrogate Variable Analysis (SVA)
[212], statistics with the Empirical Bayes(EB) estimates used in Combat [176],
or artificial intelligence, support vector machines (SVMs) being used in Distance
Weighted Discrimination (DWD) [31]. SVA and DWD have some shortcomings
when it comes to practical implementation [176]. In the case of SVA the method
requires proper selection of first several eigenvector while DWD permits compar-
ison only between 2 batches. The only drawback of ComBat is the fact that the
batches from which the data comes have to be known but as long as the information
is available, the method can be applied. In a thorough study, Chen et al. [68] com-
pare these methods on artificial and experimental data. In their analysis ComBat has
shown superior performance and also it appears that its performance relative to the
other approaches increases as the size of batches decreases. This is an advantage in
practice as the number of samples is limited. In the Combat method it is assumed
that the data has been normalized, summarised and low detection probes have been
eliminated. Once these operations have been finished the measurements for each
probe are characterized using the model:

Yi jg = αg +Xβg + γig +δigεi jg (3.8)

where Yi jg represents the measurement for gene g in sample j from batch i, αg repre-
sents the real value of the gene, X represents a design matrix for sample conditions,
and βg is the vector of regression coefficients corresponding to X . The error terms,
εi jg, come from a zero-mean normal distribution with variance δ 2

g . γig and δig rep-
resent the batch effects of batch i for gene g, with γig the additive effect and δig the
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multiplicative one.
The method proceeds to eliminate the batch effects in 3 steps:

1. Data Standardisation

It is expected that the magnitude of expression will vastly vary among differ-
ent genes and this will affect the bayesian estimates of the prior distribution
of batch effect. In order to do this, least squares are used on the model to
estimate αg, βg, γig as α̂g, β̂g, γ̂ig with the constraint:

∑
i

niγ̂ig = 0 (3.9)

for all the genes, where ni is the number of samples for batch i. With the
model obtained this way, the distribution of error terms can be approximated
as having a variance:

σ̂2
g =

1
N∑

i j

(Yi jg− α̂g−X β̂g− γ̂ig)
2 (3.10)

The standardized data are calculated as:

Zi jg =
Yi jg− α̂g−X β̂g

σ̂g
(3.11)

2. Estimation of the batch effect parameters

The standardized data is considered to come from the distribution N(γig,δ
2
ig).

Another assumptions made for the parameters of the distribution are:

γig ∼ N(γi,τ
2
i ) and δ

2
ig ∼ InverseGamma(λi,θi) (3.12)

The hyperparameters γi,τ
2
i ,λi,θi are estimated using the method of moments.Based

on this assumptions the 2 parameters are approximated using the conditional
posterior means:

γ
∗
ig =

niτi
2
γ̂ig +δ 2∗

ig γi

niτi
2 +δ 2∗

ig
andδ

2∗
ig =

θi +
1
2∑

j
(Zi jg− γ∗ig)

2

n j
2 +λi−1

(3.13)
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3. Adjust the data for batch effects

The final measurements, γ∗i jg are approximated using:

γ
∗
i jg =

σ̂g

δ̂ 2
ig

(Zi jg− γ̂ig
∗
)+ α̂g +X β̂g (3.14)

3.4 Dimensionality Reduction

In the era of big data, fields such as biology, engineering and economics face high
dimensional measurements that create the need for new strategies in order to select
the most important features[121]. Different approaches from statistics and machine
learning have been proposed in order to transform the data from a high dimensional
space to a lower dimensional one while preserving the important information con-
tained by them. They represent an important pre-processing step in pattern recog-
nition as they are a viable cure to the curse of dimensionality.

The dimensional reduction techniques come in 2 main categories, feature selec-
tion (FS) and feature extraction (FE). Feature selection procedures return a subset
of the original dimensions or a ranking for them according to a criterion [39] while
feature extraction methods create a novel set of attributes based on transformations
applied to the original ones.

This thesis will concentrate on FS procedures for supervised classification. Fea-
ture extraction and unsupervised feature selection methods have little relevance for
this study, as the classes for the data are known and the final goal is to select genes
not classify data, so they will be left out of this literature review.

3.4.1 Feature Selection

Feature selection represents an efficient strategy to tackle some of the problems
created by high dimensional data. Its main benefits are improvement of classifiers
accuracy, reduction of the memory requirements for the data and increase in the
interpretability of models.

Algorithms implementing feature selection methods have 3 main components:
the generation procedure, the evaluation function and the stopping criteria [219].

The generation procedure creates subsets of features that are going to be evalu-
ated. There are 3 primary strategies for it: exhaustive search, sequential search and
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random search. Exhaustive selects the best features by checking all the possible
combinations. Its advantage is the fact that it always provides the optimal solution
but for a high number of dimensions this method might be impossible to use in
practice because of time limitations. Sequential search methods produce subsets
by iteratively adding or removing sets of features until no improvement is observed
in the evaluation function. They do not do a complete search, unlike exhaustive
methods but are more practical for implementation on real systems. In the case of
random search, a randomly selected subset is considered initially and then the al-
gorithm continues either by using sequential search in which some randomness has
been added or just continues to generate random subsets.

The evaluation function represents the technique used to assess the goodness of
the candidate feature subsets. Two classes of evaluation criteria exist, independent
ones such as measure of distance, dependency measures, information and consis-
tency measures and dependent ones that asses the goodness of results based on the
performance of a data mining algorithm [83]. The stopping criteria represents the
condition for which the algorithm stops. Some common examples are:

• All subsets have been evaluated

• A certain number of iterations have passed or a certain number of features
have been selected

• Adding or removing features does not bring improvements in the value eval-
uation function

• A certain value has been obtained by the evaluation function

Many feature selection algorithms have been developed and according to their eval-
uation function they can be split into 2 main categories: filters and wrappers. The
filters use independent evaluation functions while the wrappers use the dependent
ones.

3.4.1.1 Filters

Algorithms in the filter category asses the performance of each individual features
and select a subset either by putting a threshold on the number of features selected
or on their evaluation score. A popular filter approach used in microarray data [209]
is the imposition of a threshold on a measure of statistical significance.
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The simplest approach is the application of single hypothesis testing on each
of the features in a dataset. This tests the null hypothesis (which is that there is
no real difference between samples of the feature coming from different classes)
against the alternative hypothesis (which is that real differences exist). A measure
of significance, the p-value which is the probability that the measurements came
from a set where the null hypothesis is true is assigned to each feature. The last
step in this case is to put a threshold on the p-value, usually 0.05 or 0.01, and pick
all the features with a p-value below it. Two main types of statistical methods for
testing exist, parametric ones in which the distribution of the samples of the classes
is considered known, the most wide-spread of which is the Student t-test [340] and
non-parametric methods such as the Wilcoxon rank sum test, where no knowledge
of the distributions is needed.

In practice in a gene expression dataset multiple features are evaluated which
corresponds to the case of multiple hypothesis testing. In this situation, applying a
constant threshold on the probability that the null hypothesis is true is not enough.
This happens because a number of features for which the null hypothesis is true
will give a p-value below the threshold purely by chance [102]. The percentage of
features for which this happens out of all the features considered significant is called
the false discovery rate(FDR). Early methods for dealing with this problem have
been based on controlling the family-wise type I error rate (FWER) [315] which is
the probability that one real null hypothesis was misclassified. The problem with
this approach is that it is too strict [335], leading to the elimination of too many
genes in the case of the tens of thousands of features that appear in a gene dataset.
A relaxation to this approach is to put a threshold on the false discovery rate (FDR)
as proposed by Benjamini and Hochberg [32] . The measure they control is:

FDR = E[
V
R
|R > 0]Pr(R > 0) (3.15)

where V-the number of features falsely called significant, and R the number of
features that are called significant. The way they do this is:

re ject H j f or j = 1, ...,max {i|pi ≤
i
m

α} (3.16)

where H j is the null hypothesis for feature j, pi is the p-value for feature i with
the features arranged in the increasing order according to their p-value, m the total
number of features and α the threshold for the p-value assigned by the scientist
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when doing single hypothesis testing on the feature. As pointed out in Storey [335]
there are 2 problems with the initial method for bounding the FDR. The first one is
that there is no guarantee that the threshold chosen imposes a hard upper-bound on
the percentage of misclassified features. The actual threshold to which it limits the
FDR is α/P(R > 0) once one feature has been classified as insignificant. The other
one is that no information from the data about the number of features in which the
null hypothesis is true is actually used to approximate the FDR. A new method, the
q-value which measures the positive false discovery rate (pFDR) was proposed to
solve these weaknesses. The positive false discovery rate is defined as:

pFDR = E[
V
R
|R > 0] (3.17)

and it represents the false discovery rate when at least one feature was called signifi-
cant. In their approach, instead of thresholding the pFDR with a fixed α , the authors
use the features arranged in increasing order of their p-values to define nested re-
jection regions [0,γ]. Because the values are nested, a region γ contains the first k
features, k<γ*m with the smallest k p-values. Next for each of these regions the
pFDR (γ) is:

pFDR(γ) =
π0γ

Pr(P≤ γ)
(3.18)

with π0 the probability that a feature is non-significant and P the random variable
which contains all the p-values of the features. The pFDR is estimated for all re-
gions of interest (in practice this means the regions that have different numbers of
elements) using:

p̂FDRλ (γ) =
π̂0(λ )γ

P̂r(P≤ γ){1− (1− γ)m}
(3.19)

with
π̂0(λ )γ =

W (λ )

(1−λ )m
(3.20)

and
P̂r(P≤ γ) =

R(γ)∨1
m

(3.21)

where R(γ) = #pi ≤ γ and W (λ ) = #pi > γ .
λ can be optimally chosen using an automatic approach proposed by the authors.
The last step is to assign q-values to each of the features in the set. The q-value

of the feature i in a set of nested regions A that contain it is:
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q(i) = in fγ≥pi p̂FDRλ (γ)

This approach however does not take in consideration the correlation between
the features. As shown in [139], not considering the correlation between features
during selection might lead to decreased performance in later classification. To
tackle this problem, new multivariate filters emerged. Popular representatives for
this category are minimum redundancy maximum relevance (mRMR) [278], condi-
tional mutual information maximization (CMIM) [120] and the double input sym-
metrical relevance (DISR) [246] .In the mRMR criterion mutual information(MI)
is used to combine 2 previous principles which are to obtain maximum correlation
between a selected feature and the vector of classes for samples and to have as
little correlation as possible between the selected features.The CMIM criterion se-
lects features whose capability of predicting which class the sample came from was
not caught by other attributes.The DISR criterion employs feature complementarity
which means that for a set of features to be selected, their combined classification
capacity is higher than the sum of individual classification performance. Meyer
et al. [246] have proven that mRMR returns a set of features as relevant as those
selected by the newer DISR-based method but at a significantly reduced computa-
tional cost.

3.4.1.2 Wrappers

The wrapper approach is classifier dependent so the subset selected with this method
can differ a lot if the predictor changes. Because a machine learning method is
used for evaluating each selected subset, wrappers are much more computationally
expensive than filters [304]. However, features selected using wrappers are expected
to obtain better classification accuracy than filters [151] as they directly optimize
features that can discriminate between classes.

The combination of the 2 methods lead to new feature selection algorithms rep-
resented by embedded methods [139] and hybrid algorithms [219]. In the embedded
methods the whole feature set is used as input for a classification method which will
output a classifier using just a reduced set of features.

Hybrid methods come with a different approach which works in 2 stages. Filters
are used in the first instance to create subsets with different sizes. Next, one of the
subsets is selected as the best one by using a wrapper. The disadvantage of this
method is that it need a predefined stopping criterion.
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Section 3.5 presents a review on some classification methods widely used for
microarray studies as well as history of the wrappers that have been used with them.

3.5 Classification Algorithms

Classification is a main task in data mining and machine learning. Its objective is
to produce models that can identify to which class a specific instance belongs to.
Methods used for classification have 2 phases, training and testing. The training
phase consists of building the model using samples from known classes. In the
testing stage the class of different instances is predicted using the model obtained
in the training stage and the resulted labels are compared with the real ones.

Classifiers are a vast area of research, many of them being developed over the
years. A thorough review on the subject is provided by Kotsiantis et al. [196]. Al-
though there are many classification methods that have been created over the years,
many of them combining existing methods there are some algorithms that are fun-
damental to the field. They include Naive Bayes (NB) classifiers, decision trees and
support vector machines. The remainder of this section will provide a description
on them with a focus on Support vector machines as well as their application on
feature selection using either wrapper, hybrid or embedded methods.

NB methods represent a class of classification methods in which Bayes theory
is used to predict the class from which a sample came. The ancestor of all this
methods was proposed as a text-classification algorithm [101], a field in which they
are still very popular [389].

The idea behind the NB is to approximate the distribution of each class from
which the data come using the training data, and new samples are assigned the
class they most probably come from. In the use of Bayesian method there is one
assumption made about the data, which is that all the features of a sample are in-
dependent random variables. This assumption is unrealistic for most data but the
method showed to work surprisingly well in practice, even when compared to more
complex methods [125].

The NB methods have a history of being applied in wrapper approaches, the
first paper in which they have been used for feature selection[207], appearing in
the same year as the introduction of wrapper methods [175]. In this approach the
authors try to eliminate correlated features in order to improve the classification
performance of NB. Their method was successful, providing improvements of per-
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formance to the standard NB that were close to those of other methods even in the
fields where NB was showed to perform poorly. Further improvements in wrappers
based on Bayesian methods have been introduced in the works of Kohavi and John
in which the NB are used on wrappers for which the candidate features are selected
using techniques such as best-fit search and hill-climbing search. Closer to our
time NBs have been used to improve candidate subset feature selection for wrapper
methods[34]. In the field of microarray studies, NB based algorithms have been
to select biomarkers for diseases such as cancer [167], Chronic Fatigue Syndrome
[157] or dermatological diseases [12].

Decision trees, similar to the Naive Bayes classifiers are one of the oldest meth-
ods in machine learning. The first decision tree technique ever implemented was
the Concept Learning System framework(CLS) [161]. Based on it, new methods
were proposed such as Iterative Dichotomiser 3(ID3) [290] and its successor C4.5
[291] which are still used nowadays.

The idea behind decision trees is to create a set of rules based on the values of
the attributes for the measurements so that each resulting subset contains samples
from only one class. In the case of continuous attributes, this means creating thresh-
olds on the values of each attribute so that the samples in the resulting partitions are
as homogeneous as possible from the perspective of their corresponding class. New
samples are classified automatically considering the partition they are in. The main
reason for the popularity of the decision trees is that they give intuitive explana-
tions of the classification process and can be used to easily combine discrete and
continuous features.

Wrappers based on decision trees are as old as the idea of wrapper itself, the first
wrapper method ever proposed [175] using the ID3 and C4.5 algorithms as classi-
fiers. An improvement has been proposed to the decision tree based wrappers in the
work of Cherkauer and Shavlik [81] by creating candidate subsets using genetic al-
gorithms. The approach found popularity in the field of intrusion detection [334], an
upgrade being proposed by incorporating neural networks as well [326]. Another
direction for the decision tree based wrappers is the use of random forests [152]
as classifiers as in the Boruta algorithm [202], an approach where several decision
trees are combined to provide improved classification. In the field of microarray
data analysis decision trees have been used to detect biomarkers for cancer [400],
[69].

In the recent years, a classification method that is becoming extremely popular
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is the artificial multi-layer neural network [307], which is a classifier that works
by trying to mimic the functioning of the biological neural networks[173]. The
classifier is organized as many layers of functions, the output of a layer being the
input of the following one. This allows the network to discover increasingly com-
plex patterns after each series of layers, making it fit for applications such as object
recognition to the level of dog breeds from pictures [302], understanding human
language [30] and the creation of self-driving cars [163].

While not as popular as the other methods for the creation of wrappers, neural
networks have been used as a classifier for a wrapper. One example in this sense is
the NNFS [314], which use a penalty on the error term to eliminate features with low
weights in the final network. Another example was created by De Rajat et al. [87]
in which they combine a multi-layer neural network with fuzzy logic to select the
most relevant features. In biology neural networks-base wrappers have been used
to predict the outcome of osteoporosis by using genetic factors [64]. The reason
why neural networks are not used too frequently in wrappers although they produce
accurate classifiers [64] is their complexity which makes them impractical [375].
Also they are not popular in medicine as they produce complex models which are
difficult to interpret [61].

One of the classifiers with the widest range of applicability in data mining is the
support vector machine SVM [45]. The method produces a separation hyperplane
which maximizes the smallest distance between the decision boundary and any data
points(called the margin) in order to obtain a model capable of a high degree of
generalization. The new data points are classified considering the side of the hy-
perplane they appear in. Since most of the real datasets are not linearly separable,
the introduction of kernels have appeared, which map the original data in a higher
dimensional space where it becomes linearly separable.

As linear support vector machines produce an array of weights for the features
used, wrapper approaches come naturally to the method. The algorithm has been
used in all type of classification-based feature selection approaches. A wrapper
using SVMs came from the creators of the strategy and it is called support vector
machines with redundant features elimination (SVM-RFE) [140]. In this approach
the authors use linear support vector machines to sort features in order of their
weight and eliminate half of them at each step.

An embedded method for feature selection using SVMs was proposed by We-
ston et al. [379] where gradient descent is used to minimize the number the features
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until a specific number is reached. The problem with this approach is the number
of selected features is predefined by the user without taking the data into consider-
ation. Zhu et al. [406] solved this problem by using the l1-norm to minimize the
weights of the features. This naturally eliminates them leaving a optimal number
for classification thus leading to an embedded SVM-based feature selection method.
Newer approaches use embedded methods to penalise the kernel into selecting the
most informative features [232].

SMV-based hybrid methods have been proposed in which filters are the average
difference in a measurement closely related to the Fisher criterion score [37] of the
samples in different classes Furey et al. [129]. A method that combines most of the
presented strategies can be found in the work of Ahsen et al. [5], an l1-norm SVM
with a recursive feature elimination being combined with a statistical testing based
filter.

Microarray studies are one of the first fields in which support vector machine
wrappers have been used [140]. Their capacity of dealing with high dimensional
data and dealing with irrelevant and redundant attributes [197], makes them ex-
tremely popular in molecular biology where the number of features greatly exceed
the number of samples. Support vector machines have been applied to find biomark-
ers for diseases such as cancer [140], Alzheimer [96], cerebral accidents [287], mul-
tiplesclerosis [405]. Various studies have shown that the SVM classifiers provide
best results for microarray data [211][285][195] , so the following sections describe
more in depth the SVM methods and feature selection methods using them.

3.5.1 Support Vector Machines

The simplest case in which support vector machines can be used are the ones in
which the data is linearly separable. This means that if xi ∈Rm, where m represents
the number of features is a vector of measurements for a specific sample, there can
be a weight vector w and a bias b for which:

wT xi +b≥ 1,xi ∈C1

wT xi +b≤−1,xi ∈C2
(3.22)

with C1 and C2 the classes for the samples [45]. In this case, the function sign()
produces a decision rule for the classifier
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fw,b(xi) = sign(wT xi +b) (3.23)

Let yi = fw,b(xi). In this case in order to create a decision boundary maximizing the
margin, the convex programming problem

minw,b
1
2
|w|22 (3.24)

subject to
yi(wT xi +b)≥ 1 (3.25)

has to be solved, where xi, i = 1...n are samples from the training group and |w|2
the euclidean norm of w. Using Lagrangian multipliers the problem reduces to:

minw,b
1
2
|w|22−

n

∑
i=1

αiyi(xi ·w+b)+
n

∑
i=1

αi (3.26)

αi ≥ 0, ∀i
Alternatively the dual form of the problem can be solved

maxα

1
2

n

∑
i=1

αi−
n

∑
i=1

n

∑
j=1

αiα jyiy jk(xi,x j)

n

∑
i=1

αiyi = 0

(3.27)

αi ≥ 0, ∀i, where k(xi,x j) is the linear kernel xT
i x j and

w =

n

∑
i=1

αiyixi (3.28)

The dual from problem is useful when the data is not linearly separable. In this case,
using a kernel [309] it can be mapped in a space with a higher number of dimensions
where it becomes linearly separable. The number of Lagrange multipliers is the
same as the number of training samples, but most of them will have a value of 0,
so their corresponding data points will not contribute to the classification of new
samples. The rest of the data points will satisfy yi(wT xi + b) = 1 and are called
support vectors, giving the name of the method.
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3.5.2 Support Vector Machines with Redundant Feature Elimi-
nation

As support vector machines proved to be a successful tool in classification done
using gene expression [50], improvements have been proposed by the creators of
the method to optimize the selection of biomarkers [140]. The new algorithm was
called SVM-RFE and its purpose was to reduce as much as possible the number of
genes used in classification while at the same time keep the classification capability
of the obtained model.

The algorithm works by recursively following the following steps:

1. Train on the training set to obtain a vector of weights w

2. Assign a ranking for each feature.

The ranking scoring methods proposed were w2
i and DJ(i)[192] where DJ(i)

is the change in the objective function(for example the classification rate of
the algorithm) when the weight for the respective feature is set to 0.

3. Remove the feature with lowest ranking.

In order to speed up the algorithm more than one feature could be eliminated.

3.5.3 l1-Star

Based on the ideas presented in the Guyon et al. [140] paper, Ahsen et al. [5] pro-
posed a new hybrid algorithm that uses a statistical test followed by SVM-RFE
called l1-Star. One significant difference between l1-Star and its predecessor, is the
use of an l1-norm when minimizing the weights of the features for the classifier as
in the work of Zhu et al. [406]. The problem to be solved now for the classifier is:

minw,b|w|1 (3.29)

subject to yi(wT xi + b) ≥ 1 with |w|1 the Manhattan norm for w. Below there are
the steps of the algorithm:

1. Create a random training set with similar number of elements which is less or
equal to half the number of elements from both classes and apply the l1-norm
support vector machine on it.
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2. Repeat step 1 several times. The authors found that for 80 randomized sam-
ples or 1000 randomized samples the results were comparable.

3. Average the weight vectors across all the classifiers. For k the average number
of nonzero elements in the weight vectors of each classifier, pick the k features
with highest weights.

4. Repeat steps 1-3 until no reduction is possible

5. For the final feature selection repeat step 1 and build a classifier from the
weights of the top 20 classifiers

3.6 Cluster Analysis

Cluster analysis represents a set of statistical methods in which objects are assigned
classes based on similarity Sadesky [303]. A high number of clustering methods
exist a review being available in Berkhin et al. [33], however 2 of them are widely
used, k-means clustering and hierarchical clustering.

Two main categories exist for hierarchical clustering analysis [38], agglomera-
tive and divisive. In the agglomerative methods, every element starts as a cluster
and the algorithm joins the 2 closest clusters as measured by a distance until only
one cluster exists. Divisive methods use a reverse strategy, all features are consid-
ered to be in one cluster which is split in its most dissimilar parts until each feature
becomes its own cluster. The rules of pairing of features representing the outcome
of hierarchical clustering form what is called a tree which is visually represented by
a dendrogram.

K-means clustering [230], is a method based on centroids which represent ref-
erence points situated in the middle of the desired clusters. Each new individual
observation’s distance to all centroids is calculated and it joins the cluster of the
closest centroid. The affected centroid’s position gets updated considering the new
value. The method relies heavily on a good choice of initial centroids, a problem
that is difficult to solve when it comes to gene expression analysis. As a result
hierarchical methods are preferred for this applications so the rest of the review
will focus on them. Also agglomerative methods consume less resources from a
computational point of view, which makes them better fit when working with the
high number of features analysis of gene expressions involves. Two elements are
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of importance when using agglomerative hierarchical clustering, the metric and the
linkage rule. The metric represents the measure by which the distance between the
features is computed. For 2 vectors, x and y, standard metrics are:

• Euclidean distance

dE =

√√√√ n

∑
i=1

(xi− yi)2 (3.30)

• Normalized Euclidean distance

dNE =
dE√

n
(3.31)

where dE is the Euclidean distance and n the number of elements in the vec-
tors

• Manhattan distance

dM =

n

∑
i=1

|xi− yi| (3.32)

• Pearson’s correlation coefficient dP=1-r,

r =
1
n

n

∑
i=1

(
xi− x

σx
)(

yi− y
σy

) (3.33)

where x and y are the means of the element in the vectors x and y and σx and
σy are their standard deviations.

• Absolute Pearson’s correlation coefficient dAP = 1-|r| with r defined above

The linkage rule determines what is considered the distance between 2 differ-
ent clusters with multiple features. For 2 clusters, A and B possible linkage rules
between them can be:

• Maximum distance

D = max{d(a,b) : a ∈ A,b ∈ B} (3.34)

• Minimum distance

D = min{d(a,b) : a ∈ A,b ∈ B} (3.35)
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• Average distance
1

card(A)∗ card(B)∑
a∈A

∑
b∈B

d(a,b) (3.36)

In the case of agglomerative clustering a cutting method is needed in order to
split the obtained tree into different entities. One simple way to do this is to cut
the tree at a certain height, which would represent the maximum distance of the
elements in the obtained clusters. Another method is to cut the tree based on an
inconsistency value which compares how different the 2 sub clusters that form a
cluster are.

For both of these methods a threshold needs to be set which can represent a
difficult task. Langfelder et al. [206] proposed an automated method that permits
the split of a tree in clusters without requiring a predefined threshold.

For a tree obtained through agglomerative clustering, the leafs represent the
features which can be assigned a height that represents the distance between it and
the closest cluster. Thus a tree can be written as a vector of heights. Dynamic tree
cut is based on the function TreecutCore(). This starts by subtracting from each
element in the vector a reference height l. Some heights will now be negative while
other will be positive. The function defines as transition points all the elements
representing a positive height with the next element a negative height. Next for
each transition point it looks at its precursors and defines the first negative one
as a breaking point. The new clusters are represented by the features between a
transition point and a breaking point. In practice the algorithm uses 3 values for the
reference height l:

lm =
1
n

n

∑
i=1

hi

lu =
1
2
(lm +max{h1,h2, . . . ,hn})

ld =
1
2
(lm +min{h1,h2, . . . ,hn})

(3.37)

where {h1,h2, ...,hn} the vector of heights for a cluster They are utilized in a proce-
dure called AdaptiveTreecutCore() with the following steps:

1. For a cluster calculate lm, lu, ld

2. Apply TreecutCore() with lm as reference height
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3. If at Step 2 no new cluster appears, apply TreecutCore() with ld as reference
height

4. If no new clusters appear at Step 2 or 3, apply TreecutCore() with lu as refer-
ence height

The complete algorithm works following the next steps:

1. Cut the initial tree at a very high height to cut it in 2-3 clusters

2. For each cluster apply AdaptiveTreecutCore()

3. If new clusters are created update the list of clusters and repeat step 2

4. If no more clusters are created return the obtained clusters

3.7 Gene Regulatory Networks

Thousands of genes are encoded by the genome, their products enabling cell sur-
vival and numerous cellular functions [183]. The quantity and the moments in
which these products appear in the cell are crucial to the functionality of the organ-
ism [183]. In order for this synchronization to happen, the gene need to interact with
each other. The accumulation of these interactions form a gene regulatory network
(GRN) [220]. By discovering the underlying structure of a GRN, new information
can be obtained on the functionality of the cell and mechanisms of diseases can be
studied. This in turn can lead to the development of new therapeutic strategies, so
there is lots of interest in researching them.

Two main approaches exist at this moment for the identification of gene reg-
ulatory networks. The first approach consists in creating biochemical models for
the genes interaction in which the underlying chemistry of gene interaction is taken
into consideration. The advantage of this method consist in the reliability of the net-
works identified, once the scientists discover them, they get to be modified in time
just by addition of newly discovered interactions [288]. Their disadvantage con-
sists in the significant prior knowledge of the system the researchers needed when
applying them [288] which makes them unfit for exploring under-examined prob-
lems. A more through presentation on them is outside the scope of this literature
review but the interested reader can study the review by van Riel and Sontag [367].
The second approach is to infer the structure of the network of a set of genes using
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microarray measurements. Its advantage consists in the fact that no knowledge of
the network topology is needed [288] but biological knowledge of known regulators
can be included when identifying it.

Identification of gene regulatory networks using microarray measurements can
be done in 2 ways, using static models that just account for possible interactions
between genes or dynamical models which more than just identifying the structure
of the network allow the scientists to estimate future behaviour of the system rep-
resented by the genes. The following sections will provide a brief overview of the
static models and a more in depth description of the dynamical ones.

3.7.1 Static Models

The simplest static method for identifying the underlying network for a set of genes
based on microarray data measurements is represented by calculating the correla-
tions between different features based on their measurements as used by Eisen et al.
[109] followed by a thresholding on the correlation values. An improvement to the
method is represented by the use of weighted gene co-expression networks [403] in
which rather than thresholding the genes they are assigned a weight on their relation
based on the value of their correlation coefficient raised to a specific power.

The problem with using correlation as a measure of genes similarity is that it
cannot quantify non-linear relations between them. In order to solve this problem,
mutual information was proposed as a measure of similarity between genes. Similar
to the case of correlation networks the simplest way in which mutual information
can be applied to retrieve the topology of a GRN is to calculate it for all pairs of
genes and then threshold it with a fixed value [54]. Improvements to this method
have led to various popular algorithms such as Minimum redundancy network (MR-
NET) [299] in which feature selection is done based on the mRMR criterion, the
Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) (Mar-
golin 2006) in which connections due to indirect interactions between genes are
eliminated using the Data Processing Inequality (DPI) [80] criterion or the Context
Likelihood of Relatedness(CLR) algorithm in which the score of a pair of genes is
calculated based on their MI score and the complete distribution of MI scores in the
network.

A different approach for the identification of static models in gene regulatory
networks is the use of machine learning methods. A good example in this sense
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is represented by Supervised Inference of Regulatory Networks (SIRENE) [253] in
which support vector machines are trained using known connections between genes
to identify new connections based on the microarray measurements. The algorithm
showed to be reliable, outperforming CLR [253] but its disadvantage consists in
the need of knowing previously biologically validated connections between genes
which makes it unfit for dealing with novel biological issues. A solution to this
problem is represented by GENIE3 [170], an unsupervised algorithm in which Ran-
dom forests are used to identify genes with a good power for predicting the values
of other features. GENIE3 has shown great performance in identifying biologically
validated connections, winning the Dialogue for Reverse Engineering Assessments
and Methods (DREAM) competition [135] in 2009.

In order to identify the regulations that exist between genes while taking into
consideration the stochastic nature of biological systems, static Bayesian networks
were proposed to infer regulations between genes. In this approach to the problem,
each gene is considered a node in a Bayesian network which describes the proba-
bility of a gene to take a specific value considering the values of other related genes
at the same moment. If edges exist in the Bayesian network between 2 genes it is
considered that regulation exist between them in the real regulatory network. The
first proposal for using this approach to identify regulatory networks appeared in a
paper by Friedman et al. [125]. As the search space for Bayesian network models
of gene regulatory networks for a large number of genes is extremely vast various
methods have been employed to narrow the search and pick a good model. In their
study Friedman et al. [126] used bootstrapping for evaluating the models but other
examples in this sense are represented by the use biological data to reduce the struc-
tures considered for the network [278] or using the BIC criterion [311] to penalize
a large number of connections [296].

3.7.2 Dynamical models

Various models have been proposed to capture the dynamical behaviour of gene reg-
ulatory networks, thorough reviews that present them being available [183] [373].
As it is revealed in these studies, there are 4 main categories of dynamical models
used in GRN identification: logical models, continuous models, single molecule
level models and hybrid models that are a combination of the above. This review
will focus on logical and continuous models sing linear differential equations. Com-
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plete reviews on the problem are presented in the work of Karlebach and Shamir
[183], Hecker et al. [148], Vijesh et al. [373], Le Novere [210].

Logical models only provide a qualitative view on the underlying network, the
only available information being of the kind gene A influences gene B but no details
are given on the behaviour that is influenced by the exact molecular concentrations
as well as the type of regulation taking place (upregulated or downregulated).

The most used type of logical models is represented by Boolean networks (BN)
[354] and Probabilistic Boolean Networks (PBN) [320]. Boolean networks consist
of a set of rules that model the logical interactions between genes. Each gene is
modelled as a logical switch that can be true or false. This introduces the first prob-
lem with Boolean networks which is to find a good threshold for the values of the
genes. The state of the system at some point is represented by the vector of logical
states for each gene. The set of rules that govern the network is inferred by checking
which set of logical operations that transfer the systems from the state at time t to
the state at time t+1 works on all the data. This introduces the second problem with
the model, which is the need to treat time as a discrete variable and that the system
evolution is considered a markovian process. Two algorithms have been proposed
for dealing with the finding of the logical operations, REVEAL [216] in which the
search-space is reduced by using the mutual information between the initial state of
each single gene (t = 1) and the output state of the target gene. Another approach
to the problem have been proposed by Akutsu et al. [6] who proves that O(logn)

random measurements are enough for the identification of a network of N genes
and proposes an exhaustive search method. The advantage in this case is that all
the networks that can be associated with the data are identified. More advanced
techniques for identification of Boolean networks by turning their logical rules into
their algebraic form have been proposed in Cheng et al. [72] . An important aspect
in the analysis of Boolean networks are the attractors. These are represented by
states or chains of states that once are entered repeat infinitely, called limited cycle
attractors, which represent the steady states of the dynamic system being used to
understand the long-term behaviour of the Boolean models [393]. Also researchers
have proved that the attractors can be associated to the cellular phenotype [158],
meaning that attractors should be studied when we are interested in changing the
long term behaviour of cells [393] as for example when trying to cure a disease.

A strong criticism of Boolean Networks is their deterministic nature. It seems
unrealistic that the expression of genes is governed by constant logical rules rather
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than a self- organizing stability of the dynamical system represented by the regu-
latory networks [320]. To address this problems, probabilistic Boolean networks
have been introduced in which at every moment in time a boolean network from a
predetermined set is selected with a specific probability to predict the new values
for the genes. For a PBN , the attractors are represented by the set of attractors of all
the Boolean networks that can be selected at a specific time [393]. The dynamic be-
haviour of PBNs can be represented as Markov chains [320]. The concept of attrac-
tors can be represented by an irreducible set of states in the Markov chain. A new
issue compared to the deterministic Boolean networks is the study of steady state
distributions which regard the probability of the system of getting into an attractor,
independent of the initial state. As in the case of Boolean networks attractors rep-
resent phenotypes of the cells so the steady state distributions show the chances of
cells to be of a specific phenotype. A question of interest in this case is how to push
the system towards a desired behaviour. As shown in Pal et al. [272], answers to it
have been proposed in Shmulevich et al. [322] by keeping the distributions constant
but resetting the initial state to a more desirable one, by making minimal modifica-
tions to the steady state distribution [321] or changing external (control) variables
that influence the transition probabilities of an instantaneously random PBN to steer
its evolution towards a desired goal for a finite amount of time [84][85].

An improvement to the probabilistic Boolean models is represented by Bayesian
network models [125] . These are similar to the static Bayesian models but the
difference consists in the fact that current values of the gene expressions are used
to predict the expression of a gene at the next time-step rather than the expression
at the same time-point. The advantage of this approach is that the measurements
do not have to be turned into binary values and weights are obtained to quantify the
influence of genes on each other.

In order to approximate the parameters for dynamical Bayesian networks, vari-
ous methods have been proposed for both continuous and discrete systems presented
in Friedman et al. [127], Murphy and Russell [255], and Perrin et al. [281]. In order
to find a good model for a set of available data, a search strategy is needed to gen-
erate new models that might describe the data and an evaluation function to score
the proposed models should be used. Over the years various search strategies such
as hill climbing [86], simulated annealing [186] or the junction tree algorithm [208]
have been used to identify the parameters of Bayesian network models for gene
regulatory networks. Evaluation methods that have been used over the years are
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Bayesian scoring functions such as the Bayesian Dirichlet evaluation score (BD)
[149], and its variants BDe [149] and BDeu[149] or scoring function coming from
information theory such as the Bayes information criterion [311] or the newer Mu-
tual information tests score (MIT)[57]. A presentation of the different scoring func-
tions is available in Carvalho [58].

State space models have been developed for the description of gene regulatory
networks in which linear differential equations are used to model the interactions
between genes. Two main categories of state-space models exist, linear and non-
linear. Linear systems can characterize the linear relations in the systems but they
cannot capture the nonlinear dynamic aspects of gene regularity which means that
for higher sensitivity approximating the network there is a need for more complex
models. As the complexity of nonlinear differential equations is high and reverse
engineering such a system containing many variable is an extremely complex task,
a good compromise solution should be found. This would be to approximate a
nonlinear dynamical system around its equilibrium points using a linear state-space
model based on the theory of Jacobian linearisation [271]. In general, a linear state-
space model with the input u(t) ∈ Rm and output y(t) ∈ Rn can be represented as:

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(3.38)

where t ∈ R is the time, x(t) ∈ Rp is the state vector, p is the model order, A is
the system matrix, B is the input matrix, C is the output matrix and D is the feed-
through matrix. A simplification of this model to be used in gene regulatory network
analysis was proposed by D’haeseleer et al. [91] as the autoregressive model:

ẋ(t) = Ax(t) (3.39)

where x(t) represents the gene expression measurements at a certain time point and
A represents a matrix of constant parameters. This approach was used in the study
of various mechanisms such as the Central Nervous System (CNS) development
[91], yeast cell cycle [155], or with the addition of a perturbance matrix in the
study of DNA-damage response pathway (SOS pathway) in the bacteria E. coli [19]
[401]. Early methods have been proposed for approximating the parameters of the
linear system of equations describing the networks. At first they consisted of least
squares [91], simulated annealing if the measurements are not equally spaced in
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time [155], and the Broyden-Fletcher-Goldfarb-Shanno algorithm [119] in solving
linear models with time delays [189]. The problem with this approaches is that
when they approximate the parameters they do not impose constraints specific to
the gene regulatory networks. GRNs show loose connectivity [70], so that a sparse
system matrix should be used and since a biologically realistic system is expected
to be stable [373] a stability constraint is needed for the identification of the system.
Sparsity is easy to impose, one solution being to minimize the l-1 norm of the matrix
A [97]. Stability however cannot be imposed using linear programming techniques,
which makes it a problem that is harder to solve. One solution for turning it into
a linear programming problem is the use of Gershgorin theory [369]. This theory
states that the eigenvalues of a matrix A ∈ Rnxn can be found in the circles having
the centres Ci and radii Ri, i = 1...n with:

Ci = aii,aii ∈ diag(A)

Ri =

n

∑
j=1, j 6=i

|ai j|,ai j ∈ A
(3.40)

The direct consequence is that if Ci < −Ri for all i = 1...n, all the eigenvalues will
take negative values. The theory was used in practice [220][387], but its disadvan-
tage is that it is just a sufficient condition for stability which means that possible
good solutions will be overlooked. Another approach to this problem is the im-
posing of lyapunov stability criteria [227] which establishes that a necessary and
sufficient condition for negative values of the real part of the eigenvalues of a ma-
trix A is the existence of a symmetrical positive definite matrix P so that

AT P+PA≺ 0 (3.41)

Semi definite programming [368] comes with the solution for imposing the con-
dition above. A method to infer GRNs based on Lyapunov stability criterion was
proposed in [401] and the authors test it against a Gershgorin based method which
it surpasses. The algorithm is described below:

1. Find a sparse matrix A that approximates well the data using adaptive lasso

For X and Ẋ obtained by sampling as well as t, 0 ≤ t ≤ 1, initialize weights
wi j = 1 for all i,j =1...n

for it=1:10
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Solve the convex problem:

minimize
A

t
n

∑
i, j=1

wi j|ai j|+(1− t)ε (3.42)

subject to ‖Ẋ−AX‖1 ≤ ε,ε > 0

Update weights wi j = 0.01/(0.01+ |ai j|)

end for

2. Find a matrix A′ = A+D where D is a disturbance matrix and a Lyapunov
matrix P, which satisfies Lyapunov criterion A′T P+PA′ ≺ 0

Solve the semidefinite problem:

minimize
P

‖LX‖2 (3.43)

subject to AT P+LT +PA+L≺ 0,P� 0

where L = PD and P symmetrical

3. Find a sparse stable matrix A f using P found at the previous step For X and Ẋ

obtained by sampling as well as P found at the previous step and t, 0≤ t ≤ 1,
initialize weights wi j = 1 for all i, j = 1...n

for it=1:10

Solve the convex problem:

minimize
A

t
n

∑
i, j=1

wi j|ai j|+(1− t)ε (3.44)

subject to ‖Ẋ−AX‖1 ≤ ε,ε > 0

AT P+PA� 0

Update weights wi j = 0.01/(0.01+ |ai j|) end for

3.8 Summary

This chapter provided an overview on the microarray technology and its use in
the study of diseases. It includes a description of the microarray technology, pre-
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processing methods for cleaning the data of noise, feature selection and clustering
for finding biomarkers for the diseases and finally a description of gene regulatory
networks and methods to approximate them from microarray data.

The chapter started by presenting the available technology at the moment from
the simple but flexible spotted arrays which can be produce in small research labs
to the more technologically advanced platforms provided by Affimetrix and the
extremely high density arrays produced by Illumina. The production methods and
the protocol for extracting data from biological samples was described for each of
the platforms.

The next section reviewed pre-processing methods for extracting the real sig-
nal from the measured data. Techniques for background correction, normalization,
summarisation and batch corrections have been presented and compared, in respect
to the microarray technology they serve best.

Once the data is as noise-free as possible, an analysis to select the biomarkers,
the genes that are affected by a disease is an important step for understanding its
behaviour. In this chapter techniques that do this, that can be separated into 2 main
groups: feature selection and clustering methods have been reviewed. In the case
of feature selection, strategies from statistics and information theory have been pre-
sented together with the more advanced machine learning methods. For statistical
methods, the review highlights the importance of introducing correction for multiple
testing. The information theory based methods are given a brief review in which the
most significant ones have their strengths and weaknesses presented. As machine
learning methods for feature selection are more complex an entire section has been
dedicated to their description together with the feature selection methods they are
employed on. The 2 most popular clustering techniques, hierarchical clustering fol-
lowed by a cutting method and the k-means algorithm are presented together with
recommendations on their use with genetic data.

Finally, the importance of understanding disease behaviour not as a function of
a few isolated genes but as a result of complex interactions in a gene regulatory
network is highlighted. The biological constraints for these networks are outlined
and different techniques through which they can be imposed when identifying the
networks are compared based on their performance and the challenges they try to
address.



Chapter 4

Migration and Textural Analysis in
Cells Studies

4.1 Introduction

Study of biology by microscopy is almost as old as the invention of microscopes,
the first person to create a real microscope with a magnification power of over 200x,
Anton van Leeuwenhoek, used it to study yeast and bacteria [111]. His work was
continued by Robert Hooke [156] who analysed corks, discovering for the first time
the cell of a plant and also coined the term.

In modern times, microscopy is extensively used in biology, for cell counting
[265], analysis of cell migration and cell invasion [181], studying the positioning of
organelles in the cells [44], localization of gene expression [234], studying struc-
tures created by cells in 3D cultures [147], cell adhesion [187] or for analysing the
texture of the cells for characterization and classification [261]. The different pur-
poses of microscopy studies has created various methods for extracting information
from cell images, either by studying cells orientation and cell trajectories [29], or
using the latest developments in image processing and computer vision to extract
different features that characterizes the texture of the cells [93].

Cell microscopy analysis has been extensively used in the study of ADPKD [66]
as the genes responsible for the disease have been shown to affect cell migration
[259], cell adhesion [324], orientation of the Golgi apparatus [60] and the cilia
structure [399].

This review will focus on the subjects of cell migration and texture analysis.

54



Chapter 4. Migration and Textural Analysis in Cells Studies 55

First, a description of the present technology for the analysis of cell migration us-
ing different assays will be provided in Section 4.2, Cell migration assays. Next,
section 4.3 Measures and models for cell motility introduces the measures used to
characterize the movement of the cells. In section 4.4, studies involving ADPKD
where the different technologies and measures for cell motility have been applied
are provided a short summary with a focus on the methods they use. Section 4.5
Texture analysis for cell studies, different texture analysis methods are presented
and their application to the analysis of cells are listed, while their advantages and
disadvantages are highlighted. Last, section 4.6 Conclusions summarises the main
points of this review.

4.2 Cell Migration Assays

As the study of cell migration has become more widespread, revealing different as-
pects of disease mechanisms and normal cell functions, different assays have been
proposed for various study goals. In this review, 2 types of assays will be presented,
(1) filter-based assays in which cells migrate across a cell-permeable barrier towards
a defined chemo-attractant and their migratory capacity quantified by the number of
migrating cells over a period of time and (2) time-lapse microscopy where cell be-
haviour is continuously monitored leading to detailed descriptions of their migration
patterns. Other types of assays used in research on cell movement can be found in
papers by Entschladen et al. [112] and Kramer et al. [200].

The following subsections present the 2 approaches as well as applications for
which they were used, subsection 4.2.1 presents the transwell filter assays and sub-
section 4.2.2, assays compatible with time-lapse microscopy.

4.2.1 Filter Assays

The oldest and most used filter assay, based on which newer technologies have been
developed is the transwell migration assay or the Boyden chamber [49](Figure 4.1).
It consists of 2 chambers, one of them enclosing the other, which are separated by
a porous membrane. The 2 chambers are filled with different types of media so
that the substance in the external well is more attractive to cells than the one in the
internal well. Examples in this sense include the use of serum free media in the
inner chamber and normal media in the external chamber or normal media in the
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Figure 4.1: Schematic representation of a Boyden chamber

inner chamber and media combined with a chemoattractant in the external chamber.
At the beginning of the experiment, cells are placed in the inner chamber and are
left for a specific amount of time to pass through the porous membrane. After the
time has passed, the cells that migrate to the other side of the membrane are then
quantified. Two possibilities exist for this operation. The first one uses a transparent
membrane and consists in removing the cells remaining in the side of the membrane
corresponding to the inner chamber, fix the cells that have migrated, stain them with
cytological dyes and count them.

The other method is to use a dark coloured membrane which does not let light
pass through it. In this case, there is no need to remove the cells which did not
migrate, just stain the side of the membrane corresponding to the outer chamber
and count the cells on it. For different types of cells, membranes with correspond-
ing pore sizes should be used, the ones that are generally employed having pore
diameters ranging between 3 and 12 µm. Through the years, Boyden chambers
have been used to test how cells respond to a specific substances such as antibod-
ies [49], N-formylmethionyl peptides [308] or platelet- derived growth factor [313].
Other applications consist in studying the migration capabilities of cells affected by
a disease [252][371][384] or test the capacity of various substances to enhance cell
mobility [364][370][166].

The advantage of this filtering approach consists in the fact that it is cheap and
easy to use, few resources being involved in the experimental setup as well as in the
analysis of data. The disadvantage of the method is that no information is produced
about the intermediary steps of cell migration and no details about the directionality
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of the cells can be extracted.

4.2.2 Time Lapse Assays

The simplest assay for time lapse analysis is to grow sparsely distributed cells on
a glass or plastic surface or to use a matrix-coated surface that recreates conditions
closer to the in-vivo ones [112]. Then a microscope can be used to take photos
of them at certain intervals (10-20 minutes) generally at different positions on the
plate. This concept allows for a detailed analysis of their individual trajectories.
As the free movement of cells presents Brownian motion patterns [94], different
models have been proposed to extract information from them and will be detailed in
the following section. This approach has been used to investigate T cell migration
considering regulation of myosin [327], adapted stem cells migration [20] or for
investigation of the role of the Arp2/3 complex in cell migration [344].

Figure 4.2: Schematic representation of a scratch assay

A modification of the previous assay is represented by a wound closure or
scratch assay (Figure 4.2). In it, cells, usually epithelial or endothelial [112] are
grown in a Petri dish or a multi-well plate until they reach 100% confluence. Next
the cell layer formed this way is scratched with a pipette tip although more advanced
setups allow for the wound to be made using an electrical signal [185]. Once the
scratch has been made, a microscope can be used to film closure of the wound. This
set-up allows for researchers to study the rate at which different cells are capable to
close the wound, and allows for the quantification of directionality in cell migration,
using the wound as a reference. One problem with the pipette tip scratching ap-
proach is that the wound may not be symmetrical and equal in diameter throughout
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the wound. An improved version of the cell scratch assay that solves the problem is
represented by the cell exclusion zone assay (Figure 4.3). In it after the scratch has
been made, a barrier consisting of microstencils [286] is placed in the wound. This
allows the cells to grow until the walls of the wound are perfectly symmetrical. In
practice, wound healing assays have been used for the study of skin wound healing
by mesenchymal stem cells [374], effects of Calendula extracts in wound healing
[128], or the effect of HEF 1 on the migration capabilities of glioblastoma cells.

Figure 4.3: Schematic representation of an exclusion zone assay using a separator

Another assay which can be used for time lapse studies on cell migration is
the fence assay or the ring assay (Figure 4.4). Its concept can be considered in
opposition to the cell exclusion zone assay as a delimiter such as a Teflon glass or
metal ring is used to encompass an area in which cells are grown. Once they have
reached full confluence, the barrier is removed and the cells are filmed spreading
away from the central point of culture. Their spread is quantified by measuring
the area that they occupy at different points in time. This approach has been taken
to quantify the migration properties of human endothelial cells [56] , or to study
the importance of the Angiotensin system on endothelial and smooth bovine aortic
muscle cell migration [25].

Techniques using the same concept as Boyden chambers but allowing time-lapse
analysis are represented by capillary chamber migration assays. In this approach, 2
chambers are connected by a narrow bridge. The cells are then placed in one of the
chambers and a chemoattractant is placed in the other chamber. After a period of
time, the cells that migrate are counted on the separation bridge. Two popular im-
plementations of the concept are represented by Zigmond chambers [408] in which
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Figure 4.4: Schematic representation of a fence assay

the chambers are arranged horizontally side by side and Dunn chambers[407] (Fig-
ure 4.5) in which they are concentric. The main reason for the development of these
assays is represented by the fact that very low volumes are needed for the exper-
iment, making them suitable for working with rare and expensive substances and
cell types [200]. These assays are frequently used for studying leukocytes [8].

Figure 4.5: Schematic representation of a Dunn’s chamber

The advantages of using assays that are compatible with time-lapse analysis
consists in the fact that details about the migration of cells can be extracted, leading
to accurate characterization of their behaviour. Their disadvantages consist in the
availability of resources (eg. microscope time) and in the complexity of their analy-
sis, having to deal with cell tracking which is extremely time consuming in the case
of manual methods and a difficult problem without a perfect solution in the case of
the automatic methods.
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4.3 Measures and Models for Cell Motility

With the increase in the popularity of time lapse studies, in which the trajectories of
the cells can be reliably extracted, different methods have been proposed in order
to extract as much information as possible about the movements of the cells. These
can be measures in which the information is directly computed from the cell tra-
jectories or modelling methods in which features are extracted indirectly from the
measurements by fitting specific models. The following 2 sections present methods
for the 2 approaches. Section 4.3.1 introduces the measures used to characterize
cell movements while section 4.3.2 presents the models used to achieve this goal.

4.3.1 Measures for the Movement of Cells

In their paper, Meijering et al. [240] propose a taxonomy which separates methods
for quantifying movement of cells. The authors suggest three different categories:
motility measures in which just the positions of cells are used for computing a fea-
ture of interest, velocity measures in which time is used explicitly in characterizing
the movement of cells and diffusivity measures which use methods from the the-
ory of diffusion and Brownian motion to characterise the movement of cells. The
following subsections present the popular measures used in the study of cell move-
ment separated in the 3 categories presented. Section 4.3.1.1 discusses the motility
methods, section 4.3.1.2 the velocity measures and section 4.3.1.3 the diffusivity
measures.

4.3.1.1 Motility Measures

The simplest way to analyse the motility of cells is to just plot the tracks for the
cells using their centres of mass for quantifying their position at a specific time-
point. Two approaches to this method have been used in literature. The first one is
to plot the cell trajectories overlaid on the original images of the cells. This method
is useful in studies where scientists try to discover if cells are moving towards a
certain region of importance. In practice it has been used to study the chemotaxis
of breast cancer cell towards different gradients of EGF(Epidermal Growth Factor)
[375] and to analyse the effect of Laminin-1 on motility of rat and mouse Muller
glial cells [239]. The problem with this approach is that in general it is difficult for a
scientist to visualize the spread of the directions in which the cells move when they
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have random starting points in an image. In order to tackle this problem, a second
approach to trajectory visualization has been proposed in which all the trajectories
are shifted to have the same starting point. This enables the scientist to quickly
visualize if there is a general trend in the direction in which the cells move and also
to assess if there is a significant difference in how far they travel between different
experimental conditions. This approach is extremely popular and has been used
in various studies, examples being the analysis of stress-induced endothelial cell
polarization [385], effects of IGF-IR inhibition and ROS accumulation on glioma
cells motility [98] and antioxidant and anticancer effect of extracts obtained from
Chenopodium quinoa leaves [132].

The visual methods only provide the means of a qualitative analysis on the cell
movements [29] and can be employed when differences between conditions are very
noticeable. In order to provide a quantitative analysis, capable of capturing more
subtle changes in the movement of cells various methods have been proposed.

For quantifying the distances travelled by cells, 3 methods have been commonly
used in the literature:

Total distance travelled defined as:

dtot =

N−1

∑
i=1

d(pi, pi+1) (4.1)

Net distance travelled:
dnet = d(p1, pN) (4.2)

Maximum distance travelled:

dmax = maxi(d(p1, pi)) (4.3)

where pi is the position of the cell centre of mass in frame i of the movie of the cells
with N frames and d is a measure of distance, generally Euclidean distance being
used.

A popular measure for the characterization of the linearity of cell movement that
is derived directly from distance measures is the confinement ratio also known as
the chemotactic index or straightness index which is defined as:

rcon = dnet/dtot (4.4)
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As dnet ≤ dtot the ratio will be between 0 and 1, a value of 0 meaning the
cell returns at exactly the same position while a value of 1 that it has a perfectly
straight trajectory. This measures have been used in various studies, examples
in this sense being comparisons of interactions of olfactory ensheating cells and
Schwann cells with astrocytes[203], identification of genes that regulate epithelial
cell migration[325] and the roles of MLCK and ROCK in cell migration[359].

A different approach to characterize motility is the study of migration angles.
This can be done by using the angles of cell positioning relative to previous posi-
tions or the angle of their position relative to a point of interest.

For the first method, an instantaneous angle has to be calculated which is defined
as:

αi = arctan(yi+1− yi)/(xi+1− xi) (4.5)

here xi, yi are the positions of the cell in frame i relative to the x and y axis.
Once the instantaneous angles are obtained, in order to characterize the movement
the researchers can plot their distribution. In the case of a 2D cell culture if the
movement of cells is random the distribution is expected to be uniform ([29]) while
directed movement will show higher rates of presence for a specific range of an-
gles. For a quantitative estimation of the cells preference for a certain direction,
the average angle can be calculated. In the case of random walk this would be 90
degrees. This approach was taken in Beltman et al. [28] to characterize movements
of T cells in lymph nodes. Another application was the analysis of the effects of
CXCL8/Interleukin-8 on cell migration [124]. A secondary measure that can be ex-
tracted from instantaneous angles is the change in direction which can be calculated
using:

γi = αi−αi−1 (4.6)

For the relative position to a point of interest a similar approach can be taken but
the change in direction is calculated as:

θi = αi−βi (4.7)

where
βi = arctan(yi− yr)/(xi− xr) (4.8)

with xr, yr the coordinates of the reference point.
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This measure is useful when combined with the average cell speed in order to
quantify how far cells can travel within a limited time interval [29].

4.3.1.2 Velocity Measures

The most common used velocity measure in time-lapse cell motility study is the
instantaneous velocity calculated as:

vi =
d(pi, pi+1)

∆t
(4.9)

where ∆t is the period of time between 2 frames. A measure that can be easily de-
rived from the instant velocity is the arrest coefficient[29] which is the period of time
for which cells move below a certain speed. Another measurement is the average
instantaneous velocity. Other velocity that can be used are the mean straight-line
speed [240] which is defined as:

vlin =
dnet
T

(4.10)

where T is the total duration of the tracking of the cell. Velocity measures have been
used to quantify the effects of the Shc and Fak on cell motility [136] or to analyse
the effects of myosin II on cell migration[113].

4.3.1.3 Diffusivity Measures

A different type of measurement that is used in the characterization of cell motility
is represented by the mean squared displacement (MSD) [108] which is calculated
for a population of cells as:

MSD(t) =
1
N

N

∑
n=1

(xn(t)− xn(0))2 (4.11)

with xn(t) the position of cell number n at time t , N the total number of cells.
Although this is a more complex measure than the ones discussed above, it has the
advantage that different models can be fit to the resulting MSD curve so various
features can be used to characterize the motion of the cells. These are discussed in
more detail in the next section.
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4.3.2 Diffusivity models

The mean squared displacement is an important measure in science being used in
fields such as geophysics for tracer diffusion in subsurface hydrology [341], dif-
fusion of substances inside the cells [238], cell movement [94], or movement of
animals [13]. In order to characterize movement in all of these situations, various
models have been proposed. A description of all models and their applications is
outside the scope of this chapter but thorough reviews such those done by Metzler
and Klafter [244][245][191] or more applied to the field of biology [75] are avail-
able in the literature. The current section treats just models that have been used to
characterize movement of cells.

Random movement of particles can be split in 3 different categories: Brownian
motion in which the particles movement is perfectly random, supra-diffusive motion
in which either an internal or external force imposes some directionality to the par-
ticles or sub-diffusive motion in which the movement of particles is hampered. The
simplest model to be fit on an MSD curve obtained for 2-dimensional movement of
particles is:

MSD(t) = 4Di f tβ

where t is the time, Di f the diffusion coefficient[254] and β the exponent character-
izing the type of movement. If β > 1, the movement is supra-diffusive, for β=1 the
motion is Brownian and β < 1 corresponds to sub-diffusive movement.

While it is capable to take into consideration the type of diffusion that takes
place in the movement of the cells, this model is an oversimplification of the actual
movement as it characterizes the motion when t→∞. In the field of cell movement
analysis, this model has been applied to characterize the movement of endodermal
hydra cells [365] or the collective movement of epithelial cells [141].

The most popular model for characterizing cell movement using the MSD was
proposed by Dunn [103] who found it through measurements and confirmed by
theoretical analysis by Othmer et al. [268] and Alt [9]. Its equation for 2 dimensions
is:

MSD(t) = 2S2P(t−P(1− e−t/P)) (4.12)

The 2 parameters used are the speed (S) and the persistence time (P) which is the
period of time for which a cell moves linearly in one direction. Its popularity with
biologists comes from the fact that it uses just 2 parameters that are easy to inter-
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pret and it does not abide to the t→ ∞ condition. The connection to the diffusion
coefficient as described in Othmer et al. [268] is that:

Di f = (S2P)/nd (4.13)

with nd the number of dimensions in which the movement is studied. This model
has been employed to study migration of human vascular smooth cells [95], the
effects of EGF on fibroblast migration [376] and endothelial cell migration on sur-
faces modified with immobilized adhesive peptides [199]. Its disadvantage comes
from the fact that it assumes that the movement is purely random but in the case of
cell movement, some cell types display supradiffusive [277] or subdiffusive move-
ment [20]. In order to combine the advantages of the 2 models, Dieterich et al. [94]
proposes a generalization of the Othmer model [268] by using fractional Kramer
equations. The resulting model for a 2-D movement is:

MSD(t) = 4v2
tht2Eα,3(−γαtα)+(2η)2 (4.14)

where v2
th is S2/2 with S from the previous model, and α is 2- β with β the exponent

from the first model. Eα,3 is the Mittag-Leffler function [249] and η2 is a noise term.
In the particular case where α=1 the equation becomes:

MSD(t) =
4v2

th

γ2
1
(γ1t−1+ e−γ1t)+(2η)2 (4.15)

with γ1 = 1/P.
The problem with the fractional Kramer equation is that it is a complex function

for which it is difficult to approximate its parameters. In order to solve this problem,
Dieterich et al. [94] approximate the parameters using Markov chain Monte Carlo
sampling. A different approach to the problem is proposed in Barbaric et al. [20].
The Mitag Lefler function is transformed in a Fox function as shown in Metzler and
Klafter [244]:

Eα,β (z) = H1,1
1,2 [−z|

(0,1)
(0,1),(1−α,β )

] (4.16)

The authors show then that for β=3 this function is in the particular case where
it can be reduced to a Meijer G function [21] and the result is:
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Eα,β (z) =
2π

3α−0.5 G1,1
1,4[
−z
27 |

0
0,1− α

3 ,1−
α+1

3 ,1− α+2
3

]

which can be computed in MATLAB using the MuPAD toolbox so that the param-
eters can be approximated using curve fitting algorithms.

4.4 Migration Analysis in PKD Cell Studies

Various studies have shown that migration of cells is altered in ADPKD[259] as
well as by different drugs that seem to affect the evolution of the disease [384]. The
remainder of this section provides a review on previous studies, highlighting the
type of assays and the measurements they have used. Most of the cell migration
studies for ADPKD use 2 technologies to quantify cell motility, Boyden chamber
type of assays or wound healing assays. In the following sections the studies were
organised based on the methods they use, subsection 4.4.1 presenting those in which
the Boyden chamber approach was applied, subsection 4.4.2 describes the studies
where wound healing assays were employed and section 4.4.3 discusses studies
where both approaches were taken.

4.4.1 Boyden Chambers Based Studies

In a study by Nickel et al. [258], the C-terminal fragment of polycystin-1 (PC1-
CTF) was shown to increase migration in mouse inner medullary tract cells (mIMCD-
3). In order to test this, the authors used modified Boyden chambers [90]. During
the experiment, different conditions were used for the Boyden chambers, a basal
condition with serum free media in the bottom chamber, addition of HGF into the
bottom well and a third condition in which both HGF and a MEK inhibitor were
used simultaneously. The results showed that a greater number of cells expressing
the PC1-CTF migrated through the filter under each of the 3 conditions and also
that the MEK inhibitor reduced their migration capacity with the greatest effect in
cells that did not express the PC1-CTF.

Modified Boyden chambers were also used to quantify the effect of different
drugs on ADPKD epithelial kidney cells in a study by Wilson et al. [384]. In their
experimental setup the cells came from mice which have received different medical
treatments from when they were 6 weeks of age by adding different test agents to
their drinking water. The mice were allowed to develop until they were up to 4
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months of age, when they were sacrificed and had their kidney extracted. In the cell
analysis setup, in order to stimulate migration, a serum gradient was used, media
in the upper chambers where the cells were plated having 1% serum and in the
lower chambers in which the cell migration was quantified, the serum concentration
in media was 5%. As the cells had been fluorescent labelled, quantification was
performed by measuring the fluorescence in the lower chambers. The study has
shown that inhibition of HER-2 (neu/ErbB2) slows the formation of cysts in PKD1
null mice.

4.4.2 Wound Analysis Studies

A different type of study on the motility of cells affected by ADPKD was done by
analysing cell migration in a wound assay. This approach was taken by Luyten et al.
[226] on a study on the role of the planar cell polarity (PCP) pathway in polycystic
kidney disease. In their experiments, HEK 293T kidney cells were used to assess
the effects of PC1 induction and expression of Fz3, a regulator of PCP that was
shown to be upregulated in ADPKD patients. The measurement used to achieve
this goal was the average speed travelled by cells in a wound healing assay. Images
of cells in the assay were taken every 6 minutes at 3 different positions for a period
of 20 hours. The conclusions of the study were that overexpression of PC1 improves
cell migration while expression of Fz3 reduces their migratory capacity.

Castelli et al. [59] have also used wound healing assays to study how PC1 af-
fects directionality of MEF cells migration. In their experiments, they used visual
representation of cell trajectories that are shifted to have the same starting point.
Also for a better quantification of the change in cells directionality, the distribution
of angles between the initial and final position of the cells was analysed. The results
of the study which can be observed both in the visual representation of the trajecto-
ries as well as the angle distribution is that cells expressing PC1 have a more linear
migration in the direction of the wound.

In a study by Yao et al. [395], wound analysis was used to assess the speed
of MEK cell migration in the case of PC1 deletion. In this study, images for the
analysis were taken at only 3 time-points corresponding to 0, 3 and 6 hours from the
moment the cell monolayer was scratched at 6 positions corresponding to each well
of the 6-well plate used for the experiment. This analysis was used to assess what
percentage of wound was closed at the specific time-points. The study however
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also used wells with sparsely distributed cells to quantify the directionality of the
migration. Cells in this experiment were imaged every 15 minutes for a period of
24 hours and just those which travelled at least 50 µm from the starting point after
12 hours were considered for analysis. The directionality was measured using the
ratio between the net distance and the total distance travelled by the cells. The
conclusions of the study were that PKD-knockout cells are both slower in closing
the wounds and have a less persistent direction.

4.4.3 Combined Studies

The two methods to characterize cell migration have been combined in various stud-
ies in order to extract more information about the behaviour of the cells. An example
of this approach is a study by Joly et al (2003) in which the migration of human re-
nal tubular epithelial cells from cystic and non-cystic kidneys attraction to a number
of different chemoattractants were investigated. For the Boyden chamber analysis,
Transwell 24-well plates (Transwell) were used by filling the upper chamber with
starved cells and the lower chambers with media. Two experiments were done, one
where a Ln-5 coated filter was used to attract cells and the ones that migrated were
counted after 18 hours and one with Epidermal growth factor (EGF) stimulated cells
where the counting was done after 12 hours. For the wound analysis, 10 fields on
the wound were taken at 9 and 20 hours from plating and the relative size of the
wound was measured for different conditions. The area of the wound was assed
using a 100 unit eyepiece optic grid which allows researchers to quantify an area by
the number of cells in the grid needed to cover it. This study have found that Ln-5
stimulates cell migration more in PKD cells than in normal ones and also that EGF
induced migration is much stronger in the cystic cells.

Another study that uses the combined approach was done by Boca et al. [40].
In it Boyden chambers were used with serum-free Dulbecco’s Modified Eagle’s
medium (DMEM) placed in the lower chambers and MDCKPkd1Zeoand MDCKZeo

cells grown in different conditions were suspended in serum free media in the upper
chamber and left to migrate overnight. Wound analysis studies were done by imag-
ing the wound every 2 or 3 minutes for a period of 8 hours. The wound closure rate
was calculated by measuring the area covered by the monolayer. Cells expressing
Pkd1 showed faster closing rates and the Boyden chamber migration assays were
used to confirm this finding.
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Outeda et al. [270] did a study on both knockout Pkd1 and 2 mouse dermal lym-
phatic endothelial cells in which they use both Boyden chambers and wound healing
assays to quantify their migratory capacities. Vascular endothelial growth factor C
was the attractant used in the Boyden chambers study. Wound closing assays where
done for 20 hour with images of the confluent layer taken at 0 and 20 hours. Also
time lapse analysis was done for the movement of individual cells detached from
the monolayer by taking pictures at minimum 7 positions per condition every 5 min-
utes for a period of a minimum of 200 minutes. To quantify cell migration the area
covered by the monolayer at the 2 time points was calculated and the initial area
was subtracted from the final one and the percentage of wound that was closed was
presented. For visual inspection, the cell trajectories were plotted without shifting
the initial position to the same point and cells which travelled more than 20 µm in
the direction of the wound had their trajectories highlighted. For quantification of
their movement, the total distance and the confinement ratio were calculated. The
researchers found that the closing rates were higher for control cells. This happened
because although the total distance travelled is roughly the same for control cells vs
Pkd1 or 2 knockdown, the directionality is significantly raised in the control cells.

In a follow-up study, Castelli et al. [60] investigated the effects of PC1 on MEF
(mouse embryonic fibroblasts), mIMCD and MDCK cells cytoskeleton. To assess
how this affects migration, both a Boyden chamber and a wound healing assay
were used. In the case of the filtering assays the lower chambers were filled with
DMEM and DMEM with cells was placed in the upper ones. Fibroblasts where let
to migrate for 3 hours while the other cells were let to migrate overnight. The cells
were stained and counted in at least 10 fields per chamber. While healing assays
where used, no information about the migration of cells was provided, the authors
used the orientation of the Golgi apparatus as an index of cell polarisation. Again,
cells expressing PKD1 were shown to migrate more than control cells.

4.5 Texture Analysis for Cell Studies

Although they do not have a formal definition, textures can be described as visual
patterns composed of entities or sub-patterns that have specific brightness, colour,
slope or size, that are easily perceived by humans and allow us to distinguish or
characterize entities in an image [237]. With the development of computers and
imaging devices, scientists have tried to model the texture processing by human eyes
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which led to the development of a new field called texture analysis. Texture analysis
of images has many applications in practice, being used for automatic inspection,
for example to detect defects in carpets [323], identify terrain from satellite images
[145], analyse cell images [184] or for facial recognition [130]. This review will
concentrate on texture analysis applied to cell images.

In general, two steps are taken when analysing the texture in an image [237].
The first step is feature extraction in which different characteristics of an image
are computed to numerically describe its textures. The second step is classification
of regions in an image that correspond to a specific texture are identified using
an automatic method generally coming from artificial intelligence. In this chapter,
only the subject of feature extraction will be treated but thorough reviews done by
Materka et al. [237] and Di Cataldo and Ficarra [93] discuss both steps.

Feature extraction techniques for image analysis can be classified in 5 cate-
gories: geometrical or structural methods, statistical methods, local binary patterns,
model based methods and transform-based methods [93].

4.5.1 Structural Methods

The underlying assumption of structural methods is that textures appear as a repeti-
tive collection of sub-patterns (such as different shapes or lines). The problem with
this approach is that it is very limiting for the application of the methods[35], need-
ing a strict arrangement of the identified sub-patterns. For artificial textures, this
approach is acceptable but in the case of cell images where there is little to no reg-
ularity, the approach falls short [93]. However there has been a paper employing
this method to analyse cell images of fetal liver cells acquired by confocal laser
microscopy [23].

4.5.2 Statistical Methods

Another way a texture can be viewed is as a random distribution of pixel intensi-
ties in space. This approach has led to the creation of the statistical methods for
texture analysis. Depending on the number of pixels whose joint probability dis-
tributions are combined to create statistics for the image, first order statistics can
be used which means that the probabilities of each pixel to have a certain intensity
are calculated, or second order statistics where the probability of 2 pixels at a spe-
cific relative position to have certain values is extracted. Higher order statistics can
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be used but as shown in a study by Julész et al. [180] humans seem to perceive 2
pictures with identical second order statistics as being the same even if they have
different higher order statistics. Also the computational cost increases with the or-
der so in practice higher order statistics are rarely used. While they are easy to
calculate, first order statistics do not provide information on the spatial distribution
of pixels which is important if pixels with different values are grouped together or
intercalated in order to characterize the smoothness of the texture [3]. As a result,
second order statistics are some of the most used features in image analysis and they
will be described in more detail in this section. In practice, for the calculation of the
second order statistics, Haralick et al. [145] proposed the gray level co-occurrence
matrix (GLCM). This is created based on the gray-levels that exist in an image.

For an image, lets suppose the values of the pixels are in the interval I =

[gmin,gmax]. For the creation of the gray occurrence matrix the interval is split into N
subintervals of equal size Ik = [gmin + k ∗ gmax−gmin

N ,gmin +(k+1)∗ gmax−gmin
N ) where

k ∈ {0,N−2} and IN−1 = [gmin+(N−1)∗ gmax−gmin
N ,gmax]. Next, a relative position

has to be defined for 2 co-occuring pixels. This is done using a set of 2 parameters
which can be either (∆x,∆y) which are the relative positions of the pixels on the x
and y axis or (d,θ) where d is the distance in squares and θ is the angle between
2 pixels defined as co-occuring. For the following part the (∆x,∆y) displacement is
used as it is easier to follow. Once the intensity intervals and the relative positions
are established, the gray co-occurrence matrix can be defined as G(∆x,∆y) ∈N

NxN for
which G(∆x,∆y)(i, j) represents the number of times a pixel with a value in the inter-
val I j occurs at a relative position (∆x,∆y) from a pixel with a value in the interval
Ii in the analysed image. Two approaches can be taken for quantifying the number
of apparitions, either

Gi, j = card{Px,y ∈ Ii|Px+∆x,y+∆y ∈ I j} (4.17)

or

Gi, j = card{Px,y ∈ Ii|Px+∆x,y+∆y ∈ I j}+ card{Px,y ∈ I j|Px+∆x,y+∆y ∈ Ii} (4.18)

where Px,y is the pixel intensity at position (x,y) in the image.
The matrix is then normalized by dividing all its values by the total number of

pairs. The significance of the gray co-occurrence matrix in texture analysis becomes
apparent when Haralick features [145] are introduced. They extract different infor-
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mation from a gray co-occurrence matrix and the user obtains only one value for a
feature for an image. In their original paper, Haralick introduces 14 features, some
examples being:

• Contrast

Contrast quantifies the local change in an image. If the difference in intensity
between pixels occurs continually, the contrast becomes large. Its formula is:

Contrast =
N−1

∑
n=0

n2 · ∑
|i− j|=n

Gi, j (4.19)

• Homogeneity

Homogeneity is a measure of the similarity of pixels a homogeneity of 1
meaning an image in which all the pixel intensities are the same.

Homogeneity =
N−1

∑
i=1

N−1

∑
j=1

Gi, j

1+ |i− j|
(4.20)

• Entropy Entropy measures the randomness in an image.

Entropy =−
N−1

∑
i=1

N−1

∑
j=1

Gi, jlog(Gi, j) (4.21)

• Correlation

Correlation shows the linear dependency of pixel values on the neighbouring
pixels [342]. This means that it will have high values in textures with a highly
linear structure.

Correlation = ∑
i

∑
j

(i−µx)( j−µy)p(i, j)
σxσy

(4.22)

where µx,µy,σx, σy are the means and standard deviations across the 2 axis
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and are calculated with the formulas:

µx = ∑
i

∑
j

ip(i, j)

µy = ∑
i

∑
j

jp(i, j)

σx =
√

∑
i

∑
j
(i−µx)2 p(i, j)

σy =
√

∑
i

∑
j
(i−µy)2 p(i, j)

(4.23)

• Energy

Energy is calculated based on the Angular Second Moment(ASM) which in-
creases with the local uniformity in a picture.

Energy =
√

ASM

ASM = ∑
i

∑
j

p2(i, j) (4.24)

A thorough description for the rest of the features and the way they relate to an ac-
tual image can be found in Malathi and Shanthi [231]. The shortcomings of texture
feature extraction using second order statistics consist in the fact that the results are
dependent on the displacement parameters. In order to solve this problem, Haralick
proposed calculating the GLCM matrix for different angles of rotation, computing
the features for each rotation and then using the means and variances of the features
obtained over all the rotation angles rather than their actual values[145].

In the field of cell imaging, Haralick features have been applied for the detection
of colon cancer cells [62], quantify drug response of cancer cells [223], or to study
the differentiation of stem cells [222].

4.5.3 Local Binary Patterns

Local binary patterns[262][263] are a type of feature extraction method which com-
bines structural methods with statistical ones. It works by first dividing images into
cells, each cell being a square containing a certain number of pixels. Then, the
value of a pixel is used as threshold (generally the central pixel), with the remaining
pixels in the cell being given a value of 0 if their intensity is smaller or a value of
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1 if it is higher. Next, the values obtained this way are arranged in a vector and the
cell is assigned a number that written in binary form produces that array. Next, a
histogram is built for all the values a cell can take and an array of features is ob-
tained where every feature corresponds to a bin in the histogram and its value is
the number of cells which had that specific value assigned. Improvements of the
method have been proposed that are rotationally invariant [264] or which also use
information of the magnitude of the differences in a cell [138].

The method is popular in cell texture classification and has been used in Hep2
cells classification [261], cell phenotype classification based on protein sub-cellular
localization images [257] and apoptosis detection in adherent cell populations [160].

4.5.4 Model-Based Methods

A different approach to texture characterization is the use of modelling. In this
approach it is considered that the pixel intensities in a specific texture are generated
using a function. Three types of models that have been used to characterize texture
are presented in this chapter: autoregressive models, Markov chain models and
fractal-based models.

The autoregressive models for 2D texture analysis were introduced in 1986 by
Deguchi et al. [88]. The idea behind it is to define a square window of a certain
size and to express the intensity of the pixel in the middle as a weighted sum of the
remaining pixels, with a certain weight for each position in the window. As it is ex-
pected more than one texture exists in an image, the image should be split into many
small areas of equal size and a linear model fit for the pixels in each of them. Then
the areas with similar models are considered to come from the same texture. For
the approximation of the model parameters 2 approaches are generally used, least
square estimation (LSE) or maximum likelihood estimation (MLE) [179]. In the
field of cell texture analysis, autoregressive models have been use to discriminate
between leukaemia and lymphoma cells [122].

Another way to characterize a texture using a model for the intensities of the
pixels in an image is to consider them generated from a random process which can
be described using a Markov model. As the images are bidimensional, Markov
random fields are used as they represent a multidimensional generalization of the
Markov chains. Again, the first step is to split the image into small regions and
calculate and fit a model for each region. In cell images this approach was used for
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segmentation of leukocytes in bone marrow cell images [293], and classification of
cervical cells in combination with GLCM features [225]. The main disadvantage of
using this approach is that it is computationally expensive [93].

The last type of model for texture analysis that will be discussed are the frac-
tal based models. Fractals are a class of mathematical functions that have been
proposed by Mandelbrot to describe visual patterns in nature [233]. Their main
properties consist in the fact that an image generated using fractals, will be similar
in a statistical sense at all levels of magnification or scale [328]. They were first
used for describing texture in 2D images by Pentland in 1984 [279]. In the field of
cell image analysis, they have been used for analysis of apoptosis of breast cancer
cells [224] and detection of breast cancer cells [283].

4.5.5 Transform-Based Methods

Transform methods work by representing the image in a space where the dimensions
are better related to characteristics specific to textures such as frequency or size
[237]. Two types of transform methods will be presented here: frequency based
methods and wavelet based methods.

Frequency based methods work by transforming an image in the frequency do-
main where features such as coarseness, graininess, or repeating patterns are easy
to identify [93]. Two methods are usually used for this operation, the 2D discrete
Fourier transform (DFT) [11] and the discrete cosine transform (DCT) [398]. In
cell imaging texture analysis the approach was used to study cells from the lenses
in human and animal eyes in the case of cataract [123]. Their disadvantages come
from their lack of spatial localization [237].

The lack of spatial localization for Fourier based methods is solved by the use of
wavelets in which window functions are combined with frequency transformation
ones in order to allow for both frequency and space representation in images [221].
A particular case of wavelets very popular in texture analysis is represented by
Gabor filters [172]) in which the window function is a Gaussian. Examples of the
use of wavelets in texture analysis for cells images are a study by Weyn et al. [380]
in which breast cell cancers were classified and a study by Kim et al. [190] in which
images of renal cancerous cells obtained using a confocal microscope were used to
build a classifier for the progress of the disease using wavelet-based features.
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4.6 Summary

This review has presented the current techniques employed for the analysis of cell
migration and texture of cell images. First, the assays used for the study of cells
have been introduced, with their respective categories, filter assays in which cells
are allowed to migrate past a filter and those which do so are counted and time-lapse
assays which permit the videoing of live cell movements for a detailed description
of their trajectories.

Next, the measurements used to characterize cell movements whose trajectories
are known are introduced. Separate sub-sections are provided for motility measures
in which just the trajectory is taken into consideration, velocity measures in which
time appears explicitly and diffusivity measures inspired from particle physics. For
the diffusivity measures, a section is dedicated to the models that have been pro-
posed to extract relevant information from them.

Once the measures and technology has been introduced, the review moves to
focusing on cell migration studies that have been applied for elucidating the mech-
anisms of polycystic kidney disease. Different studies are summarised with a focus
on the methods used to analyse motility, the type of cells studied and their conclu-
sions on how ADPKD affects cell migration. The last part of the review presents
current methods used to analyse image textures that have been employed in cell
studies. The review allocates different sections to structural methods in which reg-
ular shapes are looked for to identify the patterns in images, statistical methods
in which various statistics of pixel intensities are extracted to reveal information
perceived by the human eye, local binary patterns that combine the 2 approaches,
model based features in which various mathematical models are employed to char-
acterize the way in which pixel intensities in the image were generated and finally
transform based methods in which the image is first moved to a different space
where dimensions are more relevant for texture characterization.



Chapter 5

A Novel Framework for Time Series
Gene Expression Data Analysis
Combining Biomarker and GRN
Identification

5.1 Introduction

Historically, researchers chose to focus on one type of microarray data study, either
to identify new biomarkers [92][168][331], or to analyse a set of known genes of
interest to identify their regulatory network [115][312]. In reality, both types of
analysis are complementary. Biomarker identification does not provide any infor-
mation as to how the genes interact to specify a function. Network inference on the
other hand needs a reduction in the number of genes being analysed, a genome-wide
network identification being computationally impossible. As a result, studies that
seek to combine both approaches have started to be published in recent years.

In a study from 2013, Zhang et al [404] used a combined approach for studying
microarray data in the case of late-onset Alzheimer’s disease (LOAD). This study
included samples from different tissues obtained from both healthy patients and
patients suffering from LOAD. The measurements were taken with a dual channel
Agilent microarray machine. The differentially expressed genes were identified
as the 33% of genes with the highest variance across the same tissue of the p-value
between normal and affected channels. Next, weighted correlation network analysis
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(WGCNA) was employed to create modules of well-clustered co-expressed genes.
The last step was to build static Bayesian networks for genes in each of the resulting
modules. The authors created 1000 models of the Bayesian network structure for
each module and then selected as real connections just edges that appeared in at
least 30% of the models.

Gordon et al. [133] have used a combination of the two types of analysis to
study the effect of abiotic factors in the gene expression of a plant, Brachypodium
distachyon. In the first stage, control samples were compared with samples coming
from plants put under different stresses. The differentially expressed genes were
isolated by the use of significance analysis of microarrays method (SAGE) [363]
in which the percentage of genes selected as differentially expressed by chance is
estimated using permutations of repeated measurements. Next, WGCNA combined
with a threshold on the significance of edges was used to identify the structure of
their underlying network.

Wu et al. [388] use a combined method to identify a dynamic model for gene
regulatory networks in a study on viral infection in mice. In their approach, dif-
ferentially expressed genes were identified as genes that showed a large difference
of expression between day 0 when the animals were infected to later time-points
when the animals were suffering from the disease. The set of genes detected this
way were clustered in modules using k-mean clustering. A curve was fitted through
the expression of genes in each module over all the time-points in order to create a
model for a "supergene" which represents each cluster. The obtained models were
then sampled to obtain measurements for the "supergenes". Next, a system of lin-
ear ordinary differential equations was used to model the response of the network
having the obtained "supergenes" as nodes. The inference method imposes sparsity
but not stability in the system matrix.

Rodius et al. [297] have also applied a 2-stage method to identify the network of
genes that lead to cardiac repair in zebrafish. In the first step analysis, differentially
expressed genes were selected as those whose expression displayed an q-value of
<0.05 between healthy fish and those with significant heart injury. In the second
step of the analysis, WGCNA with a threshold on the weight of the edges was used
to identify genes that influenced each other.

This chapter proposes a new multi-stage framework for analysis of time-series
microarray data to identify a set of possibly relevant genes followed by building a
dynamic model for their regulatory network. The framework consists of 4 stages,
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the first 3 of which are used to identify a set of genes that are as relevant as possible
for the studied condition, while the last stage builds the GRN model. Using the
proposed framework two ADPKD microarray datasets available in the literature
have been analysed [242][243]. The two sets come from mice which had gene Pkd1
knocked-out. In the case of the first dataset the knockout was done when mice were
less than 10 days of age while in the case of the second dataset when they were
40 days of age corresponding to different severities of the disease described in a
previous study[284].

Figure 5.1: Diagram of the application of the proposed framework. The analysis begins
with the raw data which is usually stored in a set of matrices, represented as M1 to Mn.
The first step is to put the data together in one matrix and apply different pre-processing
techniques to obtain the final dataset on which the framework is applied. The first step
of the framework consists in the application of l1-StaR, leading to the selection of a set
of genes. Next, the features in the dataset are organized in clusters. Once this operation
take place, the genes selected by l1-StaR together with the genes in some of the clusters
containing them undergo a selection based on the use of biological knowledge. For the final
set of genes obtained after this step, models of regulatory interactions are created for the
healthy and diseased conditions

The next sections are organised as follows: Section 5.2 presents the first stage
of the proposed framework in which an improved version of an SVM-RFE algo-
rithm [5] is introduced and used to derive a minimal set of informative genes for
classification. Section 5.3 describes the second stage of the framework in which the
minimal set of genes is expanded to include other genes whose expression correlates
with that of genes in the minimal sets, which provides a larger relevant set that can
be analysed using expert knowledge. The third stage of the framework, detailed in
section 5.4, exploits additional biological knowledge to select a final set of relevant
genes that will be used to derive the dynamical model. Section 5.5 introduces the
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approach to build a linear differential equations model of the regulatory network for
the selected genes. The ADPKD dataset used in the study is introduced in Section
5.6 whilst Section 5.7 details data pre-processing steps. The results of the analysis
and modelling study obtained by applying the proposed framework are presented in
Section 5.8. The summary of the chapter are presented in Section 5.9.

Figure 5.1 presents a schematic representation of the deployment of the frame-
work on raw data.

5.2 Stage 1: Feature Selection Using q-Value-Based
l1-StaR Algorithm

For the first stage of the microarray data analysis framework, a hybrid feature se-
lection method based on the l1-StaR algorithm is used as it provides an automatic
method to reduce the number of genes to a set that allows to discriminate well be-
tween 2 conditions without the need of an user-defined threshold. In the original
implementation of the algorithm, the statistical filtering is performed using a Stu-
dent t-test. This approach has a number of limitations. Firstly, in the case of the
Student t-test, the two tested populations are assumed to be normally distributed
with equal variance. This is unrealistic in the case of gene expression data where
there is reason to expect that the variance between control and mutant classes differs
[273]. Secondly, the Student t-test is a single hypothesis testing algorithm and, as
shown in Chapter 3 section 3.4.1.1, its sole application is likely to introduce a high
number of false positives. In order to address these problems, here a hybrid fea-
ture selection method is proposed, which involves using a Welch t-test with pFDR
corrected p-values as a filter followed by the SVM-RFE wrapper from the l1-StaR
algorithm [5] described in 3 section 3.5.3. In order to obtain a ranking for genes,
the proposed method uses k-fold cross-validation and a frequency-based ranking
scheme.

The remainder of this section presents a description of the Welch t-test and the
algorithm used to implement the pFDR based correction.

5.2.1 Welch t-test

The Welch t-test [378] is a parametric statistical test based on the original Student
t-test. The difference between the two methods appear in the assumption they make
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about the variances of the distributions from which the 2 sets of measurements
come. In the case of the Student t-test, the assumption is that the variances are
equal while the Welch t-test considers unequal variances. The following part will
present how the p-value for the Welch t-test is calculated.

For 2 sets of data to be compared, A and B, their means are calculated as:

mA =
∑

NA
i=1 ai

NA
,ai ∈ A,NA = card(A) (5.1)

mB =
∑

NB
i=1 bi

NB
,bi ∈ B,NB = card(B) (5.2)

and variances as:

σ
2
A =

∑
NA
i=1(ai−mA)

NA−1
,ai ∈ A,NA = card(A) (5.3)

σ
2
B =

∑
NB
i=1(bi−mB)

NB−1
,bi ∈ B,NB = card(B) (5.4)

Next, their Welsch t-test statistic is:

T =
mA−mB√

σ2
A

NA
+

σ2
B

NB

(5.5)

The sampling distribution can be approximated with a Student’s t distribution
with d degrees of freedom where

d =
(

σ2
A

NA
+

σ2
B

NB
)2

σ4
A

(NA−1)N2
A
+

σ4
B

(NB−1)N2
B

(5.6)

The obtained T and d are used to locate the corresponding p-value for the current
test in a t-table, which contains pre-calculated values of T for different degrees of
freedom and p-values.

In the case of the present analysis, the measurements are organised in the gene
data matrix G ∈ Rmxn, where m- number of genes and n number of samples. As a
result, for a gene Gi on whose measurements the Welch t-test is performed the 2
sets A and B are:
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A ={Gi j| j ∈C1} (5.7)

B ={Gi j| j ∈C2} (5.8)

where C1 is the set of the indexes of columns in matrix G of measurements com-
ing from control samples and C2 the set of the indexes of columns in matrix G of
measurements coming from mutant samples.

5.2.2 Q-value Calculation for Statistical Filtering

The q-value for a statistical test was introduced in Chapter 3. In the present analysis
a threshold on the q-value was used in order to select a subset of genes that are
considered significant.

Storey and Tibshirani [336] proposed an algorithm for calculating these values
that is presented below.

1. Let p(1)≤ p(2)≤ ...≤ p(m) be the ordered p values for the genes 1...m

2. For a range of λ , in the interval [0,1], calculate:

π̂0(λ ) =
card{p j > λ}

m(1−λ )
(5.9)

3. Fit a natural cubic spline f̂ with 3 degrees of freedom to π̂0(λ ) on λ .

4. Set the estimate of π0 to be:
π̂0 = f̂ (1) (5.10)

5. Calculate
q̂(p(m)) = min

t≥p(m)

π̂0m · t
card{p j ≤ t}

= π̂0 · p(m) (5.11)

6. Next calculate

q̂(p(i)) = min
t≥p(i)

π̂0m · t
card{p j ≤ t}

= min(
π̂0m · p(i)

i
, q̂(p(i+1))) (5.12)

for i= m-1, m-2 ,..., 1
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7. For the ith most significant feature the estimated q-value is q̂(p(i)).

As shown in Storey et al. [337], the resulting estimates are guaranteed to be
smaller or equal to the real q-values.

In the case of the present analysis, the threshold used on the q-value to select
the statistically significant genes was 0.05.

5.2.3 Description of the Proposed Algorithm and its Application

The proposed algorithm has 3 steps:

1. For a gene dataset a p-value is computed for each feature by using a Welch
t-test between the measurements coming from the control and the affected
group.

2. The p-values for the features are used to calculate their corresponding q-
values

3. A threshold is imposed on the q-values so a reduced set of features is obtained

4. The measurements for the remaining features are used as inputs for the SVM-
RFE wrapper from the l1-StaR algorithm The proposed algorithm will be
referred to as pFDR-corrected l1-StaR

For its use in practice, the following scheme is employed:

1. A gene dataset is split 10 times using a k-fold validation scheme. As a result
10 x k training sets and 10 x k testing sets are obtained

2. pFDR-corrected l1-StaR is trained on each training set and as a result a sig-
nificantly reduced gene set is obtained as well as a SVM-classifier based on
them. The trained classifier can then be used on the corresponding testing set
to assess its accuracy

3. Once training was done for all training sets and a gene set was obtained in
each case, all the genes that appear in at least a set are put together and ordered
according to the number of gene sets obtained by the classifier in which they
appear. This final set is passed to the next stage of the framework.
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5.3 Stage 2: Gene Subset Augmentation Through Clus-
tering

The aim of this step is to use a gene clustering approach to enrich the initial, minimal
set of genes that are used for classification with additional potentially relevant genes
that could offer insight into the disease and offer possible drug targets. The approach
consists of two steps, namely statistical filtering and gene clustering and selection.

In the first instance, statistically insignificant genes with a p-value greater than
0.05 according to a Welch’s t-test are eliminated to reduce the number of non-
informative features.

The second step involves clustering the genes and selecting the clusters that
contain genes identified at Stage 1. A hierarchical tree is built using the absolute
Pearson’s correlation described in Chapter 3 section 3.6 as a measure of distance and
average distance as a linkage rule. The reason for using Pearson absolute correlation
as a measure of distance is that it is expected that genes that regulate each other will
be linearly correlated and both upregulation and downregulations are as relevant for
the problem. The resulting tree is then cut using the Dynamic TreeCut algorithm
presented in Chapter 3 section 3.6. For this step, only the clusters which contained
genes identified at Stage 1 are selected, as they are expected to contain genes which
might play a role in the disease. All the genes in clusters that contain at least one
gene from the final set obtained at Stage 1 are passed to Stage 3.

5.4 Stage 3: Gene Subset Refinement Using Biologi-
cal Knowledge

The aim of this step is to exploit existing biological knowledge available to identify
a reduced set of genes that may offer insight into the cause and mechanism of the
disease and which should be subject to more detailed analysis and modelling. At
this point, the set of genes derived in the previous stage, which typically will be
quite large, is the result of applying data analysis techniques alone and does not
reflect any a priori biological knowledge.

The aim of this analysis stage is to refine the final set of genes in order to max-
imise the number of biologically relevant genes that are analysed and modelled
further using GRN inference methods. Ideally, this set of genes should include the
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genes already known to be related to the condition of interest as well as novel genes
whose analysis would provide new insights into disease mechanisms. The pro-
posed strategy uses the most complete protein interaction database currently avail-
able [345] of known and predicted protein-protein interactions in conjunction with
expert medical knowledge to select a biologically informative gene set.

Four sets of genes are defined before applying the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) analysis :

• Set A: All the genes that are part of the clusters corresponding to the first 3
most frequently selected genes at Stage 1. The number of genes selected can
vary depending on the frequency with which the genes were selected, 3 is
used only as a rule of thumb

• Set B: All the genes that have been passed Stage 1

• Set C: Additional genes in clusters selected by the medical expert, which
contain at least one gene that is known to be biologically relevant and was
clustered with at least one of the genes selected at Stage 1

• Set D: Critical genes for the condition, for example PKD1 and PKD2 in the
case of ADPKD without the need of appearing in the list of genes that have
passed Stage 2

The list of genes that is used as an input for STRING, which will be named S is
defined as:

S = A∪B∪C∪D (5.13)

The resulting network of predicted associations which can be seen as an undi-
rected graph is used to select the genes in the final set as follows:

• genes that appear in any connected subgraph containing one of the genes used
to select the clusters for set A

• genes that appear in the same connected subgraph as the genes deemed inter-
esting by the medical expert that were used to select the clusters in set C

• genes that appear in the same connected subgraph as the genes in set D but
without the genes in set D if they did not appear in the clusters selected at
Stage 2
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All these genes are then moved to Stage 4. Alternatively, if few genes are se-
lected after this step, all the genes in set B can also be passed to Stage 4.

The benefits of using this approach is that genes that are of interest to the med-
ical experts and are expected to play a role in a disease, can be put together with
novel genes that are found to be differently expressed through analytical methods
and have their interactions modelled, connecting the old knowledge in the field with
the new one.

5.5 Stage 4: GRN Identification

The final stage of the proposed microarray data analysis framework is the identi-
fication of a dynamical model of the regulatory network based on the time-course
data corresponding to the set of genes derived in the previous stage.

The aim is to derive a linear system of differential equations

ẋ(t) = Ax(t) (5.14)

where x the vector of genes measurements and A the system matrix.
One of the biggest problems with identifying A from microarray measurements

is the so called curse of dimensionality [26]. This means that as A has n2 elements,
in order to avoid overfitting, measurements at least n2 time-points should be used,
where n is the number of genes. In practice, this is impossible unless n is extremely
small.

The solution used here involves interpolating the data to reconstruct the continuous-
time representation of each gene expression signals and used the resulting functions
to generate uniformly sampled data used to estimated the system matrix A.

5.5.1 4.1 Nonlinear Interpolation of Gene Expression Data

Unlike in D’haeseleer et al. [91], who used a cubic spline interpolation on the log
values of the genes expression levels for example, here we used the exponential
interpolation approach proposed by Alecu [7]. The main reason for adopting this
particular type of interpolating functions, is that when A has n distinct eigenval-
ues, the general solution of the linear dynamical system (5.14) can be written as a
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superposition:

xi(t) = w1,ie−λ1,it +w2,ie−λ2,it + · · ·+wn,ie−λn,it (5.15)

as shown in Boyd [48] where for i=1,...,n [280] the eigenvalues λi have to be positive
since it is expected that a GRN represents a stable system.

In the case of the present application, the system is considered to reach an equi-
librium point so the model:

zi(t) = w0,i +w1,ie−λ1,it +w2,ie−λ2,it + · · ·+wn,ie−λp,it (5.16)

is interpolated, where p is chosen to be smaller than the number of data points , the
parameters of the interpolation models (5.16) for each gene are estimated using the
trust reflective region algorithm [55] involving a regularised cost function [356] and
w0,i is the value of the expression for gene i when the system reaches the steady
state.

Qi = |yi−Zi|22 +α|w0,i...wp,iλ1,i...λp,i|22 (5.17)

where α is the regularization parameter, Zi is the vector of model values for each
time point [zi(t0),zi(t1), ...,zi(tN)] and yi is the vector of real measurements for gene
i.

In order to approximate a model that best describes the data, a good value for
the regularization parameter α is needed.

For this purpose, α is assigned values between 10−6 and 10 on a logarithmic
scale with 10 steps per decade and Fmis minimized for each α . This leads to 70
models from which one was chosen to both minimize the error but also to have
small enough parameters. The operation is repeated 5 times with the parameters of
the model randomly initialized in the range [0, 10) in order to avoid a local minima.
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Figure 5.2: Graph for the samples of 2 most selected genes in each dataset and the models
fit through them. a. Graph for the genes selected for the first dataset b. Graph for the genes
selected for the second dataset.

To select a good model from those obtained for different values of α , the l-
curve criterion [144] was used. For each model i, the values ai = log10|y−Zi|22 and
bi = log10|w0...wpλ1...λp|22 were assigned, where Fi represents the approximated
model, y the real measurements and p the index for the last parameter of the model.
Then, in a manner similar to Belge et al. [24] the point O =

( a1
bN

)
where N is the

number of models has been considered the origin and the model i for which O−
(ai

bi

)
is minimal was selected. This operation was done for all the 5 random initializations
and the final model was chosen as the one that had the smallest fitting error out of
those selected using l-curve criterion [144]. Figure 5.2 presents some examples of
gene data fit using the individual gene models.
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5.5.2 GRN inference

The complete matrix A is estimated based on gene trajectory data obtained by re-
sampling the individual interpolation models. The sampling is performed over the
original time interval with a step size τ such that:

τ <
tN− t0

n2 (5.18)

to prevent overfitting.

The steady state of the system is

[w0,1
...

w0,n

]
with w0,i the parameter w0 of the model

for gene i. Its perturbation response around its equilibrium points for a time t j is
calculated as:

e j =


z1(t j)

...
zn(t j)

−


w0,1
...

w0,n

 (5.19)

Where zi(t j) is the value of the model for gene i at time t j and w0,i defined above.
The algorithm proposed by Zavlanos et al. [401] which is described in chapter

3 section 3.7.2 was applied to estimate A for the system represented by the gene
measurements based on

Ż = AE (5.20)

where E=

[ z1(t0)−w0,1 ... z1(tN)−w0,1
... . . . ...

zn(t0)−w0,n ... zn(tN)−w0,n

]
is the matrix containing the system responses

for a series of time-points t0...tN and Ż is

[ ˙z1(t0) ... ˙z1(tN)
... . . . ...
˙zn(t0) ... ˙zn(tN)

]
with żi(t j) the value of

the derivative of the model for gene i at timepoint t j.
The derivative samples for zi(t) are obtained by calculating the analytical deriva-

tive of the model of the gene i and sampling it at t0 . . . tN .

5.6 Experimental Dataset Description

In order to investigate new biomarkers as well as interactions between genes that
might reveal mechanisms involved in the disease, the proposed framework was ap-
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plied on 2 publicly available datasets coming from ADPKD studies.
A couple of datasets coming from studies on the disease are available online, but

most of them have a small number of samples (maximum 20 biological replicates)
[182] [305] [274] [198] [71] [284], [318] or do not provide the time points for the
moments measurements were taken [331] [267]. Only two of the available datasets
were suitable to be analyzed with the proposed framework, both of them providing
a large number of samples and clear time labelling of the measurements and coming
from the Menezes and Piontek research group [242][243] .

As discovered in a study by Piontek et al [284], a time-dependent switch exists
that influences disease severity in Pkd1 knock-out mice. Pkd1 deletion when the
mice were less than 13 days old leads to grossly cystic kidneys within 3 weeks,
while deletion of the gene when the mice were more than 13 days old led to the
onset of disease around 6 months of age. The two datasets analysed correspond
to these 2 cases, the first one being a study on rapid progression of the disease
while the second one was obtained during a study characterised by slower disease
progression.

In the first dataset, the measurements came from 70 mice. From the total, 36
were Pkd1 conditional tamoxifen-Cre inducible mice [116] and had Pkd1 deleted
between 5 and 9 days old by having their nursing mothers injected with tamoxifen.
The other 34 were control mice used to provide a reference for gene expression. In
order to ensure that conditions were as similar as possible to compare the effects of
disease, the authors paired control and mutant mice from the same nursing mothers.
When the animals were between 11 and 24 days old, their kidneys were extracted
and gene expression values were measured. Microarray data was obtained using 2
versions of the Illumina sequencing systems, v1.1 and v2.0. Ilumina v1.1 was used
to measure 14 samples while Ilumina v2.0 was used to measure 56 samples. The
gene expression values were stored in 4 matrices, LM4, LM5, LM6 and LM8. LM4
contains the data obtained using Illumina v1.1 and in matrices LM5, LM6 and,LM8,
data was obtained using Illumina v2.0.

In the second dataset, 80 mice where studied. 33 of them where control mice
and 47 were Pkd1 conditional tamoxifen-Cre inducible mice which had gene Pkd1
deleted when they were 40 days of age by being injected with tamoxifen. The
animals’ kidneys were harvested when they were between 102 and 210 days of
age and their gene expression measured. The raw results were stored on Gene
Expression Omnibus in 2 tables, LM1LM48 and X1X32.
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5.7 Data pre-Processing

In the present study, on the first dataset the goal of pre-processing was both to put
together the measurements from the 2 machines and to eliminate the noise from the
data. In the case of the second dataset the goal was just to eliminate the noise from
the data. As a result the pre-processing of the second dataset had fewer steps. They
are presented below with an indication of the operations that apply only to the first
dataset:

1. Unify the data measured with Ilumina v2.0

The data from dataset 1 obtained by using Illumina v2.0 was combined in one
matrix by simply concatenating LM5, LM6, LM8 along their samples. This
led to the data being stored in 2 matrices, one obtained with Illumina v1.1
and the other obtained using Illumina v2.0. The same was done in the case of
dataset 2 the obtained matrix being arranged as X1X32LM1LM48.

2. Variance stabilisation using VST

For its high performance as is detailed in Chapter 3, VST was chosen to pro-
vide variance stabilization on the raw data. As the method is applied individ-
ually to each sample, it was performed separately on the 2 matrices obtained
after step 1 for the first dataset. In the case of dataset 2, it was just applied
to the X1X32LM1LM48 matrix. After the VST step, just the means of the
beads for each probe in a sample were used for further processing.

3. Probes relabelling (Applied only to the first dataset)

Since the newer versions of Ilumina sequencing provide more probes and
sometimes use different labels for measuring the same sequence of nucleotides,
merging measurements of the same probe from 2 different machines becomes
an issue. Du et al. [100] came up with a solution to this problem by assigning
a label to each probe uniquely generated based on its sequence of oligonu-
cleotides called NuID. In the case of the first dataset, this approach was used
to generate labels for the merging of the 2 data matrices. Additionally, probes
in the second matrix received a unique label based on the name of the gene
they tested and a number showing their order of apparition out of the probes
measuring the same gene. These labels will be used as final labels to display
the results of the selection.
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4. Detection p-value filtering

In the case of the first dataset, once the probes were uniquely identified, all
those that did not have a detection p-value of less than 0.05 in at least one
sample in either data matrices were eliminated. For the second dataset, as
there is no merging step in which features will be eliminated as well as more
samples being available, the authors of the study impose a harsher condition
which is that at least 7 samples must have a detection p-value below 0.05 in
order to be kept. In this study the same condition is kept.

5. Merging across different platforms (Applied only to the first dataset)

Probes identified to appear in both data matrices based on their NuID had
their measurements concatenated and placed in a final matrix. The rest were
eliminated.

6. Normalization

For both datasets, quantile normalization was used to bring the measurements
in each sample to the same distribution. In the case of the first dataset, doing
this operation after merging is especially important as measurements done
with both machines should be brought in the same range.

7. Batch effect removal

As the authors provided information about the batches the data came from,
Combat was selected to eliminate batch effects in both datasets based on its
performance as described in Chapter 3.

5.8 Modelling and Analysis of the PKD Datasets

After pre-processing was done on the 2 mouse ADPKD datasets, the proposed
framework was applied in order to identify possible biomarkers for the disease as
well as explore possible regulation between genes. In the remainder of this section,
the results obtained for the 2 datasets are presented. Since in the case of the first
dataset, the authors conducted a similar analysis to the present one, a comparison
between methods is provided. In the case of the second dataset, the original study
was more focused on comparing differences in disease manifestation between males
and females as opposed to normal vs disease and the analysis diverges too much for
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a comparison to be possible. The rest of the subsections are as follows: subsection
5.8.1 Gene selection presents the potential biomarkers obtained by applying l1-Star
on the 2 datasets, subsection 5.8.2. Discovery of genes similar to the selected ones
treats the new features obtained through clustering which correlate to the genes se-
lected by l1-Star as well as the results of pathway analysis and finally subsection
5.8.3 Network analysis presents the regulatory networks obtained for a final set of
genes of interest.

5.8.1 Genes Selection

In the study reported by Menezes et al.[242] for the first dataset, a subset of 32
samples taken when mice were between 12 and 14 days old was used for the analysis
and a subset of 38 different samples was used to validate that the selected genes
show changes in value between mutant and control subjects. The criteria for genes
to be selected as differentially expressed was to exhibit a fold change of > 1.2 or
a fdr-adjusted p-value of < 0.05 in the group of samples taken at day 12 and a
fold change > 1.2 and a fdr-adjusted p-value < 0.05 at day 14 between mutant and
control subjects, resulting in a final set of 87 genes out of the around 20000 initially
measured.

In the present study, the pFDR-corrected l1-Star was run 10 times using a 4-
fold validation scheme which resulted in 40 classifiers using all 70 samples. The
genes were ranked based on the number of classifiers in which they appear as a
final selected feature. In the first dataset, 23 genes were identified Table 5.1 (Figure
5.3(A)), 16 of which appeared as differentially expressed in the original study. For
the second dataset, a set of 13 genes were identified Table 5.1 (Figure 5.3B). The
average accuracy of the classifiers was 95.85±5.89% on the testing set for the first
dataset and 99.25±1.81% for the second one. In order to evaluate the performance
of the proposed method, a NaiveBayes classifier from a standard MATLAB package
was used on the same 40 training/testing partitions for the data in the 2 sets. The
NaiveBayes produced a classification accuracy of 88.92±6.61% on the first dataset
and 92.37± 5.55% on the second one. A Welch t-test revealed that the difference
in performance is statistically different for the 2 algorithms on both data set with a
p-value of 4.02×10−6 for the first dataset and 1.06×10−10 for the second dataset.

Out of the 3 most selected genes for the first dataset, Chpf and Nupr1 human
homologues, CHPF and NUPR1 were associated with tumours, described in the
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Figure 5.3: Results for gene selection and clustering analysis. A) Frequency of apparition
of genes selected for first dataset, B-Frequency of apparition of genes selected for second
dataset, C) Dendrogram for the cluster for Cphf, D) Dendrogram for the cluster for Dmkn,
E) Dendrogram for the cluster for Guca2b
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Figure 5.4: Graph for the samples of 3 most selected genes in each dataset. A-Graph for
the genes selected for the first dataset B-Graph for the genes selected for the second dataset.

work of García-Suárez et al. [131] and Chowdhury et al. [74]. The gene Dpyd

was shown to be differentially expressed in ADPKD by another study [71]. Figure
5.4(A) presents a plot for the samples for the 3 genes in which it easy to observe
their capacity to separate between normal and disease samples. Also, gene Cdkn1,
previously shown by Bhunia et al. [36] to play a role in ADPKD appeared as dif-
ferentially expressed in this study. Other genes that have appeared as differentially
expressed or their homologues appeared as differentially expressed in other studies
on ADPKD are Bst1[193], Dusp1[162], Prodh2, Serpinf2 [274] Abcc3 [63]. In the
case of the second dataset, the 3 most selected genes were Guca2b whose human
homologue is a biomarker for cancer [306], Pkd2 which is the second gene that is
responsible for ADPKD and Hba-a1 whose human homologue was shown to be
upregulated in cancer cells [215]. Figure 5.4B presents a plot for the samples of the
3 genes. Another interesting gene that was found was Ccnd1 whose human homo-
logue was shown to be expressed in cystic kidneys and is part of the Wnt signalling
pathway that is misregulated in ADPKD [204]. Other genes that were selected an.
d have been shown to be differentially expressed of their homologues have shown
to be differentially expressed in ADPKD are Lyz, Aldh4a1[71] and Cryab [18].
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Dataset1 Dataset2
Selected gene Gene expression in the mutants vs controls Selected gene Gene expression in the mutants vs controls

Chpf up Guca2b down
Dpyd down Pkd2 up
Nupr1 up Hba-a1 down
Apoe down Ccnd1 up

Cldn12 up Cyp2d12 down
Bst1 up Car15 down

Dusp1 up Mdk up
Zfp185 up Lyz up
Cml4 down Hdc up

Ranbp3l up Cryab up
Prodh2 down Hsd17b11 up
Tgm1 down Aldh4a1 up
Scel up Klk1b27 down

Serpinf2 down
Tacstd2 up
Lypd2 up
Nuak2 down
Ifi27 up

Abcc3 up
Cdkn1a up
Dmkn up
Gsta2 down

Slc38a5 down

Table 5.1: Genes selected for the 2 datasets

5.8.2 Discovery of Genes Similar to the Selected Ones

In the original article for the first dataset, WGCNA was used to cluster the genes
while Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA) were
further used to find genes biologically related to the selected ones. One cluster with
629 genes represented by an eigengene that correlated well with the genotype that
contained 67 of previously reported genes was discovered. IPA revealed 4 genes
related to the selected ones, 3 of them, Tnf, Agt and Avp previously connected to
the disease and the 4th one, Hnf4α was experimentally proven to play a role in the
disease. In the article for the second dataset, WGCNA was used just for network
topology analysis.

In the present analysis, stage 2 of the proposed method was applied on the pre-
processed datasets and the clusters containing the genes selected at stage 1 were
isolated. As it can be seen in Figure 5.3C, in the first dataset, Cphf was clustered
together with Cdkn1 and Wig1, a gene whose human homologue was proven to reg-
ulate the human homologue of Cdkn1[188]. Also gene Wnt7b which was clustered
together with Dmkn (Figure 5.3D) appears to be of interest since it was proven to
play a role in cystogenesis in polycystic kidney disease [289]. Interesting enough,
in the original article, Wig1 and Wnt7b have appeared in the final set of selected
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genes. In the case of the second dataset, the 3 most selected genes, Guca2b, Pkd2

and Ccnd1 were clustered together (Figure 5.3E). Another gene that might be re-
lated to the disease is Glis2 which was clustered with them and has been proven to
be responsible for nephronophthisis [14].

In order to select a final list of genes relevant to the disease for network analysis,
stage 3 of the proposed framework was used on both datasets. In order to reduce the
number of genes on which expert knowledge is applied, just the clusters containing
the 3 most selected genes were analysed. More precisely, STRING was used on
a set of genes containing those selected by the algorithm, the genes in the clusters
containing the first 3 most selected genes and Pkd1 in order to find possible protein
interactions. To explore a high number of possible connections, the level of confi-
dence set for displaying a connection was set to a minimum. An interaction map
of genes that potentially interact with each other and that also contains Pkd1 was
found for both datasets as shown in Figure 5.5.

Figure 5.5: Protein interaction map for the 2 datasets. A-Dataset 1, B-Dataset 2

In the case of the first dataset, the final set of genes selected contained the genes
in the path determined through STRING plus Cphf and Nupr1. Cphf was added
as it was the gene most selected by the first stage of the framework. Combined
with the fact that it is not a very well studied gene, it seems to be a good candidate
for novel research in the field. Similarly Nupr1 was frequently selected by the
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algorithm and its effects on PKD have not been researched up to now although it
is important in cancer biology research. For the second dataset since there were
few genes to be analysed, all the genes selected by the algorithm plus the ones that
have been clustered with the 3 most selected genes had their regulatory network
approximated.

5.8.3 Network Analysis

In the original article describing the first dataset, the purpose of network analysis
was to find if there was preservation of gene correlation networks in both condi-
tions. The same 32 samples used for finding differentially expressed genes were
analysed. Gene correlation network comparison was done between 4 conditions:
P12 vs P14 and mutant vs control. The results showed that there was little change
in gene topology between mutant and control subjects. A more significant differ-
ence appeared between P12 and P14 with one cluster changing its position in the
network. The authors of the study theorize that the genes in that cluster might be
responsible for a trigger that greatly affects the speed of the evolution of the disease
which they have found in another study [242].

The purpose of the present analysis was to dynamically model the regulatory
network that exists between possible relevant genes in the case of mutant and control
subjects. The last stage of the proposed framework was applied on the final set of
genes for the 2 datasets.

In order to study the dynamical behaviour of a system, time-points have to be
defined for the measurements. In the 2 datasets, two time points were provided
for each measurement: the day at which tamoxifen started to be administered to
the animal leading to Pkd1 being inactivated and the day at which the animal was
killed and a sample of its gene measurements was taken. In order to unify the 2
measurements in a way relevant for the present study, a time-point for a sample was
considered to be the difference in days between Pkd1 inactivation and the terminal
sample.

To model individual gene expression, the models used were the ones described
in the subsection 5.5.1. In the case of the first dataset as only 8 time-points ex-
isted, the value for p was 3 so that the number of parameters, 7 would not exceed
the number of time points. In the case of the second model, 21 time points were
available so a more flexible model with 13 parameters, thus with p = 6 was used
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for interpolation. For interpolation the minimum timepoint was subtracted from the
rest of the timepoints so that the dynamics of the systems will be modelled starting
with t0=0.

On top of the regularization described in subsection 5.5.1, linear constraints
where imposed when approximating the parameters. This happened because, as
presented in section 5.6 describing the dataset, if Pkd1 was inactivated before 13
days age, they develop large cysts within a 3-week interval but after 6 months if
the gene is inactivated later. This suggests that the system representing kidney gene
expression reaches a steady state as cyst growth reaches a plateau. In the case of
the first dataset, the last time point corresponds to 12 days while in the case of
the second dataset it corresponds to 108 days. Further biological research on the
disease may lead to a better approximation of the time when gene values get to a
steady state.

The linear constraints for the parameters of the first dataset were λ1...3 > 0 and
w0 ∈ (y(t8)−3σm,y(t8)+3σm) where σm represents the maximum variance for the
measurements at any time point and t8 represents the last timepoint. In the case of
the second dataset the conditions were λ1...6 > 0 and w0 ∈ (y(t21)− 3σ21,y(t21)+

3σ21) where σ21 represents the variance in measurements for the last time point and
t21 represents the last time point.

As it can be observed in Figure 5.6, in the case of the first dataset, Cdkn1a

appears to up-regulate Cphf in the network for control subjects, a connection that
is broken in the case of the mutant subjects. In the case of the second dataset,
Pkd2 seems to downregulate Guca2b in the case of the mutant subjects (Figure
5.7). These results open a research field on biological investigation to assess the
connection between the 2 pairs of genes.
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Figure 5.6: Modelled gene network for the first dataset. A) Network for control samples
B) Network for mutant samples
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Figure 5.7: Modelled gene network for the second dataset. A) Network for control samples
B) Network for mutant samples
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5.9 Summary

This chapter proposes a new multi-stage framework for the analysis of time-series
microarray data coming from case-control studies. The framework aims to achieve
2 important goals in gene expression data studies, biomarker selection and gene
regulatory network identification.

In stage 1, a supervised feature selection method, based on the l1-Star algorithm
is employed to identify a significantly reduced set of genes that discriminate be-
tween control and affected samples. The filtering method of the original algorithm
was replaced, from a single hypothesis statistical t-test to a multiple hypothesis cor-
rected method. The strategy is employed on a number of different initializations of
a k-fold cross validation scheme. The features are ranked based on the frequency
with which they appear in the classifiers obtained this way.

Stage 2 consists in the use of clustering methods for identifying features corre-
lated to the ones selected at stage I that might have been eliminated by the super-
vised feature selection algorithm. A pFDR filter is used to eliminate features with a
statistically insignificant difference between conditions and hierarchical clustering
is used with Pearson absolute value as a measure of distance and average distance as
a linking rule. In order to obtain clusters, the tree is cut using the DynamicTreeCut
method. The genes in the clusters containing previously selected features form a set
that can be used for further analysis.

Stage 3 marks the final step in selecting a set of potentially relevant genes. At
this point the researchers can combine 3 strategies for choosing the genes. The
first one is to use their expert knowledge to isolate genes from those found during
clustering and feature selection that could be relevant for mechanisms of the dis-
ease. The second strategy is the use of the STRING database to detect previously
reported or predicted connections between the genes. The third one is to pick genes
frequently selected at step one, for which previous biological knowledge is reduced.

Stage 4 is the stage at which the identification of the gene regulatory network of
the selected genes takes place. The employed model is a system of linear differential
equation that approximates the response of the system represented by the regulatory
network of the selected genes around an equilibrium point. The identification of the
model parameters is done in two steps. First, individual models representing sum of
exponentials are fitted through the measurements of each individual genes. Second,
the individual models are sampled to create enough measurements and the model for
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the regulatory network is identified using a semi-definite programming technique
available in the literature that allows imposition of the biological characteristics for
GRN’s, sparsity and stability.

All the presented methods have been previously used in microarray analysis
studies but to the author’s knowledge it is the first time when they have been com-
bined in a complete framework for analysing gene expression data, by selecting a set
of features of interest and creating a dynamical model for their regulatory network.

The proposed framework has been applied to 2 microarray datasets coming from
studies corresponding to fast and slow progression models of ADPKD. The selec-
tion method has identified a set of genes previously connected with ADPKD, either
experimentally proven to play a role in the disease or found as differentially ex-
pressed in other ADPKD studies. The analysis has also identified some novel genes
of interest, chosen by the feature selection algorithm, the most significant ones be-
ing Cphf for the fast progression model and Guca2b for the slow progression one.
Of interest, both genes have been associated with cancer and since both tumours and
cysts consist of defective cell turnover, they are promising candidates to explore new
mechanisms of the disease. Further biological analysis is needed to confirm their
involvement in ADPKD.



Chapter 6

Analysis of Normal vs PKD1,2
Knockdown ciPTEC Cells and the
Effects of Octreotide in Low-Density
Free Migration Assays

6.1 Introduction

While the previous chapter dealt with the genetic component of ADPKD, the current
and the following chapter will describe work done to investigate the disease from
the perspective of cell behaviour. This type of analysis is important, as the changes
in gene expression do not have too much meaning in themselves when trying to
understand a disease, but the way in which they translate into cellular properties is
the ultimate goal for genetic research.

By studying both gene expression and cellular behaviour, the scientist can make
the connection between genes and the cellular processed they control. Another
reason for studying diseases from the perspective of cell behaviour as opposed to
microarray studies is that the experiments are cheaper and simpler to set up so that
for example the effects of drugs on a disease can be easily quantified without the
need of studying the deeper level of gene expression.

Several cellular features altered in polycystic kidney disease have previously
been described in a number of studies. These include changes in cell division
[292][143], migration [59], [270] and apoptosis [41] [318]. A more thorough de-
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scription of these studies has been recorded in Chapter 2 and Chapter 4-section 4.4.
A variety of different methods have been employed for these analyses including
the use of monoclonal antibodies against proliferating cell nuclear antigen (PCNA)
[292] and cell counting [22] at different times to study proliferation, use of modified
Boyden chambers [258] and wound healing assays [226] for cell migration and the
use of serum starvation and cell counting [377] for assessing cellular resistance to
apoptosis.

This chapter presents the analysis of an immortalised human proximal tubu-
lar cell line (ciPTEC) [241] using time-lapse microscopy, where initially cells are
plated at low density. The present analysis focuses on two specific functions, namely
cell division and cell migration. This type of assay has not been used very frequently
to study cell movement in the case of ADPKD as modified Boyden chambers and
wound healing assays have been more popular . The only similar published analy-
sis was a study by Yao et al. [395] in which the authors study the linearity of cell
movement by looking at the confinement ratio of the cell trajectories.This chapter
presents a more complex analysis in which random diffusion models are employed
to characterize cell migration. The current methodology enables tracking individ-
ual cells over the entire period of the experiment, enabling a precise quantification
of cell division and motility. In the future the current work of this chapter can be
combined with genetic analysis to discover how different genes affect motility and
division of ciPTEC cells.

Two main questions were addressed. The first question relates to the effects of
disease on cell migration and division by comparing two cell lines: control PTEC
cells and PTEC cells with knockdown of PKD 1,2. The second question relates to
whether either defect could be corrected in disease cells by octreotide, a somato-
statin analogue that has been shown to inhibit secretin-induced cAMP generation
in cholangiocytes of animal models of polycystic liver disease [236]. In these ex-
periments, disease cells incubated with octreotide were compared to disease cells
treated with DMSO alone.

The remainder of this chapter is organised as follows: section 6.2 provides a
detailed description on the experimental materials and methods employed in this
analysis, section 6.3 on the analytical ones, section 6.4 presents the results on the
analysis done on control vs knockdown cells, section 6.5 the analysis on the ef-
fects of octreotide, section 6.6 provides a discussion on the results considering the
literature on the subject and further analysis that should be done and section 6.7
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summarises the results and draws the conclusion of the chapter.

6.2 Experimental Materials and Methods

6.2.1 Materials

6.2.1.1 Cell Lines Description

The cells used in this experiment were derived and described in Mekahli et al. [241].
A brief description of the procedure used to generate these lines is presented be-
low. miRNA-based short hairpins (miR-shRNA) were created to knock down PKD1

and PKD2. The controls were created by using a miR-shRNA which was directed
against DsRed.

Lentiviral vector transfers were produced using miR-shRNA sequences which
contained a promoter which was driving a gene that induces resistance to blasticidin.
Four vectors were created which encoded miR-shRNA directed against:

• DsRed
• PKD1

• PKD2

• both PKD1 and PKD2

For producing the ciPTEC cell lines, primary cells coming from patients urine
were immortalized using SV40T vector containing geneticin (G418) resistance and
a hTERT vector containing hygromycin resistance (hygromycin B). The lentiviral
vectors were added to the culture medium in order to create the different types of
cells. 10 µg/ml blasticidin were used for the selection of the transduced cells.

In the present study the cells infected with the miR-shRNA sequences designed
against DsRed were used as control cells while the PKD1,2 knockdowns were used
as disease cells. Through the rest of this document the former ones will be called
healthy or control while the later will be termed disease, PKD (in figures) or PKD1,2

knockdown.
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6.2.2 Methods

6.2.2.1 Mammalian Cell Culture

PTEC control/ PKD1,2 knockdowns were cultured in DMEM-F12 media (Gibco,
717 Grovemont Cir, Gaithersburg, MD 20877, USA) supplemented with 10% FBS
(Biosera, 117 General Ordonez Ave, Marikina, 1800 Metro Manila, Philippines),
and penicillin and streptomycin solution (BioWhittaker®, 8830 Biggs Ford Rd,
Walkersville, MD 21793, USA). Cells were plated in T25 flasks until they reached
80% confluence with 10 ml media and 10 µl blasticidin (Invitrogen, 168 Third Av-
enue Waltham, MA USA 02451) and then passaged to T75 flasks where they were
grown in 13 ml of media with 13 µl blasticidin. The culturing of cells was done
in incubators with 33◦ temperature and 5% CO2.The media was replaced the first
day after plating in the T 25 flasks and subsequently replaced every 2 days except
weekends either in the T25 or later in the T75 flasks.

Transfer to the T75 flasks was performed by removing media, washing them
with PBS and incubating them with 2 ml Trypsin at 33◦ C for 3-5 minutes until
they have detached. Next, 8 ml culture media was added to neutralize the effects
of trypsin. The cell suspension was then transferred to a 30 ml universal for further
processing. Finally 1 or 2 ml of cell suspension were moved to the T75 flasks and
media was added so that the final solution would contain 13 ml of cell suspension.
Basticidin would be added as described. The same procedure was used to passage
the cells in the T75 flasks whenever they would reach 80% confluency.

6.2.2.2 Freezing and Thawing of Cultured Cells

Cells were cryogenically preserved at a temperature of -80◦ C. The following pro-
cedure was used for freezing. After the cells were grown in T25 plates and reached
80% confluence, the passaging procedure described above was applied, with 1 ml of
cell suspension being transferred to the T75 flasks. The remaining cells were cen-
trifuged and resuspended in a solution containing 1.8 ml media and 0.2 ml Dimethyl
sulfoxide(DMSO). Next the cell suspension was aliquoted to 2 cryogenic vials and
moved to the -80◦ C freezer. For plating in the T25 flasks the cells were thawed by
gently manually swirling the vials in a 37◦ C water bath 60-90 seconds until the cell
suspension was defrosted. Next, the suspension was transferred to T25 flasks with
9 ml media and 10 µl blasticidin was added to the mix.
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6.2.2.3 Cell Motility Experiment

Two days before the experiment, the media in the T75 flask was replaced with serum
free media for cell cycle synchronization. Next, the cells in the T75 flasks were re-
plated as explained above and the remaining cells in the 30 ml universals were used
for the motility experiment. First, they were counted using a haemocytometer to
assess their density in the cell suspension and the solution was diluted through suc-
cessive transfers and dilutions to achieve a density of 10000 cells/ml corresponding
to 2222 cells/cm2 in each well. The obtained suspension was replated in 6-well
plates with 2 ml cell suspension per plate and 2µl blasticidin.

For the 2 types of experiments, different setups were used. For the control
vs disease experiments, control or disease cells were plated into 3 wells each on
the same plate, left to attach for 5.5-6 hours and then placed under a microscope.
For the octreotide study, all 6 wells were filled with knockdown cells. In the case
of the octreotide experiment, after 5.5 hour the media was replaced, in the case
of the octreotide group with a solution containing culture media with blasticidin
and octreotide at a final concentration of 1 µmol in the media and in the case of
control wells with culture media with blasticidin and 1 µl DMSO/ 1 ml of culture
media. 3 wells were used for control (DMSO) and 3 wells for octreotide per plate.
For imaging, one frame was taken every 10 min over 96h using an Olympus Ix70
microscope controlled by Micro-Manager v1.4 [106]. During imaging, cells were
enclosed in a chamber maintained at 33◦ C under a humidified atmosphere of 5%
CO2 in air. For each well, 9 fields were taken.

The concentration of the octreotide was chosen based on an article by Macaulay
et al. [228]. In it the authors have an experimental setup similar to the present anal-
ysis in which they incubate cells with octreotride or saline solution for the controls
for 70 hours. The concentrations for which octreotide shows the most effects on
division are 1 nmol and 1 µmol concentration on small-cell lung cancer cell line
HX149. Although in the original study the effects for 1nmol were slightly higher
than for 1 µmol, the higher concentration was picked for this analysis as it was
considered that it would have better chances of producing a more significant effect
considering that the cells are different. The present concentration is not to be con-
sidered the absolute best for ciPTEC cells, further optimizations could be carried in
the future. For each experimental setup two replicates were performed.
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6.3 Analytical Methods

Two types of measurements were used to characterize the cells in under between
both conditions. First, the average and standard deviation of the division time for
cells in under different conditions was calculated to find out if the disease produces
produced any changes. Next, cell motility of cells was quantified by calculating the
MSD and then fitting a model thorough it. The following subsections describe the
procedures used to extract the 2 measurements.

6.3.1 Cell Division Time

In order to quantify the division time, once a mother cell divided, the daughter cells
were tracked during the movie by visual inspection and the number of frames be-
tween the onset of cell division and separation of the mother cell into two cells was
considered the division time for the cells. In order to have enough representatives
for a reliable approximation, 30 cells had their division time calculated for each
condition in the first replicate and 80-100 per condition in the other replicates. To
ensure uniform sampling, the cells were randomly selected to be around 10-35 cells
per well.

6.3.2 Cell Motility Analysis

For the motility analysis, individual cells were tracked for the first 72 frames which
corresponds to the first 12 hours. The cells chosen had not divided within this time
interval and this duration was chosen so that most cells would not have divided
based on their expected doubling time. This was important to allow free cell move-
ment.The duration chosen was also in the range used for similar experiments ie,
8 hours in the case of Barbaric et al. [20] and approximately 16 hours in the case
of Dieterich et al. [94] although different cell types were studied (MDCK, H7 and
H14). Tracking was performed manually using the manual tracking plugin for Im-
age J by Cordelières [79] using the centre of each cell as its tracking point. The
origin of the axes system used is the top left corner of the image with the values
on the x-axis increasing from left to right and the values on the y-axis from top to
bottom. The same strategy for ensuring uniformity as in the case of the division
time was applied ie 100 cells were tracked per condition, with around 30-35 cells
from each well.
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For the MSD calculation, the standard formula that was presented in subsection
4.3.1.3 was used.

6.3.3 Cell Motility Analysis Modelling

The diffusion model proposed in Dieterich et al. [94] :

MSD(t) = 4v2
tht2Eα,3(−γαtα)+(2η)2 (6.1)

was used to characterise the mean squared displacement of cells estimated from the
individual cell trajectories obtained from the time-lapse imaging data.

The model parameters were estimated as described in Chapter 4 section 4.3.2.
Because the procedure is sensitive to initialisation and in order to avoid being
trapped in a local minimum, multiple estimation runs were performed, each run
starting from different initial conditions. The main steps of the algorithm used for
fitting the parameters are summarised below:

Step 1:Initialization

vth parameter: The initial value of the vth parameter was estimated directly
from the trajectory data. Specifically, for each cell, the second moment of its
distribution of speeds is computed as:

< S2 >=
∑

N−1
i=1 s2

i
N−1

(6.2)

where si = ∆pi/T with ∆pi the displacement between frames i and i+1, T the
period between frames and N the total number of frames for which the cell is
tracked.

As a result a population of 100-105 measurements was obtained for each
condition. Next, for each population a Weibull distribution was fitted to data
[47]. 50 random samples drawn from the distribution were used to initialise
vth2 .

For the remaining parameters, 50 initial values were generated by random
sampling from a uniform distribution on the interval [0,1]. The choice of in-
terval is motivated by the fact that in the case of normal/super-diffusion move-
ment, which is the type of movement observed experimentally, the parameters
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α and γ belong to this interval, as shown in previous studies [20][94]. As no
previous information can be used about the last parameter, η as it is a measure
of noise it was also initialized in the interval [0,1] .

Step 2: Model Fitting

Model were fit using the trust region reflective algorithm [76] implemented
in the lsqcurvefit function in MATLAB by minimizing:

∑
ti
(F(x, ti)−MSD(ti))2 (6.3)

where MSD(ti) is the real value for the MSD at time ti, x the vector of param-

eters for the diffusion model

[
v2

th
α
γ
η

]
and F(x, ti) the diffusion model proposed

by Dietriech evaluated at timepoint ti for the values of the parameters in x
with 0 as the lower limit for the parameters and infinity as the upper limit
except for α where the upper limit is 1.

Step 3: Model Selection

The selection of models was done in 2 stages.

The first stage consisted in a threshold on the error values of the models. The
formula used for calculating the errors was:

72

∑
i=1

ŷi− yi

yi

2
(6.4)

corresponding to the squared relative errors where ŷi is the model approximate
for time-point i and yi the real value for MSD at time-point i. The threshold selected
was 3.6 corresponding to an average 5% squared relative error for each time-point.

After this step it was observed that most of the values obtained for the parame-
ters seem to be in a similar range although a few significant outliers exist. In order
to eliminate the outliers, the interquartile range (IQR) outlier elimination procedure
proposed in Tukey [362].

In the case of the present study, the procedure was applied to the set of val-
ues obtained for each parameter of the models that remained after the first model
selection stage step. The models which appear in all the outlier-free sets for each
parameter were selected to the final set of models.
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6.4 A Comparison Between the Phenotype in Healthy
and Disease Cells

6.4.1 Division time

The division time between the two cell types was compared by looking at the num-
ber of frames between 2 consecutive divisions as discussed in subsection 6.3.1. The
results are presented in Figure 6.1.

Figure 6.1: Means, standard deviations and the results of a Welch t-test for the division
times of healthy vs disease cells

As it can be observed in both replicates, the division time was significantly in-
creased in the case of the disease cells with around 25-30 frames which translates to
4-5 hours. This was an interesting result since the general consensus in the literature
is that proliferation is increased in the case of the disease cells. Also it is important
to note that there is great agreement between replicates, showing that 30 cells per
condition were sufficient to obtain a good average estimate of the division time.

6.4.2 Motility Analysis

The MSD for each condition in an experiment was calculated as described in sub-
section 6.3.2 and then 50 models were fitted to it as described in subsection 6.3.3.
For the first replicate 96 healthy and 101 disease cells were tracked while for the
second replicate 101 healthy vs 100 disease cells were tracked.

Figures 6.2 and Figure 6.4 present the MSDs with the most accurate model fit.
All the parameters of the models that remained after the 2 filtering steps have been
taken into consideration to characterize the conditions (Figure 6.3, Figure 6.5).
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Figure 6.2: MSDs and best model fits for the migration results of the first replicate of the
healthy vs disease cells experiment.

Figure 6.3: Means, standard deviations and the results of a Welch t-test for the parame-
ters of the models for the 2 conditions in the first replicate of the healthy vs disease cells
experiment.
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Figure 6.4: MSDs and best model fits for the migration results of the second replicate of
the healthy vs disease cells experiment.

Figure 6.5: Means, standard deviations and the results of a Welch t-test for the parameters
of the models for the 2 conditions in the second replicate of the healthy vs disease cells
experiment.
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As the figures show, the MSD seems to show lower values in the case of the
disease cells. This is consistent with previous studies using different assays such
as Boyden chambers[258], free migration assays[270] or wound closing assays[40]
showing that the migration capability of disease cells is reduced.

The first conclusion based on these results is that thermal speed (vth2) is lower
in the case of the PKD. In both replicates, the difference was significant both sta-
tistically and in terms of magnitude, with the thermal speed of the affected group
being less than half of that of the control. A second parameter with a statistical
difference was the diffusion coefficient D, indicating that the surface covered by the
healthy cells increases faster.

6.5 A Comparison Between DMSO and Octreotide
Treated Disease Cells

6.5.1 Division Time

The division time of the cells was compared between the 2 growing conditions
(Figure 6.6).

Figure 6.6: Means, standard deviations and the results of a Welch t-test for the division
times of DMSO vs octreotide treated cells

As can be observed in both replicates, division time was slightly increased in
cells treated with octreotide by around 6-20 frames, which translates to 1-4 hours.
The difference was small in magnitude considering that on average, cells take 240-
260 frames to divide and the results did not reach statistical significance. The result
differs from published data where Octreotide has been shown to reduce the divi-
sion time of small cell lung cancer(SLCL)cell lines [228] colon cancer cells,[17] or
neuroblastomas [43].
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6.5.2 Motility Analysis

The same procedure as in the case of the healthy vs disease samples was applied
to analyse the data coming from cells treated with DMSO vs cell treated with oc-
treotide. For the first replicate 101 DMSO and 102 octeotride treated cells were
tracked while for the second replicate 101 DMSO vs 100 octreotide treated cells
were tracked.

The MSD for each condition is presented in Figures 6.7A and 6.9A, as well as
the best model fit.

Figure 6.7: MSD’s and the best model fit for the migration results of the first replicate of
the DMSO vs Octreotide treatment experiment

The first conclusion based on Figures 6.7 and 6.9 is that cell motility in the
disease cells was increased by octreotide. However, comparing these results with
the previous differences observed between healthy and disease cells, it is apparent
that cell motility in disease cells was only partially restored by octreotide.

The next step in the analysis was to look at the parameters describing the models.
Figures 6.8 and 6.10 present these results. As in the case of healthy vs disease cells,
the plots present the mean and standard deviation of each parameter in the models
remaining after the 2 filtering steps.
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Figure 6.8: Means, standard deviations and the results of a Welch t-test for the parameters
of the models for the 2 conditions in the first replicate of the DMSO vs Octreotide cells
experiment.

Figure 6.9: MSD’s and the best model fit for the migration results of the second replicate
of the DMSO vs Octreotide treatment experiment
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Figure 6.10: Means, standard deviations and the results of a Welch t-test for the parameters
of the models for the 2 conditions in the second replicate of the DMSO vs Octreotide cells
experiment.

In the case of the parameters obtained in the DMSO vs octreotide comparison,
it seems that the thermal speed was increased in the cells treated with octreotide.
The difference was statistically significant in both replicates while the difference in
magnitude was more than double in both cases. For the other parameters including
D, there was no consistent or statistical difference in both replicates.

6.6 Discussion

By time-lapse microscopy, significant differences were observed in the cellular phe-
notype of control compared to disease human proximal tubular cell lines. First, the
cell division time was significantly prolonged in the disease cells. Second, cell
migration was reduced in the disease model. Third, a partial correction of the mi-
gration defect in disease cells was observed following octreotide.

The increase in cell division time observed in disease was unexpected since
other studies have generally reported that PKD1 and PKD2 affect cell proliferation
negatively. In a study on rat proximal tubule cells, Ramasubbu et al. [292] found
that disease cells had higher proliferation indexes. Similar results were found by
Nadasdy et al. [256] in which the authors show increased proliferation in proximal
and distal tubule tissue of human kidneys with ADPKD. Bhunia et al. [36]) showed
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that expression of human PKD1 in MDCK cells led to cell cycle arrest in the G0/G1
phase. Similarly, Liu and Yu [219] reported that overexpression of PKD2 slowed
cell growth in HEK293T and mouse IMCD cells while PKD2 knockdown lead to
a recovery of proliferation rates. By contrast, a study by Hanaoka and Guggino
[143] in which the authors were investigating the cAMP pathway role in cell prolif-
eration in ADPKD observed that after 4 days, control primary human kidney cells
showed higher numbers than primary ADPKD cells; however, only cell counts were
reported in this study so it is impossible to know if the differences relate to reduced
proliferation or are to increased apoptosis [105] [349].

Several possible explanations could account for these differences. First, it is
conceivable that the immortalisation procedure could have altered cell cycle regu-
lation differently in control and disease cells. Third, the ’disease’ cells were created
by knockdown of PKD1 and 2 in healthy cells and this may not truly reproduce the
cystic disease phenotype. Future studies should seek to test which of these possi-
bilities is correct.

In the case of the octreotide experiment, the results are different from published
studies using other cell types. In general, octreotide has been shown to decrease
cell proliferation. These include bile duct epithelial cells [360], rat pituitary tumor
cells [73], liver cancer cells [218] and colon cancer cells [17]. An in-vivo study,
Masyuk et al. [236] showed that octreotide seemed to decrease cell proliferation
in PCK rat kidney epithelial cells. It is important to note that in their study, the
decrease in proliferation evolved with the treatment time from around 25% after
4 weeks of treatment with the drug to around 50% after 16 weeks and also that
dosage played a role in the observed results. Based on these the results, a few
possible explanations could explain the current findings. First, that PTEC cells
do not respond to octreotide. Second, the dose used was too low to produce a
significant effect. Third, the treatment duration was too short for octreotide to have
an effect on the cells. Further tests with higher concentrations of octreotide or
with cells treated with octreotide for a longer period of time prior to imaging could
answer these questions.

In the motility experiments, there was a clear reduction in the migration capaci-
ties of the disease cells compared to control cells when measuring their MSD. The
difference could be attributed to an increased vth and diffusion coefficient. These
results are consistent with previous studies which demonstrate that deleting either
gene inhibits cells migration and overexpressing them enhances cell motility. Ex-
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amples of these studies include one by Boca et al. [40] in which PC1 overexpression
was shown to enhance migration in MDCK cells and PC1 deletion shown to re-
duce migration in MEF cells and another by Luyten et al. [226] in which HEK293T
cells overexpressing PC1 were shown to move faster than their control counterparts.
Although the current study shows decreased migration in the double knock down
PTEC cells due largely to changes in cell speed and randomness of movement, it
does not clarify whether the directionality of movement is affected. A limitation of
the free cell migration assay is that there is no clear direction in which the cells are
expected to move. To further investigate this property, a wound closure assay was
used to further investigate the effects of the disease on the movement of the cells.
The results of these assays will be reported in the next chapter.

Following octreotide, the MSD plots showed enhanced motility in the disease
cells treated with octreotide although the drug did not restore cell motility to nor-
mal. The difference observed seems to be explained by an increase in the vth. The
effect of octreotide on cell migration has only been examined in previous studies,
on bovine retinal muscle cells [332] ESCs and T HESCs cells [10]. In these cases,
octreotide inhibited cell motility. These results are the opposite of what was seen in
the current experiments. The effect octreotide has on the linearity of cell migration
remains was not tested in this study and could be the subject of future experimental
work.

6.7 Summary

In this chapter, two specific cell phenotypes were analysed ie cell proliferation and
cells migration and compared between control and disease cells. I also studied
whether octreotide, a drug in clinical trials for ADPKD, could restore either of
these cell phenotypes in disease cells. The assay used was a free-migration time-
lapse assay in which the cells where plated at low density in a 6-well plate and
imaged so that the trajectories and division time of single cells could be observed.
Division time was measured by counting the number of frames between a single
cell dividing to form daughter cells. In the case of migration, cell characteristics
were studied using a Fractional Klein Kramer model to extract parameters from the
cells’ MSD.

The findings on the division of the cells were that the double gene knockdown
increases division time while octreotride does not have a statistically significant
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effect on it. In the case of the migration studies, the double knockdown cells show
decreased migration which seems to be explained by a reduction in velocity as wells
as in the diffusion coefficient characterizing their movement. Octeotride seems to
salvage some of the migration capacities of the cells although not at the level of the
healthy ones. The increase seems to be explained by an increase in the velocity of
the cells.



Chapter 7

Analysis of Normal vs PKD1,2
Knockdown ciPTEC Cells in Wound
Healing Assays

7.1 Introduction

Single cell migration experiments can be useful for calculating the spontaneous
speed at which cells are moving [200] or extracting parameters for diffusion models
[94]. The results in the previous chapter indicate that at single cell level, normal
cells move faster compared to cells with knockdown of PKD1 and PKD2. Given
that abnormal genes involved in ADPKD have an adverse effect on normal tissue
organisation in the kidney, it is of interest to know if the differential motility at
single cell level has any impact on the collective cell movement. The results of this
research could be combined with findings on genetic deregulation in order to create
a complex picture on how gene expression affect behaviour in groups of cells and
how this translates into dysfunction in organs affected by the disease.

To address the question on the movement of a group of cells in the case of
ADPKD, this chapter presents a comprehensive quantitative analysis of data ob-
tained from wound closure experiments [178] involving normal and abnormal
PKD1/PKD2 knockdown cell lines. Briefly, healthy and PKD1,2 knockdown cells
were grown in 6-well plates with 3 plates for each condition. Once the cells reached
100% confluence, the cell layer was scratched using 200 µl pipettes. Next time-
lapse microscopy was used to record the closing of the wound. The analysis pro-

122
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vides information about the movement directionality and speed dynamics of collec-
tive migration of normal and abnormal renal epithelial cells. Specifically, the data
generated by the time-lapse, would-closing experiments was used to derive three
characteristics of collective migration namely the rate of wound closure, direction-
ality of movement and temporal texture characterisation of contiguous cell layers.

The first analysis was performed to assess the capacity for wound closure of
wild-type compared to disease PTEC cells. Previous studies had showed this pa-
rameter to be impaired in different disease cells [59] [60] [395] [177]. The closest
study to the present one, Joly et al. [177] compared primary mixed human renal
tubular cells (proximal and distal) from healthy and diseased patients but no study
to date has studied a pure proximal tubular cell line.

The second analysis was performed to address the unanswered question from the
previous chapter about the capacity of the disease cells to maintain directionality.
Studies such as by [59] have reported that there is a greater randomness in the
movement of disease cells but in this study, the cells analysed were MEF cells.

Finally, Haralick features were used to characterise texture properties of the cell
layers. Texture features are typically used to implement automatic classification
algorithms [145][46][402] used, for example, to assist disease diagnosis [381].

The remainder of this chapter is organised as follows: Section 7.2 presents the
experimental methods employed. Section 7.3 describes the methods used to analyse
the data. Sections 7.4, 7.5 and 7.6 provide the comparative analysis results of the
wound closing rates, linearity of individual cell trajectories and temporal texture
features, respectively. Section 7.7 discusses the biological significance of the results
and possible interpretations of the data. Section 7.8 summarises the conclusions of
the chapter.

7.2 Experimental Methods

The materials and cell lines used for single cell motility analysis, described in Chap-
ter 6 section 6.2.1, were used to carry out the wound scratch assay. The cell culture
conditions were the same. The following subsection will describe the experimental
procedures used in the wound/scratch assays.



124 7.3. Analytical Methods

7.2.1 Scratch Wound Healing Assay

When cells in the T75 flasks reached 80% confluency, the normal growth media was
replaced with serum free media for cell cycle synchronization [205]. This facilitates
both cell motility and cell scratch experiment to be established following trypsiniza-
tion of a single cell suspension. Cell cultures were trypsinized using the procedure
described in Chapter 6, subsection 6.2.2.1. Next, single cells were replated in 6
well plates at a density of 100,000 cells/ml ie 2 ml cell suspension/well. 2 µl blasti-
cidin were also added to each well. Each 6 well plate was divided equally between
conditions: three wells were plated with normal cells and three wells with PC1,2
knockdown (disease) cells. The plated cells were allowed to reach 100% conflu-
ency which typically took approximately one week. Culture media was replenished
every 2 days using 2ml culture media and 2 µl blasticidin per well. Once the plated
cells reached 100% confluence, they were serum starved for 2 days by using 2 ml of
serum free media per well. After serum starvation, each monolayer was scratched
vertically using a 200 µl pipette tip. Next, the wells were rinsed using fresh culture
media and 2 ml culture media and 2 µl blasticidin was added to each well. As in
the case of the motility experiments, cell imaging was performed using an Olympus
Ix70 microscope with a moving stage. For each well, 8 non-overlapping fields (10
x magnification) were taken along the wound. Images for each field were acquired
every 10 minutes. For each position, the cells were recorded for between 2-4 days
(one replicate was recorded for 2 days while the other 3 for 4 days).

7.3 Analytical Methods

A number of quantitative spatial and temporal characteristics were extracted from
the time-lapse microscopy image data of the scratch wound healing assays. The
first characteristic is the rate of ’healing’ the gap, from the time the wound is in-
flicted until it closes, which reflects the effects of factors that alter the motility and
growth of cells. The time-dependent rated is calculated based on the ratio between
the area in the image occupied by the cells and the total area of the image at suc-
cessive time points. Furthermore, to characterise and compare the directionality of
cell movement within the cell layer during the wound healing, the linearity of indi-
vidual cell trajectories was calculated for the two experimental conditions involving
normal and abnormal cell lines. Finally, Haralick texture features [145] were calcu-
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lated for each of the image frames generated over the course of the experiment. The
following sections describe in more detail the analytic methods used in each case.

7.3.1 Wound Closing Rate

In order to quantify the wound closure rate, a standard image segmentation strat-
egy [353] was performed on the frames in each video using standard MATLAB
procedures. For each frame the following operations were carried out sequentially:

1. entropyfilt function in MATLAB [235] was applied to the image in order to
represent the pixels based on the smoothness of the textures they come from.
The picture representation is now better for segmentation as the background
represented by the wound will be very dark coming from a very homogeneous
area of the picture and the cell layer will appear very bright.rather the original
representation where the intensity of the pixels show high variance due to
noise produced by the illumination of the plate.

2. The filtered image was converted to a grayscale image by applying the mat2gray
function. This is important for the next step where the segmentation threshold
function needs as input a matrix in which the values of the elements are in the
range of a grayscale image.

3. The nonparametric and unsupervised method for automatic threshold selec-
tion for image segmentation [269], implemented by the Matlab function graythresh,
was used to select the optimal threshold of gray level for extracting the area
represented by the wound and the area represented by the cell layer. Once the
threshold was computed it was used to convert the image to a black and white
one using im2bw.

4. Small connected objects were removed from images using bwareaopen to
close areas less than 900 pixels.

5. Small open areas and holes were corrected using an algorithm in which mor-
phological reconstruction is used that is implemented by the imfill function in
MATLAB [329]. Once these operations were done, a black and white image
is obtained in which the black pixels represent the wound and the white ones
the cell layer.
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6. The ratio between the number of white pixels and the total number of pixels
was calculated for each frame, representing the ratio between the are covered
by the cell layer and the total area of the frame.

In order to characterize each condition, the ratio obtained for the first frame
in each video is subtracted from the ratios in the following frames. The obtained
quantity for a imaging position p will be the time series:

crp(tn),n ∈ 0, . . . ,N−1 (7.1)

with tn the timepoint corresponding to frame number n+1.
Next the average ratios and standard deviations for the frames taken at the same

time-point in all positions for a condition are calculated and the results plotted to
create a visual description of the wound closing progression.

To further analyse the way in which the wound closing rate evolves with time,
the difference between the average ratio of the cell layer in a frame across a con-
dition and the average ratio 4 hours later was computed for the first 100 frames,
covering the first day of the experiment. More formally for 2 time series are calcu-
lated for each condition:

dhealthy(tn) = mhealthy(tn +24)−mhealthy(tn) (7.2)

dPKD(tn) = mPKD(tn +24)−mPKD(tn) (7.3)

where mc(tn) = ∑p∈C crp(tn) with C the set of positions for a condition c.
In order to compare the rate at which the cells in a condition close the wound

after reaching the same average gap width as the initial state of the other condi-
tion, the following procedure was applied to shift the series to having same initial
conditions:

1. Find which condition has a lower mc(t0). This condition will be called c1 and
the other condition c2.

2. Find the first timepoint, t f for which

mc1(t f )≥ mc2(t0) (7.4)
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3. Define the shifted difference time series:

sdc1(ti1− f ) = dc1(ti1), i1 ∈ { f , f +1, ...,99} (7.5)

sdc2(ti2) = dc2(ti2), i2 ∈ {0, ...,100− f} (7.6)

to be used for further analysis.

7.3.2 Individual Cell Tracking in Scratch Healing Assays

The individual cells were tracked using the method previously described in chap-
ter6, subsection 6.3.2, using the manual tracking plugin for Image J by Cordelières
[79]. Cells were followed for 72 frames (corresponding to 12 h) and the obtained
trajectories were then analysed using different measurements. In order to give the
cells time to be less tight and recover from the scratching, the tracking was started
with frame 50, corresponding to 8 more than 8 hours from the initial scratch. The
cells analysed for tracking were randomly selected in each movie corresponding to
a field, as long as they formed the first cell layer facing the wound. For each well,
30-35 cells were tracked to ensure an equal contributions to the final measurements
with a total of 100-105 cells being tracked per condition. The trajectories of the
cells represent their centerpoint positions (C(x),C(y)). The system of axes is the
same as in the previous chapter.

The first quantity used to assess the directionality of the cells was the confine-
ment ratio defined in Chapter 4 section 4.3.1. In the present analysis, the focus was
on the movement of the cells in the direction perpendicular to the scratch, that is
along the x-axis of the images, so two other quantities were also calculated.

The first quantity was the distance travelled by each cell along the x-axis over
the given time interval, defined as

xdist = sign(256− x(t0))× (x(tN)− x(t0)) (7.7)

with x(t0) the initial position of the cell on the x axis and x(tN) the final position
of the cell on the x-axis. The sign function is used to distinguish between the cells
located to the left (x < 256) and to the right (x > 256) of the wound, which move in
opposite directions.

The second quantity was similar to the confinement ratio, defined as the ratio
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between the distance travelled along the x-axis and the total length of the trajectory

xnorm = xdist/dtot (7.8)

where dtot the total length of the trajectory distance defined in Chapter 4-section
4.3.1, was also used to quantify the directionality of cell movement with respect to
the x-axis.

An interesting observation that was made during the tracking and analysis of cell
movement was that some cells moved away from (rather than toward) the wound
during the tracking period. This was quantified by calculating for each cell the
difference between its initial and final position along the x axis on the path travelled
for 60 minutes (6 successive image frames)

For one cell the measure is defined as:

xprop =
card{sign(256− x(t0))× (x(ti+T )− x(ti))< 0|i ∈ {0, ...N−T −1}}

N−T
(7.9)

where x(ti) is the cell’s position on the x axis at frame i+1, N the total number of
frames for which the cell is tracked and T the number of frames for the time window.

7.3.3 Haralick Texture Features

Haralick texture features are used here to characterize the overall texture of the cell
layers during the wound healing for the two types of cells. Once image segmenta-
tion has been performed, each frame was processed to eliminate the gap before the
Haralick texture features were computed.

For each image frame, consider the associated matrix A ∈ Nmxn, where m, n are
the number of pixels along the horizontal and vertical axes respectively and A(i,j)=1
if (i,j) belongs to the segmented cell layer and A(i,j) = 0 if the pixel belongs to the
gap region.

Given that the wound is approximately rectangular, eliminating the pixels in the
image corresponding to every column j in the matrix A satisfying A(i,j)=0, for all
i=1,m, most of the area corresponding to the wound in an image is eliminated as
shown in Figure 7.1.

For every image frame Ik , the matrix Ak was generated and used to calculate

Ick = Ik ◦Ak (7.10)
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Figure 7.1: Example of the elimination of the wound in a picture. The white area in the
middle represents the area eliminated by the algorithm

where ◦ is the Hadamard or element-wise product [248].
The final image I′ck was obtained by eliminating all columns containing only

zero entries. The Haralick features described in Chapter 4 section 4.5 were calcu-
lated for every I′ck using the standard Matlab function for calculating the grey-level
co-occurrence matrix and the free toolbox available online[366] for extracting the
Haralick features.

Pixel intensities were discretised into 32 levels and the co-occurrence matrix
was assumed to be symmetrical. In order to make the texture characterization ro-
tationally invariant, the standard method proposed by Haralick et al. [145] which
averages the features taken at angles of 0◦,45◦,90◦,135◦ was applied to each frame.

This resulted in one value for each Haralick feature for each frame of the movie
of a specific position.
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7.4 Comparison of Wound Healing Rates in Scratch
Healing Assays

The first step taken to analyse the wound scratch assay was to compare the rate of
wound closure in healthy cells compared to disease cells. As described in Chapter 4
section 4.4, the wound closing rate has been reported to be altered in other diseased
cells ie HEK [226], MEF [59] and MEK [395] cells. Four technical replicates were
performed. Figure 7.2 presents each experiment individually, as a plot of the mean
and standard deviation of the ratios across all fields for each condition.

Figure 7.2: Evolution in time of the ratio of the frames occupied by the cells in the wound
healing assay

The results are displayed only up to frame 248 corresponding to 2 days of cell
tracking. The reason why is this done is that in most movies by this frame cells
made contact. Once this happens the rest of the wound is not closed as 2 sheets
moving to each other so the data was not considered in this analysis.

The segmentation algorithm gave good results when the wound was closing,
correctly identifying background and cell layer areas. Figure 7.3 displays examples
in this sense. These results make the first part of the graph where there is constant
increase in the ratio, the most important for comparing the wound closing rates of
the cells coming from the 2 conditions.
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Figure 7.3: Snapshots of the wound closing and the results given by the segmentation
algorithm (white - area detected to be covered by the cell layer, black-area detected as cell
free)

Figure 7.4: Plot of the values of the two timeseries dhealth(tn) and dPKD(tn) for each repli-
cate.
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Figure 7.5: Means, standard deviations and the results of a Welch t-test for dhealth(tn) and
dPKD(tn) for each replicate

As the results show, there seems to be an increase in the rate at which the healthy
cells close the wound in all replicates as the average ratios seem to show a steeper
increase in time. In order to further investigate this, the time series dhealth(tn) and
dPKD(tn) for the first 100 frames were calculated.

The means and standard deviations for the two time series were calculated and
a Welch t-test was applied on their values to quantify the differences between them.
Figure 7.4 shows the plots of the time series and Figure 7.5 the calculated statistics.

Two observation can be made, the rates increase with time and the healthy cells
show clear higher wound closing rates. This confirms the literature on the subject
which indicates that as the wounds narrow, the rate at which they heal increases,
making the initial width of the gap an important factor in the cells healing rate
[200]. In order to investigate how this affects the present analysis, the mean and
standard deviations of the initial ratios across the 2 conditions were calculated for
the 4 replicates and a Welch t-test employed to assess the significance of the ob-
served differences. The results are available in Figure 7.6.
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Figure 7.6: Initial ratios for the four replicates

Figure 7.7: Plot of the values of the two timeseries sdhealth(tn) and sdPKD(tn) for each
replicate.
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As it can be observed, there seems to be quite a uniform distribution in the
average ratio of the cell layer in the first frame across replicates, with 2 replicates in
which the healthy cell layer occupies more space than the disease layer, 1 replicate
in which this situation is reversed and one in which the observed differences are
statistically insignificant. In order to eliminate the initial wound width as a factor
in cell behaviour, a comparison was done starting in the moment when the average
wound width in the condition with higher initial width becomes roughly equal to
the average initial width in the other condition. The time series sdhealth(tn) and
sdPKD(tn) were calculated, their plots as well as means and standard deviations and
the results of a Welch t-test being available in Figure 7.7 and Figure 7.8.

Figure 7.8: Means, standard deviations and the results of a Welch t-test for sdhealth(tn) and
sdPKD(tn) for each replicate

The first observation that can be made is that in three of the replicates, each
corresponding to a different initial condition the healthy cells close the wound at a
faster rate even when shifting the time-series to start at the same average gap width.
In the case of replicate number 2 this is inverted, with the disease cells closing the
wound faster. The results suggest that the observed differences are due to another
factor present in that replicate. As by shifting the time-series the comparison is
done between cells that have been travelling for a while (around 10 hours in this
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case) and cells that have just underwent scratching which is bound to produce cell
damage [178] a reasonable explanation is that the higher migration capacities of the
healthy cells were not enough to overcome the stress produced by scratching when
comparing to the disease cells which had time to recover.

The results strongly suggest that the healthy cells have a better capacity to close
the wound even when accounting for the differences in its initial width. This result is
further explored in the following section by analysing the cells capacity for directed
movement.

7.5 Directionality of Cell Movement During Wound
Healing

For linearity analysis, cells were tracked individually. In one of the experiments, a
technical problem led to immobility of the microscope stage for an undetermined
period. When the problem was detected and solved, the positions of the imaging
fields were slightly moved. The period of the defection and the difference in po-
sitioning were small enough not to affect significantly the data on wound closing
ratio and on texture analysis but unfortunately the error made linear cell tracking
analysis impossible. As a result, for this section of the analysis, only 3 replicates
are reported.

The linearity of cell movement was assessed by plotting the trajectories of in-
dividual cells starting from the same point as shown in Figure 7.9. These plots
do not allow for a clear conclusion of the effects of disease on cell movement but
an interesting observation was that some cells seem to be moving away from the
wound.

In order to be able to further investigate the effects of PKD1 and PKD2 knock-
down on the directionality cell movement, the confinement ratio was calculated for
the two experimental . Figure 7.10 shows the mean and variance of the confine-
ment ratio in between conditions for each replicate. A p-value resulting from a
Welch t-test was calculated in each case to assess the statistical significance of the
difference.
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Figure 7.9: Trajectories of the cells in each replicate for each condition. The number of
cells whose trajectories were plotted in each case is displayed

Figure 7.10: Linearity of cell movement (calculated using the confinement ratio)
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Figure 7.11: Distance travelled by the cells towards the wound along the x-axis.

Figure 7.10 indicates that there might be a reduction in the directionality of the
movement of the abnormal cells, which can be observed in the first 2 replicates
while in the case of the 3rd replicate the averages seem to be approximately equal.
However, the differences in the 3 replicates were not statistically significant. This
suggests that this is not the most representative measure as it does not prioritize a
specific direction for cell movement. In a wound closing experiment, the cells have
a directional movement, which is perpendicular to the direction of the wound. To
take this information into consideration, 2 additional measures were employed, the
distance travelled by a cell on the x-axis, which is perpendicular to the direction
of the wound and the distance travelled on the x-axis relative to the total distance
travelled, which will be called the x-axis proportional distance. The results for the
2 measures on the 3 replicates are summarised in Figures 7.11 and 7.12.

As can be observed, the distance travelled on the x-axis is clearly reduced in
the case of disease cells. This was expected considering the slower closing rate of
the wound. More interesting, the same reduction was observed in the proportional
x-axis distance showing that the disease cells seemed to lose some of their capacity
for directional movement. In 2 of the replicates the difference is clearly statistical
significant, with a p-value below the generally accepted threshold of 0.05. In the
case of the 3rd replicate, the p-value was slightly above 0.05. The final analysis of
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cell movement was motivated by the observation that some cells seemed to move
away from the wound at least for a specific interval of time. This could also explain
some of the reduction in the movement on the x-axis. To quantify this, the position
of each cell at the beginning and the end of a one hour time window was observed
and the proportion of time in which the cell was closer to the wound was recorded.
The results are illustrated in Figure 7.13 More information on the procedure can be
found in subsection 7.3.2.

As the graphs show, the percentage of time a cell is closer to the wound is consis-
tently lower in the disease cells in all 3 replicates, a difference that was statistically
significant.

These results suggest that the difference in the distance travelled by the cells
on the x-axis has 2 factors, a loss in the linearity of movement and a decrease in
cellular persistence to move towards the wound. Out of the two factors, the second
one seems to be the dominant as it was significantly different in all 3 replicates.

Figure 7.12: Distance travelled towards the wound along the x-axis relative to the total
length of the path of the cell
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Figure 7.13: Proportion of frames in which a cell is closer to the wound after 1 hour of
travelling

7.6 Comparative Texture Analysis

The Haralick textural features of the contiguous cell layers were computed for each
frame as described in section 7.3.3. In his original work, Haralick proposed 14
features. In practice, 5 features are generally used as they have shown to pro-
duce good results with a varied range of image types such as magnetic resonance
imaging (MRI) [381], multispectral bio-images [62] or computed tomography (CT)
images[402]. These features are: contrast, energy, entropy, homogeneity and corre-
lation and have been employed in the present analysis. Figures 7.14-7.17 show the
data for the 4 replicates.
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Figure 7.14: Trajectories in time represented through means and standard deviations across
all the positions in a condition for the 5 Haralick features in the first replicate of the wound
closing experiment

Figure 7.15: Trajectories in time represented through means and standard deviations across
all the positions in a condition for the 5 Haralick features in the second replicate of the
wound closing experiment
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Figure 7.16: Trajectories in time represented through means and standard deviations across
all the positions in a condition for the 5 Haralick features in the third replicate of the wound
closing experiment

Figure 7.17: Trajectories in time represented through means and standard deviations across
all the positions in a condition for the 5 Haralick features in the fourth replicate of the wound
closing experiment
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With the exception of correlation, the features had a clear separation between
the 2 conditions. It is important to note that Contrast which is a measure of differ-
ences between neighbouring pixels appeared to be lower in the case of the disease
cells. The same pattern can be observed in Entropy which as a measure of random-
ness becomes lower when pixels have similar values. As expected, the measures of
homogeneity of the picture are raised in the case of disease cells. The general infor-
mation that can be extracted from these results is that the frames containing healthy
cells seem to show more differences in the values of the pixels. Another interesting
observation is the pattern of progression over time that can be best seen looking at
Contrast. The Contrast level seems to be descending in both conditions until around
the frame 100-200 after which is starts to increase until around frame 350-400 when
it seems to be reaching some stability. Looking at the videos, the cells are quite tight
in the beginning when the cell layer was freshly wounded (Figure 7.18A). Then, as
the cells start migrating, they get flatter and their tightness relaxes. Between frames
100-200 (Figure 7.18B) is when cells seem to make contact between the 2 sides of
the gap. From this moment on, they start to fill the gaps by multiplication so it is
expected that the tightness will increase. By frame 400 in most movies, 100% con-
fluence can be observed (Figure 7.18C). These observations suggest that Contrast is
correlated with the tightness of the cells. The other conclusion that could be reached
if this is true is that disease cells lose some of their cell adhesion characteristics.

Figure 7.18: Snapshots of the cell layer in a movie. A-frame 1, B-frame 170, C-frame 380

7.7 Discussion

The results presented in this chapter strongly indicate that the knockdown of PKD
1 and 2 genes:
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1. disrupts the loss of the directional migration toward extracellular matrix and

2. alters their spatial organisation

The directionality of disease cells migration was impaired most clearly when
measuring their movement along the x-axis. The most obvious difference was ob-
served in some cells moving in the opposite direction to the wound, an extreme
example where the trajectory of movement was greater than 90◦ from the desired
trajectory with the healthy cells being at positions further from the wound after a
period of time in around 20% of the frames while the double knockdown ones in
around 30% of the frames. Similar results were reported in MEF cells [59] where
cells with deleted PKD1 travelled at an angle greater than 90◦ to the direction of the
wound while the wild-type cells never crossed this threshold.

In respect to the changes in spatial organization, the Contrast was the Haral-
ick texture feature showing the largest variation between the two conditions. To
interpret the results it is important to summarise first the basic principle underpin-
ning phase contrast microscopy. In a phase contrast image, the intensity of pixels is
calculated based on the shift of phase between light wave-fronts travelling through
different portions of the specimen [301]. In a normal phase contrast image of a cell
culture, thicker portions of the cell appear darker while the thinner portions appear
lighter [301]. Also, specific to the phase contrast microscopy is the so-called halo
effect in which the margins of a cell are represented by high intensity pixels. This
information is important when looking at shape of cells when they are travelling
freely versus when they are stationary within a monolayer. A simplified representa-
tion of the 2 cases is shown in Figure 7.19.

Moving cell vs cell in monolayer representation. When the cell are moving
their height gradually increases from margins to the nucleus. When they are in the
monolayer the height is approximately constant.

As it can be observed from Figure 10, the thickness of a moving cell seems to
be gradually descending from the nucleus to its margins while in a monolayer the
cells seem to have constant high thickness. In the case of a phase contrast image,
the 2 cases should produce a gradual increase in pixel intensity from nucleus to
the margins in the case of the moving cell while in the case of the monolayer cell
it should produce many pixels with very low intensity representing the cell body
surrounded by very high intensity pixels representing the halo effect.

As shown in Chapter 4-subsection 7.3.3 the formula for Contrast is:
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Figure 7.19: Moving cell vs cell in monolayer representation. When the cell are moving
their height gradually increases from margins to the nucleus. When they are in the mono-
layer the height is approximately constant. Taken from: Yeaman, C., Grindstaff, K. K., &
Nelson, W. J. (1999). New perspectives on mechanisms involved in generating epithelial
cell polarity. Physiological reviews, 79(1), 73-98. [396]

Contrast =
N−1

∑
n=0

n2
∑
|i− j|=n

Gi, j (7.11)

The formula can be simplified by replacing ∑|i− j|=n Gi, j with a term pn which
represents the proportion of pixel pairs whose difference in intensity is n and N
the maximum difference in level between 2 neighbouring pixels after discretisation.
The formula becomes:

Contrast =
N−1

∑
n=0

n2 pn (7.12)

with ∑
N−1
n=0 pn = 1

In the first case, of moving cells when the difference in intensity is gradual it is
expected that pn will have high values for small values of n, representing the pixels
in the cell. Also high values of p will exist for the n corresponding to the difference
in intensity level between the pixels representing the margin of the cells and the
pixels in the halo.

In the second case, it is expected that all the pn’s except p0 and pN−1 will be
zero or at most have insignificant values as neighbouring pixels inside the cells will
have nearly the same values while the pixels at the margin of the cell will produce
significant differences from very dark pixels corresponding to the cell to very bright



Chapter 7. Analysis of Normal vs PKD1,2 Knockdown ciPTEC Cells in
Wound Healing Assays 145

ones corresponding to the halo. By increasing the density of the cells, the area of
each cell reduces which also increases the ratio between pixels on the border and
pixels inside the cell thus lowering p0 while increasing pN−1. As a result, when
100% confluence is reached, the contrast is expected to grow with the tightness of
the cells.

The differences observed in this study are similar to other studies which indicate
that the adhesion capacities of cells with PKD1 mutations are reduced. Examples
in this sense are represented by an analysis done by Rocco et al. [295] in which
they show that adhesion molecules are reduced in kidney cells coming from mice
with PKD, or a study by Silberberg et al. [324] in which kidney cells coming from
healthy humans were compared to cells coming from human kidney cysts and the
authors show the formers form monolayers which are more resistant to the action
of trypsin.

Another study [27], this time using computer simulations show that if the pa-
rameter responsible for describing cell adhesion is lower than normal, the cells start
to create formations that look like cysts.

Further testing is needed to confirm the possibility of using contrast as a measure
for cell tightness, but the technology for creating phase contrast images and the
way in which the feature is computed combined with the results obtained in this
study and the literature available on tightness of cells affected by disease seem to
indicate it as a good candidate for this application. At the moment other studies have
proposed methods for approximating cell density from images of cells but they rely
on computing the average area of each cell after solving the more complex problem
of segmentation [171] [53]. A method based on Haralick features will provide a way
to do it directly from pixel intensity, circumventing accurate image segmentation.

7.8 Summary

In this chapter, different analysis methods were applied to a wound healing assay to
compare the properties of control PTEC cells and those with knockdown of PKD1,
2 during cell migration.

The experiment was set up by growing cells in a 6-well plate until confluence
using 3 wells for each condition, then creating a vertical wound in each well using
a 200µl pipette tip and taking images using phase contrast microscopy every 10
minutes for a period of 2-4 days, with 7-8 fields per well.
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The first measure employed to study the differences between the 2 conditions
was the rate at which both types of cells were able to close the wound. In order to
do this, the percentage of an image covered by cells was calculated for each frame
of the movie taken at a specific location using automatic segmentation. The results
show that the healthy cells were faster in closing the wound.

To investigate why disease cells were slower in wound closure, further analy-
sis was performed on the trajectories of individual cells. Although the confinement
ratio, a conventional measure of directionality of cell movement, shows some differ-
ences between the two conditions, the differences were not statistically significant
and thus inconclusive. Further analysis in which the movement of cells along the
x-axis and a new quantity consisting in the confinement ratio where the initial and
final positions of the cells are evaluated only along the x-axis was employed to
reveal differences between the two conditions.

Another analysis carried out involved computing the percentage of time a cell is
closer to the wound than further away from it. The results show that the normal cells
travel significantly more along the x axis toward the opposite edge of the wound
whilst abnormal cells show a significantly higher degree of randomness.

The results of texture analysis using Haralick features show that the texture is
smoother in the case of the cells affected by the disease than in the case of healthy
cells. The Haralick feature Contrast, appears to be well correlated to cell pack-
ing density of the cells suggesting that adhesion characteristics is altered in cells
affected by ADPKD . Further studies are needed to confirm this observation.



Chapter 8

Conclusions and Future Work

In this thesis, a study of ADPKD pathogenesis was conducted using microarray
data and time-lapse cell imaging. The thesis sought to apply the latest techniques in
feature selection, system identification and modelling in order to reveal new infor-
mation about the disease.

Firstly, a new framework using state of the art techniques for the mathematical
analysis of time-course microarray gene expression data has been created during the
current work. This serves two purposes: selection of potentially relevant genes for a
specific condition and modelling of the regulatory network governing their interac-
tions. By applying the proposed framework to two different sets of microarray data
derived from studies of Pkd1 knockout mice, a set of genes previously connected
to the disease were identified, the most important being Cdkn1a for the first dataset
and Pkd2 for the second, proving its capacity to select relevant features. Also, two
genes, Cphf (upregulated) and Guca2b (downregulated) were indicated as the most
relevant by analytical feature selection methods. Of interest, both of them have also
been linked to cancer, suggesting they might be biologically relevant for ADPKD.
Mathematical models of gene interaction have show that for the first dataset Cdkn1a

appears to up-regulate Cphf in the network for control subjects, a connection that
is broken in the case of the mutant subjects. In the case of the second dataset, Pkd2

seems to downregulate Guca2b in the case of the mutant subjects. In future studies,
it would be interesting to compare the expression of Cphf and Guca2b in other dis-
ease models, both in vitro (cellular) and in vivo (mouse, rat). If the differences are
consistent, the effect of knocking out Chpf or over-expressing Guca2b in disease
cells or tissues could be analysed. The later could be performed as described by
Menezes et al. [242] and Menezes et al. [243] to assess their effects on cystogenesis
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in vivo. To test the regulations between genes, Pkd2 and Cdkn1 could be under and
over expressed in diseased and healthy biological models and the effects on Cphf

and Guca2b could be observed.
Secondly, it was observed that on ciPTEC cells, ADPKD, simulated by knock-

ing down Pkd1 and Pkd2, seems to increase division time. Also, the use of a drug,
octreotide, on the diseased cells does not seem to affect their division capacity. This
is at odds with the literature on the subject where most studies [256][292][349][350]
show that proliferation is increased by disease and decreased by octreotide [360][73]
[218][17]. The observed results could be a feature of lentiviral transduction, cell im-
mortalisation or tubule of origin so future studies with other cell models including
primary cultures is needed to resolve this question. Second, the observed effects of
octreotide on cell division could be dose-dependent so more doses should be tested.

Thirdly, quantification of migration using state of the art random motion math-
ematical models suggests that the disease lowers speed of ciPTEC cells. Measures
for straightness of the motion, some never used before on ADPKD studies also
suggest that the cells affected by the disease lose their capacity to maintain direc-
tion.These results are similar to the literature on the subject. Octreotide used in
the low-density healing assays show some increase in the capacity of the cells to
migrate but not to the level of the healthy ones. This is an interesting result as
the literature shows that octreotide seems to slow down cell migration [332][10].
Again, studies on more cell lines, using various concentrations of octreotide could
be used to better understand the effect of the drug on cell migration. Also a study
on octreotide effects could be run using the wound-healing assay.

Finally, the last important result is the interesting finding that the Haralick fea-
ture Contrast was correlated with the tightness of the cell layer, a feature altered in
the disease cells. This observation could be used in future as a non-invasive, easy to
compute measure to assess cell confluence and in the case of wound closure analy-
sis, as a measure for cell-cell adhesion. Future work could include analysing a wider
range of epithelial cells at different states of confluence. A weakness in the current
analysis was a high variance among the same time points in the same experimental
conditions. The current analysis used raw images obtained from a phase contrast
microscope so future analysis could be performed after image pre-processing to
eliminate some of the possible noise in the measurements.

In conclusion, this thesis has utilised new approaches to study ADPKD patho-
genesis and created some theoretical instruments for analysing cells and diseases.
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Several findings in gene expression, network connections and cell behaviour have
been identified which open up new directions for future research.
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