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Abstract

Both frequentist and Bayesian approaches have successfully been used in fine mapping of

complex disease genes. We thoroughly compare, by simulation, a frequentist approach (Se-

quential Logistic Regression (SLR)) with three other Bayesian-inspired approaches in fine

mapping case-control studies: HyperLasso(HL), (PiMASS), and the Normal-Gamma (NG)

prior. Our results indicate considerable variation in performance of all methods dependent on

the scenario considered. The main advantage here of the Bayesian approach is that it allows

inclusion of functional genomic information in the prior. We show how to include a certain

form of functional information (published functional significance (FS) scores) in the NG prior

whilst dealing efficiently with missing functional information.

FS scores were partitioned into four natural groups each of which was given a specific

prior. We show how this approach can improve detection of the causal SNP even when it is

highly correlated with several nearby SNPs. We show by using simulated case-control data

that the modified NG prior can increase the true positive rates at relevant low false positive

rates compared to SLR, PiMASS, HL, and the standard NG prior.
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Chapter 1

Basic molecular biology and statistical

genetics

This Chapter will discuss the background statistical genetics relevant to this research. The

process of protein formation and genetic mutation will be discussed and statistical approaches

to identifying specific mutations will be discussed briefly. Moreover, the breast cancer top hits

data will be discussed at the end of this Chapter, which is used regularly in this research.

1.1 The human genome and DNA mutations

This section is intended to give a brief overview of the production of protein from deoxyri-

bonucleic acid (DNA). The human body consists of millions of cells. The genome is all the

genetic information of an organism, contained in each cell nucleus. In humans, there are two

copies of each chromosome; one copy comes from the father and the other comes from the

mother. There are 23 pairs of chromosomes; 22 pairs of autosomes and a pair of sex chro-

mosomes. In terms of chromosome number, there are two types of cells: haploid and diploid

cells. Haploid cells contain a single cope of each chromosome whilst diploid cells contain two

copies. The sperm and egg are haploid and all other cells are diploid. The genome is made of

deoxyribonucleic acid (DNA) and all genetic information is kept in this DNA.
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1.1.1 The central dogma

The central dogma is that double-stranded DNA is transcribed into single stranded ribonucleic

acid (RNA) which is translated into amino acids, the building blocks of proteins (see figure

1.1). We now describe the processes involved in the central dogma in detail.

Figure 1.1: The central dogma.

Deoxyribonucleic acid (DNA)

The genome is made of deoxyribonucleic acid (DNA) and DNA is made of nucleotides. The

nucleotide consists of three components: a sugar, a phosphate group and a nitrogenous base,

where the sugar is called deoxyribose and there are only four nitrogenous bases in DNA: ade-

nine (A), guanine (G), cytosine(C) and thymine (T). These are carried on a ribose - phosphate

backbone. DNA includes two strands that are twisted to form the double helix shape. Adenine

always links with thymine by two hydrogen bonds and cytosine always links with guanine by

three hydrogen bonds across the helix. Each strand has two ends, a 5′ end and 3′ end and

these strands run opposite to each other. They are antiparallel, because one strand runs from

5′ → 3′ whereas the second strand runs from 3′ → 5′ see figure 1.2 for an illustration
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Figure 1.2: Deoxyribonucleic acid (DNA).

Deoxyribonucleic acid (DNA) replication

Here we will discuss the process of DNA replication. The two strands of parent DNA are

split up into two daughter DNA strands. Initially an enzyme called helicase is used to unzip

the parent DNA forming a replication fork. These two separate strands are used as templates

for producing new double-stranded DNA. Another enzyme called primase begins the process

by creating a primer which is a small fragment of RNA. This fragment is the starting point

for creating the new DNA strands. An enzyme called DNA polymerase links to the primer to

create the new strand. This polymerase is able to run only in the 5′ → 3′ direction. The two

new DNA strands created are called leading strand and lagging strand and each of them has

its own process of creation. The leading strand is created in a direct continuous way where

the DNA polymerase adds the complementary bases one by one from 5′ all the way to 3′.

However, creating the lagging strand is more complicated than creating the leading strand.

The reason behind this is that the lagging strand runs in the opposite direction to the leading

strand. In order to create the lagging strand, the DNA polymerase makes several sequential
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fragments in the 5′ → 3′ direction (Okazaki fragments). Then an enzyme called exonuclease

destroys the RNA primer from both DNA strands. Another DNA polymerase together with

DNA ligase fills the resulting gaps which are left behind by the destruction of the RNA primer.

Therefore, the process will result in two daughter DNA molecules. This process usually is

called semi-conservative because each of the two resulting daughter DNA molecules has one

strand from the parent DNA molecule (Strachan and Read, 2004).

Figure 1.3: Deoxyribonucleic acid (DNA) replication.

Ribonucleic acid (RNA)

Ribonucleic acid (RNA) is a single-stranded molecule. Therefore, it has only one long se-

quence of nucleotides. The nucleotide includes three components: a sugar, a phosphate group

and a nitrogenous base, where the sugar is called ribose and there are only four nitrogenous

bases in RNA: adenine (A), guanine (G), cytosine(C) and uracil (U) (see figure 1.4).

There are three types of RNA in the cells:

1. Messenger RNA (mRNA) is a molecule that determines the polypeptides to be pro-

duced.

2. Transfer RNA (tRNA) is used to transform the amino acids from cytosol to ribosomes

and also it is used to translate RNA into protein.

3. Ribosomal RNA (rRNA) is used to produce the ribosomes in the cell nucleus.

Table 1.1 summarises the major differences between DNA and RNA.
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Nucleic acid Number of strand Nitrogenous bases Sugar

DNA 2 Adenine (A), Guanine (G), Deoxyribose

Cytosine(C) and Thymine (T)

RNA 1 Adenine (A), Guanine (G), Ribose

Cytosine(C) and Uracil (U)

Table 1.1: The major differences between DNA and RNA

Figure 1.4: Ribonucleic acid (RNA). A represents Adenine, U refers to Uracil, C represents
Cytosine, and G refers to Guanine.

Proteins

Proteins take a variety of forms such as enzymes scaffold proteins, membrane receptors, struc-

tural proteins for examples. Each protein has a particular function in each cell. The building

units of proteins are the amino acids. There are only 20 amino acids that are used to produce

different proteins in humans. Producing the protein is the last stage of the central dogma.
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Transcription and translation

The two main operations in the central dogma are the transcription process and translation

process, which transcribes the segment of DNA to mRNA and translates the resulting mRNA

to protein, respectively. In this section we will discuss these processes.

Transcription is the process of transcribing a segment of DNA to RNA. To transcribe a

sequence of mRNA, firstly, RNA polymerase connects to one of the DNA strands at a promoter

region which is the starting region. The mRNA will be built by adding new nucleotides. Each

nucleotide G on DNA will build nucleotide C on mRNA, each nucleotide C on DNA will

build nucleotide G on mRNA, each nucleotide T on DNA will build nucleotide A on mRNA

and each nucleotide A on DNA will build nucleotide U on mRNA instead of nucleotide T.

This process will continue until the RNA polymerase reaches the stop region which is called

the terminator region. The polymerase will remove from the DNA strand and the mRNA will

be released. Then the mRNA is cleaned up by removal of the sequence of nucleotides that

do not code for any of the 20 amino acids. These RNA sequences are called introns. Finally,

the amino acid coding parts of the RNA sequences (exon) are kept and spliced together. The

mRNA containing only the exons is called mature mRNA. The mature mRNA moves from

the nucleus to the cytoplasm where the process of translation will occur.

Figure 1.5: The transcription of DNA.

Translation is the process of translating the mature mRNA to proteins. The mature mRNA

is a single-stranded molecule containing the exons. Within the exon three consecutive nu-

cleotides are called a codon. Any mature mRNA has start codon that is almost always AUG

and has a stop codon that can take one of the following forms: UGA, UAG or UAA stop
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codons terminate translation. To translate the mature mRNA, at the beginning of the trans-

lation process a small ribosomal subunit connects to the mature mRNA at the start codon.

Then tRNA comes carrying two products: the amino acid and the anticodon codon. The an-

ticodon codon contains the three nucleotides that are the complementary nucleotides of the

three nucleotides on the mature mRNA. Then the large ribosomal subunit connects to the ma-

ture mRNA to produce the active ribosome to be ready to start the process of translation at

some location (say P) in the large ribosomal subunit. After that a new tRNA comes carrying

a new amino acid and new three nucleotides that correspond to the next three nucleotides on

the mRNA. This new tRNA links to the large ribosomal subunit at some location (say A) and

peptide bonds will be built between the two amino acids curried by the tRNA at P and A. This

process continues producing the polypeptides which form the proteins until the stop codon

is reached (see figure 1.6). At this stage the protein releases and both the small and large

ribosomal subunits disconnect. Each protein is synthesised based on the amino acid sequence

encoded by the mRNA which has been transcribed from the DNA.

Figure 1.6: The translation of DNA.

1.1.2 DNA mutations and inheritance of mutations

In this section we will discuss inheritance of mutations including meiosis and recombination.

Also, we will discuss the DNA mutations and its types.

In section 1.1, it was mentioned that everybody has two copies of each chromosome, a
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copy comes from father and a copy from mother, but how are these copies inherited by the

offspring? The inheritance begins in the sperm and ovum during the meiosis process. Meiosis

occurs in two stages: meiosis I and meiosis II (for more details see (Strachan and Read, 2004)).

In the meiosis process, the diploid progenit or haploid cell is divided into four haploid cells.

These four haploid cells are not identical to those of the father and mother but contain parts

of both parents. During meiosis the male and female derived chromosomes recombine (on

average at one position per chromosome) to generate new chromosomes that contain genes

from both parents. This process is called recombination. Recombination acts to increase

genetic diversity and as a result, everybody has a unique DNA sequence that distinguishes it

from others.

Recombination can occur between any two loci in the same chromosome. For instance,

assume a person has two copies of a particular chromosome (say chromosome 2) and this

person has genotype AB at some locus in one copy of chromosome and has genotype ab at

the same locus on the second copy of chromosome. This person could produce a gamete with

AB or ab. If this is the case, these are called non-recombinant. If they produce a gamete with

Ab or aB, then these are called recombinant. If the two loci are physically close to each other

then recombination is less likely to occur between them resulting in a non-recombinant. This

tendency for nearby alleles on the same chromosome to be co-inherited is known as linkage

disequilibrium (LD) (see Section 1.1.2).

During meiosis, DNA inherited from parents may also change as a result of DNA mu-

tation. These mutations could be adding extra bases (insertions), missing bases (deletions)

or rearranging bases. These three mutations are relatively rare. However, the most common

DNA mutation is a Single Nucleotide Polymorphism (SNP), in which a single nucleotide is

replaced with another nucleotide.

Single nucleotide polymorphism (SNP)

A Single Nucleotide Polymorphism (SNP) is a DNA sequence variation occuring in at least

1% of a population. A SNP is a single nucleotide which can be A, T, C or G in the DNA which

differs between individuals. For instance, let AAGCCTA and AAGCTTA be DNA sequences

from two different people; these sequences have a difference in a single nucleotide at position
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5 with allele C and T respectively; this is an example of a SNP (see figure 1.7). If the first allele

occurs in 70% of the population and the second allele occurs in 30% of the population, then

allele T is called the minor allele and its minor allele frequency (MAF) = 0.3. The genotype

is the two bases (alleles) carried by an individual at that SNP. An individual is homozygous

at a particular SNP site if they have the same base pair for both alleles, whereas if they have

a different base pair they are heterozygous. For instance, the “CC” or “TT” genotypes are

homozygous whereas the “CT” genotype is heterozygous.

Figure 1.7: Single Nucleotide Polymorphism (SNP).

Linkage disequilibrium

A very important concept in genetic statistics is linkage disequilibrium (LD) which is used to

measure allele association at two loci in the genome. LD can be measured byD or D′ both

introduced by Lewontin (1964) and r2 (Hill and Weir, 1994). Suppose there are two loci A

and B with Allele 1 and Allele 2 at each. Let nij be the relative frequency of the haplotype

having allele i at locus A and allele j at locus B (see Table 1.2). Then the allelic relative

frequency at each locus is given in Table 1.3. The linkage disequilibrium (D) is defined as

the difference between the haplotype relative frequency and the product of the allele relative

frequencies of the two alleles at two loci (see Table 1.4). Thus, we have

D = n11 − p1q1, (1.1)

where D could be positive or negative.
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Markers Allele 1 at locus A Allele 2 at locus A

Allele 1 at locus B n11 n21

Allele 2 at locus B n12 n22

Table 1.2: Haplotype relative frequency across two diallelic loci.

Markers Allele 1

Allele 1 at locus A p1 = n11 + n12

Allele 2 at locus A p2 = n21 + n22

Allele 1 at locus B q1 = n11 + n21

Allele 2 at locus B q2 = n12 + n22

Table 1.3: The allelic relative frequency at two diallelic loci based on the haplotype frequen-
cies.

Devlin and Risch (1995) calculated D′ as follows

D′ =

 D
min(p1q2,p2q1)

if D ≥ 0;

D
max(−p1q1,−p2q2)

if D < 0.

D′ is normalising the D, hence it takes values in [−1, 1]. A more common measure of LD is

the correlation between a pair of loci (r2) and it is calculated as

r2 =
D2

p1p2q1q2

, (1.2)

where r2 also takes values in [0, 1]. r2 tends to be used as the LD measure because the power

to detect a causal SNP at an untyped locus is directly related to the r2 value between untyped

locus and a genotyped locus. For example, suppose the power to detect a causal SNP at a

genotyped locus is 80%. If the causal SNP is actually an untyped SNP in LD with the typed

SNP (with a correlation of r2) then the power to detect a causal SNP at the untyped SNP is

approximately 80 times of r2.
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Markers Allele 1 at locus A Allele 2 at locus A Total

Allele 1 at locus B n11 = p1q1 +D n21 = p2q1 −D q1

Allele 2 at locus B n12 = p1q2 −D n22 = p2q2 +D q2

Total p1 p2 1

Table 1.4: Relationship between haplotype relative frequency, allelic relative frequency, and
the deviation (D).

1.2 Genetic association studies

Population-based genetic association studies attempt to establish statistical associations be-

tween genetic sequence information (i.e. variation in the nucleotide sequences of the genomes)

of unrelated individuals in a population and the measurable traits of those individuals, in par-

ticular the presence or progression of complex diseases, which are thought to be associated

with multiple genetic polymorphisms. There are four main types of population genetic as-

sociation studies: Candidate Polymorphism Studies, Candidate Gene Studies, Fine Mapping

Studies and Genome-Wide Association Studies (GWAS) (Foulkes, 2009). In this section, we

will discuss briefly the four types of genetic association studies. Moreover, we will discuss

the basic of statistical genetics and the types of model used.

An important concept of statistical genetics is penetrance which represents the proportion

of carriers of a variant (SNP or nutation) who exhibit the trait associated with that variant.

There are many statistical approaches having high power to identify variants with high pene-

trance , but these do not necessarily have high power to identify variants with lower penetrance

, for example linkage studies. However, there are some approaches such as Genome-Wide As-

sociation Studies (GWAS) and fine-mapping studies that can identify variants having lower

penetrance.

1.2.1 Candidate polymorphism studies

These investigate association between a particular SNP and the disease trait. These are carried

out when there is already scientific evidence to suggest that the SNP is functional. The purpose

of the study is to determine if the SNP directly influences the disease trait (Foulkes, 2009).
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1.2.2 Candidate gene studies

These investigate association between multiple SNPs in the same gene and the disease trait.

These SNPs are not necessarily functional or causative of the disease trait. The true disease-

causing locus may be unknown. The SNPs act as ‘markers’ of the true locus and are chosen

based on linkage disequilibrium (LD) between the SNPs and the true disease-causing locus,

which is caused by a low probability of recombination at points between the disease-causing

locus and the SNP loci. The SNPs are, therefore, presumed to be physically proximate on the

genome to the disease-causing locus (Foulkes, 2009).

1.2.3 Genome-wide association studies (GWAS)

These investigate association between SNPs and the disease trait, but without the prior infor-

mation present in the candidate studies. The aim is to cover large numbers of SNPs across the

entire genome. The pre-processing of this data requires a large amount of processing power

and specialised software which caters to the high-dimensional data (Foulkes, 2009). In or-

der to identify putative causal SNPs, many researchers use 5 × 10−8 as a p-value threshold

in their standard hypothesis test, see for example (Easton et al., 2007; Fachal and Dunning,

2015). GWAS studies typically contain a million SNPs. Therefore, the 5 × 10−8 comes

from a Bonferroni correction for multiple testing where the number of tests is one million(
0.05
106 = 5× 10−8

)
.

1.2.4 Fine mapping studies

In Genome-Wide Association Studies (GWAS), many regions are identified as having poten-

tially causal SNPs based on the p-values obtained. It is difficult to determine a particular

causal SNP in that region. Fine mapping studies look at the specific issue of narrowing down

the set of potentially interesting SNPs. This could either be by creating a ranked list of SNPs

and selecting a given % for further study, or by a formal decision-theoretic process using

Bayes factors and posterior odds (much less common) or by using likelihood ratios (Kichaev

et al., 2014; Udler et al., 2010).
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1.2.5 Statistical genetics

In this section we will talk about the elementary aspects of statistical genetics that include

odds, odds ratios, statistical model, linkage disequilibrium, univariate approaches, p-values

and Bayes factors and their limitations.

Odds and odds ratio

Odds in a genetic sense is the probability of being a case given a specific genotype divided

by the probability of being a control given that genotype. The odds ratio (OR) is a tool to

measure the association between an exposure (genotype in this case) and an outcome (case-

control status). The OR refers to the ratio of the odds of being a case conditional on having a

specific genotype to the odds of being a case conditional on another specific genotype (Szklo

and Nieto, 2012).

Statistical model

A genetic model is defined by Foulkes (2009) as “the biological interaction between alleles

on homologous chromosomes”. We will talk about three genetic models: the additive, the

dominant, and the recessive. Let us take a simple example for the genetic models. Suppose

the simple situation where the alleles are “A” and “G” at a particular SNP, where “A” is the

major allele while “G” is the minor allele. In addition, suppose that we are looking for a

binary output, y, which takes two values, either 0 or 1 (control and case respectively). An

additive model means that the effect of having a single copy of the “G” allele is to increase

log odds of being a case (y = 1) by an amount equal to β, and having two copies of the “G”

allele will increase log odds of being a case (y = 1) by 2β. Let I(xi,k = G) be an indicator

for whether the allele (x) on the kth homolog (k = 1, 2) is equal to “G” for individual i, then

an additive genetic model for this SNP is expressed as

P (yi = 1) =
exp{α + β[I(xi,1 = G) + I(xi,2 = G)]}

1 + exp{α + β[I(xi,1 = G) + I(xi,2 = G)]}
. (1.3)
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However, a dominant genetic model supposes that having at least one copy of the “G” allele

will result in an increase of β in the log odds of being case and is given by the following

expression

P (yi = 1) =
exp{α + β[I(xi,1 = G or xi,2 = G)]}

1 + exp{α + β[I(xi,1 = G or xi,2 = G)]}
. (1.4)

The third type of model considered is a recessive model that supposes that both homologs must

include the rare allele in order for the effect to be present. The effect is that for individuals

with 2 copies of the rare allele the log odds of being a case (y = 1) increases by β relative

those not carrying 2 copies of the rare allele. This model is expressed as

P (yi = 1) =
exp{α + β[I(xi,1 = G and xi,2 = G)]}

1 + exp{α + β[I(xi,1 = G and xi,2 = G)]}
. (1.5)

In this project we will consider only the additive model as this is by far the most common

form of genetic model identified in fine-mapping studies to date.

Univariate approaches and its limitations

In fine mapping studies researchers often apply univariate approaches such as p-values which

are the most popular summary measure for inference in GWAS (Balding, 2006). Univariate

logistic regression is most commonly used in fine-mapping studies to calculate p-values. In

a Bayesian framework univariate Bayes factors (BFs) are an alternative to p-values which

were studied by Wakefield (2009) in context of GWAS. He defined (BF) as the ratio of the

probability density of the alternative hypothesis over null hypothesis and it is given as follows

BF =
f (data | H1)

f (data | H0)
. (1.6)

Moreover, he showed BFs could be used alongside posterior odds in a formal decision-

theoretic framework. However, these univariate methods ignore the relationship between

SNPs. Therefore, they lose some information by not considering the joint distributions of

SNPs when there is more than one causal SNP in the region. Moreover, these methods are

likely to be less powerful than the multiple SNP approaches such as stepwise logistic regres-

sion, PiMASS, Hyper lasso and Normal-Gamma prior considered in this thesis.
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1.3 Published top hits from large breast cancer genome wide

association studies

In this thesis we take a Bayesian approach to fine-mapping and so we need to put a prior on the

effect size (β). Wakefield (2008) suggested elicitation from an expert statistical geneticist. To

avoid the subjective nature of this procedure we choose to use the top hits identified in several

large-scale breast cancer GWAS in addition to early identified BRCA mutations. Although

most of the variants discovered (at p-values < 5× 10−8) have not yet been validated they are

strong candidates for causal SNPs, and assuming they do tag actual causal SNPs, the true

effect sizes are likely to be close to those of the top hits identified.

Several genome wide association studies were used to identify SNPs associated with breast

cancer. The first five potential causal SNPs were identified in 2007 (Easton et al., 2007) fol-

lowed by the identification of another 68 potential causal SNPs using data from both European

and Asian ancestry reviewed in Fachal and Dunning (2015). According to Fachal and Dun-

ning (2015), most of the observed odds ratios for these causal SNPs were between 1.05 and

1.26. Moreover, they reported that the odds ratio of approximately 1.05 is the smallest GWAS

significant odds ratios discovered, at a p-value of < 5× 10−8 threshold.

In a further study, Michailidou et al. (2015) applied a meta-analysis of 11 genome wide

association studies (GWAS) including 15, 748 cases and 18, 084 breast cancer controls along

with 46, 785 cases and 42, 892 controls from 41 studies, which were genotyped on a more

than 200, 000 marker custom array (iCOGs). Additionally, they used 1000 Genomes Project

(Altshuler et al., 2010) as a reference data set to impute more than 11 million SNPs, having

set r2 > 0.3 and minor allele frequency (MAF)> 0.005. They applied GWAS to 120, 000

individuals of European ancestry. The threshold they selected to identify the association be-

tween breast cancer and SNPs was the usual p-value < 5 × 10−8 threshold. In their study,

a 15 further SNPs were discovered as candidate causal SNPs for breast cancer. Furthermore,

65 other SNPs were identified as a potential causal SNPs associated with the breast cancer

for more information see (Stacey et al., 2007, 2008; Zheng et al., 2009; Ahmed et al., 2009;

Thomas et al., 2009; Turnbull et al., 2010; Fletcher et al., 2011; Ghoussaini et al., 2012; Siddiq
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et al., 2012; Michailidou et al., 2013a; Cai et al., 2014; Milne et al., 2014).

In the first two studies (Fachal and Dunning, 2015; Michailidou et al., 2015), 83 SNPs

were identified as potential causal SNPs for breast cancer and the causal SNPs discovered

explain about 14% of the familial risk of breast cancer. However, Michailidou et al. (2013b)

used Quantile-Quantile (Q-Q) plots to estimate that there may be up to 1000 additional com-

mon causal SNPs having small effect sizes that are yet-to-be discovered. The vast majority of

these yet-to-be discovered variants have odds ratios between 1.02 and 1.05. These undiscov-

ered variants have been estimated to explain an additional 14% of the familial risk of breast

cancer.

Henceforth we will refer to 148 potential causal SNPs so far as the “breast cancer top

hits” data or BCTH data. We considered the 68 potential causal SNPs identified by Fachal

and Dunning (2015), the 15 potential causal SNPs identified by Michailidou et al. (2015) and

65 potential causal SNPs identified by others see (Stacey et al., 2007, 2008; Zheng et al.,

2009; Ahmed et al., 2009; Thomas et al., 2009; Turnbull et al., 2010; Fletcher et al., 2011;

Ghoussaini et al., 2012; Siddiq et al., 2012; Michailidou et al., 2013a; Cai et al., 2014; Milne

et al., 2014).

When deriving effect size priors we will use both the observed estimates of the log odds

ratios of the top hits and the fact that there are likely to be a large number of additional

potential causal SNPs in breast cancer.
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Chapter 2

Multivariate statistical models

In the previous Chapter we discussed basic molecular biology including the central dogma,

DNA mutations and inheritance of mutations, but also discussed the statistical genetics in-

cluding genetic association studies and statistical model. Moreover, the published top hits

from large breast cancer genome wide association studies were discussed.

Variable selection is an important objective for researchers nowadays. In frequentist statis-

tics, stepwise regression is often applied in various ways, forward, backward or combined.

Bayesian approaches to variable selection are also common. In fine-mapping, these Bayesian

approaches include Hyper lasso and PiMASS. They employ shrinkage priors to induce model

sparsity. We also consider in detail an alternative shrinkage prior (the Normal-Gamma prior)

that has never been considered in fine-mapping association studies.

In this Chapter we will give a literature review for frequentist approaches (stepwise logistic

regression) and Bayesian approaches (Hyper lasso and PiMASS) used in fine-mapping studies

and genome wide association studies.

In this Thesis, we will use lower-case for scalars, lower-case bold for vectors, and upper-

case bold for matrices.

2.1 Multiple logistic regression

In this Section, we demonstrate how to calculate and interpret the coefficients of logistic

regression. It is a particular type of generalised linear models (GLM) (Nelder and Baker,
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1972) and one of the most commonly applied techniques with data with a binary response

variable.

We have case-control data so the response variable is a binary variable which takes the

value 1 if it is a ‘case’ and 0 if it is a ‘control’. We are interested in finding the relationship

between the binary response variable y (case-control status ) and p categorical independent

variables xj , where i = 1, . . . , n and j = 1, . . . , p, which in our situation are the SNPs. n

denotes the sample size and p the number of SNPs. We only consider additive models on the

log risk scale so xij , takes the values 0, 1 and 2 according to the number of rare alleles.

Logistic regression focuses on pi = Pr (yi). Since yi ∼ Ber (pi) and are assumed to be

independent the likelihood can be expressed as

n∏
i=1

pyii (1− pi)1−yi , (2.1)

where pi ∈ [0, 1]. The question is how one can model pi given some data, denoted by X .

The matrix X is called design matrix and the first column is a vector of 1s. To make the

model linear a logit transformation log pi
1−pi can be used. This has the advantage over other

transformations that it confers a meaningful interpretation to the parameters of the statistical

model.

The logistic model is then expressed as

logit (pi (xi;β)) = log
pi (xi;β)

1− pi (xi;β)
= xTi β, (2.2)

where β = (β0, β1, . . . , βp)
T is the vector of beta coefficients and xi is a column vector of

explanatory variables starting with 1 for the intercept term. Rearranging for pi, this yields

pi (xi;β) =
exp

(
xTi β

)
1 + exp (xTi β)

=
1

1 + exp {− (xTi β)}
. (2.3)

When we fit logistic regression models we have to know how to interpret the coefficients

obtained from the model. In linear regression, the βj shows the expected change in the re-

sponse variable y as the independent variable xj increases by one unit, while keeping all the

other variables at the same unit. On the other hand, in the logistic regression, the expected
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change in logit (p) is equal to βj as we increase the independent variable xj by one unit so βj

is the increase in log odds of disease for each additional copy of the risk allele at SNPj . We

focus on logistic regression with multiple SNPs so the question is how can one estimate the

vector of log odds β and the variance-covariance matrix in this case. These can be calculated

using the Newton-Raphson method (Casella and Berger, 2002). It uses the current value β(i)

for β = (β0, β1, . . . , βp)
T and calculates the updated value via

β(i+1) = β(i) +
[
−`′′

(
β(i)

)]−1
`′
(
β(i)

)
. (2.4)

The log likelihood of the parameters in a logistic regression model is given by

` (β) =
n∑
i=1

log pi ((xi;β))yi (1− pi ((xi;β)))1−yi . (2.5)

The first derivative of ` (β) with respect to β, in matrix form is given by

`′ (β) = XT (y − p (x;β)) , (2.6)

where p (x;β) represents E (Y ). The second derivative of of ` (β) with respect to β can be

expressed in matrix form as

`′′ (β) = −XTWX (2.7)

where W is the diagonal matrix with diagonal elements pi (xi;β) (1− pi (xi;β)). Equation

(2.4) is iterated until the β vector of parameter estimates has converged. If this is the case

the estimates are the maximum likelihood estimates. The variance covariance matrix of β is

given by the inverse of the Fisher information matrix or the negative of the inverse of (2.7).

For more details see (Casella and Berger, 2002).

2.2 Stepwise logistic regression

Generally, applying multiple logistic regression to all SNPs directly in frequentist fine-mapping

analysis is not recommended, because of multicollinearity which could lead to instability in
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parameter estimates. Therefore, stepwise regression is used to select an appropriate statistical

model for the given data. There are three kinds of stepwise regression: forward, backward

and combined. Here, we will focus only on forward stepwise regression because this method

is generally used in fine-mapping study. The algorithm of the forward stepwise regression in

logistic regression is as follows

1. Start with minimal model which just contains the intercept term.

2. Apply univariate regression for each variable so p regressions are run.

3. Keep the variable having the minimum Akaike information criterion (AIC), if it is less

than that of the minimal model.

4. Calculate the minimum AIC, if a variable was added at 3, and consider adding each of

the remaining p− 1 variables separately.

5. Keep the variable added in 4 that has the smallest AIC if it was less than that in 3.

6. Repeat the process until no more variables are added.

The Akaike information criterion is given by

AIC = 2p− 2ln
(
L
(
β̂; y, x

))
, (2.8)

where p is the number of parameters and L
(
β̂; y, x

)
is the maximum value of the likelihood

function.

In genome wide association studies (GWAS) and fine mapping studies researchers such as

French et al. (2013) and Glubb et al. (2015) applied a specific method to chose the appropriate

model for the data via the forward stepwise regression. Because of the potentially large num-

ber of SNPs that could be added in the models they filter the SNPs before applying stepwise

regression. The algorithm they applied is as follows

1. Perform univariate logistic regression for each of the p SNPs.

2. Calculate the p-value of those p SNPs.
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3. Keep the SNPs with p-values less than the given threshold and remove the rest.

4. Apply forward stepwise logistic regression on those SNPs retained in 3.

Note that the p-value threshold is specified based on the family wise error, which controls the

probability of rejecting the null at least once when multiple hypotheses are tested.

This strategy was applied when analysing our case-control data using logistic regression.

In order to compare this method to other Bayesian methods via a ROC curve, we calculated

the true positive rate and false positive rate for different p-value thresholds used to initially

filter the SNPs. This gives a set of points that can be plotted in ROC space. We followed

the same strategy as French et al. (2013) and Glubb et al. (2015). We counted the number of

causal SNPs that were chosen in the final model and the number of chosen non-causal SNPs.

We calculated the false positive rate (FPR) and the true positive rate (TPR) as follows

FPR =
Number of selected non-causal SNPs
Total number of true non-causal SNPs

(2.9)

TPR =
Number of selected causal SNPs
Total number of true causal SNPs

. (2.10)

We used these values to draw points in the ROC space. For example, suppose the case control

data has 100 SNPs, 5 of which are causal SNPs, and the p-value threshold is 10−4. First filter

the SNPs by applying univariate logistic regressions. Assume 80 SNPs, 4 of which are causal,

were kept. After applying the forward stepwise logistic regression, the final model has 10

SNPs 2 of which are causal. Thus, the FPR and TPR are given as follows

FPR =
8

95
= 0.08

TPR =
2

5
= 0.4.

This (FPR,TPR) co-ordinate can then be plotted in ROC space. We vary the p-value

threshold to end up with a set of (FPR, TPR) co-ordinates that we can plot.
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2.3 Hyper lasso

Tibshirani (1996) proposed the least absolute shrinkage and selection operator (LASSO) which

minimises the residual sum of squares subject to the sum of the absolute value of the coeffi-

cients being less than a constant. Its aim is to shrink some coefficients to exactly zero. He used

a double exponential distribution (DE) as penalising function or equivalently as a prior from

a Bayesian perspective (see section 2.3.2). Hoggart et al. (2008) developed the Hyper lasso

with a more flexible prior distribution, the normal exponential gamma distribution (NEG).

Hoggart et al. (2008) exploited new developments in stochastic search methods to show

the feasibility of simultaneously analysing, within a few hours on a desktop computer, all

SNPs in a genome-wide study to identify the subset which best predicts disease outcome and

explains case-control status with a specified family-wise error rate, and to demonstrate that

this produces better SNP identification than single-SNP studies using the Armitage Trend

Test (ATT), because it takes into the account the joint effects of SNPs. Additive, dominant

and recessive contributions to disease risk can all be implemented.

In this section, we will give an over view of the Hyper lasso (HL). Moreover, we will

demonstrate how one can apply the Hyper lasso software and how to specify the parameters.

Advantages and disadvantages of the Hyper lasso will be discussed.

2.3.1 Shrinkage priors

The concept of variable selection is now used widely because of the abundance of data con-

taining a huge number of variables such as genetic data. Therefore, reducing the number of

variables becomes increasingly important. Bayesian approaches are commonly used to over-

come this problem. Mixture priors (e.g spike and slab) are used to separate the signal and

noise in many Bayesian variable selection approaches. An alternative to mixture priors are

absolutely continuous priors that shrink non significant variables towards zero but apply tittle

shrinkage to large effect sizes (Bhattacharya et al., 2015, 2012; Griffin and Brown, 2010).

Here we will discuss a common shrinkage prior.

Selecting independent shrinkage priors having a density that is clearly peaked at zero is a

22



common selection for a regression coefficient (β). A common shrinkage prior is the double

exponential distribution (DE), which has only one parameter. The prior distribution of β can

be written as a scale mixture of normal distributions as follows

DE(β|ξ) =

∫ ∞
0

N(β|0, σ2) Ga(σ2|1, ξ
2

2
)dσ2 (2.11)

=
ξ

2
exp{−ξ|β|},

where N (. | a, b) is the usual Gaussian probability density with mean a and variance b and

Ga (a, b) is a gamma distribution with shape a and scale b with probability density given by

Ga (a, b) =
1

Γ (a) ba
xa−1e−

x
b . (2.12)

−0.5 0.0 0.5

−
4

−
3

−
2

−
1

0
1

2

x

lo
g(

de
ns

ity
)

DE
NEG: λ = 1
NEG: λ = 5
NEG: λ = 10

Figure 2.1: The log density of the double exponential distribution (solid line) and the log
density of normal exponential gamma distribution for λ = 1 (dashed line), λ = 5 (dot line)
and λ = 10 (dashed dot line). This plot is reproduced using the same values used in Hoggart
et al. (2008).

Moreover, the normal-exponential-gamma distribution (NEG) (Hoggart et al., 2008) can
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be used as a shrinkage prior, which is a generalisation of the DE. It is a two parameter distri-

bution (λ, γ) and it can be written as follows

NEG(β|λ, γ) =

∫ ∞
0

∫ ∞
0

N(β|0, σ2)Ga(σ2|1,Ψ)Ga(Ψ|λ, γ2)dσ2dΨ

= κ exp(
β2

4γ2
) D−2λ−1(

|β|
γ

)
, (2.13)

where D is the parabolic cylinder function (Abramowitz and Stegun, 1964) and is given by

Dp(z) = 2
p
2 e−

z2

4

{ √
π

Γ
(

1−p
2

)Ω
(
− p

2
,
1

2
;
z2

2

)
−
√

2πz + sin
(
πa
z

)
Γ
(

1− p
2

) Ω
(1− p

2
,
3

2
;
z2

2

)}
, (2.14)

Ω is the confluent hypergeometric function (Abramowitz and Stegun, 1964) given by

Ω(z; δ, ε) = 1 +
δ

ε

z

1!
+
δ(δ + 1)

ε(ε+ 1)

z2

2!
+
δ(δ + 1)(δ + 2)

ε(ε+ 1)(ε+ 2)

z3

3!
+ · · · , (2.15)

and κ is a normalising constant given by

κ =
2λλ

γ
√
π

Γ

(
λ+

1

2

)
, (2.16)

and λ and γ are parameters referred to as the shape and scale respectively.

If λ and γ are such that ξ =
√

2λ
γ

, the NEG distribution would converge to the DE dis-

tribution having ξ parameter (Hoggart et al., 2008). Figure 2.1 shows the log density of the

DE distribution and different three log densities of the NEG having the same density at zero.

It can be seen that as λ decreases the shrinkage of large non zero coefficients in the NEG

distribution is less than the DE distribution, because its tails are heavier than the DE density

tails.

2.3.2 The optimisation algorithm

Hoggart et al. (2008) maximised the posterior density f (β |X,y) over β, where X is the

n×pmatrix containing the normalised genotype data, in which xij represents the jth genotype

in person i and y is the vector of response variables which are coded 1 for a case and 0 for a
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control. Using Bayes theorem the log posterior density is given by

logf (β |X,y) = ` (y |X,β)− logf (β) + constant, (2.17)

where ` refers to the log-likelihood for the logistic regression model and logf (β) refers to the

negative log-prior density. Note that the minus sign here represents log f (β) as a log penalty

function. This is equivalent to maximising a penalised log-likelihood. If the DE distribution

is selected as a prior, the log posterior density logf (β |X,y) can be maximised over β

using the Lasso procedure. Rather than using the EM algorithm which does not converge

quickly with case-control data, Hoggart et al. (2008) applied the CIG algorithm (Bazaraa

et al., 2013), which can optimise each coefficient in turn until convergence. No one had

applied this algorithm with the NEG prior previously.

Since we want to find βi that maximises the posterior distribution (i.e. is the posterior

mode) we want to solve

`′ (βj)− log f ′ (βj) = 0. (2.18)

Therefore Newton-Raphson’s method can be used in this case by using the following expres-

sion

β
(i+1)
j = β

(i)
j −

`′ (βj)− log f ′ (βj)
`′′ (βj)− log f ′′ (βj)

, (2.19)

where each derivative is with respect to βj . log f ′ (βj) is the first derivative of the log penalty

function given by

log f ′ (βj) =
sign (βj) (2λ+ 1)

γ

D−(2λ+2)

(
|βj |
γ

)
D−(2λ+1)

(
|βj |
γ

) , (2.20)
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log f ′′ (βj) the second derivative of the log penalty function given by

log f ′′ (βj) =
4

γ2

(λ+ 1)

(
λ+

1

2

) D−(2λ+3)

(
|βj |
γ

)
D−(2λ+1)

(
|βj |
γ

) −
(λ+

1

2

) D−(2λ+2)

(
|βj |
γ

)
D−(2λ+1)

(
|βj |
γ

)
2
 .(2.21)

`′ (βj) is the first derivative of the log-likelihood function given by

`′ (βj) =
∂

∂βj
` (βj) =

∂

∂βj
−

n∑
i=1

log {1 + exp (ηi)} =
n∑
i=1

xijyi
1 + exp (ηi)

, (2.22)

and `′′ (βj) is the second derivative of the log-likelihood function given by

`′′ (βj) =
∂2

∂β2
j

` (βj) =
∂2

∂β2
j

−
n∑
i=1

log {1 + exp (ηi)} = −
n∑
i=1

x2
ij

exp (ηi)

1 + exp (ηi)
, (2.23)

where ηj = β0 +
∑p

j=1 βijxij and yi refers to case-control status. Note that the log likelihood

for the logistic regression model is given by

` (β;X,y) = logf (y |X,β) = −
n∑
i=1

log {1 + exp (−ηi)} . (2.24)

If βj = 0 then to update βj one can calculate the limits of βj as it approaches to zero from

above and below. Thus the updating is not rejected if the βi+1
j is not zero. βj is non-zero if

the following holds (Hoggart et al., 2008)

| `′ (βj = 0) |> log f ′
(
βj = 0+

)
. (2.25)

Calculating the first derivative of log posterior `′ could be computationally expensive, there-

fore the upper and lower bounds work as critical points in calculating `′. If the absolute values

of the upper bound or lower bound is greater than the penalty then calculating `′ is required.
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The upper and lower bounds can be given as

−
∑n

i=1 I (yixij < 0) | xij |
1 + exp (ηmin)

+

∑n
i=1 I (yixij > 0) | xij |

1 + exp (ηmax)
<

∂

∂βj
logf (β |X,y) (2.26)

< −
∑n

i=1 I (yixij < 0) | xij |
1 + exp (ηmax)

+

∑n
i=1 I (yixij > 0) | xij |

1 + exp (ηmin)
,

where I (E) is the indicator function, which equals one if E holds and is zero otherwise.

2.3.3 Selecting prior parameters by controlling type I error

The shape and scale parameters define the penalty and if the data are standardised, the type

I error rate (α) can be appropriately controlled by choosing the prior parameters. The key

relationship between α and the prior is

log f ′(β = 0+) =

√
n0n1

n0 + n1

Φ−1(1− α/2), (2.27)

where n0 refers to the number of cases, n1 represents the number of controls, Φ−1 refers

to the inverse normal cumulative distribution function and α represents the family wise er-

ror. Derivation of equation (2.27) is given in the supplementary material of Hoggart et al.

(2008). The user needs to specify two quantities to run the Hyper lasso: shape (λ) and penalty

(the value of log f ′(β = 0+)) in the Equation (2.27) or shape (λ) and scale (γ). If shape and

penalty or shape and scale are given then the Hyper lasso can be run directly by specifying

these parameters and the data in the software (Hoggart et al., 2008).

In order to calculate the penalty given type I error = 0.05, one can apply Equation (2.27).

Note that f ′(β = 0+) represents the penalty of the prior; α in Equation (2.27) is the family

wise error obtained after some sort of Bonferroni type adjustment for number of the param-

eters. Additionally, to calculate the scale of the prior for the given values, one can equate

equations (2.20) and (2.27) and solve them in terms of the scale γ. In case of β = 0 the scale
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γ can be given as

γ =
sign (β) (2λ+ 1)

log f ′ (β)

D−(2λ+2)

(
|β|
γ

)
D−(2λ+1)

(
|β|
γ

) (2.28)

=
(2λ+ 1)

log f ′ (0)

D−(2λ+2) (0)

D−(2λ+1) (0)

The user needs to choose the inputs carefully, because some input configurations will cause

the software to crash and this is one of the drawbacks of the HL software. HL only returns the

posterior mode (log odds ratios) for those SNPs that are not shrunk towards zero.

2.3.4 Advantages and disadvantages

In this Section, we will focus on the advantages and disadvantages of the Hyper lasso method.

The normal-exponential-gamma prior lead to improved SNP selection compared to single-

SNP tests (Hoggart et al., 2008). Moreover, an explicit expression for the type I error of

the method was obtained, allowing calibration without using permutation techniques. The

method can be applied to quantitative phenotypes as well as case-control phenotypes. Plus,

the method can be extended to look for interactions. Furthermore, the method can also be

used for fine-mapping studies with dense SNP sets. It can also be used for additive, recessive

and dominant effects. Additionally, the false positive rate is reduced compared to single-SNP

studies because of reduced residual variation (known functional SNPs are included in the

model when looking for new SNPs), and power and localisation are also improved (Hoggart

et al., 2008) .

However, the major drawback is that the use of the posterior mode means there is a hard

selection rule: SNPs are either included or not. It would be preferable to give a probability

of inclusion. The hard decision rule means that small changes in genotype could lead to

potentially large changes in the SNPs selected. Also important, from the user perspective, the

program crashes for some combinations of input parameters.
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2.4 PiMASS

PiMASS (Guan and Stephens, 2011) can be used in multi-SNP association analyses (GWAS

or fine mapping studies) to measure the proportion of the variance of the phenotype explained

by the genotype, to calculate the posterior distribution of the number of causal SNPs, and to

calculate the marginal posterior inclusion probabilities of each SNP, a measure of the strength

of the marginal association.

Guan and Stephens (2011) examined the potential of applying Bayesian Variable Selection

Regression (BVSR) to GWAS involving hundreds of thousands of covariates and thousands

of observations, with a view to improving over previous GWAS analyses in the literature

which relied on single-SNP analyses or penalised regression approaches such as the LASSO.

Markov Chain Monte Carlo (MCMC) is used to implement the BVSR. The BVSR method is

compared and contrasted with both the LASSO method and single-SNP methods.

In this Section, we will explain the method used in the PiMASS software, describe the

prior and the method of updating the parameters.

2.4.1 Model and priors used

Although our data are case-control data, we will discuss the prior in the context of the multiple

linear regression model, because the standard normal regression model was demonstrated in

Guan and Stephens (2011). The software of PiMASS also allows the logistic likelihood that

is appropriate for case-control data.

Guan and Stephens (2011) applied a standard normal linear regression model as follows

y|µ,β,X, τ ∼ Nn

(
µ+Xβ, τ−1In

)
, (2.29)

where y represents the vector response variable and X is the design matrix containing n

individuals and p SNPs and β refers to the vector of regression coefficients. µ represents

the mean vector, τ refers to the precision of the errors. In represents the identity matrix

with n rows and n columns and Nn(.) refers to the multivariate normal distribution with n

dimensions. Since most of the βi will be zero, Guan and Stephens (2011) created γ as a p-
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vector of indicator variables that indicates which elements of β are non zero. They let βγ be

the parameter vector for those elements of γ that are 1 ( i.e are included in the model) andXγ

be the columns ofX corresponding to those elements of γ that are 1.

y|γ,µ, τ,β,X,∼ Nn(µ+Xγβγ , τ
−1In). (2.30)

The following priors were specified

τ ∼ Ga (λ/2, κ/2) , (2.31)

µ|τ ∼ N
(
0, σ2

µ/τ
)
, (2.32)

γj ∼ Bernoulli (π) , (2.33)

βγ |τ,γ ∼ N|γ|
(
0,
(
σ2
a/τ
)
I|γ|
)
, (2.34)

β−γ |γ ∼ δ0, (2.35)

where |γ| =
∑

j γj and β−γ represents the vector of coefficients where γj = 0 and δ0 refers

to a point mass on 0. The hyper-parameters are π, σa, λ, κ and σµ .

The hyper-parameters of π and σa are important because π refers to the sparsity of the

model (prior inclusion probability) and σa represents the typical sizes of the log odds ratios.

The hyper-parameters v, κ and σ2
µ were considered less important than π and σa.

A logarithmic prior was used on the sparsity hyper-parameter π as follows

logπ ∼ U(a, b), (2.36)

where a = log(1/p) and b = log(M/p), so that 1
p
≤ π ≤ M

p
, where M is the number

of potential SNPs in the model and p the total numbers of SNPs under consideration. They

specified the maximum of M to be 400, because it can be expensive computationally if one

were to select more than 400. The rationale behind the choice of a prior on logπ rather than π

is that a uniform prior would put too much prior mass on prior proportions close to the upper

limit.

The authors suggested to concentrate on the meaning of priors in teams of the proportion
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of variance in y explained by Xγ (PVE). In the previous selected priors for π and σ2
a, it is

assumed that π and σ2
a are independent random variables and this also means that γ and σ2

a are

independent as well. This means that the PVE increases with more covariates. However, this

assumption is relaxed in PiMASS so that the model could have a small number of covariates

but a high PVE and vice versa. This is achieved by specifying a joint distribution for v (γ, σ2
a).

Guan and Stephens (2011) specified a prior for σ2
a | γ by selecting a flat prior for PVE

which takes values between 0 and 1. In order to achieve this they let V (β, τ) refer to the

empirical variance ofXβ relative to the residual variance
(

1
τ

)
as follows

V (β, τ) =
τ

n

n∑
i=1

(
xTi β

)2
=
τ

n
βTXTXβ (2.37)

whereX has been centred. Now the total proportion of variance in y explained byX for the

regression coefficients β can be expressed as

PV E (β, τ) =
V (β,τ)
τ

1
τ

+ V (β,τ)
τ

=
V (β, τ)

1 + V (β, τ)
. (2.38)

They selected a prior for β | τ such that the induced prior on PV E (β | τ) is distributed as a

uniform distribution. Next, the expected value of V (β, τ) that depends on σ2
a can be used to

obtain v (γ, σ2
a) as follows

v
(
γ, σ2

a

)
= E

[
V (β, τ) | γ, σ2

a, τ
]

= σ2
a

∑
j:γj=1

sj, (2.39)

where sj = 1
n

∑n
i=1 x

2
ij represents the variance of SNP j. Then they defined

h
(
γ, σ2

a

)
=

E [V (β, τ)]

1 + E [V (β, τ)]
=

v (γ, σ2
a)

1 + v (γ, σ2
a)
, (2.40)

where h represents an approximation to the expectation of PVE for a given value for γ and

σ2
a. Also, they suggested a uniform prior on h that is independent of γ. This leads to a prior
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for σ2
a | γ as follows

σ2
a(h, γ) =

h (γ, σ2
a)

1− h (γ, σ2
a)

1∑
j:γj=1 sj

, (2.41)

which achieves the goal of setting a uniform prior on PVE. The important feature for the σ2
a

prior in the PiMASS method is that it applies less shrinkage than other priors previously used

for σ2
a.

2.4.2 Overview of MCMC used in PiMASS

In this section, we will describe the computation of the posterior distributions for the param-

eters in PiMASS.

For the MCMC computations the model was parametrised in terms of (h,γ) instead of

(σa,γ) and the samples were obtained from the posterior distribution of (h, π,γ) on the prod-

uct space (0, 1)× (0, 1)× {0, 1}p as follows

f (h, π,γ | y) ∝ f (y | h,γ) f (h) f (γ | π) f (π) . (2.42)

In order to sample from the posterior distributions of h, π,γ, the marginal likelihood f (y | h,γ)

was calculated, which is possible because the parameters β and τ can be integrated out ana-

lytically. They considered the limit for the hyper-parameters v, κ as they approach 0 and σ2
µ

as it approaches∞ as was discussed in Section 2.4.1.

In the MCMC updating, a Metropolis-Hastings algorithm (Metropolis et al., 1953; Hast-

ings, 1970) was applied to update update h, π,γ jointly. Here, local proposal distributions

for h, π and γ were used. For the proposal distribution for γ, covariates were added to the

model based on their association with the phenotype y. They implemented three proposal

distribution for γ, π and h. Firstly, a proposal distribution for γ can be implemented allow-

ing for three possibilities: adding a covariate, removing a covariate and switching a covariate

in the model. The proposal distribution for π is Beta (| γ ′ |, p− | γ ′ | +1), where γ ′ is the

proposed value of γ. The proposal distribution of h can be given by adding a U (−0.1, 0.1)

random variable to the current value of h. Moreover, in order to improve the convergence rate
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of the MCMC the technique called “small world proposal” is applied. This technique com-

pounds some local moves at random to make a longer range proposal. Finally, they applied

Rao-Blackwellization techniques to reduce the posterior variance (see below).

Posterior inclusion probabilities via Rao-Blackwellisation

Identifying the covariates that have a high probability of inclusion in the model is an important

aspect of inference in GWAS or fine-mapping studies. Therefore, the posterior inclusion prob-

ability (PIP) of the jth covariate P (γj = 1|y) is required. It can be calculated by counting the

proportion of MCMC samples for which γj = 1, but this estimator might have a high sampling

variance. For example, if one runs MCMC several times and each time calculates the propor-

tion of samples for which γ = 1, the proportion might differ greatly. Rao-Blackwellised

estimates are used in order to improve precision as follows

P (γj = 1|y) ≈ (1/M)
M∑
i=1

P
(
γj = 1|y,γ(i)

−j,β
(i)
−j, τ

(i), h(i), π(i)
)
, (2.43)

where γ(i),β(i), τ (i), h(i), π(i) denote the ith MCMC sample from the posterior distribution of

these parameters given y, and γ−j and β−j denote the vectors γ and β excluding the jth SNP.

The probabilities that are being averaged here essentially involve simple univariate regressions

of residuals against covariate j.

2.4.3 Applying PiMASS to case control data

Previously we discussed PiMASS with quantitative phenotype following a normal distribu-

tion. However, PiMASS can also be applied to a binary phenotype. To deal with this kind

of data, the probit link function is commonly used. Latent variable z is used in practice by

assuming that it follows the standard linear regression given in Equation (2.30) and relating

z to y using this expression yi = 1 (zi > 0) (Albert and Chib, 1993). MCMC is performed

to integrate out z for posterior inference. There is extra updating in the binary phenotype

compared to the quantitative phenotype, that is updating the z variables. The advantage of

the probit link function that is used for these latent Gaussian variables does not only allow us

33



to use the same priors for the quantitative phenotype, but also allows us to obtain the signal

summaries by estimating PVE for the latent variables. Note that for a binary phenotype the

priors still relate to unobserved latent Gaussian variables instead of the observed binary phe-

notype. Nevertheless, setting τ to be an improper prior for τ will result an improper posterior

for both τ and z. This issue could be solved by fixing τ to be 1 as has been done in (Albert

and Chib, 1993). Alternatively, the latent variables z can be restricted to have variance 1. In

order to improve the mixing, it can approximate the marginal distribution for z to be normal

distribution to compatible with the standard linear regrission given in Equation (2.30).

2.4.4 Advantages and disadvantages

Guan and Stephens (2011) successfully demonstrated BVSR as a competitive alternative to

LASSO for GWAS, outperforming LASSO in predictive performance and also providing pos-

terior probabilities for each relevant covariate. Also, the use of BVSR allowed the extraction

of more information from the signal data as compared to single-SNP analysis.

However, PiMASS does not attempt to account for non-additive combinations of SNPs or

SNPs that only have an effect in combination with others. Moreover, the method is suscepti-

ble to false positive associations when data quality is poor and genotype errors are correlated

with phenotype, for example in a case-control study if the DNA quality differs substantially

between the controls and cases. Unlike single-SNP studies, this error can impact association

results at other SNPs. Also, the variables are assumed to be included in the model indepen-

dently with equal probability π which ignores local spatial dependence of γ. This does not

account for the common possibility of multiple functional variants appearing in a single gene

(Guan and Stephens, 2011).

2.5 Normal-Gamma prior

In this Section, the normal gamma prior is discussed briefly and we leave detailed discussion

of this prior to the next Chapter.

The method aims to select variables by shrinking “non significant” variables toward zero.

This prior is one of the scale mixture of normals and it can be written in a hierarchical structure
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as follows

βi|Ψi ∼ N (0,Ψi) (2.44)

Ψi ∼ Ga (., .) , (2.45)

where Ψi is the variance of the i regression coefficient. Because its tail is heavier than the

normal distribution it would allow greater discrepancy in the sizes of regression coefficients

comparing to a normal prior.

Griffin and Brown (2010) suggested this prior and they selected a particular prior for each

parameter to construct the hierarchical form of the NG prior

βi|ψi ∼ N (0, ψi) , (2.46)

ψi|λ, γ−2 ∼ Ga

(
λ,

1

2γ2

)
, (2.47)

γ−2|λ ∼ Ga

(
2,
M

2λ

)
, (2.48)

λ ∼ Ex(1), (2.49)

where M = 1
p

∑p
i=1 β̂

2
i , and β̂ is the least square estimate for β.

2.6 Discussion

In this Thesis we choose the multivariate logistic regression and the Hyper lasso (HL), the

PiMASS and the normal gamma (NG) prior, because of the properties that these methods

have. The multivariate logistic regression was considered because it is the most common

method used in fine-mapping studies. However, the HL prior was considered because it is

the most common method that uses a Bayesian type approach and it can work with highly

correlated data as in our case. In addition, PiMASS was selected because of its ability to

deal with correlated data and because it provides a posterior inclusion probability. It appears

to have been rarely used in reported association studies. Finally, the NG prior was selected

because of its different prior structure that has never been used in fine-mapping studies before.

The approach we took with the NG was not to update the SNPs in the model at each MCMC
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iteration (like PiMASS) but just to update all the posterior effect sizes. This has the advantage

of not having to worry about which SNPs to include but has the disadvantage of working

with a covariance matrix with highly correlated explanatory variables. We wanted to assess

how well it would work in this challenging setting. All the above methods perform variable

selection in different ways.

Table 2.1 shows a summary of all four methods in terms of response, model, estimation

method, estimator and prior. It can be seen that all methods have a binary response and

logistic model except the NG prior which has continuous response and linear model because

we use an asymptotic normal likelihood approximation instead of the logistic likelihood. SLR

does not have a prior because it is a frequentist approach. However, the priors of the HL,

PiMASS and the NG prior are Normal Exponential Gamma (NEG), a mixture of point mass

at zero and Normal slab and Normal Gamma (NG) respectively. In order to compare between

the four methods, we calculate the smallest initial univariate p-value threshold that select

potential causal SNPs for SLR using stepwise logistic regression. We used different posterior

summaries in the Bayesian approaches: HL, PiMASS and the NG prior to calculate posterior

modes, posteriori inclusion probabilities and credible intervals respectively.

Method SLR Hyper lasso PiMASS NG

Response Binary Binary Binary Continuous

Model Logistic Logistic Logistic Linear

Estimation method
Stepwise
logistic

regression

Shrinkage
regression

Shrinkage
regression

Shrinkage
regression

Estimator
Initial
p-value

Posterior Modes
Posteriori
inclusion

probabilities

Credible interval
size

Prior None NEG Normal NG

Table 2.1: Summary of the four methods applied in this research.
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Chapter 3

Normal gamma prior

In the previous Chapter we discussed some multivariate statistical model selection approaches

both frequentist (Multivariate Logistic Regression, Step-wise Logistic Regression ) and Bayesian

(HL, PiMASS and NG prior) for case-control data that are used in fine-mapping studies.

In this Chapter, we will study the normal gamma (NG) prior and investigate its features in

the Bayesian framework. Additionally, an asymptotic Gaussian likelihood will be used here

rather than the true logistic likelihood, and the full conditional distribution for each parameter

will be calculated. Some specific computational tools will be used in the MCMC updating

when estimating the parameters and their use will be described. Lastly, we will also use some

prior information about likely effect sizes to inform our prior parameters. In order to find

out the “best” rate parameter κ for the hyperparameter of the NG prior (λ), we will use the

published “top hits” from large breast cancer genome wide association studies (Michailidou

et al., 2015; Fachal and Dunning, 2015).

Here we use the NG prior to mean a fully Bayesian inference procedure with a particular

prior (NG prior) with Gaussian likelihood. Griffin and Brown (2010) only states the full

conditional distributions However, we will derive the full conditional distributions for the

new likelihood and correct some errors in their calculations. We also need to modify the

calculations for our asymptotic likelihood.

In Bayesian regression analysis, choosing the appropriate prior for the model parameters

plays an important role. There are many suitable different distributions which can be selected

as the prior for the unknown regression parameters, such as the double exponential distribu-
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tion in Hyper lasso (Hoggart et al., 2008), the spike and slab in PiMASS (Guan and Stephens,

2011) and the normal gamma distribution (Griffin and Brown, 2010). There is existing soft-

ware for both Hyper lasso and PiMASS but for implementing the NG prior there is only code

in Matlab. However, we wrote R code from scratch to deal with the different likelihood.

These three methods have different procedures. Hyper lasso shrinks many SNPs to exactly

zero (posterior mode), but the NG prior shrinks SNPs towards zero but not exactly to zero.

In PiMASS during each iterations there is a hard decision to select SNPs into the model and

these SNPs only are potentially shrunk towards zero. Therefore, PiMASS is somewhere in

between Hyper lasso and the NG prior.

Griffin and Brown (2010) investigated the influence of the NG prior on β on the estimated

posterior distribution in terms of the posterior mean and variance. They demonstrated the

relationship between the posterior mean, which is a shrinkage estimator, and how the level of

the shrinkage can be affected by the prior distribution used. Additionally, they generalised the

double exponential prior distribution commonly used in Bayesian regression problems.

The standard multiple linear regression model is

y = α1n +Xβ + ε, (3.1)

where y refers to the a vector of response variables, ε is a vector of error terms and εis are

independent and distributed as normal with mean 0 and variance σ2, and X is a matrix of

independent variables with n rows and p columns. α refers to an intercept and 1n is a vector

of 1s with n elements. β is a p-vector of the regression of coefficients in the model. Analysing

properties of the NG prior within the context of the above model within the Bayesian frame-

work was the aim of Griffin and Brown (2010). They were concerned with selecting a suitably

flexible prior for the regression coefficient β that considerably shrunk small parameter esti-

mates but applied less shrinkage to large parameter estimates.

The scale mixture of normals distribution (see for example Andrews and Mallows (1974);

West (1987)) is a common prior distributions for the regression coefficients. This distribution
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can be expressed as follows

π (βi) =

∫
N (βi|0, ψi) dF (ψi) , (3.2)

where F represents a mixing distribution. Griffin and Brown (2010) proposed a continuous

prior distribution which has the following hierarchical structure

βi|ψi ∼ N (0, ψi) and ψi ∼ Ga (θ, φ) , (3.3)

where ψi is the variance of the ith regression coefficients, so that each βi has a potentially

different variance ψi a priori. They set the prior for ψi|λ, γ2 to be distributed as follows

ψi|λ, γ2 ∼ Ga

(
λ,

1

2γ2

)
, (3.4)

which allows sufficient flexibility in the variances. This seems appropriate for fine-mapping

where most coefficients are zero or close to zero but we want to allow for the possibility of

large effect sizes. From Equations 3.3 and 3.4, the prior for βi|λ, γ2 takes a closed form via

the following integral

π
(
βi|λ, γ2

)
=

∫ ∞
0

π (βi|ψi) π
(
ψi|λ, γ2

)
dψi

=

∫ ∞
0

1√
2πψi

e
− β2

i
2ψi

(
1

2γ2

)λ
Γ (λ)

ψλ−1
i e

− ψi
2γ2 dψi

=
1√
2π

(
1

2γ2

)λ
Γ (λ)

∫ ∞
0

ψ
− 1

2
i e

− β2
i

2ψi ψλ−1
i e

− ψi
2γ2 dψi

=

(
1

2γ2

)λ
√

2π Γ (λ)

∫ ∞
0

ψ
(λ− 1

2)−1

i e
− 1

2

(
1

2γ2 ψi+
β2
i
ψi

)
dψi

=

(
1

2γ2

)λ
√

2π Γ (λ)

2 K(λ− 1
2)

(√
β2
i

γ2

)
(

1
γ2 β2

i

)λ− 1
2

2

∫ ∞
0

(
1

γ2 β2
i

)λ− 1
2

2

2 K(λ− 1
2)

(√
β2
i

γ2

) ψ
(λ− 1

2)−1

i e
− 1

2

(
1

2γ2 ψi+
β2
i
ψi

)
dψi
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=

(
1

2γ2

)λ
√

2π Γ (λ)

2 K(λ− 1
2)

(√
β2
i

γ2

)
(

1
γ2 β2

i

)λ− 1
2

2

=
1

√
π 2λ−

1
2 γλ+ 1

2 Γλ
|βλ−

1
2

i | K(λ− 1
2)

(
| βi|
γ

)
, (3.5)

where K refers to the modified Bessel function of the third kind (Abramowitz and Stegun,

1964) and

(
1

γ2 β2
i

)λ− 1
2

2

2 K(λ− 1
2)

(√
β2
i

γ2

) ψ
(λ− 1

2)−1

i e
− 1

2

(
1

2γ2 ψi+
β2
i
ψi

)
(3.6)

is the generalised inverse Gaussian (GIG) probability density function, with support [0,∞).

The variance of βi | λ, γ2 is calculated using the law of the total variance see for example

Casella and Berger (2002). It is calculated as follows

V ar
(
βi | λ, γ2

)
= Eψi

(
V arβi|ψi (βi | ψi)

)
+ V arψi

(
Eβi|ψi (βi | ψi)

)
(3.7)

= E
(
ψi | λ, γ2

)
(3.8)

= 2λγ2 (3.9)

since ψi has a Ga
(
λ, 1

2γ2

)
distribution.

Changing the shape of λ can clearly affect the marginal distribution of βi. Figure 3.1

shows the marginal distribution for βi for the normal gamma prior distribution and how it

depends on the shape parameter of λ. It can be seen that as the shape λ decreases the mass

located close to zero increases.

The value of parameters λ and γ2 play an important role in the posterior parameter esti-

mation. In the normal gamma prior a fully Bayesian method is applied by setting up a prior

for each of these two parameters. These hyperparameters are difficult to estimate via an em-

pirical Bayes method, and this is discussed by Park and Casella (2008). Griffin and Brown
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Figure 3.1: The log density of π (β|λ, γ2) with var (β|λ, γ2) = 2 for λ = 0.1 (solid line),
λ = 0.333 (dashed line) and λ = 1 (dotted line). This plot is reproduced using the same
values assumed in Griffin and Brown (2010).

(2010) admit that their posterior distributions are assumed to be highly multi-modal. As a

consequence of this we use the implementation in Equation (3.49) to explore the modes of the

multi-modal posterior effectively.

Griffin and Brown (2010) utilised a particular prior for each of the model parameters. They

selected the exponential distribution with mean 1 for λ, because it gives variability around the

Bayesian Lasso prior with λ = 1. Additionally, they assumed the variance of βi (i.e. 2λγ2) is

distributed as IG (2,M). They also used a non-informative prior for the intercept parameter

α. However, an improper prior can give an improper posterior; therefore, we propose using

a normal prior with mean 0 and variance 0.1 as prior for α, because the intercept is likely to

take a value close to zero.

Griffin and Brown (2010) selected a particular prior for each parameter to construct the

hierarchical form of the NG prior. With the modification to α, it is given as follows

α ∼ N (0, 0.1) , (3.10)

βi | ψi ∼ N (0, ψi) , (3.11)
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ψi | λ, γ−2 ∼ Ga

(
λ,

1

2γ2

)
, (3.12)

γ−2 | λ ∼ Ga

(
2,
M

2λ

)
, (3.13)

λ ∼ Ex(1), (3.14)

where the prior of γ−2|λ is a transformation from the inverse gamma distribution of the prior

of 2λγ2 (2λγ2 ∼ IG (2,M)) The distribution of (2λγ2)
−1 is the gamma distribution with

scale 2 and scale M
(

(2λγ2)
−1 ∼ Ga (2,M)

)
. Then, a further transformation yields

γ−2 | λ ∼ Ga

(
2,
M

2λ

)
, (3.15)

where M = 1
p

∑p
i=1 β̂

2
i , and β̂ is the least squares estimate for β. Note that the expected

value of 2λγ2 is M, which is sensible since 2λγ2 is the prior variance of βi. Because of high

levels of multi collinearity we choose to use M = 1 rather than a value based on the unstable

estimates β̂i.

They applied both Gibbs sampling and Metropolis-Hasting updates to sample from the

posterior distribution for all the parameters. To update the parameters they used the full con-

ditional distribution for each parameter, and these distributions will be discussed in Section

3.2.

3.1 Asymptotic normal likelihood distribution

In classical statistical analysis, the maximum likelihood estimator is used widely because it

has several desirable features. One of these is that it has an asymptotic normal distribution,

which can be defined as follows: θ̂ is considered asymptotically normal if it holds that

√
n
(
θ̂ − θ0

)
−→ N

(
0, σ2

θ0

)
, (3.16)
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where σ2
θ0

refers to the asymptotic variance of the estimator θ̂, θ0 represents the unknown true

parameter value and n is the sample size . This can be rewritten as follows

θ̂ ∼ N

(
θ0,

σ2
θ0

n

)
. (3.17)

Asymptotically, the estimator θ̂ convergences to the unknown parameter at a rate of 1√
n

(Miller, 1977).

In our case, the estimator β̂ conditional on β is distributed as a normal distribution

β̂|β ∼ N (β,V ) , (3.18)

where V is the estimated variance-covariance matrix from the fitted generalised linear model

(GLM).

For the preceding reasons, rather than using the correct logistic likelihood for the response

which is computationally demanding, we will use the asymptotic Gaussian distribution for

the maximum likelihood estimate for the model coefficients (log odds ratios). This enables us

to speed up our MCMC analysis by using the Gaussian linear model framework with Gibbs

updates for β. The sample sizes used in fine-mapping make this a reasonable asymptotic

approximation.

In order to avoid problems with exact multi collinearity we remove SNPs that have iden-

tical genotypes to another SNP. This allows estimation of V in the GLM.

3.2 Calculating full conditional distributions

In this section, we will calculate the full conditional distributions for each model parameter.

These are modified versions of those given in Griffin and Brown (2010) based on using the

asymptotic Gaussian likelihood and correcting some errors identified in Griffin and Brown

(2010). The full conditional distribution of a particular parameter comes from the joint distri-

bution of all parameters and the asymptotic normal likelihood distribution.
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3.2.1 Joint distribution

We will calculate the joint distributions for the parameters and the response given by Griffin

and Brown (2010) for the asymptotic normal likelihood. The joint distributions are given by

f
(
α,β,X,ψ, λ, γ−2,y

)
= f (α)

p∏
i=1

f (β | ψ)

p∏
i=1

f
(
ψ | λ, γ−2

)
× f

(
λ, γ−2

)
×

f
(
y;X,β,ψ, λ, γ−2

)
= f (α)

p∏
i=1

f (β | ψ)

p∏
i=1

f
(
ψ | λ, γ−2

)
× f

(
γ−2 | λ

)
× f (λ)×

f
(
y;X,β,ψ, λ, γ−2

)
. (3.19)

It is clear that four prior densities and the likelihood are required to calculate the joint

distribution. These prior densities are from Equations 3.10 to 3.14,

f (α) =
1√

(2π) 0.1
exp

{
−1

2

(α)2

0.1

}
(3.20)

f (β | Ψ) =
1√

(2π)n |Ψ|
exp

{
−1

2
(β)T Ψ−1 (β)

}
=

1√
(2π)n |ψi|

exp

{
−1

2

n∑
i=1

(βi)
2

ψi

}
(3.21)

f
(
Ψ | λ, γ−2

)
=

p∏
i=1

(
1

2γ2

)λ
Γ (λ)

(Ψ)λ−1 exp
{
− Ψ

2γ2

}

=

(
1

2γ2

)pλ
(Γ (λ))p

p∏
i=1

(ψi)
λ−1 exp

{
− ψi

2γ2

}
(3.22)

f
(
γ−2 | λ

)
=

(M/2λ)2

Γ (2)

(
γ−2
)2−1 exp

{
−M

2λ
γ−2

}
(3.23)

f (λ) = exp (−λ) , (3.24)

where M = 1.
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3.2.2 Full conditional distributions for α and β

Here we will calculate the full conditional distributions for α and β. Initially, let φ be a vector

that contains α and β as follows

φ = (α,β)T , (3.25)

and let Λ be a diagonal matrix, where its diagonal elements are the precisions of α and β as

follows

Λ = diag
(

1

0.1
,

1

ψ1

,
1

ψ2

, . . . ,
1

ψp

)
. (3.26)

The full conditional distribution for φ comes from the prior of f (φ), which is given by

f (φ) ∝ exp
(
−1

2
φTΛφ

)
, (3.27)

and the likelihood f
(
φ̂ | φ

)
, which is given by

f
(
φ̂ | φ

)
∝ exp

{
−1

2

(
φ̂− φ

)T
V −1

(
φ̂− φ

)}
. (3.28)

Expanding the terms in the exponent in Equation (3.28) gives

−1

2

(
φ̂TV −1φ̂− φ̂TV −1φ− φTV −1φ̂+ φTV −1φ

)
. (3.29)

Equation (3.29) can be written as

φTV −1φ− 2φ̂TV −1φ, (3.30)

because φ̂TV −1φ̂ is a constant because it is not function of φ and φ̂TV −1φ = φTV −1φ̂,

because the variance-covariance matrix V −1 is a symmetric matrix, and φ̂TV −1φ̂ is a scalar
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quantity. Hence the likelihood can be written as

f
(
φ̂ | φ

)
∝ exp

(
−1

2

[
φTV −1φ− 2φ̂TV −1φ

])
. (3.31)

Therefore, the posterior can be given by

f(φ | Λ, λ, γ−2, φ̂) ∝ exp
(
−1

2

[
φTV −1φ− 2φ̂TV −1φ

])
exp

(
−1

2
φTΛφ

)
,(3.32)

f(φ | Λ, λ, γ−2, φ̂) ∝ exp
{
−1

2

[
φT
(
V −1 + Λ

)
φ− 2φ̂TV −1φ

]}
. (3.33)

We are interested in expressing Equation (3.33) as a Gaussian kernel as follows

f(φ | Λ, λ, γ−2, φ̂) ∝ exp
{
−1

2
(φ− µ)T Σ (φ− µ)

}
(3.34)

∝ exp
{
−1

2

(
φTΣφ− 2µTΣφ+ µTΣµ

)}
, (3.35)

where µ represents the posterior mean and Σ refers to an inverse variance-covariance matrix.

To this end, we want to complete the square in Equation (3.33) to obtain the normal distri-

bution for the posterior distribution (the full conditional distribution) as given in Equation

(3.35). By looking at the Equation (3.33) we can observe appropriate values for the inverse

variance-covariance matrix and the posterior mean are

Σ = V −1 + Λ (3.36)

µ = Σ−1V −1φ̂ (3.37)

=
(
V −1 + Λ

)−1
V −1φ̂ (3.38)

This is checked in the following calculations. Let us substitute Equations (3.36) and (3.37)

into the Equation (3.35). Then each term can be rewritten as follows

The first term: φTΣφ = φT
(
V −1 + Λ

)
φ (3.39)

The second term: µTΣφ =
(
Σ−1V −1φ̂

)T
Σφ (3.40)

= φ̂T
(
V −1

)T
(Σ−1)TΣφ (3.41)
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= φ̂TV −1Σ−1Σφ (3.42)

= φ̂TV −1φ, (3.43)

the third term
(
µTΣµ

)
does not depend on φ. Therefore, we will end up with

f(φ | Λ, λ, γ−2, φ̂) ∼N
((
V −1 + Λ

)−1
V −1φ̂,V −1 + Λ

)
. (3.44)

3.2.3 Full conditional distributions for ψi

In this section, we will calculate the full conditional distribution for ψi. The likelihood has

no effect on the full conditional distribution of ψi. In this situation, the full condition can be

derived from the joint distribution as follows

f(ψi | βi, λ, γ−2, yi,X) ∝ 1√
ψi

exp
(
− β2

i

2ψi

)
(ψi)

λ−1 exp
(
− ψi

2γ2

)
(3.45)

= (ψi)
− 1

2 exp
(
− β2

i

2ψi

)
(ψi)

λ−1 exp
(
− ψi

2γ2

)
(3.46)

= (ψi)
λ− 1

2
−1 exp

{
−1

2

(
γ−2ψi +

β2
i

2ψi

)}
(3.47)

= (ψi)
(λ− 1

2
)−1 exp

{
−1

2

(
γ−2ψi +

β2
i

2ψi

)}
. (3.48)

This expression is a kernel of generalised inverse Gaussian (GIG) distribution with m =

λ− 1
2
, c = γ−2 and d = β2

i (see section 3.3.2).

3.2.4 Full conditional distributions for λ

The multimodal posterior meant that Griffin and Brown (2010) had to choose an approach

that would allow different modes to be explored. We will calculate the full conditional dis-

tribution for λ jointly with γ−2 to tackle this problem. It can be seen from Equation (3.19)

that the likelihood has no effect on the full conditional distribution of λ. As a result, the full
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conditional distribution of λ will be extracted from the joint distribution as follows

f(λ | βi, ψi, γ−2, yi,X) ∝

(
1

2γ2
i

)pλ
{Γ (λ)}p

×
(∏p

i=1
ψi

)λ−1

×
∏p

i=1
exp

(
− ψi

2γ2

)
×

(
γ−2
)2−1 ×

(
M

2λ

)2

× exp
(
−M

2λ
γ−2

)
×

π (λ)

=

(
1

2γ2

)pλ
{Γ (λ)}p

×
(∏p

i=1
ψi

)λ−1

×
∏p

i=1
exp

(
− ψi

2γ2

)
×(

M2

2

)
×
(

1

2λγ2

)
×
(

1

λ

)
× exp

(
−M

2λ
γ−2

)
×

π (λ) .

Here λ is updated using a Metropolis-Hasting approach. λ′ = exp (σ2
λz)λ is chosen to

be the proposal distribution, where z has a standard normal distribution. Also, we choose an

adjustment value for γ′2 as follows

γ′
2

=
2λγ2

2λ′
. (3.49)

This trick is applied to ensure that the value of γ′2 leads us to obtain the same variance of

β|λ, γ2. The acceptance probability of λ′ is

min

1,
π (λ′)

π (λ)

(
∏p

i=1ψi)
λ′−1

(
∏p

i=1ψi)
λ−1

{Γ (λ)}p

{Γ (λ′)}p

∏p
i=1exp

(
− ψi

2γ′2

)
∏p

i=1exp
(
− ψi

2γ2

) (2γ′2)pλ′
(2γ2)pλ

2λ

2λ′
M2

M2

2λγ2

2λ′γ′2
exp

(
− M

2λ′
γ′−2

)
exp

(
−M

2λ
γ−2
)
 .(3.50)

It can be seen that some terms can be omitted. For example the terms 2λγ2

2λ′γ′2
, and

exp(− M
2λ′ γ

′−2)
exp(−M2λγ−2)

are constant, because 2λ′γ′2 = 2λγ2 in our updating.

Therefore, we can rewrite Equation 3.50 as follows

min

1,
π (λ′)

π (λ)

(
∏p

i=1ψi)
λ′−1

(
∏p

i=1ψi)
λ−1

{Γ (λ)}p

{Γ (λ′)}p

∏p
i=1exp

(
− ψi

2γ′2

)
∏p

i=1exp
(
− ψi

2γ2

) (2γ2)
pλ(

2γ′2
)pλ λ′λ

 . (3.51)

The acceptance rate is controlled to be between 20%− 30% using the tuning parameter σ2
λ.
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3.2.5 Full conditional distributions for γ−2

In this section, we will calculate the full conditional distribution for γ−2. The likelihood has

no effect on the full conditional distribution of γ−2. Thus, we will derive it from the joint

distribution as follows

f(γ−2 | βi, ψi, λ, yi,X) ∝
(
γ−2
)pλ × exp

(
−
∑p

i=1ψi
2

γ−2

)
×
(
γ−2
)2−1 × exp

(
−M

2λ
γ−2

)
=

(
γ−2
)(pλ+2)−1 exp

{
−
(
M

2λ
+

1

2

∑p

i=1
ψi

)
γ−2

}
. (3.52)

This expression is a gamma distribution with shape parameter e∗ = pλ+ 2 and rate parameter

f ∗ = M
2λ

+ 1
2

∑p
i=1ψi.

3.3 Approaches to speed up the code and avoid computa-

tional problems

In this section, we will explore all specific computational tools which will be implemented to

the code to speed up our MCMC updating and avoid computational problems occurring in R.

3.3.1 Approaches to speed up the updating α and β

In section 3.2.2, the full conditional distribution for φ = (α,β)T , was calculated and shown

to be a multivariate normal distribution. In order to update φ, the Gibbs sampler method is

applied to generate samples from the multivariate normal distribution.

Different methods can be used to generate a sample from the multivariate normal distribu-

tion, such as using the command ‘mvnorm” in R and using the Cholesky decomposition. A

brief explanation of this decomposition is given below.

Cholesky decomposition

The variance-covariance matrix reflects the pairwise linear dependencies among the variables.

Like every positive definite symmetric matrix, the covariance matrix can be decomposed into
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a product of two matrices, a lower and upper triangular matrix. This decomposition is called

the Cholesky decomposition and is used to speed up generating samples from the multivariate

normal distribution with mean vector µ and covariance matrix Σ.

If x ∼ Nn (µ,Σ), then the Cholesky decomposition method can be applied to generate

samples from x as long as Σ is positive-definite or positive semi-definite (Gentle, 2009). Let

A be a real square matrix such that AAT = Σ, where A is a lower triangular matrix with

real and positive diagonal elements. Then A is the Cholesky decomposition of Σ. Let z be

a vector of samples generated from the standard normal distribution, then we can sample our

vector x via

x = µ+Az. (3.53)

In our case, the full conditional distribution for φ = (α,β)T is multivariate normal dis-

tribution with mean vector φ = (Λ + V −1)
−1
V −1φ̂ and variance-covariance matrix Σ =

Var
(
φ | φ̂,Λ

)
= (Λ + V −1)

−1. To apply the Cholesky decomposition method in R, one

can use the command “chol”, which returns the upper triangle matrix, but the matrix has to

be transposed to obtain the lower triangle matrix, which is required to generate from a multi-

variate normal distribution. Moreover, one has to be careful with setting the argument of the

command “chol”. If one sets pivot = FALSE and the variance-covariance matrix is not

positive definite an error message appears. One can set pivot = TRUE to avoid such an

error. However, if one multiplies the transpose of the output matrix by the output matrix, one

would not obtain the original variance-covariance matrix. One can implement three steps to

tackle this issue

Q = chol (Sigma) (3.54)

pivot = attr (Q,‘‘pivot’’) (3.55)

Q = Q [,order (pivot)] , (3.56)

where Q is the upper triangle matrix returned from the “chol” command, and “order” is an

R command to rearrange the number ascending or descending order.
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In order to update φ using the Cholesky decomposition method to generate samples from

the multivariate normal distribution, the user should follow the following steps

1. Apply the “chol” command on the variance-covariance matrix Σ with setting pivot = TRUE.

2. Calculate the pivot using the command in 3.55.

3. Rearrange the output matrix (Q) using the command in 3.56.

4. Generate p + 1 independent realisations from a standard normal distribution using the

command “rnorm” in R.

5. Update φ using the following equation

φ′ = φ+QTz, (3.57)

where φ′ indicates the updated value of φ, φ represents the vector mean of the full

conditional distribution for φ, QT is the lower triangle matrix returned from Equation

3.56, z is the vector sampled from standard multivariate normal distribution, and p is

the number of variables (SNPs).

The Cholesky decomposition method generates realisations from a multivariate normal

distribution faster than using the command “mvnorm” in R. Moreover, “mvnorm” can cause

R to crash.

3.3.2 Special cases of the Generalised Inverse Gaussian distribution

The full conditional distribution for ψi is calculated in section 3.2.3. The distribution is the

generalised inverse Gaussian distribution GIG (m, c, d) and its density is given by

(
c
d

)m
2

2Km

(√
cd
)xm−1exp

{
−1

2

(
cx+

d

x

)}
, (3.58)

where m ∈ R while c, d ∈ R+. Additionally, m = λ− 1
2
, c = γ−2 and d = β2

i (see Equation

(3.6)). There are two special cases for the GIG distribution. First, the gamma distribution with
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shape m and rate c holds when m > 0 and d = 0. Second, the inverse gamma distribution

with shape m and rate d holds when m < 0 and c = 0 (Embrechts, 1983).

The value of βi plays an important role in updating ψi, because it determines whether

we update ψi using the GIG distribution or use its special cases. Therefore, the first step in

updating ψi is to check whether the value of βi is zero or not. If the value is not zero, ψi will

be generated by using the GIG distribution. We use the command “rgig” from the “ghyp”

package in R software (Breymann and Lüthi, 2013) for this purpose. However, if the value of

βi is zero, the special cases will be applied.

Obtaining a small value for ψi might affect the variance-covariance matrix of β, see Equa-

tion 3.26. Therefore, some checks are applied to our MCMC to update ψi. Initially, we

assume that values less than 10−5 for β2
i are considered to be zero. If β2

i ≈ 0 and m is positive(
λ > 1

2

)
, we use the Ga

(
λ− 1

2
, 1

2γ2

)
instead of using the GIG

(
λ− 1

2
, 1

2γ2 , β
2
i

)
. Because

β2
i is not actually zero, the random values generated from the gamma distribution will be

tested by comparing exp
(
−β2

i

ψi

)
to the random values generated from uniform distribution

(U ∼ (0, 1)) to ensure a correct probabilistic procedure. The value will be accepted if the

following condition holds (where U is the uniform distribution)

U < exp
(
−β

2
i

ψi

)
. (3.59)

Moreover, if m is negative
(
λ < 1

2

)
and 1

γ2 ≈ 0, we will use the IGa
(
λ− 1

2
, β2

i

)
instead of

using GIG
(
λ− 1

2
, 1

2γ2 , β
2
i

)
. Because 1

γ2 is not actually zero, the random values generated

from the inverse gamma distribution will be tested by comparing exp
(
−ψi
γ2

)
to the random

values generated from uniform distribution (U ∼ (0, 1)) to ensure a correct probabilistic pro-

cedure. The value will be accepted if the following condition holds (where U is the uniform

distribution)

U < exp
(
−ψi
γ2

)
. (3.60)

In addition, the code will stop working if any generated value of ψi has a very small value.

Therefore, in such cases we assign any ψi < 10−10 to be 10−10.
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3.4 Using breast cancer to inform the normal gamma (NG)

prior

The aim of this section is to use the breast cancer top hits information to inform our Normal-

Gamma prior hyperparameters.

3.4.1 Selecting rate parameter κ for λ by minimising sum of squares

Griffin and Brown (2010) suggested in their hierarchal model that λ ∼ Exp (1). From Figure

3.1, we showed how the log density of the NG is influenced by the value of λ for a constant

value of Var (β | λ, γ2) = 2λγ2. The question is what is an appropriate rate parameter for λ in

our data analysis? We can exploit the information about the log odds ratios which came from

the breast cancer top hits data.

In order to specify the rate parameter κ for λ in the NG prior (λ ∼ Exp (κ)), the fol-

lowing strategy can be implemented. Firstly, we calculated the proportion of the breast

cancer top hits (BCTHs) both the discovered SNPs and 1000 yet-be-discovered SNPs be-

low four log OR cutoffs: log (1.05) , log (1.08) , log (1.10) and log (1.2). We called these val-

ues the “Empirical Probabilities” EPi. We assumed that all yet-to-be-discovered SNPs had

log | OR |< log (1.05) since there is little power to detect odds ratios in this range for sample

sizes currently used (and none were observed in this range). Next, we applied the Sequential

Monte Carlo Method (SMCM) to the NG prior in Equations (3.10) - (3.14) varying κ a cross a

suitable range for 1000000 realisations. Then, we calculated the proportion of realisations less

than the four log OR cutoffs, and we called these values the “Theoretical Probabilities” TPi.

After that, we calculated
∑4

i=1 (TPi − EPi)2, and we chose κ∗, the rate of λ, that satisfies

κ∗ = argminκ

{
4∑
i=1

(TPi − EPi)2

}
. (3.61)

The chosen value for κ will be calculated and discussed in Chapter 4.
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Chapter 4

Comparing the effectiveness of the

methods on simulated data

In the previous chapter we discussed the NG prior in terms of calculating the full conditional

distributions for the parameters in the model and explaining the approaches that are used to

speed up the code and avoid computational errors. Moreover, we discussed how to exploit

the top hits data (see section 1.3) to derive an appropriate value for the exponential rate pa-

rameter for λ in the NG prior (see section 3.4.1). The aim of this Chapter is to compare the

performance of the NG prior to other multivariate approaches.

One of the common ways of comparing the effectiveness of methods is to apply these

methods on simulated data, because in simulated data the user can specify the value of the

variables. For example, in our simulated data we know which are the causals SNPs and we

can apply the different methods to compare the effectiveness of these methods in identifying

the causal SNPs. In this Chapter we will describe the simulated data, how we simulate it,

the chosen scenarios of the simulated data and why these scenarios were selected. Moreover,

we will discuss the ways of specifying the hyperparameters for Hyper lasso (HL) PiMASS

and the NG prior. The aim of this Chapter is to compare the effectiveness of the methods on

simulated data using ROC curves (Fawcett, 2006a), to assess the between-dataset variability

and to assess how well each method considered copes with the highly correlated nature of the

data.
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4.1 The simulated data scenarios

In this section we will discuss the scenarios which were selected to simulate our data. There

are 8 scenarios that we consider. We used Hapgen2 (Su et al., 2011) to simulate SNPs from a

specific region in fine mapping.

Generally when designing experiment, one can use a factorial or fractional factorial design

to specify the value of the variables. This is not appropriate here because we already know

the effect of the variables. In our case there are three elements that can be varied: odds ratios,

sample sizes, and MAF. However, in GWAS the power commonly used to detect the potential

causal SNPs is set to be more than 80% for SNP with MAF > 0.05 and this power is a function

of odds ratios, sample sizes and MAF. As the values of these elements increase the power also

increases. Thus, we effectively have several constraints on the design.

Note that the power is the probability of rejecting the null hypothesis H0 when the alter-

native hypothesis HA is true. In our case can be calculated as follows

Power = P

(
Z ≥ Cα | Z =

Cα − β√
V

)
, (4.1)

where Z is the test statistic, α is the type-I error, Cα is the critical value at α, and β is log

odd ratio, and V is the variance that is given 1
N×MAF×(1−MAF)

, where N is the sample size, and

MAF is the minor allele frequency (Wakefield, 2009).

Here we are really interested in investigating and quantifying the effect of r2 between the

potential causal SNPs. Therefore, we will consider some scenarios with 2 potential causal

SNPs having different LD structure: high correlation between the two potential causal SNPs

and no correlation between them. However, the region we simulated from has a finite number

of SNPs to choose from. Thus it is difficult to find two SNPs having r2 = 0.8 with a particular

MAF. Also r2 and MAF between the two potential causal SNPs is determined by the haplotype

that has been used to generate the genotype data.
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4.1.1 Hapgen2

To compare the performance of the methods we need to apply them to simulated data that

mimic real data scenarios. Hapgen2 is software developed by Su et al. (2011) to simulate

case-control data in fine-mapping studies. This software has the ability to simulate data with

multiple causal SNPs. The data are sampled allowing for patterns of linkage disequilibrium

(LD). In order to apply Hapgen2, the user has to specify the following inputs

• Specify a file of known haplotypes.

• Specify a legend file for the SNP markers.

• Specify a file containing the fine-scale recombination rate across the region.

• Specify a physical location of SNP, risk allele, heterozygote disease risk odds ratio (OR)

and homozygote disease risk (OR)2 assuming an additive model for each causal SNP.

• Specify the number of case and control individuals to sample.

• Specify the beginning and end of the genomic region.

• Specify the name of the output file.

In our simulated data, the European haplotypes of the August 2010 release of the 1000

genomes data was used (Altshuler et al., 2010) as a reference to sample case-control individ-

uals. The result scenarios that simulated by Hapgen2 will be given in the next section.

4.1.2 Scenarios of simulated data

In this section we will discuss the scenarios that are used for simulating case-control data

via Hapgen2. There are 8 scenarios simulated to compare the effectiveness of the methods

discussed in the Chapter 2 and 3.

Each of the eight scenarios include 2 causal SNPs and these two causal SNPs have the

same OR in all scenarios. The OR of the first causal SNP is 1.08 and the OR of the sec-

ond causal SNP is 1.13. These ORs represent typical effect sizes in fine mapping following
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GWAS. However, the scenarios are different in some aspects such as the patterns of linkage

disequilibrium (LD) between the causal SNPs, minor allele frequencies of the causal SNPs,

the sample size for each scenario, marginal power for each causal SNP and the total number of

SNPs. In terms of the patterns of linkage disequilibrium (LD) we specified two patterns: there

is high LD and there is almost no LD. If our two causal SNPs are in LD, it can be shown that

the LD will not exceed 0.3 for the MAFs we consider. According to VanLiere and Rosenberg

(2008), if the following holds:

MAF1 > MAF2 (4.2)

the maximum r2 value between two SNPs is

r2
max =

(1−MAF1)×MAF2

(1−MAF2)×MAF1

, (4.3)

where MAF1 and MAF2 are the minor allele frequency of the first causal SNP and the second

causal SNP respectively. We calculated r2
max for each two MAFs considered and then selected

2 causal SNPs with r2 close to this (for the high LD case). In all scenarios the r2
max is between

0.12 and 0.27 (see Tables 4.1 and 4.2). Regarding the minor allele frequency, the first causal

SNP is a common SNP in all scenarios with a minor allele frequency of approximately 0.3 and

the second causal SNP is a rarer SNP in all scenarios with a minor allele frequency between

0.05 and 0.1. In terms of the sample size of our simulated data, four scenarios have a sample

size of 32000 cases and 32000 controls whereas the other 4 scenarios have a sample size of

16000 cases and 16000 controls. In regard to the marginal power for the causal SNPs, the

marginal power for the common causal SNP is high (between 0.77 and 0.82) with a sample

size of 16000 cases and 16000 controls, whereas the marginal power for the rare causal SNP

varied between 0.4 and 0.87 with a sample size of 16000 cases and 16000 controls. However,

with a sample size of 32000 cases and 32000 controls, the marginal power for the common

causal SNP is high (it is approximately 1), whereas the marginal power for the rare causal

SNP varied between 0.9 and approximately 1. The number of SNPs varied from scenario to

scenario. The reason behind this is that we remove SNPs which are perfectly correlated with

other SNPs and the collinearity between the SNPs varied by scenario. The 8 scenarios are

summarised in Tables 4.1 and 4.2.
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Scenario 1 2 3 4

r2 between causal SNPs 0.009 1× 10−5 0.13 0.09

r2
max between causal SNPs 0.27 0.14 0.2 0.25

r2

r2
max

0.03 8× 10−5 0.66 0.34

MAF of causal SNP 1 0.28 0.3 0.28 0.31

MAF of causal SNP 2 0.09 0.06 0.07 0.1

Power of causal SNP 1 0.77 0.8 0.77 0.82

Power of causal SNP 2 0.79 0.4 0.55 0.87

Position of causal SNP 1 201689463 201689463 201689463 201689463

Position of causal SNP 2 201803139 201864650 201724114 201793176

Number of SNPs 291 276 281 287

Table 4.1: The values of the specified statistics in the simulated data sets. The scenarios have
a total sample size of 32000. The OR of the first causal SNP is 1.08, whereas the OR of the
second causal SNP is 1.13.

4.2 Specifying the parameters for each method

In this section we will discuss the methods used to specify the parameters for Hyper lasso

(HL), PiMASS and the hyperparameters for the NG prior. These methods were discussed in

detail in Chapters 2 and 3. Here we will identify the values selected for each method.

4.2.1 Specifying the parameters for HL

In section 2.3 we mentioned Hoggart et al. (2008)’s contribution in developing software to

implement the HL. To use HL, one has to specify the prior shape and scale. This was explained

in section 2.3.3. In our case we specify the shape λ = 0.05, because it is the smallest value

that could be chosen for HL and HL selects a small number of SNPs comparable with the

other methods. We calculate the scale γ using Equations (2.27) and (2.29). Therefore the

scale for the eight scenarios (see Tables 4.1 and 4.2) was approximately 0.002, 0.004, 0.004,

0.002, 0.004, 0.004, 0.004, 0.004 respectively. Note that α in Equation (2.27) represents the

family-wise error rate..
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Scenario 5 6 7 8

r2 between causal SNPs 0.0001 0.002 0.16 0.08

r2
max between causal SNPs 0.12 0.17 0.22 0.25

r2

r2
max

0.0005 0.01 0.71 0.32

MAF of causal SNP 1 0.3 0.29 0.27 0.29

MAF of causal SNP 2 0.1 0.05 0.07 0.1

Power of causal SNP 1 0.99 0.99 0.99 0.99

Power of causal SNP 2 0.99 0.9 0.99 0.99

Position of causal SNP 1 201689463 201689463 201689463 201689463

Position of causal SNP 2 201803139 201864650 201724114 201793176

Number of SNPs 281 280 281 280

Table 4.2: The values of the specified statistics in the simulated data sets. The scenarios have
a total sample size of 64000. The OR of the first causal SNP is 1.08, whereas the OR of the
second causal SNP is 1.13.

4.2.2 Specifying the parameters for PiMASS

In PiMASS, we used the default values as these seemed to work well. PiMASS was run for

1,000,000 iteration with a 100,000 iteration burn-in.

4.2.3 Specifying the distribution of the hyperparameters for NG

In section 3.4.1 we discussed how to modify the NG prior exploiting the top hits data in

order to modify the NG prior for λ. The exponential rate of λ in the NG prior is required

to be specified. To achieve this we minimised the sum of squares of the difference in the

“Theoretical Probabilities” (TP) and the “Empirical Probabilities” (EP). This was explained

in section 3.4.1.

To obtain the optimal value of κ, we varied κ to take values from 0.5 to 200 in increments

of 0.5. Then, we calculated the sum of squares for each simulated sample . Figure 4.1 shows

plots of the sum of squares in four cases: assuming there are unobserved yet-to-be discovered

SNPs totalling 1000, 500, 200 or 100 SNPs (see Section 1.3, and 3.4.1). The figure shows

that the value of κ that gives a minimum sum of squares for these cases is: 142.85, 67.1,
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Figure 4.1: The sum of squares of the difference in the “Theoretical Probabilities” (TP) and
the “Empirical Probabilities” (EP) versus κ that takes values in [0.05, 200]. This plot is for 4
different assumptions regarding the number of SNPs that are yet-to-be discovered: 1000, 500,
200, and 100 yet-to-be discovered SNPs.

25.0, and 12.7 respectively. Here we will assume the first case that there are 1000 unobserved

yet-to-be discovered SNPs as suggested in Fachal and Dunning (2015). Moreover, Figure 4.2

shows that 1000 yet-to-be discovered SNPs visually gives the best fit to the empirical ecdf

(see Section 3.4.1). Therefore, the optimal κ equals 142.85. Thus, the rate of λ was modified

to be 142.85 instead of 0.5 as suggested in Griffin and Brown (2010). The expected value of

61



Figure 4.2: ECDF for the top hits data plus some yet-to-be-discovered SNPs (1000, 500, 200,
and 100 yet-to-be-discovered SNPs respectively) and ECDF for the values simulated from the
sequential Monte Carlo Method for the NG prior with κ minimising the sum squares of the
difference in the “Theoretical Probabilities” (TP) and the “Empirical Probabilities” (EP).

λ is therefore 1
142.85

and Figure 3.1 shows that this leads to a prior with little mass in the tails.
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4.3 Comparing the performance of the NG with different κ

using ROC curves

In this section ROC curves are used to compare the performance of the standard NG (with

κ = 0.5) which was used by Griffin and Brown (2010) with the performance of the modified

NG (with κ = 142.85) which was calculated in section 3.4.1. We plotted ROC curves for

the 8 scenarios shown in Tables 4.1 and 4.2 with 10 simulated datasets for each scenario. In

order to draw the ROC curves, the “ROCR” library (Sing et al., 2005) was used in R. We

aggregated the maximum size of credible interval that captured each SNP for each dataset

(Fawcett, 2006a) so that we effectively had a single dataset with 20 causal SNPs (See Section

4.6 for more details). To obtain the ROC curves we varied the level of the posterior credible

interval calculated as discussed later in Section 4.6. Figure 4.3 shows the 4 scenarios with a

sample size of 32000 in Table 4.1, whereas Figure 4.4 shows the 4 scenarios with a sample

size of 64000 in Table 4.2.

Figures 4.3 and 4.4 show that generally the performance of the modified NG with κ =

142.85 is slightly better than the performance of standard NG with κ = 0.5. Note that the

scenarios with sample size of 64000 performs better than the scenarios with sample size of

32000. Therefore, the sample size does have some effect on the performance of the NG prior.

In conclusion, clearly the performance of the modified NG with κ = 142.85 is better than

the performance of standard NG with κ = 0.5 although the improvement is modest. It is

worth noting that the ROC curves are not that sensitive to modifying κ at these large sample

sizes. We will therefore only use the NG prior with κ = 142.85 from now on.

4.4 MCMC trace and acf plot

In the section, we will examine the posterior samples obtained using MCMC for the modified

NG prior. An important step in MCMC is to examine the posterior samples to check that all

parameter posterior distributions converge. To do this, there are two approaches: inspective

visualisation (Trace plot and Autocorrelation) (Mengersen et al., 1999) and statistical methods
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(a) ROC curve of the first scenario with 16000
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(b) ROC curve of the second scenario with 16000
cases and 16000 controls and r2

r2max
= 8× 10−5.
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(c) ROC curve of the third scenario with 16000
cases and 16000 controls and r2

r2max
= 0.66 .
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(d) ROC curve of the fourth scenario with 16000
cases and 16000 controls and r2

r2max
= 0.34.

Figure 4.3: ROC curve varying the posterior credible interval of the standard NG prior with
κ = 0.5 and the modified NG prior with κ = 142.85 NG(BC). Applied to 10 simulated datasets
from Hapgen2 with two causal SNPs having odds ratios of 1.08 and 1.13 and having different
MAFs (common SNP and rare SNP) described in Table 4.1. Each dataset has 16000 cases and
16000 controls. The MCMC was run for 20,000 iterations with 2,000 burn-in and thinning by
50.
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(a) ROC curve of the fifth scenario with 32000
cases and 32000 controls and r2

r2max
= 0.0005.
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(b) ROC curve of the sixth scenario with 32000
cases and 32000 controls and r2

r2max
= 0.01.
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(c) ROC curve of the seventh scenario with 32000
cases and 32000 controls and r2

r2max
= 0.71.
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(d) ROC curve of the eighth scenario with 32000
cases and 32000 controls and r2

r2max
= 0.32.

Figure 4.4: ROC curve varying the posterior credible interval of the standard NG prior with
κ = 0.5 and the modified NG prior with κ = 142.85 NG(BC). Applied to 10 simulated datasets
from Hapgen2 with two causal SNPs having odds ratios of 1.08 and 1.13 and having different
MAFs (common SNP and rare SNP) described in Table 4.2. Each dataset has 32000 cases and
32000 controls. The MCMC was run for 20,000 iterations with 2,000 burn-in and thinning by
50.
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(R̂ method) (Gelman and Rubin, 1992).

Trace plot

A trace plot is a plot of the parameter values at each iteration. We can judge whether the chain

reaches equilibrium or not based on the behaviour of the chain. If it does not get stuck at a

particular place that means our chain has good mixing (Mengersen et al., 1999).

Figures 4.5(a) and 4.5(c) show the trace plots for the posterior of β and ψ for the com-

mon causal SNP from the first dataset, Figures 4.5(b) and 4.5(d) show the trace plots for the

posterior of β and ψ for the rare SNP from the first dataset. Figures 4.5(e) and 4.5(f) show

the trace plots for the posterior of λ and γ2 from the first dataset. The MCMC is run for

20,000 iterations with 2,000 iterations burn-in and thinning by 50. Thinning is done because

the posterior samples of λ and γ2 show high levels of autocorrelation (see the next Section).

All these figures indicate that the chains were mixing well after thinning so we can rely on the

posterior distributions of the parameters that come from MCMC with the modified NG prior

with κ = 142.85.

Autocorrelation

Calculating the autocorrelation is another method used to judge whether the MCMC chain

has converged or not (Mengersen et al., 1999). In order to do this the lag k autocorrelation ρk

must be calculated. It is defined as the correlation between each draw of the MCMC chain xi

at lag k and is given by

ρk =

∑n−k
i=1 (xi − x) (xi+k − x)∑n

i=1 (xi − x)2 , (4.4)

where x represents the mean of the MCMC chain values xi. An MCMC chain is converged

when the autocorrelation between the different draws is approximately 0. Otherwise, the

MCMC chain is not converged.

Figures 4.6(a) and 4.6(c) show the ACF plots for the posterior of β and ψ for the common

SNP from the first dataset, Figures 4.6(b) and 4.6(d) show the ACF plots for the posterior

of β and ψ for the rare SNP from the first dataset, and Figures 4.6(e) and 4.6(f) show the

ACF plots for the posterior of λ and γ2 from the first dataset. The MCMC is run for 20,000
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(a) Trace plot of the posterior values of β for
the common causal SNP for the first dataset.
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(b) Trace plot of the posterior values of β for
the rare causal SNP for the first dataset.
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(c) Trace plot of the posterior values of ψ for
the common causal SNP for the first dataset.

0 5000 10000 15000 20000

0.
0

0.
5

1.
0

1.
5

2.
0

Index

ψ
23

0

(d) Trace plot of the posterior values of ψ for
the rare causal SNP for the first dataset.
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(e) Trace plot of the posterior values of λ for
the first dataset.
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Figure 4.5: Trace plots of the posterior values of λ, γ2, β and ψ for both the common causal
SNP and the rare causal SNP using the Normal-Gamma prior. Applied to a simulated dataset
from Hapgen2 with two causal SNPs with odds ratios of 1.08 and 1.13 and having different
MAF (common SNP and rare SNP). Each dataset has 16000 cases and 16000 controls with
291 SNPs for first scenario. The MCMC was run for 20,000 iterations with 2,000 burn-in and
thinning by 50.
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iterations with 2,000 iterations burn-in and thinning by 50. All these figures indicate that the

autocorrelation between the different draws is approximately 0 once thinning has taken place.

Therefore, one can judge that the thinned posterior samples are not too strongly correlated at

this level of thinning so we can rely on the posterior distributions of the parameters that come

from MCMC with the modified NG prior with κ = 142.85.

R̂ method

Gelman and Rubin (1992) suggest a multiple sequence diagnostic to assist in the assessment

of the convergence of an MCMC chain. First of all, the MCMC must be run more than once

(say m times) with different starting values. Let the length of each chain be 2n. The first half

of each chain is removed and the within-chain and between-chain variance of the second half

of the chain are calculated. After that the estimated variance of the parameter is calculated

as a weighted average of the within-chain and between-chain variance. Finally, the potential

scale reduction factor is calculated.

The within-chain variance is the mean of the variance in each chain and it is given by

W =
1

m

m∑
i=1

s2
i , (4.5)

where s2
i is the variance of the ith chain. The between-chain variance is given by

B =
n

m− 1

m∑
i=1

(
θi − θ

)2

, (4.6)

where θ is the mean of chain means. The variance of the stationary distribution can be calcu-

lated as the weighted average of within-chain variance and between-chain variance. It can be

written as follows

V̂ ar (θ) =

(
1− 1

n

)
W +

1

n
B. (4.7)

The potential scale reduction factor (R̂) is the square root of the estimated variance of the
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(a) ACF plot of posterior values of β for the
common causal SNP for the first dataset.
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(b) ACF plot of posterior values of β for the
rare causal SNP for the first dataset.
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(c) ACF plot of posterior values of ψ for the
common causal SNP for the first dataset.
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(d) ACF plot of posterior values of ψ for the
rare causal SNP for the first dataset.
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(e) ACF plot of posterior values of λ for the
first dataset.
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(f) ACF plot of posterior values of γ2 for the
first dataset.

Figure 4.6: ACF plots of the posterior values of λ, γ2, β and ψ for both the common causal
SNP and the rare causal SNP using the Normal-Gamma prior. Applied to a simulated dataset
from Hapgen2 with two causal SNPs with odds ratios of 1.08 and 1.13 and having different
MAF (common SNP and rare SNP). Each dataset has 16000 cases and 16000 controls with
291 SNPs for first scenario. The MCMC run for 20,000 iterations with 2,000 burn-in and
thinning by 50.
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stationary distribution divided by within-chain variance and it can be expressed as follows

R̂ =

√
V̂ ar (θ)

W
. (4.8)

If the potential scale reduction factor is less than 1.1 then it can be said the chain has con-

verged. In our case, R̂ < 1.1 for all parameters checked hence one can judge that all the

chains had converged.

4.5 Receiver operating characteristic curves

In this section we will discuss a common way of comparing the performance of different

classifying methods, that is receiver operation characteristics (ROC) curves. A ROC curve is

a tool for showing the performance of classifier in terms of the true positive rate (sensitivity,

TPR), which is the number of positives correctly identified divided by the number of actual

positives and the false positive rate (1-specificity, FPR), which is the number of false positives

identified divided by the number of negatives. Different thresholds are selected to calculate the

previous two quantities and the points generated by varying the threshold are joined to form

a curve (actually a step function). Thus, each point on ROC graph refers to a true positive

rate and false positive rate at a specific threshold where the y axis represents the true positive

rate and the x axis represents the false positive rate. Points at the top left of the plot represent

accurate classification.

The area under the ROC curve is a way to quantify the performance of the method. To

measure the area under the curve we use the R package “pROC” created by Robin et al. (2014).

The maximum area under the curve is 1 and the area under the “guess” line is 0.5.

According to Fawcett (2006b) to plot ROC curves for several datasets, there are three

methods of averaging the ROC curves: merging averaging, threshold averaging, and vertical

averaging. Merging averaging is combining all data sets and calculating the TPR and FPR

on the merged data. Vertical averaging fixes the false positive rates and takes the average

across datasets of the true positive rates. Threshold averaging fixes the threshold and takes the

average across datasets of both the true positive rates and the false positive rates.
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In this thesis the ROC curves with merging averaging will be applied to compare between

the four methods considered: SLR, HL, PiMASS and the NG prior. Note that the statistics

used for each methods are the minimum initial univariate p-value threshold that detects poten-

tial causal SNPs in SLR, posterior modes in HL, posterior inclusion probabilities in PiMASS

and the maximum credible interval sizes of the posterior in the NG prior that excludes zero.

4.6 Summaries of the NG posterior

In this section, we will discuss some possible posterior summaries using the NG showing

which perform well in terms of area under ROC curve. Here we will show three posterior

summaries: mean, median and credible intervals for our eight scenarios (see Tables 4.1 and

4.2).

To create the ROC curve, the R package ‘‘ROCR’’ (Sing et al., 2005) was applied to cre-

ate the ROC curve for both posterior mean and posterior median. The method used is “merg-

ing” the posterior summaries of 10 datasets into one vector (Fawcett, 2006a). However, the

ROC curves for varying the credible intervals were created via a code that was programmed

using R. To create the ROC curve by varying the credible interval, the interval level is varied

as a sequence taking values 0%, 1%, . . . , 100%. Then the credible interval is calculated at

each level. If the credible interval includes 0, the SNP is recorded as a non-causal SNP. Then,

each SNP is represented by the maximum credible interval size that detects it, hence each

SNP would take a value between 0 and 1. For example, the maximum credible interval size

that detects the common causal SNP in first dataset of the first scenario is 0.6. It can be seen

in Table 4.8 that the common causal SNPs is not detected at 70%, whereas it is detected at

60%.Finally, the ROC curves were plotted by merging the posterior credible interval sizes for

10 datasets into one vector and the false positive rates (FPR) and the true positive rates (TPR)

were calculated as the threshold varied. We call this approach “ Varying the credible interval”.

Alternatively, one can calcualte

CI = 1− 2 min
{
Pr
(
β | β̂, V

)
> 0, P r

(
β | β̂, V

)
< 0
}
. (4.9)
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Figures 4.7 and 4.8 show the ROC curves for the posterior mean, median and varying the

credible interval for the NG prior with κ = 142.85. It can be seen that there are quite big

differences in the performance of the three posterior summaries for the modified NG prior

for all eight scenarios. In Figures 4.9 and 4.10 we zoom in on the plot to consider only the

false positive rate from 0 to 0.5. It can be seen that the performance of the posterior credible

interval is clearly better than the performance of the other posterior summaries (median and

mean), because it nearly always detects more causal SNPs for a given number of non-causal

SNPs selected. Moreover, in each scenario the curve of the posterior mean is the worst curve

and it has the lowest area under the curve. Therefore, we will only use the credible interval

approach from now on. The posterior mean and median could be used for ranking SNPs but

if a hard decision is needed then the credible interval approach permits this and so is also the

statistic that is the most interpretable.

4.7 Comparing the performance of NG, HL, PiMASS, and

SLR

In this section, we will compare four methods: Hyper lasso, PiMASS, NG, and Sequential

Logistic Regression. Hyper lasso (HL) was run with shape = 0.05 and scale calculated based

on the number of SNPs in a particular scenario. The scale was approximately 0.002, 0.004,

0.004, 0.002, 0.004, 0.004, 0.004, and 0.004 for scenario1-scenario8 respectively. Note that a

family-wise error rate (FWER) of 0.05 was used (see Section 4.2.1). PiMASS was run using

the default values of the parameters and run for 1,000,000 iterations with 100,000 burn-in.

The posterior credible interval of the NG prior with κ = 142.85 was used where the MCMC

was run for 20,000 iterations with 2,000 burn-in and thinned by 50. We also used Sequential

Logistic Regression (SLR) varying the initial univariate threshold from 1× 10−5 to 0.99, and

applying forward stepwise logistic regression (see Section 2.2). R package “ROCR” (Sing

et al., 2005) was applied to create the ROC curves for both the effect sizes from HL and the

posterior inclusion probability (PIP) from PiMASS. We wrote R code to plot the ROC curves

for the posterior credible interval for the NG prior as demonstrated in Section 4.6 and for SLR
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(a) ROC curve of the first scenario with 16000
cases and 16000 controls and r2

r2max
= 0.03.
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(b) ROC curve of the second scenario with 16000
cases and 16000 controls and r2

r2max
= 8× 10−5.
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(c) ROC curve of the third scenario with 16000
cases and 16000 controls and r2

r2max
= 0.66.
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(d) ROC curve of the fourth scenario with 16000
cases and 16000 controls and r2

r2max
= 0.34.

Figure 4.7: ROC curve for the posterior mean, median and varying the credible interval for
the Normal-Gamma prior with κ = 142.85. The methods are applied to 10 simulated datasets
from Hapgen2 with two causal SNPs with odds ratios of 1.08 and 1.13 and different MAFs
(see Table 4.1). Each dataset has 16000 cases and 16000 controls. The MCMC was run for
20,000 iterations with 2,000 burn-in and thinning by 50.
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(a) ROC curve of the first scenario with 32000
cases and 32000 controls and r2

r2max
= 0.0005.
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(b) ROC curve of the second scenario with 32000
cases and 32000 controls and r2

r2max
= 0.01.
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(c) ROC curve of the third scenario with 32000
cases and 32000 controls and r2

r2max
= 0.71.
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(d) ROC curve of the fourth scenario with 32000
cases and 32000 controls and r2

r2max
= 0.32.

Figure 4.8: ROC curve for the posterior mean, median and varying the credible interval for
the Normal-Gamma prior with κ = 142.85. The methods are applied to 10 simulated datasets
from Hapgen2 with two causal SNPs with odds ratios of 1.08 and 1.13 and different MAFs
(see Table 4.2). Each dataset has 32000 cases and 32000 controls. The MCMC was run for
20,000 iterations with 2,000 burn-in and thinning by 50.
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(a) Zooming ROC curve of the first scenario with
16000 cases and 16000 controls and r2

r2max
= 0.03.
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(b) Zooming ROC curve of the second scenario
with 16000 cases and 16000 controls and r2

r2max
=

8× 10−5.
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(c) Zooming ROC curve of the third scenario with
16000 cases and 16000 controls and r2

r2max
= 0.66.
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(d) Zooming ROC curve of the fourth scenario with
16000 cases and 16000 controls and r2

r2max
= 0.34.

Figure 4.9: ROC curve for the posterior mean, median and varying the credible interval for
the Normal-Gamma prior with κ = 142.85 for FPR < 0.5. The methods are applied to 10
simulated datasets from Hapgen2 with two causal SNPs with odds ratios of 1.08 and 1.13
and different MAFs (see Table 4.1). Each dataset has 16000 cases and 16000 controls. The
MCMC was run for 20,000 iterations with 2,000 burn-in and thinning by 50.
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(a) Zooming ROC curve of the first scenario with
32000 cases and 32000 controls and r2

r2max
= 0.0005.
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(b) Zooming ROC curve of the second scenario
with 32000 cases and 32000 controls and r2

r2max
=

0.01.
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(c) Zooming ROC curve of the third scenario with
32000 cases and 32000 controls and r2

r2max
= 0.71.
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(d) Zooming ROC curve of the fourth scenario with
32000 cases and 32000 controls and r2

r2max
= 0.32.

Figure 4.10: ROC curve for the posterior mean, median and varying the credible interval for
the Normal-Gamma prior with κ = 142.85 for FPR < 0.5. The methods are applied to 10
simulated datasets from Hapgen2 with two causal SNPs with odds ratios of 1.08 and 1.13
and different MAFs (see Table 4.2). Each dataset has 32000 cases and 32000 controls. The
MCMC was run for 20,000 iterations with 2,000 burn-in and thinning by 50.
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by calculating the true positive rate (TPR) and false positive rate (FPR) of the selected SNPs

from the SLR at each threshold (see Section 2.2). Note that for SLR, the ROC space contains

a set of points where each point refers to the average TPR of the 10 datasets and the average

FPR of the 10 datasets for a particular univariate threshold. The methods are applied to 10

datasets for 8 scenarios (see Table 4.1 and 4.2).

Scenarios HL NG PiMASS

1 0.92 0.93 0.91

2 0.65 0.89 0.84

3 0.72 0.67 0.65

4 0.82 0.92 0.79

5 0.9 0.97 0.99

6 0.87 0.97 0.99

7 0.83 0.9 0.85

8 0.98 0.97 0.99

Table 4.3: Area under the curve for HL, NG and PiMASS for all eight scenarios

Figures 4.11 and 4.13 (FPR < 0.5) show the ROC curves for 3 methods (HL, NG, and

PiMASS) and points for SLR using the scenarios with 32000 sample size. They indicate that

the performance of HL varies from scenario to scenario based on the level of LD and the

marginal power. Note that Figures 4.11(a) and 4.13(a) indicate that the performance of HL

in the first scenario with a low level of LD and high marginal power for both causal SNPs is

the best HL performance among other scenarios, but is not the best among other approaches

(PiMASS, NG and SLR). Figures 4.11(b) and 4.13(b) indicate that the performance of HL in

the second scenario with a low level of LD and low marginal power to detect the rare causal

SNP is not only the worst performance for HL among other scenarios, but also among all

other three methods (PiMASS, NG and SLR). This difference in performance appears to be

because of the low marginal power for the rarer causal SNPs in Figure 4.11(b) relative to that
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in Figure 4.11(a) (see Table 4.1). Additionally, Figures 4.11 and 4.13 show the performance

of the posterior credible interval for the NG prior is competitive with that of the other methods

in all the four scenarios except for the third scenario where the performance of HL is better

in terms of the area under the curve (Table 4.3 indicates that the area under curve for HL is

approximately 0.72 whereas in the posterior credible interval for the NG prior it is approxi-

mately 0.67). This indicates that the posterior credible interval for the NG prior struggles with

the high level of LD. In addition, the performance of PiMASS is clearly affected by the level

of LD. Note its performance in the third and fourth scenarios (high level of LD and moderate

level of LD respectively) compared to its performance in the first and second scenario (low

level of LD) (see Figures 4.11 and 4.13). The area under the curve for PiMASS in all four

scenarios is approximately 0.91, 0.84, 65, and 0.79 respectively (see Table 4.3). Moreover, in

SLR, it can be seen that the points in the first and second scenarios are recorded with higher

true positive rates than the third and fourth scenarios. The level of LD could also be the rea-

son behind this. In all scenarios, it can be seen that all points from SLR are generally located

below at least one of the three curves (HL, NG, and PiMASS) with the notable exception of

the point in the first scenario that refers to the initial univariate threshold of 1 × 10−3 which

has the highest true positive rate with a very small false positive rate.

Figures 4.12 and 4.14 show the ROC curves for 3 methods (HL, NG, and PiMASS) and

points for SLR using the scenarios with 64000 sample size. Generally they indicate that the

performance of all methods with a larger sample size is improved which is to be expected.

Interestingly, the performance of PiMASS is improved dramatically and its performance at

this sample size is sometimes now better than the other approaches. In the seventh scenario the

performance of the posterior credible interval for the NG prior is the best curve according to

the area under the curve (Table 4.3 indicates that the area under curve for HL is approximately

0.83, the area under curve for PiMASS is approximately 0.85 whereas in the posterior credible

interval for the NG prior it is approximately 0.9 although at low FPRs SLR and HL capture

more causal SNPs). Again this might be due to the influence of the high level of LD.

In conclusion, both the level of LD and the marginal power seem to affect the performance

of the approaches in fine mapping studies in a complicated way. All four methods struggled

with the high level of LD. As expected, increasing the sample size improves the performance
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as we have seen in Figures 4.12 and 4.14. For example, the area under the curve of PiMASS in

the first scenario was approximately 0.91 compared to approximately 0.99 in the fifth scenario

(see Table 4.3).

4.8 Between-dataset variability in performance of the four

methods

Figures 4.11 - 4.14 indicate the performance of combining the effect sizes from HL, posterior

inclusion probabilities (PIP) from PiMASS and the credible interval of the posterior NG for 10

datasets and indicate the average performance measured by TPR and FPR across 10 datasets

for SLR but it is also of interest to examine the between-dataset variability. Throughout this

section we discuss between-dataset variability in the false positive rate (FPR) at the fixed true

positive rates (TPR) of 0.5 and 1 for HL, PiMASS and the NG prior. For a single dataset the

FPR is not necessarily unique at a given TPR. Therefore, we use the lowest FPR at the given

TPR. This approach was applied to the four scenarios with a total sample size of 32000 (see

Table 4.1).

Tables 4.4 - 4.5 show 1000× FPR for each dataset for all scenarios mentioned in Table

4.1 using the NG Credible interval sizes, HL, PiMASS, and SLR all at TPR = 0.5 and TPR

= 1. An NA indicates the FPR at the corresponding TPR is not available. This happens

when HL does not select either causal SNP and when SLR either none or both causal SNPs

are captured. Within each method the left (right) column corresponds to TPR = 0.5 (TPR =

1). In general, Tables 4.4 - 4.5 indicate that the credible interval of the posterior NG is the

most variable approach. Moreover, as the level of LD increases (Scenario 3 and 4) the FPR

increases at the given TPR and this explains the reduction in the area under the curve for the

NG approach (see Figures 4.11(c) and 4.13(c)). For the fourth scenario, noticed that FPR at

TPR = 0.5 for the NG in the third scenario for first and tenth datasets are not available (NA).

This means both causal SNPs have exactly the same CI. In addition, it can be seen that FPR

for HL in the second and fourth scenario for some datasets are not available (NA) because

they fail to detect either causal SNP. Therefore the performance of HL was the worst in these
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(a) ROC curve of the first scenario with 16000
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(b) ROC curve of the second scenario with 16000
cases and 16000 controls and r2

r2max
= 8× 10−5.
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(c) ROC curve of the third scenario with 16000
cases and 16000 controls and r2

r2max
= 0.66.
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(d) ROC curve of the fourth scenario with 16000
cases and 16000 controls and r2

r2max
= 0.34.

Figure 4.11: ROC curves for the stepwise logistic regression (SLR), PiMASS, Hyper lasso
(HL) and the posterior credible interval using Normal-Gamma prior (NG) for an asymptotic
normal likelihood. The methods are applied to 10 simulated dataset from Hapgen2 with two
causal SNPs with odds ratios of 1.08 and 1.13 and having different MAFs (see Table 4.1).
Each dataset has 16000 cases and 16000 controls. The NG MCMC was run for 20,000 iter-
ations with 2,000 burn-in and thinning by 50. PiMASS is used with the default parameters.
Hyper lasso is implemented with shape equal to 0.05 and scale equal to 0.002, 0.004, 0.004,
and 0.002 respectively.

80



Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HL
NG
piMASS
SLR

(a) ROC curve of the fifth scenario with 32000
cases and 32000 controls and r2

r2max
= 0.0005.
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(b) ROC curve of the sixth scenario with 32000
cases and 32000 controls and r2

r2max
= 0.01.
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(c) ROC curve of the seventh scenario with 32000
cases and 32000 controls and r2

r2max
= 0.71.
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(d) ROC curve of the eighth scenario with 32000
cases and 32000 controls and r2

r2max
= 0.32.

Figure 4.12: ROC curves for the stepwise logistic regression (SLR), PiMASS, Hyper lasso
(HL) and the posterior credible interval using Normal-Gamma prior (NG) for an asymptotic
normal likelihood. The methods are applied to 10 simulated dataset from Hapgen2 with two
causal SNPs with odds ratios of 1.08 and 1.13 and having different MAFs (see Table 4.2).
Each dataset has 32000 cases and 32000 controls. The NG MCMC was run for 20,000 iter-
ations with 2,000 burn-in and thinning by 50. PiMASS is used with the default parameters.
HyperLASSO is implemented with shape equals 0.05 and scale equals 0.004.
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(a) Zooming ROC curve of the first scenario with
16000 cases and 16000 controls and r2

r2max
= 0.03.
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(b) Zooming ROC curve of the second scenario
with 16000 cases and 16000 controls and r2

r2max
=

8× 10−5.
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(c) Zooming ROC curve of the third scenario with
16000 cases and 16000 controls and r2

r2max
= 0.66.
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(d) Zooming ROC curve of the fourth scenario with
16000 cases and 16000 controls and r2

r2max
= 0.34.

Figure 4.13: ROC curves (FPR ≤ 0.5) for the stepwise logistic regression (SLR), PiMASS,
Hyper lasso (HL) and the posterior credible interval using Normal-Gamma prior (NG) for an
asymptotic normal likelihood. The methods are applied to 10 simulated dataset from Hapgen2
with two causal SNPs with odds ratios of 1.08 and 1.13 and having different MAFs (see Table
4.1). Each dataset has 16000 cases and 16000 controls. The NG MCMC was run for 20,000
iterations with 2,000 burn-in and thinning by 50. PiMASS is used with the default parameters.
Hyper lasso is implemented with shape equal to 0.05 and scale equal to 0.002, 0.004, 0.004,
and 0.002 respectively.
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(a) Zooming ROC curve of the fifth scenario with
32000 cases and 32000 controls and r2

r2max
= 0.0005.
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(b) Zooming ROC curve of the sixth scenario with
32000 cases and 32000 controls and r2

r2max
= 0.01.
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(c) Zooming ROC curve of the seventh scenario
with 32000 cases and 32000 controls and r2

r2max
=

0.71.
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(d) Zooming ROC curve of the eighth scenario with
32000 cases and 32000 controls and r2

r2max
= 0.32.

Figure 4.14: ROC curves (FPR ≤ 0.5) for the stepwise logistic regression (SLR), PiMASS,
Hyper lasso (HL) and the posterior credible interval using Normal-Gamma prior (NG) for an
asymptotic normal likelihood. The methods are applied to 10 simulated dataset from Hapgen2
with two causal SNPs with odds ratios of 1.08 and 1.13 and having different MAFs (see
Table 4.2). Each dataset has 32000 cases and 32000 controls. The NG MCMC was run for
20,000 iterations with 2,000 burn-in and thinning by 50. PiMASS was used with the default
parameters. Hyper lasso was implemented with shape equal to 0.05 and scale equal to 0.004.
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scenarios (see Figures 4.11(b) and 4.13(b)). Moreover, generally PiMASS seems the most

constant approach in terms of FPR except in the third scenario it can be seen that the FPR for

the datasets are varied and reached a high FPR. There is more variation in FPR at TPR = 1 for

SLR and HL (often 0-1000) which is due to the hard decision nature of the approaches. Table

4.4 shows that the NG prior method seems to detect the causal SNPs at small FPRs compared

to the HL. For example, in the fifth and sixth dataset of Scenario 1 the NG prior detects both

causal SNPs at a very small FPR but the HL does not detect them in the most of datasets in

Scenario 2.
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Scenario 1

Dataset CI 1 CI 2 HL 1 HL 2 PiMASS 1 PiMASS 2 SLR 1 SLR 2

1 14 197 0 0 3 7 NA 3

2 14 197 0 0 3 7 NA 3

3 0 239 0 0 0 3 0 3

4 0 249 0 0 0 3 0 3

5 3 21 0 1000 0 3 0 0

6 3 21 0 1000 0 3 0 0

7 0 253 0 0 0 3 0 3

8 3 21 0 1000 0 3 0 0

9 0 256 0 0 0 3 0 3

10 0 69 0 0 0 0 3 24

Scenario 2

Dataset CI 1 CI 2 HL 1 HL 2 PiMASS 1 PiMASS 2 SLR 1 SLR 2

1 95 1000 NA 1000 0 248 15 1000

2 0 230 0 1000 0 4 4 1000

3 0 11 0 0 0 0 7 7

4 0 26 NA 1000 0 11 15 1000

5 0 29 NA 1000 0 11 15 1000

6 0 15 4 1000 4 7 15 15

7 0 328 NA 1000 0 4 11 1000

8 3 18 0 1000 0 4 0 11

9 4 595 NA 1000 0 7 4 1000

10 7 296 0 1000 7 11 11 1000

Table 4.4: 1000× FPR for Scenario 1 and Scenario 2 using the NG Credible Interval (CI),

HL, PiMASS, and SLR all at TPR = 0.5 and TPR = 1. An NA indicates the FPR at the

corresponding TPR is not available.
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Scenario 3

Dataset CI 1 CI 2 HL 1 HL 2 PiMASS 1 PiMASS 2 SLR 1 SLR 2

1 104 785 4 1000 0 960 0 1000

2 100 577 4 1000 0 960 0 1000

3 108 577 4 1000 0 960 0 1000

4 104 577 4 1000 0 960 0 1000

5 0 57 0 0 4 4 0 54

6 828 1000 NA 1000 14 65 29 1000

7 43 423 7 1000 11 65 14 1000

8 186 308 NA 1000 14 18 NA 1000

9 437 1000 NA 1000 36 122 NA 1000

10 262 344 4 4 11 25 4 7

Scenario 4

Dataset CI 1 CI 2 HL 1 HL 2 PiMASS 1 PiMASS 2 SLR 1 SLR 2

1 NA 4 NA 1000 4 7 NA 11

2 18 109 4 4 0 0 4 1000

3 4 7 0 0 0 0 42 1000

4 18 112 4 4 0 0 4 1000

5 18 116 4 4 0 0 4 1000

6 21 112 4 4 0 0 4 1000

7 7 453 4 1000 0 11 42 1000

8 7 446 4 1000 0 11 42 1000

9 7 453 4 1000 0 11 42 1000

10 NA 4 NA 1000 4 7 NA 11

Table 4.5: 1000× FPR for Scenario 3 and Scenario 4 using the NG Credible Interval (CI),

HL, PiMASS, and SLR all at TPR = 0.5 and TPR = 1. An NA indicates the FPR at the

corresponding TPR is not available.
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4.9 SNP selection by method

In this section we will discuss the performance of the pervious methods (NG, HL, SLR, and

PiMASS) in terms of the selected SNPs. Are these methods selecting the same SNPs or

does each method select different SNPs across the 10 datasets? We run and examine this in

detail only for the first scenario and the fourth scenario because the level of LD for the fourth

scenario is much stronger than the level of LD for the first scenario (see Table 4.1). The results

are presented in Tables 4.8 and 4.9. For the SLR method we chose 1× 10−5 as the univariate

threshold rather than 5×10−8 which is the standard threshold employed by many fine mapping

studies because the standard threshold selected no SNPs. For the HL method we set the shape

to be λ = 0.05 and the scale to be γ = 0.002 (see Section 4.7). These values lead to selection

of a small number of SNPs that have non-zero estimated effect sizes (19 SNPs were selected

in total across all 10 datasets in Scenario 1). In the NG prior the size of credible interval

chosen for all 10 datasets is 70%. This is because, although the 70% size is not able to detect

the common causal SNP in Scenario 1, it leads to the selection of 19 SNPs in Scenario 1 and

26 SNPs in Scenario 4 in total across all 10 datasets which is comparable with the number of

SNPs selected by HL and so makes for a fairer comparison of SNPs selected.

We will demonstrate and describe not only selection of SNPs for all methods (NG, HL,

SLR, and PiMASS) in general, but also selection of SNPs within the LD block surrounding

the common causal SNP (see Tables 4.6 and 4.7).

Tables 4.8 and 4.9 show the SNPs selected by the four methods (NG, HL, SLR, and Pi-

MASS). Each table is divided into twelve columns: SNPs, r2
1, r2

2, MAF, NG, HL, SLR, Pi-

MASS, NG-PiMASS, HL-PiMASS, and SLR-PiMASS. In the tables, SNPs represents the

SNP ID, r2
1 refers to the LD with the common causal SNP, r2

2 refers to the LD with the rare

causal SNP, MAF represents the minor allele frequency of each SNP selected, NG represents

to the total number of times a SNP was selected out of the 10 datasets using a 70% credible

interval, HL refers to the total number of times a SNP was selected out of the 10 datasets us-

ing HL, SLR shows the total number of times a SNP was selected out of the 10 dataset using

SLR, PiMASS represents the mean of the PIP rank from PiMASS over the 10 datasets for

the SNPs selected in at least one of NG, HL, or SLR, NG-PiMASS refers to the mean of the
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SNP PIP rank in PiMASS including only the SNP PIP rank from datasets that NG selected,

HL-PiMASS refers to the mean of the SNP PIP rank in PiMASS including only the SNP PIP

rank from datasets that HL selected, and SLR-PiMASS represents the mean of the SNP PIP

rank in PiMASS including only the SNP PIP rank from datasets that SLR selected. For ex-

ample, SNP79 was selected twice with the 70% CI in the NG in Scenario 1 (see Table 4.8).

The mean rank of the PIP from PiMASS across the 10 datasets for this SNP is approximately

229.8, whereas it is approximately 1 for only those two datasets (the first and second dataset)

where the NG picked this SNP up.

The simulation parameters are from Scenario1 and Scenario 4 in Table 4.1. The blue SNP

represents the common causal SNP and the red SNP represents the rare causal SNP. Within

the PiMASS column the bold green colour represents the SNPs that are in the top 12 rank of

PiMASS in at least one dataset. Note the other scenarios (Scenario 2, 3, 5, 6, 7, 8) were not

considered.

4.9.1 Selection of SNPs in general

Here we will discuss the SNPs selected by the methods in general and will focus on selection

of causal SNPs by each method.

Table 4.8 shows that in Scenario1 the NG approach was not able to detect the common

causal SNP (SNP47) at the 70% size of CI in any of the 10 datasets. However, HL and SLR

detected the common causal SNP in Scenario1 in 10 out of 10 datasets and 3 out of 10 datasets

respectively. In addition, PiMASS selected the common causal SNP with a high rank of the

PIP, with a mean rank over the 10 datasets of approximately 2.1, where 1 represents the top

ranked SNP. Notice that SLR selected the common causal SNP in the fifth, sixth, and eighth

dataset where its rank is the highest rank using PiMASS (see Table 4.10).

Table 4.9 shows that in Scenario 4 the common causal SNP (SNP46) was detected by the

NG using a 70% CI in 2 out of 10 datasets. In this scenario HL selects SNP46 in 5 datasets

whilst SLR never captures it. The mean PIP rank in PiMASS is 3.3.

In Scenario1 the rare causal SNP (SNP230) was detected in the NG using an 80% CI in 4

out of 10 datasets (results not shown). The datasets were the third, fourth, seventh, and ninth
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datasets and the rare causal SNP had the highest PIP rank in these datasets showing similarity

in SNP selection between NG and PiMASS (see Table 4.10). However, Table 4.8 shows that

in Scenario1 relaxing the size of CI to 70% (which we are interested in) gave the NG more

opportunity to detect the SNP from other datasets. With a 70% CI, the NG detected the rare

causal SNP in 8 out of 10 (all the datasets except the first and the second datasets that both

have the lowest PIP rank for SNP230 compared to the other 8 datasets). HL and SLR detected

the rare causal SNP (SNP230) in 7 out of 10 datasets and 6 out of 10 datasets respectively in

Scenario 1. In addition, in Scenario1 PiMASS selected the rare causal SNP (SNP230) with a

mean rank across the 10 datasets of approximately 2.2 (i.e. approximately the second highest

rank).

Table 4.9 shows that in Scenario 4 the rare causal SNP (SNP212) was detected in the NG

with a 70% CI in 3 out of 10 datasets. SLR never captures the rare causal SNP in Scenario 4

whilst HL captures it in 8 datasets. The mean PIP rank in PiMASS is 1.2.

Table 4.8 shows that in Scenario1 HL and SLR both selected SNP198 in 2 datasets, al-

though it has a low PIP rank. SNP156 was selected in 4 out of 10 datasets by SLR with the

initial univariate threshold 1× 10−5 and the mean PIP rank for those 4 datasets is 11 using Pi-

MASS. However, Table 4.9 shows that in Scenario 4 HL was selecting many SNPs within the

top 12 PIP rank from PiMASS in least one dataset (such as SNP17, SNP47, SNP84, SNP129,

SNP143, and SNP146), but also one that was not (SNP134). The same is true about the NG

in Scenario 1, many of the selected SNPs particularly at the 70% CI were within the top 12

rank PIP from PiMASS in least one dataset (SNP24, SNP73, SNP79, SNP129, SNP215, and

SNP284) (see also Table 4.10). Additionally, in the fourth scenario 70% CI the NG selected

SNP47, SNP84, and SNP146 that are all highly ranked by PiMASS (see Tables 4.9, and 4.11).

PiMASS always places both the common casual SNP and the rare causal SNP within the top

4(5) PIP rank in Scenario1(Scenario4).

Table 4.11 shows that in the fourth scenario the PiMASS PIPs of the top ranked SNPs in

some datasets are low. In 6 out of 10 datasets in Table 4.11 the maximum PIP is 0.12 or less

and the maximum PIP of the top ranked SNPs is 0.62. However, in the first scenario in Table

4.10, the PiMASS PIPs of the top ranked SNPs in some datasets are high. In only 3 out of

the 10 datasets in Table 4.10 is the maximum PIP 0.31 or less and the maximum PIP of the
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top ranked SNPs is 0.84. So although PiMASS ranks the common and rare SNPs highly in

all datasets, they often have very low PIP meaning these is relatively little confidence in these

SNPs being in the model.

In Scenario 1 both the NG prior and the HL selected 19 SNPs each whereas the SLR

selected only 15 SNPs. All methods are able to select common and rare SNPs. However,

the NG prior selected rare SNPs more often than the others (see Table 4.8). In Scenario 4

again both the NG prior the HL selected approximately 30 SNPs whereas the SLR selected

no SNPs. Both the NG prior and the HL are able to select common and rare SNPs. In both

Scenarios 1 and 4, most of the SNPs selected by the NG prior, the HL and the SLR have high

PIP rank. Also there are SNPs with high PIP rank not selected by the others such as SNP48

with a PIP rank of 3.

The criteria is to make both methods choose the same number of SNPs. This criteria might

be not the best. Therefore, future research is to investigate a suitable criteria with which to

compare these methods. Based on the criteria we considered it seems that the HL selected the

potential causal SNPs better than the NG prior and the SLR in both Scenarios 1 and 4.

4.9.2 Selection of SNPs within the LD block

In section 4.9.1 we compared between the methods considered in term of the selection of

SNPs in general using only Scenario 1 and 4. However, in this section we will concentrate

on the selection of SNPs within the LD block around the common causal SNP. Also we will

discuss the impact of the LD between the two potential causal SNPs on the selection of SNPs.

Table 4.9 illustrates the effect of LD on the performance of the HL in Scenario 4 which

only detects the common causal SNP in 5 out of 10 datasets, whereas the HL detected the

common causal SNP in 10 out of the 10 datasets in Scenario 1 (see Table 4.8). Moreover, in

Scenario 4 (Table 4.9) , it can be seen that the common causal SNP (SNP46) is selected in 5

of the 10 datasets (from second dataset to sixth dataset) whereas SNP47 which is located in

the LD block with an r2 of 0.9 was selected in 3 out of the 10 datasets (from seventh dataset

to ninth dataset). There is no intersection of these 3 datasets with the 5 datasets that selected

the common causal SNP showing that the HL is selecting the common causal SNP or the SNP
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most correlated with it but never both.

This impact of high LD extends also to SLR. Table 4.9 shows that SLR was not able to

detect the common causal SNP (SNP46) at the initial univariate threshold of 1× 10−5 in any

datasets. However, Table 4.8 indicates that it was able to detect the common causal SNP

(SNP47) in 3 out of the 10 datasets at the the same initial univariate threshold of 1× 10−5.

In Scenario 1 the NG prior did not select the common causal SNP (SNP47) or any SNPs

located within the LD with it at 70% credible interval size. However, in Scenario 4 it did

select the common causal SNP, SNP46, and the highest correlated SNP with it, SNP47, (see

Tables 4.8 and 4.9). However, PiMASS gave high ranks to most of the SNPs within the LD

mostly with a top 12 PIP rank in both Scenarios (see Tables 4.10 and 4.11).

It seems that the HL deals better than the other methods with selection of SNPs within

the LD block in Scenario 1. In PiMASS, in both Scenarios the SNPs within the LD block

obtained high PIP rank which means PiMASS distributed the signal between the SNPs within

the LD block.

The 70% credible interval in the NG prior might be not a good choose for the NG prior to

address the selection of SNPs within the LD block around the common causal SNP. Therefore,

we will compare the SNPs in the LD block using the mean maximum credible interval size in

both Scenarios. Moreover, we will give mean PIP for those SNPs.

Table 4.6 indicates the SNPs within the LD block (r2 ≥ 0.8) in the first scenario. It can

be seen that in several datasets PiMASS gave several SNPs within the LD block very similar

PIP. For instance, Table 4.10 shows that in Scenario 1 the PIP for the causal common SNP

(SNP47) is 0.35 in 4 datasets. The PIP for SNP49 is 0.34 in these 4 datasets. Therefore,

PiMASS cannot distinguish them. Moreover, Table 4.6 shows that the mean PIP over the 10

datasets is 0.32 and 0.25 for the common causal SNP (SNP47) and SNP48 which have r2 of

0.93 and in the first two datasets the PIP for SNPs 47 and 48 are 0.33 and 0.3 (see Table 4.10).

Again PiMASS cannot distinguish them. However, Table 4.7 displays the SNPs within the

LD block in the fourth scenario. It can be noticed that the mean PIP over the 10 datasets is

0.19 and 0.21 for the common causal SNP (SNP46) and SNP47 which have r2 of 0.9. It can

be seen that the mean PIP of the SNPs within the LD block in Scenario 1 is greater than the

mean PIP in Scenario 4.
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Although the NG prior with 70% credible interval never selected the common causal SNP

in Scenario 1, the mean maximum credible interval size of the common causal SNP is the

highest (42%) among the SNPs in LD with it (see Table 4.6). Moreover, Table 4.9 shows

that in Scenario 4 the NG prior with 70% selected the common causal SNP (SNP46) in 2 out

of the 10 datasets (first dataset, and tenth dataset) and selected SNP47 (which is located in

the LD block at r2 = 0.9) in 3 out of the 10 datasets (from seventh dataset to ninth dataset)

again in mutually exclusive datasets. However, the mean maximum credible interval size of

the common causal SNP is the highest (39.5%) among those in the LD block (see Table 4.7).

It can be seen that in Scenario 4 the mean maximum credible interval size of the common

causal SNP and the highest SNPs correlated with the common SNP are quite similar (39.5%

and 37% respectively). Therefore, if there is LD between the two causal SNPs it looks likely

that it may affect the selection of SNPs with the LD block.

SNPs 26 31 35 47 48 49 50 59 61 63 69 80

r2 0.84 0.83 0.84 1 0.93 0.81 0.86 0.8 0.81 0.81 0.81 0.8

Mean
maximum

CI size
4.5% 4% 4.5% 42% 14% 24% 8% 9% 6.5% 11% 10% 5%

Mean
PIP 0.18 0.17 0.17 0.32 0.25 0.20 0.19 0.16 0.17 0.17 0.17 0.18

Mean
rank

of PIP
21.6 32.7 26.5 2.1 10.8 22 20.95 52.6 38.1 23.9 41.8 27

Table 4.6: r2 with the common causal SNP for SNPs in its LD block for Scenario 1 in Table
4.1, where the LD block is defined as r2 ≥ 0.8. SNP47 in blue is the common causal SNP.

4.10 Discussion

There are many statistical approaches to variables selection in regression models. In fine-

mapping, we are also interested in selecting a model that includes the causal SNPs. The chal-

lenge within fine mapping is the high correlation between SNPs, which can lead to selection

of a non-casual SNP in high LD with the casual SNP. In SLR, the LD affected the perfor-

mance in that it was not able to select any SNPs at the initial univariate threshold 1 × 10−5.
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SNPs 25 30 34 46 47 48 58 65 71

r2 0.83 0.81 0.83 1 0.9 0.84 0.8 0.82 0.82

Mean
maximum

CI size
4% 11.5% 14% 39.5% 37% 17% 10% 11% 15.5%

Mean
PIP 0.11 0.11 0.11 0.19 0.21 0.11 0.10 0.10 0.10

Mean
rank

of PIP
22.2 15.6 20.1 3.3 21.7 28.2 61.3 110.3 96.15

Table 4.7: r2 with the common causal SNP for SNPs in its LD block for Scenario 4 in Table
4.1, where the LD block is defined as r2 ≥ 0.8. SNP46 in blue is the common causal SNP.

The PiMASS approach gives a posterior inclusion probability (PIP) for each SNP. We have

seen LD can lead to correlated SNPs having higher PIP than the causal SNP as we have seen

in the fourth scenario (see Table 4.11). The HL, in the first scenario, seems to perform well in

terms of selecting the causal SNPs (it selected the common SNP in 10 out of the 10 datasets

and the rare causal SNP in 7 out of the 10 datasets). However, this is not the case in the fourth

scenario where the HL selected some of the non-causal SNPs located within the LD block.

The 70% posterior credible interval in the NG analysis did successfully select the rare causal

SNP in most of datasets with less success for the common causal SNP. In Scenario 1, the HL

and SLR invariably only select the causal SNP from the LD block, but the NG prior with 70%

credible interval size did not select the common causal SNP at all. In this setting it seems the

HL work reasonably well in terms of within-block localisation. However, in Scenario 4 the

NG and the HL sometimes pick up the wrong SNP in the Scenario 4 whilst SLR selects none.

PiMASS usually gave high rank to the causal SNPs but also it often selected SNPs within the

LD block with a top 12 rank.

In both Scenarios 1 and 4, the mean maximum credible interval size of the common causal

SNP is higher than any other SNPs within the LD block, although the common causal SNP

was not selected in Scenario 1 at credible interval of size 70% and was selected less often than

the highest SNP correlated with in Scenario 4. Therefore, setting the credible interval size for

the NG prior to be a credible interval that select similar total number of HL select might be

not a perfect choice.

93



SNPs r2
1 r2

2 MAF NG HL SLR PiMASS
NG-

PiMASS
HL-

PiMASS
SLR-

PiMASS
Scenario 1 (70% CI)

SNP47 1.00 0.01 0.28 0 10 3 2.10 NA 2.10 1

SNP79 0.15 0.07 0.39 2 0 0 229.8 1 NA NA

SNP117 0.01 0 0.01 2 0 0 97.50 13 NA NA

SNP156 0.04 0.27 0.16 0 0 4 134.1 NA NA 11

SNP198 0.01 0.36 0.2 0 2 2 101.9 NA 22 22

SNP215 0 0.03 0.02 4 0 0 112.2 2 NA NA

SNP230 0.01 1 0.09 8 7 6 2.20 1.75 1.86 2

SNP284 0 0 0 3 0 0 85 9 NA NA

Table 4.8: Total number of times a SNP was selected out of the 10 datasets in Scenario 1 using
70% credible intervals in the NG, HL and SLR. In addition, the mean PIP rank from PiMASS
over all 10 datasets, and the mean PIP rank from PiMASS only over datasets selected by NG,
HL, or SLR are reported. For more detail of table content (see Section 4.9).

One can ask a question about the utility of the rank of the PIP or the mean or median

posterior effect size in the NG prior. The disadvantage is in selecting the proper threshold

to apply which invariably relies on a rule of thumb. There is clearly an opportunity to use

functional genomic information to improve localisation of the signal within the LD block in

particular and to reduce the number of false positives. We will consider this aspect in Chapters

6-8.

One can be noticed that the priors for HL, PiMASS, and the NG prior might be resemble

because all of them have mass close to zero and heavy tails elsewhere. The interesting question

is that if all three methods have similar priors does this explain the similarities in the models

or the results? We believe that it is quite difficult to obtain exactly same priors come from

three different models, but they might be similar priors. Moreover, obtaining similar results

between some methods may not mean they have similar prior because each method has its

own procedure for selecting SNPs to be potential causal SNPs.
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SNPs r2
1 r2

2 MAF NG HL SLR PiMASS
NG-

PiMASS
HL-

PiMASS
SLR-

PiMASS
Scenario 4 (70% CI)

SNP17 0.18 0.01 0.07 0 2 0 97.3 NA 6 NA

SNP44 0.01 0 0.01 4 0 0 110 NA NA NA

SNP46 1 0.09 0.31 2 5 0 3.3 4 2 NA

SNP47 0.9 0.08 0.33 3 3 0 21.7 2 2 NA

SNP84 0 0 0 3 3 0 42.1 8 8 NA

SNP89 0.02 0.01 0.05 1 0 0 225.1 46 NA NA

SNP129 0.03 0 0.01 0 4 0 39.5 NA 3 NA

SNP134 0.05 0.02 0.16 0 3 0 165.75 NA 15 NA

SNP143 0.01 0.18 0.37 0 2 0 71.35 NA 1 NA

SNP144 0 0 0 4 0 0 58.75 10 NA NA

SNP146 0 0 0 2 2 0 113.65 NA 7 NA

SNP212 0.09 1 0.10 3 8 0 1.2 2 1 NA

SNP227 0.01 0.03 0.21 4 0 0 169.8 193 NA NA

Table 4.9: Total number of times a SNP was selected out of the 10 datasets in Scenario 4 using
70% credible intervals in the NG, HL and SLR. In addition, the mean PIP rank from PiMASS
over all 10 datasets, and the mean PIP rank from PiMASS only over datasets selected by NG,
HL, or SLR are reported. For more detail of table content (see Section 4.9).
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Scenario 1

Dataset 1 2 3 4 5 6 7 8 9 10

Rank1 79 79 230 230 47 47 230 47 230 230

PIP 0.40 0.40 0.84 0.84 0.31 0.31 0.84 0.31 0.84 0.62

Rank2 47 47 215 215 48 48 215 48 215 47

PIP 0.33 0.33 0.40 0.40 0.23 0.23 0.40 0.23 0.40 0.25

Rank3 48 48 47 47 230 230 47 230 47 94

PIP 0.30 0.30 0.35 0.35 0.16 0.16 0.35 0.16 0.35 0.25

Rank4 230 230 49 49 24 24 49 24 49 68

PIP 0.25 0.25 0.34 0.34 0.14 0.14 0.34 0.14 0.34 0.24

Rank5 125 125 154 154 216 216 154 216 154 187

PIP 0.23 0.23 0.32 0.32 0.14 0.14 0.32 0.14 0.32 0.20

Rank6 94 94 50 50 129 129 50 129 50 154

PIP 0.21 0.21 0.31 0.31 0.11 0.11 0.31 0.11 0.31 0.19

Rank7 78 78 187 187 80 80 187 80 187 14

PIP 0.19 0.19 0.30 0.30 0.10 0.10 0.30 0.10 0.30 0.18

Rank8 73 73 289 289 50 50 289 50 289 281

PIP 0.19 0.19 0.30 0.30 0.10 0.10 0.30 0.10 0.30 0.18

Rank9 271 271 290 290 284 284 290 284 290 143

PIP 0.18 0.18 0.30 0.30 0.10 0.10 0.30 0.10 0.30 0.18

Rank10 244 244 114 114 49 49 114 49 114 22

PIP 0.17 0.17 0.29 0.29 0.08 0.08 0.29 0.08 0.29 0.17

Rank11 68 68 156 156 61 61 156 61 156 196

PIP 0.17 0.17 0.28 0.28 0.08 0.08 0.28 0.08 0.28 0.17

Rank12 21 21 35 35 69 69 35 69 35 83

PIP 0.17 0.17 0.28 0.28 0.08 0.08 0.28 0.08 0.28 0.17

Table 4.10: Top 12 ranked SNPs from PiMASS and the PIP for these SNPs for the first scenario
in Table 4.1. The bold blue colour refers to the common causal SNP, the red colour represents
the rare casual SNP, and the italic green colour refers to the SNPs within the LD block given
in Table 4.6.
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Scenario 4

Dataset 1 2 3 4 5 6 7 8 9 10

Rank1 143 212 212 212 212 212 212 212 212 143

PIP 0.11 0.11 0.19 0.12 0.12 0.12 0.63 0.63 0.63 0.11

Rank2 212 46 46 46 46 46 47 47 47 212

PIP 0.11 0.09 0.14 0.08 0.08 0.08 0.62 0.62 0.62 0.11

Rank3 114 129 47 129 129 129 18 18 18 114

PIP 0.11 0.02 0.09 0.03 0.03 0.03 0.46 0.46 0.46 0.11

Rank4 46 25 52 25 25 25 35 35 35 46

PIP 0.09 0.02 0.05 0.03 0.03 0.03 0.45 0.45 0.45 0.09

Rank5 100 34 35 34 34 34 46 46 46 100

PIP 0.07 0.02 0.04 0.03 0.03 0.03 0.42 0.42 0.42 0.07

Rank6 17 47 22 47 47 47 52 52 52 17

PIP 0.07 0.01 0.03 0.03 0.03 0.03 0.37 0.37 0.37 0.07

Rank7 146 26 71 26 26 26 3 3 3 146

PIP 0.06 0.02 0.03 0.03 0.03 0.03 0.36 0.36 0.36 0.06

Rank8 262 107 110 107 107 107 84 84 84 262

PIP 0.06 0.02 0.03 0.02 0.02 0.02 0.36 0.36 0.36 0.06

Rank9 45 48 10 48 48 48 111 111 111 45

PIP 0.05 0.01 0.02 0.02 0.02 0.02 0.36 0.36 0.36 0.05

Rank10 110 144 114 144 144 144 60 60 60 110

PIP 0.05 0.01 0.02 0.02 0.02 0.02 0.36 0.36 0.36 0.05

Rank11 194 30 25 30 30 30 28 28 28 194

PIP 0.04 0.03 0.02 0.02 0.02 0.02 0.34 0.34 0.34 0.04

Rank12 109 83 223 83 83 83 143 143 143 109

PIP 0.04 0.01 0.02 0.02 0.02 0.02 0.34 0.34 0.34 0.04

Table 4.11: Top 12 ranked SNPs from PiMASS and the PIP for these SNPs for the fourth
scenario in Table 4.1. The bold blue colour refers to the common causal SNP, the red colour
represents the rare casual SNP, and the italic green colour refers to the SNPs within the LD
block given in Table 4.7.
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Chapter 5

Applying the four chosen methods to the

iCOGs data

In Chapter 4 we compared the effectiveness of several methods in fine mapping our simulated

data. Moreover, we discussed the variability between datasets for each method. Applying

these methods on the simulation data allows us to compare the selection of the true causal

SNPs but applying these methods on a real dataset is also informative and allows us to assess

the between-method variation in SNPs selected. Therefore, the aim of this Chapter is to apply

the methods on the iCOGs data (see section 5.1). In this Chapter we will describe the iCOGs

data and compare and contrast the methods based on their performance.

5.1 iCOGs data

Recently, many studies were conducted using the iCOGs array that was designed by the Col-

laborative Oncological Gene-environment Study (COGS) for fine-mapping studies. These

studies include SNPs that are highly associated with breast, ovarian and prostate cancer. The

iCOGs array has 211,155 SNPs (Michailidou et al., 2013b). However, we are interested in

a particular gene implicated in breast cancer. Therefore, we concentrate only on the region

located on Chromosome 2 between base positions 201500074 and 202569992 that includes

the CASP8 gene. There were already 585 SNPs genotyped in breast cancer case-control sam-

ples from the Breast Cancer Association Consortium. We will apply the methods on a total
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1733 SNPs with 46450 cases and 42500 controls (total sample size is 89050). Those 1733

SNPs come from two sources: 501 SNPs are selected out of the 585 SNPs from the Breast

Cancer Association Consortium that passed quality control checks, the other 1232 SNPs were

selected using IMPUTE2 (Marchini and Howie, 2010). The SNPs were considered to be

imputed successfully if their imputation accuracy was greater than 90%.

5.1.1 Preparing the iCOGs data

We extracted the 1733 SNPs from the raw data. The format of the data was not suitable for

the methods we use because the data was formatted such that each individual has a value for

each possible genotype. For example, if A and B are two alleles, then the possible genotype

are: AA, AB, and BB. The raw data of the 501 genotyped SNPs give a binary value (e.g 0, 0,

and 1) for AA, AB, and BB counts respectively. We need to code this data to be 2, 1, and 0

based on the number of copies of the minor allele (which is A in this case). In addition, the

raw data of the 1232 SNPs that were imputed contained a rational number (e.g 0.1, 0.2, and

0.7) for AA, AB, and BB counts respectively. This reflects the uncertainty in the imputation

process. We need to code this based on the number of copies of the minor allele. To achieve

this, we calculated the expected value of the number of copies of the minor allele A given by

p(AA) × 2 + p(AB) × 1 + p(BB) × 0, (5.1)

where p(AA) is the probability of the genotype AA, p(AB) is the probability of the genotype AB,

and p(BB) is the probability of the genotype BB. Table 5.1 shows examples of transforming

the raw data from 3 genotype values to the expected value.

SNPs (2) AA (1) AB (0) BB E (A)

1 1 0 0 2

2 0 0 1 0

3 0 1 0 1

4 0.1 0.2 0.7 0.4

Table 5.1: Calculating the expected number of copies of the minor allele for an individual at
4 SNPs where the first three are typed SNPs and the last SNP is an imputed SNP.
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5.2 Comparison tools

In simulation data scenarios, the potential causal SNPs can be specified perviously. Therefore,

the performance of methods can be compared by ROC curves. However, in the real data this

is not the case because the potential causal SNPs are not known. The aim here is to compare

between the four methods: SLR, HL, piMASSS, and the NG prior in terms of the selected

SNPs.

Here, the SLR was applied using the initial univariate threshold 1 × 10−5 rather than

5×10−8 which is the standard threshold employed by many fine-mapping studies because the

standard threshold selected no SNPs. The HL method was applied with shape 0.05, because

it is the smallest value that can be chosen in the HL , and scale 0.001 which corresponds to

a FWER of 0.05. PiMASS was applied with the default values of all parameters to calculate

a posterior inclusion probabilities. In PiMASS there is not a common rank threshold to use.

Therefore, here we will consider that a SNP with PIP rank less than the total number of SNPs

selected by the others is considered as a potential causal SNPs in PiMASS. A non-integer

rank means a tie in the PIP. This is most likely to occur when two SNPs are in strong LD.

The NG prior was applied to the iCOGs data using MCMC with 20000 iterations a burn-in of

2000 and thinned by 20 so the final thinned chain is 1000 observations long. The MCMC run

for the iCOGs data took a week in Iceberg (the University computer cluster). The diagnostic

convergence tests (trace plot, ACF plot and R̂) were applied and all the parameter distributions

converged (see Figures A.1 and A.2 in Appendix A). The credible interval was used as a

posterior summary statistic. For the NG prior, the credible interval will be considered at four

percentages: 85%, 90%, 95%, and 99% because we are interested in comparison between

different credible interval sizes.

5.3 Results and discussion

In this section we will discuss the results that are obtained from applying the methods (SLR,

HL, piMASSS, and the NG prior) to the iCOGs data (see section 5.1). Moreover, we will

discuss the characteristics of the SNPs that are selected by the NG prior but not the others.
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The important characteristics that can be used to compare between the SNPs are the minor

allele frequency and the r2. However, the iCOGs data is available with only the minor allele

frequency and calculating r2 for the iCOGs data needs a lot of time. Therefore, we will

compare between the selected SNPs based on their MAF.

Table 5.2 shows the SNPs selected by either SLR, HL or an 85% credible interval of the

posterior effect sizes obtained from the NG. Moreover, the ranking of the posterior inclusion

probabilities (PIP) from PiMASS were given for each selected SNP from one of the 3 methods.

It can be seen that 18 SNPs were selected using the NG prior that were not selected by SLR

or HL. However, the majority of the selected SNPs using the NG prior have top 50 PIP rank

(except SNP6, SNP9, SNP122, SNP795, and SNP1608). It seems that the NG prior selects

similar SNPs to PiMASS. However, the SLR and HL agree on only SNP1, and the PIP rank

of SNP1 is 40 which is within the highest 3% of ranks. SNP31 is selected only with the HL

method but the PIP rank of this SNP is 10.

Tables 5.3, 5.4, and 5.5 present the same results as Table 5.2 but with a 90%, 95%, and

99% NG credible interval respectively. As expected the number of selected SNPs with the NG

prior decreases as the credible interval increases (13 selected SNPs with 90% CI, 8 selected

SNPs with 95% CI and only 5 selected SNPs with 95% CI). It can be seen that the SNPs

selected by the NG with 99% CI all have high PIP rank.

Table 5.2 shows that the NG prior selects SNPs that no other methods have selected:

SNP122, SNP342, SNP795, SNP1177, SNP1241, SNP1274 and SNP1608. These SNPs in-

clude both common and rare SNPs. Moreover, it can be seen that the NG prior has ability

to select the rare SNPs more than HL and SLR. For example it selects SNP122, SNP740 and

SNP765 with MAF 0.05, 0.04 and 0.09. SNP122 was selected only by the NG prior and has

less PIP rank. The majority of SNPs selected by both the NG prior and PiMASS are com-

mon SNPs (SNP589, SNP740, SNP765, SNP990, SNP1056, SNP1101, SNP1146, SNP1159,

SNP1244, SNP1245, SNP1253). It seems the SLR has difficulty with selecting rare SNPs

because all SNPs selected by SLR are common SNP1, SNP2 SNP6, and SNP9 with MAF

0.13, 0.13, 0.26, 0.26 respectively. Although there are only two SNPs were selected by the

HL, they are both common and rare SNPs. Therefore, the HL has the ability to select both

common and rare SNPs.
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In conclusion each method has its own procedure for selecting SNPs to be potential causal

SNPs. However, it may be more logical if one combines results between the methods so that

the SNPs that are selected by several methods would be most likely to be potential causal

SNPs than SNPs that are selected by only one method for example. Therefore, in the iCOGs

data if one is interested in selecting potential causal SNPs, those SNPs which are selected by

more than one method are candidates such as SNP31 and SNP589.
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Figure 5.1: Density plots of posterior effect sizes from the Normal-Gamma prior for four
selected SNPs by either SLR, HL, or a 99% CI of the NG. When applied to the iCOGs data
with 46450 cases and 42500 controls with 1733 SNPs. The individual plot title indicates
which method selected the SNP. For PiMASS this equates to the SNP being in the top 13 PIP
ranks.
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Figure 5.1 shows the posterior densities of the effect sizes for four typical selected SNPs

with a NG 99% CI (from Table 5.5). SNP1 is selected by both HL and SLR but not the NG

and has only moderate PIP rank (rank 40). SNP31 is selected by HL only but has a high

PIP rank (rank 10). SNPs 589 and 1245 are selected only by the NG but also have very high

PIP ranks (rank 7 and 2.5 respectively). It can be seen that the posterior densities of the two

selected SNPs using the NG (SNP589 and SNP1245) have very little mass around zero. For

SNP31 (chosen by HL and PiMASS) there is a lot of mass in the positive tail but there is also

a lot of mass around zero. However, for SNP1 that is selected by SLR and HL only, most of

the mass is very close to zero.
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SNPs MAF NG HL SLR PiMASS

SNP1 0.13 0 1 1 40

SNP2 0.13 0 0 1 32

SNP6 0.26 0 0 1 1411

SNP9 0.26 0 0 1 1351

SNP31 0.08 0 1 0 10

SNP122 0.05 1 0 0 606

SNP342 0.46 1 0 0 43

SNP589 0.20 1 0 0 7

SNP740 0.04 1 0 0 23

SNP765 0.09 1 0 0 2.5

SNP795 0.45 1 0 0 1376.5

SNP990 0.44 1 0 0 8

SNP1056 0.43 1 0 0 19

SNP1101 0.33 1 0 0 2.5

SNP1146 0.33 1 0 0 22

SNP1159 0.33 1 0 0 5

SNP1177 0.32 1 0 0 46

SNP1241 0.41 1 0 0 45

SNP1244 0.17 1 0 0 2.5

SNP1245 0.17 1 0 0 2.5

SNP1253 0.41 1 0 0 18

SNP1274 0.20 1 0 0 41

SNP1608 0.49 1 0 0 1671

Table 5.2: SNPs selected using an 85% credible interval of the posterior effect sizes in the NG
prior or by HL or SLR along with the rank of the PiMASS PIP of the selected SNPs. We used
1 and 0 for NG, HL and SLR to indicate whether the SNP in a particular method was selected
or not respectively. The bold green SNPs in the PiMASS column represents those SNPs in top
23 by PIP rank. It is applied to the iCOGs data with 1733 SNPs and a total sample size of
89050.
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SNPs MAF NG HL SLR PiMASS

SNP1 0.13 0 1 1 40

SNP2 0.13 0 0 1 32

SNP6 0.26 0 0 1 1411

SNP9 0.26 0 0 1 1351

SNP31 0.08 0 1 0 10

SNP122 0.05 1 0 0 606

SNP342 0.46 1 0 0 43

SNP589 0.20 1 0 0 7

SNP765 0.09 1 0 0 2.5

SNP990 0.44 1 0 0 8

SNP1101 0.33 1 0 0 2.5

SNP1159 0.33 1 0 0 5

SNP1177 0.32 1 0 0 46

SNP1241 0.41 1 0 0 45

SNP1244 0.17 1 0 0 2.5

SNP1245 0.17 1 0 0 2.5

SNP1253 0.41 1 0 0 18

SNP1274 0.20 1 0 0 41

SNP1608 0.49 1 0 0 1671

Table 5.3: SNPs selected using an 90% credible interval of the posterior effect sizes in the NG
prior or by HL or SLR along with the rank of the PiMASS PIP of the selected SNPs. We used
1 and 0 for NG, HL and SLR to indicate whether the SNP in a particular method was selected
or not respectively. The bold green SNPs in the PiMASS column represents those SNPs in top
19 by PIP rank. It is applied to the iCOGs data with 1733 SNPs and a total sample size of
89050.
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SNPs MAF NG HL SLR PiMASS

SNP1 0.13 0 1 1 40

SNP2 0.13 0 0 1 32

SNP6 0.26 0 0 1 1411

SNP9 0.26 0 0 1 1351

SNP31 0.08 0 1 0 10

SNP122 0.05 1 0 0 606

SNP342 0.46 1 0 0 43

SNP589 0.20 1 0 0 7

SNP765 0.09 1 0 0 2.5

SNP990 0.44 1 0 0 8

SNP1101 0.33 1 0 0 2.5

SNP1244 0.17 1 0 0 2.5

SNP1245 0.17 1 0 0 2.5

Table 5.4: SNPs selected using an 95% credible interval of the posterior effect sizes in the NG
prior or by HL or SLR along with the rank of the PiMASS PIP of the selected SNPs. We used
1 and 0 for NG, HL and SLR to indicate whether the SNP in a particular method was selected
or not respectively. The bold green SNPs in the PiMASS column represents those SNPs in top
13 by PIP rank. It is applied to the iCOGs data with 1733 SNPs and a total sample size of
89050.
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SNPs MAF NG HL SLR piMASS

SNP1 0.13 0 1 1 40

SNP2 0.13 0 0 1 32

SNP6 0.26 0 0 1 1411

SNP9 0.26 0 0 1 1351

SNP31 0.08 0 1 0 10

SNP589 0.20 1 0 0 7

SNP765 0.09 1 0 0 2.5

SNP1101 0.33 1 0 0 2.5

SNP1244 0.17 1 0 0 2.5

SNP1245 0.17 1 0 0 2.5

Table 5.5: SNPs selected using an 99% credible interval of the posterior effect sizes in the NG
prior or by HL or SLR along with the rank of the PiMASS PIP of the selected SNPs. We used
1 and 0 for NG, HL and SLR to indicate whether the SNP in a particular method was selected
or not respectively. The bold green SNPs in the PiMASS column represents those SNPs in top
10 by PIP rank. It is applied to the iCOGs data with 1733 SNPs and a total sample size of
89050.
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Chapter 6

Incorporating the FS score into the

normal gamma prior

In the previous chapters we discussed multivariate statistical methods that attempt to iden-

tify causal SNPs (Step wise logistic regression, Hyper lasso, PiMASS, and Normal-Gamma

prior) in terms of their performance in fine-mapping studies with case-control data using ROC

curves. We discussed in detail the NG prior as a continuous prior and its performance in se-

lecting the causal SNP within an LD block.

As a result of the diversity and the abundance of functional genomic information, some

researchers exploit this data by incorporating it into their models to prioritise causal SNPs in

fine-mapping studies. Examples include p-values weighting (Saccone et al., 2008), a Bayesian

Latent variable model (Fridley et al., 2011), Probabilistic Annotation Integrator (Kichaev

et al., 2014), and Empirical Bayes Approach (Spencer et al., 2016) that uses Encode data

to inform the prior probability of association in a Bayes factor approach. The aim of this

chapter is to discuss how one can incorporate functional genomic information into the NG

prior. We will focus in this project only on incorporating so-called functional significance

(FS) scores into the NG prior.
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6.1 Functional significance (FS) scores

There is an abundance of sources of functional genomic information including the F-SNP

database (Lee and Shatkay, 2009) and the ENCODE database (ENCODE, 2011). Although

functional genomic data has a limitation, in that it cannot provide information for all SNPs

across the genome, it can be used in a Bayesian analysis in order to inform the prior distribu-

tion of effect sizes.

The F-SNP database gives functional significance (FS) scores that estimate the deleteri-

ous effects of SNPs (Lee and Shatkay, 2009). In order to calculate FS scores they applied

several steps: at the beginning they retrieved predicted labels of the SNPs predicted from the

public available dataset to be “deleterious” or “non-deleterious” and they classified the SNPs

based upon four major genetic functional aspects: splicing, transcription, translation and post-

translational modification. Then they calculated the tools reliability score by calculating the

conditional probabilities of a deleterious SNP given that the tool predicts this SNP as deleteri-

ous. Each tool reports the confidence scores with different scales. Therefore, Lee and Shatkay

(2009) normalise the confidence scores to take a value lying in the interval [0, 1]. They notice

that the confidence score for a deleterious SNP takes a value between [0.5, 1], whereas the

confidence score for a non-deleterious SNP takes a value between [0, 0.5]. Moreover, they

determined, for the SNPs in regulatory regions, whether they are conserved across multiple

species or not, and if the SNPs are not within a conserved region the confidence score is set to

be 0.5, because of the uncertainty in the functionality of the SNP. Ultimately, the FS scores are

calculated based on the SNPs confidence scores (Lee and Shatkay, 2009). Note that there are

also many SNPs with no FS scores that are considered as missing data, and are most likely to

be non-deleterious (assuming deleterious and non-deleterious SNPs have missing information

with the same per-SNP probability).

In this chapter, we will discuss incorporating the functional significance (FS) scores into

the normal-gamma (NG) prior for the effect size. Here we propose to divide the FS scores

into four groups based on the nature of scores rather than incorporate the acute value of FS

scores which can be addressed in the future studies.
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6.1.1 Incorporating the functional significance scores into the prior for

the effect size

Bayesian approaches are very useful in fine mapping case-control studies because they allow

the inclusion of information (the functional significance (FS) scores) into the prior. In our

project, we use the normal-gamma prior and modify this prior to incorporate the published FS

scores (Lee and Shatkay, 2009).

Recently, the functional significance (FS) scores were included into the NG prior (Boggis

et al., 2016). However, these authors applied it to eQTL data (gene expression data) in which

there was little LD between the SNPs. Also they partitioned the SNPs into seven groups

based on their functional genomic information: Intergenic FS score, Intronic FS score, UTR3

FS score, Splicing FS score, Other FS score, Synonymous FS score, and Non-synonymous

FS score. However, here we will incorporate the FS scores into the NG prior for use in fine

mapping case-control studies with extremely high LD. Moreover, we will partition the SNPs

according to their FS scores and not into pre-defined functional groups. This means we need

to deal with SNPs that have no assigned FS score.

Using FS scores in the prior

Griffin and Brown (2010) proposed a prior for the hyper-parameters λ and γ−2|λ to provide

variability around the Lasso prior (λ = 1). They used a single parameter for λ and γ−2 for

all SNPs. We propose to modify the structure of the NG prior by allowing λ and γ−2 to

take four different values based on four different classes of the confidence scores that the FS

scores calculated from. Therefore, the FS scores were divided into four groups: FS > 0.5,

FS = 0.5, FS < 0.5, and missing FS (FS = NA). We decided to classify the FS scores into

four groups because Lee and Shatkay (2009) considered that SNPs with FS > 0.5 are most

likely to be deleterious SNPs, SNPs with FS < 0.5 are unlikely to be deleterious SNPs, SNPs

with FS = 0.5 are with a lack of evidence to be deleterious, and the deleterious effects of

SNPs with FS = NA are unknown.

To do this, we propose to modify the distribution of the prior variance of beta for each

group, where the effect size variance of SNPs in Group 1 has a distribution with the largest
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expectation, the variance distribution of Group 3 SNPs has the lowest expectation, and Group

2 and Group 4 SNPs have a variance distribution that is a mixture of the Group 1 and Group

3 variance distributions. We set the variance distributions for each group as follows

Group 1 : 2λ1γ
2
1 ∼ IG (2,M1) , (6.1)

Group 2 : 2λ2γ
2
2 | w ∼ w × IG (2,M1) + (1− w)× IG (2,M2) , (6.2)

Group 3 : 2λ3γ
2
3 ∼ IG (2,M2) , (6.3)

Group 4 : 2λ4γ
2
4 | h ∼ h× IG (2,M1) + (1− h)× IG (2,M2) , (6.4)

where M1 = 0.01, M2 = 0.001 (see Section 6.2 for a justification of these values) and w and

h are the mixture parameters for Group 2 and Group 4. In order to calculate the distributions

of γ−2
j | λj, w, h, a transformation was used and the distributions are given either gamma

distributions or a mixture of gamma distributions.

For example, let us apply the relevant transformation for Equation 6.2.

f
(
2λ2γ

2
2 | w

)
= w × M2

1

Γ (2)

(
2λ2γ

2
2

)−2−1
e
− M1

2λ2γ
2
2 + (1− w)× M2

2

Γ (2)

(
2λ2γ

2
2

)−2−1
e
− M2

2λ2γ
2
2

(6.5)

Let δ =
1

2λ2γ2
2

⇒ 2λ2γ
2
2 =

1

δ
and | d

dδ

1

δ
|= 1

δ2
(6.6)

Standard techniques for transforming random variables and equation 6.5 gives

f (δ | w) = w × M2
1

Γ (2)

(
1

δ

)−2−1(
1

δ

)2

e−M1δ + (1− w)× M2
2

Γ (2)

(
1

δ

)−2−1(
1

δ

)2

e−M2δ

Thus, f (δ | w) = w × M2
1

Γ (2)
(δ)3 (δ)−2 e−M1δ + (1− w)× M2

2

Γ (2)
(δ)3 (δ)−2 e−M2δ (6.7)

f (δ | w) = w × M2
1

Γ (2)
(δ)2−1 e−M1δ + (1− w)× M2

2

Γ (2)
(δ)2−1 e−M2δ (6.8)

f

(
1

2λ2γ2
2

| w
)

= w × M2
1

Γ (2)

(
1

2λ2γ2
2
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e
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2
2

(6.9)
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Therefore, it follows that

1

2λ2γ2
2

| w ∼ w ×Ga (2,M1) + (1− w)×Ga (2,M2) (6.10)

Properties of transforming a Ga (.) distribution by a constant then give

γ−2
2 | λ2, w ∼ w ×Ga

(
2,
M1

2λ2

)
+ (1− w)×Ga

(
2,
M2

2λ2

)
. (6.11)

The same transformations can be applied to Equations 6.1, 6.3, and 6.4. The prior for the for

γ−2
j | λj, w, h can be given as follows

f(γ−2
1 | λ1) =

(M1/2λ1)2

Γ(2)

(
γ−2

1

)2−1 exp
(
−M1

2λ1

γ−2
1

)
, (6.12)

f(γ−2
2 | λ2, w) = w × (M1/2λ2)2

Γ(2)

(
γ−2
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)2−1 exp
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2λ2

γ−2
2

)
+ (1− w)× (M2/2λ2)2

Γ(2)

(
γ−2

2

)2−1 exp
(
−M2

2λ2

γ−2
2

)
(6.13)

f(γ−2
3 | λ3) =

(M2/2λ3)2

Γ(2)

(
γ−2

3

)2−1 exp
(
−M2

2λ3

γ−2
3

)
, (6.14)

f(γ−2
4 | λ4, h) = h× (M1/2λ4)2

Γ(2)

(
γ−2

4

)2−1 exp
(
−M1

2λ4

γ−2
4

)
+ (1− h)× (M2/2λ4)2

Γ(2)

(
γ−2

4

)2−1 exp
(
−M2

2λ4

γ−2
4

)
. (6.15)

The prior distributions for w and h were selected to follow Beta distributions because it is

conjugate with the Gamma distribution. Moreover, the parameters for the Beta distributions

were selected based on the nature of the FS scores in the groups. The prior for w is a Beta

distribution with shape 2 and scale 2, because w represents the weight parameter for Group

2 (FS = 0.5) in which SNPs are considered approximately equally likely to be deleterious

or non-deleterious. In addition, the prior for h is a Beta distribution with shape 1 and scale

4, because h represents the weight parameter for Group 4 (FS = NA) in which SNPs are

considered more likely not to be deleterious (see Figure 6.1) so that the mixture weight for the

IG (2,M1) distribution should a priori be small.
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Figure 6.1: Prior densities for mixture components w and h.

The structure of the NG prior changes as follows. Let j ∈ {1, 2, 3, 4} represent the FS

score group and i represent the SNP label within the group with i ∈ {1, 2, . . . , pj}. Thus, βij

is the effect size for the ith SNP in the jth group and ψij is idiosyncratic prior variance.

f (βij | ψij) =
1√

2π|ψij|
exp

{
−1

2

(βij)
2

ψij

}
(6.16)

f
(
ψij | λj, γ−2

j

)
=

(
1

2γ2
j

)λj
Γ(λj)

(ψij)
λj−1exp

{
− ψij

2γ2
j

}
(6.17)
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f
(
γ−2
j | λj, w, h

)
see Equations (6.12)− (6.15) (6.18)

f (λj) = 142.85× exp (−142.85λj) see Section 4.3 (6.19)

w ∼ Beta (2, 2) ,

f(w) =
Γ (2 + 2)

Γ (2) Γ (2)
w2−1 (1− w)2−1 , (6.20)

h ∼ Beta (1, 4) ,

f(h) =
Γ (1 + 4)

Γ (1) Γ (4)
h1−1 (1− h)4−1 , (6.21)

where M1 = 0.01 and M2 = 0.001 (see Section 6.2).

6.2 Selecting M1 and M2

The basic idea that we propose to incorporate the FS scores into the NG prior, is to decrease

the amount of shrinkage in the groups that have SNPs with high FS scores (Group 1 and

Group 2) and increase the amount of shrinkage in the groups that has SNPs with low FS

scores (Group 3 and Group 4). In order to achieve this one has to select a large variance for

the NG prior variance (M1) for the groups with high FS scores to allow more mass away from

zero and select a smaller NG prior variance (M2) for the groups with low FS scores to allow

more mass close to zero. The aim is to select M1 and M2 to have reasonable amounts of

shrinkage that lead to neither too much shrinkage nor too little shrinkage. We could of course

shrink the posterior effect sizes in the SNP group with low FS scores very close to zero but

if a causal SNP were placed in this group there would have be little chance of a convincing

credible interval not containing zero.

To investigate the influence of the variance of the NG prior we consider the effect of

different prior variances on the breast cancer top hits (BCTH) in a univariate analysis. We

calculate the relative univariate shrinkage factor (SF) as follows

SF = 1−
E2

(
β | β̂

)
E1

(
β | β̂

) , (6.22)
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where E1

(
β | β̂

)
represents the mean of the posterior distribution with the NG prior with a

variance of M1, and E2

(
β | β̂

)
represents the mean of the posterior distribution with the NG

prior with a variance of M2. The SF can take any values either positive or negative. Note

that SF close to 0 implies similar posterior means whilst values close to 1 imply much more

shrinkage with the prior variance of M2 compared to M1.

The posterior mean E
(
βi | β̂i

)
can be approximated as

E
(
βi | β̂i

)
=

∫
βif

(
βi | β̂i

)
dβi (6.23)

=

∫
βi
π (βi) f

(
β̂i | βi

)
f
(
β̂i

) dβi (6.24)

=
1

f
(
β̂i

) ∫ βiπ (βi) f
(
β̂i | βi

)
dβi (6.25)

≈ 1

nf
(
β̂i

) n∑
k=1

βkf
(
β̂i | βk

)
, (6.26)

where βk is sampled from the NG prior, n represents the number of the samples, π (βi) rep-

resents the prior of SNP βi, f
(
β̂i

)
represents the marginal likelihood, and f

(
β̂i | βi

)
rep-

resents the likelihood and is distributed asymptotically as a normal distribution with mean βi

and variance V . Note that Sequential Monte Carlo (SMC) was used to simulate the values of

βk from the NG prior in Equation 6.26. Note also that f
(
β̂i

)
can be approximated as

∑
f(β̂|β)
n

and thus

E
(
βi | β̂i

)
=

∑
k βkf

(
β̂i | βk

)
∑

k f
(
β̂i | βk

) . (6.27)

Figure 6.2 shows that the relative univariate shrinkage factor of the BCTH data using

M1 = 1 as baseline and varying M2 = 0.1, 0.01, 0.001, 0.0001 with 16000 cases and 16000

controls. It can be seen that the shrinkage factors with M2 = 0.1 are very close to zero and so

the posterior means are similar for both values of M . With M2 = 0.01 a few effect sizes show

a small amount of differential shrinkage but most of the posterior effect sizes do not change
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that much. However, it can be seen that the shrinkage factors with M2 = 0.001 start to move

away from zero and there are now some shrinkage factors greater than a half. The extreme

case of the shrinkage factors with M2 = 0.0001 leads to many shrinkage factors more than

a half and also a few close to 1 which implies posterior effect sizes very close to 0 with the

M2 prior variance. Figure 6.3 shows the relative univariate shrinkage factors of the BCTH

data using M1 = 1 as baseline and varying M2 = 0.1, 0.01, 0.001, 0.0001 with 32000 cases

and 32000 controls. It can be seen that they exhibit quite similar behaviour to the relative

univariate shrinkage factors of the BCTH data with 16000 cases and 16000 controls. The

values are generally closer to zero with the larger sample sizes as expected since the prior has

less effect as the sample size increases. If we fix M1 at 1 as in Chapter 4, both Figures 6.2 and

6.3 indicate that a suitable choice of M2 is 0.001.

One might criticise the choice of the NG prior because the ratio between M1, and M2 is so

large (1/0.001 = 1000). In other words, the variance of the NG prior of the group with low

FS scores was reduced 1000 times. Therefore, we suggest changing the baseline (M1) from 1

to 0.01. The reason behind this is that the posterior means using M1 = 1 and M2 = 0.01 are

similar. This should mean that the influence of the NG prior will be similar for M1 = 0.01,

and M1 = 1.

We now check the relative shrinkage factors with the new baseline value of M1. Figure

6.4(a) shows the relative univariate shrinkage factor calculated using M1 = 0.01 and M2 =

0.001 with 16000 cases and 16000 controls. It can be seen that more than two thirds of

the effect sizes have SFs more than 0.1 and that the shrinkage factor does not exceed 0.5.

Figure 6.4(b) shows the relative univariate shrinkage factor calculated using M1 = 0.01 and

M2 = 0.001 with 32000 cases and 32000 controls. It can be seen that most of the shrinkage

factors are less than 0.05 and do not exceed 0.3 rather similar to the M1 = 1 case. The ratio

between M1 = 0.01 and M2 = 0.001 is obviously much smaller than the ratio with baseline

equal to 1. Here the variance for the NG prior of the group with low FS scores was reduced

only 10 times (compared to 1000) which seems a more plausible reduction in prior variance.

Figure 6.5 shows the prior of β for M = 0.01 and M = 0.001 with λ = 1/148. It can be

seen that as the M decreases the mass located close to zero increases.
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Figure 6.2: Histograms of the relative univariate shrinkage factors calculated using M1 = 1
and M2 = 0.1, 0.01, 0.001, 0.0001 with 16000 cases and 16000 controls for the breast cancer
top hits data.

6.3 Full conditional distributions

In this section, we will calculate the full conditional distributions of each parameter. The full

conditional distribution of a particular parameter is derived from the joint distribution of all

the parameters and the data.
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Figure 6.3: Histograms of the relative univariate shrinkage factors calculated using M1 = 1
and M2 = 0.1, 0.01, 0.001, 0.0001 with 32000 cases and 32000 controls for the breast cancer
top hits data.

6.3.1 Full conditional distributions for α and β

Here we use the same notation for the parameters as used in Chapter 3. The full conditional

distribution for φ = (α,β)T was calculated in Section 3.2.2 as

f(φ | Λ, λ, γ−2, φ̂) ∼N
((
V −1 + Λ

)−1
V −1φ̂,V −1 + Λ

)
, (6.28)
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Figure 6.4: Histograms for the relative univariate shrinkage factors calculated using M1 =
0.01 and M2 = 0.001 with two different sample sizes.
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Figure 6.5: The prior π (β) for M1 = 0.01 and M2 = 0.001 with λ = 1/148.
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where Λ = diag
(

1
0.1
, 1
ψ11
, . . . , 1

ψp11
, 1
ψ12
, . . . , 1

ψp22
, 1
ψ13
, . . . , 1

ψp33
, 1
ψ14
, . . . , 1

ψp44
,
)

. The differ-

ence between the full conditional distributions for α and β in the standard NG prior and the

modified NG prior, that includes the FS score its prior, is in the values of Λ. In the standard

NG prior, Λ = diag
(

1
0.1
, 1
ψ1
, 1
ψ2
, . . . , 1

ψp

)
, where each ψ is sampled from a distribution with

the same value of λ and γ−2 for all SNPs. However, in the modified NG prior, each ψij is

sampled from one of four distributions with different values of λj and γ−2
j based on the SNP’s

group (1 ≤ j ≤ 4).

6.3.2 Full conditional distributions for ψij

We calculate the full conditional distribution for ψij , with λj and γ−2
j determined by which

FS score group (j) the SNP(i) belongs to. The likelihood does not contribute to the full

conditional distribution of ψij . The full conditional, can be derived from the joint distribution

as follows

f
(
ψij | βij, λj, γ−2

j

)
∝ 1√

ψij
exp

(
−
β2
ij

2ψij

)
(ψij)

λj−1 exp
(
− ψij

2γ2
j

)
(6.29)

= (ψij)
− 1

2 exp
(
−
β2
ij

2ψij

)
(ψij)

λj−1 exp
(
− ψij

2γ2
j

)
(6.30)

= (ψij)
λj− 1

2
−1 exp

{
−1

2

(
γ−2
j ψij +

β2
ij

2ψij

)}
(6.31)

= (ψij)
(λj− 1

2
)−1 exp

{
−1

2

(
γ−2
j ψij +

β2
ij

2ψij

)}
. (6.32)

The expression is the kernel of a generalised inverse Gaussian (GIG) distribution with m =

λj − 1
2
, c = γ−2

j and d = β2
ij .

Full conditional distributions for λj

Here we will calculate the full conditional distribution for λj using the same approach as

used in Section 3.2.4. The difference between the previous updating and this updating is that

here we update λj for each group. As a result, the full conditional distribution of λj will be
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extracted from the joint distribution as follows

f
(
λj | βij, ψij, γ−2

j , yi,X
)
∝

(
1

2γ2
j

)pjλj
{Γ (λj)}pj

×
(∏pj

i=1
ψij

)λj−1

×
∏pj

i=1
exp

(
− ψij

2γ2
j

)
×

(
γ−2
j

)2−1 ×
(
Mk

2λj

)2

× exp
(
−Mk

2λj
γ−2
j

)
× π (λj)

=

(
1

2γ2
j

)pjλj
{Γ (λj)}pj

×
(∏pj

i=1
ψij

)λj−1

×
∏pj

i=1
exp

(
− ψij

2γ2
j

)
×

(
M2

k

2

)
×
(

1

2λjγ2
j

)
×
(

1

λj

)
× exp

(
−Mk

2λj
γ−2
j

)
× π (λj) .

Each λj is updated using Metropolis-Hasting approach. λ′j = exp
(
σ2
λj
z
)
λj is chosen to be

the proposal distribution, where z is realisation of a standard normal distribution. Also, we

choose an adjustment value for γ′j
2 as follows

γ′j
2

=
2λjγ

2
j

2λ′j
. (6.33)

This trick is applied to ensure that the value of γ′j
2 leads us to obtain the same variance of

βij|λj, γ2
j . After some algebra the acceptance probability of λ′j can be shown to be

min

1,
π
(
λ′j
)

π (λj)

(∏pj
i=1ψij

)λ′j−1(∏pj
i=1ψij

)λj−1

{Γ (λj)}pj{
Γ
(
λ′j
)}pj

∏pj
i=1exp

(
− ψij

2γ′j
2

)
∏pj

i=1exp
(
− ψij

2γj2

) (2γ2
j

)pjλj(
2γ′j

2
)pjλj λ′jλj

 . (6.34)

The acceptance rate is controlled to be between 20%− 30% using the tuning parameter σ2
λj

.

6.3.3 Full conditional distributions for γ−2j

In this section, we will calculate the full conditional distribution for γ−2
j . The likelihood does

not contribute to the full conditional distribution of γ−2
j . So, for j = {1, 3} we derive it from
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the joint distribution as follows

f
(
γ−2
j | βij, ψij, λj

)
∝

(
γ−2
j

)pjλj × exp
(
−
∑pj

i=1ψij
2

γ−2
j

)
×
(
γ−2
j

)2−1 × exp
(
−Mk

2λj
γ−2
j

)
=

(
γ−2
j

)(pjλj+2)−1 exp
{
−
(
Mk

2λj
+

1

2

∑pj

i=1
ψij

)
γ−2
j

}
. (6.35)

This expression is the kernel of a gamma distribution with shape e∗ = pjλj + 2 and rate f ∗ =

Mk

2λj
+ 1

2

∑pj
i=1ψij . This expression is used with the first group (FS > 0.5), where M1 = 0.01

and the third group (FS < 0.5), where M2 = 0.001.

However, for the second group (j = 2; FS = 0.5) the full conditional can be calculated as

follows

f
(
γ−2

2 | . . .
)

=
(
γ−2

2

)p2λ2 exp
(
−
∑p2

i=1ψi2
2

γ−2
2

){
wM2

1γ
−2
2 exp

(
−M1

2λ2

γ−2
2

)}
+

(
γ−2

2

)p2λ2 exp
(
−
∑p2

i=1ψi2
2

γ−2
2

){
(1− w)M2

2γ
−2
2 exp

(
−M2

2λ2

γ−2
2

)}
=

{
wM2

1

(
γ−2

2

)p2λ2+1 exp
[
−1

2

(
M1

2λ2

+

∑p2

i=1ψi2
2

)
γ−2

2

]}
+

{
(1− w)M2

2

(
γ−2

2

)p2λ2+1 exp
[
−1

2

(
M2

2λ2

+

∑p2

i=1ψi2
2

)
γ−2

2

]}
.

Let A =
1

2

(
M1

λ2

+

p2∑
i=1

ψi2

)
and B =

1

2

(
M2

λ2

+

p2∑
i=1

ψi2

)
f
(
γ−2

2 | . . .
)

=
{
wM2

1

(
γ−2

2

)p2λ2+1 exp
(
Aγ−2

2

)}
+

{
(1− w)M2

2

(
γ−2

2

)p2λ2+1 exp
(
Bγ−2

2

)}
(6.36)

=

{
wM2

1 Γ (p2λ2 + 2)

Ap2λ2+2

[
Ap2λ2+2

Γ (p2λ2 + 2)

(
γ−2

2

)p2λ2+2−1 exp
(
Aγ−2

2

)]}
+

{
(1− w)M2

2 Γ (p2λ2 + 2)

Bp2λ2+2

[
Bp2λ2+2

Γ (p2λ2 + 2)

(
γ−2

2

)p2λ2+2−1 exp
(
Bγ−2

2

)]}
(6.37)

∝
{

wM2
1

Ap2λ2+2

[
Ap2λ2+2

Γ (p2λ2 + 2)

(
γ−2

2

)p2λ2+2−1 exp
(
Aγ−2

2

)]}
+

{
(1− w)M2

2

Bp2λ2+2

[
Bp2λ2+2

Γ (p2λ2 + 2)

(
γ−2

2

)p2λ2+2−1 exp
(
Bγ−2

2

)]}
(6.38)
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So γ−2
2 | . . . ∼

wM2
1

Ap2λ2+2
Ga (p2λ2 + 2, A) +

(1− w)M2
2

Bp2λ2+2
Ga (p2λ2 + 2, B) (6.39)

= wM2
1 Ga (p2λ2 + 2, A) + (1− w)M2

2

(
A

B

)p2λ2+2

Ga (p2λ2 + 2, B)

(6.40)

∼ ∆1 Ga (p2λ2 + 2, A) + (1−∆1) Ga (p2λj + 2, B) , (6.41)

where ∆1 =
wM2

1

wM2
1 +(AB )

p2λ2+2
(1−w)M2

2

and f(γ−2
2 | . . .) represents f

(
γ−2

2 | βi2, ψi2, λ2, w
)
.

In addition, for the fourth group with missing FS (FS = NA) the full conditional can be

calculated as follows

f
(
γ−2

4 | . . .
)

=
(
γ−2

4

)p4λ4 exp
(
−
∑p4

i=1ψi4
2

γ−2
4

){
hM2

1γ
−2
4 exp

(
−M1

2λ4

γ−2
4

)}
+

(
γ−2

4

)p4λ4 exp
(
−
∑p4

i=1ψi4
2

γ−2
4

){
(1− h)M2

2γ
−2
4 exp

(
−M2

2λ4

γ−2
4

)}
=

{
hM2

1

(
γ−2

4

)p4λ4+1 exp
[
−1

2

(
M1

2λ4

+

∑p4

i=1ψi4
2

)
γ−2

4

]}
+

{
(1− h)M2

2

(
γ−2

4

)p4λ4+1 exp
[
−1

2

(
M2

2λ4

+

∑p4

i=1ψi4
2

)
γ−2

4

]}
. (6.42)

Let C =
1

2

(
M1

λ4

+

p4∑
i=1

ψi4

)
and D =

1

2

(
M2

λ4

+

p4∑
i=1

ψi4

)
f
(
γ−2

4 | . . .
)

=
{
hM2

1

(
γ−2

4

)p4λ4+1 exp
(
Cγ−2

4

)}
+

{
(1− h)M2

2

(
γ−2

4

)p4λ4+1 exp
(
Dγ−2

4

)}
(6.43)

=

{
hM2

1 Γ (p4λ4 + 2)

Cp4λ4+2

[
Cp4λ4+2

Γ (p4λ4 + 2)

(
γ−2

4

)p4λ4+2−1 exp
(
Cγ−2

4

)]}
+

{
(1− h)M2

2 Γ (p4λ4 + 2)

Dp4λ4+2

[
Dp4λ4+2

Γ (p4λ4 + 2)

(
γ−2

4

)p4λ4+2−1 exp
(
Dγ−2

4

)]}
(6.44)

∝
{

hM2
1

Cp4λ4+2

[
Cp4λ4+2

Γ (p4λ4 + 2)

(
γ−2

4

)p4λ4+2−1 exp
(
Cγ−2

4

)]}
+

{
(1− h)M2

2

Dp4λ4+2

[
Dp4λ4+2

Γ (p4λ4 + 2)

(
γ−2

4

)p4λ4+2−1 exp
(
Dγ−2

4

)]}
(6.45)

So γ−2
4 | . . . ∼

hM2
1

Cp4λ4+2
Ga (p4λ4 + 2, C) +

(1− h)M2
2

Dp4λ4+2
Ga (p4λ4 + 2, D) (6.46)

= hM2
1 Ga (p4λ4 + 2, C) + (1− h)M2

2

(
C

D

)p4λ4+2

Ga (p4λ4 + 2, D)
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∼ ∆2 Ga (p4λ4 + 2, C) + (1−∆2) Ga (p4λ4 + 2, D) , (6.47)

where ∆2 =
hM2

1

hM2
1 +(CD )

p4λ4+2
(1−h)M2

2

and f
(
γ−2

4 | . . .
)

represents f
(
γ−2

4 | βi4, ψi4, λ4, h
)
.

6.3.4 Full conditional distributions for w

In this section we will calculate the full conditional distribution for w. It can be seen that

w occurs only in γ−2
2 | λ2, w and the prior on w so the full conditional distribution is given

as follows. Let E represent the probability density given by fX
(
X = γ−2

2

)
, where X ∼

Ga
(

2, M1

2λ2

)
and F represent the probability density given by fY

(
Y = γ−2

2

)
, where Y ∼

Ga
(

2, M2

2λ2

)
. Then

f
(
w | λ2, γ

−2
2

)
=

[
wE + (1− w)F

]
π (w) (6.48)

∝
[
wE + (1− w)F

]
×
[
w2−1 (1− w)2−1

]
(6.49)

= w3−1 (1− w)2−1E + w2−1 (1− w)3−1 F (6.50)

=
Γ (3) Γ (2)

Γ (5)

[ Γ (5)

Γ (3) Γ (2)
w3−1 (1− w)2−1

]
E

+
Γ (2) Γ (3)

Γ (5)

[ Γ (5)

Γ (2) Γ (3)
w2−1 (1− w)3−1

]
F. (6.51)

It can be seen that
[

Γ(5)
Γ(3)Γ(2)

w3−1 (1− w)2−1
]

is the probability density function of a Beta (3, 2)

distribution and
[

Γ(5)
Γ(2)Γ(3)

w2−1 (1− w)3−1
]

is the probability density function of a Beta (2, 3)

distribution. Therefore, the full conditional distribution for w is given by

w | λ2, γ
−2
2 ∼ ∆3 Beta (3, 2) + (1−∆3) Beta (2, 3) , (6.52)

where ∆3 =
Γ(3)Γ(2)

Γ(5)
E

Γ(3)Γ(2)
Γ(5)

E+
Γ(2)Γ(3)

Γ(5)
F

= E
E+F

.

6.3.5 Full conditional distributions for h

In this section we will calculate the full conditional distribution for h. It can be seen that

h occurs only in γ−2
4 | λ4, h and the prior on h so the full conditional distribution is given

as follows. Let G represent the probability density given by fX
(
X = γ−2

4

)
, where X ∼
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Ga
(

2, M1

2λ4

)
and H represent the probability density given by fY

(
Y = γ−2

4

)
, where Y ∼

Ga
(

2, M2

2λ4

)
. Then

f
(
h | λ4, γ

−2
4

)
=

[
hG+ (1− h)H

]
π (h) (6.53)

∝
[
hG+ (1− h)H

]
×
[
h1−1 (1− h)4−1

]
(6.54)

= h2−1 (1− h)4−1G+ h1−1 (1− h)5−1H (6.55)

=
Γ (2) Γ (4)

Γ (6)

[ Γ (6)

Γ (2) Γ (4)
h2−1 (1− h)4−1

]
G

+
Γ (1) Γ (5)

Γ (6)

[ Γ (6)

Γ (1) Γ (5)
h1−1 (1− h)5−1

]
H. (6.56)

It can be seen that
[

Γ(6)
Γ(2)Γ(4)

h2−1 (1− h)4−1
]

is the probability density function of a Beta (2, 4)

distribution and
[

Γ(6)
Γ(1)Γ(5)

h1−1 (1− h)5−1
]

is the probability density function of a Beta (1, 5)

distribution. Therefore, the full conditional distribution for h is given by

h | λ4, γ
−2
4 ∼ ∆4 Beta (2, 4) + (1−∆4) Beta (1, 5) , (6.57)

where ∆4 =
Γ(2)Γ(4)

Γ(6)
G

Γ(2)Γ(4)
Γ(6)

G+
Γ(1)Γ(5)

Γ(6)
H

= Γ(2)Γ(4)G
Γ(2)Γ(4)G+Γ(1)Γ(5)H

= Γ(4)G
Γ(4)G+Γ(5)H

= G
G+4H

.
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Chapter 7

The effect of incorporating FS scores into

the effect size prior on simulated data

In Chapter 6 we discussed incorporating FS scores into the NG prior. The FS scores were

divided into four groups: FS > 0.5, FS = 0.5, FS < 0.5, and missing FS (FS = NA). Each

group was given a different prior based on the potential deleterious nature of the SNPs in

each group as determined by the FS score. In addition, the full conditional distributions were

calculated for all parameters in the model.

Throughout this chapter we will compare only the standard NG prior (without incorporat-

ing FS scores into the prior) and the modified NG prior (with incorporating FS scores into the

prior) and we will discuss the effect of incorporating FS scores into the prior for the effect size

on the simulated data in our 8 scenarios (see Tables 4.1 and 4.2). Particularly, we will discuss

in detail the effect of incorporating FS scores into the prior for the effect size in Scenario 4

which has a moderate level of LD.

7.1 The standard Normal-Gamma prior and the Modified

Normal-Gamma prior

In this section we will compare the performance of the standard NG prior and modified NG

prior via ROC curves in all 8 Scenarios (see Tables 4.1 and 4.2). For the standard NG prior,
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we set the expectation of the variance of the effect size to be 0.01. For the modified NG prior,

we set M1 = 0.01 and M2 = 0.001 as discussed in Section 6.2.

7.1.1 Placing the common and rare causal SNPs in the same FS scores

group

In this section we will discuss the effect of incorporating the FS scores into the prior for

effect size when we place the common and rare causal SNPs in the same FS score group.

Here we are considering the ROC curves for FPR < 0.1 to assess the performance using

ROC curves. To partition the SNPs into four groups, we suggested two scenarios: randomly

sample FS scores from their distribution in the iCOGs data, in which the proportions for the

four groups are 0.02, 0.05, 0.3, 0.61 respectively (realistic proportions) and randomly sample

FS scores with the proportions for the four groups: 0.17, 0.17, 0.17, 0.49 respectively (less

realistic proportion because the proportion of FS ≥ 0.5 SNPs is perhaps too high). The

reason for choosing two sets of proportions is to assess the effect of the number of SNPs in

the SNP group considered most likely to be deleterious. We considered all four scenarios for

setting the group of the common and rare causal SNPs: both common and rare causal SNPs

into Group 1 (FS > 0.5), both common and rare causal SNPs into Group 2 (FS = 0.5), both

common and rare causal SNPs into Group 3 (FS < 0.5), and both common and rare causal

SNPs into Group 4 (FS = NA).

Figures 7.1 and 7.2 (FPR < 0.1) show the ROC curves for the eight scenarios in Ta-

bles 4.1 and 4.2 for the standard NG prior and the modified NG prior with the common and

rare causal SNPs in the same group where the proportions for the four FS score groups are

0.02, 0.05, 0.3, 0.61. It can be seen that the performance of the modified NG prior is better

than the performance of the standard NG regardless of which group contains the common and

rare causal SNP group. Moreover, it can be noticed that the performance of the modified NG

setting both the common and rare causal SNP into Group 1 and Group 2 is almost always

better than the performance of the modified NG setting both the common and rare causal SNP

into Group 3 and Group 4. However, Figure 7.2(c) shows that the performance of the modi-

fied NG setting both the common and rare causal SNP into Group 3 perform better than the
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others. The reason for this is not clear. It seems unlikely to be the high LD level because this

observation cannot be made for Scenario 4 in spite of the fact that it has a moderate level of

LD.

Figures 7.3 and 7.4 (FPR < 0.1) show the ROC curves for the standard NG prior and the

modified NG prior setting the common and rare causal SNPs in the same group where the

proportions for the four FS score groups being 0.17, 0.17, 0.17, 0.49. It can be seen that the

performance of the modified NG prior setting both the common and rare causal SNP into

Group 1 and Group 2 is again better than the performance of the standard NG except in Sce-

nario 7 where the performance of the standard NG is the best (see Figure 7.4(c)). Moreover,

it can be noticed that the performance of the modified NG setting both the common and rare

causal SNP into Group 3 and Group 4 is comparable with the performance of the standard NG

(except in Scenario 7).

It seems that the proportion of SNPs in each group could affect the performance of the

modified NG as seen in Figures 7.1-7.4, although it seems that the performance of the modified

NG setting both the common and rare causal SNP into Group 1 or Group 2 is generally better

than the others for both sets of the proportion of SNPs in each group considered. It is also of

interest, since it is probably more likely, to consider the effect of placing the two causal SNPs

into different FS score groups. To avoid considering too many scenarios we focus on just one.

For the rest of this chapter, we focus on the scenario with moderate LD level. Thus, we will

discuss in the next sections the effect of incorporating FS scores into the NG prior in Scenario

4 (see Table 4.1 and Figures 7.1(d) and 7.3(d)) in detail. The proportions for the four groups

1 to 4 of 0.02, 0.05, 0.3, and 0.61 respectively will be considered in the next sections.

7.1.2 Placing the common and rare causal SNPs into different FS score

groups in Scenario 4

We will discuss the effect of incorporating the FS scores into the prior for effect size in Sce-

nario 4 by setting the common and rare causal SNP into different groups. We will compare

this performance with the performance of the standard NG and the performance where both

of them are set into the same FS score group.
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(a) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 1. The num-
ber of SNPs in 1 to 4 the groups are 8, 15, 89, 179
respectively.
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(b) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 2. The num-
ber of SNPs in 1 to 4 the groups are 8, 15, 87, 166
respectively.
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(c) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 3. The num-
ber of SNPs in 1 to 4 the groups are 8, 15, 89, 169
respectively.
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(d) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 4. The num-
ber of SNPs in 1 to 4 the groups are 7, 15, 89, 176
respectively.

Figure 7.1: ROC curves for the credible interval approach using the standard NG prior (M =
0.01), and the modified NG prior (M1 = 0.01 and M2 = 0.001) with: both causal SNPs in
Group1 (FS > 0.5); both causal SNPs in Group2 (FS = 0.5); both causal SNPs in Group3
(FS < 0.5); and both causal SNPs in Group4 (FS = NA). The methods are applied to 10
simulated datasets from Hapgen2 with two causal SNPs having fixing odds ratios of 1.08 and
1.13 and having different MAFs (see Table 4.1). Each dataset has 16000 cases and 16000
controls. The MCMC was run for 20,000 iterations with 2,000 burn-in and thinning by 50.
The proportions of SNPs in each of groups 1 to 4 are 0.02, 0.05, 0.3, 0.61 respectively.
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(a) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 5. The num-
ber of SNPs in 1 to 4 the groups are 8, 15, 88, 170
respectively.
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(b) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 6. The num-
ber of SNPs in 1 to 4 the groups are 8, 15, 88, 169
respectively.
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(c) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 7. The num-
ber of SNPs in 1 to 4 the groups are 7, 15, 89, 170
respectively.
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(d) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 8. The num-
ber of SNPs in 1 to 4 the groups are 7, 15, 88, 170
respectively.

Figure 7.2: ROC curves for the credible interval approach using the standard NG prior (M =
0.01), and the modified NG prior (M1 = 0.01 and M2 = 0.001) with: both causal SNPs in
Group1 (FS > 0.5); both causal SNPs in Group2 (FS = 0.5); both causal SNPs in Group3
(FS < 0.5); and both causal SNPs in Group4 (FS = NA). The methods are applied to 10
simulated datasets from Hapgen2 with two causal SNPs having fixing odds ratios of 1.08 and
1.13 and having different MAFs (see Table 4.1). Each dataset has 32000 cases and 32000
controls. The MCMC was run for 20,000 iterations with 2,000 burn-in and thinning by 50.
The proportions of SNPs in each of groups 1 to 4 are 0.02, 0.05, 0.3, 0.61 respectively.
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(a) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 1. The num-
ber of SNPs in 1 to 4 the groups are 52, 50, 49, 140
respectively.
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(b) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 2. The num-
ber of SNPs in 1 to 4 the groups are 46, 47, 50, 133
respectively.

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Standard NG
FS > 0.5
FS = 0.5
FS < 0.5
FS = NA

(c) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 3. The num-
ber of SNPs in 1 to 4 the groups are 48, 49, 50, 134
respectively.
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(d) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 4. The num-
ber of SNPs in 1 to 4 the groups are 50, 50, 49, 138
respectively.

Figure 7.3: ROC curves for the credible interval approach using the standard NG prior (M =
0.01), and the modified NG prior (M1 = 0.01 and M2 = 0.001) with: both causal SNPs in
Group1 (FS > 0.5); both causal SNPs in Group2 (FS = 0.5); both causal SNPs in Group3
(FS < 0.5); and both causal SNPs in Group4 (FS = NA). The methods are applied to 10
simulated datasets from Hapgen2 with two causal SNPs having fixing odds ratios of 1.08 and
1.13 and having different MAFs (see Table 4.1). Each dataset has 16000 cases and 16000
controls. The MCMC was run for 20,000 iterations with 2,000 burn-in and thinning by 50.
The proportions of SNPs in each of groups 1 to 4 are 0.17, 0.17, 0.17, 0.49 respectively.
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(a) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 5. The num-
ber of SNPs in 1 to 4 the groups are 48, 49, 50, 134
respectively.
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(b) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 6. The num-
ber of SNPs in 1 to 4 the groups are 47, 49, 50, 134
respectively.
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(c) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 7. The num-
ber of SNPs in 1 to 4 the groups are 48, 49, 49, 135
respectively.
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(d) ROC curves for the standard NG prior and the
modified NG prior applied to Scenario 8. The num-
ber of SNPs in 1 to 4 the groups are 48, 49, 48, 135
respectively.

Figure 7.4: ROC curves for the credible interval approach using the standard NG prior (M =
0.01), and the modified NG prior (M1 = 0.01 and M2 = 0.001) with: both causal SNPs in
Group1 (FS > 0.5); both causal SNPs in Group2 (FS = 0.5); both causal SNPs in Group3
(FS < 0.5); and both causal SNPs in Group4 (FS = NA). The methods are applied to 10
simulated datasets from Hapgen2 with two causal SNPs having fixing odds ratios of 1.08 and
1.13 and having different MAFs (see Table 4.1). Each dataset has 32000 cases and 32000
controls. The MCMC was run for 20,000 iterations with 2,000 burn-in and thinning by 50.
The proportions of SNPs in each of groups 1 to 4 are 0.17, 0.17, 0.17, 0.49 respectively.

133



Scenarios
Common

Causal
SNP

Rare
Causal
SNP

Scenario 1
(S 1) Group 1 (FS > 0.5) Group 4 (FS = NA)

Scenario 2
(S 2) Group 2 (FS = 0.5) Group 4 (FS = NA)

Scenario 3
(S 3) Group 4 (FS = NA) Group 1 (FS > 0.5)

Scenario 4
(S 4) Group 3 (FS < 0.5) Group 4 (FS = NA)

Table 7.1: The four Scenarios of placing the common and rare causal SNPs into different FS
scores group.

We suggest four scenarios for setting the common and rare causal SNPs. In all four sce-

narios one SNP is placed in Group 4 (FS = NA) because it is highly likely to obtain a causal

SNP with an unknown FS scores. Table 7.1 shows the four scenarios chosen: Scenario 1 (S

1) sets the common causal SNP into Group 1 (FS > 0.5) and the rare causal SNP into Group

4 (FS = NA). This scenario was chosen because a causal SNP has a high FS score and the

other causal SNP is likely to have a missing FS score. Scenario 2 (S 2) sets the common causal

SNP in Group 2 (FS = 0.5) and the rare causal SNP in Group 4 (FS = NA). This scenario

was chosen to investigate how the performance is affected when the common causal SNP

placed in a group with lower prior variance compared to the variance of Group 1. Scenario

3 (S 3) sets the common causal SNP into Group 4 (FS = NA) and the rare causal SNP into

Group 1 (FS > 0.5). This scenario was chosen to reverse the causal SNPs group of Scenario

1. Scenario 4 (S 4) sets the common causal SNP into Group 3 (FS < 0.5) and the rare causal

SNP into Group 4 (FS = NA). This scenario was chosen to represent a worst case likely to

be encountered.

Figure 7.5 shows ROC curves for Scenarios S1-S4. Each ROC curve also Shows the

performance of the modified NG when both causal SNPs are placed in either of the two FS

score groups for that particular scenario. The standard NG is also shown.

Figure 7.5 shows that the performance of the standard NG is the worse than the perfor-

mance of the modified NG regardless of where the common and rare causal SNPs are located.

Within the modified NG analyses, the performance of the modified NG setting both SNPs
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into Group 1 (FS > 0.5) or Group 2 (FS = 0.5) is the best but it performs relatively poorly

if both are set into Group 4 (FS = NA). In addition, it can be seen that when the two causal

SNPs are separated into two groups, the performance is in between the performance of the

modified NG setting both causal SNPs into Group 1 (FS > 0.5) or Group 2 (FS = 0.5) and

the performance of the modified NG setting both causal SNPs into Group 4 (FS = NA).

Since we are using credible intervals to select SNPs it is of interest to compare the max-

imum CI size that detects the causal SNPs in Scenarios S1-S4. Detection here means that

zero is not in the interval. Table 7.2 shows the mean maximum detection credible interval size

(across 10 datasets) for the common and rare causal SNPs for the four scenarios of separating

causal SNPs into two different groups (S 1 - S 4). The mean maximum detection CI size

for the common causal SNP when the common causal SNP is placed into Group 1 is 41.5%,

Group 2 is 40.9%, Group 3 is 37.2%, and Group 4 is 36.4%. It can be seen that the mean

maximum detection CI size of the common causal SNP increases as the SNP is placed in the

groups with higher FS scores (S 1 and S 2). In addition, it can be noticed that the mean maxi-

mum detection CI size of the rare causal SNP increases dramatically when the SNP is placed

in Group 1 (75.1%) compared to its mean maximum detection CI size where the SNP is put

Group 4 (60.3%). Setting the common causal SNP into Group 3 (FS < 0.5; S 3) and setting

the rare causal SNP into Group 4 (FS = NA; S 4) is the worst scenario as might be expected.

7.1.3 Setting SNPs within the LD block into different FS score groups

The results in Table 4.7 indicated that, in some situations, the NG prior approach is unable to

pick out the causal SNP when there are SNPs present that are highly correlated with it. To

investigate how incorporating functional information can improve the causal SNP detection

we consider placing the causal SNP and other highly correlated SNPs into different FS scores

groups. In a more systematic way in Scenario 4. See Table 4.7 for a descrption of the LD

structure of the Scenario 4 LD block. Specifically we vary the FS score group of SNP46,

SNP47, and SNP65. We suggest three scenarios for SNPs within the LD block containing

the common causal SNP. Table 7.3 shows the three scenarios chosen: LD 1 sets the common

causal SNP into Group 1 (FS > 0.5) and sets all SNPs within the LD block into Group 4
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(a) ROC curves for the standard NG, the modified
NG with both causal SNPs in Group 1, the modified
NG with both causal SNPs in Group 4, the modified
NG with the common causal SNP in Group 1 and
the rare causal SNP in Group 4. M1 = 0.01, and
M2 = 0.001. The proportions for the 4 groups are
6, 15, 89, 177 respectively.
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(b) ROC curves for the standard NG, the modified
NG with both causal SNPs in Group 2, the modified
NG with both causal SNPs in Group 4, the modified
NG with the common causal SNP in Group 2 and
the rare causal SNP in Group 4. M1 = 0.01, and
M2 = 0.001. The proportions for the 4 groups are
5, 16, 89, 177 respectively.
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(c) ROC curves for the standard NG, the modified
NG with both causal SNPs in Group 1, the modified
NG with both causal SNPs in Group 4, the modified
NG with the common causal SNP in Group 4 and
the rare causal SNP in Group 1. The proportions
for the 4 groups are 6, 15, 89, 177 respectively.
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(d) ROC curves for the standard NG, the modified
NG with both causal SNPs in Group 3, the modified
NG with both causal SNPs in Group 4, the modified
NG with the common causal SNP in Group 3 and
the rare causal SNP in Group 4. M1 = 0.01, and
M2 = 0.001. The proportions for the 4 groups are
5, 15, 90, 177 respectively.

Figure 7.5: ROC curves for the standard NG and modified NG prior where the two causal
SNPs are either placed in the same FS scores group or in different FS scores groups.
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SNPs 46 212

Mean
CI size

S 1
41.5% 60.3%

Mean
CI size

S 2
40.9% 60.5%

Mean
CI size

S 3
37.2% 75.1%

Mean
CI size

S 4
36.4% 60.1%

Table 7.2: The mean maximum detection credible interval of the common and the rare causal
SNPs for Scenario 4 in Table 4.1. The maximum detection credible interval is calculated using
1− 2×min

{
Pr
(
β | β̂, V

)
> 0, P r

(
β | β̂, V

)
< 0
}

. SNP46 in blue is the common causal
SNP and SNP212 in red is the rare causal SNP.

(FS = NA). This scenario was chosen to represent the best scenario that could be chosen.

LD 2 sets the common causal SNP (SNP46), SNP47, and SNP65 into Group 1 (FS > 0.5)

and places the other SNPs within the LD block into Group 4 (FS = NA). This scenario

was chosen to investigate the influence of combining the causal SNP with the SNPs most

correlated with it in the same group. LD 3 places the SNP most correlated with the common

causal SNP (SNP47) into Group 1 (FS > 0.5) and sets the other SNPs within the LD block

(including the common causal SNP (SNP46)) into Group 4 (FS = NA). This scenario was

chosen to represent the worst case scenario where a highly correlated SNP is placed in a high

prior variance FS score group. Note the rare causal SNP is set into Group 3 (FS < 0.5) for

all three scenarios. Here we will focus only on the SNPs within the LD block containing the

common causal SNP. Particularly, we will concentrate on the common causal SNP (SNP46)

and the SNP with the highest LD with the common causal SNP (SNP47), with r2 = 0.9.

Table 7.4 shows the mean maximum detection credible interval size (across 10 datasets)

for the standard NG, and the three scenarios LD1, LD2, and LD 3. It can be seen that the mean

maximum detection CI size of the common causal SNP (SNP46) in the standard NG and LD

1 scenario are similar at 43.1% and 43.2% respectively. This is because the variance of the

NG prior for the common causal SNP in both scenarios is 0.01. However, the mean maximum
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Scenarios SNP46 SNP47 SNP65
Other

correlated SNP
LD 1 Group 1 (> 0.5) Group 4 (= NA) Group 4 (= NA) Group 4 (= NA)

LD 2 Group 1 (> 0.5) Group 1 (> 0.5) Group 1 (> 0.5) Group 4 (= NA)

LD 3 Group 4 (= NA) Group 1 (> 0.5) Group 4 (= NA) Group 4 (= NA)

Table 7.3: The three Scenarios placing the common causal SNP (SNP46), the two SNPs highly
correlated with it (SNP47 and SNP65), and the other correlated SNPs in the LD block (see
Table 4.7) into different FS score groups.

SNPs 25 30 34 46 47 48 58 65 71 212

r2 0.83 0.81 0.83 1 0.9 0.84 0.8 0.82 0.82 0.09

Mean
CI size

NG
7.2% 13.4% 12.4% 43.1% 35.8% 14.6% 5.1% 8% 7.7% 68.2%

Mean
CI size
LD 1

8.1% 11.1% 10.9% 43.2% 27.9% 11.5% 4.8% 3.4% 3.4% 62.1%

Mean
CI size
LD 2

7.1% 10% 9.8% 38.7% 33.6% 10.1% 3.6% 4.9% 4.1% 62.6%

Mean
CI size
LD 3

7.9% 11.5% 11.2% 33.7% 37.5% 11.3% 3.9% 4% 3.7% 62.7%

Table 7.4: The mean maximum detection credible interval is calculated using 1 − 2 ×
min

{
Pr
(
β | β̂, V

)
> 0, P r

(
β | β̂, V

)
< 0
}

. r2 with the common causal SNP for SNPs

in its LD block for Scenario 4 in Table 4.1, where the LD block is defined as r2 ≥ 0.8. SNP46
in blue is the common causal SNP and SNP212 in red is the rare causal SNP.

detection CI sizes of the common causal SNP in LD 2 and LD 3 scenarios are reduced to

38.7% and 33.7% respectively. The reason behind this is that in LD 2, the common causal

SNP is located in the same group as SNP47, the SNP most correlated with it, and in LD 3

SNP47 is located in Group 1 whereas the causal SNP is located in Group 4.

For the SNP most correlated with the common SNP (SNP47), it can be noticed that the

mean maximum detection CI sizes (across 10 datasets) is reduced to 27.9% in the LD 1 sce-

nario and 33.6% in the LD 2 scenario compared with a mean maximum detection CI size

for the standard NG of 35.8%. Therefore, it is more likely that the causal SNP is the SNP

selected within the LD block especially in the LD 1. In the LD 3 scenario, however, the mean
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maximum detection CI sizes of SNP47 is 37.5% slightly higher than the size for the causal

SNP, but only marginally. Therefore, it looks as though even if the causal SNP is placed in the

lowest FS score group and the SNP most correlated with it is placed in the highest FS scores

group, the modified NG still does not shrink the posterior effect sizes of the causal SNP too

drastically. The mean maximum detection CI sizes of the rare causal SNP in the three scenar-

ios are decreased to 62.1%, 62.6%, and 62.7% respectively compared with the mean CI size

of the standard NG of 68.2%

Actual selection of SNPs within the LD block across datasets

In Section 4.9.2 we compared four statistical methods (NG, HL, SLR, and PiMASS) in terms

of SNP selection within the LD block in Scenario 4 (see Table 4.1). The NG prior was ap-

plied with the prior variance of the effect size set to 1. However, here we will compare the

performance of the standard NG prior with the performance of the modified NG in the three

scenarios where SNPs within the LD block containing the common causal SNP are placed in

various FS scores groups: (LD 1, LD, 2, and LD 3) in terms of SNP selection. Note, the vari-

ance of the NG prior for the standard NG prior is now 0.01. Also M1 = 0.01 and M2 = 0.001

(see Section 6.2).

Table 7.5 shows the total number of times a SNP was selected out of the 10 datasets in

Scenario 4. For the standard NG, 25 SNPs were selected at 50% CI, and 25, 26, 25 SNPs were

selected for the LD scenarios 1 to 3 respectively at 40% CI. These CI sizes were selected to

ensure the total number of SNPs selected are almost the same.

There are three SNPs that are selected it at least one dataset in all three LD scenarios

but not the standard NG (SNP35, SNP129, and SNP142). This is somewhat surprising since

SNP35 and SNP142 are in Group 3 and Group 4 respectively. Also SNP143 is selected in

some datasets in LD 2 and LD 3 but not in LD 1 and the standard NG. Plus both SNP44 and

SNP227 were selected by the standard NG but not in any dataset for LD 1, LD 2, or LD 3.

Therefore, the effect of the modified NG is very different for SNP44 and SNP142 even though

they are both in Group 4 (see Table 7.5).

It can be seen that the standard NG and all three LD scenarios detect the rare causal SNP

(SNP212) in 10 out of the 10 datasets although it was placed in Group 3. The maximum CI
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SNPs
r2

with
SNP46

r2

with
SNP212

MAF
FS

scores
group

NG
(50% CI)

NG-
(40% CI)-

LD 1

NG-
(40% CI)-

LD 2

NG-
(40% CI)-

LD 3
SNP35 0.12 0.18 0.05 3 0 3 3 3

SNP44 0.01 0 0.01 4 4 0 0 0

SNP46 1 0.09 0.31 1, 1, 4 3 5 3 2

SNP47 0.9 0.08 0.33 4, 1, 1 4 3 3 4

SNP129 0.03 0 0.01 1 0 2 4 3

SNP142 0.01 0.15 0.39 4 0 2 2 2

SNP143 0.01 0.18 0.37 4 0 0 1 1

SNP212 0.09 1 0.10 3 10 10 10 10

SNP227 0.01 0.03 0.21 3 4 0 0 0

Total number of SNPs selected 25 25 26 25

Table 7.5: Total number of times a SNP was selected out of the 10 datasets in Scenario 4 using
50% credible intervals in the standard NG, 40% credible intervals in the modified NG using
FS scores for three different scenarios (LD 1, LD 2, and LD 3).

size to detect the rare causal SNP is 70% in the standard NG and approximately 65% in all

three LD scenarios. In addition, it can be noticed that the common causal SNP (SNP46) is

selected by the standard NG in 3 out of the 10 datasets, LD 1 in 5 out of the 10 datasets, LD

2 in 3 out of the 10 datasets, and LD 3 in 2 out of the 10 datasets.

The maximum CI size to select the common causal SNP is 55% in the standard NG, 55%

in LD 1, 50% in LD 2, and 45% in LD 3. Furthermore, it can be seen that the standard NG

detects SNP47, the most correlated SNP with the common causal SNP, in 4 out of the 10

datasets, LD 1 selects SNP47 in 3 out of the datasets, LD 2 detects the SNP in 3 out of the 10

datasets, and LD 3 selects the SNP in 4 out of the 10 datasets. The maximum CI size to select

SNP47 is 60% in the standard NG, 45% in LD 1, 60% in LD 2, and 65% in LD 3.

It seems that the modified NG approach in LD 1 improves localisation of the signal within

the LD block. In the standard NG the common causal SNP (SNP46) was selected in 3 out

of the 10 datasets and (SNP47) was selected in 4 out of the 10 datasets, whereas in the LD 1

scenario, the modified NG selects the common causal SNP (SNP46) in 5 out of the 10 datasets

and SNP47 was selected in 3 out of the 10 datasets. However, in the LD 2 and LD 3 scenarios,

140



the modified NG selects SNP46 in 3 and 2 out of the 10 datasets respectively and SNP47 in 3

and 4 datasets respectively. Therefore, the performance is less good in these more challenging

scenarios.

It is of interest to investigate the shrinkage of SNPs in each of the FS scores groups in some

specific datasets. SNP46 is always selected in the first dataset, and SNP47 is always selected

in the seventh, eighth, and ninth datasets in all scenarios. Also both SNPs are selected together

in the standard NG in the third datasets. Therefore, we will discuss the shrinkage factor for the

three LD scenarios (LD 1, LD 2, and LD 3) specifically in the first, third, and eighth datasets.

Shrinkage factor for the three LD scenarios

In Section 7.1.3 we indicated the selection of SNPs within the LD block by incorporating

the FS scores into the NG prior and applied this on three LD scenarios (LD 1, LD 2, and

LD 3). Here, we will discuss the shrinkage factor for the three LD scenarios (LD 1, LD 2,

and LD 3) generally using three datasets (first, third, and eighth dataset). Moreover, we will

discuss in detail the amount of shrinkage for two SNPs of interest: the common causal SNP

(SNP46), and the most correlated SNP with the common causal SNP (SNP47). This might

help to explain the performance in each scenario.

The shrinkage factor (SF) can be calculated as follows

SF = 1−
E
(
β | β̂

)
β̂

, (7.1)

where E
(
β | β̂

)
represent the mean posterior distribution of the effect size and β̂ represents

the Maximum Likelihood Estimate (MLE) of the effect size from multiple logistic regression.

Posterior mean densities

The posterior mean effect sizes is a term which is required to calculate the SF. As a result, the

posterior mean densities for the effect sizes for the four groups will be shown for Scenario 4.

Figures 7.6(a), 7.6(c), and 7.6(e) show the estimated densities of the posterior means of the
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effect size for each of the four groups of SNPs in LD 1 using the first, third, and eighth dataset

respectively. There are not enough observation in Group 1 to estimate the density. So we just

plot the values individually. Generally, it can be seen that many of the posterior means for

the effect sizes in Group 1 and Group 2 are away from zero (except in the third dataset (see

Figure 7.6(c)) where most are close to zero), but most of those placed in Group 4 are close

to zero. Group 3, (that includes the rare causal SNP) posterior means are mostly near to zero

but there are small number away from zero. The common causal SNP (SNP46) is located in

Group 1 and its posterior mean in the three datasets is −0.034,−0.042,−0.022 respectively.

SNP47 which is highly correlated with SNP46 is located in Group 4 and its posterior mean in

the three datasets is 0,−0.013,−0.021 respectively (see Table 7.6).

Figures 7.7(a), 7.7(c), and 7.7(e) show the posterior mean densities (or actual posterior

means) for the effect size of the four groups of SNPs in LD 2 using the first, third, and eighth

dataset respectively. Moreover, Figures 7.8(a), 7.8(c), and 7.8(e) show the posterior mean

densities (or actual posterior means) for the effect size of the four groups of SNPs in LD 3

using the first, third, and eighth dataset respectively. It can be seen that these Figures show

much the same pattern as Figures 7.6(a), 7.6(c), and 7.6(e).

Shrinkage factors by FS scores group

Shrinkage factors (SF) were calculated using Equation 7.1 for the three LD scenarios (LD 1,

LD 2, and LD 3) for the first, third, and eighth dataset.

Figures 7.6(b), 7.7(b), and 7.8(b) show the SF for the effect sizes for the three LD scenarios

in the first dataset. It can be seen that they have almost the same in pattern that the majority

of SNPs located in Group 3 and Group 4 were shrunk more than the SNPs located in Group 1

and Group 2. However, there are a few SNPs located in Group 3 and Group 4 that are shrunk

less than the SNPs located in Group 1 or Group 2. For SNPs in Group 1, 4 out of the 6 SNPs

have SF < 0.9. In addition, there are some SNPs with extreme SF in all three LD scenarios

(not shown in the Figures). For example, in LD 1 there are six SNPs (SNP123, and SNP124

located in Group 2 and SNP33, SNP143, SNP165, and SNP178 located in Group 4) that have

a SF larger than 1.2 or less than 0.7. The highest SF is 17.7 (SNP143) and the lowest SF is

−15.5 (SNP124). These estimate SFs mostly occur as a result of instability in MLEs caused
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by high correlation of the SNPs.

Figures 7.6(d), 7.7(d), and 7.8(d) show the SF for the effect sizes for three LD scenarios

in the third dataset. In addition, Figures 7.6(f), 7.7(f), and 7.8(f) show the SF for the effect

sizes for three LD scenarios in the eighth dataset. The pattern in these Figures are similar to

those in Figures 7.6(b), 7.7(b), and 7.8(b).

Shrinkage factors of the common causal SNP and the SNP most correlated with it across

datasets

Table 7.6 illustrates the differences in shrinkage factors between the common causal SNP and

the SNP most highly correlated with it (SNP46, and SNP47 respectively). This table shows

the MLE of the effect size of both SNPs for 10 datasets, the posterior mean of the effect size

and the shrinkage factor (SF) for three different LD scenarios (see Section 7.1.3).

It can be seen that shrinkage factors for SNP46 are generally closer to 0 than those of

SNP47. This is much more apparent in LD 1 and LD 2. Moreover, the posterior means for

SNP47 have a wider range of values than for SNP46. It can be noticed that there is a lot of

variation by dataset. Surprisingly there is relatively little variation across the LD 1, LD 2, and

LD 3 scenarios.

143



−0.04 −0.02 0.00 0.02 0.04

0
50

10
0

15
0

Mean posterior effect size

D
en

si
ty

Group 1
Group 2
Group 3
Group 4

(a) Posterior mean densities for groups 2-4 and ac-
tual posterior means for Group 1 for dataset 1.
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(c) Posterior mean densities for groups 2-4 and ac-
tual posterior means for Group 1 for dataset 3.
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(d) Shrinkage factors for the 4 groups using dataset
3.
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(e) Posterior mean densities for groups 2-4 and ac-
tual posterior means for Group 1 for dataset 8.
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(f) Shrinkage factors for the 4 groups using dataset
8.

Figure 7.6: Posterior mean densities (or actual values) and shrinkage factors for Scenario 4
for LD1 with 16000 cases and 16000 controls.
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(a) Posterior mean densities for groups 2-4 and ac-
tual posterior means for Group 1 for dataset 1.
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(c) Posterior mean densities for groups 2-4 and ac-
tual posterior means for Group 1 for dataset 3.
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(d) Shrinkage factors for the 4 groups using dataset
3.
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(e) Posterior mean densities for groups 2-4 and ac-
tual posterior means for Group 1 for dataset 8.
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(f) Shrinkage factors for the 4 groups using dataset
8.

Figure 7.7: Posterior mean densities (or actual values) and shrinkage factors for Scenario 4
for LD2 with 16000 cases and 16000 controls.
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(a) Posterior mean densities for groups 2-4 and ac-
tual posterior means for Group 1 for dataset 1.
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(c) Posterior mean densities for groups 2-4 and ac-
tual posterior means for Group 1 for dataset 3.
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(e) Posterior mean densities for groups 2-4 and ac-
tual posterior means for Group 1 for dataset 8.
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(f) Shrinkage factors for the 4 groups using dataset
8.

Figure 7.8: Posterior mean densities (or actual values) and shrinkage factors for Scenario 4
for LD3 with 16000 cases and 16000 controls.
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Dataset 1 2 3 4 5 6 7 8 9 10

SNP46

MLE −0.21 −0.04 −0.25 −0.04 −0.04 −0.04 0.23 0.23 0.23 −0.21

P. Mean
LD1

−0.03 −0.02 −0.04 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 −0.03

P. Mean
LD2

−0.04 −0.02 −0.04 −0.02 −0.02 −0.02 −0.01 −0.01 −0.01 −0.04

P. Mean
LD3

−0.02 −0.01 −0.02 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.02

SF
P. Mean
LD1

0.84 0.56 0.83 0.56 0.55 0.55 1.1 1.1 1.1 0.84

SF
P. Mean
LD2

0.82 0.57 0.85 0.56 0.55 0.55 1.07 1.06 1.07 0.82

SF
P. Mean
LD3

0.9 0.72 0.94 0.73 0.72 0.72 1.03 1.03 1.03 0.9

SNP47

MLE 0.02 0.10 −0.01 0.10 0.10 0.10 −0.23 −0.23 −0.23 0.02

P. Mean
LD1

0 −0.01 −0.01 −0.01 −0.01 −0.01 −0.02 −0.02 −0.02 0

P. Mean
LD2

0 −0.01 −0.03 −0.01 −0.01 −0.01 −0.05 −0.05 −0.05 0

P. Mean
LD3

0 −0.01 −0.03 −0.01 −0.01 −0.01 −0.05 −0.05 −0.05 0

SF
P. Mean
LD1

0.98 1.07 −1.24 1.07 1.07 1.07 0.9 0.91 0.9 0.98

SF
P. Mean
LD2

0.91 1.1 −3.47 1.1 1.1 1.1 0.78 0.78 0.78 0.91

SF
P. Mean
LD3

1.07 1.11 −4.65 1.11 1.11 1.11 0.76 0.77 0.77 1.06

Table 7.6: MLE, posterior mean (P.Mean), and shrinkage factors (SF) for SNP 46 and 47
applied to three LD scenarios (LD1, LD2, and LD3) with 10 datasets having sample size of
16000 cases and 16000 controls. SNP46 is the common causal SNP. SNP47 is in very strong
LD with SNP46.
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Chapter 8

The effect of incorporating FS scores into

the prior for effect size in the iCOGs data

In Chapter 5 we discussed the results obtained from applying the methods (SLR, HL, Pi-

MASS, and the NG prior with expected effect size variance of 1) on the iCOGs data (see

Section 5.1). Here we will apply the standard NG (with expected effect size variance of 0.01)

and the Modified NG ( M1 = 0.01 and M2 = 0.001) to the iGOGs data and compare the

different priors in terms of their selection of SNPs.

8.1 Results and discussion

In this section we will discuss the results obtained from applying the standard NG and the

modified NG on the iCOGs data (see Section 5.1). The credible interval of the posterior

distribution of effect sizes will be considered at two percentages: 85%, and 90%.

The standard NG prior was applied to the iCOGs data using MCMC with 20000 iterations,

a burn-in of 2000 and thinned by 20 so the final thinned chain is 1000 observations long. Also,

the modified NG prior was applied to the iCOGs data using MCMC with 35000 iterations, a

burn-in of 2000 and thinned by 35 so the final thinned chain is 1000 observations long. The

MCMC run for the iCOGs data took 4 days for the standard NG and a week for the modified

NG on Iceberg (the University computer cluster).

Tables 8.1, presents the selected SNPs with an 85% and a 90% NG credible interval using
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the standard NG prior and the modified NG prior. As expected the number of selected SNPs

with the standard NG prior (the modified NG prior) decreases as the credible interval increases

(6(3) selected SNPs with 85% CI, and only 3(2) selected SNPs with 90% CI). It can be seen

that the standard NG selected all SNPs that were selected by the modified NG. Moreover, the

three SNPs selected using the modified NG were in two different groups (Group 2, and Group

4). The modified NG does not select any SNPs at 95% and 99% sizes, whereas the standard

NG selects two SNPs at 95% (SNP342, and SNP765) and a single SNP at 99% (SNP765).
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Figure 8.1: Density plots of posterior effect sizes from the standard Normal-Gamma prior and
the modified Normal-Gamma prior for four SNPs. All SNPs were selected by the NG using an
85% CI. SNP342 and SNP765 were selected by the modified NG using an 85% CI, SNP1011
and SNP1244 were not when applied to the iCOGs data with 46450 cases and 42500 controls
with 1733 SNPs.
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Figure 8.1 shows the posterior densities of the effect sizes for four selected SNPs using

a 85% CI (from Table 8.1) . Both SNP342, and SNP765 are selected by both the standard

NG and the modified NG These two SNPs are located in Group 4 and Group 2 respectively.

SNP1011, and SNP1244 are selected by the standard NG prior only.

It can be seen that the posterior densities of SNP342 (chosen by both priors) using the

standard NG and the modified NG (SNP342) both have a lot of mass in the positive tail and

very little mass around zero. For SNP765 (chosen by both NG priors) there is a lot of mass

in the negative tail and there is very little mass around zero. However, for SNP1011 and

SNP1244 (chosen by only the standard NG), it can be seen that the posterior densities of the

modified NG is placing much more mass around zero than the standard NG.

Moreover, Figure 8.1 shows the modified NG shrinks the effect sizes much more than

the standard NG. Also it can be noticed that the posterior densities of all 4 SNPs using the

modified NG show varying amounts of shrinkage that depends on the SNP’s group. It can be

seen that there is not a SNP selected by only the modified NG. We expect that a SNP might

select by the modified NG but not by the standard NG if this SNP does not shrinkage as much

as the standard NG did and this might happen when the SNP located in Group 1 or Group 2.

It is also worth noting that none of SNPs selected using an 85% or 90% credible interval are

in FS score Group 1, whilst only one (SNP765) is in FS score group Group 2. This may be

partly explained by the large sample size in the iCOGs data of approximately 90, 000.
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SNPs MAF FS scores SNP Group NG NGFS

85% CI

SNP342 0.46 NA 4 1 1

SNP589 0.20 NA 4 1 1

SNP765 0.09 0.5 2 1 1

SNP1101 0.33 0.101 3 1 0

SNP1177 0.32 NA 4 1 0

SNP1244 0.17 0.101 3 1 0

90% CI

SNP342 0.46 NA 4 1 1

SNP589 0.20 NA 4 1 0

SNP765 0.09 0.5 2 1 1

Table 8.1: SNPs selected using an 85% and 90% credible interval of the posterior effect sizes
in the standard NG prior and the modified NG prior. We used 1 and 0 for NG, and NGFS
to indicate whether the SNP in a particular method was selected or not. It is applied to the
iCOGs data with 1733 SNPs and a total sample size of 89050.
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Chapter 9

Discussion

The common approach to fine-mapping is to use a univariate approach. However, this ap-

proach does not take in to account the relationship between the causal variants. Therefore,

here we focus on a multivariate approaches in fine-mapping studies.

In this project we not only perform a careful comparison of multivariate methods in fine-

mapping, but also we incorporate functional genomic information into the continuous prior

using a fully Bayesian approach in scenarios with highly correlated SNPs. The specific chal-

lenge here is the very high correlated (LD) between SNPs. A Bayesian approach offers a

natural way of dealing with the high levels of multi-collinearity.

We compared the performance of both a frequentist approach (Sequential Logistic Regres-

sion (SLR)) and three Bayesian approaches: HyperLasso (HL), PiMASS and the NG prior in

fine-mapping case-control studies for eight scenarios using ROC curves. It seems that there is

not an outstanding approach because the performance of the methods varies in each scenario

and because of the variation across the datasets.

We then developed the NG prior by including functional genomic information. The pub-

lished functional significance (FS) scores were used to prioritise the causal SNP by dividing

the FS scores into four groups each of which had a unique prior. These priors were chosen

to control the shrinkage factors for each SNP and enable us to improve identification of the

causal SNP especially when the causal SNP is placed in a high LD block.

Even when causal SNPs are placed in lower FS score groups the performance is still good.

Therefore, there seems little to lose in grouping SNPs although whether performance reduces
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with too many groups is unclear.

In the NG structure, the ROC results obtained by modifying the hyperparameter λ by

changing the rate parameter κ are rather similar (results not shown). Thus, incorporating

functional genomic information into the NG prior through allowing κ to be some function of

the FS score is not a good choice. Therefore, we incorporate the functional genomic informa-

tion through the expectations of the prior variance of the effect size and carefully considered

suitable choices of prior variance.

In this project we considered eight scenarios. However, the results can be quite sensitive to

the minor allele frequency (MAF), sample size, and odd ratios (OR). We suggest researchers

consider several multivariate approaches, particularly ones that do not make hard choices.

If functional information takes the form of a single score we have provided an efficient and

effective way of including this in the analysis.

9.1 Limitations

One of the significant disadvantages of all the approaches is that there is a high variation across

the 10 simulated datasets. This might be the reason behind unclear conclusions when we com-

pared the four methods. Moreover, combining results to create ROC curves might not be a

reasonable approach because of the variation across datasets. In addition, we used different

approaches for plotting ROC curves for different methods: a “Combining Results” approach

for the Bayesian approaches and “Threshold Averaging” for the frequentist approach. It might

be more plausible if “Threshold Averaging” or “ Vertical Averaging” were used for all meth-

ods.

Although the functional information was not complete for all SNPs, we developed an ap-

proach to incorporate the functional significant (FS) scores into the prior efficiently. However,

these scores represent global scores and they do not relate to a particular disease. Therefore,

this might affect the selection of causal SNPs in disease-specific path ways by placing them

in low FS score groups with higher shrinkage when in fact they are likely, a priori, to be dele-

terious in the specific disease considered. There is no rule of thumb to select the two different

expectations of the prior variance of the effect sizes (M1,M2). Therefore, they are chosen
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semi-subjectively based on shrinkage in the breast cancer top hits data. In diseases with fewer

established causal variants this becomes an even more subjective choice.

Inclusion of the FS scores into the NG prior achieved better true positive rates compared to

the three Bayesian approaches without using functional information. However, the modified

NG prior approach takes a lot of time to run compared to the other approaches.

In the NG prior, the expectation of the prior variance of the effect sizes (M) needs to be

specified but it is not clear how to specify it. Moreover, as M decreases, smaller CI sizes are

required to capture causal SNPs. As a result this choice is critical.

9.2 Future studies

In future studies, it would be interesting to compare the performance of all the methods using

the ROC curves with the same method, either “Threshold Averaging” or “ Vertical Averaging”

rather than combining the results from different datasets. Moreover, the ENCODE database

(ENCODE, 2011) provides disease-specific detailed information for each SNP although it

also has a lot of missing data. Therefore, possible future research is to compare the perfor-

mance by allowing inclusion of ENCODE database information in the NG prior. In addition,

FS scores could be incorporated within different priors. For example it could be incorporated

into PiMASS mixture priors. Another possible future study of research is to reduce the com-

putational using the modified NG prior. To do this, we could write the code in C++ or integrate

R and C++ using the Rcpp package. Moreover, it is possible to attempt other shrinkage priors

for our datasets, some of which are computationally simpler although offer flexibility in the

shrinkage induced.
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Appendix A

Trace and ACF plots

Here we will show the trace and ACF plots for the posterior of β589, ψ589, λ and γ2 using

Normal-Gamma method for asymptotic normal likelihood. Applying iCOGs data with 46450

cases and 42500 controls with 1733 SNPs that was mentioned in Section 5.3.
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Figure A.1: Trace plots for the posterior of β589, ψ589, λ and γ2 using Normal-Gamma method
for asymptotic normal likelihood. Applying iCOGs data with 46450 cases and 42500 controls
with 1733 SNPs. In Normal-Gamma method for asymptotic normal likelihood, the MCMC
run for 20,000 iterations with 2,000 burn-in and thinning by 20.
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Figure A.2: ACF plots for the posterior of β589, ψ589, λ and γ2 using Normal-Gamma method
for asymptotic normal likelihood. Applying iCOGs data with 46450 cases and 42500 controls
with 1733 SNPs. In Normal-Gamma method for asymptotic normal likelihood, the MCMC
run for 20,000 iterations with 2,000 burn-in and thinning by 20.
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