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Abstract

The evolution of Artificial Intelligence has passed through many phases over the years,
going from rigorous mathematical grounding to more intuitive bio-inspired approaches.
However, to date, it has failed to pass the Turing test. A popular school of thought
is that stagnation in the 1970s and 1980s was primarily due to insufficient hardware
resources. However, if this had been the only reason, recent history should have seen
AT advancing in leaps and bounds — something that is conspicuously absent. Despite the
abundance of Al algorithms and machine learning techniques, the state of the art still fails
to capture the rich analytical properties of biological beings or their robustness. Moreover,
recent research in neuroscience points to a radically different approach to cognition, with
distributed divergent connections rather than convergent ones. This leads one to question
the entire approach that is prevalent in the discipline of Al today, so that a re-evaluation

of the basic fabric of computation may be in order.

In practice, the traditional solution for solving difficult AI problems has always been to
throw more hardware at it. Today, that means more parallel cores. Although there are
a few parallel hardware architectures that are novel, most parallel architectures — and
especially the successful ones — simply combine Von Neumann style processors to make
a multi-processor environment. The drawbacks of the Von Neumann architecture are
widely published in literature. Regardless, even though the novel architectures may not
implement non-Von-Neumann style cores, computation is still based on arithmetic and
logic units (ALU). The aim of this research is to explore the possibility of whether an
alternative hardware architecture inspired from the biological world, and entirely different
from traditional processing, may be better suited for implementing intelligent behaviour

while also exhibiting robustness.
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Chapter 1

Problem Description

Over the years, computation has evolved to mean many different things. Stepney et al.
(2005) defines the classical view of computation and encourages the research community
to stretch and break these classical paradigms; suggesting that the grand challenge for

computation today is:

“to journey through the gateway event obtained by breaking our current classi-
cal computational assumptions, and thereby develop a mature science of Non-

Classical Computation.”

This research is an attempt to explore possible alternate non-standard architectures for
computation; in particular, computation for Artificial Intelligence (AI) applications. Sec-
tion 1.1 gives a brief introduction to the problem of implementing Al algorithms on existing
hardware architectures while Section 1.2 describes the motivation for designing fault
tolerant hardware. Section 1.3 formally defines the hypothesis, summarises the solution

and describes the structure of the rest of this document.

1.1 Intelligent Algorithms on Current Hardware Archi-

tectures

The Von Neumann architecture is characterized by a processing unit and a (logically)

single, separate storage unit. The heart of the processing unit is the ALU and instructions

22



Chapter 1 - Problem Description

are executed sequentially (Stallings, 2000). Most of the area is memory and only a few
locations can be accessed at any given moment. Therefore, performance is limited by
the bandwidth of data transfer between processor and memory — resulting in the Von
Neumann Bottleneck (Backus, 1978) — something that is becoming increasingly apparent
with the recent increase in processor speeds. Despite the effect of this bottleneck on the
effective processing speed of a conventional processor, an individual processor today still
operates much faster than basic individual biological elements, like neurons. Depending
on the neuron, this can be anywhere between 2ms and 10ms (Thorpe et al., 2001, Vreeken,
2003) — resulting in neuron firing rates of between 100Hz to 500Hz. Nonetheless, Artificial
Intelligence (AI) algorithms implemented on processors running at GHz speeds are still
unable to match the human brain in many respects. Moreover, as shown by Hillis
(1984), even a nano-second cycle time is not nearly fast enough in a serial Von Neumann

1. His solution was to move processing

architecture to solve million-scaled Al problems
into memory, using a parallel architecture based on Cellular Automata, that he calls the
Connection Machine. Although a detailed discussion of parallel architectures including
the Connection Machines is presented in Chapter 2, it is evident at the outset that some

level of parallelism is essential to solve the problems in this domain.

Stagnation in the field of Artificial Intelligence in the 1970s and 1980s is widely attributed
to insufficient hardware resources (Abraham, 2005, Moravec, 1998). However, if this had
been the only reason, the following decades should have provided significant progress in
AT — which has not been the case. Despite the abundance of Al algorithms today, these
algorithms are very specific in terms of their applicability. Although the algorithms that
govern the operation of biological brains are also specific (for example, typically slow at
number crunching) they find it trivial to perform tasks such as image processing and
hetero-associative recall (Section 2.1.3.4), that are beyond the capability of even the most
sophisticated machines. Hillis (1986) claims that the strength of biological intelligence
seems to be the ability to solve problems that require manipulating poorly structured
data. On the other hand, the strength of machines is the ability to perform repetitive
deterministic tasks, typically involving large or long calculations. The serial nature of the
classical computing machine coupled with the causal nature of the human psyche means

that researchers tend to think of Al problems as search problems.

L AT problems that use millions of facts to come up with solutions.
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A common analysis offered for this inability of computers to match the human brain (and
consequently, the inability to pass the Turing test) is to estimate the computing power of
the human brain and relate it to the computing power of the modern processor. Although
there are a number of ways of doing this, one of the more widely accepted methods is based
on the assumption that nerve volume is proportional to computation power (Moravec,
1998). Since the retina has been extensively studied and is well understood, it can be
used as a starting point to estimate the number of instructions required to perform the
same task (vision) on a state-of-the-art processor. With this estimate, and knowing the
number of neurons in the retina, it is a trivial calculation to estimate the equivalent
instructions count per second that is performed in each neuron. Furthermore, knowing
the total number of neurons in the human brain (or a close approximation of it), the
total equivalent MIPS (Millions of Instructions Per Second) can be estimated in terms of
instructions executed by the processor. Moravec (1998) indicates that the retina seems
to process ten images per second, each of 1 x 105 pixels. Moravec (1998) further claims
that it takes robot vision programs 100 instructions to derive edge detection or motion
detection from a video of comparable images; thereby estimating 1,000 MIPS as being
equivalent to the retina. Furthermore, the human brain being 1 x 10° times bigger than
the retina in terms of nerve volume, Moravec (1998) estimates the computing power of

the human brain to be around 1 x 108 MIPS.

Although supercomputers today are closing in on this number, the expense of such ma-
chines is too prohibitive to dedicate them for a human brain implementation; and until
such an implementation is actually done, there is no guarantee that the hypothesis about
insufficient hardware resources holding back Al is correct. Moreover, a neglected assump-
tion of this method of estimating the human brain’s computing ability is that it is related
to the hardware architecture used to implement the electronic equivalent of the retina. The
fact that Moravec (1998) describes an edge detection operation as 100 instructions is quite
suggestive of the type of computing architectures being considered. These architectures
are composed of (possibly multiple) general-purpose processors, executing instructions
sequentially which are fetched from memory. Using a different architecture might result in
a much smaller MIPS count (or a larger one). In addition, although using general purpose
processors provides ease and flexibility, it must be noted that nature’s equivalent (the
brain) does not use general purpose elements. Neurons perform only one task, namely

firing in response to input. This is, in effect, hardwired, although it may be fine-tuned.
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Also, note that neurons operate at a much lower frequency than general purpose processors
and are still able to out-perform their digital counterparts. It is to be expected of course,
that custom hardware out-performs general purpose hardware for the task it has been
customised for. However, could it also be that using non-standard custom hardware
might sufficiently ease the constraints on timing and spatial requirements, thereby making
a solution possible in the current state of the art? In order to evaluate this, standard
computation must first be defined. Johnson (2007), Stepney et al. (2005) define six

properties of classical computation which can be summarised as follows.

Turing paradigm: A computer processes discrete states, with unlimited resources, and
the choice of substrate for the implementation of the computer is immaterial to its

processing.

Von Neumann paradigm: A computer is a single, serial processor and information is

brought to the processor.

Output paradigm: Outputs are generated from a well-defined output channel and are

the only thing of interest.

Algorithmic paradigm: Computers execute well-defined, non-deterministic processes,

which are bounded in time and have well-defined inputs and outputs.

Refinement paradigm: Problems can be defined in exact specifications which do not
change over time and which can then be used to implement the solution. Binary is

desirable and emergence is undesirable.

Computer-as-an-artefact paradigm: The computer hardware is not composed of el-
ements in the physical world that already perform the task and the hardware does
not change over time; thereby implying that the hardware is general purpose enough

to fit the problem.

Any attempted solution based on non-standard custom hardware must challenge at least
one aspect of the above, though more than one would be preferable. This is because in
order to escape the traditional computation paradigm, it might prove useful to perturb

the existing solution by a large amount, rather than a small one.
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1.2 Robust Intelligence on Current Hardware Architec-

ture

A wide range of conventional engineering techniques exist for fault tolerance and error
correction. A detailed discussion of such techniques is presented in chapter 3, however, it
should be noted that these techniques are used in many critical systems such as manned
missions to outer space (Iyer and Kalbarczyk, 2003, She and Samudrala, 2009, Storey,
1999); indicating that they do provide a certain level of fault tolerance. What is lacking
however, is the kind of robustness that can be observed in biological entities (for instance
the neuro-plasticity in the human brain) that can recover from extremely severe faults.
Part of this ability in biological organisms is due to regeneration that stems from cellular
reproduction. This is beyond the current abilities of electronic devices and in fact, it is
unknown exactly how important cell division is to regeneration and plasticity (Brockes
and Kumar, 2003). However, a major part of this ability for robustness can be attributed
to other properties of the biological organisms. These include the inherent degeneracy of
cellular functions, the totipotent? nature of the genome, the dynamic re-routing capabil-
ities of connections and the fact that a single function is performed by a combination of
a large number of cells so that no single cell becomes a critical element. These features
are at direct odds with the traditional approach to hardware design. Hardware designers
attempt to optimize the design and, in order to get maximum efficiency, prefer to remove
duplicated hardware, to the extent of sometimes sacrificing functions that are not used
frequently. Elements are designed to be unique and therefore each is crucial to the correct

operation of the whole.

Existing solutions vary from hardware redundancy and sparing to information redundancy
and timeouts, but mission critical environments tend to duplicate hardware. For instance,
NASA space shuttles use 4 computers with majority voting (Iyer and Kalbarczyk, 2003).
On the other hand, biological systems display degeneracy rather than simple duplication
and redundancy. Degeneracy is usually defined as the ability of two or more systems
to perform the same function while being structurally different. Therefore, degenerate
systems tend to perform slightly different versions of the same task rather than being

exact duplicates of each other. For example, although the B-Cell and the Dendritic Cell

Full potential (Prodan et al., 2003)
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both generate an immune response, they are not exact duplicates so that if there are
events that escape one, they may be captured by the other (de Castro and Timmis, 2002,
Greensmith et al., 2005). In addition, although there may be many B-Cells that make
up an immune response, they are all actively performing a function that makes up a
collective B-Cell immune response (Mendao et al., 2007) and no cell is spare in the sense
of the traditional electronics “sparing” technique. If a few cells become faulty, there is
a transient drop in performance but the operation is not dependent upon the cells being
replaced for the operation to continue. Not only is this an added layer of protection, but
it also means that there is no portion of the system that is idle or spare or redundant as
are the duplicate copies in more traditional approaches like Triple Modular Redundancy

(TMR)(Iyer and Kalbarczyk, 2003).

This work is part of an EPSRC-funded project called SABRE?, under grant number
FP/F06219211. SABRE is a collaboration between the University of York and the Bristol
Robotics Laboratory (BRL) at the University of West of England in Bristol and aims
to explore possible hardware architectures for fault tolerance in mission critical environ-
ments?. The architecture is developed as three levels (Figure 1.1), with the idea that
each level provides a degree of fault tolerance and signals to upper or lower levels if

faults cannot be handled at its own level. The lowest level is composed of cells and was
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Figure 1.1: Levels in the SABRE architecture

designed at BRL, while the highest level is called the organism and was developed in York.
Cells are composed of a number of basic building blocks, called molecules. Each cell has

a particular function, such as processing data, storing memory, performing I/O and so

3Self-healing cellular Architectures for Biologically-inspired highly Reliable Electronic systems
4Situations where it is imperative that the system continue operation, even in the presence of errors.
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on. An organ is composed of multiple cells and in turn makes up an organism which is
expected to be capable of performing application level functions. The lowest level design
is a reconfigurable fabric inspired by prokaryotic organisms and is called Unitronics. Refer
to Samie et al. (2009a,b) for complete details about the architecture and the robustness

it adds to the whole.

1.3 Initial Hypothesis

Although a more detailed review of the problem domain is presented in Chapters 2 and
3, the preceding sections outlined its major aspects. From this, the following initial

hypothesis can be identified, which is later expanded upon in Chapter 4:

“ A novel, non-standard computation method for a bidirectional, hetero-associative
memory, implemented using a non-standard hardware architecture, composed
of multiple (of the order of hundreds) parallel processing elements, can perform
meaningful computation in the context of Al applications, and can perform
better and in a more robust way than other traditional techniques based on

traditional hardware. 7

In order to measure the success or failure of this hypothesis, some of the terms used need
further definition (fully specified in Section 4.1). This is presented as part of the following

implied objectives:

1. In order to be non-standard, the novel computation method must differ in at least
one aspect from the definition of classical computation as described in Section 1.1.

Details for this are presented in the final hypothesis in Chapter 4.

2. Since the architecture is non-standard, before testing for meaningful computation,
the architecture must be tested for any computation. This can be tested by mea-

suring the accuracy of memory recall of the training data itself after training.

3. Meaningful computation can be defined as the ability to generalise about the un-
derlying dataset from the sample presented in the training dataset. Performance on

previously unobserved data must, therefore be measured.
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4. In order to test if the novel architecture is better, it must be compared with existing
techniques implemented on existing architectures of comparable silicon real-estate:
If toy datasets are used (for the comparison or in tests), the novel architecture must

be shown to be at least as scalable as existing comparable techniques.

5. Improved robustness can be tested in a number of ways, at least one of which must

be true:

e Correct operation or execution must not hinge on any single element (of the
parallel architecture) so that faults result in graceful degradation of perfor-

mance.

e Fault tolerance must be achieved through degeneracy rather than redundancy.

Note that these definitions are not very eract and more detailed ones are presented in

Section 4.1 after the literature review.

1.3.1 A brief description of the novel solution

A complete list of the novel contributions of this thesis are presented in Section 8.1.1,
however, a concise summary of the proposed novel solution is presented here which helps
to put the literature review in context. A novel non-standard computation method for
a bi-directional, hetero-associative memory has been designed and developed, that is an
amalgamation of inspirations from the biological neural network and the biological genetic
regulatory network. The memory is distributed over nodes operating in parallel and in a
decentralised manner. In addition to designing the novel computation paradigm, a novel
hardware architecture for implementing this memory has also been designed. The non-
standard computation is achieved by extracting computation from memory operations
rather than using arithmetic operations and therefore, nodes in the hardware architec-
ture are not the standard Von Neumann processors of other parallel architectures. The
architecture operates on abstract symbols and (unlike reconfigurable hardware solutions)
does not require a configuration bit-stream. Furthermore, there is no distinct training
phase, therefore, learning is life-long and so the architecture is able to adapt dynamically
to new data without requiring reconfiguration (unlike reconfigurable hardware solutions

which need to handle dynamic reconfiguration issues). Fault tolerance is ensured through
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degeneracy rather than redundancy such that no individual node is critical to the operation

of the whole and faults result in graceful degradation.

This thesis is organised as shown in table 1.1

Chapter | Description

1 Presents an overview of the problem domain with an initial definition of
the hypothesis.

2 Reviews existing hardware solutions and the effect of implementing Al
algorithms on such hardware.

3 Reviews existing fault tolerance mechanisms

4 Presents the detailed definition of the hypothesis and describes a prelimi-
nary abstract view for the proposed solution.

5 Presents results from experiments performed on the proposed solution.

6 Describes an improved version of the proposed solution including details
about the hardware implementation.

7 Presents results from experiments performed on the improved version.

8 Discusses possible improvements and concludes.

Table 1.1: Document organisation
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Artificial Intelligence and Hardware

Architectures

Although AT is still in its infancy, it has progressed significantly from the days when a
literature review of the field could be presented in one chapter. More than space, however
is the consideration that a complete review is not relevant to the focus of this thesis.
Similarly, a complete review of the state of the art in hardware architectures is not required.
Instead, existing hardware architectures and Al techniques are divided into categories and
a review of each category is presented, with the objective of then being able to discuss
the implications of implementing these Al techniques on existing hardware architectures
(categories). Section 2.1 describes the broad categories of current Al techniques while
Section 2.2 reviews hardware architectures and Section 2.3 discusses the aforementioned

implications of implementing Al techniques on the existing hardware architectures.

2.1 History and Methods of Al

Artificial Intelligence can be said to date back to the 1930s when Alan Turing proposed
the Universal Turing Machine. Turing and Emil Post both independently proved that
“determining the decidability of a mathematical proposition is equivalent to asking what
sort of sequences of a finite number of symbols can be recognized by an abstract machine
with a finite set of instructions” (Abraham, 2005). Around 1935, Alonzo Church et al. came

up with a mathematical definition for intuitive computability (Li and Du, 2007), which
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effectively stated that:
“A function of positive integers is effectively calculable only if recursive”.

At about the same time, in 1936, Turing independently came up with the concept of
calculability by a Logical Computing Machine (LCM), which was Turing’s expression for
the Turing machine (Li and Du, 2007):

“LCMs can do anything that could be described as ‘rule of thumb’ or ‘purely

mechanical’ 7.

The Turing test is based on the principle that if an observer cannot differentiate between
the behavior of a machine and a human, then the machine can be termed intelligent
(Turing, 1950). Although there are many detractors of the Turing test, it is still the most
accepted measure of deciding whether a machine (or system or algorithm) is artificially
intelligent or not. Turing (1950) estimated that by the year 2000, machines with 10? bits of

memory would have a 70 percent probability of passing the Turing test within 5 minutes.

There have been many other landmarks in the history of Al including the famous Dart-
mouth Symposium in 1956 and the first session of the International Joint Conference on
AT in 1969. Over the course of its evolution, there have been many definitions for Artificial
intelligence, primarily depending upon whether the person leans towards strong Al or weak

AT According to Coppin (2004, Chapter 1), two of the more popular definitions are:

Strong AI : “Al is the study of systems that act in a way that to any observer would

appear to be intelligent”

Weak AI: “Al involves using methods based on the intelligent behavior of humans and

other animals to solve complex problems”

The proponents of strong Al claim that with enough processing power and intelligence,
machines can think and be conscious like humans. On the other hand, advocates of weak
AT believe that intelligent behaviour can only be modeled and used by machines to solve

complex problems.

The following sections discuss some of the major categories of Al techniques. This is not

intended as a review of the entire domain of Al, but rather as a discussion of the areas
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relevant to the focus of this thesis as described in the problem description (Section 1.1).
Section 2.1.1 briefly introduces the concept of learning. Section 2.1.2 discusses symbolic

methods, while Section 2.1.3 talks about sub-symbolic Al.

2.1.1 Learning Techniques

In the classical approach, the task for Al is to generalise from training data. A small
portion of the underlying dataset is presented to an algorithm for training, and the
algorithm should be able to determine the relationship between inputs and outputs from
this subset. The simplest method of doing this is rote learning where each piece of training
data is stored along with its classification. This, of course, has the disadvantage that it
does not generalise at all. Techniques that generalise can be classified into one of the

following (Abraham, 2005):

Supervised learning: learn by generalising from pre-classified training data.

Unsupervised learning: learn without training by discovering statistical features in

the input data that create clusters of patterns.

Reinforcement learning: learn by maximizing a numerical reward function from the

environment through trial and error.

The semantic networks mentioned in Section 2.1.2 are an example of supervised learning

while the self-organising maps mentioned in Section 2.1.3 use unsupervised learning.

The classical approach is to rely on mathematics and assume that if a function can be
found that maps a large set of training data to its classification, then this function will
also be able to map unseen data correctly. This is inductive learning (Michalski, 1983).
A simple structured way to induce the function is to use general-to-specific ordering or
specific-to-general ordering. A most-general hypothesis is of the form hy =<?,7,--- |7 >
where 7 can take any value. A most-specific hypothesis is of the form hy =< ¢, ¢, -+