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Abstract 

 

Very short lived halogenated substances (VSLH) are of importance for the transport of 

reactive halogens to the troposphere and lower stratosphere, whereas molecular halogens 

are of specific importance to the Marine Boundary Layer (MBL). This thesis describes the 

field deployment of a ground based gas chromatography mass spectrometry (GC/MS) in 

the Canadian sub-Arctic for the determination of VSLH in seawater/sea-ice and air with a 

view to identify dominant sources to the MBL in the region. MBL mixing ratios of VSLH 

were determined from a surface site (55.28°N, 77.77°W) on the south east of Hudson 

Bay,(Kuujjuarapik, Canada) during the 19
th

 -27
th

 of February. Elevated mixing ratios of the 

Volatile Organic Iodine Compounds (VOIC) coincided with airmasses reaching the ground 

site that had previously transected regions of open water in the Bay (between 10 – 200 km 

away), suggesting leads/polynyas are the dominant source of VOIC within the region.   

 

This observation is supported by laboratory experiments conducted with artificial sea ice in 

a cold chamber (School of Earth and Environment, Leeds University) in which physico-

chemical properties of the hypersaline brine, sea-ice and the underlying seawater were 

measured to quantify the vertical transport of a comprehensive range of volatile organic 

iodinated compounds (VOICs) at air temperatures of -3 and -14 
o
C. The results suggest that 

VOIC gas transfer velocities from diffusion through the sea-ice alone are at least 60 times 

lower at -3 ºC than gas exchange from leads and polynas during the winter (assuming a sea-

ice fractional coverage of 0.1). This has significant implications for in situ VOIC losses 

within the brine from chlorination, hydrolysis and photolysis processes and it is unlikely 

that measurable concentrations of VOICs would survive vertical transport from the 

underlying seawater to the surface sea ice quasi-liquid layer. 

 

Further laboratory work within this thesis suggests that gaseous I2 evolution from the 

oxidation of iodide in the world’s oceans by atmospheric ozone is a viable source of iodine 

to the MBL, but its strongly constrained by the iodide and dissolved organic carbon (DOC) 

content of the surface ocean.  
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The Earth’s atmosphere extends over 100 km from the surface with 90 % of the 

atmospheric mass residing within the troposphere. Therefore most atmospheric chemistry 

occurs within this region. The troposphere is the lower most part of the atmosphere 

typically extending 10 – 17 km from the Earth’s surface depending upon latitude and 

season. At the top of the troposphere there is a transition layer (tropopause), above which 

air temperature generally increases with altitude into the stratosphere due to enhanced 

absorption of UV radiation by ozone. This phenomena causes an inversion layer within the 

tropopause inhibiting vertical transport to the stratosphere, although injections into the 

lower atmosphere do occur. Clouds, precipitation and atmospheric water vapour are also 

largely confined to the troposphere, providing important removal mechanisms for 

atmospheric pollutants.  

 

The lower troposphere from the Earth’s surface to 0.5 – 2.0 km in height contains a region 

of highly turbulent mixing referred to as the boundary layer (BL). This BL is defined as the 

layer of air directly above the Earth’s surface in which the effects of surface (friction, 

heating and cooling) are felt directly (Garratt, 1992). It is within this region of the 

atmosphere that most abiotic (chemically produced), biogenic (biologically produced), and 

anthropogenic (human induced) chemical emissions mainly occur, hence this region is 

critical is controlling their dispersion, transport and removal mechanisms (Wayne, 2000). 

This region of the atmosphere, specifically the atmospheric halogen related chemistry 

therein, is the main focus of this thesis. 

 

1.1 Tropospheric oxidative chemistry 

The removal of trace gases within the troposphere is primarily controlled through 

photolysis and oxidation pathways involving the hydroxyl radical (OH). Removal 

involving OH essentially controls the “oxidative capacity” of the atmosphere (Prinn, 2003). 

The global average OH concentration is only   10
6
 molecules cm

-3
 (Prinn et al, 1995), but 

even at these low concentrations OH is a globally important atmospheric oxidant.  

 

In the troposphere the photodissociation (< 310 nm) of ozone (O3) in the presence of water 

vapour is the major source of OH radicals (EQ 1.1 and 1.2). The majority of the excited 
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atomic oxygen (O(
1
D)) produced is quenched by N2 or O2 back to its ground state (O(

3
P)) 

which then recombines with molecular oxygen (O2) regenerating O3 (EQ 1.3). The rate of 

OH production in the atmosphere is dependent upon the quantum yield of O(
1
D) as a 

function of wavelength and the relative reaction rates of EQ 1.2 and 1.3.  

 

O3 + hv  O(
1
D) + O2(

1
g)                                                                                   (EQ 1.1) 

O(
1
D)  + H2O  2OH                                                                                           (EQ 1.2)    

O(
3
P) + O2 + M  O3 + M                                                                                    (EQ 1.3) 

 

OH radicals rapidly react with most natural and anthropogenic gases present within the 

atmosphere, often as the first and rate determining step in their removal. This influences 

both trace gas lifetimes and the rate of removal of atmospheric pollutants (Levy, 1971). 

Removal processes within the troposphere are initiated by a combination of oxidation and 

removal processes. Oxidation via reaction with OH is the dominant removal pathway for 

many atmospheric pollutants including carbon monoxide (CO), methane (CH4) and non-

methane volatile organic compounds (VOCs). However, the oxidation of atmospheric 

pollutants by OH can be perturbed by the presence of other trace species such as NO and 

NO2 (collectively termed as NOX) and sulphur compounds (Wayne, 1991).  

 

Under low NOX conditions, the major fate of OH is reaction with ubiquitous CH4 ( 30%) 

or CO ( 70%).  These reactions produce the reactive species H (EQ 1.4) and CH3 (EQ 1.5) 

which subsequently react with O2 producing the peroxy radicals HO2 and CH3O2 

respectively. These peroxy radicals can either cross or self react under low NOX conditions 

producing peroxides which are then susceptible to aerosol scavenging or wet deposition 

processes. As the OH radical involved in this mechanism is generated from O3 (EQ 1.1 and 

1.2), this process represents a significant loss mechanism for O3. 
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CO + OH  H + CO2 

H + O2  HO2 

HO2 + HO2  H2O2 + O2 

 

Net : CO + OH + HO2  CO2 + H2O2                                                                (EQ 1.4) 

 

CH4 + OH  CH3 + H2O 

CH3 + O2 + M  CH3O2 + M 

CH3O2 + HO2  CH3OOH + O2 

 

Net : CH4 + OH + HO2  CH3OOH + H2O                                                        (EQ 1.5) 

 

The presence of elevated NOX concentrations within an airmass perturb this process by 

altering the fates of the peroxy radicals produced.  The peroxy radicals (HO2 and RO2) 

oxidise NO to NO2, perturbing the predicted photochemical state of NOX and O3 in the 

atmosphere (EQ 1.6 and 1.7) (Crawford et al., 1996).  The photolysis of NO2 is directly 

responsible for O3 production during elevated NOX concentrations. Hence during elevated 

periods of NOX concentrations, net O3 production will occur whilst during periods of low 

NOX concentrations O3 destruction will dominate. This is the only reaction currently 

known which produces O3 in the troposphere, highlighting the importance of NOX 

chemistry when considering the O3 budget within this region of the atmosphere.  

 

HO2 + NO  NO2 + OH 

NO2 + hv  NO + O(
3
P) 

O(
3
P) + O2 + M  O3 + M 

 

Net : HO2 + O2  O3 + OH                                                                                 (EQ 1.6) 
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CH3O2 + NO  NO2 + CH3O 

NO2 + hv  NO + O(
3
P) 

O(
3
P) + O2 + M  O3 + M 

 

Net : CH3O2 + O2  O3 + CH3O                                                                       (EQ 1.7) 

 

As discussed, O3 is an important precursor to OH when considering the removal rates of 

atmospheric pollutants in the lower atmosphere, however in the troposphere it is considered 

a pollutant in its own right. Elevated concentrations of tropospheric ozone are considered 

detrimental to agricultural production (Van Dingenen et al., 2009) and air quality, 

adversely influencing human health (Jerett et al., 2009; Sartor, 1995). Tropospheric O3 is 

also a significant greenhouse gas contributing to positive radiative forcing of Earth’s 

climate (Houghton et al., 2001).  
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1.2 Impacts of Tropospheric Halogen Chemistry 

Figure 1.1 shows a simplified mechanism for reactive halogen chemistry occuring in the 

marine boundary layer (MBL), adapted from von Glasow and Crutzen, 2007.  

X

hv O3

XO

NO

DMS

XO

YO

HO2

hv

XOH

OIO
XO

(I or Br)

NO

X2

hv

IxOy
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OIO

O3
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Particles

HX
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only

X, Y, 

 

Figure 1.1 Simplified mechanism of reactive halogen cycling in the MBL (adapted from 

von Glasow and Crutzen, 2007). X and Y = Br or I.  

 

Chemical cycling through the oceans, atmosphere and aerosol, halogens impact 

atmospheric chemistry in several geographical locations.  Halogen-related ozone depletion 

was first observed in the Arctic boundary layer, with so-called “ozone depletion events” 

(ODEs) correlated with high bromine monoxide (BrO) concentrations (17 pptv; Barrie et 

al. 1988). Such ODEs are most commonly observed in late winter/early spring in the Arctic 

(Tarasick and Bottenheim, 2002) and August to October in the Antarctic (Jones et al., 

2006), when sunlight returns to high latitudes but temperatures are still low (- 20 ºC). 

However, ODE are not confined to polar regions. Very high BrO concentrations (up to 176 

pptv) were previously observed to coincide with ODE over the Dead Sea in Israel (Matveev 

et al., 2001). The author suggested that the process responsible for the release of reactive 

bromine compounds involved the oxidation of salt reservoirs around the Dead Sea. 
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Halogens also oxidise gas phase mercury causing its deposition to sea ice/snow surfaces, 

potentially increasing its bioavailability, as discussed in section 4.12 (Schroeder et al., 

1998; Slemr et al., 2003). Recent field observations of atmospheric plumes of quiescently 

degassing volcanoes suggest analogous halogen mediated mercury chemistry caused from 

the emission of very high concentrations of both gas phase BrO and mercury (Bobrowski et 

al., 2003; 2007; von Glasow, 2010). 

 

Read et al. (2008) suggested that  50% of the daily O3 depletion observed in the MBL of 

the tropics may be attributed to the combined contribution of BrO and iodine monoxide 

(IO), suggesting a widespread influence of halogen chemistrv in lower latitudes.  

Atmospheric halogen chemistry also affects the oxidising capacity of the troposphere 

through the perturbation of HOX and NOX ratios (Bloss et al., 2005; von Glasow and 

Crutzen, 2007), and on regional climate from the formation of ultrafine particles within 

coastal regions (Mäkelä et al., 2002; McFiggans et al., 2004). The composition of such 

particles has been shown to be composed of iodine species (Mäkelä et al., 2002), and 

formation is believed to involve consecutive O3 and IO self reactions producing higher 

iodine oxides particles (IOPs) (McFiggans et al, 2004). These IOPs can cause enhanced 

scattering of incoming solar radiation causing a net cooling of the atmosphere through the 

formation of cloud condensation nuclei (CCN). However, in order to have an influence on 

global climate significant CCN production would have to occur in the MBL of the open 

ocean not just coastal regions (Kolb, 2002). Halogens , particularly bromine, also rapidly 

oxidise dimethyl sulphide (DMS) within the MBL, which is considered to be the most 

important gaseous precursor for sulphate aerosol CCN over the oceans. The presence of 

even low concentrations of halogens within the MBL potentially leads to processes that 

decrease the albedo of stratiform clouds in the MBL (von Glasow and Crutzen, 2004). 

 

The atmospheric lifetimes of halogens directly influence which regions of the atmosphere 

these species effect chemistry. Iodine species rapidly undergo photolysis, limiting halogen 

radical production to within the  MBL (e.g. I2 has a photolysis lifetime of  7 s at midday in 

midlattitude regions). Longer-lived brominated species such as bromomethane (CH3Br) and 
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bromochloromethane (CH2BrCl), with atmospheric lifetimes of  0.9 and 0.4 yr (Wayne et 

al. 1995), respectively, are transported to the stratosphere influencing ozone depletion. 

 

1.2.1 Gas phase halogen chemistry 

Halogenated species perturb atmospheric composition and oxidation chemistry through a 

complicated scheme of gas phase and heterogeneous reactions involving halogen radicals 

(von Glasow and Crutzen, 2007).  Halogen radicals are photochemically produced from 

precursors such as X2, XCl, XOH, XONO, XONO2 and RXn, where X = I, Br or Cl and R = 

methyl, ethyl or propyl group  (Impey et al., 1997; Carpenter, 2003 and references therein; 

Monks, 2005). The typical fate of these halogen radicals in the troposphere is their rapid 

catalytic reaction with ozone, forming halogen monoxides (XO) as shown in EQ 1.8.  

Typical reaction times for EQ 1.8 are  0.1 s for Cl and  1 s for Br and I radicals at 

background tropospheric O3 concentrations (Platt and Lehrer, 1996; Platt and Hönninger, 

2003). The halogen radicals are then regenerated in a series of reactions including either 

photolysis or the self reaction of XO (EQ 1.9). If XO photolyzes, both O3 and X are 

regenerated and no net reaction occurs (EQ 1.10). The partitioning of X/XO in the 

atmosphere is largely controlled by the relative rates of XO production (EQ 1.8) and 

photolysis (EQ 1.10). For instance, gaseous bromine at high O3 mixing ratios will be 

prevalently in the form of BrO whereas at low O3 mixing ratios (<1 ppbv) Br 

concentrations are more abundant. The catalytic destruction of ozone by halogens provides 

an alternative route to the production of OH radicals, influencing the oxidative capacity of 

the atmosphere (EQ 1.11 and 1.12) 

 

X

 + O3  XO + O2                                                                                            (EQ 1.8) 

XO + XO  X2 + O2                                                                                          (EQ 1.9) 

XO + O2 + hv  X

 + O3                                                                                    (EQ 1.10) 

XOH + hv  X + OH                                                                                          (EQ 1.11) 

OH + CO + O2  HO2 + CO2                                                                             (EQ 1.12) 

 

For catalytic ozone destruction to occur, XO must efficiently recycle to X radicals without 

photolysis and the subsequent production of ozone. This occurs via the XO + XO (self 
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reactions; EQ 1.9), YO + XO (cross reactions; EQ 1.14 – 1.16), the reaction of halogen 

oxides with hydrogen peroxy radicals (HO2; EQ 1.27) or in polluted environments, reaction 

with nitrogen dioxide (NO2; EQ1.22). 

 

The reactions of halogen oxide compounds are of significant importance for both 

stratospheric (via ClO and the dimer Cl2O2), and tropospheric (IO and BrO) ozone loss 

(McElroy et al., 1999). The lifetime and fates of various XO species are important when 

considering the relative influence of the various halogen atoms on ozone loss. The 

atmospheric lifetime of XO species is influenced through photolysis during sunlit periods, 

with lifetimes varying from several seconds (IO), to two minutes (BrO) and  1 hour (ClO) 

(Platt and Lehrer, 1996; Platt and Honninger, 2003; Lehrer et al. 2004). The high 

abundance of ubiquitous hydrocarbons in the troposphere (e.g. methane) leads to nearly 

50% of the highly reactive chlorine atoms being converted to HCl in the troposphere as 

shown in EQ 1.13 (Jobson et al., 1994).   

 

Cl + RH  HCl + R                                                                                            (EQ 1.13) 

 

Conversely, Br and I atoms react predominantly with O3, and Br to a more minor extent 

with aldehydes and olefins. Chlorine atom concentrations are also typically very low in the 

MBL compared to [Br] and [I]. For a typical tropospheric [Br] to [Cl] ratio of 800 

(Boundries and Bottenheim, 2000), chlorine atoms would account for only 2% of ozone 

depletion. Hence, iodine and bromine radical chemistry are of predominant importance 

when considering ozone depletion events within the MBL and free troposphere.  

 

Halogen oxide cross reactions (IO + BrO) can increase reaction rates making ozone 

destruction more efficient if significant concentrations of both halogen oxides exist (Lebras 

and Platt, 1995).  Self or cross reactions of XO are the dominant source of ozone loss in 

regions of high halogen concentrations. Such reaction cycles have previously been 

identified as the main cause of polar boundary layer ozone destruction (Barrie et al, 1988). 

BrO concentrations as high as 18.8  1.0 pptv have been observed in coastal Antarctica 

during Austral spring (October) (Saiz Lopez et al., 2007). OIO is a product of both the IO 
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self-reaction and the cross reaction of IO with BrO (EQ 1.14 and 1.15). Von Glasow and 

Crutzen (2007) found the latter to be the dominant source. Formation of OBrO (EQ 1.16) 

was previously found to be insignificant in reference to its contribution to ozone depletion 

(Rattigan et al, 1995). The IO self reaction produces OIO ( 40%) and IOIO ( 55%) at 

atmospheric pressure, however the latter is considered thermally labile producing OIO. 

Hence the net yield of OIO via the IO self reaction is high (Vogt et al. 1999; O’Dowd and 

Hoffman, 2005). 

 

BrO + IO  BrI + O2                                                                                                     (EQ 1.14) 

                 OIO + Br

                                                                                           (EQ 1.15) 

                OBrO + I

                                                                                            (EQ 1.16) 

 

The photolysis of OIO is critical in determining the ability of iodine species to destroy 

ozone; only reaction EQ 1.18 will result in the destruction of ozone due to the formation of 

an iodine radical. Ashworth et al. 2002, previously suggested that OIO photolysis to I + O2 

is likely to occur within the order of  1 second. If OIO undergoes photolysis to form O(
3
P) 

+ IO (EQ 1.17),  O3 is regenerated via   reaction EQ 1.19 leading to a null cycle regarding 

ozone loss. Previous laboratory work by Ingram et al. 2000 suggests this is unlikely to 

occur. If OIO does not undergo photolysis and is converted to a higher iodine oxide, the 

catalytic species is lost therefore reducing ozone depletion via this reaction pathway.  

 

OIO + hv  IO + O(
3

 P)                                                                                                                                 (EQ 1.17) 

                  I

 + O2                                                                                                                                           (EQ 1.18)      

    O + O2  O3                                                                                                    (EQ 1.19)       

 

The termination of ODEs is likely to occur following the removal of available reactive 

bromine, through the reactions covered, and from reactions with aldehydes, ketones and 

alkenes within the MBL (EQ 1.20 and 1.21). Gaseous reactive bromine can also be 

scavenged onto particles and can also be deposited onto sea-ice/snow pack, seawater and 

terrestrial surfaces, however as bromine deposited to ice and snow surfaces can be re-

released to the atmosphere, only deposition to unfrozen seawater and surface soil 
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constitutes an actual sink for these species. Another possibility is that the termination of 

ODEs could be caused by increased vertical mixing between the MBL and the free 

troposphere. Such phenomena are usually associated with the passage of synoptic systems 

which disperse the temperature inversion capping the boundary layer leading to the 

entrainment of ozone to the boundary layer and the transport of reactive bromine to the free 

troposphere (Lehrer et al., 2004). 

 

   HCHO + Br   HBr + CHO                                                                               (EQ 1.20)                                  

 

   BrO + CH3OO   Br + HO2 + HCHO                                                               (EQ 1.21) 

 

1.2.2 Halogen NOX chemistry 

At sufficiently high NOx mixing ratios, the production of halogen nitrates (XONO2) can be 

a significant loss mechanism for XO, EQ 1.22 and 1.23 (Monks, 2005). Once produced, 

XONO2 can undergo thermal decomposition back to XO and NO2, photolysis forming X + 

NO3 or uptake and subsequent photolysis on aqueous surfaces, EQ 1.24, producing 

hypohalous acids which can re-enter halogen cycles at EQ 1.11.  

 

XO + NO2  XONO2 +   XO + NO2                                                            (EQ 1.22) 

XNO2 + hv  X + NO3                                                                                        (EQ 1.23) 

XONO2 + H2O  HOX + HNO3                                                                         (EQ 1.24) 

 

Additionally it has been proposed (Sander et al. 1999) that XONO2 can undergo 

heterogeneous reactions at aerosol surfaces producing reactive halogens without the 

requirement for acidity, EQ 1.25 and 1.26. However, this reactive halogen pathway is 

kinetically less favorable ( 100 times) than that described in EQ 1.27., hence is expected 

to play a minor role in the clean MBL. Analogous reactions are expected to exist for iodine 

and chlorine chemistry. 

 

BrONO2 + Br

(aq)  Br2 (aq) + NO3


(aq)  Br2(g)                                          (EQ 1.25) 

XONO2 + Y

(aq)  X2 (aq) + NO3


(aq)  Y2(g)                                               (EQ 1.26) 
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1.3 Sources of halogens to the atmosphere 

The primary source of gaseous chlorine and bromine to the MBL (as HCl and Br2 

respectively) is from sea salt aerosol (Duce and Woodcock, 1971, Sander et al., 2003) with 

minor contributions from organo-bromine and chlorine species such as CHBr3 and CHCl3. 

(O’Doherty et al., 2001; Carpenter et al. 2009).  Organo-bromine compounds are the main 

source of bromine radicals to the free troposphere (von Glasow et al., 2004; Yang et al., 

2005). Approximately 20 – 25% of reactive iodine in the MBL is currently considered to be 

attributed to short lived iodine precursors such as CH2I2, CH2ICl, C2H5I and CH3I 

(Carpenter, 2003; Mahajan et al., 2010; Jones, et al., 2010), with emissions of I2 

dominating in coastal regions (Saiz Lopez et al., 2006; Kupper et al., 2008; Dixneaf et al., 

2009). 

 

1.3.1 Sea-ice and sea salt aerosol halogenated source gas emissions 

Heterogeneous reactions on various surface types specifically including saline sea-salt 

aerosol, frost flower structures, saline snow or first year sea ice (FYI) surfaces are the main 

source of reactive bromine and chlorine radicals to the MBL (McConnell et al., 1992; Fan 

and Jacob, 1992; Foster et al. 2001; von Glasow et al., 2004; Kalnajs and Avallone, 2006). 

These surfaces contain enhanced levels of inactive halides, Br

and Cl


. Uptake of 

hypohalous acids (HOX), formed through reaction EQ 1.27, onto a halide-rich surface 

initiates an autocatalytic reaction cycle (Vogt et al., 1996) converting Br
 

and Cl

 in acidic 

brine to gaseous BrX.  Such reactions require the uptake of strong acids such as H2SO4 and 

HNO3 (Vogt et al., 1996) prior to activation, or in the case of sea-ice, the precipitation of 

aqueous buffers such as calcium carbonate-derived carbonate and calcium carbonate (Sander 

et al, 2006). Via this mechanism, two gas phase bromine atoms are potentially released for 

every bromine atom absorbed, causing an exponential increase in atmospheric bromine 

which can re-enter the O3 depletion cycle. This is termed a “bromine explosion”, with 

exponential production of gas phase bromine resulting in a rapid onset of elevated BrO 

concentrations, ODE and Atmospheric Mercury Depletion Events (AMDE) (Kalnajs and 

Avallone, 2006). The bromine explosion phenomenon is simplified in figure 1.2. 
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BrO + HO2  HOBr + O2                                                                                             

HOBr (g)  HOBr (aq)                                                                                                

HOBr (aq) + X
 

(aq) + H
+ 

(aq)  BrX (g) +   H2O (aq)                                    (EQ 1.27) 

 

BrO

Br

+ O3+ BrO HOBr

+ hv

Sea ice surface 

or Aerosol

HOBr HOBr

Br2

+ Br 

Br2
+ hv

+ HO2

 

 

Figure 1.2 A simplified schematic representation of the proposed “bromine explosion” 

mechanism (Adapted from Frieß et al., 2001). 

 

1.3.2 Organohalogen emissions 

Organohalogens are produced by both anthropogenic and natural sources. Anthropogenic 

emissions generally generate longer lived species which are of particular significance in 

stratospheric ozone depletion, and were curtailed in the 1980s through legislation (the 

Montreal Protocol and its subsequent revisions), following the discovery of the Antarctic 

ozone hole (Molina and Rowland, 1974; Farman et al. 1985; Ozone Secretariat United 

Nations Environment Programme, 2006). Natural sources of halogens (particularly organo 

iodine species) are generally shorter lived and are of particular importance in tropospheric 

chemistry, however their sources are not currently fully understood. Table 1.1 shows the 
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major halocarbon sources to the atmosphere and their atmospheric lifetimes ((local)
-1

) based 

upon their lifetimes with respect to OH ((OH)
-1

) and photolysis ((J)
-1

).  

Source gas Formula Local lifetime (days)
a
 Atmospheric source

b
 

Trichloromethane CHCl3 150 AN 

Bromochloromethane CH2BrCl 150 N 

Dibromomethane CH2Br2 120 N 

Dibromochloromethane CHBr2Cl 78 N(A) 

Bromodichloromethane CHBrCl2 69 N(A) 

Tribromomethane CHBr3 26 N(A) 

Iodomethane CH3I 7 N 

Iodoethane C2H5I 4 N 

2-Iodopropane 2-C3H7I 1.2 N 

1-Iodopropane 1-C3H7I 0.5 N 

Chloroiodomethane CH2ICl 0.1 N 

Bromoiodomethane CH2IBr 0.04 N 

Diodomethane CH2I2 0.003 N 

Table 1.1 Atmospheric lifetimes of halocarbon source gases (adapted from Wayne et al., 

1995).  

a
 Local lifetimes are calculated as (local)

-1
 = (OH)

-1
 + (J)

-1
, with [OH] = 1 x 10

6
 molecules cm

-3
, T = 275 K, 

and a globally and seasonally averaged solar flux for 5 km alltitude. 

b 
N = entirely natural atmospheric sources; A = entirely anthropogenic sources; AN = combination of natural 

and anthropogenic atmospheric sources (minor components shown in parentheses).  

 

1.3.2.1 Biogenic halogenated source gas emissions 

The rate of biogenic production of organic and inorganic halogens in the marine 

environment differs between the open ocean, likely dominated by production by microalgae 

(phytoplankton) (Wuosmaa and Hager, 1990), and coastal regions, likely dominated by 

production by macroalgae (kelp beds) (Laturnus, 2000). Coastal regions are inhabited by 

high densities of macroalgae, however these regions represent only a small fraction of the 

global ocean. Current global estimates of biogenic iodine flux from macroalgae confined to 

coastal zones are in of the order of 10
7
 -10

8
 g I yr

-1
 (Goodwin et al., 1997; Laturnus et al., 

2000).  Microalgae in the open ocean globally represent a larger biomass than macroalgae 

and are estimated to contribute in the order of  10
9
 – 10

10
 g I yr

-1
. 
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The biogenic production of mono and poly halogenated organics by marine algae is 

believed to occur via the enzyme catalysed oxidation of halide ions within the algal tissue. 

Mono halogenated organics are produced via the the enzyme methyl transferase, present in 

both micro and macro algae (Wuosama and Hager, 1990). Wuosmaa and Hagner (1990) 

previously reported a mechanism involving a methyl chloride transferase enzyme, which 

catalyzes the methylation of halide ions in seawater. Subsequent work yielded CH3I from 

incubations of I

 and organic substances in the presence of the methyl transferase enzyme 

(Itoh et al., 1997). 

 

Similarly, haloperoxidase enzymes present in both macroalgal (Fenical, 1981) and 

microalgal (Moore et al., 1996) cultures catalyse the production of polyhalogenated organic 

species.  The polyhalogenated organic compounds (CHBr3, CH2Br2, CH2I2 and CH2ICl) 

were previously shown to be produced by the marine diatoms Nitschia sp., Nitschia arctica 

and Porosira glacialis grown in laboratory cultures (Moore et al., 1996). The 

bromoperoxidase enzyme present is capable of oxidizing both I

 and Br


 by H2O2, 

generating an enzyme bound electrophillic halogen (Enz-X
+
). A culture of Navicula sp. 

also produced CH2I2 and CH2ICl, but no CHBr3 or CH2Br2. This was attributed to the 

absence of a bromo-peroxidase enzyme and the presence of an iodo-peroxidase enzyme 

within the algal tissue. The iodoperoxidase enzyme was only capable of oxidizing I

 by 

H2O2. Theiler et al., (1978) suggested that polyhalogenated organics are produced from this 

enzyme bound proxy from the sequential addition of the Enz-X
+
 to the -carbon of a 

ketone functionality analogous to the haloform reaction.  

 

Hydrogen peroxide is required for the haloperoxidase-mediated production of poly 

halogenated organics and is produced when macroalgae are subject oxidative stress. 

Oxidative stress of macroalgae occurs during low tide periods when algae are exposed to 

strong oxidants in air (OH and O3). Low tide periods correlate with previously observed 

enhanced organic and inorganic halogen emission to the MBL (Laturnus et al., 2000; 

Palmer et al., 2005). The biogenic production rates of halogenated organics are also 

considerably higher during enhanced illumination (Moore et al., 1996). This phenomena is 
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likely to be related to the increased production of H2O2 during photosynthesis (Cooper et 

al., 1981).  

 

The biological function of inorganic iodine species produced by marine algae is currently 

unknown, however it has been suggested that they may act to deter the grazing of 

zooplankton. Alternatively, they may simply be a by-product of the intra and inter cellular 

removal of the toxic oxidant H2O2 from algal tissue (Manley and Barbero, 2001). 

 

1.3.2.2 Abiotic halogenated source gas emissions 

Previous observations in the North Atlantic ocean suggested that surface saturation 

anomalies of CH3I were strongly correlated with light intensity (Happell and Wallace, 

1996). Moore and Zafiriou (1994) suggest a photochemical production mechanism for 

mono-halogenated organics in seawater based upon previous field and laboratory 

observations following exposure of filtered seawater to sunlight. It was suggested that 

methyl (CH3) radicals were formed from the photolysis of dissolved organic matter (DOM) 

and hydroxyl radicals followed by subsequent recombination with iodine atoms.  Martino 

et al. (2009) recently reported observing the production of the VIOCs CH2I2, CHClI2 and 

CHI3 in seawater when exposed to ambient levels of gaseous ozone. The results within this 

study suggested that 1% ( 0.3%) of the iodide oxidized by ozone reacts with organic 

matter in natural seawaters to form reactive VIOC.  The production of VIOC can be 

explained by the haloform or a haloform type reaction, in which IOH (or I2) reacts with 

dissolved organic compounds (DOC) containing hydrogens - to keto groups.  

 

1.3.3 Terrestrial halogenated source gas emissions 

Over 3500 halogenated species are known to be produced by terrestrial sources such as 

bacteria, funghi, lichens, marine algae, plant life, insects and mammals (Gribble, 2003). 

The production of methyl halides by wood rotting fungi through methyl transferase activity 

has previously been observed (Harper et al., 1985). The oxidation of bromide and chloride 

by microbial haloperoxidase activity, analogous to that observed in marine algae (section 

1.3.2.1), has previously been identified in organic rich soils (Laturnus et al. 1995). 

Subsequent halocarbon production from oxidation during the degradation of organic 
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material in soil was speculated (Laturnus et al., 1995). Similarly, the emission of the 

halocarbons CH3I, CH3Br and CHCl3 has previously been observed from peatland 

ecosystems (Dimmer et al., 2000). 

 

Keppler et al. (2000) describes a terrestrial abiotic production mechanism of RX in organic 

rich soils involving the synchronous oxidation of 2-methoxyphenol by ferrihydrite 

(5Fe2O3·9H2O), the most abundant precipitate of iron oxyhydroxides in nature, and the 

nucleophillic substitution of the methyl group by halide, EQ 1.28. This reaction is specific 

for mono-iodinated organics, as C2H5I and 2/1-C3H7I are generated by ethoxyphenol and 

propoxyphenol respectively. The low RX yields generated during laboratory studies 

suggest that further oxidation products of methoxyphenol are present, in particular the 

formation of a methoxyphenol dimer in clay soils (Desjardins et al., 1999). This RX 

production mechanism could also be of importance within coastal systems subjected to 

freshwater drainage. Such drainage could possibly contribute to the transport of alkoxylated 

phenolic structures and minerals from terrestrial soils to coastal seawater. 

 

                                     (where X = Br, Cl, I)                                                     (EQ 1.28) 

Equation adapted from Keppler et al., 2000. 

 

The emission of mono-halogenated organics have also previously been observed from 

natural wetlands, rice paddies and biomass burning and it has been suggested that these 

sources could contribute as much as 30% of the measured levels of CH3I (Redeker et al., 

2000).  
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Further discussion involving potential iodine sources in temperate ocean regions and 

factors effecting organohalogen emissions in Polar Regions can be found in section 1 of 

Chapter 3 and 4 – 5 respectively. 

 

1.4 Thesis outlne 

This thesis has two primary objectives. The first objective is to investigate factors 

influencing the potential abiotic production and emission of I2 in open ocean regions from 

the oxidation of aqueous I

 in the presence of gaseous O3. The second objective is to 

identify the sources and fates of VSLH trace gases in the MBL of polar regions during 

periods of sea ice cover. 

 

Chapter 3 describes the development and optimization of a novel spectrophotometric 

method for the determination of gaseous I2 and its implementation in laboratory 

investigations which recover previous work into gaseous I2 production rates from the O3 + 

I
 

reaction (Garland et al., 1981; Rajendran, 2008). The work represents the first 

investigation into the effect of dissolved organic matter (DOM) in seawater on gaseous I2 

evolution at the sea surface. 

 

Chapter 4 describes a field campaign conducted in the Canadian sub Arctic to contribute to 

the existing limited dataset of Arctic VSLH measurements, in the marine boundary layer 

(MBL). This was conducted to investigate the relative/combined roles of frost flowers, 

sea-ice/snow pack, sea salt aerosol and biological sources in releasing halogens to the 

Arctic atmosphere and further develop the understanding of the role of iodine (in concert 

with bromine) in Arctic gas phase photochemistry, aerosol production and evolution. 

 

Chapter 5 details a laboratory investigation conducted to obtain a better understanding of 

the mechanisms of sea - air gas exchange in ice-bearing waters and to assess the impact of 

temperature-dependent sea ice microstructure evolution on the bulk diffusive gas transport 

of iodocarbons through sea ice. The temperature-dependent iodocarbon diffusion rates 

through sea ice and the sea-ice-air fluxes determined can be used to better parameterize 

existing atmospheric chemistry and climate models of Polar Regions. 
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2. Experimental 

Sample analysis in this study was carried out using a either a Perkin Elmer (USA) Clarus 

600 gas chromatograph/Turbomass Quadrupole Mass Spectrometer (GC/MS) interfaced 

with a Perkin Elmer Turbomatrix Thermal Desorption Unit (TDU) or a Perkin Elmer dual 

beam Lambda 25 UV-Vis spectrophotometer. This chapter provides details of the methods 

of analyte pre-concentration, chromatographic separation, detection and calibration for all 

samples collected as part of chapters 3, 4 and 5.  

 

2.1 Analyte pre-concentration and injection 

Thermal desorption methods trap the compounds of interest on a solid chemical absorbent 

which is then heated above their boiling points to effect desorption. The TDU can be 

operated in two modes, online sampling and tube desorption. The tube desorption facility, 

not utilized in this study, facilitates a two stage desorption process whereby the sample is 

initially trapped onto chemical adsorbant(s) within the tube then desorbed and trapped on 

the TDU trap. The online sampling facility, used solely within this study, uses an empty 

tube heated to 100°C which delivers the sample gas directly to the TDU trap, figure 2.1. 

Online samples can be trapped for up to 1 hour at flow rates ranging between 10 – 100 ml 

min
-1

. The valve (4 port, 2 way Valco) was in position A which connects the sample flow 

path to the cold trap and inlet split. The inlet split was not used during any part of this 

study. 

 

Very short lived halogenated substances (VSLHs) are pre-concentrated on the chemical 

adsorbent trap (“Air monitoring trap” with activated charcoal-based adsorbent, Perkin 

Elmer) which is held at -30ºC using Peltier plates. Any remaining unretained components 

and carrier gas are exhausted through the desorb flow vent. Sample injection was achieved 

by flash heating of the trap to 300ºC whilst sweeping the adsorbent bed with carrier gas, 

transferring any volatile compounds onto the GC column in a narrow band, figure 2.2. To 

minimise analyte loss and subsequent carryover within the system, both the valve and the 

transfer line between the TDU and GC/MS are maintained at elevated temperatures for all 

analyses, 200ºC and 250ºC, respectively.  
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Figure 2.1 Diagram showing valve position and flow channel during online sampling, in 

this position carrier gas is supplied directly to the GC column via the transfer line.  
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Figure 2.2 Diagram showing valve position and flow channel during sample desorption 

and injection.  
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Prior to reaching the cold trap, any residual moisture within the sample stream was 

removed using a Perma Pure MD Nafion
TM

 dryer (Omnifit). The dryer consists of a semi-

permeable Nafion tube which is encased in a stainless steel tube housing a counter-flow of 

dry gas. The sample stream is introduced to the Nafion tube and any water vapour present 

permeates through the membrane into the counter-flow air.  This produces effective gas 

drying without removal of any VSLHs. 

 

2.2 Purge and trap 

Purge-and-trap was used before the TDU stage in order to degas VSLHs from seawater (at 

typically pM concentrations). A fixed volume of the seawater sample (40 ml) was 

introduced to a heated gas tight vessel (70 °C) where nitrogen was used to sparge volatiles 

from the liquid into the gas phase. The purge tube was covered in insulating lagging and 

aluminium foil to maintain temperature and to minimise photolytic degradation of the 

halogenated organics during “sparging”.  The purge flow rate (50 ml min
-1

) and trap time 

(50 min) were determined by purge and trap efficiency tests to ensure efficient quantitative 

trapping of the volatile compounds (Jones, 2006).  The volatile gases are then retained on 

an activated charcoal adsorbent prior to injection onto the GC, as described in section 2.1. 

This process facilitates both the extraction of the volatile components from the aqueous 

media and their pre-concentration prior to detection. A problem with this process is the 

injection of the pre-concentrated VSLHs onto the column as well as a trapped water 

volume, which would reduce GC performance. This limitation is overcome successfully by 

introducing a series of gas driers in-line between the glass purge tube and the TDU, as 

shown in figure 2.3.   
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Figure 2.3 Schematic of purge and trap set-up used to extract volatile halogenated organic  

                   compounds aqueous samples. 
 

2.3 Gas Chromatography                             

Gas chromatography (GC) is a chemical analysis used for the separation of complex multi-

component mixtures. In GC, the gaseous analytes are transported through a column by a 

gaseous mobile phase, referred to as the carrier gas (Hinshaw and Ettre, 1994). The GC 

column contains a stationary phase which the gaseous mobile phase must flow through or 

over (dependent upon the type of GC column). The concept of GC is that different gaseous 

species have specific affinities toward the stationary phase which determines their 

respective retention times (tR). As a result of these differences in mobilities, sample 

components will become separated from each other as they travel through the stationary 

phase. The actual tR are controlled via the temperature of the GC oven, flow rate of the 

carrier gas, and the column length and dimensions used for the application.  

 

In the schematic shown in figure 2.4, a gaseous sample or volatile liquid is injected into a 

heated port at the head of the GC column. Here it rapidly evaporates and is swept through 

the column via an inert carrier gas such as H2, He or N2 and separated chromatographically 

before the resolved components reach the detector. The column must be hot enough to 

provide sufficient vapour pressure for analytes to be eluted in a reasonable time. The 
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detector must be maintained at a higher temperature than the column so all analytes remain 

in the gas phase. 

 

 

Figure 2.4  Schematic diagram of a GC 

 

2.31 Fundamentals of Chromatographic Separation 

In chromatography, the analyte (A) is distributed between the stationary and mobile phases 

according to EQ 2.1. 

 

Amobile  ⇌ Astationary                                                                                                                                  (EQ 2.1) 

                                                                                                                           

Species which migrate through the column and do not interact with the stationary phase 

will elute from the column in a finite time referred to as the dead, or void time (t0). Species 

which interact with the stationary phase during migration through the column will elute 

with a delayed tR. This is normally corrected for to take into account t0 to give the corrected 

retention time (tR’) as shown in EQ 2.2. 

 

tR’ = tR – t0                                                                                                    (EQ 2.2)                                         

 

Each analyte has a capacity factor, or retention factor, (k’) which is used to describe the 

migration rates of solutes though columns. In order to achieve chromatographic separation 

of two components they must have different k’ values. Ideally separations are performed 

under conditions in which the k’ for the mixtures are within the range 1 to 5 in order to 
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accomplish adequate separation whilst minimising elution times. The k’ can be expressed 

in terms of the retention properties of an analyte via EQ 2.3. 

 

k’ = (tR – t0)  =  tR’                                                                                          (EQ 2.3)                    

             t0          t0 

 

 

The selectivity () for two analytes in a column provides a measure of how well the 

column will separate the two and therefore will depend upon their retention times and thus 

their k’ values, as shown in EQ 2.4 where tR’ and k’ values for solutes B and A 

respectively. 

 

 = (tR’)B   =  k’B                                                                                              (EQ 2.4)                                                                                                                             

       (tR’)A      k’A 

 

 

2.32  The Plate Theory of Chromatography  

The partitioning of analytes between stationary and mobile phase can be considered as a 

series of adsorption and desorption events. Each interaction of analyte with the stationary 

phase can be considered as a theoretical plate for separation. Chromatographic column 

efficiency is measured as the number of theoretical plates (N) for that particular column, 

based on the theoretical plate model. The theoretical plate model does not however take 

into account any analyte band broadening, which may occur due to dispersive forces during 

separation, hence the number of theoretical plates must not be used independently when 

considering column performance. The model assumes that the length of the column is 

divided into a number of equidistant, discrete sections, or plates.  Each plate represents a 

point of the analyte partitioning between the mobile and stationary phases, hence the 

number of theoretical plates represent the degree of separation attainable by a particular 

column. The greater the number of theoretical plates, the greater the separation efficiency 

of the column. The number of theoretical plates may be determined experimentally using 

EQ 2.5 where ½wb is the peak width at half peak height respectively. 
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The smaller the plate height, also referred to as the height equivalent of a theoretical plate 

(HETP), the higher the number of theoretical plates per length of column (L) and thus 

higher the degree of separation and column efficiency. These terms are related via EQ 2.6. 

 

HETP = L                                                                                                         (EQ 2.6)                              

              N 

 

2.33  The Rate Theory of Chromatography 

A more realistic description of the processes at work inside a chromatographic column 

involves rate theory. This takes into account the time taken for analyte equilibration 

between the stationary and mobile phase, which isn’t accounted for in plate theory which 

assumes this is instantaneous. A major source of the loss of chromatographic performance 

is band broadening. During a chromatographic separation a number of physical factors 

influence the width of analyte bands undergoing separation. They are described 

mathematically via the Van Deemter equation for plate height, shown in EQ 2.7, where 

HETP is in centimetres and u is the linear velocity of the mobile phase per second. 

 

HETP = A + B + Cu                                                                                        (EQ 2.7) 

                     u 

 

A description of each of the diffusion terms are listed below. 

 

Term A - Eddy Diffusion term 

 

This term describes the effect of non-uniform flow of the mobile phase through the column 

packing, and as such only applies to packed columns. For separations using capillary 

columns, A is equal to zero. The relationship between the packing material and A is 

expressed in EQ 2.8, where dp is the diameter of the column packing and  is a constant 

relating to the quality of column packing material.  
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pdA 2                                                                                                        (EQ 2.8) 

 

Term B  – Longitudinal Diffusion term 

 

This term describes the migration of a solute from the concentrated centre of a band to the 

adjacent more dilute regions toward and opposed to the direction of flow. B is dependent on 

the solute’s molecular diffusion coefficient in the mobile phase (Dm), and the tortuosity () 

and is inversely proportional to linear velocity. This relationship is expressed in EQ 2.9. 

 

mDB 2                                                                                                        (EQ 2.9)                                      

 

Longitudinal diffusion is a common source of band broadening in gas chromatography but 

is of less significance in liquid chromatography because the rate at which molecules diffuse 

within a gas medium is significantly higher. 

 

Term C - Mass Transfer Coefficients  

 

The term Cu in EQ 2.7 arises from the finite time required for the solute to equilibrate 

between the mobile and stationary phases. The plate height from equilibration time, or 

mass transfer term, (HETPmass transfer) is expressed in EQ 2.10 where, Cs and Cm are the rates 

of mass transfer through the stationary phase and mobile phase, respectively. 

 

 uCCCuHETP msermasstransf                                                                     (EQ 2.10) 

 

For GC in an open tubular column the mass transfer terms for the mobile and stationary 

phases are expressed in EQ 2.11 and 2.12, where r is the column radius, d is the thickness 

of the stationary phase and Ds is the diffusion coefficient of the solute in the stationary 

phase.   
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Decreasing stationary-phase thickness, and column temperature, reduces HETP by 

increasing N as the solute partitions more effectively between the mobile and stationary 

phases. Reducing r also reduces HETP by reducing the distance through which solute must 

diffuse to reach the stationary phase.  

 

The optimum column flow-rate for capillary GC is therefore a balance between 

longitudinal diffusion and the mass transfer terms to provide the minimum plate height, EQ 

2.7. The optimum flow-rate also varies depending upon the choice of carrier gas. This is 

illustrated by a series of Van Deemter plots for the same column and solute using nitrogen, 

helium and hydrogen respectively, figure 2.5. Optimum carrier gas velocity is higher for 

lighter gases, also the range close to the optimum flow rate is much broader. The minimum 

HETP therefore occurs at higher gas velocities and is less critical than for nitrogen over a 

much broader range. However, helium is commonly the carrier gas of choice as it provides 

a compromise between HETP and analysis times without the risk of explosion, as with the 

flammable gas hydrogen (Moody, 1982). 
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Figure. 2.5 Van Deemter plots for HETP versus carrier gas velocity for nitrogen, helium 

and nitrogen (Christie, 1989). 

 

The resolution of a column (Rs) provides a quantitative indication of its ability to separate 

two analytes and is determined via EQ 2.13. 
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                                                                                                (EQ 2.13) 

 

The significance of this term is illustrated in figure 2.6, which shows chromatograms of 

two closely eluting species, peak X and peak Y, on two columns of with different resolving 

powers. Resolution should be maximised for optimum separation, values of 1.5 or higher 

are desirable as they describe baseline resolved peaks. Rs values of less than 1.5 lead to 

overlap or even co-elution of peaks, reducing the accuracy and precision of peak 

integration. The resolution of a given stationary phase may be increased by lengthening the 

column thus increasing N. Adverse effects of increasing column length, however, are 

increased run time and band broadening.  
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Figure. 2.6 Chromatographic resolution of adjacent peaks. Upper image: Rs 1.5, Lower 

image: Rs  1.0 (Mallik et al., 2008). 

 

2.4  Mass Spectrometry 

The mass spectrometer (MS) is an instrument that will separate and measure ionised 

molecules, as gaseous ions, according to their mass-to-charge ratios (m/z), and finally 

determine the abundance of each ion at the detector. The sequence of internal components 

that an MS possesses is illustrated in figure 2.7. 
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Figure 2.7 Schematic of basic components within a mass spectrometer (adapted from 

Ewing, 1997).  

 

2.4.1    The Ion Source 

When a GC is coupled to a mass spectrometer, the gaseous analyte eluent is introduced to 

the ion source of the spectrometer via the GC capillary column. Species exiting the column 

pass into the ionisation chamber which is pumped to maintain a pressure of 10
-6 

Torr, using 

a high speed turbomolecular pump. There are many different types of ionisation used in 

mass spectrometry. The focus of this discussion, and the most commonly used technique, is 

electron ionisation (EI) which is illustrated in figure 2.8. Electrons are emitted from a 

heated filament and further energized by accelerating them through a potential of 70 V. 

The electron acceleration potential directly determines the amount of ionisation that can 

occur as these electrons must possess a quantity of energy greater than the first ionization 

enthalpy of the species. The energized electrons are directed across the sample stream 

toward an anode/trap electrode whilst being constrained into a beam by a magnetic field. 

Approximately 0.01% of the sample molecules (M) absorb as much as 12-15 electron volts 

(eV), enough to induce electron ionisation, as shown in EQ 2.14. The remainder of M 

remain neutral species and are pumped away. A small positive potential is applied to the 

repeller plate of the ion source which extracts cations from the ion source toward the MS. 

A small potential is also applied to the ion guide optics en-route which focuses the ions into 

a beam which is introduced to the mass analyser.  

 

  e2MeM                                                                                  (EQ 2.14) 
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Figure 2.8 EI source showing electron beam orientation within source housing. 

 

The majority of the ions generated will have a charge of +1 resulting from the displacement 

of 1 electron, although it is possible for both negatively charged and multiply charged 

positive ions to form within the ion source. Any negative ions formed will discharge upon 

the repeller or trap electrode and will not enter the mass analyser.  Following ionisation, the 

molecular ion (M
+

) usually has enough internal energy (1eV) to extensively fragment 

into “fragment ions”. Such fragmentation can provide a great deal of structural information 

about the analyte, although this can be so extensive that the M
+

 is not observed in the 

resulting mass spectra. 

 

2.4.2 The Mass Analyser 

The analyte ions produced during EI in the source region of the mass spectrometer pass 

into the mass analyser where they are separated according to their m/z ratio. There are 

currently several different types of commercially available mass analyser, however the 

following discussion is limited to the principles of operation for the mass analyser used in 

this work, the quadrupole mass spectrometer (QMS).   
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The QMS is an example of a scanning mass analyser and is capable of recording 2 - 8 

spectra per second, covering a mass range as high as 1,000 m/z (in EI mode). The QMS 

operates at constant resolution, which means that the mass resolution is independent of the 

mass analysed, unlike magnetic sector and time of flight instruments which lose mass 

resolution as m/z increases (Harris, 2010). Instrument operation is independent of the 

kinetic energy and velocity that ions initially possess on entering the analyser. This allows 

GC to be interfaced to QMS without any appreciable loss in mass resolution. A significant 

disadvantage of the QMS, however, is that increasing the mass range to be scanned reduces 

sensitivity as the time spent monitoring each m/z ratio is reduced. Single ion monitoring 

(SIM), where only ions of a specific m/z ratio are monitored over a fixed time period in the 

absence of all other ions, is commonly used to significantly enhance detector sensitivity. 

 

The QMS consists of a set of four electrodes, ideally of hyperbolic cross section, that are 

accurately positioned in a radial array. For economical as well as practical reasons, most 

mass filters consist of electrodes of circular cross section, as shown in the top of figure 2.9.  

 

The mass filtering action of the quadrupole mass analyzer is obtained by the application of 

a combination of time independent, fixed dc potential (U), 500-2000 V, and a time-

dependent ac radio frequency (RF) field, 0-6000 V. The positive dc potential is applied to 

the opposing rods in the X-Z plane and the negative dc potential is applied to the rods in the 

Y-Z plane. The ac potential is applied to both opposing pairs of rods but the potential 

applied to one pair is the opposite sign of the other, i.e. 180° out of phase. The applied 

potential (), to the opposed rods in the X-Z and Y-Z planes are expressed by EQs 2.15 

and 2.16, respectively. The RF field is expressed in terms of amplitude (V) and frequency 

(w), thus as cos wt cycles with time (t) the applied voltages on opposed pairs of rods in the 

X-Z and Y-Z planes alternate as shown in figure 2.10. 

 

wtVU cos                                                                                            (EQ 2.15) 

 

)cos( wtVU                                                                                        (EQ 2.16) 
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Figure 2.9 Schematics showing a cross section of quadrupole region and an EI source 

interfaced with a QMS (Witmann, 2007). 

 

   

Figure 2.10 Applied ac and dc potential in the QMS (Dunnivant and Ginsbach, 2010). 

 

Although the potentials applied to the rods within the QMS result in the acceleration and 

repulsion of positively charged ions in the X-Y plane, as long as the ions travel less than 

the radial distance of the quadrupole (r) the ions will not discharge on the rods. These ions 

are referred to as resonance ions and have a stable trajectory through the quadrupole to the 

detector, figure 2.9. Ion resonance within the X-Y plane is responsible for mass selection 
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within the QMS. Factors that influence whether or not an ion is in resonance in the QMS 

are the amplitude and frequency of the ac potential, the mass of the particular ion, the 

charge of the ion and its position within the quadrupole. Ion mobility along the z-axis is 

controlled by maintaining a potential difference between the source and exit slits of the 

QMS, figure 2.9. 

 

Quadrupoles operate by keeping the ratio of ac and dc constant whilst altering their 

amplitude which changes the m/z ratio of the ions that have a stable trajectory through the 

mass analyzer. The result of this is the mass scan line intersecting the stability diagram in 

figure 2.11. Values of dc/ac within the stable ion trajectory region provide a stable 

trajectory through the QMS for the respective masses.  

 

 

Figure 2.11 Stability diagram for ions of different masses (Dunnivant and Ginsbach, 

2010). 

 

At point A in the diagram the ion is too light to pass through the X-Z plane because of the 

high magnitude of the ac and dc potentials. The ions oscillation through the quadrupole 

region is therefore unstable, and it eventually discharges on the rod and pumped away. 

Conversely, at point C, the ac potential is too low to allow the ion to pass through the 

detector, its overwhelmed by the negative dc potential in the Y-Z plane, and it discharges 

on the rod. At point B the amplitude of voltages has been altered so the trajectories of the 

ion in both the X-Z and Y-Z plane are stable and the ion successfully reaches the detector.  
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Changing the ac/dc ratio, the slope of the mass scan line in figure 2.11, affects mass 

resolution. Optimum resolution can be obtained when the mass scan line intercepts the peak 

apex of the stable ion trajectory region. This is however impractical due to fluctuations in 

the ac and dc potentials applied to the quadrupole. Therefore the mass scan line commonly 

intersects below the peak apex to account for any deviation in applied potentials, producing 

nominal mass resolution. 

 

2.4.3 Detectors 

The role of a detector in mass spectrometry is to convert incident cations to a quantifiable 

signal. The QMS used within this work utilizes a conversion dynode and phosphorescent 

screen coupled to a photomultiplier tube (PMT) for signal amplification, figure 2.12. 

Incident cations leaving the QMS are accelerated toward the conversion dynode, which is 

held at a negative potential, and the resulting collisions results in the emission of electrons. 

These electrons are repelled from the negative potential of the conversion dynode onto a 

phosphorescent screen. Electron contact on this screen produces photons which are emitted 

through the transparent window of the PMT. The PMT is essentially a vacuum tube which 

contains a photo-emissive cathode and a number of secondary electron emitting stages 

called dynodes. The potential applied to the dynodes is such that the electrons from each 

are delivered to the next dynode in series, 100-300 volts depending on the number of 

dynodes (Lancaster, 1980).  Incident electrons emitted from the photo-emissive cathode are 

accelerated toward the first dynode, where their impact induces the emission of secondary 

electrons. These electrons are accelerated toward each of the dynodes in series generating 

more secondary electrons, D1 to D5, before finally being collected at the anode. On contact 

with the anode, a large current pulse is generated and the resulting analogue signal is 

recorded as peak intensity. Values of amplification of the PMT vary between 100,000 to 

1,000,000, thus 100,000 electrons or more are collected by the anode for each photon 

reaching the PMT. 
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Figure 2.12 Schematic of photomultiplier detector (adapted from Lancaster, 1980). 

 

2.5 GC/MS Experimental Set-up 

 

Analyses were carried out using one of two GC columns.  

 

5%Phenyl-methylpolysiloxane (DB-5) capillary column 

 

The Perkin Elmer GC coupled to the quadrupole mass spectrometer, incorporated a 60 m x 

0.53 mm internal diameter wall coated open tubular (WCOT) non polar DB-5 (Supelco) 

capillary column and used CP grade helium (BOC gases) as a carrier gas (3.0 mL min
-1

). 

Following injection, the GC oven temperature was held at 35 °C for 3 minutes before 

ramping up to 180 ºC at a rate of 10°C min
-1

. The oven was then held for 1 minute before 

finally ramping to 200 ºC at a rate 25 °C min
-1

. The oven was then held at 200 ºC min
-1

 for 

adequate conditioning between sample runs.  

 

CP-Porabond Q (PQ) capillary column 

 

GC-MS separation was also performed on a 25 m WCOT Styrene-divinylbenzene column, 

0.32 mm (id), (CP Porabond Q, Chrompack) using a helium flow rate of 1.5 ml min
-1

. 

Following analyte injection onto the GC the oven temperature was held at 40 C for 2 

minutes to refocus the analytes at the front of the column then heated to 240 C at a ramp 

rate of 10 C min
-1

 which was held for 10 minutes to ensure adequate conditioning of the 

column between sample runs.   
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The MS was operated in selective ion recording mode (SIR) mode using EI with a dwell 

time of 0.15 seconds for each ion monitored for identification and quantitation, tables 2.1 

and 2.3. For each analyte, the ion signal was the sum of the constituent ions. A 5 minute 

solvent delay was used so that there was a delay after sample injection before the mass 

spectrometer started scanning. This was to avoid monitoring the pressure pulse which 

occurred during injection of the analytes onto the GC column.  

 

Peak 

number 

Halocarbon 

species 

Mean Retention 

time  

CP-Porabond Q 

(mins) 

Ion(s) 

Monitored 

Porabond Q 

Mean Retention 

time 

DB-5 (mins) 

Ions 

monitored 

DB-5 

Boiling 

Point (C) 

  1* CD3I 10.33 145 - - 42 

1 CH3I 10.39 127,142 6.24 127,142 42 

2 CHCl3 13.66 83,85 10.36 83,85 61 

  3* C2D5I 13.89 161 - - 71 

3 C2H5I 13.96 127,156 10.14 127,156 71 

4 CH2Br2 15.16 172,174 12.78 172,174 97 

5 CCl4 15.33 117,119 11.44 117,119 76.5 

6 CH2ICl 16.10 176,178 13.39 176,178 108.5 

  7* 2-C3D7I 16.25 177 - - 89 

7 2-C3H7I 16.36 170 11.86 127,170 89 

8 1-C3H7I 17.07 170 13.07 127,170 101.5 

9 CH2IBr 18.25 220, 222 13.35 220,222 139.5 

10 CHBr3 20.29 171,173 16.82 171,173 148 

11 CH2I2 21.19 254,268 17.57 254,268 180 

       

 

Table 2.1 Mean retention times and ions monitored for compounds on both columns during 

SIR. 

 

A chromatogram of the resolved target analytes using the DB-5 column described, used 

previously, is shown in figure 2.13. As the capillary column utilizes a non polar divinyl-

benzene stationary film, compound adsorption out of the gas phase was non selective and 

elution was dependent upon their respective boiling points, table 2.1. Although the 
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majority of the compounds were baseline resolved, inherent problems with the separation 

were evident. Firstly both C2H5I and CHCl3 co-eluted, requiring analytical de-convolution 

using their characteristic ions thus causing a considerable decrease in their sensitivity. 

Secondly, CH3I suffered from a significant reduction in the signal/noise ratio due to its 

elution upon the tail of the initial injection pressure pulse. 
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Time0
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Figure 2.13 Chromatogram of SIR of gaseous halocarbon permeation standards (3 x 10µl 

loops) using DB-5 column, analytes can be identified using table 2.1 

 

A similar more polar GC capillary column was selected in an attempt to fully resolve all 

the analytes (CP-Poraband Q), figure 2.14.  This column significantly increased the signal 

to noise ratio for all analytes, including CH3I which was completely resolved from the 

tailing of the pressure pulse. 

 

The resolution between all the analyte peaks in both figures 2.14 and 2.15 are shown in 

table 2.2, calculated using equation 2.13. All analytes are baseline resolved (resolution 

>1.5) on the PQ column whereas both CHCl3, C2H5I and 1-C3H7I, CH2ICl aren’t typically 

resolved within the DB5 chromatogram. The PQ column was the column of choice for all 

analyses due to its superior chromatographic performance. The DB-5 column was only 
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used during aqueous VOIC analysis during the COBRA campaign (chapter 4) when a 

second PQ column was not available. 
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Figure 2.14 Chromatogram of SIR of gaseous halocarbon permeation standards (3 x 10µl 

loops) using CP Porabond Q column, analytes can be identified using table 2.1 

 

Figure 2.15 shows a typical chromatogram of an aqueous internally standardized purge and 

trap analysis. CH3I, C2H5I and 2-C3H7I were not fully resolved from their deuterated 

equivalents and had to be separated using their characteristic masses, significantly 

increasing their detection limit. An elevated baseline is observed during SIR 11 (m/z 254 

and 268) toward the end of the GC run. This baseline elevation was present during all 

aqueous analyses during the cold chamber experiment (chapter 5), and caused un-

reproducible peak integrations of CH2I2.  Therefore, for this experiment the dataset for 

CH2I2 was disregarded. Further investigation suggested that this elevated baseline was 

caused by artifact(s) within the experimental ice tank as neither aliquots of “blank” water 

(HPLC grade, Fisher), deionised water or the external gas standard yielded an elevated 

baseline within this retention window.  This method was only used during laboratory 

experiments where the concentrations of these compounds were significantly higher than 
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the limit of quantification of the detector and was not applied to atmospheric field 

measurements. 

12.00     13.00     14.00     15.00     16.00     17.00     18.00     19.00     20.00     21.00     22.00

Time (mins)

1* 1 3* 3 4 7* 7

8

9 10 11

750mls HC + deuterated mix 19/5/10

12.00 14.00 16.00 18.00 20.00 22.00
Time0

100

%

080 8: SIR of 1 Channel EI+ 
TIC

4.33e5
17.13

17.80

8

 

Figure 2.15 Chromatogram of SIR of aqueous halocarbon standards and gaseous 

deuterated internal standards using CP Porabond Q column, analytes can be identified 

using table 2.1 
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Halocarbon species Peak width (secs) 

Porabond Q 

Peak width (secs) 

DB5 

Resolution 

Porabond Q 

Resolution  

DB5 

CH3I 6.6 22.8 28.17 10.55 

CHCl3 7.2 10.2 2.69 8.8 

C2H5I 6.6 12 10.82 0.38 

CH2Br2 6.6 6.6 1.75 6.64 

CCl4 7.8 - 6.30 - 

CH2ICl 6 4.8 2.53 19.1 

2-C3H7I 8.4 7.8 5.05 1.83 

1-C3H7I 7.8 6.6 9.28 3.6 

CH2IBr 7.2 6.6 18.55 1.2 

CHBr3 6 3.6 8.20 8.6 

CH2I2 6 4.2 7.21 7.14 

Table 2.2 Resolution between halocarbon peaks for PQ and DB-5 columns. The mean 

resolutions were 9.14 and 6.78, respectively. 

 

Halocarbon Species Ion(s) 

Monitored 

Ion Fragments 

CD3I 145 CD3I
+
 

CH3I 127,142 I
+
, CH3I

+
 

CHCl3 83,85 CH
35

Cl2
+
, CH

35
Cl

37
Cl3

+
 

C2D5I 161 C2D5I
+
 

C2H5I 127,156 I
+
, C2H5I

+
 

CH2Br2 172,174 CH2
79

Br
79

Br
+
, CH2

79
Br

81
Br

+
 

CCl4 117,119 C
35

Cl3
+
, C

35
Cl2

37
Cl

+
 

CH2ICl 176,178 CH2I
35

Cl
+
, CH2I

37
Cl

+
 

2-C3D7I 177 2-C3D7I
+
 

2-C3H7I 127,170 I
+
, 2-C3H7I

+
 

1-C3H7I 127,170 I
+
, 1-C3H7I

+
 

CH2IBr 220, 222 CH2I
79

Br
+
, CH2I

81
Br

+
 

CHBr3 171,173 CH
79

Br2
+
 CH

79
Br

81
Br

+
 

CH2I2 254,268 I2
+
, CH2I2

+
 

Table 2.3 All quantifying masses used during SIR and their corresponding ion fragments 
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2.6 Normalization and Calibration of Instruments 

The TD-GC/MS instruments were calibrated in the field against a halocarbon gas standard. 

The concentrations of gases in this standard were determined pre and post campaign by an 

“in house” built permeation oven (Wevill and Carpenter, 2004), as described in section 

2.64. Halocarbon mixing ratios within the gas standard and MS response reproducibility % 

RSD (determined from triplicate analysis of external standard measurements in the field) 

are shown in table 2.4. 

 

Halocarbon Mean mixing 

ratio, pptv 

RSD % 

CH3I 1894.62 7.93 

C2H5I 275.81 6.42 

CH2Br2 67.37 9.92 

CH2IBr 127.47 12.84 

2-C3H7I 305.22 7.32 

CH2ICl 56.64 8.95 

1-C3H7I 5.28 8.13 

CHBr3 7.18 32.47 

CH2I2 4.23 13.73 

Table 2.4 Halocarbon mixing ratios within external calibration gas standard  

 

2.6.1 Preparation of halocarbon gas standard  

The halogenated compounds within the gas standard are photolytically labile, volatile and 

relatively insoluble in water. Therefore the halocarbon stock standard solutions (>99% 

purity, Sigma Aldrich) were initially prepared in 50 mL methanol (Fisher HPLC grade), 

within a 100 ml airtight round bottom flask whilst minimizing headspace. The vessel was 

covered with aluminium foil to prevent loss to the gas phase and photolytic degradation. 

The preparation of the standard involved the addition of microlitre volumes of each 

halocarbon stock standard to 50 ml of methanol, which was then mixed for 30 min with a 

glass coated magnetic stirring bar. This solution was diluted to 1 L with sparged H2O 

within a sealed 1 L round bottom flask. The resulting solution was stirred for 18 hours with 

a glass coated magnetic stirrer to ensure complete halocarbon homogeneity throughout. A 

40 ml aliquot of the solution was applied to a pressurized, heated gas tight purge tube and 
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sparged into a passivated 10 L electropolished aluminium lined cylinder (Aculife) with zero 

grade nitrogen gas, purge method as outlined in 2.2. The flow rate of nitrogen gas through 

the purge tube was maintained at a 100 ml min
-1

 for 100 mins (10 L) using a mass flow 

controller (MKS, 1L min
-1

 capacity). 

 

2.6.2 National Physics Laboratory standard 

A primary gas standard from the National Physics laboratory (NPL) containing  100 ppbv 

concentrations of 14 chlorinated hydrocarbons was diluted 5 times, using zero grade N2 

into a 10 L electropolished aluminium lined cylinder (Aculife), and used as an external 

standard for monitoring detector sensitivity on the GC-MS. The standard was introduced to 

the TD-GC-MS at a flow rate of 20 ml min
-1

 for 5 min (100 ml). Of the 14 chlorinated 

hydrocarbons in the multi-component mixture, only CHCl3 and CCl4 were monitored . 

 

2.6.3 Deuterated halocarbon gas standard 

A gas standard containing  10 ppbv certified concentrations (Clarks) of deuterated iodo-

methane (CD3I), iodo-ethane (C2D5I) and iodo-isopropane (2-C3H7I) in  zero grade N2 

(99% purity) within a 10 L aluminium electropolished cylinder (Aculife) was used as an 

internal standard for monitoring detector sensitivity during purge and trap analyses. 

 

2.6.4 Permeation oven calibration 

The “in house” constructed permeation oven essentially consisted of a 6-port valve, 2 way 

switching valve (Restek, UK) with a 10 l loop (Restek, UK), and two glass permeation 

tube housings linked to a nitrogen supply (zero grade, BOC) maintained at 100 ml min
-1

 

with a MFC (MKS) refer to figure 2.16. Valve switching times used were either 10 or 60 s, 

refer to section 2.6.5. Permeation tubes were housed in the two glass housings within two 

temperature controlled aluminium heating blocks, maintained at either 40 °C or 70 °C, 

dependent upon halocarbon volatility. The 70 ºC perm holder contained: CH2I2, CHBr3, 1-

C3H7I, 2-C3H7I and CH2IBr. The 40 ºC perm holder contained: CH2Br2, CH3I, CHBr2Cl, 

CH2ICl and C2H5I. Both were covered in aluminum foil to reduce photolytic degradation of 

the permeation standards. 
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The valve had two positions - ‘load permeation gas’ and ‘inject permeation gas’, refer to 

figures 2.17 and 2.18 respectively.  In the load position, permeation gas was delivered to 

the loop and directly out to waste through a hydrocarbon trap. When the valve was 

switched to the inject position, nitrogen gas flowed through the loop “sweeping” the 10 μl 

plug of gas to the TDU for pre-concentration.  Successive switching of the valve position 

allowed a small calibrated volume (10 μl) of permeation gas to be injected into the nitrogen 

gas stream, allowing halocarbon concentrations in moles per loop to be calculated. 

 

The permeation tubes used (Ecoscientific) consisted of a polymer permeable membrane 

window (Teflon) within a stainless steel casing filled with pure halocarbon standard (> 

99%). A two-phase equilibrium exists between the halocarbon’s liquid and gas phase 

within the permeation tube. When held at constant temperature, these tubes emit the 

compounds through the permeation window at a constant rate.  The permeation rate of each 

of the halocarbon permeation tubes is determined by gravimetric weight loss over a known 

period of time at a constant flow rate and temperature. The halocarbon permeation tubes 

were removed from their housings on a monthly basis and their gravimetric weight loss 

assessed over time using a 5 figure top pan balance (KERN 770), figure 2.19. The mass 

loss can then be converted to the number of moles per loop using equation 2.17. 

  

Mloop=Pr(Lv/RMM)                                                                                          (EQ 2.17) 

                F 

 

where Mloop is moles injected per loop, Pr is the permeation rate in g min
-1

, Lv is the loop 

volume in mL, RMM is the relative molecular mass and F is the flow rate in mL min
-1

. 
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Figure 2.16. Schematic of permeation oven.  Green path depicts flow of N2/permeation gas 

during  “load permeation gas”. Red path depicts flow of N2/permeation gas during “inject 

permeation gas” 

 

                   

 

Figures 2.17 and 2.18. 6-port 2 way switching valve with a small calibrated 10l loop 

used for injection in load and inject positions respectively. 

 

A calibration curve was constructed of moles of halocarbon versus instrument response, the 

slope from which was used to convert instrument peak response to concentration (figure 

2.20). 
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Figure 2.19 Plot of CH3I permeation tube mass change over time, used to calculate 

permeation rates.  
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Figure 2.20 Plot of instrument peak area versus moles for CH3I. 

 

2.6.5 Perm oven valve optimization 

Calibration using the “in house” permeation oven was carried out using a 6 port, 2 way 

switching valve with a 10 µl sample loop (1.6 mm OD and 0.05 mm ID ± 0.001mm), as 

described in section 2.6.4. An investigation into sample loop switching times suggested 

that there was a significant linear increase in permeation oven internal pressure with 
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increasing valve switching times, figure 2.21. These measurements were made by 

introducing a barometer (Bell and Howell) in-line between the high temperature 

permeation holder and the valve, figure 2.16. Data acquisition (1 Hz) was carried out using 

Labview 8.6 (National Instruments) data logging software. On further investigation, all 

halocarbon concentrations increased linearly with permeation oven positive pressure (  

pressure) for each valve switching time (10, 30, 60 s), figure 2.22. The resulting peak area 

linear regression lines were extrapolated to zero  pressure (ambient pressure) and the 

values used to calculate correction factors for each  pressure. Table 2.5 lists the relevant 

correction factors applied to the data.  

 

This internal pressure increase was attributed to a flow restriction introduced to the flow 

stream when the permeation gas passed through the 0.05 mm ID sample loop in the “load 

permeation gas” position, figure 2.17. Halocarbon % concentration increases were 

significantly higher for all permeation tubes housed in the 40 ºC holder than the 70 ºC 

holder; mean  increases over a load time of 1 minute were 60.6% (54.13 – 66.09%) and 

42.5 % (38.02 – 48.81%), respectively, as depicted in table 2.5. This discrepancy in 

averaged % halocarbon increases could be attributed to enhanced losses of the higher 

molecular weight compounds onto internal surfaces at higher pressures.  In an attempt to 

prevent any valve internal pressure fluctuations during future permeation calibrations, a 

larger ID (0.40mm) 25µl sample loop was introduced to the valve as well as reducing the 

sample load time to 10 s. No pressure increase was observed within the system with this 

optimized set-up. 

 

Calibrations carried out for the COBRA campaign (chapter 4) used a valve switching time 

of 60 s with the 10µl loop, therefore the discussed corrections were applied. All other work 

was calibrated against the permeation oven using a valve switching time of 10 s with the 

25 µl loop. 
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Figure 2.21 Plot depicting pressure change within permeation system against valve 

switching times. 
 

R
2
 = 0.9975

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 1 2 3 4 5 6 7

Δ Pressure (psi)

%
 [

H
a

lo
c

a
rb

o
n

] 
in

c
re

a
s

e

    

Figure 2.22 Plot depicting % halocarbon concentration increase with increasing pressure 

(Filled diamonds CH3I, filled squares CHCl3, filled circle C2H5I, cross 2-C3H7I, empty 

circle CH2Br2, empty diamond 1-C3H7I, cross CH2ICl, empty square CH2IBr). 
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Halocarbon 10 s switching time    

(%) 

30 s switching time 

(%) 

60 s switching time 

(%) 

Correlation 

coefficient (R
2
) 

CH3I 11.58 22.53 54.13 0.97 

C2H5I 13.53 28.95 66.09 0.99 

CHCl3 13.05 29.18 65.11 0.98 

CH2Br2 9.83 27.80 55.36 0.99 

CH2IBr 5.64 21.71 38.02 0.99 

2-C3H7I 7.62 26.98 48.81 0.99 

CH2ICl 10.55 32.53 62.34 0.99 

1-C3H7I 7.38 20.00 40.62 0.99 

 

Table 2.5 Table of % halocarbon concentration increase for each valve switching time and  

correlation coefficients for their relationship against  pressure. 
 

2.6.6 Permeation tube degradation study 

The composition of permeation gas from each tube was determined periodically over its 

lifetime to assess degradation of the liquid standards over time. Each permeation tube in 

turn was cleaned with isopropanol and placed in isolation within the oven and allowed to 

equilibrate for  15 hours to obtain optimum permeation output. Both a full scan (5-10 

sample loops) and a 3 point calibration (10, 20 and 30µl) in SIR mode, table 2.1, were 

carried out on each tube. Using this method, the % contributions of each perm tube can be 

calculated for their respective analyte, table 2.6.  The tube was then removed from the 

permeation oven and allowed to equilibrate for  1 hour before 3 loops of the nitrogen 

carrier gas was analyzed for carryover within the system between tube analyses. No 

significant carry over of any compound was observed. 

 

The CH2IBr permeation tube emitted significant amounts of both CH2Br2 and CH2I2 after 

only 150 days within the oven, contributing 18% and 25% of their total amounts within 

the permeation gas respectively, table 2.6. This increased to 35% CH2Br2 and 49% CH2I2 

after 750 days suggesting significant degradation of the CH2IBr standard. To correct for 

this the total permeation output of the CH2IBr tube was quantitatively determined against a 

second permeation oven containing both CH2I2 and CH2Br2 permeation tubes. The CH2IBr, 

CH2I2 and CH2Br2 molar ratios from the permeation gas were 0.88, 0.05 and 0.07, 

respectively after 750 days, which were the correction factors applied to data calibrated 
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against the perm oven during this period. There was no measurable indication of any other 

permeation standard degrading over this time.  

 

Halocarbon 150 Days 

(3/9/2007) 

750 Days 

(3/5/2009) 

New perm tubes 

(7/7/2009) 

CH3I 100.00 100.00 100.00 

CHCl3 100.00 100.00 100.00 

C2H5I 100.00 100.00 100.00 

CH2Br2 82.24 65.45 100.00 

CH2ICl 100.00 100.00 100.00 

2-C3H7I 100.00 100.00 100.00 

1-C3H7I 100.00 100.00 100.00 

CHBr2Cl 100.00 100.00 100.00 

CH2IBr 100.00 100.00 100.00 

CHBr3 100.00 100.00 100.00 

CH2I2 75.65 51.83 100.00 

 

Table 2.6 Table of % contribution for each analyte from their respective permeation tubes 

for 3 time periods in the permeation oven. 
 

Following 672 days within the oven, approximately monthly molecular iodine (I2) 

determinations were also carried out on the permeation gas from all 11 tubes 

simultaneously using an optimized I2 solvent trap (100 mL/min
-1

), section 3.2, positioned 

on the permeation oven exhaust. Measurable concentrations of I2 were observed within the 

permeation gas, which increased over time, figure 2.23. However, assuming that this I2 all 

originates from the most photolytically unstable permeation standard CH2I2 (section 1.3, 

table 1.1), the I2 concentrations measured after 872 days only represent a negligible over 

estimation of CH2I2 concentrations in the permeation gas (3.74%). 

 

The most likely cause of permeation standard degradation is primarily from photolysis, 

especially during weighing of the tubes during which the tubes are exposed to sunlight, and 

long-term thermal degradation within the oven.   The observations discussed prompted the 

replacement of the tubes (7/7/2009) with new certified permeation tubes (Ecoscientific) 



                                      2. Experimental 

 52 

which, following analysis, showed no signs of compound degradation, table 2.6. 
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Figure 2.23 I2 concentration from halocarbon permeation oven against time permeation 

tubes housed in oven. 

 

2.6.7 Propagation of errors for calibration 

Each component of EQ 2.17 has an error associated with it which affects the repeatability 

of each measurement. The propagation of these errors places a total uncertainty upon the 

measurements, usually expressed as percentage relative standard deviation (% RSD). The 

% RSD of the permeation rates (figure 2.19) and calibration curves are calculated from the 

deviation of data points from the linear regression line, divided by the mean. The standard 

deviation of linear regression (Sm) is calculated from the sum of the squares of the deviation 

for x (Sxx) assuming no errors in y, the sum of the squares of the residuals (SSresid) and the 

number of degrees of freedom (N2) using EQ 2.18 (Skoog et al., 1991). Sxx was calculated 

using EQ 2.19 where xi and 


x  are the measurement and mean value of component x 

respectively. The SSresid was calculated using least squares regression as shown in EQ. 2.20, 

where yi, m and b are the y component measurements, the linear regression slope and the 

intercept respectively. From Sm, measurement uncertainty can be calculated and expressed 

as % RSD. The % RSDs for permeation rates and calibration curves for each compound are 

given in table 2.7. 
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Compound %RSD Calibration curve 

Chamber experiments 

%RSD Calibration curve 

COBRA Campaign 

%RSD Permeation rate 

CH3I 6.93 13.45 0.46 

CHCl3 - 6.06 0.64 

C2H5I 8.32 11.46 6.72 

CH2Br2 - 11.62 0.98 

CH2ICl - 13.35 2.25 

2-C3H7I 1.19 10.96 6.92 

1-C3H7I 2.53 12.07 2.07 

CH2IBr - 13.63 6.75 

CHBr3 - 12.53 2.75 

CH2I2 - 13.43 5.12 

Table 2.7 % RSD values for permeation tube weighings and calibration curves for each 

species. 
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The most significant sources of error with the TD-GC/MS instrumentation are from the 

calibration. However, a full assessment of errors of all hardware associated with the 

permeation oven calibration is shown in table 2.8. 

 

Component %RSD Uncertainty 

Chamber experiments 

% RSD Uncertainty 

COBRA Campaign 

Notes 

Sample loop 0.25 2.00 Loops have a tolerance of ± 

0.001mm. 

 

COBRA campaign - 10µl loop 

(ID 0.05mm). 

 

Chamber experiments -25 10µl 

loop (ID 0.40mm). 

Mass balance (5 fig) 1.00 1.00 As stated by manufacturer. 

Perm oven flowrate 1.50 1.50 Variation in perm flow rate 

during period. 

Permeation rates 0.46 – 6.75 0.46 – 6.75 Compound specific permeation 

rate uncertainties. 

Calibration curve 1.19 – 8.32 6.06 – 13.63 Compound specific calibration 

curve uncertainties. 

Total 2.22 - 10.86 6.66 -15.45  

 Table 2.8 Total uncertainty associated with calibration for the COBRA campaign and 

laboratory chamber experiments. 

 

2.6.8 COBRA campaign data normalization  

The halocarbon online air measurements obtained were normalized using both an in situ 

internal standard, carbon tetrachloride (CCl4), and a gaseous external halocarbon standard 

mixture, 2.6.1. Carbon tetrachloride is a stable gaseous compound (atmospheric lifetime of 

 34  5 years; Allen et al., 2009) observed at relatively high concentrations in the 

atmosphere. Due to the lack of rapid tropospheric removal mechanisms, CCl4 is typically 

present in the troposphere at mixing ratios of  100 pptv (Allen et al, 2009). Due to this 

compounds long term stability and uniform distribution within the MBL it can be directly 

used as a measure of instrument sensitivity over time, making it an ideal in-situ internal 

standard for air analyses. Halocarbon mixing ratios normalized via this method were 
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corrected for variations in detector sensitivity, trapping volume and trapping efficiency 

incurred during the analysis period.  

 

During the analysis period (18
th

 of February to 28
th

 of February) the external gas standard 

mixture (200 mL) was analyzed, approximately every 2 days, and an instantaneous 

CCl4/halocarbon ratio for each compound with respect to time calculated. A linear 

regression line was fitted to these values and from its regression equation, instantaneous 

CCl4/halocarbon ratios were extrapolated for each online air analysis time. These values 

were then multiplied by the CCl4 response for each corresponding analysis to generate 

equivalent peak areas (epa) for each halocarbon for each their respective analysis times, 

figure 2.24. The epa values are effectively a compound-specific measure of instrument 

sensitivity during the analysis period. 
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Figure 2.24 2-C3H7I external standard peak area with epa values during the COBRA 

campaign (Black squares are peak areas from external standards, Grey triangles are epa 

values assigned for each analysis time). 

 

The epa values are used to normalize the raw data, the concentrations from which can be 

calculated from the external gas standard mixture via EQ 2.21. 
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Concentration (mol dm
-3

) = 
 

epa

xPAHC sampledards ][ tan
                                         (EQ 2.21) 

where [HCstandard] is the halocarbon concentration in the external gas standard mixture (mol 

dm
-3

), and PAsample is the halocarbon peak area within the sample. 

 

The aqueous halocarbon purge and trap analyses were normalised against CCl4 within the 

NPL external standard during a 2.5 day analysis period, refer to section 2.6.2. Each 

aqueous sample was bracketed with a known volume of NPL standard (100 mL), prior to 

and immediately after purge and trap analysis. A linear regression line was then fitted to the 

CCl4 responses and used as a measure of MS sensitivity over time. The regression equation 

from the linear regression line was then used to generate CCl4 epa values with respect to 

time, figure 2.25. The generated epa values were then used to normalize the aqueous 

halocarbon data using EQ 2.21. 
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Figure 2.25 Polynomial fitting of CCl4 MS response during aqueous analysis period. 

 

2.6.9 Laboratory cold chamber data normalization 

All laboratory chamber data (chapter 5) was normalized against a mixed deuterated 

standard, section 2.6.3, in a continuous restricted flow set-up. The deuterated standard flow 

rate into the sample gas stream was controlled by using a non polar fused silica transfer line 
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(2.75 m, 0.32mm ID) and by regulating the output pressures of both the deuterated standard 

and the nitrogen sparge gas cylinders, 0.8 and 1.0 bar gauge pressure, respectively, figure 

2.26. Fine adjustments to the flow rate were carried out using a variable flow needle vale 

upstream of the purge and trap set-up. Sample gas and deuterated standard gas flow-rates 

into the TDU adsorbent trap were maintained at 50 mL min
-1

 and 20 mL min
-1

 for the 

duration of the analysis. The purge trap set up and methodology was outlined in section 2.2. 
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Regulator output 
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Stop flow valve
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Figure 2.26 Restricted flow internal standard set-up. 

 

During operation the photo-multiplier was set at 550 a.u. (arbitary units) to produce 

optimum analyte sensitivity, at pptv concentrations. The voltages applied to the repeller and 

ion focusing lenses are set during a tuning process, against the tune gas 

perfluorotributylamine (Sigma Aldrich), to optimize detector sensitivity. The potentials set 

are dependent upon the level of ion burn upon the ion focusing lenses and repeller, which 

can vary MS sensitivity over time.  Validation of the internal standardization technique was 

carried out to evaluate if the changes in detector sensitivity experienced during operation 

were the same for the compounds in the deuterated standard as for the compounds under 
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investigation. This was accomplished by replacing the nitrogen sparge gas, figure 2.26, 

with a mixed halocarbon gas standard, section 2.6.1, and running the set-up under the same 

conditions used during sampling.  The voltages to the multiplier, repeller and ion focusing 

lenses were varied over a 3 day period to simulate a typical drop off in detector sensitivity 

over time; the altered tune parameters are shown in table 2.9. Replicate analyses were 

obtained (n = 4 – 7).  

 

 Day 1 Day 2 Day 3 

Repeller potential (V) 1.5 

 

1.3 1.1 

Ion focusing lens 1 

potential (V) 

6 8 8 

Ion focusing lens 2 

potential (V) 

52 62 62 

PMT (a.u.) 550 530 500 

 

Table 2.9 Mass spectrometer tune parameters altered during internal standard validation. 

 

Despite these alterations, the correlations plots of the deuterated against the non deuterated 

compounds show that all of the halocarbons are satisfactorily tracked by one or more of the 

deuterated compounds with the exception of CH2I2, table 2.10. The R
2
 values suggest that 

the most suitable deuterated standard to be used for internal standardization is specific for 

each compound, with the best correlations found between deuterated standards of a similar 

molecular weight to the target compound. Possible reasons for this include that nearer 

eluting compounds exhibit a closer match in column resolution as well as mass dependency 

during ion transmission/focusing onto the QMS from the ionization source. This leads to 

inaccuracy when internally standardizing against a compound of a significantly different 

molecular weight. To take this into account the compounds under investigation were each 

internally standardized against the deuterated compound with the highest R
2
 value, table 

2.10. Figure 2.27 shows the most suited deuterated standard versus non-deuterated standard 

correlation plots for each of the compounds, R
2
 values range between 0.996 – 0.976. Due to 

the fact that no suitable internal standard for CH2I2 could be found, as well as the 
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chromatography issues describes in section 2.5, all CH2I2 cold chamber data (chapter 5) 

was disregarded. 
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Figure 2.27 Correlation plots of the deuterated standard peak areas against halocarbon 

peak areas. Dark blue diamonds, CH3I;  filled pink squares C2H5I, filled pink triangles, 

CH2Br2, crosses CH2ICl, dashes 2-C3H7I, empty circles 1-C3H7I empty squares CH2IBr. 

 
 

Halocarbon CD3I C2D5I 2-C3D7I 

CH3I 0.991 0.936 0.923 

C2H5I 0.955 0.996 0.962 

CH2Br2 0.982 0.982 0.975 

CH2ICl 0.955 0.967 0.950 

2-C3H7I 0.994 0.994 0.994 

1-C3H7I 0.960 0.980 0.993 

CH2IBr 0.975 0.970 0.976 

CH2I2 0.923 0.931 0.939 

 

Table 2.10 Linear regression coefficients (R
2
 values) for each halocarbon compound when 

plotted against the deuterated species, to 3 sig fig. 
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2.7   UV-Visible spectrophotometry 

 

 

2.7.1 Principles of UV-Vis spectrophotometry 

Many molecules absorb light in the ultraviolet (UV) or visible (Vis) range providing a non-

specific technique for the detection of most analytes. The absorption of UV-Vis 

wavelengths of radiation corresponds to the promotion of outer electrons from a low energy 

to high energy orbital. There are 3 types of electron types to be considered:  electrons,  

electrons and non bonding (n) electrons (transitions involving charge-transfer electrons and 

d and f electrons are also possible but beyond the scope of this discussion). Possible 

electronic transitions include:   

 

  * transitions  

Occurs when an electron from the bonding  orbital is promoted to the corresponding anti-

bonding orbital, figure 2.28. This requires large amounts of energy to undergo transition 

which may result in a breakdown of chemical bonds (< 190 nm). Compounds such as 

saturated hydrocarbons typically absorb in this region (C - H bonds).   

 

  * transitions 

This is regarded as the most analytically useful type of electronic transition as the energy 

required to induce the transition is moderate and can be obtained from sources operating in 

the UV/VIS range (Christian, 1994). 

 

n  * and n  * transitions 

Compounds containing lone pairs of electrons which do not participate in chemical bonds 

are capable of n  * (if the molecule has  bonds) or n  * transitions. n  * 

transitions usually require much more energy and can be initiated by radiation in the 

wavelength region of 150 - 250 nm. For chemical analysis the most useful of the electronic 

transitions are   * and n  *.  This is because the absorption peaks for these 

transitions are within an experimentally useful region of the spectrum (200 -700 nm). 

It is these electronic transitions which are responsible for I2 in hexane observed during 

work conducted in this study, as described in section 3. 
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Figure 2.28 UV-Vis absorption electronic transition types  

 

A typical commercially available spectrophotometer uses two light sources to generate a 

continuous spectrum within the wavelength range 200 - 700 nm, figure 2.29. The source of 

UV radiation involves the electrical excitation of hydrogen or deuterium at low pressure 

within lamps.  Both deuterium and hydrogen lamps emit radiation in the wavelength range 

160-375nm. Quartz windows and sample cuvettes must be used as silicate absorbs radiation 

< 350 nm. A tungsten filament lamp is commonly employed as a visible light source as it 

covers both the far UV and near IR range (350-2500 nm). This composite of wavelengths is 

then passed through a wavelength selector known as a monochromator (a prism, reflection 

grating) and a filter to select a wavelength range. The preset wavelength range, I0, is then 

split by a suitable beam splitter and passed through the quartz sample and reference cell 

(containing the dissolved analyte in solvent and pure solvent respectively) to parallel 

detectors. The intensity of the beam transmitted from the cells, I, is dependent upon the 

amount of absorbance by the sample. This is expressed as the Beer Lambert law where A is 

absorbance (in absorbance units),    is molar absorptivity (dm
3
 mol

-1
 cm

-1
), and l is the 

optical path length (cm), EQ 2.22. 

 

A =  c l                                                                                                            (EQ 2.22) 
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The amount of absorbance is therefore directly proportional to the concentration of the light 

absorbing species within the sample. This relationship between absorbance and 

concentration is linear at low analyte concentrations. At high concentrations, deviation 

from the Beer Lambert law occurs resulting in a loss of linearity. 

 

Incident light transmittance through the sample and reference cells are determined using 

photodiode detectors and the ratio of their electronic output plotted. This dual beam 

approach has two advantages over its single beam predecessors. Firstly, it is via this 

process that the UV-Vis cross section of the solvent can be subtracted from that of the 

sample. Secondly, both deuterium and tungsten lamp outputs can fluctuate over time 

resulting in inaccuracies. To compensate for any fluctuations in output from the lamp, the 

intensity of the beam transmitting through the sample is compared with the intensity of the 

beam transmitted through an identical cell containing solvent. 

 

Light source Monochromator Sample

Reference

Detector

Detector

Ratio 

output

 

Figure 2.29 Schematic of a dual-beam spectrophotometer, adapted from Harris 2010. 

 

A dual beam Lambda 25 UV-Vis spectrophotometer (Perkin Elmer) was used for the 

experiments (section 3.2) with quartz cells of both a 1 cm and 10 cm light path. A 

calibration curve was plotted to quantitatively determine iodine (I2) trapped in hexane 

during both the optimization of the solvent trap and during experiments involving the 

exposure of ozone to iodide solutions (figure 2.30). This calibration curve was produced 

daily, using a 10 mm quartz cell (figure 2.30) or a 100 mm (figure 2.31) quartz cell, to 

correct for any variation in response resulting in absorbance offsets over time. I2 had a 

maximum absorption at 522.48 nm in the visible region. 
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Figure 2.30 Calibration curve for the I2 in hexane solution used to quantify [I2] during  

                     experiments in section 3.2.2, using a cuvette with a 10 mm pathlength 
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Figure 2.31 Calibration curve for the I2 in hexane solution used to quantify [I2] during  

experiments in sections 3.2.2, 3.24 and 3.5, using a cuvette with a 100 mm pathlength. 

 

Figure 2.32 shows a calibration curve which was plotted daily to quantitatively determine 

iodide (I
-
) in phosphate buffer solution (PBS), pH 8, during the experiments involving the 
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exposure of ozone to iodide solutions (section 3.5). I

 had a maximum absorption range 

between 223 -227 nm in the ultra-violet region.  
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Figure 2.32 Calibration curve for I
-
 in PBS (pH8) used to quantify [I

-
] during experiments 

in section 3.5. 

 

2.7.2 Solution preparation 

All aqueous solutions used in chapter 3 were prepared in degassed HPLC water (Fisher 

Scientific) which had been prepared using zero grade N2 (BOC gases) whilst held at a 

temperature of 70 ºC for 1 hour. Volumetric glassware (grade A), and Finnpipettes, 20-

200µl (Thermo scientific) and 100-1000 µl (Fisherbrand), were used accordingly during 

solution preparation. Precision five figure balances (KERN 770) were utilized for all 

standard weighings. All vessels containing photo-labile substances were covered in 

aluminium foil and stored at ambient temperature to reduce degradation. Primary stock 

standards were re-prepared on a monthly basis where as secondary standards (used to plot 

the calibration curve) were re-prepared every 2 weeks. 
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2.7.3 Preparation of 0.01 M phosphate buffer solution 

Basic buffer (pH 9), used in chapter 3, was prepared by dissolving the target amount of 

sodium dihydrogen phosphate (NaH2PO4, Fischer. 99%) in degassed HPLC water (800 

mL). The final pH of the solution was adjusted by titrating freshly prepared aqueous 

sodium hydroxide (NaOH, Fischer, 99%) solution while stirring using a pH meter, prior to 

making the final volume up to 1 L. The pH of the solutions were checked and found to be 

within a suitable tolerance (2%) prior to use on a weekly basis. 

 

2.7.4 Preparation of iodine solutions 

The experiments involved preparation of both aqueous I
-
 solutions and concentrations of I2 

in hexane. Solutions of I2 in hexane were prepared by over night stirring of I2 flakes 

(Riedel-de Haen), with a glass stirring bar, in hexane (HPLC grade, Fischer) in volumetric 

glassware covered in aluminium foil. Subsequent dilutions were made in hexane using 

Finnpipettes. Solutions of I
-
 were prepared by overnight stirring of KI (analytical grade, 

Fischer) in PBS, as described in 2.7.4, and covered in aluminium foil.  

 

2.7.5 Preparation of dissolved organic carbon extract 

A dissolved organic carbon (DOC) extract was prepared from coastal seawater (10 L, 

Bridlington coast) which was collected in airtight glass bottles (4 x 2.5 L) wrapped in 

aluminum foil before transportation to the lab. The bottles were refrigerated and stored at 2 

- 8º for 12 hours prior to preparation. The seawater was first degassed using zero grade N2 

whilst being heated to 70 ºC for 1 hour to remove any volatile organics.  The matrix was 

then filtered through a 0.45 µm cellulose nitrate membrane filter (Whatman) under 

vacuum. The filtering capacity of each filter was reached after a few litres of seawater, 

therefore the filters were replaced as and when necessary.  

 

Pre-concentration of the organic constituents onto a hydrophobic Solid Phase Extraction 

(SPE) device (Strata-X, 500mg) was then carried out. The SPE device was pre-conditioned 

using methanol (5 mL), and the matrix loaded under vacuum at a flow-rate not exceeding 5 

mL min
-1

.  Once loaded, the sorbent was washed using 5% methanol (5 mL) in HPLC 

water and dried under vacuum  (1 min). The organic constituents were eluted with 
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methanol (10 mL) and concentrated to dryness (Biotage V10 solvent concentrator) and re-

suspended in 10 mL HPLC water. All preparation and pre-concentration steps discussed 

were completed within 24 hours of sample collection. 

 

2.7.6 Quantitative determination of the dissolved organic extract 

Quantitative determination of the DOC extract was carried out using a flash 2000 CHNS 

elemental analyzer (Thermo Scientific). This instrument consists of a heated furnace, to 

which the liquid sample is injected, interfaced to a non polar fused silica capillary column 

and thermal conductivity detector (TCD).  The heated furnace contains a mixture of quartz 

wool and copper oxide, the latter oxidizing carbon, nitrogen and sulphur to their dioxide 

forms (XO2) in the presence of oxygen which is continuously administered to the vessel. 

This is based on the principle of the “Dumas method” which involves the complete and 

instantaneous oxidation of the sample by “flash combustion”. CO2 is then resolved from 

these other XO2 compounds on a non-polar fused silica column with an isothermal 

temperature program (100 ºC) and detected via the TCD.  

 

The sample (500 µl) was introduced to the instrument and analysed in duplicate. 

Quantitative determination was carried out by injecting standards (500 µl) of successive 

carbon concentrations to generate a 5 point calibration curve, figure 2.33. The standard L-

alanine (99% purity, BDH supplies) was used to determine DOC concentration, 40.44% 

carbon by mass. 
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Figure 2.33 Calibration curve for [C] used to determine DOC during experiments in 

chapter 3. 

 

2.7.7 Quantitative determination of Chlorophyll a 

Chlorophyll a concentrations were measured from ice core meltwater and under ice water 

samples by H. Atkinson (British Antarctic Survey) using a Turner AU-10 fluorometer 

following extraction overnight (in darkness at 4 
o
C) in 10 ml of 90% acetone buffered with 

MgCO3 (sections 4 and 5). Concentrations were corrected for interference from 

phaeophytin a by measuring fluorescence before and after acidification with 8% HCl and 

calibrated using a pure chlorophyll a standard (chlorophyll a from Anacystis nidulans – 1 

mg diluted in 90% buffered acetone, Sigma-Aldrich), the concentration of which was 

determined spectrophotometrically. 
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Chapter 3 

 

 

Evidence for the abiotic production and direct 

emission of iodine from surface seawater in the 

presence of gaseous ozone 

 

A comparison of spectrophotometric and denuder based approaches for the 

determination of gaseous molecular iodine. 

Chance, R.  J. Shaw, M. D.  Telgmann, L. Baxter , M. and Carpenter, L. J 

Atmospheric Measurement Techniques,  3, 177 – 185, (2010). 

 

Globally important emissions of HOI and I2 from the sea surface 

Carpenter, L. J.  and Shaw, M. D. manuscript. in preparation.  (2011). 

 

Uptake of ozone and emission of I2 from iodide solutions in the presence of organic 

material 

Carpenter, L. J.  and Shaw, M. D.  and Parthipan, R. manuscript in preparation.  (2011). 
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3.1 Introduction 

 

3.1.1 Abiotic molecular iodine evolution from seawater 

The ocean is a major global reservoir of the halogens chlorine, bromine and iodine. All 

three of these elements exist as halide ions within seawater, the major species of iodine 

being the oxidized form, iodate (IO3
-
). It has been shown that in addition to the flux of 

particulate halides in sea salt, both volatile organic and inorganic halogens are of 

importance for the transfer of these elements from the ocean to the atmosphere (Vogt et al., 

1999; Chuck et al., 2005; Saiz Lopez et al., 2007; Wada et al., 2007). It is generally 

believed that the primary sources of reactive iodine compounds in the marine boundary 

layer (MBL) are volatile organic iodinated compounds (VOIC) (Carpenter, 2003) and, in 

coastal regions, biogenic molecular iodine (I2) (Saiz Lopez et al., 2006; Kupper et al., 

2008; Dixneaf et al., 2009). Iodine compounds are rapidly photolyzed into I atoms, which 

are oxidized to iodine monoxide (IO) (Saiz Lopez et al., 2006). VOIC are rapidly 

photolyzed and/or react with OH, Cl or NO3 forming IO, potentially perturbing the HO + 

HO2 (HOX) and NO + NO2 (NOX cycles) (Cotter et al., 2001; Enami et al., 2007). 

Generated halogen radicals also catalytically destroy tropospheric ozone (Read et al., 

2008), and nucleate new particles (O’Dowd et al., 2002) and thus potentially impact 

climate through the generation of cloud condensation nuclei (CCN).  

 

Recent observations of IO at an open ocean site, Cape Verde Atmospheric Observatory 

(CVAO) indicate iodine chemistry plays an important role in the oxidizing capacity of the 

open ocean MBL (Read et al., 2008; Mahajan et al., 2010). The observed VOIC fluxes 

could not sustain the observed IO concentrations, and unlike many coastal sites Cape Verde 

is not influenced by kelp bed emissions, suggesting there may be additional iodine 

production mechanisms taking place in the surface ocean (Mahajan et al., 2010; Jones et 

al., 2010). Such field measurements suggest that current atmospheric box models 

parameterised using biogenic organo-iodine emission rates alone cannot account for 

previously observed gas phase mixing ratios of iodine species within the MBL (Read et al., 

2008). The recent detection of both IO(g) and OIO (g) during nighttime also suggests the 
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significance of a dark iodine source (Saiz Lopez et al., 2004; Cainey et al., 2007).  These 

field and model observations suggest an additional unknown ubiquitous I2(g)/IO(g) source. 

 

Miyake and Tsunogai (1963) previously demonstrated the production and subsequent 

volatilization of I2 from the surface of sea water in the presence of UV light. The laboratory 

experiment was conducted by passing ambient air over seawater samples at low flow rates 

under various light conditions predominantly in the UV range. Evolved gaseous I2 was 

trapped from the output air via the use of a reflux condenser and alkaline/acidic solutions. 

Quantitative determinations of the I2 solutions were then carried out using 

spectrophotometry and a radiometric method using 
131

I as the tracer.  

 

In this instance, the reaction mechanism postulated to explain the gaseous I2 evolution from 

the surface seawater involved the photochemical oxidation of iodide by dissolved 

molecular oxygen (O2), as shown in EQ 3.1 to 3.3 (Miyaki and Tsunogai, 1963).  

 

4I

(aq) + O2(aq) + 2H2O(aq)  + hv 2I2(aq or g) + 4OH


(aq)                              (EQ 3.1)   

 

I2(aq) + H2O(aq)  HOI + H
+
 + I


                                                                         (EQ 3.2) 

 

I2(aq)  I2(g)                                                                                                           (EQ 3.3)   

 

Truesdale (2007) recently demonstrated that the half life of iodide (I

), with respect to EQ 

3.1, in seawater under atmospheric conditions was 29 months. Therefore this mechanism 

is too slow to contribute to the evolution of significant amounts of gaseous I2 to the marine 

boundary layer MBL under atmospheric conditions. Truesdale (2007) suggested that the 

evolution of I2 from surface seawater is only of significance at high irradiances within the 

UV region of the electromagnetic spectrum, which explains the observations of Miyake and 

Tsunogai in which UV discharge lamps were used to simulate solar radiation. 

 

Garland and Curtis (1981) were the first to demonstrate the emission of I2 from the surface 

of seawater following the oxidation of I

 by ozone (O3). Ozone is a much stronger 



                                                3. Evidence for the abiotic production and direct emission                

                                                    of I2 from surface seawater in the presence of O3 

 71 

atmospheric oxidant than O2 and on deposition to the sea surface readily oxidizes I

, 

destroying ozone (EQ 3.4 and 3.5). The work of Garland and Curtis (1981) inferred an I2 

release rate of 22 - 38 ng m
-2

 h
-1

 which is equivalent to an annual flux from global oceans 

to the atmosphere of 6 - 12 x 10
10

g.  Based on experiments conducted by Garland et al. 

(1980), the enhanced uptake of ozone by iodide is responsible for 20% of the reactivity of 

ozone toward seawater. This was calculated from the experimentally determined second 

order rate constant of the iodide ozonation reaction at pH 8 (2 x 10
9
 dm

3
 mol

-1
 s

-1
; Garland 

et al., 1981) and the assumption that I2 was produced within the laminar layer of the sea 

surface. Truesdale (2007) suggested that a fraction of this I2 would undergo a rapid reaction 

with available I

 in the laminar layer producing tri-iodide (I3

-
), EQ 3.6. This I3


 would then 

undergo mixing into the bulk liquid limiting gaseous I2 evolution. Field measurements 

conducted by Moller et al. (1995) showed nanomolar I2 concentrations in some samples of 

surface coastal seawater, but as yet there are insufficient measurements of I2 in seawater to 

confirm whether proposed mechanisms for I2 production operate efficiently in the marine 

environment.  

 

Experiments conducted by Cheng et al. (2008) suggested that another ozonation reaction 

pathway could be taking place at the air-liquid interface which competes with I2 

production. This involves the stepwise ozonation of I

 to form IO3

- 
in the laminar layer, as 

shown in EQ 3.7 to EQ 3.9. Measured IO3

concentrations were typically 10 - 60 times 

higher than I3

 concentrations and increased linearly with increasing gaseous O3 

concentrations (ppmv). 

 

H
+
(aq) + I


(aq) + O3(g)  HOI(aq)  + O2(aq)                                                          (EQ 3.4)                           

 

H
+
(aq) + HOI(aq) + I


(aq)  I2(aq) + H2O(aq)                                                        (EQ 3.5)                              

 

I2(aq) +I

(aq)  I3


(aq)                                                                                             (EQ 3.6) 

 

HOI(aq)  IO

(aq)  + H

+
(aq)                                                                                   (EQ 3.7)  
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 IO

 (aq) + O3(g)  O2(aq) + IO2


(aq)                                                                     (EQ 3.8) 

 

IO2

(aq) + O3(g)  IO3


(aq)                                                                                     (EQ 3.9) 

 

In a recent laboratory study, Sakamoto et al. (2009) reported the direct emission of both I2 

and IO during the heterogeneous reaction of gaseous ozone with aqueous potassium iodide 

([I2](g)] > 100[IO(g)]). Sakamoto et al. (2009) proposed that the formation of IO occurred 

at the air/water interface from the ozonation of I

 via an unstable trioxide intermediate 

(IOOO

). The mechanism of IO production at the air/water interface could be explained by 

several uni-molecular and/or bimolecular reactions involving the IOOO

 intermediate, as 

described by EQ 3.10 to 3.14. 

 

I

(aq) + O3(g or interface)   IOOO


 (interface)                                                  (EQ 3.10) 

 

IOOO

 (interface)    IO (interface) + O2


 (interface)                                         (EQ 3.11)     

 

IOOO

 (interface) + IOOO


 (interface)    IO (interface) + products                 (EQ 3.12) 

 

IOOO

(interface) + HOI (interface)   IO (interface)   + products                     (EQ 3.13) 

 

IO (interface)   IO (g)                                                                                         (EQ 3.14) 

 

Recent field observations of VOIC and IO in the tropical open ocean MBL at the CVAO 

lend some support to oceanic inorganic iodine release mechanisms (Mahajan et al., 2010; 

Jones et al., 2010). The data obtained suggests that the measured fluxes of VOIC in the 

region are insufficient to account for the observed levels of IO, and that an additional I 

atom source is required, possibly from the oxidation of iodide in the surface ocean by 

ozone (EQ 3.4 and 3.5). Considering an ozone deposition velocity of 0.05 cm s
-1

 (Chang et 

al., 2004) and a mixing ratio of 35 pptv, the deposition of ozone to the surface ocean could 

have been responsible for the emission of 3 I atoms to the gas phase for every 100 
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molecules of O3 deposited. The oxidation of iodide by gaseous ozone has the potential to 

make an appreciable contribution to both global atmospheric ozone and iodine budgets 

within the MBL. Additionally, such abiotic I2 production in the surface oceans may also 

provide a viable reaction pathway for the evolution of VOIC (Martino et al., 2009). Table 

3.1 shows estimated global oceanic iodine source estimates. 

 

Compound Iodine Flux ( Tg yr
-1

) 

CH3I
a,b

 0.21 – 0.30 

C2H5I
b
 0.02 

1-C3H7I
b
 < 0.01 

CH2ICl
b
 0.17 

CH2IBr
b
 0.05 

CH2I2
b
 0.11 

I2
c
 0.06 – 0.12 

 Total                  0.63 – 0.78 

 

Table 3.1 Global oceanic iodine source estimates 

a
 Bell et al. (2002) 

b
Jones et al. (2010)  

c
Garland and Curtis (1981). 

  

3.1.2 Measurement techniques previously used for gaseous I2 determination 

A significant limitation for gaseous I2 determinations both in the laboratory and in the field 

is the lack of a simple and robust method for measuring concentrations approaching those 

in the atmosphere (0.2 to 93 pptv, Saiz-Lopez et al., 2006; Finley and Saltzmann, 2008). 

The most common method for determining gaseous atmospheric concentrations of I2 is 

using long path differential optical absorption spectroscopy (LP-DOAS, Saiz-Lopez et al., 

2006). The major limitations of this technique however are that the instrument spatially 

averages concentrations over several kilometers and that it cannot be used for open ocean 

or onboard ship measurements. The recent development of broad band cavity enhanced 

absorption spectroscopy (BBCEAS) techniques for the measurement of gaseous I2 at 
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atmospheric concentrations has allowed in situ point determinations (Dixneuf et al., 2009). 

However, this technique is not available to most researchers as it is both technically 

demanding and expensive to operate. Huang and Hoffman (2009) recently reported the use 

of denuder tubes with an alpha-cyclodextrin coating for trapping gaseous I2 in coastal 

locations. Subsequent analysis is carried out using inductively coupled plasma mass 

spectrometry (ICP-MS).  

 

Palmer et al. (2005) previously described a solvent trap and subsequent spectrophotometric 

detection for determining gaseous I2 at ppbv – ppmv concentrations. Such a method has the 

advantage of being relatively cheap, simple, and able to produce time-averaged rather than 

spatially-averaged measurements. Also, depending upon the stability of I2 in the chosen 

solvent, such a method would allow the sample to be collected and analysis to be carried 

out at a later date. 

 

This chapter describes the development and optimization of a novel spectrophotometric 

method for the determination of gaseous I2, and its implementation in laboratory 

investigations of gaseous I2 production rates from the O3 + I
 

reaction (Garland et al., 1981; 

Pathipan, 2008). The work herein represents the first investigation into the effect of 

dissolved organic matter (DOM), present in seawater, on gaseous I2 evolution and O3 

deposition velocities at the sea surface. 

 

3.2 Development and optimization of a hexane solvent trap and spectrophotometric                

methods for the determination of gaseous I2 

The purpose of this investigation was the development of a simple, reproducible method for 

molecular iodine (I2) enrichment which could either be used for in-situ measurements in the 

field or for laboratory experiments. This involved using a solvent with a high affinity for I2 

cooled to subzero temperatures (-9 to -50C) to facilitate efficient I2 removal from the gas 

phase whilst minimizing evaporative solvent losses.  
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3.2.1 Generation of a molecular iodine test source 

The solvent trap was optimized using a permeation oven (Kin-Tek, USA) fitted with a 

commercial I2 permeation tube (Kin-Tek, USA) which provided a constant source of 

gaseous I2. The I2 source concentration was controlled by altering the oven temperature and 

a zero grade nitrogen (BOC) makeup flow downstream of the oven. The permeation 

chamber temperature in this investigation was set at either 30 C to 60 C with a 

permeation chamber flow rate of 0.05 L min
-1

. The outlet flow was further diluted with 

nitrogen, the flow rate of which was varied to achieve the final concentration of molecular 

iodine (up to 2.95 L min
-1

), as shown in figure 3.3. A needle valve and T-piece was used to 

maintain gas flow rates through the solvent trap apparatus. The concentrations attainable 

via this method were between 190 - 285 ppbv. The I2 emission rates at these operating 

temperatures were determined directly from repeated weighings of the permeation tube 

(n=5) every two weeks. The weighings over the experimental period are shown in 

Appendix 3.1 and 3.2 for oven temperatures of 30 C and 60 C, respectively. Gaseous I2 

wall losses within the system were minimized by ensuring all the tubing and fittings were 

of Teflon or glass and by heating (to 60C) the outlet line from the permeation oven using 

heating tape. The in-situ photo degradation of I2 was minimized by covering the permeation 

chamber in aluminum foil and any external tubing in black tape.  

 

3.2.2 Optimization of a spectrophotometric method for I2 detection 

Absorption spectra within the range 190-650 nm were measured using a dual beamed 

Perkin Elmer Lambda 25 UV/VIS spectrophotometer which was initially fitted with 10 mm 

quartz sample and reference cells (section 2.7). The instrument was auto-zeroed against n-

hexane daily. Instrument drift was corrected for by bracketing each sample/calibrant with 

blank runs and taking into account this response at the given wavelength. The 

concentrations of I2 in hexane were determined at 522 nm, as shown in figure 3.2 b. The I2 

calibration curves were constructed using standard solutions prepared from ground 

molecular iodine (puriss, p.a., Riedel-de Haen) dissolved in hexane (HPLC grade, Fischer 

UK) within the concentration range 500 – 5000 nmol dm
-3

 (figures 2.30 and 2.31).  To 

prevent cross contamination between samples, the sample cuvette was thoroughly rinsed 

with hexane between each scan. The spectrophotometric limit of detection (LoD) was 
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calculated using EQ 3.15 (Harris, 2002) where STD is the standard deviation of the mid 

range standard (n = 3) and the sensitivity is defined as the slope of the calibration curve. 

 

LoD = 3  (STD/sensitivity)                                                                                (EQ 3.15) 

LoQ = STDof blank 10                                                                                      (EQ 3.16) 

 

The determined LoD of I2 in n-hexane using a sample cuvette with a path length of 10 mm 

was 213.3 nmol dm
-3

, figure 2.30. In order to reduce this LoD as far as possible, sample 

and reference cuvettes of 100 mm pathlength were used in dual beam mode which reduced 

this calculated LoD to 20.3 nmol dm
-3

, figure 2.31. Hence the minimum limit of 

quantitation (LoQ), calculated using EQ 3.16 (Harris, 2002), for I2 determinations in 

hexane using a 100 mm cell was 67.7 nmol dm
-3

.  

 

3.2.3 Molecular iodine derivatisation using leucocrystal violet. 

The use of the colorimetric reagent leucocrystal violet (N, N-dimethylaniline) was 

investigated as a method to further reduce the LoD of I2 in hexane. Leuco crystal violet 

(HCV) has been previously used in aqueous iodine assays (Hatch, 1984; Lambert, 1975) as 

it reacts with both I2 and IOH producing a violet product which can be measured 

spectrophotometrically (592 nm). The reactivity of HCV in aqueous solution is shown in 

EQ 3.17 and EQ 3.18 where CV
+
 is the coloured crystal violet species (Hatch, 1984). 

 

I2 + HCV  2I

 + CV

+
 + H

+
                                                                                 (EQ 3.17) 

HOI + HCV  I

 + CV

+
 + H2O                                                                            (EQ 3.18) 

 

As seen in EQ 3.17 and EQ 3.18 for equivalent amounts of iodine, HOI produces twice the 

amount of CV
+
, hence colour intensity, of I2. In aqueous solutions, HOI is in equilibrium 

with I2, from in-situ hydrolysis (Hatch, 1984), EQ 3.2. However, within hexane the reaction 

of I2 with H2O would not occur due to the low concentrations of water present, hence the 

CV
+
 concentration would be directly proportional to I2 in the stoichiometric ratio 1:1, EQ 

3.17. The direct trapping of gaseous/aerosol HOI by the hexane trap was not investigated 
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within this chapter, high mixing ratios of which could potentially cause an overestimation 

of I2 via this colorimetric method.     

 

The colorimetric determination of I2 in hexane involved the addition of 0.2 mL of HCV 

indicator (1.5 g L
-1

 in hexane, Sigma Aldrich) to 20 mL of I2 in hexane sample in an 

amberised bottle. The leuco crystal violet indicator was made up in hexane on a daily basis. 

Upon addition of indicator, the sample was mixed for exactly 1 minute prior to immediate 

determination of the I2 absorbance at 568 nm using the 100 mm path length cell, figure 3.2 

c. The sensitivity of the colorimetric method in hexane was investigated against the direct 

spectrophotometric determination of I2 within the concentration range of 0.56 to 5.60 mol 

dm
-3

. Figure 3.1 shows the mean I2 responses of triplicate measurements for this method 

comparison. The y errors represent the total precision error calculated from the propagation 

of the standard deviation of the I2 permeation rates and the standard deviation of replicate 

analyses. The initial comparison (t0) suggested that the response of the colorimetric method 

(at 568 nm) was a factor of 17 higher than by spectrometry alone (at 522 nm). However, 

when the procedure was replicated 7 days later (t7), I2 sensitivity was observed to have 

dropped by  66 % over the same concentration range. This reduction in sensitivity 

between t0 and t7 was attributed to the hydroscopic nature of HCV and its exposure to lab 

air affecting its solubility in hexane. Despite the observed increase in sensitivity between 

the two methods, the calculated LoD (EQ 3.15) achieved with leuco-crystal violet 

derivatisation (120  34 nmol dm
-3

) was 6 times higher than with hexane alone. This was 

due to the std values of the triplicate measurements observed at each concentration for the 

colorimetric method being at least a factor of 10 higher (3.6 – 9.8 %) than for the 

spectrophotometric method (0.2 -0.5 %). This increase in std is attributed to the relatively 

short lifetime of CV
+
 in hexane, the concentration of which is observed to decrease 

exponentially over time accounting for a 27 % loss over an hour after initial mixing, 

(Appendix 3.3). Due to the instability of CV
+
 in hexane, this method was not used further 

in this study. However, with further work, it may be possible to develop a derivatisation 

method that yields reproducible results in organic solvent and a lower LoD. 
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Figure 3.1. Comparison of I2 responses for the HCV method. Dashed line, HCV method 

response at t0; dotted line, HCV method response at t7; solid line, response using 

spectrophotometric method. 

 

 

3.2.4 Optimisation of solvent trap for gaseous I2 enrichment 

Previously gaseous I2 enrichment has been carried out by bubbling gaseous sample though 

ethanol (Palmer, 2005). In basic solution such as ethanol, I2 disproportionates (EQ 3.19) 

rapidly producing a number of iodine species including I

, IOH and I3


 which makes the 

spectrophotometric quantitative determination of I2 problematic, as shown in figure 3.2a. I2 

determination in ethanol is usually carried out by comparing the I
 

absorbance (at 225 nm) 

in the solvent to those of calibration standards. Recent work by Chance et al. (2010) 

suggests that the action of passing the sample gas through ethanol purges the solvent of 

dissolved gases, and consequently disrupts the complex pH dependent equillibria that 

govern the disproportionation of the dissolved I2. Subsequent comparisons of I2 calibration 

curves prepared in pre-purged and un-purged ethanol suggested that the I

 signal in purged 

ethanol was 1.2 to 1.8 fold higher than in un-purged ethanol, resulting in an overestimation 

in the I2 concentration. Further limitations in using ethanol as the trapping solvent are that it 

severely reduces the spectrophotometric LoD as not all the iodine in solution is present as 

I

.  
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Molecular iodine is also very soluble in the non polar solvent n-hexane, which preliminary 

studies (Parthipan, 2008) have suggested is effective in I2 enrichment from the gas phase. 

In n-hexane I2 shows no indication of disproportionation and absorbs strongly at 522 nm, as 

shown in figure 3.2b. Therefore n-hexane is a suitable solvent for gaseous I2 enrichment 

and subsequent optimization of trapping conditions were carried out using this solvent. The 

I2 trapping efficiency of n-hexane was investigated by placing two solvent traps in series, 

as shown in figure 3.3. The traps were deployed for periods of up to five hours and their I2 

content determined spectrophotometrically (section 3.2.2). Recovery and trapping 

efficiency (T.E) were calculated using EQ 3.20 and EQ 3.21. 

 

3I2 + 6OH

 5I


 +IO3


 + 3H2O                                                                           (EQ 3.19) 

 

Recovery (%) = 100 x [I2]measured/[I2]expected                                                                                       (EQ 3.20) 

 

T.E (%) = 100 x [I2]solvent trap 1/([I2]solvent trap 1+ [I2]solvent trap 2)                                 (EQ 3.21) 
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Fig 3.2a UV cross section of 1.0 x 10
-4 

mol dm
-3

 I2 in ethanol using a 10mm cell  

path length. 
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Figure 3.2b UV cross section of 2.8 x 10
-6

 mol dm
-3

 I2 in hexane using a 100 mm cell  

path length. 

300                                  400                        500                                     600

Wavelength (nm)

0.9

0.6

0.3

A
b

s
o

rb
a

n
c
e

568 nm

CV+

 

Figure 3.2c UV cross section of CV
+
 colorimetric agent generated in 2.8 x 10

-6
 

mol dm
-3

 I2 in hexane using a 100 mm cell path length. 
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Figure 3.3 Solvent trap optimization set up. 
a
Dilution flow only used in optimization of Trap C (-50C). 

 

Initial work was carried out using a prototype solvent trap (Trap A, -9C), as described by 

Parthipan (2008), which consisted of a 100 mL round bottom flask containing 50 mL of 

hexane. The flask was fitted with ground glass fittings with an inlet tube reaching below the 

solvent surface and an outlet tube above the solvent surface.  The I2 source gas (243 ppbv) 

was bubbled through the solvent at a flow rate of 0.05 L min
-1

. The trap was wrapped in 

aluminum foil to prevent the photolysis of I2 and immersed in a cold bath consisting of 

sodium chloride and ice (-9C) to both aid trapping efficiency and minimize hexane 

evaporation. The hexane volumes within the traps were measured gravimetrically using a 5 

figure mass balance (KERN 770) before and after the trapping periods to calculate the 

volumetric loss to evaporation. The I2 concentrations for each trapping period represent the 

mean of triplicate experiments. 

 

The prototype solvent trap A (-9 C) gave a mean recovery of 86  13%, figure 3.4, over 

the trapping periods investigated and a minimum T.E. of 67 % after 5 hours (table 3.2). 

Measured I2 concentrations were close to the expected concentrations calculated  from the 
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permeation oven, but fell below the 1:1 line after 2 hours of trapping (overall R
2
 = 0.96, 

figure 3.4 ). The hexane evaporation rate under the trapping conditions was 1.3 mL r hr
-1

, 

figure 3.8.  The T.E. of the solvent trap was observed to drop from 105 % to 67 % between 

the trapping periods of 1 to 5 hours. This was most likely due to the loss of hexane during 

the trapping periods. Given the dimensions of the solvent trap, the loss of hexane over a 5 

hour period (13 %) significantly reduced the depth of the trapping solvent within the 

vessel hence its potential contact time with gaseous I2, reducing trapping efficiency. The I2 

losses observed within this experiment were due to a combination of direct volatilization 

and decreased trapping efficiency, both of which increase for longer trapping periods. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Observed and expected I2 concentrations in hexane solvent trap A (-9C).  

Error bars represent  1 standard deviation. Black line, expected concentrations; empty 

squares, measured concentrations. 

 

The second prototype solvent trap, solvent trap B (-20 C) was developed to minimize 

hexane evaporation during trapping and maximize T.E.  In order to enhance the contact 

time between the gaseous I2 analyte and the trapping solvent, the vessel used for trap A was 

replaced with a 50 mL round bottom flask and a glass frit (porosity 0, Cole Palmer) was 

added to the gas inlet tube. Solvent evaporation was minimized by using an ice/acetone 

cold bath (-20 C) instead of the ice/sodium chloride mixture used for trap A. All other 

conditions were the same as those described for trap A. 
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The prototype solvent trap B (-20C) gave a mean recovery of 84  4%, figure 3.5, over the 

trapping periods investigated and a minimum T.E. of 86 % (table 3.2). A plot of measured 

I2 concentrations against those expected produced an R
2
 value of 0.99 (1:1 line, see Figure 

3.5). The hexane evaporation rate under the trapping conditions was 1.0 mL hr
-1

, figure 3.8.  

Solvent trap B has a much larger T.E than that measured for trap A and the reduction in 

cold bath temperature has also reduced the hexane evaporation rate by 0.2 mL hr
-1

. 

However, complete T.E and analyte recovery could not be obtained using this trap. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Observed and expected I2 concentrations in hexane solvent trap B (-20C).  

Error bars represent  1 standard deviation. Black line, expected concentrations;  

empty diamonds, measured concentrations. 

 

The final prototype solvent trap, solvent trap C ( -50C) was developed to further 

minimize solvent evaporation during trapping whilst maximizing T.E. The contact time 

between the gaseous I2 analyte and the trapping solvent was further enhanced by replacing 

the round bottomed flask with a 25 mL capacity midget bubbler (Supelco) with a glass frit 

on the gas outlet tube. In order to reduce hexane evaporation to the absolute minimum 

during trapping, the temperature of the cold bath had to be reduced further using a 

CO2/acetone ( -50 C) mixture. The volume of hexane used as the trapping solvent was 
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decreased to 20 mL while the test gas flow rate was increased to increase the sensitivity of 

subsequent analysis. 

 

Volumetric losses of hexane by evaporation within this new experimental set-up were 

investigated as a function of nitrogen flow rate for a trap time of 60 minutes, as shown in 

figure 3.6. At flow rates of up to 0.2 L min
-1

 hexane showed no appreciable loss other than 

that caused by uptake to the scintered glass frit (0.5 mL). Above this flow rate, evaporative 

losses of 0.17 mL per 0.1 L min
-1

 increase in flow rate were observed. Therefore an 

optimum sample gas flow rate of 0.2 L min
-1

 was selected when using trap C. On further 

investigation, evaporative losses at this flow rate were linear with respect to time with a 

hexane loss rate of 0.19 mL hr
-1

, as shown in figure 3.8. This hexane loss rate was 5 - 6 

times lower than previously observed for traps A and B which allowed for a longer 

duration of trapping when using trap C. 

 

An I2 permeation gas concentration of 24.3 ppbv was generated from the oven using a 0.15 

L min
-1

 dilution flow and by reducing the temperature of the oven to 30C. Using the 

optimized trapping conditions of trap C, the recovery of I2 from the permeation oven source 

was 105  6%, with no detectable I2 concentration within the second trap (T.E. =100%). A 

plot of measured I2 concentrations against those expected (1:1 line) produced an R
2
 value 

of 0.99, figure 3.7. This data demonstrates that the trapping performance of solvent trap C 

is considerably higher than that of prototypes A and B. A comparison of the properties of 

the solvent traps developed in this investigation is shown in table 3.2 
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Figure 3.6. Volume of hexane lost over 60 min at a trapping temperature of -50C, as a  

function of nitrogen flow rate. Error bars represent  1 standard deviation.  

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6

Time (hrs)

I 2
 c

o
n

c
e

n
tr

a
ti

o
n

 u
m

o
l 
d

m
-3

 

Figure 3.7 Observed and expected I2 concentrations in hexane solvent trap C (-50C).  

Error bars represent  1 standard deviation. Black line, expected concentrations; empty 

diamonds, measured concentrations. 
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Figure 3.8 Hexane evaporation rates under the different trapping conditions.  

Error bars represent  1 standard deviation. 

 

Combining the improved spectrophotometric LoD with the enhanced trapping efficiency of 

trap C ( -50C), meant that longer trapping times and higher sample gas flow rates were 

attainable yielding a considerably improved atmospheric limit of detection for I2. The 

utility of a solvent trap depends on the rate of solvent evaporation- the lower the 

evaporation rate, the longer the trap may sample for and thus the lower the LoD attainable. 

Chance et al. (2010) demonstrated that the ratio of I2 loss to solvent loss was dependent 

upon trapping conditions but was in the order of 0.47  0.03 (n=3). Therefore, 10% hexane 

loss equates to approximately 5% I2 loss, a level considered sufficiently low as not to be 

corrected in this work. For a hexane volume of 20 mL, under the optimized conditions of 

trap C (-50C) it would take 10 hrs and 45 mins for 10% of the trapping solvent to be lost. 

The LoD for these conditions is equivalent to an atmospheric mixing ratio of 69 pptv and 

the LoQ is 230 pptv.  

 

The LoD is comparable to peak concentrations of I2 in coastal air observed at low tide (93 

pptv; Saiz Lopez et al., 2006), suggesting the traps may be suitable for use in laboratory 

investigations (for e.g., seaweed chamber studies) at concentrations close to those observed 

in the atmosphere. The trap is believed to be selective for I2 over VOIC, HOI and I3
-
, which 
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all have absorption maxima at shorter wavelengths (Wall et al., 2003; Palmer and Lietzke, 

1982; Paquette, 1985). There may be some overlap in absorption spectra between I2 and the 

dihalogens IBr and ICl, which absorb 492 and 465 nm respectively in carbon tetrachloride 

(CCl4; Augdahl and Klaeboe, 1965). However, the absorption cross sections of ICl and IBr 

are red shifted and weaker than that of I2, so that their concentrations would have to be 

similar to or in excess of I2 to comprise a significant interference. Care would need to be 

exercised in experiments where relatively high concentrations of these interhalogens are 

expected to be present. 

 

Trap
a
 Temperature 

(C) 

T.E
b
 

(%) 

Recovery
c
 

(%) 

Evaporation 

rate 

(mL hr
-1

) 

10% 

evaporation 

time (hr) 

LoD for 

gaseous I2 

(pptv) 

A -9 67 86 1.3 3.9 2033.7 

B -20 86 84 1.0 4.7 1595.8 

C  -50 100 105 0.2 10.8 69.1 

Table 3.2 Comparison of trap properties 

a
10cm cell 

b
 Calculated taking LoD (spec) as minimum concentration 

c
 Average from 1 to 5 hours 

 

3.2.5 Iodine losses due to interactions with ozone in hexane 

Razumovski and Zaikov (1971) previously investigated the temperature dependent 

solubility of gaseous ozone in non aqueous media including hexane. Their experiments 

were conducted by passing a stream of gaseous ozone (60 – 0.3 parts per thousand) at a 

flow rate of 0.22 L min
-1 

through hexane (30 – 150 mL) in a thermostatically controlled 

bubbler solvent trap. Ozone concentrations in hexane were then determined 

spectrophotometrically at 254 -310 nm. Although the recovery or T.E. of ozone in hexane 

was not established during this study, the authors suggested appreciable amounts of 

gaseous ozone were trapped by the solvent. This observation is supported by experiments 

within this chapter in which gaseous ozone concentrations of 140 ppbv were reduced to 20 

ppbv for 30 minutes once bubbled through hexane (20 mL) at a flow rate of 0.2 L min
-1

 

(Appendix 3.4). The presence of ozone within hexane has important implications for the in-

situ lifetime of I2. 
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Vikis and MacFarlane (1985) previously described experiments in which gaseous I2 was 

shown to react with gaseous ozone forming a solid iodine oxide (I4O9) in the absence of 

light. The reaction was suggested to proceed via a cyclic transition state producing the 

iodine species I, IO, IO2 through two reaction channels, EQ 3.22. The final product (I4O9) 

could then be produced from the successive oxidation of these primary products, EQ 3.23. 

Previously Vikis and MacFarlane (1985) established that the rate law of this reaction was 

first order with respect to [I2], as shown in EQ 3.24 where k is the temperature dependent 

reaction rate constant. 
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 (EQ 3.22) 

 

I + O3 IO+ O2                                                                                  (EQ 3.23) 

IO + O3 IO2 + O2 

 

-d[I2]/dt = k[I2][O3]                                                                            (EQ  3.24)                

 

A series of experiments were conducted to investigate I2 losses in hexane from its reaction 

with ozone under dark conditions, EQ 3.22. Ozonised gas and gaseous I2 were directly 

introduced into the experimental set up (figure 3.12) at a combined flow rate of 0.2 L min
-1 

under dark conditions and subsequently trapped using solvent trap C ( -50 C). 

Experiments were repeated with and without gaseous ozone. Molecular iodine losses with 

respect to ozone concentration, I2 concentrations and trapping time were investigated.  

 

Figure 3.9 shows the amount of I2 trapped from an I2 gas concentration of 40 ppbv during a 

90 minute trap time at several ozone concentrations. The y error bars represent the 

combined standard deviation of triplicate measurements and the calculated error of the I2 
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permeation rate (3.86 %). The x error bars represent the manufacturer quoted error of the 

mass flow controllers (2.5%, MKS).  The amount of I2 in hexane decreased exponentially 

with increasing ozone concentrations within the range 0 to 400 ppbv. The amount of I2 

trapped from the gas stream in an ozone concentration of 400 ppbv was 33% of that in the 

absence of ozone, clearly indicating its importance on the lifetime of I2 within the system. 

 

Figure 3.10 shows the trapped amounts of I2, from a gas concentration of 40 ppbv, in the 

absence and presence (70 ppbv) of ozone during different trapping periods. The y error bars 

represent the standard deviation of triplicate measurements and the established error of the 

I2 permeation rate (3.86%). The observed losses of I2 due to the presence of ozone 

proceeded at a rate constant of 0.06 nmol min
-1

 with losses ranging from 7 – 29% between 

30 – 150 minutes.  

 

Figure 3.11 shows the amounts of I2 trapped from various I2 concentrations during a 90 

minute trap time at 70 ppbv of ozone. The y error bars represent the standard deviation of 

triplicate measurements and the established error of the I2 permeation rate (3.86 %). The x 

error bars represent the quoted error of the mass flow controllers (2.5%, MKS). The loss 

rate of I2 during these conditions was 0.22 nmol ppbv
-1

 of I2, resulting in an I2 loss of 32 % 

at 40 ppbv of I2 and70 ppbv O3. 

 

Using previous literature values of the rate constant for the dark I2/O3 reaction at 25 C 

(2.25  0.19 x 10
3
 mol

-1
 dm

-3
 s

-1
; Vikis and MacFarlane, 1985), I2 loss rates can be 

determined using EQ 3.24. Taking into account a 10 minute gas residence time in the 

system under the conditions investigated, an I2 loss rate of 1.45 pmol min
-1

 is calculated at 

ozone and I2 mixing ratios of 70 ppbv and 40 ppbv, respectively.  This loss rate for I2 is 

2.4% of the observed value obtained under the same conditions from figure 3.10 (60 pmol 

min
-1

). Therefore, it is likely that the majority of the I2 loss occurs from the I2/O3 

interaction within hexane during their subsequent enhancements in concentrations. The 

corrections used for I2 losses incurred during trapping as a function of O3 concentration, 

time and gaseous I2 concentration are the inverse of the regression equation in figure 3.9 

(and those shown in the Appendix 3.5 and 3.6 respectively). 
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Figure 3.9.  Iodine lost within hexane at increasing ozone concentrations. 
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Figure 3.10 Iodine lost within hexane over time from reaction with ozone. Filled  

diamonds, observed amount in the absence of ozone; empty diamonds,  

observed amount at 70 ppbv ozone. 
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Figure 3.11. Iodine lost within hexane at increasing permeation oven flow rates. Filled  

diamonds, observed amount in the absence of ozone; empty diamonds,  

observed amount at 70 ppbv of ozone. 
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3.3 Experiments of iodide oxidation using ozone 

 

3.3.1 Experimental set-up 

 

Solvent trap

Cold bath ( -50C) 

O3

monitor

Cold bath (-5C)Cold bath (0C)

Heated blackened 

teflon tubing 

(60C)

Glass spiral 

condensor
Glass 

moisture trap

2L glass reaction 

vessel

Magnetic stirring bar

O3 generator MFC
1:1 

Drierite : Molecular     

sieve

Compressed

air

1.8 L min-1

air dilution

0.2 L min-1

ozonised air

Hydrocarbon 

trap

 

 

               3 way adjustable tap 

 

               Gas transfer lines (PFA, covered with black tape) 

 

MFC      Mass flow controller 

 

Figure 3.12. Experimental set up used to investigate ozone uptake by iodide  

solutions/seawater and quantify molecular iodine emission. 
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Figure 3.12 shows the experimental set up used for the experimental study of molecular 

iodine production from iodide solutions buffered at pH 8 (prepared within HPLC water),  

and seawater collected from the coastal waters of Cargese, Corsica (geographical 

coordinates: 42.136º N 8.596º E). The experimental set up was designed to supply dry 

ozone to the reaction vessel (2 L round bottom flask, Cole Palmer) over iodide phosphate 

buffer solution (PBS) solutions and seawater (10
-6

 - 10
-5

 mol dm
-3

). Molecular iodine 

evolved from the reaction of ozone with iodide was trapped using solvent trap C ( -50C), 

section 3.2.4, and quantified using the optimized spectrophotometric method described 

herein, section 3.2.2. 

 

While the colder temperature of trap C ( - 50 C) used in this investigation offered 

improved performance in terms of solvent evaporation and T.E., it also caused any 

moisture in the sample gas stream to condense and subsequently freeze on the sintered frit 

of the inlet, blocking the system. Great care had to be taken to ensure the sample stream 

was completely dry. The use of a Nafion box drier upstream of the solvent traps led to 

60% I2 loss, whilst chemical drying agents such as K2CO3, drierite and molecular sieve 

gave 50% to 80% I2 loss. The most suitable means of removing moisture from the gas 

stream identified was two spiral condensers in series held at 0 and -10C (20 – 60  2.2% 

total gaseous I2 loss to condensers and experimental system, section 3.5.1); these were used 

during this series of experiments, figure 3.12. 

 

The air flow rate and O3 concentrations through the experimental set up were metered and 

monitored respectively by a mass flow controller (MKS technologies) and ozone monitor 

(Model 49i ozone analyzer, Thermo Scientific). Ozone was produced from dry 

hydrocarbon-free air by its exposure to a commercial ozone generator (185 nm excitation, 

UVP). Prior to each run, the experimental set up was equilibrated with ozone at a flow rate 

of 0.2 L min
-1

 until a constant concentration of 70 ppb  2.5% was observed. The buffered 

iodide solution/seawater sample (20 mL) was then administered into the reaction vessel 

using a gas tight syringe (Samco) via a Luer lock tap. Initial iodide concentrations of the 

order of 10
-6

 - 10
-5

 mol dm
-3

(i.e., a factor of 10 - 100 higher than in surface seawater) were 

used so that the minimum LoD of the optimized spectrophotometer was met. The seawater 
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matrix (20 mL) was spiked with an aqueous iodide solution (0.2 mL, 1 x 10
-3

 mol dm
-3

) and 

thoroughly mixed prior to its addition to the reaction vessel.  

 

Following each experimental run of 1 to 5 hours, both the reaction chamber and the solvent 

trap were removed and analysed for I

, I3


 and I2 using a UV/Vis spectrophotometer 

(section 3.2.2). Triodide in aqueous solution was not present at detectable concentrations 

for any of the experiments. Calibrations used for the quantification of iodine and iodide are 

given in sections 2.31 and 2.32.  

 

3.3.2 Ozone deposition control experiments 

Figure 3.13 shows results of control tests conducted on the experimental system at an 

ozone concentration of 100 ppbv. The control experiments were conducted to establish 

whether ozone was deposited to the experimental system in the absence of solution, to 

HPLC water (20 mL) or to the phosphate buffer solution (pH 8, 20 mL) in the absence of 

iodide. The peaks in ozone concentration at  300 seconds are caused by an increase in 

internal pressure within the system as solutions were injected into the reaction chamber.  

 

The uptake of ozone to the system in the absence of any solution was small and very 

similar to that observed in the presence of HPLC water, 5.1 x 10
-3

 ppbv s
-1

 and 5.5 x 10
-3

 

ppbv s
-1

 respectively (7% over 30 minutes). These losses can be attributed to ozone 

deposition to the walls of the experimental system. This was despite every effort being 

made to minimize ozone deposition within the system, including heating all gas lines (60 

C) downstream of the reaction chamber using heating tape, figure 3.12. The final ozone 

deposition control test was conducted on phosphate buffer (0.1 mol dm
-3

) solutions used for 

the iodide suspensions used within the experiments. Observed ozone loss to the PBS buffer 

was minimal (8.5 %) during the 30 minute experiment time and followed a first order loss 

rate. This error was taken into account when calculating the margins of error of ozone 

uptake by iodide solutions at pH 8 within this study. 
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Figure 3.13 Control experiments of ozone loss during exposure to the experimental  

System (blue squares), HPLC water (pink diamonds) and pH 8 phosphate buffer (yellow 

triangles). 

 

3.3.3 Iodine emission control experiments  

Iodine blank tests using HPLC water and phosphate buffer (pH 8) from the experimental 

system in the presence of ozone (0.2L min
-1

, 100 ppbv) were established prior to the 

iodide/seawater experiments. Iodine blanks were also conducted between each of the 

iodide/seawater experiments to establish any carry over between experiments. Iodine was 

not observed above the spectrophotometric LoD (20.3 nmol dm
-3

), under the experimental 

conditions highlighted in section 3.2.1, for any of these control experiments. This would 

suggest that the iodine carry-over between experiments was negligible and that any 

subsequent I2 emissions from the system are a direct result of the interaction of ozone with 

iodide.  

 

3.4 Enhanced ozone uptake by seawater and iodide solutions 

Enhanced ozone uptake was observed on the introduction of both buffered iodide solutions 

in phosphate buffer solution (PBS) and seawater during each experiment. Exponential 

curves fit the observed data with R
2 

values of 0.99 and 0.95 for experiments involving the 

buffered iodide solutions (pH 8) and seawater respectively, figures 3.14 and 3.15.  The y 

error bars in figures 3.14 and 3.15 represent the observed error of the ozone monitor ( 2.5 

ppbv) used during the investigation. In the iodide solutions (pH 8), the O3 concentrations 
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dropped to 30 and 25 ppbv, from an initial concentration of 70 ppbv, over 10 minutes for 

iodide concentrations of 5 x 10
-6

 and 1 x 10
-5

 mol dm
-3

 respectively, figure 3.14a. Similarly, 

O3 concentrations were observed to drop to 60 and 25 ppbv over 10 minutes for natural 

seawater and 1 x 10
-5

 mol dm
-3

 spiked iodide in seawater respectively, figure 3.15a and 

3.15b. These observations demonstrate the rapid rate of reaction between O3 and iodide in 

the laminar layer of the liquids (reactions 3.4 to 3.6). The O3 uptake is pseudo first order 

with respect to ozone concentrations at the experimental conditions. The reaction kinetics 

of ozone uptake by iodide is postulated as second order under natural conditions (Garland 

et al., 1980). As the iodide concentrations used during these laboratory experiments were a 

factor of 1.7 - 3.4 x 10
3 

times larger than the ozone concentrations, pseudo first order 

kinetics were employed as given in EQ 3.25, where kobs is the observed ozone uptake rate 

constant and t is time. 

 

ln [O3] = kobs t  ln[O3]0                                                                                     (EQ 3.25) 

 

The average measured pseudo first order rate constants for ozone loss over buffered 

solutions (pH 8) were 1.7 x 10
-3

 s
-1

 and 2.2 x 10
-3

 s
-1

 for iodide concentrations of 5 x 10
-6

 

and 1 x 10
-5

 mol dm
-3

 respectively. Similarly the average measured pseudo first order rate 

constants of seawater were 5.9 x 10
-4

 s
-1

 and 2.0 x 10
-3

 s
-1

 for natural seawater and seawater 

spiked at an iodide concentration of 1 x 10
-5

 mol dm
-3

, respectively.  
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Figure 3.14. a) Exponential uptake of ozone by iodide solutions (pH 8). b) Pseudo first 

order ozone uptake corresponding to 3.14a. Empty diamonds, 5 x 10
-6

 mol dm
-3

; filled 

diamonds, 1 x 10
-5

 mol dm
-3

. 
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Figure 3.15. a) Exponential uptake of ozone by seawater. b) Pseudo first order ozone 

uptake corresponding to 3.15a. Empty diamonds, natural seawater; filled diamonds, 1 x 10
-5

 

mol dm
-3

 spiked seawater. 
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Several investigations over recent decades have shown that dry ozone deposition to surface 

seawater is its principal removal pathway operating within the MBL (Muller, 1992; 

Kramm, et al., 1995). The observed deposition velocities reported in the literature vary 

significantly with values ranging from 0.01 to 0.12 cm s
-1

 (Gallagher et al., 2001; 

Lenschow et al., 1982; Galbally and Roy, 1980; Oh et al., 2008). This wide range of 

deposition velocities is controlled by the uptake efficiency of seawater which is limited by 

both dynamic physical and chemical processes (Lenschowet al., 1982; Nightingale et al., 

2000).  

 

The ozone uptake potential of seawater can be considered as a mechanism involving two 

layers, an overlying air and surface water layer. The overlying air layer offers an 

aerodynamic resistance (ra) to ozone deposition from the air to seawater and the surface 

water layer provides an aqueous phase resistance (rs). The total resistance (rt) is the sum of 

the resistance in these layers, as shown in EQ 3.26, which is related to the deposition 

velocity (vd) by EQ 3.27 (Chang et al., 2004; Gallagher et al., 2001). 

 

rt = ra + rs                                                                                                             (EQ 3.26) 

 

vd = (ra + rs)
-1                                                                                                                                                            

(EQ 3.27) 

 

The dependence of physical processes such as wind speed and sea surface roughness 

(Galbally and Roy, 1980; Gallagher et al., 2001) on deposition velocities has previously 

been investigated.  Being relatively insoluble, atmospheric ozone deposition is determined 

(95%) by rs which itself is controlled by physical factors such as wind speed and sea 

surface roughness as well as chemical reactions in the laminar layer (Lenschow, 1982). 

Equation 3.28 represents the relationship between these resistances and the flux (F) of 

ozone from air to sea, where Cw, H and Cg are the aqueous phase concentration of ozone, 

the Henry’s law constant and the gas phase concentration of ozone respectively. Within all 

the work described in the chapter Cg>>H Cw, therefore EQ 3.28 can be simplified to EQ 

3.29. Finally vd can be incorporated into EQ 3.29 by substituting for the inverse of total 
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resistance, as shown in EQ 3.30, so that the flux of ozone can be estimated. The vd values of 

iodide in PBS and seawater are shown in table 3.3. 

 

F = (Cg (H Cw)) / (ra + rs)
-1

                                                                                (EQ 3.28) 

 

F = Cg/ (ra + rs)
 -1

                                                                                                 (EQ 3.29)         

 

F= Cg  vd                                                                                                                                                                    (EQ 3.30)   

 

The term ra is determined by mixing in the atmosphere and will be similar in value to the 

corresponding resistance to the transfer of heat and other trace gases (Garland et al., 

1980).The ra within this work does not represent that within the atmosphere, and as such 

the results obtained cannot be directly translated to environmental conditions. However, ra 

in this study can be determined from the vd using experimental conditions at which the rs is 

zero. Galbally and Roy (1980) previously determined ra using very high iodide 

concentrations (0.02 mol dm
-3

) at which rs would have been negligible. 

 

The ra for the reaction vessel used within this study, figure 3.12, was determined from the 

measured vd for a 0.02 mol dm
-3

 aqueous solution of iodide. This was established under the 

same experimental conditions used in the study (an ozone concentration of 70 ppbv at a 

flow rate of 0.2 L min
-1

). Equations 3.31 (Galbally and Roy, 1980) and 3.32 were used to 

estimate ra. The 5/6
th

 is an empirically determined factor in equation 3.31 where t1/2(surface) is 

the half life of ozone within the reaction vessel, t1/2(measured) is the measured half life of 

ozone during the exposure to the 0.02 mol dm
-3

 solution, and t1/2(control) is the observed half 

life in an empty vessel. The mean t1/2 (surface)
-1

 for the reaction chamber studied under 

conditions of zero rs was found as 1.4  10
-1

 s
-1

 (the result of triplicate measurements of 

t1/2(measured) and t1/2(control)). 

 

t1/2 (surface)
-1

 = t1/2(measured)
-1
 5/6 t1/2(control)

-1
                                                         (EQ 3.31) 

 

vd = (V/A)  t1/2 (surface)
-1

                                                                                     (EQ 3.32) 
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The vd of ozone at an iodide concentration of 0.02 mol dm
-3

 was calculated using EQ 3.32, 

where V is the headspace volume of the reaction chamber (2.0  10
-3

 m
3
) and A is the 

surface area of the liquid surface (4.9 x 10
-3

 m
2
). The calculated vd was 5.7  10

-2
 m s

-1
, 

hence using EQ 3.27 (assuming rs is zero for the experiment) the ra value inferred from this 

value was 17.7 m
-1

s. This ra value is considerably lower than previously calculated for 

experimental systems used by Parthipan (2008), 2675 m
-1

 s, and Garland et al. (1980), 108 

m
-1

 s. These values reflect the differences in gaseous ozone flow rates and reaction vessels 

employed during these studies. The calculated ra is specific to the experimental set up used 

in this chapter and can be used to calculate the rs of the solutions investigated using EQ 

3.27, as shown in table 3.3 and 3.4.  

 

Theoretical rs values can be determined for different concentrations of iodide solutions 

using EQ 3.33 (Garland et al, 1980) by considering the molecular ozone diffusion transfer 

into a liquid film, where H is the Henry’s law constant (3.0 at 20 
o
C), D is the molecular 

diffusivity of ozone in water (1.2 x 10
-9

 m
2
 s

-1
at 20 

o
C), and  is the integrated chemical 

loss rate, given by EQ 3.34. In EQ 3.34, Ci is the concentration of iodide and ki represents 

the second order kinetic rate constant for the aqueous O3 + I

 reaction at pH 8 (2 x 10

9
 dm

3
 

mol
-1

 s
-1

, Garland et al., 1980; 1.2 x 10
9
 mol

-1
 s

-1
, Liu et al., 2001). Calculated theoretical rs 

values using the ki values from Garland et al. (1980) and Lui et al. (2001) for different 

iodide concentrations are tabulated against previously observed values and the values 

derived in this study, table 3.3. Figure 3.16 compares the calculated theoretical rs values in 

table 3.3 against the observed rs values of seawater and iodide solutions in this study. 

 

rs = H / ( D)
1/2

                                                                                                   (EQ 3.33) 

 

 = kiCi                                                                                                                                                                           (EQ 3.34) 

 

The rs values of the iodide PBS solutions (5 and 10 mol dm
-3

 iodide in PBS) observed in 

this study are between 90 – 118% of the calculated theoretical values (figure 3.16). 

Enhanced values could be the product of iodide depletion in the thin aqueous layer, 

associated with these experiments. A previous laboratory study (Parthipan, 2008) of 
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gaseous ozone interaction with iodide in PBS solutions, produced rs values which were 

1.5 times larger than the calculated theoretical values. The difference between the 

observed and theoretical rs values in this chapter is appreciably smaller as the aqueous 

iodide solutions were continuously stirred allowing faster iodide replenishment in the 

surface laminar layer.   

 

The observed rs value of the 5 mol dm
-3

 iodide in seawater in this study was 102 -133% of 

the theoretical values, similar to that observed for the iodide in PBS solutions. However, 

the observed rs values for seawater in the absence of spiked iodide was considerably lower 

than expected, between 56 – 72% of the calculated theoretical value (figure 3.16). This is in 

good agreement with previous rs observations (Aldaz, 1969; Lenschow et al.,1982; 

Regener, 1974), figure 3.16 and is likely to be due to O3 reactions with dissolved organic 

carbon (DOC) in seawater (as discussed in section 3.6).  

 

Solution O3 deposition 

velocity, vd 

(cm s
-1

) 

O3 flux 

(nmol m
-2

 s
-1

) 

Liquid phase 

resistance to O3, rs(m
-

1
 s) 

Seawater 0.032 0.92 3065 

 0.031 0.91 3179 

 0.031 0.91 3179 

average 0.031  2.1% 0.91  2.1% 3141  2.1% 

    

15 mol dm
-3

 I

 in  0.148 4.28 656 

seawater 0.109 3.12 898 

 0.111 3.17 879 

average 0.123  19.0% 3.52 19.0% 811  19.0% 

    

5 mol dm
-3

 I

 in PBS 0.103 2.96 955 

 0.110 3.16 889 

 0.097 2.78 1124 

average 0.103  6.2% 2.97 19.0% 994  6.2% 

    

10 mol dm
-3

 I

 in PBS 0.115 3.30 855 

 0.129 3.70 753 

 0.151 4.33 645 

average 0.132  13.8% 3.78  13.8% 747  13.8% 

    

Table 3.3 Measured vd and rs values of ozone to buffered iodide solutions  

and seawater. 
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Iodide solution (mol dm
-3

) Observed rs (m s
-1

) Theoretical rs (m s
-1

) 

1.7  10
-1

 6
a
 5 - 6 

3.4  10
-2

 6
a
 11 - 14 

1.0  10
-3

 - 61 -79 

3.3  10
-4

 164
b
 107 - 138 

1.0  10
-4

 - 194 - 250 

1.0  10
-5

 747
c
 612 - 791 

Seawater 1.0  10
-5

 811
c
 612 - 791 

6.7  10
-6

 730
a
 748 - 966 

5.0 x 10
-6

 994
c
 866 - 1118 

6.7  10
-7

 2400
a
 2800 - 3055 

2.0  10
-7

 1100 - 4400
d
 4330 - 5590 

Seawater ~ 2.0  10
-7

 3141
c 

2400 – 3400
e 

1690 - 1890
 f
 

650 – 1250
g 

1000
h
 

4330 - 5590 

Freshwater 9000
i
 - 

Table 3.4 Comparison of rs values amongst buffered iodide solutions and seawater. 
a 

Garland et al. (1980). 
b 

Rajendran (2008). 
c
Work in this chapter. 

d
Galbally and Roy (1980). 

e
Aldaz (1969) 

f
Lenschow et al. (1982) 

g
Regener (1974) 

h
 Gallagher et al. (2001) 

i
 Wesley et al. (1981) 
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Figure 3.16 Comparison of observed and predicted rs values tabulated in table 3.2. Black 

line, predicted rs values using ki = 2.0 x 10
9
 mol

-1
 dm

-3
 s

-1
 (Garland et al., 1980; EQ 3.33, 

3.34); dashed line, predicted rs values using ki = 1.2 x 10
9
 mol

-1
 dm

-3
 s

-1
 
 
(Liu et al., 2001; 

EQ 3.33, 3.34); yellow diamonds, observed iodide PBS solution rs values in this work; 

filled red circles, Garland et al. (1980) iodide solution rs values; filled blue square, 

Parthipan (2008) iodide solution rs value; empty diamond, Aldaz (1969) seawater rs value; 

empty square, Lenschow et al. (1982) seawater rs value; empty circle, Regener (1974) 

seawater rs value; empty triangles, observed seawater rs values in this work. 

 

 

3.5 Comparison of observed ozone uptake coefficients to theoretical estimates 

The effective ozone uptake coefficient (eff) for O3(g) of the 5.0 x10
-6

 and 1.0 x10
-5

 M 

KI(aq) PBS solutions used in this study was obtained from the rate of decrease of [O3(g)] 

during the calculated contact time (t = 600 s). These values were compared to calculated eff 

values from a previous study conducted by Garland and Curtis (1980). As the first order 

rate constant (kO3, s
-1

) for the heterogeneous O3 + I
 

reaction is related to the number of 

collisions on the KI(aq) surface and the fraction of the collisions that undergo uptake, eff,  

the concentration of O3 (g) removed at the KI(aq) surface is given by EQ 3.35 (Sakamoto 

et al., 2009), where A is the KI(aq) surface area (49 cm
2
), uav is the mean thermal velocity 

of O3(g), ((8RT/m)
0.5
 3.6 x 10

4
 cm s

-1
) and V is the volume over the KI(aq) solution 

(1980 cm
3
). The loss rate of O3(g) is first order with respect to [O3(g)],thereforeeff is given 

by EQ 3.36 (Sakamoto et al., 2009). 
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effgO
V

uA
gOk av

O )]([
)4/(

)]([ 333 
                                                            

(EQ 3.35) 

 

tuVA

tk

av

O
eff

)4/(/

3

                                                                                   
(EQ 3.36) 

 

Under conditions where liquid phase reaction drives uptake from the gas phase, the O3 

uptake coefficient is expected to take the form of EQ 3.37 (Davidovits, et al., 2006), where 

HO3 is the Henry’s law constant for ozone (1.13 M atm
-1

), R is the gas constant (K
-1

 atm
-1

 

M
-1

), T is the ambient temperature (293 K), and D is the aqueous diffusion coefficient of 

ozone (1.18 x 10
-5

 cm
2
 s

-1
).  The eff values calculated within this study (at 70 ppbv O3(g)), 

and those of Garland and Curtis (1980), (at 40 ppbv O3 (g)), were fitted to this relationship 

(Figures 3.17 and 3.18). 

 

av

OsO
eff

u

DbulkIkRTH
33

][4 



                                                             (EQ 3.37)
 

 

Iodide has previously been shown to preferentially partition to the air/water interface of 

bulk aqueous solutions (Ghosal et al., 2005; Cheng et al., 2008). The reaction of I
-
(aq) with 

O3(aq) is diffusion controlled with rate constants (ks) in the literature of between 1.2 x 10
9
 

mol
-1

 dm
-3

 s
-1 

(Liu et al., 2001) to 2.0 x 10
9
 mol

-1
 dm

-3
 s

-1
(Garland et al., 1980) at 293 K 

and is believed to proceed predominantly at the air/water interface (Sakamoto et al., 2009). 

Both these ks values were considered when fitting the eff values calculated within this study 

and those of Garland and Curtis (1980). 

 

Figures 3.17 and 3.18 show a plot of ozone uptake coefficient against the square root of the 

aqueous iodide bulk concentrations ([I
-
(bulk)], EQ 3.37. The fitting curves show that the 

observed ozone uptake coefficients of Garland et al. (1980) and those from work in this 

chapter exhibit a square root dependence on [I
-
 (bulk)]  over the concentration range  
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2 x 10
-7

 to 2.0 x 10
-5

 M. Over higher [I

 (bulk)]  ranges, the increase in eff  plateaus (Figure 

3.18), which reflects the mass transfer limitations experienced by ozone deposition into the 

laminar layer at higher [I
-
(bulk)] concentrations (Sakamoto et al., 2009). The discrepancies 

between the observed ozone uptake coefficients and the fitting curves likely reflect the 

effect of segregation of iodide from the bulk into the laminar layer. This is expected to be 

of particular importance at low [I
-
(bulk)] such as those observed in the worlds oceans 

(Cheng et al., 2008). The observed ozone uptake coefficients of Garland et al. (1980) are 

slightly higher than those from work in this chapter due to the lower gaseous ozone 

concentrations employed during their experiments. Sakamoto et al. (2009) previously 

established that ozone uptake coefficients of KI (aq) solutions decrease at high ozone 

uptake.  
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e
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Figure 3.17 Ozone uptake coefficients as a function of the square root of [I
-
 (bulk)] in PBS. 

Dashed line, fitting curve using EQ 3.37 and ks = 1.2 x 10
9
 mol

-1
 dm

-3
 s

-1
(Liu et al., 2001); 

filled line, fitting curve using EQ 3.37 and ks = 2.0 x 10
9
 mol

-1
 dm

-3
 s

-1
; pink squares, eff 

values from Garland and Curtis (1980); blue diamonds, eff values from this work. 
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Figure 3.18 Ozone uptake coefficients as a function of the square root of [I

-
 (bulk)] in PBS. 

Dashed line, fitting curve using EQ 3.37 and ks 1.2 x 10
9
 mol

-1
 dm

-3
 s

-1
(Liu et al., 2001); 

filled line, fitting curve using EQ 3.37 and ks 2.0 x 10
9
 mol

-1
 dm

-3
 s

-1
.   

 

3.6 Molecular iodine evolution from salt solutions via the I

 + O3 interaction  

 

3.6.1 Molecular iodine losses attributed to wall loss 

Previous laboratory experiments involving gaseous I2 (Garland and Curtis, 1980; Parthipan, 

2008) have reported appreciable losses of iodine caused from condensing on the walls and 

tubing of the apparatus (13  40 %). Prior to conducting any of the experiments in this 

chapter, all tubing exposed to gaseous I2 was continuously heated (60 C) to minimize 

losses (section 3.3.1). A series of control experiments were also conducted to establish I2 

losses attributed to wall losses under the experimental conditions utilized.  

 

As established previously, ozone reacts with I2 via a dark reaction both in the gas phase and 

in hexane (section 3.2.5), hence these wall loss experiments were conducted in ozone free 

nitrogen (zero grade, BOC). Experiments consisted of triplicate measurements of gaseous 

I2 trapped under optimized conditions directly from the permeation oven (maximum output 

 40 ppbv) and after being passed through the experimental system. The difference in the 

gradients of these two curves was attributed to I2 condensing onto the walls of the 

apparatus. Molecular iodine wall losses were determined as a function of time and gaseous 
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I2 concentration via this method. The fixed error bars on the mean values in figures 3.19 

and 3.20 represent the propagation of the relative standard deviation (RSD) of the triplicate 

measurements, the quoted MFC error (2.5%) and the calibration error. 

 

Figure 3.19 shows total I2 trapped observed as a function of time during an experiment with 

a constant I2 concentration ( 40 ppbv). Gaseous I2 was found to condense to the walls of 

the system at a constant rate of 0.05 nmol min
-1

 under the experimental conditions. 

Molecular iodine wall losses were observed to range between  60 – 24 % for trapping 

periods between 30 – 120 minutes.  

 

Figure 3.20 shows total I2 trapped observed as a function of gaseous I2 concentration with a 

constant trap time of 90 minutes. Gaseous I2 was found to condense to the walls of the 

system at a constant rate of 0.13 nmol per ppbv of gaseous I2. Molecular iodine wall losses 

were observed to range between  58 – 22 % for gaseous I2concentrations between 10 – 40 

ppbv.  Appendices 3.7 and 3.8 show the plots for I2 lost against I2 observed used for 

correcting wall losses during experiments conducted in this chapter. 
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Figure 3.19. Total amount of I2 trapped with respect to time. Empty squares - I2 trapped 

from permeation source; filled squares - I2 trapped after passed through the experimental 

system. 
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Figure 3.20. Total amount of I2 trapped (during 90 minutes) with respect to gaseous [I2]. 

Empty squares, I2 trapped from permeation source; filled squares, I2 trapped after passage 

through experimental system. 

 

 

3.6.2 Molar balance of iodine species in experimental system 

A molar balance of total iodine within the experimental set up was carried out at the end of 

each experiment. This was done by comparing the total molar amounts of I

, I2 and I3


 in 

the aqueous solution and the gaseous I2 trapped in hexane. The number of moles of I
 

lost 

from the reaction vessel on its exposure to ozone in each experiment was converted to 

equivalent amounts of I2 and compared with that trapped during the experiments, along 

with any I2 remaining in the reaction vessel as I3

. A mathematical expression for the molar 

balance given as the total percentage I2 detected (% I2 det) is shown in EQ 3.38, where  

indicates change, n is the number of moles and subscripts reactor and trap denote the 

vessels analysed. Using this expression, all of the iodine within the system can only be 

accounted for when the molar amount of I2 corresponding to the loss of I

 is detected as 

gaseous I2 and aqueous I3
-
, in the trap and reactor respectively. However, I3


 was not 

identified in the aqueous solutions of any experiment, probably due to it being below the 

LoD of the spectrophotometer at the initial low aqueous I

 concentrations employed. 
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%I2det = ( (2[nI2]trap + 3[nI3
-
]reactor) / ( [nI

-
]reactor) )  100                            (EQ 3.38) 

 

3.6.3 Evolution of I2 from aqueous iodide in the presence of gaseous ozone 

The first series of experiments were conducted to elucidate the production rates of I2 and 

the evolution of aqueous I

 from the exposure of ozone (70 ppbv) to PBS at I

 

concentrations of 10 mol dm
-3

.  The mean values of gaseous I2 evolved and I

 lost from 

PBS are shown in figure 3.21. These molar amounts are obtained from a two step 

correction of the initial amounts measured spectrophotometrically. The first correction 

involved correcting the measured I2 molar amounts for time dependent losses from the I2 + 

O3 dark reaction in air and hexane at 70 ppbv ozone (figure 3.10, Appendix 3.5). These 

values were then corrected for the time and [I2](g) dependent losses to the walls and tubing 

of the apparatus observed in figures 3.19 and 3.20, (Appendix, figures 3.7 and 3.8). 

Therefore the final I2 amounts plotted in figure 3.21 represent the amounts of I2 directly 

emitted from the solutions in the presence of ozone. The I2 y errors are estimated through 

the propagation of the total errors of each correction, the MFC error during the experiment 

(2.5%), and the mean calibration error. The I
 

y errors reflect the propagation of the 

standard error of triplicate measurements, the MFC error (2.5%) and the calibration error. 

Quantitative I2 and I

 determinations were carried out against an aqueous potassium iodide 

calibration curve (225 nm) run daily (section 2.7.1, figures 2.31 and 2.32).  

 

The rate of I2 production was determined as 7.2 x 10
-5

 mol m
-2

 d
-1

 during exposure of a 

PBS surface area of 4.9  10
-3

 m
-2 

to 70 ppbv of ozone at a flow rate of 0.2 L min
-1

. The 

observed iodide loss in PBS was linear with respect to time during the experiments and 

proceeded at a loss rate of 1.1 nmol min
-1

. Using EQ 3.38, the total percentage of iodine 

detected as gaseous I2 in the PBS experiments was  48 %. The total percentage iodine 

detected can be assumed to be as high as  49 % from the direct emission of IO previously 

observed during the heterogeneous reaction of gaseous ozone with aqueous potassium 

iodide ([I2](g)] > 100[IO(g)], Sakamoto et al., 2009). The remaining iodine unaccounted for 

in the experimental system is likely to have been present as aqueous dissolved organic 

iodine (DOI), HOI, IO3

 and as undetectable concentrations of I3


.  
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Sherrill et al. (2004) previously reported that the ozonation of artificial seawater alters 

iodine speciation in aqueous systems such that DOI and I

 concentrations decrease and 

[IO3

] increases systematically with increasing exposure to ozone. At an ozone 

concentration of 800 mV (oxidative reductive potential) in seawater, both I

 and DOI 

concentrations decreased to   LoD whereas IO3

concentrations increased by 155 %. This 

observation is supported by work conducted by Cheng et al. (2008) and could 

mechanistically proceed via EQ 3.7 to 3.9. A large amount of iodine at the end of the 

experiments in this chapter could have been present in aqueous solution as IO3

, which 

would explain why only half of the iodine in the experimental system could be accounted 

for. 
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Figure 3.21 Gaseous I2 emitted and aqueous I


 upon ozonation of 10 mol dm

-3
 PBS as a  

function of time. Filled diamonds, I2(g); empty squares, I
-
(aq). 

 

 

3.6.4 Rate of I2 evolution as a function of [O3] and [I

] 

A series of experiments were conducted to investigate gaseous I2 evolution rates as a 

function of both gaseous ozone and aqueous iodide concentrations. The established y error 

bars on figures 3.22, 3.23 and 3.24 are from the propagation of the quoted MFC error 

(2.5%), the calibration error and the established errors on the applied corrections (from 

figures 3.9 and 3.11, 3.20 respectively). Figure 3.22 shows the evolution of I2(g) from 



                                                3. Evidence for the abiotic production and direct emission                

                                                    of I2 from surface seawater in the presence of O3 

 112 

seawater and PBS as a function of ozone concentration at a fixed iodide concentration (15 

mol dm
-3

) over a 90 minute trap time. The rate of iodine evolution increased 

approximately linearly with ozone concentration up to 100 ppbv, but there was clearly 

strong evidence of the rate of evolution reaching an upper limit at higher ozone 

concentrations. Garland and Curtis (1981) report a similar observation in that the release of 

iodine vapour from 12.5 g dm
-3

 iodide solutions in the presence of ozone (2 L min
-1

) was 

reduced at concentrations above 100 ppbv O3.  A possible explanation for these 

observations is a saturation of ozone at the liquid surfaces at increasing gaseous ozone 

concentrations, limiting the rate of mass transfer reducing the potential for further ozone 

deposition and subsequent gaseous I2 evolution.  

 

It was observed that the rate of I2 evolution from seawater was 20 - 50 % that of the PBS. 

This supports comparisons of a previous laboratory study of iodine evolution rates under 

similar conditions (Garland and Curtis, 1981) in which I2 evolution from seawater ranged 

between 45% - 68% of that from buffered solutions at several gaseous ozone 

concentrations.  This reflects both the competition of iodide with other species reactive to 

ozone (Garland et al., 1980), which are not present in the PBS, reducing the efficiency of 

iodide oxidation in natural seawater and the presence of insoluble surface surfactants 

reducing gas transfer rates (Frew et al., 2004). The [I

(aq)]/[DOM(aq)] ratios were 

considerably higher in the seawater used in this study than those typically observed 

naturally (100 – 150 times, assuming 1- 2 ppm [DOM]). Hence the competing surface 

reactions of DOM with ozone under natural conditions are likely to be of greater 

significance (section 3.6.1 and 3.6.2).       
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Figure 3.22 I2 emitted from seawater and PBS as a function of ozone concentration. Filled 

diamonds, PBS experiments; empty diamonds, seawater experiments. 

 

Similarly, Figure 3.23 shows the evolution of I2(g) from seawater (15 mol dm
-3

 of I

) as a 

function of ozone flux to the surface. Ozone flux to the surface was calculated using the 

measured gaseous ozone concentrations and the experimentally determined vd (0.12 cm s
-1

) 

for 15 mol dm
-3

 I

 in seawater) using EQ 3.30 (table 3.3). The results suggest air-aqueous 

interface mediated reaction kinetics, with ozone mass transfer limitations occurring at 

higher [O3(g)]. Such kinetic behavior for the reaction of ozone with iodide at air-aqueous 

interfaces (Garland and Curtis, 1981; Sakamoto et al., 2009; Hayase et al., 2010) and 

several other species (Mmereki and Donaldson, 2003; Clifford et al., 2008) has previously 

been observed, and is consistent with a Langmuir-Hinshelwood mechanism for the O3 + I

 

reaction. The Langmuir-Hinshelwood mechanism (Adamson, 1990) for surface reactions 

proposes that reactions occur between co-adsorbed species, in which one reactant is more 

strongly adsorbed and the other is in rapid equilibrium between bulk and surface phases. It 

has been previously established that ozone absorbs on the aqueous laminar layer (Clifford 

et al., 2008; Sakamoto et al., 2008). Assuming Langmuir absorption behavior of O3(g) to 

the aqueous laminar layer from the gas phase, the dependence of the measured I

(aq) loss 

rate (kobs) can be described using EQ 3.39 where k
II 

represents the two dimensional reaction 

rate coefficient, N
surf 

is the maximum number of surface sites available to ozone and B 

represents the ratio of desorption to adsorption rate coefficients involving both phases 
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(Donaldson, 1997; Clifford et al., 2008). The solid line in figure 3.23 shows a fit of the data 

to the Langmuir-Hinshelwood mechanism, taking (k
II
N

surf
) as a single parameter. The A 

parameter obtained from the fit to the data was 5 x 10
-6

, approximately 1000 times smaller 

than previously observed for heterogeneous interfacial ozone reactions with chlorophyll 

(3.6 x 10
-2

, Clifford et al. 2008). The differences in this A parameter likely reflect the 

differences in aqueous surface area available for ozone deposition. The B parameter of 

ozone can vary depending largely on the aqueous concentrations of halide and organic 

species. The value determined from the fit to the data was 7.4 x 10
11

 molecules cm
-3

. 
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Figure 3.23 I2 emitted from seawater (15 mol dm

-3
) as a function of ozone  

flux to the surface. Empty diamonds, triplicate measurements; Filled line, fitted Langmuir 

Hinshelwood mechanism (EQ 3.39). 

 

Figure 3.24 shows I2 evolution as a function of aqueous iodide concentration in PBS at a 

fixed gaseous ozone concentration (70 ppbv) and a trap time of 60 minutes. The rate of 

iodine evolution increased linearly (R
2
 1.0) between the aqueous iodide concentrations 

investigated (10 – 40 mol dm
-3

).  During each experiment iodine, measured as gaseous I2, 

accounted for  40% of the initial iodide concentrations in PBS.  The rate of I2 evolution 
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was observed to be directly proportional to the aqueous iodide (10 – 40 g dm
-3

) and 

gaseous ozone concentrations (18 – 70 ppbv).  Note that the observed ozone uptake 

coefficients of both Garland et al. (1980) and those from work in this chapter exhibit a 

square root dependence on [I
-
 (bulk)] (figures 3.17 and 3.18), whereas I2 production via the 

O3 + I
-
 reaction directly increases with [I

-
 (bulk)] (Garland et al., 1980; Garland and Curtis, 

1981; Lui et al., 2001).  

 

Because of the multiple non-linear effects of chemical and physical conditions on I2 flux 

rates (not least the laminar layer thickness which will influence the rate of mass transfer of 

I2 and available time for O3 to react with I
-
), extrapolating I2 flux rates from these 

laboratory studies to environmental conditions is outside the scope of this study.  However, 

these experiments have confirmed the potential for I2 emission, at much lower O3 and I
-
 

concentrations than have been used in several other studies (Sakamoto et al., 2009; Hayase 

et al., 2010).   In the next sections, the effects of dissolved organic material on iodine 

emissions are discussed. 

 

y = 1.96x

R
2
 = 1.00

0

20

40

60

80

0 5 10 15 20 25 30 35

[I
-
] (µmol  dm

-3
)

 I
2
 e

m
it

te
d

 (
n

m
o

le
s

)

 
Figure 3.24. The quantity of I2 emitted per hour as a function of aqueous iodide 

concentration in PBS at 70 ppbv [O3(g)]. 
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3.7 Study of the effect of DOC concentrations on O3 deposition and I2 evolution 

Dissolved organic material in seawater is a complex organic mixture consisting of various 

functionalities; due to its complexity the components within it have not previously been 

identified. Dissolved organic carbon concentrations in seawater vary significantly between 

locations depending on geochemistry and season but have been reported to be in the range 

0.3 - 2.0 ppm (Akkanen, 2002). The constituents of DOM in surface seawaters are 

considered to be predominantly humic substances (HS) with a global average HS 

contribution of the order of 50% (Thurman, 1985). The remainder of DOM is considered as 

non-humic material and constitutes the labile fraction of the material consisting of mainly 

carbohydrates, organic acids and fatty acids. A large portion of HS in natural waters (54-

68%, Ma et al., 2001) consist of fulvic acids (FA) which are known to be enriched in the 

laminar layer of surface seawaters and stable in solution for long durations (Calace, 2004).  

 

The effect of organic surfactants in reducing gas transfer velocities in the surface ocean has 

long been recognized. The presence of insoluble surfactant films (slicks) act as a barrier to 

gas exchange, either by forming an insoluble layer on the sea surface (Springer and 

Pigford, 1970) or by providing a secondary liquid phase that provides a resistance to mass 

transfer (Liss, 1983).  

 

Goldman et al. (1988) previously reported that gas transfer velocities could be influenced 

by biological activity in the surface ocean due to the exudation of soluble surface active 

material by phytoplankton. Supporting evidence (Frew et al., 1990; Nightingale et al., 

2000) from laboratory experiments conducted on seawater and tracer experiments in the 

North Sea have shown that gas transfer velocities correlate inversely with increasing bulk 

water chlolophyll, DOC, and coloured dissolved organic matter (CDOM) concentrations. 

Frew et al. (1990) previously stated that the presence of such soluble surfactants can alter 

the hydrodynamic properties of the ocean surface and that the presence of these compounds 

can reduce gas transfer velocities even in the presence of breaking waves. The implications 

of this are that gas transfer between the ocean and overlying air is not purely a physical 

process but that surface chemistry, particularly in biologically productive regions, also 

plays an important role. Frew et al. (2004) previously confirmed this by demonstrating that 
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gas transfer velocities were more closely correlated to the mean square wave slope than to 

wind speed. 

 

Martino et al. (2009) recently reported observing the production of the VOICs CH2I2, 

CHClI2 and CHI3 in seawater when exposed to ambient levels of gaseous ozone. The 

results within this study suggested that 1% ( 0.3%) of the iodide oxidized by ozone reacts 

with organic matter in natural seawaters to form reactive VOIC. The production rates of 

these compounds were shown to be independent of the generation of biologically “fresh” 

DOM, but instead probably depend upon the presence of ubiquitous non labile DOM 

fractions such as FA.  The production of VOIC can be explained by the haloform or a 

haloform type reaction, in which IOH (or I2) reacts with DOC containing hydrogens - to 

keto groups. This reaction has also been shown to occur during the disinfection of natural 

waters, producing a wide range of polyhalomethanes (Bichsel and Gunten, 1999; Hansson 

et al., 1987).  

 

3.7.1 The effect of aqueous DOM on ozone reactivity at the sea surface 

Figure 3.25 shows the calculated mean surface resistances (rs) of 10 µmol dm
-3

 iodide in 

PBS (pH 8, 20 mL) toward gaseous ozone (70 ppbv) over the aqueous DOC concentration 

range investigated (0 – 4.4 ppm). The experiment was conducted in duplicate to elucidate 

the effect of aqueous DOC concentrations on the rate of ozone deposition to the sea 

surface. The established y error bars on the rs values in figure 3.25 are from the propagation 

of the quoted MFC error (2.5%), the ozone monitor error (2.5%) and the standard deviation 

of duplicate measurements. The established x error bars are from the propagation of 

volumetric errors during pipetting (2%) and glassware (2.5%).  

 

The data would suggest a linear decrease in rs of 33 m s
-1

 per ppm of DOC extract added 

over the concentration range 0 – 4.4 ppm. Surface resistances were 5 - 10% lower at the 

range of typical DOC concentrations observed in seawater (1 – 2 ppm, Akkanen, 2002). 

This data is qualitatively in good agreement with the I2 and aqueous I

 evolution data, 

figure 3.25, in that it suggests organic substrates within DOM react with ozone in seawater 

and that this reaction directly competes with the oxidation of I

 via ozone. However, 
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quantitatively explaining this observation is difficult due to the current lack of data on 

marine DOM characterization and subsequent kinetic studies of reaction with gaseous 

ozone. 

 

It has previously been demonstrated that a surface organic microfilm exists at low wind 

speeds (Liss, 1983). The film is enriched with organic species such as DOM (Zhou and 

Mopper, 1997) of which the concentration is typically higher by a factor of 1 - 8 (Carlson, 

1983). Other chemical species known to react with ozone, such as dimethyl sulfide (DMS) 

and alkenes, have previously been observed to be enriched in the surface layer, hence may 

play a significant role in ozone deposition to the surface ocean (Scwartz, 1992). 

Dimethylsufide is the most abundant sulfur species in sea water and is produced by 

phytoplankton (Andreae and Raemdonck, 1983). The average of previous measured surface 

concentrations in natural seawaters is 5.52 (0.04 - 316) nM (Kettle et al., 1999). Ethene and 

propene are non-methane hydrocarbons produced directly by biological activity or 

photochemical degradation of DOM (Riemer et al., 2000). Riemer et al. (2000) previously 

observed 0.5 and 0.2 nM of ethene and propene in the surface of coastal seawaters within 

the Florida current. It is entirely possible that high fractions of both alkenes and DMS were 

extracted from seawater during the preparation of the DOC extract (section 2.7.5).  

 

Using available second order kinetic rate constants, Chang et al. (2004) previously 

calculated ozone deposition rates of 1.5 x 10
-4

, 1.1 x 10
-4

 and 1.7 x 10
-3

 cm s
-1

 attributed to 

propene, ethane and DMS respectively at their mean global concentrations. Assuming that 

these species were present within the seawater used to produce the DOC extract at the 

average concentrations specified (table 3.4), and that they were recovered with 100 % 

efficiency, these organic species alone would theoretically produce a combined ozone 

deposition velocity of  2.0 x 10
-3

 cm s
-1

 at an aqueous DOC concentration of 1.12 ppm. 

Using linear regression in figure 3.25 this value is only 25 % of the enhanced ozone 

deposition velocity, attributed to the presence of DOC (aq), observed within this study at a 

DOC concentration of 1.12 ppm (8.1 x 10
-3

 cm s
-1

). The combined ozone deposition 

velocity of  2.0 x 10
-3

 cm s
-1

 does not take into account gaseous ozone uptake by surface 

chlorophyll concentrations (Clifford and Donaldson, 2008), the impact of which would 
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depend upon the physical state of the chlorophyll (particularly whether it’s associated or 

unassociated with phytoplankton and free at the ocean surface).  Physical or chemical 

factors could still remain unaccounted for when considering ozone deposition within this 

system and highlights the need for the further characterization of marine DOM.  

 

This experimental observation should be regarded with caution due to the high degree of 

scattering of the mean rs values (R
2
 = 0.8).The observed linear decrease in surface 

resistances shown in figure 3.25 should not be considered as quantitatively representing the 

situation in seawater as it is not known how representative the prepared DOC extract is of 

ubiquitous marine DOM.  
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Figure 3.25 Measured gaseous ozone surface resistance values for 10 mol dm

-3
 iodide  

in PBS (pH 8) at varying DOC concentrations. 

 

3.7.2 Evolution of gaseous I2 in the presence of aqueous DOM concentrations 

Figure 3.26 shows the mean gaseous I2 and aqueous I

 evolution on adding increasing 

amounts of concentrated DOC seawater extract to 10 mol dm
-3

 iodide in PBS (pH 8 , 20 

mL) during a 60 minute trap time. The experiment was conducted in triplicate to 

quantitatively investigate the effect increasing DOC concentrations in solution have on 

gaseous I2 evolution from the surface layer via the I

 + O3 interaction. The DOC 
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concentrations in solution were achieved by adding 20 – 160 l of an aqueous DOC extract 

(555 ppm) concentrated from seawater (sections 2.7.5 and 2.7.6) to the iodide in PBS (20 

mL). The established y error bars on I2 emitted in figure 3.26 are from the propagation of 

the quoted MFC error (2.5%), the calibration error and the established errors on the applied 

corrections (from figures 3.10 and 3.17). The y error bars on the concentrations of aqueous 

I

 lost represent the propagation of the calibration error and the standard deviation of 

replicate analyses.  

 

The plot indicates that the amount of gaseous I2 evolved from the iodide solution decreases 

exponentially on increasing the aqueous DOC concentration. The amounts of aqueous I

 

lost, via oxidation by ozone, during the experiment exhibit a similar trend with increasing 

DOC concentration. The average amounts of gaseous I2 trapped during the experiments 

account for 74 % (67 – 79 %) of aqueous iodine lost in the form of iodide, using EQ 3.38. 

The observed amounts of I2 evolved from 10 mol dm
-3

 iodide in PBS at typical seawater 

DOC concentrations (1 – 2 ppm, Akkanen, 2002) were between 60 – 80 % of those 

observed in the absence of DOC, figure 3.26. These observed values are in generally good 

agreement with previous experimental data within this chapter that showed the rate of I2 

evolution from seawater containing 15 mol dm
-3

[I
-
] is 20 - 40 % that of the PBS under 

identical conditions, figure 3.22. The discrepancies in these values are probably due to 

incomplete trapping of the complex range of organic species from sea water by the solid 

phase extraction device hence the DOC extract used within these experiments was not 

representative of that within natural seawater.  
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Figure 3.26 Gaseous I2 and aqueous I

-
 evolution from 10 mol dm

-3
 iodide in PBS (pH 8) 

at varying DOC concentrations in the presence of gaseous ozone. Filled diamonds, I2 

emitted; empty diamonds, aqueous I

 lost 

 

These experiments clearly show a reduction in gaseous I2(g) evolution with increasing 

aqueous DOC concentrations. This could be caused by the increased competition for 

available ozone caused by reaction with organic species within DOC within the laminar 

layer, as supported by section 3.6.1, or direct loss of I2/HOI via reaction with DOC (Bischel 

and Gunten, 1999). As the reaction of [O3(g)] in seawater is first order with respect to both 

[I

(aq)] (Sakamoto et al., 2009; Hayase et al., 2010) and [DOC (aq)],  (Gershenzon et al., 

2001; Dowideit and von Sonntag, 1998; Broadgate et al., 1997; Clifford et al., 2008) it is 

the ratio of  [DOC (aq)]/[I

(aq)] that is of importance. As the ratio of  [DOC (aq)]/[I


(aq)] 

used in this experiment was  50 times higher than observed naturally, this competitive 

reaction could be of even greater significance in marine waters in reducing I2(g) emission. 

The observed decrease in I

 loss at higher DOC concentrations could also have resulted 

from a decrease in ozone deposition at the air-water interface due to the presence of 

soluble/insoluble surfactants (Frew et al., 2004). It is possible that this phenomena is 

occurring in conjunction with the competition of ozone between [DOC (aq)] and [I

(aq)] in 

reducing I2 production in the laminar layer.  
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Table 3.5 shows an attempt to explain the observed data (figure 3.27) in terms of the ratios 

of [DOC (aq)]/[I

(aq)] first order reaction rate constants ( s

-1
, EQ 3.34 ) with ozone in the 

experimental system. The concentration ranges of the compounds listed are based on DOC 

measurements previously conducted on the global ocean. Assuming the complete recovery 

of these organic compounds from seawater used for the DOC extract, the concentrations 

reflect their respective theoretical concentration ranges within PBS in this experiment. As 

quantitative determinations of phenol, p-cresol, p-methoxyphenol or salicyclic acid have 

not currently been conducted on seawater, an upper limit of 1 ppm was assumed.  

 

As shown in table 3.5, a major potential DOC contributor to the reaction of O3(g) in surface 

seawater is chlorophyll a (Chl a). Previous work by Clifford and Donaldson (2008) 

demonstrated that the reaction between ozone and free chlorophyll in solution significantly 

increases deposition velocity by up to a factor of 3 compared to iodide alone. The real 

impact of chlorophyll on ozone deposition will depend upon its actual physical state (either 

being associated with phytoplankton, or free at the ocean surface). The physical state of Chl 

a within the DOC extract was unknown, but for the purpose of this chapter Chl a 

concentrations were assumed to be free Chl a hence do not to reflect concentrations 

observed within the ocean. 

 

Organic matter in atmospheric seawater/aerosol contain complex structured phenols 

(Leenheer et al., 1995). Hayase et al. (2010) previously reported that the presence of 

aqueous phenol suppressed both I2(g) and IO (g) emission in ozonised 5 mM NaI solutions. 

Under basic conditions, aqueous phenol (C6H5OH) can rapidly form phenolate (C6H5O

) 

which reacts with gaseous ozone orders of magnitude faster than phenol, (1.4 x 10
9
 mol 

dm
-3

 s
-1

; Hayase et al., 2010) comparable to I

(aq). At pH 8 the [phenolate]/[phenol] ratio  

0.1 suggests it could compete with the reaction of O3(g) + I

(aq) at millimolar 

concentrations at the air/water interface, hence was considered as a contributing factor to 

the reduction of I

(aq) loss in this investigation (table 3.5). However, it was previously 

observed by Hayase et al. (2010) that both I2(g) and IO(g) emission in their experiments 

was suppressed via  rapid reaction with phenolate or its precursors.  
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Figure 3.27 shows the theoretical effect that reactions of O3(g) with DOC in surface waters 

have on I

(aq) loss to reaction with ozone.  The linear regression represents the  (s

-1
) 

values calculated for the median concentration (6 x 10
6
 mol dm

-3
) of Chl a and mean 

concentrations of each other DOC compound previously observed in marine waters, with y 

error bars reflecting the upper and lower limits (table 3.5). The theoretical values can 

account for 67 – 110 % of the reduction in I

(aq) loss observed during the investigation. 

Ganzeveld et al. (2009) previously estimated  values of ozone reactivity toward DOC in 

coastal surface seawaters to be in the order of 300 s
-1

, approximately an order of magnitude 

smaller than the theoretical value  calculated in this study, 2429 (139 – 3374)s
-1

. This 

overestimation of the theoretical  value is largely due to both the assumed 

phenolate/phenol concentrations (0.1 and 0.9 ppm respectively) in PBS, and that the 

physical state of Chl a was assumed to be unassociated with phytoplankton leaving it free 

to react with ozone at the gas/ liquid interface. 
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Figure 3.27 Observed and theoretical aqueous I
-
 evolution from 10 mol dm

-3
 iodide in 

PBS (pH 8) at varying DOC concentrations in the presence of gaseous ozone. Empty 

diamonds, observed aqueous I

 lost; dashed line, theoretical values. 
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Compound Molarity 

(10
-9

mol dm
-3

) 

k 

(mol
-1

dm
3
 s

-1
) 

 (s
-1

) 

DMS
a
 20 - 400

g
 8.6 x 10

8
 0.068 – 544 

Ethene
b
 0.5

h
 1.8 x 10

5
 1.8 x 10

-4
 

Propene
b
 0.2

h
 8.0 x 10

5
 3.2 x10

-4
 

Isoprene
c
 0.05

c
 4.0 x 10

5
 2 x 10

-5
 

Chlorophyll a
d
 2000 – 10,000

d
 6 x 10

7
 120 – 1200* 

Phenol
e
 9,540

1
 1.3 x 10

3
 2.8 x 10

-2
 

Phenolate
e
 1,060

1
 1.4 x 10

9
 1484 

P-cresol
e
 9260

2
 3.0 x 10

4
 0.56 

P-methoxyphenol
e
 8056

2
 3.0 x 10

4
 0.48 

Salicylic acid
e
 7240

2
 3.0 x 10

4
 0.43 

TOTAL   2429 (139 – 3374) 

 

Iodide 

 

10,000 

 

1.2 x 10
9f

 

 

12000 

 

Table 3.5 Calculated reaction rate constants, , for DOC in seawater at 25C. 

a 
Gershenzon et al., 2001

. 

b 
Dowideit and von Sonntag, 1998. 

c
Broadgate et al., 1997. 

d
Clifford et al., 2008. 

e
Hayase et al., 2010.

 

f 
Lui et al., 2001 

g
Campos et al., 1999. 

h  
Kettle et al., 1999. 

1
 Calculated assuming 1ppm of phenol with phenolate/phenol ratio of 0.1 at pH 8. 

2
 Calculated assuming 1ppm of each species. 

* Calculated assuming Chl a concentrations were free to react at the surface of solution. 
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3.8 Conclusions 

In order to better understand ozone deposition and subsequent I2 evolution at the air-sea 

interface, their dependence on chemical enhancement and DOC concentration were 

thoroughly investigated. The work within this chapter provides evidence that the oxidation 

of I
 

at the seawater surface by atmospheric ozone is a viable source of I2 to the MBL. This 

is consistent with previous field observations at the Cape Verde monitoring station 

(16.85N, 24.87W) where it was observed that the measured fluxes of VOIC were 

insufficient to account for the observed concentrations of IO, suggesting another iodine 

source within the region (Mahajan et al., 2010; Jones et al., 2010). 

 

In this laboratory work at seawater [I

(aq)] of 15 , approximately 7 % of ozone 

deposited at the sea surface reacts with I

(aq) forming I2(g).  In the environment, [I

-
] is 

approximately 75 times lower, and both sea-air volatilization rates and the mixing rate of 

iodine species from the laminar layer to bulk seawater will be different.   

 

It is important that the contribution of iodine from this source is investigated in order to 

fully understand the biogeochemical cycling of iodine. The work within this chapter 

suggests that gaseous I2 evolution from the I

 + O3 reaction in the world’s oceans are 

strongly constrained by the iodide and DOC content of the surface ocean, as well by 

physical processes such as frictional velocity and sea surface roughness.   Due to the range 

of iodide (39 – 390 nM; Wong, 1976) and DOC (0.3 - 2.0 ppm; Akkanen, 2002) 

concentrations previously observed in the worlds oceans, it is likely that gaseous I2 

evolution from the O3 + I

 reaction in the surface ocean would vary significantly spatially. 

Therefore conclusions inferred from data within this chapter should be regarded as 

preliminary until confirmed by simultaneous open ocean ozone and I2 flux measurements 

with complementary laboratory experiments coupling both biotic and abiotic interactions 

on I2 dynamics in the surface ocean.     
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Chapter 4 

 

Evidence for the emission of reactive 

halocarbons from open leads in sub-Arctic 

sea ice during the COBRA campaign. 

 

Evidence of reactive iodine chemistry in the Arctic boundary layer 

Mahajan, A. Shaw,  M. Oetjen, H. Hornsby, K. Carpenter, L. J. Kaleschke, L. Tian-Kunze, X. Lee, J. 

Moller, S. Edwards, P. Commane, R. Ingram, T. Heard, D. and Plane, J. 

Journal of Geophysical Research, 115, 11, D20303, doi: 10.1029/2009JD013665, (2010). 
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4.1 Introduction 

 

4.1.1 Tropospheric polar halogen chemistry 

Polar Regions have a significant impact on the global atmosphere, influencing 

atmospheric and oceanic circulation as well as hosting unique chemical processes. The 

polar atmosphere is unique in that the region is dominated by sub-zero temperatures, 

stable stratification of the boundary layer, and unusual light conditions (Barrie et al., 

1988; Simpson, 2007). Recent research has suggested that halogens play an important 

role in the episodic destruction of tropospheric ozone in the Arctic environment during 

the onset of polar sunrise. Tropospheric ozone concentrations of  30 - 40 ppbv have 

been observed to drop to near zero within a timescale of a day or less for periods of 1-10 

days (Barrie et al., 1988). Such ozone depletion events (ODEs) have most commonly 

been observed in late winter/early spring in the Arctic (Tarasick and Bottenheim, 2002) 

and August to October in the Antarctic (Jones et al., 2006), when sunlight returns to high 

latitudes but temperatures are still low (-20ºC).  The vertical distribution of ODEs 

typically extends from the surface to a height of 100 – 400 m, although previous ozone 

sonde data suggests this can vary from  200 m to 1 km between early and late spring 

(Bottenheim et al., 2002; Solberg et al., 1996). The most severe and spatially extensive 

ground based observations of ODEs have been recorded at coastal sites within the frozen 

Arctic Ocean (Hopper et al., 1998), however leads and polynyas are known to 

dynamically develop exposing the underlying seawater in this region. Although ODEs are 

believed to be initiated almost entirely over the ocean, depleted air masses can be 

transported to lower latitudes influencing oxidation chemistry on both a local and 

regional scale (Simpson et al., 2007). 

 

Previous measurements of ODEs during polar sunrise have coincided with enhanced 

amounts of filterable bromine within the marine boundary layer (MBL), suggesting that 

ODEs are caused by photochemical reactions involving brominated compounds (Barrie 

et al., 1988). During the Polar Sunrise Experiments (PSE88, Barrie et al., 1988; PSE92, 

Yokouchi et al., 1994) conducted at Alert, Canada a strong negative correlation 

between gaseous ozone (O3) and bromoform (CHBr3) was observed, initially suggesting 

CHBr3 photochemistry as the cause for O3 depletion. However, this hypothesis was 

ruled out after absorption spectra of CHBr3 suggested the photolytic lifetime of CHBr3 
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under Arctic springtime conditions is  100 days (Moorgart et al., 1994) indicating 

insufficient reactive bromine could be photolytically produced from the typically low 

mixing ratios of CHBr3 observed. It has since been suggested that halogens in the polar 

troposphere arise mainly from sea salt aerosol (Rankin et al., 2002), first year sea-ice 

(Wagner et al., 2001; Frei et al., 2004; Simpson, 2007), or other salty surfaces (Yang 

et al., 2002).  The resulting ODEs results from a catalytic ozone destruction mechanism 

involving halogen atoms that cycle between their atomic form and their oxides 

(Simpson et al., 2007). Halogen radicals are photochemically produced from precursors 

such as X2, XCl and XOH, as shown in section 1.2 (EQ 1.8 – 1.12). 

    

4.1.2 Impacts of ODEs on Arctic chemistry 

Tropospheric ozone is a significant greenhouse gas as well as being the precursor for 

most atmospheric oxidisers, such that it usually directly controls atmospheric oxidative 

potential. During ozone depletion events, ozone dominated oxidation pathways become 

less important and unique halogen oxidation pathways dominate. These halogen 

oxidation pathways alter the lifetimes of species, ultimately changing their fates in the 

environment. For example, halogens effectively oxidise gas phase mercury causing it to 

be deposited from the gas phase to the snow/sea-ice potentially increasing its 

bioavailability (Hylander and Goodsite, 2006).  Mercury is a toxic, atmospheric 

pollutant of global importance which is emitted from both natural and anthropogenic 

sources. The dominant natural sources of mercury include forest fires, volcanoes and 

oceanic emissions whereas anthropogenic sources include coal power plants, medical 

activities, flooding and the production of fluorescent light bulbs, thermometers and 

switches (Mason et al., 1994). The high vapour pressure and long atmospheric lifetime 

of mercury (6 – 24 months; Schroeder and Munthe, 1998) allows it to be transported in 

the form of gaseous elemental mercury (GEM, Hg
0
) over long distances and it has been 

routinely observed within the MBL of the Arctic (Schroeder et al., 1998). The unique 

chemistry of Arctic regions appears efficient in the oxidation and deposition of GEM 

and during polar springtime, rapid atmospheric mercury depletion events (AMDEs) 

have been observed to take place (Schroeder et al., 1998; Slemr et al., 2003).  

 

Considerable research has been conducted over the last several years to elucidate the 

mechanisms behind these AMDEs, with a consensus that reactive bromine species 
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oxidise GEM in the Arctic MBL (and possibly the free troposphere) into reactive 

elemental mercury (REM) (Raofie and Ariya, 2004, 2006). Both Br and BrO are 

believed to play essential roles in AMDEs, however Br is suspected to be a more 

important oxidant in these reactions. Recent laboratory studies of I, Cl, I2, Br2, Cl2, IO 

and ClO initiated reactions of GEM suggest that these reactions are unlikely to compete 

with Br oxidation pathways in the destruction of Arctic GEM (Ariya, 2004, 2006; 

Raofie and Ariya, 2006). REM species are more reactive than GEM and may deposit 

directly to snow/ice surfaces or onto particles as particulate absorbed mercury (p-Hg) 

(Lui et al., 2001; Lindberg et al., 2002). The currently proposed REM species and their 

production mechanisms are shown in EQ 4.1 to 4.4 (Calvert and Lindberg, 2003; Raofie 

and Ariya, 2004, 2006). However, the chemical speciation of both REM and p-Hg 

species remain unknown as existing analytical techniques are inadequate for their 

determination. 

 

Br + Hg
0
 HgBr                                                                        (EQ 4.1) 

BrO + Hg
0
 HgO + Br                                                              (EQ 4.2) 

BrO + Hg
0
 HgBrO                                                                  (EQ 4.3) 

BrO + Hg
0
 HgBr +O                                                               (EQ 4.4) 

 

Deposited mercury can re-enter the atmosphere through volatilisation and photo-

reduction processes (Hylander and Goodsite, 2006). Any remaining mercury 

compounds in snow/sea-ice can enter the water cycle on the onset of melting during 

Arctic springtime and summer, causing bio-accumulation in both local wildlife and 

indigenous human populations. Previous estimates have calculated that spring-time 

mercury depletion events deposit between 50 and 300 tons of mercury to the Arctic over 

the period of one year (Schroeder et al., 1998; Banic et al., 2002; Ariya et al., 2004). 

The effect of this mercury loading on indigenous human populations was previously 

investigated at the two Arctic settlements of Igloolik and Repulse Bay. It was found that 

up to 33% of the participants of Igloolik and 60% of Repulse Bay had levels of 

exposure above the minimal risk level (Oostdam et al., 2005). 
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4.1.3 Halogen sources to the polar boundary layer 

4.1.3.1 Saline sea-ice, snowpack and sea salt aerosol as a direct halogen source 

Reactive halogen compounds are believed to be produced as a result of heterogeneous 

reactions on various surface types specifically including saline sea-salt aerosol, frost 

flower structures, saline snow or first year sea ice (FYI) surfaces (McConnell et al., 1992; 

Fan and Jacob, 1992; Foster et al., 2001; O’Dowd and Hoffman, 2005; Kalnajs and 

Avallone, 2006; von Glasow and Crutzen, 2007), as shown in figure 1.1 and EQ 1.30. 

The role of sea salt aerosol in halogen activation is discussed in section 1.3.2.  

 

Saline snowpack and sea-ice surfaces are also considered possible sites of halogen 

activation. Snow is contaminated by salt driven by wind-transport of sea spray, vertical 

transport through sea ice and wind blown frost flowers. Previous measurements of high 

Br2 and BrCl concentrations in the interstitial air of snow by mass spectroscopy are 

currently the most direct evidence of the role of the snowpack in halogen activation 

(Foster et al., 2001; Spicer et al., 2002). Avallone et al. (2003) have also shown enhanced 

BrO concentrations at the snow surface. Simpson et al. (2005) recently provided indirect 

evidence for the recycling of bromine on snow surfaces from the observation that many 

snow samples were depleted in bromide. A strong indication for the relevance of first 

year sea ice toward gaseous bromine emission are GOME satellite observations that 

showed that clouds of BrO were largely present over FYI but not over perennial sea ice 

(Wagner et al., 2001). Similarly, both Freiß et al. (2004) and Simpson et al. (2006) 

previously demonstrated, using back trajectory analysis, that areas of FYI were correlated 

with high mixing ratios of BrO. The elevated BrO mixing ratios from air masses 

transecting regions of FYI are believed to reflect the higher sea ice salinities of younger 

ice columns.  

 

Under typical polar weather conditions, it has been suggested that sea salt aerosol 

production from wind driven snow can be up to more than an order of magnitude more 

than from the open ocean (Hall et al., 1998; Rankin et al., 2002; Yang et al., 2008). 

Loose snow overlying sea ice can accumulate sea salt through a combination processes 

including brine transport and sea salt deposition (Simpson et al., 2007). If wind driven 

snow occurs over regions of contaminated snow, and there is sufficient availability of 

acidifying trace gases to titrate sea salt alkalinity, a bromine explosion is possible (Yang 

et al., 2010).Since bromine in wind driven snow can be transported long distances, this 
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phenomenon can even contribute significantly to BrO in mid-lattitude regions (Yang et 

al., 2010). 

 

4.1.3.2 Frost flowers and derived aerosols as a source of reactive halogens 

Frost flowers are vapour deposited dendritic crystals which form on brine surfaces, and 

have sharp angular features and  a large surface area for gas exchange. Frost flowers 

usually form close to regions of open water due to their enhanced salinity caused by 

surface flooding. Figure 4.1 shows fresh frost flowers growing on newly formed seasonal 

sea ice in proximity to the coast of Kuujjuarapik during the COBRA campaign. This 

small frost flower field was observed within 1 km of the experimental site during the 

field campaign outlined in section 4.1.5. Previous estimates of frost flower surface areas 

are very high, leading to the assumption that they could be a direct source of bromine to 

the atmosphere (Rankin et al., 2002). However, more recent estimates of the specific 

surface area (SSA) of fresh frost flowers have suggested values of 200 cm
2
/g, two 

orders of magnitude less than early estimates (Domine et al., 2005; Obbard et al., 2009). 

Previous measurements of bromide/sodium ratios in fresh frost flowers showed that 

bromide is not measurably depleted when compared to sodium (Simpson et al., 2005). 

Also, past measurements of frost flowers indicate that their pH are typically too alkaline 

(pH > 6.5) to support catalytic bromine explosion chemistry (Kalnajs and Avallone, 

2006). Both the in-situ and laboratory observations of the physical and chemical 

properties of frost flowers suggest that frost flowers are unlikely to contribute 

significantly to atmospheric halogen concentrations via direct gas emission. However, to 

date, this remains an area of further work.  

 

Wind driven derived aerosol potentially produced from frost flowers contain high 

concentrations of aqueous bromide (Barrie et al., 1988) and high acidity (Sander et al., 

2006). This enhancement in aqueous bromide concentration and acidity could occur by 

the scavenging of HBr, the termination product of the bromine explosion, by these 

particles. Theoretically, this particulate bromine could then be recycled to gaseous 

bromine following transport to higher altitudes or different geographical locations. 

Supporting field measurements include ground-based and aircraft measurements of high 

BrO column densities in the free troposphere (Honninger et al., 2004; McElroy et al., 

1999). As the lifetime of Br2 and BrO (BrOx family) is only a few hours in the absence of 
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bromine recycling, these observed gaseous BrO column densities observed in the free 

troposphere would have to have been transported within this lifetime or be the product of 

recycling on transported aerosol.  Despite this evidence for bromine recycling on 

aerosols, most ODEs and AMDEs have been observed at ground level, which could 

suggest a ground based flux of either halogens or their precursors initiating these auto-

catalytic mechanisms.  

 

Recent laboratory and field observations of frost flowers (Obbard et al., 2009; Roscoe et 

al., 2011) suggest their direct effect on sea salt mobilization and halogen chemistry may 

be less than previously estimated due to their high surface stability even when subjected 

to high wind speeds ( 12 m/s). However, frost flowers may still provide a significant 

role in sea salt mobilisation. For instance, under low humidity conditions, significant 

frost flower dehydration may occur making parts of the frost flower more fragile and 

susceptible to wind destruction generating aerosol (Roscoe et al., 2011). Similarly, frost 

flowers may provide an indirect source of salinity to wind blown surface snow which can 

later be remobilized (Obbard et al., 2009).    
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Figure 4.1 Evidence of frost flower growth on newly formed sea ice in the  

Kuujjuarapik region of Hudson Bay, Canada (February, 2008). 

 

4.1.4  Sources of VSLHs 

Very short lived halogenated organics (VSLHs) are a group of short lived mono-, di and 

tri- halogenated organics which are believed to be a major source of iodine to the MBL 

and may play a role in the initiation or termination in reactive halogen chemistry in 

polar regions. Most of the organobromine compounds are believed to be produced by 

macro and microalgae, particularly diatomaceous ice algae previously observed in both 

the ocean and in colonies on the underside of sea-ice (Reifenhauser and Heumann, 1992 
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and Schall et al., 1994). These findings also correlate with those of Sturges and Shaw 

(1993) who previously observed bromoform (CHBr3) venting from leads in Arctic sea-

ice.  

 

During winter within polar regions, biological activity is focussed at the surface and on 

the underside of the ice sheet on the ice covered ocean. Previous measurements in the 

Arctic have demonstrated that numerous diatom species are capable of producing poly 

halogenated methanes including CHBr3, CH2I2 and CH2ICl (Schall and Heumann, 

1993). However, in-situ determinations of these compounds within the boundary layer 

have been observed to peak over a broad winter period, and do not correlate with 

measured blooms of marine biota despite halocarbon loss rates being taken into account 

(Yokouchi et al., 1996). 

 

Previous field measurements also suggest a significant abiotic source of halocarbons in 

polar regions. The mono-halogenated organics CH3Br, CH3I and C2H5I have been 

measured in the near surface Arctic snowpack where the concentrations were found to 

be 3-10 times higher than the overlying ambient air, indicating this surface as a direct 

halocarbon source (Swanson et al., 2002). This proposed source involves the production 

of alkyl radicals from the photolysis of carbonyl compounds, which exist as high 

concentrations of dissolved organic carbon (DOC) found in snow (Yang et al., 2002). 

These alkyl radicals are then free to react with iodine, produced from the oxidation of 

iodide by OH radicals present in high concentrations within the quasi liquid layer of the 

snowpack (QLL).   

 

The shorter lived di and tri-halomethanes (CH2I2, CH2IBr and CH2ICl) have recently 

been observed in air that had passed over Hudson Bay during polar sunrise (Carpenter 

et al., 2005). The absence of local leads over the bay coupled with the extremely short 

atmospheric lifetime of CH2I2 indicated production occurred on the snowpack/sea-ice 

surface rather than from emissions from any underlying ice-algae. The previous abiotic 

mechanism does not explain the production of di- and tri-halomethanes. Carpenter et al. 

(2005) instead proposed that high levels of dissolved HOBr and HOI react with 

dissolved organic material (DOM) present in the quasi liquid layer (QLL), as shown in 

equation 1.29 (section 1.3.1). Such haloform reactions of HOI with DOM have also 

previously been observed in natural waters (Hansson et al., 1987). Halogenation of 



                                                                                                4. The COBRA Campaign 

 135 

compounds containing hydrogens - to keto groups is both acid and base catalysed and 

leads to production of RX, RX2 and RX3 with relative amounts depending upon reactant 

conditions. 

 

4.1.5 The COBRA Campaign 

As part of the International Polar Year associated impact of COmbined Bromine and 

Iodine Release on the Arctic atmosphere (COBRA) project, a field campaign took place 

on the eastern coast of Hudson Bay, Canada (Figure 5.4; 55.28N, 77.77W), from 

12/02/08 – 7/3/08 (Figures 4.2 and 4.3). The geographical location of this region is 

shown in figure 5.3. Throughout the field campaign sea-ice covered the majority of the 

Hudson Bay region with only minor, temporary leads and polynyas dynamically 

forming, intermittently exposing the underlying seawater surface.  The experimental site 

was located on the land/sea-ice boundary north of the town of Kuujjuarapik. The central 

objectives of COBRA were to: 

 

 further develop the understanding of the role of iodine (in concert with 

bromine) in Arctic gas phase photochemistry, aerosol production and evolution 

 investigate the relative/combined roles of frost flowers, older sea-ice/snow 

pack, sea salt aerosol and biological sources in releasing halogens to the Arctic 

atmosphere 

 increase understanding of the temporal and spatial variability of halogen-related 

ozone and mercury depletion events in the Arctic 

 develop improved models of Arctic chemistry and emissions and their effect 

and feedbacks on regional/global atmospheric chemistry and climate 

 

The campaign built on previously collected in-situ measurements and supporting data 

from the same field station in March 2004 (Carpenter et al., 2005). An International 

consortium of institutions contributed toward the project, the Universities of York, 

Leeds, Manchester, Leicester, East Anglia, Cambridge, British Antarctic Survey (BAS) 

and from the University of Cork, Ireland. A complete list of the measurements made 

during the COBRA campaign are listed in table 4.1. 
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Measurements Technique Institute 

I2/IO/BrO/OIO. 

OH, HO2. 

LP-DOAS, MAX-DOAS 

FAGE 

 

University of Leeds  

O3, NO, NO2, CO, 

VSLHs 

ANNOX, Aerolaser 

TD-GC/MS 

 

University of York 

Aerosol number-size 

distributions (3-10m) size 

segregated particle fluxes. 

Meteorological 

measurements 

 

UHSAS, CPCs and SMPS 

 

 

 

University of 

Manchester 

Total gaseous mercury*, 

mercury speciation and O3* 

 

Mercury Tekran 1130,1135  

 ozone TECO 

Environment Canada 

Temperature, ozone profiles, 

height of boundary layer. 

Chemical, physical and 

biological characteristics of 

ice. 

Met. Sonde on tethered kite/balloon 

BET method for specific surface 

area, ion chromatography, 

microscope analysis and chlorophyll 

assays 

British Antarctic 

Survey 

Table 4.1 Measurements made during COBRA by contributing institutions. 
* These were longterm measurements routinely carried out at the field station (Environment Canada). 

 

Whilst many measurements of short lived brominated organics in both air and water 

have been conducted (Carpenter et al., 2005) there are very few data sets with the 

simultaneous measurement of both bromocarbons and iodocarbons and even fewer 

including di-halomethanes.  The aim of this chapter is to contribute to this existing 

limited dataset of Arctic VSLH measurements in the MBL and investigate their 

sources, including the potential roles of various surface types.  
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Figure 4.2 Kuujjuarapik Centre d’Etudes Nordiques. 

 

 
Figure 4.3 Containers at the COBRA experimental site on the east coast of Hudson 

Bay. 

 

4.2 Experimental 

 

4.2.1 Site and Sampling Details 

The Kuujjuarapik field station is run by the Canadian Centre d’Etudes Nordiques, and is 

equipped with research laboratories (with existing long term O3 and Hg measurements), 

a weather station and living quarters (figure 4.2). In addition to the existing research 
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facilities, a 20’ laboratory container was positioned directly on the coast which 

contained a suite of analytical instrumentation for comprehensive in-situ field 

measurements (Figure 4.3). Located on the adjacent sea ice,  150 metres from the 

coast a micrometeorological (MET) station (University of Manchester) conducted 

continuous wind speed, wind direction and temperature measurements at the site. 

 

Two Perkin Elmer Autosystem XL Gas Chromatographs each connected to a Perkin 

Elmer Turbomass Mass Spectrometer (GC-MS) were used for air and seawater and ice 

meltwater sampling of VSLHs during COBRA. The system which resided in the 

experimental container was set-up with a thermal desorption - gas chromatograph - 

mass spectrometry detector (TD-GCMS) for the pre-concentration and analysis of 

halogenated organics in air. The second system resided in the research laboratory at the 

Kuujjuarapik field station. This second system had a purge and trap (P&T) arrangement 

for volatilising VSLHs from sea water and ice samples prior to pre-concentration and 

analysis via automated thermal desorption (ATD)-GC/MS. A full description and 

analysis of the VSLHs in seawater and sea-ice sampled within the Hudson Bay region 

in included in section 5.4. 

 

The sample inlet was situated directly next to the experimental container at a height of 

3.6 m above ground level using a 10 m MICROMET tower, Figure 4.4.  Samples were 

taken at 100 ml min
-1

 for 30 minutes every hour. The entire length of Teflon sample line 

was covered with electrical tape for the duration of the campaign to reduce any 

photolytic degradation of halocarbon species during sampling.  
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Figure 4.4 Online air sample inlet used for VSLH sampling at experimental site. 

 

4.2.2 Online air VSLH measurements 

Approximately hourly in situ measurements of 3 L sample volume were made of 

VSLHs at the experimental container site using a TD-GCMS. Air was sampled using a 

10 m PFA Teflon sample line (0.5" i.d), which collected ambient air from outside the 

container using a large capacity diaphragm pump, and dried to remove as much 

moisture as possible prior to “trapping”. The first stage used an “in house built” Nafion 

box dryer, consisting of Nafion tubing drawn through molecular sieve and self 

indicating silica gel (0.5-2.0 mm diameter) contained in a gas tight container, to remove 

bulk moisture from the sample stream. The second stage involved using a counter 

current flow Nafion dryer (Permapure.inc) to remove any remaining residual moisture. 

A stainless steel T-piece (1/2 to 1/4") was situated upstream of the diaphragm pump and 

was connected to an metal bellows pump (Aerospace Ltd) via  1 m of 1/4 " PFA 

Teflon tubing. The metal bellows pump supplied sample air to the online trapping 

system at 100 ml min
-1

 via  1 m of 1/8" PFA Teflon tubing. Samples were then pre-

concentrated on an air monitoring trap (Perkin Elmer) held at -30C. After collecting 

the desired volume on the cold trap, the trap underwent flash heating to 350C at a rate 

of 40 °C sec
-1

 and was purged with helium to thermally desorb the halogenated organics 

and introduce them to the GC in a narrow band. Subsequent TD zones (valve and 

transfer line) were heated to 200 - 250C to prevent analytes of interest from 

condensing before reaching the GC column. The VSLHs were resolved 

3.6 
metres 
above 
ground 
level 

Sample 
Inlet 
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chromatographically using a CP-Porabond Q capillary column (section 2.5). A detailed 

description of the operation of the Perkin Elmer TD-GC/MS hardware can be found in 

sections 2.1 – 2.5. 

 

4.2.3 Online air measurements calibration and normalisation 

The VSLH online air measurements obtained at the experimental site were internally 

standardised against carbon tetrachloride (CCl4) within the troposphere. Carbon 

tetrachloride is a stable gaseous compound (global atmospheric lifetime of 34  5 

years; Allen et al., 2009) observed at relatively high concentrations in the atmosphere. 

Due to the lack of rapid tropospheric removal mechanisms, CCl4 is typically present in 

the troposphere at mixing ratios of 100 pptv (Allen et al., 2009). Due to its long term 

stability and uniform distribution within the MBL, CCl4 can be directly used as a 

measure of instrument sensitivity over time, making it an ideal in-situ internal standard 

for air analyses. The use of such an in-situ internal standard during on-line air analysis 

was essential during the COBRA campaign due to the high variability of instrument 

sensitivity over the analysis period.  

 

Figure 4.5 shows the high variability of instrument sensitivity during the analysis period 

of the container GC-MS (figure 4.4), with CCl4 responses over the analysis period 

ranging between 725 x 10
3
– 195 x 10

4
 peak areas, RSD 21.3%. The instrument 

sensitivity during the online air analysis period (19
th

 – 28
th

 of February) is weakly anti-

correlated to ambient air temperature (measured from a MET station positioned on the 

sea ice  150 metres from the experimental container site, University of Manchester). 

During overnight analysis it was common for the experimental container internal 

temperatures to drop from  25C to < 10C (James Dorsey, personal communication). 

It is possible that such instrument temperature changes could be the cause of such 

sensitivity variation. The Perkin Elmer Clarus 600 Mass Spectrometer is recommended 

to operate at ambient temperatures between 10 - 28C with a temperature variability, 

usually caused by direct sunlight or temperature gradients, that does not exceed  1C 

per hour (Clarus 600 hardware manual). If temperature variability exceeded these limits 

the electronic components which control the ionisation source filament current of the 

GC/MS could be affected. This would ultimately alter source emission and instrument 

sensitivity. A possible solution for future deployments of this type of instrument in 
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polar regions would be to include an independent temperature regulating fan heater 

within the mass spectrometer housing to maintain the temperature of its electronics. 

 

Alternatively, the varying moisture content of the sampled air could have influenced 

ionisation efficiency within the electron ionisation source of the mass analyser. This is 

less likely however due to the low dew point (-26C  -41C) hence specific humidity 

of the ambient air sampled, and its pre-treatment with a Nafion dryer (section 2.1) 

during the analysis period. 

 

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

18-Feb 20-Feb 22-Feb 24-Feb 26-Feb 28-Feb 01-Mar

Date (2008)

C
C

l 4
 p

e
a

k
 a

re
a

-40

-30

-20

-10

T
e

m
p

e
ra

tu
re

 (
°C

)

 

Figure. 4.5 Variation of the CCl4 internal standard response (pink) and ambient 

temperature (orange) during the 16 day online air testing period at the experimental 

container site. 

 

The TD-GC/MS and ATD-GC/MS were calibrated in the field against a VSLH external 

gas standard 200 mL ( every two days), as described in section 2.6.1. The 

concentrations of VSLH gases in this standard were determined pre and post campaign 

by a VSLH permeation oven (Wevill and Carpenter, 2004), as discussed in section 

2.6.4. The ratio of the VSLH / CCl4 responses were then calculated and plotted over the 

analysis period, figure 4.6. The calculated ratios were within 20% RSD over the 10 day 

analysis period, indicating that the method of VSLH normalisation described in section 

2.6.8 was an acceptable approach. 
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Figure. 4.6 VSLH (external gas standard)/online air CCl4 ratio over analysis period. 

Dark blue diamonds, CH3I; filled pink squares, C2H5I; empty black diamonds, 

CH2Br2;empty green squares, CHBr3;filled light blue circles, CH2ICl;filled brown 

circles, 2-C3H7I; filled orange circles, 1-C3H7I; filled red triangles, CH2IBr. 

 

4.2.4 Air mass classification using calculated back trajectories 

Throughout the campaign, three dimensional 5 day back trajectories were calculated 

using the NOAA HYSPLIT model (hybrid single-particle Lagrangian integrated 

trajectory) model (Evans, M; School of Earth and Environment, University of Leeds). 

Back trajectory analyses were calculated every 6 hours during 19
th

 – 27
th

 February. 

More frequent back trajectory analyses were not attainable due to the lack of sufficient 

meteorological data of the Hudson Bay region during the analysis period. The arrival 

point for the air mass back trajectories was over the town of Kuujjuarapik at 1000 mb. 

From the back trajectory data, air masses were comprehensively grouped into 4 

classifications dependent upon their behaviour prior to online air analysis. Type A 

refers to air masses which have been identified as passing directly polynyas, within the 

MBL. Type B refers to air masses which predominantly (>80%) pass over the sea-

ice/snowpack of Hudson Bay. Type C refers to air masses which have passed over a 

distant polynya ( 1000 km) located northwest of Hudson Bay. Type D refers to air 

masses passing over a local lead ( 40 km) north of the experimental site. The 

formation of polynyas and leads were identified within the Hudson Bay region using a 

combination of satellite techniques (section 4.3.4).  
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Figure 4.7 shows typical examples of these grouped trajectory types, note trajectory 

types A and B are crossing identified regions of leads/open water, section 4.3.4. Despite 

the high sea ice coverage observed in Hudson Bay during the campaign, up to 73% of 

air masses analysed (during the period 19
th

 – 27
th

 February) transected regions of open 

water such as polynyas and leads, figure 4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Air mass classification types from NOAA HYSPLIT model.  

A = Air mass passes over polynyas with transit time of 14 – 17 hours. 

B = Air mass passes over region of predominantly sea-ice/snowpack surface. 

C = Air mass passes over region with polynyas with transit time <72 hours. 

D = Air mass passes over local leads with a transit time of < 1 hour. 

 

Figure adapted from Mahajan et al.,  2010. 
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Figure 4.8 Air mass classifications sampled at the experimental container site during 

19
th

 –  27
th

 February. 

A = Air mass passes over polynyas with transit time of 14 – 17 hours. 

B = Air mass passes over region of predominantly sea-ice/snowpack surface. 

C = Air mass passes over region with polynyas with transit time <72 hours. 

D = Air mass passes over local leads with a transit time of < 1 hour. 

 

4.3 Results 

 

4.3.1 Meteorological conditions during COBRA campaign 

The shallow polar boundary layer (PBL) within polar regions limits the dispersion of 

reactive compounds produced at the surface/air interface, and meteorology plays a 

dominant role in the occurrence of ODE and AMDEs. From the perspective of surface 

chemistry, the PBL can be defined as the depth of the lower atmosphere through which 

surface emissions can be vertically mixed. The PBL is usually considered to be stable, 

particularly during winter and spring. It is capped by a temperature inversion and weak 

vertical mixing is experienced within this layer. Exceptions are regions with open leads 

or polynyas where the surface temperature is elevated close to freezing point through 

significant heat and vapour fluxes from the surface ocean (Lupkes et al., 2007). These 

warmed air masses rapidly convect vertically up to altitudes of a few thousand meters 

causing the efficient transport of both heat and chemical species from the PBL into the 

free troposphere. Similarly, the passage of synoptic systems (essentially warm and cold 

23%

27%

38%

12%
A 

B 

C 

D 
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fronts) are associated with the destabilisation of PBL temperature inversions, allowing 

advection/entrainment of species between these layers. Under ODE conditions this can 

lead to the entrainment of O3 and bromine transport to the free troposphere. Such 

phenomena could be the cause of previously observed BrO concentrations in the polar 

free troposphere (McElroy et al., 1999).  

 

Figures 4.9 and 4.10 show the meteorological data collected from the University of 

Manchester meteorological station adjacent to the experimental container site. 

Approximately 40% of the measured wind directions between the 19
th

 to the 27
th

 

February were from a south-south westerly to a north-north easterly (230 – 30 ºN) 

direction, from incoming air masses immediately crossing Hudson Bay. Air masses of 

wind directions between 20 - 120 N (land mass) were not observed at the experimental 

site and the majority of air sampled during the analysis period was predominantly from 

a north westerly direction between the 19
th

 and 27
th

 of February (figure 4.10). The 

ambient air temperature observed during the analysis period was highly variable with a 

mean temperature of -22ºC (-12 to -38ºC). The decline in ambient air temperature 

observed on the 23
rd

 ( 8 C) and 24
th

 (14 C) correlates with the passage of cold 

frontal systems identified from synoptic surface pressure charts (NOAA, Appendix 4.2 

to 4.4). No other synoptic events were identified within proximity to the experimental 

site during the analysis period. 

 

Observed wind speeds at the experimental site seemed independent of wind direction, 

probably largely due to the absence of topography in the local region. A mean wind 

speed of 5.1 m s
-1

 (3 – 9 m s
-1

) was observed during the analysis period. Interestingly a 

low wind speed period was observed between the 25
th

 – 27
th

 of February, with average 

wind speeds of 2.5 m s
-1

 (0 – 6 m s
-1

).  

 

 

 

 

 

 

 



                                                                                                4. The COBRA Campaign 

 146 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Meteorological data from MET station adjacent to experimental containers. 

Top, wind direction (ºN); middle, ambient air temperature (ºC), identifying periods cold 

fronts pass over experimental site; bottom, wind speed (m s
-1

). 
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Figure 4.10 Plots of a) wind direction against frequency (1 binned), b) wind speed 

against frequency (0.25 m s
-1

 binned) and c) wind direction against wind speed (1 

binned) during the 19
th

 to 27
th

 of February. 

 

4.3.2 Ambient air determinations of poly-brominated organics 

Figure 4.11 shows the time series for ambient air measurements of the poly-brominated 

organics bromoform (CHBr3) and dibromomethane (CH2Br2). Maximum bromocarbon 

concentrations observed during the analysis period were 2.25 pptv and 0.83 pptv for 

CHBr3 and CH2Br2 respectively. Calculated instrument limits of detection (LoD) during 

the period were 0.02 pptv (CHBr3) and 0.26 pptv (CH2Br2). As can be seen from the 

time series of these compounds CH2Br2 and CHBr3 weakly positively correlate with one 

another suggesting that they originate from the same or a co-located source. Linear 

correlation coefficients (R
2
 values) between these compounds were 0.35 during the 

analysis period of the 19
th

 to the 27
th

 of February (figure 4.12).  

 

a) 

b) c) 
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Elevated mixing ratios for these compounds are present towards the beginning (19
th

 – 

20
th

 February) and end of the analysis period (24
th

-27
th

 February). To illuminate 

possible source regions of these brominated organics, local wind direction was used as a 

proxy for air mass history, figure 4.12. Mixing ratios of both CH2Br2 and CHBr3 are 

generally centralised with respect to wind direction showing no correlation with wind 

direction. The measured mixing ratios of CHBr3 were slightly elevated in the north 

westerly (clockwise) sector of the polar plot, which corresponds to a peak in 

concentrations on the 19
th

 of February. 

 

 

Figure 4.11 Time series for poly-brominated methanes with air mass classifications. 

Green, CHBr3; red, CH2Br2. 

 

 

 

 

 

 

 

 

 

A C A C B A B 

0.0

0.5

1.0

1.5

2.0

2.5

19-Feb 21-Feb 23-Feb 25-Feb 27-Feb

Date (2008)

C
H

B
r 3

 (
p

p
tv

)

0.0

0.2

0.4

0.6

0.8

1.0

C
H

2
B

r 2
 (

p
p

tv
)

D B A B C A C 



                                                                                                4. The COBRA Campaign 

 149 

R
2
 = 0.35

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5

CHBr3 (pptv)

C
H

2
B

r 2
 (

p
p

tv
)

 

 

Figure 4.12 Correlation and polar plots of poly-brominated organics. Top, Correlation 

plot of ambient air CH2Br2 vs CHBr3. Bottom, polar plots of poly-brominated organic 

ambient air concentrations against wind direction. 

 

4.3.3 Ambient air determinations of mono-iodinated and poly-halogenated 

organics 

Figures 4.13 and 4.14 show the time series for ambient air measurements of the mono-

iodinated organics; Iodoethane (C2H5I), 2-Iodopropane (2-C3H7I), 1-Iodopropane (1-

C3H7I) and iodomethane (CH3I) and the polyhalogenated organics; chloroiodomethane 

(CH2ICl) and bromoiodomethane (CH2IBr) respectively, observed during the analysis 

period 19
th

 – 27
th

 of February. Maximum iodocarbon concentrations observed during 

the analysis period were 3.83 pptv (CH3I), 1.50 pptv (C2H5I), 2.59 pptv (2-C3H7I), 0.31 

pptv (1-C3H7I), 0.17 pptv (CH2ICl) and 0.08 pptv (CH2IBr). Calculated instrument 

LoDs during the period were 0.15 pptv (CH3I), 0.02 pptv (C2H5I), 0.03 pptv (2-C3H7I), 

0.02 pptv (1-C3H7I), 0.01 pptv (CH2ICl) and 0.02 pptv. Di-iodomethane (CH2I2) was 

below the GC/MS LoD (0.05 pptv) during the entire analysis period.  
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As can be seen from the time series, all the mono- and poly- halogenated organics 

positively correlate with one another suggesting that they originate from the same or a 

co-located source. Linear correlation coefficients (R
2
 values) between each VOIC were 

considerably high, ranging from 0.70 to 0.86 during the analysis period of the 19
th

 to the 

27
th

 of February (figure 4.15).  

 

When comparing the time series of the mono-iodinated organics (figure 4.13) and the 

poly-halogenated methanes (figure 4.14) to that of the poly-brominated methanes 

(figure 4.11) no clear correlation between the data sets seems apparent. An explanation 

for this could be that either the compounds originate from alternate sources or could be 

an effect of the longer lifetimes of the trace gases CH2Br2 (2 – 3) weeks and CHBr3 (2 - 

3 months). 

 

Figure 4.16 shows VOIC air concentrations with respect to wind direction (ºN). The 

majority of the VOIC mixing ratios determined are highly centralised within the polar 

plots which show the range of background air concentrations during the analysis period. 

Elevated air concentrations for all the VOIC measured were observed in the north-

westerly (clockwise) south-westerly sectors of the polar plots. VOIC air concentrations 

from the north-westerly sector correspond to an observed peak in concentrations on the 

19
th

 of February, whilst those in the south westerly sector both correspond to peaks in 

concentrations observed on the 22
nd

 and 24
th

 of February, figures 4.13 and 4.14.  This 

observation could initially suggest two dominant sites of VOIC emissions within the 

region. 
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Figure 4.13. Time series for mono-iodinated organics with air mass classifications. A, 

air mass transects region with large leads with transit time < 24 hours; B, air mass 

transects region with polynyas with transit time < 72 hours; C, air mass passes over 

region of predominantly ( 80%) sea-ice/snowpack surface. Dark green, CH3I; red, 

C2H5I; light green, 2-C3H7I; yellow, 1-C3H7I. 

 

 

Figure 4.14. Time series for poly-halogenated organics with air mass classifications. A, 

air mass transects region with large leads with transit time < 24 hours; B, air mass 

transects region with polynyas with transit time < 72 hours; C, air mass passes over 

region of predominantly ( 80%) sea-ice/snowpack surface. Black, CH2ICl; blue, 

CH2IBr. 
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Figure 4.15 Correlation plots of ambient air VOIC concentrations during 19
th

 to 27
th

 of 

February. Pink data points are air concentrations excluded from linear regression line. 
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Figure 4.16 Polar plots of VOIC ambient air concentrations against wind direction (1 

binned). 

 

4.3.4 Determination of air mass histories 

Although local wind direction is a useful guide for ascertaining air-mass origin it is an 

over simplification of the meteorological situation. An improved diagnosis of air mass 

history can be achieved from examining calculated back-trajectories with respect to 

surface type. Air mass back trajectories were calculated using the NOAA HYSPLIT 

model and grouped into 4 distinct classifications using a combination of surface satellite 
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imaging techniques (section 4.2.4). The combination of NASA’s Advanced Synthetic 

Aperture Radar (ASAR) imaging satellite in wide swath mode (75 m resolution, 3 day 

temporal resolution) and the Advanced Microwave Scanning Radiometer (AMSR-E) 

imaging satellite (5 km resolution, 1 day temporal resolution) were used in concert 

during the sampling period to identify regions of sea ice, open leads and regions of open 

water over Hudson Bay.  These were then compared with calculated 5 day back 

trajectories of the region to determine whether the air masses sampled transected bodies 

of open water during their history (section 4.2.4). 

 

Spring is a common period for the observation of open leads due to ocean currents or 

wind stress on ice sheets. Leads and polynyas can occupy up to 12% of the Arctic sea 

ice area (Eicken, 2008). Whilst the formation of polynyas in Hudson Bay occurred on 

several occasions during the analysis period, the formation of open leads only occurred 

once during the analysis period in the region immediately north of the experimental site. 

As can be interpreted from figure 4.17, a region of large open leads develops  40 km 

north from the experimental site (Mahajan et al.,  2010) over a 3 day period on the 19
th

 

of February and completely dissipates within another 3 days. Similarly, a 15 - 20 km 

wide polynya can be observed to develop 200 – 250 km directly to the west of 

Kuujjuarapik. Figure 4.19 is an AMSR-E image from the 24
th

 of February which shows 

the formation of a large polynya on the north west of Hudson Bay. This region of open 

water is first observed on the 22
nd

 of February and does not dissipate until the 27
th

 of 

February, figures 4.18 and 4.19. Calculated back trajectories during this period transect 

this polynya continuously from midday of the 24
th

 onwards which would suggest this as 

a possible source of the elevated poly-brominated methanes during this period (figure 

4.11). As the inferred transit time between the polynya and the experimental site is  72 

hours, elevated VOIC air concentrations were not observed during this period (figures 

4.13 and 4.14). 

 

The presence of these leads (figure 4.17) and polynya (figure 4.18 and 4.19) coincides 

temporally with the peaks in mono-iodinated and poly-halogenated organic air 

concentrations observed on the 19
th

, 22
nd

 and 24
th

 of February (figures 4.13 and 4.14). 

On comparison of calculated back trajectories for the time period within the location of 

these large leads and polynya, it is evident that the trajectories directly transect these 
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open water regions (figures 4.20 and 4.21). Air mass transit times of  1 hour and 14 – 

17 hours were inferred from the calculated 5 day back trajectories for elevated VOIC air 

concentrations observed on the 19
th

 and 22
nd

 – 24
th

 of February, respectively. 
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th

 February                                                            19
th

 February      
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nd

 February 

                                                                 22
nd

 February 

 

 

 

 

 

 

Figures 4.17 ASAR images depicting the formation of large leads directly north of the 

experimental site on the 19
th

 of February. 
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    Figure 4.18. AMSR-E image of Hudson Bay region between the 24
th

 and the 25
th

 of   

    February. The highlighted geographic region above is shown in greater detail in   

    figure 4.19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 AMSR-E enhanced image of back trajectory region in Hudson Bay 

between the 24
th

 to the 25
th

 of February. 
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                   Figure 2.21. NOAA HYSPLIT back trajectories for 19th February 12:00-24:00 and how they correlate to halocarbon  

                                        concentrations over the 24 hour period. 

 

 Figure 4.20 NOAA HYSPLIT back trajectories for 19
th

 February and how they 

correlate to VOIC concentrations and temperature (C) over the 24 hour period. 

[C2H5I], red; [2-C3H7I], light green; [CH3I], dark green; [1-C3H7I] x 10, black; [CH2ICl] 

x 20, brown; [CH2IBr] x 30, light blue; temperature, dark blue. 
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          24
th

 February                              24
th

 February                       24
th

 February 

                  0:00                                                06:00                                      12:00 

 Figure 4.21 NOAA HYSPLIT calculated back trajectories for 24
th

 February and how 

they correlate to VOIC concentrations and temperature (C) over the 24 hour period. 

[C2H5I], red; [2-C3H7I], light green; [CH3I], dark green; [1-C3H7I] x 10, black; [CH2ICl] 

x 20, brown; [CH2IBr] x 30, light blue; temperature, dark blue. Blue dashed lines 

represent periods when cold frontal systems were observed to pass over experimental 

site (Appendix 4.2 to 4.4) 

  

4.3.5 Statistical analysis 

A statistical analysis was carried out on the VOIC time series to evaluate whether 

significantly higher concentrations were observed in air masses transecting regions of 

open water. Statistical testing using the  two tailed Mann-Whitney U test was carried 

out on two datasets created by binning the measured VOIC concentrations during air 

mass classifications A and D ([VOIC]water) and B and C ([VOIC]seaice).  
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The Mann-Whitney U test is a non-parametric test that can be used to test the null 

hypothesis (H0) that two samples originate from the same population or, alternatively 

that the observations in one sample are statistically significantly different than 

observations in the other (termed the alternative hypothesis, H1). The Mann-Whitney U 

test was chosen to test the H0 VOIC concentrations were not statistically significantly 

different during air mass classifications A and D compared to B and C. This H0 

essentially describes a situation in which elevated VOIC concentrations in air masses 

transecting open water regions (within transit times of < 24 hours) was due to chance. 

Statistical analysis was carried out on CH3I, C2H5I, 2-C3H7I, 1-C3H7I and CH2ICl using 

EQ 4.5 and 4.6, where T is the sum of the group mixing ratios and N is the sample size 

of groups A ([VOIC]water;  N = 9) and B ([VOIC]seawater; N = 17) respectively. The U 

parameters for groups A and B were then compared to critical values for Mann-Whitney 

U to assess at what confidence limit, if any, H0 could be rejected. 

 

A
AA

BAA T
NN

NNU 



2

)1(
                                                                           (EQ 4.5)      

B
BB

BAB T
NN

NNU 



2

)1(
                                                                            (EQ 4.6) 

                     

As shown in table 4.2, the H0 was rejected for C2H5I, 2-C3H7I and 1-C3H7I at a 

confidence limit of  95 %. This statistically proves the alternative hypothesis that these 

VOICs were observed at higher mixing ratios during periods of air masses transecting 

open water (within transit times of < 24 hours), suggesting that leads and polynyas were 

the dominant regional sources for these compounds during the analysis period. 

 

 CH3I and CH2ICl were not statistically different between [VOIC]water and [VOIC]seaice 

at  90% confidence limit. For CH3I, this is probably due to the relatively high 

background mixing ratios of CH3I observed during the campaign (1.56  0.44 pptv) 

leading to a % difference in mean [VOIC]water and [VOIC]seaice of only 20%, table 4.2. 

For CH2ICl, this is most likely influenced by the very short atmospheric lifetime of this 

compound. 
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VOIC Lifetime 

(days-

noon) 

Mean 

[VOIC]water 

(pptv) 

Mean 

[VOIC]seaice 

(pptv) 

Difference 

(%) 

Statistical 

confidence 

(%) 

CH3I 6 1.96  0.92 1.56  0.44 20.3 < 90 

C2H5I 3.5 0.46  0.42 0.23  0.13 50.5  95 

2-C3H7I 1.2 0.74  0.79 0.26  0.17 64.4  95 

1-C3H7I 0.5 0.09  0.08 0.04  0.03 51.5  95 

CH2ICl 0.14 0.05  0.04 0.02  0.01 66.3 < 90 

Table 4.2 Mean [VOIC] air on transecting regions of open water or predominantly sea 

ice and the degree of confidence at which their statistically different. 

 

4.3.6 Influence of leads/polynyas in sea ice on atmospheric surface temperature 

Leads and polynyas can occupy up to 12% of the Arctic sea ice area (Gloersen and 

Campbell, 1991), providing a significant source region for sea salt aerosols, water 

vapour and latent heat to the PBL. Water vapour emitted from leads exerts a major 

control on radiative effects through cloud formation as well as inducing significant 

growth of aerosol particles, altering their composition and gas phase partitioning effects 

(Piot and von Glasow, 2007). Previous model estimations suggested sensible and latent 

heat fluxes from open leads in polar regions of 300 Wm
−2

 and 45 Wm
−2

, respectively 

(Piot and von Glasow, 2007). The contribution of leads and polynyas is greatest during 

clear skies during cold regimes, when the surface temperature difference between open 

leads and snow covered sea ice can be up to 40 K, causing a strong temperature gradient 

to exist which induces strong vertical convection in the boundary layer. Due to 

increased evaporation, the specific humidity above such an open lead is predicted to be 

an order of magnitude higher than over snow covered sea ice, 2.5 ×10
−3

 kg H2O kg
−1

 air 

compared to 2.2 ×10
−4

 kg H2O kg
−1

air  (Piot and Glasow, 2007).  

 

During each period of elevated VOIC mixing ratios observed during the COBRA 

campaign, an observable increase in ambient air temperature of between  1 – 8 ºC was 

observed. This correlates with peaks in VOIC responses on the 19
th

 (figure 4.18), 22
nd

 

(Appendix 4.1) and the 24
th

 (figure 4.19) of February.  A possible explanation for this is 

that an increase in temperature (i.e. through the passage of a synoptic system such as a 

warm front) is directly influencing the positive flux of VOICs from these 

leads/polynyas or surrounding snowpack through increased volatilisation. On the 
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analysis of synoptic surface pressure charts of the region (NOAA), only two frontal 

systems were observed passing over Hudson Bay (23
rd

 and 24
th

 of February) during the 

analysis period. Interestingly the peak in ambient air temperature observed on the 24
th

 

of February (figures 4.9 and 4.21) correlates with the passage of these two bracketing 

cold frontal systems through the experimental site (Appendix 4.2 to 4.4). An alternative 

hypothesis is that heat is convected from these leads/open water regions during the flux 

of VOICs. If the latter is true, then potentially temperature could be used as a tracer for 

trace gas emissions from or around leads and polynyas.  

 

The maximum effect of open leads within sea ice on atmospheric temperature has 

previously been investigated using a 1D atmospheric model coupled to a snow/sea-ice 

model (Lűpkes et al., 2008). With this model approach, it was clearly demonstrated that 

air (10 metres) and surface temperatures are strongly dependent upon sea ice coverage, 

and wind speed. The results demonstrate that as Arctic sea ice coverage decreases from 

100% to 95% (i.e. during the formation of polynyas) mean air temperature (10 metres) 

adjacent to the sea ice opening increases by 5 K during a 12 hour period and  14 K 

during a 2 day period. This model observation would initially support the conclusion 

that the increases in air [VOIC] and temperature are caused by emissions from leads and 

polynyas. However, it is not known how much of an effect air mass transit time would 

have on air temperature, particularly in those air masses which transected the polynya 

200 – 250 km away from the experimental site (14 – 17 hours).  

                                                          

4.3.7 Oceanography of leads and polynas in sea ice 

Leads and polynyas in pack ice have long been considered important to the 

thermodynamics of polar regions (Badgley, 1966). The amount of ice formation in leads 

and polynyas is of the same order of magnitude as that formed under perennial sea ice 

and, due to brine rejection, accounts for a major fraction of the salt input to the Arctic 

mixed layer (Eicken, 2008). This affects the surrounding ocean because it is a strong 

density source to the mixed layer water column. As dense brine is rejected during the 

refreezing of leads and polynyas, dense water sinks under the lead. This forms a cellular 

convection pattern within the mixed layer depth with less saline seawater flowing in 

from directly under the surface of sea ice and the dense water flowing away from the 

lead (figure 4.22). This cellular convection pattern in the mixed layer is characterised by 

velocity perturbations (velocity jets) immediately below the sea ice (0 – 0.5 metres) and 
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at the base of the mixed layer (1 - 5 cm s
-1

). However, this can only occur during low 

geostrophic under ice currents (less than  5 cm s
-1

; Morrison et al., 1992). During high 

geostrophic currents the mixed layer is fully turbulent and this cellular convection may 

not occur, rather the rejected brine is simply mixed into surface water column. This 

phenomena is not only important when considering latent heat fluxes from 

leads/polynyas but could also potentially influence trace gas emissions to the MBL. 
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Figure 4.22 Illustration of the cellular convection circulation induced by a winter lead 

in the absence of rapid ice motion. Figure adapted from Morison et al. 1992. 

 

Diatoms inhabit both the microstructure and the underside of sea ice in Arctic regions 

(Garrison and Buck, 1989). The production of brominated and iodinated organics by 

these organisms is well established (Sturges et al., 1992; Tocarzyk and Moore, 1994), 

via enzymes active in the oxidative metabolism of the cell (Moore et al., 1996). 

Subsequent volatilisation of these halogenated compounds can occur if the surface layer 

of the ocean becomes supersaturated. It is therefore feasible to conceive that the 

observed peaks in VOIC air concentrations are produced by such diatoms present in the 

underlying skeletal layer of the ice, which are then transported to the open water   of the 

lead due to a combination of thermal gradients between the sea-surface layer and the 

overlying air.  
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The cellular convection circulations described cause velocity perturbations below sea 

ice which converge at the surface of the lead/ polynya. During low geostrophic currents 

(< 5 m/s), this phenomena has the potential to entrain trace gases produced by 

microalgal colonies on the underside of the sea ice toward the open lead, rapidly 

replenishing those lost to the MBL through sea-air exchange. Although the horizontal 

distribution of these cellular convection circulation cells beneath the sea ice is not 

known (Morrison et al., 1992), this phenomena clearly has the potential to enhance 

trace gas emissions from leads and polynyas in sea ice and remains an area for further 

work. Conversely high geostrophic currents (> 5 m s) towards leads/polynyas can 

directly replenish aqueous trace gas concentrations directly under the sea ice opening. 

In both extremes, the presence of under ice lateral flows have the potential to enhance 

heat and mass sea-air exchange from within the water column depending on the size of 

the sea ice opening. Loose et al. (2009) previously experimentally investigated the 

relationship of the gas exchange rate (k) with sea ice fractional coverage (f) using the 

conservative dissolved tracers O2 and SF6.  Originally k was expected to increase 

proportionally to f (1:1). However, the authors observed in each experiment that the 

determinations for k were consistently clustered above this 1:1 relationship suggesting 

under ice lateral flows were enhancing the emission of dissolved trace gases, 

particularly at high f. 

 

4.3.8 Observed effects of brominated organics on surface ozone 

Figure 4.23 shows ozone plotted against bromoform mixing ratios during the analysis 

period (19
th

 – 27
th

 of February). Ozone mixing ratios were relatively stable ( 37 ppbv) 

between the 19
th

 and 24
th

 of February. On the 24
th

 of February at 18:30, a small ODE 

was observed in which ozone mixing ratios dropped to  20 ppbv from background 

levels over  9 hours. Similarly, an extensive ODE was observed between the 25
th

 and 

26
th

 of February in which ozone mixing ratios dropped to near zero (1.9 ppbv) over  24 

hours.  

 

Based on 5 day air mass back trajectory calculations and satellite observations, sections 

4.2.4 and 4.3.4, sampled air masses were observed to transect a region of open water on 

the north west of Hudson Bay ( 1000 km away) from midday of the 24
th

 of February to 

the end of the analysis period. This correlates well with enhanced CHBr3 and CH2Br2 
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mixing ratios during this period. As the calculated transit time of air masses between the 

polynya and the experimental site was  72 hours, this would imply that O3 depletion 

may also have occurred in transit during the same time period.  

 

Bromoform mixing ratios are anti-correlated to ozone concentration throughout the 

period, particularly during the ODE’s (figure 4.24). This phenomena was first observed 

during the Polar Sunrise Experiment 1988 (PSE88, Barrie et al. 1988) at Alert, Canada 

and has been observed on several field campaigns since. Initially this data would 

suggest that the production and photolysis of bromoform is directly depleting ozone. 

However, bromoform  photochemistry as a cause for tropospheric ozone depletion has 

previously been ruled out (Moortgat et al., 1993; Simpson et al., 2002), due to the 

compound’s low mixing ratios and long photolytic lifetime under Arctic springtime 

conditions. This could however suggest a link between organic and inorganic bromine 

production within the region.  

 

Direct Br2 emission and wind derived aerosol from the surface seawater of the polynya 

and adjacent frost flower fields/saline sea ice surfaces could have contributed to ozone 

depletion within the sample air mass during this 72 hour period. Sea ice in proximity to 

regions of open water usually have enhanced salinity due to surface flooding, 

facilitating the formation of frost flowers (Simpson et al., 2005). Wind derived aerosol 

produced from frost flowers contain high concentrations of aqueous bromide (Barrie et 

al., 1988) and high acidity (Sander et al., 2006), and are currently believed to be the 

predominant surface on which halogen activation occurs. This enhancement in aqueous 

bromide concentration and acidity could occur by the scavenging of HBr, the 

termination product of the bromine explosion, by these particles. Theoretically, this 

particulate bromine could then be recycled to gaseous bromine during transit to the 

experimental site. 

 

Additional organic and inorganic halogens produced and emitted from the surface sea 

ice during transit may also have contributed to the observed ODEs. Surface wind speeds 

(Manchester met station) were observed to drop from background velocities of  6 m s
-1

 

to 2 and 0.2 m s 
-1

 during ODEs observed on the 24
th

 and 25
th

 of February, respectively 

(figure 4.25). Reduced wind speed periods induce a stable PBL situation, confining 
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trace gases in the boundary layer, and potentially increase sea ice – air contact times. 

Such phenomena could have caused greater amounts of gaseous HOBr uptake (EQ 

4.22) into the QLL of sea ice surfaces during transit causing catalytic gaseous Br2 

emission into the sampled air mass before reaching the experimental site (Barrie et al., 

1988). However, as comprehensive Br2 and BrO measurements were not conducted 

during the analysis period this hypothesis cannot be confirmed. 
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Figure 4.23 Time series of bromoform and ozone mixing ratios during the 19
th

 – 27
th

 of 

February. Red, ozone mixing ratios (ppbv); green, bromoform mixing ratios (pptv). 
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Figure 4.24. Time series of bromoform and ozone mixing ratios during the 23
rd

 – 27
th

 

of February. Red, ozone mixing ratios (ppbv); green, bromoform mixing ratios (pptv). 
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Figure 4.25 Ozone mixing ratios over analysis period against wind speed. Light blue, 

ozone mixing ratios (ppbv); dark blue, wind speed (m s
-1

). 

 

4.3.9 Observed effects of VOICs on MBL composition 

Measurements of IO were conducted for 11 days using the long path differential optical 

absorption spectroscopy (LP-DOAS) operated by the School of Earth and Environment 

(University of Leeds). Further information on IO measurements made during the 

campaign are discussed in Mahajan et al. (2010). Figure 4.26a shows ozone mixing 

ratios observed during the analysis period and Figure 4.26b shows IO observations 

above the LoD of the LP-DOAS instrument ( 1 – 1.5 pptv; Mahajan et al. 2010). The 

maximum IO mixing ratio observed during the campaign was 3.4  1.2 pptv. Neither IO 

nor VOICs (figure 4.26c) were observed ubiquitously during the campaign, in fact IO 

was never observed above the LoD during the night. Both IO and VOIC concentrations 

measured during this study depend strongly on the history of the air mass, indicating 

that the emissions from polynyas are their primary source as neither were detected in air 

masses passing over ice or land. The highest IO concentrations 3.1 – 3.4 pptv were 

observed in air masses passing over a polynya 200 - 250 km away (figures 4.16 and 

4.17). An interesting observation is that in the air mass transecting the lead on the 19
th

 

of February (figures 4.15 and 4.18), elevated concentrations of VOIC were observed 

during the daytime whereas IO was not observed above the detection limit. 
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Figure 4.26 Time series of ambient air O3, IO and VOIC mixing ratios and air 

classifications. a) O3 mixing ratios (ppb); b) IO mixing ratios (pptv); c) VOIC mixing 

ratios (pptv). CH2IBr, triangles; CH2ICl, circles; CH3I, squares. Vertical white and 

black regions show day and night periods. Figure adapted from Mahajan et al. (2010). 

 

Mahajan et al. (2010) used a one-dimensional Tropospheric Halogen Chemistry Model 

(THAMO, Saiz Lopez et al., 2008) to study the impact of VOIC concentrations on the 

formation of IO and their impact on the oxidising capacity of the PBL with respect to 

O3 during the COBRA campaign. Direct VOIC fluxes were not determined from 

leads/polynyas during the campaign, hence the model initialisation flux was tuned to 

reproduce the VOIC air concentrations observed at the experimental site. Fluxes of 1.4 

nmol m
-2

 d
-1

 (CH2I2), 2870.1 nmol m
-2

 d
-1

 (CH2IBr), 71.7 nmol molecule m
-2

 d
-1

 

(CH2ICl), and 286.9 nmol m
-2

 d
-1

(CH3I) were required to reproduce both daytime and 

night time levels observed on the 24
th

 of February. Fluxes of C2H5I, 2-C3H7I and 1-

C3H7I were not taken into account due to their relatively low mixing ratios observed 

during the campaign. The use of THAMO helped explain several interesting 

observations within the dataset, figure 4.26. 

 

D B A B A C C 
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During the 19
th

 of February, enhanced VOIC mixing ratios were observed during the 

daytime, but IO was not observed above the LP-DOAS LoD. Airmass back trajectories 

during this period suggest a small region of leads (figure 4.17) 1 – 4 km wide  40 km 

north of the experiment site that may be influencing air mass composition. Such leads 

are likely to contribute lower VOIC concentrations from lead venting due to low sea-air 

contact times. This observation is correlated with the THAMO runs which predict only 

a 10 min sea-air contact time is necessary to produce the observed VOIC concentrations 

at the tuned flux rates. Interesting THAMO only predicts IO mixing ratios of  1 pptv 

arriving at the experimental site on the 19
th

 of February, below the established LoD of 

the LP-DOAS, in good agreement with the observed data. 

 

During the 24
th

 of February back trajectory analysis predicts a  14 hour transit time 

between the polynya and the experimental site and a  1 hour sea-air contact time over 

the 15 – 20 km width of the opening. Following an initial 1 hour VOIC pulse and a 14 

hour transit time, the THAMO model predicts 0.06 pptv and 0.08 pptv of CH2IBr and 

CH2ICl, in agreement with the night time concentrations of 0.06 pptv CH2IBr and 0.08 

pptv CH2ICl observed at the experimental site at 0300 hours on the 24
th

 of February.  

Additionally, CH2I2 mixing ratios were predicted to be under the upper limit of 0.05 

pptv, as confirmed from the observations. Similarly the THAMO model predicts that 

high levels of IO would not be observed during the night due to the absence of VOIC 

photolysis, again confirmed by the observations. Figure 4.26 shows elevated IO mixing 

ratios, anti-correlated to ozone, on the 24
th

 of February. The decrease in ozone 

concentrations of  10 ppbv cannot be explained by the presence of IO alone. THAMO 

predicts the loss of only  1.6 ppbv of ozone during this period from iodine chemistry. 

Instead we suggest that significant concentrations of BrO could have been present 

within the air mass causing greater ozone losses due to halogen oxide cross reactions. 

Using THAMO for the 24
th

 of February, if IO (3.1 pptv) is present within the same 

airmass as high BrO mixing ratios (25 pptv; Honninger et al., 2004) the overall ozone 

destruction rate would be  2 ppbv hr
-1

 (Mahajan et al., 2010). This is over 3 times the 

effect of BrO alone (0.62 ppbv hr
-1

), producing a net ozone loss of  28 ppbv ozone 

during transit from the polynya. 
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On the 26
th

 of February sampled air masses had a transit time of  72 hours from the 

polynya over  1000 km away (Figure 4.18). During this period, THAMO predicts that 

any VOIC emitted from this lead would be permanently lost through photolysis 

explaining why elevated levels were not observed during the 25
th

 – 26
th

 of February. 

Similarly THAMO predicts that all IO generated from VOIC photolysis would be lost 

to iodine oxide particle (IOP’s) formation within 24 hours (Saunders et al., 2010), 

explaining why IO was not observed above the LoD during this period. However, 

during this period high BrO mixing ratios of 25 - 30 pptv were measured in the MBL 

using multi axial differential optical absorption spectroscopy (MAX DOAS; Oetken, H. 

unpublished data), figure 4.27, which most likely caused the observed ozone loss ( 0.9 

ppbv hr
-1

) during the large ODE. 
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 Figure 4.27 BrO measurements conducted via MAX DOAS during the ODE (Oetken, 

H. unpublished data). Filled blue diamonds, [BrO] (pptv); filled green circles, [O3] 

(ppb). 

 

Higher levels of IO are predicted around the large polynyas, with mixing ratios typically 

peaking at  11 pptv at 10 metres in altitude, 1 hour after the initial VOIC pulse. As the 

IO is confined to the prescribed PBL within the model (101  51 m; Mahajan et al. 

2010),  the corresponding column density would be considerably lower than the satellite 

LoD (1.7 x 10
12

 molecules cm
-2

) for a single measurement. This is consistent with the 
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current lack of satellite based IO observations within Arctic regions (Schonhardt et al., 

2008). 

 

4.4 Conclusions 

To the author’s knowledge, the work herein contains the first in direct evidence of 

VOIC emission from leads and polynyas within the Arctic. Elevated mixing ratios of 

halogenated organics and halogen oxides were observed in the sub-Arctic MBL 

suggesting that the presence of bromine in concert with iodine can play an important 

role in the region. Calculated air mass back trajectories indicate high IO and VOIC 

mixing ratios were associated with air masses transecting polynyas in Hudson Bay 

(Mahajan et al., 2010). The observations suggest that the dominant source of IO within 

the MBL is the photolysis of VOIC emitted from these polynyas in the sea ice and that 

observed levels of IO greatly accelerate bromine catalyzed ozone depletion of ozone. 

However, due to the short atmospheric lifetimes of these IO precursors, iodine 

chemistry in concert with bromine is predicted to occur only on a local scale.  

 

Direct VOIC fluxes were not determined from leads/polynyas during the campaign, 

hence the THAMO initialisation flux was tuned to reproduce the VOIC air 

concentrations observed at the experimental site (Mahajan et al., 2010). This tuned sea-

air flux of VOIC from the polynya is considerably higher than previously observed in 

the open ocean (Jones et al., 2010; Hughes et al., 2009).  

 

Calculated sea-air fluxes (table 5.3) were determined to assess the validity of the tuned 

fluxes used in the THAMO. This was achieved using VOIC concentrations previously 

observed in the open ocean (Jones et al., 2010; Hughes et al., 2009) and mean 

concentrations in air between 18
th

 – 28
th

 February during the COBRA campaign, 

(section 5.4.8, EQ 5.22). Under ice turbulence in the proximity of openings in sea ice 

may not be dominated by wind driven mixing and geostrophic currents (section 4.3.6). 

The amount of gas exchange through leads/polynyas is not solely dependent upon wind-

speed scaling as used for the open ocean (Nightingale et al., 2000), hence gas flux is not 

a linear function of f (Loose et al., 2009; 2011). Loose et al. (2009) previously 

experimentally determined that a power law relationship exists between sea-air gas 

exchange rate (kw) and sea ice coverage. During typical partial sea ice cover experience 

during winter (f  0.1; Tanning and Fanning, 1991) sea-air gas exchange rates were 
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predicted to be a factor of  4.3 times higher than linear scaling would suggest. Using 

EQ 5.22, this enhanced exchange rate was taken into account to calculate the theoretical 

sea-air flux of VOIC occurring at the polynyas/leads during COBRA, table 4.3.  

 

VOIC Typical seawater-air 

flux 

(nmol m-2 d-1)
a
 

Calculated theoretical 

sea-air flux from 

leads/polynyas 

(nmol m-2 d-1)
b

 

Tuned sea-air flux 

used in THAMO 

(nmol m-2 d-1)
c
 

Flux from surface 

sea ice 

(nmol m-2 d-1)
d

 

CH3I 41.3  5.8 179.0  25.1 286.9 0.15  0.02 

C2H5I 1.33  0.2 5.8  0.9 0 0.04 

CH2ICl 2.7  0.3 11.7  1.3 71.73 < LoD 

1-C3H7I 1.2  0.2 5.2  0.9 0 0.02 

CH2IBr 3.9  0.5 16.9  1.5 2870.1 0.04  0.01 

CH2I2 10.8  1.4 46.8  4.2 1.4 < LoD 

Table 4.3 Comparison of calculated VOIC fluxes from sea ice openings during 

COBRA with THAMO initialisation fluxes. 

a 
Calculated using VOIC concentrations previously observed in the open ocean  

(Jones et al., 2010; Hughes et al., 2009), EQ 5.22. 

 
b
 Calculated assuming an increase in gas exchange rate of  4.3 at  f  0.1 (Loose et al., 2009). 

 
c
 Mahajan et al. (2010). 

 
d 

Fluxes calculated using the calculated VOIC concentrations in the upper 2.4 cm of brine, EQ 5.24. 

Assumes an ambient air temperature of -3ºC and that the brine percolation threshold of the upper sea ice 

was met. 

 

The theoretical VOIC fluxes of CH2ICl and CH2IBr were considerably lower than those 

used as the initialisation flux for the THAMO, whereas the CH3I flux was similar. 

Fluxes of CH2I2 , C2H5I and 1-C3H7I from leads however have the potential to be much 

higher than considered in THAMO. VOIC fluxes from the sea ice surface are unlikely 

to have significantly contributed to the mixing ratios observed at the experimental site, 

table 5.3. The data shown in Table 4.3 suggests that the overall VOIC sea-air fluxes 

required by THAMO to reproduce IO levels are rather higher than can be expected. 

This could mean that additional sources are required, or that iodine activation/recycling 

on sea salt aerosol is more efficient than in the model, and/or that recycling on sea ice 

surfaces maintains elevated IO mixing ratios during transit. This highlights the need of 

further field investigation as there is currently a lack of direct VOIC flux measurements 

from leads and polynyas in polar regions. 
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Previous observations have suggested a decline in sea ice thickness and an increase in 

the frequency of occurrence of polynyas and leads in the Arctic over recent decades 

(Lindsay and Zhang, 2005; Parkinson and Cavalieri, 2008). Assuming that iodine 

species are emitted from regions of open water in sea ice, the measurements within this 

chapter and the corresponding model results (Mahajan et al., 2010) indicate that iodine 

chemistry could potentially play a larger role in the Arctic environment in the future. 
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Chapter 5 

 

Gas diffusion through columnar sea ice: 

Implications for halocarbon fluxes in the 

seasonal sea ice zone. 

 

 

Thermal evolution of diffusive transport of halocarbons through artificial sea ice 

Shaw, M. D.  Carpenter, L. J.  Baeza-Romero, M. T. and Jackson, A. Atmospheric Environment, 45, 35, 6393 

– 6402, (2011). 
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5.1. Introduction 

As discussed in Chapter 4, future fluxes of halogens to the atmosphere may be enhanced 

(Mahajan et al., 2010) as sea-ice continues to thin and retreat, predominantly from sea-air 

exchange from open water within the ice-pack.  As sea-ice becomes warmer and thinner, an 

additional potential route is through increased bulk diffusive gas transport through the 

porous microstructure of thinner, warmer sea ice (Loose et al., 2009; Loose et al., 2011).  

Oceanic emission of VOIC is widely believed to be the dominant atmospheric source of 

iodine, which has both microalgal (Hughes et al., 2008) and photochemical sources 

(Richter and Wallace, 2004) within the open ocean (as discussed in section 1.3). During 

periods of first year ice coverage, oceanic VOIC emissions are considered to be “capped” 

by this overlying ice layer (McPhee et al., 1996). Recent research suggests that fluid 

transport and gas transfer in sea-ice may result in a redistribution of such atmospherically 

important trace gases from the surface ocean to the overlying atmosphere (Saiz Lopez and 

Boxe, 2008; Golden et al., 1998). The likely significant changes to the emissions of 

halogens and their impacts on Arctic climate through atmospheric composition are 

currently unknown. 

 

5.1.1 Sea ice formation 

Seawater above its freezing point cooled at the sea/air interface will experience 

thermohaline convection (overturning of colder, denser surface waters with warmer, lighter 

waters at depth) until the entire upper water layer is at its freezing point. At this point ice 

crystals form throughout the upper water layers and are kept in suspension until a surface 

layer of slush builds, reducing wind stress and thermohaline mixing. The ice crystals in this 

surface ice layer take the shape of small ice platelets which are intertwined into aggregates 

called frazil ice (Eicken, 2008; Weeks and Ackley, 1986). Typical crystals are 5 to 50 mm 

in length and less than a millimetre thick. Following further freezing and consolidation of 

this frazil ice layer (typically 5 cm thick) the microstructure of the underlying ice layers 

alters as layer upon layer of ice is added to the bottom of the ice sheet through quiescent 

growth of columnar ice (Eicken, 2008). This layer consists of vertically elongated prismatic 

crystals that are typically several centimetres in diameter and tens of centimetres in length 

(Weeks and Ackley, 1986, Tyshko et al., 1997).  
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During the action of seawater freezing, dissolved ions and gases are excluded from the ice 

crystal structure (Richardson, 1976). The exclusion of salt from these crystals produces a 

hyper-saline brine which carves a structure within sea ice that is porous to both water and 

gas (Loose et al., 2011), facilitating brine transport. The bulk of this hypersaline brine 

resides in the intra crystalline layers whose vertical connectivity is predicted to underpin 

the development of the brine permeability (Golden et al., 2007). This phenomenon is 

attributed as being responsible for several important processes including: sea ice production 

from the freezing of flooded surfaces, convection enhanced thermal transport, an input of 

both freshwater and brine into the ocean and the transport of nutrients and enzymes.  The 

latter is essential for the survival of in-situ micro-organisms, from the upper ocean through 

the sea ice column (Weeks and Ackley, 1986 and Thomas and Dieckmann, 2003).  

 

5.1.2 Sea ice dynamics 

Sea-ice is a complex multiphase medium consisting of pure ice crystals, brine and air 

inclusions, the sizes of which vary significantly with temperature and bulk salinity. 

Columnar sea ice exhibits a transition in its fluid transport properties at a critical brine 

volume fraction (pc) of between 5 – 5.4 %. This is known as the percolation threshold (Cox 

and Weeks, 1975; Petrich et al., 2006). Below this value, the ice is considered impermeable 

to fluid transport whereas above this value seawater and brine are mobile through the ice. 

Brine volume is critically related to both temperature (T) and salinity (S) (Frankenstein and 

Garner, 1967) by “the rule of fives”, which states that pc corresponds to a critical 

temperature T of  -5 °C for a salinity (S) of 5 psu (Golden et al., 2007). Evidence 

supporting this theory includes observations of the exponential decrease of the permeability 

of sea-ice to sea water as the surface temperature decreases from -3 °C to -12 °C (Ono and 

Kasai, 1985), and the dissipation of brine gravity drainage for a brine volume fraction (p) ≤ 

5% (Weeks and Ackley, 1986; Cox and Weeks, 1975). 

 

5.1.3 Nutrient exchange through sea ice 

In abiotic systems, in-situ ice concentrations of inorganic nutrients (such as nitrate, nitrite, 

ammonia, phosphate and silicate) will change proportionally to the salinity change 

(Thomas and Papadimitriou, 2008). Major ions such as sodium, potassium, magnesium, 
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chloride, sulphate and calcium within different ice types and age follow a similar trend. 

However, in biologically active sea ice columns nutrient depletion and even exhaustion 

events are observed as would be expected due to the desalination from gravity drainage 

processes (section 5.3.2) and uptake by organisms (Dieckmann et al., 1991).  

 

An important factor influencing nutrient concentrations in sea ice, hence microalgal 

biological production rates, is their rate of exchange and vertical transport with the 

underlying seawater. This is dictated by the sea ice percolation threshold, hence brine 

channel fractional connectivity. Nutrient depletion has rarely been reported as a biological 

growth limiting factor in the skeletal layer of sea ice (lower few cms) as sea- ice exchange 

is readily possible at this depth. This is due to the relatively high salinities and temperatures 

observed within this ice layer which allow the percolation threshold to be met. Krembs et 

al. (2002) established that, even though nutrient exchange rates were 100 times smaller in 

the skeletal ice layer than in sandy sediments, this rate of exchange was still sufficient to 

satisfy typical algal nutrient demands. Previous work (McMinn et al., 1999) on both 

perennial and seasonal sea ice during winter suggests that the rates of nutrient transport 

decrease away from the ice-water interface. In this work nutrient depletion and algal 

growth limitation was observed at distances of 5 - 10 cm from the ice-water interface. 

Alternatively, in porous summer sea-ice, where ice-water nutrient exchange is postulated to 

extend deeper into the bulk ice, large concentrations of microalgae have previously been 

recorded (Thomas et al., 1998, Kennedy et al., 2002).  

 

5.1.4 Biogeochemistry of sea ice 

During winter within polar regions, biological activity is believed to be focussed at the 

surface and on the underside of the ice sheet on the ice covered ocean (Sturges et al., 1997). 

Previous incubation studies have demonstrated phytoplankton, including several diatom 

species, are capable of producing both volatile organic bromine compounds (VOBC) and 

VOIC (Tokarczyk and Moore, 1994; Moore and Tokarczyk, 1996). The significance of 

phytoplanktonic VOBC and VOIC production in surface waters is of global significance as 

they have an ocean wide distribution, unlike macrophytes which are largely confined to the 

coastal zone. However, previous halocarbon determinations within the polar boundary layer 
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have been observed to peak over a broad winter period, and do not correlate with measured 

blooms of marine biota despite halocarbon loss rates being taken into account (Yokouchi et 

al., 1996).  

 

Previous work on unialgal diatom cultures, which are ubiquitous in the Arctic Ocean,  by 

Moore et al. (1996) confirmed the presence of both iodoperoxidase and bromoperoxidase 

enzymes which are known to facilitate halocarbon production. It was observed that the 

particular bromoperoxidase enzyme present was capable of oxidizing both I
-
 and Br

-
 by 

H2O2, generating an enzyme bound electrophilic halogen. Whereas the iodoperoxidase 

enzyme was only capable of oxidizing I
-
 by H2O2 (as discussed in section 1.3) both VOIC 

and VOBC production is diatom species-dependent and is largely explained by their ability 

to synthesis the haloperoxidase enzymes required for the biogenically driven haloform 

reaction. 

 

5.1.5 Sea ice radiative transfer and its effect on the photic zone 

Biological production in the marine environment is influenced by a combination of 

radiative flux, nutrient availability and grazing pressure. Radiative backscatter, reflection 

and absorption within the sea ice/snow canopy reduces radiative flux to the mixed layer by 

a factor ranging between 50 and 1000, dependent upon the age of the ice and relative 

thickness (Perovich, 1990). Excluding seasonal variations, the radiative fluxes into sea ice 

depend on the characteristics of snow cover and on absorption within the ice, dependent 

upon sea ice microstructure and by the concentration and distribution of photosynthetic 

pigments. The amount of incident light scattered back from the snow/ice cover, as 

measured in albedo, is controlled by both snow thickness and sea ice microstructure, 

specifically the presence of gas and brine inclusions and salt precipitates therein. The 

number of brine inclusions acting as incident light scatterers correlates with the thickness 

of the ice cover, such that a pronounced increase in ice albedo is observed at higher ice 

thicknesses.   

 

Light attenuation within the deposited snowpack is dependent upon a number of site 

specific conditions. Long wave radiation is typically absorbed, whereas visible and ultra-
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violet radiation is scattered by individual snow grains. In the upper few centimetres of the 

snowpack, incident light is backscattered and upwelling radiation escapes (Kuhn and 

Siogas, 1978). The actinic flux within the upper snowpack is dependent upon the incident 

angle of irradiance, the solar zenith angle and the homogeneity of the snowpack.  

 

Oceanic emissions of trace gases in the polar seasonal sea ice zones have the potential to 

perturb atmospheric chemistry and climate (as discussed in sections 1.1 and 1.2), however 

considerable uncertainty exists when quantifying their sources now and in the future. The 

aim of this investigation was to obtain a better understanding of the mechanisms of sea - air 

gas exchange in ice-bearing waters and to assess the impact of temperature-dependent sea 

ice microstructure evolution on the bulk diffusive gas transport of VOICs through sea ice.  

 

5.2. Experimental 

 

5.2.1 Experimental chamber 

A total of 5 freezing experiments were conducted in a programmable temperature-

controlled (-60 ºC to 50 ºC) WIR19-60HS environmental chamber in the physics 

department at the University of Leeds, UK. A 233 L stainless steel tank (l × w × h = 118 × 

66 × 30 cm, figures 5.1 and 5.2) was used within the chamber to conduct experiments at -3 

o
C and -14 

o
C, with either artificial seawater and sea-ice or pure water and ice (section 

5.2.2). Two Rule 360 bilge pumps were fixed to the bottom of the tank and used to mix the 

tank. To promote mixing within the tank, these bilge pumps were orientated so that their 

jets impacted each other to maximize turbulence whilst minimizing circulation in the tank. 

This was done by fixing the pumps to a stainless steel baseplate using HDPE brackets 

(figure 5.2). The water volume within the tank was flushed through the pumps every 5 

mins, so that compete mixing should take place in 25 – 35 minutes (Loose et al., 2011). 

Despite this a minimum of  7 hours were allowed for thorough mixing. A third bilge 

pump was used to circulate water through a length of heated insulated Teflon tubing (1” 

diameter) used for discrete halocarbon and salinity sampling. This sample line was heated 

to 4 ºC and continuously re-circulated to prevent freezing. Internally heated/insulated 

stainless steel housings were used to protect the sample line when in contact with the 
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artificial sea ice. Stainless steel has a greater thermal conductivity than ice, causing more 

rapid heat transfer and freezing around the exterior of the housings. The effect of freezing 

around the stainless steel housings eliminates the possibility for gas ventilation through sea 

ice adjacent to the housing (Loose et al., 2011).  Discrete salinity measurements were made 

in triplicate every  1.5 hours using both a handheld refractometer (Omega, RFH201) and 

handheld conductivity meter (Omega, CDH-90), calibrated daily against a 5 point salt 

solution (Hobby Marin salt) calibration curve. Within the tank, the ice and overlying air 

temperature was measured hourly with a depth resolution of 12 mm using an in house 35 

point thermistor array and Matlab R2009 software. Ice depth was controlled by a flexible 

silicone rubber heating mat (OMEGALUX
®
), capable of supplying a heat transfer of 2.5 W 

in
-2

. This was adhered to the bottom of the tank and worked automatically in conjunction 

with the thermistor array and Matlab R2009 software to maintain water temperatures in the 

tank. The final ice thickness measurements using the thermistor array were compared to the 

observed ice depth at the end of the experiment. The thermistor array measurements were  

0.6 cm of the final ice depth.  Under ice water pressure within the tank was minimized by 

using two air compressible devices which were submerged and fixed to the bottom of the 

tank during all experiments, figure 5.2. These devices were vacuum sealed in air tight 

polypropylene grip tight bags (RAJAGRIP
®
) to minimize the leaching of organic material 

from the air compressible devices into the surrounding water. Artificially generated winds 

were produced (3 m s
-1

  0.5) over the tank during each experiment using a 500 mm axial 

fan, logged using a standard cup anemometer and Matlab 2009 software, and a purpose 

built wind chamber around the water tank. 
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Figure 5.1 Configuration of the set-up in the experimental chamber tank 
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Figure 5.2 From left to right, images showing experimental set up and pressure relief 

devices employed. 

 

5.2.2 Experimental procedure 

The initial salt composition of seawater during the action of freezing can significantly 

influence sea ice microstructure (Weeks and Ackley, 1986). Therefore it was important that 

the artificial seawater used in these experiments was representative of typical salt contents 

observed in the ocean. Hobby Marin Salt additive was chosen for the seawater experiments 

as it is currently one of the best products available to accurately simulate typical seawater 
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trace element compositions required in modern aquariums. Figure 5.3 compares the trace 

element composition of the artificial seawater used to natural marine waters using the 

concentration x 10
3
 parts per thousand (ppth) of each constituent expressed on a log scale. 

Once mixed the solution has a 4.5% total mass difference in trace elements to typical global 

seawater concentrations, (Turekian, 1968). The majority (4.2%) of this mass difference 

arises due to the presence of rubidium, barium, selenium and fluoride added to improve the 

health of marine organisms within the aquarium (Siedel, 2010).  

 

The artificial seawater was prepared by mixing Milli-Q water (15 MΩ, 140 L) with the 

aquarium sea salt additive. All seawater experiments were carried out using a sea salt 

additive concentration of 36  0.1 g per dm
3
 in MilliQ water to obtain salinities between 33 

– 35 psu, validated using both the handheld refractometer and conductivity meter. Milli-Q 

water was used in isolation for the freshwater control experiments.  

 

Prior to each experiment, the experiment tank, bilge pumps and tubing were cleaned with a 

10% H2O2 aqueous solution followed by de-ionised water to minimize bacterial growth. 

The solution was initially heated within the experimental tank to 60 °C and sparged with 

nitrogen (zero grade, BOC) for  1 hour to remove any volatile compounds dissolved in 

solution. The experiments were initiated by setting the temperature of the experimental 

chamber to the ice growth temperature, allowing the experimental bath to cool until a layer 

of artificial sea ice was generated over the surface water. Once the ice layer was 

established, the chamber temperature was altered to the experimental temperature and 

allowed to equilibrate for 24 hours. The flexible rubber heating mat was activated to 

maintain the ice thickness for the duration of the experiment. A total of 3 experiments were 

conducted in artificial seawater, experiments 1, 2 and 3 (see Table 5.1)  in order to 

elucidate the impact of both temperature and different ice growth rates on brine 

microstructure and hence gas fluid transport through the media. Experiment 1 was 

conducted at -14 C and experiments 2 and 3 were conducted at -3 C with different 

freezing rates.   
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Once the ice layer had been established, the VOICs CH3I (99%, Sigma Aldrich), C2H5I 

(99%, Sigma Aldrich), 2-C3H7I (99%, Sigma Aldrich), 1-C3H7I (99%, Sigma Aldrich) were 

added as a concentrated solution dissolved in 100 mL of Milli-Q water via a gas-tight glass 

syringe (50 mL, Samco) to Luer-lock tap B. The bilge pumps were activated and the entire 

solution was allowed to mix thoroughly for 7 hours. The pumps remained active for the 

experiment duration to ensure thorough VOIC mixing and prevent any stratification within 

the water column. The resultant under-ice bulk artificial seawater concentrations were 

compound dependent and were within the range 25 – 210 nmol dm
-3

. To minimize the 

possibility of algal growth and due to the photo-labile nature of the compounds 

investigated, all experiments were conducted under dark conditions. This involved closing 

all chamber sample ports and covering the main observation window with aluminium foil. 

Fluorescent lights within the cold chamber were only operated during ice sampling at the 

end of each experiment. 
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Figure. 5.3 Comparison of Hobby Marin Salt additive and typical seawater trace element compositions. 

Purple bars, natural global seawater concentrations (Turekian, 1968); red bars, Hobby Marin Salt additive solution concentrations 

(Siedel, 2010).Values on y axis are the trace element concentrations x 10
3
 ppth expressed on a log scale.
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Experiment Ice growth 

temperature (ºC) 

Experimental 

temperature 

(ºC) 

Ice growth 

duration 

(hrs) 

Ice growth 

rate 

(cm s
-1

)
c
 

Initial ice 

depth (mm) 

1 -14 -14 34 3.68 × 10
-5

 45
a
 

2 -14 -3 39 4.20 × 10
-5

 60
b
 

3 -5 -3 150 1.30 × 10
-5

 70
b
 

4* -14 -3 24 9.26 x 10
-5

 60
 b

 

5* -14 -14 24 9.72 x 10
-5

 40
 a

 

Table 5.1 Experimental conditions for artificial sea-ice experiments 

*
Experiments 4 and 5 are freshwater experimental controls; 1 - 3 are artificial seawater experiments. 

a
ice thickness was not maintained for the duration of the experiment, final observed ice depth was 80 and 84 mm for 

experiments    

  1 and 5, respectively. 
b
ice thickness was maintained for duration of experiment, final ice depth was the same as  initial. 

c
Ice growth rates were calculated for ice growth periods only. 

 

 

5.2.3 Aqueous VOIC in-situ losses 

The most significant loss mechanism for VOICs within tropical and mid-latitude seawater, 

excluding photolysis and volatilisation to the overlying atmosphere, is through chlorination 

and hydrolysis. Chlorination and hydrolysis reactions are strongly temperature-dependent 

and at low temperatures the dominant fraction of the chemical destruction occurs by the 

action of hydrolysis (Jones and Carpenter, 2007). Chemical destruction rates of CH3I, 

C2H5I and 1-C3H7I in saline solutions occur via SN2 reactions and were calculated using 

EQ 5.1, where as 2-C3H7I proceeds via an SN1 mechanism and was calculated using EQ 5.2 

(Jones and Carpenter, 2007). VOIC total lifetimes were determined using the established 

temperature dependent hydrolysis (kH), chlorination (kc) and observed rate (k) constants for 

each compound (Jones, 2006; Jones and Carpenter, 2007). 
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ktotal = kc[Cl
-
] + kH[H2O]                                                                                                         

 VOIClossrates = ktotal [VOIC]                                                                                   (EQ 5.1)     

 

2-C3H7Ilossrate = k[2-C3H7I]                                                                                     (EQ 5.2)           

     

Where ktotal is the total loss rate constant attributed to hydrolysis and chlorination and 

           VOIClossrate and 2-C3H7Ilossrate are the amounts of each compound lost (mol dm
-3

 s
-1

). 

 

VOIC total lifetimes in seawater under experimental conditions (-1.86°C, 34 ppth) were 

calculated as approximately 13 months, 12 months, 8 months and 5 months for CH3I, 

C2H5I, 1-C3H7I and 2-C3H7I respectively. VOIC lifetimes within the brine channels (at 

typical brine conditions of 80ppth and -3ºC) were calculated as approximately 12 months, 

14 months, 8 months and 7 months for CH3I, C2H5I, 1-C3H7I and 2-C3H7I respectively. 

Calculated VOIC losses from simultaneous hydrolysis and chlorination over the duration of 

the experiments in seawater were between 3.8 – 9.2% of the losses measured during the 

experiments. These aqueous in-situ losses are taken into account in the following flux 

determinations (sections 5.2.7, and 5.2.8).  

 

Experiments 4 and 5 were freshwater (ice-capped) control experiments designed to 

elucidate any wall losses of VOICs within the chamber, Table 5.1. These experiments were 

initially conducted using milli-Q water for the experimental temperatures to ascertain the 

rate of VOIC deposition to the walls of the stainless tank over the time period of the 

experiments. No measurable loss within solution was observed, within established error, for 

any of the compounds during the experimental periods. 

 

5.2.4 Aqueous under-ice VOIC sampling 

Aqueous sample aliquots were collected hourly for a minimum of 40 hours through Luer 

lock tap A, figure 1, using gas tight glass syringes (20 mL, Samco) for subsequent salinity 

and VOIC analysis. Salinity analysis was carried out by allowing the aqueous aliquots to 

equilibrate to room temperature prior to salinity determination using the handheld 

conductivity meter (section 5.2.1). VOIC analysis was immediately carried out using purge 
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and trap thermal desorption gas chromatography mass spectrometry (P&T TD-GC/MS). 

The seawater sample (40 mL) was introduced to a heated gas tight vessel (70 °C) where 

nitrogen (zero grade, BOC) was used to sparge residual volatiles from the liquid into the 

gas phase (40 mL min
-1

) for 20 minutes (as described in section 2.2). The purge and trap 

sparging efficiencies for CH3I, C2H5I, 2-C3H7I and 1-C3H7I were observed to be  100 % 

under the sampling conditions utilised (Jones, 2006). The resultant sample gas was dried 

using both a Nafion membrane molecular sieve box dryer and counter  current flow Nafion 

dryer (150 mL min
-1

 zero grade N2, BOC) in series. Subsequent pre-concentration and 

quantitative determination was carried out using a Perkin Elmer, Clarus 600 TD-GC/MS, as 

described in sections 2.1 and 2.5.  

 

During the sea water experiment conducted at an experimental chamber temperature of -14 

ºC (experiment 1), the ice depth was observed to increase from 40 – 80 mm using the 35 

point thermistor array and hence the water volume decreased throughout the experiment. 

VOIC concentrations within the water were corrected to account for this concentration 

effect (section 5.3.1). The remaining seawater experiments conducted at -3 °C (experiments 

2 and 3) showed no evidence of ice growth during the analysis period, suggested via the 35 

point thermistor array and the long-term salinity measurements of the underlying water 

(section 5.3.2). Hence no correction for water volume was carried out for these 

experiments. 

 

5.2.5 Artificial ice and brine VOIC sampling 

Aliquots of artificial sea-ice were sampled using a stainless steel hand corer (L x i.d. = 20 

cm x 5 cm, British Antarctic Survey) at ice depth increments of 1.2 cm to a maximum 

depth of 4.8 cm at the end of each experiment. Upon sampling the ice was introduced to 

gas tight glass syringes, whilst taking care to minimise headspace within the barrel. No 

effort was made to separate residual brine during sampling, hence these ice aliquots 

consisted of both bulk sea ice and residual brine. The ice was thawed (2 - 8 °C) under dark 

conditions and the resulting melt water VOIC concentration determined as outlined in 

section 5.2.4. Following ice coring, aliquots of brine were sampled from the relevant ice 

depth directly into a gas tight glass syringe and thermally equilibrated (2 - 8 ºC) under dark 
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conditions prior to VOIC analysis, as in section 5.2.4. Both ice melt water and brine 

salinities were determined at each ice depth using the handheld refractometer. This was 

preferred over the conductivity meter due to the relatively small volumes of brine and ice 

melt water sampled from each depth. 

 

5.2.6 Internal standardization and external calibration 

All data was internally standardized against a deuterated halocarbon standard mixture 

containing CD3I, C2D5I, 2-C3D7I in nitrogen (10 ppb, 99% purity, CK gases) using a 

continuous restricted flow set-up (section 2.6.9). Sample gas and deuterated standard gas 

flow-rates into the TD adsorbent trap were maintained at 50 mL min
-1

 and 20 mL min
-1

, 

respectively, for the duration of the analysis. Internally standardized data was externally 

calibrated at the end of the experimental period against a VOIC gas standard which itself 

was calibrated against an in house gas permeation oven, as outlined in section 2.6.4.   

 

5.2.7 VOIC fluxes calculated from a consideration of the molar balance 

Seawater-air VOIC fluxes were estimated by carrying out a molar balance on the 

experimental system. For experiments 2 (fast ice growth) and 3 (slow ice growth), the net 

flux of VOICs from the water to the air above was calculated from the difference between 

the absolute number of moles lost from the underlying water over the duration of the 

experimental period and the amount measured within the volume of the ice column at the 

end of experimental period. These calculations assume a homogenous VOIC distribution at 

each ice depth analysed and that the concentrations in ice at the end of the experimental 

periods were representative of steady state conditions. For experiment 1 (-14ºC) the net 

flux of VOICs from the water to the air above was calculated from the number of moles 

lost from the underlying water after 24 hours. At this point steady state conditions were 

observed to be established from loss rates in the underlying water, figure 5.23. Absolute 

molar quantities of VOIC in brine throughout the ice column were calculated, taking into 

account p and both sea ice and brine densities. The p values in ppth were calculated using 

equation EQ 5.3, empirically derived by Frankenstein and Garner (1967), where S is the 

bulk ice salinity (psu) and θ is the ice temperature (ºC). This equation does not account for 

salt precipitation within the hypersaline brine. 
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The net fluxes calculated in this way were compared to calculations of the flux from the 

quasi liquid layer (QLL), as described below. 

 

5.2.8 Calculation of VOIC fluxes from the QLL to air  

Within the sea-ice brine channels, the local flux of VOICs is related to the concentration 

gradient, as deduced from the diffusion coefficients D in brine (EQ 5.5, Wilke and Chang, 

1955) and the concentration gradient within the surface brine channels according to Ficks 

first Law of diffusion. The measured concentration gradient within the surface brine is 

multiplied by the volumetric factor (V) which takes into account the VOIC concentration 

effect between the brine channels and surface QLL, EQ 5.4.  The volume of the QLL was 

calculated using equations EQ 5.9, EQ 5.10 and EQ 5.11, taking into account the sea ice 

thicknesses of each experiment, surface ice densities, and assuming mass fractions of liquid 

water in sea-ice at 270 K and 259 K of 2 x 10
-2

 and 5 x 10
-3

, respectively (Conklin and 

Bales, 1993).   

 

 






 


dz

VdC
DFlux brine

                                              (EQ 5.4) 

              

 

The diffusivity of a solute in a liquid solvent can be calculated by a number of established 

methods. Whilst it is believed that the method of Tyn and Claus (1975) is likely to produce 

the most accurate D values (Polling et al., 2001), it requires empirical data which is 

currently not available for the VOIC trace gases studied. As a compromise, the method of 

Wilke and Chang (1955) was chosen for this study as it best reflected the available 

empirical and experimental data available for each species, as shown in EQ 5.5, where T is 

temperature (K),  is the unitless association factor of the solvent (2.6 for water), Ms is the 

relative molecular mass of the solvent, nw is the dynamic viscosity of solution (cP, 10
-3

 kg 

m
-1

 s
-1

), and Vb is the liquid molar volume of the gas at it’s boiling point (cm
3
 mol

-1
) as 

calculated using the Schroeder additive method (Johnson, 2010).    
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The term nw is calculated using the temperature and salinity dependent viscosity scheme of 

Laliberte (2007), equation EQ 5.6, which requires seawater composition expressed as mass 

fractions of component solutes. The term ww is the mass fraction of water in solution 

(calculated from experimental salinity measurements), ns is the temperature corrected 

dynamic viscosity of pure water (cP, 10
-3

 kg m
-1

 s
-1

). For each solute in solution, wi is the 

mass fraction and ni is the dynamic viscosity attributed to each component solute (cP, 10
-3

 

kg m
-1

 s
-1

).  The mass fractions of component solutes are the fraction of each solute as a 

proportion of the solution’s total salinity. This was derived from the standard seawater 

definition of Millero et al. (2008). Note, only the principal solutes NaCl, KCl, CaCl2, 

MgCl2 and MgSO4 were taken into account. 

 

)ln()ln()ln( iisww nwnwn                                                                      (EQ 5.6)    

 

The temperature dependent dynamic viscosity of pure water, at atmospheric pressure was 

calculated using EQ 5.57 (Laliberte, 2007) where T is the temperature of solution (K).  

 

37.137)2842.5()05594.0(
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Tns                                                 (EQ 5.7) 

 

The ni values were calculated according to EQ 5.8 where v1 to v6 are empirically derived 

constants for each common solute in seawater (Laliberte, 2007). Using these 

parameterisations, temperature and salinity dependent viscosity values for seawater can be 

calculated.  
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The volumetric factor (V) was determined from the surface sea-ice brine volume (Vbrine, 

cm
3
cm

-2
) and QLL volume (VQLL, cm

3
cm

-2
) via equation EQ 5.9. The Vbrine was determined 

per unit of cross sectional area (A, cm
2
) of surface sea-ice using p values. The VQLL was 

determined per unit of A (cm
2
) by taking into account the calculated theoretical QLL 

thickness (cm), EQ 5.10. The quasi-liquid layer thickness (QLL, cm) of the surface sea ice 

could be determined via equation EQ 5.11, taking into account sea ice thickness (Sh, cm) 

and assuming the mass fractions of liquid water in sea-ice (mf) at 270 and 259 K were 8 x 

10
-1

 and 3 x 10
-2

 respectively (Conklin and Bales, 1993).  

 

                    V = Vbrine /VQLL                                                                                                                (EQ 5.9) 

                   

                            VQLL = A × 1 × QLL                                                                   (EQ 5.10) 

 

                  QLL = Sh × A × mf                                                                                                          (EQ 5.11)                                                                                                                         

 

5.2.9 Calculation of VOIC gas transfer velocities  

The gas transfer velocity of a species is usually expressed as a function of wind speed (m s
-

1
), or more specifically wind speed at 10 m above water level. The most commonly used 

parameterisation for studies of such open ocean trace gas exchange are outlined in Duce et 

al. (1991), Liss (1974) and Nightingale et al. (2000). However, such open water gas 

transfer parameterisations are unsuitable for sea/sea-ice/air gas exchange. The experimental 

surface QLL-air (kQLL  air) and ice-air (kice  air) gas transfer velocities were determined for 

each species from the molar balance inferred flux using EQs 5.12 and 5.13, the assumed 

concentration in the QLL (Cbrine  V) and observed concentrations in the sea-ice (Cice). The 

effective sea-ice-air gas transfer velocities (kseaiceair) for each species were determined 

from the molar balance inferred flux using EQ 5.14, where Cw (mol dm
-3

) is the average 

measured seawater concentration during each experiment. 
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5.2.10 Calculation of mass diffusion lengths 

The mass diffusion length (Ld, cm) through the sea-ice was calculated from the species 

dependent diffusion coefficients in brine using EQ 5.15. This value is an upper limit of 

vertical diffusion through sea-ice which assumes 100% brine channel fractional 

connectivity. If Ld is longer than the ice thickness, the VOIC concentration gradient in the 

sea-ice should be essentially linear and independent of time (steady state equilibrium). 

Alternatively if Ld is shorter than the ice thickness, the VOIC concentration gradients in 

sea-ice can differ within the media and are highly time dependent (dynamic equilibrium). 

Ld values were calculated for experiment 1 (-14 C experiment) using calculated diffusion 

coefficients at 42 mm, where significant VOIC vertical transport was observed. Ld values 

for experiments 2 (slow ice growth) and 3 (fast ice growth) were calculated using 

calculated surface diffusion coefficients. In each experiment, Ld values exceeded the 

measured sea ice thicknesses suggesting that vertical brine transport through the sea-ice 

was independent of time and in a steady state condition, table 5.2. 

 

DtLd 4                                                                                                           (EQ 5.15) 

 

5.2.11 Sea water and sea ice sampling during the COBRA campaign 

A number of discrete sea/sea-ice melt water samples were collected from the Hudson Bay 

region and analysed during the course of the COBRA campaign (chapter 3). Salinity and 

VOIC determinations were carried out in duplicate using a handheld refractometer 

(OMEGA


) and the purge and trap set-up linked to the ATD-GC/MS, as described in 

sections 2.1, 2.2 and 2.5, respectively. 
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Two ice cores were sampled adjacent to the Manitounuk Sound region within Hudson bay 

(figure 5.4) at core positions 1 (N55.340, W77.721) and core positions 2 (N55.369, 

W77.723) by using a purpose built hand corer (L  i.d = 110  20 cm, British Antarctic 

Survey) up to a maximum depth of 120 cm. Sea ice at core positions 1 and 2 were sampled 

on the 9
th

 and the 6
th

 of March 2008 respectively. Once a section of sea ice was cored, the 

pressure difference below and above the ice caused the underlying seawater to rapidly fill 

the void left by coring. The under ice seawater samples were sampled from within this core 

void into gas tight syringes (40 mL) and covered in aluminium foil. We gratefully 

acknowledge H. Atkinson (British Antarctic Survey) for assistance in both seawater and ice 

core sampling. 

 

The ice cores were transported to Kuujjuarapik field station (55.30, 77.73) within the ice 

corer and immediately transferred into gas tight syringes ( 40 mL) upon arrival. The mean 

ambient temperatures during the sea ice/water sampling and transport periods, for cores 1 

and 2, were -20.1. and -21.0C respectively. All subsequent ice cores were allowed to thaw 

between 5 – 10 C for  8 hours prior to VOIC and salinity determination. All aqueous 

samples were analysed within 24 hours of sampling.  
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Figure 5.4 Study area showing the locations of the experimental site and sea ice coring   

positions. 
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5.3. Results and Discussion 

 

5.3.1 Temperature distributions in Leeds chamber artificial sea ice 

Measured sea ice temperature depth profiles were used to infer sea ice thickness and 

determine temperatures with ice depth for the duration of each experiment. The sea ice 

thicknesses inferred from the temperature depth profiles were compared to observed sea ice 

thicknesses at the end of each experiment and were within the thermistor array sea ice 

depth error ( 0.6 cm). 

 

Inferred sea ice thicknesses at the end of each experiment were 8.0, 6.0 and 7.0 cm for 

experiments 1, 2 and 3, respectively (table 5.1). Sea ice growth during the experimental 

periods of experiments 2 (fast ice growth) and 3 (slow ice growth) were considered to be at 

steady state (zero ice growth). This was inferred on comparison of their sea ice temperature 

depth profiles at the beginning (t0), at the mid point (t0.5) and end (tend) of each experiment, 

figures 5.5 and 5.6. However, during experiment 1 (-14C experiment) the thermistor sea 

ice temperature depth profiles suggested significant ice growth during the experiment 

period inferring sea ice depths of 4.6  0.6, 6.5  0.6 and 8.0  0.6 cm for t0, t0.5 and tend 

respectively, figure 5.7.  

 

During sea ice growth, hypersaline solution is continuously rejected from the ice column to 

the underlying water, as discussed in section 5.3.2. VOICs are also expelled from the sea 

ice within this hypersaline solution which causes a considerable concentration effect in the 

underlying seawater. As gravity drainage into the underlying seawater dissipates at  <-5C 

(Weeks and Ackley, 1986; Cox and Weeks, 1975), theoretically any enhancement in 

seawater salinity will be a direct effect of brine rejection due to sea ice growth. Therefore 

relative sea ice depth can be inferred using the evolution of seawater salinity during the 

experiment. This was achieved by scaling the ice depth at tend with the change in seawater 

salinity for the duration of experiment 1.  

 

The VOIC concentrations in the underlying seawater were corrected against ice depth 

inferred from the thermistor array. However, the inferred sea ice depths for the duration of 
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experiment 1 using both the thermistor array and change in seawater salinity were within 

established errors, figure 5.8. The established errors are 0.1% (as quoted by manufacturer) 

and 0.6 cm for the conductivity meter and thermistor array, respectively. Corrected and 

uncorrected VOIC data for experiment 1 is included in the Appendix (Appendices 5.1 to 

5.4). 

 

Approximately linear temperature gradients were measured within sea ice during each 

experimental period. This phenomena has previously been observed in seasonal sea ice, 

during the winter season of 1977-78 (Nakawo and Sinha, 1981) and is expected to exist 

throughout the season. Nakawo and Sinha (1981) collected a substantial volume of data on 

sea ice characteristics, including sea ice growth rates, at Eclipse Sound (lat 72.7 N, long 

78.0 W), Baffin Island, Canada during February to April 1978. The authors derived an 

empirical calculation using this data for the determination of temperature gradients in 

seasonal sea ice, EQ 5.16, where a growing ice sheet of thickness hi (cm), subjected to an 

air-ice interface temperature Ta (C), with a sea ice melting point of Tm (C) produces the 

temperature gradient (Gi). 

 

i

am
i

h

TT
G


                                                                                                       (EQ 5.16) 

 

Calculated temperature gradients using EQ 5.16 for chamber experiments 1, 2 and 3 were 

1.53, 0.20 and 0.17 C cm
-1 

respectively. These calculated temperature gradients were in 

generally good agreement with the observed values herein (determined from the thermistor 

array) at tend which were 0.95 0.04, 0.27 0.18, 0.25 0.03 C cm for experiments 1, 2 and 

3 respectively. The observed temperature gradients for experiments 2 and 3 (-3 C 

experiments) were also in relatively good agreement with the values of Nakawo and Sinha 

(1981) who measured seasonal consolidated sea ice Gi values of between 0.09 – 0.175 C 

cm
-1

. This agreement between experimental and observed seasonal sea ice values is of 

importance as ice temperature gradients essentially determine ice growth velocities which 

in turn affects the microstructure of sea ice, as discussed in section 5.3.2. This agreement 

between the growth rates of the Arctic and ice chamber sea ice, coupled with the similarity 
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in trace element compositions between the artificial used and global seawater (figure 5.3), 

would suggest that the sea ice grown within these experiments is abiotically representative 

of freshly formed ice in the seasonal sea ice zone. 
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Figure 5.5 Sea ice temperature gradients during experiment 2 (fast ice growth). 

Empty blue squares, t0; empty black triangles, t0.5; filled red diamonds, tend. 
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Figure 5.6 Sea ice temperature gradients during experiment 3 (slow ice growth). 

Empty blue squares, t0; empty black triangles, t0.5; filled red diamonds, tend. 
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Figure 5.7 Sea ice temperature gradients during experiment 1 (-14C experiment). 

Empty blue squares, t0; empty black triangles, t0.5; filled red diamonds, tend. 
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Figure 5.8 Sea ice depth inferred from the thermistor array and seawater salinity change. 

Filled diamonds, thermistor inferred depth; empty squares, salinity inferred depth. Error 

bars represent a 0.6 cm thermistor and 0.1% salinity error. 

 

5.3.2 Distribution of salinity in sea ice 

Sea ice generally consists of a crystal lattice array of small ice platelets which grow 

vertically from the ice water interface producing what is commonly referred to as the 
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skeletal layer.  During freezing, salt ions and other solutes are rejected from the ice crystal 

lattice producing a hypersaline solution along the ice grain boundaries. As the platelets 

elongate and broaden over time, ice bridges form between adjacent peaks, trapping 

inclusions of brine. It’s due to this mechanism of platelet array growth that brine inclusions 

are dominantly vertically orientated with characteristic spacings, and extend all the way up 

through the ice sheet as seen in columnar ice. Brine inclusions shrink as temperature 

decreases, as brine salinity must increase to maintain freezing equilibrium with the 

surrounding ice, and vice versa for warming. This is accomplished by the freezing and 

melting of pure water into and from the surrounding ice lattice hence influencing the pc 

(Light et al., 2003). Eventually, the ice layer is entrained into the floe interior and the ice 

platelets join up as brine is lost to gravity drainage. This causes a consolidation of the ice 

layer into lower porosity sea ice, such as that observed in aged first year or perennial sea 

ice.  Previous measurements of the vertical salinity in seasonal sea ice during the growth 

season suggest that rapid desalination (25 to 7.8 0.8 psu) from brine drainage can occur 

throughout the ice column within 1 week of the initial ice formation (Nakawo and Sinha, 

1981). Thereafter, desalination processes accounted for a 0.5 psu loss in ice salinity per 

month during an average ambient temperature of -30 C (temperature ranged between -20 

to -40 C). No such rapid desalination of the sea ice columns were observed in this study 

up to a maximum of 10 days.  

 

This initial distribution of salt between the ice and the underlying water is affected by 

several brine drainage processes. Several sea ice desalination processes exist but during ice 

growth only gravity drainage and brine expulsion are of quantitative importance. Gravity 

drainage is essentially convective brine transport within the ice column, induced by thermal 

gradients. As growing sea ice is cooled by the overlying ambient air, the density profile of 

brine within the ice column is unstable and likely to result in convective exchange.  In this 

action, cold, dense brine within the upper ice is exchanged with warmer, less dense 

brine/seawater from lower ice layers. This process continually expels brine into the 

underlying seawater over time. As pressure gradients associated with gravity drainage are 

small, the rate of this convective brine exchange is strongly dependent upon the 
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temperature gradients through the ice, brine channel pore size and fractional connectivity 

(Eicken, 2008).  

 

Brine expulsion is a particularly important desalination process during ice formation. 

During sea ice growth the sea-ice interface advances into seawater during freezing, and 

rejected salt ions are concentrated in solution at its leading edge. The majority of this brine 

is ultimately consolidated as brine inclusions within the ice column during freezing or is 

transported into the bulk sea water via either convective transport or molecular diffusion. 

The amount of brine consolidated within the ice is dependent upon both under-ice 

turbulence and the time spent exposed at this leading edge, the latter essentially dependent 

upon ice growth rate. Another form of brine expulsion is caused by significant changes in 

consolidated sea ice volume with temperature which causes a pressure build up in isolated 

brine inclusions. This pressure build up is said to create micro-fractures intersect both brine 

channel networks and isolated brine inclusions into which the brine is ejected, the rates of 

which would be independent of sea ice permeability (Eicken 2008). 

 

Of considerable importance when considering the sea ice substructure is how the 

dimensions of the incorporated ice platelets exhibit an exponential dependence on growth 

velocity. Nakawo and Sinha (1981) previously demonstrated this for seasonal Arctic sea ice 

where reduced ice growth velocity was observed to correlate with an increase in brine 

spacing. Brine spacing is typically of the order of several tenths of a millimetre in ice in the 

seasonal ice zone (Eicken, 2008). Zotikov et al. (1980) previously observed brine channel 

spacings in the order of several millimetres in perennial sea ice grown at velocities of 

several centimetres a year. The reduction in overall brine volume within the ice column 

from such enhanced brine channel spacing could potentially effect kseaiceair transfer rates 

of dissolved gases by reducing the number of available channels for vertical transport. It is 

therefore of critical importance to consider sea ice growth rates when conducting laboratory 

ice studies (section 5.3.1). 

 

Sea ice grown in the absence of turbulence exhibits the typical crystal lattice lamellar 

structure described, whereas ice grown in turbulence exhibits a grain sub-structure which 
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delineates brine channels potentially reducing the overall porosity of the ice column 

(Weeks and Lorgren, 1967; Eicken 2008). All ice growth in this study was conducted 

without the presence of external currents to maximise ice porosity under each condition 

investigated. Following ice growth, under ice turbulence was generated to minimise 

stratification of VOICs within the water column which could impact their respective flux 

rates through the sea ice. 

 

The most important factor controlling seasonal sea ice salinity is the segregation of sea salt 

ions at the ice-water interface during ice formation. This salt segregation is controlled by 

the salt segregation coefficient (keff) which is proportional to ice growth rate (), EQ 5.17 

and EQ 5.18 (Cox and Weeks, 1980). Newly grown sea ice initial salinity (Si,0) can then be 

calculated using keff and the salinity of the seawater (Sw, 32-35 psu) as described by Weeks 

and Ackley (1986), EQ 5.19. Limitations in this approach to accurately deriving keff  is that 

its assumes a planar rather than a platelet ice-water interface. A platelet ice-water interface 

would typically produce higher keff values, (Eicken, 2008) hence the calculated values 

herein are to be used carefully. 

 

)7243exp(74.026.0

26.0


effk                  > 3.6 x 10

-5
 cm s

-1
                           (EQ 5.17) 

 

)ln0568.0(8925.0 effk        3.6  10
-5

       2.0  10
-6

 cm s
-1

                (EQ 5.18) 

 

Si,0 = keff  Sw                                                                                                         (EQ 5.19) 

 

Using equations EQ 5.17 – EQ 5.19, the calculated keff values were 0.34, 0.36 and 0.25 for 

experiments 1, 2 and 3 respectively. The calculated Si,0  values of the surface ice (top 1.2 

cm) were 10.9, 11.5 and 8.0 psu for experiments 1, 2 and 3, respectively. Measured 

salinities at this sea ice depth at tend were approximately 2 – 3 times higher than these 

calculated initial salinity values.  
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Figures 5.9, 5.10 and 5.11 show sea ice salinities with depth for the seawater experiments 

1, 2 and 3, respectively. Errors on the x axis represent the propagation of the refractrometer 

error (0.1%, as quoted from the manufacturer) and an arbitrary 5% sampling error. Errors 

on the y axis reflect the ice depth sampled to generate each data point.  

 

For each experiment, sea ice salinities increase linearly with depth as has previously been 

observed for young columnar sea ice grown in a large ice tank during the INTERICE 

experiments (Haas, 2000). The INTERICE experiments are analogous to the experiments in 

this study as they were also conducted over similar timescales (5 days) and temperatures (-

2 to -10C) to the experiments herein and as such were not subject to substantial gravity 

brine drainage. In this study, the observed linear increase in sea ice salinities with depth, 

coupled with the measured salinities being considerably higher than Si,0 values, could 

indicate that the increasing underlying bulk seawater salinities observed during ice growth 

for each experiment (figures 5.12, 5.13 and 5.14 for experiments 1, 2 and 3 respectively) 

are affecting the relative amount of salt consolidated within the ice column. This increase 

in bulk seawater salinity at tend (35 – 47 psu)  is caused by the continual brine expulsion 

into the seawater from the newly formed sea ice. Assuming a constant ice growth rate, 

hence keff value, enhanced seawater salinities would lead to an increased consolidation of 

salt into the sea ice and a higher sea ice salinity, EQ 5.19.  

 

Neither ice core exhibits the characteristic C shaped ice salinity distribution observed 

previously in Arctic seasonal sea ice (Sturges et al., 1997). This is likely due to the 

relatively short time scales used during the ice chamber experiments, hence providing little 

opportunity for gravity brine drainage. The measured brine salinities of each experiment 

were anti-correlated to temperature, decreasing approximately linearly with sea ice depth, 

as shown in figures 5.9, 5.10 and 5.11. This characteristic profile of brine salinity is due to 

both the temperature dependence of brine density and brine enrichment through the ice 

column. Brine salinity increases as temperature decreases to maintain freezing equilibrium 

with the surrounding ice which is accomplished by the freezing and melting of pure water 

into and from the surrounding ice lattice, causing brine enrichment. The increase in brine 

salinity is both temperature and time dependent, which is shown when comparing the brine 
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salinity of the experiments. Experiment 1, conducted at -14 C, has brine salinities  2 - 3 

times higher than either of those conducted at -3 C. Also the measured brine salinities 

during experiment 3 were  1.5 times higher than those measured during experiment 2 

which reflects their respective ice growth and experimental duration at -3 C of 225 and 

138 hours, respectively. 
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Figure 5.9 Measured sea ice and brine salinity plotted against ice depth during  

experiment 1 (-14C). Empty squares and solid line, sea ice salinity; empty squares and 

dotted line, brine salinity. Dashed line represents measured underlying seawater salinity 

during ice sampling, tend. 
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Figure 5.10 Measured sea ice and brine salinity plotted against ice depth during experiment 

2 (fast ice growth -3 C). Empty diamonds and solid line, sea ice salinity; empty diamonds 

and dotted line, brine salinity. Dashed line represents measured underlying seawater 

salinity during ice sampling, tend. 

 

0

10

20

30

40

50

60

0 20 40 60 80 100

Salinity (PSU)

Ic
e

 d
e

p
th

 (
m

m
)

PSUseawater

 

Figure. 5.11 Measured sea ice and brine salinity plotted against ice depth during 

experiment 3 (slow ice growth -3 C). Empty triangles and solid line, sea ice salinity; 

empty triangles and dotted line, brine salinity. Dashed line represents measured underlying 

seawater salinity during ice sampling, tend. 
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5.3.3 Evolution of artificial seawater salinity 

The salinity of the underlying seawater was periodically monitored during each experiment 

(as described in section 5.2.2). Figures 5.12, 5.13 and 5.14 show the measured underlying 

seawater salinities during each experiment. Regions marked as A, B and C on the plots 

refer to the ice growth, ice temperature equilibration and experiment periods, respectively. 

Salinity enhancement of the underlying seawater was observed due to brine rejection 

during sea-ice growth periods (section 5.3.2). This phenomenon is not observed in the 

environment due to the rate that the expelled brine is mixed and transported into the 

underlying bulk seawater, but is clearly observed in each experiment due to the limited 

underlying seawater volumes present. The salinity of the underlying seawater of the 

experiment conducted at -14 C (experiment 1), figure 5.11, increases linearly with respect 

to time. This is in good agreement with the expected change according to ice depth 

measurements made using the thermistor array during the experimental period ( 2%), 

figure 5.8. 

 

Both seawater experiments conducted at -3 C, figures 5.13 and 5.14, (experiments 2 and 

3) show no appreciable change in the underlying water salinity during experimental 

periods, suggesting no brine rejection from new ice formation was taking place. This is in 

good agreement with the thermistor array inferred depths during this period as shown in 

figures 5.5 and 5.6. The data also suggests that measurable in-situ gravity brine drainage 

did not occur during either of their experiment periods, due to the short timescales 

investigated. However, immediately after the ice growth period, the initial seawater salinity 

in experiment 3 was  10 psu higher than in the other experiments, possibly due to both 

brine exclusion and additional gravity brine drainage occurring over the 150 hr ice growth 

period, figure 5.14 (Weeks and Ackley, 1986; Cox and Weeks, 1975). This is consistent 

with the fact that the calculated brine volume in experiment 2 is higher, figure 5.15. 
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Figure 5.12 Underlying seawater salinities during experiment 1. Black diamonds, 

measured ambient chamber temperature (C); grey dashed line, chamber temperature set 

point; red triangles, seawater salinities (psu). A is the ice growth period, B is the 

experiment period. 
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Figure 5.13 Underlying seawater salinities during experiment 2. Black diamonds, 

measured ambient chamber temperature (C); grey dashed line, chamber temperature set 

point; red triangles, seawater salinities (psu). A is the ice growth period, B is the ice 

temperature equilibration period and C is the experiment period. 
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Figure 5.14 Underlying seawater salinities during experiment 3. Black diamonds, 

measured ambient chamber temperature (C); grey dashed line, chamber temperature set 

point; red squares, seawater salinities (psu). A is the ice growth period, B is the ice 

temperature equilibration period and C is the experiment period. 

 

5.3.4 Calculated VOIC diffusion coefficients and brine volumes through sea-ice 

Figures 5.15 and 5.16 depict the calculated p values and the mean VOIC brine diffusion 

coefficients for each experiment through the top 4.2 cm of the sea ice. The x axis error in 

figure 5.15 is the thermistor error ( 0.5 °C) at each ice depth. Calculated p errors ranged 

from 2.7 -12.0 % and 16.8 - 20.0 % for experiments conducted at a chamber temperature of 

-14°C (experiment 1) and -3 ºC (experiments 2 and 3) respectively. The x axis error in 

figure 5.16 is the error as quoted by Wilke and Chang (1955) (10%). Errors on the y axis 

in both figures reflect the ice depth sampled to generate each data point.  

 

Both the calculated p values and calculated mean VOIC diffusion coefficients (D) in brine 

for each experiment strongly correlate with sea ice temperature, increasing linearly with ice 

depth. This is due to the temperature dependence of the calculated p values and the VOIC 

diffusion coefficients within the sea ice microstructure, EQ 5.3 and 5.5 respectively. The 

calculated surface brine diffusion coefficients of the experiments conducted at -3 °C 

(between 5.3 – 8.1 x 10
-5

 cm
2
 s

-1
) are  4.5 times greater than those calculated at -14 ºC (D 

between 1.3 – 1.5 x 10
-5 

cm
2
 s

-1
). All calculated diffusion coefficients are in good 

agreement with previously determined values for O2 and SF6 in laboratory sea-ice under 
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similar conditions (3 – 20 x 10
-5

 cm
2
 s

-1
, for sea ice grown at seawater salinities of 33 -35 

psu and temperatures of -5 C to -20 C  (Loose et al., 2011).  
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Figure 5.15 Calculated p values against sea-ice depth for the three artificial seawater 

experiments. Black triangles, experiment 1 (-14ºC); empty diamonds, experiment 2 (-3°C 

fast ice growth); grey squares, experiment 3 (-3°C slow ice growth). Brine volumes 

calculated using EQ 5.5 (Frankenstein and Garner, 1967).  
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Figure 5.16 Calculated VOIC diffusion coefficients in brine against sea-ice depth for the 

three artificial seawater experiments. Black triangles, experiment 1 (-14ºC); grey squares, 

experiment 3 (-3°C slow ice growth); empty diamonds, experiment 2 (-3°C fast ice 

growth). Diffusion coefficients calculated using EQ 5.5 (Wilke and Chang, 1955). 

Diffusion coefficients at an ice depth of 0 cm represent calculated values in surface brine. 
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5.3.5 Depth resolved VOIC concentrations within sea ice 

Analysis of the VOIC concentrations in both the sea ice and brine were carried out after 

each experiment to confirm their permeation through the ice column, as shown in Figures 

5.17 and 5.18, respectively. The sea ice and brine concentrations (nmol dm
-3

 melt water and 

brine, respectively) are plotted along with the under-ice water concentrations at tend for each 

VOIC. The established x axis errors for the sea ice and fresh ice (section 5.3.6) experiments 

were 9.0 %, 10.5 %, 8.5 % and 8.6 % for CH3I, C2H5I, 2-C3H7I and 1-C3H7I, respectively. 

These errors were propagated from an arbitrary 5 % sampling error and the standard 

deviations of the regression lines of the VOIC permeation rates and the internal standard 

corrected VOIC calibration curves, both of the latter were required for external calibration. 

The observations can be explained in terms of VOIC diffusion rates through the brine 

channels coupled with their fractional connectivity.  

 

Fractional connectivity is defined as the proportion of brine inclusions intersecting both the 

upper and lower ice surfaces required for sea/ice/air gas transfer.  Recent studies carried out 

on saline solutions using dual model analysis and X-ray Computed Tomography (CT) 

imaging at 100 – 1000 m length scales (Pringle et al., 2007 and Light et al., 2003) suggest 

that the fractional connectivity of vertical brine inclusions is influenced by p, and hence, 

ultimately, temperature. The data illustrated that at a temperature of -18 C and p of 2.2 %, 

many disconnected brine inclusions were detectable without any vertical percolating path 

from the lower to the upper surface. At a temperature of -4 C, p of 8.8 %, the brine 

inclusions were vertically elongated with “shunts” or “necks” connecting them, and the 

vertical percolation path was well connected through the ice. In other work (Golden et al., 

2007), X-ray CT was again used to investigate the thermal evolution of inclusion 

morphology and fractional connectivity.  Fractional connectivities of 50 % and 1 % were 

observed at -3 C and -14 C respectively, through an ice thickness of 0.8 cm at a salinity 

of 9.3 ppth. 

 

Additionally, lateral brine channel connectivity can form at higher p values by the 

formation of thin pores between brine inclusions. Such connectivity has been observed in 

land-fast first year sea ice and lab based measurements above p values of 8 - 10 % (Ingham 
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et al., 2008; Pringle et al., 2007). All pc values measured within the ice column for the 

artificial seawater experiments in this study were above this value, excluding those within 

the top 1.2 cm for experiment 1 (47 ppth), suggesting relatively high degrees of both lateral 

and vertical brine connectivity throughout, figure 5.15. It is this thermal evolution of both 

vertical and lateral brine channel connectivity, and the diffusion coefficients (D) of 

compounds therein, which is believed to be the determining factor for the observations 

within this study.  

 

Both experiments conducted at an experimental temperature of -3 C exhibited similar 

VOIC concentration gradients within the ice.  Both the VOIC concentrations in ice and p 

values throughout the ice column suggest that the sea – ice percolation threshold is met, 

hence the brine networks within are permeable to vertical transport through the column. 

This is supported by the VOIC concentrations in brine which are up to  4 times higher 

than those in the equivalent volume of ice melt-water throughout the ice column. The 

VOIC concentration gradients within the brine were similar to those within the sea-ice, and 

during experiment 3 (-3 ºC slow ice growth) reach concentrations at 4.2 cm depth which 

are comparable to those of the under-lying water. 

 

Whether the micro-structural evolution and subsequent gas transport properties of sea ice 

during warming or cooling processes is reversible or associated with significant hysteresis 

effects is currently of considerable interest when considering sea ice transport properties. 

This phenomena is addressed using the experiments conducted at -3 C (experiments 2 and 

3) which were conducted under identical experimental conditions except for the 

temperatures in which the sea ice was grown (table 5.1). The ice grown during experiment 

3 (slow growth) was generated over 150 hours at a temperature of -3 C (ice growth rate of 

1.30  x 10
-5

 cm s
-1

) and that of experiment 2 (fast growth) was over 24 hours at -20 C and 

conditioned for  15 hours at -3 C (ice growth rate of 4.20  10
-5

 cm s
-1

), Table 5.1. Despite 

the same final temperature, p values were  20 % higher using the faster ice growth regime.  

This is due to both gravity brine drainage and the effects that slower ice growth rates have 

on sea ice microstructure (section 5.3.2). Slower ice growth velocities cause increased brine 
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spacing and decreased brine consolidation and hence lower p values per unit volume, as 

described in section 5.3.2 (Nakawo and Sinha, 1981).   

 

The calculated p/VOIC ratios throughout the ice column for experiment 2 (fast ice growth 

at -3 ºC) were 11.0  0.9, 22.8  4.2, 63.0  7.0, 70.7  12.0 for CH3I, C2H5I, 2-C3H7I and 

1-C3H7I respectively. The calculated ratios throughout the ice column were  30 – 55 % 

higher during experiment 3 (slow ice growth). A possible explanation for this is that the 

vertical and lateral fractional connectivity of brine channels within the ice column which 

underwent fast growth (experiment 2) are not as high as those generated at the slower 

growth rate (experiment 3). Despite the sea ice in experiment 2 having a greater p value 

than the sea ice in experiment 3, it is possible that the ice microstructure has undergone an 

irreversible change during it’s growth at -14 C in that much of its brine resides within 

isolated inclusions within the ice, unable to contribute to the connectivity of the brine 

channel network and influence rates of diffusion. Alternatively, following the growth of the 

fast grown sea ice at -14 C (experiment 2), the temperature equilibration period of the ice 

column at -3 C (24) hours may have been insufficient for any precipitated salts within the 

brine channels to dissolve into solution. In which case, these precipitated salts could 

theoretically have physically reduced sea ice permeability by restricting brine channels 

which would have otherwise contributed to vertical brine transport, as previously observed 

by Light et al. (2003). 

 

The experiment carried out at a temperature of -14 C (experiment 1) exhibits a very 

different vertical profile for both p values and VOIC concentrations to those conducted at -

3C (experiments 2 and 3). The concentrations of each compound within the upper 2.4 cm 

are negligible. This trend is supported by the p value within the upper 1.2 cm (4.7 %) which 

is below the percolation threshold. The upper ice is effectively impermeable to brine 

migration and exhibits a “capping effect” for the transport of volatiles to the overlying air. 

A similar phenomena was previously observed during the ANFLUX experiment in the 

eastern Weddell Sea where most of the sea ice layer remained below the critical 

temperature for percolation and the top 5 cm exhibited this “capping effect” (Golden et al., 

1998). 
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Figure 5.17 Depth profile of VOIC concentrations (nmol dm
-3

 of bulk sea ice meltwater). 

Red triangles, experiment 1, pink squares, experiment 3, blue diamonds, experiment 2, 

brown circles, seawater concentrations. The y error bars on seawater concentrations  at 

bottom of plots reflect the  standard deviation of ice depths between  the experiments. 

Shaded area represents bulk sea ice depths not sampled. 
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Figure 5.18 Depth profile of VOIC concentrations (nmol dm

-3
 of brine). Red triangles, 

experiment 1 (-14°), pink squares, experiment 3 (-3ºC slow ice growth) blue diamonds, 

experiment 2 (-3ºC fast ice growth), brown circles, seawater concentrations. The y error 

bars on seawater concentrations at bottom of plots reflect the standard deviation of ice 

depths between the experiments. Shaded area represents bulk sea ice depths not sampled. 
 

Figures 5.19, 5.20 and 5.21 show a comparison of the VOIC sea ice concentrations and p 

corrected VOIC concentrations in brine against ice depth for experiments 1, 2 and 3 

respectively. The p corrected brine VOIC concentrations were calculated by multiplying 

the brine volume fraction by the measured VOIC concentrations in brine for each ice depth. 

The established errors on the x axis were propagated from an arbitrary 10% sampling error, 

the depth dependent thermistor error, the standard deviations of the regression lines of the 

VOIC permeation rates and the internal standard corrected VOIC calibration curves. These 

x axis errors ranged between  26 -31% and 13 -21% for experiments conducted at -3ºC 

and -14°C respectively. 

 

The sea ice VOIC concentrations and brine corrected VOIC concentrations were equivalent 

within error for each experiment in the upper ice column (1.2 – 2.4 cm). This confirms not 

only the reliability of the VOIC concentrations determined in the ice/brine and the 

calculated p values within this depth, but that the VOICs resided in the brine within the sea 
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ice microstructure during sampling. In the lower ice column (3.0 – 4.2 cm), the p corrected 

VOIC brine concentrations were consistently higher than measured VOIC sea ice 

concentrations. The calculated brine volumes used were calculated using EQ 5.3 

(Frankenstein and Garner, 1967) and represent the total fraction of brine per unit volume of 

sea-ice. Quantities of brine can be present within isolated pockets within the sea ice 

microstructure which would not contribute to the vertical transport of VOICs, hence 

contain negligible VOIC concentrations (section 5.3.2). This correction does not take into 

account such isolated brine pockets hence the p corrected brine concentrations would 

typically be overestimated, as observed. This overestimation increases with p and reflects 

the increase in non-quantifiable error associated with sampling ice and brine at increasing 

depth during the experiment. An arbitrary 10% sampling error is included on the 

propagated ice and brine x errors at all depths to account brine and ice mixing during 

sampling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Measured VOIC concentrations in sea ice and pc corrected brine through the 

ice column for experiment 1 (-14°C). Filled line, measured [VOIC] in sea ice; dashed line, 

p corrected [VOIC] in brine. 
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Figure 5.20 Measured VOIC concentrations in sea ice and p corrected brine through the ice 

column for experiment 2 (-3ºC fast ice growth). Filled line, measured [VOIC] in sea ice; 

dashed line, p corrected [VOIC] in brine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Measured VOIC concentrations in sea ice and p corrected brine through the ice 

column for experiment 3 (-3ºC slow ice growth). Filled line, measured [VOIC] in sea ice; 

dashed line, p corrected [VOIC] in brine. 

 

CH3I
0

10

20

30

40

50

0 20 40 60 80 100

[VOIC] (nmol dm
-3

)

Ic
e

 d
e

p
th

 (
m

m
)

C2H5I
0

10

20

30

40

50

0 10 20 30 40 50

[VOIC] (nmol dm
-3

)

Ic
e

 d
e

p
th

 (
m

m
)

2-C3H7I
0

10

20

30

40

50

0 5 10 15

[VOIC] (nmol dm
-3

)

Ic
e

 d
e

p
th

 (
m

m
)

1-C3H7I
0

10

20

30

40

50

0 5 10 15

[VOIC] (nmol dm
-3

)

Ic
e

 d
e

p
th

 (
m

m
)

CH3I
0

10

20

30

40

50

0 20 40 60 80 100 120 140 160

[VOIC] (nmol dm
-3

)

Ic
e

 d
e

p
th

 (
m

m
)

C2H5I
0

10

20

30

40

50

0 10 20 30 40 50 60 70

[VOIC] (nmol dm
-3

)

Ic
e

 d
e

p
th

 (
m

m
)

2-C3H7I
0

10

20

30

40

50

0 5 10 15 20 25

[VOIC] (nmol dm
-3

)

Ic
e

 d
e

p
th

 (
m

m
)

1-C3H7I
0

10

20

30

40

50

0 5 10 15 20 25

[VOIC] (nmol dm
-3

)

Ic
e

 d
e

p
th

 (
m

m
)



                                                                                        5.  Leeds Ice Chamber Experiments 
 

215 

 

5.3.6 Depth resolved VOIC concentrations in fresh ice 

Figures 5.22 and 5.23 show VOIC concentrations within the fresh ice columns for the 

control experiments conducted at both -3 C (Experiment 4) and -14 C (Experiment 5) 

respectively. The VOIC concentrations in fresh ice are compared to the underlying 

freshwater concentrations observed prior to the addition of the aqueous mixed VOIC 

standard (section 5.2.2). The calculated x axis errors for these experiments were the same 

as they were for the sea ice experiments, section 5.3.5. The negligible VOIC concentrations 

present within the fresh ice were comparable to those within the Milli-Q water before the 

introduction of the mixed aqueous VOIC standard. The data provided no evidence for the 

vertical transport from the underlying water which was in good agreement with the 

underlying fresh water loss VOIC rates determined during the experiment; refer to 

Appendix, 5.13 to 5.20. Both data sets support the well established assumption that a brine 

channel network is required for vertical gas transport through ice (Golden et al., 1998).  

 

The VOIC profiles within fresh ice suggested significant surface enhancements for each 

compound (top 0 – 24 cm) during both experiments. As these freshwater experiments were 

conducted under dark conditions, in the absence of salt (freshwater  0.0 psu) in-situ 

abiotic VOIC production within the surface ice layer is unlikely to be the explanation. The 

most plausible explanation for this observation is instead the direct scavenging of VOICs 

(or residual organisms within the tank which biogenically produce them) from the water 

column by dense frazil ice during the onset of freezing. 

 

A mechanism previously used to explain surface enhancements of chemical concentrations 

and organisms in young first year sea ice is that of frazil ice scavenging (Eicken, 2008). 

Frazil ice crystals form on particles suspended within the water column and particles also 

adhere to them as they form and rise to the sea surface. This mechanism of scavenging 

from the water column during frazil ice formation can be considered as primary filtration. 

Previous studies of brine and sea ice suggest that the major frazil ice scavenging 

mechanism is through primary filtration, but that ice nucleation and resulting chemical 

concentration should not be ruled out (Ackley, 1982; Garrison et al., 1983). Secondary 

filtration could possibly occur in which Langmuir circulation (Stavn 1971, Bainbridge, 
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1957) provides the likely mechanism. Langmuir circulation aggregates frazil ice in 

converging circulation cells (Martin, 1981). These aggregated surface frazil ice crystals 

could act as a filter for suspended organisms transported within these cells, leading to their 

enhancement in the surface ice layer. 

 

The surface enrichment factors ([VOIC] surface ice/[VOIC] freshwater) averaged 3.36  

2.82 (n = 4) and 2.28  1.80 (n = 4) for experiments conducted at -3 C (experiment 4) and 

-14C (experiment 5) respectively, figures 5.22 and 5.23. These enrichment factors are in 

good agreement with the laboratory studies of Garrison et al (1983). During these 

experiments the diatoms Nitschia sp. and Chaetoceros neogracile were cultured from the 

Antarctic pack ice and used as a proxy for frazil ice scavenging in an ice generation 

chamber where ice was grown at -20C. Chlorophyll a enrichment factors of 1.8  0.9 were 

observed in the sea ice of these experiments.  There was no indication that the resulting 

chlorophyll a enrichment factors had any dependence upon the concentration of the initial 

algal suspensions, organisms used, the duration of the experiment run or the amount of 

frazil ice formed. Instead the relative quantities scavenged from the water column were 

assumed to be dependent upon the depth at which frazil ice forms, hence the distance it 

must travel before it can become consolidated at the ice surface.  

 

The depth at which natural frazil ice is generated is not well established but it has been 

suggested that frazil ice formation and transport from thermohaline convection in polar 

regions can extend to tens of metres below the sea surface (Foster and Weiss, 1989). It 

seems likely that the frequency of encounters between suspended algal cells and frazil ice 

crystals would be higher in nature, hence this filtration effect would be significantly 

enhanced. This goes someway toward explaining previous field observations of Arctic 

seasonal sea ice in which surface Chl a concentrations were significantly higher in the ice 

surface layer than the remaining ice column (Sturges, 1997). 
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Figure 5.22 VOIC concentrations measured within fresh ice during experiment 4 (-3°C). 

Empty diamond, CH3I; empty squares, C2H5I; empty triangles, 2-C3H7I; empty circles, 1-

C3H7I. 
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Figure 5.23 VOIC concentrations measured within fresh ice during experiment 5 (-14°C). 

Empty diamond, CH3I; empty squares, C2H5I; empty triangles, 2-C3H7I; empty circles, 1-

C3H7I. 

 
 

5.3.7  Under-sea ice VOIC concentration evolution 

 Figure 5.24 illustrates VOIC loss rates from artificial seawater at the different temperatures 

investigated over their experimental periods. The propagated errors for these experiments 
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were 4.0 %, 7.8 %, 3.3 % and 3.6 % for CH3I, C2H5I, 2-C3H7I and 1-C3H7I, respectively. 

The errors for VOIC loss rates for the experiments were propagated from the standard 

deviations of the regression lines of the VOIC permeation rates and the internal standard 

corrected VOIC calibration curve, both of which were required for external calibration. 

Refer to Appendix 5.1 to 5.12 for raw data. 

 

A significant difference in the profiles of loss rates from the underlying seawater is 

observed at the two temperatures investigated, due to differing fractional connectivity and 

hence vertical transport rates through the sea ice. The loss rates from the seawater 

experiment conducted at -14 C, experiment 1, shows that an initial rapid loss of all VOIC 

concentrations occurs from the seawater, which plateaus over time. This suggests an 

incomplete brine network within the ice column, the result of which is that the VOICs are 

lost from the water until a steady state is reached in the brine channels.  This observation is 

consistent with the ice core and brine data described previously (section 5.3.5). 
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Figure 5.24 Normalised losses in under-ice aqueous halocarbon concentrations  

(nmol dm
-3

) for the experimental conditions investigated. Pink squares, experiment 3 (slow 

ice growth); blue diamonds, experiment 2 (fast ice growth); red triangles, experiment 1  

(-14°C). 
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5.3.8 Calculated diffusive fluxes from the QLL to air 

Table 5.2 shows fluxes inferred from the molar balance of the experimental system (section 

5.2.7) and the diffusive fluxes calculated from surface brine VOIC concentrations (section 

5.2.8).  Molar balance inferred fluxes were effectively zero within experimental error for all 

VOICs during the -14 °C investigation (experiment 1). The fluxes inferred from the molar 

balance during experiment 2 (-3 
o
C fast ice growth rate) were 733.2  322.7, 575.6  354.2, 

245.0  109.5, and 191.8  80.7 nmol m
-2

 d
-1

 whereas the calculated diffusive flux values 

were 1222.3  249.6, 552.9  207.7, 278.0  109.5 and 233.6  80.7 nmol m
-2

 d
-1

 for CH3I, 

C2H5I, 2-C3H7I and 1-C3H7I, respectively. The fluxes inferred from the molar balance 

during experiment 3 (-3 
o
C slow ice growth rate) were 1222.3  249.6, 552.9  207.7, 278 

 109.5, and 233.6  80.7 nmol m
-2

 d
-1

 whereas the calculated diffusive flux values were 

703.1  322.7, 575.6  354.2, 245.0  109.5 and 191.8  80.7 nmol m
-2

 d
-1

 for CH3I, C2H5I, 

2-C3H7I and 1-C3H7I, respectively.  

 

Both the VOIC flux rates inferred from the molar balance and the calculated diffusive 

fluxes for each experiment were in good agreement with one another when considering the 

established margins of error for each VOIC. The diffusive flux rates for each VOIC species 

are generally slightly lower than those inferred from the molar balance calculation. Such a 

contrast is expected as the calculated diffusive flux rates assume the concentration gradient 

across the QLL is the same as that of the brine in the upper ice, and as such offer a lower 

limit of VOIC flux rates. The calculated diffusive flux represents a lower limit, since the 

relative concentration gradient in the QLL maybe greater than in the surface brine, because 

of turbulent losses from the QLL to the air above. 

 

Of the experiments carried out at -3 
o
C, experiment 3 (slow ice growth) exhibited much 

faster (by ~ factor of two) VOIC loss rates from the water than experiment 2 (fast ice 

growth). This is consistent with the higher concentrations (~ factor of two) of VOICs in ice 

and brine in the slow ice growth experiment, as discussed, and can be explained by the 

differing ice microstructures in each scenario.  The microstructure of the ice column within 

experiment 2 (fast growth) has possibly undergone significant hysteresis effects during ice 

growth in that a higher fraction of the brine resides within isolated inclusions within the ice, 
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unable to contribute to the connectivity of the brine channel network and influence rates of 

VOIC diffusion. 

 

Transfer velocities (kiceair and kQLLair) were inferred for each VOIC by dividing the 

experimental molar balance flux of each species by the [VOIC] in the surface ice (Cice) and 

the [VOIC] in the QLL (CQLL x V), respectively (EQ 5.13 and 5.11, respectively). 

Calculated kiceair values and kQLLair at -3 °C were between 2.4 x 10
-2

 – 6.17 x 10
-2

m d
-1 

and 2.3 x 10
-3

 – 6.2 x 10
-3

m d
-1

, respectively. kseaice air  transfer velocities were inferred 

for each VOIC by dividing the experimental molar balance flux of each species by the 

[VOIC] in the underlying water (Cw)  (EQ 5.12). Calculated kseaice air  values at -3 C 

were between 4.2 x 10
-2

 and 1.2 x 10
-1

 m d
-1

 which were in relatively good agreement with 

previous values determined for CO2 (1.4 x 10
-1

 m d
-1

, Loose et al. 2011).  At -14 ºC, the 

surface brine channels are not connected as shown by the fact that there was no loss from 

the underlying water after the initial 24 hours of the experiment (Figure 5.24) nor 

appreciable concentrations in surface ice/brine (Figs 5.17 and 5.18).  Therefore no gas 

transfer velocities could be inferred for the experiment at -14 C as the inferred flux from 

the molar balance was effectively zero, table 5.2. 

 

5.3.9   Comparison of sea-ice-air to sea-air fluxes 

Assuming that the VOIC diffusive transfer velocities determined in our experiments are 

representative of those operating in the polar environment, we can compare them to open 

water gas exchange to estimate the relative importance of consolidated sea-ice-air and open 

lead sea-air fluxes.  Hypothetical seawater-air transfer velocities in the absence of ice (kw) 

were calculated using the Nightingale parameterisation and a typical wind speed of 7 m s
-1 

(Nightingale et al., 2000). The calculated kseaice air values inferred from the molar 

balance at -3 ºC were between 0.1 and 0.2% of these kw values. 

 

Previous studies estimate fractional ice coverage (f) in the seasonal sea ice zone to typically 

range between 90% (f  0.1) during the winter and < 70% (f > 0.3) during summer months 

(Tanning and Fanning, 1991). Hypothetical kw values were determined for f  0.1 by 

linearly scaling the kw values in the absence of sea-ice to 10%. The average kseaice air 
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values inferred by the molar balance at -3 ºC represented 1.0 %, 2.1 %, 1.7 % and 2.1 % of 

f  0.1 kw values for CH3I, C2H5I, 2-C3H7I, 1-C3H7I respectively. These values offer an 

upper limit for VOIC diffusion through newly grown first year sea-ice at surface 

temperatures above the percolation threshold, not taking into account in-situ losses or the 

chemical and biogenic production of VOICs within the brine network. 
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Table 5.2 Experimentally determined VOIC fluxes, transfer velocities and calculated hypothetical diffusion coefficients. 

aMass diffusion length from initialisation of experiment  to end . 

bTabulated errors represent 1  estimated uncertainties calculated from propagating the RSDs of the VOIC permeation rates,  the calibration curve and internal standard precision.  

cCompound-specific diffusion coefficients calculated for  brine solution in upper 1.2 cm of ice.   

dMolar balance represents the VOIC loss rate over the experimental period. Fluxes for experiment 1 were calculated from point steady state had been established. 

eFluxes calculated using the VOIC concentration gradients in the upper 2.4 cm of brine.     

fGas transfer velocity values calculated using EQ 5.12 and EQ 5.13 respectively.

 

VOIC Mass 

diffusion 

length (Ld) 

cma 

Calculated 

diffusion coefficient 

(D) within sea-icec  

(cm2 s-1) 

Flux calculated 

from molar 

balanced 

(nmol m-2 d-1) 

Diffusive flux through 

surface  

sea icee 

(nmol m-2 d-1) 

Sea-ice to air transfer 

velocityf 

(kseaiceair) m d-1 

QLL to air transfer 

velocityf 

(kQLLair) m d-1 

Experiment 1 

(-14ºC) 

 

CH3I 

 

4.1  0.4b 

 

1.3 x10-5   0.1 

 

122.8462 

 

0.5 0.1 

 

0.0 

 

0.0 

 C2H5I 4.5  0.5 1.5 x10-5  0.2 -18.5383 0.1 0.1 0.0 0.0 

 2-C3H7I 4.1  0.5 1.4 x10-5  0.1 16.7133 0.03 0.01 0.0 0.0 

 1-C3H7I 4.1  0.5 1.4 x10-5  0.1 16.292 0.03 0.01 0.0 0.0 

Experiment 2 

(-3ºC fast ice 

growth) 

 

 

CH3I 

 

 

9.2  0.9 

 

 

6.9 x10-5 0.7 

 

 

733.2 322 

 

 

755.152 

 

 

2.4 x10-2 

 

 

2.3 x10-3 

 C2H5I 10.1  1.0 8.1 x10-5  0.8 575.6 354 643.582 4.8 x10-2 5.0 x10-3 

 2-C3H7I 9.76  1.0 7.7 x10-5 0.8 245.0 109 217.617 6.1 x10-2 5.0 x10-3 

 1-C3H7I 9.76  1.0 7.7 x10-5  0.8 191.8 80 214.3.15 5.7 x10-2 6.2 x10-3 

Experiment 3 

(-3ºC slow ice 

growth) 

 

 

CH3I 

 

 

7.39  0.7 

 

 

5.3 x10-5  0.5 

 

 

1222.3 249 

 

 

703.148 

 

 

3.7 x10-2 

 

 

3.6 x10-3 

 C2H5I 8.03  0.8 6.3 x10-5  0.6 552.9 207 217.928 2.8 x10-2 2.8 x10-3 

 2-C3H7I 7.89  0.8 6.0 x10-5  0.6 278.0 109 133.811 4.6 x10-2 4.4 x10-3 

 1-C3H7I 7.89  0.8 6.0 x10-5  0.6 233.6 80 130.610 4.3 x10-2 4.1 x10-3 
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5.4 Physico-chemical characteristics of Hudson Bay sea ice 

The Hudson Bay region in eastern Canada is a small enclosed region of the Atlantic ocean 

which is characterised by a 1.2 x 10
6
 km

2
 sea surface area and an average depth of 128 m. 

The surrounding drainage area of Hudson Bay, comprising some 4 x 10
6
 km

2
, provides a 

major source of freshwater to the Bay. The relative proportions and mixing characteristics 

of the continental freshwaters and the marine waters advected from the Atlantic Ocean 

determine the general characteristics of biological production in Hudson Bay (Legendre et 

al., 1981). 

 

During COBRA, two ice cores were sampled on the coast of Kuujjarrapik in proximity to 

the Manitounuk Sound region, as outlined in section 5.2.11. Within this region water mass 

characteristics are greatly influenced by the intrusion of brackish fresh water from the 

plume of the Great Whale River, figure 5.4. Such changes in seawater salinity not only 

impact in-situ biological production but also sea ice microstructure during formation 

(section 5.2). 

 

5.4.1 Salinity distribution through Hudson Bay Sea ice 

Previous salinity measurements of the under ice seawater adjacent to the Great Whale 

River estuary (figure 5.4) during March 1978 were between 0.5 – 1.0 psu (Legendre et al., 

1981), considerably lower than those observed in open ocean seasonal ice zones. During 

COBRA, mean under ice seawater salinity measurements conducted adjacent to the 

experimental site at core position 2 (9
th

 of March 2008) and 7 km into the bay at core 

position 1 (6
th

 of March 2008) were 5.3 ± 0.8 and 20.4 ± 3.0 psu respectively. This 

difference in seawater salinity between the Great Whale River estuary and waters in the 

Bay reflects the mixing of the continental freshwaters and marine waters in the region. 

Reduced seawater salinities during sea ice formation causes reduced salt consolidation 

within the sea ice microstructure during growth (section 5.3.2), which was observed when 

comparing the sea ice salinity at the two sites. 



                                                                                        5.  Leeds Ice Chamber Experiments 
 

224 

 

The salinity distributions through the Hudson Bay sea ice at both core positions 1 and 2 

(figures 5.25 and 5.26 respectively) both exhibit similar profiles with salinities decreasing 

with depth. The measured salinities, from surface sea ice to the bottom, ranged between 7.5 

0.8 – 2.8 0.3 and 2.8 0.3 – 0.8  0.09 psu (to 1 sig fig) for core positions 1 and 2, 

respectively.  

 

Nakawo and Sinha (1981) previously measured consolidated seasonal sea ice Gi values of 

0.09 – 0.17 C cm
-1

 which were generally in good agreement with that measured during the 

ice chamber experiment 3 (0.25 C cm
-1

, slow growth rate -3C experiment). Therefore, 

assuming that the growth rate of the sea ice within the Hudson Bay region was similar to 

that measured during experiment 3 at a temperature of -3 ºC (1.3 x 10
-5

 cm s
-1

, table 3.1), a 

keff of 0.25 can be inferred (section 5.3.1 and 5.3.2). Assuming the mean underlying water 

salinities observed at core position 1 on the 6
th

 of March 2008 (20.4 ± 3.0) psu were the 

same as those during sea ice formation, a newly grown sea ice salinity (Si) of 5.1  0.8 was 

calculated using EQ 5.19 (Cox and Weeks, 1980), figure 5.25. This is in good agreement 

with the observed mean sea ice salinitiy measured at core position 1 (4.0 1.4). Similarly, 

assuming the mean underlying water salinities observed at core position 2 on the 9
th

 of 

March 2008 (5.3 ± 0.8) psu were the same as those during sea ice formation, a Si of 1.3  

0.2 was calculated (figure 5.26), which was in good agreement with the observed mean sea 

ice salinitiy (1.8 0.8). 

 

Neither sea ice core exhibits the characteristic C shaped salinity distribution observed 

previously in Arctic seasonal sea ice (Sturges et al., 1997). In the lower ice column, this is 

probably due to a loss of brine during sampling. In figure 5.25, the measured sea ice 

salinities are consistently lower than the calculated Si values except for that measured at an 

ice depth of 2.5 cm.   This could be attributed to in-situ gravity brine drainage. Previous 

work by Nakawo and Sinha (1981) in which a decrease in seasonal sea ice salinity of 0.5 

psu per month during an average ambient temperature of -30 C was measured supports 

this assumption. The measured salinity of the surface sea ice (upper 2.5 cm) is higher than 

the Si, likely due to the presence denser frazil ice in the upper several centimeters of the ice 

column and salt expelled to the surface layer during initial ice formation (Eicken, 2008).   
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The sea ice salinity distributions within the Hudson Bay sea ice (figures 5.25 and 5.26) are 

inversed to those observed in the artificial sea ice during the ice chamber experiments. This 

highlights the significance of gravity brine drainage in natural sea ice and the effect it has 

on sea ice microstructure with respect to the age of the ice column. 
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Figure 5.25 Measured and calculated sea ice salinities at core position 1. Empty squares, 

measured values. Filled squares, calculated values. 
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Figure 5.26 Measured and calculated sea ice salinities at core position 1. Empty squares, 

measured values. Filled squares, calculated values. 
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5.4.2 Nutrient exchange through Hudson Bay sea ice 

When considering the sea-ice sampled during the COBRA campaign, it is possible that 

nutrient depletion within the sea ice column could have contributed to limited algal growth 

and the low Chl a concentrations measured. However, as the nutrient concentrations were 

not determined in either sea ice or the underlying seawater during this campaign, it is 

difficult to conclude with any confidence that nutrient depletion was the direct cause of the 

low Chl a concentrations observed. Nutrient exchange at the ice-water interface and 

through the Hudson Bay ice columns can be inferred from the calculated brine volumes. 

These brine volumes were calculated by assuming an extrapolated linear thermal gradient 

existed through the sea ice between the air-ice interface (-20.1 and -21.0C for core 

positions 1 and 2 respectively) and the ice-water interface (-1.85).  This phenomena has 

previously been observed both in the work contained in this chapter (section 5.3.1) and in 

seasonal sea ice in the Arctic (Nakawo and Sinha, 1981). The overlying snow thickness 

measured prior to sampling (3 cm) was not taken into account but at this thickness is 

assumed to produce a negligible thermal inertia effect. Brine volume was calculated using 

these extrapolated temperature values and the measured sea ice salinities through the ice 

column (figure 5.27) using EQ 5.3. 

 

Figure 5.27 shows the calculated brine volume through the sea ice sampled at core 

positions 1 and 2. The established errors on the x axis reflect both an arbitrary 10% 

sampling error and 1% measured salinity error (as quoted by manufacturer). The y errors 

show the range of ice depths sampled for each data point.  

 

The calculated brine volumes for both ice cores were considerably lower than the 

established sea ice percolation threshold of 50 – 54 ppth (Golden et al., 1998), excluding 

that of core 1 at a depth of 56 cm. These calculated values suggest that nutrient exchange 

did not occur throughout the upper ice column, which could have caused a nutrient 

deficiency leading to an inhibition in algal growth rates. The data suggests that nutrient 

exchange could only have occurred on the underside of the sea ice at core position 1. These 

values are in good agreement with figure 5.28 for core 1 which shows a significant increase 
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in Chl a concentrations at this ice depth, possibly suggesting that nutrient deficiency was 

not a growth limiting factor in the lower  5 - 10 cm of sea ice. 
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Figure 5.27 Calculated brine volumes through sea ice sampled from Manitounuk Sound. 

Empty squares, core position 1. Empty circles, core position 2.  

 

5.4.3 Chlorophyll a distributions within Hudson Bay 

Figure 5.28 shows the Chl a concentrations through sea ice for core positions 1 (total depth 

 60 cm) and 2 (total depth 115 cm), as described in section 2.7.7. The calculated x errors 

were 18%, determined from the propagation of the spectrophotometric error and an 

arbitrary 10% sampling error. The y errors reflect the range of depths each datapoint 

represents.  The Chl a concentrations increase with ice depth in the upper ice column with 

mean concentrations of 53  42 and 369  304 ng dm
-3

 for the sea ice at cores at positions 1 

and 2, respectively. Both cores also exhibit substantially higher Chl a concentrations on the 

underside of the sea ice of 2491  448 and 1250  225 for cores 1 and 2 respectively. The 

Chl a concentrations measured in the sea ice during COBRA were considerably lower than 

those observed previously in Arctic seasonal sea ice. Sturges et al. (1997) previously 

reported sea ice Chl a concentrations at Resolute Bay in the Canadian Arctic that ranged 

between 1 - 20 mg dm
-3

 through the bulk ice and 200 mg dm
-3

 at the skeletal layer. These 

Chl a concentrations are  10
2
 – 10

4
 times higher than the values reported herein. 
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The spatial distribution of Chl a within the underlying seawater in the Hudson Bay region 

was also investigated during the COBRA campaign. Measurements were conducted close 

to the experimental site and at core positions 1 and 2 on the 25
th

 of February and the 6
th

 of 

March respectively. Chl a concentrations of 207.2 37.3, 247 44.6 and 335 60.3 ng dm
-3

 

were measured in the seawater at the experimental site, and core positions 2 and 1 

respectively. The data suggests that the Chl a concentrations were dependent upon the 

freshwater mixing as Chl a concentrations increased with distance from the Great Whale 

River. This supports the work of a previous study (Legendre, 1996) in which it was 

concluded that salinity has a significant effect on the algal populations within the Bay. 

 

In south eastern Hudson Bay, the salinity of the under ice water and lower ice column is 

controlled throughout the year by the hydrographic conditions of the fresh water plume 

supplied by the Great Whale river (Ingram et al., 1981; Legendre et al., 1996). The Great 

Whale river plume transports freshwater, chemical substances and heat from the river into 

the estuary and into the bay. The salinity of the plume is hydrographically controlled by the 

rate of discharge of the river; eg influenced by the rate of snow melt within its drainage 

basin. Previous work in an analogous estuarine region to that of southeastern Hudson Bay 

(Saroma-ko lagoon, Japan) suggested that the low salinity water discharged from the river 

caused a reduction in the photosynthetic activity of ice algae and consequently led to a 

decrease in Chl a concentrations (Taguchi et al., 1997). Similarly, previous work within 

southeastern Hudson Bay (Legendre et al., 1996) suggested that salinity, and not nutrients, 

are the primary limiting factor for the development of ice algae within the region. Poulin et 

al. (1983) observed that the biodiversity of ice algae, within Hudson Bay, decreased with 

lower salinities. This study suggests that salinity could directly influence the taxonomic 

composition of ice algae as cryophilic algae are generally stenohaline and not tolerant to 

low salinities. Thus it could be hypothesized that salinity may influence the biomass of ice 

algae through osmotic or other physiological effects. These physiological effects could be a 

combination of the effect of low salinities on the sea ice surface available for colonization, 

which may have a direct effect on the colonization efficiency of ice algae, and the thickness 

of the sea ice, which also influences the irradiance at the bottom of the ice (Poulin et al., 

1983). 
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As ice algae in southeastern Hudson Bay are exposed to low salinity water throughout the 

year, the ice algae are subjected to both osmotic damage and physiological effects reducing 

their photosynthetic activity and growth rates. This phenomena influences the Chl a 

concentrations in the underlying seawater, hence their concentrations within sea ice from 

scavenging and consolidation during sea ice formation (section 5.3.2). This explains why 

the Chl a concentrations within sea ice at both core positions were  10
2
 – 10

4
 times lower 

than those previously measured in higher salinity ( 35 psu) seawater bearing seasonal sea 

ice zones (Sturges et al., 1997). The relatively low Chl a concentrations within the sea ice 

can be explained by a combination of osmotic stress, induced at low salinities in seawater 

prior to sea ice formation, and the possibility of nutrient deficiency within the brine channel 

network limiting algal productivity. However, although a lack of nutrient exchange through 

the ice column is implied by the low brine volumes observed through both cores (figure 

5.28), the possibility that nutrient deficiencies within the sea ice are limiting algal 

productivity can not be confirmed as nutrient concentrations in sea ice were not 

determined.  
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Figure 5.28 Chlorophyll distributions through sea ice. 

Empty squares, core position 1;empty circles, core position 2. 

Bottom data points reflect under ice Chl a concentration in seawater. 
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5.4.4 Biogenic VOIC production 

The polyhalogenated organic compounds (CHBr3, CH2Br2, CH2I2 and CH2ICl) were 

previously shown to be produced by the marine diatoms Nitschia sp, Nitschia arctica and 

Porosira glacialis grown in laboratory cultures (Moore et al., 1996). In contrast CH2IBr 

was only produced in the cultures Nitschia sp and Porosira glacialis. Further testing 

revealed that all these species of diatoms possessed the bromoperoxidase enzyme to which 

the organisms iodinating and brominating ability was attributed. A culture of Navicula sp 

also produced CH2I2 and CH2ICl, but no CHBr3 or CH2Br2. This was attributed to the 

absence of a bromo-peroxidase enzyme and the presence of an iodo-peroxidase enzyme 

within the algal tissue. Moore et al. (1996) noted that the production rates of the poly-

halogenated organics were considerably higher at higher illuminations, with no significant 

production occurring under dark conditions for any of the compounds investigated. This 

phenomenon is likely to be related to the increased production of H2O2 during 

photosynthesis. While different organisms have different patterns of H2O2 production 

(Hakkinen et al., 2004), it is consistent with current theory that photosynthetic organisms 

would all have enhanced H2O2 production under increased radiance (Cooper et al., 1989). 

 

In Moore et al’s (1996) diatom incubations study, the biogenic production of the mono-

iodinated compounds (CH3I and C2H5I) was observed only in the Nitschia sp culture held at 

higher illumination in which the concentration reached up to 10 times the control levels. 

Under similar conditions the culture Porosira glacialis produced CH3I concentrations only 

a few times above the control level. Neither CH3I or C2H5I would be expected to be linked 

to haloperoxidase enzyme activity however as mono-halogenated organics are not formed 

from the resultant haloform reaction. However, the biogenic formation of mono-

halogenated organics is believed to occur in the presence of halide methyl transferase 

enzymes. Wuosmaa and Hagner (1990) previously reported a mechanism involving a 

methyl chloride transferase enzyme, which catalyzes the methylation of halide ions in 

seawater. Subsequent work yielded CH3I from incubations of I
-
 and organic substances in 

the presence of the methyl transferase enzyme (Itoh et al., 1997). 
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5.4.5 Abiotic production of halogenated organic compounds 

Previous work by Moore and Zafiriou (1994) suggests a photochemical production 

mechanism of mono-halogenated organics (RX) from alkyl radicals, formed from the 

photolysis of dissolved organic matter (DOM), recombining with iodine atoms. DOM and 

detritus are known to be readily scavenged and consolidated in sea ice during its formation 

(section 5.3.2) with dissolved organic concentrations (DOC) within seasonal sea ice 

typically reaching in excess of 100 m dm
-3 

(Thomas et al., 1995). The primary competing 

reaction of this abiotic mechanism of VOIC formation is the reaction of the alkyl radical 

with molecular oxygen (O2). However the sea ice and overlying snow of these aqueous 

phase reactions are likely to reduce the O2 content available for such competing reactions.  

 

Keppler et al. (2000) describes a terrestrial production mechanism of RX in organic rich 

soils involving the synchronous oxidation of 2-methoxyphenol by ferrihydrite and the 

nucleophillic substitution of the methyl group by halide. This reaction is specific for all of 

the mono-iodinated organics in question as C2H5I and 2/1-C3H7I are generated by using 

ethoxyphenol and propoxyphenol respectively. This RX production mechanism could be of 

specific importance within Hudson Bay due the large amount of continuous freshwater 

drainage that occurs from the surrounding terrestrial ecosystems into the Bay. Such 

drainage is likely to contribute to the transport of alkoxylated phenolic structures and 

minerals from terrestrial soils into the Bay, where they can be scavenged during sea ice 

formation. 

 

Hansson et al. (1987) previously described the abiotic production of poly-halomethanes in 

natural waters via the haloform reaction. The haloform reaction is not biologically or 

photo-chemically mediated, hence reaction rates are dependent upon pH, temperature, 

halide and DOM concentrations. However, these variables were not determined within sea 

ice during the COBRA campaign, therefore it is difficult to interpret how the production 

rates of poly-halogenated organics would vary throughout the sea-ice column.  
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5.4.6 VOIC and VOBC lifetimes in Hudson Bay sea ice 

The total lifetimes of VOICs and VOBCs had to be considered in both cores 1 and 2 of the 

sea ice in order to determine the importance of any in-situ production as a regional source 

to the marine boundary layer. The primary loss mechanism of VOICs and VOBCs in the 

atmosphere is through photolysis (section 1.3, table 1.1). Photolysis lifetimes of these 

compounds in sea ice is strongly influenced by snow cover, age, consolidation and 

thickness of the overlying snow layer. The overlying snow thickness was measured at core 

positions 1 and 2 immediately prior to sampling and consisted of 1 cm of loose wind 

driven snow and 2 - 2.5 cm of aged consolidated snowpack. The topography of the 

snowpack immediately surrounding the points of sampling consisted of wind driven snow 

depths of 1 - 10 cm, which were observed to change over a timescale of days. As solar 

irradiance was not measured through either the snowpack or sea ice prior to sampling, it is 

difficult to infer in-situ photolysis lifetimes for the VOICs and VOBCs measured.  

 

Rowland and Grannas (2011) recently carried out irradiance measurements through the 

Arctic seasonal snowpack at Barrow Alaska using actinometer films. These measurements 

established that UV-A light is strongly attenuated near the snowpack surface, with 90 - 

100% of the surface intensity lost within the first 5 cm of aged consolidated snow. This 

10% discrepancy in light intensity was an experimental artefact attributed to either light 

leakage from the side of the sample snow trench, disruption of the snowpack during slide 

placement or the accidental exposure of the actinometer films during repackaging. 

Therefore, when considering the sea ice sampled at both core positions in the Hudson Bay 

region during COBRA, it is possible that almost all of the incident UV radiation was 

attenuated within the snowpack and did not reach the underlying sea ice surface. 

 

Following the assumption that photolytic VOIC losses were negligible in the lower ice 

column, secondary in-situ loss mechanisms were considered, namely hydrolysis and 

chlorination (Jones et al., 2007). The VOIC concentrations measured in sea ice represent 

the concentrations within the hypersaline solution in the intercrystalline inclusions within 

the ice microstructure. In order to calculate the total loss rates for these compounds within 

these environments, both the brine salinities and VOIC concentrations through the sea ice 
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column had to be estimated. Brine salinities were estimated using the calculated brine 

volumes (figure 5.27) and sea ice salinities (figures 5.25 and 5.26) at each depth whereas 

brine VOIC concentrations were scaled according to the brine volume. Figure 5.29 shows 

the estimated brine salinities through sea ice for core positions 1 and 2. The established 

errors on the x axis reflect an arbitrary 10% sampling error whereas the y errors show the 

range of ice depths sampled for each data point.  

 

The total VOIC lifetimes for CH3I, and 1-C3H7I as a function of sea ice depth were 

calculated using EQ 5.1. VOIC hydrolysis and chlorination temperature dependent rate 

constants (kH and kc respectively) were extrapolated from previous relationships established 

by Jones (2006). Calculated total lifetimes attributed to hydrolysis and chlorination losses 

in the surface sea ice were between 4.2 – 3.8 and 28.7 years for CH3I and 1-C3H7I 

respectively. Calculated total lifetimes decreased significantly with sea ice depth due to the 

temperature dependence of VOIC hydrolysis and chlorination and the higher temperatures 

inferred toward the ice-water interface, tables 5.3 and 5.4. However, at the CH3I 

concentrations observed, in the lower ice column at core position 2 the calculated total 

lifetimes due to hydrolysis and chlorination were still in excess of 1 year. As the seasonal 

sea ice cover in the Hudson Bay region typically lasts  6 - 7 months (Legendre et al., 

1996) the in-situ VOIC total lifetimes throughout the sea ice column are considerably 

higher than the duration of the sea ice.  
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Figure 5.29 Estimated brine salinities through Hudson Bay sea ice. Empty squares, core 

position 1; empty circles, core position 2. 

 

 
 

VOIC Temperature 

(K) 

Ice depth 

(cm) 

kH  

(dm
3
 mol

-1
 s

-

1
) 

kc  

(dm
3
 mol

-1
 s

-1
) 

Total 

lifetime 

(years) 

CH3I 254 2.5 5.28 x 10
-11

 5.81 x 10
-10

 3.8 

 255 7.5 8.09 x 10
-11

 1.24 x 10
-9

 2.0 

      

1-C3H7I 254 2.5 1.61 x 10
-10

 3.18 x 10
-11

 28.7 

 255 7.5 2.30 x 10
-10

 7.86 x 10
-11

 8.5 

Table 5.3 Calculated total VOIC lifetimes and chemical destruction rate constants in sea 

ice at ice core position 1. 

 

 

VOIC Temperature 

(K) 

Ice depth 

(cm) 

kH  

(dm
3
 mol

-1
 s

-

1
) 

kc  

(dm
3
 mol

-1
 s

-1
) 

Total 

lifetime 

(years) 

CH3I 253 5 4.8 x 10
-11

 4.9 x 10
-10

 4.2 

 263 64.5 1.53 x 10
-10

 3.85 x 10
-9

 1.3 

 270 106 3.26 x 10
-10

 1.48 x 10
-8

 1.0 

Table 5.4 Calculated total VOIC lifetimes and chemical destruction rate constants in sea 

ice at ice core position 2. 
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5.4.7 Distribution of halogenated organics through Hudson Bay sea ice 

Figures 5.30 5.32, 5.33, 5.35 and 5.31, 5.34, 5.36, 5.38 show VOBC, and VOIC profiles 

through sea ice for core positions 1 and 2, respectively (see figure 5.4 for geographical 

locations). The measured VOIC/VOBC seawater concentrations at core position 2 on the 

6
th

 of March 2008 were 21.1, 0.11 and 3.21 pmol dm
-3

 for CH3I, CH2Br2 and CHBr3 

respectively. These seawater concentrations are considerably lower (30 – 100%) than 

those measured in the open ocean previously (Jones et al., 2010; Hughes et al., 2009). This 

demonstrates the effect reduced biological activity (caused from sea ice cover) and reduced 

algal densities (caused by osmotic stress from fresh water mixing) potentially have on 

biogenic VOIC production within the region. The data points at an ice depth of 65 and 140 

cm for core positions 1 and 2, respectively, represent the measured VOIC/VOBC 

concentrations in the underlying seawater.   

 

Due to the low diatom cell numbers that are inferred from the Chl a concentrations 

measured within the Hudson Bay sea ice, figure 5.28, both the VOBCs and VOIC 

concentrations were too high to be explained by their in-situ biogenic production by 

diatoms alone. Moore et al. (1996) stated that during an incubation study of the most 

productive arctic diatom species (Nitschia sp) the CH3I to Chl a ratios were in the order of 

17 pmol CH3I mg dm
-3

 Chl a. Assuming that the conditions in this incubation study were 

representative of those in the upper sea ice of Hudson Bay and that the Chl a concentrations 

measured were only from Nitschia sp, the measured CH3I concentrations in the upper sea 

ice were 10
3
-10

5
 orders of magnitude higher than can be explained by these biological 

production rates, as shown in figure 5.30. 

 

Similarly the measured VOIC and VOBC concentrations in the Hudson Bay sea ice cannot 

be explained by vertical transport from the underlying seawater as the brine volume 

fraction through out the ice column is below the critical percolation threshold (5 – 5.4%, 

Cox and Weeks, 1975; Petrich et al., 2006), excluding that of the lower 5 – 10 cm of sea 

ice sampled at core position 1 (figure 5.27). As vertical VOIC transport through sea ice 

from the underlying seawater was not possible at the time of sampling (figure 5.27) and the 

measured Chl a concentrations in the ice column infer negligible VOIC production rates, 
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only in-situ abiotic production and/or scavenging and consolidation of VOIC from the 

underlying seawater during ice formation can explain the observed concentrations.  

 

Due to the large calculated lifetimes of the VOICs in the sea ice (tables 5.3 and 5.4), 

assuming that hydrolysis and chlorination were the only loss mechanisms, the VOIC 

concentrations measured could also have been attributed to a combination of ice 

scavenging and consolidation processes during sea ice formation during October to 

November 2007. This was investigated using the salt segregation coefficient (keff) of initial 

ice formation outlined earlier, EQ 5.19 (Weeks and Ackley, 1986). The keff values of the 

Hudson Bay ice column were calculated using the mean measured salinity of the 

underlying seawater at core positions 1 (20.4  3.0 psu) and 2 (5.1  0.8 psu) using Si (EQ 

5.20). keff  values between 0.16 – 0.35 and 0.17 – 0.53 were calculated for the sea ice 

sampled at core position 1 and 2 respectively, which is in good agreement with the keff  

values calculated during the ice chamber experiments discussed in this chapter (section 

5.3.2.2). Using these keff values, the expected VOIC concentrations consolidated in sea ice 

(VOICi) can be estimated from their respective concentrations in seawater during ice 

formation using EQ 5.21. As the VOIC concentrations in Hudson Bay seawater during ice 

formation were not measured, their measured concentrations in the under ice seawater on 

the 6
th

 March 2008 and previously reported surface concentrations in the polar oceans 

(Jones et al., 2010; Hughes et al., 2009) were used. 

 

This approach estimates the concentrations of VOICi attributed to segregation and 

consolidation from the underlying seawater during ice formation. As the VOIC 

concentrations are scaled with measured sea ice salinity, they also take into account losses 

through gravity brine drainage from the point of ice formation. However, there are several 

limitations to this approach that need to be considered. Firstly, the approach assumes that 

the segregation of VOIC from seawater during initial ice formation is equal to that of 

ubiquitous sea salt. Secondly, we assume that the rates of VOIC loss from the sea ice 

column due to gravity brine drainage are equal to the loss in sea ice salinity. To our 

knowledge, no previous study, either in the field or in the laboratory, has been carried out 

to investigate these factors. Thirdly, we assume that the measured seawater salinities reflect 
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those during ice formation, when in fact the salinity is dependent on influx of fresh water 

from terrestrial sources and subject to change both spatially and seasonally. A further 

limitation in deriving keff  is that it assumes a planar rather than a platelet ice-water interface. 

A platelet ice-water interface would typically produce higher keff values, (Eicken, 1998) 

hence the calculated values herein are to be used with care. 

 

keff  = Si  Sw                                                                                                         (EQ 5.20) 

 

VOICi = keff   Cw                                                                                                                  (EQ 5.21) 

 

The mono-iodinated volatile organic compounds generally exhibited elevated 

concentrations in the upper sea ice which decreased with depth. Measured concentrations in 

the upper 5 cm of sea ice at core positions 1 and 2 reached 36.5 - 23.0 and 2.0 pmol dm
-3

 

for CH3I and 1-C3H7I respectively. The latter was not detected in sea ice above the LoD of 

the instrument at core position 2. In the surface ice column (upper 10 cm), the estimated 

concentrations of CH3I and1-C3H7I attributed to scavenging during ice formation 

(assuming no in-situ photolytic losses) were   40  10% and  15  10% of those 

measured respectively. Given this discrepancy, a plausible explanation for these enhanced 

VOIC concentrations in the sea-ice surface layer is through abiotic photochemical 

production.  

 

Generally the concentration profiles of the poly-halogenated organics (CH2IBr, CH2Br2 and 

CHBr3) measured in the Hudson Bay sea ice were anti-correlated to those measured for the 

mono-iodinated compounds, with an increase in concentration with sea ice depth (figures 

5.33 - 5.38). Measured concentrations in the upper 5 cm of sea ice were between 0.0 - 9.1, 

6.5 - 9.7 and 0.9 - 1.2 pmol dm
-3

 for CH2IBr, CHBr3 and CH2Br2 respectively. Significant 

brine drainage is likely to have taken place in the lower sea ice column during sampling of 

core 1. This could explain why significantly lower VOIC concentrations were observed in 

the lower  10 cm of the ice column, figures 5.33, 5.35 and 5.37. The estimated 

concentrations of CH2IBr attributed to scavenging during ice formation through out the ice 

column (assuming no in-situ photolytic losses) were   25  10%, (figure 5.33) similar to 
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those of the mono-iodinated organics. Alternatively, CHBr3 and CH2Br2 concentrations 

attributed to scavenging during ice formation were 110 - 160  50 % and 200  140 % of 

the measured concentrations in sea ice respectively (figures 5.35 – 5.36 and 5.37 – 5.38 

respectively). 

 

Given that previous work on the seasonal snowpack at Barrow Alaska (Rowland and 

Grannas, 2011) suggests as little as 0 - 10% of incident UV radiation is penetrating the 

consolidated snowpack to the underlying sea ice, coupled with the large calculated 

hydrolysis/chlorination lifetimes of VOICs in sea ice (tables 5.3 and 5.4) the observed 

VOIC/VOBC distributions in sea ice can largely be explained through scavenging and 

consolidation during ice formation.  
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Figure. 5.30 CH3I concentrations through sea ice (Core 1). Red circles, measured 

concentrations; yellow triangles, Chl a inferred concentrations; filled blue squares, VOICi 

concentrations inferred from measured seawater concentrations; empty blue squares VOICi 

concentrations inferred from seawater concentrations in literature (Jones et al., 2010). 

Lower data point represents measured underlying seawater CH3I concentrations. 
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Figure. 5.31 CH3I concentrations through sea ice (Core 2). Red circles, measured 

concentrations; yellow triangles, Chl a inferred concentrations; filled blue squares, VOICi 

concentrations inferred from measured seawater concentrations; empty blue squares VOICi 

concentrations inferred from seawater concentrations in literature (Jones et al., 2010).  

Lower data point represents measured underlying seawater CH3I concentrations. 
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Figure. 5.32 1-C3H7I concentrations through sea ice (Core 1). Red circles, measured 

concentrations; empty blue squares, VOICi concentrations inferred from seawater 

concentrations in literature (Jones et al., 2010).  
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Figure. 5.33 CH2IBr concentrations through sea ice (Core 1). Red circles, measured 

concentrations; empty blue squares, VOICi concentrations inferred from seawater 

concentrations in literature (Jones et al., 2010).  
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Figure. 5.34 CH2IBr concentrations through sea ice (Core 2). Red circles, measured 

concentrations; empty blue squares, VOICi concentrations inferred from seawater 

concentrations in literature (Jones et al., 2010).  
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Figure. 5.35 CHBr3 concentrations through sea ice (Core 1). Red circles, measured 

concentrations; filled blue squares, VOICi concentrations inferred from measured seawater 

concentrations; VOICi concentrations inferred from seawater concentrations in literature 

(Hughes et al., 2009). Lower datapoint represents measured underlying seawater 

concentrations. 
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Figure. 5.36 CHBr3 concentrations through sea ice (Core 2). Red circles, measured 

concentrations; filled blue squares, VOICi concentrations inferred from measured seawater 

concentrations; VOICi concentrations inferred from seawater concentrations in literature 

(Hughes et al., 2009). Lower datapoint represents measured underlying seawater 

concentrations. 



                                                                                        5.  Leeds Ice Chamber Experiments 
 

242 

 

0

10

20

30

40

50

60

70

0 1 2 3 4

[CH2Br2] pmol dm
-3 

D
e

p
th

 (
c

m
)

 
Figure. 5.37 CH2Br2 concentrations through sea ice (Core 1). Red circles, measured 

concentrations; filled blue squares, VOICi concentrations inferred from measured seawater 

concentrations; VOICi concentrations inferred from seawater concentrations in literature 

(Chuck et al., 2004). Lower datapoint represents measured underlying seawater 

concentrations. 
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Figure. 5.38 CH2Br2 concentrations through sea ice (Core 2). Red circles, measured 

concentrations; filled blue squares, VOICi concentrations inferred from measured seawater 

concentrations; VOICi concentrations inferred from seawater concentrations in literature 

(Chuck et al., 2004). Lower data point represents measured underlying seawater 

concentrations. 
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5.4.8 Comparison of sea-ice-air to sea-air fluxes within Hudson Bay 

The hypothetical kw values calculated in section 5.3.9 were used to determine the flux of 

VOIC from the waters of Hudson Bay in the absence of sea ice and during partial sea ice 

coverage (f 0.1 and f  > 0.3). Hypothetical kw values were determined for f  0.1 and f  > 

0.3 by scaling the kw values to 10 and 30 %, respectively. Fluxes were determined using 

VOIC and VOBC Cw values previously observed in the open ocean (Jones et al., 2010; 

Hughes et al., 2009) and mean concentrations in air (Ca) between 18
th

 – 28
th

 February 

during the COBRA campaign (chapter 3), (EQ 5.22).  

 

The VOIC and VOBC concentrations in the surface brine, Cbrine, of the Hudson Bay sea ice 

were calculated using the calculated surface brine volume, pc,(0.8%) and the measured Cice 

values at a depth of 2.5 cm for core position 1, EQ 5.23. This calculation assumes that the 

measured Cice completely resided in brine within the sea ice. VOIC and VOBC fluxes from 

Hudson Bay sea ice were determined using the kQLL values calculated during the fast ice 

growth at -3C (experiment 2), table 5.5, EQ 5.24. Using this value, VOIC/VOBC fluxes 

will only occur at air/ice interface temperatures >  5C. The kQLL determined for 1-C3H7I 

during experiment 2 was used to calculate fluxes for CH2Br2 and CHBr3 as these 

compounds were not included in the chamber investigation section (5.2.1). The flux values 

and gas transfer velocity values calculated are tabulated in table 5.5. 

 

)(
H

C
CkFlux a

ww                                                                                           (EQ 5.22)                              

 

ice
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brine C
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C 

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10

100
                                                                                                                                            (EQ 5.23) 

 

))()((
H

C
VCkFlux a

brineQLL                                                                      (EQ 5.24) 

 

Assuming that the kQLL used was representative of seasonal sea ice, the calculated VOIC 

and VOBC fluxes from the surface sea ice in Hudson Bay were between 0.01 – 1.5 % of 
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the calculated fluxes from the seawater in the absence of sea ice. The calculated surface sea 

ice flux values were 3.7, 15.1, 0.1, 0.7 and 10.3 % of the calculated fluxes from partial sea 

ice cover assumed during winter (f  0.1, Tanning and Torres 1991) for CH3I, 1-C3H7I, 

CH2Br2, CHBr3 and CH2IBr respectively (table 5.5). This data supports the ice chamber 

data herein (section 5.3) suggesting that the flux of volatile gases from bodies of open 

water (such as leads or polynyas) within seasonal sea ice zones are more significant than 

those from the sea ice surface.  

 

The ratios of the calculated surface sea ice and partial sea cover fluxes (at f  0.1) are 

significantly higher in the Hudson Bay region than observed during the ice chamber 

experiments. The ice chamber experiments were conducted under abiotic dark conditions 

and only take into account diffusive vertical transport of VOIC through newly grown sea 

ice and their subsequent exchange with air. Arctic seasonal sea ice is a complex media in 

which competing in-situ abiotic, biogenic and photo-chemical VOIC production and 

destruction mechanisms exist. The higher flux ratios of sea ice exchange in Hudson Bay 

demonstrate the effect these processes have on halocarbon concentrations in the upper ice 

column and their concentrations within the boundary layer. 

 

The VOIC/VOBC QLL  air fluxes from the Hudson Bay sea ice are likely to be lower 

than those calculated herein due to lower surface sea ice salinities observed when compared 

to the ice chamber experiments. Also the calculated fluxes do not take into account the 

effect of consolidated snow cover and are dependent upon VOIC/VOBC replenishment in 

the surface sea ice. However, these values offer an upper limit for VOIC and VOBC flux 

from the seasonal sea ice in the Hudson Bay region for surface temperatures above the 

percolation threshold at the surface sea ice concentrations measured.  
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VSLH Calculated 

seawater to 

air transfer 

velocity 

kw(m d
-1

)
a
 

Calculated 

Cbrine of  

sea ice 

 (nmol dm
-3

)
c
 

Calculated 

seawater-air 

flux 

(nmol m
-2

 d
-1

) 

Calculated 

seawater-air 

flux at f = 0.1 

(nmol m
-2

 d
-1

) 

Calculated 

seawater-air 

flux at f = 0.3 

(nmol m
-2

 d
-1

) 

Flux from 

surface 

QLL 

(nmol m
-2

 d
-1

)
d
 

CH3I 4.2
  
 0.4

b
 2.89  0.61 41.3  5.8 4.1  0.6 12.4  1.8 0.15  0.02 

1-C3H7I 4.4
  
 0.4 0.25  0.07 1.3  0.2 0.1   2 x 10

-2
 0.4  5 x 10

-2
 0.02  3 x 10

-4
 

CH2Br2 4.5 
 
 0.5 0. 11  0.03 42.8  5 4.3  0.5 12.8  1.5 0.6 x10

-2
  0.1 

CHBr3 3.9 
 
 0.5 1.21  0.25 153.1  18.4 15.4  1.8 46.0  5.4 0.11  0.01 

CH2IBr 4.6 
 
 0.5 1.14  0.22 3.9  0.5 0.4   5 x 10

-2
 1.2  0.2 0.04  0.01 

Table 5.5. Sea/ice-air VOIC/VOBC transfer velocities, and fluxes at an ambient air 

temperature of -3C. 

 
a Gas transfer velocity values calculated using Nightingale et al. (2000) parameterisation for the open ocean. 

b Tabulated errors represent 1  estimated uncertainties calculated from propagating the RSDs of the VOIC permeation 

rates,  the calibration curve and internal standard precision.  

c Calculated VOIC/VOBC concentrations in brine in upper ice column (2.4 cm) using EQ 5.23. 

d Fluxes calculated using the calculated VOIC concentrations in the upper 2.4 cm of brine (EQ 5.24). 

 

5.5  Discussion 

5.5.1 Advantages and limitations of ice tank experiments 

Laboratory experiments conducted in artificial ice tank environments have several 

significant advantages when compared to field investigations. Within an artificial ice tank, 

air and water temperatures are easily measured and controlled and replicate measurements 

are possible, all of which is difficult to achieve in the field. As the majority of sea-ice 

measurements are conducted using destructive sampling techniques, a sea ice area with 

homogenous properties is advantageous when conducting time dependent experiments. 

Whilst this is readily achievable in an indoor tank, natural sea ice is known to be highly 

spatially variable, depending largely upon its history (Eicken, 2008).   

 

Limitations of laboratory experiments conducted in artificial ice tank environments also 

have to be considered. As artificial ice tank studies are conducted over small temperature 

gradients, associated growth rates can be much higher than for naturally formed sea ice, 

influencing microstructure (section 5.3.2). This is because only relatively small ice 

thickness can be generated, hence the temperature inertia/insulating thermal effect of the 

overlying sea ice layers observed within natural sea-ice are not observed. Also it is 

inherently difficult to observe the micro structural evolution of sea ice columns with 
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respect to time in artificial ice tanks, due to the extensive operational costs usually involved 

with such facilities. 

 

Another important limitation in the ice tank experiments conducted is that they do not take 

into account the effect of naturally occurring biochemical processes within the sea ice 

microstructure and how these influence vertical transport rates. Of recent interest is the role 

of exopolymeric substances (EPS) on dissolved gas vertical diffusion rates through the 

brine channel network. The formation of EPS by algae and bacteria is reportedly stimulated 

by changes in temperature, salinity, inorganic nutrients as well as the irradiance levels 

(Decho, 1990; 2000).   Diatoms are well known producers of EPS, mainly polysaccharides, 

and are likely the major contributor to EPS loading in sea ice. High concentrations of EPS 

have previously been measured in winter Arctic sea ice, which were closely correlated with 

DOC concentration and bacterial cell density (Krembs, 2002). The suspected effect of EPS 

within the brine of sea ice is that it will increase the viscosity of brine and hence the 

properties with regard to diffusive transport of ions and gases through the matrix EQ 5.4. 

Hence the diffusion coefficients determined from ice tank measurement herein, table 5.2, 

are reported as upper values for the abiotic conditions investigated. 

 

5.5.2 Conclusions 

Sea-ice strongly retards sea-air gas transfer of climate relevant trace gases from the polar 

oceans. The laboratory experiments herein are a reproduction of seasonal sea-ice under 

temperature conditions which are typical of late winter to early spring where the air 

temperature is considerably colder than the water temperature (Loose et al., 2009, 2011). 

The laboratory and field data within this study suggests that sea-ice permeability and 

subsequent vertical gas transport rates through sea-ice are dependent upon the media’s 

micro-structural evolution with temperature. The data herein supports previous publications 

which suggest that the ocean f alone is insufficient when constraining gas transfer velocities 

(Golden et al., 2007).   

 

The diffusion of VOICs through sea-ice provides a very small flux pathway for gas 

transport during periods of consolidated ice cover. The calculated VOIC kseaice air values 
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herein, suggest that halocarbon gas transport from leads and polynyas during the winter (f  

0.1) is at least  60 times greater than that observed from diffusion through the sea-ice 

microstructure at -3ºC. This supports previous data that has suggested gas ventilation takes 

place primarily through leads and fractures in the ice (Loose et al., 2011). 

 

Assuming 100% brine channel fractional connectivity and the average diffusion coefficient 

during the -3C experiments (D of 5 x 10
-5

 cm
2
 s

-1
) the timescale of diffusion is 30 – 50 

hours for a sea-ice thickness of 50 mm. For a first year sea-ice thickness of 500 mm at the 

same air temperature the timescale of diffusion is 145 days. This has significant 

implications for in situ VOIC losses within the brine from chlorination, hydrolysis and 

photolysis processes and it is unlikely that measurable concentrations of the species 

investigated would survive vertical transport from the underlying seawater to the surface 

sea ice QLL.  However, both abiotic and biogenic in situ VOIC production in the brine 

channels, particularly in the upper ice column, could still contribute significantly to sea 

ice/air fluxes. 

 

Since sea-ice strongly retards sea-air gas transfer of climate relevant trace gases from the 

polar oceans, rapid Arctic sea-ice loss has global atmospheric and climatic implications for 

perturbed sea-air gas transport (Gabric et al., 2005).  However, warming and thinning of 

sea-ice is also expected to substantially increase its gas permeability (Delille et al., 2007). 

During warming, the formation of air-filled pore networks within sea-ice, caused by gravity 

brine drainage (Delille et al., 2007), could lead to vertical gas diffusion rates considerably 

greater than those measured within this study. Predicted future sea-ice warming and 

thinning (Holland et al., 2010) also has the potential to influence biogenic trace gas 

production in sea-ice by increasing nutrient availability and grazing pressure through 

exchange and vertical transport with the underlying seawater (Golden et al., 1998; Thomas 

and Dieckmann, 2003; Zhang et al., 2010; Loose et al., 2011). The future impact of 

potentially increased biogenic trace gas production within sea-ice combined with increased 

gas diffusion through melting sea ice requires further study.
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Appendix 3.1 Plot of I2 permeation tube mass change over time, used to calculate  

permeation rates at 30C. 
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Appendix 3.2 Plot of I2 permeation tube mass change over time, used to calculate  

permeation rates at 60C. 
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Appendix 3.3. CV

+
 stability in hexane as a function of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3.4. Gaseous ozone trapping in hexane. 
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Appendix 3.5 I2 lost from the I2 + O3 reaction in hexane as a function of time. 
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Appendix 3.6 I2 lost from the I2 + O3 reaction in heaxne as a function of gaseous I2 

concentration. 
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Appendix 3.7 I2 loss attributed to wall losses as a function of time. 
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Appendix 3.8 I2 loss attributed to wall losses as a function of gaseous [I2]. 
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Appendix 4.1 VOIC concentrations and temperature (C) over the 24 hour period 

(21
st
-22

nd
 February). [C2H5I], red; [2-C3H7I], light green; [CH3I], dark green; [1-

C3H7I] x 10, black; [CH2ICl] x 20, brown; [CH2IBr] x 30, light blue; temperature, 

dark blue. 
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Appendix 4.2 Surface pressure chart of Hudson Bay on 23
rd

 February 12:00 hrs 

(NOAA). 
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Appendix 4.3 Surface pressure chart of Hudson Bay on 23
rd

 February 18:00 hrs 

(NOAA). 
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Appendix 4.4 Surface pressure chart of Hudson Bay on 24
th

 February 12:00 hrs 

(NOAA). 
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Appendix 5.1 CH3I observed and corrected artificial seawater concentrations during 

experiment 1.Empty triangles, uncorrected data; Filled triangles, sea ice depth 

corrected data. 
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Appendix 5.2 C2H5I observed and corrected artificial seawater concentrations during   

experiment 1. Empty triangles, uncorrected data; filled triangles, sea ice depth 

corrected data. 
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Appendix 5.3 2-C3H7I observed and corrected artificial seawater concentrations 

during experiment 1. Empty triangles, uncorrected data; Filled triangles, sea ice depth 

corrected data. 
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Appendix 5.4 1-C3H7I observed and corrected artificial seawater concentrations 

during experiment 1. Empty triangles, uncorrected data; Filled triangles, sea ice depth  

corrected data. 
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Appendix 5.5 CH3I concentrations observed in artificial seawater during experiment 

2. Empty diamonds, excluded data; Filled diamonds, included data. 
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Appendix 5.6 C2H5I concentrations observed in artificial seawater during experiment 

2.Empty triangles, excluded data; filled triangles, included data. 
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Appendix 5.7 2-C3H7I concentrations observed artificial seawater during experiment 

2. Empty circles, excluded data; filled circles, included data. 
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Appendix 5.8 1-C3H7I concentrations observed in artificial seawater during 

experiment 2. Empty squares, excluded data; filled squares, included data. 
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Appendix 5.9 CH3I concentrations observed in artificial seawater during    

experiment 3. 
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Appendix 5.10 C2H5I concentrations observed in artificial seawater during 

experiment 3. 
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Appendix 5.11 2-C3H7I concentrations observed in artificial seawater during 

experiment 3. 
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Appendix 5.12. 1-C3H7I concentrations observed in artificial seawater during 

experiment 3.  
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Appendix 5.13. CH3I concentrations observed in freshwater during experiment 4. 
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Appendix 5.14 C2H5I concentrations observed in freshwater during experiment 4. 
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Appendix 5.15 2-C3H7I concentrations observed in freshwater during experiment 4. 
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Appendix 5.16 1-C3H7I concentrations observed in freshwater during experiment 4.  
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Appendix 5.17 CH3I concentrations observed in freshwater during experiment 5. 

Empty diamonds, excluded data; filled diamonds, included data. 
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Appendix 5.18 C2H5I concentrations observed in freshwater during experiment 5. 

Empty triangles, excluded data; filled diamonds, included data. 
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Appendix 5.19. 2-C3H7I concentrations observed in freshwater during experiment 5. 

Empty circles, excluded data; filled circles, included data. 
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Appendix 5.20 1-C3H7I concentrations observed in freshwater during experiment 5.  

                      Empty squares, excluded data; filled squares, included data. 
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Glossary 

AMDE     Atmospheric Mercury Depletion             

                 Event 

BBCEAS Broad Band Cavity Enhanced 

                 Absorption Spectroscopy.  

BOC       British Oxygen Company 

CCN        Cloud Condensation Nuclei 

COBRA   COmbined impact of BRomine  

                  and iodine release on the  

                  Arctic atmosphere 

CVAO      Cape Verde Atmospheric   

                  Observatory  

 

DMS        Dimethylsulphide 

DOC         Dissolved Organic Carbon 

DOI          Dissolved Organic Iodine 

DOM        Dissolved Organic Material 

EI             Electron Ionisation 

EPS          Exopolymeric Substances 

FA            Fulvic acids 

GEM        Gaseous Elemental Mercury 

GC            Gas Chromatography 

GC/MS     Gas Chromatography Mass   

                  Spectrometry 

HCV         Leuco Crystal Violet indicator 

HETP       Height Equivalent of a Theoretical  

                  Plate 

HPLC       High Performance Liquid   

                 Chromatography 

HS             Humic Substances 

HOX          OH + HO2 

I

                Iodide 

I2                Molecular iodine 

I3

              Tri-iodide 

IO3
-
            Iodate 

IO              Iodine Monoxide 

IOP            Iodine Oxide Particles 

ICP-MS    Inductively coupled plasma mass 

                   spectrometry 

IPCC         The Intergovernmental Panel on   

                   Climate Change 

 

LoD           Limit of detection 

LoQ           Limit of Quantitiation 

LP-DOAS Long Path Differential Optical  

Absorption Spectroscopy 

MAX-DOAS Multi Axial Differential   

                       Optical Absorption    

                       Spectroscopy 

 

MBL         Marine Boundary Layer 

MFC         Mass Flow Controller 

MS            Mass Spectrometer 

NPL          UK National Physics Laboratory 

NOX          NO + NO2 

O3             Ozone 

O(
1
D)       Excited State Atomic Oxygen 

O(
3
P)       Ground State Atomic Oxygen 
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ODE        Ozone Depletion Event 

OH          Hydroxyl radical 

PBS          Phosphate Buffer Solution 

Pc             Critical Brine Volume Fraction 

P               Brine Volume Fraction 

P&T         Purge and Trap 

PMT         Photomultiplier Tube 

QMS         Quadrupole Mass Spectrometer 

REM        Reactive Elemental Mercury 

RSD          Relative Standard Deviation 

SIR           Selective Ion Recording 

TDU         Thermal Desorption Unit 

TD-GC/MS Thermal Desorption-Gas   

                     Chromatography  

                     Mass Spectrometry 

T E           Trapping Efficiency 

THAMO  Tropospheric Halogen   

                  Atmospheric Chemistry  

                  Model 

VOC         Volatile Organic Compounds 

VOBC      Volatile Organic Brominated  

                  Compounds 

VOIC        Volatile Organic Iodinated                    

                   Compounds  

 

VSLH       Very Short Lived Halogenated   

                  Substances 

WCOT    Wall Coated Open Tubular 
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