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Abstract 

The international market for hip and knee joint arthroplasty is expected to continue to grow 

into the foreseeable future as people live longer and expect a higher quality of life. Therefore, 

designing and production of a material with higher mechanical reliability is targeted by the 

international market. Ceramics are the latest materials in this regard, which offer the potential 

for the lowest wear rate and therefore the longest lifespan. The strength and toughness of 

ceramic prostheses have been greatly enhanced through the emergence of a zirconia toughened 

alumina (ZTA) composite. However, there remains a clear drive to reduce fracture rates 

through yet more reliable mechanical properties.  

This research focuses on processing of a new ceramic composite with fine, well dispersed and 

high-density microstructure and also evaluating the effect of grain refinement on wear 

resistance. Furthermore, it seeks to further investigate the contribution of ternary and 

quaternary metal oxides, namely SrO and Cr2O3, to wear behaviour of this nano-composite. 

Therefore, nano-ceramic composites of zirconia toughened alumina (ZTA) and ZTA 

containing SrO and Cr2O3 additives (ZTA-additives) were formed using Spark Plasma 

Sintering (SPS) and were optimised, in terms of mechanical properties and grain size. The 

prepared specimens were almost the same, in terms of grain size, but differed in constituent 

components. In addition to these specimens, a commercial sample called BIOLOX® delta 

(with the same composition, but coarser grain size) was also investigated.   

All materials were subjected to lubricated reciprocating sliding wear testing. To define the 

operative lubrication regime for each load, the Stribeck curve was plotted for each individual 

specimen. The results obtained from this curve, along with AFM and SEM images, revealed 

the operation of full fluid film and mixed lubrication in the ZTA composite and the operation 

of mixed lubrication in the ZTA-additives and commercial specimens. Upon applying a load 

of 32 N, the specific wear rate of ZTA presented an abrupt increase of two orders of magnitude, 

but for the other two specimens, only a small change was observed. This highlighted the effect 

of the ternary oxide, Cr2O3, on changing the chemistry of the material and therefore the 

behaviour of the surface. The addition clearly had a beneficial effect on the transition point 

from mild to severe wear, which was shifted to higher loads.  

The specific wear rates, SEM and AFM images of the worn surfaces revealed that the 

commercial specimen was mid transition to severe wear at 32 N load, while the ZTA-additives 

composite did not show any sign of transition. This was probably due to the smaller grain size 
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of the ZTA-additives, compared to the commercial specimen. The grain size refinement would 

decrease the thermal mismatch stresses and slip length and therefore dislocation accumulation. 

In all three materials tested at 8N, TEM results exhibited limited dislocation activity in the 

surface alumina grains. This was in line with the specific wear rate and the features of the worn 

surfaces. The polymorphic phase transformation in zirconia grains was observed only in the 

commercial specimen, which was consistent with the results obtained from Raman 

spectroscopy. This was probably due to the smaller grain size of zirconia in the ZTA and the 

ZTA-additives compared to the commercial specimen. The SEM and AFM images presented 

contradictory results about the effect of platelet grains on the wear resistance of the composite. 

However, the constructive effect of these grains on the fracture toughness was observed in this 

study, as it was demonstrated by other researchers. The AFM, SEM and TEM results suggested 

that the dominant wear mechanism pre-transition was tribochemical wear for all materials.  

This led to the presence of a thin (nm) tribo-layer which may have affected the coefficient of 

friction (COF) and the specific wear rate. 
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1 Introduction 

Hip joint replacement, as a great achievement in orthopaedic surgery, is mainly undertaken in 

older people, although newly published health data has exposed that the number of surgeries 

in young people has increased by up to ~76% [1]. The same source suggests that this increase 

in hip replacements belongs to patients aged 59 and under in years between 2004 -2015. They 

correlate this increase to the improvements in hip replacement surgery. The main limitation in 

total hip replacement (THR) is related to its life span, lasting for about 15 years, which is not 

acceptable for patients under 60, while their life expectancy ranges for much longer times. 

Therefore, this necessitates the introduction of more wear resistant and long-lasting 

biomaterials to cope with the higher activity level of younger people. 

The emergence of hip joint orthopaedics dates back to the early 1900’s when a narrow 

knowledge and limited facilities in this area were available. Extensive work was performed by 

Charnely in 1961 in which many materials from metals to Teflon coatings, to polyethylene 

were tried out during his research [2]. Among his trials, a polymer-based material called 

polyethylene was found to be a significant improvement which led to the development of ultra-

high molecular weight polyethylene (UHMWPE) that is still extensively in use. Nowadays the 

ball on socket (acetabular cup against femoral head) articulations can be composed of metals 

such as CoCr, ultra-high molecular weight polyethylene (UHMWPE) and ceramics such as 

alumina and zirconia toughened alumina. Metal-on-metal articulation has been used for over 

30 years, although there have been some concerns about implant loosening and also possible 

toxicity of nano-sized metal particles [3,4]. These concerns are very much to the fore at the 

moment, with most metal on metal designs now removed from the market. Polymeric 

acetabular cups assembled against ceramic or metallic femoral heads have demonstrated great 

biocompatibility, ductility, chemical stability and low coefficient of friction [5,6]. However, 

polymers wear more than any other material and a survival rate of 75% during 20 years is 

estimated for this type of joint [7,8]. It has been reported that many of the failures are a result 

of aseptic loosening which arises from localized osteolysis (bone resorption)[9,10].  

Subsequently, hard on hard combinations including monolithic alumina are the most well-

known ceramics introduced to the industry. Alumina, as a bio-ceramic, has been used in 

arthroplasty of hip joints since 1970s and more than 3.5 million joints using this material have 

been implanted worldwide. However, the application and enhancement of alumina hip joints 

stumbled due to their poor performance resulting from poor design, inferior mechanical 
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properties and improper implantation skill by surgeons. The 3rd generation alumina, 

manufactured by Hot Isostatic Pressing (HIP), represents the greatest improvement in 

performance compared with 1st and 2nd generation aluminas due to its higher density and finer 

grain size. However, less in vitro data and very sparse in vivo data is available about this 

generation of alumina due to their shorter implantation time in the body compared to the 1st 

and 2nd generation of alumina grade [11–13].  

Despite all the improvements, aseptic loosening is still a clinical issue. The research on 

retrieved implants that failed due to the aseptic loosening showed that the explanted joints 

exhibited a localized high wear zone called “stripe wear”. Extensive investigations showed that 

micro separation between the ball and socket during walking results in impact stresses that 

causes localised high wear. This, in addition to failure of the joints through fracture, 

necessitated the introduction of a tougher material. A new generation ceramic, called zirconia 

toughened alumina nano-composite (ZTA), was designed and successfully implanted within 

the body. It is well documented that the incorporation of zirconia into monolithic alumina 

introduces a polymorphic phase transformation, which is probably one of the reasons for the 

improvement of wear resistance. Correspondingly, zirconia inclusion hinders the grain growth 

of alumina through its pinning effect on grain boundaries and reduces the average grain size of 

the composite, which predominantly enhances sliding wear resistance of the nano-composite. 

As corroborated by a few authors [14,15], the grain size effect is directly linked to both the 

amount of thermal mismatch stresses and slip length. Therefore, grain size refinement will 

reduce the thermal mismatch stresses and slip length and subsequently the dislocation pile up 

which results in an increase of the time to transition from mild to severe wear. 

Therefore, there exist clear and logical reasons to use a technique that reduces the grain size of 

the composite. To achieve this goal, spark plasma sintering (SPS) was employed to produce a 

specimen with high density and a finer grain size. SPS employs simultaneous pressure and 

temperature to form a specimen in much shorter times compared to conventional pressure-less 

sintering. Consequently, the first objective of this study was defined as an optimization of 

material processing to manufacture a well-dispersed composite with superior mechanical 

properties in terms of hardness, toughness, density and most importantly small grain size. 

Currently the best product of the ZTA family called “BIOLOX®delta” is made by CeramTec 

AG, Plochingen, in Germany, which has the smallest number of failures inside the body.    

BIOLOX® delta is mainly composed of Al2O3, ZrO2 and a small fraction of SrO and Cr2O3. In 
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addition to the grain size effect, two different batches, with and without these additives were 

produced to assess the role of these dopants in mechanical reliability of specimens. A newly 

published paper put this idea forward that these additives change the chemistry of the surface 

and assist the nano-composite microstructure to resist against hydrothermal degradation and 

wear in the body. The same author has revealed the attempt of the manufacturer, during 

consecutive years, to reduce the monoclinic phase of zirconia in the as-received specimens 

through grain size refinement [16]. 

Subsequently, the wear resistance of produced composites (ZTA and ZTA-additives) and 

BIOLOX® delta was examined through lubricated reciprocating sliding wear tests to shed light 

on the contribution of grain size refinement and the impact of additives on wear resistance of 

the composite. In other words, the role of these factors namely grain size effect and additives, 

on the transition point from mild to severe wear, upon increasing the applied load, were 

assessed and compared.
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2 Literature review 

2.1 Total hip replacements (THRs) 

Various types of joints produce different kinds of motions in a human body. The hip and 

shoulder joints form a ball-on-socket articulation, other joints such as knee and elbow have a 

hinged shape. However, the common characteristic of these two different joints is the synovial 

fluid which flows around them and lubricates the two opposing surfaces. The development of 

hip joint materials and treatment of deformities in this articulation are the most challenging 

problems to prosthesis technology in this millennium [17]. 

Total hip replacement is a surgical procedure to help patients relieve pain, also provides them 

a chance to regain physical fitness and return them to social function within fairly short period 

of time after surgery. The emergence of total hip replacement (THR) by Dr. J. Charnley dates 

back to 1960 and was composed of a metal femoral head fixed to the bone by cement such as 

PMMA and of the acetabular cup made of Ultra High Molecular Weight Polyethylene 

(UHMWPE).   

 

 

Figure 2.1 (a) Schematic of human hip joint. (b) Schematic of a prosthetic device in total hip 

arthroplasty [17]. 

In the late nineteenth, several surgeries with the use of metallic and natural biomaterials and 

subsequently polymeric biomaterials for treatment of skeletal defects have been reported. 

Materials to be employed for THR need to fulfil certain requirements including wear resistance, 
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biocompatibility, low risk of failure in vivo, and durability. More specifically, the desired 

specifications for materials utilized in ball-on-socket articulation should satisfy the following 

criteria:[17]  

(1) High mechanical properties (high fracture toughness, hardness, high strength, high 

fatigue resistance) with low risk of failure when put through the loads in the body. The 

loads differ from three times the body weight (~3 kN) for normal daily walking to eight 

times the body weight (~ 8 kN) for stumbling or jogging 

(2) High corrosion resistance and biocompatibility in vivo   

(3) High hardness and good polished surface for low friction and wear for operation over 

the long term 

(4) Good wetting between articulating surface and the synovial fluids to make a good 

lubrication in vivo 

The bearing designs currently in use for the total hip arthroplasty are illustrated in Figure 2.2. 

 

 

  

 

 

 

 

 

 

 

 

Figure 2.2. Schematic design of bearing currently used in total hip arthroplasty and their 

classification [17]. 

 

The materials that are studied and developed for this application are categorised in three main 

classes: 
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(1) Metal alloys (Co-Cr alloys, stainless steel) to be used for femoral heads and acetabular 

cups 

(2) Monolithic oxide ceramics (alumina, zirconia and alumina-zirconia composites) to be 

utilized in both femoral heads and acetabular cups 

(3) Ultra-high molecular weight polyethylene (UHMWP) to be used in acetabular cup to 

be fixed into a metal cup 

2.2 Polyethylene acetabular cups with metallic or ceramic 

femoral head cups 

According to artificial hip joint history, polyethylene acetabular cups coupled with a metal or 

ceramic femoral head remain the most common bearing combination in the hip [18]. In the 

long term the polyethylene cups wear and the micron and sub-micron wear particles cause 

osteolysis and loosening. Osteolysis is due to particle accumulation in peri-prosthetic tissues 

until a critical volume and concentration is reached. As an example, a polyethylene wear rate 

of 30 mm3/million cycles will reach a total wear volume of 500 mm3 in between 1 and 8 years 

depending on the level of activity, and this will lead to the osteolysis and failure in some 

patients. In order to increase the osteolysis-free life-time, the wear rate of polyethylene needs 

to be be reduced. The introduction of ceramic femoral heads has been demonstrated to decrease 

polyethylene wear. Cross-linked polyethylene has exhibited 50-80% decrease in wear rates in 

the laboratory compared to historical polyethylene with further benefit when utilized with 

ceramic femoral heads [19]. It also produces smaller and more reactive particles. It has been 

predicted that wear rates of less than 10 mm3/million cycles give osteolysis-free lifetime of 

over 20 years and this delivers a good solution for patients over the age of 60, so it is beneficial 

to consider alternative options for more active and younger people [17]. 

2.3 Metal-on-metal bearing 

In 1951, metal on metal total hip implant was designed by George McKee and John Watson. 

Metallic prostheses have high strength and toughness though the first generation of metallic 

prosthesis had high failure rates, due to poor manufacturing and loosening. Furthermore, due 

to corrosion, wear and adverse tissue reaction rejection rates by the body were high. The soluble 

metallic salts produced by metallic ions move into the body fluids such as blood and urine. 

While some metallic salts like those based on nickel are usually removed quickly from the 

body by urine whereas others such as chromium and cobalt stay longer in the body [20,21]. Up 
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to now, no direct causal link has been reported in patients with metal on metal implants, though 

the topic of potential carcinogenesis is still a big concern.  

2.4 Ceramic-on-metal bearing 

In the case of ceramic on metal bearings, a differential hard on hard bearing was presented 

recently to decrease wear, compared to metal on metal bearings. This was achieved through 

design flexibility on the acetabulum by applying a metal insert which allows 36mm heads to 

be used in patients with size 50mm acetabular sockets and to eliminate ceramic insert chipping. 

The wear and friction of ceramic on metal bearings has been shown to be less than metal on 

metal bearings and comparable to ceramic on ceramic bearings [22]. They have also exhibited 

decreased metal ion levels released in the patient’s body compared to metal on metal bearings.  

2.5 Ceramic-on-ceramic bearing (COC) 

The studies show that alumina on alumina ceramic bearings delivers the lowest friction and 

wear of all bearing couples, with up to 50 times less than polyethylene, under standard walking 

situations [18]. So far, the most successful ceramic matrix composite bearings, with increased 

toughness, reduced risk of fracture and even lower wear rates has been introduced by CeramTec 

as BIOLOX®Delta [23]. The size of the ceramic femoral head is in the size range of 28-40 

mm. These materials perform much better than the most common ceramics Al2O3 show high 

mechanical and acceptable biocompatibility. As COC components exhibit lower wear 

compared to conventional metal-on-plastic prostheses, the extension in life time of the implant 

is expected. However, ceramics implants have very low fracture toughness compared to metals 

or polymer which is not desirable for an implant. 

2.6 Monolithic ceramics 

2.6.1 Alumina 

Aluminum oxide is commonly referred to as alumina (-alumina), or corundum in its 

crystalline form reflecting its widespread occurrence in nature and industry. In nature, alumina 

contains Cr2O3 impurities and it is called Ruby and the one including titanium impurities is 

termed as Sapphire [24]. The crystal structure is often explained as having O2− anions in an 

approximately hexagonal close packed arrangement with Al3+cations filling two thirds of the 

octahedral interstices. Figure 2.3 shows the crystal structure of alumina. 
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Figure 2.3 Illustration of alumina crystal structure. 

In 1930 for the first time alumina was utilized as a biomaterial with a patent by Rock in 

Germany [25] . In 1970, with the introduction of first generation of alumina hip joint ceramics, 

the use of ceramic components in joint replacement surgery was initiated and Professor Bautin 

in France who replaced the traditional metal femoral heads with alumina. However, due to the 

low density and coarse microstructure these early ceramics were more prone to fracture [25]. 

With time improvement in the material’s quality and processing techniques and a better 

understanding of ceramic design resulted in the second-generation alumina components that 

presented better performance than the first generation. Finally, the third generation of alumina 

continued the trend of increasing density and reducing grain size. Table 2.1 shows the influence 

of the material characteristics on the mechanical properties.  

Table 2.1 Properties of various alumina ceramics [26]. 

Property Alumina Ceramics 

as specified by ISO 

6474 

1st and 2nd  

generation Alumina 

3rd generation HIPed 

generation 

4-point bending 

strength 

400 MPa 500MPa 580MPa 

Mean grain size < 4.5μ <3.2 μ <1.8 μ 

Density 3.94 gr/cm3 3.96 gr/cm3 3.98 gr/ cm3 

Vickers Hardness  1800 HV 1900 HV 2000 HV 

 

Alumina is one of the most stable oxides [27], and can resist strong acidic or alkaline 

environment at high temperature [27]. Alumina shows high compressive strength, but as with 

most ceramics, it has poor tensile strength due to its natural brittleness and once fracture starts 
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the crack growth is quick (low toughness). The mechanical strength is closely related to 

density, with an increase in density giving an increase in strength. The mean grain size must 

be kept small and the presence of a glassy phase at the grain boundaries must be avoided by 

using high-purity alumina. The high hardness of alumina provides a minimum wear of the 

femoral heads and of the cups, also because it permits a superior surface quality. Furthermore, 

the capability of adsorbing polar molecules advances the creation of a liquid film providing the 

lubrication between the ceramic head and the socket [26]. 

Despite the aforementioned good mechanical characteristics, alumina suffers from low fracture 

toughness (~4 MPa m1/2) and the vulnerability to fail at stresses below the maximum fracture 

strength through slow crack growth [28]. Consequently, the application of alumina is limited 

to particular type of prosthetic design. For example, ball heads made of alumina should be 

designed to a diameter larger than 28 mm to avoid risk of failure in vivo [28]. 

Alumina was initially introduced to the dental device industry by Dr Sami Sandhaus, who 

developed the application of polycrystalline alumina in entire medical devices, the CBS   dental 

implant [29]. Besides the excellent benefit of aesthetic and biocompatibility, alumina has 

exhibited several weaknesses in terms design, stiffness, low flexural strength and fracture 

toughness in addition to defects appeared through surface grinding have resulted in failures on 

these devices [29]. 

2.6.2 Zirconia 

2.6.2.1 Structure and properties of zirconia 

Zirconia (ZrO2) can possess good mechanical properties such as high tensile strength, high 

hardness and corrosion resistance. However, zirconium oxide cannot be found in pure form in 

nature, but Zircon (ZrSiO4) is the principle precursors. The name of the metal zirconium comes 

from the Arabic word Zargon which is originated from two Persian words Zar (Gold) and Gun 

(colour) [30]. Zirconia is known to have three different polymorphs; monoclinic, tetragonal 

and cubic which is shown in Figure 2.4. 
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Figure 2.4 Zirconia crystal structure for (a)cubic,(b) tetragonal ,and(c) monoclinic [31]. The 

blue circles represent O atoms and red spheres represent Zr atoms. 

The monoclinic structure is stable at room temperature and transforms to tetragonal phase at 

1170ºC. As the temperature increases, the tetragonal polymorph transforms to cubic phase at 

2370˚C. This phase remains stable up to 2680ºC once it starts melting. 

Zirconia can be categorised into three groups; partially stabilized zirconia (PSZ) such as 

magnesia stabilized zirconia named as (Mg-PSZ) and zirconia toughened dispersed ceramics 

(ZTC/ZDC) in which zirconia as one of the components is dispersed in ceramics matrix e.g. 

Zirconia Toughened Alumina (ZTA). Finally tetragonal zirconia polycrystals (TZP) in which 

the tetragonal phase is retained at room temperature in metastable form by the addition of 

cerium (Ce-TZP) or yttrium oxides (Y-TZP)[32,33]. Although TZP contains predominantly 

tetragonal phase [34], small amounts of cubic phase are frequently present as well [35]. 

Another way to stabilise tetragonal phase is to reduce the size of grain to nanoscale which are 

generally in the range between 0.2-1µm [36–38] . Generally, zirconia stabilized with yttria has 

better mechanical properties compared with other types namely partially stabilized zirconia 

(PSZ). The processing parameters and amount of yttria used in the formation of Y-TZP are 

decisive factors for its mechanical properties [35]. Provided the processing conditions are 

optimised, metastable zirconia exhibits the highest value of fracture toughness of any ceramic 

material. Another motivation for application of zirconia in THR is attributed to reduced 

frictional torque and consequently decreased amount of polyethylene debris formed in zirconia 

head and polyethylene acetabular cup articulation [39]. In such a system the wear rate is lower 

than even alumina [40,41] though in vivo studies revealed a delayed failure [42]. However, 

there are major concerns of the application of zirconia is related to its hydrothermal stability 

that questions the use of zirconia-on-zirconia articulation in body [43]. 
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2.6.2.2 Transformation toughening  

The concept of transformation toughening was introduced for the first time by Garvie et al. 

[44] and afterwards by Gupta et al.[45]. Transformation toughening is a mechanism related to 

the phase transformation of metastable tetragonal grains to monoclinic t→m in a region of high 

stress region at the head of a crack and is accompanied by a volume expansion. As a crack 

propagates [35] and passes through a matrix of metastable tetragonal zirconia grains local stress 

concentrates in the material. Subsequently, the mechanism of phase transformation is activated 

in the vicinity ahead of the crack tip (frontal zone) where the highest stress is accumulated. 

During crack growth the monoclinic transformation in the crack wake acts to close the crack, 

an effect known as crack shielding. It is this crack-wake effect that results in the increase in 

toughness, Figure 2.5. Accordingly, the crack resistance force increases as the crack grows into 

the constrained zone, i.e. the toughness increases as the crack grows up to the critical fracture 

toughness, K1c. This is called as R-Curve behaviour.  

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Schematic of the stresses arising from crack propagation in a transformation 

toughened ceramic [46]. 

2.6.2.3 Subcritical crack growth 

It is well known that ceramics materials suffer from subcritical crack growth (SCG) that is 

defined as a slow propagation of a crack. This phenomenon generally occurs when the stress 

intensity factor 𝐾𝐼 is less than toughness𝐾𝐼𝐶. The subcritical crack growth is extremely sensitive 

to applied load and is influenced by environmental factors including temperature and other 
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external variables [43]. SCG in bio-ceramics is associated with the corrosive action in the 

stressed zone at the crack tip under constant load or a pre-existing defect in the material [43].  

Figure 2.6 illustrates three distinct zones, describing the crack growth velocity (V) against 

stress intensity factor of the inserted force (𝑉-KI). Among these three zones, only region Ι is 

associated with the low growth velocities and it has attracted the most attention due to the 

possibility of calculation of the survival of ceramic materials [47]. 

 

 

 

 

 

 

 

 

 

Figure 2.6 Schematic illustration of different crack velocity zones observed in experimental V-KI 

graphs [43]. 

2.6.3 Zirconia toughened alumina composite (ZTA) 

Zirconia toughened alumina composites have been developed for biomedical applications to 

overcome the low fracture toughness of alumina and aging susceptibility of zirconia. The idea 

behind development of these novel materials is the belief that they exhibit a combination of the 

good mechanical properties of alumina, particularly hardness and at the same time enhancing 

the toughness of the composite through zirconia transformation toughening mechanism, 

without the major concern of the ageing under steam or body fluid. 

Zirconia-alumina composites developed for biomedical applications can be either zirconia rich 

or alumina rich. The example of alumina rich composite is zirconia toughened alumina that 

typically contains 60-95 vol% alumina. In June 2000, ZTA femoral head commercialized under 

the trade name of BIOLOX® delta by a German Company called CeramTec AG. During the 

last 10 years, about one million of ZTA femoral head and more than 700, 000 inserts under this 
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brand have been internationally implanted. Bioceram® AZ209 is another product made out of 

ZTA by KYOCERA Medical in 2011 (Osaka, Japan)[48]. 

The ZrO2 particles can have a m-phase structure or t-phase structure (or a mixture of both), but 

the largest improvements in strength and fracture toughness has been reported when the 

particles have a t-phase structure [49–52]. The critical factor is that t-ZrO2 particle size, 

controlled by the composition and fabrication conditions to optimize the transformation 

toughening in ZTA [49]. In this composite, the ZrO2 particles that are constrained by the Al2O3 

matrix should have sizes below the critical value to avoid  any  significant transformation from 

tetragonal to monoclinic phase [25]. 

When compared with single α- Al2O3matrix, ZTA presents the high hardness of the Al2O3 

matrix, coupled with advantages in strength and fracture toughness. Due to the presence of t-

phase ZrO2 particles in this composite the potential for strength degradation caused by aging 

in moist environments is not as severe as in Y-TZP. However, the concentration of Y-TZP 

particles for the application in total hip replacement should be below the percolation limit 

(about %16. vol) [17]. This is to prevent the formation of contiguous network in Y-TZP which 

is responsible for aging in material through nucleation and growth mechanism [17, 53]. It has 

quantitatively demonstrated that aging, as measured by the amount of tetragonal to monoclinic 

conversion, was almost absent in ZTA for less than %16 volume Y-TPZ particle but it does 

increase with addition of Y-TZP [54]. In addition, aging of ZTA including 14 vol.% Y2O3 

stabilized ZrO2 particles for long periods (19 months) in Ringer’s solution was reported to 

increase the formation of a surface layer of monoclinic ZrO2 that results in 10% reduction of 

flexural strength [17]. These results show that despite the improvements in both composition 

and architecture of ZTA composites, further investigation is required to be performed. Biolox® 

Delta, a commercialized product by CeramTec AG, is a ZTA but also contains small quantities 

of SrO and Cr2O3[55]. These additives react with alumina and form plate-like alumina grains 

that produce extra toughening mechanisms through crack deflection and crack bridging [56].  

2.6.3.1 Platelet reinforcement (SrCO3) 

Alumina as a successful candidate for structural applications, suffers poor fracture toughness 

or brittleness. To enhance the poor fracture toughness in alumina, alumina-based composites 

have been produced with the addition of zirconia particles [57,58], SiC whiskers [59] and 

metallic[60] or ceramics particles [61]. For this study yttria-stabilized tetragonal zirconia (3Y-

TZP) was selected as a reinforcement constituent of in alumina matrix. The mechanical 
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properties of ZTA composites is partially related to the stability of zirconia tetragonal phase. 

In other words, the environmental conditions such as moisture might lead to the transformation 

(tetragonal to monoclinic phase) in yttria zirconia grains at low temperature of about 100ºC. 

Of course, the toughening behaviour of zirconia does not occur above the martensitic start 

temperature due to the stability of tetragonal phase [62, 63]. While the stable tetragonal phase 

is present in the composite, the mechanical properties cannot enhance because the zirconia 

grains exhibit inert behaviour towards cracks propagation due to the lack of sufficient 

tetragonal- monoclinic transformation. Consequently, the incorporation of other toughening 

element to maintain the fracture toughness in satisfactory level is of a great interest. One of the 

main candidates which meets the required conditions to incorporate the Alumina matrix and 

assists the toughening process is Strontium. The presence of alkali earth oxides such as Sr in 

the alumina based composite leads to the formation of hexaluminate which develop plate-like 

or elongated grains if special procedures for preparation are employed, Figure 2.7. 

Cutler et al. [64] reported that by small quantity addition of SrZrO3 into Ce-TZP-Al2O3 

matrices, the plate like crystal structure of strontium hexaluminate can be formed leading to 

the improvement of flexural strength and fracture toughness. This finding is fully compatible 

with the results obtained by Masichio et al. [65] which demonstrates higher fracture toughness 

in Al2O3-Cr2O3/ZrO2 matrix. Balmonte et al. [66] and Maity et al. [67] demonstrated the 

enhancement of mechanical properties in zirconia toughened alumina by incorporation of 

calcium and strontium hexaluminate. Therefore, reinforcement as well as enhancement of 

mechanical properties of alumina based composites can be achieved by incorporation of such 

additives. Figure 2.7 shows how a platelet particle (elongated grain) deflects the pathway of a 

crack in a composite through which the fracture toughness gets improved.  
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Figure 2.7 Schematic illustration of a crack (red pathway) that reaches a platelet particle (brown 

particles) in zirconia toughened alumina composite and gets deflected by an elongated grain [48]. 

2.6.3.2 Solid solution hardening (Cr2O3) 

Alumina as a well-known ceramic for structural application suffers from low fracture 

toughness. The inclusion of hard reinforcing particulates in the matrix can improve the fracture 

toughness. In addition to the incorporation of a second phase such as zirconia, solid solution 

strengthening has been widely employed. Chromium oxide and alumina have the same 

hexagonal crystal structure leading to the formation of substitutional solid solution at 

temperatures between 950ºC and 2100ºC [68]. In addition to enhancing toughness, the addition 

of chromium oxide in alumina matrix enhances the hardness, the tensile strength and resistance 

to corrosion and thermal shock [69]. However, the densification of chromia- doped alumina in 

air is very low due to the vaporization- condensation sintering mechanism. Therefore, chromia 

doped alumina requires a reducing environment or vacuum to reach high density [70]. In a 

study conducted by Pezzotti et al. [71], the incorporation of chromia in zirconia toughened 

alumina (ZTA) leads to the deceleration of hydrothermal degradation in the zirconia. In the 

same study, the role of alumina was described as a self-sacrificing component which confines 

moisture on its surface and prevent phase transformation in zirconia. While using chromia in 
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zirconia toughened alumina, especially yttria with zirconia, due to the strong interaction 

between chromia and both the alumina and zirconia phases, the diffusion of water into the 

zirconia phase gets inhibited. Consequently, due to the quick formation of oxygen vacancies in 

the chromia-alumina matrix, the hydrothermal attack in yttria stabilized zirconia is also 

inhibited [71].In addition, chromium oxide acts as sintering aid in yttria stabilized zirconia and 

also prevents the growth of grains in zirconia [72]. In contrast, it is reported that chromium 

oxide retards the densification process in alumina matrix [73] and also small fraction of this 

oxide (0.6% weight) in ZTA structure increases grain growth and forms plate-like-shaped grain 

[74]. Consequently, the requirement of chromia doped alumina to be sintered at high 

temperature and under reducing environment makes Spark Plasma Sintering (SPS) a good 

candidate to achieve this goal.  

2.7 Powder processing 

Synthesis of powder as an initial step of powder processing strongly influences the successive 

processing stages.  The proper selection of processing route is critical to producing a highly 

dispersed and densified composite with a minimal number of residual flaws in the 

microstructure. The mechanical properties of the ZTA composite depend strongly on the grain 

size of the two phases and the degree of dispersion of the zirconia in the alumina. This calls for 

a precise control over the powder processing parameters to gain a homogenous dispersion of 

both alumina and zirconia.  

Up to now, various techniques have been applied to produce zirconia toughened alumina 

composites. Among those traditional mixing [75–77] and wet chemical processing including 

sol gel [78–80], co-precipitation[81,82] and hydrothermal routes [83] are of a great importance. 

As expressed in the literature, traditional milling-mixing is the most commonly employed 

routes to form bi and tri phase composites out of common oxide powders. This procedure 

requires a careful control of raw powder characteristics such as size, size distribution, surface 

area, agglomeration and the morphology of particles to produce high stabilized suspension 

[28]. It is well documented that a large range of size distribution results in high packing density 

in green bodies though under these circumstances the growth of larger grains can take place at 

the detriment of smaller grains leading to coarsening. On the other hand the fine staring 

particles enhance densification rate due to their higher specific surface area if their tendency 

for agglomeration to be monitored [84]. Extensive research [85] shows that agglomeration of 
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powder causes heterogeneity of particle packing in green body and intensifies both differential 

sintering rates and inhomogeneous composite microstructures [86]. 

During wet powder mixing, an instability of the suspension can result in microstructure defects, 

aggregates and non-uniform dispersion of second phase in the composite. Therefore, the degree 

of dispersion and the rheological behavior of the suspension must be controlled through a 

careful selection of dispersant type and amount, pH, and milling time [76]. 

Due to the Brownian motion, gravity and Coulombic forces, particles are easily attracted to 

each other leading to agglomeration and destabilization of the suspension. If two colloidal 

particles are brought to close vicinity, they are attracted to each other due to van der Waals 

forces. When the dominant force is attraction, the particles stick to each other and eventually 

coalescence takes place in the colloid. On the other hand, the domination of repulsive force 

results in a stable and dispersed system [43]. In fact, the stability of the colloid arises from 

balancing between attractive and repulsive forces. 

In general, there are three different types of stabilization in a colloidal system: 

(1) Electrostatic stability 

(2) Steric stability 

(3) Electrosteric stability 

2.7.1 Colloidal method to synthesize zirconia toughened alumina 

composite powder  

2.7.1.1 DLVO theory 

DLVO theory is a classical explanation of the stability of colloids in suspension and named in 

1940s by Derjaguin , Landau, Verwey and Overbeek [87]. Based on DLVO theory [88], the 

colloidal stability of a system is determined by total potential energy of particles (VT) Figure 

2.8 Total potential energy is the sum of the attractive potential due to the van der Waals force 

(VA) and potential energy due to the repulsive electrostatic interaction (VR). 

𝑉𝑇  =  𝑉𝐴 + 𝑉𝑅                         Eq. 2.1 

For the spherical particles with radius 𝑎  at a distance ℎ, 𝑉𝑇 is defined as,  

𝑉𝑇 = −
𝐴

6
 (

2𝑎2

𝐻2−4𝑎2
+

2𝑎2

𝐻2
+ 𝐿𝑛 

𝐻2−4𝑎2

𝐻2
)               Eq. 2.2 
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where is 𝐻 = ℎ + 2𝑎, A is the Hamkar constant. On the other hand 𝑉𝑅 is expressed as;  

𝑉𝑅 = 2𝜋𝜀𝜀°∅°
2 𝑙𝑛(1 + 𝑒−𝑘ℎ)                                        Eq. 2.3 

where ε  is the dielectric constant of liquid dispersion medium, ε° is the permittivity of the 

vacuum ∅ is the surface potential of particles, 𝐾 is the Debye parameter. 

 

 

 

 

 

 

 

 

Figure 2.8 Schematic of typical energy barrier for two plates charged based on DLVO theory 

[88]. 

2.7.1.2 Electrostatic stabilization 

In liquid media, the adsorption of ionic species to the surface of a colloidal particle forms a 

charged film around the particle. Subsequently, an equal number of oppositely charged ions 

surround the colloidal particles to retain electro neutrality and raise the total charge-neutral 

double layers.  

The interfacial layer around a dispersed particle that contains both adsorbed ions on the particle 

surface and the plane of the counter charged dispersion medium (Stern plane) is called the 

Electric Double Layer. The electric double layer is electrically neutral, and it is composed of 

three parts; surface charge, stern layer and diffuse layer as shown in Figure 2.9. The maximum 

value of electrical potential inside the electric double layer belongs to the surface of the particle 

or Stern layer. However, the electrical potential reduces while moving towards boundary of the 

electric double layer. One of the parameters that plays a key role in determining the stability of 

colloidal system is called the zeta potential (ζ). Theoretically, the amount of zeta potential has 

originated from the value of electric potential at the slipping plane [88]. The greater magnitude 
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of zeta potential results in more stable suspension. When this value is around isoelectric point 

(IEP), the potential is small and the attractive forces may exceed repulsive force leading to 

flocculation or coagulation in suspension [26]. In general, electrostatic stabilization is due to 

the mutual repulsion between similar electrical charges. In any system including ions, 

electrostatic interactions are present. In water or any other media with high dielectric constant, 

the natural surface charges of the particles can repulse each other. In addition, other 

mechanisms such as ionization or disconnection of surface group, adsorption or attachment of 

ions to a particle surface, or exchange mechanisms like acid base type interaction are sources 

for existence of ion in the suspension [89]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Schematic of electric double layer [88]. 

2.7.1.3 Steric stabilization 

An alternative way to stabilize a colloidal system is called steric stabilisation. In this type of 

stabilization, the macromolecules attach (graft or chemisorb) to the surface of colloidal 

particles and produce a barrier between surface of the particle and other particles surrounding, 

as illustrated in Figure 2.10. To obtain pure steric stabilization, two conditions need to be 

satisfied; firstly, the dispersant molecules should strongly anchor to the surface of colloidal 
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particle; and secondly, sufficiently long chain of dispersant in solution is required to prevent 

close vicinity of neighboring particles [89]. 

 

 

 

 

 

Figure 2.10 Schematic of Steric Stabilization[90]. 

2.7.1.4 Electrosteric or semi-steric stabilization  

The combination of steric and electrostatic stabilization forms a new type of stabilization, 

which is called electrosteric or semi steric. Small molecules such as oleic acid or stearic acid 

are known to be effective in stabilization in organic media though, as these molecules are not 

sufficiently long to produce pure steric stabilization (shown in Figure 2.11). After adsorption, 

such molecules modify the Hamakar constant of the particles and therefore the attractive van 

der Waals force between particles drops. It is well documented that dispersion of many 

ceramics [91] takes place through this type of stabilization.  

 

Figure 2.11 Schematic of electrosteric stabilization (a).Two charged particles with non-ionic 

polymers (b).Polyelectrolytes linked to uncharged particles [90]. 

Based on the conditions and properties of colloidal particles, the right selection among the three 

aforementioned methods leads to well dispersion of suspension. Ramakrishnan et al. [92] 
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reported that improper selection of pH range causes heterocoagulation in a mixed Al2O3 and 

ZrO2 suspension. The experimental results showed that this suspension is unstable in a pH 

range between 7 and 9 where the surface is highly charged to oppose van der Waals’ attractions. 

Novak et al. [93] noticed that species such as CO3
2- and Cl-  in Al2O3 and ZrO2 suspension 

shifts the isoelectric point of each powder as well as their mixed suspension due to the 

adsorption of ions on particle surfaces. They also reported that washing of the ceramic particles 

before production of suspension optimize both dispersion and density. Leriche et al. [94,95] 

developed a well dispersed microstructure of zirconia and alumina through electrostatic 

stabilization. They tried different pH ranges and mixed Al2O3, ZrO2 and Y2O3 slurries after 

individually deflocculation process to reach satisfactory dispersion. 

2.7.2 Chemical methods to synthesize zirconia toughened alumina 

composite powder  

In addition to the conventional method of ZTA powder synthesis, the chemical methods are 

developed with the purpose of careful control over size and dispersion of alumina and zirconia 

particles to inhibit aggregation of particles. Among these routes co precipitation and sol gel are 

well known and mainly utilized. A good review and role of different wet chemical methods to 

produce ZTA composites are compiled by Rana et al. [82]. 

2.8 Spark plasma sintering (SPS) 

Spark Plasma Sintering (SPS) or field assisted sintering technique (FAST) is a new technique 

to consolidate powder by applying both uniaxial mechanical force and pulsed direct electrical 

current (DC). This method benefits from direct transmission of energy within the sample if the 

green body is electrically conductive. However, for electrically non-conductive powder, an 

electrically conductive part needs to be employed and the produced heat by Joule heating can 

be transferred to the powder [96]. Spark plasma sintering is a fast sintering method allowing 

the dissipation of heating power in both macroscopic and microscopic scale where energy 

needs to be acquired to weld the contact points of sintering powder. This behavior leads to the 

quick densification with less grain growth. Compared with other sintering techniques such as 

hot isostatic pressing (HIP), hot pressing (HP) or atmospheric furnaces, SPS has many 

advantages including rapid heating rate, precise conduction of sintering energy as well as easy, 

reliable and safe operation [97].  
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The heating rate in SPS depends on geometry, electrical and thermal properties of tooling parts 

(punch and die) as well as the supplier producing electric power source. Considering of these 

parameters, SPS is able to reach a rate as high as 1000º C/min. It is known that SPS efficiently 

employs the heat input due to the use of pulsed electric current [98]. In order to achieve 

homogenous temperature dissipation, the problem of sufficient electrical conductivity of 

powder needs to be considered. To obtain a homogeneous sintering performance, the 

temperature gradients within the sample need to be reduced. Temperature distribution within 

the sample is strongly influenced by some parameters including electrical conductivity of the 

specimen, the thickness of die wall and the presence of graphite papers between sintering body 

and graphite tooling components. These graphite papers can avoid the direct connection of the 

specimen with other graphite parts and also certify that all parts are electrically linked. 

2.8.1 Configuration of SPS 

The primary configuration design of FAST/SPS is illustrated in Figure 2.12 [98] which shows 

various components of the sintering system with vertical uniaxial press, water cooled vacuum 

chamber, atmosphere controls, special sintering pulsed direct current supplier and SPS 

controller. 

 

 

 

 

 

 

 

 

 

Figure 2.12 Schematic of SPS configuration [98]. 

The sintering process can be performed under vacuum or inert gas at atmospheric pressure. 

Monitoring of the sintering cycle is carried out by measuring of temperature using either 

axial/radial pyrometers or thermocouples [98]. The green body is piled up between the die and 
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punch and held between two electrodes while sintering is taking place. Using the standard 

graphite papers, the maximum temperature that can be reached is around 2400ºC. 

2.8.2 The sintering mechanisms in SPS  

2.8.2.1 Mechanical effect 

SPS employs the quasi-static compressive mechanical pressure resulting in more contact 

between particles. This pressure leads to improving the densification mechanisms already 

existed in free sintering such as grain boundary diffusion, lattice diffusion and viscose flow. 

Alternatively it can activate new densification mechanisms such as plastic flow or grain 

boundary sliding [17]. During the sintering process in the SPS apparatus, the pressure can raise 

up to several hundreds of MPa leading to possible break of powder agglomerates. This 

rearrangement of particles while the temperature is low gives rise to the packing and 

homogenous densification and lessens the pore size and grain growth. Munir and co-workers 

[96] reported that in cubic zirconia, in order to reach %95 density, the required temperature 

reduces linearly with the logarithm of inserted mechanical pressure. Furthermore, while the 

applied pressure at constant temperature does not affect the grain size, it drastically influences 

the density of zirconia at 1200ºC for 5 min. 

2.8.2.2 Thermal effect 

In addition to pressure, the high heating rates in SPS is of great importance. When the activation 

energy of densification mechanism such as grain boundary diffusion surpasses the activation 

energy in coarsening mechanism such as surface diffusion, it is quite favorable to rapidly reach 

the maximum sintering temperature to improve densification rate and delay coarsening. 

Regardless of the sintering approach, for all heating rates fully or nearly dense samples can be 

obtained and those were rapidly thermally heated form a smaller grain size compared to the 

samples gone through slow heating rates [99,100]. It is reported [101] that significant grain 

size reduction can take place in the final alumina microstructures heated with the rates of 50ºC 

min-1 to 700º C min-1 compared to that have gone through slower heating rates. 

Being diffusion controlled, grain growth requires time at high temperature in order to increase 

the mobility of grain boundary. If the green body is held at high temperature for short time, the 

coarsening will be reduced. Furthermore, higher heating rates reduce interaction between the 

sample and graphite parts and also in some nano structured materials such as zinc oxide and 

hydroxyapatite [102,103] produces higher density specimen. Based on the study performed by 
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Munir et al. and Zhou at al. [104,105], the heating rate ranging from 50-300ºC/min has no 

significant effect on the final density of  fully stabilized cubic zirconia and alumina while it 

significantly influences the grain size. 

Another thermal effect in SPS is associated with high local temperature gradient or 

inhomogeneous distribution of heating plus macroscopic temperature fields forming thermal 

stresses[106]. Extra driving force for diffusion mechanism produced by microscopic 

temperature gradients is recognized as Ludwig-Sorret thermal diffusion or it might even 

activate local melting. On the other hand, depending on the physical properties as well as range 

of particle size and grain boundary, these local gradients can get greater [107]. However, it 

appears that for ceramics which are either mixed or ionically conducting and also range of grain 

size is in scale of sub- micrometre or micrometre, the achievable (possible) local temperature 

gradients can be ignored. 

2.8.2.3 Electrical effect 

In SPS if the green body is electrically conductive, the majority of electric current passes 

directly through the powder rather than neighbouring graphite tool. In these circumstances, 

there are three possible interactions between electric current and powder bed while going 

through sintering process, (i) percolation effects of the current while the sintering powder is 

porous [108,109], (ii) the Peltier effect at the boundary between powder bed and punches [110], 

(iii) electro migration and electrochemical reaction [96]. 

Electrical fields are found to influence defect migration of grain boundary and transport of 

matter[111,112]. Nevertheless, the voltages employed in SPS are quite low and that is why 

some possible aforementioned effects have not been observed. For instance, in terms of 

alumina and stabilized zirconia the obtained results in SPS were the same as hot pressing 

considering the processing parameters were similar. Makino et al. [113] showed that a current 

as small as ~100 mA flows through the alumina sample at 1000ºC. In another study carried out 

by Tommino et al. [114], no flowing current within the alumina samples was observed. 

2.8.2.4 Effect of atmosphere 

In general, defect structure and diffusivity in the materials during sintering are affected by the 

composition of the sintering atmosphere plus the amount of pressure resulting from constituting 

elements. Principally, the adsorption of particular types of gas, water or organics reduces the 

surface energy of particles since this adsorption leads to the modification of thermodynamical 
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driving force to surface reduction and sintering. Furthermore, in some cases gases are captured 

in closed pores that results in disinterring due to the accumulation of pressure [115].  

If the gas pressure in the sintering chamber reduces, the surface contamination of particles in 

sintering body will decrease. On the other hand, some experimental tests should be run in 

vacuum to prevent the possible reaction of specimen with the flowing gas such as nitrogen, 

hydrogen or oxygen in chamber. As the temperature rises above 600ºC, the graphite sections 

(punch and die) initiate to react with oxygen entrapped in samples leading to the continuous 

reduction of oxygen partial pressure in the furnace and particularly in the pressing 

compartment.   

During sintering process, the reaction of adsorbed moisture, oxygen, or entrapped oxides in 

powder bed with graphite produces a reducing atmosphere by the formation of CO. 

Subsequently powerful gas phase transport can be formed between the specimen and the 

graphite die during the time that open pores are existed. This causes the reduction of oxides. 

The results of reducing atmosphere on some oxides such as BaTiO3 and yttria- magnesia 

composite have already been published [116,117]. 

2.9 Definition of bio-tribology 

The term tribology is originated from the Greek words tribos=rubbing/friction and logos 

=science [118]. Tribology can be defined as a science of interaction between surfaces in relative 

motion and includes the concept such as friction, wear and lubrication. While the aspects of 

study is associated with human body or animals, including both natural and artificial joints (e.g 

hip joint), the term “bio tribology” is employed. 

2.10 Ceramic-on-ceramic THRs in vivo 

Amanatullah et al. [119] ran a short term study (60 months) of 125 ceramic-on-ceramic hip 

joints and compared the results with 95 ceramic-on-UHMWPE bearings. The clinical outcomes 

revealed that both materials are statistically similar though in 3.1% of ceramic-on-ceramic 

bearing audible noise of “squeaking “took place. 

Another follow up study performed by Stafford et al. [120] during 59 months in which 6 out 

of 250 ceramic-on-ceramic went through revision. The results showed that two were revised 

due to the recurrent dislocation secondary to impingement, two of them for severe infection, 

one due to fracture of the femoral head and one for recurrent dislocation [121]. These patients 

did not experience “squeaking” though they confirmed that they experienced a grinding or 
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crunching noise chiefly during flexion position. One of these “squeaking joints” belonged to a 

BIOLOX®delta which did not go through a revision surgery. The follow up studies confirm 

that “squeaking joints” do not necessarily go through revision process.  

There are many follow up studies (in vivo) that certify the exceptionally good performance of 

ceramic-on-ceramic hip joints. However, early dislocation did occur with the occurrence 

possibility of 0%-2.3% [120,122–127]. Component fracture 0%-2.3% [119,128–134],mal-

positioning of joint during surgery [134] and loosening are the main concerns that may lead to 

the failure of hip joint prosthesis. 

2.10.1 Lubrication in vivo 

In the natural joint in a body, the femoral head and acetabular cup are lubricated with synovial 

fluid which covers them up with a thin layer called cartilage and protect them from direct 

contact. Normal synovial fluid shows a non-Newtonian shear thinning behaviour with a 

medium to high range of viscosity. The reason behind low frictional resistance to joint motion 

is attributed to a mixture of mechanisms. Each of the involved mechanism acts as a supplement 

for the other and also relies upon the tissue engaged and the load transferred to the joint. 

Surfaces that are in contact during sliding motion against each other give rise to the frictional 

resistance that have been specified at the outset as a soft tissue interface synovium on synovium  

and additionally as cartilage on cartilage type [135]. 

Synovial fluid lubricates synovial surfaces through hyaluronate which is based on the boundary 

mechanism. During boundary lubrication each sliding surface is covered with a thin layer of 

lubricant that separates the moving surfaces and eases the sliding with a low coefficient of 

friction. The mechanism involved in cartilage on cartilage lubrication is related to boundary 

effect and existence of fluid layer. The boundary effect of synovial fluid in cartilage on cartilage 

system is the same as soft tissue system however the boundary of synovial fluid is due to the 

glycoprotein content of synovial fluid [135]. 

Synovial fluid is able to lubricate the natural joint in body, but it has not been designed to 

lubricate other type of materials such as ceramic or metal. Although the surface of ceramic 

joint is hydrophilic due to its nature, it cannot be lubricated by synovial fluid when wear 

damage occurs so wear rate and friction rise. 
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2.10.2 Friction of ceramic-on-ceramic in vivo 

It is well recorded [136] that in vivo artificial hip implant goes through higher rate of friction 

since more localised friction heat is produced compared to normal hip joint. There are several 

in vivo studies that demonstrate that the contact force during normal walking and the loads 

acting on hip implant ranges between 240% and 480% of the bodyweight [121]. However, no 

precise results are available stating the accurate value of friction coefficient in vivo. 

2.10.3 Wear of ceramic-on-ceramic THRs in vivo 

The growing demand to treat younger people has encouraged researchers to introduce a novel 

hard-on-hard bearing articulation of ceramic-on-ceramic in total hip replacement. The earliest 

example of this group belongs to alumina femoral head which moves within an alumina 

acetabular cup. Wear rates of the first generation alumina-on-alumina bearing is reported  to 

be low in vivo varing between 1 to 5 mm3 /year [137]. The vast majority of research on retrieved 

ceramic artificial hip joints exhibit a common type of wear called “stripe  wear”. The stripe 

wear as a distinctive localized elliptical area is known to be the key reseaon for asepectic 

loosening and squeaking shown in Figure 2.13. The emergence of stripe wear in the first and 

second generation alumina ceramics is attributed to inferrior quality of ceramic material, poor 

fixation and stability of acetabular shell to the bone[138,139]. However, the fluoroscopic 

images obtained from patients walking on a treadmill revealed that the acetabular head and 

socket detach slighly throughout the swing phase.  

 

 

 

 

 

 

 

Figure 2.13.Stripe wear in third generation alumina[140]. 
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During the micro-seperation of the femoral head and cup, the cup keeps in contact with the rim 

and subsequently the high contact pressure at this point during heel-stike phase takes place and 

leads to the surface damage in the shape of wear strip Figure 2.14. Consequently, they 

demonstrated that stripe wear originates from the edge loading when the hip is bent. 

Figure 2.14. (a) Microsparation, swing phase (b) Rim contact, Heel strike phase (c) Relocation, 

stance phase. 

Alumina particles are known to be biocompatible and non-toxic however the accumulation of 

alumina wear debris in vivo can activate osteoclast and leads to a bone resorption [141]. 

However, due to the insufficient data it is still controversial that alumina wear debris have 

direct relation with osteolysis. The size range of ceramic wear particle depending on the method 

of visualization is different. For instance, studies using SEMs show that ceramic wear debris 

ranges from 0.05µm to 3.2 µm, though TEMs reveal smaller particle size range from 5 nm to 

90 nm [142].  

Finally, a new failure mechanism in C-on-C introduced by Bonnaig et al. [143] indicates that 

fretting corrosion and failure of Morse taper generates metal debris acting as a third body and 

leading to a dramatic wear. 

2.11 Ceramic-on-ceramic THRs in vitro 

In vivo studies of ceramic on ceramic are the most satisfactory and authentic way of collecting 

data during long term behaviour and failure of hip joint replacement. However, no matter how 

much information is obtained from wear rates measurement in hip implant or from retrieved 

hip components, the process of analysing in vivo data only gives limited understanding. The 

success of each individual joint depends on the success of the operation, the patient’s body and 

the activity of the patient.  

On the other hand, in vitro studies of artificial hip joint are known to be the only way for 

systematic experimentation and elucidation of plausible modes of failure. A new orthopaedics 
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biomaterial needs to be assessed under the load and motion anticipated during normal walking 

cycle in terms of friction, lubrication and wear [144]. 

2.11.1 Friction on ceramic-on-ceramic in vitro 

Friction is defined as a force resists against the motion of an object. The coefficient of friction 

is a dimensionless parameter that represents the relationship between the friction force and the 

normal force. The friction coefficient is defined as [145]:  

𝜇 =
𝐹

𝑁
                                   Eq. 2.4 

Where 𝜇 is the friction coefficient, 𝐹 is the friction force and 𝑁 is the normal force. Friction 

factor 𝑓 is a dimensionless value used rather than friction coefficient for the specific bearing 

surface of hip joint and is defined as [145]: 

𝑓 =
𝑇

𝑅1 𝑁
                                           Eq. 2.5 

where 𝑇 is the friction torque and 𝑅1 is the radius of femoral head, Figure 2.15. 

Depending on the roughness of contact surface, motion and lubrication the friction coefficient 

factor varies. In general, certain parameters influence the bearing system that their combination 

introduces a dimensionless parameter called Sommerfeld number 𝑍: 

𝑍 =
𝜂𝑣

𝑁
      [146]          or                       Eq.2.6 

𝑍 =
𝜂𝑣𝑅1

𝑁
  [145]                                     Eq.2.7 

where, 𝜂 is lubricant viscosity, 𝑣 is the entraining speed of the bearing surfaces, 𝑁 is the applied 

force and 𝑅1 is the radius of joint (femoral head). Depending on the geometry of the articulating 

surfaces either former equation (plane surfaces) or latter one (ball-on-socket) may be used.  
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Figure 2.15 Schematic of hip joint articulation. 

2.11.2 Lubrication on ceramic-on-ceramic in vitro 

An upward trend of friction factor with rising Summerfield number demonstrates full fluid film 

lubrication regime. In this regime, the surfaces are completely separated by the lubricant and 

the friction only depends on the shear of the lubricant film. In the mixed lubrication regime, 

the load is partly transferred between the surfaces by the contact between high surface points 

and also through the pressure within the lubricant. In the boundary lubrication regime, 

continuous contact occurs between asperities of the sliding surfaces takes place and the fluid 

film is negligible shown in Figure 2.16. The generated friction during sliding of surfaces 

against each other results in energy dissipation and produces heating and surface deformation. 

To study in vitro performance of prosthetic hip joint it is important to select the appropriate 

lubricant which provides similar behaviour to synovial fluid in body.  

Bovine serum and calf serum are the most widespread lubricants used in hip joint simulation 

due to the amount of protein that they contain. As studied by Fisher and Dowson [147], the 

wear surface formed by bovine serum is similar to the one obtained from retrieved orthopaedic 

UHMWPE components[148,149]. Since the protein content in synovial fluid is not always 

constant, various concentration of bovine serum have been tested.   

In general, the protein content in synovial fluids of normal joints is much less than diseased 

ones. Furthermore, the viscosity of the lubricant is another key factor to assess the behaviour 

of lubrication system in in vitro study. Bovine serum exhibits shear thinning which means the 

viscosity of the lubricant depends on the shear rate [150]. During the testing the composition 

of a biological lubricant such as bovine serum may change and accordingly influence the 

viscosity and mainly the wear process [147]. Thereby, test parameters including frictional 
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heating, fluid degeneration and calcium phosphorus that may influence the composition of 

serum need to be controlled [151]. 

 

 

 

 

 

 

 

 

Figure 2.16 Schematic of Stribeck curve and lubrication regimes  [152]. 

 

Recently, hyaluronic and the combination of hyaluronic acid with albumin solution have been 

employed as testing lubricants. The studies [153] show that both of these lubricants are the 

most significant parts in the determining tribological behaviour of synovial fluid [154]. 

Hyaluronic acid provides high viscosity while albumin is adsorbed on the surface of the 

biomaterial protecting them against wear. 

2.11.3 Wear in vitro 

In general, there are two types of equipment used to investigate the tribology of hip joints in 

the laboratory; wear screening devices (quick tests) and wear joint devices (slow tests) [155]. 

In wear screening devices both simulator and sample are simplified. They can only investigate 

a specific wear mechanism rather than complex ones which results in insufficient data to 

anticipate worn surface morphology and wear rates in prosthetic joints. A few common types 

of screening devices contain; pin on disc [156], ring on flat [6,157], reciprocating [5] and 

crossed cylinder Figure 2.17. 
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Figure 2.17. The most common wear screening devices[155]. 

Wear joint devices provide more accurate information by simulation of both the environmental 

condition and physiological behaviour of actual hip joint. These devices are designed to 

replicate the in vivo wear model on the joint combinations and consequently anticipate some 

clinical behaviour of biomaterial. A very well-designed simulator is the Leeds Mark ll which 

includes micro-separation in the articulation, which is observed in in vivo study Figure 2.18. 

 

Figure 2.18. (a) Hip joint simulator (Leeds Mark ll). (b)Schematic of the simulator including 

concept of micro separation (reproduced from[158]). 
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The most severe wear damage is so called stripe wear and assumed to be the direct consequence 

of micro-separation. Stripe wear is primary revealed at both pole and periphery location on hip 

bearing. The wear pattern observed on retrieved hip implants is generally in the location as the 

stripe wear observed in simulation tests that include micro-separation [12,159–161]. However, 

due to the variation of motion and wear duration the width of stripe wear is not always 

comparable with retrieved joints. The most recent work performed by Al-Hajjar et al. on 

BIOLOX®delta bearing shows that micro-separation set up results in a higher wear rate than 

observed in vivo, although this wear rate is still very low compared with conventional joints 

[144]. Although the wear debris produced in in vitro tests is smaller than that observed in vivo, 

the size difference is not large. 

It is still controversial as to whether the stripe wear detected in retrieved implants originates 

from micro-separation or alternatively by edge loading of head on the socket by an unknown 

process. High wear rate which may be revealed in the form of strip wear can be attributed to 

either steep angle implantation of acetabular shell or repeated dislocation [162]. As clarified 

by Fisher et al. [163], the combination of small reactivity and low wear propose that “the 

ceramic on ceramic bearings satisfy the tribological lifespan requirement of highly active 

patients”.  

2.12 Wear mechanisms 

The main wear mechanisms that have been proposed by many researchers over the last 50 years 

include adhesive/abrasive/corrosive or fatigue of the surface [164], corrosion/ delamination/ 

fretting [165,166], tribochemical and cavitational wear [167,168]. However, the most 

predominant wear mechanisms in structural ceramic materials such as alumina and zirconia 

toughened alumina are known to be plastic deformation, micro cracking and chemical 

interactions[165,169,170]. The detailed review of involving mechanism in alumina and 

zirconia toughened alumina is reviewed in part 2.13. 

2.12.1 Sliding wear 

2.12.1.1 Type of wear 

Sliding wear occurs when two surfaces, usually solids, slide over one another and can often 

involve multiple wear mechanisms that the greatest of which is called rubbing wear 

mechanism.  Adhesive wear is sometimes used to describe the mechanism involved in sliding 

wear. However, it is more common in metals where localised plastic flow occurs at the surface, 
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where interactions with soft or weak particle are pulled off due to strong adhesive forces of the 

contact surfaces. For metal materials, adhesion, abrasion and chemical wear are more 

prevalent. Therefore, these descriptions may be better suited to metal-on-metal THR 

applications.  

Ceramics exhibit different wear behaviour compared to metal due to their interatomic bonding 

which results in restricted capacity for plastic flow at room temperature. Therefore, they are 

more likely to experience brittle fracture under stress. Tangential forces caused by sliding wear 

between two ceramic surfaces may lead to fracture rather than plastic flow [171]. Their brittle 

nature means that they are more likely to suffer from abrasion, tribo-chemical wear or cracking 

and chipping. When the applied normal force reaches a critical value, a crack just outside the 

circular contact area starts off and rapidly grow to shape a Hertzian cone crack Figure 2.19. 

The typical characteristics of a Hertzian cone crack are as follows [172]: 

(1) The crack begins just outside the contact circle 

(2) The crack propagates upright towards the surface above it and then propagates 

downwards and outward away from loading axis 

(3) It is almost symmetric with respect to the axis   

 

 

 

 

 

 

Figure 2.19 Schematic illustration of a crack produced by a normal load inserted by a sphere on 

to the surface of a brittle material. 

In sliding wear due to the tangential force, the stress distribution is improved, and the normal 

load required to initiate fracture is significantly reduced. In addition, the tangential force 

increases the formation of partial cone fracture due to the modification of the stress distribution 

under the indenter and consequently gives rise to the tensile stresses in the wake of the indenter 

as illustrated in Figure 2.20. 
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Figure 2.20. Graphical illustration of stress distribution under uniaxial and biaxial loading on 

the contact surface. 

2.12.1.2 Wear rate based on Archard theory 

A simple theoretical analysis that explains the wear of two sliding surfaces was originally given 

by Archard and modified by Hutchings[146]. This simplified theory is based on a single 

asperity deformation and emphasises the principal variables that affect sliding wear. In 

addition, it provides a method to assess the grades of wear through a parameter called wear 

coefficient, K.  

The initial assumption for this model is that the contact between two bodies takes place when 

the asperities meet and therefore the true contact area will be given by sum of the individual 

asperity contact areas. This area is approximately proportional to the normal load and it is 

postulated that under most circumstances, mainly for metals, the localised deformation of the 

asperities is plastic.  

Figure 2.21 gives a schematic of a single asperity contact, which are presumed to be circular 

in this view with radius a. In Figure 2.21 (c), they reach to the maximum contact and the normal 

load supported by it, δW, is given by: 

    𝛿𝑊 = 𝑃𝜋𝑎2                                              Eq. 2.8 

in which 𝑃 is the yield pressure during plastic deformation of asperity and is close to the 

indentation hardness H. 
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Figure 2.21. Schematic illustration of a single contact patch when two asperities slide over each 

other [146] (a) Asperities before sliding contact (b) Partial contact as sliding (c) Maximum contact 

(d) Partially contact after sliding over (e) Asperities completion of  sliding. 

During constant sliding motion, continuous formation and destruction of individual asperity 

contact occurs. In general, wear is correlated to the separation of fragments of material from 

the asperities. It is assumed that removed fragments through the wear process possess 

hemisphere shape and therefore the volume of each fragment, δV, is given by: 

𝛿𝑉 =
2𝜋𝑎3

3
                                                   Eq. 2.9 

Considering the fact that just a portion of asperity contacts (𝑘) increases the wear particles, the 

average volume of material 𝛿𝑄 worn away per unit distance during sliding of two asperities 

over each other along a distance, 2𝑎, is given by:  

𝛿𝑄 =
𝑘𝛿𝑉

2𝑎
= 

𝑘𝜋𝑎2

3
                                       Eq. 2.10 

So, the total wear rate,𝑄, originating from entire asperity contacts can be obtained from:  

𝑄 = ∑𝑄 =
𝑘

3
∑𝜋𝑎2                                    Eq.2.11 

And the overall normal load 𝑊 can be calculated by: 

𝑊 = ∑𝑊 = 𝑃∑𝜋𝑎2                                  Eq.2.12 

And therefore:  

𝑄 =
𝑘𝑊

3𝑃
                                                      Eq. 2.13 



Chapter 2- Literature review 

 

  37 

To achieve more simplified equation, the factor of  
1

3
  can be incorporated into the constant of 

proportionality. By considering 𝐾 =
𝑘

3
 and this assumption that 𝑃 = 𝐻 (the indentation 

Hardness), the aforementioned equation can be rewritten as: 

𝑄 =
𝐾𝑊

𝐻
                                                        Eq. 2.14 

where 𝑄 is the volume worn per unit sliding distance, 𝑊 is the normal load, H is the hardness 

of the softer surface. Additionally, constant 𝐾 is labelled as a wear coefficient and is 

dimensionless and always less than unity [146]. 

2.12.1.3 Mild and severe wear 

The mechanism in which the material removed from the surface in ceramics through the mild 

wear regime is poorly understood. The main mechanisms in the sliding wear of ceramics are 

fracture, tribo-chemical and plastic flow. Transition from mild to severe wear can occur 

through dominance of each of these mechanisms and results in an abrupt change in wear rate. 

The investigation shows that in most ceramics, the transition is dependent on the load, sliding 

speed and environmental condition as well as material parameters such as grain size. 

Mild wear has been defined as a type of a wear resulting in a smooth surface, a low wear rate 

(typically below 10-6 mm3/Nm) and stable friction in ceramics. In this regime the dominant 

mechanism is generally tribo-chemical wear. The wear debris in this regime may be chemically 

different from the substrate, and may have gone through oxidation, hydration and mixing with 

the lubricant. On the other hand, severe wear leads to a rough surface as a result of surface 

fracture, a high wear rate, and an unstable friction force. In contrast to mild wear, this regime 

is dominated by brittle fracture of the surface grains. The angular wear debris is chemically the 

same as the bulk sliding material. 

 The ceramics materials follow the Archard equation and exhibit a linear relation between wear 

on sliding motion and load to provide a useful wear coefficient (𝐾). The typical values of wear 

coefficient for mild, severe and ultra-severe wear are respectfully lower than 10-6, 10-4, and   

10-2  
𝑚𝑚3

𝑁𝑚
. As illustrated in Figure 2.22 Shishido et al. presented a wear map for each wear scar 

of the alumina microstructure using their measured grading scale. For instance, a round region 

of wear was observed at the top of the ball head expanding to the super anterior aspect, and the 

scale of wear was rated as grade ІV. Wear scars, in the form of stripes, were also evident in the 
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superoposterior and inferoanterior regions in which the extent of wear was rated as grade V. 

Figures 2.22 (A-C) show the severity of wear in three different stages of grading system. They 

are described as grade ІІІ: mild wear as characterised by total removal of the initial machine 

tracks and relief–polishing revealing the grain structure (Figure 2.2.A); grade ІV: progressive 

wear as illustrated by grain pull out and intergranular fracture accompanied by the formation 

of craters localized regions in an otherwise intact surface (Figure 2.2.B); and grade V: 

disruptive wear as evidenced by intergranular fracture with loss of surface integrity (Figure 

2.2.C)[12,13]. 

 

Figure 2.22 wear map and SEM images of alumina microstructures illustrating the severity of 

wear in different grades[13]. 

2.12.2 Abrasive wear 

Abrasive wear is defined as the loss of material due to the passage of hard particles over the 

surface. In this type of wear, both in dry and lubricated sliding wear, the existence of hard 

particles is inevitable either as a separate element between surfaces or as a detached component 

of one or both surfaces. The movement of these hard particles will eventually produce a groove 

along the displacement direction. The groove forms due to the plastic deformation of materials 

under strong contact pressure applied by the hard body on the counter face. 
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2.12.2.1Abrasive wear modes 

Abrasive wear is commonly classified into three different groups, based on the type of the 

contact and contact environment [173]. Two- body abrasive wear occurs when the hard particle 

or rough edges are embedded in the counter surface leading to the material removal.  In three 

body abrasive wear the hard abrasive particle is confined between two sliding surfaces and is 

free to roll and slide over counter faces shown in Figure 2.23.   

 

 

 

 

 

 

 

 

 

Figure 2.23 Schematic of two body and three body abrasive wear [174]. 

In some situations, particulates in gases or liquid strike a surface and cause damage on the 

surface. This type of the wear is classified as erosive wear which involves the continuous loss 

of original materials from the surface caused by the interaction between surface and a fluid or 

impinging liquid or solid particles [175]. 

2.12.2.2 Mechanisms of abrasive wear 

In abrasive wear two main involved mechanisms are plastic flow and brittle fracture. It is likely 

that plastic flow occurs under some conditions, though both can happen simultaneously even 

in materials conventionally thought of as ideally brittle. Abrasive wear of brittle materials such 

as ceramics mainly depends on the shape of the abrasive particles. This is why the contact 

stresses vary in different situations and this leads to various types of cracking. 

 For instance if the abrasive particle shaped angular, both local plastic deformation and cracks 

of a different geometry from which wear might immediately occurs can be formed at the point 
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of contact [146]. Figure 2.24 illustrates how cracks shape in a brittle solid material subjected 

to a point load. The point of initial contact is accompanied by a very high stress. These intense 

stresses (shear and hydrostatic compression) are alleviated through local plastic deformation 

or densification around the tip of the indenter. The deformed area is indicated by letter D in 

Figure 2.24.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24 Schematic of crack formation in a brittle material under point indentation[176]. 

Tensile stresses across the vertical mid-plane set off a median crack, labelled M, while the load 

on the indenter (sharp abrasive particle) reach a critical value. On the other hand, unloading is 

accompanied by the formation and growth of lateral cracks. The formation of lateral cracks is 

caused by residual elastic stresses. This type of stress is formed due to relaxation of the 

deformed material around the zone of contact. Once a blunt particle rolls over the surface, the 

plastic groove forms. This process is accompanied by the growth of lateral cracks upwards to 

the free surface from the base of subsurface deformed area Figure 2.25. It is well documented 

that these types of cracks (lateral) contribute in material removal [177]. 
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Figure 2.25 Schematic of material removal in a brittle material. Typical illustration of crack 

induced from beneath a plastic groove [178]. 

2.13 Wear of alumina 

At room temperature, Al2O3 and ZrO2 show high friction (~ 0.5-0.9) and a wide range of 

specific wear rates ( k ~10-10- 10-4 mm3N-1m-1) depending on the applied normal load and 

sliding velocity [178–182]. Among oxides ceramics alumina exhibits little wear at moderate 

pressure. The main mechanisms involved in the wear of alumina are plastic deformation, 

cracking and tribo-chemical wear[184]. There is a direct relationship between the first two 

mechanisms  indicating that the plastic deformation in alumina is formed by both twinning and 

slip wear processes due to abrasion [185]. The coefficient of sliding friction for many ceramics 

under dry conditions is rarely less than 0.5 and in some cases is even higher than this value. 

The high value of coefficient of friction in an engineering application causes unacceptably high 

frictional energy losses. Therefore, for most engineering applications lubricants are applied to 

decrease the frictional force between counter faces. By the introduction of lubricant in wear 

process another important involved wear mechanism occurs, which is tribo chemical wear. 

Tribo-chemical wear occurs due to the chemical reactions at the contacting area of two sliding 

surfaces. The formation of tribo-chemical layers is associated with many factors such as 

chemistry and physics of counter-faces, environment and shear. The formed tribo-chemical 

layers function as load bearing surfaces and may have low shearing strength leading to both 

low wear and friction [186]. The studies performed in this area suggest that wear of 
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polycrystalline alumina is highly influenced by microstructure of material, environmental 

condition and the wear test operation parameters.  

2.13.1 Role of microstructure in wear mechanism of alumina  

2.13.1.1 Grain size  

It is generally acknowledged by researchers that the wear of polycrystalline alumina is strongly 

determined by its microstructure, particularly the grain size. As presented by Miranda-Martines 

at al. [187] among various polycrystalline alumina microstructures with similar hardness and 

fracture toughness the one with smaller grain size exhibits higher wear resistance. They also 

recognized that the wear mechanisms of alumina is influenced by grain size shown in Figure 

2.26. In single pass sliding experiment, the wear mechanism was plastic deformation at low 

loads (<10 N) for small grain-sized alumina however it switched to a mixed mechanism of 

plastic deformation and intergranular fracture at high loads (>10 N).  

In contrast, coarse grain sized alumina mostly exhibited intergranular fracture and some 

transgranular fracture at all load ranges. As the energy of grain boundary fracture 

(intergranular) is almost one half of that for crystalline fracture (transgranular) the former 

process requires less energy. Therefore if the wear particles and thus contact area are large 

compared with microstructure feature, the grain boundary fracture is likely to be the main wear 

mechanism [188]. It is well known that alumina suffers a time dependent transition from mild 

to catastrophic wear in which the time to the transition associated with the grain size of the 

material [189]. 

 

 

 

 

 

. 

 

Figure 2.26 .Wear rate-grain size dependence in the wet erosive wear of pure polycrystalline 

alumina [188]. 
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Figure 2.27 shows the wear scar diameter as a function of sliding time for a range of abraded 

alumina grain sizes. A transition in wear rate from mild to catastrophic wear is completely 

obvious in all three aluminas though this transition first occurred in the coarse grain alumina 

and last in the fine grain alumina. The coarser grain size alumina comprised anisotropic grains 

which was accompanied by higher toughness based on R curve behaviour[24]. 

According to Rainforth’s [189] research the grain boundary micro-cracking directly initiates 

from dislocation pile-ups at grain boundaries. Increasing the grain size increases slip length 

and accordingly the accumulation of dislocation in grain boundary augment the tensile residual 

stresses in some grains leading to the initiation of cracks at these grain boundaries [189]. The 

formation of cracks in grain boundary liberates a wear particle which behaves as a third-body 

abrasive. The onset of abrasive grooves was found to be at the grain boundary. This is 

commonly due to the differential wear between grains leads to the separation of particles from 

the grains standing proud of the surface.  

In general, three body abrasives cause a variety of damage and it is responsible for the majority 

of dislocation accumulation. On the other hand, the dislocation activity produces stress 

concentrations at boundaries that eventually initiate the intergranular fracture and the time 

dependent wear transition. The localized plastic deformation caused by dislocation activity can 

occur below microscopic abrasive grooves that is not believed to be rate limiting in mild wear. 

However, according to Barceinas-Sanchez and Rainforth’s research, tribo-chemical is found to 

be the principal wear mechanism in the mild wear regime and results in the formation of 

amorphous layer at the surface. 

Principally, the time dependent wear transition arises from a mixture of applied stress, residual 

thermal mismatch stresses and stresses originated from accumulation of dislocation at grain 

boundaries [14]. Liu and Fine [190] indicated that thermal mismatch during cooling in sintering 

and the contact stresses are responsible for the critical damage stress arises from residual tensile 

stresses. On the other hand, the residual thermal mismatch stresses are constant throughout the 

test and therefore cannot provide the time dependent aspect. A reduction in grain size results 

in a reduction in slip length, and therefore postponing the critical transition point and increasing 

the time to wear transition. 
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Figure 2.27 Illustration of wear data in pure alumina polycrystalline with three different grain 

sizes. Silicon nitride sphere with 12 mm in diameter rotating on flat surface, at room temperature 

and lubrication of paraffin oil. Note initial slow, steady rise of scar diameter in accordance to 

sliding time followed by abrupt transition to severe wear at critical sliding time. Sliding time for 

initiation of transition considerably diminishes for the bigger grain size materials. Vertical dashes 

lines are theoretical predications of the transition times [191]. 

2.13.1.2 Porosity 

The pores in materials results in increasing wear due to the reduction in hardness and because 

they provide initiation points for cracking. While the microstructure contains pores, the real 

area of contact between counter surfaces decrease and subsequently the contact pressure 

increases [192]. Rice has performed comprehensive investigation about the effect of porosity 

with respect to ceramic wear [170]. The main parameters involved are categorized in three 

groups; shape, size and location. Intergranular pores with approximately spherical or 

polyhedral shape are fairly well isolated, play little or no role on cracking while the 

transgranular crack might be originated from intragranular pores. The pores at grain boundaries 

cause the easier crack onset. These pores tend to form lenticular or triangular shape if at a 

junction triple-point and thereby are likely to concentrate high stresses and initiate cracks. 

Pores with larger size form greater cracks. Additionally, these large pores located near the 

surface can lead to ploughing, gouging of surface during wear [158]. 
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 2.13.2 Environmental Effect 

The wear of alumina based ceramics is found to be a multistage process, which is highly 

influenced by environmental effect such as formation of tribo-films[169, 192,193]. Although 

ceramic materials are well known for their chemical inertness, alumina has a strong sensitivity 

to water. For instance, lubrication using water increases the wear rate of aluminas compared to 

dry sliding. The reason is related to the formation of aluminium hydroxide on the alumina 

surface at such a rate at which removal speeds up though surface stresses from friction 

decreased. In oxide ceramics, growth of a crack partially depends on environmental factors that 

influence the mobility of wear surface dislocations and thereby affect plastic deformation 

[195]. 

Two theories about tribochemical wear have been demonstrated and published by various 

authors. Gate et al. [196] noticed that during the wear of α-alumina transition phase such as δ 

and γ-alumina could be produced. Chemical reaction between different alumina phases and 

water/water vapour can form bayerite (Al (OH) 3) at ~100ºC or bohemite ((AlO(OH)) at 

~200ºC. Jahanmire [197] demonstrated that at low temperatures, T< 200ºC, tribochemical 

reactions between alumina surface and water vapour in the environment is the dominant 

tribological mechanism. 

Kalin et al. [198] has clearly demonstrated the significance of the pH of an aqueous solution in 

regard to wear of alumina. In terms of alumina, high wear rate occurs while the pH values are 

very high or low. This is due to the material removal by chemical solution [198].Studies 

presented by Rainforth [169] showed that the wear rates of alumina on alumina wear depend 

on the hydration rate of the surface, removal of the hydrated layer and damage due to the third 

body abrasive. 

2.13.3 Effect of test parameters 

Wear test process is influenced by a variety of parameters. Part of these parameters can be 

determined by the selection of appropriate wear test apparatus. The set of factors are inherent 

to the apparatus parameters including test geometry, vibration characteristics and the alignment 

specifications for the experiment [171]. The second group of parameters are called operator 

controlled parameters depending on the type of selections that an operator can make such as, 

sliding velocity, normal load, bulk temperature and duration. Transitions between different 

wear mechanisms generally dominated by fracture, tribochemical effect and plastic 
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deformation and thereby results in abrupt changes in wear rate with sliding speed, load or 

environmental conditions.  

Dong et al. [199] showed the wear transition diagram for high purity alumina sliding on 

unlubricated alumina counter face, Figure 2.28 and shows the wear transition in four distinct 

parts under the effect of applied load and temperature at low sliding speed. At low temperatures 

in region І (T<200ºC), the dominant wear mechanism is tribochemical reaction between 

alumina and water vapour in the environment. In region ІІ, at moderate temperatures (200ºC 

<T < 800º C), the wear mechanism is associated with contact load. At low loads, wear regime 

is controlled by plastic deformation and ploughing. At the same range of temperature, at loads 

above 20 N, in region ІV, severe wear through intergranular fracture occurs. In region ІІІ, at 

temperatures higher than 800º C, the wear coefficient is low due to the thin surface layer 

formed. Woydt et al. investigated the sensitivity of pure alumina to sliding speed under constant 

load [200]. Based on their research, the wear rate of 99.7 percent pure alumina increases by 

more than two orders of magnitude once the speed is raised from 0.003 to 0.3 m/s under 

constant applied load of 10 N.  The third group of parameters impact the result of tests are 

denoted as materials effects. The main examples of this group contain the obvious material and 

type of lubrication, surface preparation and cleaning processes [171]. 

 

 

 

 

 

 

 

 

 

Figure 2.28. Wear transition diagram illustrating four individual regions. f and K in each region 

are representative of friction coefficient and wear coefficient respectively [199].     

2.13.4 Wear mechanisms in zirconia toughened alumina (ZTA) 
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A brief summary of main research performed towards understanding the mechanisms in wear 

of ZTA composite is provided as below: 

Author Material Contact 

Configuration 

Counter face 

materials 

Environment Load Velocity 

[201] Alumina 10 vol. 

% zirconia 

Ball on disc-

Reciprocating 

3Y-TZP-

10mm 

diameter 

At room 

temperature-

humidity 

%50-70 

20 N 17 mm/s 

Mechanism ➢ The lower sintering temperature results in the higher wear resistance. 

➢ Homogeneity and grain size of the micro- structure are significant parameters in 

controlling the wear rate. 

[202] Alumina with 

%15-25 zirconia 

ceria stabilized 

14 mol.% 

Fretting wear 

test ball on flat 

Tungsten 

carbide (WC) 

Dry 

condition 

20 N, 

35 N, 

50 N 

10 Hz 

frequency 

of 

oscillation 

Mechanism ➢ Partial cone crack is formed during the sliding of the ball under applied stress results in 

intergranular fracture at final step of wear. This leads to the spalling or grain pull out 

causing the wear of materials 

➢ The dominant wear mechanism is the asperity scale cracking that piles up at higher load 

while the number of fretting cycles rises. This mechanism occurs due to the fact that the 

critical flaw size is much bigger in size than surface asperities. 

➢ Furthermore, small surface cracks resulting from the accumulation of surface damage at 

larger load (50 N) are formed. Nevertheless, these micro cracks need long time (~ 1million 

cycles) to reach to the critical crack length to fracture. 

[203] Zirconia 

toughened 

alumina with 

different 

addition of 

metal oxide (~8-

11wt. %) 

Sliding SiC abrasive 

grinding paper 

Dry sliding 

wear 
50 N  

Mechanism ➢ Abrasion, grain pull-out and removal of secondary phases 

[204] Alumina with 

1.7 vol. % 

zirconia 

Oscillation 

friction 

Mgo-stabilized 

zirconia -5mm 

Room 

temperature 
20 N to 

150 N 

0.15 m/s 

Mechanism ➢ Two main toughening mechanisms in zirconia toughened alumina; (1). Due to the high 

thermal expansion mismatch between Al2O3 and ZrO2 particles, a compressive residual 

stress field inside the matrix around the intragranular ZrO2 particles forms.  

➢ Formation of local compressive stresses on neighbouring Al2O3/Al2O3 grain boundaries 

because of the existence of intergranular nanoparticles thereby making the boundaries 

stronger. 

➢ The intergranular grains create extra compressive stress component formed on the 

alumina/alumina grain boundary leading to lower wear rate in zirconia toughened 

alumina than monolithic alumina.  
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[205] Al2O3 with 7,14 

and 22 vol. % 

3Y-ZrO2 

Oscillating 

friction machine 

5 mm MgO-

ZrO2 ball 

Room 

temperature 

20 N to 

150 N 

0.15 m/s 

Mechanism ➢ The most dominant wear mechanism for ZTA composite containing zirconia above 

percolation threshold (%16.vol) was provocative mechanism that stimulated micro 

cracking. 

➢ The principle wear mechanism for the composite composed of zirconia less than 

percolation threshold at low load around 20 N is abrasive wear, however at high load 

above 100 N the pivotal mechanism is distinguished as chipping by intergranular and 

transgranular crack. 

[15] Al2O3 with 15 

wt.% ZrO2 by 

both colloidal 

processing and 

dry pressing 

Pin on disc 10 mm Al2O3 

ball 

Dry-sliding 15.5 N 0.5 m/s 

Mechanism ➢ The specific wear rate of ZTA composite manufactured by colloidal processing is around 

5.10-8 mm3/ Nm and the main wear mechanism represented by polishing and deformation. 

➢ However, the specific wear rate of ZTA made by dry pressing is about 2.10-6 mm3/Nm 

and the leading wear mechanism is grain pull-out. 

➢ The difference of wear mechanism and wear rate is originated from difference in 

microstructure. 

[206] Al2O3 with 15 

wt.% 5Y-ZrO2 

Ball on plate 4 mm SiC Ball Dry N2 with 

humidity 

<1% 

8 N 0.08 m/s 

Mechanism ➢ The ruling wear mechanism is polishing, and grain pull out however micros cracks turn 

up at the turning points.  

➢ The grain boundaries can be strengthened by forge sintering which reduces wear rate by 

2-3 times  

[207] Al2O3 with 

5,10,15 and 20 

vol. % ZrO2 

Ball on three 

flats modified to 

accommodate 

ball on four flats 

configuration 

Si3N4 ball of 

12.7 mm 

Purified 

paraffin oil 

in room 

temperature 

Different 

load 

0.23 m/s 

Mechanism ➢ During wear transition, an abrupt change of wear rate and friction occurs, and micro 

fracture or grain pull out are controlling wear mechanism. 

➢ The wear transition resistance of ZTA rises as the zirconia content increases up to 20%. 

The improvement in wear transition resistance is due to the small and homogenous 

microstructure, phase transformation introduced surface compressive stress and low 

elastic modulus. These parameters lead to a larger Hertezian contact and lower tensile 

stress. 

➢ It is observed that the dense dislocation clouds and twins in fine grain ZTA composite 

can absorb energy and liberate stress through mechanical contact and assist to the rise in 

wear transition resistance of ZTA microstructure. In summary, introduction of internal 

compressive stresses, reduction of grain size and inhibition of internal tensile stresses 

notably contribute in modification of wear transition resistance. 
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3 Experimental procedure 

3.1 Powder characterization 

Two main metal oxides have been used for this study. The first one was high purity alumina 

(Al2O3, KTP-50, Sumitomo Chemical Co.) which was produced by the hydrolysis method and 

was composed of uniform and homogenous fine powder.  

The second one was biomedical grade 3 mol. % yittria stabilized tetragonal zirconia (ZrO2, TZ-

3Y-E, Tosoh Corporation) and is selected for this study due to its high purity and quality. Based 

on the supplier report, this product shows superior sintering properties and sintered bodies 

manufactured by this type of zirconia exhibit a fine crystal grain structure.  

In addition to these powders, high purity ternary and quaternary additives were used including 

chromium (ІІІ) oxide (Cr2O3, Aldrich) and strontium carbonate (SrCO3, Aldrich). 

3.2. Colloidal dispersion of powder 

Mixtures of alumina and zirconia, with two oxide additions were processed by the colloidal 

dispersion method, Table 3.1. 

Table 3.1. Compositions and nomenclature of the materials studied. 

Nomenclature Composition 

ZTA ~ 83 vol. % Al2O3, ~ 17 vol.% ZrO2 

ZTA-Additives ~ 82 vol. % Al2O3, ~ 17 vol.% ZrO2,0.3 vol.% Cr2O3, 0.7 vol.% SrCO3 

Biolox® delta (Commercial) ~ 82 vol. % Al2O3, ~ 17 vol.% ZrO2,0.5 vol.% Cr2O3, 0.5 vol.% SrO 

 

Mixture of alumina, chromium (ІІІ) oxide and strontium carbonate was attrition milled in a 

Teflon lined jar with 2 mm alumina balls and milled at ~ 450 rpm for 4 hours. The slurries were 

filtered to separate the milling media and then dried in freeze dryer for two days at a 

temperature of -40ºC and a pressure of ~0.1 Mbar (~10 Pa). The fluffy dried powder was 

crushed in an agate mortar and sieved through a 45 µm stainless steel mesh. The sieved powders 

were then calcined at 1050ºC for 6 hrs to decompose strontium carbonate, which resulted in 

the production of CO2, and completed the reaction between alumina (Al2O3) and strontium 

carbonate (SrCO3) to produce strontium hexa-aluminate (SrAl12O19) and also form Al2O3-

Cr2O3 solid solution. Subsequently the calcined powder was mixed with zirconium oxide 
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(ZrO2). To form a homogenous ZTA-additives microstructure, stabilization of the colloidal 

suspension was performed through the following sequential steps. 

About 160 ml distilled water, ~0.2 g citric acid as a dispersant and a few drops of ammonium 

hydroxide as a pH adjuster were added to a batch of ~65 g mixture of powder. Due to the high 

stability of suspension in alkaline environment, pH ~9.5 was chosen in this study. A constant 

mixture of the suspension was ensured using a magnetic stirrer, during the experiment, to avoid 

sedimentation of powder. Subsequently, the prepared suspension was placed in a Teflon lined 

jar with alumina balls and milled again at ~ 450 rpm for 4 hrs. The slurries were then filtered 

to remove the milling media, dried in freeze dryer for two days at a temperature of -40ºC and 

a pressure of ~0.1 Mbar (~10 Pa). The fluffy dried powder was crushed and sieved through a 

45 µm stainless steel mesh. The final powder was calcined again at 600ºC for 2 hrs to remove 

citric acid and ammonium hydroxide. 

Similar procedures were used to make the ZTA composite, although a few steps were excluded 

due to the absence of additives. The slurry was made by mixing ~ 65 g of alumina and zirconia 

together with the same type and amount of the dispersant and the pH adjuster. Subsequently, 

the powder was milled, freeze dried, crushed, sieved and thermally etched at 600ºC for 2 hrs. 

3.3 Thermal analysis of powder- TGA/DTA 

Concurrent measurement of both mass (weight) change (TGA) and heat flux (DTA) were 

carried out using a TA Instruments Q600 SDT, UK. The advantage of this machine was the 

simultaneous recording of both mass change and energy change which enables the user to 

analyse the data more quickly and straightforwardly. In this study, TGA/DTA was used to 

identify the temperature at which SrCO3 decomposes and the temperature at which solid 

solution between two other metal oxides forms. The as-received alumina was used as a 

reference and thermally analysed under the same heating profile for comparison. 

Powder (alumina-additives) was obtained by attrition milling, followed by freeze drying, 

crushing and finally sieving to ~ 45 µm. Approximately 45 mg of the sample was weighed and 

heated up to 1400 ºC at a rate of 10 ºC/min under the flow of air.  
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3.4 Particle size distribution (PSD)  

The particle size analysis was performed in distilled water (wet dispersion) to reduce the 

amount of agglomeration. A Malvern Mastersizer 3000 was used to measure particle sizes 

ranging between 0.01µm-2 mm. In this technique, a laser diffraction method was used which 

measures the angular variation in intensity of the scattered light, after the laser beam hits a 

dispersed particle. As shown in Figure 3.1, large particles scatter light in smaller angles 

compared to small particles. 

 

 

 

 

 

 

 

 

Figure 3.1. Illustration of light scattering upon collision with small and large particles [208]. 

The angular scattering intensity data creates the scattering pattern, which is then analysed for 

calculation of particle size distribution. To assist full dispersion of particles, ultrasonic 

irradiation was used before sampling and three measurements were carried out for each sample 

to increase the accuracy and consistency of each test. 

3.5 Spark plasma sintering (SPS) 

Spark Plasma Sintering (SPS) was carried out in a FCT System (GmbH, Germany) apparatus 

under a vacuum of 10-4 bar. For all tests about 3 g of powder was loaded into the cylindrical 

graphite die of 20 mm internal and 40 mm external diameter. The graphite punch (20 mm in 

diameter) was mounted at top and bottom of the powder. To protect the powder bed from direct 

contact with graphite punch and wall of the die, a layer of graphite disc with a thickness of ~ 

0.35 mm was used. This layer also helped the release of sample after sintering. Before starting 

the sintering process, the samples were firstly compacted by uniaxial pressing, using a pressure 
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of ~20 MPa. The samples were then heated up to 450 ºC in 3 mins and then they were heated 

to 1200ºC at a heating rate of 100 ºC/min while the pressure was progressively increased from 

~16 MPa to ~51 MPa (16 kN). Subsequently, the temperature was increased from 1200ºC to 

the final sintering temperature at a heating rate of 50 ºC/min. Based on the designed recipe, as 

summarized in Table 3.2, once the specimen reached the ultimate temperature, it was kept 

under a pressure of ~51 MPa, for a specific dwell time. 

 

Table 3.2. Summary of prepared specimen under various temperatures and dwell time. 

Composite ZTA ZTA-Additives 

 

(Max Temperature (ºC), 

Dwell Time (min) ) 

(1350,1),(1350,5),(1350,10) 

(1400,1),(1400,3),(1400,5),(1400,10) 

(1450,1),(1450,3),(1450,5),(1450,10) 

(1470,5),(1470,8) 

(1500,1),(1500,3),(1500,5),(1500,10) 

(1550,1),(1550,5),(1550,10) 

(1400,5),(1400,10) 

(1450,5),(1450,10) 

(1500,5),(1500,10) 

(1550,5),(1550,10) 

Max Pressure (kN) 16 16 

 

3.6 Grinding and polishing 

Grinding and polishing of ZTA-based composites were found to be one of the tricky steps. This 

is due to the high hardness of the specimens and also the rough surface of samples, which stems 

from the graphite adhesion to the top and bottom surfaces of the samples occurring during the 

spark plasma sintering process. The following stages were proposed to obtain a scratch free 

surface, Table 3.3. Grinding and polishing was carried out by EcoMet TM 250 Grinder Polisher-

Buehler. Depending on the grinding stage, the head and platen speed changed between 50-60 

RPM and 150-250 RPM, respectively. The type of head force used was single and the 

corresponding force value changed between 10-20 N depending on the level of grinding or 

polishing.   
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Table 3.3. Grinding and polishing sequential steps of specimens. 

Stage Abrasive Surface and Abrasives Pressure 

N 

Time 

Grinding 

Stage 

Buehler, ApexDGD color,75µm 15-18 Until the graphite is removed 

 Buehler, ApexDGD 

Color,55 µm 

15 Until scratches from previous step 

were removed 

 Buehler, ApexDGD 

Color,35 µm 

15 Until scratches from previous step 

were removed 

 Buehler, SiC Abrasive Paper, P800 15 Until scratches from previous step 

were removed 

 Buehler, ApexDGD 

Color,15 µm 

15 Until scratches from previous step 

were removed 

 Buehler, SiC Abrasive Paper, 

P1200 

15 Until scratches from previous step 

were removed 

 Buehler, SiC Abrasive Paper,  

P2500 

15 Until scratches from previous step 

were removed 

 Buehler, ApexDGD 

Colour, 8 µm 

12-15 Until scratches from previous step were 

removed 

Polishing 

Stage 

Buehler TextMet 1500 cloth, Meta 

DiTM, Monocrystalline Diamond 

Suspension, 6 µm 

12 Until the sample shined 

 Buehler TextMet 1500 cloth, Meta 

DiTM , Monocrystalline Diamond 

Suspension, 1 µm 

12 Until the sample shined 

 

Final 

Polishing 

Stage 

 

Metprep, PSA Backed, with 

Metprep, 0.06 μm Silco® Colloidal 

Silica Suspension 

 

 

12-15 

 

Until scratch free 
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3.7 Thermal etch 

Thermal etching is known as a method to expose and characterize grain boundaries and 

releasing the residual stresses at the specimen surface resulting from grinding and polishing. 

Over-etching needs to be avoided due to grain growth and formation of an excessively rough 

surface. The series of experiments were undertaken at different temperatures. It was found that 

unexpected surface uplift occurred for thermal etching at temperatures higher than 1200ºC. The 

only explanation for this effect was that during spark plasma sintering, the zirconia was 

partially reduced and the oxygen deficiency led to a contraction of the unit cell; re-annealing 

then resulted in the expansion and uplift up of the surface. To avoid the aforementioned 

problems the thermal etch was carried out at 1200ºC for 0.1hrs at the rate of 10 ºC/min.  

3.8 Density measurements  

The density of the samples was measured using the Density Kit (Mettler- Toledo AG, 

Laboratory& Weighing technologies) designed based on the Archimedes’ principal. To 

increase the level of accuracy the measurements were repeated three times. The Density Kit 

determined the density of the solid sample by the aid of a liquid such as water. The Mettler 

aperture measured the density of a sample based on the following relationship: 

𝜌 =
𝐴

𝐴−𝐵
 (𝜌0 − 𝜌𝐿) + 𝜌𝐿                   Eq.3.1 

where ρ is the density of a sample, 𝐴 is the weight of the sample in air, 𝐵 is the weight of the 

sample in water, 𝜌0  is the density of water and 𝜌𝐿 is the density of air (0.0012 
𝑔𝑟

𝑐𝑚3
). 

Measurements were carried out right after the thermal etch when the specimen were at their 

cleanest state.  

3.9 Grain size measurement  

For the determination of the grain size in duplex structures, such as zirconia toughened alumina 

(ZTA), the simultaneous analysis of the volume fraction and grain size of each phase is 

required. The average grain size of both alumina and zirconia was measured by using the linear 

intercept method as explained by Higginson and Sellars [209]. The mean linear intercept length 

for zirconia and alumina are described as follows; 

𝑳
𝑳(𝒊𝒏𝒕𝒆𝒓)𝒊=

𝟐𝑷̅̅ ̅̅ 𝒑 𝑳

𝑵𝑳(𝒊𝒏𝒕𝒆𝒓)

                                 Eq. 3.2 
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where 𝐿𝐿(𝑖𝑛𝑡𝑒𝑟) is the linear intercept length of the second phase (zirconia) , 𝑃𝑝̅̅̅̅  is the point 

fraction, 𝐿 is the length of traverse lines and 𝑁𝐿(𝑖𝑛𝑡𝑒𝑟) is the number of interphase boundaries 

(boundaries between alumina and zirconia). 

𝑳
𝑳(𝑮𝑩)𝒊=

 (𝟏−�̅�𝑷)𝑳

(𝑵𝑳(𝑮𝑩)+
𝑵𝑳(𝑰𝒏𝒕𝒆𝒓)

𝟐
)

                  Eq. 3.3 

where 𝐿𝐿(𝐺𝐵) is the linear intercept length of matrix (alumina), 𝑃𝑝̅̅̅̅  is the point fraction, 𝐿 is the 

length of traverse lines, 𝑁𝐿(𝑖𝑛𝑡𝑒𝑟) is the number of interphase boundaries (boundaries between 

alumina and zirconia) and 𝑁𝐿(𝐺𝐵) is the number of matrix grain boundaries (boundaries 

between alumina and alumina). 

The relative standard errors in measurements of grain size are given by: 

𝑺(𝑳)̅̅ ̅

�̅�
 ≈ 

𝟎.𝟔𝟓

√𝒏
                                    Eq. 3.4  

where �̅�  is the mean linear intercept, 𝑆(𝐿)̅̅̅ is the standard error and √𝑛 is the number of grains 

(measurement). For an accurate calculation, more than 1000 grains were counted and measured 

on each specimen. 

3.10 Hardness-Toughness 

The fracture toughness (𝐾𝑐) and hardness (𝐻𝑉) of the specimens were measured by the macro 

indentation method. This technique was used in this case because it was the most appropriate 

given that the focus of the study was on wear behaviour, which is surface specific. To measure 

the toughness (𝐾𝑐) and hardness (𝐻𝑉), the samples were indented using a standard Vickers 

macro hardness indenter with a load of 10 kg for 10 sec dwell time. About fifteen indentations 

were made on each sample and the average crack lengths and diagonal lengths were measured 

by optical microscopy (Nikon Eclipse LV150, Japan). 
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Figure 3.2-Schematic illustration of macro indentation [210]. 

The average lengths were measured to calculate the fracture toughness by the following 

equation proposed by Shetty et al. [211] and amended by Ponton and Rawlings et al [212]. 

𝑲𝒄 =
𝟎.𝟎𝟑𝟏𝟗𝑷

𝒂𝒍 
𝟏
𝟐

                                           Eq. 3.5 

where 𝐾𝑐 is the indentation toughness, 𝑃 is the load test, 𝑎 is the average half diagonal length 

and 𝑙 is the average crack length. This equation assumes that the crack is a Palmqvist and not 

a radial crack, which has experimentally been shown to be the case for this type of material 

The Vickers hardness was assessed by the equation proposed by the same author. 

𝑯𝑽 =
𝟎.𝟒𝟔𝟑𝟔𝑷

𝒂𝟐                                            Eq.3.6 

3.11 Tribological behaviour 

3.11.1 Lubricant 

Bovine calf serum is one of the common lubricants used in joint simulation tests, although its 

behaviour in wear test of ceramics is not completely understood. Various research has 

demonstrated that the composition of the lubricant plays an important role in an in vitro wear 

test. When using this lubricant, it produces debris structures, wear mechanisms, and surface 

appearances that resemble those of the clinical performances. However various results have 

been published by researchers, which is due to the different chemical compositions that have 

been used. The investigation by Doubleton et al. demonstrated that 50 vol.% new born calf 
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serum solution contains 20 g/L protein that is considered to be within physiological range of 

synovial fluid [213]. The first important consideration is that the protein concentration can vary 

based on the joint examined. For example, in diseased joints the synovial fluids include more 

protein compared to healthy ones. Additionally, in different joints the viscosity of synovial 

fluid varies [214]. To fulfil the purpose of this study, 25 vol.% sterile new born calf serum was 

used, supplied by First Link (UK) Ltd. The total protein composition of this product is 63.3 

g/L, reported by the corresponding company. 

Prior to running the test, the serum solution was diluted with phosphate buffered saline       

(PBS) 1× (0.01 M). PBS contains sodium chloride, sodium phosphate and potassium 

phosphate and behaves as a buffer to maintain the pH constant. This salty solution is non-toxic 

and isotonic to cells. The PBS solution was prepared by dissolving one tablet of Phosphate 

Buffered Saline (Sigma-Aldrich, UK) in 200 mL ultra-pure water (Fisher Scientific, UK) as 

per the manufacturer’s instructions. In addition to phosphate buffered saline, 0.1 wt. % sodium 

azide (Fisher Scientific, UK) was added to serum as an antibacterial additive [215,216] to 

prevent the possibility of bacteria growth and degradation problems at room temperature. The 

viscosity of the prepared solution as a lubricant was ~ 0.0012 Pa.s. 

3.11.2 Wear test equipment 

The lubricated sliding wear tests were carried out on a reciprocating ball on flat UMT 

Tribometer (Centre for Tribology, Inc. USA) at room temperature, using a 25 vol. % new born 

calf serum as lubricant. A high purity alumina ball, 4 mm in diameter, (Oakwade Ltd, UK) 

with a constant roughness of about 5-8 nm, was used as a counter body. 

As illustrated in Figure 3.3, the alumina ball is set up as a counter body in the upper holder 

which is linked to a vertical linear motion system. This system can measure to an accuracy of 

50 nm. For all the tests, the specimen was mounted in the lower liquid chamber using a 

thermosetting wax.  
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Figure 3.3. Schematic image of the CERT UMT reciprocating tribometer (Image taken from 

CERT, US). 

For the purposes of this study, a range of different force sensors, including DFM-0.5 (0.05-5N) 

with a resolution of 0.25 mN and DFM-5 (0.5-50 N) with a resolution of 2.5 mN were used. 

The sensor can make a precise and simultaneous measurement of load and stress in 2D, and 

subsequently transfer feedback to the vertical motion controller and maintain a constant load 

through adjustment of the sample position. All data can be obtained, measured and displayed 

in real time. 

Normal loads of 1 N, 2 N, 4 N, 8 N, 16 N and 32 N with a reciprocating motion of 600 rpm 

and a frequency of 10 Hz (which is equivalent to the velocity of 0.2 m/s) were used. An 
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identical 10 mm stroke length was pre-set for all tests. The duration of reciprocating motion 

was set to 10-12 hrs. Prior to running the sliding wear test, the specimens were ultrasonically 

cleaned with alcohol. Subsequently they were mounted in the clean liquid chamber. Before 

commencing each test, fresh lubricant was injected into the liquid chamber. The UMT 

Tribometer is able to record time and coefficient of friction during the test. These data can be 

then directly used to plot coefficient of friction (COF) Vs time graph to analyse the wear 

behaviour of specimens under the set up condition. 

3.11.3 Lubrication regime 

The lubrication regime involved in the wear process can be identified using the conventional 

Stribeck curve. This curve is the plot of friction coefficient (COF) versus Sommerfeld number 

(Z), Figure 2.17. The Sommerfeld number is a dimensionless parameter which is important in 

lubrication analysis and can be calculated by the following equation; 

𝑍 =
𝜂×𝑣

𝑁
                                       Eq. 3.7 

where 𝜂 is the viscosity of the lubricant (Pa.s), 𝑣 the sliding velocity (m/s) and 𝑁 is the normal 

load (N).  

3.11.4 Wear rate calculation 

The wear rate of a worn sample in a specific lubricant can be calculated from 3D optical profiles 

using the Contour GT. Initially, the area of about 10 cross-sections along a wear track was 

measured in order to calculate the average cross-sectional wear loss area (A). Thereby, the total 

wear loss volume for each wear scar can be assessed by the following equation: 

𝑉 = 𝐴𝐷                                          Eq.3.8 

where A (mm2) is the average area of wear loss and D (mm) is the length of a wear track. 

Eventually, using the Archard theory [217] [218], the specific wear rate 𝑘 (mm3/Nm) was 

determined; 

𝑘 =
𝑉

𝑁𝑆
                                              Eq. 3.9 

where 𝑉 is the volume loss (mm3), N is the applied load (N) and 𝑆 is the sliding distance (m). 
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Figure 3.4. Schematic profile of worn surface taken by Contour GT. 

3.11.5 Contact pressure 

When a sphere of an elastic material such as an alumina ball is pressed by a normal load N over 

a flat surface, i.e. the zirconia toughened alumina composite, contact will take place. The 

magnitude of the stress, pressure and contact area can be calculated by Hertzian contact theory 

[146, 167].  

This contact area between the surface and the counter surface forms a circular area of radius 𝑎 

which can be determined by the following equation: 

𝑎 = (
3𝑁𝑟

4𝐸∗ )1/3                                       Eq.3.10 
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where 𝑟 is the radius, 𝑁 is the load, 𝐸∗ is an elastic modulus and can be calculated by:  

1

𝐸∗ =
(1−𝑣1

2)

𝐸1
+

(1−𝑣2
2)

𝐸2
                               Eq.3.11 

where 𝐸1 and 𝐸2 are Young’s moduli, 𝑣1 and 𝑣2 are Poisson’s ratios and 1 and 2 refer to the 

contacting surface (1) and the counter surface (2). 

The distribution of contact stress over the circular area is not uniform. The value of this stress 

is maximum at the centre point and decreases to zero at the edges. As a result, the following 

relation between max pressure 𝑃𝑚𝑎𝑥 and mean pressure  𝑃𝑚𝑒𝑎𝑛 is as follows;  

𝑃𝑚𝑎𝑥 =
3

2
𝑃𝑚𝑒𝑎𝑛 =

𝑁

𝐴
=

𝑁

𝜋𝑎2 =
1

𝜋
(

6𝑁𝐸∗2

𝑟2 )1/3        Eq.3.12 

In initial contact, it was assumed to have a plane strain condition. Therefore, the maximum 

shear stress 𝜏𝑚𝑎𝑥 was determined by: 

  𝜏
𝑚𝑎𝑥=

𝑃𝑚𝑎𝑥
3.3

                                                Eq.3.13 

which was formed under the surface at a depth of 0.48𝑎: 

  ℎ𝑚𝑎𝑥=0.48𝑎                                                  Eq.3.14 

 

3.12 Wear scar characterization 

3.12.1 Contour GT 

Wear tracks resulting from reciprocating wear tests were analysed by an optical interferometer, 

Contour GT-K1 (Veeco Instrument, US). Contour GT is a non-contact, non-destructive method 

that provides cross sectional profile measurements of the wear scar and facilitates 

understanding of friction and other wear mechanisms. The Contour GT family is equipped with 

the software called Vision 64TM which addresses specific and complicated measurements. 

Through this software, 3D analysis of the surface and the wear scar can be easily achieved, 

Figure 3.5. 

The size of the wear scar changed significantly as a function of applied load and the 

composition of the specimens. Therefore, the operating parameters of the Contour GT needed 

to be changed, for example, back scan, length or illumination (white-green) to collect the 
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required data. In this study mainly white illumination, VSI mode and objective lenses of 2.5x 

-50 x were used. The back scan and length were correspondingly varied between 10-20 µm. 

To calculate the wear loss, each wear scar was measured at 10 different points along the track 

and an average was taken. 

Figure 3.5. Typical schematic of Counter GT [219].Stitching profile of wear scar under 8N load 

in  ZTA-additives. 

3.12.2 Atomic force microscopy (AFM) 

Atomic force microscopy can provide 3D images of specimens at the nano-scale where 

standard optical microscopy is not able to operate. In this study, the topographic and friction 

information of the surface and the wear scar is acquired using Dimension 3100 scanning probe 

microscope (Veeco Instruments, US) operated in contact mode. 

In contact mode, the probe is in permanent contact with the surface while scanning, Figure 3.6. 

Once the tip comes to the contact with surface, it is deflected which is directly proportional to 

the normal load on the probe. In this study, a silicon nitride probe with the following 

specification of cantilevers was employed, Table 3.4. 

Silicon nitride cantilevers have a low spring constant which leads to the deflection of the 

cantilever under small loads. The amount of deflection of the probe can be assessed through 

laser signal changes in photodiode quadrants that is reflected back to a detector. In order to 

keep the bending of the cantilever invariable, a Z-feedback circuit is used. The role of this 

circuit is to change the vertical position (z) of the scanner vertically while the topography of 

the surface varies during the scanning.  
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Table 3.4. Specification and schematic of Pyrex Nitride probe for contact mode of AFM [220]. 

Pyrex Nitride Probe – Silicon Nitride- Triangular Cantilevers 

Cantilever type Cant. 1 Cant. 2 

Thickness  (µm) 0.5 0.5 

Length  (µm) 100 200 

Width (µm) 2×13.5 2×28 

Resonance Frequency ( kHz) 67 17 

Force constant (N/m)  0.32 0.08 

  

 

Figure 3.6. Schematic of contact mode in AFM [221]-3D image of ZTA taken by AFM. 

3.12.3 Raman spectroscopy 

In this study, Raman Spectroscopy was used to characterise the wear scar and reveal the 

possible formation of a carbonaceous layer upon decomposition of the lubricant. This technique 

also assisted in assessing the phase transformation of zirconia that possibly took place during 

wear, Figure 3.7. 
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Raman spectra were obtained through using a Renishaw inVia Raman microscope with a green 

Ar laser (514.5 nm) passing through the objective lens of 50x. It was powered up to 20 mW 

and focused on a ~ 3µm spot. 

The microscope was connected to a computer controlled stage and was able to record data by 

the software programme “WiRE 3.4”.  The collected spectra were in the range 100-1600 cm-1 

and depending on the specimen, the number of accumulations and exposure time changed 

between 1-2 and 10-20s, respectively. 

 

 

 

Figure 3.7. Typical Raman spectra of Biolox® delta under 32N load representing monolithic 

alumina (A), monoclinic (m) and tetragonal (t) phase of zirconia. 

3.12.4 Scanning electron microscopy (SEM) 

Scanning electron Microscopy (SEM) was used to characterize both the surface and wear scars. 

To do this, field emission gun scanning electron microscope, Inspect F50 (FEI Company, 

Netherlands) was used. Prior to the test, the specimens were carbon coated to form a conductive 

layer on the surface and mounted on an aluminium stub. Subsequently, the specimens were 

analysed with an accelerating voltage of 5-15 kV, and a working distance of ~10 mm. 
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3.12.5 Focused ion beam (FIB) microscopy 

To examine the sub-surface microstructure of worn surfaces, Focused Ion Beam Microscopy 

(FIB) was used. In this technique, a focused beam of accelerated Ga+ ions were employed to 

impinge the specimen with high energy density and thus directly remove hard material.  So, a 

very thin and electron transparent layer of sample is achievable through this technique. For the 

purpose of this study, FIB technique was used to prepare site-specific TEM specimens, Figure 

3.8. 

 To protect the section of interest from being damaged by the Ga+ ions beam, the surface was 

coated with a layer of gold and carbon respectively. Gold coating covers the worn area and 

creates a barrier between carbon coating and a possible carbonaceous layer, which might have 

been left by the lubricant. These layers also provide electrical conductivity and prevent 

charging. In this study, Helios NanoLab G3 UC (FEI, USA) was employed to prepare the 

specimens (TEM foil) from the sub-surface of a wear track. In Addition to the protective double 

layers of gold and carbon, E-deposition and Pt layer deposition was done to protect the area of 

interest from Ga+ ions damage.  

 

Figure 3.8. Schematic of FIB [222]. 

Subsequently, in order to make two trenches with a depth of more than 7 µm at each side of 

the deposition, the sample stage was tilted 52º to be perpendicular to the ion beam, Figure 3.9 

(c). To mill the trenches, a high ion current of 5-20 nA followed by a low ion current of 1-3 nA 
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was used. Once the foil thickness reached ~ 1µm, the stage holder tilted back 7º to cut through 

the foil and leave a small tab by which the foil was still attached to the bulk specimen, Figure 

3.9 (d). Afterwards, the stage holder returned to 0º and an Omni probe micromanipulation tool 

was inserted and brought into contact with the foil. At this point the Omni probe and right-hand 

edge of the foil were milled together by carbon deposition (2 µm × 2 µm), Figure 3.9 (e). After 

milling away the small tab, the Omni probe was retraced and the foil was lifted out. The lifted 

foil was then attached with carbon deposition to a TEM copper grid which was placed into the 

FIB chamber. Subsequently the connecting point between the Omni probe and foil was milled 

away and left the foil attached to the copper grid. Finally, polishing and thinning at each side 

of the foil was performed with progressively smaller ion beam currents and the final cleaning 

and polishing was performed with a 30 pA current. After the thinning and polishing step, the 

thickness of the foil was less than ~100 nm, Figure 3.9 (f). 
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Figure 3.9. a) Pt E-deposition. b) Pt deposition. c) Two trenches at each side of the deposition. d) 

Omni probe levelled with foil. e) Omniprobe milled to the foil. f)  Thinned specimen. 

3.12.6 Transmission electron microscopy (TEM) 

Transmission electron microscope (TEM) is a technique in which high electron beam is 

employed through ultra-thin specimens (less than 100 nm) to form an image. This technique is 

able to reveal the crystal structure, phase, morphology and defects within the specimen with an 

atomic resolution. In this study, an FEI Tecnai T20 with an accelerating voltage of 200 kV and 

a Philips EM420 operating at 120 kV were used to characterise the morphology of the worn 

tracks using FIB specimens. 
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4 Ceramic processing 

4.1. Powder dispersion  

In SEM micrographs, Figure 4.1 (a-d), three distinct regions are discernible. The first one was 

from when the material was distributed and the other two are when there was aggregated 

zirconia (white regions) and alumina (darker regions). These images represent the dispersion 

of ZTA under different processing conditions in term of milling time, dispersant and pH 

environment, Figure 4.1 (a-d). 

In Figure 4.1 (a-b), nitric acid (HNO3), as a dispersant and a pH adjuster, was being used to 

adjust the pH of the working area to an acidic environment in which the pH is ~ 4.5. In Figure 

4.1(c), no dispersant or pH adjuster were used and this batch, similar to the two previous 

batches (Figure 4.1 a-b), was attrition milled for 7 hrs at 450 rpm.  SEM micrograph 4.1 (d), 

shows a sample that was ball milled for 7 hrs in nitric acid at pH ~4.5. In all processing 

conditions presented in Figure 4.1(a-d), the slurry solid solution was around ~ 28 wt. % and 

they were dried by oven, at temperature ~ 80˚C.  

In Figure 4.4 (a-b), the optimum condition to obtain a homogenous sample was employed as 

explained in part 3.2. As illustrated in Figures 4.2 and 4.3, citric acid shifts the isoelectric point 

(IEP) to the right, for both alumina and zirconia. Thus, zeta potential reached its highest value 

at a pH range of 8 to 10. As shown by Shen et al. [223] , the addition of 1 wt.% citric acid to 

zirconia  shifted IEP to a pH lower than 2.5, securing a high repulsive negative potential of 

around 60 mV for a wide range of pH (Figure 4.3). Studart et al. [224] used 0.236 mg/m2 of 

citric acid to disperse calcined alumina. With this amount of dispersant, IEP of alumina was 

effectively shifted from approximately 10 to a pH in the range of 4-6. This consequently 

resulted in a high negative zeta potential of ~ 40 mV in a pH ranging between 8 to 10. In this 

study, to determine the required quantity of citric acid, the total surface area of particles was 

calculated. 
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Figure 4.1. a) ZTA additives sintered at 1450ºC-5 min. b) ZTA-additives sintered at 1450ºC-10 

min. c) ZTA sintered at 1400ºC-5 min. d) ZTA 1450ºC-5 min. 

Subsequently, the amount of citric acid absorption per m2 in a specific pH was estimated from 

the literature, for both alumina and zirconia particles [223,225]. The pH of the working 

environment was adjusted to ~ 9.5 by ammonium hydroxide. About 0.2 g of citric acid, as a 

dispersant, is believed to cover the entire particle surface area at this pH. Figures 4.2 and 4.3, 

taken from two different studies, show the behaviour of alumina and zirconia while they are in 

neutral, acidic and basic environment. 
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Figure 4.2 Zeta potential as a function of pH of calcined alumina without dispersant and in the 

presence of citric acid. Graph taken from [224]. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Zeta Potential of the as received, de-agglomerated Meso tetragonal zirconia as a 

function of the pH. Graph taken from [223]. 
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Figure 4.4 SEM micrographs of a) ZTA sintered at 1450ºC -5 min b) ZTA-additives sintered at 

1500ºC-5 min. 

4.2 Thermal analysis TGA/DTA 

The appropriate selection of the treatment temperature and time is of a great importance as it 

affects the composite powder features including the amount of particle agglomeration, second 

phase distribution and size. Figure 4.5 gives Differential Thermal Analysis (DTA) and Thermo 

Gravimetric Analysis (TGA) on alumina-additives (Cr2O3 and SrCO3) and shows few 

endothermic peaks in region A, and exothermic peaks in regions B and C. The corresponding 

mass loss for the whole process up to 1400ºC was ~ 0.55 wt.%. The TGA curve, Figure 4.5, 

shows a gradual and small weight loss of ~0.33 wt.% in region A between ~100ºC-720ºC. 

Subsequently, region B, between ~750ºC-1200ºC, exhibited a 0.08 wt.% weight loss. Finally, 

region C ranged at temperatures between ~ 1350ºC-1400ºC showed almost no mass loss 

accompanied by an exothermic peak, Figure 4.5.  

Figure 4.6 shows the behaviour of pure alumina, as received, under thermal analysis and was 

employed as a reference to explain the data in region A. As shown in Figure 4.6, these 

exothermic peaks occur between ~0-450ºC and accompanied by a weight loss of ~0.85wt.%. 
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Figure 4.5. TGA/DTA of Al2O3 and additives. 

 

Figure 4.6. TGA/DTA of Al2O3.  
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4.3 Particle size analysis  

  To improve the densification of the final sample, a mixture of different particle sizes is 

beneficial. When fine particles are present in the green body, they can occupy the empty spaces 

between large particles and assist in obtaining a high density compact. 

  In this project, the mixture of ZTA-additives powders went through a double calcination 

procedure, with different temperatures and dwell times, to get rid of the unwanted gasses 

formed during the decomposition stages. To understand the effect of calcination temperature 

and time, the particle distribution analysis was run to compare the particle size of the powder, 

before and after calcination. 

 

Figure 4.7. Particle size distribution of ZTA-additives in different preparation stages before SPS 

 In Figure 4.7, the black curve, labeled as alumina-additives before calcination represents the 

mixture of Al2O3, SrCO3, and Cr2O3 that went through attrition milling followed by freeze 

drying. The alumina-additives after calcination at 1050˚C for 6 hrs is shown as the red curve. 

The third graph, (the green curve) tagged as ZTA-additives before calcination, represents the 

point at which the ZTA- additives were milled and freeze dried. The last curve, labelled as 

ZTA-additives after calcination (the blue curve), is after calcination at 600˚C for 2 hrs. The 
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cumulative statistics of particle size distribution for the powders before and after calcination 

are shown in Table 4.1. D10, D50 and D90 are representative of the particle sizes at which 10%, 

50%, and 90% of the total volume of particles were smaller than, respectively. 

Table 4.1. Particle size analysis of the ingredients of the final powder mixture at different stages 

of production by laser diffraction method. 

Composite D10 D50 D90 

Al2O3 with SrCO3, and Cr2O3 before Calcination, Size (µm) 3.39 21.0 38.6 

Al2O3 with SrCO3, and Cr2O3 after Calcination, Size (µm) 20.1 59.0 114.0 

Al2O3 with SrCO3, and Cr2O3 after Calcination, Size (µm)- Ultrasonic 1.41 18.9 54.6 

ZTA with SrCO3, and Cr2O3 before Calcination, Size (µm) 2.33 20.4 39.5 

ZTA with SrCO3, and Cr2O3 after Calcination, Size (µm) 12.3 27.3 49.6 

ZTA with SrCO3, and Cr2O3 after Calcination, Size (µm) - Ultrasonic 1.34 14.3 32.8 

ZTA after Calcination, Size (µm)-Ultrasonic 1.56 15.5 37.9 

 

All tests summarized in Figure 4.7 were obtained using the stirrer at 2000 rpm to prevent the 

settling of powders. For two samples, labelled as alumina-additives after calcination and ZTA- 

additives after calcination, another set of tests were performed under the same conditions, but 

with the addition of an ultrasonic agitator. As shown in Figure 4.8, the curves shifted to smaller 

sizes, after using ultrasonic for approximately 60s. As summarized in Table 4.1, D50 for 

alumina- additives after calcination dropped from 59.0 µm to 18.9 µm and for ZTA- additives 

after calcination shrank from 27.3 µm to 14.3 µm. 

Figure 4.9 shows the particle size distribution comparison between ZTA and ZTA-additives, 

with the ultrasonic being used. Under the same condition, D50 for ZTA and ZTA- additives is 

measured at ~ 15.5 µm and ~14.3 µm, respectively. 
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Figure 4.8. Particle size distribution of alumina-additives after calcination and ZTA- additives 

after calcination. 

Figure 4.9. Particle size distribution of ZTA and ZTA-additives before SPS. 
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4.4 Properties of sintered specimens made by spark 

plasma sintering 

4.4.1 Density 

 The recorded shrinkage curves for ZTA sintered at 1470ºC for 8 min holding time and ZTA 

with the oxide dopants sintered at 1500ºC for 5 min, are shown in Figures 4.10 and 4.11, 

respectively. 

Figure 4.10. The shrinkage behaviour of ZTA during spark plasma sintering up to 1470ºC. 

For both samples, the heating rate of 100 ºC min-1 was used up to 1200 ºC and then 50 ºC     

min-1 was used up to the final temperature. Once 1200 ºC was achieved, the pressure was 

increased starting from 5 KN rising to 16 KN at the final temperature. Under these sintering 

conditions, the ZTA shrinkage started at ~1223ºC, reached the maximum shrinkage rate at 

~1345 ºC and finished at 1470 ºC (Figure 4.10). However, in the ZTA-additives specimen the 

shrinkage initiated at ~ 1181ºC, reached its highest value at ~1294 ºC and completed at 1405ºC 

(Figure 4.11). It is worth mentioning that L0 is the thickness of the powder bed at room 

temperature. The results show that the main densification was completed in 2 min. 
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Figure 4.11. The shrinkage behaviour of ZTA -additives during spark plasma sintering up to 

1500ºC. 

Tables 4.2 and 4.3 show the variation of density versus temperature and holding time. The 

higher the temperature, the better the densification. For example, in ZTA at 1400 ºC-5 min, the 

relative density measured by the Archimedes method was about 95% of the theoretical density 

and it reached full densification at 1450 ºC-10 min.  Despite the fluctuations in density as the 

temperature rose, the general tendency was an increase in the density with temperature. In 

contrast, the sample with dopants exhibited a density of ~98% TD at 1400 ºC-5 min which is 

about 3% more than the corresponding density in the ZTA-additives sample. The SEM 

micrographs in Figure 4.14 (a) and 4.15 (a), confirm the difference in densification of these 

two samples sintered under the same conditions. As summarized in Table 4.3, for the ZTA-

additives, almost full density was obtained at 1500 ºC-5 min, although there was a minor 

reduction in density above this temperature on increasing the final temperature and soaking 

time. Figures 4.12 and 4.13 show the evolution of final density for both ZTA and ZTA-

additives, respectively. 
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Table 4.2. Density of sintered ZTA in various temperatures/dwell time measured by 

Archimedes’ method. 

Temperature(°C)-Dwell (mins) Density (g/cm3) ± Std dev 

1400-5 4.148± 0.041 

1400-10 4.171±0.011 

1450-5 4.302±0.006 

1450-10 4.342±0.014 

1470-8 4.340±0.016 

1500-5 4.309±0.026 

1500-10 4.337±0.029 

1550-5 4.335±0.019 

1550-10 4.328±0.0308 

Table 4.3. Density of sintered ZTA-additives in various temperatures and dwell time measured 

by Archimedes’ method. 

Temperature(°C)-Dwell (mins) Density (g/cm3) ± Std dev 

1400-5 4.272±0.002 

1400-10 4.278±0.003 

1450-5 4.286±0.001 

1450-10 4.341±0.001 

1500-5 4.341±0.046 

1500-10 4.296±0.003 

1550-5 4.301±0.004 

1550-10 4.276±0.003 

Biolox® delta 4.350±0.001 

 

4.4.2 Grain size 

The grain size was measured with the mean linear intercept method on SEM micrographs of 

both Al2O3 and ZrO2, after being sintered by SPS. For different sintering temperatures, the 

measured grain size along with the calculated standard error (Equation 3.4) are presented in 

Table 4.4 and 4.5 for both ZTA and ZTA-additives, respectively. As expected, once the 

temperature and dwell time rose, the grain size of both alumina and zirconia gradually 

increased. However, compared with other temperatures, there seems to be a big jump in the 
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Al2O3 grain growth, particularly at 1550 ºC-10 min. At 1400ºC, the ZTA composite was still 

highly porous, as confirmed by the SEM micrographs 4.14 (a-b) and density measurements 

(Table 4.2) and hence, grain size measurement for both alumina and zirconia was impossible. 

At temperatures between 1450-1500ºC for holding time of 5, 7 and 10 min, alumina and 

zirconia grain sizes reached ~ 300 nm and ~ 200 nm, respectively. At 1500 ºC- 10 min the 

alumina grain size increased to ~ 500 nm. Nonetheless, a substantial change was not observed 

in the size of the zirconia particle. 

Table 4.4. Grain size of sintered ZTA specimens in different temperatures and dwell time 

calculated by the linear intercept method. 

Temperature(°C)-Dwell (mins) Al2O3 Grain size (nm) ± Std dev ZrO2 Grain size (nm) ± Std dev 

1400-5 Porous Porous 

1400-10 Porous Porous 

1450-5 354±68 186±34 

1450-10 397±34 231±42 

1470-8 363±56 226±70 

1500-5 383±27 250±31 

1500-10 522±35 279±31 

1550-5 468±38 341±85 

1550-10 805±42 489±124 

Table 4.5. Grain size of sintered ZTA-additives specimens in different temperatures and dwell 

time calculated by the linear intercept method. 

Temperature(°C)-Dwell (mins) Al2O3 Grain size (nm) ± Std dev ZrO2 Grain size (nm) ±Std dev 

1400-5 274±16 177±31 

1400-10 302±17 193±27 

1450-5 304±11 178±12 

1450-10 306±18 180±14 

1500-5 349±31 233±18 

1500-10 421±28 313±25 

1550-5 774±56 357±44 

1550-10 920±94 465±89 

 Biolox® delta 520±82 453±131 
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At 1550°C- 5 min, there was a minor reduction in the alumina grain size compared to 1500 ºC- 

10 min, implying the more significant impact of time over temperature. In addition, the zirconia 

the particle size increased slightly at this temperature. Finally, at 1550°C- 10 min, the alumina 

grain size almost doubled in size compared to 1550°C- 5 min and reached ~ 800 nm. Zirconia 

grains, on the other hand, increased in size from 100 nm to ~500 nm. With the ZTA- additives, 

in contrast to the ZTA, samples were densified to ~98% TD at 1400°C- 5 and 10 min. This is 

in agreement with the results obtained from the shrinkage curve. Hence, the composite was 

dense enough to measure the grains of both alumina and zirconia. At temperatures below 

1500°C- 5 min, the size of alumina and zirconia grains reached ~ 300 nm and 200 nm 

respectively. At 1550ºC-10 min, grain growth of alumina and zirconia accelerated faster and 

reached ~900 nm and ~ 450 nm, respectively. 

 

Figure 4.12. Density and grain size evolution of ZTA plotted versus sintering temperature with 

varied dwell time. 
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Figure 4.13. Density and grain size evolution of ZTA-additives plotted versus sintering 

temperature with varied dwell time. 

4.4.3 Microstructural features using scanning electron microscopy 

(SEM)  

Figure 4.14 (a-i) and Figure 4.15 (a-h) show SEM micrographs of ZTA and ZTA-additives 

SPSed under a pressure of 51 MPa at temperatures ranging between 1400ºC-1550ºC and 

soaking time of 5 and 10 min. Figure 4.15 (i), shows the microstructure of Biolox® delta.  The 

dark grains and whitish grains are representative of Al2O3 and ZrO2, respectively. Based on 

these micrographs, the average grain size of the ZTA, ZTA-additives and Biolox® delta was 

estimated by the linear intercept method at different temperatures and is tabulated in Tables 4.4 

and 4.5, respectively. These SEM images also provide useful information about the 

densification and shape of grains.  

Figures 4.14 (a-b) show microstructures of ZTA at 1400ºC-5 min and 1400ºC-10 min which 

contained considerable amount of voids and interconnected pores. At the higher temperature 

of 1550ºC-10 min (Figure 4.14(i)) more isolated pores were observed at mainly triple and four- 

grain junctions. 
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In contrast, in ZTA-additives, the absence of voids and other microstructure irregularities was 

evident, at 1400ºC. However, isolated pores mainly in grain boundaries, triple and four- grain 

junctions were observed in Figure 4.15 (g) at 1550ºC-5 min. As shown in Figures 4.14 (a-i) 

and 4.15 (a-i), the main difference between the microstructures of ZTA and ZTA-additives was 

the existence of platelet grains in ZTA-additives composites, marked by rectangles in the SEM 

micrograph 4.15 (a). Besides, the number of alumina grains with exaggerated grain growth was 

more noticeable in ZTA-additives compared to ZTA.   

The red circles on Figure 4.14 (i) are indicative of intergranular pores mainly at triple junctions. 

It was also observed that ZrO2 particles were either faceted-shaped or distributed between 

alumina particles as well as triple and four-grain junctions (intergranular) or be approximately 

spherical and located inside alumina grains (intragranular). ZrO2 particles located in four-grain 

junctions and intragranular positions are marked by rectangles and arrows respectively, in SEM 

micrograph in Figure 4.14 (i). 
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Figure 4.14. SEM micrographs of ZTA sintered at a) 1400ºC-5 min b) 1400ºC-10 min c) 1450ºC-

5 min d) 1450ºC-10 min e) 1470ºC-8 min f) 1500ºC-5 min g) 1500ºC-10 min h) 1550ºC-5 min. i) 

1550ºC-10 min. 
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Figure 4.15. SEM micrographs of ZTA with additives sintered at a) 1400ºC-5 min. b) 1400ºC-10 

min. c) 1450ºC-5 min. d) 1450ºC-10 min. e) 1500ºC-5 min. f) 1500ºC-10 min. g) 1550ºC-5 min. h) 

1550ºC-10 min. i) Biolox® delta. 

4.4.4 Mechanical behaviour-Vickers hardness and fracture 

toughness 

Subsequent to optimisation of procedures to achieve the desired grain size and density, 

measurement of hardness and toughness is of great importance. The fracture toughness and 

Vickers hardness of zirconia toughened alumina (ZTA), zirconia toughened alumina with 

ternary and quaternary oxide dopants and Biolox® delta commercial samples were measured 

by Equations 3.5 and 3.6 respectively and the results were summarised in Tables 4.6 and 4.7. 

Vickers hardness along with fracture toughness of ZTA are presented in Table 4.6.  The table 

shows that fracture toughness of ZTA fluctuates between 5.27-5.43 MPa.m1/2 and the 

corresponding hardness changes between 17.91 and 18.62 GPa, at temperatures ranging 

between 1450ºC and 1550ºC. Table 4.7 shows the variation of fracture toughness and Vickers 

hardness for ZTA additives and Biolox® delta. Once ternary and quaternary additives are 

included in a composite of ZTA, the range of hardness and fracture toughness differs between 
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16.44 and 18.3 GPa and 5.15 and 5.66 MPa.m1/2 respectively. As shown in Table 4.7, in the 

ZTA-additives specimens, the evolution of fracture toughness (5.15-5.66 MPa.m1/2) and 

reduction of Vickers hardness is more noticeable compared to the ZTA as the temperature rises. 

As shown in Tables 4.6 and 4.7, the reduction of Vickers hardness in ZTA-additives with 

temperature is more evident than the ZTA, although, the enhancement of fracture toughness in 

ZTA-additives compared to ZTA was not appreciable. To prepare Biolox® delta as a reference 

specimen, the same procedure was employed for this specimen, to evaluate the corresponding 

Vickers hardness and fracture toughness.  

Table 4.6. Fracture toughness and Vickers hardness of the sintered ZTA specimens in various 

temperatures and dwell time. 

Temperature(°C)-Dwell (mins) Vickers Hardness  
(GPa)± Std dev 

Fracture Toughness 
 (MPa.m1/2)±Std dev 

1450-5 18.48±0.21 5.32 ±0.08 

1450-10 18.59±0.41 5.39±0.09 

1470-8 18.62±0.39 5.43±0.07 

1500-5 17.93±0.45 5.30±0.09 

1500-10 18.25±0.34 5.35±0.07 

1550-5 18.13±0.36 5.36±0.06 

1550-10 17.91±0.35 5.27±0.06 

Table 4.7. Fracture toughness and Vickers hardness of the sintered ZTA- additives in various 

temperatures and dwell time. 

Temperature(°C)-Dwell (mins) Vickers Hardness  
(GPa)± Std dev 

Fracture Toughness 
 (MPa.m1/2)±Std dev 

1400-5 18.12±0.53 5.15±018 

1400-10 17.96±0.38 5.33±0.07 

1450-5 17.90±0.35 5.30±0.09 

1450-10 18.30±0.40 5.45±0.14 

1500-5 17.65±0.3 5.66±0.12 

1500-10 17.75±0.27 5.50±0.04 

1550-5 16.90±0.46 5.61±0.17 

1550-10 16.44±0.50 5.51±0.24 

Biolox® delta 17.04±0.37 5.61±0.12 
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5 Tribological behaviour 

5.1 Zirconia toughened alumina lubricated with 25 vol. % 

new-born calf serum solution 

5.1.1 Lubrication regime definition 

In order to assess the wear mechanisms that a real hip joint experiences in a body, the reciprocating 

sliding wear was employed to simulate some of the wear mechanisms observed in vivo. However, 

the reciprocating tests do not represent the full range of damage which takes place in the body. In 

order to understand the behaviour of materials in the reciprocating test, which is partly indicative 

of the hip joint motion, it is essential to understand which lubrication regime is occurring under 

the various test conditions. The data can then be compared with the other published literature to 

provide more details about the performance of these biomaterials in a body. 

The first period of the sliding motion is the onset of wear between two fresh surfaces and is called 

the “unsteady state wear” or the “running in” state which is often only briefly commented on or is 

even disregarded. In this stage, the coefficient of friction (COF) shows large fluctuations and the 

surface experiences the highest damage. The next stage of sliding motion is called “steady state” 

in which coefficient of friction is relatively stable and quantitatively lower than “running in” state. 

Figure 5.1, 5.13, 5.14 and 5.29 show typical variations of COF versus time for ZTA, ZTA-

additives (1), ZTA-additives (2), and a commercial specimen (BIOLOX ®delta), respectively. In 

these graphs, for the 32 N load, the corresponding sliding motion is divided into two sections by a 

black vertical arrow and is labelled by “R” and “S” in each side standing for “running in” and 

“steady” state. At other loads, the horizontal arrow points to the steady state period. 

For the ZTA specimen, the fluctuation of the coefficient of friction (COF) versus time at various 

loads ranging between 1 N-32 N is shown in Figure 5.1. Depending on the load, the length of 

“running in” stage differs. For instance, at 1 N, 2 N, 4 N, 8 N, 16 N and 32 N the length of “running 

in” period are estimated to be ~8 min, ~19 min, ~11 min, ~10 min, ~11 min and ~54 min, 

respectively. As shown in Figure 5.1, 32 N represented the most extensive erratic behaviour at the 

start of the test. As marked by the vertical red line in Figure 5.1, the 8 N graph is divided into two 

sections in which the average COF of the first part is estimated to be ~0.10 ± 0.03 and after 7 hrs 

(the red line), it falls down to 0.06 ± 0.04. 
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Figure 5.1. 3D illustration of the COF Vs time for the ZTA at different loads tested in 25 vol. % 

Bovine serum at 600 rpm for 10 hrs. 

 

Table 5.1. Summary of the average COF corresponding to each load in ZTA. 

Force (N) Coefficient of friction  Sommerfeld (Z) 

1N 0.14±0.04 2.4E-04 

2N 0.07±0.02 1.2E-04 

4N 0.03±0.01 6.0E-05 

8N 0.10±0.03 
*0.06±0.04 

3.0E-05 

16N 0.05±0.03 1.5E-05 

32N 0.09±0.06 7.5E-06 

 

In a lubricated reciprocating wear test, coefficient of friction is affected by the sliding speed V, 

lubricant viscosity η and applied load N. The combination of these three parameters yields a unique 

dimensionless parameter called the Sommerfeld number (Z); 
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𝑍 =
𝑉𝜂

𝑁
 

The summary of the average COF values (of the lubricated reciprocating sliding test, at various 

loads, during ~10 hrs at 600 rpm) and the calculated Sommerfeld numbers are shown in Table 5.1, 

for the ZTA specimen. 

The Sommerfeld number plotted against the COF is called a “Stribeck” curve. This curve provides 

an overall view of the behaviour of a lubricant throughout the sliding and assists in explaining the 

role of the wear mechanisms involved, during the motion of the counterfaces, Figure 5.2. 

 Figure 5.2. Stribeck curve for the ZTA in 25 vol. % Bovine serum lubricated wear test. 

In this curve, there seems to be two dominant lubrication regimes present. In the right part of the 

curve, an increase in the Sommerfeld number is accompanied by an increase in COF. This is 

representative of the full fluid film regime and presumably the domination of the tribo-chemical 

mechanism at 1 N and 2 N. Section 5.1.3.2 will provide more information to determine the 

operating regime in this region. On the left side of the curve, a decrease of the COF was observed 
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when the Sommerfeld number increases, indicating the presence of a mixed lubrication regime. 

However, there exists an unexpected jump at 8 N making the curve slightly noisy. For the ZTA 

specimen, the lowest and the highest measured values of the average COF were 0.14 ± 0.04 and 

0.03 ± 0.01, respectively. 

5.1.2 Wear behaviour 

5.1.2.1 Specific wear rate  

The specific wear rates of the ZTA specimen as a function of the applied load (in Bovine serum 

lubricated reciprocating wear tests) are given in Figure 5.3. The general trend is an increase in the 

specific wear rate while each load doubles compared to the previous one. As displayed in Figure 

5.3, there is an insignificant difference of the specific wear rate between 1 N and 2 N. However, 

there was a notable change in specific wear rate of about an order of magnitude in increasing the 

load to 4 N. Interestingly, the specific wear rate at 4 N, 8 N and 16 N remained at almost the same 

order of magnitude. Surprisingly, an abrupt and noticeable jump of about two orders of magnitude 

was observed as the load was increased to 32 N. Thus, for this material, the difference between the 

lowest and the highest values of the specific wear rate were over three orders of magnitude, namely 

3.73 ± 0.57×10-9 mm3/Nm and 6.31 ± 1.22×10-6 mm3/Nm, which were associated with the 2 N and 

32 N load, respectively. 
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Figure 5.3. Specific wear rate of the ZTA using 25 vol.% Bovine serum solution lubrication. 

5.1.2.2 Contact stress 

The initial contact parameters for each individual load were calculated using the Hertzian contact 

theory. This theory predicts of the resulting contact area, maximum contact pressure, maximum 

shear stress and the depth of the maximum shear stress. As presented in Table 5.2, depending on 

the applied load, the maximum contact pressure varied between 1252.4MPa - 3976.2 MPa. The 

main deformation on the surface occurs through the initial contact stresses, though their 

corresponding magnitude decreases substantially in the first few minutes of the motion [226]. The 

difference in the wear scar widths, in various specimens, is established within the first few minutes. 

Subsequently, the experiment continues at much lower contact pressures, at a value that depends 

on the lubricant [226]. With the assumption that the elastic moduli and the Poisson’s ratios of the 

three specimens, zirconia toughened alumina (ZTA), zirconia toughened alumina with additives 

(ZTA-Additives) and the commercial (BIOLOX® delta) are similar, the same initial contact stress 

is calculated for all three specimens. 
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Table 5.2.  Initial contact stress for ZTA, ZTA-additives and BIOLOX® delta in the lubricated 

reciprocating wear tests under various loads. 

Object A- High purity alumina ball                                                                       Shape=Sphere 

                                                                                                                                   Radius (Ra)=2 mm 

                                                                                                                                Elastic modulus =400 GPa 

                                                                                                                  Poisson ratio=0.25 

Object B- BIOLOX ®delta                                                                                     Shape=Flat 

                 ZTA                                                                                                          Elastic modulus=358 GPa 

                 ZTA and additives                                                                                  Poisson’s ratio=0.25 

 

 

Initial 

Contact 

Normal Load (N) 1 2 4 8 16 32 

Calculated Contact Radius (mm) 0.0195 0.0245 0.031 0.039 0.049 0.062 

Max Hertzian Contact Pressure (MPa) 1252.4 1577.9 1988.1 2504.8 3155.9 3976.2 

Max Shear Stress (MPa) 402.9 507.6 639.5 805.8 1015.2 1279 

Depth of Max Shear Stress (mm) 0.009 0.011 0.014 0.018 0.023 0.029 

 

5.1.3 Characterisation of worn surface 

5. 1.3.1 General surface morphology by Contour GT  

Reciprocating wear tests created linear wear tracks at all six loads. One of the techniques employed 

to image these scars was Contour GT which provided 3D images of the worn surfaces. Figures 5.4 

(a-f) display images from the centre and one tail of the wear scars which are stitched together. The 

width of the scar for both 1 N and 2 N was ~150 µm. A few parallel grooves existed within these 

scars that seemed to be very shallow, for which no trace of wear debris was observed. So, it can 

be inferred that the full fluid film regime was operative at these loads. At 4 N, the formation of a 

few grooves was discernible and the depth of the deepest one inside the wear scar was less than 1 

µm. In addition, extensive wear debris deposits were observed along the wear track and at the 

leading edges. Although the volume loss at 8 N was about two times more than at 4 N, more wear 

debris were observed at 4 N. Unlike 8 N and 4 N, no undulations were observed within the wear 

scar at 16 N, with a small intermittent distribution of wear debris evident at the edges and along 

the scar. Finally, at 32 N, the measured volume loss detected by VSI mode of contour GT was 

substantially higher compared to the lower loads, with little evidence of wear debris. 
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Figure 5.4. Profilometry images of the wear tracks taken by Contour GT at (a) 1 N, (b) 2 N, (c) 4 N, 

(d) 8 N, (e) 16 N, (f) 32 N for the ZTA specimen under lubricated reciprocating wear test during 10 

hrs. 
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5.1.3.2 Worn surface topographic feather by SEM and AFM     

Conventional SEM along with the Atomic Force Microscopy (AFM) were employed to explore 

the wear mechanisms involved within the wear tracks. “2D” (SEM) and “3D” (AFM) images are 

presented in Figures 5.6 (a-f), showing the morphology of worn surfaces under various loads 

ranging between 1 N - 32 N for the ZTA. The morphology of the original surface before wear test 

is shown in Figure 5.5. 

For the ZTA composite tested at 1 N, sparsely distributed and comparatively small pits were 

observed which were formed as a result of grain pull out (black circle in Figure 5.6 (a)). In addition 

to the pits, a few parallel grooves were obvious (white arrows) in the direction of the sliding 

motion. The depth of these grooves reached ~10 nm in some cases and the average measured 

roughness of the worn scar was ~ 2.8 nm at this load, measured by AFM. 

At 2 N, Figure 5.6 (b), more grain pull-out (black circle) was observed compared to 1 N. Similar 

to 1 N, parallel wear scars (white arrows) were evident on the direction of the sliding motion but 

the depth of these scars were not the same. The largest depth of the pull out, observed for this load, 

was ~20 nm (red arrow). The 3D AFM images for this load represent some degree of “grain relief” 

or “differential wear” at both 1 N and 2 N (white circle). The approximate average Ra for this wear 

track was ~3.4 nm. 

The SEM micrograph for a load of 4 N, Figure 5.6 (c), revealed more changes in the morphology 

of the surface, compared to 1 N and 2 N. As shown in Figure 5.6 (c), multiple transgranular fracture 

or cleavage fracture in alumina grains was clearly evident, which was accompanied by the 

initiation of chipping in alumina grains (blue and red rectangle). Blue arrows in Figure 5.6 (c) 

point to the formation of a transgranular fracture within an alumina grain. The red circle in the 

same SEM image marks a large pit, containing a zirconia grain protruding out of the surface, while 

almost all of its surrounding grains no longer exist. The 3D AFM image, Figure 5.6 (c), evidenced 

the formation of the bigger pits (black circle) due to the connection of smaller ones. A careful 

observation of these pits at different angles revealed the accumulation of wear debris inside some 

of these pits (red circle). Also noticeable was the height difference of about 13 nm between the 

marked grain (red arrow) with its adjacent grains (red arrow). The comparison between the SEM 

micrograph and the 3D AFM image confirms the nature of the grains standing proud of the surface 



Chapter 5- Tribological behaviour  

 

  103 

to possibly be zirconia. Similar to the lower loads, an outline of the grain boundaries was still 

identifiable for this scar which would suggest that differential wear existed between grains. The 

largest depth formed by grain pull out was ~ 80 nm for this scar and the average Ra was ~ 4.6 nm.   

At 8 N, Figure 5.6 (d), the SEM of the microstructure of the worn surface was almost similar to 4 

N in which large pits, coupled with intergranular and transgranular fracture of alumina grains (red 

circle) were apparent. Unlike 4 N, the chipping of zirconia grains was more discernible at this load 

(red rectangle). Also, a single zirconia grain is detectable inside the large pit which was the only 

grain that survived in that region (blue rectangle). In the AFM image, Figure 5.6 (d), the parallel 

grooves were also detected, with the highest depth reaching ~12 nm, and the severity of the worn 

areas was similar to 4 N, with an average roughness of ~ 4.4 nm. 

Under 16 N load, Figure 5.6 (e), the surface looked more featured, with an increased amount of 

pitting and transgranular fractures (black circle). Also, a few parallel scars with different width 

values were noticeable which were indicative of a third body abrasion (white arrow) resulting from 

third body abrasive particles with various shapes and sizes. The SEM micrograph of the same 

image shows the area at which the grain boundaries started to disappear (blue rectangle) under a 

high Hertzian contact pressure of ~ 3156 MPa. The chipping of both alumina (blue circle) and 

zirconia (blue arrow) are labelled in the SEM micrograph, as well as the accumulation of debris in 

a fairly large pit next to the elongated grain (red circle). In addition, a random spread of debris or 

tribo-layer over the surface was detected within the wear track in different locations (black 

rectangle). It is worth mentioning that the height difference between neighbouring grains, in some 

areas, could be due to the presence of tribo-layer on some of the grains, marked by white circle in 

the AFM image, Figure 5.6 (e). Interestingly, the height difference between grains was more 

conspicuous in the region where zirconia agglomerations are formed (black rectangle, SEM 

image). The 3D AFM images displayed an average roughness of ~ 4.3 nm for this load. 

Figure 5.6 (f) shows a very different worn surface at 32 N, compared to the lower loads, which is 

in line with the specific wear rate calculated at this load. The surface is heavily pitted and the 

remaining grains are featured by a significant amount of transgranular fracture. As shown in the 

SEM micrograph, Figure 5.6 (f), the cleavage fracture and chipping (mainly on alumina grains) 

were the most explicit features on the surface. The blue arrow points to the grains that are ready to 

be liberated. In the region, labelled as “severe”, in Figure 5.6 (f) AFM, there seems to be a complete 
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rupture of the surface. The depth of the deepest detected pit and the roughness (Ra) of the surface 

were ~ 100 nm and ~ 8.7 nm, respectively. There was evidence of agglomerated wear debris 

scattered over the surface (red circles, AFM). The thickness of these patches was ~ 45 nm at its 

highest. The presence of a crack on top of the tribo-layer was also noticeable within the large voids 

which is marked by a blue rectangle in both SEM and AFM images, Figure 5.6 (f). The white 

arrow on the same image points to the survived elongated grain containing an intragranular 

fracture, while all its neighboring grains have almost disappeared.  

 

 

 

 

 

 

 

 

Figure 5.5. 3D AFM image of the unworn surface in the ZTA. 
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Figure 5.6. SEM and AFM images of the ZTA worn surfaces obtained from serum solution 

lubricated reciprocating wear test under (a) 1 N, (b) 2 N, (c) 4 N, (d) 8 N, (e) 16 N, (f) 32 N loads, at 

600 rpm speed for 10 hrs. 
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5.1.3.3 Phase changes of the worn surface by Raman spectroscopy  

The Raman spectra for the Tetragonal zirconia and ZTA specimens, under loads ranging between 

1 N -32 N, are shown in Figures (5.7) and (5.8), respectively. In addition to these, the spectra of 

the unworn surface and the pure alumina are included for comparison. The letters “t” and “A” 

stand for tetragonal zirconia and alumina, respectively. For the tetragonal phase, six distinguishing 

bands generally exist at 148 cm-1, 264 cm-1, 319 cm-1, 461cm-1, 606 cm-1 and 643 cm-1 which are 

observed in this study and are confirmed by other researchers, Figure (5.7) [227,228]. Among 

these bands, the ones at 148 cm-1, 264 cm-1 and 643 cm-1 were the most discernible ones due to 

their high intensity.  As shown in Figure (5.8), even under a high initial Hertzian contact pressure 

of ~ 3976 MPa, no changes indicating the zirconia phase transformation were observed in the 

Raman spectrum. This is probably due to the small zirconia grain size that could not trigger the 

tetragonal to monoclinic phase transformation. Further explanation is provided in part 6.2.4. 

In the ZTA based composite, two lines at 418  cm-1 and 380 cm-1 were associated with alumina 

[229]. It is worth mentioning that slightly different assignments and Raman band modes are 

attributed to the above lines by various authors [230, 231]. 

 

Figure 5.7. Typical Raman spectra of yttria stabilized zirconia (3Y-TZP). 
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Figure 5.8. Raman spectra of the pure sintered alumina plus worn and unworn surface of the ZTA 

specimen under 1 N-32 N under lubricated reciprocating test. 
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5.1.4 Characterisation of sub-surface by TEM 

Subsurface analysis of the ZTA specimen, prepared by FIB, was performed using TEM. The 

prepared TEM foils were removed from the specimens of the lubricated reciprocating sliding wear 

tests under 8 N load. The locations from which the two TEM specimens were extracted are marked 

in Figures 5.9 (a-b). The overviews of these cross sections are shown in Figures 5.10 (a) and 5.11 

(a) in which just one single crater along each foil was obvious and the boundary between 

subsurface and surface appeared very smooth and flat, Figure 5.10 (b) and 5.12 (a-d). As shown 

in Figure 5.10 (b), the tribo-layer (red arrow) was detected inside a crater, underneath the gold 

layer (blue arrow). As shown in the magnified image, Figure 5.10 (b), the gold layer had almost 

peeled off and just a small part of it was left on top of the tribolayer. The elemental analysis 

demonstrated the presence of Al, Zr, O, Ca, Au and Cu in the tribo-film found in subsurface, Figure 

5.10 (c). More details about the originating sources of these elements are given in part 6.2.5. 

Figure 5.11 (a) shows the overview of another TEM specimen (foil 2) extracted out of the same 

worn track in a different area. As evidenced in Figure 5.11 (b), transgranular fracture was observed 

in a zirconia grain (red arrow) which also propagates along the boundary between the zirconia and 

the alumina and then into the alumina in a transgranular fashion. Interestingly, this subsurface 

fracture was located where the pitting and grain pull out were observed on the surface. As 

evidenced in Figure 5.11 (b) (white arrow), the presence of residual strain in an alumina grain next 

to the fractured zirconia grain is noticeable. If the amount of the residual strain is high enough, it 

can produce deformation in various forms such as dislocation. 

As shown in Figure 5.12 (a-c), there were alumina grains that contained no deformation, while 

adjacent ones that contained significant dislocation activity. In general, a limited amount of plastic 

deformation was observed in alumina grains which were mainly located within the surface grain. 

Additionally, zirconia grains exhibited the mottled contrast in the TEM images which is known to 

be the characteristic of tetragonal zirconia (blue arrow), Figure 5.12 (d). As evidenced in Figure 

5.12 (d), a very smooth surface was formed under ~ 2505 MPa initial Hertzian contact pressure (8 

N) and the red circle highlights the deposition of four layers parallel to the surface protecting the 

subsurface from ion milling and are distinguishable as of their different contrast. The inner dark 

layer is gold and the subsequent coatings on top of the gold layer are carbon coating, Pt E-

deposition and Pt deposition, respectively.   
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Figure 5.9 SEM images exhibit a typical damage pitting on the ZTA worn surface observed from 

lubricated reciprocating wear test under 8 N load for 10 hrs on which the position of two cross-

sections TEM samples prepared by FIB lift-out method are marked. Foil 1 and foil 2 are extracted 

out of one wear scar and labelled with “a” and “b” in above images, respectively. 
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Figure 5.10. (a) Overview of the ZTA TEM cross-section specimen (Foil 1). (b). Bright field TEM 

image of the tribo-film in which the pitting and its corresponding tribo-layer location in nano-scale 

is marked. (c) Elemental analysis taken from this tribo-film.  
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Figure 5.11. (a) The overview of the ZTA TEM cross-section specimen (Foil 2) in which the 

highlighted section displays (b) the bright field TEM image of the transgranular crack on a zirconia 

grain and the white arrow points to the residual strain on the alumina grain neighbouring to the 

fractured zirconia grain. The adjacent image is the magnified figure of the highlighted section. 
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Figure 5.12. Bright field TEM images (a-b) showing alumina grains with no dislocation activity 

observed on the top layer of the ZTA specimen (foil 2) at 8 N load (c) exhibiting alumina grains 

containing occasional dislocations (d) demonstrating a very smooth coating layer between surface 

and subsurface; the blue arrow points to the typical tetragonal zirconia grain.   
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5.2 Zirconia toughened alumina-additives lubricated with 25 

vol. % new-born calf serum solution 

5.2.1 Lubrication regime definition 

Figure 5.13 shows the trend of the COF versus time in the ZTA-Additives (1) specimen for the 

loads spanning 1 N to 32 N. The lowest average COF value of 0.03 ± 0.02 was measured for 2 N 

and the highest value of 0.20 ± 0.03 for 8 N.  It is worth mentioning that the COF Vs time plot for 

8 N is divided into two sections for this sample which is due to the increase of COF after about 4 

hrs. The average COF of 0.06 ± 0.05 for the first part and 0.20 ± 0.03 for the second part was 

measured at this particular load. The estimated “running in” period for 1 N, 2 N, 4 N, 8 N, 16 N 

and 32 N was ~ 9 min, ~7 min, ~9 min, ~17 min, ~9 min and ~92 min, respectively.  

Figure 5.13. The 3D illustration of COF Vs time in the ZTA-additives (1) at different loads tested in 

25 vol. % Bovine serum at 600 rpm for 10 hrs. 

The COF for another specimen with the same composition, ZTA-additives (2), is shown in Figure 

(5.14) and is for loads spanning between 1 N - 8 N. In these graphs, the length of the “running in” 
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period for loads ranging between 1 N-8 N was estimated to be about 8 min, 6 min, 3 min and 8 

min, respectively. As presented in Table 5.3, the highest and the lowest values for the average 

COF in ZTA-additives (2) are 0.08 ± 0.03 and 0.19 ± 0.02 which are corresponding to 2 N and 8 

N, respectively. 

 

Figure 5.14.  The 3D illustration of COF Vs time in ZTA-additives (2) at different loads tested in 25 

vol.% Bovine serum reciprocating wear test at 600 rpm for 10 hrs. 

 

Table 5.3. Summary of the average COF corresponding to each load in ZTA-additives. 

Force (N)  Coefficient of Friction 
ZTA-additives (1)-Sam3 

Coefficient of Friction 
ZTA-Additives (2) 

Summerfeld (Z) 

1N 0.04±0.02 0.09±0.03 2.4E-04 

2N 0.03±0.02 0.08±0.03 1.2E-04 

4N 0.04±0.02 0.10±0.02 6.0E-05 

8N 0.06±0.05 
*0.20±0.03 

0.19±0.02 3.0E-05 

16N 0.11±0.01  1.5E-05 

32N 0.07±0.02 - 7.5E-06 
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The Stribeck curve for the ZTA-additives (1) does not exhibit the typical trend expected for a 

classic Stribeck curve, as the average COF at 32 N is less than the one at 16 N, Figure 5.15. 

However, the trend of this curve is indicative of the operation of the full film lubrication at 1 N 

and 2 N and mixed lubrication at 4 N and 8 N. It is worth mentioning that in order to determine 

the corresponding lubrication mode at each load more accurately, extra information is required 

about the morphology of the worn track for that particular load. Considering this, the results 

provided in part 5.1.3.2 do not confirm the operation of full fluid film mode at 1 N and 2 N. At 

test loads of 16 N and 32 N, although the friction decreased for the higher load, it is still believed 

that this was in the mixed lubrication regime.  A full discussion is given in Chapter 6. 

 

 

Figure 5.15. The Stribeck curve for ZTA-additives (1) in 25 vol. % Bovine serum lubricated 

reciprocating wear test. 
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For the ZTA-additives (2), the COF as a function of Summerfeld number looks more like the 

classic curve, Figure 5.16. The average COF value at 2 N is at its minimum which is the 

demarcation point between the full film and the mixed lubrication modes, Figure 5.16. With this 

explanation, the dominant lubrication regime at 1 N and 2 N appear to be the full fluid film. 

However, the mixed lubrication mode seems to operate at 4 N and 8 N.  

 

Figure 5.16. The Stribeck curve for ZTA-additives (2) in 25 vol. % Bovine serum lubricated wear 

test. 

5.2.2 Wear behaviour 

5.2.2.1 Specific wear rate  

As shown in Figure 5.17, the calculated specific wear rates for ZTA- additives (1) at 1 N, 2 N and 

4 N are 1.2×10-8 ± 4.68 ×10-9 mm3/Nm, 1.79×10-8 ± 4.26 ×10-9 mm3/Nm and 2.47×10-8 ± 2.61 × 

10-9 mm3/Nm, respectively which are all still at the same order of magnitude. It is worth 

mentioning that at the lowest loads of 1 N and 2 N, the measurement of the volume loss to calculate 

the specific wear rate was so small that it was difficult to measure. 
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Almost the same specific wear rate was obtained at 8 N, 2.05×10-8 ± 4.72 ×10-9 mm3/Nm, compared 

to 4 N. At 16 N, the specific wear rate increased up to approximately 4.07×10-8 ± 7.94 ×10-9 

mm3/Nm which was at the same order of magnitude with the lower loads. Eventually, at 32 N the 

specific wear rate increased to 1.69×10-7 ± 2.99×10-8 mm3/Nm, which is about an order of 

magnitude larger compared to lower loads (1 N and 2 N). However, at 32 N the specific wear rate 

was considerably higher, but about an order of magnitude less than the corresponding value for 

the ZTA at the same load. 

 

Figure 5.17. Specific wear rate of ZTA-additives (1) using 25 vol. % Bovine serum solution 

lubrication. 

The specific wear rate for the ZTA-additives (2) for the loads between 1 N-8 N remained in the 

order of 10-8 mm3/Nm, with a slight fluctuation, which is fairly consistent with the specific wear 

rates of the ZTA-additives (1). The slight change in the calculated value of the specific wear rate 

is linked to the fact that wear is a parameter defined by the behaviour and responses of contacting 

bodies in a tribo-system and should not be regarded as a material property [232].  
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Figure 5.18. Specific wear rate of ZTA-additives (2) using 25 vol. % Bovine serum solution 

lubrication. 

5.2.3 Characterisation of worn surface 

5.2.3.1 General surface morphology by Contour GT  

The Contour GT 3D optical microscopy of ZTA-additives (1) is shown in Figures 5.19 (a-f), for 

loads between 1 N - 32 N. These images were obtained at the centre and one edge of the wear 

scars. The colour scale bar next to each scar shows the depth that the microscope had detected at 

each point. As shown in Figures 5.19 (a-b), the depth of the scars progressively increased with 

increase in load. Unlike the ZTA specimen, no undulation was conspicuous inside the wear track 

at 1 N and 2 N. At 4 N, a well-defined wear scar was formed, although no debris was observed 

inside or outside of the wear track, Figure 5.19 (c). On raising the applied load to 8 N, the volume 

loss slightly increased, and the wear debris was apparent along the track, Figure 5.19 (d). In 

contrast to 8 N, debris was detected around the head of the scar at 16 N and the volume loss was 

about three times more than at 8 N, Figure 5.19 (e). In addition to the outer edges along the scar, 

a considerable accumulation of debris was evident at the trailing edges of the scar, Figure 5.19 (f). 
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Due to the close similarities of the morphology of the worn tracks in the ZTA-Additives (2) and 

ZTA-Additives (1), the Contour GT images of ZTA-additives (2) will not be presented. 
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Figure 5.19.  Profilometry images of the wear tracks taken by Contour GT at (a) 1 N, (b) 2 N, (c) 4 

N, (d) 8 N, (e) 16 N, (f) 32 N for ZTA-additives (1) under lubricated reciprocating wear test for 10 

hrs. 
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 5.2.3.2 Worn surface topographic feature by SEM and AFM 

The 3D AFM image of the unworn surface that had been immersed in the bovine serum for 10 hrs 

is shown in Figure 5.20. The occasional and random pitting (white circle) coupled with grooves 

(white arrow), were the most noticeable surface features at the 1 N and 2 N loads, detected by both 

SEM and AFM, Figure 5.21(a-b). At these loads, some level of differential wear seemed to exist 

between grains in some areas. The depth of gain pull outs reached 100 nm in some cases and the 

deepest observed groove was ~ 20 nm for both 1 N and 2 N. The average Ra within the wear tracks 

for 1 N and 2 N was ~ 4.3 nm and ~ 3 nm, respectively. In Figure 5.21 (a-b), the 3D AFM images 

of 1 N and 2 N, marked by a white rectangle and a red circle respectively shows the formation of 

a layer on the surface. SEM micrographs of the 2 N track are good examples in showing the effect 

of pre-existing defects (blue circle) on the initiation and propagation of a crack (white arrows), 

Figure 5. 21(b). Also, the formation of a groove on one side of the crack indicates the release of a 

particle from this region resulting in the 3rd body abrasion and formation of grooves (red arrows).  

At 4 N, no trace of grooves was observed, neither by SEM nor AFM, though the spread of grain 

pull out was evident across the surface, Figure 5.21(c). The continuous grain pull out, which is 

more like the formation of a crack, is shown by black rectangles in 2D and 3D AFM images. 

Similar to the ZTA specimen, the presence of “cleavage fracture” and chipping mainly on alumina 

grains was visible. Also, the intergranular crack propagating along the outline of the elongated 

grain (red arrows) and the formation of the transgranular crack on its neighbouring grain (red 

arrow) can be observed. The presence of the pre-existing defect was also noticeable which did not 

display any sign of the crack initiation like the one observed at 2 N. The deepest grain pull out (red 

arrow) observed by AFM had a depth of ~70 nm and the average Ra in this wear scar reached ~ 

2.9 nm. The 3D and 2D AFM images in Figure 5.21(c) (white rectangle) showed ~14 nm height 

difference of the zirconia grain with its adjacent grains. A layer that covered the surface could also 

be detected and its height changed between 2-5 nm. 

 Unlike the 4 N track, a few random grooves were observed at 8 N, Figure 5.21 (d). The pitting 

and chipping features of the surface were similar to 4 N. The 3D view of this wear scar exhibited 

the height difference between adjacent grains (red circles). The marked region (white rectangle) 

in Figure 5.21 (d) showed the grain relief of around 20 nm between the elongated grain and its 

neighbouring grains. This height difference is not necessarily due to the differential wear and might 
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have other origins that will be discussed in chapter 6. The schematic of the height fluctuation 

profile is given in Figure 5.21(d). The calculated average Ra of this scar was ~2.5 nm which 

displayed limited pitting in an otherwise smooth surface. In general, there was no appreciable 

difference in worn surface features compared to test at 4 N, which is in line with the corresponding 

specific wear rate obtained in part 5.2.2.1. 

At 16 N, numerous shallow and random grooves were observed by SEM and AFM, Figure 5.21(e). 

An identifiable difference between this load and the previous one was the formation of the 

compacted wear debris (red rectangle) within the large pits or the loosely deposited debris (white 

rectangle) on top of the grains, Figure 5.21(e). The 3D AFM image showed that the height of the 

piled-up debris reached ~ 25 nm in some areas (red circle). As these debris accumulations were 

randomly spread across the surface, it was difficult to decide whether the height difference was 

due to the deposition of patches or the grain relief between neighbouring grains. The roll-shaped 

(white circle) feature, formed at this load, was noticeable in the AFM 3D view and this was also 

reported by other authors. The average Ra for this load was measured to be up to ~ 4 nm.   

SEM micrographs of the ZTA-additives (1) specimen showed that, although the amount of pitting, 

inter/intra granular fracture and chipping was higher, the surface still kept its integrity, even under 

the 32 N load which is equivalent to ~3977 MPa of Hertzian initial contact pressure, Figure 5.21 

(f). Similar to 16 N, compacted debris were noticeable on the surface or within the pits (white 

circle). At this load, although a large amount of grain pull out (with an average depth of ~ 100 nm) 

was observed, no grooves were found. The average Ra for this load was ~ 6.7 nm. It is worth 

mentioning that the accumulation of wear debris detected for this specimen was less than the ZTA 

and commercial specimens, Figure 5.21 (f). 
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Figure 5.20. AFM image of the unworn surface of ZTA-Additives (1) soaked in 25 vol. % Bovine 

serum solution. 
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Figure 5.21. SEM and AFM images of ZTA-additives (1) worn surfaces obtained from serum 

solution lubricated reciprocating wear test under (a).1 N, (b).2 N, (c).4 N, (d).8 N, (e).16 N, (f). 32 N 

loads, at 600 rpm speed for 10 hrs. 
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5.2.3.3 Phase changes of the worn surface by Raman spectroscopy 

For both ZTA and ZTA-additives, the Raman spectra of from worn surfaces tested at different 

loads did not show any appreciable difference, although the test at the highest load was the closest 

to the starting surface. By increasing the load, the tetragonal phase was expected to transform to 

the monoclinic phase. However, no sign of phase transformation was observed in any of the tests. 

All the detected peaks in the ZTA-additives specimen belonged to monolithic alumina and 

tetragonal zirconia which are labelled “t” and “A”, respectively, in Figure 5.22. 

 

 

Figure 5.22. Raman spectra of the pure sintered alumina plus spectra of worn and unworn ZTA-

additives (1) specimen under 1 N-32 N using lubricated reciprocating wear test. 
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5.2.4 Characterisation of sub-surface by TEM 

The SEM micrograph in Figure 5.23 shows the location chosen to take the TEM cross section out. 

The TEM overview of the ZTA-additives (1) specimen (worn through lubricated reciprocating 

wear test, under a load of 8 N) is displayed in Figure 5.24 (a). Figure 5.24 (b) gives a bright field 

TEM image showing an intra-granular zirconia particle with significant residual strain around the 

particle in the alumina matrix (white arrow). Some dislocation activity was also observed on the 

neighbouring alumina grains which extended into a platelet grain below (red arrow). Figure 5.24 

(c) shows the corresponding dark field TEM image of the same image. Figures 5.25 shows a few 

positions in which zirconia grains were standing proud of the surface. These protruding grains 

were also detected through AFM. The red arrow points to a zirconia grain that exhibits 

considerable residual strain. Figure 5.26 (a) is the only instance of the monoclinic zirconia found 

in this specimen. As shown in Figure 5.26 (b), this grain also protruded out of the surface, which 

is consistent with AFM observations. In Figure 5.26 (c) the white arrows are pointing to the 

transgranular fractures formed within alumina grains which were located right below the surface. 

The white arrow in Figure 5.26 (d) shows the grain boundary cracking around the alumina platelet. 

There were also some dislocations in the neighbouring alumina grain marked by the red arrow. In 

general, a very limited amount of dislocation activity was observed in this specimen, mainly 

around the intragranular zirconia, Figure 5.24 (b-c).    

 

 

 

 

 

 

 

 



Chapter 5- Tribological behaviour  

 

  133 

 

 

 

 

 

 

 

 

 

Figure 5.23. The SEM image illustrates the region worn by the lubricated reciprocating wear test 

under 8 N load for 10 hrs in ZTA-Additives (1). The marked area is extracted by FIB lift-out to 

prepare the TEM specimen. 

 

Figure 5.24. (a) Exhibits a subsurface overview of the ZTA-additives (1) (b). Bright field TEM image 

of the intragranular zirconia produced residual stress within alumina grain (c). The dark field TEM 

of part (b). 
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Figure 5.25. TEM images showing various locations in ZTA-Additives (1) foil cross-section in which 

zirconia grains standing proud of the surface. The red arrow points to the deformation on the 

zirconia grain. 
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Figure 5.26. (a) Bright field TEM images of the worn surface at 8 N contact load in which (a) shows 

the location of the only monoclinic zirconia found in the ZTA-additives (1) and (b) gives the magnified 

image of the martensite transformation in a zirconia grain. (c) The white arrows point to the 

transgranular fracture on alumina grains. (d) The white arrow shows the grain boundary cracking 

and the red one points to the dislocation activities on the alumina grain. 

 

 

 



Chapter 5- Tribological behaviour  

 

  136 

Figure 5.27 (a) shows a low magnification bright field TEM image of the specimen extracted from 

the ZTA-additives (2) sample in which the exact position of the alumina grain containing the 

dislocation features is specified. Since the deformation caused by the residual stress during the 

wear test appeared mainly at the outermost grain layer (just below the coating), the appearance of 

the single deformed grain, marked in Figure 5.27 (b), is probably not a result of the wear process. 

Rather, it was most probably a result of the thermal expansion mismatch between zirconia and 

alumina which resulted in sufficient stress in the alumina to form a dislocation structure, as seen 

by Valle et al. [233]. Figure 5.27 (c) gives the corresponding dark field TEM image. As shown in 

Figure 5.28, formation of residual stresses around the intragranular zirconia, within the alumina 

matrix, is obvious, regardless of their position in the composite. However, as shown in Figure 5.24 

(b-c), the residual strain was the most around intragranular zirconia, which was inevitably 

intensified due to the contact pressure during the sliding wear. 
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Figure 5.27. (a) Subsurface overview of the ZTA-additives (2) worn under 8 N contact stress. The 

marked section shows (b) the bright field TEM image of the dislocation activity on the alumina grain 

and (c) shows the dark field TEM image of part (b). 
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Figure 5.28. The TEM bright field image of ZTA-Additives (2) showing the residual stress around 

intragranular zirconia grain. 

 

5.3 BIOLOX® delta (Commercial) lubricated with 25 vol. % 

new-born calf serum solution 

5.3.1 Lubrication regime definition 

Figure 5.29 shows the behaviour of the friction coefficient as a function of time at various loads 

for the commercial sample. The “running in” period for 1 N, 2 N, 4 N, 8 N, 16 N and 32 N was 

estimated to be ~7 min, ~9 min, ~3.5 min, ~22 min, ~21 min and ~ 42 min, respectively. Although 

the “running in” period for this sample was accompanied by severe fluctuations in the COF, the 

steady state part was reasonably stable throughout the experiment. As tabulated in Table 5.4, the 

average COF values obtained for 1 N and 32 N were 0.15 ± 0.04 and 0.15 ± 0.03, respectively. 

These are the maximum recorded average of the COF in the commercial specimen. The average 

COF of 0.03 ± 0.02 was the minimum value for this specimen, which was obtained at 2 N.  
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The Stribeck curve is given in Figure 5.30.  It would appear that 1 N and 2 N were run in the full 

film lubrication regime, while at 8 N, 16 N and 32 N were presumably in the mixed lubrication 

mode, although more data points would be required to confirm this. Ignoring the average COF 

value at the 4 N test, the rest of the points fit fairly well into the classical Stribeck curve. 

 

 

Figure 5.29. 3D illustration of COF Vs time in BIOLOX® delta at different loads tested in 25 vol.% 

Bovine serum at 600 rpm for 10 hrs. 

 

Table 5.4. Summary of the average COF corresponding to the equivalent load in the commercial 

specimen 

Force (N) Coefficient of friction Summerfeld (Z) 

1N 0.15±0.04 2.4E-04 

2N 0.03±0.02 1.2E-04 

4N 0.12±0.01 6.0E-05 

8N 0.05±0.02 3.0E-05 

16N 0.09±0.03 1.5E-05 

32N 0.15±0.03 7.5E-06 
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Figure 5.30. Stribeck curve for BIOLOX® delta in 25 vol. % Bovine serum lubricated wear test. 

5.3.2 Wear behaviour  

5.3.2.1 Specific wear rate  

For the BIOLOX® delta, the calculated specific wear rates for the 1 N and 2 N loads were 4.89× 

10-9 ± 1.93×10-9 mm3/Nm and 4.25×10-9 ± 1.28×10-9 mm3/Nm respectively, Figure 5.31. In 

contrast to the ZTA-additives and similar to the ZTA, the specific wear rates of BIOLOX® delta 

under 1 N and 2 N loads were in the order of 10-9 mm3/Nm. As mentioned in part 5.2.2.1, 

measurement of the volume loss and the corresponding specific wear rate was not accurate at low 

loads, because of the shallow depths and undefined shape of the wear tracks.  

 As shown in Figure 5.31, the specific wear rates at 4 N and 8 N were almost the same, and this 

value was about one order of magnitude greater than 1 N and 2 N. At 16 N the specific wear rate 

increased to 1.53× 10-7 ± 2.85 × 10-8 mm3/Nm. Finally, at 32 N, equivalent to ~3976 MPa initial  

Hertzian contact pressure, the calculated specific wear rate was 4.68× 10-7 ± 6.01 × 10-8   mm3/Nm. 
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This was the same order of magnitude as in the case of the ZTA-additives (1) specimen, but about 

one order of magnitude less than ZTA.  

 

Figure 5.31. Specific wear rate of BIOLOX® delta using 25 vol. % Bovine serum solution lubrication. 

5.3.3 Characterisation of worn surface 

5.3.3.1 General surface morphology by Contour GT 

The Contour GT optical profiles for different loads ranging between 1 N - 32 N are displayed in 

Figures 5.32 (a-f). It can be seen that at 1 N there was a little change in the morphology of the 

surface compared to the starting surface, Figure 5.32 (a). The difference between the worn surface 

and the neighbouring unworn area was more distinguishable at 2 N, where the amount of volume 

loss slightly increased, Figure 5.32 (b). The wear scars became continually deeper and wider as 

the contact load increased. At 4 N the wear track transformed to a more defined region compared 

to the 1 N and 2 N tests, though no trace of wear debris were evident, Figure 5.32 (c). At 8 N a 

few parallel grooves were evident inside the wear track and a small amount of debris was detected 

at the edges, Figure 5.32 (d). The volume loss at this load was about three times more than the 4 

N track. At 16 N, the highest volume loss occurred and the presence of wear debris along the scar 
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and trailing edges were more apparent, Figure 5.32 (e). Under the 32 N load, the largest change in 

terms of the width and depth was observed. Also, the volume loss increased dramatically and 

reached a value about four times more than the previous load, Figure 5.32 (f).  
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Figure 5.32. Profilometry images of the wear tracks taken by Contour GT at (a) 1 N, (b) 2 N, (c) 4 

N, (d) 8 N, (e) 16 N, (f) 32 N for BIOLOX® delta under lubricated reciprocating wear test during 10 

hrs. 
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5.3.3.2. Worn surface topographic feature by SEM and AFM 

The 3D AFM image of the unworn surface is given in Figure 5.33. At 1 N, the surface was filled 

with grooves with various depths and widths which were located in close vicinity of each other, 

Figure 5.34 (a). Also noticeable was the increased number of the grooves in this specimen, 

compared to the ZTA and ZTA-Additives at the same load. Besides, the depth of the grooves (red 

arrows) and grain pull outs (white circle) reached ~100 nm and ~200 nm, respectively, which were 

much larger values compared to the other specimens, Figure 5.34 (a). Also evident was the trapped 

wear debris inside the grooves (white arrows). The average Ra for this load reached ~3.7 nm.  

However, at 2 N the large pits (white rectangle) were the most predominant and noticeable features 

of the surface, Figure 5.34 (b). These pits were possibly the results of a few large interconnected 

grain pull outs, amounting to a highest observed depth of 200 nm. The 3D AFM image showed a 

large and deep void in which a very small fraction of the grains remained (red circle). In addition 

to grain pull outs, random and scattered grooves (white arrow, AFM) were observed across the 

surface, with a depth of 50 nm and the average Ra at this load was measured to be up ~ 5.2 nm. 

The SEM micrograph in Figure 5.34 (b) shows the grains that have lost their supporting neighbours 

and were about to be liberated (white circle). The red arrow in the same micrograph points to a 

groove, sourced from the large pitting, which is indicative of a 3rd body abrasion. 

At 4 N, chipping was quite explicit on both alumina (white arrow) and zirconia grains (red arrow) 

in the SEM micrograph, Figure 5.34 (c). However, neither cleavage fracture nor chipping was 

observed on zirconia grains of other specimens at this load. No grooves were evident by either 

SEM or AFM, though the 3D view revealed grain relief next to the small void (red circle). Also 

evident was the intergranular crack that presumably originated from a grain pull out and was 

stopped after travelling along two grains (white arrow, AFM), Figure 5.34 (c). The blue arrow in 

the same micrograph points to the small fragments and debris trapped inside the pits. The average 

Ra of ~ 5.2 nm was measured for this load.  

The SEM micrograph in Figure 5.34 (d) for the test at 8 N exhibited more severe chipping in the 

alumina grains than at 4 N (white arrow). Also visible was a transgranular crack which had 

propagated through an alumina grain (red circle) and also a few fragments which were confined 

inside the pits (white arrow). The AFM height image at the same load exposed some traces of 
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grooves on the grains. In some regions, grain pull out seemed quite deep, ~ 130 nm, while in other 

areas, it appeared that only the top layer of the surface was removed. Also, there were numerous 

grains that stood proud of the surface and their height reached 24 nm (white and black circles). 

The measured average Ra in this scar reached 14 nm, which is quite different with the Ra of the 

same load in the other specimens. 

At 16 N, chipping and transgranular fracture on both zirconia and alumina grains were conspicuous 

(white arrow), Figure 5.34 (e). Also, compacted debris was detected inside the pits (red circle, 

SEM micrograph), as well as a grain pull out with a depth of ~ 54 nm, along with grooves with a 

depth of ~ 23 nm. 

Under 32 N, the surface was broken and had lost integrity in some regions, Figure 5.34 (f). Also 

noticeable was the formation of a thick surface layer in some regions, presumably due to the 

accumulation of debris and possibly proteinaceous species. As marked in Figure 5.34 (f), a few 

cracks existed on the aforementioned layer. Similar to 16 N, the pilled-up areas of debris were 

evident on the worn surface, as well as inside the pitted areas. The 3D view of this track showed 

that the thicknesses of these layers and the average Ra were ~ 30 nm and ~10 nm, respectively.  

The SEM microstructure in Figure 5.34 (f) is divided into three sections. The first section shows 

the boundary region of the 32 N scar and the accumulation of wear debris. Region 2 shows the 

part of the wear tack which appeared to be untouched, as no pitting and grooves were visible in 

this region. However, there was a surface layer on the unworn surface region, marked by a black 

rectangle, which was presumably an accumulation of wear debris. Region 3 exhibited severe wear. 

The height AFM image also shows the difference in the surface morphology of the adjacent regions 

at 32 N, Figure 5.34 (f). 
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Figure 5.33. AFM image of the unworn surface in the BIOLOX® delta. 
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Figure 5.34. SEM and AFM images of BIOLOX® delta worn surfaces obtained from serum 

solution lubricated reciprocating wear test under (a). 1 N, (b). 2 N, (c). 4 N, (d). 8 N, (e). 16 N, (f). 32 

N loads, at 600 rpm speed for 10 hrs. 
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5.3.3.3 Phase Changes of the Worn Surface by Raman Spectroscopy  

The main difference in the Raman spectra of the commercial specimen and the others was the 

appearance of monoclinic peaks. In Figure 5.35, in addition to the six defined tetragonal peaks, 

four extra peaks were detected. The doublet peaks at 180 cm-1 and 190 cm-1 are the main 

characteristic lines of the monoclinic zirconia [228, 234]. The monoclinic peaks are marked and 

labelled by “m” in Figure 5.35. Besides the doublets, the line at 476 cm-1 was the most 

distinguishable peak, due to its high intensity. Under the 4 N load, which is equivalent to a 1988 

MPa of initial Hertzian contact pressure, another peak for the monoclinic phase present at 335    

cm-1. This looks more like a shoulder and is marked by “*”, in Figure 5.35. However, this peak 

gradually transformed into a full peak at 32 N. 

 

Figure 5.35. Raman spectra of the pure sintered alumina plus spectra of the worn and unworn 

Commercial specimen under 1 N-32 N under lubricated reciprocating test. 
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5.3.4 Characterisation of sub-surface by TEM 

As shown in Figure 5.36, a fairly rough area was used for subsurface analysis of the commercial 

specimen (worn under 8 N load, through the lubricated reciprocating test). Although the selected 

surface was filled with extensive grain pull out, the prepared TEM foil revealed a single crater in 

an otherwise smooth subsurface, Figures 5.37 (a-b). Unlike the ZTA and ZTA-additives, this 

specimen included twining features on zirconia grains (red arrows) Figures 5.38 (a-b). Also, some 

minor dislocation activity was observed in alumina grains. As shown in Figures 5.37 (a-b), no 

tribo-layer was detected in this specimen, though a region with bright contrast existed beneath the 

gold coating inside a crater and seemed to be filled with wear debris.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.36.  The SEM image shows the region worn by the lubricated reciprocating wear test under 

8 N load for 10 hrs in the BIOLOX® delta. The marked area was extracted by FIB lift-out to prepare 

TEM specimen. 
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Figure 5.37 (a). The subsurface TEM image of the BIOLOX® delta showing the pitting area 

containing wear debris (b). The magnified image of the marked section in part (a). 

 

Figure 5.38 (a-b). Bright field TEM images of the worn surface in BIOLOX® delta at 8 N contact 

load. The red arrows point to the monoclinic zirconia grain revealing martensitic features.  
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6 Discussion 

6.1 Ceramic processing  

6.1.1 Powder dispersion  

There could be three reasons for the heterogeneity of the specimens shown in Figures 4.1(a-d). 

One possibility is that the attrition milling method is not effective enough, leaving agglomerates 

originating from the starting powder intact. Therefore, at the start, the milling media, the shaft and 

the tank were renewed and several milling conditions (milling duration and speed) were tried.  

Another possibility is that these agglomerations form during the drying stage in the oven. During 

drying, water evaporates resulting in a rapid increase in the ionic strength of the suspension, 

destabilizing the slurry and provoking agglomeration. To avoid this, the drying oven was replaced 

by freeze drying to help the formation of a homogenous composite. 

In addition, to improve slurry stabilization, electrostatic stabilization through various chemicals 

such as nitric acid, ammonium citrate, citric acid and ammonium hydroxide were investigated. 

Through stabilization by nitric acid (pH ~4.5 as proposed by Gutknecht et al. [75]) satisfactory 

results were not obtained, Figures 4.1(a-b, d). This might be related to the low amount of powders 

in the distilled water used (~28 wt.%) and/or the fact that, at low pH values, alumina would slightly 

dissolve and, after drying, it would re-precipitate, connecting the particles, resulting in the 

formation of agglomerates [235,236]. In Figure 4.1 (c), no dispersant was  used and hence due to 

the domination of the van der Waals attraction force, agglomerations were formed [43]. 

Finally, through numerous tests and considering the results taken from the literature, the optimum 

stabilization conditions were discovered, as explicitly explained in part 3.2, and a homogenous 

microstructure composite was obtained, as exhibited in Figures 4.4 (a-b).  

As depicted in Figures 4.2 and 4.3, adsorption of citric acid on the oxide powder surface, shifts the 

isoelectric point to a lower pH range (acidic) leading to an increase in the negative zeta potential 

at a certain range of pH. As shown in Figures 4.2 and 4.3, by using citric acid a negative zeta 

potential was achieved almost in both acidic and basic range. But, an alkaline environment was 

chosen for this study because in an acidic environment the yttria (used as a stabilizer for the 

tetragonal phase in zirconia) is partially dissolved [237]. As a result, the amount of the stabilizing 
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dopant would decrease which might lead to a local surface change in zirconia [238] and 

destabilization of the tetragonal phase [239]. 

The investigation shows that citrate anions have strong affinity to be adsorbed on alumina and 

zirconia surfaces [223, 225,240]. As reported by Hidber et al., the hydroxyl group of the citric acid 

molecule contributes to both the adsorption ability of the citric acid molecule, particularly in the 

neutral and basic pH ranges, and also to the increase of a negative surface charge [225]. It is well 

documented that the adsorption of citric acid on the surface of alumina takes place through a ligand 

exchange of a hydroxyl group for a carboxylate group on the surface of the particle. In addition, 

the adsorption of citrate anions depends on the pH value and its effect on the deprotonation. By 

increasing the pH, the three carboxyl groups on the molecule would be deprotonated one by one, 

and when all were deprotonated, it would have the highest charge. When attached to the particle, 

the higher the charge of one molecule, the more negative charge on the surface of particle would 

be. The amount of the adsorbed citrate depends on the particle size, geometry and more 

importantly, the surface area. Under these circumstances, the adsorbed anions can impart 

electrostatic stabilization of the particles. It is worth mentioning that the presence of a large amount 

of unabsorbed citrate in the slurry leads to an increase of ionic strength and consequently on the 

suspension viscosity [225].  

6.1.2 Thermal analysis (TGA and DTA) 

The TGA graph, Figures 4.5 and 4.6, displayed a rising trend, up to around 50º C, meaning the 

weight of the powders were increasing. The reason for this behaviour is after freeze drying, the 

fine and fluffy powders have large and active surface areas which can absorb moisture very 

quickly. Hence the natural hydroscopic property of powders gets intensified after freeze drying 

and powers are more prone to absorb moisture from the air at the beginning of the test. 

As presented in Figure 4.5, the first stage of analysis covers temperatures up to ~720˚C and 

involves a few steps of mass loss of ~ 0.33 wt. %. The first assumption was that the DTA peaks in 

this stage were related to the desorption of absorbed organics in alumina, probably added by the 

manufacturer. Thus, as received pure alumina was used as a reference to test this theory. As shown 

in Figure 4.6, a few exothermic peaks were detected, spanning between ~0-450ºC and 

accompanied by 0.8 wt. % loss, which might be correlated to the desorption of organic impurities 
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in alumina. So, by comparing Figure 4.5 Part A and Figure 4.6, it appears that these peaks are 

correlated to another chemical or physical reaction. 

Another theory correlates these peaks to the partial dihydroxylation of alumina [241]. Alumina is 

known to be super hydrophilic. Therefore, during the freeze-drying process, a portion of alumina 

adsorbs water and can transform to Al(OH)3 (Gibbsite) or AlOOH (Boehmite). The small weight 

loss detected by TGA indicates that a small amount of alumina had possibly gone through this 

transformation. Wafer et al. has shown the DTA pattern of Al(OH)3 [241] which is compatible 

with the peak in region A around 318ºC.  The complete dihydroxylation was carried out between 

550-720ºC. As shown in Figure 4.5, through the entire dihydroxylation process, approximately 

0.33 wt. % loss was recorded. 

Subsequently, from ~750ºC-1200ºC, a very small exothermic peak was observed which is 

representative of the decomposition of SrCO3(Figure 4.5, region B [242–244]. Beyond this region 

around ~1300ºC, an exothermic peak was observed which can be attributed to the solid solution 

formation of Al2O3 and Cr2O3 (Figure 4.5, region C) [245]. 

6.1.3 Particle size analysis  

The particle size analysis was run after each stage of powder production, to investigate the effect 

of calcination time and temperature on particle size, hence it should not be considered as a 

representative of actual particle size (Figure 4.7). As summarized in Table 4.1, after employing an 

ultrasonic agitator for ~ 60 s, the D50 of alumina-additives and ZTA-additives after calcination 

(Figure 4.8) was reduced about 3 and 2 times respectively, compared to the situation in which 

ultrasonic had not been used (Figure 4.7). The reduction of particle size through applying 

ultrasonic agitation is indicative of the existence of soft and loose agglomeration that starts 

breaking up upon ultrasonic use. 

As explained in part 3.1, the as received Al2O3 and ZrO2 powders were in the nano range, so 

agglomeration can easily occur due to the high surface energy of this kind of nano-materials, 

leading to a reduction of this high surface energy. In addition, the particle size analysis was 

performed without using any dispersant, so the existence of soft agglomeration is unavoidable. 

Ultra-sonication does not change the interaction balance, it only provides energy to overcome 
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attraction forces in order to de-agglomerate. Therefore, the existence of soft agglomeration is still 

more likely to happen. 

Figure 4.9 shows that under the same experimental conditions, the particle size of ZTA is about 

1µm larger than ZTA-additives which can be attributed to the fact that ZTA-additives, as explained 

in part 3.2, have gone through milling twice. These results (smaller grain size in ZTA-additives) 

also demonstrate the reason behind earlier initiation of shrinkage in ZTA-additives.  

6.1.4 Spark plasma sintering process  

6.1.4.1 Parameters controlling density 

6.1.4.1.1 Effect of temperature and time on density 

The data shown in Tables 4.2 and 4.3 clearly demonstrate that with the sintering conditions 

employed and depending on the constituents of samples, a fully compacted composite is 

achievable at temperatures above 1450ºC with 8 and 10 min holding time. However, it has been 

reported by different authors that fully densified alumina compacts, and also zirconia specimens, 

are achievable at lower temperature around 1150ºC. This discrepancy can be explained through 

various sintering conditions including holding time, applied pressure, heating rate, pulse sequence 

current and also pre-sintering condition of raw powders. 

It has been previously reported that a ZTA composite with submicrometer-sized alumina and 

zirconia powders, mixed via different procedures such as wet chemical methods (e.g. sol gel 

processing, pressure filtration and slip casting [246,247]) can be fully densified through 

pressureless sintering above 1500 ºC for several hours. This signifies the effectiveness of spark 

plasma sintering, which markedly lowers the holding time required. Figures 4.10 and 4.11 show 

that the utmost recorded shrinkage rate in ZTA- additives and ZTA reaches ~ 0.009 S-1, 0.003 S-1, 

respectively. In addition, the onset of shrinkage in ZTA-additives is observed at 1181ºC and is 

shifted to ~1223ºC for ZTA. The shrinkage curves show that ZTA- additives specimens experience 

more shrinkage (~ 0.009 S-1) and occurring at ~ 42 º C lower when compared to ZTA specimens. 

This behaviour might be related to the smaller staring particle size of ZTA-additives compared to 

ZTA, and/or is due to the presence of chromia and strontia. 



Chapter 6- Discussion  

 

  158 

In theory, the density of a specimen should increase by the addition of Cr2O3 and SrO, because 

ZTA –additives has a higher calculated theoretical density compared to ZTA (~4.35 g/cm3 and 

~4.34 g/cm3 respectively). In a recently published paper [248], it was demonstrated that, up to a 

temperature of about 1400ºC, increasing the amount of chromia added to alumina increases the 

density. Above this temperature, anomalies in the densification trend initiate, due to solid solution 

formation. A comparison between Tables 4.2 and 4.3 illustrates that at lower temperatures than 

~1400ºC, chromia appears to contribute to the densification process [249] and results in ~ 98% TD 

which is higher than the density of the ZTA composite (no dopants) at similar temperatures which 

was ~ 95% TD. Nonetheless, at higher temperatures, chromia marginally inhibits densification 

[248, 250, 251]. Another explanation for this behaviour could be correlated to the particle size 

distribution of the starting powders. The particle size of starting ZTA–additives powder was ~1µm, 

smaller than ZTA due to the processing sequences explained in part 3.2 [252]. Hence, it can be 

deduced that finer particles have contributed to a larger amount and earlier onset of shrinkage. In 

addition to the soak temperature and holding time, the applied pressure, heating rate and pulse 

sequence play significant roles in the sintering process. 

6.1.4.1.2 Effect of pressure on density 

The enhanced densification at a lower soaking temperature and a smaller holding time compared 

to pressureless sintering could be related to the fact that as the pressure increases, more particles 

come into contact with each other. Besides, if the powder bed contains agglomerates, they start to 

break down under pressure and hence such a process improves densification [100]. As explained 

by Munir et al. [253], the applied pressure to reach full compaction depends on the temperature 

and grain size. For example, at 1200 ºC while the applied pressure was increased from 20 MPa to 

141 MPa, the density of fully stabilized zirconia increased from ~ 60 % to ~ 100% [253]. Takeuchi 

et al. reported [254] that under a 30 MPa constant pressure, the relative density of zirconia sintered 

at 1200 ºC with a 5 min holding time reached 90%. Nevertheless, Wang et al. [255] reported that 

the maximum densification for 3Y-TZP is ~78% theoretical and no dependence on neither heating 

rate (50-200ºC/min) nor applied pressure (20-100 MPa) was observed. Work performed by Shen 

et al. showed that fully dense compacts can be obtained in SPS of alumina at 1150 ºC with an 

applied pressure of 200 MPa. 
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In this study, full density was obtained under 51MPa, at 1450 ºC for 10 min holding time. This 

discrepancy between the temperature required in the current study and that published in the 

literature might be due to the lower pressure applied in the present work compared to other studies 

and also the difference in the starting powder particle size. In addition, the reports in the literature 

were for monolithic zirconia or monolithic alumina which would have smaller particle sizes 

compared to the starting powder used for this study. The starting powders for this work were 

processed to be fully stabilized. In order to complete the required reactions, different calcination 

procedures were utilized which may well have resulted in an increase in the size of the starting 

powders. In addition to all the advantages of applying pressure during sintering, as confirmed by 

the literature, a high pressure allowed fully compacted samples containing sub micrometre-sized 

grains to be obtained, at lower temperatures at which grain boundary migration is not yet thermally 

activated [100]. 

  6.1.4.1.3 Effect of heating rate on density 

Sintering kinetics are greatly affected by the heating rate [256]. As reported by Shen et al. [100], 

a maximum normalized shrinkage would slightly shift to a lower temperature in alumina, when 

the heating rate is increased. They correlated this behaviour to the enhancement of grain boundary 

diffusion with rising current and the concomitantly heating rate. However, it has been observed 

that a high heating rate leads to the formation of porous alumina[256,257]. Amen et al. [258] 

proposed that a low SPS heating rate could favour the diffusion mechanism in alumina, including 

grain boundary and/or lattice diffusion, in which the centres of neighbouring particles come in 

contact and this would enhance the shrinkage in electrically non-conductive materials.  

Mayo et al., [259] showed that a high heating rate would reduce the density of 3 mol.% yttria 

zirconia, due to the formation of temperature gradients. It would lead to the densification of the 

outer part of the specimen, while the inside section would include extensive pores. Nevertheless, 

Munir and Shen et al., [100,253] presented the evidence that a heating rate ranging from (50~300ºC 

min-1) for zirconia and (50-400 ºC min-1) for alumina does not influence the final density [253].  
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6.1.4.1.4 Effect of the current on the density 

For all the tests performed the pulse pattern was kept on 1:0 (on/off) throughout the whole 

experiment. The pulse pattern is considered by some research groups as an important element that 

contributes to the densification [100, 260, 261]. On the other hand, other groups presented data 

implying that pulse pattern is ineffective in the densification process[100,253]. 

 6.1.4.2 The proposed densification mechanisms  

Various mechanisms of densification of alumina and zirconia are proposed by different authors, 

depending on the temperature, heating rate and applied pressure. It has been suggested [262] that 

in alumina, at temperatures ranging between 850-1200˚C, grain boundary sliding, accommodated 

by oxygen grain boundary diffusion are controlling the densification during a fixed heating rate of 

100˚C min-1 and at the onset of the holding temperature. In another investigation by Langer et al., 

[263], it was proposed that the densification of α-Al2O3 was controlled by grain-boundary 

diffusion. Aman et al. [256], attributed the alumina densification mechanisms at low temperatures 

and low heating rates, to the grain boundary diffusion. However, at high heating rates, due to the 

large thermal gradient at interparticle contacts, surface diffusion coefficient enhances and therefore 

grain growth dominates. This group also suggested that regardless of the heating rate, at initial 

stages of sintering instantaneous densification might occur due to the plastic yield. 

Wang et al. [255] studied the densification mechanism in 3Y-TZP and suggested that a few 

densification mechanisms are involved. They also proposed that the intensive particle 

rearrangement is dominant at an early sintering stage, leading to a much quicker densification 

compared to pressureless sintering. Besides, Bernard et al. [262] attributed the densification of 

stabilized zirconia, under low applied stress and temperature, to the pure diffusion (bulk?) 

mechanism. 

Finally, some have criticized the structural homogeneity of a SPS-treated ceramic composite. 

Wang et al. [264] noticed that the part of an alumina sample neighbouring the graphite die 

densified faster than the central part. Hence, they suggested that the alumina powder had been 

densified only through the transfer of heat through the graphite mold and punches. However, Shen 

et al. [100] highlighted the importance of a fast heat transfer rate between the mold and the punches 

for a better sintering rate during the SPS process. This group also demonstrated that the sintering 
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behaviour and the densification rate depended on the reactivity of the starting powder. This means 

that nano powders, with a higher specific surface area, would initiate sintering and result in a well 

dispersed microstructure easier than coarser particles would. This conclusion is in agreement with 

the current observations, in which shrinkage initiated in ZTA-additives earlier, possibly due to the 

finer starting powders.  

  6.1.4.3 Parameters controlling grain growth 

  6.1.4.3.1 Effect of temperature on grain growth 

At temperatures < 1500ºC, fairly limited grain growth was observed and at T > 1500ºC more rapid 

grain growth was found. All ZTA samples were almost fully dense after SPS at temperatures 

>1450ºC, Figures 4.12 and 4.13. Therefore, sintering at higher temperatures did not achieve greater 

densification, rather simply resulted in grain growth, which was particularly rapid above 1500oC. 

This is broadly in agreement with Shen et al. [100] who found that the initial rate of grain  growth 

at 1300º C was almost three times higher than that at 1200º C in alumina. Even longer holding 

times at 1200ºC did not result in grain sizes as large as those observed at 1300ºC with no holding 

time. Therefore, it is inferred that above a critical temperature the grain growth is quite rapid and 

that the mechanisms are thermally activated. The comparison of Tables 4.4 and 4.5 demonstrate 

that the alumina grain growth in a sample containing chromia and strontia at 1550ºC-10min was 

more rapid than ZTA for the same conditions, with a comparatively coarse grain size of ~900 nm 

observed. The accelerated alumina grain growth can be attributed to the presence of Cr ions [263, 

265]. Since the diffusion coefficient of Cr across an alumina surface is much larger than that 

through the bulk, the surface of alumina grains neighbouring chromia become rich in Cr ions and 

grow faster [104, 266].  

 6.1.4.3.2 Effect of pressure on grain growth 

As mentioned earlier, in the sintering regime performed for all experiments, the pressure was 

increased once the temperature had reached ~1200°C at which the maximum shrinkage started to 

occur. As confirmed by Shen et al. [100], when the pressure is applied at around the final 

temperature, the ultimate grain structure is finer, compared to when the pressure is applied during 

the whole sintering cycle. Thus, employing pressure at a high temperature, at which the grain 

boundary migration is kinetically favourable, leads to a reduction in the grain growth observed.  
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  6.1.4.3.3 Effect of heating rate on grain growth 

It is well documented that a high heating rate leads to the formation of a composite with a smaller 

grain size and a lower density [253]. Shen et al. [100] observed that the grain size of alumina 

sintered at 1400ºC, with a heating rate of 50°C min-1, was ~ 9.5µm. However, at a rate of 370ºC 

min-1, it dropped to ~4µm. In this work, two regimes for heating rate were proposed to make a 

good balance between grain growth and density; a moderate rate of 100ºC min-1 at temperatures 

below 1200°C and a low rate of 50°C min-1 at temperatures above 1200°C. 

 6.1.4.4 Effect of grain growth behaviour on density 

As proposed by Bernard-Granger and Guizard [262,267], when the relative density exceeds 92- 

95 % (closed porosity), elimination of the residual isolated pores is difficult. Hence, grain growth 

is then necessary to enhance densification and reduce the surface energy remaining in the system. 

Therefore, grain growth might be accompanied by a minor density enhancement. In this project, 

as shown in the SEM micrographs in Figures 4.14 (f-i) and 4.15 (f-h), grain growth was mainly 

accompanied by a slight density reduction at temperatures above 1450˚C, due to abnormal grain 

growth and the isolated pores that were trapped mainly at triple junctions.  

 6.1.5 Micro structural features 

 6.1.5.1 Scanning electron microscopy (SEM) 

The above discussion demonstrates that, for both ZTA and ZTA-additives, a fine and fully dense 

composite microstructure was formed at temperature ~1450ºC, and SEM micrographs shown in 

Figure 4.14 (a-i) and Figure 4.15 (a-i) confirm these results. SEM micrographs in Figures 4.14 (a-

b) show microstructures of ZTA containing a substantial number of voids and interconnected pores 

at 1400ºC-5 and 10 min, which is in agreement with the density results (~95% TD, Table 4.2). At 

a higher temperature of 1550ºC-10 min (Figure 4.14(i)), more isolated pores were observed, 

mainly at triple and four grain junctions in the ZTA composite. This can be related to the abnormal 

grain growth of alumina. Langer et al. [268] proposed that abnormal grain growth occurs when the 

incorporation of the second phase does not completely fill all four grain junctions of the matrix 

particles and when the new phase is not homogenously dispersed throughout the matrix. As a 
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result, some groups of alumina grains might be formed that would behave without restraint and act 

as nuclei for abnormal grain growth.  

In ZTA-additives and Biolox® Delta (Figure 4.15 (a-i)), elongated grains were observed which 

were due to the formation of platelet strontium hexaaluminate. In these series of micrographs, in 

contrast to the ZTA specimens, no significant number of pores and voids were observed at a 

temperature of ~ 1400ºC, which is in agreement with the density results (98% TD) obtained, in 

Table 4.3. However, at a temperature of 1550ºC-5 and 10 min (Figure 4.15 (g-h)), isolated pores 

were clearly noticed, mainly at triple junctions, which could be due to the accelerated grain growth 

rate at high temperatures. Based on their location, these pores generally shape as explained in part 

2.13.1.2 and play a destructive role on the mechanical properties of the specimens.   

In both types of specimen, as well as Biolox® delta, two types of ZrO2 particles were formed in 

the ZTA composite. This was also reported by Kibeel and Huer [269]. The first type was 

intergranular zirconia, which had a faceted shape and is dispersed mainly in alumina grain 

boundaries or in the triple and four-grain junctions [268]. The second type was intragranular 

zirconia, which had a spherical shape. The intragranular zirconia was generally finer than 

intergranular zirconia. As proposed by Kibeel and Heuer [270,271], the larger size of the  

intergranular zirconia particles is the result of the quicker coarsening kinetics at the grain 

boundaries. This group also suggested that during sintering of ZTA, the ZrO2 particles grow 

through either the Ostwald ripening or the coalescence process. Based on their observations, the 

coalescence process contributes to the growth of intergranular ZrO2 particles as they are dragged 

together by migrating alumina grain boundaries. Subsequently, grain growth and the vanishing of 

fine alumina grains results in the ZrO2 particles coming into contact as illustrated in Figure 6.1. 

Although intragranular particles also went through coarsening, this would have been at a much 

slower rate as the coarsening would have been controlled by lattice diffusion rates. As marked by 

the rectangles in Figure 4.14 (i), zirconia particles can be located at four-junction grains due to 

their strong self-diffusion [268]. Subsequently, as marked by the red arrows in Figure 4.14 (i), a 

fraction of these fine particles were trapped within large alumina grains. It has been proposed that 

this behaviour occurs by the growth of a fraction of alumina grains which are confined by a small 

number of zirconia grains. They turn into an individual larger grain which later “swallow up” 

neighbouring alumina and zirconia particles [268]. 
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Figure 6.1.Schemiatic drawing illustrating how zirconia particles grow as a result of being dragged 

by migrating alumina grain boundaries during coalescence [271].   

6.1.6 Mechanical properties 

 6.1.6.1 Fracture toughness 

The inclusion of zirconia in the alumina matrix enhances fracture toughness, mainly due to the 

tetragonal to monoclinic phase transformation of zirconia grains [272–274]. Tetragonal to 

monoclinic phase transformation (a stress induced phase transformation) is accompanied by a 

volume expansion, resulting in the introduction of compressive stresses around a crack and thus 

causes inhibition of crack propagation. Furthermore, through t→m transformation, micro-cracks 

start to form around the monoclinic zirconia grains [275–277]. These two mechanisms are known 

to be the most predominant in the ZTA composite. However, to trigger the phase transformation, 

zirconia grains need to be large enough to go through this toughening mechanism [278,279]. In 

addition, the amount of stabilizers added to zirconia, such as MgO and Y2O3, greatly affects the 

transformation of tetragonal particles [45]. On the other hand, the formation of pores in the 

microstructure lessens the fracture toughness, due to the accumulation of stress in the pores and 

reduces the resistant area [280]. 

As shown in Table 4.6, the fracture toughness of the ZTA composite fluctuated slightly between 

5.27-5.43 MPa.m1/2, which is probably a result of experimental fluctuations, and it did not 

considerably increase as the temperature was raised. The reason for this behaviour was attributed 

to the small final particle size of zirconia (186 nm – 250 nm) for samples SPSed in the temperature 

range of 1450°C-5 min – 1500º C- 5 min. This zirconia particle size is about two times smaller in 

this study than the values reported in the literature for pressureless sintered material [26, 246, 247]. 
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Consequently, it was expected that the zirconia particles were generally too fine to go through the 

t→ m transformation. At temperatures (holding time) between 1500°C (10 min)-1550ºC (10 min), 

in which the grain size ranged between 279 nm - 489 nm, no major improvement in fracture 

toughness occurred. Moreover, a slight drop in toughness at 1550ºC-10 min was observed. This 

reduction was, however, very small, and can be correlated to the formation of pores, due to the 

abnormal grain growth of alumina particles, as shown in micrograph 4.14 (i). Furthermore, at 

1500°C- 5 min the combination of a small grain size and the existence of pores as shown in Figure 

4.14 (f) are believed to be the reasons for the lower fracture toughness.  

The fracture toughness of the ZTA composite containing ternary and quaternary oxide dopants 

was given in Table 4.7. The largest and the smallest values of fracture toughness were 5.66 

MPa.m1/2 at 1500°C-5 min and 5.15 MPa.m1/2 at 1400°C- 5 min, respectively. These differences 

are again small but are larger than the estimated experimental error.  As the temperature increased, 

the general trend was an increase in fracture toughness, which was believed to be due to grain 

growth. At 1450°C- 10 min, the measured fracture toughness (5.45 MPa.m1/2) appeared to be 

marginally better than the fracture toughness (5.30 MPa.m1/2) at 1450°C-5 min, while interestingly 

sharing almost the same particle size (180 nm and 178 nm, respectively). Although this variation 

is probably a result of experimental error, it might be because a higher denser composite was 

formed at 1450°C- 10 min compared to 1450°C-5 min (Table 4.3). This highlights the importance 

of pores in leading to poor mechanical properties. At 1500°C-5 min, grain growth occurred which 

coincided with the maximum density (4.34 gr/cm3), resulting in the optimum fracture toughness 

in this group of compositions. Subsequently, as the temperature increased, the zirconia grain size 

grew and reached 465 nm at 1550°C- 10 min. The fracture toughness under these conditions, 5.51 

MPa.m1/2, was within experimental error the same as observed for 1500°C- 5 min. 

Tables 4.6 and 4.7 show that the ZTA-additives had superior fracture toughness compared to the 

ZTA samples. This enhancement in ZTA-additives might be due to the presence of an additional 

toughening mechanism, namely, the formation of platelet grains of strontium hexaaluminate, 

Figure 4.15 (a-i). This is supported by Kern et al. [281], who reported that the toughening 

characteristics are governed by the amount and type of hexaaluminates. He also showed [281] that 

these elongated grains promote strong crack deflection mechanism at their boundary with adjacent 
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grains. It appears, therefore, that the bonding between these interfaces is relatively weak, 

promoting intergranular rather than transgranular cracking.  

Finally, the commercial Biolox® delta was employed as a reference specimen. In order to compare 

the results quantitatively, this specimen was treated and examined under similar conditions. The 

measured fracture toughness for the commercial sample was 5.61 MPa.m1/2 which is very similar 

to the data for the ZTA-additives sintered at 1450°C- 5 min and 1500°C- 5 min. Nevertheless, the 

reported fracture toughness value by the company for this specimen is 6.5 MPa.m1/2. This 

discrepancy can be correlated to the method used to measure fracture toughness and the equation 

used to calculate the toughness. In this work, the equation proposed by Shetty et al. for Palmqvist 

crack was used to evaluate the value of fracture toughness and the overall results were perfectly in 

agreement with the literature [211, 282]. 

6.1.6.2 Vickers hardness 

As affirmed by the literature [283, 284], the hardness of ceramic materials is generally governed 

by the inherent deformability of the material, the variation of porosity, the boundary constitution 

and the microstructural properties including being multiphase and particle size and orientation. For 

ZTA based composites, most researchers [43, 283, 285, 286] have argued about the effect of grain 

size and porosity, as well as the contribution of the quantity of zirconia on the hardness [287–289]. 

As the temperature increases, the grains grow, and hardness starts to decrease which is in contrast 

with the increasing trend of the toughness. This is most probably a result of the well-known Hall-

Petch effect, (Hall-Petch relationship) [290, 291].  

Furthermore, it is well documented that a larger amount of zirconia reduces the hardness of the 

composite because zirconia is inherently softer than alumina. The hardness is as also correlated to 

the possible coarsening of zirconia and thus formation of porosity inside the composite[280, 282]. 

Nonetheless, fine-grain zirconia has a pinning effect on the grain boundaries of alumina, resulting 

in a smaller alumina grain size. 

As tabulated in Table 4.6, due to grain growth as the temperature was raised, a general decreasing 

trend for Vickers hardness was observed in the ZTA composite. The measured values for Vickers 

hardness varied between 17.91-18.62 GPa. At 1470ºC-8 min, the maximum hardness of 18.62 GPa 

was achieved, due to the higher density. However, it is worth mentioning that this value was only 
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slightly larger when compared with other hardness values at lower temperatures. At 1500 ºC - 5 

min, hardness slightly dropped, which is possibly due to the formation of pores as shown in the 

SEM images, Figure 4.14 (g, i). Subsequently, the minimum hardness occurred at 1550 ºC - 10 

min, due to the detrimental impacts of grain growth and low density. 

In ZTA-additives, the same decreasing trend of hardness was observed in Table 4.7. The Vickers 

hardness in this composite fluctuated between 16.44-18.30 GPa. At 1450 ºC - 10 min, the hardness 

was the largest value possible for this composite, at 18.30 GPa. This is due to the positive effects 

of both high density and fine grain size of alumina and zirconia (306 nm and 180 nm, respectively). 

On the other hand, significant grain growth and noticeable reduction in density was observed at 

1550 ºC - 10 min due to the formation of pores, resulting in the lowest hardness of 16.44 GPa. This 

was almost 2 GPa smaller than the maximum hardness value for this composite.   

As shown in Tables 4.6 and 4.7, the highest and lowest hardness values for ZTA-additives were 

around 2 % and 8 % smaller than the corresponding values in ZTA, respectively. This discrepancy 

is attributed to the formation of hexaaluminates which increase fracture toughness but adversely 

affect hardness. In fact, the addition of SrCO3 to ZTA gives rise to the formation of pores and 

consequently reduces the hardness [292]. 

The Vickers hardness of the reference commercial sample was measured with the same method to 

be 17.04 MPa. This was less than the highest value obtained for ZTA-additives. Despite the fact 

that the commercial sample is fully dense (having been HIPed) the grains size was larger due to 

the pressureless sintering process used in manufacture. Thus, it was expected that this composite 

would possess a smaller hardness value with compared to the ZTA-additives. Nonetheless, the 

reported hardness by the company for this sample is 19 MPa which can be correlated to the reasons 

explained in section 6.1.6.1.  

6.2 Tribological behaviour 

6.2.1 Friction and lubrication behaviour 

Various types of lubricants have been used in the reciprocating wear testing of bio-ceramic 

materials. Among these, bovine serum has commonly been used for wear testing. Currently, as 

confirmed by the International Organisation for Standardisation (ISO), bovine serum is the best 

lubricant to deliver clinically correlated wear rates and wear debris of a similar size and shape to 
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that found in vivo [293, 294]. The measured COF ranged between 0.03 ± 0.01 - 0.14 ± 0.04 for 

ZTA, 0.03 ± 0.02 -0.2 ± 0.03 for ZTA-additives (1), 0.08 ± 0.03 - 0.19 ± 0.02 for ZTA-additives 

(2), and 0.03 ± 0.02 - 0.15± 0.04 for BIOLOX ® delta, Tables (5.1), (5.3) and (5.4). For each 

specimen the lowest value of friction was not necessarily correlated to the lowest load and vice 

versa.  

The Stribeck curve, Figure 2.17, is indicative of the lubrication regime, and is divided into three 

sections, namely, the full fluid film, the mixed lubrication and the boundary lubrication. On the 

right side of this graph, in the so-called full fluid film regime, the load is borne by the film pressure 

in a fluid lubricant due to the full separation of the interacting surfaces. The Elastohydrodynamic 

mode occurs inside this region and is the condition in which the pressure is enlarged, thus one or 

both contacting surfaces deform to increase the load bearing area.  

At high loads, the separation between the sliding surfaces gradually decreases and they ultimately 

come into contact. This regime is known as the boundary lubrication in which wear, and friction 

are not ruled by the properties of the lubricant. Instead, the viscoelasticity and plasticity of the 

adsorbed lubricant films and chemistry of the contacting surfaces will define the contact area 

between the surfaces which are interacting [152]. The transition region between the two 

aforementioned regimes is termed mixed lubrication, in which the pressure is partially supported 

by the mechanical interaction of the surface asperities and by the fluid.  

As shown in Figures 5.2, 5.15 and 5.30, the Stribeck curves seem to be slightly noisy at certain 

loads. For loads between 1 N - 4 N, only the commercial specimen exhibited a marked increase of 

the COF under the initial contact pressure of ~1988 MPa (4 N). This jump in the COF might be 

related to an increase in the polymorphic phase transformation, coupled with volume expansion 

[229]. This abrupt change in the COF value is in line with the SEM and AFM images, showing 

much more extensive pitting and grain pull out compared to 2 N.  

The peculiar trend of the Stribeck curve at 8 N (ZTA, ZTA-Additives (1)), might be due to the 

presence of the protein and its adsorption onto the surface, as one of the constituents of the 

employed lubricant. Protein adsorption is a unique characteristic of bio-ceramics [295, 296]. Once 

bio-ceramics are inserted into a body, the protein from the circulating fluids will be immediately 

adsorbed onto their surfaces [297]. As corroborated by Ma and Rainforth [298] and Spikes [299], 

the adsorbed proteins can stick to the ceramic counter surfaces and operate as a “solid like” film 
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and increase the friction factor [300–303]. On the other hand, at larger loads, namely 16 N and 32 

N, thick patches of tribo-layer with a maximum height of ~45 nm were detected through AFM and 

SEM. The presence of these patches would be expected to influence the coefficient of friction 

between the interacting bodies, although the exact role is not clear, nor the composition of these 

layers. Hence, the reduction of COF at 32 N in the ZTA-Additives (1) was possibly due to the 

presence of a tribo-layer which is believed to reduce the wear rate and the coefficient of friction 

[14]. It is well documented that aluminium hydroxides (AlOOH, Al(OH)3) can be formed on 

alumina surfaces, in the water and humid air, due to the high hydrophilic property of alumina [304–

306]. In the study conducted by Gee, the presence of hydroxide (OH) on  the worn surface of an 

alumina specimen at a humidity of 50% RH was confirmed using dynamic secondary ion mass 

spectroscopy (SIMS)[306]. This hydroxide layer, which can be one of the constituents of the 

tribolayer, can then contribute to the reduction of the COF due to its lower shear strength compared 

to alumina. However, it is quite complicated to prove the formation and role of this hydroxide 

layer. It is worth mentioning that, in general, the COF values obtained for almost all loads and 

specimens were very small. 

The above-mentioned factors might explain the irregularities of the Stribeck curves, at a few loads, 

which in turn make attributing specific lubrication regimes to individual loads more complex. 

However, as evidenced by AFM and SEM (Chapter 5), the most dominant lubrication mode in all 

the specimens was presumably the mixed lubrication regime, wherein the surface asperities as well 

as the viscoelastic properties of both, the bulk lubricant and the adsorbed film, were the ruling 

factors.   

6.2.2 Specific wear rate 

One of the main objectives of this study is evaluating the influence of grain size and the role of 

additives on the wear resistance of the ZTA-based composites. To achieve this goal two strategies 

were employed. First, grain size refinement was carried out through incorporation of zirconia in 

monolithic alumina, in order to form a duplex structure containing a nanoscopic phase and enhance 

the fracture toughness. Second, sintering of the composite was done by Spark Plasma Sintering for 

which the short cycle time and high pressure enhance the density and reduce the grain size.  

As depicted in Figures 5.3, 5.17, 5.18 and 5.31, the graph of the specific wear rate as a function of 

load had a general rising trend for all the three specimens, despite their different constituents, 



Chapter 6- Discussion  

 

  170 

indicating the load dependency of the specific wear rate. Note that for no change in wear 

mechanism, the specific wear rate should not change with load. However, there were slight 

fluctuations at certain loads. The largest and the smallest specific wear rates measured for the ZTA 

composite were (3.73 ± 0.57) ×10-9 mm3/Nm   and (6.31 ± 1.22) ×10-6 mm3/Nm, respectively. 

Correspondingly, these values changed between (1.12 ± 0.468) ×10-8 – (1.69 ± 0.299) ×10-7 

mm3/Nm for ZTA-additives (1), between (1.46 ± 0.663) ×10-8 – (6.54 ± 1.78) ×10-8 mm3/Nm for 

ZTA-additives (2) and between (4.25 ± 1.28)×10-9 – (4.68 ± 0.601)×10-7 mm3/Nm for the 

commercial specimen.  

As shown in Figures 5.3, 5.17, and 5.31, the specific wear rate of the ZTA and ZTA-additives (1) 

were still in the range of 10-8 mm3/Nm, for loads ranging between 1 N-16 N. Besides the calculated 

specific wear rate values for loads ranging between 1 N and 16 N, the images taken from the wear 

scars by SEM and AFM suggest that mild wear was the dominant mechanism, in which probably 

both tribochemical and mechanical wear were simultaneously operating. On the other hand, the 

specific wear rate for BIOLOX ®delta was of the order of 10-7 mm3/Nm at 16 N. This specimen 

appears to be worn slightly more than ZTA and ZTA-additives (1) at this load. This was 

supposedly due to the detrimental impact of a large grain size on the wear resistance of materials 

[191, 307]. In line with Rainforth [14], the refinement in grain size yields both a reduction in 

thermal mismatch stresses and slip length, therefore decreasing the dislocation density in the 

surface grains which leads to an increase in the time to transition from mild to severe wear. As 

corroborated by Rainforth [14] the time dependent wear transition is influenced by a few factors 

including the applied stress at asperity contacts, residual thermal mismatch stress and stresses 

associated with dislocation accumulation at grain boundaries.  

Another method for reducing the average grain size is through incorporating zirconia nano-

particles in the alumina matrix and forming the ZTA composite which has a smaller average grain 

size compared to the monolithic alumina. He et al. [308] showed that among the 5 vol. %, 15        

vol. % and 20 vol. % additions of zirconia to alumina matrix, the one with 15 vol. % zirconia 

exhibited the lowest pre-transition wear rate. This behaviour was attributed to at least three 

parameters, namely refinement of the alumina grain size as explained above, increase of the 

hardness and formation of a compressive stress in the wear scar [308]. In addition to the grain size 

reduction, the incorporation of zirconia was associated with the introduction of residual stresses 
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which is known to be the potential reason behind the wear reduction of ZTA-based composite 

compared to the monolithic alumina.  

In monolithic alumina, a large alumina grain size and a strong anisotropy in thermal expansion 

result in local tensile stresses at some alumina/alumina grain boundaries. The accumulation of 

these tensile stresses increases the likelihood of the formation of the brittle and intergranular 

fracture under abrasive wear. As a result the role of plastic deformation is minimal [204]. 

On the other hand, thermal residual stresses within the ZTA composite are formed during cooling 

from sintering due to the mismatch in the thermal expansion of the constituting components 

(zirconia and alumina)[309]. Once zirconia particles are added to the monolithic alumina, the 

nature of the thermal stresses is predicted to be compressive in the alumina matrix when the 

zirconia phase is mainly present in tetragonal form. This is due to the lower thermal expansion 

coefficient of alumina compared to the tetragonal zirconia [309]. Therefore, the actual contact 

pressure in the alumina is lower in the ZTA than monolithic alumina, reducing the chance of 

fracture [204]. This is also in agreement with the results reported by Le et al. [158], in which the 

incorporation of fine zirconia grains in the BIOLOX® delta yielded a lower amount of dislocation 

activity at the worn surface compared to the monolithic alumina.  

Two scenarios exist on the impact of the polymorphic phase transformation on the wear resistance 

of this composite. The first scenario occurs when contact of the counter surfaces results in a phase 

transformation from tetragonal to monoclinic phase and subsequently a volume expansion occurs. 

If this expansion happens at or near the surface it leads to the uplift of the surface. The 

transformation is also associated with micro cracking which weakens the surface and leads to a 

further increase in wear rate. The second scenario is when transformation occurs in a region below 

the surface where there is surrounding constraint of the zirconia particle by alumina. The volume 

expansion associated with the formation of monoclinic zirconia results in a compressive stress 

within the matrix leading to a reduction in wear rate [22, 310]. Both scenarios might occur together 

to an extent that depends on parameters such as the t→m expansion direction, the contact stress 

and the grain size. However, in this study neither scenarios worked, as no transformation in the 

ZTA and ZTA-additives was observed. The transformation of the zirconia is discussed further later 

on. 
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At a load of 32 N, which is equivalent to ~3976 MPa of initial Hertzian contact pressure, the 

specific wear rate of the ZTA-additives (1) and the commercial specimen increased compared to 

16N, but not significantly, Figures 5.17 and 5.31. At this load, both mechanical and tribo-chemical 

wear seem to be responsible for the wear behaviour of these two specimens, so it appears that mild 

wear was still operating. In contrast, a substantial jump in specific wear rate of about two orders 

of magnitude was observed for the ZTA at 32 N. The worn surface was dominated by surface 

fracture (Figure 5.6 f), which demonstrates the domination of mechanical wear and therefore the 

transition from mild to severe wear.  

The difference in grain size between the ZTA and the other materials could not explain the 

observation that the ZTA went through the wear transition at 32N while the other materials did 

not. The main difference between the ZTA and the other specimens was the presence of the Cr and 

Sr dopants. This suggests that one or both of these dopants plays a role in the prolongation of the 

pre-transition wear stage to higher loads. Pezzotti et al. [311] demonstrated that doping with Cr 

lowered the concentration of oxygen vacancies in alumina. This leads to a reduction of lattice 

constraints and thereby residual stresses. It is also known that a tensile stress field destabilizes 

zirconia grains and leads to the formation of intergranular cracks in alumina grains [312]. Hence, 

a high accumulation of oxygen vacancies is the reason for a high tensile stress concentration in the 

alumina monolithic and probably in the ZTA specimens where Cr dopant does not exist. 

In addition to the positive role of Cr in the enhancement of wear resistance, this dopant also helps 

maintain the stability of zirconia, under a hydrothermal environment. As Cr dopant changes the 

oxygen vacany concentration it prohibits or delays moisture transfer to zirconia. As a result, 

oxygen vacancy annihilation and thereby polymorphic phase transformation in a hydrothermal 

environment is postponed. More details about this behaviour is reported elsewhere [311]. 

Wang et al. [15] demonstrated an equation calculating the value of the induced stress from sliding, 

required to initiate the wear by chipping or grain pull out. This equation (Eq. 6.1) shows that the 

micro-fracture resistance enhancement can be obtained through grain size refinement, prohibiting 

internal tensile stresses and if possible introducing compressive stresses in the composite 

microstructure, e.g. incorporation of zirconia grains within the alumina matrix. 

𝜎𝐷=𝜎𝐼
∗ ( 

𝑑∗

𝑑
  ) 1/2 -∑ 𝜎𝐼𝑖𝑖                              Eq.  6.1 
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Where ∑σIi is the sum of internal stresses after the thermal process. The compressive stresses are 

displayed with a negative sign. 𝜎𝐷 is defined as the critical tensile stress induced by external sliding 

and needed for the propagation of micro-cracks. Hence, once the applied tensile stress, σmax, 

reaches the critical tensile stress σD, the wear transition will occur. When the grain size reaches 

critical grain size d=d*, ∑σIi equates to 𝜎𝐼
∗ and spontaneous micro fracture takes place at σD=0.                    

 6.2.3 Morphology of the worn surface 

The data collected through scanning electron microscopy (SEM) and atomic force microscopy 

(AFM) revealed similar mechanical wear mechanisms across the surface for all three materials. 

Differential wear between adjacent grains (grain relief) is one of the noticeable features on the 

pristine surfaces, (Figures 5.5, 5.20 and 5.33) and the worn surface of all the specimens at 1 N and 

2 N (Figures 5.6(a-b), 5.21(a-b) and 5.34(a-b)). As evidenced by the 3D AFM images, the 

difference in grain heights is more conspicuous in the ZTA specimen compared to the other two 

materials, Figure 5.6. The presence of “grain relief” as a result of differential wear between grains 

is representative of mild wear in various ceramics. Grain relief is also known to be an important 

element for a time dependent transition to catastrophic wear, specifically in alumina [190, 191, 

313]. Hence, a comprehensive knowledge of the effective mechanisms that increase grain relief is 

of great importance. As corroborated by Barceinas-Sanchez and Rainforth, [189] no mechanical 

based explanation can justify the formation of grain relief. Thus, the difference in local wear rates 

has been attributed to the tribochemical reaction rates, such as the dissolution rate and the 

properties of the amorphous film which the tribochemical wear produces. And, they are in turn 

dependent on the crystallographic orientation [169]. The differential wear is one of the reasons 

through which 3rd body abrasive are liberated from the edge of grains that have worn less. The 

formation of grain relief has also been reported in the monolithic alumina by a few authors, who 

interpreted it as relief polishing, due to the anisotropic nature of the alumina [12, 13, 314]. 

However, relief polishing was not observed in the series of tests performed in this study.  

The other distinct features observed on the worn surfaces were pits from which grooves had 

originated or passed through. These mechanically induced surface features became more extensive 

depending on the severity of the contact pressure. The grooves have been proposed to originate 

from 3rd body abrasives that result from grain pop outs or the detached edges of the grains which 

had been standing proud of the surface [158] and they can terminate at grain boundaries [189]. The 
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liberated wear debris get trapped between the sliding counter bodies and are ground through the 

reciprocating motion of the sliding surfaces. Consequently, the 3rd body abrasion would create 

these deep grooves. As the trapped debris are consistently broken up during the sliding motion, 

the resulting grooves would become progressively finer. Interestingly, the depth of the grooves 

decreases as the distance from its source increases, confirming the crushing of wear debris through 

the 3rd body abrasion [158]. Rainforth [14] has categorized the damage resulting from these 

grooves into four groups; grooves that mainly create dislocation damage, grooves that chiefly 

produce fracture, grooves that lead to both dislocation damage and fracture and eventually the ones 

leaving no damage. They also found that the depth of these grooves differ from grain to grain and 

was basically controlled by the crystallographic orientation [189]. 

The wear tracks at 1 N and 2 N exhibited similar features in BIOLOX®delta, although at 2 N the 

grooves were much deeper, wider and in the close vicinity of each other and the pits were larger. 

The depth of the grooves ranged between 50-100 nm for the commercial specimen, and between 

10-20 nm for the ZTA and ZTA additives. The reason for this marked difference is possibly due 

to the larger grain size of the commercial specimen compared to the other composites. These 

coarser grains would liberate larger particles through differential wear that then plough the surface. 

Furthermore, as confirmed by Raman spectroscopy, the zirconia phase transformation, from 

tetragonal to monoclinic, took place in the commercial specimen, but not in the other materials. 

Consequently, compared to the other two specimens, more grains protruded from the surface and 

had their top surface break up and act as an abrasive body.  

The morphology of the worn tracks at 1 N and 2 N suggests that tribochemical wear was probably 

the leading wear mechanism in the ZTA specimen. This conclusion can be further supported 

through the presence of differential wear, the smaller numbers of grooves, the sparse grain pull 

outs and pitting and finally the trend in the Stribeck curve, Figure 5.2. Furthermore, there were no 

traces of wear debris detected in this specimen, either by Contour GT or other microscopes, 

probably indicating the operation of the full fluid lubrication mode. 

On the other hand, the ZTA-additives (1) and particularly the commercial sample displayed more 

grooves and pitting, and less noticeable grain relief. Hence, it can be deduced that, for these two 

specimens, the mixed lubrication regime was probably operative at these loads (1 N-2 N) which 

contradicts with the lubrication mode inferred from the Stribeck curve, in Figures 5.15 and 5.30. 
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At 4 N, no grooves were observed in the ZTA and ZTA-additives, Figures 5.6 (c) and 5.21 (c), but 

a few hardly noticeable grooves were found in the wear track of the commercial specimen, Figure 

5.34 (c). In all specimens, some level of differential wear occurred at 4 N, but was more explicit 

in the ZTA. The 3D AFM and SEM images affirmed that the grains protruding out of the surface 

were zirconia. In the ZTA-additives (1) specimen, the protuberance of zirconia grains was also 

demonstrated in the TEM, section 6.2.5. In addition, a layer seemed to be formed on the surface 

which might be the mixture of protein and wear debris. At this load the predominant wear 

mechanism was pitting which caused a stark difference in the morphology of the wear track, 

compared to the lower loads, which is in line with the observation of Le et al. [158]. This huge 

morphological difference was more conspicuous in the ZTA and the commercial specimen. This 

is in agreement with the increase in their specific wear rate by an order of magnitude. In the ZTA, 

this behaviour might be due to the change in the lubrication regime, from full fluid to mixed 

lubrication [14]. On the other hand, in the case of the commercial specimen, the abrupt COF jump 

was the reason, which occurred upon increasing the contact pressure from 1578 MPa (2 N) to 1988 

MPa (4 N). 

In addition to the intergranular fracture, formation of transgranular cleavage fracture in the alumina 

grains was also conspicuous at 4 N as represented in Figures 5.6 (c), 5.21 (c), 5.34 (c). The cleavage 

fracture takes place on certain crystal planes, leading to failure along those planes. It is also 

reported that transgranular cracks in alumina grains are generally formed to counteract the energy 

brought about during the tribo-contact [15]. As noticed in the SEM and AFM images, it appears 

that preferential loss first takes place in alumina grains, through this fracture along the crystal 

orientations which are probably more brittle [14]. This is in contrast with the observation of Le et 

al., who reported zirconia particles were lost preferentially to the alumina grains [158]. The SEM 

micrograph in Figure 5.21 (c) showed both transgranular and intergranular fractures in the platelet 

grains. However, it is believed that these platelet grains improve the toughening mechanism 

through prolongation of the crack pathway. The presence of transgranular fractures in zirconia 

grains was the most discernible difference in the morphology of the commercial specimen, since 

no evident fracture was present in the zirconia in the other two specimens. This might be due to 

the much smaller grain size of the zirconia in both ZTA and ZTA-additives (1) than the commercial 

sample that was shown to inhibit phase transformation and thereby to prohibit crack formation at 

4 N load (~ 1988 MPa).  
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At 8 N, unlike 4 N, the presence of the grooves was clear in all specimens, indicating the operation 

of the 3rd body abrasion wear mechanism. As evidenced by the SEM and AFM images, ZTA and 

ZTA-Additives (1) exhibited similar or maybe even less pitting at this load, compared to at 4 N. 

This was in agreement with the specific wear rate, measured in parts 5.1.2.1 and 5.2.2.1. On the 

other hand, the commercial specimen exhibited a much higher degree of wear, coupled with 

extensive transgranular and intergranular fracture and chipping, in both zirconia and alumina 

grains. It is believed that chipping is the result of the cleavage type fracture.  

At 16 N, the wear produced a considerable amount of wear debris in the specimens. This debris, 

as shown in Figure 5.21 (e), was found in two forms, called “smeared” (white square ) and 

“compacted” (red square) and this was in agreement with what was reported by Zeng et al. [315]. 

The smeared wear debris was distributed randomly within the scar, on the edges and in some 

regions, it was presented as a rolled shape sheet of a layer (white circle), Figure 5.21 (e). This 

observation was in line with Nevelos et al., reporting that the appearance of this wear debris was 

similar to the one observed on an explanted alumina hip joints  [316]. Many authors also believe 

that the presence of this “roll shaped debris” is beneficial, since it coincides with the low wear rate. 

As evidenced by Rainforth et al., these rolls are formed due to the removal of amorphous tribo-

film which later roll up because of the residual stresses within the film [14]. Accordingly, 3D AFM 

images of the ZTA specimen, as shown in Figure 5.6 (e), represented some degree of height 

difference in grains, at this load.  

One of the reasons that some grains appear to be higher than their neighbouring grains might be 

the random deposition of fairly thick patches of agglomerated wear debris. As shown in Figure 

5.34 (e) for the commercial sample, some grains appear to be higher than their neighbouring grains 

(white circle). Differential wear is possibly not the reason for this, due to the high contact pressure 

at this load. So, presumably the difference in height is due to the removal and wear of their 

surrounding grains revealing the survived grains as higher.  

At 32 N, the presence of cracks was quite obvious inside a few of the voids in Figures 5.6 (f) and 

5.34 (f). These cracks were formed through sequential steps. Once the surface breaks up and losses 

its integrity in a particular region, the wear debris, possibly mixed with bovine serum, is displaced 

into the voids as these are recesses on the surface. The cracking in this material is probably a result 

of drying the sample after testing, which results in dehydration and the formation of cracks. The 
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evolution of these amorphous patches (mixture of a proteinaceous layer with wear debris) results 

in the formation of a more wear resistant material which often happens during wear transition. 

More details are given in part 6.2.5, about the constituent elements forming these types of layers. 

The platelet grains were also noticeable, looking mainly untouched although almost all of their 

neighbouring grains were totally removed. In contrast, some indications suggested that these 

elongated grains experienced both intergranular and transgranular fractures at 4 N. Consequently, 

the contradictory behaviour of these grains might be correlated to their crystal orientation, i.e. these 

grains are more brittle at some particular orientations, hence they get worn more [14]. 

6.2.4 Phase changes of the worn surface by Raman spectroscopy 

For both ZTA and ZTA-additives the Raman spectra at different loads did not display any phase 

transformation in any spectra even at the highest applied load, Figures 5.8 and 5.22. It was expected 

that by increasing the contact pressure over the surface, tetragonal zirconia would transform into 

monoclinic. However, for these two specimens, no sign of transformation was observed by this 

technique, even under 32 N. The reason for this behaviour could be attributed to the small grain 

size of zirconia that could not trigger the induced phase transformation. The identified Raman 

bands described below belong to the original unworn surfaces. A recent study showed that the 

compressive and tensile residual stresses shift the Raman bands towards higher and lower 

frequencies, respectively [16].  

As reported by Clarke and Adar [228], Raman spectra of tetragonal zirconia includes six 

characteristic bands at 148 cm-1, 264 cm-1, 319 cm-1, 461cm-1, 606 cm-1 and 643 cm-1, Figure 5.7.  

The bands at 643 cm-1 and 606 cm-1 can be assigned to the Zr-OІ stretching. The lines at 319 cm-1 

and 461 cm-1 belong to the coupling of OІ (or OІІ)-Zr-OІ (or OІІ) bending and Zr-OІ and Zr-OІІ 

stretching. The band at 264 cm-1 is related to Zr-OІІ stretching and the one at 148 cm-1 is mainly 

linked to OІ-Zr-OІ and Zr-OІ-Zr bending [227, 317]. The coordination numbers for OІ, OІІ and Zr 

in tetragonal and monoclinic zirconia are listed in Table 6.1. 
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Table 6. 1- The coordination number for OІ, OІІ and Zr in tetragonal and monoclinic zirconia. 

Phase Coordination 

Zr OІ OІІ 

Monoclinic 7 3 4 

Tetragonal 8 4 4 

 

In contrast to ZTA and ZTA-additives, the commercial specimen displayed well-defined bands 

correlated with the monoclinic phase in addition to the tetragonal phase. These locally 

polymorphic transformations are due to the high contact pressure [229]. As shown in Figure 5.35, 

the amount of the monoclinic phase increasing significant with increase in load. 

In addition, the zirconia grain size was about twice as large in the commercial sample compared 

to the other specimens; hence, the t→m transformation was triggered and easily detected. It is 

worth mentioning that the presence of the monoclinic phase was also detected on the pristine 

surface of the commercial specimen. This observation is in line with the results reported by 

Pezzotti et al. [16]. Figure 6.2 shows that the amount of the monoclinic phase in BIOLOX®delta 

on the surface of the as-received specimens has decreased in consecutive years between 2005 - 

2015. This has been because of a reduction in the zirconia grain size, which has reduced the 

transformability of the zirconia. The zirconia grain sizes for the ZTA-Additives and the 

commercial sample are superimposed on the graph in Figure 6.2. This shows that the observation 

of monoclinic phase for the commercial sample, but not for the ZTA-Additives is in-line with the 

observations of Pezzotti et al. 
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Figure 6.2. (a) Histogram exhibiting the range of the initial monoclinic volume fraction for 

BIOLOX®delta components released during the years (b) The graph shows the relationship between 

the average size of the zirconia in the BIOLOX®delta and ZTA-additives and their corresponding 

initial monoclinic fraction - black circles (measured by Pezzoti et al.) and the red square (measured 

in this study) represent the BIOLOX®delta and the red circle (measured in this study) represent the 

ZTA-additives [16]. 

Although, in most of the studies, 18 characteristic bands have been attributed to monoclinic 

zirconia, only four bands corresponding to this phase were observed in this study, at 180 cm-1, 190 

cm-1, 335 cm-1 and 476 cm-1. As shown in Figure 5.35, the doublets at 180 cm-1 and 190 cm-1 and 

the line at 476 cm-1 were first obtained at small loads and they progressively intensified upon 

increasing the contact pressure. However, the line at 335 cm-1 was obtained at a contact pressure 

of ~1988 MPa (4 N), indicating the stress dependent nature of the polymorphic transformation in 

zirconia. 

In agreement with Kim et al.  [234], the bands at 180 cm-1, 190 cm-1 and 335 cm-1 can be assigned 

to the 91.22 Zr-93.80Zr vibration and the line at 476 cm-1 can be attributed to the 16O-18O vibration 

[234]. Different assignments and more details exist about the aforementioned bands in both 

monoclinic and tetragonal phases, which are far beyond the scope of this study and can be found 

elsewhere [227, 234, 317, 318]. As displayed in Figures 5.8, 5.21 and 5.35, two additional peaks 

exist at 418 cm-1 and 380 cm-1 which belong to alumina. This observation is consistent with the 

other studies as well [229]. 
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6.2.5 Characterisation of subsurface deformation 

TEM foils were taken out of the three different specimens and were compared in order to 

characterise the deformation types, the polymorphic phase transformation in zirconia and the 

analysis of the (possible) tribolayer, formed under the 8 N load (~ 2504.8 MPa). 

Among these specimens, BIOLOX®delta displayed the most significant damage on its surface, 

under the initial contact pressure of 2504.8 MPa, Figure 5.36. Surprisingly, despite the different 

morphological appearances of the worn tracks, all three specimens revealed fairly similar levels of 

subsurface damage and deformation in the alumina. As evidenced in Figures 5.11, 5.26 and 5.38, 

dislocations in alumina grains did not extend to more than a grain deep, and this is line with the 

observation of Le and Zeng et al. [161, 319]. In the work performed by Zeng et al. BIOLOX®forte 

alumina femoral heads and acetabular cups were examined in a hip-joint simulator (including 

micro-separation) and the damage was never further than one grain deep. On the other hand, as 

stated by Barceinas-Sanchez and Rainforth, a different sequence of wear behaviour exists in 

BIOLOX®delta and BIOLOX®forte since many more dislocations were observed at the grain 

boundaries of the monolithic alumina (BIOLOX®forte) compared to BIOLOX®delta [189]. The 

large amount of dislocations accumulated in the monolithic alumina, during the sliding wear, led 

to the formation of grain boundary micro cracking and subsequently the release of bits and pieces 

of material, leading to 3rd body abrasive wear. In contrast, Wang et al. reported the formation a 

higher density of dislocations and twins in the ZTA composite compared to the monolithic 

alumina. Such dense dislocations and twins are possibly the mechanism through which energy 

absorption and subsequently stress release occurs, leading to an increase in micro-fracture 

resistance [15]. In this research, a heterogeneous distribution of dislocations was observed in the 

alumina grains, i.e. some grains exhibited a small amount of dislocations while others were damage 

free, Figure 5.12 (a-c). This is consistent with the observation of other researchers [189]. In the 

ZTA specimen, formation of residual strain on the alumina next to the cracked zirconia was 

notable. This observation is in line with Le at al., who reported the presence of residual strain on 

an alumina grain next to the transformed zirconia grain. If the magnitude of the residual strain is 

high enough, it can produce various forms of deformation such as dislocations. Such strains are 

effective within a bulk material, since they can prohibit a propagating crack, but at a free surface, 

they can be added to contact stresses and increase the wear rate. In the ZTA-additives (1) specimen, 
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the main dislocation activities were observed around an intra-granular zirconia grain as depicted 

in Figure 5.24 (b). The incorporation of zirconia in the alumina grains (intragranular nanoparticle) 

is associated with the formation of residual stresses inside the alumina grain, due to the large 

thermal expansion mismatch between the two grains. The locally formed residual stresses are large 

enough, in some cases, to deform the matrix grain. As shown in Figure 5.24 (b), the residual stress 

appears in the form of a dislocation within the matrix, around zirconia (white arrow) and the 

neighbouring grains (red arrow). As reported by Bartolomé et al.  [204], the nature of the residual 

stress in the alumina resulting from the intragranular zirconia is compressive and can reduce the 

rate of crack propagation or postpone the crack formation. In this regard, Palo et al. reported the 

compressive residual stresses formed inside the alumina grains due to the presence of intra-

granular zirconia and acting as an effective factor in subcritical crack growth resistance. They also 

stated that a small fraction of the very fine intragranular zirconia grains was required to increase 

the crack resistance due to the compressive residual stresses. However, the transformation 

toughening mechanism would not happen, because of the small grain size of the zirconia [28]. 

Hence, the presence of intragranular zirconia grains might be another reason why ZTA and ZTA-

additives possess fairly similar fracture toughness values as the commercial specimen, even though 

their zirconia grain size is about half that in the commercial material. In general, the formation of 

these residual stresses, due to the presence of zirconia grains, makes the predication of crack 

propagation pathway complicated. Another reason to justify this behaviour (the same fracture 

toughness value) is that the indentation could be providing enough stress on the surface to induce 

the phase transformation, whereas, the contact stresses exerted on the sample during the wear test 

might not have been high enough to activate the polymorphic transformation. 

As shown in Figures 5.11-5.12 and, 5.24-5.25, almost all zirconia grains exhibited mottled contrast 

in the bright field mode of TEM (a characteristic of the tetragonal phase) in the ZTA and ZTA-

additives (1) and (2). This was true apart from only one instance of monoclinic zirconia, which 

was found in the ZTA-additives (1), Figure 5.26 (a-b). Therefore, no t→m phase transformation 

occurred, presumably due to the small size of zirconia grains. This observation was consistent with 

the results obtained by the Raman spectroscopy. On the other hand, almost all zirconia grains in 

BIOLOX®delta exhibited twining, which is the main characteristic of the monoclinic phase, 

Figure 5.38 (a-b). In addition to this observation, the existence of the monoclinic phase was 

confirmed by the Raman spectra on an original specimen and also under various contact pressures. 
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The phase transformation occurring in BIOLOX®delta is due to the coarser grain size of zirconia, 

being twice the size of zirconia in the other two specimens. In other words, the larger grain size is 

more vulnerable to transforming from tetragonal to monoclinic, displaying a low phase stability 

[320]. Phase transformation (t→m) in zirconia grains is commonly associated with micro-

cracking, but no evidence of micro-cracking was observed on the commercial specimen which was 

in line with Le et al. observation [158]. On the other hand, this author reported the preferential loss 

of zirconia in BIOLOX®delta, as a result of grain boundary cracking, originated from polymorphic 

transformation [321, 322] which is not consistent with this study. Principally, the possible role of 

zirconia phase transformation in wear resistance of composites is still debatable and needs more 

study. 

Another observation through sub-surface characterisation was the existence of a transgranular 

fracture on a zirconia grain in the ZTA. Also, a transgranular fracture was observed on an alumina 

grain in the ZTA-Additives (1) with the grain boundary cracking around a platelet alumina. 

However, no trans and/or intra granular fracture was observed in the extracted foil from the 

commercial specimen, Figures 5.37 (a-b) and 5.38 (a-b). Further TEM specimens need to be 

explored to firmly confirm the presence of any type of subsurface fracture in the commercial 

specimen at other loads. 

As shown in Figure 5.25, some zirconia grains were standing proud of the surface, possibly due to 

the differential wear which was discussed in part 6.2.3. These protruding grains were observed 

through AFM as well. However, since zirconia grains are much softer than alumina grains, it 

appeared odd that they were able to survive under such a high contact pressure. 

The formation of a tribolayer was only observed on the subsurface of the ZTA foil 1, within the 

crater, Figure 5.10 (b). The elemental analysis confirmed the presence of a few elements including 

Al, O, Zr, Cu, Ca, and Au, Figure 5.10 (c). A common belief is that such a layer would generally 

be hydrated, however the hydration would not be detected by the electron microscopy. The thermal 

dehydration diagram for alumina displays the complexities of the chemistry of aluminum 

hydroxides and it also reveals the possible products that can form through the hydration reactions 

[306]. The work performed by Gee & Jennett, [306, 323] and Gate et al. [196] proposed that a soft 

tribolayer of alumina hydroxide can be formed at a low temperature. They proposed that the initial 

requirement for the formation of a hydroxide layer is the existence of finely scattered alumina 
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debris. These debris are then forced into the crater under the high pressure of the local contacts 

between the counter bodies. Subsequently, under the high pressure and increased temperature, the 

hydroxide and alumina react at the wear interfaces. Hydroxide films continue to fill the depressions 

until flattening of the asperities is completed and a very smooth surface is formed, Figure 6.3 [306]. 

Calcium was also one of the elements formed in the tribolayer, which was probably originated 

from the new-born calf serum solution and this is in line with Zeng et al. observation [324].  

Principally, the information obtained through the TEM analysis in terms of the very smooth and 

flat surface and the occasional dislocation activities were consistent with the observed low specific 

wear rates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Schematic illustration of the routs proposed to form hydroxide layers [306]. 
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7 Conclusions 

1. For powder processing, the combination of ammonium hydroxide, as a pH adjuster, and citric 

acid, as a dispersant, created electrostatic stabilization, leading to a well dispersed powder 

and consequently a homogeneous composite in the basic environment. 

2. Freeze drying appeared to be more effective in forming a homogenous microstructure 

compared to oven drying. When drying in an oven, water would vaporize and subsequently 

the ionic strength of the suspension would greatly increase. Hence the slurry would be 

destabilised, which stimulates agglomeration. However, during freeze drying the particle-

particle distance does not change.  

3. TGA and DTA of the powder displayed endothermic peaks, correlated to the 

dihyrdroxylation of Al(OH)3, which was accompanied by weight loss. Since alumina 

particles are super hydrophilic, they have a great tendency to absorb water, so presumably a 

few of the alumina particles would have interacted with the hydroxyl group, during the freeze 

drying process.  

4. Thermal analysis displayed exothermic peaks and a gradual weight loss corresponding to the 

decomposition of SrCO3, as expected, in a range of 750ºC-1200ºC. There was another 

exothermic peak around 1300ºC, which was presumably due to the formation of a solid 

solution between alumina and chromia. 

5. The particle size analysis revealed the formation of possibly soft agglomerations after the 

calcination of Al2O3 and additives, conducted to release unwanted gases. However, re-milling 

of powders after calcination appeared to be remarkably effective in breaking up these 

agglomerations and in particle size reduction. 

6. The onset of shrinkage for ZTA-additives specimens was about 42ºC lower than for the ZTA 

ones, which was probably due to the finer size of the starting particles and the constructive 

impact of additives on sintering mechanisms. Presumably, Cr2O3 effectively assists the 

enhancement of density, up to around ~ 1400º C but at higher temperatures prohibits the 

densification processes. 

7. At 1550ºC, grain growth in ZTA-additives was more accelerated than in the ZTA, supposedly 

due to the presence of Cr ions. 
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8. Toughness measurements displayed a slight enhancement of fracture toughness in ZTA-

additives due to the crack deflection mechanism, occurring through the formation of 

elongated strontium hexaluminate. 

9. The optimum density, grain size and mechanical properties for ZTA and ZTA-additives, were 

obtained at 1470ºC-8 min and 1500ºC-5 min, respectively. 

10. The enhancement of density and mechanical properties (fracture toughness/Vickers hardness) 

are achievable by incorporation of a specific amount of Cr2O3 and SrCO3. In other words, the 

excess or lack of these additives would have a negative influence on these properties. 

11. As anticipated, grain size refinement of ZTA-based composites improved the wear resistance 

of the specimens, by reducing both thermal mismatch stresses and slip length; hence a 

reduction in the dislocation density, which results in the prolongation of the transition from 

mild to severe wear.  

12. At 32 N load, the impact of the Cr dopant appeared to delay the wear transition to higher loads. 

The incorporation of Cr2O3 introduces additional compressive stresses in the matrix by 

reducing the oxygen vacancy concentration in alumina. This highlights the importance of 

residual stresses in shifting the transition point (mild to severe), by changing the chemistry of 

the surface through appropriate additives. Furthermore, the presence of chromia explains the 

unprecedented two orders of magnitude increase in the specific wear rate of the ZTA.  

13. For the ZTA specimen, the transition point from mild to severe wear was apparently between 

16 N to 32 N (equivalent to ~3155.9 MPa and ~3976.2 MPa Hertzian contact pressure at the 

start of the test, respectively). Incorporation of the Cr2O3 appeared to delay the transition in 

BIOLOX® delta compared to the ZTA. As evidenced by the specific wear rate and topography 

of the surface, the commercial specimen appeared to be close to its transition point, at a 32 N 

load. On the other hand, due to the finer microstructure of the ZTA-additives, no evidence of 

transition in this specimen was observed.  

14. It was inferred from the trend of the Stribeck curve and the images of the wear scars that in 

the ZTA specimen, full fluid film was possibly operating at 1 N and 2 N, with the mixed 

lubrication mode at higher loads. In contrast to the Stribeck curve behaviour, morphological 

images (SEM and AFM) were indicative of operation of the mixed lubrication mode in the 

ZTA-additives and BIOLOX® delta specimens at all loads. 
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15. The topography of the surfaces suggested similar wear mechanisms in the three materials at 1 

N and 2 N. However, in contrast to ZTA-additives and BIOLOX®delta, tribo-chemical wear 

mechanism was possibly dominant in ZTA at 1 N and 2 N. This was compatible with the full 

fluid trend in the Stribeck curve, in which the differential wear was more conspicuous between 

grains. 

16. At 4 N, extensive transgranular fractures were observed in the surface alumina grains, more 

extensively in the ZTA and BIOLOX® delta. This was consistent with the increase in the 

specific wear rate of these two specimens, by about an order of magnitude. Also, interestingly, 

the formation of microcracking was only conspicuous in the zirconia grains of the commercial 

specimen. This might be due to the much smaller grain size of zirconia in both ZTA and ZTA-

additives, i.e. the fine zirconia grains are too small to transform to monoclinic zirconia. 

17. At 16 N and 32 N, extensive patches of compacted wear debris was observed in the 

commercial, ZTA and ZTA-additives specimens. These layers were compacted in the voids 

or smeared on the surface. Also, cracks were evident inside the voids and were supposedly 

formed due to the dehydration of the bovine serum. 

18. Although the presence of the platelet grains (strontium hexaluminate) has a positive impact 

on the toughening mechanism, their effect on wear mechanisms is controversial. Under a high 

contact pressure (32 N), some regions of alumina and zirconia were catastrophically worn, 

while platelet grains appeared untouched. However, in some regions, these grains experienced 

both intergranular and transgranular fractures. This might be due to the different 

crystallographic orientation of these elongated grains in the composite microstructure. 

19. Despite applying a high contact pressure of ~3976 MPa (32 N), no polymorphic phase 

transformation was detected in zirconia grains by Raman spectroscopy, in either the ZTA and 

ZTA-additives, which was attributed to the fine grain size of the zirconia. However, a small 

amount of monoclinic phase was detected on the pristine surface of the BIOLOX® delta and 

increased in amount upon increasing the applied load. This was attributed to this material 

having a zirconia grain size about double that in the other materials. 

20. Although no polymorphic transformation was observed through Raman spectroscopy in the 

ZTA and ZTA-additives, the value of the fracture toughness measured for these two materials 

was similar to the one for the commercial specimen, in which the monoclinic phase was 

detected. This behaviour could be explained through the fact that the indentation could be 
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introducing enough stress in the surface to induce the phase transformation, whereas the 

amount of contact stress inserted into the specimen may not have been high enough during 

the wear test to trigger the phase transformation. In addition, cracks were shown to have 

complicated interactions with zirconia grains by the local stress field, in which the propagation 

of a crack might be slowed down or hindered, depending on the nature of the residual stresses 

in the grain boundaries. For instance, introducing compressive residual stresses, associated 

with the presence of the intragranular zirconia, has been reported to increase crack resistance. 

21. In line with the Raman spectroscopy results, cross section TEM sample of the commercial 

specimen exhibited the presence of the monoclinic phase. ZTA-additives, on the other hand, 

presented only one instance of polymorphic transformation. However, no evidence of phase 

transformation was observed in the ZTA cross section. 

22. At 8 N, despite having different amounts of surface morphological features (mainly grain pull 

out and pitting which were more significant in the commercial specimen), all three specimens 

showed occasional, yet similar, dislocation activity levels in alumina grains, detected in TEM 

and within a grain’s depth.  

23. In the ZTA-additives, numerous dislocations were found around intragranular zirconia grains, 

implying that residual stresses were sufficient to produce dislocations. 

24. The tribo-film was found inside a depression site in the ZTA and its constituents were detected 

to be Al, Zr, O, Ca, Au and Cu, through elemental analysis. 
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8 Future work 

One of the main results obtained from this study was the impact of residual stresses on shifting of 

the wear transition point. To investigate the amount and the nature of the residual stresses 

(compressive or tensile) Cathodoluminescence Microscopy and Confocal Raman Spectroscopy 

would be useful. These techniques will assist in the study of the spread of residual stresses along 

with the formation of polymorphic transformations after the reciprocating sliding wear test under 

various ranges of loads. In terms of the composites to be explored, the study of ZTA-Cr2O3 and 

ZTA-SrO individually might provide further information about the contribution of these additives 

on both mechanical and chemical aspects of the wear. It is worth mentioning that each of these 

additives would be able to change the chemistry of the surface and hence alter the nature of the 

residual stresses. These composites with various grain size ranges are good candidates to be 

assessed for the distribution of residual stresses and subsequently the determination of the 

corresponding transformation point. 

The products based on silicon nitride (Si3N4) are known for their good fracture toughness and have 

the potential to be introduced as the new generation of materials for hip joint replacement. Hence 

this category of materials should be explored in terms of their mechanical reliability and chemistry 

of the surface and be optimized in terms of mechanical properties. The optimized microstructure 

can then be tested under the reciprocating sliding wear test and subsequently be characterised via 

different techniques, including Cathodoluminescence microscopy to reveal the impact of silicon 

nitride on the wear resistance of the newly designed composite. FIB cross section and TEM 

specimens would be quite beneficial to provide complementary information about the types and 

amounts of deformations under the surface. 

The results obtained during 10 hrs wear testing for the loads ranging between 1 N-4 N were quite 

similar to the ones performed by Ma [158] for 24 hrs. However, running the tests for loads between 

8 N-32 N for 24 hrs are recommended. Furthermore, repeating of each test for about three times 

will probably provide more accurate results. 
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