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Abstract

Modern real-time embedded systems often involve computational-intensive
data processing algorithms to meet their application requirements. As a re-
sult, there has been an increase in the use of multiprocessor platforms. The
stream processing programming model aims to facilitate the construction of
concurrent data processing programs to exploit the parallelism available on
these architectures. However, most current stream processing frameworks or
languages are not designed for use in real-time systems, let alone systems that
might also have hard real-time control algorithms. This thesis contends that
a generic architecture of a real-time stream processing infrastructure can be
created to support predictable processing of both batched and live streaming
data sources, and integrated with hard real-time control algorithms.

The thesis first reviews relevant stream processing techniques, and iden-
tifies the open issues. Then a real-time stream processing task model, and
an architecture for supporting that model is proposed. An approach to the
integration of stream processing tasks into a real-time environment that also
has hard real-time components is presented. Data is processed in parallel us-
ing execution-time servers allocated to each core. An algorithm is presented
for selecting the parameters of the servers that maximises their capacities
(within an overall deadline) and ensures that hard real-time components re-
main schedulable. Response-time analysis is derived to guarantee that the
real-time requirements (deadlines for batched data processing, and latency for
each data item for live data) for the stream processing activity are met. A
framework, called SPRY, is implemented to support the proposed real-time
stream processing architecture. The framework supports fully-partitioned ap-
plications that are scheduled using fixed priority-based scheduling techniques.
A case study based on a modified Generic Avionics Platform is given to demon-
strate the overall approach. Finally, the evaluation shows that the presented

approach provides a better schedulability than alternative approaches.
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Chapter 1

Introduction

Embedded systems are widely used in the world, for an estimation, 99% of
the microprocessors are used for embedded systems [32]. A key feature of
embedded systems that are used in critical domains, such as flight control,
is that their time constraints must be guaranteed. These systems are also
usually real-time systems. By definition, given by Burns and Wellings, a
real-time system represents “any information processing activity or system
which has to respond to externally generated input stimuli within a finite and
specified period” [38]. For example, a flight control system of an aircraft must
respond to an input stimuli within a deadline, because any deadline miss could
results in a serious failure which may cause death or aircraft crash. In real-
time systems, tasks are often classified as being hard or soft. Hard real-time
tasks provide services within deadlines that must be met; whereas soft real-
time tasks’ deadlines although important can occasionally be missed without
affecting the correct functioning of the system [38].

Due to increased computational demands, modern real-time systems now
execute on multiprocessor platforms. Parallel programming of these platforms
is required if applications are to exploit the extra available performance. The
stream processing programming model [84] that consists of a collection of
modules that compute in parallel and communicate via channels. Modules can
be either source capturing (that pass data from a source into the system), filters
(that perform atomic operations on the data) and sinks (that either consume
the data or pass it out of the system). Figure 1.1 is a simple illustration of
stream processing.

Stream processing enables users to facilitate the construction of concurrent

programs to exploit the parallelism available on multiprocessor architectures.
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Figure 1.1: A stream processing example

Nowadays, stream processing has been widely adopted in different applica-
tion domains, such as multimedia systems, signal processing systems, reactive
systems, and Big Data systems [4,5,37,44, 56,64, 84, 87].

In addition to these stream processing frameworks, many programming
languages also provide support for programming stream processing applica-
tions. Streamlt [24] focused on developing a new language that was specifically
designed for processing data streams on platforms ranging from embedded sys-
tems to large scale and high performance systems. In addition, the most recent
version of Java (Java 8) has introduced Streams and lambda expressions to

support the stream processing paradigm, with functional-style code.

1.1 Motivation

Stream processing is suitable for several time-critical domains, such as real-
time signal processing [62]. For example, an unmanned aerial vehicle (UAV)
uses radar to identify potential obstacles and chose an avoidance path [77]. The
continuous radar signals are processed by a on-board multiprocessor computer,
and the processing is associated with real-time constraints to avoid potential
hazards to the safety of individuals and communities. However, most stream
processing architectures are not targeted towards real-time systems.

Often, many stream processing frameworks provide real-time performance
by using high performance computation platforms, therefore increasing the
speed of the stream processing so that the overall time which is required to
handle the requests is reduced. Unfortunately, real-time guarantees are

unlikely to be provided for every request using this approach even though



significant power and computation resources are employed. The reason is that
these stream processing architectures pin their hopes on being sufficiently
fast [85], rather than targeting towards real-time systems, to deliver “real-

time” performance which is actually an illusion of real-time.

1.1.1 Real-time Stream Processing

Real-time stream processing systems are stream processing systems that have
time constraints associated with the processing of data as it flows through the
system from its source to its sink.

Typically, stream processing either divides incoming data into partitions
and fully processes each partition before the next one arrives [22] (for example,
object tracking, or radar beamforming), or directly operates on each incoming
data items (for example, wheel speed sensor signals in a car’'s ABS system).
In the most general case, stream processing components may share the same
computing platform, and interact with, other real-time components some of
which might have hard real-time requirements.

In general, the data sources of stream processing systems can be classified

into two types [71]: batched and live streaming.

e A batched data source is where the data is already present in memory,

and its content and size will not change during processing.

e A live streaming data source represents data that arrives dynamically,

its content and size will change with time.

The thesis intends to create an architecture using real-time principles, and
implement a framework with real-time technologies, so that real-time guaran-

tees can be provided to the stream processing.

1.1.2 Motivating Case Study

Consider an aircraft equipped with a spotlight synthetic aperture radar (SAR),
and has a mission to generate images of a series of target areas using SAR,
whilst its defence systems aim to guarantee its safety during the flight, as
shown in Figure 1.2. According to the mission requirement, there is a real-
time deadline for the imagery generation of each target area once the aircraft
flies over it. At the same time, all the hard real-time tasks in the defence
system must still meet their deadlines. All these tasks are executed by a

multiprocessor mission control computer.
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on a target area
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Figure 1.2: The mission of the generating images of target areas using SAR.

This is a scenario of the real-time stream processing, which inputs from a
live streaming data source. However, it is difficult to employ existing stream
processing techniques to generate images for each target area within the dead-
line, whilst guaranteeing that all the hard real-time tasks in the defence sys-
tem can still meet their deadlines. The reason is that these stream processing
techniques are designed for time-sharing systems and so do not provide pre-
dictability of execution. For example, there is no interface to configure the
deadline for a job. More reasons are discussed in Chapter 2.

This case study will be addressed using our proposed real-time stream pro-
cessing architecture in Section 5.6, along with its configuration. The derived
response-time analysis guarantees that the time requirements of the mission

are met.

1.2 Thesis Aims

The overall objective of the thesis is to develop a real-time stream process-
ing architecture, and a prototype implementation, along with corresponding
schedulability analysis techniques. The challenges and contributions of the

thesis are described in this section.

1.2.1 Challenges in Real-Time Embedded Stream Processing

Handling stream processing in a system that also host many hard real-time
activities to meet the given time constraints, whilst the hard real-time com-

ponents remain schedulable is challenging. The reasons include:

4



e Typically, the stream processing paradigm uses multiple processors in
the system, and its input data source can be either static, i.e., a batched
data sources or data which arrives dynamically, i.e., a live streaming

data source.

— When processing a batched data source, how should the real-time
stream processing of a batched data source be modelled into a real-
time activity, so that the real-time characteristics, such as its dead-

line, can be captured, and multiple processors can be utilised?

— For a live streaming data source, as each data item arrives dynam-
ically, typically there is a deadline for completing each individual
data item’s processing. Therefore, how to create a parallel real-time
model to queue (if necessary) and process these data items within

a stream processing paradigm also needs to be addressed.

e Stream processing is often computationally intensive, it can be either
hard real-time or soft real-time. For the later case, it might be difficult
to predict the volume and the cost of processing the data. If the stream
processing activity is executed at a very high priority, it is likely to
meet its deadline, but it may also cause hard real-time tasks in the
same system to miss their deadlines. If the stream processing activity
is assigned with a too low priority, such as the background priority, it
may miss its target deadline because of suffering interference from higher

priority hard real-time activities during its execution.

Therefore, how to execute a stream processing activity so that its dead-
line can be met, whilst the hard real-time tasks remain schedulable raises

another challenge.

e Another requirement for real-time stream processing is to derive appro-
priate schedulability analysis. A real-time activity is schedulable if its
response time is less or equals to its deadline. The response time is the
time interval from when the input arrives to when the output is gener-
ated in a system. Once the stream processing activity is executed by
multiple processors, the worst-case response time of the stream process-

ing is required to be calculated in order to test its schedulability.

More specifically,



— For a batched data source, the worst-case response time of the real-
time activity which processes the whole batched data is required to

be analysed.

— For a live streaming data source, as each data item is associated
with a deadline, typically called latency, which represents the time
from when the data arrived in the system to when the data pro-
cessing has finished. Therefore, for every data item, the worst-case
queueing time and response time of its processing is required to be

analysed.

1.3 Thesis Hypothesis

This thesis addresses the hypothesis that:

Programming languages or existing frameworks’ support for
stream processing is insufficient for addressing real-time require-
ments. However, a generic architecture of a real-time stream pro-
cessing infrastructure can be created to support predictable and
analysable processing of both batched and live streaming data
sources, and can be used in high-integrity real-time embedded sys-
tems. Moreover, the architecture can be implemented as a frame-
work using Java, with the Java Fork/Join framework and the Real-

Time Specification for Java.

1.4 Success Criteria and Contributions

To assist with evaluating the work created as part of this thesis, the following

success criteria were developed:

SC1 The definition of a generic architecture of a real-time stream processing
infrastructure, which supports both batched data and live streaming
data sources processing with real-time constraints, and is programming

language independent.

SC2 A process for engineering real-time systems that have both hard real-
time and hard or soft stream processing components, which focuses on

how this architecture is to be mapped to the physical platform and how



the stream processing activity for both batched data and live streaming

data sources is configured.

SC3 Response time analysis to determine the schedulability of stream pro-
cessing for a batched data source, and latency for a live streaming data

source.

SC4 A framework for integrating real-time stream processing activities with
hard real-time components, and its implementation using the Real-Time
Specification for Java (RTSJ).

SC5 An evaluation that demonstrates that the proposed model is as effective
as a more typical real-time systems model that does not use the stream

processing paradigm.

In addition to the above success criteria, a number of additional contribu-

tions were also made during the development of this work. These were:

e The first use of execution-time servers for performing stream processing

in the context of hard real-time control system.

e An algorithm for selecting the number of servers and their parameters,
which maximises the processor time that can be allocated to real-time
stream processing within the deadline, yet guarantees the deadlines of

the hard real-time components.

o A bound task is free of ‘double-hit’ (see Section 5.1.1) introduced by
higher priority deferrable servers, therefore maximising the capacity that
can be reclaimed by deferrable servers. This observation has been proved,

and is a supplement to the original RTA (as described in Section 5.1).

e A comparison of the relative efficiency of the Java and Streamlt stream

processing models.

e An evaluation of the suitability of the Java stream processing framework

for use within a real-time environment.

1.5 Structure of the Thesis

The thesis is structured as follows:



Chapter 2 provides some necessary background material before review-

ing stream processing frameworks, and programming languages.

Chapter 3 described the architecture of a proposed real-time stream
processing infrastructure, which enables processing both batched and
live streaming data sources in real-time. This architecture is assumed
by the proposed approach in Section 4, and analysis in Chapter 5. This

chapter provides the material needed to meet SC1.

Chapter 4 presents the overall approach to configure and schedule real-
time stream processing tasks for both batched and live streaming data
sources to meet the real-time constraints. In addition, the assumptions
we make on the underlying real-time platform are also described in this

chapter. This chapter provides the material needed to meet SC2.

Chapter 5 draw upon the research in schedulability analysis for the
proposed real-time stream processing task model for both batched and
live streaming data sources. An example of the scheduling, configuring
and schedulability analysis for a real-time batched data processing task,
and a case study of a real-time live streaming data processing application
are also given in this chapter. This chapter provides the material needed
to meet SC3.

Chapter 6 investigates two different stream processing models, and
describes the implementation (SPRY) of the architecture of the proposed
real-time stream processing infrastructure using RTSJ, along with the
implementation of the case study using SPRY. This chapter provides the

material needed to meet SC4.

Chapter 7 evaluates the presented real-time stream processing ap-
proach to the traditional embedded approach, when processing batched
data and live streaming data sources. This chapter provides the material
needed to meet SC5.

Chapter 8 draws the conclusions and summarises future work.



Chapter 2

Literature Review

This chapter first introduces some necessary background material on computer
architectures and real-time in order to set the landscape within which this
research has been conducted. A brief history of stream processing is then pre-
sented. Several typical stream processing techniques, including frameworks,

programming languages, are then reviewed in detail.

2.1 Parallel Computer Architectures

In recent years, processor manufacturers have turned to parallelism to speed
up computation, rather than increasing the clock speed [54], and thus com-
puters have evolved towards multiprocessor architectures. According to their
memory access model, parallel computers can be classified into three typical

architectures:

e Uniform Memory Access (UMA)
All the processors use the same memory, and they have equal access and

access times to memory.

e Non-Uniform Memory Access (NUMA)
Processors are divided into groups, processors in each group access mem-
ory using UMA. Not all processors have equal access time to all memo-
ries. Cache Coherent NUMA (CCNUMA) is one type of NUMA archi-
tecture that provides cache coherency. Most modern processors running

on servers use this architecture.

e Distributed Memory

Processors have their own local memory in distributed memory systems,
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processors can not access data in other processor’s local memory. Pro-

cessors communicate over networks.

This thesis is concerned primarily with UMA architectures. However, our

underlying approach is also appropriate for NUMA architectures.

2.2 Real-Time Systems Model

The literature in real-time systems is broad. Here we present a top level view
in order to place our work in context. More details will be given on particular
techniques when they are used later in the thesis.

We introduce: the scheduling approaches used in the real-time literature,
the problem of task allocation in a multiprocessor systems, and the role of

execution-time servers.

2.2.1 Scheduling

The thesis focusses on the task-based scheduling of real-time systems, which

have been summarised by Burns and Wellings [38]:

e Fixed-Priority Scheduling (FPS)
In a fixed priority scheduled system, each task has a fixed priority, which
does not change with time. The tasks’ running order is determined by

their priorities.

e Earliest Deadline First (EDF)
The running order of the runnable tasks is determined according to their
absolute deadline, the task that has the nearest deadline executes prior
to the rest of the tasks.

e Least Laxity (LL)
The runnable tasks are executed according to their slack, which is the
deadline minus the required computation time. The next task to execute
is the task with the shortest slack.

e Value-Based Scheduling (VBS)
This algorithm considers system where overloaded are possible. In this
type of systems, each task is allocated with a value, and an online value-
based scheduling approach is employed to determine which one is the

next task to run. The one with the highest value is the one chosen.
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In this thesis, we are concerned with priority-based scheduling as this is
the most widely used approach [39] and the one supported by all real-time
operating systems [38].

2.2.1.1 Preemption

In a preemptive system, when a higher priority task is released and a lower
priority task is executing, the execution is immediately switched to the higher
priority task. In contrast, in a non-preemptive system, the higher priority task
has to wait for the lower priority task until it finishes its execution.

The preemptive scheme is adopted in this thesis as it makes higher priority

tasks more responsive.

2.2.2 Task Allocation

Given a set of application tasks, a multiprocessor execution platform and
preemptive priority-based scheduling, there are essentially three approaches

to scheduling the tasks on the platform [38].

e Global Scheduling
A globally scheduled system is a system where all the tasks can execute
on any available processor. A task that is executing on one processor
can switch to another processor, i.e., a task can start its execution on
one processor and then migrate to another process to continue/finish its

execution.

e Fully-Partitioned Scheduling
A task in a fully partitioned system is not allowed to migrate to another

processor once it has been allocated to one processor.

e Semi-Partitioned Scheduling
Semi-partitioned scheduling is between global scheduling and fully par-
titioned scheduling. In a semi-partitioned system, it limits which tasks

may migrate, and where they may migrate to.

Normally, a single processor only resides in a single partition. This thesis
addresses only Fully-Partitioned Systems as the schedulability analysis for
such systems is a major domain in the real-time literature [38]. For example,
in Chapter 5, we build our analysis on [47], which is based on fully-partitioned
systems rather than globally scheduled systems.
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2.2.3 Execution-Time Servers

In the real-time community, execution-time (or aperiodic) servers [38] are used
to give tasks that might demand unbounded CPU time a good response time,
while limiting their impact on other tasks so that, e.g., a hard real-time task
will not miss its deadline. An execution-time server has a capacity, and a re-
plenishment policy. When a client task execute under a execution-time server,
it consumes the capacity. When the capacity is empty, the client task is not
allowed to run and has to wait for the next replenishment.

For a periodic server [38], it has a capacity, which is periodically replen-
ished. The capacity is consumed even if there is no client task. For example,
a periodic server has a period of 10, capacity of 5, released at time 0. It has
only 3 time units capacity left at time 12, because 2 time units capacity has
idled away.

The POSIX standard supports Sporadic Servers [65,83]. A sporadic server
has a replenishment period, a budget (or capacity), and two priorities: high
priority and low priority. When handling aperiodic events, the server executes
at the high priority when it has budget, otherwise runs at the low priority.
When the server runs at the high priority, the amount of execution time that
has been consumed is subtracted from its budget. The budget remains in-
definitely if not consumed. If consumed, e.g., at time ¢, the budget will be
replenished at ¢+ its replenishment period.

A Deferrable Server [65,83] allows a new logical thread to be introduced
at a particular priority level. This thread, the server, has a period and a ca-
pacity. These values can be chosen so that all the periodic schedulable objects
in the system remain schedulable even if the server executes periodically and
consumes its capacity. When registered with a deferrable server, an aperiodic
thread executes at the server’s priority level until either the capacity is ex-
hausted or it finishes its execution. In the former case, the aperiodic thread
is suspended or transferred to a background priority. The capacity of a de-
ferrable server is replenished every period. Different from the periodic server,
the capacity of a deferrable server is retained as long as possible, rather than
idled away.

The response time of a task executing under an execution-time server can
be analysed using the techniques provided by Davis and Burns [47]. The
impact from a higher priority deferrable server to a lower priority task can be
analysed by [34].
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Figure 2.1: A stream processing example

In this thesis, we will use Deferrable Servers as they have superior schedu-
lability compared to Periodic Servers. Furthermore, they are easier to imple-
ment than sporadic servers. However, our framework is independent of the

server technology used.

2.3 Stream Processing and Related Techniques

Stream processing has been around for decades, and is widely used in data

flow systems, signal processing systems, reactive systems, etc. [1,4,12,84,87].

2.3.1 Stream Processing

A stream processing system uses a collection of modules to compute the input
in parallel, and communicates via channels [84]. Modules can be either source
capturing (that pass data from a source into the system), filters (that perform
atomic operations on the data) and sinks (that either consume the data or
pass it out of the system). For example, a stream processing system that has
4 filters computing in parallel can be illustrated in Figure 2.1 (a replication of
Figure 1.1 for convenience of presentation). The filters in processor 0 and 1
have the same functionality, and their outputs flow into filters in processor 2

and 3 separately.

2.3.2 Stream Processing Data Source Classification

As has been introduced in Section 1.1.1 the data sources of stream process-

ing systems can be classified into two types [71]: batched and live streaming.

13



Note however, the live streaming data may has other names, for example, in
Big Data community, the live streaming data is also called real-time data.
However, the real-time in this thesis represents “any information processing
activity or system which has to respond to externally generated input stimuli
within a finite and specified period” [38]. For the clarification, the term live

streaming used to to represent this type of data sources.

2.3.3 A Brief History of Stream Processing Techniques

The earliest recorded work of stream processing is data flow programming in
1960s [84], even though it was not termed as data flow at that time. Then,
several research projects targeting stream processing were performed. For ex-
ample, in 1970s, Kahn Process Networks were proposed as an asynchronous
programming model for data flow, i.e., filter processing without synchronisa-
tion with respect to other filters. Synchronous data flow [64] was proposed in
1980s for stream processing, where synchronisation was supported when col-
laboration between filters is required. In 1990s, LUSTRE [57] was proposed
as a programming language to support synchronous data flow. More related
stream processing work in the past decades is reviewed in [84].

In 2002, Streamlt [87] was created as a new language for stream processing
on platforms ranging from embedded systems to large scale and high perfor-
mance system. In 2003, Brook [36] was proposed as a stream processing spec-
ification, and its main follow-up work is Brook for GPUs [37], which was de-
veloped for the stream processing on GPUs. In the same year, STREAM [28],
Aurora [26], and Medusa [43] were created to support stream processing mainly
in data management systems.

In order to address the requirement of large data sets processing in a
distributed computer cluster, MapReduce [50] was announced by Google in
2004. MapReduce partitions the input, distributes the partitions over the
computer clusters, performs operations, and fold the results. In addition,
Borealis [5] integrated Aurora [26] and Medusa [43] to provide a distributed
stream processing system for data management.

In 2007, Microsoft announced Dryad [60], which supports distributed large
data sets processing with directed acyclic graphs (DAG) so that more com-
plicated processing logic can be represented. Inspired by Streamlt, Stream-
Flex [82] was also proposed in 2007, which intends to deliver low-latency

stream processing. StreamFlex uses abstractions supported by the Real-Time
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Specification for Java (RTSJ) [91], e.g., a memory area that avoids any inter-
ference from garbage collectors, to minimise latency.

In 2008, DryadLINQ [93] was proposed to provide a high level language
abstraction, which enables the succinct description of a distributed stream pro-
cessing job. In 2010, FlumeJava [41] was created to provide an easy, efficient
data parallel pipeline, which was used by Google internally.

In 2010, S4 [76], and Storm [4] were proposed for distributed live stream-
ing data processing. Spark [1] was created to support in-memory stream pro-
cessing of large data sets. In addition, MapReduce online [45], Twister [52],
HaLoop [35] also tried to refine MapReduce so that it can be used iteratively,
in order to provide interactive data processing. In addition, considering the
requirement of large-scale graph processing, such as, social networks that has
billions of vertices, trillions of edges, Pregel [69] was proposed by Google.

Spark Streaming [19] was developed as a library on Spark in 2013, in order
to support live streaming data sources. In the same year, MillWheel [27] was
also created at Google, to support live streaming data processing as MapRe-
duce is not fit for live streaming data. Additionally, Flink [40], Heron [61],
and Samza [2] were developed in 2014 to 2015 as distributed stream process-
ing frameworks, in order to deliver more scalability and efficiency compared to
Storm. In addition, inspired by FlumeJava [41] and PLINQ [15] that provides
a parallel implementation of data set operations, Java SE 8 [12] was released
in 2014, with Java 8 Streams and lambda expressions, which enables efficient
parallel stream processing with functional-style code.

These stream processing techniques introduced above are designed for best
effort, time-sharing systems. For real-time systems, some distributed real-
time frameworks have emerged in recent years, for example, [33] is a real-time
version of Storm [4], and the JUNIPER [31] project. These frameworks provide
supports to process large data sets in a distributed computer cluster, with a
predictable processing time. However, it is difficult to implement a hard real-
time system in a distributed system, because of the unpredictability of the

network, they are targeted soft real-time.

2.3.4 Stream Processing Classification

In the most recent stream processing frameworks [1,4,12], stream processing is
typically represented by a pipeline with zero or more synchronous stages. Each

stage contains one or more filters, which are allocated to different processors
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(b) A pipeline that is lazily evaluated.

Figure 2.3: The evaluation of a pipeline.

or computer nodes to execute, in order to exploit the possible parallelism. The
whole processing procedure forms a DAG.

According to the executing behaviour and allocation of the filters, stream
processing can be classified into different types. Considering a typical pipeline,
which contains 4 filters can be illustrated by Figure 2.2, the stream processing

can be classified as:

e Lazy or Eager
According to the behaviours of the pipeline’s executing, their evaluation

can be classified as eagerly, and lazily.

— Fager Evaluation

The input is processed eagerly in this model, i.e., any filter in this
model triggers the processing immediately. When an input arrives
at a pipeline that is eagerly evaluated, the input is immediately
processed by the first filter, and generates an intermediate result,
which will be an input of the down stream (or next stage) filter. The
intermediate results are typically transferred via channels, shared
memory buffers, or networks in a distributed computer cluster.

This model can be illustrated by Figure 2.3a, where a pipeline that
contains four filters is used to process numbers. For example, when
the number 1 enters the eager evaluated pipeline, it is immediately

processed by the filter that increases the input by 1, and generates
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2 as the intermediate result. The intermediate result 2 is then be
sent to the next filter that multiplies the input by 2, and we get the
number 4. So on and so forth. In this example, three intermediate

results are generated, stored and transferred by channels.

— Lazy Fvaluation

In a lazily evaluated model, the processing or the input is delayed
as long as possible, and only processed when necessary, such as,
when the final results are requested or the intermediate results are
required to be transferred to another machine in a distributed en-
vironment.

Considering the same pipeline again, Figure 2.3b illustrates how it
is lazily evaluated. When the input 1 arrives, it is not processed
until the sink requests the final result. The filters are combined
together to be a super filter, so that the input is processed by this

super filter, and no intermediate result is generated or transfered.

Lazy operations not only can avoid unnecessary evaluation, but also
can provide potential optimisation opportunities. For example, the
following Java 8 pseudo code gives the MD5 hash code of the first
number in a given array. Lazy operations enables a return generated
upon the first input, instead of calculating all numbers’ hash code

then finding the first one.

Arrays.stream(new int[] { 1, 2, 3,..., 1000000 })
.map(n -> MD5(n))
.findFirst ()

.ifPresent (System.out: :println) ;

However, a lazy pipeline is identical to a eager pipeline when the
intermediate results of each filter are required to be transferred to
another machine. Typically, when evaluating a lazy pipeline, the
application travels through the pipeline until a filter that triggers
the processing is met. Then the application travels back to the
first filter and perform operations in down-stream filters one by
one. Compared to a eager pipeline, this introduces overheads when

there is no optimisation opportunities.

e Control Parallel or Data Parallel

Considering a stream processing system with the pipeline shown in Fig-

17



18

Waiting Queue

Processor 0

Processor 1

Processor 2

Processor 3

Time 0 1 2 3 4 5 6 7 8 9

Filter 1 processing data i Filter 2 processing data i
D Filter 3 processing data i Filter 4 processing data i

Figure 2.4: A control-parallel pipeline.

ure 2.2 again, and a 4 processors SMP CPU. The inputs are 4 data items,

which arrive at time 0, and are stored in a waiting queue.

According to the processor allocation, a pipeline can be either mapped
across different processors, i.e., control parallel, or duplicated on each

processor, i.e., data parallel.

— The Control-Parallel Pipeline

The control-parallel pipeline behaves similar to an instruction pipe-
line within a modern CPU. In this scheme, one or more filters are
mapped to a processor, but a same filter does not reside on more
than one processor. In this example, each filter is mapped to dif-
ferent processors as shown in Figure 2.4. The processor 0 takes an
input from the waiting queue, processes it, passes the intermediate
result to the down-stream filter that is running on processor 1, then
takes another input from the waiting queue. Note that, the result
merging is not shown.

Multiple processors can be utilised to exploit the parallelism, how-

ever, the control-parallel pipeline has the following disadvantages:

* When the pipeline contains too few stages compared to the

number of available processors, some of the processors cannot
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Figure 2.5: A data-parallel pipeline.

be utilised, therefore, making the system inefficient.

* If the pipeline is unbalanced (i.e., computation time, of each fil-
ter is not identical), or up-stream filters’ processing is delayed,
for example, due to receiving interference from other activities,
the system efficiency is reduced. The reason is that, when any
up-stream filter requires more time to finishes its processing,
the down-stream filter has to wait for it idly.

* Moreover, inter-processor communication introduces extra over-
heads.

— The Data-Parallel Pipeline

The data-parallel pipeline duplicates the entire pipeline to different
processors, as shown in Figure 2.5. The data is allocated to different
processors. In this example, each processor works independently,
and there is no waiting gap. The data-parallel pipeline is suitable
for lazy evaluation, as all the filters are allocated into the same
processor. Again, the result merging is not shown in the figure.

However, the drawback of a data-parallel pipeline is making the
the pipeline span different computation resources impossible. For

example, one of the filter within the pipeline requires to access a
GPU or FPGA.
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Figure 2.6: The hybrid pipeline.

— The Hybrid Pipeline

With a hybrid pipeline, the pipeline can span different nodes in a
distributed system, while within each node, the pipeline is dupli-

cated according to its data source partitions.

For example, a hybrid pipeline can be illustrated by Figure 2.6.
Where the logic of the pipeline is shown in Figure 2.6a, the pro-
cessing of this pipeline is illustrated by Figure 2.6b. This example
inputs data collections, which are firstly processed by the first 4
filters using a data-parallel model. For example, the first input col-
lection 1,2, 3,4 are partitioned, and processed by processor 0, 1, 2,
and 3. This can be illustrated as stage 1 in Figure 2.6b. The in-
termediate results are merged, and sent to down-stream filters. For
example, the merged intermediate results are then processed by fil-
ter 5 and 6 using a data-parallel model, with processor 8 and 9.
This can be illustrated as stage 2 in Figure 2.6b. The sub-pipelines

in Stage 1 and 2 are evaluated using a control-parallel model.

The following subsections consider in more depth several of the stream
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processing techniques that were discussed previously. A summary of those
techniques and their characteristics is given in Table 2.1. The remainder of

this subsection justifies our choice of the set of representative techniques to

consider.
Table 2.1: Stream Processing Techniques Classification

Technique Type Behaviour | Pipeline Type ‘ RT ‘
Streamlt Language Fager Control parallel | No
Spark Framework Lazy Hybrid No
Java 8 Streams | Framework Lazy Data parallel No
Storm Framework Eager Hybrid No
JUNIPER Infrastructure Hybrid Hybrid Soft
RT-Storm Framework Eager Hybrid Soft

Streamlt is chosen as it targets embedded systems and provides flexible
support for the development of stream processing applications [87]. It uses
an eager pipeline as any filter triggers the processing, and a control-parallel
model. It is also a widely referenced stream processing language.

In order to address the requirement of large data sets processing chal-
lenges introduced by the rapid growth in data production, MapReduce [50],
Hadoop [3], and Dryad [60] were created. Recently, Spark [1] has success-
fully succeeded these frameworks. Spark uses lazy evaluations (as only certain
types of filters trigger the processing), and a hybrid pipeline. We, therefore,
review Spark as an example of a batched stream framework for large scale
data processing applications.

Java is a popular programming languages, and used widely in modern
stream processing domain, for example, Hadoop, Spark, Flink [40], Storm,
etc., are based on Java platforms. In the most recent version (Java 8) a
stream processing library has been included to support efficient batched data
stream processing in parallel. Java 8 Streams are lazily evaluated, with a data-
parallel pipeline. Java is reviewed as it is used in this thesis to implement our
proposed real-time stream processing architecture. It is also an example of a
framework that supports batched stream processing.

Storm [4] was created to target live streaming data processing, and has
been widely adopted in commercial areas [90]. Storm is considered because the

hybrid pipeline model, and uses the eager evaluation model (because any filters
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in Storm triggers data processing). Storm is, therefore, reviewed as an example
of a commercially successful live streaming data processing framework.

In order to address the real-time requirement of stream processing, JU-
NIPER [31] and a real-time version of Storm [33] were created. JUNIPER
mainly targets batched data processing in real-time, while real-time Storm
focuses predictable live streaming data processing. We consider these two as
they are two state-of-the-art frameworks that focus on real-time streaming

issues (albeit in a distributed environment).

2.3.5 Streamlt

Streamlt [87] is mainly based on Java, but provides its own compiler (it com-
piles Streamlt source code to Java code, then translates the Java code to C++
code using a third party library, and finally generates a binary executable file
using G++) and tool set. Streamlt defines several concepts. The basic con-
cept is the filter, which is a computation unit of Streamlt, and contains user
defined data processing code. Streamlt also defines global variables, that can
be accessed by any of the filters.

A simple stream processing program can be defined using the following

Streamlt code:

void->void pipeline Example() {
add IntegerSource();
add IntegerPrinter();

}

void->int filter IntegerSource {
int i;
init { i = 0; }
work push 1 { push(i++); }

X

int->void filter IntegerPrinter {
work pop 1 { print(pop(O)+" "); }
b

This program defines a pipeline, which contains two filters:

- the IntegerSource filter, which takes nothing as the input, and gener-
ates an incremental integer each time (via the “push” statement). The

push statement writes the results into the communication channel.

- the IntegerPrinter filter, which inputs one integer at a time (via the
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“pop” statement), and prints it out. The pop statement reads numbers

of intemediate results from the communication channel.

The program is controlled by a loop, with a user configured total iteration
times. Within each iteration, an input is read into the system, and then sent
to the down-stream filters for processing. For example, after compilation, the
user can run this program with the following command:

./Example -i 5

The program iterates 5 times, and generates the output: 0 1 2 3 4.

2.3.5.1 Connecting the Filters

The notion of stream in Streamlt is defined as a component, which has one
or more connected filters and with data flows into and out. Three structures
of stream processing logic are defined by Streamlt, by connecting filter in
different ways: the Pipeline, the SplitJoin, and the FeedbackLoop.

Pipeline

The Pipeline is used to construct a sequential stream, which has a series of
filters connected linearly using the add command (see line 2, and 3 in the

above code). An example of the pipeline has been introduced above.

SplitJoin

The SplitJoin splits the input data stream to different branches, which can
process data items in parallel, and merge the intermediate results into a com-
mon joiner. For example, the following code distributes the input to two filters

in a round-robin fashion.

void->void pipeline SJExample() {
add IntegerSource();
add SJQ);
add Printer();
}
void->int filter IntegerSource { int i;
init { i = 0; }
work push 1 { push(i++); }
}
int->int splitjoin SJ O {

split roundrobin;
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Figure 2.7: Streamlt SplitJoin example, the cycle with numbers represent the

input data or an intermediate result.

add Adder(1);
add Adder(2);
join roundrobin;
}
int->int filter Adder(int increment) {
work pop 1 push 1 { push(pop()+increment); }
}
int->void filter Printer {

work pop 1 { print(pop(O)+" "); %}

The program can be illustrated by Figure 2.7. Run the program with 2
iterations, the source generates the input (i.e., 0), and the second input (i.e.,
1). The first input is sent to the filter: z— > x + 1, while the second input is
sent to the filter: z— > x + 2. Finally, 1 3 is printed.

Streamlt supports three types of SplitJoin:

1. Duplicate
Each input is duplicated, and sent to every added filter.

2. RoundRobin
The inputs are distributed to added filters in a round-robin fashion. The
first data is sent to the firstly added filter, the next data is sent to the

secondly added filter, and so on.

3. Null
It considers the parallel paradigm where there is no input is required by
the added filters.
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FeedbackLoop

The FeedbackLoop is used to create cycles in the stream processing graph. For
example, a stream that calculates the Fibonacci numbers can be described by
the following example, which is taken from Streamlt benchmarks [23]. The
feedbackloop takes two numbers each turn, generates the output by adding
them together. The output of the feedbackloop is copied to 2 pieces: one goes
to the printer, one is go back to the feedbackloop as an input in the next

iteration.

void->void pipeline Fib {

add feedbackloop {
join roundrobin(0, 1);
body PeekAdd();
split duplicate;
enqueue O;
enqueue 1;

s

add IntPrinter();

int->int filter PeekAdd {
work push 1 pop 1 peek 2 {
push(peek(0) + peek(1)); pop(Q);

int->void filter IntPrinter {
work pop 1 {
println(pop());

2.3.5.2 Parallel/Distributed Execution

Streamlt is supported on Linux. The Streamlt compiler compiles the code into
Java source code, and then generates C code. Finally, the C code is compiled

into binaries using GNU G++.

25



Processor Allocation

When compiling a Streamlt program, the number of processors that are allo-
cated to the program is required to be given, otherwise, by default, the code is
compiled to be a sequential program. In addition, there is also a configuration
file, which specifies the host, i.e., which node in a computer cluster, where
each processor is located in.

Each filter in the code is compiled to be a C function, and the data flow
between two filters is implemented using shared memory buffers in a multi-
processor CPU, or TCP/IP sockets in a distributed system.

When there are more filters than processors, the Streamlt compiler com-
bines several filters to be a super filter. The compiler generates several super
filters as many as the available processors. These super filters are allocated to
POSIX threads for execution.

However, when there are more processors than filters, some of the unallo-

cated processors are idle as Streamlt does not duplicates filters.

Performance Optimisation

The Streamlt compiler estimates the computation load of each filter using
simulation, then allocates different numbers of filters into different super filters
so that the super filters have an identical amount of computation load.

In addition, Streamlt also employs function inlining, array scalarization,

and loop unrolling to optimise the performance [55].

2.3.5.3 Discussion

Streamlt is a stream processing programming language, which enables data
flow processing program can be written using concise code.

However, the main drawback of Streamlt is that it is a special purpose
language, so that it is hard to integrate with general purpose languages.

In addition, the pipeline in Streamlt is not replicated by default. There-
fore, when there are more processors, it relies on users to construct a parallel
structure, which can utilise all the processors. For example, it assumes users
will use the SplitJoin to duplicate the filters. Otherwise, some of the processors
are idle.

As Streamlt is not designed for real-time systems, it is impossible to be

directly integrated with real-time systems. This is because the threads may
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demand unlimited CPU time, therefore causing the hard real-time tasks in the

same system to miss their deadlines.

2.3.6 Spark

Spark [1] was created at UC-Berkeley and implemented in the Scala program-
ming language, which runs on the JVM and targets batched data processing.
Spark provides a functional programming interface, which enables program-
ming with concise code. Spark Streaming [19] is an extension of Spark, and
allows the live streaming data to be processed using the existing Spark run-
time.

The data structure used by Spark is the Resilient Distributed Dataset
(RDD), which represents a read-only collection of data located in a set of
machines. Data that is corresponding to the RDDs can be parallel processed
by invoking multiple parallel operations, for example, map, reduce etc. An

example is described by the following Scala code:

val InputFilesRDD = spark.textFile("hdfs://...")

val ResultRDD = InputFilesRDD.flatMap(line => line.split(" "))
.map (word => (word, 1))
.reduceByKey (_ + _)

//save the result...

In this example, a RDD named InputFilesRDD is created from the text
files that are stored in HDFS (see line 1). The InputFilesRDD references
to all the texts in these text files. Spark splits each line into words using
the flatMap operation (see line 2), and these words are represented by a new
RDD. Each word in this new RDD is mapped into pairs (word,1) by invoking
the map operation (see line 3), and the generated pairs are represented by
another newly created RDD. Spark performs the reduceByKey operation on
this RDD, and generates the final result.

The Spark application runs as a set of Java JVM processes on a cluster,

with a master-slave architecture.

2.3.6.1 The Resilient Distributed Dataset (RDD)

An RDD is a read-only, distributed, partitioned collection of records, and it is
the core concept of Spark [95]. An RDD is an object that references the data

source, and provides several parallel operations for data processing. Zaharia
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Figure 2.8: Spark Streaming Overview [20]

claims that RDDs are so general that RDDs can emulate any distributed
system [94].

RDDs can be created by invoking deterministic operations on either data in
stable storage or other RDDs. The RDDs are lazy evaluated, which means that
the data is evaluated only when action operations (they are similar to terminal
operations defined in Java 8) are invoked, rather than all of the operations in
pipeline are performed on data immediately. In addition, programmers can

call a persist method to indicate which RDDs are going to be reused in future.

Spark also connects and performs multiple operations in a pipeline on
RDDs to optimise the performance, in the same machine. For example, RDDs
can be evaluated by applying a map followed by a filter operation on the same

node. Thus, transferring the intermediate results among nodes is avoided.

2.3.6.2 Spark Streaming

Spark Streaming is an extension to Spark, which is designed for live streaming
data processing. The core concept of Spark Streaming is Discretized Streams
(D-Streams), which were created in order to enable the Spark to provide live
streaming data items with an interactive response time. By using D-Streams,

a DAG can be created to represent the processing logic.

The key idea of Spark Streaming is that D-Streams treats a live streaming
computation as a series of deterministic batch computations on small time
intervals [96]. For example, in order to process live streaming data, we can
group data received every second into a batch, and processes each batch using
Spark. This can be shown in Figure 2.8, Spark streaming groups live streaming

data into batches periodically, and processed using the existing Spark runtime.
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Figure 2.10: Applying the flatMap operation on a D-Streams [20]

The D-Streams Computation Model

A D-Stream is a sequence of immutable, partitioned datasets (RDDs) that
can be parallel processed by numbers of operations [94]. These operations can
yield new D-Streams or generate outputs, and any operation that is applied
on D-Stream will be translated to operations on the underlying RDDs. In a D-
Stream, each RDD contains data from a certain interval. Figure 2.9 illustrates
the structure of a D-Stream, in this example, the D-Stream consists of RDDs
with the period of 1 second. For example, in the WordCount example, the
first stage is converting a stream of lines to words. The lines D-Stream is
transformed by a flatMap operation, as described by Figure 2.10. Each RDD
in the lines D-Stream is evaluated by the flatMap operation, and the RDDs
representing the words are generated. Finally, the newly generated RDDs
form the words D-Stream. In this example, the Spark Streaming framework
generates a batch processing task (i.e., underlying RDD transformations) every

second, and these tasks will be processed by the Spark Engine.
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2.3.6.3 Scheduling Spark Applications

By default, Spark schedules applications in FIFO order, each application are
allocated with a fixed amount of resources (the number of processors and the
size of memory). Dynamic resource allocation is introduced in Spark version
1.2. This approach allows an application to give resources back to the scheduler
when it does not use them, and request resources again later when needed.
For example, when some tasks within an application are waiting for I/0, the
processors that are allocated to these tasks can be given back to the scheduler

temporarily.

2.3.6.4 Scheduling Within The Spark Application

Spark hides the details of resource allocation for the pipeline, for example,
how many workers are involved by each operation. Spark uses the following
concepts and schemes to execute a pipeline in parallel, or in a distributed
System.

A Spark application may generate several RDDs as the results. Addi-
tionally, one or more operations in a pipeline and source RDDs are used to
generate each target RDD.

In Spark, responding to a Spark action, e.g., generating a target RDD,
is defined as a job. Each job will be compiled into multiple tasks. The task
in Spark is executable code, typically part of the code within an operation,
e.g., the processing logic in a map operation. The tasks are executed by the
executors, which are JVM processes running the worker node. This section
describes how a job is compiled to tasks, and how Spark executes these tasks.

When an RDD is required to be generated, i.e., a job is generated, the
scheduler examines all the operations and required input RDDs, then builds
multiple stages to execute this job. Stages are generated using the following

principles:

e FEach stage should contain as many pipelined operations with narrow
dependencies as possible. The narrow dependencies are the relationship
in where multiple operations on a RDD can be composed together into
a single operation. For example, in WordCount, there are two opera-
tions: mapping lines to words, and mapping words to (word,1) pairs.
These two operations can be put into a single operation, because the

data/partitions is transformed in a one-to-one relation.

30



Figure 2.11: The stages in a job. Boxes with solid outlines are RDDs, Shaded
rectangles are partitions, black rectangles means partitions are already in

memory. [94]

e The boundaries of the stages are either the shuffle operations, or any
already computed partitions, which determines that their parent RDD

is not required to be computed.

Figure 2.11 illustrates an example of how Spark determine the stages of a
job. In this example, in order to generate RDD @G, Spark builds three stages

according to the above principles:

1. Stage 1
The goal of it is to generate RDD B. Note that, in this example, the

results have been generated.

2. Stage 2
The goal of this stage is to generate RDD F. The map and union op-
erations in this stage represent a one-to-one relation, therefore, Spark

merges them in the same stage for the optimisation.

3. Stage 3
In this stage, the join operation is required to be performed on RDD B
and RDD F| and then generate the finally required result, i.e., RDD G.

As the output RDD of stage 1 is already in memory, therefore Spark runs
stage 2, then stage 3. Once the stages are determined, the scheduler generates
tasks, which are to compute the missing partitions for each stage. Finally, the

target RDD is computed.
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The number of tasks spawned by each stage equals to the number of par-
titions from the target RDD within this stage. In this example, 4 tasks are
generated in stage 2, 3 tasks are generated in stage 3, and 1 shuffle task are
created between stage 2 and 3.

The tasks will be executed by executors, which are JVM processes. The
total number of number of executors, and processors that each executor can

use is configured when the application is deployed.

Scheduling The Generated Jobs

The default scheduler is a FIFO scheduler. When scheduling jobs, the first
arriving job has the highest priority, and all its tasks inherit its priority. Con-
sidering an application may create multiple jobs in parallel, Spark also provides
fair scheduling between jobs (called the fair scheduler), in which Spark assigns
tasks between jobs in a Round-Robin fashion, so that a short job can receive
resources while a long job is running therefore get a good response time. In
addition, the fair scheduler supports grouping jobs into pools with different
scheduling options (e.g., weight). This can be used to create a high priority

pool for more important jobs.

2.3.6.5 Discussion

In Spark, the data transformations in RDDs is quite similar to the one in Java
8 streams [12], and both of them are lazily evaluated. Additionally, the Spark
engine employs executors that are distributed over a cluster to execute the
generated tasks from evaluating a pipeline, while Java 8 uses ForkJoin Thread
Pool to achieve this purpose.

However, as a time-sharing framework, it is not easy to add real-time

constraints on Spark:

e Spark runs on standard JVM, the overall runtime of the Spark engine

lacks real-time features.

e Preemption is not supported by the Spark scheduler. If a new higher
priority job is submitted, and there if no idle resources, it is not possible
for the scheduler to take certain amount of computation resource back,

and runs this higher priority job.
e The execution of threads in Spark can not be bounded, therefore, it is
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difficult to integrate Spark into a real-time system, which also has hard

real-time component.

2.3.7 Java 8 Streams

Streams and Lambda expressions are the most notable features that have been
added in Java SE 8. The Stream API and lambda expressions are designed
to facilitate simple and efficient processing of data sources (such as from Java
collections) in a way which can be easily pipelined and parallelised.

Lambda expressions provide a clear and concise way to represent one
method interface using an expression [10], for example, (a,b)->a+b defines
a Lambda expression that sums two arguments. Lambda expressions make
code more concise, and extend Java with functional programming languages
concepts. Internally, a lambda expression will be compiled into a functional
interface. Functional interfaces were introduced by Java 8, and are interfaces
that contain exactly one abstract method which can not have a default imple-
mentation. They may define other methods as long as those methods do have
default implementations. For example, java.util.function.Consumer<T> is
a functional interface. It has only one abstract method (see line 4), and its

source is described as follows.

@FunctionalInterface
public interface Consumer<T> {
/** Performs this operation on the given argument. */

void accept(T t);

default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull (after) ;
return (T t) -> { accept(t); after.accept(t); };

}

In addition, lambda expressions use target typing [86], i.e. the type of argu-
ments will be automatically determined by the compiler during compilation,
rather than required to be specified by programmers. This feature enables
passing methods as arguments, rather than constructing an object of a spec-
ified class. With suitable frameworks, a programmer can easily construct
graphs and pipelines of functional operations.

A Java 8 stream is a sequence of operations and a data source. The
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Stream itself is an interface, which defines all the operations supported by
the Java 8 Stream framework. The actual implementation of streams are
pipelines, for example, the implementation for a stream of Java objects is
java.util.stream.ReferencePipeline. In addition, Java 8 streams make
use of lambda expressions to enable passing different methods into each op-
eration in the pipeline if required. A pipeline consists of a source, zero or
more intermediate operations, and a terminal operation. An intermediate op-
eration always returns a new stream, rather than performing methods on the
data source. One example of intermediate operations is map, which maps each
data element in the stream into a new element in the new stream. A termi-
nal operation forces the evaluation of the pipeline, consumes the stream, and
returns a result. Thus, streams are lazily evaluated. An example of terminal
operations is reduce, which performs a reduction on the data elements using
an accumulation function. A simple word count example can be described by

the following code using the Stream API and Lambda Expressions:

Collection<String> datatoProcess = WordsToCount;
Map<Object, Long> result = datatoProcess
.parallelStream()
.flatMap(line->Stream.of (Pattern.compile("\\s+") .split(line)))
.collect(Collectors.groupingBy(
w —> w, TreeMap::new, Collectors.counting())

)

It first create a stream, which inputs from a collection of strings (see line 3).
Each string is split to words (see line 4), these words are counted, and accumu-
lated into a Java Map (see line 5). The procedure is performed in parallel, the

details of how the processing is parallelised are given in the following sections.

2.3.7.1 Stream Evaluation Model

One of the main advantages of streams is that they can be either sequentially
evaluated, or evaluated in parallel. Sequential evaluation is carried out by per-
forming all the operations in the pipeline on each data element sequentially
by the thread which invoked the terminal operation of the stream. When a
stream is evaluated in parallel, it uses a special kind of iterator called a Split-
erator to partition the processing, and all the created parts will be evaluated
in parallel with the help of a ForkJoin thread pool. To be able to be evaluated

in parallel, it requires the data source to be splitable. Efficiency is achieved
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Figure 2.12: Tasks stealing, pushing and popping within worker threads

by the work stealing algorithm that is used by the ForkJoin pool.

2.3.7.2 The ForkJoin Thread Pool

Introduced in Java SE 7, the ForkJoin thread pool is a parallel framework
in which tasks are computed by splitting themselves into small subtasks that
will be computed in parallel, waiting for them to be completed, and then
composing the results [63]. More specifically, the small subtasks are computed
by the ForkJoin thread pool with a work stealing algorithm to balance the

load of its workers.

A ForkJoin thread pool maintains a task queue, and creates worker threads
with a thread factory. In addition, the thread factory can be configured.
The number of worker threads usually corresponds to the number of available
processors on the platform. In overview, worker threads take tasks from the
queue associated with the ForkJoin pool, and execute the task. The task
may split into small subtasks, and these smaller tasks are pushed into the
worker’s own task queue. The worker thread pops tasks out from its queue
and executes them, when its current task is completed. A worker thread tries
to take a task from other worker threads’ queues when its queue is empty,

using a work stealing algorithm.
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2.3.7.3 The Java 8 Work Stealing Algorithm Detalils

A work stealing algorithm is the heart of the ForkJoin thread pool. The
details of the execution of a worker thread using the work stealing algorithm
are summarised by the following, according to the publication of Lea [63] and

the source code of java.util.concurrent package.

1. Each worker thread maintains its own task queue. The queue is a double-
ended queue, which enables access to the data from both the top and

bottom.

2. Within one worker thread, subtasks that are generated by splitting its

tasks will be pushed onto the top of the worker thread’s own queue.

3. Each worker thread executes its current task first, then executes tasks
in its queue in LIFO order, i.e. by popping tasks from the top of the

queue.

4. When a worker thread has no tasks to execute, it tries to take a task

from another randomly chosen worker thread’s queue in FIFO order.

5. When a worker thread waits for a task to finish, it will process other tasks
with the help of the ForkJoin pool until it is notified of completion (via
ForkJoinTask.isDone()). Tasks otherwise run to completion without

blocking.

6. When a worker thread is idle, and fails to steal tasks from other worker

threads, it backs off, e.g. yields.

The internals of worker threads employing the work stealing algorithm are
illustrated by Figure 2.12.

2.3.7.4 Parallel Evaluation of a Stream with the ForkJoin Pool

A stream starts to be evaluated once its terminal operation is called. Once
a terminal operation is invoked, the corresponding terminal operation task,
which inherits from the ForkJoin task, is executed. Thus, the evaluation of
a stream is represented by the execution of a ForkJoin task. With parallel
evaluation, the stream is evaluated by the current thread alongside the worker
threads in the default ForkJoin pool. Note that, the current thread can be a

worker thread in a ForkJoin pool, when the evaluation of a stream is submitted
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Figure 2.13: The parallel evaluation of a Stream by a pool with 2 threads.

to that pool directly. The evaluation of a stream is split to small subtasks,
and these subtasks are then evaluated using the work stealing algorithm. By
default, a stream splits into four pieces for each worker thread in the ForkJoin
pool, so a thread being executed by a pool with 4 threads will split at most

16 times.

For example, one stream is submitted to a pool with 2 worker threads. The
parallel evaluation of this stream is illustrated by Figure 2.13. One worker
thread takes the evaluation task from the pool first, then executes (see time
1). The task splits into 2 subtasks, and one of them is pushed into the task
queue at time 2. Work stealing is assumed to occur at time 3, in reality, it can
be later or earlier. When all the tasks shown at time 9 have been executed,
the stream has been successfully evaluated. Note that, in this example, we
assume this stream can be split as often as it requires, and all the worker

threads within that pool have been successfully created before evaluation.
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2.3.7.5 Discussion

The Java 8 Stream API enables pipelined and parallelised processing of data
sources in a Fork/Join manner, with concise code. However, by connecting
multiple streams in different ways, more complicated parallel processing algo-
rithms can be obtained.

The Java 8 Stream API has not been designed to address real-time con-
cerns. Firstly, even with a real-time Java virtual machine, there is no way to
place real-time constraints on the program.

Secondly, the executing of worker threads in a pool, which evaluates the
stream processing, is not bounded. Therefore, it may demand unlimited CPU
time, therefore causing the hard real-time tasks in the same system to miss
their deadlines.

Moreover, Java 8 streams assume the data has already been stored in

memory, therefore, the live streaming data is not supported by Java 8 streams.

2.3.8 Storm

Apache Storm [4] is a stream processing framework developed at Twitter us-
ing the Clojure programming language, and provides multiple programming
language APIs, including Java, Python etc. Storm has seen wide commer-
cial adoption from companies such as Yahoo!, The Weather Channel, Alibaba,
Baidu, Groupon and Rocket Fuel [90].

Storm defines five basic concepts: streams, tuples, spouts, bolts and topolo-
gies. A tuple is a data structure that stores values. A stream is an unbounded
sequence of tuples. Unlike Java 8 Streams which carry references to heap data,
Storm streams pass the data itself. In addition, the stream in Storm is eagerly
evaluated, data elements at a stream are transformed immediately in each
stage of a pipeline. A spout is a source of stream which emits tuples. A bolt
processes one or more input streams, produces new tuples and passes them to
one or more new output streams. By connecting spouts and bolts together,
data elements can flow through the stream. The graph of this connection is
named the topology, where the edges represent the data flow and vertices are
computation components (spouts or bolts).

Figure 2.14 illustrates a simple topology that counts the words occurring
in a stream of sentences, and also illustrates how the data in the stream is

moved and processed. There are 1 spout (emits sentences to a stream) and
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Figure 2.14: WordCount topology and data flow in it.

2 bolts (one bolt parses received sentences, another bolt counts the words)
in this topology. In this example, two sentences (<Hello World> and <Hello
Storm>) are emitted to the stream by the spout. Once the first bolt receives a
sentence, it parses the received sentence immediately and emits <Hello> and
<World> to the downstream. Similarly, when the second sentence is received,
<Hello>, <Storm> are parsed out and emitted to the downstream. The last
bolt accumulates the number of each words occurring, and generates the final

result.

2.3.8.1 Storm Runtime Overview

Storm runs on a distributed compute cluster, using a master-slave architecture.
The actual work is done by worker processes that are running on the worker
node. Each worker process is an OS process that is running a separate JVM,
and it spawns threads called executors to perform the processing. Note that,
each worker process only executes parts of a single topology, multiple worker

processes on the same node may execute different part of the same topology.

The actual computation of the data processing of a spout or a bolt is
encapsulated into a task. The parallelism is achieved by running multiple

executors, each of which may execute one or more tasks.

Data items from spouts/bolts (producer) are shuffled to tasks within bolts
(consumer) in a storm topology, for the load balancing. Several built-in shuf-
fling algorithms are provided, such as, data items are evenly distributed to
the down-stream consumers. Additionally, users can implement a customised

shuffler by implementing the CustomStreamGrouping interface.
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2.3.8.2 Scheduling a Storm Topology

This section introduces how a Storm topology is scheduled by introducing an
example, which considers a topology consisting of three components: 2 spouts
called yellow-spouts, 4 bolts called blue-bolts and 4 bolts called green-bolts.
The components are linked so that yellow-spouts send their outputs to blue-
bolts, which in turn send their outputs to green-bolts. This topology is defined

by the following code based on a Storm version 2.0 example [25]:

Config conf = new Config();

conf.setNumWorkers(2); /* set 2 worker process */
TopologyBuilder builder = new TopologyBuilder();

/* 2 spouts */
builder.setSpout("yellow-spout", new YellowSpout(), 2);

/* 4 blue-bolts, and each has 2 tasks */
builder.setBolt("blue-bolt", new BlueBolt(), 4)
.setNumTasks (2) . shuffleGrouping("yellow-spout") ;

/* 4 green-bolts */
builder.setBolt("green-bolt", new GreenBolt(), 4)
.shuffleGrouping("blue-bolt");

StormSubmitter.submitTopology ("example-topology",
conf, builder.createTopology());

In the code, the topology is configured to use 2 worker processes (see line
2). The yellow-spouts are defined to use 2 executors and each yellow-spout is
encapsulated into 1 task by default (see line 7). Note that, the actual work is
performed through a task, each task contains the code corresponding to the
user-defined function a spout/bolt. Similarly, the blue-bolts use 4 executors
and each blue-bolt is encapsulated into 2 task (see line 10-11). The green-bolts
use 4 executors and each blue-bolt is encapsulated into 1 task (see line 14-15).

The Storm scheduler allocates all (2 + 4 + 4 = 10) the executors into 2
worker processes evenly, and this procedure can be illustrated by Figure 2.15.
The left part shows the architecture of the topology. The right part illustrates
how tasks are allocated into executors, and how executors are packed into

worker processes.
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Figure 2.15: Mapping a storm topology to worker processes, executors and
tasks

More specifically, from the point view of the OS, the worker processes are
separate JVM processes, executors are threads running within each worker
process, and a task is a code fragment defined by users that will be executed
by threads(i.e., executors). In this example, Storm spawns 2 JVM processes,
and each JVM process spawns 5 threads within it. Figure 2.16 illustrates
how this example is executed within a worker node in a storm cluster. The
two worker processes in this example are mapped into 2 JVM processes, and
five executors in each worker processes are mapped into corresponding JVM
threads. Each slot allows one process to be created, the total number of slots

in a worker node is configured in the deployment.

2.3.8.3 Discussion

Storm is a fast in-memory stream processing framework, however, Storm is not
designed for real-time systems. There are many difficulties with using Storm

in a real-time system:

e The stack of Storm’s runtime lacks real-time features. For example,

Storm is developed with the Clojure programming language and runs on

41



42

Worker Process

Ex

Executor

Executor

Executor

Inside of A Worker Node

JVM Process

Task

Used by other topologies

rker Process

Executor

JVM Process -

ST

Free Slot
e\IM Thread
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a standard JVM.

Storm itself does not support real-time notions, such as, priorities, dead-

lines, etc.

Storm treats the weight of each workload, i.e., tasks, equally, irrespective
of the load of each processor, and creates one or more threads in each

processor, then allocate the workload to all the threads evenly.

The thread in Storm can not be allocated to a specific processor, because
its scheduler only aware of the how many available slots can be used in
each machine. This means some real-time scheduling schemes can not

be supported, for example, the fully-partitioned scheduling.

The execution of threads in Storm can not be bounded. When running
Storm at a high priority, it may cause the hard real-time tasks in the

same system to miss their deadlines.



2.3.9 Predictable Stream Processing Frameworks

This section briefly reviews soft real-time stream processing framework, such
as the JUNIPER project [31], and a real-time version [33] of Storm. Addition-
ally, an investigation of using work-stealing in soft real-time stream processing

system is also reviewed.

2.3.9.1 JUNIPER

JUNIPER [31] is an European Union Seventh Framework project, which pro-
vides a Java platform for high-performance and real-time large scale data
processing.

JUNIPER provides a real-time operation system based on Linux, a real-
time Java virtual machine, and a real-time modelling tool that supports model-
driven engineering. JUNIPER also defines its own programming model, which
is intended to provide a set of APIs or models so that several existing parallel
processing frameworks, e.g., Storm [4] or Spark [1], can be be built upon it,
rather than replicating these existing frameworks. For example, a distributed
version [42] of Java 8 Streams is developed as a distributed large scale data
processing framework.

In addition, JUNIPER employs FPGAs to accelerate Java programs [56]
in order to deliver a high performance. A Java to C compiler and a C to
hardware description language tool are used, so that FPGA components can
be generated directly from Java code.

The JUNIPER programming model is based on Java 8 [12] with the Real-
Time Specification for Java (RTSJ) [91], so that the programs can be pro-
gramed with real-time systems. The JUNIPER programming model defines

several real-time components to support real-time programming. For example,

e Programs
The program is written using the RTSJ to capture the real-time con-

straints.

o Channels
Channels are used to represents analysable data flow between programs.
Channels are modelled as either periodic or sporadic, so that periodically

or sporadically moving data can be represented.

Disk bandwidth reserving techniques [80] are also developed so that the

storage accessing is able to be predictable and analysable.
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Discussion

The JUNIPER project uses model-driven engineering to support automatic
code generation, rapid deployment, modelling deadline constraints, etc.. In
addition, the JUNIPER programming model also enables large scale data pro-
cessing frameworks to be developed with it.

However, there are several issues, such as, Distributed Streams [42] do not
provide any interfaces to configure deadline constraints or priorities. There-

fore, a high-level real-time stream processing framework is missing.

2.3.9.2 Real-Time Storm

A real-time version (RT-Stream) of Storm [4] was proposed in [33], to provide
predictable stream processing. This work establishes a tool stack including a
real-time OS, a real-time JavaVM, and extended Storm classes which support
real-time constraints.

The notion of real-time stream is described as “a continuous sequence of
data or items whose processing has some real-time requirements like a deadline
from the input to the output” in [33]. The idea of this work is to model a real-
time stream into a set of real-time activities, and provide related schedulability
analysis approaches.

Firstly, Storm’s Spout (input) and Bolt (processing and output) are ex-
tended to be periodic activities, or sporadic activities with minimum interval
times (MIT). The new classes are called RTSpout (input) and RTBolt. They
allows the period (or MIT if sporadic), worst-case execution time, and the
deadline to be given to each RTSpout or RTBolt. In addition, a fixed-priority
scheduler is provided.

Then, the graph of stages of a real-time stream is built by analysing the
stream processing graph, which is a DAG of RTSpouts and RTBolts.

Finally, by performing an end-to-end response time analysis on each RT-
Spouts and RTBolts in each stage, the response time of the stream processing
can be obtained.

An example from the original paper [33] considers a real-time stream, which
has a periodic RT'Spout with a period of 100 ms, and two RTBolts with a
period of 200 ms. The worst-case execution time of them are all 10 ms. The
stream flows from the RTSpout to the two RTBolts. The two RTBolts runs

in parallel. This example makes an assumption that there is no any other
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higher priority activities in the system. Therefore, the end-to-end worst-case
response time is calculated as: 10ms (for the RTSpout) + max(10ms,10ms)
for the parallel RTBolts.

In addition, an utilisation based schedubility test equation is also given
by this work, and it is a sufficient but not necessary analysis. The utilisation
based analysis is done by performing analysis on each worker node in the

cluster, using the Liu and Layland utilisation bound [67].

Discussion

RT-Storm enables distributed soft real-time stream processing. However, there

are some issues:

e The algorithms for determining the period or MIT, and the load for
each RTSpouts or RTBolts in a system which also hosts other real-time

activities are not considered.

e The unpredictability of the network, and its impact on the worst-case

response time is not addressed.

2.3.9.3 Work Stealing for Parallel Stream Processing in Soft Real-

Time Systems

A thread pool is often used to provide the parallel threads needed to perform
the stream processing. A major load balancing technique is the work stealing
algorithm. In a context of soft real-time systems, the work stealing strategies
for parallel stream processing is investigated by [70]. The work stealing is also
used by Java 8 ForkJoin framework.

This work considers using multiple threads to processing sequence of inputs
in parallel. Each input requires multiple processing stages, which forms a
graph or a pipeline. When processing an input, each stage is treated as a
subtask. Each thread maintains a local queue, which is used to store these
generated subtasks. In addition, the system also maintains a shared global
queue, which is used to store the input. Similar to Java 8 Fork and Join
framework (see Section 2.3.7), when a thread is idle, it tries to steal, i.e., take,
work from other threads’ local queue, or from the shared global queue.

For example, as shown in Figure 2.17, there are two inputs in the system,
which will be processed using a pipeline, with a work-stealing strategy. The

pipeline has 3 stages, therefore, 3 subtasks are generated for each input. For
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Figure 2.17: Work-stealing in a stream processing system with a pipeline

example, subtask 1 represents performing filter 1 on input 1. In this example,
thread 1 has taken the input 1, generated 3 subtasks, and currently executing
subtask 1. The subtasks 2 and 3 have been pushed into its local queue. Thread
2 and 3 are idle. Thread 2 is stealing a subtask from thread 1, and thread 3
is taking the next input from the global queue.

This work [70] investigates all the possible policies for inputs or subtasks

accessing schemes, such as,

e Local - The input and subtasks goes into the thread’s local queue, rather

the global queue.

e Global - The input is pushed into the global queue, but subtasks goes

into the local queue.

e Stealing First - When a thread is idle, it tries to check other thread’s
queues first, then the global queue.

e Global First - When a thread is idle, it tries to check the global queue
first.

The conclusion is [70]: considering the latency for processing each input,
the best combination is the input goes into the global queue, and idle thread
tries to check global queue first. The reason is that, with the stealing first

strategy, the system suffers from a loss of data locality.
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Latency Bound

An approach that is used to calculate the latency bound when using the global
queue to store the input is also given in this work [70]. The worst-case execu-
tion time w for processing each input is defined as the sum of the execution
time of each filter. In addition, the maximum number of inputs that are
waiting, including the input that is under the analysis is defined as «.

The worst-case latency bound for the input is w, i.e., the worst-case pro-
a—1
n

before it, where n is the number of processors.

cessing time of itself, + w( ), i.e., the worst-case processing time of inputs

Difference with Java 8 Streams

The difference between the work and Java 8 Streams is that the input in Java 8
Streams is a collection of data, rather than individual data items. In addition,
Java 8 Streams is using a stealing first strategy. This is because Java 8 Streams
aim to minimise the response time of processing each collection, while this work

targets at the throughput.

Discussion

This work evaluates different policies in a stream processing system with a
work-stealing algorithm, and gives the conclusion about the best policies.
However, this work assumes that the stream processing is using a dedicated
system, there is no any other activities. When there is any other activity, such
as the operating system, the response time can be bigger to the worst-case
execution time.

In addition, the issues that have been discussed in the previous sections
of integrating stream processing into a real-time system, which also has hard

real-time activities, are still open.

2.4 Summary

This chapter has briefly introduced parallel computer architecture, real-time
system models, and stream processing. A brief history of stream process-
ing which describes several typical stream processing has been given in Sec-
tion 2.3.3. Section 2.3.4 discusses the stream processing classifications, includ-

ing lazy or eager evaluation, and control-parallel data-parallel scheme. From
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an efficiency viewpoint, as discussed in Section 2.3.4, lazy evaluation and data
parallelism should be employed as much as possible, unless there is a necessity
to use the other approaches, for example to facilitate distributed communica-
tion.

This chapter has also reviewed several typical stream processing techniques
for both frameworks, and programming languages in different classifications,
including Java 8 Streams, Streamlt, Storm, Spark Streaming. In addition,
this chapter also reviews a real-time version of Storm, and JUNIPER project,
which were designed to address real-time constraints.

Streamlt and Java 8 Streams support stream processing at the language
level, but Streamlt is not a general purpose programming language. Storm
and Spark Streaming are distributed live streaming data processing frame-
works. The former one is designed for live streaming data, while the later one
groups live streaming data into micro batches, and reuses the Spark batch-
ing processing runtime. However, none of these techniques fully considers the
real-time constraints, although the real-time version of Storm and JUNIPER
makes their first step toward addressing soft real-time constraints.

This chapter observed that none of the current stream processing tech-
niques support real-time stream processing that can be integrated into a real-
time system that also has hard real-time activities.

In summary, the real-time stream processing has the following challenges:

e Common stream processing frameworks are designed for time-sharing
systems, their programming interface provides no support for capturing

the real-time properties, such as priorities, deadlines.

e In addition, most of their runtimes are non real-time, for example, Java
8 Streams, Storm, and Spark run on standard JVMs. Porting these
techniques directly into a real-time runtime, e.g., a real-time JVM, may
cause unexpected problems. For example, as described in [71], processing
parallel Java 8 Streams directly within a RTSJ real-time thread may

suffer priority inversion problems.

e None of the the current techniques addresses the issue of performing
stream processing in a real-time system so that its deadline can me met,
whilst guaranteeing all the hard real-time activities in the system still

meet their deadlines.
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e None of the current stream processing techniques can guarantee the
worst-case latency of each data item’s processing in a data stream, or

the response time of a batched data’s processing.

The following chapters will address these challenges by providing a real-
time stream processing architecture for multiprocessor platforms, with cor-
responding scheduling techniques, integration approaches so that the stream
processing can be integrated into a real-time system that also has hard real-
time activities. Then response time analysis equations are derived to guarantee

that the real-time requirements of the stream processing are met.
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Chapter 3

The Real-Time Stream

Processing Infrastructure

To address the issues discussed in Section 2.4, the goal of this chapter is to
propose a real-time stream processing infrastructure with which both batched
and live streaming data sources can be processed within the deadline or the
latency requirements, while maintaining existing guarantees to the other hard
real-time activities in the same system.

This chapter defines a real-time stream processing task model and the ar-
chitecture of an infrastructure that supports that model. Applications that
perform stream processing and run on this architecture must follow the pipeline
software design pattern [81], as illustrated by Figure 3.1.

In the previous chapter, it was shown that the data source of stream pro-
cessing can be from batched data or live streaming data; hence this pattern
can be specialised into: processing a batched data source as illustrated by Fig-

ure 3.2a; and processing a live streaming data source as shown in Figure 3.2b.

Hence the infrastructure must provide an appropriate API for user appli-
cations, and be capable of supporting these two use cases. We assume the

existence of a real-time stream processing task which encapsulates all the ac-

B-0-0-0-0-&

Figure 3.1: The pipeline software design pattern
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Figure 3.2: Stream processing from different data sources.

tivities associated with reading and processing the data.

e For a batched data source, the task uses a real-time batch stream pro-

cessing infrastructure as shown in Figure 3.3.

e For a live streaming data source, each data item can be processed by
the proposed approach shown in Figure 3.4. The batcher uses real-
time micro-batching. This means that it stores individual data items
into a collection, and returns the collection sporadically when either the
maximum batch size is reached or the timeout expires. See Section 3.4.2
for more details. Each of the returned collections can then be treated
as a static data source and processed using the existing real-time batch

stream processing infrastructure.

The reason for using real-time micro-batching when processing live stream-
ing data sources is because it allows the data items to be processed more
efficiently, compared to processing individually [96]. Processing items indi-
vidually is inefficient because of infrastructure costs such as maintaining the
tracking for each individual data item considering the failure recovery in a

distributed context, or requiring execution-time servers with smaller periods
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Figure 3.4: Processing a sequence of data items in real-time using the real-time

micro-batching approach.

in this thesis (see the server parameter selection algorithm described in Sec-
tion 4.3.1), therefore introducing extra context switch overheads. In addition,
with a variable batch size and a timeout, real-time micro-batching allows the
processing latency of each data item to be guaranteed. Section 4.4.1 shows how
to determine the micro batch size and timeout values, and this is exemplified

in the case study of Section 5.6.

The details of the architecture of the real-time batch stream processing
infrastructure, and the real-time micro-batching architecture are described in
the following sections.

There are many different approaches to defining and describing software

architectures along with their design principles and rationales (see [51] for
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Figure 3.5: Real-time stream processing system overview

a review). Here we follow the principle that proposes “separating different
aspects into separate views” [51] to describe the architecture of our proposed
real-time stream processing infrastructure, using text descriptions alongside
UML2 [79] diagrams. In particular, we make use of component diagrams and
sequence diagrams to show the main components of the architecture and how
they interact with each other and the end user.

This chapter is structured as follows. Section 3.1 gives the context of the
infrastructure in a system. Section 3.2 describes the system model supported
by the infrastructure and the assumptions on the underlying platform. The
proposed real-time stream processing task model that is required by the in-
frastructure is described in Section 3.3. Section 3.4 describes the architecture
specification of the proposed real-time stream processing infrastructure, along
with component diagrams, and gives the implementation requirements. Fi-

nally, Section 3.5 summarises the contents of this chapter.

3.1 System Architecture

This section describes the system context for the proposed real-time stream
processing. The system context can be illustrated by Figure 3.5, and contains

the following layers:

e Hardware
The lowest layer is the hardware layer. Typically, it is a physical multi-

processor machine, with cache coherent shared memory.

¢ Real-Time Operating Systems and Runtime
The second layer runs a real-time operating system, for example, Vx-

Works, or Linux with a real-time kernel [14]. For instance, when the
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applications are developed using the Ada programming language, they
are running directly on the top of these operating systems. However,
when it is required, such as developing using Java with the Real-Time
Specification for Java (RTSJ), a real-time runtime also runs in this layer,
such as a real-time Java Virtual Machine (JVM), e.g., JamaicaVM [9],

which is running on the top of the operating system.

e Real-Time Applications and The Real-Time Stream Processing
framework
This layer contains applications that contain both hard real-time and
soft real-time tasks. In addition, there are also several real-time stream
processing applications, which use the real-time stream processing frame-
work that implements the proposed architecture. The real-time stream
processing framework processes both batched data and live streaming
data processing in parallel to meet the real-time requirements, whilst
maintaining the existing guarantees of any other hard real-time activi-

ties.

Note that, the design or implementation of the hardware, or the real-time
operating system and runtimes layer is out of the scope of this thesis. Addition-
ally, considering the deployment, the operating system and runtime supports
are not necessarily required if the real-time stream processing infrastructure

can be implemented directly on the top of bare metal.

3.2 System Model Supported by the Infrastructure

From the point view of real-time literature, the following real-time system

models are supported by the work presented in this thesis:

e Preemptive Fixed Priority
Rationale — as described in Section 2.2.1, priority-based scheduling is
the dominant approach and the one supported by all real-time operating
systems, and the preemption scheme makes higher priority tasks more

responsive [38].

e Fully Partitioned Scheduling
Rationale — as described in Section 2.2.2, schedulability analysis for such

systems is more mature [38].
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e Sporadic Task Model
Rationale — this is the default model supported by schedulability analysis

literature.

e Mixed Hard Real-Time and Soft Real-Time Applications
Rationale — most real-time systems have either hard real-time, or soft
real-time, or both hard and soft real-time applications [38]. The chal-
lenge of this work is to integrate soft /hard real-time streaming work with

hard real-time activities.

e Sporadic Live Streaming Data
Rationale — from the point of view of schedulability analysis in the real-
time literature, the analysis for data with periodic or sporadic arrival is
more mature [33]. Also in most systems data is going to arrive sporadi-

cally so it is not possible to simply claim it is periodic.

e Hard and Soft Real-Time Stream Processing Activity
Rationale — similar to common real-time applications, both hard real-
time and soft real-time stream processing are required to be supported

in the most common real-time literature.

Additionally, real-world systems are not entirely hard or soft because
hard real-time components have to be carefully developed and analysed,
and designers should try to minimise them as much as possible, so it is

not realistic to simply claim the entire system is hard real-time.

e Multiple Simultaneous Streaming Workloads
Rationale — this work is primarily focussed on embedded systems. Typi-
cally there is the request to process multiple streams from different data
sources. Currently this thesis focuses on a single stream on a single mul-
tiprocessor machine, and considers the challenges of multiple streams in

distributed systems as future work.

3.3 Real-Time Stream Processing Task Model

This section defines a predictable and analysable real-time stream processing
task model, supported by the proposed infrastructure.
The proposed structure of a real-time stream processing task is illustrated

as Figure 3.6. As shown in the figure, a real-time stream processing task
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Figure 3.6: The structure of the real-time stream processing task

contains three phases: sequential execution before the parallel processing, the
parallel data processing itself, and then sequential execution after the process-
ing is complete.

The sequential code before and after the parallel processing is typically
processed by the same processor, and this is the assumption used for our
analysis model described in Chapter 5 for simplification. Arguably, they can
be executed by different processor, more discussion on this is given in Sec-
tion 4.2.1.

Data splitting (partitioning the input data ready for processing) must be
performed sequentially, so that its analysis can be simplified, and avoid ana-
lytical pessimism (as described in Section 5.4.3). Additionally, data splitting
is required to be completed before the parallel processing, because splitting
on the fly can be interfered with by higher priority tasks in the same proces-
sor, therefore, delaying the processing in the other processors. In addition,
splitting before the parallel processing also simplifies the analysis.

The proposed real-time stream processing task structure uses data par-
allelism, as illustrated by Figure 3.6, each processor performs the pipeline
operations on separate partitions of the input data. The reason is that this
thesis focuses on UMA platforms, as discussed in Section 2.3.4 and 2.3.7, data
parallelism is sufficient and efficient. Additionally, this structure is indepen-
dent of whether the pipeline is evaluated eagerly or lazily.

Multiple real-time streaming tasks are obtained by creating multiple in-
stances of the proposed real-time stream processing task model.

The proposed real-time stream processing task supports (i.e., can be run

in) the sporadic task model. The whole procedure as illustrated by Figure 3.6,
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i.e., the structure of the real-time stream processing task, can be released (i.e.,

invoked) periodically or sporadically.

3.4 Architecture and Specification of the Real-Time

Stream Processing Infrastructure

This section describes the architecture for the real-time stream processing in-
frastructure, with which the real-time stream processing task model described
in Section 3.3 can be supported.

This section begins with the description of the architecture for real-time
batched data processing, which is then extended to support real-time live
streaming data processing. In addition, the implementation requirements for

the proposed architecture are also given.

3.4.1 Supporting Real-Time Batched Stream Processing

The proposed real-time batch stream processing infrastructure supports the
real-time stream processing task model proposed in Section 3.3 with a batched
data source as its input. The proposed architecture for this infrastructure can
be illustrated by Figure 3.7. Any instance of this infrastructure is used as
a part of a real-time stream processing task that follows the model defined
in Section 3.3. The main purpose of the proposed infrastructure is to allow
batched data to be processed in parallel and in real-time, within a real-time
stream processing task. Therefore, as a part of a real-time stream processing
task, the proposed infrastructure is periodically (or sporadically) invoked with
a batch to process.

The proposed infrastructure requires several configuration parameters, such
as, priorities, execution-time servers, etc., to be configured. However, the de-
tails of how to generate the configuration parameters for a real-time stream

processing task are described in the next chapter, i.e., Chapter 4.

Architecture Specifications

The proposed infrastructure is a subsystem, an instance of this infrastructure

maintains the following components:

e A Data Partitioner — splits a batch into partitions to be executed by
the workers. It provides the Split Batch interface, which splits a given
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Figure 3.7: Real-time batched stream processing infrastructure component

diagram.

batch into partitions.

e A Pipeline — which represents the processing logic, typically it contains
one or more filters, and a sink. It provides the Get Operations interface,

which returns all the operations recorded in the pipeline.

e Multiple Workers — there is one worker per processor. Each worker pro-
cesses the allocated partitions at the given priority, with the processing
logic defined by the pipeline. The worker provides the Allocation Parti-
tions To interface, which allows one or more partitions to be allocated

to the worker.

e Multiple FEzecution-Time Servers — providing the Register interface,
which allows each worker to be registered to its corresponding execution-
time server. The worker executes only when its server has capacity, oth-
erwise the worker has to be suspended or transferred to the background

priority.
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A Driver — which performs the splitting of the batch using the data
partitioner and allocates the data partitions to workers for parallel pro-
cessing. The driver implements the Process Batch interface. Once the
Process Batch interface is invoked, the driver is executed with the given
batched data.

For the initialisation, the real-time stream processing infrastructure re-

quires the following parameters:

Priority — the priority at which the workers and the driver execute.

Server Parameters — the server parameters, for example, period, capac-

ity, etc., for each execution-time server running in different processors.

Affinity — which allow the fully-partitioned scheduling scheme to be sup-

ported, by pining each schedulable instance to the allocated processor.
Pipeline Functions — describes the processing pipeline.

Data Allocation Policy — describes how the partitions are allocated to

each worker and their orders.

The affinity settings are based on the processors given to the application,

and pipeline structure is defined by the users. The execution-time server

parameters, priority, and data allocation policy are determined in Section 4.3.

In addition, the following additional parameters are required for a hard

real-time stream processing task:

e Deadline — the deadline for the real-time stream processing.

o Deadline Miss Handler — the handler for the deadline miss.

e Period — describes the period, or the minimum inter-arrival time (MIT)

of the invocation of the Process Batch interface.

o MIT Violation Handler — the handler for the invocation MIT violation.

Implementation Requirements

An implementation of this architecture must conform to the following require-

ments:
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The worker is required to be implemented as a schedulable instance,
e.g., an OS thread, in order to exploit the parallelism provided by the

underlying hardware platform.

The driver can be either implemented as a function, or a schedulable
instance. In the former case, the functionality of the driver is executed
by the caller which itself is a schedulable instance. In the later case, the

driver task itself executes its functionality.

Each worker is required to be created before any processing occurs. For
example, the workers can be created when the infrastructure is ini-
tialised. This avoids any delay introduced by worker creation during
parallel processing, which would invalidate the worst-case response time

analysis.

The driver is required to perform the splitting, and allocate the data
partitions to each worker before the any parallel data processing occurs.
Data splitting and partition allocations finishes before the processing as

discussed in Section 3.3.

The data splitting is required to be performed sequentially, as discussed

in Section 3.3.

The data partitions are pre-allocated to each worker according to the
allocation policy. Work-stealing is not allowed. The reason of using a

static allocation is given at the end of this section.

Each worker takes data partitions from its allocations using FIFO or-
der immediately, once the data partition allocations for all workers are
finished. Once a data partition is acquired, the worker processes this
partition immediately with the pipeline, then takes another partition
immediately after the current processing finishes. When a worker fin-

ishes all the allocated partitions, it is suspended or sleeps.

The sequential code after the parallel processing executes immediately

after all the parallel data processing is completed.

Execution-time servers are required to be used to serve all the execution
of the real-time batch stream processing task, including the execution of
the sequential code before the processing, splitting and allocation, paral-

lel processing, and the sequential code after the processing. Specifically:
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— Each worker is required to register to its corresponding execution-

time server before its execution.

— The driver (if is implemented as a schedulable instance) and the
caller (if any) are required to register to the corresponding execution-

time server before its execution.

The reason for using execution-time servers is given at the end of this
section. In addition, the start time of the execution-time server is the
same as the stream processing task. However, for the worker processor
(i.e., the processor that only executes the data processing), the first
release of the server is delayed with the worst-case response time of
sequential execution before the parallel processing. This enhances the

schedulability of stream processing tasks (see Section 5.4).

e The given priority is the priority that will be assigned to the execution-
time server, i.e., the priority at which the client is executing when the
server has capacity. When the execution-time server has capacity, its
client worker executes at the server’s priority, otherwise, the worker is

suspended or transferred to the background priority.

e All the involved schedulable instances in this infrastructure, including
the caller (if any), are required to be configured with corresponding
processor affinity settings, so that a fully-partitioned scheduling scheme

is obtained.
e For hard real-time stream processing:

— the deadline miss handler is required to be released when there is

any deadline miss occurs;

— the MIT violation handler is required to be released when there
is any two invocations of the Process Batch interface within the

period.

Note that, in the case where there is no caller, for example, the release
of real-time batched data processing is controlled by a hardware timer, the
driver is required be implemented as a schedulable instance.

Once the Process Batch is invoked with a batch as the input, the processing
is performed under the coordination of the driver as illustrated by Figure 3.8.

The purpose of this figure is not for precisely describing the implementation,
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Figure 3.8: The behaviour of the driver after the Process Batch is invoked
with a batch.

but demonstrating the overall execution of the driver. The driver first splits the
input batch into partitions, then allocates each partition to different workers
according to the data allocation policy. Then the workers are woke up and
start to process allocated partitions with the pipeline. When a worker finishes
its processing, it is suspended or sleeps until the next release of the stream

processing task.

The Role of Execution-Time Servers

Typically stream processing is computationally-intensive. Additionally, when
the stream processing task is soft real-time, the unpredictability of data vol-

umes makes the corresponding CPU demand unpredictable. In any case,
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streams are required to be processed within their hard or soft deadlines, whilst
the hard real-time activities in the same system must remain schedulable.

Running stream processing at the lowest priority in the system will not
give good response times, but running it at too high a priority might cause
critical activities to miss their deadlines. Hence, an appropriate priority level
must be found, and any spare CPU capacity that becomes available must be
made available as soon as practical.

This thesis proposes that real-time stream processing can be executed un-
der execution-time servers, so that the stream processing can meet its time
constraints, while maintaining the existing guarantees for the hard real-time

components.

Pre-Allocation of Data Partitions

Considering performing the worst-case response time analysis on the stream
processing, it is observed that in a data-parallel model, the data partitions
are required to be allocated to different processors with a static allocation
approach, instead of using a dynamic work-stealing algorithm, in order to
perform a sufficient worst-case response time analysis (RTA).

Performing timing analysis on the execution with a work-stealing algorithm
is difficult, because the execution is dynamically determined by the work-
stealing. Additionally, when using RTA, the worst-case situation can be too
pessimistic.

For example, there are two processors: Procy and Procs, but Procs has a
quite small computation capacity compared to Proc;. The data splits into 4
parts: p; to ps. Initially, each processor takes one partition, e.g., Proc; gets
p1 and Procs gets pa. Each processor takes another partition after finishing
its current processing, according to the work-stealing algorithm. The worst
case for Proc; is that it executes p1, p3, and p4, while the worst case for Proco
is that it executes po, p3, and ps. However, these two situations cannot both
occur, therefore introducing pessimism. For a larger number of processors and

workloads the pessimism would be too great.
3.4.2 Supporting The Real-Time Live Streaming Data Pro-
cessing

The sporadic real-time stream processing task model described in Section 3.3

implements real-time batched data processing. This section extends the sup-
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port for batched data to live streaming data using real-time micro-batching.

The data items arrive sporadically from a live streaming data source. With
the real-time micro-batching approach, a live streaming data source can be
mapped to a sequence of micro batches, which are generated sporadically.
Therefore, the processing of the live streaming data source can be transferred
to an instance of the real-time stream processing task model, which was pro-
posed in Section 3.3. This also enables the response time analysis equations
derived for the real-time batch stream processing to be reused.

The real-time micro-batching approach described in this section allows
each data item in a data flow to meet its processing latency requirement,
whilst the hard real-time tasks in the same system remain schedulable. The
details of the configuration of the real-time micro-batching approach is given

in Chapter 4.

Real-Time Micro-Batching

In order to meet the latency requirement for each data item in a data flow,
when using real-time micro-batching the size of each micro batch is determined

by two factors:

e Time — Individual data items of the live streaming data source have an
application-defined maximum latency for their processing, so a micro
batch must be released early if the processing time of the batch is such

that a data item may miss its deadline.

e Input data volume — Incoming data is buffered up to an application-
defined maximum amount and once the buffer is full the batch is pro-

cessed.

Architecture Specifications

This section proposes an architecture that supports the real-time micro-batching
approach, this architecture is named batcher, and is illustrated by Figure 3.9.
The batcher is a subsystem, an instance of which maintains the following

components:

e A Buffer — which is used to store the incoming data items from a live

streaming data source. The buffer has an application-defined maximum
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Figure 3.9: The real-time live streaming data processing infrastructure com-

ponent diagram.

size. The buffer provides the Get Data interface, which retrieves all the
data out of the buffer.

A Timer — which maintains the timeout, releases the handler when the
timeout expired. Additionally, it allows the next timeout to be set via

the Set Next Timeout interface.

A Handler — which is released via its Release interface when either the
timeout expired, or the buffer reaches the maximum size. Once the
handler is released, it turns the data items in the buffer to a micro batch,
e.g., a collection, then invokes the Process Batch interface provided by
the real-time batch stream processing infrastructure to process the micro
batch.

An Interface — named Store Into Buffer, which is implemented by the
buffer. It allows the data item to be stored into the buffer, when the
buffer is full, the buffer releases the handler.

To initialise a real-time micro batching instance using the batcher, the

parameters below are required:
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Figure 3.10: The Real-Time Micro-Batching approach.

e Priority — the priority that will be assigned to the execution-time server,
i.e., the priority at which the handler is executing when the server has

capacity.
e Handler Affinity — indicates to which processor the handler is assigned.
e Timeout — specifies the timeout interval for the timer.
e Buffer Size — defines the maximum buffer size.

For any hard real-time usage, the following additional parameters are re-

quired:

e Data Incoming MIT — describes the possible MIT of the incoming data

items.

o MIT Violation Handler — the handler, which is released when any two

data items arrive within the MIT.
e Latency — the latency for the processing of each data item.
e Latency Miss Handler — the latency miss handler.

The execution-time server parameters, priority, the maximum buffer size
and timeout value are determined in Section 4.4. The affinity settings are
determined in the following requirements.

Implementation Requirements

An implementation of the batcher is subject to the following requirements:
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The handler is required to be implemented as a schedulable instance to
handle the timer’s timeout event and the buffer is full event, therefore
decoupling the batcher subsystem and real-time batch stream processing

infrastructure subsystem.

The handler is required to be created before the batcher starts executing,

to avoid introducing any delay in the real-time micro-batching.

The handler is allocated to the processor according to the application
configurations. Processor affinities are used to forbid any migration to

support the fully-partitioned scheme.

The handler is required to register to the corresponding execution-time
server, so that it makes the execution of the handler’s functionality part
of an instance of the proposed real-time stream processing task model.
When the execution-time server has capacity, the handler executes at
the server’s priority, otherwise, the handler is suspended or transferred

to the background priority.

The priority of the batcher must be the same as the priority given to
the real-time batch stream processing infrastructure, so that the handler
executes at the same priority as the real-time stream processing task’s
priority. The reason for this is that the handler is a part of a real-time

stream processing task.

The release and the behaviour of the handler is illustrated Figure 3.10
by and described below,

— The interface Store Into Buffer provides the functionality that stores
the data item into the buffer, once the buffer is full, the handler is

required to be released immediately.

— The timer maintains the next timeout, once the timeout expired,

the handler is released immediately.

— Once the handler is running after release, it retrieves all the data
items from the buffer, and turns them into a splittable collection,
i.e., a micro batch. Then invokes the real-time batch stream pro-

cessing infrastructure immediately with the micro batch.

— Reset the next timeout for the timer immediately when the handler

is released.



e The data items are required to be stored into the buffer once they arrived
at the system. This is assumed by the configuration approach and worst-

case processing latency analysis described in Chapter 4 and 5.
e For any stream processing task with hard real-time constraints:

— the latency miss handler is required to be released when there is

any data processing misses the latency requirement;

— the MIT violation handler is required to be released when there is

any two data of the Process Batch arrives within the MIT;

— the deadline of the real-time batch stream processing infrastructure
equals to the minimum possible inter-arrival time of the releases
of micro batches, and the corresponding deadline miss handler is

required to be given to the batch stream processing infrastructure.

Note that, the invocation MIT and the invocation MIT violation handler
of the batch stream processing infrastructure are not required. The
reason is that the data incoming is monitored by the Batcher, if the data
incoming MIT violation does not occur, any two micro batches cannot
be released within the invocation MIT of the batch stream processing

infrastructure.

3.5 Summary

This chapter first described the goals and philosophy of the proposed real-time
stream processing system. This is followed by the system context described
in Section 3.1, and the supported system models in Section 3.2. The pro-
posed real-time stream task model was then introduced in Section 3.3. The
proposed real-time stream processing task model employs a data parallel pro-
cessing model, with sequential code executing before and after the parallel
processing. From the point view of real-time literature, the whole real-time
stream processing task uses a sporadic task model, i.e., the whole processing is
released either periodically or sporadically with a minimum inter-arrival time.

This chapter then proposed an architecture for the real-time batch stream
processing infrastructure that inputs a batched data source in Section 3.4.1, so
that the sporadic real-time stream processing task model can be supported. In

addition, the real-time micro-batching approach was proposed in Section 3.4.2
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to support real-time live streaming data processing. The proposed real-time
stream processing infrastructure enables both batched data and live streaming
data sources to be processed within the deadline (or latency requirements),
whilst guaranteeing that the hard real-time tasks in the same system will
meet their deadlines. The implementation requirements of the architecture
have also been described in these two sections.

The proposed architecture for the real-time stream processing infrastruc-
ture is concerned primarily with UMA architectures, and fully-partitioned
systems. However, the underlying approach is also appropriate for NUMA
architectures, and globally scheduled or semi-partitioned systems can also be
supported with affinity settings.

The major difficulty is how to configure the instance of the proposed
real-time stream processing infrastructure in a real-time system, so that the
batched data can be processed within its deadline (or each data item is pro-
cessed within the latency requirements in a live streaming data source), whilst
guaranteeing that the hard real-time tasks remain schedulable. These chal-
lenges will be addressed in Chapter 4 that describes how a real-time stream
processing task is configured, with the response time analysis derived in Chap-
ter 5 that guarantees that the deadlines of the stream processing, or the latency
requirements of the data items within the live streaming data source are met.

Chapter 6 describes a prototype implementation of the specification called
The York Real-Time Stream Processing Framework, or SPRY. SPRY uses Java

8 Streams, in conjunction with the Real-time Specification for Java (RTSJ).
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Chapter 4
Scheduling and Integration

A real-time stream processing task model has been described in Chapter 3,
along with an architecture of the presented real-time stream processing infras-
tructure to support that model. This chapter addresses the issue of how to
integrate a real-time stream processing activity into a system that also has
hard real-time tasks.

This chapter assumes that the logical software structure of the system has
already been developed and this has resulted in a set of tasks whose basic
real-time characteristics (e.g. worst-case execution times) are known.

This chapter focusses on how this architecture is mapped to the physical
platform, and how the real-time stream processing activity is configured so
that the data can be processed within the deadline, whilst guaranteeing that
the hard real-time tasks in the same system will meet their deadlines.

The approach consists of two top level activities:
e Allocation of tasks (including the real-time stream processing task).

e Configuration and analysis of the real-time stream processing task so

that
— for a batched data source, the batch can be processed within its
deadline and the worst-case response time can be analysed;

— for a live streaming data source, each data item can be processed
within the latency requirements, and the worst-case latency can be

analysed.

The analysis to be used on such configurations is described in Chapter 5.

The chapter aims to achieve the best performance for both hard and soft tasks
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with the available platform, rather than to minimise the resource use of the
platform.

This chapter is structured as follows. This chapter first states some as-
sumptions and introduces the notations used in (Section 4.1). This is followed
by the description of task allocation in Section 4.2. Section 4.3 explains how
to configure a real-time stream processing task that inputs from a batched
data source so that the data can be processed within the deadline, while the
hard real-time activities remain schedulable. This section also describes the
proposed server parameter selection algorithm, and data allocation policy.
Section 4.4 describes how to determine the maximum micro batch size, and
the timeout value of a real-time micro-batching instance for a live streaming
data source (i.e., the Batcher proposed in Section 3.4.2), so that each data
item can be processed within the latency requirements while the whole system
is schedulable. Finally, Section 4.5 summarises the chapter and discusses the

overall approach.

4.1 Assumptions and Notations

This section describes the assumptions that this work is based on, and intro-

duces the notations used in this chapter.

4.1.1 Assumptions

This work is based on the following assumptions as claimed in the system

model described in Section 3.2:

e The system is fully-partitioned and scheduled pre-emptively using fixed

priorities.

e Hard real-time tasks arrive either periodically with a fixed interval of
time, or sporadically within a minimum inter-arrival time. Hence we
support the sporadic task model common in the real-time scheduling

literature.

e No software resources are shared (i.e., no synchronisation or mutual

exclusion) between parallel data processing tasks.

e The hard real-time tasks have deadlines less than or equal to their mini-
mum inter-arrival times, because this is the most common scheme in the

sporadic task model [38].
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e The I/O interrupt handlers in the same system are modelled as high-
priority sporadic real-time tasks. These tasks will not affect our real-time
stream processing task model, therefore their schedulability analysis is
independent of the analysis of our real-time stream processing tasks.

More complicated I/O interrupt handling is subject to future work.

4.1.2 Notation

The notation used in scheduling and configuration of the proposed real-time
stream processing system, along with the notation for both real-time tasks and
execution-time servers, and the real-time stream processing tasks are described

as follows.

e A task is represented by 7;, with a unique priority i, and has its relative

deadline D;, worst-case execution time C;, and period T;.

e The worst-case response time of the task 7; is R;, which is the longest

time from when the task arrives to when it completes its execution.

e Given a batched data source, its processing is periodic, or sporadic with
a minimum inter-arrival time. The real-time stream processing task
that inputs from batched data has a unique priority 4, a deadline D;, a
worst-case execution time C; for executing all the code including data

processing, and a period T;.

e Given a live streaming data source, the items arrive sporadically with
a minimum inter-arrival time (M IT%*™)  the worst-case execution time
for processing each item is C*¢" and the deadline, i.e., the latency, for

processing each item is D*¢™,

e An execution-time server has a unique priority S, a capacity Cg, and

replenishment period 7.

e Ignoring interference from higher priority activities, if a server’s capacity
is replenished at time ¢, there will be a gap from ¢ until the point in time
when its capacity can begin to be consumed by the arrival of the served
task. The difference between the maximum and minimum possible values

for this is a server’s jitter — Jg.

e When a periodic task is executed under a server, the task is defined as

bound when the task’s period is an exact multiple of its server’s period
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Figure 4.1: The structure of the stream processing task.

and each release of a bound task coincides with each replenishment of

the capacity of the server [47].

4.2 Allocation of Tasks

In a fixed-priority pre-emptive fully partitioned system, task allocation is an
NP-Hard problem [38]. Several heuristics have been proposed for task alloca-
tion and many of these are summarised by Davis and Burns [49]. A simple
algorithm is to use ‘best-fit’ to allocate task into processors, then for each
processor to use deadline monotonic priority assignment for tasks. Typically
the goal of such an allocation strategy is to reduce the required number of
processors, while the ‘worst-fit’ allocates tasks into processors more evenly.

However, the overall approach taken in this chapter is independent of the
heuristic used. All that is required is an allocation of the hard real-time tasks
that is schedulable.

4.2.1 Real-Time Stream Processing Task Model for Analysis

In order to exploit the spare capacity of the physical platform, the stream
processing task contains multiple threads of control executing in parallel as
described in Section 3.3.

However, from the point view of the scheduling and the schedulability
analysis, the structure of the stream processing task can be simply illustrated
by Figure 4.1.

The execution of a stream processing task contains the following three

phases:
e Prologue: Sequential initialisation occurs, followed by the splitting of the
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batch into partitions and the allocation of partitions to parallel threads
for processing. In many stream processing systems the splitting itself can
occur in parallel, for example, the parallel splitting of Java 8 streams (see
Section 2.3.7). For real-time systems, more predictable splitting can be

obtained by doing the splitting sequentially as discussed in Section 3.3.

e Processing: The data partitions are processed according to the applica-

tion’s requirements.

e Epilogue: The results of the processing are combined and reduced if nec-
essary. For simplicity, this phase is assumed to be performed sequentially

by the same processor that executes the prologue.

Note that, when the epilogue is executed by another processor, the anal-
ysis response time (described in Section 5.5) for the epilogue is required to
use the execution-time server running on that processor. Additionally, the
current server generation algorithm (see Section 4.3.1) examines every possi-
ble data processing window (i.e., the time interval between when the prologue
finishes its execution, and the latest time when the epilogue has to start its
execution), and finds the maximum possible computation time that can be
guaranteed within the data processing window, from all the processors. When
the prologue and epilogue execute in the same processor, the data processing
window is determined by the server used in this processor. However, if they
execute in different processors, the data processing window is determined by
two servers: the server that executes the prologue, and the server that ex-
ecutes the epilogue. This requires the server generation algorithm to check
every combination of those two servers, to find out the maximum computa-
tion time that can be guaranteed by examining every possible data processing
window.

For the schedulability analysis, the real-time stream processing task is
considered to be periodically released, although it is a sporadic model (defined
in Section 3.3), i.e., it can be released either periodically or sporadically. This
is because that from the point view of scheduling and providing schedulability
guarantees for both hard real-time tasks and the stream processing task, it is
required to consider the worst-case. Therefore, the sporadic stream processing
task is treated as periodic, with a period equals to the possible minimum inter-
arrival time.

Similarly, when processing a live streaming data source using the proposed
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real-time micro batching approach (described in Section 3.4.2), the process-
ing of micro batches, i.e., the release of the corresponding real-time stream
processing task, is also released periodically in the worst-case. As the data
items arrive continuously with MIT%™ in the worst-case, the micro batch is
released periodically, therefore, the real-time stream processing task is peri-

odically released.

4.3 Configuration and Analysis of the Real-Time
Stream Processing Task for Batched Data

The architecture that has been proposed in Chapter 3 supports real-time
stream processing for both batched data and live streaming data sources. This
section focuses on the real-time stream processing for a batched data source.

The approach given in Section 3.4.1 is to use execution-time servers to per-
form the stream processing to meet the deadline, whilst bounding the impact
of the processing so that the hard real-time tasks in the same system remain
schedulable. This is turn will influence the selection of the execution-time
server parameters.

This section defines an approach to configure and analyse a real-time
stream processing task that inputs from a batched data source, to achieve
the goal that the real-time stream processing activity has enough computa-
tion resources to complete its processing in order to meet its deadline, while
the hard real-time tasks remain schedulable.

The approach explains how to generate execution-time servers, and deter-
mines the data allocation policy for a real-time stream processing task, and
test its schedulability. More specifically, the execution-time server generation
algorithm (described in Section 4.3.1) selects the priority, period, and capacity
for each server on each processor. In order to instantiate a real-time stream
processing task for a batched data source using the real-time batch stream pro-
cessing infrastructure proposed in Section 3.4.1, these parameters and the data
allocation policy are required to be used for its configuration. The proposed
approach is described as follows.

Given a real-time stream processing task 7; for a batched data source, with
period T;, and deadline D;:

1. Generate execution-time servers for each processor using the algorithm
described in Section 4.3.1.
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2. Perform the data partitioning, and allocate the data partitions to each
processor, more specifically, the generated execution-time servers for

each processor, using the approach described in Section 4.3.2.

3. Analyse the worst-case response time of 7;, i.e., R;, using the analysis

equations derived in Section 5.4.

The real-time stream processing task 7; is schedulable when its worst-
case response time is within its deadline, i.e., R; < D;. Otherwise, it is not
schedulable.

4.3.1 Server Parameter Selection

This section describes how to generate execution-time servers to execute the
real-time stream processing task. The real-time stream processing task is
required to meet its deadline (in our case, its period) when being executed
under the server. All the other hard real-time periodic or sporadic activities
in the system must also remain schedulable. We make the real-time stream
processing task a bound task in order to enhance its schedulability and to

reduce the server capacity requirements [46].

Overall Principle

With the approach adopted by this thesis, the data can only be processed
after the prologue completes its execution, and the epilogue has to finish its
execution before D;. The length of the data processing window between the
prologue and epilogue determines how long the remaining processors can per-
form their data processing.

This data processing window can be illustrated by Figure 4.2. The data
processing window is the time window between the response time of the pro-
logue, i.e., Rprologue in the figure, and the latest time when the epilogue has
to start its execution to meet the deadline. To determine the latest time when

the epilogue starts we consider three cases, as shown in Figure 4.3:

1. Only the epilogue executes during its last server period, as shown in
Figure 4.3a.
In this case, the latest time ¢ when the epilogue has to start its execution

is when the server’s last period starts. If each processor completes its
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Figure 4.3: The latest time when the epilogue starts.

data processing phase before ¢, the epilogue will meet the deadline. In-
troducing a bound task with the WCET of Cgpijogue, and calculates the
worst-case response time R of this task using the techniques presented
in Section 5.2. Then t = Deadline — R.
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2. The epilogue finishes at its last server period, but part of the data pro-
cessing (this might also including the prologue execution) also executes
within this server period, as illustrated by Figure 4.3b.

In this case, the latest time ¢ is when the epilogue starts its execution,
then receives as much as interference as possible, and just meet the dead-
line. t can be calculated using the approach presented in the previous

case.

3. The epilogue executes within several server periods, and it shares a server
period with the data processing (might also including prologue execu-
tion), as illustrated by Figure 4.3c.

In this case, the first part of the epilogue has to finish by the time ¢/
when the server is replenished just after the epilogue starts, as shown in

the rectangle in Figure 4.3c.

Given current server S, and the maximum computation time that can
be guaranteed before the deadline, Cjrax, can be calculated using a
binary search with analysis techniques presented in Section 5.2. Then,

the WCET of the part of the epilogue in server’s last period, Cégffogue,

can be calculated by:

Deadline

CHstgue = Chaax —
Epilogue TS

| es

The WCET of the first part of the epilogue, Cgézfjgue, can be calculated

as follows:

First _ Last
CEpilogue - (CEpilogue - Epilogue)%CS

Then ¢’ can be calculated by:

First
’ CMAX - (CEpilogue - Epilogue)
= - Ts
S

Finally, the latest time, ¢, when the epilogue has to start its execution is
the time when the first part of the epilogue starts to execute, receive as
much as interference as possible, and just finishes at . Using the similar
approach described in the previous case, the worst-case response time,

R, of the first part of the epilogue can be calculated, and t =t — R.
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The maximum length of the data processing windows is from the latest
time when the prologue finishes to the latest time when the epilogue has to
start its execution, i.e., t — Rprologue-

After these time values have been determined, the server generation algo-
rithm examines every possible data processing window to find the maximum
possible computation time that can be guaranteed within the data processing
window, from all the processors.

The size of the data processing window varies with the execution-time
server used in the prologue processor, as the response time of the prologue can
be different when using different servers (similar for the latest time when the
epilogue has to start).

Therefore, the proposed algorithm first generates execution-time servers
for the prologue processor. For each generated server, it then calculates the
maximum data processing window length, then generates execute-time servers
for the remaining processors so that the computation time that can be guaran-
teed from these processors are maximised. Finally, a combination of a prologue
server with the corresponding servers in the remaining processors, that guar-
antees to deliver maximum possible computation time for the real-time stream

processing task can be obtained.

Server Generation Algorithm

Given a real-time stream processing task 7;, with period T;, and deadline D,
the following algorithm generates the servers that can deliver the maximum
capacity within the stream processing task’s deadline using bound servers.
The reason is that this algorithm checks all the possible bound servers on
each processor, it always returns the combination of servers which delivers the
maximum possible computation time.

For the processor that executes the prologue, the proposed server parame-
ter selection algorithm is given by Figure 4.4 using pseudo code. The intuition
behind the algorithm is that, the algorithm first generates prologue servers
with all the possible periods. For each prologue server, the data processing
window can be calculated, the algorithm then generates a set of servers with
all the possible periods for each of the remaining processors. Finally, the com-
bination of servers for all the processors, which delivers the maximum possible
computation time can be found.

Note that, there might be multiple possible combinations of servers in each
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processor that can deliver the maximum computation time for a real-time
stream processing task. Users can choose an arbitrary combination accord-
ing to their preferences, for example, higher priority servers make the stream

processing more responsive.
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1 Max_C = 0; /* The maximum possible computation time that can be

guaranteed from all the processors */

2 Result = {}; /* The corresponding servers on each processor */

3 Order the hard real-time activities using deadline monotonic priority

assignment [30], and check schedulability;

4 Calculate exact divisors of 7; as the potential periods for the server;

5 forEach(period Ts in periods){

6 Create a server S with deadline Dg = Tgs;

7 Find the base priority for the server S using deadline monotonic
assignment;

8 Use a binary search between 0 and Ts to determine the maximum
capacity Cgs for S at its priority level with the system
remaining schedulable;

9  Use the Max_C_From_All_Processors(Server S) subroutine to
calculate the maximum possible computation time (Zé” that can
be guaranteed for 7; from all the processors, along with the

corresponding servers;
10 if(Maz C < CAH{

11 Max_C = C’é”;
12 Result = servers;
13 }

14 }

15 return Result;

Note that:

e In line 4, exact divisors ensure the server has maximum schedulability [46].

e In line 8, the schedulability of each real-time activity can be analysed using the

techniques described in Section 5.1.

e In line 7, when S has the same deadline as another hard real-time activity at
priority j, then S is required to be examined at both priority j + 1 and j — 1
to determine its maximum schedulable capacity in line 8. If S can deliver the

same capacity when running j + 1 or j — 1, choose either one.

e In line 9, the subroutine is described in Figure 4.5. With an execution-time
server S running on the prologue processor, this subroutine calculates the sum
of the maximum possible computation time that can be guaranteed for the
real-time stream processing task, from all processors. Additionally, the corre-

sponding execution-time servers will also be recorded.

Figure 4.4: Server generation algorithm.
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1 Max_C_From_All_Processors(Server S){
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MaxFromAll = 0; /* Records the maximum possible computation time
that can be guaranteed from all the processors, with S */

Servers = {}; /* Records the corresponding servers on each
processor, including server S */

Calculate the maximum computation time Cg that can be guaranteed
before D, with S, employing the response time analysis
equation that is described in Section 5.2;

Calculating the maximum possible data processing window
(DataProcessingWindow) , with the approach described in this
section.

forEach(Processor P in all processors){

if (P is the prologue processor){
MaxFromAll += Cg;
Servers.add(S) ;

}

elseq{
MazFromP = 0; /* Records the max C guaranteed from P */
ServerP = null; /* Records the corresponding servers on P %/
Calculate exact divisors of 7; as the potential periods for

the server;

forEach(period T/ in periods){

Create a server S’ with deadline Dg = Tg;

Find the base priority for the server S’ using deadline
monotonic assignment;

Use a binary search between 0 and 75 to determine the
maximum capacity Cg for S’ at its priority level with
the system remaining schedulable;

Calculate the maximum computation time C%; that can be
guaranteed with the data processing window with S,
which is equivalent to determining the maximum
computation time that can be guaranteed before a
deadline of D’ = DataProcessingWindow using the
techniques described in Section 5.2;

if(Cy > MazFromP){

MazFromP = Cf;
ServerP = S';
}

}

MaxFromAll += MaxFromP;

Servers.add(ServerP) ;

}
3

return MaxFromAll and Servers;

Figure 4.5: The subroutine used by the server generation algorithm.
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4.3.2 Pre-Allocation of Partitioned Data to Execution-Time

Servers

As illustrated in Figure 4.1, the real-time stream processing task consists of the
prologue, multiple processing threads, and the epilogue. The servers generated
provide the processor resource for the execution of all these stages. As each
server’s capacity depends on the utilisation of the hard real-time tasks assigned
to that processor, the processing threads do not progress at the same rate,
hence the allocation of data partitions to each processor must be carefully
managed in order to reduce the overall response time of the stream processing
task.

In a system where one processor is heavily-loaded, spreading the process-
ing load evenly between the servers will not minimise the overall response
time of the real-time stream processing task. Furthermore, as discussed in
Section 3.4.1, a dynamic allocation of data items to servers is not appropriate
due to the pessimism.

As introduced in Section 4.2, the data partitions are processed by multiple
schedulable instances running in different processors. In each processor, the
data processing is served by one corresponding execution-time server, which
is generated using the algorithm proposed in Section 4.3.1. In this section,
we assume that each partition can be processed in isolation in each batched
data source (or micro batches generated using the proposed real-time micro-
batching).

After splitting, for each partition, the processor that it is dispatched to is

determined using the following approach:

1. Find the processors, which are able to provide enough capacity for pro-
cessing partition p. The capacity that can be provided for data pro-
cessing can be obtained during performing the execution-time server

generation algorithm, which is described in Section 4.3.1.

2. Calculate the time when the partition’s processing can be completed in
each processor found in Step 1, using the analysis techniques described

in Section 5.4.

3. Allocate p to the processor, which is the earliest one to finish the process-
ing of p. The partition p is not allocated to the processor which has the
lowest utilisation because low utilisation does not necessarily guarantee

processing can be completed earliest.
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Note that, the failure in Step 1 when trying to allocate a partition means
that the stream processing task with this data source is not scheduable, be-
cause the epilogue is not able to finish its execution before the stream process-

ing task’s deadline in the worst-case.

Supporting Micro-Batching for the Live Streaming Data

The data items in a live streaming data source are latency sensitive, therefore,
the partition allocation order is dependent on their arrival order. Hence, it
is required to order the partitions in a micro batch according to their arrival

order before performing the above approach.

4.4 Configuration and Analysis of the Real-Time

Stream Processing Task for Live Streaming Data

As indicated in Section 3.4.2, the proposed architecture supports real-time
stream processing for a live streaming data source using real-time micro-
batching. This section describes how to configure an instance of the Batcher,
so that each data item in a live streaming data source can be processed within
its latency requirements, and hard real-time tasks in the same system remain
schedulable.

In order to optimise the processing of the data and to ensure the required
response time for processing each data item is met, it is necessary to determine
the maximum size of the micro batch for which the latency, L, of processing
every item of data can be met.

Recall that, when using the real-time micro-batching, the processing of the
live streaming data source is performed by a real-time stream processing task,
as described in Section 3.4.2. Therefore, the latency of a data item in the
micro batch depends on the period of the real-time stream processing task.
The period of the real-time stream processing task for a live streaming data
source itself will depend on the size of the micro batch. Hence it is necessary
to examine various micro batch sizes to determine the maximum size that can
be processed.

The proposed activities to determine the maximum micro batch size and
timeout value can be illustrated in Figure 4.6, and are discussed in the follow-

ing subsections.
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C Set batchsize =0 )

C Select next batch size and timeout values )

v

[ Determine execution time servers’ parameters )

v

[ Allocate partitions of a micro batch to the servers ]

v

[Determine response time of the stream processing task)

no

Deadline met? >
[ Determine latency of stream data elements )
Latency met? no >

C Update batchsize }

Figure 4.6: Configuring the stream processing task.

Considering the configuration of an instance of real-time micro-batching
infrastructure for a live streaming data source. The buffer size and the timeout
for the Batcher can be determined by the above approach. Recall that, the
real-time batch stream processing infrastructure is used for processing each
generated micro batch. Therefore, for the scheduling and configuring the
processing of each micro batch, it uses the same approach proposed for the
batched data source processing in Section 4.3. Again, the priority, period, and
capacity for each server in each processor are determined using the execution-
time server generation algorithm described in Section 4.3.1; while the data
allocation policy is determined using the approach described in Section 4.3.2.

Note that, the Handler is treated as a part of the prologue.
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4.4.1 Determining Micro Batch Size and Timeout Value

The value of the micro batch size will be in the range of 1W +1. This is
because the waiting time of the first data item in any batch that reaches that
size will be L, therefore any processing of it will certainly miss its deadline.
Hence the loop depicted in Figure 4.6 is bounded. We do not prescribe the
exact algorithm for searching in the range, but for small ranges a simple for

loop is sufficient. To check each batch size:

e Select an unchecked batch size. The period of the real-time stream
processing task can be determined as T = (n — 1) x MIT%*™, We use

n — 1 to account for the fact that an item may arrive at time 0.

e Given the allocation and the stream processing task’s period, the exe-
cution-time servers (and their parameters) for each processor can be

generated using the algorithm proposed in Section 4.3.1.

e The processing of each partition in the micro batch can then be allocated

to a server using the approach proposed in Section 4.3.2.

e The schedulability of the stream processing task is then checked along
with the latency of each data item in the micro batch using the tech-
niques described in Section 5.4. The latency for any item is its waiting
time plus its processing response time. With the worst-case data ar-
rival, the waiting time for the z'* data item is (n —2) x MIT"™ where
1 <z < n. Therefore, the latency of this data item is (n —z) x M IT™
plus its processing response time. The live streaming data processing is

schedulable if the following conditions can be met:

— The latency of each item can meet the given time constraints.

— The response time of th