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Abstract

Modern real-time embedded systems often involve computational-intensive

data processing algorithms to meet their application requirements. As a re-

sult, there has been an increase in the use of multiprocessor platforms. The

stream processing programming model aims to facilitate the construction of

concurrent data processing programs to exploit the parallelism available on

these architectures. However, most current stream processing frameworks or

languages are not designed for use in real-time systems, let alone systems that

might also have hard real-time control algorithms. This thesis contends that

a generic architecture of a real-time stream processing infrastructure can be

created to support predictable processing of both batched and live streaming

data sources, and integrated with hard real-time control algorithms.

The thesis first reviews relevant stream processing techniques, and iden-

tifies the open issues. Then a real-time stream processing task model, and

an architecture for supporting that model is proposed. An approach to the

integration of stream processing tasks into a real-time environment that also

has hard real-time components is presented. Data is processed in parallel us-

ing execution-time servers allocated to each core. An algorithm is presented

for selecting the parameters of the servers that maximises their capacities

(within an overall deadline) and ensures that hard real-time components re-

main schedulable. Response-time analysis is derived to guarantee that the

real-time requirements (deadlines for batched data processing, and latency for

each data item for live data) for the stream processing activity are met. A

framework, called SPRY, is implemented to support the proposed real-time

stream processing architecture. The framework supports fully-partitioned ap-

plications that are scheduled using fixed priority-based scheduling techniques.

A case study based on a modified Generic Avionics Platform is given to demon-

strate the overall approach. Finally, the evaluation shows that the presented

approach provides a better schedulability than alternative approaches.
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Chapter 1

Introduction

Embedded systems are widely used in the world, for an estimation, 99% of

the microprocessors are used for embedded systems [32]. A key feature of

embedded systems that are used in critical domains, such as flight control,

is that their time constraints must be guaranteed. These systems are also

usually real-time systems. By definition, given by Burns and Wellings, a

real-time system represents “any information processing activity or system

which has to respond to externally generated input stimuli within a finite and

specified period” [38]. For example, a flight control system of an aircraft must

respond to an input stimuli within a deadline, because any deadline miss could

results in a serious failure which may cause death or aircraft crash. In real-

time systems, tasks are often classified as being hard or soft. Hard real-time

tasks provide services within deadlines that must be met; whereas soft real-

time tasks’ deadlines although important can occasionally be missed without

affecting the correct functioning of the system [38].

Due to increased computational demands, modern real-time systems now

execute on multiprocessor platforms. Parallel programming of these platforms

is required if applications are to exploit the extra available performance. The

stream processing programming model [84] that consists of a collection of

modules that compute in parallel and communicate via channels. Modules can

be either source capturing (that pass data from a source into the system), filters

(that perform atomic operations on the data) and sinks (that either consume

the data or pass it out of the system). Figure 1.1 is a simple illustration of

stream processing.

Stream processing enables users to facilitate the construction of concurrent

programs to exploit the parallelism available on multiprocessor architectures.

1



Processor	2Processor	0

Filter Filter

SinkSource
Capturing Processor	3Processor	1

Filter Filter

Figure 1.1: A stream processing example

Nowadays, stream processing has been widely adopted in different applica-

tion domains, such as multimedia systems, signal processing systems, reactive

systems, and Big Data systems [4, 5, 37,44,56,64,84,87].

In addition to these stream processing frameworks, many programming

languages also provide support for programming stream processing applica-

tions. StreamIt [24] focused on developing a new language that was specifically

designed for processing data streams on platforms ranging from embedded sys-

tems to large scale and high performance systems. In addition, the most recent

version of Java (Java 8) has introduced Streams and lambda expressions to

support the stream processing paradigm, with functional-style code.

1.1 Motivation

Stream processing is suitable for several time-critical domains, such as real-

time signal processing [62]. For example, an unmanned aerial vehicle (UAV)

uses radar to identify potential obstacles and chose an avoidance path [77]. The

continuous radar signals are processed by a on-board multiprocessor computer,

and the processing is associated with real-time constraints to avoid potential

hazards to the safety of individuals and communities. However, most stream

processing architectures are not targeted towards real-time systems.

Often, many stream processing frameworks provide real-time performance

by using high performance computation platforms, therefore increasing the

speed of the stream processing so that the overall time which is required to

handle the requests is reduced. Unfortunately, real-time guarantees are

unlikely to be provided for every request using this approach even though

2



significant power and computation resources are employed. The reason is that

these stream processing architectures pin their hopes on being sufficiently

fast [85], rather than targeting towards real-time systems, to deliver “real-

time” performance which is actually an illusion of real-time.

1.1.1 Real-time Stream Processing

Real-time stream processing systems are stream processing systems that have

time constraints associated with the processing of data as it flows through the

system from its source to its sink.

Typically, stream processing either divides incoming data into partitions

and fully processes each partition before the next one arrives [22] (for example,

object tracking, or radar beamforming), or directly operates on each incoming

data items (for example, wheel speed sensor signals in a car’s ABS system).

In the most general case, stream processing components may share the same

computing platform, and interact with, other real-time components some of

which might have hard real-time requirements.

In general, the data sources of stream processing systems can be classified

into two types [71]: batched and live streaming.

• A batched data source is where the data is already present in memory,

and its content and size will not change during processing.

• A live streaming data source represents data that arrives dynamically,

its content and size will change with time.

The thesis intends to create an architecture using real-time principles, and

implement a framework with real-time technologies, so that real-time guaran-

tees can be provided to the stream processing.

1.1.2 Motivating Case Study

Consider an aircraft equipped with a spotlight synthetic aperture radar (SAR),

and has a mission to generate images of a series of target areas using SAR,

whilst its defence systems aim to guarantee its safety during the flight, as

shown in Figure 1.2. According to the mission requirement, there is a real-

time deadline for the imagery generation of each target area once the aircraft

flies over it. At the same time, all the hard real-time tasks in the defence

system must still meet their deadlines. All these tasks are executed by a

multiprocessor mission control computer.
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Figure 1.2: The mission of the generating images of target areas using SAR.

This is a scenario of the real-time stream processing, which inputs from a

live streaming data source. However, it is difficult to employ existing stream

processing techniques to generate images for each target area within the dead-

line, whilst guaranteeing that all the hard real-time tasks in the defence sys-

tem can still meet their deadlines. The reason is that these stream processing

techniques are designed for time-sharing systems and so do not provide pre-

dictability of execution. For example, there is no interface to configure the

deadline for a job. More reasons are discussed in Chapter 2.

This case study will be addressed using our proposed real-time stream pro-

cessing architecture in Section 5.6, along with its configuration. The derived

response-time analysis guarantees that the time requirements of the mission

are met.

1.2 Thesis Aims

The overall objective of the thesis is to develop a real-time stream process-

ing architecture, and a prototype implementation, along with corresponding

schedulability analysis techniques. The challenges and contributions of the

thesis are described in this section.

1.2.1 Challenges in Real-Time Embedded Stream Processing

Handling stream processing in a system that also host many hard real-time

activities to meet the given time constraints, whilst the hard real-time com-

ponents remain schedulable is challenging. The reasons include:
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• Typically, the stream processing paradigm uses multiple processors in

the system, and its input data source can be either static, i.e., a batched

data sources or data which arrives dynamically, i.e., a live streaming

data source.

– When processing a batched data source, how should the real-time

stream processing of a batched data source be modelled into a real-

time activity, so that the real-time characteristics, such as its dead-

line, can be captured, and multiple processors can be utilised?

– For a live streaming data source, as each data item arrives dynam-

ically, typically there is a deadline for completing each individual

data item’s processing. Therefore, how to create a parallel real-time

model to queue (if necessary) and process these data items within

a stream processing paradigm also needs to be addressed.

• Stream processing is often computationally intensive, it can be either

hard real-time or soft real-time. For the later case, it might be difficult

to predict the volume and the cost of processing the data. If the stream

processing activity is executed at a very high priority, it is likely to

meet its deadline, but it may also cause hard real-time tasks in the

same system to miss their deadlines. If the stream processing activity

is assigned with a too low priority, such as the background priority, it

may miss its target deadline because of suffering interference from higher

priority hard real-time activities during its execution.

Therefore, how to execute a stream processing activity so that its dead-

line can be met, whilst the hard real-time tasks remain schedulable raises

another challenge.

• Another requirement for real-time stream processing is to derive appro-

priate schedulability analysis. A real-time activity is schedulable if its

response time is less or equals to its deadline. The response time is the

time interval from when the input arrives to when the output is gener-

ated in a system. Once the stream processing activity is executed by

multiple processors, the worst-case response time of the stream process-

ing is required to be calculated in order to test its schedulability.

More specifically,
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– For a batched data source, the worst-case response time of the real-

time activity which processes the whole batched data is required to

be analysed.

– For a live streaming data source, as each data item is associated

with a deadline, typically called latency, which represents the time

from when the data arrived in the system to when the data pro-

cessing has finished. Therefore, for every data item, the worst-case

queueing time and response time of its processing is required to be

analysed.

1.3 Thesis Hypothesis

This thesis addresses the hypothesis that:

Programming languages or existing frameworks’ support for

stream processing is insufficient for addressing real-time require-

ments. However, a generic architecture of a real-time stream pro-

cessing infrastructure can be created to support predictable and

analysable processing of both batched and live streaming data

sources, and can be used in high-integrity real-time embedded sys-

tems. Moreover, the architecture can be implemented as a frame-

work using Java, with the Java Fork/Join framework and the Real-

Time Specification for Java.

1.4 Success Criteria and Contributions

To assist with evaluating the work created as part of this thesis, the following

success criteria were developed:

SC1 The definition of a generic architecture of a real-time stream processing

infrastructure, which supports both batched data and live streaming

data sources processing with real-time constraints, and is programming

language independent.

SC2 A process for engineering real-time systems that have both hard real-

time and hard or soft stream processing components, which focuses on

how this architecture is to be mapped to the physical platform and how
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the stream processing activity for both batched data and live streaming

data sources is configured.

SC3 Response time analysis to determine the schedulability of stream pro-

cessing for a batched data source, and latency for a live streaming data

source.

SC4 A framework for integrating real-time stream processing activities with

hard real-time components, and its implementation using the Real-Time

Specification for Java (RTSJ).

SC5 An evaluation that demonstrates that the proposed model is as effective

as a more typical real-time systems model that does not use the stream

processing paradigm.

In addition to the above success criteria, a number of additional contribu-

tions were also made during the development of this work. These were:

• The first use of execution-time servers for performing stream processing

in the context of hard real-time control system.

• An algorithm for selecting the number of servers and their parameters,

which maximises the processor time that can be allocated to real-time

stream processing within the deadline, yet guarantees the deadlines of

the hard real-time components.

• A bound task is free of ‘double-hit’ (see Section 5.1.1) introduced by

higher priority deferrable servers, therefore maximising the capacity that

can be reclaimed by deferrable servers. This observation has been proved,

and is a supplement to the original RTA (as described in Section 5.1).

• A comparison of the relative efficiency of the Java and StreamIt stream

processing models.

• An evaluation of the suitability of the Java stream processing framework

for use within a real-time environment.

1.5 Structure of the Thesis

The thesis is structured as follows:
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• Chapter 2 provides some necessary background material before review-

ing stream processing frameworks, and programming languages.

• Chapter 3 described the architecture of a proposed real-time stream

processing infrastructure, which enables processing both batched and

live streaming data sources in real-time. This architecture is assumed

by the proposed approach in Section 4, and analysis in Chapter 5. This

chapter provides the material needed to meet SC1.

• Chapter 4 presents the overall approach to configure and schedule real-

time stream processing tasks for both batched and live streaming data

sources to meet the real-time constraints. In addition, the assumptions

we make on the underlying real-time platform are also described in this

chapter. This chapter provides the material needed to meet SC2.

• Chapter 5 draw upon the research in schedulability analysis for the

proposed real-time stream processing task model for both batched and

live streaming data sources. An example of the scheduling, configuring

and schedulability analysis for a real-time batched data processing task,

and a case study of a real-time live streaming data processing application

are also given in this chapter. This chapter provides the material needed

to meet SC3.

• Chapter 6 investigates two different stream processing models, and

describes the implementation (SPRY) of the architecture of the proposed

real-time stream processing infrastructure using RTSJ, along with the

implementation of the case study using SPRY. This chapter provides the

material needed to meet SC4.

• Chapter 7 evaluates the presented real-time stream processing ap-

proach to the traditional embedded approach, when processing batched

data and live streaming data sources. This chapter provides the material

needed to meet SC5.

• Chapter 8 draws the conclusions and summarises future work.
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Chapter 2

Literature Review

This chapter first introduces some necessary background material on computer

architectures and real-time in order to set the landscape within which this

research has been conducted. A brief history of stream processing is then pre-

sented. Several typical stream processing techniques, including frameworks,

programming languages, are then reviewed in detail.

2.1 Parallel Computer Architectures

In recent years, processor manufacturers have turned to parallelism to speed

up computation, rather than increasing the clock speed [54], and thus com-

puters have evolved towards multiprocessor architectures. According to their

memory access model, parallel computers can be classified into three typical

architectures:

• Uniform Memory Access (UMA)

All the processors use the same memory, and they have equal access and

access times to memory.

• Non-Uniform Memory Access (NUMA)

Processors are divided into groups, processors in each group access mem-

ory using UMA. Not all processors have equal access time to all memo-

ries. Cache Coherent NUMA (CCNUMA) is one type of NUMA archi-

tecture that provides cache coherency. Most modern processors running

on servers use this architecture.

• Distributed Memory

Processors have their own local memory in distributed memory systems,
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processors can not access data in other processor’s local memory. Pro-

cessors communicate over networks.

This thesis is concerned primarily with UMA architectures. However, our

underlying approach is also appropriate for NUMA architectures.

2.2 Real-Time Systems Model

The literature in real-time systems is broad. Here we present a top level view

in order to place our work in context. More details will be given on particular

techniques when they are used later in the thesis.

We introduce: the scheduling approaches used in the real-time literature,

the problem of task allocation in a multiprocessor systems, and the role of

execution-time servers.

2.2.1 Scheduling

The thesis focusses on the task-based scheduling of real-time systems, which

have been summarised by Burns and Wellings [38]:

• Fixed-Priority Scheduling (FPS)

In a fixed priority scheduled system, each task has a fixed priority, which

does not change with time. The tasks’ running order is determined by

their priorities.

• Earliest Deadline First (EDF)

The running order of the runnable tasks is determined according to their

absolute deadline, the task that has the nearest deadline executes prior

to the rest of the tasks.

• Least Laxity (LL)

The runnable tasks are executed according to their slack, which is the

deadline minus the required computation time. The next task to execute

is the task with the shortest slack.

• Value-Based Scheduling (VBS)

This algorithm considers system where overloaded are possible. In this

type of systems, each task is allocated with a value, and an online value-

based scheduling approach is employed to determine which one is the

next task to run. The one with the highest value is the one chosen.
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In this thesis, we are concerned with priority-based scheduling as this is

the most widely used approach [39] and the one supported by all real-time

operating systems [38].

2.2.1.1 Preemption

In a preemptive system, when a higher priority task is released and a lower

priority task is executing, the execution is immediately switched to the higher

priority task. In contrast, in a non-preemptive system, the higher priority task

has to wait for the lower priority task until it finishes its execution.

The preemptive scheme is adopted in this thesis as it makes higher priority

tasks more responsive.

2.2.2 Task Allocation

Given a set of application tasks, a multiprocessor execution platform and

preemptive priority-based scheduling, there are essentially three approaches

to scheduling the tasks on the platform [38].

• Global Scheduling

A globally scheduled system is a system where all the tasks can execute

on any available processor. A task that is executing on one processor

can switch to another processor, i.e., a task can start its execution on

one processor and then migrate to another process to continue/finish its

execution.

• Fully-Partitioned Scheduling

A task in a fully partitioned system is not allowed to migrate to another

processor once it has been allocated to one processor.

• Semi-Partitioned Scheduling

Semi-partitioned scheduling is between global scheduling and fully par-

titioned scheduling. In a semi-partitioned system, it limits which tasks

may migrate, and where they may migrate to.

Normally, a single processor only resides in a single partition. This thesis

addresses only Fully-Partitioned Systems as the schedulability analysis for

such systems is a major domain in the real-time literature [38]. For example,

in Chapter 5, we build our analysis on [47], which is based on fully-partitioned

systems rather than globally scheduled systems.
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2.2.3 Execution-Time Servers

In the real-time community, execution-time (or aperiodic) servers [38] are used

to give tasks that might demand unbounded CPU time a good response time,

while limiting their impact on other tasks so that, e.g., a hard real-time task

will not miss its deadline. An execution-time server has a capacity, and a re-

plenishment policy. When a client task execute under a execution-time server,

it consumes the capacity. When the capacity is empty, the client task is not

allowed to run and has to wait for the next replenishment.

For a periodic server [38], it has a capacity, which is periodically replen-

ished. The capacity is consumed even if there is no client task. For example,

a periodic server has a period of 10, capacity of 5, released at time 0. It has

only 3 time units capacity left at time 12, because 2 time units capacity has

idled away.

The POSIX standard supports Sporadic Servers [65,83]. A sporadic server

has a replenishment period, a budget (or capacity), and two priorities: high

priority and low priority. When handling aperiodic events, the server executes

at the high priority when it has budget, otherwise runs at the low priority.

When the server runs at the high priority, the amount of execution time that

has been consumed is subtracted from its budget. The budget remains in-

definitely if not consumed. If consumed, e.g., at time t, the budget will be

replenished at t+ its replenishment period.

A Deferrable Server [65, 83] allows a new logical thread to be introduced

at a particular priority level. This thread, the server, has a period and a ca-

pacity. These values can be chosen so that all the periodic schedulable objects

in the system remain schedulable even if the server executes periodically and

consumes its capacity. When registered with a deferrable server, an aperiodic

thread executes at the server’s priority level until either the capacity is ex-

hausted or it finishes its execution. In the former case, the aperiodic thread

is suspended or transferred to a background priority. The capacity of a de-

ferrable server is replenished every period. Different from the periodic server,

the capacity of a deferrable server is retained as long as possible, rather than

idled away.

The response time of a task executing under an execution-time server can

be analysed using the techniques provided by Davis and Burns [47]. The

impact from a higher priority deferrable server to a lower priority task can be

analysed by [34].
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Figure 2.1: A stream processing example

In this thesis, we will use Deferrable Servers as they have superior schedu-

lability compared to Periodic Servers. Furthermore, they are easier to imple-

ment than sporadic servers. However, our framework is independent of the

server technology used.

2.3 Stream Processing and Related Techniques

Stream processing has been around for decades, and is widely used in data

flow systems, signal processing systems, reactive systems, etc. [1, 4, 12,84,87].

2.3.1 Stream Processing

A stream processing system uses a collection of modules to compute the input

in parallel, and communicates via channels [84]. Modules can be either source

capturing (that pass data from a source into the system), filters (that perform

atomic operations on the data) and sinks (that either consume the data or

pass it out of the system). For example, a stream processing system that has

4 filters computing in parallel can be illustrated in Figure 2.1 (a replication of

Figure 1.1 for convenience of presentation). The filters in processor 0 and 1

have the same functionality, and their outputs flow into filters in processor 2

and 3 separately.

2.3.2 Stream Processing Data Source Classification

As has been introduced in Section 1.1.1 the data sources of stream process-

ing systems can be classified into two types [71]: batched and live streaming.
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Note however, the live streaming data may has other names, for example, in

Big Data community, the live streaming data is also called real-time data.

However, the real-time in this thesis represents “any information processing

activity or system which has to respond to externally generated input stimuli

within a finite and specified period” [38]. For the clarification, the term live

streaming used to to represent this type of data sources.

2.3.3 A Brief History of Stream Processing Techniques

The earliest recorded work of stream processing is data flow programming in

1960s [84], even though it was not termed as data flow at that time. Then,

several research projects targeting stream processing were performed. For ex-

ample, in 1970s, Kahn Process Networks were proposed as an asynchronous

programming model for data flow, i.e., filter processing without synchronisa-

tion with respect to other filters. Synchronous data flow [64] was proposed in

1980s for stream processing, where synchronisation was supported when col-

laboration between filters is required. In 1990s, LUSTRE [57] was proposed

as a programming language to support synchronous data flow. More related

stream processing work in the past decades is reviewed in [84].

In 2002, StreamIt [87] was created as a new language for stream processing

on platforms ranging from embedded systems to large scale and high perfor-

mance system. In 2003, Brook [36] was proposed as a stream processing spec-

ification, and its main follow-up work is Brook for GPUs [37], which was de-

veloped for the stream processing on GPUs. In the same year, STREAM [28],

Aurora [26], and Medusa [43] were created to support stream processing mainly

in data management systems.

In order to address the requirement of large data sets processing in a

distributed computer cluster, MapReduce [50] was announced by Google in

2004. MapReduce partitions the input, distributes the partitions over the

computer clusters, performs operations, and fold the results. In addition,

Borealis [5] integrated Aurora [26] and Medusa [43] to provide a distributed

stream processing system for data management.

In 2007, Microsoft announced Dryad [60], which supports distributed large

data sets processing with directed acyclic graphs (DAG) so that more com-

plicated processing logic can be represented. Inspired by StreamIt, Stream-

Flex [82] was also proposed in 2007, which intends to deliver low-latency

stream processing. StreamFlex uses abstractions supported by the Real-Time
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Specification for Java (RTSJ) [91], e.g., a memory area that avoids any inter-

ference from garbage collectors, to minimise latency.

In 2008, DryadLINQ [93] was proposed to provide a high level language

abstraction, which enables the succinct description of a distributed stream pro-

cessing job. In 2010, FlumeJava [41] was created to provide an easy, efficient

data parallel pipeline, which was used by Google internally.

In 2010, S4 [76], and Storm [4] were proposed for distributed live stream-

ing data processing. Spark [1] was created to support in-memory stream pro-

cessing of large data sets. In addition, MapReduce online [45], Twister [52],

HaLoop [35] also tried to refine MapReduce so that it can be used iteratively,

in order to provide interactive data processing. In addition, considering the

requirement of large-scale graph processing, such as, social networks that has

billions of vertices, trillions of edges, Pregel [69] was proposed by Google.

Spark Streaming [19] was developed as a library on Spark in 2013, in order

to support live streaming data sources. In the same year, MillWheel [27] was

also created at Google, to support live streaming data processing as MapRe-

duce is not fit for live streaming data. Additionally, Flink [40], Heron [61],

and Samza [2] were developed in 2014 to 2015 as distributed stream process-

ing frameworks, in order to deliver more scalability and efficiency compared to

Storm. In addition, inspired by FlumeJava [41] and PLINQ [15] that provides

a parallel implementation of data set operations, Java SE 8 [12] was released

in 2014, with Java 8 Streams and lambda expressions, which enables efficient

parallel stream processing with functional-style code.

These stream processing techniques introduced above are designed for best

effort, time-sharing systems. For real-time systems, some distributed real-

time frameworks have emerged in recent years, for example, [33] is a real-time

version of Storm [4], and the JUNIPER [31] project. These frameworks provide

supports to process large data sets in a distributed computer cluster, with a

predictable processing time. However, it is difficult to implement a hard real-

time system in a distributed system, because of the unpredictability of the

network, they are targeted soft real-time.

2.3.4 Stream Processing Classification

In the most recent stream processing frameworks [1,4,12], stream processing is

typically represented by a pipeline with zero or more synchronous stages. Each

stage contains one or more filters, which are allocated to different processors
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Figure 2.2: A pipeline that has 4 filters

X->X+1 X->X*2 X->X-1 X->X2 Sink
1 2 4 3 9

(a) Eager evaluation of a pipeline.

X->X+1 X->X*2 X->X-1 X->X2 SinkSource
1 9

(b) A pipeline that is lazily evaluated.

Figure 2.3: The evaluation of a pipeline.

or computer nodes to execute, in order to exploit the possible parallelism. The

whole processing procedure forms a DAG.

According to the executing behaviour and allocation of the filters, stream

processing can be classified into different types. Considering a typical pipeline,

which contains 4 filters can be illustrated by Figure 2.2, the stream processing

can be classified as:

• Lazy or Eager

According to the behaviours of the pipeline’s executing, their evaluation

can be classified as eagerly, and lazily.

– Eager Evaluation

The input is processed eagerly in this model, i.e., any filter in this

model triggers the processing immediately. When an input arrives

at a pipeline that is eagerly evaluated, the input is immediately

processed by the first filter, and generates an intermediate result,

which will be an input of the down stream (or next stage) filter. The

intermediate results are typically transferred via channels, shared

memory buffers, or networks in a distributed computer cluster.

This model can be illustrated by Figure 2.3a, where a pipeline that

contains four filters is used to process numbers. For example, when

the number 1 enters the eager evaluated pipeline, it is immediately

processed by the filter that increases the input by 1, and generates
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2 as the intermediate result. The intermediate result 2 is then be

sent to the next filter that multiplies the input by 2, and we get the

number 4. So on and so forth. In this example, three intermediate

results are generated, stored and transferred by channels.

– Lazy Evaluation

In a lazily evaluated model, the processing or the input is delayed

as long as possible, and only processed when necessary, such as,

when the final results are requested or the intermediate results are

required to be transferred to another machine in a distributed en-

vironment.

Considering the same pipeline again, Figure 2.3b illustrates how it

is lazily evaluated. When the input 1 arrives, it is not processed

until the sink requests the final result. The filters are combined

together to be a super filter, so that the input is processed by this

super filter, and no intermediate result is generated or transfered.

Lazy operations not only can avoid unnecessary evaluation, but also

can provide potential optimisation opportunities. For example, the

following Java 8 pseudo code gives the MD5 hash code of the first

number in a given array. Lazy operations enables a return generated

upon the first input, instead of calculating all numbers’ hash code

then finding the first one.

Arrays.stream(new int[] { 1, 2, 3,..., 1000000 })

.map(n -> MD5(n))

.findFirst()

.ifPresent(System.out::println);

However, a lazy pipeline is identical to a eager pipeline when the

intermediate results of each filter are required to be transferred to

another machine. Typically, when evaluating a lazy pipeline, the

application travels through the pipeline until a filter that triggers

the processing is met. Then the application travels back to the

first filter and perform operations in down-stream filters one by

one. Compared to a eager pipeline, this introduces overheads when

there is no optimisation opportunities.

• Control Parallel or Data Parallel

Considering a stream processing system with the pipeline shown in Fig-
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Figure 2.4: A control-parallel pipeline.

ure 2.2 again, and a 4 processors SMP CPU. The inputs are 4 data items,

which arrive at time 0, and are stored in a waiting queue.

According to the processor allocation, a pipeline can be either mapped

across different processors, i.e., control parallel, or duplicated on each

processor, i.e., data parallel.

– The Control-Parallel Pipeline

The control-parallel pipeline behaves similar to an instruction pipe-

line within a modern CPU. In this scheme, one or more filters are

mapped to a processor, but a same filter does not reside on more

than one processor. In this example, each filter is mapped to dif-

ferent processors as shown in Figure 2.4. The processor 0 takes an

input from the waiting queue, processes it, passes the intermediate

result to the down-stream filter that is running on processor 1, then

takes another input from the waiting queue. Note that, the result

merging is not shown.

Multiple processors can be utilised to exploit the parallelism, how-

ever, the control-parallel pipeline has the following disadvantages:

∗ When the pipeline contains too few stages compared to the

number of available processors, some of the processors cannot
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Figure 2.5: A data-parallel pipeline.

be utilised, therefore, making the system inefficient.

∗ If the pipeline is unbalanced (i.e., computation time, of each fil-

ter is not identical), or up-stream filters’ processing is delayed,

for example, due to receiving interference from other activities,

the system efficiency is reduced. The reason is that, when any

up-stream filter requires more time to finishes its processing,

the down-stream filter has to wait for it idly.

∗ Moreover, inter-processor communication introduces extra over-

heads.

– The Data-Parallel Pipeline

The data-parallel pipeline duplicates the entire pipeline to different

processors, as shown in Figure 2.5. The data is allocated to different

processors. In this example, each processor works independently,

and there is no waiting gap. The data-parallel pipeline is suitable

for lazy evaluation, as all the filters are allocated into the same

processor. Again, the result merging is not shown in the figure.

However, the drawback of a data-parallel pipeline is making the

the pipeline span different computation resources impossible. For

example, one of the filter within the pipeline requires to access a

GPU or FPGA.
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(a) The pipeline used in the hybrid pipeline example.
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(b) The processing of the example hybrid pipeline.

Figure 2.6: The hybrid pipeline.

– The Hybrid Pipeline

With a hybrid pipeline, the pipeline can span different nodes in a

distributed system, while within each node, the pipeline is dupli-

cated according to its data source partitions.

For example, a hybrid pipeline can be illustrated by Figure 2.6.

Where the logic of the pipeline is shown in Figure 2.6a, the pro-

cessing of this pipeline is illustrated by Figure 2.6b. This example

inputs data collections, which are firstly processed by the first 4

filters using a data-parallel model. For example, the first input col-

lection 1, 2, 3, 4 are partitioned, and processed by processor 0, 1, 2,

and 3. This can be illustrated as stage 1 in Figure 2.6b. The in-

termediate results are merged, and sent to down-stream filters. For

example, the merged intermediate results are then processed by fil-

ter 5 and 6 using a data-parallel model, with processor 8 and 9.

This can be illustrated as stage 2 in Figure 2.6b. The sub-pipelines

in Stage 1 and 2 are evaluated using a control-parallel model.

The following subsections consider in more depth several of the stream
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processing techniques that were discussed previously. A summary of those

techniques and their characteristics is given in Table 2.1. The remainder of

this subsection justifies our choice of the set of representative techniques to

consider.

Table 2.1: Stream Processing Techniques Classification

Technique Type Behaviour Pipeline Type RT

StreamIt Language Eager Control parallel No

Spark Framework Lazy Hybrid No

Java 8 Streams Framework Lazy Data parallel No

Storm Framework Eager Hybrid No

JUNIPER Infrastructure Hybrid Hybrid Soft

RT-Storm Framework Eager Hybrid Soft

StreamIt is chosen as it targets embedded systems and provides flexible

support for the development of stream processing applications [87]. It uses

an eager pipeline as any filter triggers the processing, and a control-parallel

model. It is also a widely referenced stream processing language.

In order to address the requirement of large data sets processing chal-

lenges introduced by the rapid growth in data production, MapReduce [50],

Hadoop [3], and Dryad [60] were created. Recently, Spark [1] has success-

fully succeeded these frameworks. Spark uses lazy evaluations (as only certain

types of filters trigger the processing), and a hybrid pipeline. We, therefore,

review Spark as an example of a batched stream framework for large scale

data processing applications.

Java is a popular programming languages, and used widely in modern

stream processing domain, for example, Hadoop, Spark, Flink [40], Storm,

etc., are based on Java platforms. In the most recent version (Java 8) a

stream processing library has been included to support efficient batched data

stream processing in parallel. Java 8 Streams are lazily evaluated, with a data-

parallel pipeline. Java is reviewed as it is used in this thesis to implement our

proposed real-time stream processing architecture. It is also an example of a

framework that supports batched stream processing.

Storm [4] was created to target live streaming data processing, and has

been widely adopted in commercial areas [90]. Storm is considered because the

hybrid pipeline model, and uses the eager evaluation model (because any filters
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in Storm triggers data processing). Storm is, therefore, reviewed as an example

of a commercially successful live streaming data processing framework.

In order to address the real-time requirement of stream processing, JU-

NIPER [31] and a real-time version of Storm [33] were created. JUNIPER

mainly targets batched data processing in real-time, while real-time Storm

focuses predictable live streaming data processing. We consider these two as

they are two state-of-the-art frameworks that focus on real-time streaming

issues (albeit in a distributed environment).

2.3.5 StreamIt

StreamIt [87] is mainly based on Java, but provides its own compiler (it com-

piles StreamIt source code to Java code, then translates the Java code to C++

code using a third party library, and finally generates a binary executable file

using G++) and tool set. StreamIt defines several concepts. The basic con-

cept is the filter, which is a computation unit of StreamIt, and contains user

defined data processing code. StreamIt also defines global variables, that can

be accessed by any of the filters.

A simple stream processing program can be defined using the following

StreamIt code:

void->void pipeline Example() {

add IntegerSource();

add IntegerPrinter();

}

void->int filter IntegerSource {

int i;

init { i = 0; }

work push 1 { push(i++); }

}

int->void filter IntegerPrinter {

work pop 1 { print(pop()+" "); }

}

This program defines a pipeline, which contains two filters:

- the IntegerSource filter, which takes nothing as the input, and gener-

ates an incremental integer each time (via the “push” statement). The

push statement writes the results into the communication channel.

- the IntegerPrinter filter, which inputs one integer at a time (via the
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“pop” statement), and prints it out. The pop statement reads numbers

of intemediate results from the communication channel.

The program is controlled by a loop, with a user configured total iteration

times. Within each iteration, an input is read into the system, and then sent

to the down-stream filters for processing. For example, after compilation, the

user can run this program with the following command:

./Example -i 5

The program iterates 5 times, and generates the output: 0 1 2 3 4.

2.3.5.1 Connecting the Filters

The notion of stream in StreamIt is defined as a component, which has one

or more connected filters and with data flows into and out. Three structures

of stream processing logic are defined by StreamIt, by connecting filter in

different ways: the Pipeline, the SplitJoin, and the FeedbackLoop.

Pipeline

The Pipeline is used to construct a sequential stream, which has a series of

filters connected linearly using the add command (see line 2, and 3 in the

above code). An example of the pipeline has been introduced above.

SplitJoin

The SplitJoin splits the input data stream to different branches, which can

process data items in parallel, and merge the intermediate results into a com-

mon joiner. For example, the following code distributes the input to two filters

in a round-robin fashion.

void->void pipeline SJExample() {

add IntegerSource();

add SJ();

add Printer();

}

void->int filter IntegerSource { int i;

init { i = 0; }

work push 1 { push(i++); }

}

int->int splitjoin SJ () {

split roundrobin;
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Figure 2.7: StreamIt SplitJoin example, the cycle with numbers represent the

input data or an intermediate result.

add Adder(1);

add Adder(2);

join roundrobin;

}

int->int filter Adder(int increment) {

work pop 1 push 1 { push(pop()+increment); }

}

int->void filter Printer {

work pop 1 { print(pop()+" "); }

}

The program can be illustrated by Figure 2.7. Run the program with 2

iterations, the source generates the input (i.e., 0), and the second input (i.e.,

1). The first input is sent to the filter: x− > x+ 1, while the second input is

sent to the filter: x− > x+ 2. Finally, 1 3 is printed.

StreamIt supports three types of SplitJoin:

1. Duplicate

Each input is duplicated, and sent to every added filter.

2. RoundRobin

The inputs are distributed to added filters in a round-robin fashion. The

first data is sent to the firstly added filter, the next data is sent to the

secondly added filter, and so on.

3. Null

It considers the parallel paradigm where there is no input is required by

the added filters.
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FeedbackLoop

The FeedbackLoop is used to create cycles in the stream processing graph. For

example, a stream that calculates the Fibonacci numbers can be described by

the following example, which is taken from StreamIt benchmarks [23]. The

feedbackloop takes two numbers each turn, generates the output by adding

them together. The output of the feedbackloop is copied to 2 pieces: one goes

to the printer, one is go back to the feedbackloop as an input in the next

iteration.

void->void pipeline Fib {

add feedbackloop {

join roundrobin(0, 1);

body PeekAdd();

split duplicate;

enqueue 0;

enqueue 1;

};

add IntPrinter();

}

int->int filter PeekAdd {

work push 1 pop 1 peek 2 {

push(peek(0) + peek(1)); pop();

}

}

int->void filter IntPrinter {

work pop 1 {

println(pop());

}

}

2.3.5.2 Parallel/Distributed Execution

StreamIt is supported on Linux. The StreamIt compiler compiles the code into

Java source code, and then generates C code. Finally, the C code is compiled

into binaries using GNU G++.
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Processor Allocation

When compiling a StreamIt program, the number of processors that are allo-

cated to the program is required to be given, otherwise, by default, the code is

compiled to be a sequential program. In addition, there is also a configuration

file, which specifies the host, i.e., which node in a computer cluster, where

each processor is located in.

Each filter in the code is compiled to be a C function, and the data flow

between two filters is implemented using shared memory buffers in a multi-

processor CPU, or TCP/IP sockets in a distributed system.

When there are more filters than processors, the StreamIt compiler com-

bines several filters to be a super filter. The compiler generates several super

filters as many as the available processors. These super filters are allocated to

POSIX threads for execution.

However, when there are more processors than filters, some of the unallo-

cated processors are idle as StreamIt does not duplicates filters.

Performance Optimisation

The StreamIt compiler estimates the computation load of each filter using

simulation, then allocates different numbers of filters into different super filters

so that the super filters have an identical amount of computation load.

In addition, StreamIt also employs function inlining, array scalarization,

and loop unrolling to optimise the performance [55].

2.3.5.3 Discussion

StreamIt is a stream processing programming language, which enables data

flow processing program can be written using concise code.

However, the main drawback of StreamIt is that it is a special purpose

language, so that it is hard to integrate with general purpose languages.

In addition, the pipeline in StreamIt is not replicated by default. There-

fore, when there are more processors, it relies on users to construct a parallel

structure, which can utilise all the processors. For example, it assumes users

will use the SplitJoin to duplicate the filters. Otherwise, some of the processors

are idle.

As StreamIt is not designed for real-time systems, it is impossible to be

directly integrated with real-time systems. This is because the threads may
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demand unlimited CPU time, therefore causing the hard real-time tasks in the

same system to miss their deadlines.

2.3.6 Spark

Spark [1] was created at UC-Berkeley and implemented in the Scala program-

ming language, which runs on the JVM and targets batched data processing.

Spark provides a functional programming interface, which enables program-

ming with concise code. Spark Streaming [19] is an extension of Spark, and

allows the live streaming data to be processed using the existing Spark run-

time.

The data structure used by Spark is the Resilient Distributed Dataset

(RDD), which represents a read-only collection of data located in a set of

machines. Data that is corresponding to the RDDs can be parallel processed

by invoking multiple parallel operations, for example, map, reduce etc. An

example is described by the following Scala code:

1 val InputFilesRDD = spark.textFile("hdfs://...")

2 val ResultRDD = InputFilesRDD.flatMap(line => line.split(" "))

3 .map(word => (word, 1))

4 .reduceByKey(_ + _)

5 //save the result...

In this example, a RDD named InputFilesRDD is created from the text

files that are stored in HDFS (see line 1). The InputFilesRDD references

to all the texts in these text files. Spark splits each line into words using

the flatMap operation (see line 2), and these words are represented by a new

RDD. Each word in this new RDD is mapped into pairs (word,1) by invoking

the map operation (see line 3), and the generated pairs are represented by

another newly created RDD. Spark performs the reduceByKey operation on

this RDD, and generates the final result.

The Spark application runs as a set of Java JVM processes on a cluster,

with a master-slave architecture.

2.3.6.1 The Resilient Distributed Dataset (RDD)

An RDD is a read-only, distributed, partitioned collection of records, and it is

the core concept of Spark [95]. An RDD is an object that references the data

source, and provides several parallel operations for data processing. Zaharia
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Figure 2.8: Spark Streaming Overview [20]

claims that RDDs are so general that RDDs can emulate any distributed

system [94].

RDDs can be created by invoking deterministic operations on either data in

stable storage or other RDDs. The RDDs are lazy evaluated, which means that

the data is evaluated only when action operations (they are similar to terminal

operations defined in Java 8) are invoked, rather than all of the operations in

pipeline are performed on data immediately. In addition, programmers can

call a persist method to indicate which RDDs are going to be reused in future.

Spark also connects and performs multiple operations in a pipeline on

RDDs to optimise the performance, in the same machine. For example, RDDs

can be evaluated by applying a map followed by a filter operation on the same

node. Thus, transferring the intermediate results among nodes is avoided.

2.3.6.2 Spark Streaming

Spark Streaming is an extension to Spark, which is designed for live streaming

data processing. The core concept of Spark Streaming is Discretized Streams

(D-Streams), which were created in order to enable the Spark to provide live

streaming data items with an interactive response time. By using D-Streams,

a DAG can be created to represent the processing logic.

The key idea of Spark Streaming is that D-Streams treats a live streaming

computation as a series of deterministic batch computations on small time

intervals [96]. For example, in order to process live streaming data, we can

group data received every second into a batch, and processes each batch using

Spark. This can be shown in Figure 2.8, Spark streaming groups live streaming

data into batches periodically, and processed using the existing Spark runtime.
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Figure 2.9: Structure of D-Streams [20]

Figure 2.10: Applying the flatMap operation on a D-Streams [20]

The D-Streams Computation Model

A D-Stream is a sequence of immutable, partitioned datasets (RDDs) that

can be parallel processed by numbers of operations [94]. These operations can

yield new D-Streams or generate outputs, and any operation that is applied

on D-Stream will be translated to operations on the underlying RDDs. In a D-

Stream, each RDD contains data from a certain interval. Figure 2.9 illustrates

the structure of a D-Stream, in this example, the D-Stream consists of RDDs

with the period of 1 second. For example, in the WordCount example, the

first stage is converting a stream of lines to words. The lines D-Stream is

transformed by a flatMap operation, as described by Figure 2.10. Each RDD

in the lines D-Stream is evaluated by the flatMap operation, and the RDDs

representing the words are generated. Finally, the newly generated RDDs

form the words D-Stream. In this example, the Spark Streaming framework

generates a batch processing task (i.e., underlying RDD transformations) every

second, and these tasks will be processed by the Spark Engine.
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2.3.6.3 Scheduling Spark Applications

By default, Spark schedules applications in FIFO order, each application are

allocated with a fixed amount of resources (the number of processors and the

size of memory). Dynamic resource allocation is introduced in Spark version

1.2. This approach allows an application to give resources back to the scheduler

when it does not use them, and request resources again later when needed.

For example, when some tasks within an application are waiting for I/O, the

processors that are allocated to these tasks can be given back to the scheduler

temporarily.

2.3.6.4 Scheduling Within The Spark Application

Spark hides the details of resource allocation for the pipeline, for example,

how many workers are involved by each operation. Spark uses the following

concepts and schemes to execute a pipeline in parallel, or in a distributed

system.

A Spark application may generate several RDDs as the results. Addi-

tionally, one or more operations in a pipeline and source RDDs are used to

generate each target RDD.

In Spark, responding to a Spark action, e.g., generating a target RDD,

is defined as a job. Each job will be compiled into multiple tasks. The task

in Spark is executable code, typically part of the code within an operation,

e.g., the processing logic in a map operation. The tasks are executed by the

executors, which are JVM processes running the worker node. This section

describes how a job is compiled to tasks, and how Spark executes these tasks.

When an RDD is required to be generated, i.e., a job is generated, the

scheduler examines all the operations and required input RDDs, then builds

multiple stages to execute this job. Stages are generated using the following

principles:

• Each stage should contain as many pipelined operations with narrow

dependencies as possible. The narrow dependencies are the relationship

in where multiple operations on a RDD can be composed together into

a single operation. For example, in WordCount, there are two opera-

tions: mapping lines to words, and mapping words to (word,1) pairs.

These two operations can be put into a single operation, because the

data/partitions is transformed in a one-to-one relation.

30



Figure 2.11: The stages in a job. Boxes with solid outlines are RDDs, Shaded

rectangles are partitions, black rectangles means partitions are already in

memory. [94]

• The boundaries of the stages are either the shuffle operations, or any

already computed partitions, which determines that their parent RDD

is not required to be computed.

Figure 2.11 illustrates an example of how Spark determine the stages of a

job. In this example, in order to generate RDD G, Spark builds three stages

according to the above principles:

1. Stage 1

The goal of it is to generate RDD B. Note that, in this example, the

results have been generated.

2. Stage 2

The goal of this stage is to generate RDD F. The map and union op-

erations in this stage represent a one-to-one relation, therefore, Spark

merges them in the same stage for the optimisation.

3. Stage 3

In this stage, the join operation is required to be performed on RDD B

and RDD F, and then generate the finally required result, i.e., RDD G.

As the output RDD of stage 1 is already in memory, therefore Spark runs

stage 2, then stage 3. Once the stages are determined, the scheduler generates

tasks, which are to compute the missing partitions for each stage. Finally, the

target RDD is computed.
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The number of tasks spawned by each stage equals to the number of par-

titions from the target RDD within this stage. In this example, 4 tasks are

generated in stage 2, 3 tasks are generated in stage 3, and 1 shuffle task are

created between stage 2 and 3.

The tasks will be executed by executors, which are JVM processes. The

total number of number of executors, and processors that each executor can

use is configured when the application is deployed.

Scheduling The Generated Jobs

The default scheduler is a FIFO scheduler. When scheduling jobs, the first

arriving job has the highest priority, and all its tasks inherit its priority. Con-

sidering an application may create multiple jobs in parallel, Spark also provides

fair scheduling between jobs (called the fair scheduler), in which Spark assigns

tasks between jobs in a Round-Robin fashion, so that a short job can receive

resources while a long job is running therefore get a good response time. In

addition, the fair scheduler supports grouping jobs into pools with different

scheduling options (e.g., weight). This can be used to create a high priority

pool for more important jobs.

2.3.6.5 Discussion

In Spark, the data transformations in RDDs is quite similar to the one in Java

8 streams [12], and both of them are lazily evaluated. Additionally, the Spark

engine employs executors that are distributed over a cluster to execute the

generated tasks from evaluating a pipeline, while Java 8 uses ForkJoin Thread

Pool to achieve this purpose.

However, as a time-sharing framework, it is not easy to add real-time

constraints on Spark:

• Spark runs on standard JVM, the overall runtime of the Spark engine

lacks real-time features.

• Preemption is not supported by the Spark scheduler. If a new higher

priority job is submitted, and there if no idle resources, it is not possible

for the scheduler to take certain amount of computation resource back,

and runs this higher priority job.

• The execution of threads in Spark can not be bounded, therefore, it is
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difficult to integrate Spark into a real-time system, which also has hard

real-time component.

2.3.7 Java 8 Streams

Streams and Lambda expressions are the most notable features that have been

added in Java SE 8. The Stream API and lambda expressions are designed

to facilitate simple and efficient processing of data sources (such as from Java

collections) in a way which can be easily pipelined and parallelised.

Lambda expressions provide a clear and concise way to represent one

method interface using an expression [10], for example, (a,b)->a+b defines

a Lambda expression that sums two arguments. Lambda expressions make

code more concise, and extend Java with functional programming languages

concepts. Internally, a lambda expression will be compiled into a functional

interface. Functional interfaces were introduced by Java 8, and are interfaces

that contain exactly one abstract method which can not have a default imple-

mentation. They may define other methods as long as those methods do have

default implementations. For example, java.util.function.Consumer<T> is

a functional interface. It has only one abstract method (see line 4), and its

source is described as follows.

1 @FunctionalInterface

2 public interface Consumer<T> {

3 /** Performs this operation on the given argument. */

4 void accept(T t);

5

6 default Consumer<T> andThen(Consumer<? super T> after) {

7 Objects.requireNonNull(after);

8 return (T t) -> { accept(t); after.accept(t); };

9 }

10 }

In addition, lambda expressions use target typing [86], i.e. the type of argu-

ments will be automatically determined by the compiler during compilation,

rather than required to be specified by programmers. This feature enables

passing methods as arguments, rather than constructing an object of a spec-

ified class. With suitable frameworks, a programmer can easily construct

graphs and pipelines of functional operations.

A Java 8 stream is a sequence of operations and a data source. The
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Stream itself is an interface, which defines all the operations supported by

the Java 8 Stream framework. The actual implementation of streams are

pipelines, for example, the implementation for a stream of Java objects is

java.util.stream.ReferencePipeline. In addition, Java 8 streams make

use of lambda expressions to enable passing different methods into each op-

eration in the pipeline if required. A pipeline consists of a source, zero or

more intermediate operations, and a terminal operation. An intermediate op-

eration always returns a new stream, rather than performing methods on the

data source. One example of intermediate operations is map, which maps each

data element in the stream into a new element in the new stream. A termi-

nal operation forces the evaluation of the pipeline, consumes the stream, and

returns a result. Thus, streams are lazily evaluated. An example of terminal

operations is reduce, which performs a reduction on the data elements using

an accumulation function. A simple word count example can be described by

the following code using the Stream API and Lambda Expressions:

1 Collection<String> datatoProcess = WordsToCount;

2 Map<Object, Long> result = datatoProcess

3 .parallelStream()

4 .flatMap(line->Stream.of(Pattern.compile("\\s+").split(line)))

5 .collect(Collectors.groupingBy(

6 w -> w, TreeMap::new, Collectors.counting())

7 );

It first create a stream, which inputs from a collection of strings (see line 3).

Each string is split to words (see line 4), these words are counted, and accumu-

lated into a Java Map (see line 5). The procedure is performed in parallel, the

details of how the processing is parallelised are given in the following sections.

2.3.7.1 Stream Evaluation Model

One of the main advantages of streams is that they can be either sequentially

evaluated, or evaluated in parallel. Sequential evaluation is carried out by per-

forming all the operations in the pipeline on each data element sequentially

by the thread which invoked the terminal operation of the stream. When a

stream is evaluated in parallel, it uses a special kind of iterator called a Split-

erator to partition the processing, and all the created parts will be evaluated

in parallel with the help of a ForkJoin thread pool. To be able to be evaluated

in parallel, it requires the data source to be splitable. Efficiency is achieved
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Figure 2.12: Tasks stealing, pushing and popping within worker threads

by the work stealing algorithm that is used by the ForkJoin pool.

2.3.7.2 The ForkJoin Thread Pool

Introduced in Java SE 7, the ForkJoin thread pool is a parallel framework

in which tasks are computed by splitting themselves into small subtasks that

will be computed in parallel, waiting for them to be completed, and then

composing the results [63]. More specifically, the small subtasks are computed

by the ForkJoin thread pool with a work stealing algorithm to balance the

load of its workers.

A ForkJoin thread pool maintains a task queue, and creates worker threads

with a thread factory. In addition, the thread factory can be configured.

The number of worker threads usually corresponds to the number of available

processors on the platform. In overview, worker threads take tasks from the

queue associated with the ForkJoin pool, and execute the task. The task

may split into small subtasks, and these smaller tasks are pushed into the

worker’s own task queue. The worker thread pops tasks out from its queue

and executes them, when its current task is completed. A worker thread tries

to take a task from other worker threads’ queues when its queue is empty,

using a work stealing algorithm.
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2.3.7.3 The Java 8 Work Stealing Algorithm Details

A work stealing algorithm is the heart of the ForkJoin thread pool. The

details of the execution of a worker thread using the work stealing algorithm

are summarised by the following, according to the publication of Lea [63] and

the source code of java.util.concurrent package.

1. Each worker thread maintains its own task queue. The queue is a double-

ended queue, which enables access to the data from both the top and

bottom.

2. Within one worker thread, subtasks that are generated by splitting its

tasks will be pushed onto the top of the worker thread’s own queue.

3. Each worker thread executes its current task first, then executes tasks

in its queue in LIFO order, i.e. by popping tasks from the top of the

queue.

4. When a worker thread has no tasks to execute, it tries to take a task

from another randomly chosen worker thread’s queue in FIFO order.

5. When a worker thread waits for a task to finish, it will process other tasks

with the help of the ForkJoin pool until it is notified of completion (via

ForkJoinTask.isDone()). Tasks otherwise run to completion without

blocking.

6. When a worker thread is idle, and fails to steal tasks from other worker

threads, it backs off, e.g. yields.

The internals of worker threads employing the work stealing algorithm are

illustrated by Figure 2.12.

2.3.7.4 Parallel Evaluation of a Stream with the ForkJoin Pool

A stream starts to be evaluated once its terminal operation is called. Once

a terminal operation is invoked, the corresponding terminal operation task,

which inherits from the ForkJoin task, is executed. Thus, the evaluation of

a stream is represented by the execution of a ForkJoin task. With parallel

evaluation, the stream is evaluated by the current thread alongside the worker

threads in the default ForkJoin pool. Note that, the current thread can be a

worker thread in a ForkJoin pool, when the evaluation of a stream is submitted
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Figure 2.13: The parallel evaluation of a Stream by a pool with 2 threads.

to that pool directly. The evaluation of a stream is split to small subtasks,

and these subtasks are then evaluated using the work stealing algorithm. By

default, a stream splits into four pieces for each worker thread in the ForkJoin

pool, so a thread being executed by a pool with 4 threads will split at most

16 times.

For example, one stream is submitted to a pool with 2 worker threads. The

parallel evaluation of this stream is illustrated by Figure 2.13. One worker

thread takes the evaluation task from the pool first, then executes (see time

1). The task splits into 2 subtasks, and one of them is pushed into the task

queue at time 2. Work stealing is assumed to occur at time 3, in reality, it can

be later or earlier. When all the tasks shown at time 9 have been executed,

the stream has been successfully evaluated. Note that, in this example, we

assume this stream can be split as often as it requires, and all the worker

threads within that pool have been successfully created before evaluation.
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2.3.7.5 Discussion

The Java 8 Stream API enables pipelined and parallelised processing of data

sources in a Fork/Join manner, with concise code. However, by connecting

multiple streams in different ways, more complicated parallel processing algo-

rithms can be obtained.

The Java 8 Stream API has not been designed to address real-time con-

cerns. Firstly, even with a real-time Java virtual machine, there is no way to

place real-time constraints on the program.

Secondly, the executing of worker threads in a pool, which evaluates the

stream processing, is not bounded. Therefore, it may demand unlimited CPU

time, therefore causing the hard real-time tasks in the same system to miss

their deadlines.

Moreover, Java 8 streams assume the data has already been stored in

memory, therefore, the live streaming data is not supported by Java 8 streams.

2.3.8 Storm

Apache Storm [4] is a stream processing framework developed at Twitter us-

ing the Clojure programming language, and provides multiple programming

language APIs, including Java, Python etc. Storm has seen wide commer-

cial adoption from companies such as Yahoo!, The Weather Channel, Alibaba,

Baidu, Groupon and Rocket Fuel [90].

Storm defines five basic concepts: streams, tuples, spouts, bolts and topolo-

gies. A tuple is a data structure that stores values. A stream is an unbounded

sequence of tuples. Unlike Java 8 Streams which carry references to heap data,

Storm streams pass the data itself. In addition, the stream in Storm is eagerly

evaluated, data elements at a stream are transformed immediately in each

stage of a pipeline. A spout is a source of stream which emits tuples. A bolt

processes one or more input streams, produces new tuples and passes them to

one or more new output streams. By connecting spouts and bolts together,

data elements can flow through the stream. The graph of this connection is

named the topology, where the edges represent the data flow and vertices are

computation components (spouts or bolts).

Figure 2.14 illustrates a simple topology that counts the words occurring

in a stream of sentences, and also illustrates how the data in the stream is

moved and processed. There are 1 spout (emits sentences to a stream) and
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Hello	Storm Hello	World Hello World HelloStorm

Hello	:	2
World	 :	1
Storm	:	1	

Spout: emits sentences

Bolt: splits sentences into words Bolt: accumulates words count

Figure 2.14: WordCount topology and data flow in it.

2 bolts (one bolt parses received sentences, another bolt counts the words)

in this topology. In this example, two sentences (<Hello World> and <Hello

Storm>) are emitted to the stream by the spout. Once the first bolt receives a

sentence, it parses the received sentence immediately and emits <Hello> and

<World> to the downstream. Similarly, when the second sentence is received,

<Hello>, <Storm> are parsed out and emitted to the downstream. The last

bolt accumulates the number of each words occurring, and generates the final

result.

2.3.8.1 Storm Runtime Overview

Storm runs on a distributed compute cluster, using a master-slave architecture.

The actual work is done by worker processes that are running on the worker

node. Each worker process is an OS process that is running a separate JVM,

and it spawns threads called executors to perform the processing. Note that,

each worker process only executes parts of a single topology, multiple worker

processes on the same node may execute different part of the same topology.

The actual computation of the data processing of a spout or a bolt is

encapsulated into a task. The parallelism is achieved by running multiple

executors, each of which may execute one or more tasks.

Data items from spouts/bolts (producer) are shuffled to tasks within bolts

(consumer) in a storm topology, for the load balancing. Several built-in shuf-

fling algorithms are provided, such as, data items are evenly distributed to

the down-stream consumers. Additionally, users can implement a customised

shuffler by implementing the CustomStreamGrouping interface.
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2.3.8.2 Scheduling a Storm Topology

This section introduces how a Storm topology is scheduled by introducing an

example, which considers a topology consisting of three components: 2 spouts

called yellow-spouts, 4 bolts called blue-bolts and 4 bolts called green-bolts.

The components are linked so that yellow-spouts send their outputs to blue-

bolts, which in turn send their outputs to green-bolts. This topology is defined

by the following code based on a Storm version 2.0 example [25]:

1 Config conf = new Config();

2 conf.setNumWorkers(2); /* set 2 worker process */

3

4 TopologyBuilder builder = new TopologyBuilder();

5

6 /* 2 spouts */

7 builder.setSpout("yellow-spout", new YellowSpout(), 2);

8

9 /* 4 blue-bolts, and each has 2 tasks */

10 builder.setBolt("blue-bolt", new BlueBolt(), 4)

11 .setNumTasks(2).shuffleGrouping("yellow-spout");

12

13 /* 4 green-bolts */

14 builder.setBolt("green-bolt", new GreenBolt(), 4)

15 .shuffleGrouping("blue-bolt");

16

17 StormSubmitter.submitTopology("example-topology",

18 conf, builder.createTopology());

In the code, the topology is configured to use 2 worker processes (see line

2). The yellow-spouts are defined to use 2 executors and each yellow-spout is

encapsulated into 1 task by default (see line 7). Note that, the actual work is

performed through a task, each task contains the code corresponding to the

user-defined function a spout/bolt. Similarly, the blue-bolts use 4 executors

and each blue-bolt is encapsulated into 2 task (see line 10-11). The green-bolts

use 4 executors and each blue-bolt is encapsulated into 1 task (see line 14-15).

The Storm scheduler allocates all (2 + 4 + 4 = 10) the executors into 2

worker processes evenly, and this procedure can be illustrated by Figure 2.15.

The left part shows the architecture of the topology. The right part illustrates

how tasks are allocated into executors, and how executors are packed into

worker processes.
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Figure 2.15: Mapping a storm topology to worker processes, executors and

tasks

More specifically, from the point view of the OS, the worker processes are

separate JVM processes, executors are threads running within each worker

process, and a task is a code fragment defined by users that will be executed

by threads(i.e., executors). In this example, Storm spawns 2 JVM processes,

and each JVM process spawns 5 threads within it. Figure 2.16 illustrates

how this example is executed within a worker node in a storm cluster. The

two worker processes in this example are mapped into 2 JVM processes, and

five executors in each worker processes are mapped into corresponding JVM

threads. Each slot allows one process to be created, the total number of slots

in a worker node is configured in the deployment.

2.3.8.3 Discussion

Storm is a fast in-memory stream processing framework, however, Storm is not

designed for real-time systems. There are many difficulties with using Storm

in a real-time system:

• The stack of Storm’s runtime lacks real-time features. For example,

Storm is developed with the Clojure programming language and runs on
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Figure 2.16: Inside of a node in Storm Cluster

a standard JVM.

• Storm itself does not support real-time notions, such as, priorities, dead-

lines, etc.

• Storm treats the weight of each workload, i.e., tasks, equally, irrespective

of the load of each processor, and creates one or more threads in each

processor, then allocate the workload to all the threads evenly.

• The thread in Storm can not be allocated to a specific processor, because

its scheduler only aware of the how many available slots can be used in

each machine. This means some real-time scheduling schemes can not

be supported, for example, the fully-partitioned scheduling.

• The execution of threads in Storm can not be bounded. When running

Storm at a high priority, it may cause the hard real-time tasks in the

same system to miss their deadlines.
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2.3.9 Predictable Stream Processing Frameworks

This section briefly reviews soft real-time stream processing framework, such

as the JUNIPER project [31], and a real-time version [33] of Storm. Addition-

ally, an investigation of using work-stealing in soft real-time stream processing

system is also reviewed.

2.3.9.1 JUNIPER

JUNIPER [31] is an European Union Seventh Framework project, which pro-

vides a Java platform for high-performance and real-time large scale data

processing.

JUNIPER provides a real-time operation system based on Linux, a real-

time Java virtual machine, and a real-time modelling tool that supports model-

driven engineering. JUNIPER also defines its own programming model, which

is intended to provide a set of APIs or models so that several existing parallel

processing frameworks, e.g., Storm [4] or Spark [1], can be be built upon it,

rather than replicating these existing frameworks. For example, a distributed

version [42] of Java 8 Streams is developed as a distributed large scale data

processing framework.

In addition, JUNIPER employs FPGAs to accelerate Java programs [56]

in order to deliver a high performance. A Java to C compiler and a C to

hardware description language tool are used, so that FPGA components can

be generated directly from Java code.

The JUNIPER programming model is based on Java 8 [12] with the Real-

Time Specification for Java (RTSJ) [91], so that the programs can be pro-

gramed with real-time systems. The JUNIPER programming model defines

several real-time components to support real-time programming. For example,

• Programs

The program is written using the RTSJ to capture the real-time con-

straints.

• Channels

Channels are used to represents analysable data flow between programs.

Channels are modelled as either periodic or sporadic, so that periodically

or sporadically moving data can be represented.

Disk bandwidth reserving techniques [80] are also developed so that the

storage accessing is able to be predictable and analysable.
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Discussion

The JUNIPER project uses model-driven engineering to support automatic

code generation, rapid deployment, modelling deadline constraints, etc.. In

addition, the JUNIPER programming model also enables large scale data pro-

cessing frameworks to be developed with it.

However, there are several issues, such as, Distributed Streams [42] do not

provide any interfaces to configure deadline constraints or priorities. There-

fore, a high-level real-time stream processing framework is missing.

2.3.9.2 Real-Time Storm

A real-time version (RT-Stream) of Storm [4] was proposed in [33], to provide

predictable stream processing. This work establishes a tool stack including a

real-time OS, a real-time JavaVM, and extended Storm classes which support

real-time constraints.

The notion of real-time stream is described as “a continuous sequence of

data or items whose processing has some real-time requirements like a deadline

from the input to the output” in [33]. The idea of this work is to model a real-

time stream into a set of real-time activities, and provide related schedulability

analysis approaches.

Firstly, Storm’s Spout (input) and Bolt (processing and output) are ex-

tended to be periodic activities, or sporadic activities with minimum interval

times (MIT). The new classes are called RTSpout (input) and RTBolt. They

allows the period (or MIT if sporadic), worst-case execution time, and the

deadline to be given to each RTSpout or RTBolt. In addition, a fixed-priority

scheduler is provided.

Then, the graph of stages of a real-time stream is built by analysing the

stream processing graph, which is a DAG of RTSpouts and RTBolts.

Finally, by performing an end-to-end response time analysis on each RT-

Spouts and RTBolts in each stage, the response time of the stream processing

can be obtained.

An example from the original paper [33] considers a real-time stream, which

has a periodic RTSpout with a period of 100 ms, and two RTBolts with a

period of 200 ms. The worst-case execution time of them are all 10 ms. The

stream flows from the RTSpout to the two RTBolts. The two RTBolts runs

in parallel. This example makes an assumption that there is no any other
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higher priority activities in the system. Therefore, the end-to-end worst-case

response time is calculated as: 10ms (for the RTSpout) + max(10ms,10ms)

for the parallel RTBolts.

In addition, an utilisation based schedubility test equation is also given

by this work, and it is a sufficient but not necessary analysis. The utilisation

based analysis is done by performing analysis on each worker node in the

cluster, using the Liu and Layland utilisation bound [67].

Discussion

RT-Storm enables distributed soft real-time stream processing. However, there

are some issues:

• The algorithms for determining the period or MIT, and the load for

each RTSpouts or RTBolts in a system which also hosts other real-time

activities are not considered.

• The unpredictability of the network, and its impact on the worst-case

response time is not addressed.

2.3.9.3 Work Stealing for Parallel Stream Processing in Soft Real-

Time Systems

A thread pool is often used to provide the parallel threads needed to perform

the stream processing. A major load balancing technique is the work stealing

algorithm. In a context of soft real-time systems, the work stealing strategies

for parallel stream processing is investigated by [70]. The work stealing is also

used by Java 8 ForkJoin framework.

This work considers using multiple threads to processing sequence of inputs

in parallel. Each input requires multiple processing stages, which forms a

graph or a pipeline. When processing an input, each stage is treated as a

subtask. Each thread maintains a local queue, which is used to store these

generated subtasks. In addition, the system also maintains a shared global

queue, which is used to store the input. Similar to Java 8 Fork and Join

framework (see Section 2.3.7), when a thread is idle, it tries to steal, i.e., take,

work from other threads’ local queue, or from the shared global queue.

For example, as shown in Figure 2.17, there are two inputs in the system,

which will be processed using a pipeline, with a work-stealing strategy. The

pipeline has 3 stages, therefore, 3 subtasks are generated for each input. For
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Figure 2.17: Work-stealing in a stream processing system with a pipeline

example, subtask 1 represents performing filter 1 on input 1. In this example,

thread 1 has taken the input 1, generated 3 subtasks, and currently executing

subtask 1. The subtasks 2 and 3 have been pushed into its local queue. Thread

2 and 3 are idle. Thread 2 is stealing a subtask from thread 1, and thread 3

is taking the next input from the global queue.

This work [70] investigates all the possible policies for inputs or subtasks

accessing schemes, such as,

• Local - The input and subtasks goes into the thread’s local queue, rather

the global queue.

• Global - The input is pushed into the global queue, but subtasks goes

into the local queue.

• Stealing First - When a thread is idle, it tries to check other thread’s

queues first, then the global queue.

• Global First - When a thread is idle, it tries to check the global queue

first.

The conclusion is [70]: considering the latency for processing each input,

the best combination is the input goes into the global queue, and idle thread

tries to check global queue first. The reason is that, with the stealing first

strategy, the system suffers from a loss of data locality.
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Latency Bound

An approach that is used to calculate the latency bound when using the global

queue to store the input is also given in this work [70]. The worst-case execu-

tion time w for processing each input is defined as the sum of the execution

time of each filter. In addition, the maximum number of inputs that are

waiting, including the input that is under the analysis is defined as α.

The worst-case latency bound for the input is w, i.e., the worst-case pro-

cessing time of itself, + w(α−1n ), i.e., the worst-case processing time of inputs

before it, where n is the number of processors.

Difference with Java 8 Streams

The difference between the work and Java 8 Streams is that the input in Java 8

Streams is a collection of data, rather than individual data items. In addition,

Java 8 Streams is using a stealing first strategy. This is because Java 8 Streams

aim to minimise the response time of processing each collection, while this work

targets at the throughput.

Discussion

This work evaluates different policies in a stream processing system with a

work-stealing algorithm, and gives the conclusion about the best policies.

However, this work assumes that the stream processing is using a dedicated

system, there is no any other activities. When there is any other activity, such

as the operating system, the response time can be bigger to the worst-case

execution time.

In addition, the issues that have been discussed in the previous sections

of integrating stream processing into a real-time system, which also has hard

real-time activities, are still open.

2.4 Summary

This chapter has briefly introduced parallel computer architecture, real-time

system models, and stream processing. A brief history of stream process-

ing which describes several typical stream processing has been given in Sec-

tion 2.3.3. Section 2.3.4 discusses the stream processing classifications, includ-

ing lazy or eager evaluation, and control-parallel data-parallel scheme. From
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an efficiency viewpoint, as discussed in Section 2.3.4, lazy evaluation and data

parallelism should be employed as much as possible, unless there is a necessity

to use the other approaches, for example to facilitate distributed communica-

tion.

This chapter has also reviewed several typical stream processing techniques

for both frameworks, and programming languages in different classifications,

including Java 8 Streams, StreamIt, Storm, Spark Streaming. In addition,

this chapter also reviews a real-time version of Storm, and JUNIPER project,

which were designed to address real-time constraints.

StreamIt and Java 8 Streams support stream processing at the language

level, but StreamIt is not a general purpose programming language. Storm

and Spark Streaming are distributed live streaming data processing frame-

works. The former one is designed for live streaming data, while the later one

groups live streaming data into micro batches, and reuses the Spark batch-

ing processing runtime. However, none of these techniques fully considers the

real-time constraints, although the real-time version of Storm and JUNIPER

makes their first step toward addressing soft real-time constraints.

This chapter observed that none of the current stream processing tech-

niques support real-time stream processing that can be integrated into a real-

time system that also has hard real-time activities.

In summary, the real-time stream processing has the following challenges:

• Common stream processing frameworks are designed for time-sharing

systems, their programming interface provides no support for capturing

the real-time properties, such as priorities, deadlines.

• In addition, most of their runtimes are non real-time, for example, Java

8 Streams, Storm, and Spark run on standard JVMs. Porting these

techniques directly into a real-time runtime, e.g., a real-time JVM, may

cause unexpected problems. For example, as described in [71], processing

parallel Java 8 Streams directly within a RTSJ real-time thread may

suffer priority inversion problems.

• None of the the current techniques addresses the issue of performing

stream processing in a real-time system so that its deadline can me met,

whilst guaranteeing all the hard real-time activities in the system still

meet their deadlines.
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• None of the current stream processing techniques can guarantee the

worst-case latency of each data item’s processing in a data stream, or

the response time of a batched data’s processing.

The following chapters will address these challenges by providing a real-

time stream processing architecture for multiprocessor platforms, with cor-

responding scheduling techniques, integration approaches so that the stream

processing can be integrated into a real-time system that also has hard real-

time activities. Then response time analysis equations are derived to guarantee

that the real-time requirements of the stream processing are met.
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Chapter 3

The Real-Time Stream

Processing Infrastructure

To address the issues discussed in Section 2.4, the goal of this chapter is to

propose a real-time stream processing infrastructure with which both batched

and live streaming data sources can be processed within the deadline or the

latency requirements, while maintaining existing guarantees to the other hard

real-time activities in the same system.

This chapter defines a real-time stream processing task model and the ar-

chitecture of an infrastructure that supports that model. Applications that

perform stream processing and run on this architecture must follow the pipeline

software design pattern [81], as illustrated by Figure 3.1.

In the previous chapter, it was shown that the data source of stream pro-

cessing can be from batched data or live streaming data; hence this pattern

can be specialised into: processing a batched data source as illustrated by Fig-

ure 3.2a; and processing a live streaming data source as shown in Figure 3.2b.

Hence the infrastructure must provide an appropriate API for user appli-

cations, and be capable of supporting these two use cases. We assume the

existence of a real-time stream processing task which encapsulates all the ac-

Filter Filter Filter Filter SinkSource

Figure 3.1: The pipeline software design pattern
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SinkSource

Filter Filter Filter Filter

Files From Hard Disk Drives
Or In-Memory Data Collections

(a) Processing batched data sources.

Filter Filter Filter Filter

SinkSource

Filter Filter Filter Filter

Data Dynamically Generated By 
Sensors

(b) Processing live streaming data sources.

Figure 3.2: Stream processing from different data sources.

tivities associated with reading and processing the data.

• For a batched data source, the task uses a real-time batch stream pro-

cessing infrastructure as shown in Figure 3.3.

• For a live streaming data source, each data item can be processed by

the proposed approach shown in Figure 3.4. The batcher uses real-

time micro-batching. This means that it stores individual data items

into a collection, and returns the collection sporadically when either the

maximum batch size is reached or the timeout expires. See Section 3.4.2

for more details. Each of the returned collections can then be treated

as a static data source and processed using the existing real-time batch

stream processing infrastructure.

The reason for using real-time micro-batching when processing live stream-

ing data sources is because it allows the data items to be processed more

efficiently, compared to processing individually [96]. Processing items indi-

vidually is inefficient because of infrastructure costs such as maintaining the

tracking for each individual data item considering the failure recovery in a

distributed context, or requiring execution-time servers with smaller periods
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Figure 3.3: Real-time stream processing for a batched data source.
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Figure 3.4: Processing a sequence of data items in real-time using the real-time

micro-batching approach.

in this thesis (see the server parameter selection algorithm described in Sec-

tion 4.3.1), therefore introducing extra context switch overheads. In addition,

with a variable batch size and a timeout, real-time micro-batching allows the

processing latency of each data item to be guaranteed. Section 4.4.1 shows how

to determine the micro batch size and timeout values, and this is exemplified

in the case study of Section 5.6.

The details of the architecture of the real-time batch stream processing

infrastructure, and the real-time micro-batching architecture are described in

the following sections.

There are many different approaches to defining and describing software

architectures along with their design principles and rationales (see [51] for
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Figure 3.5: Real-time stream processing system overview

a review). Here we follow the principle that proposes “separating different

aspects into separate views” [51] to describe the architecture of our proposed

real-time stream processing infrastructure, using text descriptions alongside

UML2 [79] diagrams. In particular, we make use of component diagrams and

sequence diagrams to show the main components of the architecture and how

they interact with each other and the end user.

This chapter is structured as follows. Section 3.1 gives the context of the

infrastructure in a system. Section 3.2 describes the system model supported

by the infrastructure and the assumptions on the underlying platform. The

proposed real-time stream processing task model that is required by the in-

frastructure is described in Section 3.3. Section 3.4 describes the architecture

specification of the proposed real-time stream processing infrastructure, along

with component diagrams, and gives the implementation requirements. Fi-

nally, Section 3.5 summarises the contents of this chapter.

3.1 System Architecture

This section describes the system context for the proposed real-time stream

processing. The system context can be illustrated by Figure 3.5, and contains

the following layers:

• Hardware

The lowest layer is the hardware layer. Typically, it is a physical multi-

processor machine, with cache coherent shared memory.

• Real-Time Operating Systems and Runtime

The second layer runs a real-time operating system, for example, Vx-

Works, or Linux with a real-time kernel [14]. For instance, when the
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applications are developed using the Ada programming language, they

are running directly on the top of these operating systems. However,

when it is required, such as developing using Java with the Real-Time

Specification for Java (RTSJ), a real-time runtime also runs in this layer,

such as a real-time Java Virtual Machine (JVM), e.g., JamaicaVM [9],

which is running on the top of the operating system.

• Real-Time Applications and The Real-Time Stream Processing

framework

This layer contains applications that contain both hard real-time and

soft real-time tasks. In addition, there are also several real-time stream

processing applications, which use the real-time stream processing frame-

work that implements the proposed architecture. The real-time stream

processing framework processes both batched data and live streaming

data processing in parallel to meet the real-time requirements, whilst

maintaining the existing guarantees of any other hard real-time activi-

ties.

Note that, the design or implementation of the hardware, or the real-time

operating system and runtimes layer is out of the scope of this thesis. Addition-

ally, considering the deployment, the operating system and runtime supports

are not necessarily required if the real-time stream processing infrastructure

can be implemented directly on the top of bare metal.

3.2 System Model Supported by the Infrastructure

From the point view of real-time literature, the following real-time system

models are supported by the work presented in this thesis:

• Preemptive Fixed Priority

Rationale – as described in Section 2.2.1, priority-based scheduling is

the dominant approach and the one supported by all real-time operating

systems, and the preemption scheme makes higher priority tasks more

responsive [38].

• Fully Partitioned Scheduling

Rationale – as described in Section 2.2.2, schedulability analysis for such

systems is more mature [38].
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• Sporadic Task Model

Rationale – this is the default model supported by schedulability analysis

literature.

• Mixed Hard Real-Time and Soft Real-Time Applications

Rationale – most real-time systems have either hard real-time, or soft

real-time, or both hard and soft real-time applications [38]. The chal-

lenge of this work is to integrate soft/hard real-time streaming work with

hard real-time activities.

• Sporadic Live Streaming Data

Rationale – from the point of view of schedulability analysis in the real-

time literature, the analysis for data with periodic or sporadic arrival is

more mature [33]. Also in most systems data is going to arrive sporadi-

cally so it is not possible to simply claim it is periodic.

• Hard and Soft Real-Time Stream Processing Activity

Rationale – similar to common real-time applications, both hard real-

time and soft real-time stream processing are required to be supported

in the most common real-time literature.

Additionally, real-world systems are not entirely hard or soft because

hard real-time components have to be carefully developed and analysed,

and designers should try to minimise them as much as possible, so it is

not realistic to simply claim the entire system is hard real-time.

• Multiple Simultaneous Streaming Workloads

Rationale – this work is primarily focussed on embedded systems. Typi-

cally there is the request to process multiple streams from different data

sources. Currently this thesis focuses on a single stream on a single mul-

tiprocessor machine, and considers the challenges of multiple streams in

distributed systems as future work.

3.3 Real-Time Stream Processing Task Model

This section defines a predictable and analysable real-time stream processing

task model, supported by the proposed infrastructure.

The proposed structure of a real-time stream processing task is illustrated

as Figure 3.6. As shown in the figure, a real-time stream processing task
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Figure 3.6: The structure of the real-time stream processing task

contains three phases: sequential execution before the parallel processing, the

parallel data processing itself, and then sequential execution after the process-

ing is complete.

The sequential code before and after the parallel processing is typically

processed by the same processor, and this is the assumption used for our

analysis model described in Chapter 5 for simplification. Arguably, they can

be executed by different processor, more discussion on this is given in Sec-

tion 4.2.1.

Data splitting (partitioning the input data ready for processing) must be

performed sequentially, so that its analysis can be simplified, and avoid ana-

lytical pessimism (as described in Section 5.4.3). Additionally, data splitting

is required to be completed before the parallel processing, because splitting

on the fly can be interfered with by higher priority tasks in the same proces-

sor, therefore, delaying the processing in the other processors. In addition,

splitting before the parallel processing also simplifies the analysis.

The proposed real-time stream processing task structure uses data par-

allelism, as illustrated by Figure 3.6, each processor performs the pipeline

operations on separate partitions of the input data. The reason is that this

thesis focuses on UMA platforms, as discussed in Section 2.3.4 and 2.3.7, data

parallelism is sufficient and efficient. Additionally, this structure is indepen-

dent of whether the pipeline is evaluated eagerly or lazily.

Multiple real-time streaming tasks are obtained by creating multiple in-

stances of the proposed real-time stream processing task model.

The proposed real-time stream processing task supports (i.e., can be run

in) the sporadic task model. The whole procedure as illustrated by Figure 3.6,
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i.e., the structure of the real-time stream processing task, can be released (i.e.,

invoked) periodically or sporadically.

3.4 Architecture and Specification of the Real-Time

Stream Processing Infrastructure

This section describes the architecture for the real-time stream processing in-

frastructure, with which the real-time stream processing task model described

in Section 3.3 can be supported.

This section begins with the description of the architecture for real-time

batched data processing, which is then extended to support real-time live

streaming data processing. In addition, the implementation requirements for

the proposed architecture are also given.

3.4.1 Supporting Real-Time Batched Stream Processing

The proposed real-time batch stream processing infrastructure supports the

real-time stream processing task model proposed in Section 3.3 with a batched

data source as its input. The proposed architecture for this infrastructure can

be illustrated by Figure 3.7. Any instance of this infrastructure is used as

a part of a real-time stream processing task that follows the model defined

in Section 3.3. The main purpose of the proposed infrastructure is to allow

batched data to be processed in parallel and in real-time, within a real-time

stream processing task. Therefore, as a part of a real-time stream processing

task, the proposed infrastructure is periodically (or sporadically) invoked with

a batch to process.

The proposed infrastructure requires several configuration parameters, such

as, priorities, execution-time servers, etc., to be configured. However, the de-

tails of how to generate the configuration parameters for a real-time stream

processing task are described in the next chapter, i.e., Chapter 4.

Architecture Specifications

The proposed infrastructure is a subsystem, an instance of this infrastructure

maintains the following components:

• A Data Partitioner – splits a batch into partitions to be executed by

the workers. It provides the Split Batch interface, which splits a given
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Figure 3.7: Real-time batched stream processing infrastructure component

diagram.

batch into partitions.

• A Pipeline – which represents the processing logic, typically it contains

one or more filters, and a sink. It provides the Get Operations interface,

which returns all the operations recorded in the pipeline.

• Multiple Workers – there is one worker per processor. Each worker pro-

cesses the allocated partitions at the given priority, with the processing

logic defined by the pipeline. The worker provides the Allocation Parti-

tions To interface, which allows one or more partitions to be allocated

to the worker.

• Multiple Execution-Time Servers – providing the Register interface,

which allows each worker to be registered to its corresponding execution-

time server. The worker executes only when its server has capacity, oth-

erwise the worker has to be suspended or transferred to the background

priority.
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• A Driver – which performs the splitting of the batch using the data

partitioner and allocates the data partitions to workers for parallel pro-

cessing. The driver implements the Process Batch interface. Once the

Process Batch interface is invoked, the driver is executed with the given

batched data.

For the initialisation, the real-time stream processing infrastructure re-

quires the following parameters:

• Priority – the priority at which the workers and the driver execute.

• Server Parameters – the server parameters, for example, period, capac-

ity, etc., for each execution-time server running in different processors.

• Affinity – which allow the fully-partitioned scheduling scheme to be sup-

ported, by pining each schedulable instance to the allocated processor.

• Pipeline Functions – describes the processing pipeline.

• Data Allocation Policy – describes how the partitions are allocated to

each worker and their orders.

The affinity settings are based on the processors given to the application,

and pipeline structure is defined by the users. The execution-time server

parameters, priority, and data allocation policy are determined in Section 4.3.

In addition, the following additional parameters are required for a hard

real-time stream processing task:

• Deadline – the deadline for the real-time stream processing.

• Deadline Miss Handler – the handler for the deadline miss.

• Period – describes the period, or the minimum inter-arrival time (MIT)

of the invocation of the Process Batch interface.

• MIT Violation Handler – the handler for the invocation MIT violation.

Implementation Requirements

An implementation of this architecture must conform to the following require-

ments:
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• The worker is required to be implemented as a schedulable instance,

e.g., an OS thread, in order to exploit the parallelism provided by the

underlying hardware platform.

• The driver can be either implemented as a function, or a schedulable

instance. In the former case, the functionality of the driver is executed

by the caller which itself is a schedulable instance. In the later case, the

driver task itself executes its functionality.

• Each worker is required to be created before any processing occurs. For

example, the workers can be created when the infrastructure is ini-

tialised. This avoids any delay introduced by worker creation during

parallel processing, which would invalidate the worst-case response time

analysis.

• The driver is required to perform the splitting, and allocate the data

partitions to each worker before the any parallel data processing occurs.

Data splitting and partition allocations finishes before the processing as

discussed in Section 3.3.

• The data splitting is required to be performed sequentially, as discussed

in Section 3.3.

• The data partitions are pre-allocated to each worker according to the

allocation policy. Work-stealing is not allowed. The reason of using a

static allocation is given at the end of this section.

• Each worker takes data partitions from its allocations using FIFO or-

der immediately, once the data partition allocations for all workers are

finished. Once a data partition is acquired, the worker processes this

partition immediately with the pipeline, then takes another partition

immediately after the current processing finishes. When a worker fin-

ishes all the allocated partitions, it is suspended or sleeps.

• The sequential code after the parallel processing executes immediately

after all the parallel data processing is completed.

• Execution-time servers are required to be used to serve all the execution

of the real-time batch stream processing task, including the execution of

the sequential code before the processing, splitting and allocation, paral-

lel processing, and the sequential code after the processing. Specifically:
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– Each worker is required to register to its corresponding execution-

time server before its execution.

– The driver (if is implemented as a schedulable instance) and the

caller (if any) are required to register to the corresponding execution-

time server before its execution.

The reason for using execution-time servers is given at the end of this

section. In addition, the start time of the execution-time server is the

same as the stream processing task. However, for the worker processor

(i.e., the processor that only executes the data processing), the first

release of the server is delayed with the worst-case response time of

sequential execution before the parallel processing. This enhances the

schedulability of stream processing tasks (see Section 5.4).

• The given priority is the priority that will be assigned to the execution-

time server, i.e., the priority at which the client is executing when the

server has capacity. When the execution-time server has capacity, its

client worker executes at the server’s priority, otherwise, the worker is

suspended or transferred to the background priority.

• All the involved schedulable instances in this infrastructure, including

the caller (if any), are required to be configured with corresponding

processor affinity settings, so that a fully-partitioned scheduling scheme

is obtained.

• For hard real-time stream processing:

– the deadline miss handler is required to be released when there is

any deadline miss occurs;

– the MIT violation handler is required to be released when there

is any two invocations of the Process Batch interface within the

period.

Note that, in the case where there is no caller, for example, the release

of real-time batched data processing is controlled by a hardware timer, the

driver is required be implemented as a schedulable instance.

Once the Process Batch is invoked with a batch as the input, the processing

is performed under the coordination of the driver as illustrated by Figure 3.8.

The purpose of this figure is not for precisely describing the implementation,
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After Invoking the Process Batch Methodinteraction

loop

loop

: Driver : Data Partitioner : Worker : Pipeline

Allocating each partition to its corresponding
worker according to the given Data Allocation
Policy

Sleep when finishes
all the allocated
partitions

1 : Split Batch(batch)
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3 : Allocate Partitions To(partition)

4 : 

5 : wake up

6 : Get Next Data Partition

7 : Get Operations

8 : operations

9 : Process(partition, operations)

10 : Sleep

Figure 3.8: The behaviour of the driver after the Process Batch is invoked

with a batch.

but demonstrating the overall execution of the driver. The driver first splits the

input batch into partitions, then allocates each partition to different workers

according to the data allocation policy. Then the workers are woke up and

start to process allocated partitions with the pipeline. When a worker finishes

its processing, it is suspended or sleeps until the next release of the stream

processing task.

The Role of Execution-Time Servers

Typically stream processing is computationally-intensive. Additionally, when

the stream processing task is soft real-time, the unpredictability of data vol-

umes makes the corresponding CPU demand unpredictable. In any case,
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streams are required to be processed within their hard or soft deadlines, whilst

the hard real-time activities in the same system must remain schedulable.

Running stream processing at the lowest priority in the system will not

give good response times, but running it at too high a priority might cause

critical activities to miss their deadlines. Hence, an appropriate priority level

must be found, and any spare CPU capacity that becomes available must be

made available as soon as practical.

This thesis proposes that real-time stream processing can be executed un-

der execution-time servers, so that the stream processing can meet its time

constraints, while maintaining the existing guarantees for the hard real-time

components.

Pre-Allocation of Data Partitions

Considering performing the worst-case response time analysis on the stream

processing, it is observed that in a data-parallel model, the data partitions

are required to be allocated to different processors with a static allocation

approach, instead of using a dynamic work-stealing algorithm, in order to

perform a sufficient worst-case response time analysis (RTA).

Performing timing analysis on the execution with a work-stealing algorithm

is difficult, because the execution is dynamically determined by the work-

stealing. Additionally, when using RTA, the worst-case situation can be too

pessimistic.

For example, there are two processors: Proc1 and Proc2, but Proc2 has a

quite small computation capacity compared to Proc1. The data splits into 4

parts: p1 to p4. Initially, each processor takes one partition, e.g., Proc1 gets

p1 and Proc2 gets p2. Each processor takes another partition after finishing

its current processing, according to the work-stealing algorithm. The worst

case for Proc1 is that it executes p1, p3, and p4, while the worst case for Proc2

is that it executes p2, p3, and p4. However, these two situations cannot both

occur, therefore introducing pessimism. For a larger number of processors and

workloads the pessimism would be too great.

3.4.2 Supporting The Real-Time Live Streaming Data Pro-

cessing

The sporadic real-time stream processing task model described in Section 3.3

implements real-time batched data processing. This section extends the sup-
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port for batched data to live streaming data using real-time micro-batching.

The data items arrive sporadically from a live streaming data source. With

the real-time micro-batching approach, a live streaming data source can be

mapped to a sequence of micro batches, which are generated sporadically.

Therefore, the processing of the live streaming data source can be transferred

to an instance of the real-time stream processing task model, which was pro-

posed in Section 3.3. This also enables the response time analysis equations

derived for the real-time batch stream processing to be reused.

The real-time micro-batching approach described in this section allows

each data item in a data flow to meet its processing latency requirement,

whilst the hard real-time tasks in the same system remain schedulable. The

details of the configuration of the real-time micro-batching approach is given

in Chapter 4.

Real-Time Micro-Batching

In order to meet the latency requirement for each data item in a data flow,

when using real-time micro-batching the size of each micro batch is determined

by two factors:

• Time – Individual data items of the live streaming data source have an

application-defined maximum latency for their processing, so a micro

batch must be released early if the processing time of the batch is such

that a data item may miss its deadline.

• Input data volume – Incoming data is buffered up to an application-

defined maximum amount and once the buffer is full the batch is pro-

cessed.

Architecture Specifications

This section proposes an architecture that supports the real-time micro-batching

approach, this architecture is named batcher, and is illustrated by Figure 3.9.

The batcher is a subsystem, an instance of which maintains the following

components:

• A Buffer – which is used to store the incoming data items from a live

streaming data source. The buffer has an application-defined maximum
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Figure 3.9: The real-time live streaming data processing infrastructure com-

ponent diagram.

size. The buffer provides the Get Data interface, which retrieves all the

data out of the buffer.

• A Timer – which maintains the timeout, releases the handler when the

timeout expired. Additionally, it allows the next timeout to be set via

the Set Next Timeout interface.

• A Handler – which is released via its Release interface when either the

timeout expired, or the buffer reaches the maximum size. Once the

handler is released, it turns the data items in the buffer to a micro batch,

e.g., a collection, then invokes the Process Batch interface provided by

the real-time batch stream processing infrastructure to process the micro

batch.

• An Interface – named Store Into Buffer, which is implemented by the

buffer. It allows the data item to be stored into the buffer, when the

buffer is full, the buffer releases the handler.

To initialise a real-time micro batching instance using the batcher, the

parameters below are required:
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Figure 3.10: The Real-Time Micro-Batching approach.

• Priority – the priority that will be assigned to the execution-time server,

i.e., the priority at which the handler is executing when the server has

capacity.

• Handler Affinity – indicates to which processor the handler is assigned.

• Timeout – specifies the timeout interval for the timer.

• Buffer Size – defines the maximum buffer size.

For any hard real-time usage, the following additional parameters are re-

quired:

• Data Incoming MIT – describes the possible MIT of the incoming data

items.

• MIT Violation Handler – the handler, which is released when any two

data items arrive within the MIT.

• Latency – the latency for the processing of each data item.

• Latency Miss Handler – the latency miss handler.

The execution-time server parameters, priority, the maximum buffer size

and timeout value are determined in Section 4.4. The affinity settings are

determined in the following requirements.

Implementation Requirements

An implementation of the batcher is subject to the following requirements:
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• The handler is required to be implemented as a schedulable instance to

handle the timer’s timeout event and the buffer is full event, therefore

decoupling the batcher subsystem and real-time batch stream processing

infrastructure subsystem.

• The handler is required to be created before the batcher starts executing,

to avoid introducing any delay in the real-time micro-batching.

• The handler is allocated to the processor according to the application

configurations. Processor affinities are used to forbid any migration to

support the fully-partitioned scheme.

• The handler is required to register to the corresponding execution-time

server, so that it makes the execution of the handler’s functionality part

of an instance of the proposed real-time stream processing task model.

When the execution-time server has capacity, the handler executes at

the server’s priority, otherwise, the handler is suspended or transferred

to the background priority.

• The priority of the batcher must be the same as the priority given to

the real-time batch stream processing infrastructure, so that the handler

executes at the same priority as the real-time stream processing task’s

priority. The reason for this is that the handler is a part of a real-time

stream processing task.

• The release and the behaviour of the handler is illustrated Figure 3.10

by and described below,

– The interface Store Into Buffer provides the functionality that stores

the data item into the buffer, once the buffer is full, the handler is

required to be released immediately.

– The timer maintains the next timeout, once the timeout expired,

the handler is released immediately.

– Once the handler is running after release, it retrieves all the data

items from the buffer, and turns them into a splittable collection,

i.e., a micro batch. Then invokes the real-time batch stream pro-

cessing infrastructure immediately with the micro batch.

– Reset the next timeout for the timer immediately when the handler

is released.
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• The data items are required to be stored into the buffer once they arrived

at the system. This is assumed by the configuration approach and worst-

case processing latency analysis described in Chapter 4 and 5.

• For any stream processing task with hard real-time constraints:

– the latency miss handler is required to be released when there is

any data processing misses the latency requirement;

– the MIT violation handler is required to be released when there is

any two data of the Process Batch arrives within the MIT;

– the deadline of the real-time batch stream processing infrastructure

equals to the minimum possible inter-arrival time of the releases

of micro batches, and the corresponding deadline miss handler is

required to be given to the batch stream processing infrastructure.

Note that, the invocation MIT and the invocation MIT violation handler

of the batch stream processing infrastructure are not required. The

reason is that the data incoming is monitored by the Batcher, if the data

incoming MIT violation does not occur, any two micro batches cannot

be released within the invocation MIT of the batch stream processing

infrastructure.

3.5 Summary

This chapter first described the goals and philosophy of the proposed real-time

stream processing system. This is followed by the system context described

in Section 3.1, and the supported system models in Section 3.2. The pro-

posed real-time stream task model was then introduced in Section 3.3. The

proposed real-time stream processing task model employs a data parallel pro-

cessing model, with sequential code executing before and after the parallel

processing. From the point view of real-time literature, the whole real-time

stream processing task uses a sporadic task model, i.e., the whole processing is

released either periodically or sporadically with a minimum inter-arrival time.

This chapter then proposed an architecture for the real-time batch stream

processing infrastructure that inputs a batched data source in Section 3.4.1, so

that the sporadic real-time stream processing task model can be supported. In

addition, the real-time micro-batching approach was proposed in Section 3.4.2
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to support real-time live streaming data processing. The proposed real-time

stream processing infrastructure enables both batched data and live streaming

data sources to be processed within the deadline (or latency requirements),

whilst guaranteeing that the hard real-time tasks in the same system will

meet their deadlines. The implementation requirements of the architecture

have also been described in these two sections.

The proposed architecture for the real-time stream processing infrastruc-

ture is concerned primarily with UMA architectures, and fully-partitioned

systems. However, the underlying approach is also appropriate for NUMA

architectures, and globally scheduled or semi-partitioned systems can also be

supported with affinity settings.

The major difficulty is how to configure the instance of the proposed

real-time stream processing infrastructure in a real-time system, so that the

batched data can be processed within its deadline (or each data item is pro-

cessed within the latency requirements in a live streaming data source), whilst

guaranteeing that the hard real-time tasks remain schedulable. These chal-

lenges will be addressed in Chapter 4 that describes how a real-time stream

processing task is configured, with the response time analysis derived in Chap-

ter 5 that guarantees that the deadlines of the stream processing, or the latency

requirements of the data items within the live streaming data source are met.

Chapter 6 describes a prototype implementation of the specification called

The York Real-Time Stream Processing Framework, or SPRY. SPRY uses Java

8 Streams, in conjunction with the Real-time Specification for Java (RTSJ).
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Chapter 4

Scheduling and Integration

A real-time stream processing task model has been described in Chapter 3,

along with an architecture of the presented real-time stream processing infras-

tructure to support that model. This chapter addresses the issue of how to

integrate a real-time stream processing activity into a system that also has

hard real-time tasks.

This chapter assumes that the logical software structure of the system has

already been developed and this has resulted in a set of tasks whose basic

real-time characteristics (e.g. worst-case execution times) are known.

This chapter focusses on how this architecture is mapped to the physical

platform, and how the real-time stream processing activity is configured so

that the data can be processed within the deadline, whilst guaranteeing that

the hard real-time tasks in the same system will meet their deadlines.

The approach consists of two top level activities:

• Allocation of tasks (including the real-time stream processing task).

• Configuration and analysis of the real-time stream processing task so

that

– for a batched data source, the batch can be processed within its

deadline and the worst-case response time can be analysed;

– for a live streaming data source, each data item can be processed

within the latency requirements, and the worst-case latency can be

analysed.

The analysis to be used on such configurations is described in Chapter 5.

The chapter aims to achieve the best performance for both hard and soft tasks
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with the available platform, rather than to minimise the resource use of the

platform.

This chapter is structured as follows. This chapter first states some as-

sumptions and introduces the notations used in (Section 4.1). This is followed

by the description of task allocation in Section 4.2. Section 4.3 explains how

to configure a real-time stream processing task that inputs from a batched

data source so that the data can be processed within the deadline, while the

hard real-time activities remain schedulable. This section also describes the

proposed server parameter selection algorithm, and data allocation policy.

Section 4.4 describes how to determine the maximum micro batch size, and

the timeout value of a real-time micro-batching instance for a live streaming

data source (i.e., the Batcher proposed in Section 3.4.2), so that each data

item can be processed within the latency requirements while the whole system

is schedulable. Finally, Section 4.5 summarises the chapter and discusses the

overall approach.

4.1 Assumptions and Notations

This section describes the assumptions that this work is based on, and intro-

duces the notations used in this chapter.

4.1.1 Assumptions

This work is based on the following assumptions as claimed in the system

model described in Section 3.2:

• The system is fully-partitioned and scheduled pre-emptively using fixed

priorities.

• Hard real-time tasks arrive either periodically with a fixed interval of

time, or sporadically within a minimum inter-arrival time. Hence we

support the sporadic task model common in the real-time scheduling

literature.

• No software resources are shared (i.e., no synchronisation or mutual

exclusion) between parallel data processing tasks.

• The hard real-time tasks have deadlines less than or equal to their mini-

mum inter-arrival times, because this is the most common scheme in the

sporadic task model [38].
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• The I/O interrupt handlers in the same system are modelled as high-

priority sporadic real-time tasks. These tasks will not affect our real-time

stream processing task model, therefore their schedulability analysis is

independent of the analysis of our real-time stream processing tasks.

More complicated I/O interrupt handling is subject to future work.

4.1.2 Notation

The notation used in scheduling and configuration of the proposed real-time

stream processing system, along with the notation for both real-time tasks and

execution-time servers, and the real-time stream processing tasks are described

as follows.

• A task is represented by τi, with a unique priority i, and has its relative

deadline Di, worst-case execution time Ci, and period Ti.

• The worst-case response time of the task τi is Ri, which is the longest

time from when the task arrives to when it completes its execution.

• Given a batched data source, its processing is periodic, or sporadic with

a minimum inter-arrival time. The real-time stream processing task

that inputs from batched data has a unique priority i, a deadline Di, a

worst-case execution time Ci for executing all the code including data

processing, and a period Ti.

• Given a live streaming data source, the items arrive sporadically with

a minimum inter-arrival time (MIT item), the worst-case execution time

for processing each item is Citem, and the deadline, i.e., the latency, for

processing each item is Ditem.

• An execution-time server has a unique priority S, a capacity CS , and

replenishment period TS .

• Ignoring interference from higher priority activities, if a server’s capacity

is replenished at time t, there will be a gap from t until the point in time

when its capacity can begin to be consumed by the arrival of the served

task. The difference between the maximum and minimum possible values

for this is a server’s jitter – JS .

• When a periodic task is executed under a server, the task is defined as

bound when the task’s period is an exact multiple of its server’s period
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Figure 4.1: The structure of the stream processing task.

and each release of a bound task coincides with each replenishment of

the capacity of the server [47].

4.2 Allocation of Tasks

In a fixed-priority pre-emptive fully partitioned system, task allocation is an

NP-Hard problem [38]. Several heuristics have been proposed for task alloca-

tion and many of these are summarised by Davis and Burns [49]. A simple

algorithm is to use ‘best-fit’ to allocate task into processors, then for each

processor to use deadline monotonic priority assignment for tasks. Typically

the goal of such an allocation strategy is to reduce the required number of

processors, while the ‘worst-fit’ allocates tasks into processors more evenly.

However, the overall approach taken in this chapter is independent of the

heuristic used. All that is required is an allocation of the hard real-time tasks

that is schedulable.

4.2.1 Real-Time Stream Processing Task Model for Analysis

In order to exploit the spare capacity of the physical platform, the stream

processing task contains multiple threads of control executing in parallel as

described in Section 3.3.

However, from the point view of the scheduling and the schedulability

analysis, the structure of the stream processing task can be simply illustrated

by Figure 4.1.

The execution of a stream processing task contains the following three

phases:

• Prologue: Sequential initialisation occurs, followed by the splitting of the
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batch into partitions and the allocation of partitions to parallel threads

for processing. In many stream processing systems the splitting itself can

occur in parallel, for example, the parallel splitting of Java 8 streams (see

Section 2.3.7). For real-time systems, more predictable splitting can be

obtained by doing the splitting sequentially as discussed in Section 3.3.

• Processing: The data partitions are processed according to the applica-

tion’s requirements.

• Epilogue: The results of the processing are combined and reduced if nec-

essary. For simplicity, this phase is assumed to be performed sequentially

by the same processor that executes the prologue.

Note that, when the epilogue is executed by another processor, the anal-

ysis response time (described in Section 5.5) for the epilogue is required to

use the execution-time server running on that processor. Additionally, the

current server generation algorithm (see Section 4.3.1) examines every possi-

ble data processing window (i.e., the time interval between when the prologue

finishes its execution, and the latest time when the epilogue has to start its

execution), and finds the maximum possible computation time that can be

guaranteed within the data processing window, from all the processors. When

the prologue and epilogue execute in the same processor, the data processing

window is determined by the server used in this processor. However, if they

execute in different processors, the data processing window is determined by

two servers: the server that executes the prologue, and the server that ex-

ecutes the epilogue. This requires the server generation algorithm to check

every combination of those two servers, to find out the maximum computa-

tion time that can be guaranteed by examining every possible data processing

window.

For the schedulability analysis, the real-time stream processing task is

considered to be periodically released, although it is a sporadic model (defined

in Section 3.3), i.e., it can be released either periodically or sporadically. This

is because that from the point view of scheduling and providing schedulability

guarantees for both hard real-time tasks and the stream processing task, it is

required to consider the worst-case. Therefore, the sporadic stream processing

task is treated as periodic, with a period equals to the possible minimum inter-

arrival time.

Similarly, when processing a live streaming data source using the proposed
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real-time micro batching approach (described in Section 3.4.2), the process-

ing of micro batches, i.e., the release of the corresponding real-time stream

processing task, is also released periodically in the worst-case. As the data

items arrive continuously with MIT item in the worst-case, the micro batch is

released periodically, therefore, the real-time stream processing task is peri-

odically released.

4.3 Configuration and Analysis of the Real-Time

Stream Processing Task for Batched Data

The architecture that has been proposed in Chapter 3 supports real-time

stream processing for both batched data and live streaming data sources. This

section focuses on the real-time stream processing for a batched data source.

The approach given in Section 3.4.1 is to use execution-time servers to per-

form the stream processing to meet the deadline, whilst bounding the impact

of the processing so that the hard real-time tasks in the same system remain

schedulable. This is turn will influence the selection of the execution-time

server parameters.

This section defines an approach to configure and analyse a real-time

stream processing task that inputs from a batched data source, to achieve

the goal that the real-time stream processing activity has enough computa-

tion resources to complete its processing in order to meet its deadline, while

the hard real-time tasks remain schedulable.

The approach explains how to generate execution-time servers, and deter-

mines the data allocation policy for a real-time stream processing task, and

test its schedulability. More specifically, the execution-time server generation

algorithm (described in Section 4.3.1) selects the priority, period, and capacity

for each server on each processor. In order to instantiate a real-time stream

processing task for a batched data source using the real-time batch stream pro-

cessing infrastructure proposed in Section 3.4.1, these parameters and the data

allocation policy are required to be used for its configuration. The proposed

approach is described as follows.

Given a real-time stream processing task τi for a batched data source, with

period Ti, and deadline Di:

1. Generate execution-time servers for each processor using the algorithm

described in Section 4.3.1.
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2. Perform the data partitioning, and allocate the data partitions to each

processor, more specifically, the generated execution-time servers for

each processor, using the approach described in Section 4.3.2.

3. Analyse the worst-case response time of τi, i.e., Ri, using the analysis

equations derived in Section 5.4.

The real-time stream processing task τi is schedulable when its worst-

case response time is within its deadline, i.e., Ri ≤ Di. Otherwise, it is not

schedulable.

4.3.1 Server Parameter Selection

This section describes how to generate execution-time servers to execute the

real-time stream processing task. The real-time stream processing task is

required to meet its deadline (in our case, its period) when being executed

under the server. All the other hard real-time periodic or sporadic activities

in the system must also remain schedulable. We make the real-time stream

processing task a bound task in order to enhance its schedulability and to

reduce the server capacity requirements [46].

Overall Principle

With the approach adopted by this thesis, the data can only be processed

after the prologue completes its execution, and the epilogue has to finish its

execution before Di. The length of the data processing window between the

prologue and epilogue determines how long the remaining processors can per-

form their data processing.

This data processing window can be illustrated by Figure 4.2. The data

processing window is the time window between the response time of the pro-

logue, i.e., RPrologue in the figure, and the latest time when the epilogue has

to start its execution to meet the deadline. To determine the latest time when

the epilogue starts we consider three cases, as shown in Figure 4.3:

1. Only the epilogue executes during its last server period, as shown in

Figure 4.3a.

In this case, the latest time t when the epilogue has to start its execution

is when the server’s last period starts. If each processor completes its
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Deadline
Time

Prologue

RPrologue Data Processing Window

Processing of the theoretical max data Epilogue

0

Figure 4.2: The data processing window shown in the prologue processor.

The data of a real-time stream processing task can only be processed within

this data processing window. The solid box represents execution-time server

running, but the preemption or server capacity replenishment is not shown.

Prologue and Data Processing Execution

Interference from Higher Priority Activities Epilogue Execution Under The Server

Server Release

Deadline

(a) Only the epilogue executing at the last server period.

Prologue and Data Processing Execution

Interference from Higher Priority Activities Epilogue Execution Under The Server

Server Release

Deadline

(b) Part of the prologue and data processing, plus the epilogue executing at the last

server period.

Prologue and Data Processing Execution

Interference from Higher Priority Activities Epilogue Execution Under The Server

Server Release

Deadline

(c) Part of the prologue and data processing, plus the epilogue executing shares a

server period, and the epilogue executes at more server periods.

Figure 4.3: The latest time when the epilogue starts.

data processing phase before t, the epilogue will meet the deadline. In-

troducing a bound task with the WCET of CEpilogue, and calculates the

worst-case response time R of this task using the techniques presented

in Section 5.2. Then t = Deadline−R.
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2. The epilogue finishes at its last server period, but part of the data pro-

cessing (this might also including the prologue execution) also executes

within this server period, as illustrated by Figure 4.3b.

In this case, the latest time t is when the epilogue starts its execution,

then receives as much as interference as possible, and just meet the dead-

line. t can be calculated using the approach presented in the previous

case.

3. The epilogue executes within several server periods, and it shares a server

period with the data processing (might also including prologue execu-

tion), as illustrated by Figure 4.3c.

In this case, the first part of the epilogue has to finish by the time t′

when the server is replenished just after the epilogue starts, as shown in

the rectangle in Figure 4.3c.

Given current server S, and the maximum computation time that can

be guaranteed before the deadline, CMAX , can be calculated using a

binary search with analysis techniques presented in Section 5.2. Then,

the WCET of the part of the epilogue in server’s last period, CLastEpilogue,

can be calculated by:

CLastEpilogue = CMAX −
⌊
Deadline

TS

⌋
CS

The WCET of the first part of the epilogue, CFirstEpilogue, can be calculated

as follows:

CFirstEpilogue = (CEpilogue − CLastEpilogue)%CS

Then t′ can be calculated by:

t′ =
CMAX − (CEpilogue − CFirstEpilogue)

CS
TS

Finally, the latest time, t, when the epilogue has to start its execution is

the time when the first part of the epilogue starts to execute, receive as

much as interference as possible, and just finishes at t′. Using the similar

approach described in the previous case, the worst-case response time,

R, of the first part of the epilogue can be calculated, and t = t′ −R.
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The maximum length of the data processing windows is from the latest

time when the prologue finishes to the latest time when the epilogue has to

start its execution, i.e., t−RPrologue.
After these time values have been determined, the server generation algo-

rithm examines every possible data processing window to find the maximum

possible computation time that can be guaranteed within the data processing

window, from all the processors.

The size of the data processing window varies with the execution-time

server used in the prologue processor, as the response time of the prologue can

be different when using different servers (similar for the latest time when the

epilogue has to start).

Therefore, the proposed algorithm first generates execution-time servers

for the prologue processor. For each generated server, it then calculates the

maximum data processing window length, then generates execute-time servers

for the remaining processors so that the computation time that can be guaran-

teed from these processors are maximised. Finally, a combination of a prologue

server with the corresponding servers in the remaining processors, that guar-

antees to deliver maximum possible computation time for the real-time stream

processing task can be obtained.

Server Generation Algorithm

Given a real-time stream processing task τi, with period Ti, and deadline Di,

the following algorithm generates the servers that can deliver the maximum

capacity within the stream processing task’s deadline using bound servers.

The reason is that this algorithm checks all the possible bound servers on

each processor, it always returns the combination of servers which delivers the

maximum possible computation time.

For the processor that executes the prologue, the proposed server parame-

ter selection algorithm is given by Figure 4.4 using pseudo code. The intuition

behind the algorithm is that, the algorithm first generates prologue servers

with all the possible periods. For each prologue server, the data processing

window can be calculated, the algorithm then generates a set of servers with

all the possible periods for each of the remaining processors. Finally, the com-

bination of servers for all the processors, which delivers the maximum possible

computation time can be found.

Note that, there might be multiple possible combinations of servers in each
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processor that can deliver the maximum computation time for a real-time

stream processing task. Users can choose an arbitrary combination accord-

ing to their preferences, for example, higher priority servers make the stream

processing more responsive.
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1 Max C = 0; /* The maximum possible computation time that can be

guaranteed from all the processors */

2 Result = {}; /* The corresponding servers on each processor */

3 Order the hard real-time activities using deadline monotonic priority

assignment [30], and check schedulability;

4 Calculate exact divisors of Ti as the potential periods for the server;

5 forEach(period TS in periods){

6 Create a server S with deadline DS = TS;

7 Find the base priority for the server S using deadline monotonic

assignment;

8 Use a binary search between 0 and TS to determine the maximum

capacity CS for S at its priority level with the system

remaining schedulable;

9 Use the Max_C_From_All_Processors(Server S) subroutine to

calculate the maximum possible computation time CAll
G that can

be guaranteed for τi from all the processors, along with the

corresponding servers;

10 if(Max C < CAll
G ){

11 Max C = CAll
G ;

12 Result = servers;

13 }

14 }

15 return Result;

Note that:

• In line 4, exact divisors ensure the server has maximum schedulability [46].

• In line 8, the schedulability of each real-time activity can be analysed using the

techniques described in Section 5.1.

• In line 7, when S has the same deadline as another hard real-time activity at

priority j, then S is required to be examined at both priority j + 1 and j − 1

to determine its maximum schedulable capacity in line 8. If S can deliver the

same capacity when running j + 1 or j − 1, choose either one.

• In line 9, the subroutine is described in Figure 4.5. With an execution-time

server S running on the prologue processor, this subroutine calculates the sum

of the maximum possible computation time that can be guaranteed for the

real-time stream processing task, from all processors. Additionally, the corre-

sponding execution-time servers will also be recorded.

Figure 4.4: Server generation algorithm.
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1 Max_C_From_All_Processors(Server S){
2 MaxFromAll = 0; /* Records the maximum possible computation time

that can be guaranteed from all the processors, with S */

3 Servers = {}; /* Records the corresponding servers on each

processor, including server S */

4 Calculate the maximum computation time CG that can be guaranteed

before Di with S, employing the response time analysis

equation that is described in Section 5.2;

5 Calculating the maximum possible data processing window

(DataProcessingWindow), with the approach described in this

section.

6 forEach(Processor P in all processors){

7 if(P is the prologue processor){

8 MaxFromAll += CG;

9 Servers.add(S);
10 }

11 else{

12 MaxFromP = 0; /* Records the max C guaranteed from P */

13 ServerP = null; /* Records the corresponding servers on P */

14 Calculate exact divisors of Ti as the potential periods for

the server;

15 forEach(period TS′ in periods){
16 Create a server S′ with deadline DS′ = TS′;

17 Find the base priority for the server S′ using deadline

monotonic assignment;

18 Use a binary search between 0 and TS′ to determine the

maximum capacity CS′ for S′ at its priority level with

the system remaining schedulable;

19 Calculate the maximum computation time C ′
G that can be

guaranteed with the data processing window with S′,

which is equivalent to determining the maximum

computation time that can be guaranteed before a

deadline of D′ = DataProcessingWindow using the

techniques described in Section 5.2;

20 if(C ′
G > MaxFromP){

21 MaxFromP = C ′
G;

22 ServerP = S′;

23 }

24 }

25 MaxFromAll += MaxFromP;
26 Servers.add(ServerP);
27 }

28 }

29 return MaxFromAll and Servers;
30 }

Figure 4.5: The subroutine used by the server generation algorithm.
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4.3.2 Pre-Allocation of Partitioned Data to Execution-Time

Servers

As illustrated in Figure 4.1, the real-time stream processing task consists of the

prologue, multiple processing threads, and the epilogue. The servers generated

provide the processor resource for the execution of all these stages. As each

server’s capacity depends on the utilisation of the hard real-time tasks assigned

to that processor, the processing threads do not progress at the same rate,

hence the allocation of data partitions to each processor must be carefully

managed in order to reduce the overall response time of the stream processing

task.

In a system where one processor is heavily-loaded, spreading the process-

ing load evenly between the servers will not minimise the overall response

time of the real-time stream processing task. Furthermore, as discussed in

Section 3.4.1, a dynamic allocation of data items to servers is not appropriate

due to the pessimism.

As introduced in Section 4.2, the data partitions are processed by multiple

schedulable instances running in different processors. In each processor, the

data processing is served by one corresponding execution-time server, which

is generated using the algorithm proposed in Section 4.3.1. In this section,

we assume that each partition can be processed in isolation in each batched

data source (or micro batches generated using the proposed real-time micro-

batching).

After splitting, for each partition, the processor that it is dispatched to is

determined using the following approach:

1. Find the processors, which are able to provide enough capacity for pro-

cessing partition p. The capacity that can be provided for data pro-

cessing can be obtained during performing the execution-time server

generation algorithm, which is described in Section 4.3.1.

2. Calculate the time when the partition’s processing can be completed in

each processor found in Step 1, using the analysis techniques described

in Section 5.4.

3. Allocate p to the processor, which is the earliest one to finish the process-

ing of p. The partition p is not allocated to the processor which has the

lowest utilisation because low utilisation does not necessarily guarantee

processing can be completed earliest.
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Note that, the failure in Step 1 when trying to allocate a partition means

that the stream processing task with this data source is not scheduable, be-

cause the epilogue is not able to finish its execution before the stream process-

ing task’s deadline in the worst-case.

Supporting Micro-Batching for the Live Streaming Data

The data items in a live streaming data source are latency sensitive, therefore,

the partition allocation order is dependent on their arrival order. Hence, it

is required to order the partitions in a micro batch according to their arrival

order before performing the above approach.

4.4 Configuration and Analysis of the Real-Time

Stream Processing Task for Live Streaming Data

As indicated in Section 3.4.2, the proposed architecture supports real-time

stream processing for a live streaming data source using real-time micro-

batching. This section describes how to configure an instance of the Batcher,

so that each data item in a live streaming data source can be processed within

its latency requirements, and hard real-time tasks in the same system remain

schedulable.

In order to optimise the processing of the data and to ensure the required

response time for processing each data item is met, it is necessary to determine

the maximum size of the micro batch for which the latency, L, of processing

every item of data can be met.

Recall that, when using the real-time micro-batching, the processing of the

live streaming data source is performed by a real-time stream processing task,

as described in Section 3.4.2. Therefore, the latency of a data item in the

micro batch depends on the period of the real-time stream processing task.

The period of the real-time stream processing task for a live streaming data

source itself will depend on the size of the micro batch. Hence it is necessary

to examine various micro batch sizes to determine the maximum size that can

be processed.

The proposed activities to determine the maximum micro batch size and

timeout value can be illustrated in Figure 4.6, and are discussed in the follow-

ing subsections.
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Select next batch size and timeout values

Set batchsize = 0

Determine execution time servers’ parameters

Allocate partitions of a micro batch to the servers

Determine response time of the stream processing task

Deadline met?

Determine latency of stream data elements

Latency met?

Update batchsize

yes

yes

no

no

Figure 4.6: Configuring the stream processing task.

Considering the configuration of an instance of real-time micro-batching

infrastructure for a live streaming data source. The buffer size and the timeout

for the Batcher can be determined by the above approach. Recall that, the

real-time batch stream processing infrastructure is used for processing each

generated micro batch. Therefore, for the scheduling and configuring the

processing of each micro batch, it uses the same approach proposed for the

batched data source processing in Section 4.3. Again, the priority, period, and

capacity for each server in each processor are determined using the execution-

time server generation algorithm described in Section 4.3.1; while the data

allocation policy is determined using the approach described in Section 4.3.2.

Note that, the Handler is treated as a part of the prologue.
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4.4.1 Determining Micro Batch Size and Timeout Value

The value of the micro batch size will be in the range of 1.. L
MIT item

+1. This is

because the waiting time of the first data item in any batch that reaches that

size will be L, therefore any processing of it will certainly miss its deadline.

Hence the loop depicted in Figure 4.6 is bounded. We do not prescribe the

exact algorithm for searching in the range, but for small ranges a simple for

loop is sufficient. To check each batch size:

• Select an unchecked batch size. The period of the real-time stream

processing task can be determined as T = (n − 1) ×MIT item. We use

n− 1 to account for the fact that an item may arrive at time 0.

• Given the allocation and the stream processing task’s period, the exe-

cution-time servers (and their parameters) for each processor can be

generated using the algorithm proposed in Section 4.3.1.

• The processing of each partition in the micro batch can then be allocated

to a server using the approach proposed in Section 4.3.2.

• The schedulability of the stream processing task is then checked along

with the latency of each data item in the micro batch using the tech-

niques described in Section 5.4. The latency for any item is its waiting

time plus its processing response time. With the worst-case data ar-

rival, the waiting time for the xth data item is (n−x)×MIT item, where

1 ≤ x ≤ n. Therefore, the latency of this data item is (n−x)×MIT item

plus its processing response time. The live streaming data processing is

schedulable if the following conditions can be met:

– The latency of each item can meet the given time constraints.

– The response time of the stream processing is less than or equal to

its period.

Using this approach, the maximum micro batch size can be determined.

4.4.1.1 Determining the Timeout for Micro Batching

In a real system, data does not always arrive at its maximum allowable rate

(MIT item). Therefore the micro batch will not always be completely filled,

and a timeout is required to release the micro batch early to avoid any deadline

miss.
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Given the maximum size for the micro batch is N , the worst-case is that

the 1st to (N − 1)th data items arrive with the MIT item, but the N th item

does not arrive at all. This is because all but one of the data items must

still be processed and the first item has to wait the longest. This is almost

identical to the batch with N data times for which we have already calculated

the period, T , of the stream processing task in Subsection 4.4.1.

Employing T as the timeout, if the full batch is schedulable, all partially-

filled micro batches are certainly schedulable for the following reasons:

1. It has at most N items, therefore the response time of processing this

micro batch is no bigger than the response time of processing the full

micro batch.

2. For any ith item, where 1 ≤ i ≤ N , the item is allocated to the same

processor compared to the full micro batch (according to the allocation

algorithm). Therefore, the item has the same processing response time.

3. For any ith item, where 1 ≤ i ≤ N , the waiting time of this item is less

than or equal to the one in the full micro batch, as the data items do

not always arrive with MIT item. Therefore, the latency of this item will

not be any larger.

Hence, given any schedulable maximum micro batch size N , then any micro

batch that is released with a time out T = (N − 1) ×MIT item is certainly

schedulable.

Limited Buffer Size

The application might have limited buffer size, which is less than N , where N

is the maximum possible micro batch size as calculated using above approach

described in Section 4.4.1.

In this case, we can still employ the approach described in Section 4.4.1

to determine the maximum batch size, by replacing the upper bound of the

loop, i.e., L
MIT item

+1, with the application buffer size. Suppose that, after the

loop stops, the maximum schedulable batch size is determined as B. In the

worst-case, the period of processing micro batches is T ′ = (B− 1)×MIT item.

However, in this case, the timeout value can be bigger than T ′ to increase

the efficiency. Suppose the maximum timeout value is T ′′. For a micro batch is

released because the timeout has expired, the worst-case situation is that: the
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first B − 1 items arrives from 0 with MIT item as the inter-arrival time; while

the last data item just arrives at time T ′′. By checking each timeout value in

the range of T ′...T , T ′′ can be determined, where T = (N − 1)×MIT item.

Lastly, in the case where the data item arrives relatively slow, i.e., a half-

full micro batch is released when the timeout is expired. This situation is also

schedulable, the proof scheme described in Section 4.4.1.1 can be used to prove

this.

4.5 Summary and Discussion

This chapter has presented the overall approach to the introduction of real-

time stream processing tasks into real-time systems that also has hard real-

time activities. Both batched and live streaming data sources are supported.

A key principle of the proposed approach is to use execution-time servers,

in order that the real-time stream processing task can be executed so that the

real-time requirements can be met, whilst maintaining the existing guarantees

to hard real-time activities. As exhaustive server parameter selection has an

exponential time complexity [46], an O(n3) execution-time server generation

algorithm has also been proposed, where n is the number of tasks. However,

it is still fast, for example, it takes 0.1 seconds to generate servers for the 4

cores multiprocessor system that has 128 hard real-time tasks. In addition,

this chapter also proposed a data allocation approach that splits a batch into

partitions, and allocates the partitions to difference execution-time servers

regarding to their response time, therefore making the response time of the

whole stream processing as short as possible.

The configuration of the real-time stream processing task for batched data

source has been described in Section 4.3. The real-time live streaming data

processing is supported by using the micro-batching approach. This chapter

also has described how to configure the micro-batching approach for processing

a live streaming data source in real-time systems in Section 4.4, so that each

data time is processed within the latency reqirements.

4.5.1 Discussion

This chapter has made three main assumptions. The first is that the worst-case

processing time of a batch’s (or micro batch’s) partition is not data sensitive.

If it is, then the pre-allocation of partitions to servers might not be appropriate
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and a more dynamic allocation might be required. This is the subject of future

work.

Secondly, we have assumed that the deadline of the real-time stream pro-

cessing task is equal to its period, which is equal to the worst-case response

time needed to process a batched data source (or a micro batch generated

from live streaming data sources), such that the data is processed within the

deadline (or the individual data items meet their latency requirements). Our

approach and analysis techniques allow the deadline of the stream processing

task to be less than its period. This allows us to optimise the above approach to

provide a more responsive system. For example, we can introduce an artificial

deadline for the stream processing task, and slightly decrease that artificial

deadline until the task can not be scheduled. Then the minimum possible

worst-case response time can be obtained from the analysis of the task with

the deadline just before the unschedulable artificial deadline. Similarly, for a

live streaming data source, an artificial latency can be introduced to optimise

the latency of each item when processing a live streaming data source.

Finally, this chapter targets a single stream processing task, however, the

proposed approach can be extended to support multiple real-time streaming

tasks. One possibility is to order all the stream processing tasks using deadline

monotonic priority assignment, and schedule each real-time stream processing

using the current approach. Note however that the current execution-time

server generation algorithm (see Section 4.3.1) is a greedy algorithm, which

searches maximum possible capacity for each candidate server in each proces-

sor. A particular stream processing task might not require the entire capacity

generated by the algorithm. Therefore, it is required to return the extra ca-

pacity left for the current stream processing to the system. Details of this

approach are the subject of future work.
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Chapter 5

Schedulability Analysis

The previous chapter explained how to integrate real-time stream processing

with hard real-time activities so as to not affect the timing properties of those

activities. This chapter describes the response time analysis (RTA) for the

real-time stream processing task, which is described in Section 3.3. From the

point of view of analysis, the execution of the real-time stream processing task

is shown in Figure 4.1, and is broken down into three parts. The prologue,

which is sequential and prepares the parallel stream processing, the parallel

stream processing itself, and the epilogue, which is sequential and executes on

the same processor as the prologue.

Related RTA techniques are reviewed in Section 5.1. In addition, in order

to analyse the worst-case response time of a real-time stream processing task,

the RTA of a periodic/sporadic task which executes under an execution-time

server is summarised in Section 5.2. Blocking introduced by accessing shared

resources is analysed in Section 5.3, the RTA equations in above two sections

are refined.

In this chapter, we use a deferrable execution-time server, due to the sim-

plicity of its implementation. The worst-case response time analysis for a

task executing under a deferrable server is a modified version of the original

analysis [47].

This analysis is applied to the three components of the real-time stream

processing task in Section 5.4 to determine the complete response time. The

analysis targets a fixed-priority pre-emptive system with a fully-partitioned

scheduling scheme. In addition, as discussed in the previous chapter, the I/O

handling for a live streaming data source’s collection is modelled as a sporadic

hard real-time task, and its analysis can be done using RTA in Section 5.1.
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Moreover, as the size of a batched data source can be so large that the I/O

handling raises a long blocking time, the analysis that accommodates the

blocking is given in Section 5.3.

An example of how to configure and perform schedulability analysis for

a real-time stream processing task that inputs from a batched data source

is given in Section 5.5, while a case study of real-time live streaming data

processing, including configuration, worst-case latency analysis, etc., is given

in Section 5.6. Finally, Section 5.7 summaries the contents of this chapter.

5.1 Worst-Case Response Time Analysis (RTA)

Given a real-time activity τi running at priority i, the worst-case response

time can be calculated (without blocking) using the following equation [29]:

(5.1)Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri + Jj
Tj

⌉
Cj

where hp(i) is the set of activities of higher priority than i. Jj is the release

jitter of the higher priority activity relative to τi, for a periodic or sporadic

task Jj = 0. However, if the high priority task is a deferrable server, then it

may have a release jitter due to the ‘double hit’ phenomenon, as explained in

the following section.

5.1.1 The Double Hit

A deferrable server’s capacity can be consumed at any time within its period.

In certain situations, it may block a lower priority task for a long time interval

- longer than the actual capacity of the server. For example, a served task may

arrive exactly CS time units before the replenishment point. It will then use

the current full capacity plus another full capacity in the next period. This

effect is called the double hit [34], as illustrated in Figure 5.1.

Therefore, this requires extra consideration when analysing the interfer-

ence from a deferrable server on lower priority tasks. Bernat and Burns [34]

accommodate the double hit problem in the RTA by introducing a jitter, i.e.,

Jj = Tj − Cj in the equation when j is a deferrable server.
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Time
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Figure 5.1: A task receives double hit from a higher priority deferrable server.

5.1.2 Refining the Double Hit Analysis

Bernat and Burns [34] treat the jitter as a constant that has to be applied to

all lower priority tasks. However, this thesis observes that the double hit does

not occur in every situation.

Theorem 1. For any periodic activity that is released at the same time as

a higher priority deferrable server, when calculating the interference from the

server, double hits cannot occur if the server’s period is an exact divisor of the

current activity’s period.

Proof. It has been proved by Bernat and Burns [34] that the worst-case re-

sponse time for a lower priority task occurs when the double hit occurs, i.e.,

when the server S starts consuming its capacity exactly CS time units before a

replenishment occurs, and this instant is also the release time of the lower pri-

ority task. However, if the task is periodic, releasing together with the server

that has a period of an exact divisor of the task’s period, whenever the task

is released it must be at the server’s replenishment point. This violates the

necessary condition for the double hit, therefore, double hit cannot occur. �

Therefore, the equation is refined as follows.

(5.2)Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri + J ij
Tj

⌉
Cj

where hp(i) is the set of activities of higher priority than i. J ij is the release

jitter of the higher priority relative to τi, for a periodic or sporadic task J ij = 0.

For a deferrable server,

J ij =


0, if τi is periodic, and Tj is an exact

divisor of Ti

Tj − Cj , otherwise

(5.3)
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Epilogue Released

REpilogue

TS

CS

Busy Period

Server Capacity Pre-consumed

Interference from Higher Priority Activities Epilogue Execution Under The Server

Server Release

(a) Critical Instance for the epilogue task executing under a deferrable server.

Prologue or Parallel Processing of A Periodic Stream Released

RPrologue, or parallel processing
TS

Busy Period

CS

Interference from Higher Priority Activities Prologue or Stream Processing Execution 
Under The Server

Server Release

(b) Critical Instance for a prologue or parallel processing of stream’s data task exe-

cuting under a deferrable server.

Figure 5.2: The critical instance and busy period.

Finally, applying the release jitter of the task itself, the worst-case response

time of a task with release jitter is represented by RFinali = Ri+Ji. In general,

for periodic activities Ji = 0 because they do not suffer release jitter [38].

5.2 RTA for a Task Executing under a Deferrable

Server

The analysis presented in this chapter considers the scenario where a periodic

or sporadic task is executed by a deferrable server at a unique priority, whilst

all the other hard real-time activities run at their unique priorities. The ex-

ecution of the task (e.g., the real-time stream processing task in a processor)

can receive interference from both higher priority periodic or sporadic tasks.

When analysing the worst-case response time of a task that executes under

a deferrable server, the critical instances for bounded tasks and unbounded

tasks are different [47]:
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• For an unbounded client task, the critical instance occurs when:

1. The task is released at the time when the server’s capacity is just

consumed, and this consumption occurred as early as possible in

that server’s period. The epilogue is an example of an unbound

task. The critical instance can be illustrated by Figure 5.2a. In this

case, when the task requests capacity from the server, the server

has none and therefore the task has to wait for the server’s next

replenishment.

2. Once capacity of the task’s server is replenished at the start of its

next period, its consumption (i.e., the task’s execution under this

server) is delayed for as long as possible due to interference from

higher priority activities.

• For a bounded client task, the critical instance occurs when:

1. The task is released at the same time as the server is replenished;

this is illustrated by Figure 5.2b. Due to the fact that the task is

bound, it will be released at the same time as the server releases

eventually. The prologue of a periodic real-time stream processing

task is an example of a bound task.

2. The task’s execution under this server is delayed for as long as

possible due to interference from higher priority activities.

The details and the worst-case response time for the whole real-time stream

processing task is described in Section 5.4.

5.2.1 Analysis

Consider a periodic task τi executing under a deferrable server S. The original

recursive equation for the worst-case response time analysis of task τi is given

by Davis and Burns [47]:

(5.4)

wn+1
i = Li(w

n
i ) +

(⌈
Li(w

n
i )

CS

⌉
− 1

)
(TS − CS)

+
∑

∀j∈hp(S)


max

(
0, wni −

(⌈
Li(w

n
i )

CS

⌉
− 1

)
TS

)
+ Jj

Tj

Cj
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where

(5.5)Li(w) = Ci +
∑

∀j∈hp(i)

⌈
w + Jj
Tj

⌉
Cj

Recurrence starts with the value of:

w0
i = Ci +

(⌈
Ci
CS

⌉
− 1

)
(TS − CS)

The idea of this response time analysis uses the concept of busy periods

and loads [47]. The Equation 5.4 consists of the following parts:

• The load:
Li(w)

which is equals to the total length of execution-time server’s execution.

• The total length of gaps in complete server periods, not including the

final period: (⌈
Li(w

n
i )

CS

⌉
− 1

)
(TS − CS)

• The interference from higher priority activities in the server’s final pe-

riod:

∑
∀j ∈hp(S)


max

(
0, wni −

(⌈
Li(w

n
i )

CS

⌉
− 1

)
TS

)
+ Jj

Tj

Cj
Using a recurrence relation, the length of the busy period, i.e., wi in Equa-

tion 5.4, can be solved. The length of the busy period is the task’s response

time (plus its release jitter when having one).

The equation makes two assumptions. Firstly it assumes that the server is

executing more than one task. Secondly it assumes that the server may cause

the ‘double hit’ phenomenon. In this thesis, there is the only task using the

server, the load, i.e., Li(w) on the server’s busy period is constantly:

(5.6)Li(w) = Ci

Then, taking into account the variation in the release jitter caused by the

deferrable server, the final recursive equation can be simplified as follows:

(5.7)

wn+1
i = Ci +

(⌈
Ci
CS

⌉
− 1

)
(TS − CS)

+
∑

∀j∈hp(S)


max

(
0, wni −

(⌈
Ci
CS

⌉
− 1

)
TS

)
+ JSj

Tj

Cj
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where, hp(S) is the set of higher priority activities compared to server S,

and JSj is the release jitter of the higher priority activity j. For a periodic or

sporadic task or server, JSj = 0 [47]. Again, for a deferrable server:

(5.8)JSj =

0, if Tj is an exact divisor of TS

Tj − Cj , otherwise

The recurrence starts with the value of:

w0
i = Ci +

(⌈
Ci
CS

⌉
− 1

)
(TS − CS)

and ends either when wn+1
i = wni or wn+1

i > Di−Ji. In the former case, the

response time of the task is given by wn+1
i +Ji. In the later case, the task is not

schedulable. The jitter Ji is the release jitter of the task relative to the release

of the server. It is zero for bound tasks, otherwise, it is (TS − CS). Recall

that, in general periodic activities do not suffer release jitter [38], therefore it

is not considered in the final response time representation.

5.3 Blocking

The stream processing task might access a shared resource with other hard

real-time tasks (which might be executed by an execution-time server) in the

prologue or the epilogue. Moreover, the hard real-time tasks themselves might

access shared resources. We assume the parallel processing does not access

shared resource.

This section refines the analysis equations so that the blocking introduced

by accessing a shared resource is accommodated. This section is mainly based

on the work presented in [47]. However, the analysis equations provided by

the original assumes all the tasks are executed by execution-time server. In

addition, this section assumes:

1. There is a set of shared resources G. Any task τi might access a resource

r, for at most an execution time br,i. The length of this critical section

is less than the capacity of its server S, i.e., br,i < CS . br,i will be much

smaller than CS for a well-designed application [47].

2. While a task τi accesses a shared resource, then the priority of it (and

its server if there is one) is increased to a ceiling priority, which is higher

than any task (or server) that shares this resource with τi.
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3. If a task is executed under a server, and that server’s capacity is just

exhausted when it accesses a resource, the server continues to execute

this task at the ceiling priority until the critical section is completed.

4. The server’s capacity in the next release is not reduced by the amount

of the overrun, to reduce the implementation complexity.

5. Each server only executes a single task.

6. There are no nested resource access.

The longest time that server S might overrun is given by:

BTask
S = max

∀r∈G
(br,i|i ∈ S) (5.9)

This value is the longest critical section within the task, which is executed by

server S.

The longest time that a task (or a server executing a task) can be blocked

due to lower priority activity executing at a priority higher than it (i.e., the

ceiling priority) is given by:

Bi = max
∀j∈lp(i)

(br,j |r ∈ global(i, j)) (5.10)

where global(i, j) represents the set of global resources shared between activity

i or activities with a priority higher than i, and j.

5.3.1 RTA with Blocking

For the critical instance, the busy period of a task is increased due to the

following factors:

• The longest blocking time ( i.e. Bi) due to lower priority activity execut-

ing at a priority higher than it due to operations of the synchronisation

protocol, e.g., the priority ceiling protocol.

• Each execution of each higher priority server j is increased by the longest

time that server j might overrun, i.e., BTask
j .

• If current activity is a server, then its client task overruns with BTask
i .

Therefore, the RTA equation is refined as follows.

(5.11)Ri = Ci +BTask
i +Bi +

∑
∀j∈hp(i)

⌈
Ri + J ij
Tj

⌉(
Cj +BTask

j

)
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where hp(i) is the set of activities of higher priority than i. J ij is the release

jitter of the higher priority relative to τi, for a periodic or sporadic task J ij = 0.

For a deferrable server,

J ij =


0, if τi is periodic, and Tj is an exact

divisor of Ti

Tj − Cj , otherwise

(5.12)

BTask
i = 0 if i is not a server, and BTask

j = 0 if j is not a server.

5.3.2 RTA for a Task Executing under a Deferrable Server

with Blocking

Similar to the approach presented in Section 5.3.1, the busy period of the task

that executes under a server S is increased by:

• The longest blocking time ( i.e. BS) due to lower priority activity (com-

pared to S) executing at a priority higher than it due to operations of

the synchronisation protocol, e.g., the priority ceiling protocol.

• Each execution of each higher priority server j is increased by the longest

time that server j might overrun, i.e., BTask
j .

wn+1
i = Ci +

(⌈
Ci
CS

⌉
− 1

)
(TS − CS) +BS

+
∑

∀j∈hp(S)


max

(
0, wni −

(⌈
Ci
CS

⌉
− 1

)
TS

)
+ JSj

Tj


(
Cj +BTask

j

)
(5.13)

where, hp(S) is the set of higher priority activities compared to server S, and

JSj is the release jitter of the higher priority activity j. For a periodic or

sporadic task or server, JSj = 0 [47]. Again, for a deferrable server:

(5.14)JSj =

0, if Tj is an exact divisor of TS

Tj − Cj , otherwise

Additionally, BTask
j = 0 if j is not a server.
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5.4 RTA for the Real-Time Stream Processing Task

In the previous chapter, servers have been generated with periods that are

exact divisors of the real-time stream processing task’s period.

Specifically, for a periodic real-time stream processing task, the prologue

and the parallel processing in the worker processor are equivalent to bound

tasks, from the point of the analysis. The reason is the release of the prologue

coincides with each replenishment of the capacity of its server, because the

server’s period is an exact divisor of the whole stream processing’s period.

Theorem 2. For the release of the parallel processing in a worker processor,

a release r that occurs earlier than the expected time t (i.e., the time when the

previous release occurred plus TStream), is equivalent to a bound task, and the

analysis is still valid.

Proof. For the analysis, it is assumed that r arrives at t, and the server also

replenishes at t. The worst-case response time of this release is R, the latest

time when this parallel processing execution is completed is t + R. However,

if r arrives at t′, where t′ < t. The worst-case scenario is where the parallel

processing can not execute until time t, which indicates the latest time when

the parallel processing is still t+R. Therefore, the analysis is still valid. �

However, for the epilogue, the server’s capacity may have been consumed

by the parallel processing in this processor. Therefore, the critical instance for

the epilogue is modelled as an unbound task. In addition, for the prologue or

the parallel processing of a sporadic stream processing task, they are subject

to unbound tasks in the analysis [47].

5.4.1 Analysis

The execution of a real-time stream processing task τi (as described in Sec-

tion 3.3) can be divided into the following phases:

1. Sequential execution of the task before the data splitting (prologue),

2. Splitting (prologue) - the data splitting before its processing,

3. Processing - the parallel stream processing, and

4. Sequential after the parallel processing (epilogue).
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The worst-case execution time of the phase 1, phase 2, and phase 4 are rep-

resented by C1
i , C2

i , and C4
i . The The worst-case execution time required for

processing an data partition in phase 3 is Citemi .

Consider a periodic real-time stream processing task τi, which is executed

by processor Pτi . The parallel processing uses processors P0 to Pn−1, including

Pτi , where n ≥ 1. In a fully partitioned system, the prologue (phases 1 and 2)

are performed on processor Pτi , then all the allocated processors are used for

the parallel processing, and finally the epilogue is executed on processor Pτi .

Phase 4 only starts after all parallel sections of phase 3 are complete.

In order to analyse the worst-case response time of the real-time stream

processing task τi, we have to consider its entire execution. The prologue

can be analysed as a whole because its constituent phases are executed se-

quentially by the same processor (in our current implementation we make this

restriction). In addition, each of its releases coincides with the server’s replen-

ishment, i.e., bound task. Employing Equation 5.7 with jitter (Ji = 0), load

(Ci = C1
i +C2

i ), and the generated server; the worst-case response time R2
i of

executing the prologue can be calculated.

The parallel processing of the data partitions starts once the splitting is

finished. According to the pre-allocation principles described in Section 4.3.2,

we can calculate the worst-case execution time for the data partitions that

were allocated to each processor. For example, n partitions were allocated to

a processor Pi, then the worst-case execution time for data processing in Pi

can be calculated by:

C3
Pi = Citemi × n

Then, the next step is to calculate the time when the parallel data pro-

cessing in each processor completes:

• For processor Pτi the prologue and the allocated data processing can

be treated as a whole. Therefore the worst-case response time R
3,Pτi
i

of this whole execution in this processor can be calculated by using the

Equation 5.7 with jitter = 0, load = C1
i +C2

i +C3
Pτi

, and the generated

server for this processor.

• For each of the other processors Pi, Pi 6= Pτi , the processing is released

at R2
i . In addition, because τi is a bound task, therefore, the worst-case

response time R3,Pi
i for the stream processing in this processor can be

101



calculated using the Equation 5.7 with jitter = 0, load = C3
Pi

, and the

generated server for this processor.

It is also necessary to consider the response time of each individual data

item. For any data item, the processor that processes it and its processing

order is determined by the pre-allocation algorithm described in Section 4.3.2.

The response time of this item can be calculated by removing the workload

of processing all items after this item in this processor and then repeating the

above steps.

The response time of the parallel data processing phase is the maximum

of all involved processors:

R3
i = max(R

3,Pτi
i ,max(R3,Pi

i +R2
i )), wherePi 6= Pτi

Finally we consider the epilogue of the real-time stream processing task

τi (phase 4). The worst-case situation is that is when it is released (after

the barrier synchronisation detailed above) the last of the current server’s

capacity has just been consumed. Therefore, the worst-case response time R4
i

for phase 4 can be calculated using the Equation 5.7 with the generated server

S, jitter = TS − CS , and load = C4
i .

Finally, the worst-case response time of τi is calculated by:

Ri = R3
i +R4

i

Note that, for a sporadic real-time stream processing task, the analysis of

prologue, parallel processing and epilogue is subject to an unbound task.

5.4.2 Blocking

When a real-time stream processing task accesses shared resources in its pro-

logue or epilogue, the above analysis is required to use the refined blocking

RTAs presented in Section 5.3.

However, this thesis requires that a task should not lock a resource in the

prologue, and release the lock in epilogue. The reason is that, the higher

priority tasks typically have a short period, a long enough interval of resource

locking will certainly result in a deadline miss for the higher priority task.

5.4.3 Mitigating Analysis Pessimism

The described analysis is a sufficient schedulability test, however, the analysis

is pessimistic for the RTA of the unbound task, for example, the epilogue. The
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TS
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Figure 5.3: The pessimism of stream RTA for two different servers. The top

chart shows a server with long period and the lower chart a server with shorter

period and therefore less pessimism. Note that, only first two server’s releases

are shown in the figure.

analysed worst-case is that at the point of the epilogue’s release its server has

just been exhausted. The analysis therefore has to wait for server replenish-

ment before processing time can be guaranteed. This waiting time is affected

by the period of the server. For example, as illustrated in Figure 7.2, the gap

is significant when the generated server has a longer period.

The solution to this problem, is to make the observation that when per-

forming the RTA for the epilogue’s processor, all candidate servers were al-

ready checked during the system’s schedulability analysis.

Theorem 3. If any candidate servers were observed to make the real-time

stream processing task meet its deadline, then the servers generated by the

algorithm are also guaranteed to make the stream processing task schedulable

regardless of whether the pessimistic RTA of the epilogue fails to guarantee its

deadline.

Proof. From the point view of scheduling, if a candidate set of servers from

different processors can make the real-time stream processing task meet its

deadline, then any other server set that gives the same or more available

computation time before the deadline of the stream processing task can also

guarantee the task to meet its deadline. As the servers that were generated

by our server generation algorithm can provide the maximum available com-
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putation time before the deadline of the stream processing task, therefore, the

stream processing task can certainly meet the deadline. �

5.5 An Example of RTA for a Batch Real-Time

Stream Processing Task

This section provides a fully-worked example of how to calculate the worst-

case response time of a real-time stream processing task that inputs from a

batched data source.

Consider a fully partitioned system that has 3 processors. There are 4 hard

real-time periodic tasks, which are described in Table 5.1, and one periodic

real-time stream processing task τi in this system.

The real-time stream processing task is released on processor P0, with a

period of 800 time units and a deadline of 780 time units after each of its

releases. It can utilise all the processors for the parallel data processing. The

worst-case execution time (WCET) for the sequential code before the data

processing in τi is 18 time units, the splitting requires 1 time unit, and the

sequential code after the parallel data processing is 11 time units. The data

has 12 partitions, and the worst-case computation time required for processing

each partition is 30 time units. Both the prologue and epilogue execute on

processor P0.

Table 5.1: Real-time Tasks Characteristics

Name Priority C T D Processor

τ1 11 10 20 20 P0

τ2 9 10 40 40 P1

τ3 5 20 100 50 P2

τ4 3 40 100 100 P2

5.5.1 Execution-Time Server Generation for the Real-Time

Stream Processing Task

Using the algorithm proposed in Section 4.3.1, considering that processor P0

is the processor that executes the prologue and epilogue; the following servers

that are given in Table 5.2 are examined, along with the maximum possible
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computation time that can be guaranteed for the real-time stream processing

task from all the processors.

Table 5.2: Possible Deferrable Servers For Processor P0. DPW Represents

the Data Processing Window.

Priority Max C T DPW Max C in DPW

From All Processors

10 400.000 800 710.0 1190.0

10 200.000 400 710.0 1190.0

10 100.000 200 710.0 1190.0

10 80.000 160 710.0 1190.0

10 50.000 100 710.0 1190.0

10 40.000 80 710.0 1190.0

10 20.000 50 700.0 1090.0

10 20.000 40 710.0 1190.0

10 12.000 32 700.0 1070.0

10 10.000 25 695.0 1085.0

12 10.000 20 730.0 1210.0 (MAX)

10 10.000 20 710.0 1190.0

12 5.000 16 699.0 1024.0

12 5.000 10 725.0 1205.0

12 3.000 8 709.0 1092.0

12 2.500 5 722.5 1202.5

12 2.000 4 722.0 1202.0

12 1.000 2 721.0 1201.0

12 0.500 1 720.5 1200.5

Calculating the Maximum Possible Computation Time that can be

Guaranteed from all Processors

For example, consider the candidate server S′ in Table 5.2, which has a period

of 800 time units, the maximum possible capacity can be determined to be

400 time units using binary search. Server S′ can guarantee 390 time units

computation time for the maximum, before the real-time stream processing

task’s deadline. Subtracting the computation time required for the prologue

and epilogue, the maximum possible computation time that can be guaranteed
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for data processing from P0 is 390− (18 + 1)− 11 = 360 time units.

In addition, using server S′, the response time of the prologue can be

calculated to be 39 (see details of the calculation in the next subsection), the

latest time when the epilogue has to start is calculated to be 749 time units,

where 11 is the WCET of the epilogue. Therefore, the data processing window

between the prologue and epilogue is DataProcessingWindow = 749− 39 =

710 time units.

For the remaining processors, i.e., P1 and P2, the maximum possible com-

putation time that can be guaranteed within the data processing window is

540, and 290 time units. For example, considering processor P1, all the can-

didate servers, and corresponding maximum computation time that can be

guaranteed using each server within the data processing window are given in

Table 5.3. Note that, there might be multiple servers can provide the maxi-

mum computation time within the data processing window. The selection of

servers is described in the following subsection.

Therefore, with S′ running in the prologue processor, i.e., P0, the total

computation time that can be guaranteed from all the processors for the data

processing is 360 + 540 + 290 = 1190 time units.

In addition, a Java implementation of the server generation algorithm is

available at [18].

The Selected Execution-Time Servers

As can be seen, when generating servers for each processor, there might be

multiple servers that can guarantee the maximum computation time for the

real-time processing task. In this example, we select the servers with a long

period for each processor. This is done for efficiency, because the server with

a long period requires fewer context switches. The selected servers for each

processor are given in Table 5.4.

5.5.2 Calculating the Worst-Case Response Time

Firstly, we calculate the response time of the prologue. Employing Equation

5.7 with a Ji = 0, a load of 18 + 1 = 19 (the execution time of the prologue

thread), and the server S0. The worst-case response time R2
i of executing

phase 1 and 2 (i.e., the prologue) is calculated as the following equation. Note

that, the server runs at the highest priority, therefore, there is no interference

from hard real-time tasks.

106



Table 5.3: Possible Deferrable Servers for Processor P1. DPW represents the

Data Processing Window.

Priority Max C T Max C in DPW

8 600.000 800 540.0

8 300.000 400 540.0

8 150.000 200 540.0

8 120.000 160 540.0

8 70.000 100 499.0

8 60.000 80 540.0

8 30.000 50 429.0

10 30.000 40 540.0

8 30.000 40 540.0

10 15.000 32 345.0

10 15.000 25 434.0

10 15.000 20 540.0

10 10.000 16 450.0

10 7.500 10 540.0

10 6.000 8 540.0

10 3.750 5 540.0

10 3.000 4 540.0

10 1.500 2 540.0

10 0.750 1 540.0

w =19 +

(⌈
19

10

⌉
− 1

)
(20− 10) = 29

Therefore, the worst-case response time of the prologue is 29.

According to the principle proposed in Section 4.3.2: 3 partitions are al-

located to processor P0; 6 partitions are allocated to P1; and 3 partitions are

allocated to P2.

Then we calculate the time when each processor finishes its processing of

the allocated partitions:

• For processor P0:

The worst-case response time R3,P0
i of the whole execution of the pro-
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Table 5.4: Selected Deferrable Servers

Name Priority C T D Processor U

S0 12 10 20 20 P0 0.500

S1 10 30 40 40 P1 0.750

S2 6 20 50 50 P2 0.400

logue and the data processing is calculated to be 209, by using the Equa-

tion 5.7 with the Ji = 0, a load of 18 + 1 + 3× 30 = 109, and the server

S0.

• For processor P1:

The worst-case response time R3,P1
i for the data processing in this pro-

cessor is 230, after calculating using the Equation 5.7 with the Ji = 0, a

load of 6× 30 = 180, and the server S1.

• For processor P2: The worst-case response time R3,P2
i for the data pro-

cessing in this processor is 210, after calculating using the Equation 5.7

with the Ji = 0, a load of 3× 30 = 90, and the server S2.

Therefore, the parallel data processing finishes at time:

R3
i = Max(209,Max(230 + 39, 210 + 39))

= 259

The last step is to calculate when the epilogue finishes its execution. The

worst-case response time R4
i for phase 4 is calculated to be 31, using the

Equation 5.7 with the Ji = 20− 10 = 10, a load of 11, and the server S0.

Finally, the worst-case response time of τi (the real-time stream processing

task) is calculated: Ri = 259 + 31 = 290, therefore, the task is schedulable.

A visualisation of the execution this real-time stream processing task’s in

its worst-case, along with all the hard real-time tasks in the system can be

illustrated by Figure 5.4. As can be seen, the prologue finishes at 29 ms, the

parallel data processing finishes at 259 ms, and the real-time stream processing

task finishes at 290 ms. The gap between 259 ms and 269 ms represents the

pessimism that occurs from assuming the capacity of server S0 to be zero at

the end of data processing.
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Figure 5.4: The worst-case execution of the stream processing. S represents

the real-time stream processing task.

5.6 A Case Study of Real-Time Live Streaming Data

Processing

This section describes the thesis’s motivating case study of an aircraft which

hosts several hard real-time tasks for its defence system, but that also has to

process live streaming data sources in real-time to meet a time constraint.

5.6.1 Overview

As introduced in Section 1.1.2, this case study considers an aircraft, which is

equipped with a synthetic aperture radar (SAR). This aircraft has a mission

to generate images of a series of target areas using SAR, whilst its defence

systems aim to guarantee its safety during the flight at a maximum speed of

2160 km/h 1, as shown in Figure 5.5 (a replication of Figure 1.2 for convenience

of presentation). The minimum distance between any two target areas is 15

meters.

Each image of a target area must be generated within 480 ms after the

echoes return. In order to meet the resolution requirement of the imagery

of a target area, the worst-case execution time of generating an image from

the raw echoes is 40 ms. Specifically, the SAR uses the spotlight imaging

mode [75]. In this mode, the radar beam is steered as the aircraft moves, so

that it illuminates the same target area over a period of time, as illustrated by

1This speed is chosen for the simplification of the calculation, and it is also close to the

super-cruise speed of the F-22 Raptor [78]
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Figure 5.5: The mission of the generating images of target areas using SAR.

Figure 5.6. All the echoes from a target area are stored along the aircraft flies

through the spotlight synthetic aperture, when illuminating the target area.

Once the aircraft leaves the synthetic aperture, all the recorded echoes from

the target area are summed, and as an input to generate the image of this

target area.

The mission control computer in the aircraft is a 4 processor SMP system.

The defence system is taken from the Generic Avionics Platform (GAP), which

is similar to existing U.S. Navy / Marine Corps aircraft [68]. It aims to

sufficiently detail the complexity and timing constraints in the mission control

software that is typically found in aircraft. The tasks are allocated to different

processors using a worst-fit allocation scheme according to their utilisation

so that the load is more evenly distributed across different processors. The

priority of each task remains unchanged from [68]. All the hard real-time tasks

in the defence system are described by Table 5.5. The cost of accessing shared

resources is not provided, therefore the resource sharing among tasks in the

defence system is ignored in this study.

5.6.2 Mission Modelling

The mission of generating images of a series of target areas can be modelled

as a real-time stream processing task, which inputs from a live streaming data

source. The minimum inter-arrival time (MIT item) of the image generation is

25 ms (15m ÷ 2160km/h). The WCET of processing each input, Citem, is 40

ms. The deadline (or latency) for processing each input, Ditem, is 480 ms. In

this example, the prologue (e.g., buffer manipulation etc.) and epilogue (e.g.,
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Figure 5.6: Illustration of a SAR operating on a target area, using the spotlight

mode.

memory deallocation) of the real-time stream processing task are executed in

processor 0, whilst the parallel processing uses all processors. The WCET of

the prologue is 10 ms (including 1 ms of splitting), and the epilogue WCET

is 2 ms.

Employing our real-time micro-batching approach, the maximum batch

size is calculated using the approach described in Section 4.4.1. The candidate

batch sizes, i.e., 1, 2, 3...19 are examined one by one. Finally, the maximum

schedulable batch size is determined to be 17 (because batches of size 18 may

cause deadline misses).

With the given batch size of 17, the image generation of target areas can be

modelled as a periodic real-time stream processing task, with the above pro-

logue and epilogue. The period and the deadline is 400 ms, which is calculated

by (17− 1)× 25 ms (25 is the MIT of the batch).

The following section details and exemplifies the schedulability analysis of

the system.

111



Table 5.5: Hard real-time tasks in the system. Proc is the assigned processor

ID.

Name Priority C T & D U Proc

Weapon Release 98 3 200 1.5 0

Rader Tracking Filter 84 2 25 8.0 1

RWR Contact Mgmt 72 5 25 20.0 2

Data Bus Poll Device 68 1 40 2.5 3

Weapon Aiming 64 3 50 6.0 0

Radar Target Update 60 5 50 10.0 3

Nav Update 56 8 59 13.6 0

Display Graphic 40 9 80 11.3 1

Display Hook Update 36 2 80 2.5 3

Tracking Target Update 32 5 100 5 3

Nav Steering Cmds 24 3 200 1.5 1

Display Stores Update 20 1 200 0.5 2

Display Key Set 16 1 200 0.5 3

Display Stat Update 12 3 200 1.5 2

BET E Status Update 8 1 1000 0.1 3

Nav Status 4 1 1000 0.1 3

5.6.3 Schedulability Analysis

Considering processor P0 that executes the prologue and epilogue, execution-

time servers are generated for processor P0 using the server generation algo-

rithm proposed in Section 4.3.1, and these servers are given in Table 5.6. In

addition, with each candidate prologue server, the maximum possible compu-

tation time that can be guaranteed from all the processors is also calculated

and given in Table 5.6. The details of calculating the data processing window

between the prologue and epilogue, and the maximum computation time that

can be guaranteed within the data processing window can be found in Sec-

tion 5.5.1. Again, the proposed Java implementation of the server generation

algorithm is available at [18].

In processor P0, the server with period of 400 ms can make the system to

provide the maximum capacity before the real-time stream processing task’s

deadline Di (400 ms) in the worst-case. In this example, the correspond-

ing selected servers are described in Table 5.7. Note that, in the remaining
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Table 5.6: Possible Deferrable Servers For Processor P0. DPW Represents

the Data Processing Window.

Priority Max C T DPW Max C in DPW

From All Processors

55 314.000 400 360.0 1147.0 (MAX)

55 153.000 200 360.0 1139.0

55 75.000 100 360.0 1133.0

55 55.000 80 360.0 1108.0

99 21.000 50 388.0 1071.7

99 21.000 40 388.0 1113.7

99 14.000 25 388.0 1127.7

99 12.000 20 388.0 1143.7

processors, when multiple servers can guarantee the stream processing task

schedulable, only the server with a period that is longer or equal to than 100

are selected, for the visualisation the analysis (see Figure 5.7), and to further

demonstrate that our server generation algorithm is flexible.

Table 5.7: Generated Deferrable Servers

Name Priority C T D Processor U

S0 55 314 400 400 0 0.785

S1 23 317 400 400 1 0.793

S2 71 156 200 200 2 0.780

S3 35 78 100 100 3 0.780

The inputs in the batch, i.e., the returned radar pulses for each target, in

the worst-case micro batch are partitioned to different processors using the

approach proposed in Section 4.3.2 before the parallel processing starts. Their

allocations are described in Table 5.8.

5.6.3.1 Periodic Stream Processing Task Response Time Analysis

This analysis uses the techniques described in Section 5.4. Firstly, employing

Equation 5.7 with Ji = 0 ms, a load of 10 ms (the execution time of the

prologue), and the server S0. The worst-case response time R2
i of the prologue
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Table 5.8: Input Partitioning

Processor Allocated Data Items (Arrival Index)

0 2, 4, 8, 12, 16

1 3, 7, 10, 14

2 1, 5, 9, 13

3 0, 6, 11, 15

is calculated as the following recurrence:
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Therefore, the worst-case response time of the prologue is 24 ms.

Then we use Equation 5.7 to calculate the time when each processor finishes

its processing of the allocated partitions:

• For processor P0:

The worst-case response time R3,P0
i of the execution of the prologue and

data processing is 274 ms. (Ji = 0 ms, load = 10 + 5 × 40 = 210 ms,

server S0)

• For processor P1:

R3,P1
i for the data processing in this processor is 211 ms (Ji = 0 ms, load

= 4× 40 = 160 ms, server S1)

• For processor P2:

R3,P2
i for the data processing in this processor is 209 ms (Ji = 0 ms, load

= 4× 40 = 160 ms, server S2)

• For processor P3:

R3,P3
i for the data processing in this processor is 212 ms (Ji = 0 ms, load

= 4× 40 = 160 ms, server S3)

Therefore, the parallel data processing is complete at 288 ms. This can be

calculated using the following equation:

R3
i = Max(274,Max(211 + 24, 209 + 24, 212 + 24))

= 274

The last step is to calculate when the epilogue is finished. The worst-case

response time R4
i for the epilogue is calculated to be 102 ms using Equation

5.7 with Ji = 400− 314 = 86 ms, load = 2 ms, and server S0.

Finally, the worst-case response time of the stream processing task is cal-

culated: Ri = 274 + 102 = 376 ms.
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Figure 5.7: The worst-case execution of the stream processing.

1
1
6



A visualisation of this real-time stream processing task’s worst-case re-

sponse time and all the hard real-time tasks in the system is illustrated in

Figure 5.7. As can be seen, the prologue finishes at 24 ms, the parallel data

processing finishes at 274 ms, and the whole real-time stream processing task

finishes at 376 ms. The gap between 274 ms and 360 ms represents the pes-

simism that occurs from assuming the capacity of server S0 to be zero at the

end of data processing.

5.6.3.2 Latency Analysis

The latency of each data item, i.e. the image generation of each target area, is

calculated using the approach described in Section 5.4 and given in Table 5.9.

For example, when calculating the latency of the first item in a full batch, the

Table 5.9: Worst-Case Latency of Image Generation.

Item 0 1 2 3 4 5 6 7 8

L 473 449 425 407 418 399 384 360 369

Item 9 10 11 12 13 14 15 16

L 349 329 305 323 308 285 261 274

waiting time is 25×(17−1) = 400 ms. The first item is processed in processor

P3, and it is the first data item to be processed. The processing response time

of the first data item can be calculated to be 73 ms using Equation 5.7 with

Ji = 0 ms, a load of the WCET of processing of the item (i.e., 40 ms), and

server S3. Therefore, the latency of the first item is 400 + 73 = 473 ms.

The response time of the micro batch is less than its period, and the latency

of each data item is less than the given constraint, therefore, the real-time live

streaming data processing mission is schedulable.

5.7 Summary

This chapter has first summarised related RTA techniques in Section 5.1, and

the RTA of a periodic/sporadic task that executes under an execution-time

server in Section 5.2.

As a supplement to the original jitter analysis work [47], this thesis notes

that an identified worst-case scenario for interference from a higher priority

deferrable server called a double hit (also known as back-to-back hit, described
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in Section 5.1.1) does not occur in every situation. Therefore the jitter-based

analysis approach for calculating the interference from deferrable servers can

be refined, as described in Sections 5.1 and 5.2. This observation can maximise

the server’s capacity in the server generation algorithm, which is described in

Section 4.3.1.

In addition, blocking due to accessing to shared resources are accommo-

dated into these analysis equations in Section 5.3.

The worst-case response time analysis of the real-time stream processing

task is described in Section 5.4, by performing the worst-case response time

analysis for each execution phase of the real-time stream processing task. Ad-

ditionally, this section has also noticed the pessimism in the response time

analysis for the epilogue, and a solution to this problem has been given in Sec-

tion 5.4.3. This chapter has also explained how to analyse a real-time stream

processing task that inputs from a batched data source or a live streaming

data source using these techniques.

Specifically, an example of how to configure and schedule a real-time stream

processing task that inputs from a batched data source to meet the deadline,

whilst maintaining the existing guarantees for hard real-time activities, has

been given in Section 5.5. This example has described the execution-time

server generation, data allocation, and worst-case response time analysis for

the real-time stream processing task used this example; a case study based on

a modified Generic Avionics Platform to demonstrate the overall approach of

real-time live streaming data processing with the proposed real-time micro-

batching approach has been described in Section 5.6. This case study has

explained how the maximum micro batch size and the timeout value are de-

termined, followed by the worst-case latency analysis for each data item.
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Chapter 6

SPRY - The York Real-Time

Stream Processing

Framework

The architecture of the real-time stream processing was presented in Chap-

ter 3, this chapter describes the York Real-Time Stream Processing Framework

(SPRY), which is an implementation of the proposed architecture using Java

and the Real-Time Specification for Java (RTSJ).

The presented architecture could be implemented using other programming

languages, such as Ada, however, Java and RTSJ were adopted. The reasons

are given in Section 6.1.

The real-time batch stream processing infrastructure’s implementation is

discussed in Section 6.2, while the implementation of the real-time micro-

batching architecture is described in Section 6.3. Section 6.4 accounts for

the overheads of SPRYEngine in the analysis. Section 6.5 describes the case

study (see Section 5.6) using SPRY. Section 6.6 summarises the contents of

this chapter.

The source code for SPRY can be found in [18].

6.1 Use of Java and the RTSJ

Java is a well-established programming language, which is widely used in in-

dustry [11]. Large-scale commercial applications are developed in Java or in

programming languages built on the top of Java, as described in Chapter 2.
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Even though C++ or Ada is a more commonly used language in real-time

systems, these languages have no built-in stream processing support, which is

similar to Java 8 streams.

Furthermore, over the last decade the Java platform has been augmented

with real-time facilities by the Real-Time Specification for Java (RTSJ) [17],

which mitigates against the Java limitations for real-time systems.

Java code is compiled to byte-code, which is architecture-neutral and ex-

ecuted by the Java virtual machine (JVM). This supports the portability of

Java programs. As an interpreted language, the performance of Java might

be insufficient for high performance computing. However, Just-in-Time (JIT)

technology compiles code to native binaries just before it is used within a Java

program execution so that the performance will be improved. In addition, for

more predictable code execution, Java code can be compiled to native bina-

ries to achieve high performance using ahead-of-time compilation techniques,

which is supported by implementations of the RTSJ.

The real-time support that is required by the proposed real-time stream

processing architecture, such as, the preemptive priority-based scheduling,

execution-time servers, affinity settings, etc., are all provided by RTSJ.

The Java 8 Stream [13] framework is adopted when implementing the

pipeline, and the real-time stream processing infrastructure that evaluates the

pipeline in real-time. The Java 8 Stream framework supports data parallelism

(see Section 2.3.4) that is the scheme used by the proposed real-time stream

processing architecture, and enables efficient bulk data processing.

As has been discussed in Section 2.3.4, for a single node multiprocessor

platform, data parallelism is a more efficient choice than control parallelism

because it requires no synchronisation during data processing so that the pro-

cessors can be utilised more effectively than with control parallelism. In addi-

tion, data parallelism is also widely used in modern stream processing appli-

cations. Section 6.1.1 compares Java 8 streams with StreamIt [24],which uses

a control parallelism model for pipelines by default. StreamIt has been chosen

for the comparison as it a language that was designed explicitly for stream

process applications. Additionally, as StreamIt is designed for high perfor-

mance stream processing applications [87] (and a data parallelism model can

be defined by the user). We also compare the efficiency of the Java 8 Stream

framework with StreamIt when both of them use the data parallelism model.

The experiments are performed on an AMD Opteron 32-core processor
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platform, with a 64-bit Linux operating system (kernel version 4.4.0). The

Java SE 8 and StreamIt version 2.1.1 [6] are used in this section.

6.1.1 Data Parallelism versus Control Parallelism

This experiment considers a benchmark that simulates the synthetic aperture

radar (SAR) image generation using the stream processing. This benchmark

is based on the SAR benchmark in the HPEC Challenge benchmark suites

provided by the MIT Lincoln Laboratory [8], which is originally written in

MatLab.

This experiment implements this benchmark using both Java 8 streams

and StreamIt, and the structure of the stream processing in this benchmark

can be illustrated by Figure 6.1. As shown in the figure, the pipeline contains

8 filters, each of them is fitted into a Java 8 stream pipeline and a StreamIt

pipeline. As the StreamIt compiler compiles the code into native binaries,

typically the compiled program has a better performance than the interpreted

program [74]. Therefore, in order to focus on the efficiency of different frame-

works, in the Java benchmark, the functionality of each filter is implemented

using the same C code. The C code is compiled using g++ from the GNU

Compiler Collection (GCC), i.e., the same backend of the StreamIt compiler,

with the O3 optimisation option. Then these functionalities are accessed by

Java 8 streams using the Java native interface (JNI).

Generate	Raw	
Data Compression Narrow	

Bandwidth Zero	Padding

TransformDecompressionSpectrumReconstruction

Sink

Source

Figure 6.1: The pipeline structure of the SAR benchmark. The benchmark

inputs from an integer source. After reading an input, it generates radar

echoes, and digitally reconstructs the SAR image.
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In this experiment, the benchmark is configured with the parallelism equal

to 1, 2, 4, 8, 16. The experiment is performed with these configuration 30

times, and 64 inputs, which requires the experiment to run for more than 24

hours. In addition, each input requires a relatively long computation time,

this mitigates the percentage of communication cost in the experiment for

StreamIt. The response times of the stream processing (i.e., the time interval

from when the stream processing starts to when all the data items have been

processed) are measured, and shown in Figure 6.2. Note that, the results have

a relatively small variation (see coefficient of variation in Table 6.1), therefore,

the worst-case response time is used to represents the experiment result, and

variations are not shown.

Table 6.1: Variations in the SAR Stream Processing Response Times. Coef-

ficient of Variation (CV) Represents the Standard Deviation/the Mean Re-

sponse Time.

Java 8 Streams SAR

Processors 1 2 4 8 16

SD 280.47 166.57 200.45 83.73 105.63

CV 0.0007 0.0008 0.0020 0.0017 0.0041

StreamIt SAR

Processors 1 2 4 8 16

SD 991.10 702.77 378.97 1088.31 919.48

CV 0.0019 0.0023 0.0021 0.0059 0.0050

As we can see, overall, the response times of the Java 8 streams are smaller

than the StreamIt’s response times. In addition, the response time of Java

8 streams decreases as the number of allocated processors increases, in the

whole experiment. However, the response time of the StreamIt benchmark first

decreases as the number of allocated processors increases, but the increment

stops when there are 8 or 16 processors.

The reason the response time of the StreamIt benchmark does not scale

down when there are 8 or 16 processors is because the pipeline contains fewer

filters compared to the allocated processors; and by default, StreamIt employs

a control-parallel model, i.e., allocates each filter to different processors. In this

experiment, the pipeline only contains 8 filters in total, therefore, the response

time of the StreamIt benchmark can not decrease after 8 processors because
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Figure 6.2: The observed worst-case response times of the SAR benchmark

executing with different parallelism.

the remaining processors will be idle. However, all the processors are utilised

by the data-parallel model, which is used by Java 8 streams. Therefore, the

response time of the Java 8 streams scales down as the number of processors

increases.

In more details, as shown in the results, the response time of the StreamIt

benchmark increases when moving from the experiment with 4 processors to

the experiment with 8 processors. Recall that, the StreamIt compiler merges

filters when there are less processors. Therefore, allocating these filters to 8

processors requires more inter-filter communications and coordination, com-

pared to using 4 processors. The overhead introduced by the communications

increases the response time.

Moreover, the other factors that impacts the scalability of the control-

parallel pipeline, i.e., the StreamIt benchmark in this experiment, are:

• In this experiment, each filter in the StreamIt pipeline requires different

amount of computation time for processing an input (see the computa-

tion time required for each filter to process an input is estimated by the

StreamIt compiler, and shown in Figure 6.3). In this situation, different

processors process the input at different rates. This results in one or

more processors being idle during the stream processing, as discussed in

Section 2.3.4.

• The inputs have to be processed one by one. As described in Sec-
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/* Part of the output generated by the StreamIt compiler */

...

Work Estimates:

Reconstruction__43 12150009 (36%)

Transform__28 7200009 (21%)

Spectrum__38 7140009 (21%)

GenerateRawData__8 5070009 (15%)

Narrowbandwidth__18 1440009 (4%)

Decompression__33 150009 (0%)

Compression__13 60009 (0%)

ZeroPadding__23 30009 (0%)

Source__3 6 (0%)

Sink__46 3 (0%)

Building stream config...

...

Figure 6.3: The percentage of the computation time required by each filter in

the SAR benchmark.

tion 2.3.4, when the first processor is processing the first input, the

remaining processors have to wait and be idle.

In summary, for a single node multiprocessor platform, assuming there is

enough data, the control parallelism requires the code to be more parallelised

as the parallelism increases, therefore introducing extra complexities. How-

ever, the data parallelism is easier to handle this case. They are identical when

there are enough inputs, the control parallelism uses all the processors and all

the processors are well balanced.

More formally, the statistical significance of the experimental results can

be demonstrated using an ANOVA analysis. This is given in Appendix A of

this thesis. The analysis demonstrates at the 95% confidence level that for

this application data parallelism has a better performance than the control

parallelism.

6.1.2 Infrastructure Overheads

The goal of this experiment is to evaluate the efficiency of Java 8 streams and

StreamIt, when both of them use the data parallelism mode.
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Figure 6.4: The StreamIt version of filter bank benchmark, which contains

multiple configurable branches. It performs multi-rate signal processing. On

each branch, a delay, filter, and downsample is performed, followed by an

upsample, delay, and filter.

The benchmark used in this experiment is based on the C version of the fil-

ter bank benchmark [23] provided by StreamIt. The original StreamIt version

of the filter bank benchmark has 8 branches, each of which is a pipeline that

contains 6 filters. These 8× 6 = 48 filters are allocated to different processors

by the StreamIt compiler, rather than these 8 branches. In order to evaluate

the efficiency of StreamIt with the data-parallel model, this experiment cre-

ates a new filter bank benchmark based on the C code, rather than using the

StreamIt version of the benchmark. In the new benchmark, all the filters are

merged to be a new filter, which will be fitted into each branch, so that the

StreamIt version of the filter bank benchmark uses its data parallelism mode.

The StreamIt version of new benchmark, which with a parallelism of 4

is illustrated by Figure 6.4. Note that, the source and sink in the StreamIt

benchmark are allocated with two dedicated processors, so that each branch

will have an entire processor to utilise during the experiment.

Again, in the Java benchmark, the functionality of the filter bank is im-
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Figure 6.5: The observed worst-case response times of the filter bank bench-

mark.

plemented using the same C code, compiled using the same backend of the

StreamIt compiler, and accessed via JNI.

The experiment is performed 30 times with the parallelism equals to 1,

2, 4, 8, 16. The inputs are 131072 items, which allows the experiment to

run for 24 hours. The response time of the stream processing in both Java 8

streams and StreamIt benchmarks are measured, because the variation in the

result is small (see CV in Table 6.2).The worst-case response time are shown

in Figure 6.5.

Table 6.2: Variations in the Filter Bank Stream Processing Response Times.

Coefficient of Variation (CV) Represents the Standard Deviation/the Mean

Response Time.

Java 8 Streams Filter Bank

Processors 1 2 4 8 16

SD 151.57 5759.41 263.08 163.48 292.25

CV 0.0004 0.0306 0.0027 0.0032 0.0098

StreamIt Filter Bank

Processors 1 2 4 8 16

SD 180.22 5364.92 1236.12 448.69 175.19

CV 0.0004 0.0239 0.0109 0.0075 0.0051

As can be seen the response times of Java 8 streams are shorter than the
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response times of StreamIt, but the scalability of them are similar. The time

required for the application’s startup time is not included. The response time

is measured from the time when the application starts its stream processing,

to the time when all the input has been processed. After the application has

been started, Java uses optimised JVM code, while StreamIt uses its libraries

that introduce overheads. Therefore, the response times of Java streams are

smaller.

Note that, the startup time of a Java application is typically longer than

StreamIt. This is because Java requires the entire JVM to be started, while

StreamIt only requires the main function of a C program to be loaded. How-

ever, the startup time is not typically considered in the schedulability analysis,

therefore, it is not considered in this evaluation.

Overall the Java 8 streams are more efficient than StreamIt, even though

the execution of the Java 8 streams are interpreted. Again, the statistical

significance of the experimental results can be demonstrated using an ANOVA

analysis. This is given in Appendix A of this thesis. It shows that for this

experiment the Java 8 stream has a better performance at the 95% confidence

level.

6.2 SPRYEngine – the Real-Time Batch Stream Pro-

cessing Infrastructure Implementation

This section describes the implementation of the real-time batch stream pro-

cessing infrastructure, which was presented in Section 3.4.1. The imple-

mentation of the real-time batch stream processing infrastructure is called

SPRYEngine.

SPRYEngine is built on the top of a RTSJ virtual machine, which is run-

ning on a real-time operating system. The SPRYEngine, and the classes it

uses are illustrated by Figure 6.6a. The mapping from the components in

the architecture (see Figure 3.7) to the classes in SPRYEngine is given in

Figure 6.6b. For example, the workers component is implemented by real-

time worker threads in a RealtimeForkJoinPool, which is based on the Java

ForkJoinPool library.

The discussion of the implementation of SPRYEngine is structured as fol-

lows.

1. Section 6.2.1 considers the integration of Java 8 streams with the RTSJ,
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(a) The architecture of SPRY Engine.

Component Implementation Class Library Used

The Real-Time Batch Stream Processing Infrastructure

Driver Driver ForkJoinTask

Data Partitioner RealtimeSpliterator Spliterator

Pipeline SPRYStream Java 8 Stream

Execution-Time Server DeferrableServer PGP

Workers RealtimeForkJoinPool ForkJoinPool

Remaining Configuration Parameters

Data Allocation Policy - HashMap

Deadline - RelativeTime

Period - RelativeTime

Deadline Miss Handler - AsyncEventHandler

MIT Violation Handler - AsyncEventHandler

(b) Real-Time Batch Stream Processing Infrastructure Implementation. PGP Repre-

sents javax.realtime.ProcessingGroupParameters.

Figure 6.6: The implementation of SPRYEngine and corresponding compo-

nents in the real-time stream processing architecture.

so that a Java 8 stream can be processed in real-time (i.e., at a given

priory, and its execution is bounded by execution-time servers). This

section mainly describes the implementation of RealtimeForkJoinPool

and DeferrableServer in SPRYEngine.
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2. Section 6.2.2 describes how to allocate data partitions to threads accord-

ing to an allocation policy, with the help of RealtimeSpliterator for

data partitioning.

3. The implementation of Driver is decribed in Section 6.2.3.

4. Section 6.2.4 describes the implementation of SPRYStreams, which allow

the pipeline of SPRYEngine to be configurable.

5. The implementations of deadline miss and MIT violation detection, and

their handlers are given in Section 6.2.5.

6. Section 6.2.6 describes the procedure when the method (called process-

Batch) of SPRYEngine is invoked, this is corresponds to the sequence

illustrated in Figure 3.8.

7. Finally, an example of using SPRYEngine to create a real-time stream

processing task is given in Section 6.2.7, it demonstrates the initialisation

of SPRYEngine.

6.2.1 Real-Time Streams

The implementation of the SPRYEngine utilises the Java 8 stream processing

libraries. However, these have been designed to address real-time concerns.

The main problem is that, as described in Section 2.3.7, Java 8 streams are

evaluated by the ForkJoinPool, which uses standard Java threads rather than

real-time threads.

Therefore, the first step is to focus on modifying the behaviour of the

ForkJoinPool so that the worker threads are real-time threads rather than

standard threads.

Difficulties In Creating a Real-Time Thread Pool

The ForkJoinPool has been designed so that the programmer has some con-

trol over its configuration; in particular the number of worker threads. It also

allows the application to provide its own factory (i.e., an interface or a method

for creating new instances of a class) for creating these worker threads. The

intention is that the factory should return a thread whose class extends the

predefined ForkJoinWorkerThread class. This class has two methods that can
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be overridden: onStart() and onTermination(), which are called immedi-

ately a new worker thread is created and before a worker thread terminates

respectively. Hence, the application can provide some limited context within

which the threads execute.

Unfortunately, the framework is not flexible enough to allow the introduc-

tion of real-time threads because creating a customised ForkJoinPool requires a

thread factory that must produce threads that inherit from ForkJoinWorker-

Thread. This class is a subclass of java.lang.Thread. In the RTSJ all

real-time threads must extend javax.realtime.RealtimeThread, which it-

self extends java.lang.Thread. Java does not support multiple inheritance,

so the requirements are conflicting.

Given that the main run() method of the ForkJoinWorkerThread is not

final, we first consider a delegation approach. With this approach, each worker

thread creates a local real-time thread and delegates all processing to that

real-time thread. The following illustrates the approach:

public class RealtimeForkJoinWorkerThread extends

ForkJoinWorkerThread {

private RealtimeDelegate rtwt = new RealtimeDelegate(this);

//Constructor and other methods ...

@Override

public synchronized void start() {

rtwt.setDaemon(true);

rtwt.start();

}

}

where

import javax.realtime.RealtimeThread;

class RealtimeDelegate extends RealtimeThread{

private RealtimeForkJoinWorkerThread parent;

public RealtimeDelegate(RealtimeForkJoinWorkerThread parent){

this.parent=parent;

}

public void run(){

parent.run();

}

}

Although, this has the appearance of creating a real-time thread pool, it does
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not have the desired effect when used in conjunction with the main fork and

join processing class. This is because the fork() method checks to see if the

calling thread is an instance of ForkJoinWorkerThread. If it is, it submits the

new task to the current pool; if it is not, it submits the new task to the default

common (and, therefore, non real-time) pool. Of course, with the delegate

approach, the calling thread is not an instance of this class. Furthermore, the

common pool is final and cannot be modified.

Hence, we conclude that integrating the RTSJ with the ForkJoinPool re-

quires the source code to be modified.

The RealtimeForkJoinPool

A RealtimeForkJoinPool is designed to be a Java ForkJoin thread pool,

in which each worker thread is a real-time thread, and the priority of each

worker thread is configured when the pool is created. Specifically, a Realtime-

ForkJoinPool contains one worker thread per processor, because the work

load involves no blocking. In addition, each worker thread of a pool is executed

under the control of an execution-time server, as discussed in Section 3.4.1.

The real-time worker threads are obtained by patching the code of ForkJoin-

WorkerThread, so that it directly extends the RTSJ RealtimeThread.

When the constructor RealtimeForkJoinPool is invoked, the worker threa-

ds are first created. Then, each worker thread is assigned with the given pri-

ority, registered to the corresponding execution-time server, and pined to a

processor using RTSJ AffinitySet within the worker thread’s constructor.

In addition, we have suggested changes to JSR 2821 to allow a Java thread

to execute at a real-time priority, therefore constructing real-time ForkJoin

thread pools without modifying the library source code, which have now been

adopted.

Deferrable (Execution-Time) Servers

The framework is independent of the server technologies, it uses the approach

suggested in [92] to allow a range of servers to be associated with it. How-

ever, our current analysis only consider deferrable servers, hence, only the

implementation of the deferrable server is considered in this thesis.

1The JCP Expert Group has released a new version of the RTSJ (Version 2.0) in early

2017. This version is compatible with Java 8.
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In RTSJ, a server can be effectively generated when assigning processing

group parameters (PGP) to one or more aperiodic real-time threads. The

parameter defines the server’s start time, capacity, and period. According to

the implementation requirements described in Section 3.4.1, the driver thread

has the same priority with the worker threads in a RealtimeForkJoinPool.

Therefore, all the threads that are assigned to any PGP in this framework

have the same priority. Hence, a deferrable server can be obtained.

Processing a Java 8 Stream in Real-Time

So far, the proposed RealtimeForkJoinPool allows a Java 8 stream to be eval-

uated at a given priority, and executed under deferrable servers. An example

of performing a real-time stream processing that counts how many words in a

batched data source is given below.

PriorityParameters priority; /* The priority */

BitSet affinities; /* All the allocated processors */

ProcessingGroup[] servers; /* Execution-Time Servers */

ArrayList<String> data; /* A batched data source */

long count;

RealtimeForkJoinPool rtPool = new RealtimeForkJoinPool(priority,

affinities, servers);

final Runnable sp = new Runnable() {

@Override

public void run() {

count = data.parallelStream().flatMap(line ->

Stream.of(line.split("\\W+"))).count();

}

};

rtPool.submit(sp);

This example first creates a RealtimeForkJoinPool, then submits the

stream processing pipeline to it via a Runnable instance. The data is split,

allocated to different worker threads by the Java 8 Stream framework. Then

the data partitions are processed by each worker thread at the given priority,

when the corresponding server has capacity.
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6.2.2 RealtimeSpliterator and Pre-Allocating Data Partitions

to Worker Threads

As reviewed in Section 2.3.7, the input of a Java 8 stream is partitioned by the

Spliterator, which initially maintains references to all the data items in the

input. Once the trySplit method is invoked, a spliterator splits itself into

two parts from the middle. By default, the data splitting occurs dynamically

within the whole procedure of the Java 8 stream evaluation. Additionally,

the first splitting occurs when the terminal operation of a Java 8 stream is

invoked.

In order to support the data pre-allocation scheme required by SPRY-

Engine, first we introduced the RealtimeSpliterator, which implements the

Spliterator interface. It splits out one (or more according to the granularity)

data items from the head of the input, and keeps the remaining data items.

The code of the Java 8 Stream terminal operation is required to be patched,

so that the default spliterator is replaced by our RealtimeSpliterator be-

fore the first splitting occurs. A terminal operation with the help of the

RealtimeSpliterator, splits the input into partitions. These partitions are

then pushed into each local queue of the worker threads in a Realtime-

ForkJoinPool. All the worker threads are woken up once all the partitions

have been allocated. For example, the compute method of the ForEachTask

that implements the stream’s forEach operation is modified using the follow-

ing code fragement.

spliterator = new RealtimeSpliterator<S>(spliterator);

/*... some code omitted ...*/

ArrayList<Spliterator<S>> partitions = new ArrayList<>();

partitions.add(leftSplit);

Spliterator<S> tempSpltr = null;

while ((tempSpltr = spliterator.trySplit()) != null){

partitions.add(tempSpltr);

}

ForEachTask<S, T> partitionToPush = null;

/* push partitions into queue */

for (int i = 0; i < partitions.size(); i++) {

Spliterator<S> s = partitions.get(i);

partitionToPush = new ForEachTask<>(task, s);

partitionToPush.push();

}
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/* wake up the other workers */

task.notifyWorkers();

In order to support the above procedure, the ForkJoinPool requires code

patching, so that the ForkJoinPool allows a partition (which has been encap-

sulated into a ForkJoinTask) to be pushed into its target thread’s queue via a

push method, according to a given data allocation policy that is implemented

using Java HashMap. Additionally, by default, the ForkJoinPool wakes up

the worker thread once any data partition is pushed into its queue. However,

according to the our real-time stream processing task model, the data pro-

cessing occurs only when all data allocation has been completed. Therefore,

the ForkJoinPool is modified so that it avoids waking up the worker thread

when pushing a data partition into its queue, and provides a method that

allows all the workers to be woken up when all data partitions have been al-

located. Recall that, the worker thread accesses the data partitions using a

work-stealing algorithm (see Section 2.3.7) once it has been woken up. There-

fore, the work-stealing algorithm is replaced so that each worker thread only

takes data partitions from its own queue.

6.2.3 The Driver

The Driver class is implemented as a ForkJoinTask. When the process-

Batch method is invoked, the Driver will be submitted to a Realtime-

ForkJoinPool to perform the data partitioning and start the parallel pro-

cessing of a Java 8 stream.

According to the real-time stream processing task model, the Driver

should execute in the prologue processor. Therefore, the RealtimeForkJoin-

Pool is required to be patched to allow the prologue processor to be con-

figurable, and to ensure that only the worker thread on the prologue pro-

cessor performs the Driver’s functionality. Specifically, Driver is submit-

ted to a RealtimeForkJoinPool’s shared queue for execution. The code of

ForkJoinPool is patched so that, only the worker thread on the prologue

processor can access the shared queue, i.e., can take the Driver to execute.

Additionally, in the implementation, we also consider that a real-time

thread might execute some sequential code, before invoking the process-

Batch method of the SPRYEngine, and then execute some sequential work

after that. In this case, the prologue processor is the processor that executes
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this real-time thread. Therefore, this real-time thread is registered to the

corresponding execution-time server, when it first invokes the processBatch

method.

6.2.4 The SPRYStream Pipeline

Recall that the proposed real-time stream processing infrastructure allows the

pipeline of the stream processing to be configured. The reason is that this

ensures the processing of the micro batch (described in the following sections)

uses Java 8 streams, with the help of SPRYEngine.

However, the Java 8 Stream pipeline (e.g., .map().filter().forEach())

cannot be created outside of the context of a Java 8 stream, and a Java 8

stream can only be created from a single source of input data, and the source

can not be changed once a stream has been created. In addition, a Java 8

stream is activated once it has been created. These features conflict with the

SPRYEngines requirements, and therefore it is necessary to develop our own

version of a stream, called a SPRYStream. The SPRYStream’s API is compatible

with the existing Java 8 Stream API [73].

SPRYStream was defined as an interface that extends the Java Stream in-

terface, but also allow their processing pipeline to be reused over different

input collections (i.e., to apply to multiple batched data sources) via pro-

viding deferred terminal operations. When a normal terminal operation is

invoked, the SPRYStream evaluates as same as a Java 8 stream. If a deferred

terminal operation is invoked, the SPRYStream does not evaluate until the

processData method is invoked. In addition, SPRYStream provides an method

called attachData to allow a data source to be attached before the evalua-

tion. All the deferred terminal operations of SPRYStream are given below,

where SPRYBaseStream defines the processData, attachData methods.

public interface SPRYStream<T> extends Stream<T>, SPRYBaseStream<T> {

public void forEachDeferred(Consumer<? super T> action);

public void forEachOrderedDeferred(Consumer<? super T> action);

public void toArrayDeferred();

public <A> void toArrayDeferred(IntFunction<A[]> generator);

public void reduceDeferred(T identity, BinaryOperator<T>

accumulator);

public void reduceDeferred(BinaryOperator<T> accumulator);

public <U> void reduceDeferred(U identity, BiFunction<U, ? super

T, U> accumulator, BinaryOperator<U> combiner);
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public <R> void collectDeferred(Supplier<R> supplier,

BiConsumer<R, ? super T> accumulator, BiConsumer<R, R>

combiner);

public <R, A> void collectDeferred(Collector<? super T, A, R>

collector);

public void minDeferred(Comparator<? super T> comparator);

public void maxDeferred(Comparator<? super T> comparator);

public void countDeferred();

public void anyMatchDeferred(Predicate<? super T> predicate);

public void allMatchDeferred(Predicate<? super T> predicate);

public void noneMatchDeferred(Predicate<? super T> predicate);

public void findFirstDeferred();

public void findAnyDeferred();

public void iteratorDeferred();

public Spliterator<T> spliteratorDeferred();

}

The processData method takes a reference to a batched data source to be

processed, and optionally a callback which is called to present the result. In

our implementation, this callback delegates the SPRYEngine’s SetCallback

method. If the processData method is invoked when there is not a termi-

nal operation, an NoTerminalOperationException will be thrown. If the

processData method is invoked when there is not a data source, it perform

the stream processing on an empty collection, as with existing Java streams if

they are created on an empty collection.

A SPRYReferencePipeline implements the SPRYStream interface, and

represents a SPRYStream of Java objects. In addition, we have implemented

the equivalent classes for Java’s primitive types.

In a SPRYStream pipeline, operation pipelining uses a linked list. Each

node maintains one intermediate operation and its arguments, and each in-

termediate operation returns a new node that will be appended to the tail of

the linked list. When the terminal operation is invoked, the execution thread

travels through the pipeline, and performs each operation on each data ele-

ment. In order to make a pipeline reusable, the terminal operation is added

to the linked list as well, rather than forcing stream evaluation. This is the

only difference between the use of standard Java streams and SPRYStreams.

A SPRYStream pipeline can either be initialised when passed to the con-

structor of the SPRYEngine, or by a functional interface named Reference-
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PipelineInitialiser, which is required by the constructor. By employ-

ing functional interfaces, the SPRYEngine is able to take the advantage of

Java’s lambda expressions to make code more concise. See the example in

Section 6.2.7.

6.2.5 Detecting Deadline Miss and MIT Violation

Considering the SPRYEngine might be used for hard real-time stream pro-

cessing, any deadline miss and invocation minimum inter-arrival time (MIT)

violation are required to be detected, and their handlers should be released.

Invoking the MIT violation means that the time span of any two invocations

of the SPRYEngine’s processBatch method is less than the given MIT (i.e.,

the period) of the SPRYEngine.

The times of the most two recent invocations of the processBatch method

that is provided by the SPRYEngine are recorded. The MIT violation handler

is released if the time interval between these two times is less than the given

period of the stream processing task. Additionally, a RTSJ OneShotTimer

can be created to monitor the deadline miss. Specifically, the timer fires at

the absolute time of the next deadline, and is canceled if the data processing

has been completed within the deadline. SPRYEngine provides methods that

allow the deadline, period, deadline miss handler, and MIT violation handler

to be configured.

6.2.6 The processBatch Method of SPRYEngine

Figure 3.8 showed the required behaviour of the Driver after the Process

Batch is invoked. This section summarises the sequence of actions undertaken

by the SPRYEngine to meet these requirements.

1. SPRYEngine records the time of this invocation. Then,

(a) calculates the time span between the most recent two invocations,

and fires the MIT violation handler if the invocation MIT is vio-

lated;

(b) invokes the RealtimeForkJoinPool.submit method, with the Driver

(it will be pushed into the RealtimeForkJoinPool’s shared queue);

(c) starts a timer that will fire and release the deadline miss handler

when the next deadline expires.
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(d) waits until all the partitions have been processed.

2. The RealtimeForkJoinPool wakes up the worker thread that is run-

ning on the prologue processor. Once that worker thread wakes up, it

takes the Driver from the shared queue, and execute it. Therefore, the

SPRYStream.processData method is invoked, with the given data.

3. The SPRYStream uses the RealtimeSpliterator to partition the data,

and pushs all the partitions into their corresponding worker threads via

a push method provided by the RealtimeForkJoinPool.

4. The RealtimeForkJoinPool pushes each partition to a worker thread’s

local queue according to the given data allocation policy, and wakes up

all the worker threads.

5. The worker thread takes a partition from its local queue, processes it with

the SPRYStream pipeline, then tries to take another one. Note that, the

execution of the worker thread is controlled by the execution-time server

it registered to.

6. SPRYEngine gets the time when all the data has been processed, and

cancel the deadline monitoring timer when the processing meets the

deadline.

6.2.7 Initialising a SPRYEngine Instance

This example demonstrates how to initialise an instance of SPRYEngine to

perform a real-time stream processing that counts how many words in a

batched data source.

PriorityParameters priority; /* The priority */

BitSet affinities; /* All the allocated processors */

ProcessingGroup[] servers; /* Execution-Time Servers */

ArrayList<String> data; /* A batched data source */

DataAllocationPolicy dap; /* Data allocation policy */

int prologueProcessor; /* The prologue processor */

long count;

SPRYEngine<String> spry = new SPRYEngine<>(

priority,

/* The processing pipeline */
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p -> p.flatMap(line ->

Stream.of(line.split("\\W+"))).countDeferred(),

dap, affinities, prologueProcessor, servers);

/* set the deadline and its miss handler */

spry.setDeadlineMissHandler(deadline, deadlineMissHandler);

/* set the period and its violation handler */

spry.setMITViolateHandler(period, MITViolateHandler);

/* set the call back to get the result */

spry.setCallback(r -> count = r);

/*Within a real-time thread, perform the real-time stream process for

the data by invoking the SPRYEngine */

spry.processBatch(data);

The SPRYEngine uses a SPRYStream to allow the pipeline to be given

within the constructor. A RealtimeForkJoinPool is used by the SPRYEngine

to process the data with multiple processors, according to the data allocation

policy. The execution-time servers are used to bound the impact of the real-

time stream processing to other real-time activities. Finally, the deadline miss

and the invoking MIT violation are also detected by the SPRYEngine.

6.3 BatchedStream – the Real-Time Micro-Batch-

ing Implementation

The real-time batch stream processing infrastructure implementation has been

discussed in the previous section. This section describes the implementation

of the Batcher architecture proposed in Section 3.4.2, as a new framework

called BatchedStream.

The structure of the BatchedStream can be illustrated by Figure 6.7a. The

mapping from the components in the real-time micro-batching architecture

(see Figure 3.9) to the classes in BatchedStream is given in Figure 6.7b. Note

that, the implementation of execution-time server, the deadline for micro batch

(i.e., for the SPRYEngine), and the deadline miss handler has been described

in Section 6.2.

The discussion of the implementation of BatchedStream is structured as

follows.

1. The implementation of Receiver is described in Section 6.3.1.
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(a) The architecture of Batched Streams.
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(b) Real-Time Micro-Batching Infrastructure Implementation.

Figure 6.7: The implementation of Batched Streams and corresponding com-

ponents in the architecture.

2. Section 6.3.2 describes the implementation of Timer.

3. Section 6.3.3 describes the implementation of Handler, and discusses

how to use execution-time servers to execute Handler.

4. How to detect latency miss and data arriving MIT violation is described

in Section 6.3.4.

5. Section 6.3.5 discusses the parameters that are required by the construc-
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tor of BatchedStream.

6. Finally, an example of how to initialise a BatchedStream for real-time

live streaming data processing is given in Section 6.3.6.

6.3.1 Receiver

Receiver is the implementation of the Buffer component in the real-time

micro-batching architecture. It provides an method called store that allows

the data to be stored into a memory area, which is implemented using Java

ArrayList. It notifies the Handler when it has received enough data items.

Applications can use a dedicated real-time thread to receive data from a live

streaming data source, e.g., a TCP/IP socket, and store the data via invoking

the store method that is provided by the Receiver. The receiver also pro-

vides an method called retrieve, which allows the stored data items to be

encapsulated into a collection and returned.

Receiver is implemented as an abstract class, so that users can imple-

ment their own receivers, which are attached to difference live streaming data

sources.

6.3.2 Timer

Timer implements the Timer component in the real-time micro-batching ar-

chitecture, using RTSJ’s PeriodicTimer class. It manages when the next

timeout occurs. It releases the Handler when the next timeout expires; the

next fire time is automatically reset.

6.3.3 Handler

Handler implements the Handler in the real-time micro-batching architecture,

using the RTSJ AsyncEventHandler class.

Once released, it retrieves data from the receiver as a micro batch, then

performs the real-time stream processing over the micro batch with the help

of SPRYEngine (i.e., via invoking SPRYEngine’s processBatch method), and

resets the next timeout.

The execution of Handler is a part of the prologue, therefore, it has to

execute on prologue processor, using RTSJ AffinitySet. In addition, it is

required to be registered to the execution-time server, which is running on the

prologue processor.
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6.3.4 Detecting Latency Miss and Data Incoming MIT Viola-

tion

BatchedStream might be used in real-time live streaming data processing with

a hard latency requirement, therefore, the latency miss and the data incom-

ing MIT violation are required to be detected, and their handlers should be

released.

Similar to the approach described in Section 6.2.5, the data incoming MIT

violation detection is implemented within the store method, which is provided

by Receiver and allows the data to be stored into the buffer.

For the latency measurement, the implementation is similar to the ap-

proach presented in Section 6.2.5, for each item, create a RTSJ OneShotTimer

to monitor the latency miss. Note that, in the intermediate operations in

SPRYStream that might filter data items out, such as the filter operation,

timers associated with items that are filtered out are canceled.

In addition, as the SPRYEngine processes each micro batch. Therefore,

the deadline of the SPRYEngine instance is required to be configured with a

value equals to the possible MIT of the micro batch releases. However, the

invocation MIT and the invocation MIT violation handler of the SPRYEngine

are not required. The reason is that the data incoming is monitored by the

BatchedStream, if the data incoming MIT violation does not occur, any two

micro batches cannot be released within the SPRYEngine’s invocation MIT.

The BatchedStream provides methods that allow the these time values and

handlers to be configured.

6.3.5 The Constructor Parameters of BatchedStream

SPRYEngine is used as the processing infrastructure for micro batches gener-

ated by BatchedStream. The initialisation of the SPRYEngine is transparent

to users.

Thus, the SPRYStream pipeline, execution-time servers, priority, allocated

processors, data allocation policy when processing each micro batch, and the

prologue processor are required by the constructor of BatchedStream.

Additionally, a callback can be passed into BatchedStream, so that the

result for every micro batch can be further processed (e.g., to accumulate).

This can also be passed in via a new method named setCallback, which is a

delegation of the SPRYEngine’s callback method, which is then delegated by
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the callback of SPRYStream.

6.3.6 Initialising a BatchedStream Instance

An example of initialising a BatchedStream to perform real-time stream pro-

cessing for a real-time live streaming data source is given below.

/* The maximum possible micro batch size */

Receiver receiver = new StringSocketReceiver(BufferSize, "localhost",

1989);

/* create and configure the BatchedStream’s parameters, omitted...*/

BatchedStream<String> bs = new BatchedStream<>(

receiver ,/* The Receiver */

timeout, /* The timeout of micro-batching */

priority, /* The priority */

/* The stream processing pipeline */

p ->

p.map(x->x.toUpperCase()).forEachDeferred(x->System.out.println(x)),

affinities, /* All the allocated processors */

dap, /* Data allocation policy for micro batch processing */

prologueProcessor, /* Indicates the prologue processor */

servers /* Execution-Time Servers */);

/* set the deadline for micro batch and its miss handler */

bs.setBatchProcessingDeadlineMissHandler(microBatchDeadlineMissHandler);

/* set the data incoming MIT and its violation handler */

bs.setDataIncomingMITViolationHandler(dataMIT, MITViolationHandler);

/* set the latency for each item and the latency miss handler */

bs.setLatencyMissHandler(latency, latencyMissHandler);

bs.start();

A receiver is created to receive data items into a buffer, which has a

maximum size. Note that, the data collection is done by a real-time thread,

which is maintained by the receiver in this example.

When the constructor of the BatchedStream is invoked, an instance of

Timer and Handler is created. The BatchedStream then passes the reference

of Handler to the Receiver, so that it releases the instance of Handler when

it has received enough data items.

Once the start method of the BatchedStream is invoked, the receiver

starts to receive data from the given live streaming data source (i.e., from a

TCP/IP socket), and the timer is started to maintain the timeout of the micro
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batch’s release. The data incoming MIT, the processing of each micro batch,

and the latency of each data item are monitored by the BatchedStream.

6.4 Accounting for the Overheads of SPRY in the

Analysis

This section describes how to account for the overhead introduced by the

SPRY.

The overheads of SPRYEngine is required to be accounted when perform-

ing the response time analysis for a real-time stream processing task, which

inputs a batched data source. The SPRYEngine is created before use, this sec-

tion describes how to account the overheads in the whole stream processing

after invoking the SPRYEngine’s processBatch method.

In general, system overheads can be classified as synchronous and asyn-

chronous [91]. Synchronous overheads are incurred by an application when it

invokes a call on the system’s infrastructure. This is accounted for by adding

the WCET of the system’s code that is executed by the caller to the WCET of

the application code. Asynchronous overheads are incurred by threads internal

to the system and from the handling of interrupts.

The synchronous overheads, which are introduced by the infrastructure

invocations, and contain the following parts:

1. The overhead of when invoking the processBatch method, which sub-

mits the Driver to the RealtimeForkJoinPool, and wakes up a worker

thread.

2. The overhead introduced by the worker thread running on the pro-

logue processor (before the stream processing), when it tries to take

the Driver, record times, invoke the SPRYStream.processData method,

perform the data partitioning using RealtimeSpliterator, make in-

quiries to the data allocation policy, push partitions into each worker

thread’s local queue, and wake up all the rest worker threads.

3. The overhead introduced by the worker threads running on the remaining

processors. Each of these threads introduces overhead when it takes each

partition from its local queue, and processes it with the ReusableStream

pipeline.
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4. The overhead introduced by the worker thread running on the prologue

processor, after the stream processing, and when it invokes any given

callback.

When applying the analysis, part 1 and part 2 should be added to the

prologue in the real-time stream processing task model, part 3 should be added

to the parallel data processing on the remaining processors, and part 4 is added

to the epilogue.

For a BatchedStream, data is collected by a dedicated real-time thread,

therefore, the only overhead required to be considered is the one introduced by

the Handler. Apart from the invocation of the SPRYEngine’s processBatch

method, all the remaining functionalities are performed by the Handler can

be added to the prologue and epilogue accordingly.

The asynchronous overheads include interrupts for timers, and execution-

time servers. In addition, there are also overheads introduced by the garbage

collector (GC). In RTSJ, GC can be classified as work-based or time-based.

In the former case, each time an application requests to allocate an object,

GC performs amount of work, which is determined by the request rate. In

the later case, a real-time thread is created for GC, and it runs at a given

priority, and periodically with a budge in each period [91]. SPRYEngine uses

JamaicaVM [9], which uses a work-based approach. Therefore, the WCET

required by the garbage collector for allocating new memory areas for all the

instances created by the SPRYEngine during the stream processing, can be

added to the prologue in the analysis.

Typically, the WCET of the overheads can be determined by either ahead-

of-time analysis of the code, or estimating the upper bound by measure-

ment [38]. This is subject to future work.

Further more, Java 8 streams provide several stateful intermediate opera-

tions, such as sort, which might order the first arrival item to the last position,

therefore violating the analysis. The proposed solution is executing the state-

ful operations in the prologue, and the computation required of the execution

is added to the prologue.

6.5 Representation of the Case Study

This section discusses the representation of the case study presented in Sec-

tion 5.6. The goal is to describe how to represent a task with given real-time
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properties using SPRY, such as the periodic task, rather than describing the

implementation of the functionally of those hard real-time tasks in the Generic

Avionics Platform (GAP) [68], for example, the weapon aiming task.

The discussion of the implementation of BatchedStream is structured as

follows.

1. The representation of hard real-time tasks in the defence system is de-

scribed in Section 6.5.1.

2. The representation of the SAR image generation mission is given in

Section 6.5.2.

6.5.1 Representation of GAP Hard Real-Time Tasks

Each hard real-time task in the defence system are periodic, and they are

represented using RTSJ RealtimeThread, and PeriodicParameters to char-

acterise its period, deadline, first release time. The priority is configured using

PriorityParameters, the affinity of the thread is configured using Affinity.

The code that can be used to create a real-time task is given below.

public static RealtimeThread create(int cpu, long period, Runnable

func, int prio, AbsoluteTime firstRelease, String name) {

RelativeTime D, T;

D = T = new RelativeTime(period, 0);

PriorityParameters priority = new PriorityParameters(prio);

RealtimeThread thread = new RealtimeThread(priority, null) {

@Override

public void run() {

while(true){

waitForNextPeriod();

func.run();/* Implementation of the functionality */

}

}

};

/* The release parameters */

PeriodicParameters periodicParameters = new

PeriodicParameters(null, T, null, D, null, new

AsyncEventHandler(){

@Override

public void handleAsyncEvent() {}

});
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thread.setReleaseParameters(periodicParameters);

/* set affinity */

BitSet processor = new BitSet();

processor.set(cpu);

Affinity.set(Affinity.generate(processor), thread);

return thread;

}

Note that, RTSJ only supports 28 real-time priorities. Therefore, in each

processor, the priority of each hard real-time tasks is mapped into a unique

priority, which is between 11 and 38.

6.5.2 Representation of The SAR Image Generation Task

The radar image generation mission task is represented using SPRY’s Batched-

Stream, the code is given as follows. SPRYStream is used to describe the radar

image generation pipeline.

RealtimeReceiver receiver;/* Collecting radar signals */

DeferrableServer[] servers = createServers(startTime); /* Servers */

RelativeTime timeout = new RelativeTime(400, 0); /* Timeout */

/* Allocates processor 0, 1, 2, 3 */

BitSet affinities = new BitSet();

affinities.set(0);affinities.set(1);affinities.set(2);affinities.set(3);

/* Data Allocation Policy */

DataAllocationPolicy DAP = new CustmisedDataAllocationPolicy();

DAP.addPairs(0, 2, 4, 8, 12, 16);

DAP.addPairs(1, 3, 7, 10, 14);

DAP.addPairs(2, 1, 5, 9, 13);

DAP.addPairs(3, 0, 6, 11, 15);

/* The prologue processor */

int prologueProessor = 0;

/* Real-time Stream Processing */

BatchedStream<Integer> streaming = new BatchedStream<Integer>(

receiver,

timeout,

priority,

p -> p./* Processing pipeline */.forEachDeferred(/* Update Display

etc. */),

affinities, DAP, prologueProessor, servers
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);

/* Set the latency miss handler */

AsyncEventHandler latencyMissHandler = new AsyncEventHandler(){

@Override

public void handleAsyncEvent() {/* handle latency miss */}

};

streaming.setLatencyMissHandler(new RelativeTime(480, 0),

latencyMissHandler);

/* start */

streaming.start(startTime);

6.6 Summary

This chapter has described the SPRY framework, which is an implementation

of the proposed real-time stream processing architecture in Chapter 3.

This chapter has first given the rationale for using Java and RTSJ in Sec-

tion 6.1 as the programming language for the implementation. In addition,

in order to support the decision, the efficiency of Java 8 streams and the

StreamIt, and the efficiency of the data-parallel pipeline and control-parallel

pipeline have also been evaluated. ANOVA has been applied on the results

(see Appendix A) to support our decision to base our implementation of the

Java 8 Stream framework.

Then the real-time batch stream processing infrastructure has been imple-

mented as a new framework called SPRYEngine, which is described in Sec-

tion 6.2. The details and involved difficulties in implementing, and an example

of the SPRYEngine have been described in this section.

The real-time micro-batching architecture has been implemented as a new

framework called BatchedStream, which is given in Section 6.3. An example

of using the BatchedStream for real-time live streaming data processing has

been given in this section, along with the implementation details.

Accounting for the overheads of SPRYEngine in the analysis is discussed

in Section 6.4, and lastly, Section 6.5 describes the representation of the case

study using SPRY.
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Chapter 7

Evaluation

This thesis has presented an overall approach to the integration of the stream

processing programming model with the traditional embedded system pro-

gramming model. We have demonstrated how to use the approach in Chap-

ter 4, with a case study described in Section 5.6. In Chapter 6, we have also

shown that the presented approach is realisable in practice, by presenting a

prototype implementation using RTSJ, which is called SPRY.

This chapter has two goals: to determine the extent to which the ma-

jor constraints/assumptions of the presented approach has an effect on its

efficiency; and to compare the presented approach to a traditional embed-

ded approach, which does not employ the stream processing programming

paradigm.

The presented approach is independent of the execution-time server tech-

nologies. However, the constraint has been made that only one single execution-

time server is used for each processor. In addition, it is assumed that the single

server can efficiently use the spare computation time in each processor, i.e., the

time that is not used by hard real-time tasks. In Section 7.1, this assumption

is tested by comparing the computation time that can be guaranteed from a

single server and from multiple servers, with randomly generated hard real-

time tasks, and random system requirements. It is demonstrated that little

schedubalibity is lost because of the constraint of using a single server per

processor.

Additionally, certain assumptions have been made to make the analysis

tractable. As discussed in Section 5.4.3, our analysis approach is a sufficient

but not an exact analysis, due to the pessimism introduced by the execution-

time server replenishment gap. In Section 7.2, the results of the presented
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analysis approach is compared to the results from simulations, and we demon-

strate that the amount of pessimism is small, which indicates that only little

schedulability is lost.

It has been demonstrated that the effectiveness of the presented approach

is not undermined by the constraints/assumptions we have made. Together

with the case study described in the thesis and the prototype implementation

of the SPRY framework, we have provided the evidence that the presented

approach is effective and feasible. However, it hasn’t been demonstrated that

our approach is superior to the traditional embedded system approach so far.

In Section 7.3, a set of experiments that compare the schedulability of these

two approaches have been performed. Several representative experiments and

their results are given in this section, to provide the evidence that the presented

approach is superior.

However, there is no silver bullet, any approach might have its limitations.

In Section 7.4, we discuss the issue of current task allocation scheme and

micro-batching, when the stream processing activity has a very high priority,

and with tight deadline/latency requirements.

Finally, Section 7.5 summarises the chapter’s findings.

Experiment Setup

The experiments consider scheduling a randomly selected [48] set of hard real-

time tasks, and a stream processing task in a 16 cores fully partitioned system,

which has a same amount of cores as the experiments performed in Section 6.1.

In addition, representative experiments with more cores are also performed.

The size of the hard real-time task set is 128 in all experiments. The

periods of hard real-time tasks are randomly generated between 1 and 1000

time units, which covers the range of the GAP [68] tasks’ periods. As with the

GAP tasks, each hard real-time task in the experiments has its period equal to

the deadline. The experiment also investigates the difference when allocating

hard real-time tasks to different cores using a worst-fit, best-fit, or random-

fit algorithm. The best-fit algorithm used in this thesis allocates a task to

the most busy core, where it is schedulable. The worst-fit algorithm always

allocates a task to the most idle core. The random-fit algorithm allocates a

task to a random core, where it is scheduable.

The period, and loads of the stream processing task, or the MIT and

computation time required for processing each live streaming data item are
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different in each experiment. The details of these parameters will be given in

the following sections.

Each experiment is run 100 times, for each time, a set of hard real-time

tasks are generated, and the utilisation is distributed to different tasks based

on the approach presented in [48]. Then the schedulability of both hard real-

time tasks and stream processing tasks are examined using response time

analysis, and the total number of schedulable runs are recorded. Note that,

the response time analysis for the traditional embedded approach is given

in Appendix B. In addition, for the scheduling simulation, the worst-case is

guaranteed to be caught if the simulation runs through the hyper-period of

all the tasks. However, in reality, it requires thousands of years to complete

the simulation. Therefore, in this section, the simulation window is 100 times

of the period of the stream processing task, after which the results stay more

constant.

7.1 Single or Multiple Execution-Time Servers

Given a real-time stream processing task, the goal of this section is to find

out whether creating multiple execution-time servers for each processor intro-

duces more guaranteed schedulable computation time than using just a single

execution-time server.

The single server for each processor is generated using our presented server

parameter selection algorithm. When generating multiple servers, the server

is generated with the period starts from the smallest divisor of the stream

processing task’s period, and each server with the maximum schedulable ca-

pacity. The hard real-time task set size is 8, and the period and the deadline

of the stream processing task is 800. The maximum computation time can be

provided are given in Figure 7.1.

As can be seen from the figure, there is no significant difference between

these two approaches, as both lines are on top of each other. Running the ex-

periments with more hard real-time tasks, and different periods and deadlines

for the stream processing task, gives similar results.

When using multiple servers, the prologue can be executed as soon as pos-

sible, thereby ensuring that the data processing begins as soon as possible.

However, the server parameter selection algorithm has already considered the

length of the data processing window by using as small a period (higher pri-
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Figure 7.1: The maximum computation time can be provided by a single or

multiple servers within a given period.

ority) server as necessary. Therefore, as shown in the figure, the improvement

is not significant.

In summary, using one single server for each processor is sufficient for cur-

rent approach, as multiple servers introduce more implementation overheads.

7.2 Accuracy of the Analysis

This section will evaluate the pessimism of the analysis by comparing our

analysis to the results from a scheduling simulator. The simulation of the

analysis uses the same set of hard real-time tasks, execution-time servers, etc.

The overhead of the execution-time servers is set to be zero, as it has no impact

on the results of this experiment. This is because overhead is accounted for

by subtracting from the beginning of a server’s capacity at each release. This

is identical to adding some computation loads to the data processing.

The representative experiment considers the hard real-time task set con-

tains 128 hard real-time tasks, while the stream processing task has a period

of 800 time units, the deadline equals to the period, and the WCET for total

data processing is 8000 time units, which contains 800 data partitions. The

prologue and epilogue of the stream processing task is configured to be 80, as
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they are relatively small.

The hard real-time tasks are allocated to different cores using best-fit,

worst-fit, and random-fit. Then the total utilisation of the hard real-time task

set is increased from 0 to 16, the schedulability of the whole system is tested

and recorded, and shown in Figure 7.2. Note that, not shown in the figure,

the system schedulability for all approaches before 4.5 is 100%, and 0% after

6.0.
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Figure 7.2: The accuracy of the presented analysis approach.

As can be seen, for each hard real-time task set allocation scheme, the

simulation result is only slighter better than the analysis result. This indicates

that the pessimism of our analysis is acceptable. Again, this section also runs

experiments with different input parameters for the stream processing task,

the results are similar.

7.3 Comparing to Traditional Embedded Approach

This section compares the schedulability of the SPRY approach against the

schedulability of the applications that are more traditionally handled by em-

bedded systems for streaming applications.

The traditional embedded approach splits the data source into partitions,

then creates the corresponding prologue task, data processing tasks (one per

partition), and the epilogue task. The period is equals to the stream processing
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task’s period, and the priority is determined using deadline monotonic priority

assignment. When allocating tasks, the generated stream processing sub tasks

and all the hard real-time tasks in the task set are considered together, with

a first-fit, worst-fit, or random-fit allocation algorithm. If multiple generated

stream processing sub tasks are allocated to the same core, they are merged

into one task. In addition, the epilogue task is merged into the data task

that finishes lastly. The priority for each task is determined using deadline

monotonic priority assignment.

Note that, when the real-time stream processing task’s utilisation is not

greater than 100%, another alternative approach could be creating a single

sporadic task for the stream processing. However, this approach is covered

by the traditional embedded approach with a best-fit task allocation scheme,

therefore, it is not covered in the experiment.

These experiments have a set of input parameters, such as the size of the

hard real-time tasks set, the period and WCET of the processing task. How-

ever, it is difficult to evaluate every combination of values for these parameters

in a limited time. This section selects several representative combinations of

values for these parameters, and performs the evaluation.

The selected hard real-time task size is 128, and the number of cores are

configured to be 16. In addition, an experiment with 128 cores that covers most

multicore processors used in embedded systems is performed to demonstrate

the scalability of SPRY. The details of the parameters for the real-time stream

processing tasks are given in the following subsections.

The evaluation contains two parts:

• experiments for real-time batched data processing, which are discussed

in Section 7.3.1.

• experiments for real-time live streaming data processing, which are dis-

cussed in Section 7.3.2

7.3.1 Batched Data Source Evaluation

This section considers a stream processing task with a period of 800 time

units, a data processing of 4000 time units (i.e., a utilisation of 500%), and the

deadline equals to the period. The prologue and the epilogue is configured to

be 1% of the stream processing task’s period, as they are not computationally

intensive.
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Figure 7.3: The schedulability of the system for a stream processing task with

a period of 800, WCET of data processing of 4000, with 128 hard real-time

tasks.

The results are illustrated by Figure 7.3. SPRY provides the best schedu-

lability, when the hard real-time tasks are allocated with a best-fit algorithm.

The reason is that, a best-fit allocation scheme for the hard real-time task

allocation leaves more idle cores, compared to the worst-fit or random-fit.

Creating execution-time server on an idle core can have the capacity equals to

the period. The replenishment gap is zero, therefore reducing the pessimism

in the analysis, which is described in Section 5.4.3. In addition, the server’s

capacity can be maximised as there is no other lower priority task to consider

the ‘double-hit’ effect introduced by deferrable servers, see Section 5.1.1.

The performance of the traditional embedded approach is limited because

the processing can not run at as high a priority as SPRY can. This approach

performs even worse when using a best-fit allocation approach. The reason

is that, when using the best-fit task allocation algorithm, the prologue task

might be allocated with higher priority hard real-time tasks into the same

core. The interference from these higher priority tasks increases the response

time of the prologue, therefore, delaying the whole data processing. Using

worst-fit allocates several higher priority tasks evenly in all the cores, while

a random-fit allocation might results in the prologue task is allocated to a

core with less higher priority tasks compared to the worst-fit. Therefore, the
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random-fit performs better overall.

This section also runs experiments with different input parameters for the

stream processing task, the results are similar.

7.3.1.1 Execution-Time Server Overhead

The experiments performed in the previous section assume zero system over-

heads. Of course, an implementation will have some overhead and this will re-

duce schedulability. However, for most part this overhead is identical in all the

experiments. The exception is the overhead of supporting the servers. In this

section we reduce the capacity of the server to reflect this overhead. A similar

approach is performed in [47] to measure the impact of server implementation

overhead. Note that, no overhead is added to the subtasks generated by the

traditional embedded approach.

We have run the same experiment with overhead values of 2%, 5%, 10%,

and 15% of its capacity, but the results are all similar. For example, with the

overhead of 10% of the capacity, the result is shown in Figure 7.4. Typically,

the implementation overhead is around 1% ∼ 2%, SPRY is still efficient with

server implementation overhead.

Moreover, the experiment is re-run with overhead with absolute values

of 1, 2, and 4 time units, similar results can be obtained. 4 milliseconds is a

reasonable extreme big value for the overhead of an execution-time server [58].

This indicates that even with the addition of overheads to SPRY it can

still provide a better performance than simpler solutions.

7.3.1.2 Scalability

This experiment introduces more cores, i.e., 128 cores in total, and considers

the stream processing task with a period of 800, utilisation of 7000%. In addi-

tion, the hard real-time task set contains 1024 tasks in this experiment. The

best system schedulability results of SPRY and the embedded approach are

shown in Figure 7.5. As can be seen, SPRY can provide 100% system schedula-

bility until the utilisation of hard real-time tasks is increased to 5500%, where

the maximum available schedulable utilisation is 5800% (i.e., 12800%-7000%).
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Figure 7.4: The schedulability of the system for a stream processing task with

a period of 800, WCET of data processing of 4000, with 128 hard real-time

tasks. The overhead of the server is 10% of its capacity.

7.3.1.3 Discussion

In summary, SPRY provides the best result when the hard real-time task are

allocated with a best-fit algorithm, and overall it provides a better performance

compared to the traditional embedded approach.

Arguably, when there is only one hard real-time task per core, the worst-fit

algorithm can allocate them one per core, therefore, generating bound server

to achieve utilisation of 100% for each core. However, this cannot be assumed

to be a common practice in the real-world.

The performance of the traditional embedded approach is worse compared

to SPRY because of the interference from higher priority tasks. When running

the experiment with different stream period, e.g., 400 and 2000 time units,

and different utilisation, such as 50%, 100%, and 1000%, SPRY still provides

better results. The results are also similar, when the stream processing task

is sporadic, or the deadline is less than its period.

Note however, when the utilisation of the stream processing task is rel-

atively small, the difference between SPRY and the embedded approach de-

creases. The reason is that, the length of the whole execution is shorter,

therefore, receiving less interference from the higher priority tasks. This con-

clusion can also be conducted by comparing Figure 7.5 and Figure 7.3 in this
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Figure 7.5: The schedulability of the system for a stream processing task with

a period of 800, WCET of data processing of 56000, with 1024 hard real-time

tasks.

section.

However, when the period of the stream processing task is relatively small,

i.e., the priority of the stream processing task can be almost the highest in

the whole system, the traditional embedded approach can perform better than

SPRY occasionally (see Section 7.4.1).

7.3.2 Live Streaming Data Source Evaluation

This section considers the real-time processing of live streaming data sources,

i.e., the data item is not splittable and requires a small processing time, using

SPRY and the traditional embedded approach. Both of them uses the pre-

sented real-time micro-batching approach to group the data items into micro

batches before processing. For the processing of micro batches, the prologue is

configured to be zero as the micro batch splitting only requires passing refer-

ences of data items to workers, epilogue values are configured using the same

approach presented in the last section.

The experiment in this section uses input from data flows with different

characteristics, such as different computation time required for processing each
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data item, different arrival rates, and different latency requirements. The

following data flows are investigated:

• The WCET for processing each data item of 10 time units, and MIT of

1 or 2 time units (i.e., the required utilisation is 1000% or 500%). The

latency requirement is 30, 50, and 100 time units.

• The WCET for processing each item of 100 time units, MIT of 10 or 20

time units, latency requirement of 300, 500, and 1000 time units.

Note that, the MIT in this experiment is smaller than the required com-

putation time for data items, because otherwise the micro batch size is always

1, which is a sporadic task that requires no parallel processing.

After running the experiments, the selected representative results are dis-

cussed as follows. The results of the experiment that input from a data flow

(with a WCET for processing each data item of 10 time units, and MIT of 1

time units, and the latency requirement of 30 time units), and the experiment

that input from a data flow (with a WCET for processing each data item of

100 time units, and MIT of 10 time units, and the latency requirement of 300

time units) are shown in Figure 7.6a and Figure 7.6b respectively.

As can be see from the figures, the SPRY and embedded approach with the

best-fit provides a better schedulability in both experiments. In addition, the

difference between SPRY and embedded approach increases in Figure 7.6b.

This is because, the release period of the micro-batching in the second ex-

periment is bigger than the first experiment, therefore, SPRY can potentially

runs the stream processing at a higher priority compared to the embedded

approach. For example, in the first experiment, the release period of a micro-

batching approach with the maximum size of 11 is only 10 time units. This

results in the subtasks generated by the embedded approach running almost

at the highest priority, because the hard real-time task’s period is normally

distributed within 1 and 1000 time units. Therefore, the performance of SPRY

and the embedded approach is very similar.

To test a looser latency requirement, we run the second experiment with a

latency requirement of 1000 time units, and MIT of 10 time units. The results

are shown in Figure 7.7. The difference among different approaches decreases

as the latency requirement increases. The reason is that, increasing the latency

results in extending the range of the maximum possible micro-batching size.

This generates more options for the micro-batching, therefore, increasing the
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(a) The schedulability of the system for a live streaming processing task with a MIT

of 1 time units, WCET of processing each data item of 10 time units, latency of 30

time units, with 128 hard real-time tasks.
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(b) The schedulability of the system for a live streaming processing task with a MIT

of 10 time units, WCET of processing each data item of 100 time units, latency of

300 time units, with 128 hard real-time tasks.

Figure 7.6: The system’s schedulability with different live streaming data

sources.

chance to be schedulable.

Considering a relatively slow data flow, i.e., running the experiment with
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Figure 7.7: The schedulability of the system for a live streaming processing

task with a MIT of 10 time units, WCET of processing each data item of 100

time units, latency of 1000 time units, with 128 hard real-time tasks.

a data flow with the MIT of data items of 2 time units, WCET for processing

each item of 10 time units, and latency requirement of 30 time. Similar results

can be obtained, and they are shown in Figure 7.8. The upper bound of the

utilisation of the hard real-time task set is increased to around 10, as the

requirement computation utilisation of the data flow is 500%.

7.3.2.1 Discussion

When processing a live streaming data source, the computation time required

for processing each data item could be relatively small. SPRY still has a slight

advantage compared to the embedded approach when the period of the micro-

batching is small. However, the advantage increases when the period of the

micro-batching increases, because SPRY can execute the stream processing at

a higher priority by using execution-time servers with a small period.

7.4 Limitations

Throughout the evaluation given in this chapter, SPRY has consistently out-

performed the traditional embedded system approach. However, there are

some scenarios where SPRY does not perform well. This section considers two
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Figure 7.8: The schedulability of the system for a live streaming processing

task with a MIT of 2 time units, WCET of processing each data item of 10

time units, latency of 30 time units, with 128 hard real-time tasks.

such cases: when the stream processing task in batch processing has a small

period with a tight deadline, and when the latency requirement of live data

processing is small. In the former case, the problem is caused by the limitation

of the task allocation approach, and in the later it is due to the theoretical

limitation of micro-batching.

7.4.1 Task Allocation Limitation

This sections discusses an extreme situation, where the stream processing task

runs at almost the highest priority, and the traditional embedded approach

might perform better than SPRY. Considering the experiment that inputs

from a batched data source with a period of 15 time units, 16 data partitions

(WCET of each is 10 time units), and the deadline of 10 time units. The

prologue and epilogue are zero. The results are shown in Figure 7.9.

As can be seen that the embedded approach provides a better performance

than SPRY after the utilisation of hard real-time tasks greater than 170%,

because of the following reasons.

1. In this example, in order to process this batch within the deadline, 16

execution-time servers which can provide 10 time units’ computation
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Figure 7.9: The schedulability of the system for a stream processing task with

a period of 15 time units, 16 data partitions (WCET of each is 10 time units),

and the deadline of 10 time units. The system also has 128 hard real-time

tasks.

time within 10 time units are required, such as 16 servers (with TS = 15,

CS = 10, running at the highest priority).

However, SPRY assumes the hard real-time tasks have been allocated,

then generates a server per core. In this case, the hard real-time task

are allocated into 2 cores with a best-fit, and the remaining 14 cores are

idle. SPRY may generates 14 servers (with TS = 15, CS = 15, running

at the highest priority). These servers are not be able to accommodate

the processing of 16 data partitions within 10 time units.

2. Additionally, due to the ‘double-hit’ phenomenon introduced by the de-

ferrable server, the capacity of the deferrable servers that are generated

by SPRY is a smaller, compared to the WCET of those subtasks gener-

ated by the embedded approach. This makes the schedulability of SPRY

even worse.

As SPRY is not restricted to a execution-time server technology, if the

experiment is re-run by first creating periodic servers for SPRY, then allocat-

ing these servers, and finally allocating hard real-time tasks with a best-fit

allocation, the results are shown in Figure 7.10. The schedulability of using
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Figure 7.10: The schedulability of the system for a stream processing task with

a period of 15 time units, 16 data partitions (WCET of each is 10 time units),

and the deadline of 10 time units. The system also has 128 hard real-time

tasks. Allocating servers before hard real-time tasks.

embedded approach is selected from the best result from best-fit, worst-fit

and random-fit. As can be seen, the new approach provides the best system

schedulability.

However, its difficult to determine which task allocation scheme for SPRY

should be used to get the optimal performance. The task allocation in fully-

partitioned systems has been proved to be NP-Hard [38], therefore, it is dif-

ficult to predict whether we should allocated hard real-time tasks ahead of

SPRY servers, or not. To find a sub-optimal task allocation scheme for SPRY

might require a discontinuous searching algorithm, such as simulated anneal-

ing [89], with heuristics. This is subject to the future work.

7.4.2 Limitations of Real-Time Micro-Batching

The real-time micro-batching approach can not schedule a live streaming data

source, in which the latency requirement L is less than 2 times of the WCET

of processing each item Citem.

Proof. When using real-time micro-batching,

1. The response time Rbatch of processing of each micro-batching (even
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though the size of which is 1) is greater or at least equal to Citem, i.e.,

Rbatch > Citem.

2. According to the conditions required in Section 4.4.1, Rbatch should be

less than or equal to the interval of micro-batching timeout. This indi-

cates the waiting time Waitingitem for the first arrival item is at least

Rbatch, i.e., Waitingitem > Rbatch.

3. For any data item, once the micro batch that contains this item is re-

leased for processing, the response time of processing this item Ritem >

Citem.

The latency of the first data item L = Waitingitem +Ritem, where

Waitingitem > Rbatch > Citem (1 and 2), and Ritem > Citem (3). Therefore,

L > 2×Ritem

Hence, the real-time micro-batching approach can not schedule a live

streaming data source, for which the latency requirement L < 2× Citem. �

However, the exception is that when MIT is greater than the Citem, the

real-time micro-batching can still schedule it. In this case, the real-time micro-

batching is equivalent to a sporadic task with a period of MIT, WCET of

Citem.

7.5 Summary

The effectiveness and feasibility have been demonstrated by the examples pre-

sented elsewhere in the thesis and the prototype implementation. This chapter

has tested our approach under the constraints/assumptions we made: using

a single execution-time server per processor, and the critical instance in anal-

ysis. The experimental results in Section 7.1 has shown that using a single

server per processor does not lose significant schedulability compared to using

multiple servers. In addition, the analysis pessimism has been evaluated via

comparing the results from the analysis with the simulation, in Section 7.2.

The result shows that the amount of the analysis pessimism is small, therefore

only little schedulability is lost.

In addition, the SPRY approach and its supporting analysis has been com-

pared with traditional embedded approaches and its analysis for processing

either batched and live streaming data sources in Section 7.3. The results
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show that the presented SPRY approach provides a better schedulability in

most cases.

As has been discussed in Section 7.4, when the stream processing activity

has a very small period, i.e., itself running at the highest priority, the embed-

ded approach occasionally provides a better results than SPRY, when there

is a very tight deadline. A proposes solution has been given in Section 7.4.1,

and with the proposed approach SPRY still provides a better result. In addi-

tion, the limitation of using micro-batching approach has also been discussed

in Section 7.4. A possible solution to the limitation of the real-time micro-

batching approach will be discussed in the next chapter, to direct the future

work.
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Chapter 8

Conclusions and Future Work

This thesis has presented an approach to integrate stream processing into real-

time embedded systems, where the stream can be processed within the given

time constraints, and all the remaining hard real-time tasks in the same system

remains schedualable.

The success criteria described in Section 1.4 have all been met and are

discussed below.

SC1 The definition of a generic architecture of a real-time stream process-

ing infrastructure, which supports both batched data and live streaming

data sources processing with real-time constraints, and is programming

language independent.

Chapter 3 has developed a real-time stream processing task model, and

an architecture that supports this model, along with its implementation

requirements. This architecture is based on UML, component diagrams,

etc., and does not assume any specific programming language.

SC2 A process for engineering real-time systems that have both hard real-time

and hard or soft stream processing components, which focuses on how this

architecture is to be mapped to the physical platform and how the stream

processing activity for both batched data and live streaming data sources

is configured.

Chapter 4 has defined the process, and examples given in that chapter

along with the case study described in Section 5.6 have demonstrated

how to use our approach, so that not only the data (or live streaming)

can be processed within the given time constraints, but also all the hard
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real-time tasks in the same system can still meet their deadlines. This

includes the server parameter selection, and the pre-allocation of data

partitions, determining the maximum batch size for the micro-batching

when processing a live streaming data source.

SC3 Response time analysis to determine the schedulability of stream pro-

cessing for a batched data source, and latency for a live streaming data

source.

Response-time analysis has been derived in Chapter 5, to guarantee that

the real-time requirements are met. The correctness of the analysis has

been demonstrated in the evaluation Chapter.

SC4 A framework for integrating real-time stream processing activities with

hard real-time components, and its implementation using the Real-Time

Specification for Java (RTSJ).

Chapter 6 has presented a prototype implementation of this architecture

(SPRY) using a modified Java 8 streams library and RTSJ, which gives

the evidence that this real-time stream processing architecture can be

implemented in practice.

SC5 An evaluation that demonstrates that the proposed model is as effective

as a more typical real-time systems model that does not use the stream

processing paradigm.

Experiments in Chapter 7 have evaluated the presented approach and

its supporting analysis against traditional embedded approaches and its

analysis for processing either batched and live streaming data sources.

The results show that our presented approach provides a better schedu-

lability in most cases. In addition, in Section 7.1 and 7.2, our approach

has been tested under the constraints (single server per processor, as

described in Section 3.4) and assumptions (the critical instance of the

epilogue task, in the analysis described in Section 5.4) we made, the

results show that the effectiveness of the presented approach is not un-

dermined by these constraints/assumptions.

These success criteria have been met, and demonstrated the thesis hypoth-

esis (stated in Section 1.3):

Programming languages or existing frameworks’ support for
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stream processing is insufficient for addressing real-time require-

ments. However, a generic architecture of a real-time stream pro-

cessing infrastructure can be created to support predictable and

analysable processing of both batched and live streaming data

sources, and can be used in high-integrity real-time embedded sys-

tems. Moreover, the architecture can be implemented as a frame-

work using Java, with the Java Fork/Join framework and the Real-

Time Specification for Java.

8.1 Key Findings

This section summarises key findings of the thesis. The findings are grouped

under three headings: the stream processing task model, the use of execution-

time servers, the use of Java and the RTSJ.

Stream Processing Task Model

The presented real-time stream processing task model was developed based

on the findings below.

1. Data Parallel Versus Control Parallel – According to the processor

allocation, a stream processing pipeline can be either mapped across

different processors, i.e., control parallel, or duplicated on each processor,

i.e., data parallel. Section 2.3.4 discussed how the main disadvantage of

control parallel is that the amount of parallel execution is limited by

the structure of the algorithm. Moving to a parallel architecture can

require the programmer to redesign their system. In addition, as the

computation time required by each filter is different, therefore, a filter

might be the bottleneck of the whole processing. If there is enough data

items to process then this is not a problem with data parallel, therefore,

data parallel is adopted by our real-time stream processing task model.

2. Lazy Evaluation Versus Eager Evaluation – The pipeline can be

evaluated lazily (i.e., the actual data processing starts when only a fil-

ter that triggers the processing is invoked) or eagerly (i.e, any filter in

this model triggers the processing immediately). In our implementation,

lazy evaluation is adopted as the implementation is based on the Java

8 Stream processing framework. Lazy evaluation also provides potential
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optimisation opportunities, such as avoiding unnecessary evaluation as

discussed in Section 2.3.4. However, lazy or eager evaluation only af-

fects the way to obtain the worst-case execution time, which is an input

parameter to our analysis framework.

The stream processing input data can be either batched data or live stream-

ing data. Data parallel with lazy evaluation is particularly suitable for parallel

processing of batched data with a large volume. For the live streaming data

source, the individual data items are group into micro batches to exploit po-

tential parallel processing architectures, as individual items are not splittable.

This reduces the analysis difficulties, and makes execution-time servers feasible

in practice.

Execution-Time Servers for Predictability

This thesis provides the first use of execution-time servers to perform stream

processing activities. Stream processing can be computationally-intensive.

Hard real-time stream processing work load is known a priori, however, the

soft real-time stream processing activity might make an unpredictable CPU

demand. Execution-time servers runs stream processing task at a higher prior-

ity, minimises the response time of the prologue before the parallel processing,

therefore reducing the whole response time to meet the deadline. Servers also

bound the CPU demand made by stream processing tasks, so that all the hard

real-time tasks in the same system remain schedulable.

Experimental results indicate that most spare capacity can be reclaimed

by using a single server per processor, with limited overheads (see Section 7.5).

In addition, making a stream processing task bound to its server (i.e., align-

ing their releases), enhances the schedulability by avoiding the analysis pes-

simism. Moreover, a bound task is also free of ‘double-hit’ (see Section 5.1.1)

introduced by higher priority deferrable servers, therefore maximising the ca-

pacity that can be reclaimed by deferrable servers. This observation has been

proved, and is a supplement to the original RTA (as described in Section 5.1).

Java and the RTSJ

The SPRY implementation is based on the Java 8 Stream processing frame-

work, and the Real-Time Specification for Java (RTSJ). However, the default

Java 8 stream framework is difficult to be used in a real-time environment:
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• The default Java framework partitions input data dynamically, and these

data partitions are dynamically taken by worker threads using a work-

stealing algorithm. This makes the analysis extra difficult, and even very

pessimism (see Section 2.3.7 and 3.4).

• The restrictions (see Section 2.3.7 and 6.2.1) of ForkJoin framework that

is the underlying processing infrastructure for the Java 8 streams, intro-

duces difficulties to process streams at real-time priorities. For example,

the ForkJoinWorkerThread in a ForkJoin thread pool extends the stan-

dard Java thread, and therefore it is unable to create real-time threads.

In addition, the ForkJoin pool checks if current thread is an instance of

ForkJoinWorkerThread, if not, the ForkJoin pool transfers the process-

ing of data partitions to a global default pool, which is hard-coded.

We modified the data partitioning and allocation algorithm by directly

editing the source code of the ForkJoin pool, so that the processing is pre-

dictable and analysable. In addition, in order to integrate Java 8 streams to

RTSJ, we also modified the source of the the library, so that the ForkJoin

pool can run at real-time priorities. We have suggested changes to JSR 2821

to circumvent this problem by allowing a Java thread to execute at a real-time

priority, which have now been adopted.

8.2 Future Work

There are several possible areas of future research based on the work presented

in this thesis.

Live Streaming Data Processing without Micro-Batching

As has been discussed in Section 7.4.2, the micro-batching approach can not

schedule a live streaming data source with the latency requirement L, which

is less than 2 times of the WCET of processing each item Citem. However, if

we use the MIT of the data items to create servers/sporadic tasks, the period

might be very small, and therefore not practical.

We currently propose an approach that allows each data item to be pro-

cessed individually from a live streaming data source, moreover, our server

1The JCP Expert Group has released a new version of the RTSJ (Version 2.0) in early

2017. This version is compatible with Java 8.
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generation algorithm and analysis equations can be re-used. Our preliminary

work obtains a schedulable micro-batching timeout value, then allocates the

item to its target processor once it arrives at the system. The allocation is

determined by its arriving window, and execution-time servers are generated

based on the timeout value.

In addition, note that, a dynamic approach where each workers tries to take

items from a shared buffer, e.g., the approach used by Reactive Streams [16],

has been investigated with preliminary experiments [72]. The result shows

that this dynamic approach is not adaptable. This is because, for example, a

worker that is running (typically not at the highest priority) on a busy core

takes an item from a live streaming data source, the higher priority hard real-

time tasks might pre-empt the processing of this item for an interval so that

the deadline is missed.

Multiple Streams

As has been discussed in Section 4.5, the current approach targets a single

stream processing task. However, multiple real-time stream processing tasks

can be supported by extending the current approach. For the priority ordering

of the stream processing tasks, a possible solution would be using the dead-

line/latency monotonic priority assignment. As the sever generation approach

presented in Section 4.3.1 is a greedy algorithm, which searches the maximum

possible capacity for each server in each processor. However, a particular

stream processing task might not requires the entire capacity generated by

the algorithm. As also discussed in Section 7.3, a best-fit allocation performs

overall better. Therefore, the possible solution might be reduce the capacity

from the execution-time server generated for the last processor, until the sys-

tem is just schedulable. Then generate the execution-time servers for another

stream processing task using the same approach.

Task Allocation

As has been discussed in Section 7.4, when the stream processing activity has

a very small period (i.e., itself running at the highest priority) and a very

tight deadline, the presented approach does not always provide a better result

when the total utilisation of hard real-time tasks is high. This issues is caused

by the task allocation algorithm, and a possible solution has been given in

Section 7.4.1.
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Its difficult to determine the optimal task allocation scheme for our ap-

proach, as task allocation in fully-partitioned systems has been proved to be

NP-Hard [38]. However, a sub-optimal task allocation scheme might be found

by employing a discontinuous searching algorithm, such as simulated anneal-

ing based on an existing work [89]. In addition, genetic algorithm might also

be employed.

Supporting NUMA/Distributed/Network-on-Chip Platforms

The current analysis mainly considers SMP platforms, the analysis might be

extended to support NUMA architectures. For a distributed system, it requires

the current analysis takes data transmission in the network into account, and

it could be based on an existing work [88].

Moreover, network-on-chip is designed for the many-core processors, in or-

der to mitigate the bottleneck introduced by the bus in traditional CPUs. For

real-time stream processing, messaging delays in a on-chip network requires

to be taken into account for the analysis, possible analysis would be proposed

by extending an existing work [59].

For a more complicated pipeline (or graph) of a stream processing task,

which commonly appears in a distributed system, there are multiple synchro-

nisation stages through the whole processing. Our current analysis could be

extended to support a multi-stage pipeline, as has been discussed in Section 7.2

the amount of analysis pessimism is small. In addition, either the period of

whole pipeline/graph processing could be used for the sever generation, or

breaking the pipeline to multiple sub-pipelines, then treat them as multiple

stream processing tasks, and generate servers for each one of them.

Global Scheduling

Our current architecture targets systems with fully-partitioned scheduling.

Without pinning each worker to a processor, the architecture itself is possible

to be implemented as a framework that executes on a globally scheduled sys-

tem. However, this requires the analysis to be extended so that the stream

processing task model on a globally scheduled system can be analysed.
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Supporting GPU

General-purpose GPUs (GPGPUs) are often used to accelerate the process-

ing of several stream processing workloads, such as image recognition. The

presented approach could be used for real-time stream processing with GPUs.

This might require additional work for the analysis, such as the analysis for

copying data from system memory to the GPU memory. In addition, a real-

time GPU scheduling framework, such as [53], might be required for the im-

plementation.

Implementation in Other Programming Languages

In order to further demonstrate that the presented real-time stream process-

ing architecture is generic, it is possible to implement this architecture using

another programming language, such as Ada, or C with real-time POSIX. It

allows the real-time stream processing paradigm to be introduced as a new

functionality to existing embedded/real-time systems.

Data Allocation

The presented approach that describes how to configure a real-time stream

processing task assumes that the worst-case processing time of a batch’s (or

micro batch’s) partition is not data sensitive. If it is, then the pre-allocation of

partitions to servers might not be appropriate and a more dynamic allocation

might be required to improve the efficiency for the soft real-time case.

8.3 Closing Remarks

Modern real-time embedded systems often involve computational-intensive

data processing algorithms to meet their application requirements, which in-

creases the use of multiprocessor platforms. The stream processing program-

ming model allows user to construct concurrent data processing programs to

exploit the parallelism available on these architectures.

This thesis has proposed a generic real-time stream processing architec-

ture, which allows parallel processing of both batched and live streaming data

sources in a real-time system that also hosts hard real-time tasks, so that not

only the data can be processed within the given time constraints, but also

all the hard real-time tasks remain schedulable. An approach to configuring
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applications for the architecture and the corresponding schedulability analysis

has been developed.

This architecture and its analysis has been evaluated, and the result shows

that the presented approach is effective. Together with the motivating case

study and the prototype implementation of the SPRY framework, we have

provided the evidence that the presented approach is feasible.
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Appendix A

Two-Way ANOVA Analysis

of Benchmarking Results

Analysis of variance (ANOVA) is a general statistical technique, which sep-

arates the total variation in a set of measurements into the variation that is

caused by the real differences among the alternatives being compared, and the

variation introduced by the measurement noise [66].

The two-way ANOVA examines two different independent factors on one

dependent variable, and determines both the main effect of contributions of

each independent factor and if there is an interaction effect between them [21].

Using the approach proposed in [74], the goal of performing two-way anal-

ysis to the benchmarking results is to prove that both implementation frame-

work, and the number of processors have an impact on the benchmark’s re-

sponse times, and also there is significant interaction between them, i.e., the

Java 8 Stream framework and StreamIt have different efficiency.

The null hypothesis is made that both factors (implementation frame-

work/language, and the number of processors) have no effect on the bench-

mark’s response time, i.e., its efficiency. The sample size is 30, and the alpha

value is 0.05, i.e., a statistical significance level of 95%. After performing

the two way ANOVA analysis using MATLAB, the results are presented in

Section A.1 and Section A.2.

The notations used by the following sections are summaries as follows:

• SS – the sum of squares due to each source.

• df – the degrees of freedom associated with each source.
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• MS– the mean squares, which equals to SS
df .

• F – the ratio of the variance calculated among the means to the variance

within the samples.

• Prob>F – the computed probability that the null hypothesis holds. If

this value is close to zero, this casts doubt on the associated null hy-

pothesis.

A.1 SAR Benchmarking Result Analysis

Performing the two-way ANOVA on the response times of the SAR bench-

marks, the results are represented in Table A.1. MATLAB indicates that the

probabilities are all zero.

The following F values are taken from the table [7] of F probability distri-

bution for a given level of statistically significance.

• FFramework(4, (299− (4 + 1 + 4))) = 2.3719

• FProcessors(1, (299− (4 + 1 + 4))) = 3.8415

• FInteraction(4, (299− (4 + 1 + 4))) = 2.3719

As we can see, FFramework and FProcessors are much larger than the max-

imum value in the F distribution table. It indicates that the hypothesis is

rejected, i.e., not only the implementation framework, but also the parallelis-

m/processors have effect on the efficiency. In addition, FInteraction is also much

later than the maximum value in the F distribution table, indicating that there

is an interaction effect between them, i.e., Java 8 streams and StreamIt have

different efficiency in this SAR stream processing benchmark.

A.2 Filter Bank Benchmarking Result Analysis

Performing the two-way ANOVA on the response times of the filter bank

benchmarks, the results are represented in Table A.2. The result indicates that

the probabilities are all very close to zero, such as 4.36603936546411×10−184.

Employing the same approach, the F values are taken from the F distri-

bution table as follows.

• FFramework(4, (299− (4 + 1 + 4))) = 2.3719
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• FProcessors(1, (299− (4 + 1 + 4))) = 3.8415

• FInteraction(4, (299− (4 + 1 + 4))) = 2.3719

As can be seen, the similar conclusion can be drawn that Java 8 streams

and StreamIt have different efficiency in the filter bank stream processing

benchmark.
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Appendix B

Response Time Analysis for

the Traditional Embedded

Approach

The analysis for the traditional embedded approach is similar to the approach

for SPRY. However, all the timing analysis is based on RTA (see Section 5.1),

rather than RTA under execution-time servers.

The execution of a subtasks generated by the traditional embedded ap-

proach can be divided into the following phases:

1. Sequential before the data splitting, and the splitting (i.e., the prologue

subtask),

2. The parallel stream processing, and

3. The epilogue subtask executing.

The worst-case execution time of the phase 1, and phase 3 are represented

by C1
i , and C3

i . The The worst-case execution time required for processing an

data partition in phase 2 is Citemi .

The critical instance occurs when

• The prologue subtask is released at the same time, i.e., time 0, with all

the hard real-time tasks in the prologue processor.

• Each remaining subtask and all the hard real-time tasks are release at

time RPrologue.
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• The epilogue subtask is released at the same time with all the hard real-

time tasks in the same processor, in the case where the epilogue subtask

is not merged into another task.

Consider a stream processing task τi, where its prologue subtask is executed

by processor Pτi . The parallel processing uses processors P0 to Pn−1, including

Pτi , where n ≥ 1. In a fully partitioned system, the prologue (phases 1) are

performed on processor Pτi , then all the allocated processors are used for

the parallel processing, and finally the epilogue is executed on processor Pτi .

Phase 3 only starts after all parallel sections of phase 2 are complete.

The prologue can be analysed as a whole using the analysis techniques

described in Section 5.1 with jitter (Ji = 0), load (Ci = C1
i ), and the period

of Ti, i.e., the stream processing task’s period; the worst-case response time

R1
i of executing the prologue can be calculated.

The parallel processing of the data partitions starts once the prologue is

finished. According to the allocation scheme (i.e., worst-fit or best-fit), we

can calculate the worst-case execution time for the data partitions that were

allocated to each processor. For example, n partitions were allocated to a

processor Pi, then the worst-case execution time for data processing in Pi can

be calculated by:

C2
Pi = Citemi × n

Then, the next step is to calculate the time when the parallel data pro-

cessing in each processor completes:

• For processor Pτi the prologue and the allocated data processing can be

treated as a whole. Therefore the worst-case response time R
2,Pτi
i of this

whole execution in this processor can be calculated by using the analysis

techniques described in Section 5.1 with jitter = 0, load = C1
i + C2

Pτi
,

and a period of Ti.

• For each of the other processors Pi, Pi 6= Pτi , the processing is released

at R1
i .The worst-case response time R2,Pi

i for the stream processing in

this processor can be calculated using the analysis techniques described

in Section 5.1 with jitter = 0, load = C2
Pi

, and a period of Ti.

When considering the response time of each individual data item. For any

data item, the response time of this item can be calculated by removing the

workload of processing all items after this item in this processor and then

repeating the above steps.
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The response time of the parallel data processing phase is the maximum

of all involved processors:

R2
i = max(R

2,Pτi
i ,max(R2,Pi

i +R1
i )), wherePi 6= Pτi

Finally we consider the epilogue subtask (phase 3). In the case where the

epilogue task is merged into another task, the response time of the stream

processing is R2
i . Otherwise, the worst-case situation is that is when it is re-

leased (after the barrier synchronisation detailed above), all the higher priority

hard real-time tasks are release at the same time. Therefore, the worst-case

response time R3
i for phase 3 can be calculated using the analysis techniques

described in Section 5.1 with the jitter = 0, load = C3
i , and period of Ti.

Finally, the worst-case response time of τi is calculated by:

Ri = R2
i +R3

i

Note that, the assumed critical instance might not ever occur, therefore,

introducing pessimism in the analysis. However, using the same approach

presented in Section 7.2, the results of the analysis and the simulation are

shown in Figure B.1. As can be seen, the amount of pessimism is small, the

accuracy of the analysis is acceptable.
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Figure B.1: The accuracy of the presented analysis approach for the traditional

embedded approach.
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