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Abstract 

 

Staphylococcus aureus is a common human pathogen and a major cause of infective 

endocarditis (IE), an infection of native as well as prosthetic heart valves. The 

fibronectin-binding protein of S. aureus (FnBPA) is a cell-wall attached adhesin that 

is closely linked with the development of IE owing to its ability to bind the plasma 

glycoproteins fibrinogen (Fg) and fibronectin (Fn). The FnBPA molecule contains 

adjacent Fn- and Fg-binding regions. Previous studies identified eleven intrinsically 

unstructured, homologous repeats from FnBPA (FnBRs) that bind Fn through an 

unusual tandem β-zipper mechanism. It was proposed that the Fg-binding region of 

FnBPA comprised two domains, N2 and N3, with predicted IgG folds. The main 

focus of this work is to characterise the FnBPA-Fg interaction, to define the 

N2N3/FnBRs boundary and to determine whether simultaneous binding of Fg and 

Fn to FnBPA is affected by cooperativity or potential steric effects.  

 

Surface plasmon resonance in conjunction with isothermal titration calorimetry 

showed that the FnBPA N2N3 region retains the Fg-binding activity of intact 

FnBPA. X-ray crystallography of N2N3 in complex with the Fg-peptide revealed the 

location of the Fg binding site on N2N3 and that a β-zipper was formed upon Fg 

binding. A range of new biophysical data led to a redefined N2N3/FnBRs boundary, 

which, in the form of a ten residue long flexible linker, comprised more residues than 

originally thought. Simultaneous binding of Fg and the N-terminal domain of Fn to 

an rFnBPA construct, consisting of the N2N3 region and the first FnBR, was 

demonstrated for the first time. However, simultaneous binding was not observed 

when intact Fg and Fn were used, providing the first preliminary evidence for the 

importance of steric hindrance in regulation of the ternary complex formation. 
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1 Introduction 
 

1.1 Staphylococcus aureus 
 

Staphylococcus aureus is a facultative anaerobic Gram-positive bacterium and a 

major human pathogen (Foster, 2004; Foster, 2005). S. aureus is a subspecies of the 

genus Staphylococcus which belongs to the bacterial family Staphylococcaceae. 

Staphylococci have a characteristic spherical shape, approximately one micron in 

diameter, are non-motile and do not form spores. Cell division occurs successively in 

three perpendicular planes with sister cells remaining attached following each 

division, resulting in formation of irregular clusters of cells (Figure 1.1).  

Figure 1.1 Staphylococcus aureus. High magnification (x20 000) of a scanning electron micrograph, 

depicting clusters of the vancomycin-resistant strain of S. aureus (CDC, 2008).  

 

Most commonly a commensal organism, S. aureus permanently colonises the skin 

and nasal mucous membranes of approximately 20% of the population, and up to 

60% intermittently (Bergqvist, 1950; Gould and Mc, 1954; Duncan et al., 1957; 

Rippon and Vogelsang, 1956). As a major nosocomial pathogen, S. aureus is 

associated with infections of surgical wounds and indwelling medical devices 

(Arrecubieta et al., 2006). Taking advantage of compromised host defence 

mechanisms, namely mucosal breaches and impaired host immunity, S. aureus is 

implicated in the aetiology of superficial skin lesions as well as primary infections 

such as osteomyelitis and infective endocarditis (IE) (Claro et al., 2011; Piroth et al., 

2008).  
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S. aureus expresses an array of potential virulence factors that facilitate immune 

evasion as well as colonization and infection of the human host. These factors 

include adhesins (Fibronectin-binding protein A, Clumping factor A, Protein A) 

(Edwards et al., 2010; O'Brien et al., 2002a; Uhlen et al., 1984), leukotoxins 

(γ-haemolysin, Panton-Valentine leukocidin) (Menestrina et al., 2003), enterotoxins 

(superantigenic toxic shock syndrome toxin-1) (Chesney et al., 1984), the ability to 

block recognition by neutrophils (through secreted superantigen-like protein) (Wines 

et al., 2006) and resistance to both lysozyme (membrane-bound O-acetyltransferase) 

and to oxidative stress (Toll-like receptor 2) (Bera et al., 2005; Watanabe et al., 

2007). However, the most concerning aspect of S. aureus virulence is its acquired 

resistance to antibiotics and in particular the rate at which new resistant strains 

evolve (Diekema et al., 2001). Methicillin-resistant S. aureus (MRSA) is now 

recognised as a worldwide nosocomial pathogen accounting for up to 60% of all 

nosocomial infections in some parts of the developed world (Fluit et al., 2001; 

Tiemersma et al., 2004). Moreover, relatively recent cases of community-acquired 

MRSA have been reported and are becoming more frequent (Baba et al., 2002; 

Naimi et al., 2001; Adhikari et al., 2002; Dufour et al., 2002). Isolation of the first 

MRSA strain resistant to vancomycin (the therapeutic antigen effective against 

MRSA) (VRSA) in 1996 (Hiramatsu et al., 1997), demonstrates the adaptability of S. 

aureus and highlights the need for new therapeutic targets and agents.  

 

1.2 Infective Endocarditis (IE) 
 

IE is a life-threatening disease associated with infection of the endocardium (heart 

endothelium), particularly the heart valves, and with embolism (Que and Moreillon, 

2011). IE has a relatively low median incidence of 3.6 per 100 000 per year 

worldwide (de Sa et al., 2010; Delahaye et al., 1995) albeit with a very high 

mortality of up to 40% that is dependent on the type of pathogen, underlying 

condition of the patient and whether a native or prosthetic valve is infected (Hasbun 

et al., 2003; Chirouze et al., 2004). IE can be classified into one of four groups; 

left-sided native-valve IE (the most frequent) (Murdoch et al., 2009), left-sided 

prosthetic-valve IE (the most severe) (Wang et al., 2007), right-sided IE and 

healthcare-associated IE (Wilson et al., 2002; Benito et al., 2009). The epidemiology 

of IE has been altered as a result of medical progress. Whilst in the past IE was 

restricted mainly to children and young adults with chronic heart conditions, 
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currently the main risk groups include intravenous drug users, patients with 

prosthetic valves or catheters, patients undergoing haemodialysis and elderly 

individuals with degenerative valve lesions (Normand et al., 1995; Wilson et al., 

2002). Similarly, the change in epidemiology also correlates with a change in the 

microbiology of IE. Whilst streptococci remain the predominant pathogens in the 

general population, S. aureus is the major cause of IE in intravenous drug users and 

of healthcare-related IE (Table 1.1) (Que and Moreillon, 2011).  

 

Pathogen N valve  

CA-IE               HA-IE              ID-IE  

    N        N-N 

P valve 

E-IE      L-IE 

S. aureus 20 47 42 68 36 18 

Coagulase-negative 

staphylococci 
6 12 15 3 17 20 

Enterococcus 9 14 17 5 8 13 

Viridians streptococci 28 11 6 10 2 10 

Streptococcus bovis 10 3 3 1 2 7 

HACEK 3 0 0 0 0 2 

Fungi 0 2 2 1 9 3 

Other 14.6 7.5 10 3 6 14 

Negative blood culture 11 5 6 5 17 12 

Table 1.1 The microbiology of IE. The incidence of each pathogen (%) within infections of different 

patient groups. The patients were divided into two main groups; native (N) (Benito et al., 2009; 

Murdoch et al., 2009) and prosthetic (P) (Wang et al., 2007) valve infections, which were then further 

divided into sub-groups; community-acquired IE (CA-IE) (n-1065), healthcare-associated IE (HA-

IE) (n-557), nosocomial (N) (n-303), non-nosocomial (N-N) (n-254), intravenous drug users (ID-IE) 

(n-237), early IE (E-IE) (n-53) and late IE (L-IE) (n-331). The number n corresponds to the number 

of patients tested within each group. HACEK abbreviation stands for; Haemophilus species (H. 

parainfluenzae, H. aphrophilus and H. paraphrophilus), Actinobacillus actinomycetemcomitans, 

Cardiobacterium hominis, Eikenella corrodens, and Kingella species. The table summarises data 

from, Benito and colleagues (2009), Murdoch and colleagues (2009) and Wang and colleagues (2007) 

and was adapted from Que and Moreillon (2011). 

 

The initial stage in the pathogenesis of IE is completed within minutes of infection 

and involves colonisation of heart valves by bacteria in the bloodstream (Moreillon 

et al., 2002). The primary attachment of the bacteria to the endocardium is facilitated 
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by haemostatic events, which occur in response to the appearance of physical lesions 

that expose the subendothelial extra-cellular matrix (ECM). The most common 

causes of the lesions include valve damage by turbulent blood flow, catheters, 

electrodes, inflammation or exposure to chemicals/materials (in intravenous drug 

users) (Croft et al., 2004; Stehbens et al., 2000). The primary stage of valve 

colonisation is followed by maturation of the vegetation, further recruitment of 

platelets and ECM proteins, and eventual bacterial shedding causing continuous 

bacteraemia and embolization of the vegetation fragments. Consequently, IE is 

considered as a serious systemic infection which remains universally lethal unless 

aggressively treated with a combination of antibiotics (Baddour et al., 2005; Habib et 

al., 2009).  

 

1.3 Platelets 
 

Human platelets are small and anucleated megakaryocyte-derived cells essential to 

numerous pathophysiological processes including haemostasis, thrombosis, vessel 

repair, inflammation and host defence (Furie and Furie, 2005; Ruggeri et al., 1999). 

Abnormalities in platelet function lead to numerous disorders, clinically presenting 

with excessive bleeding or thrombosis (George et al., 1990; George and Shattil, 

1991). Platelets have a characteristic discoid shape with the dimensions of 2 - 4 by 

0.5 µm, a lifespan of approximately 5 - 10 days and, under normal circumstances, up 

to 450 x 10
9
/l can be found circulating in the blood stream (Figure 1.3A) (George, 

2000). The surface of the platelet membrane is covered with a variety of receptors, 

most of which are involved in haemostasis (Rivera et al., 2009). Internally, the 

platelets contain two types of secretory granules, dense and α, which contribute to 

the platelet aggregation and coagulation process. The dense granules secrete ADP, 

serotonin and Ca
2+

, while the α-granules secrete an array of proteins including von 

Willebrand factor (vWF), Fibrinogen (Fg), P-selectin, additional integrin GPIIbIIIa 

(Section 1.3.1) and thrombospondin (Blair and Flaumenhaft, 2009). The content of 

both the dense granules and the α-granules is relevant to platelet haemostatic 

function. The platelet cytoplasm comprises mainly actin and myosin allowing 

changes in shape and clot retraction (Andrews and Berndt, 2004). Under normal 

circumstances, and in the absence of activating stimuli, the platelets remain in a 

resting state constantly surveying the integrity of the vasculature in order to prevent 

blood loss in the event of tissue trauma (Michelson, 2003). 
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1.3.1 Integrin GPIIbIIIa (αIIbβIII)  
 

Integrins are a group of transmembrane heterodimers that play a key part in diverse 

processes that require interactions between cells, or between a cell and the matrix, 

such as embryogenesis, haemostasis, thrombosis, cancer metastases or lymphocyte 

helper and killer cell function (Hynes, 1992). There are 24 different heterodimers in 

mammals generated by combinations of 18 integrin α and eight β subunits 

(Humphries, 2000). Glycoprotein IIbIIIa (GPIIbIIIa) (235 kDa) is the most abundant 

platelet integrin (40 000 - 80 000 copies on the surface of resting platelets) and is 

essential for platelet aggregation due to its ability to bind Fg, fibronectin (Fn), vWF 

and vitronectin (Bennett, 2005). The two subunits IIb and IIIa are expressed, 

assembled and processed in megakaryocytes. The integrin heterodimer comprises a 

large extracellular domain, a small cytoplasmic domain and a short transmembrane 

spanning region (Rocco et al., 2008). Each IIb subunit contains 1008 residues that 

form two polypeptide chains connected by a disulfide bond. The ectodomain of IIb 

comprises two Calf domains, a Thigh domain and a β-propeller domain. IIb is 

associated non-covalently, and in a Ca
2+

 dependent manner, with the IIIa subunit 

ectodomain which contains 762 residues consisting of a β-Tail, four I-EGF repeats, a 

PSI (plexin, semaphoring and integrin) domain, a hybrid domain and a β1 domain 

(Figure 1.2A) (Bennett, 2005; Xiao et al., 2004). Fg is the major ligand for 

GPIIbIIIa, targeting specific sites within the amino terminal ends of both the IIb and 

IIIa domains. The binding site consists of the β1 specificity determining loop (SDL) 

and a cap subdomain composed of four β-propeller loops. Fg binding to GPIIbIIIa is 

divalent cation dependent and the Fg-binding site contains three metal-binding sites. 

The Mg
2+

-binding site (MIDAS; metal ion-dependent adhesion site) is located in the 

centre of the Fg-binding site. The other two metal-binding sites bind Ca
2+

 and are 

located distal to the β-propeller (ADMIDAS - adjacent to MIDAS) and near the 

β-propeller LIMBS (ligand-induced metal binding site) (Springer et al., 2008).  

 

1.3.2 GPIIbIIIa activation 
 

The integrin GPIIbIIIa ectodomain occupies two conformational states: the compact 

low affinity conformation and the open and extended high affinity conformation 

(Figure 1.2B). As a result of the change in conformation, the binding site, which is 

located in the head piece of the ectodomain, becomes readily accessible to potential 
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ligands. Structural rearrangement of the extracellular domains, leading to exposure 

of ligand-induced binding sites (LIBS) and activation of GPIIbIIIa, is induced by a 

combination of inside-out and outside-in signalling events. It has been shown that 

the change from the lower to the higher affinity state of GPIIbIIIa can be triggered by 

exposure to an excessive concentration of peptides containing either the GRGDSP or 

HHLGGAKQAGDV sequences (Du et al., 1991). It has been proposed that 

S. aureus could be capable of inducing such conformational changes in the integrin 

ectodomain by adhering to a large number of Fg and Fn molecules which contain 

both the RGD and the AGDV sequences.  

Figure 1.2 Integrin GPIIbIIIa activation. (A) The extended model of integrin GPIIbIIIa as 

generated by homology modelling (Rocco et al., 2008). (B) Different stages of integrin activation are 

represented by three conformations with varying affinities to ligands. (1) The compact conformation 

represents the low-affinity state with the ligand-binding sites mostly occluded. (2) The extended form 

with the closed headpiece conformation exhibits intermediate affinity. (3) By switching the angle 

between the β1 and hybrid domains from acute to obtuse, the headpiece changes to an open 

conformation, resulting in an activated high-affinity state of the GPIIbIIIa ectodomain. Figure adapted 

from Xiao and colleagues (2004). 

 

1.3.3 Platelet activation 
 

Platelet activation and aggregation is a complex process requiring the coordination 

of numerous events that lead to the formation of a stable platelet plug (Ruggeri and 

Mendolicchio, 2007). Following a vessel injury and exposure of the subendothelial 

ECM, platelet surface receptors GPIb and GPVI interact with the ECM components 

vWF and collagen, respectively, in a primary response leading to initial platelet 

B A 

1 

 2 3 



Chapter 1 

22 

 

tethering and activation. Adhesion of the platelets triggers a signalling cascade 

resulting in cytoskeletal remodelling, spreading and shear-dependent membrane 

tether formation (Figure 1.3A), secretion of coagulation mediators from both the 

dense granules and the α-granules, inside-out signalling activation (Section 1.3.2) 

and upregulation of GPIIbIIIa (Blair and Flaumenhaft, 2009; Andrews and Berndt, 

2004). Although Fg is the main GPIIbIIIa ligand, Fn and vWF also bind GPIIbIIIa, 

which facilitates inter-platelet interactions that lead to recruitment of additional 

platelets, rapid aggregation and adhesion to the initial layer of platelets on the vessel 

wall (Figure 1.3B) (Andrews et al., 2004). The activated platelet aggregate has an 

upregulatory effect on the coagulation cascade (Section 1.4.2), resulting in further 

stabilization of the clot by a fibrin network. The multitude and complexity of the 

interactions involved in aggregation allows the formation of a stable platelet plug in 

the in vivo haemodynamic conditions, which range from low wall shear rates in 

venules (<500 s
-1

) to shear rates as high as 40 000 s
-1

 in stenosed arteries (Jackson, 

2007).  

Figure 1.3 Platelet adhesion and aggregation under flow. (A) Scanning electron microscopy 

images of (top left) a single discoid platelet forming initial membrane tethers, (top right) the 

formation of adhesion contacts between platelets via membrane tethers (arrows), (bottom left) the 

aggregation of discoid platelets around a central activated platelet and (bottom right) the 

development of a stable aggregate associated with platelet shape change and extension of filopodial 

projections. Images from Jackson (2007). (B) A simplified diagram depicting the process of platelet 

aggregation under shear rate, highlighting the multiple receptor-ligand interactions. Figure adapted 

from Jackson (2007). 

A B 
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1.4 Fibrinogen (Fg) 
 

1.4.1 Overview 
 

Fibrinogen is a 340 kDa glycoprotein synthesised primarily in hepatocytes and found 

either as a soluble protein in plasma (at a concentration of approximately 3 mg/ml) 

or as a part of the ECM (Herrick et al., 1999). Fg is a major blood clotting agent 

essential to numerous biological processes including wound healing and haemostasis 

(Ni et al., 2000). Fg is a dimer of trimers comprising two identical sets of three 

individual polypeptide chains Aα, Bβ and γ. Letters ‘A’ and ‘B’ designate respective 

fibrinopeptides cleaved by thrombin upon Fg conversion to fibrin (Section 1.4.2). 

The Bβ chain comprises 461 residues (56 kDa), while several variants of Aα and γ 

chains exist as the direct result of alternative splicing. The major form of the Aα 

chain contains 610 residues (70 kDa). The most frequent γ chain form is called γA or 

γ and comprises 411 residues (48 kDa) (Kollman et al., 2009). The minor γ chain 

variant, called γ’, contains a unique sequence of 20 anionic amino acids (γ’408-427) 

in place of the C-terminal AGDV residues found in the γA variant. The entire native 

Fg dimer is held together by 29 disulfide bonds and is divided into a single central E 

region linked to two outer D regions via coiled-coil connectors (Figure 1.4) (Medved 

and Weisel, 2009).  

Figure 1.4 Structure of the Fg dimer. The crystal structure (PDB entry – 3GHG) depicts Fg 

comprising two sets of chains, Aα (magenta), Bβ (coral) and γ (blue) joined at the N-terminal ends. 

The αC regions are indicated (ellipse) and the disordered γ chain C-termini (including the last four 

C-terminal residues AGDV) are suggested by a dotted line. The C-terminal D regions are connected 

to the N-terminal E region by coiled-coil connectors (Kollman et al., 2009).  
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1.4.2 Fg conversion to fibrin 
 

In the event of inflammation the synthesis of Fg radically increases and, once at the 

site of injury, the soluble Fg is converted to insoluble fibrin fibres, the building 

blocks of a blood clot. This provisional clot is essential to processes including 

haemostasis, cell migration and wound healing. Conversion of soluble Fg to fibrils, 

which cross-link to form insoluble fibrin, is one of the final steps of the coagulation 

cascade (Mosesson, 2005). The concept of haemostasis as a cascade of sequential 

enzymatic conversions following one of two distinct pathways (intrinsic or extrinsic) 

provides an easily conceptualized overview of the process (Figure 1.5). The 

coagulation cascade is governed by a complex regulatory mechanism and involves 

sequential activation of numerous zymogens ultimately leading to generation of 

excessive amounts of thrombin (thrombin burst) (Mann et al., 2006; Adams and 

Bird, 2009). The proteolytic action of thrombin, in combination with the activation 

of factor XIII (FXIIIa), leads to conversion of Fg to fibrin and ultimately a stable 

fibrin network. The clot is protected from fibrinolysis by thrombin activatable 

fibrinolysis inhibitor (TAFI) (Nesheim et al., 1979; Tracy et al., 1992). 
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Figure 1.5 Coagulation cascade. The cascade model of coagulation depicts the two interlinked 

pathways leading to thrombin activation and subsequent conversion of Fg to fibrin. Terms denoting 

individual coagulation factors comprise F followed by the type of the factor, and the ‘a’ at the end of 

the term indicates the active form. Figure adapted from Adams and Bird (2009). 

 

The process of fibrin assembly is initiated by cleavage of the N-terminal 

fibrinopeptide A (FpA) by thrombin. As a result a polymerization site EA, extending 

over residues 17-20 (GPRV) of the α chain, is exposed and is free to interact with the 

complementary binding pocket (DA) located between residues γ337-379 of the D 

region. Intermolecular association between EA and DA leads to the formation of 

half-staggered, double-stranded protofibrils (Fowler et al., 1981; Ferry, 1952) 

(Figure 1.6). Fibrin assembly can also be initiated by the removal of the N-terminal 

fibrinopeptide B (FpB), albeit at a slower rate (Blomback et al., 1978). Cleavage of 
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FpB also releases the αC regions which can subsequently participate in the 

intermolecular interactions between neighbouring fibrils. Monomeric fibrin and 

fibrin fibrils undergo FXIIIa (plasma protransglutaminase)-catalysed cross-linking 

(γ406Lys of one chain and γ398/399Glu of another) through intermolecular ε-(γ-

glutamyl) lysine covalent bonds (Doolittle et al., 1971; Standeven et al., 2005). 

FXIIIa also mediates the interaction between the αC regions. Resulting simultaneous 

lateral fibril association and branching leads to formation of an extensive network 

(Figure 1.6) (Mosesson, 2005).  

 

 

Figure 1.6 Fg polymerization and fibrin crosslinking. (A) Cleavage of FpA (brown) by thrombin 

enables polymerization of Fg into fibrils. (B) Thrombin removal of FpB (cyan) releases αC regions. 

FXIIIa crosslinking (yellow) of the γ chain C-termini as well as the αC regions leads to formation of 

fibrin fibres. Figure adapted from Standeven and colleagues (2005).  

 

1.4.3 Fg-platelet interaction 
 

Interactions of Fg with platelets occur via multiple integrin receptors located on 

platelet surfaces. Each Fg monomer contains several potential binding sites that can 

interact with integrin receptors, two RGD (Arg-Gly-Asp) motifs (Aα 95-98 and 572-
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574) and a unique C-terminal AGDV (Ala-Gly-Asp-Val) motif (γ 408-411). Whilst 

both motifs have the ability to bind most integrin receptors, the AGDV appears to be 

the preferred target for the most abundant platelet integrin GPIIbIIIa (Section 1.3.1) 

(Springer et al., 2008; Fitzgerald et al., 2006a; Hoekstra et al., 1995). The AGDV 

motif represents the four most C-terminal γ chain residues located within a larger 

region extending over a minimum of 17 residues, which is also targeted by FnBPA 

and ClfA (Wann et al., 2000; Hawiger et al., 1982). The C-terminus is highly 

susceptible to proteolysis suggesting that a large portion of this region is solvent 

exposed (Yee et al., 1997; Kollman et al., 2009). Using protease inhibitors, the Fg D 

region terminating with residue γ403, was produced. Studies of the D region 

revealed three different conformations for residues 392-403, mainly arising from the 

differences in the local crystal packing, which also points to the flexible nature of the 

C-terminus. NMR studies of the γ chain C-terminus, using the synthetic peptides 

γ385-411 and γ392-411, indicated a low population of ordered structure with the 

exception of loops and β turns (Blumenstein et al., 1992). However, it is important to 

note that these studies were performed on peptides and that within intact Fg 

stabilizing interactions might exist.  

 

1.5 Fibronectin (Fn) 
 

1.5.1 Overview 
 

Fibronectin, a product of hepatocytes, is a glycoprotein found either as a soluble 

component of human plasma (at a concentration of approximately 0.3 mg/ml), or as 

a part of the ECM (Matsuda et al., 1978; Hynes, 1985). The carbohydrate content of 

plasma Fn is approximately 6%, however, very little is known about the role of 

glycosylation (Ruoslahti et al., 1981). Fn is a complex molecule and an important 

host adhesin implicated in a wide range of interactions including binding to heparin, 

transglutaminase, DNA and fibrin (Hynes and Yamada, 1982). Fn contains a 

gelatin-binding domain (GBD) (
6
Fn1-

9
Fn1) and an integrin-binding RGD loop 

(
10

Fn3) (Figure 1.7A) (Henderson et al., 2010; Pankov and Yamada, 2002). The 

major form of Fn is a heterodimer comprising two different isoforms (between 230 

and 270 kDa) of the Fn monomer, linked at the C-terminus by disulfide bonds. Each 

Fn monomer consists of three different types of modules, F1, F2 and F3 (Figure 

1.7B). Different module types do not share a high level of sequence homology, 
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however they all contain β-sheets (Potts et al., 1999; Sticht et al., 1998; Main et al., 

1992). The N-terminal domain (NTD) of Fn is composed of five F1 modules (
1
F1-

5
F1) and the sequence is highly conserved across species (Potts and Campbell, 

1996). NTD is involved in the formation of Fn fibrils, which can then bind to other 

components of the ECM (Schwarzbauer and Sechler, 1999). Modules 
2
F1-

5
F1 also 

bind to FnBRs of FnBPA via a tandem β-zipper with nanomolar affinity, as 

described in section 1.6.1 (Schwarz-Linek et al., 2003; Meenan et al., 2007). The 

level of plasma Fn is regulated by β1 integrin-dependent endocytosis and subsequent 

degradation (Sottile and Chandler, 2005). 

Figure 1.7 Fn domain composition. (A) Domain organization of Fn. The Fn monomer is comprised 

almost entirely of three module types, F1 (cyan), F2 (brown) and F3 (grey). NTD (
1-5

F1 modules), 

GBD and the integrin-binding RGD motif are highlighted. The positions of the alternatively spliced 

regions EDA, EDB and IIICS, and the location of the intra-chain disulfide bonds are also indicated. 

(B) Ribbon representations of the crystal structures of the three individual Fn modules including 

disulfide bonds (yellow) and labelled termini. The F1 module (PDB entry 1QGB) (cyan) forms a five 

strand structure comprising stacked two- and three-strand β-sheets (Potts et al., 1999). The module is 

stabilized by two disulfide bonds, one formed between the two β-sheets and one between the two 

C-terminal β-strands. The F2 module (PDB entry 2FN2) has an irregular structure containing a 

combination of β-strands and loops, stabilized by a pair of disulfide bonds (Sticht et al., 1998). With 

90-100 residues, the F3 module (PDB entry 1TTF) is the largest of the three modules (Main et al., 

1992). It is composed of a typical β sandwich with a three-stranded β-sheet stacked onto a 

four-stranded β-sheet. The structure contains no disulfide bridges for stabilisation.  
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1.5.2 Fibril formation 
 

The conversion of Fn to insoluble fibrils, and subsequent incorporation into the 

ECM, plays a key role in the formation, maintenance and turnover of the ECM, but 

also facilitates cell attachment to the ECM (Sottile and Hocking, 2002; Sottile and 

Chandler, 2005; Pereira et al., 2002). The extended fibrils are generated by 

NTD-dependent self-association of Fn dimers (Schwarzbauer, 1991). However, due 

to intramolecular interactions the plasma Fn dimer adopts a compact and inactive 

conformation with occluded NTDs (Erickson and Carrell, 1983). Consequently, a 

conformational change has to take place to enable fibril formation (Mao and 

Schwarzbauer, 2005). Such a conformational change is induced upon Fn binding to 

numerous cell surface integrins via the RGD motif, with α5β1 representing the main 

target (Schwarzbauer and Sechler, 1999; Sottile and Wiley, 1994). The interaction 

with the integrins on the cell surface triggers a plethora of signalling events inside 

the cell, with the main cascade involving FAK phosphorylation and Src kinase 

recruitment leading to reorganisation of the actin cytoskeleton (Friedland et al., 

2009). Resulting mechanical forces exerted by cells cause Fn to undergo a 

conformational change from the compact to a more extended state. NTD is exposed 

as a consequence, initiating Fn self-assembly and fibril formation (Schwarzbauer and 

Sechler, 1999).  

 

1.6 Staphylococcal adhesins 
 

A group of S. aureus extracellular proteins collectively referred to as MSCRAMMs 

(microbial surface components recognizing adhesive matrix molecules) (Patti and 

Hook, 1994) represent cell-surface adhesins that specifically recognise and interact 

with components of the ECM including Fn, Fg, collagen, elastin or keratin (Froman 

et al., 1987; Zong et al., 2005; Roche et al., 2004; McDevitt et al., 1995; O'Brien et 

al., 2002b). Fn-binding proteins A and B (FnBPA/B) and Clumping factors A and B 

(ClfA/B) are examples of S. aureus MSCRAMMs and they have been implicated in 

colonisation and invasion of host cells (Piroth et al., 2008; Roche et al., 2004; 

Schaffer et al., 2006; Arrecubieta et al., 2006). While ClfA and ClfB bind 

specifically to Fg (Ganesh et al., 2011; Ganesh et al., 2008), both FnBPA and 

FnBPB are bi-functional proteins that interact with both Fg and Fn (Wann et al., 

2000; Burke et al., 2010). Results of several studies, both in vitro and in vivo, 
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identified FnBPA of S. aureus as a crucial virulence factor implicated in IE (Heying 

et al., 2007; Piroth et al., 2008; Que et al., 2005) and showed that FnBPA alone 

confers the ability to promote experimental endocarditis (EE) by the otherwise 

non-pathogenic Lactococus lactis (Moreillon et al., 2001). Experiments involving 

truncated derivatives of FnBPA, as well as heterologous gene expression, revealed 

Fg-binding is responsible for early valve colonization and induction of IE, while 

Fn-binding is required for invasion of the endothelium and persistence of infection 

(Piroth et al., 2008; Heying et al., 2009). These results suggest that synergy between 

Fg and Fn binding might lead to more efficient infection, potentially rendering 

FnBPA the prime factor in the aetiology of S. aureus IE.  

 

FnBPA is a complex extracellular adhesin encoded by the fnbA gene. A survey of 

clinical isolates revealed that the majority also contained the fnbB gene for FnBPB 

(Peacock et al., 2000). Both FnBPA/B share high sequence identity (95% for the 

Fn-binding region (FnBR) and 45% for the N-terminal Fg-binding region) (Burke et 

al., 2010), and are implicated in IE development (Figure 1.8) (Fitzgerald et al., 

2006b). FnBPA consists of an N-terminal secretory signal sequence required for 

Sec-dependent secretion, followed by the Fg- and elastin-binding A-domain and 

adjacent Fn-binding region. The C-terminus contains proline-rich repeats, cell wall 

and membrane spanning regions, and a sortase recognition motif (LPETG) that is 

required for anchoring the protein into the cell wall (Wann et al., 2000; Schwarz-

Linek et al., 2003; Keane et al., 2007b) (Figure 1.8A). Similarities in structural 

organisation have also been identified within the N-termini of other MSCRAMMs 

including FnBPB (S. aureus) (Burke et al., 2010), ClfA (S. aureus) (Ganesh et al., 

2008), SdrC (S. aureus) (Barbu et al., 2010), CNA (S. aureus) (Zong et al., 2005) 

and SdrG (S. epidermidis) (Ponnuraj et al., 2003) (Figure 1.8B). Like FnBPA, ClfA 

is also implicated in IE aetiology, however, the clfA gene is expressed mainly during 

the stationary phase of growth, while the fnbA gene is expressed during the 

exponential phase which is more likely to reflect the growth conditions in 

bacteraemia (Saravia-Otten et al., 1997; O'Brien et al., 2002a). As a result, ClfA and 

FnBPA are likely to have roles in different stages of infection.  
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Figure 1.8 The domain organization of FnBPA compared with other MSCRAMMs. (A) The 

domain composition of FnBPA. The N-terminus of FnBPA contains a secretory signal sequence (S) 

followed by an Fg- and elastin-binding A-domain and an adjacent region of Fn-binding repeats 

(FnBRs) FnBPA1-11. The C-terminus contains proline-rich repeats (PRR), cell wall (W) and 

membrane (M) spanning regions, a sortase recognition motif (LPETG) and a short cytoplasmic region 

(C). (B) The domain organisation of other MSCRAMMs; FnBPB, ClfA, SdrG, SdrC and CNA 

including additional Ser/Asp repeat region (R) and repeats of unknown function (B1-3).  

 

1.6.1 FnBPA binds Fn via the Tandem β-zipper 
 

The Fn-binding region of FnBPA comprises eleven homologous, intrinsically 

unstructured FnBRs stretching over 363 residues (FnBPA512-874). Each Fn-binding 

repeat (FnBR) is approximately 40 amino-acids long and has the potential to bind 

NTD of a single molecule of Fn (Figure 1.9) (Meenan et al., 2007; Edwards et al., 

2010; Schwarz-Linek et al., 2003). So far, six repeats (1, 4, 5, 9, 10 and 11) have 

been shown to exhibit nanomolar affinity binding to NTD (Meenan et al., 2007). The 

binding interaction occurs via an unusual and efficient tandem β-zipper mechanism, 

where four short motifs within the FnBR form an additional β-strand anti-parallel to 

the existing β-sheets of sequential Fn 
2-5

F1 modules (Schwarz-Linek et al., 2003; 

Bingham et al., 2008) (Figure 1.9). The intrinsically disordered character of the 

FnBRs (Gunasekaran et al., 2003) allows the formation of an extensive 

intermolecular interface with relatively few residues. The high efficiency is 

demonstrated by the FnBPA1-NTD tandem β-zipper interaction which results in 

A 

B 
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approximately 4300 Å
2
 of the accessible surface area being buried despite FnBPA1 

comprising only 37 residues (Bingham et al., 2008). It is probable that the formation 

of such an extensive interface compensates to some extent for the entropic penalty 

associated with the FnBR-NTD interactions. Binding of an intrinsically disordered 

protein (e.g. FnBR) to its target (e.g. NTD) is often accompanied by disorder-to-

order transition, leading to entropy reduction of the system. However, the entropic 

cost is usually offset by the favourable enthalpic contribution serving as the driving 

force for the binding. The multivalency of FnBPA (Massey et al., 2001) could 

potentially allow simultaneous high affinity binding of multiple Fn molecules 

(Meenan et al., 2007).  

Figure 1.9 Sequence alignment of FnBRs. (A) Domain organization of FnBPA (B) Crystal 

structures of 
4
F1

5
F1 and 

2
F1

3
F1 module pairs (cyan) in complex with synthetic peptides representing 

fractions of FnBPA1 (magenta). Disulfide bonds stabilizing the F1 modules are shown (yellow). (C) 

Sequence alignment of the 11 intrinsically unstructured FnBRs. Functionally important residues 

conserved between FnBRs are highlighted in white. The multiple sequence alignment was performed 

using ClustalW2 (Larkin et al., 2007) with some manual editing. 
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1.6.2 The FnBPA-Fn interaction facilitates invasion of the endothelium 
 

The FnBPA-Fn interaction can result in the invasion and activation of host 

endothelial cells, leading to proinflammatory and procoagulant responses 

characteristic of IE. The uptake of S. aureus is triggered by Fn-mediated contacts 

between FnBPA and the extracellular domains of the αVβ1 integrins on the surface of 

endothelial cells (Sinha et al., 1999). It is likely that subsequent clustering of 

integrins on the cell surface activates the Src kinase signalling cascade, resulting in 

actin remodelling and ultimately the internalization of S. aureus (Figure 1.10) 

(Schwarz-Linek et al., 2004; Agerer et al., 2005; Schroder et al., 2006). The role of 

multiple FnBRs within the invasion process has been debated in the past and some of 

the earlier studies suggested that deletions in the FnBR region did not significantly 

affect the ability of S. aureus to invade endothelial cells (Massey et al., 2001; Piroth 

et al., 2008). However, a more recent study by Edwards and colleagues (2010) 

showed that the multivalency of FnBRs directly affects the speed and efficiency of 

bacterial uptake, and that reducing the number of FnBRs decreases S. aureus 

virulence (Edwards et al., 2010).  

Figure 1.10 Possible mechanism of the FnBPA-mediated uptake of staphylococci by endothelial 

cells. (A) Binding of multiple Fn molecules to FnBPA attached to the bacterial cell wall may result in 

(B) integrin clustering on the surface of the endothelial cell, (C) activation of signalling cascade and 

subsequent internalization of the bacterium. For simplicity, binding of only five Fn molecules to 

FnBRs is shown in the figure to demonstrate the binding mechanism. Figure adapted from 

Schwarz-Linek and colleagues (2004). 
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1.6.3 FnBPA binds to Fg 
 

FnBPA has been shown relatively recently to contain a Fg-binding region (Wann et 

al., 2000), however, the interaction has not yet been described in detail and there is a 

lack of structural data available. FnBPA binds to the C-terminus of Fg γ chain 

(Wann et al., 2000; Hawiger et al., 1982) and the Fg-binding activity is within the 

N-terminal A-domain, which exhibits 26% and 22% sequence identity with the 

A-domains of ClfA and SdrG, respectively (Altschul et al., 1997). As both ClfA and 

SdrG bind Fg (McDevitt et al., 1997; Bowden et al., 2003), and because the 

sequence of the A-domains are similar, the character of the Fg-FnBPA interaction 

was predicted to resemble that of ClfA/SdrG-Fg. 

 

The minimal ClfA/B and SdrG regions containing the Fg-binding site comprise two 

distinct domains (N2 and N3) both with immunoglobulin folds (Deivanayagam et al., 

2002). Sequence alignment of N2 and N3 from FnBPA with those from FnBPB, 

ClfA/B and SdrG revealed several conserved regions (Figure 1.11). Despite binding 

to different regions of Fg (SdrG binds to the β chain N-terminus (Davis et al., 2001) 

and ClfA to the γ chain C-terminus (Strong et al., 1982; Hawiger et al., 1982)), both 

SdrG and ClfA use similar mechanisms of Fg binding that have been called the 

dock-lock-latch (Ponnuraj et al., 2003; Bowden et al., 2008) or its variant the 

latch-dock (Ganesh et al., 2008), respectively. The ClfA latch-dock model involves 

changes in the relative orientation of N2 and N3 upon Fg binding, while 

conformations of the individual domains remain unaltered (Figure 1.12). As a 

consequence, the protein switches from an open to a more closed conformation 

allowing the G’’ (latch) strand to ‘latch’ to the N2-E strand forming an additional 

anti-parallel β-strand (Figure 1.12). Thus the Fg peptide is ‘locked’ into the trench 

between the N2 and N3 domains (Ponnuraj et al., 2003; Bowden et al., 2008; Ganesh 

et al., 2008).  
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Figure 1.11 Sequence alignment of N2 and N3 domains of Fg-binding MSCRAMMs. The N2N3 

sequence of FnBPA (UniProt entry P14738) was aligned with that of FnBPB (UniProt entry Q53682), 

ClfA (UniProt entry Q26015), ClfB (UniProt entry Q2FUY2) and SdrG (UniProt entry Q9KI13) 

followed by some manual editing. The residue numbering corresponds to that in the UniProt database. 

Individual β-strands are indicated by arrows (magenta) with labels adopted from Deivanayagam and 

colleagues, 2002. The short α-helical feature between D’ and D1’ β-strands of FnBPA is also 

indicated (grey). Conserved regions are highlighted in red. The six C-terminal residues missing in the 

N2N3T construct (Section 3.3.2, Table 3.1) are highlighted in bold and underlined. The multiple 

sequence alignment was performed using ClustalW2 (Larkin et al., 2007). 

 

Section 1.6.1 describes the tandem β-zipper mechanism of FnBR-Fn binding 

(Schwarz-Linek et al., 2003), and the predicted formation of consecutive N3-G’ and 

latch β-strands during the N2N3-Fg interaction is outlined in Section 1.6.3. As N2N3 

is adjacent to FnBPA1, simultaneous binding of Fg and Fn to N2N3 and FnBPA1 
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could lead to the formation of an extended β-strand region stretching across both Fg- 

and Fn-biding sites of FnBPA. Thus the putative Fg-N2N3_FnBPA1-Fn ternary 

complex would be based mostly on β-zipper interactions, and its formation might 

involve cooperativity. 

Figure 1.12 Superposition of SdrG(273-597) and ClfA(229-545) free, and in complex with their cognate 

Fg peptides. Secondary structure superposition of (A) the N2 domains from apoClfA(229-545) (green) 

(PDB entry 1N67) and the ClfA(229-545)-Fg1(D16A) peptide (PDB entry 2VR3) (Fg1 is a synthetic 

peptide representing the last 17 C-terminal residues of Fg γ chain; Section 2.3.1) complex (pink) and 

(B) the N2 domains from apoSdrG(273-597) (grey) (PDB entry 1R19) and SdrG(273-597)-Fgβ peptide 

(PDB entry 1R17) (Fgβ is a synthetic peptide representing the N-terminal Fg β chain sequence 6-20) 

complex (brown). Ca
2+

 atoms are shown as spheres. Fg-binding sites on ClfA and SdrG are located in 

the cleft between N2 and N3 and, in both cases, the peptides bind via a β-zipper mechanism. 

However, the Fg1(D16A) peptide (blue) binds in a parallel orientation to the ClfA N3-G’ strand while 

the Fgβ peptide (red) aligns antiparallel to the N3-G’ strand of SdrG. Binding of both SdrG and ClfA 

to Fg involves the alignment of the latch strand along the N2-E edge strand, thereby forming a β-sheet 

extension, a key element of the dock-lock-latch and latch-dock binding mechanisms (Ganesh et al., 

2008; Bowden et al., 2003). The ClfA G’ and latch strands are labelled in both the apoClfA(229-545) and 

the ClfA(229-545)-Fg1(D16A) complex.  
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1.6.4 Role of FnBPA in platelet activation  
 

A plethora of experimental evidence demonstrates that S. aureus induces platelet 

aggregation and colonization of host endothelial cells, processes closely associated 

with the development of IE (Piroth et al., 2008; Moreillon and Que, 2004; Fitzgerald 

et al., 2006a; Fitzgerald et al., 2006b). Under normal circumstances, the role of 

platelet aggregation is to control blood loss at the site of vascular injury, facilitate 

wound healing and to prevent infection (Jackson, 2007). However, multiple 

pathogens, including S. aureus, have developed the ability to trigger aggregation in 

order to facilitate its survival within the host (Kerrigan and Cox, 2009). Interactions 

with platelets contribute not only to the pathogen’s ability to adhere to the 

endothelium but also the ability to evade the immune system while surrounded by 

platelet thrombi (Foster, 2005). FnBPA has been described as a key virulence factor 

of S. aureus in relation to IE, mainly due to its ability to interact with receptors on 

the surface of both platelets and endothelial cells (Heilmann et al., 2004; Edwards et 

al., 2010).  

 

Platelet aggregation is a complex multistep process involving variety of receptors 

and adhesive ligands (Section 1.3.3). Activation of quiescent platelets by S. aureus 

FnBPA, in the absence or presence of a tissue trauma, requires the formation of Fn 

and Fg bridges between FnBPA and GPIIbIIIa, and a recognition of the 

FnBPA-specific Fc antibody by the platelet FcγRIIa IgG receptor (Fitzgerald et al., 

2006a; Fitzgerald et al., 2006b; Loughman et al., 2005). The initial interactions 

between S. aureus and the platelet trigger an outside-in signalling cascade resulting 

in further activation of nearby platelets and formation of a thrombus as described in 

section 1.3.3, even in the absence of a vessel wall injury (Rivera et al., 2009). 

 

1.7 Biophysical techniques 
 

1.7.1 Isothermal titration calorimetry 
 

Isothermal titration calorimetry (ITC) is a solution based technique designed to 

determine the thermodynamic parameters of molecular interactions (Sheehan, 2000). 

The binding parameters; enthalpy change (ΔH), entropy change (ΔS), change in 

Gibbs free energy (ΔG), association constant (Ka) and stoichiometry (n) can be 
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determined from a single ITC experiment by measuring the heat evolved or absorbed 

during an interaction (Pierce et al., 1999). The heat change is a direct result of the 

protein-protein interactions. The calorimeter is a closed adiabatic system with 

constant pressure (p) and volume (V), thus all energy changes occur in the form of 

heat. As a result, the heat evolved or absorbed can be described as the enthalpy 

change (Equations 1.1 and 1.2) (Cooper et al., 2001; Velazquez-Campoy et al., 

2004b). 

    Δ   Δ  

 

(1.1) 

       

 

(1.2) 

 The calorimeter comprises reference and sample cells mounted in an adiabatic 

environment and a syringe, designed to fit inside the sample cell (Figure 1.13). In a 

typical ITC experiment, the sample cell is filled with a solution of the 

macromolecule while the syringe is filled with a solution of the ligand. Small 

volumes of the ligand solution are injected into the sample cell until the binding sites 

on the macromolecule are saturated. Mixing is provided by the rotating syringe. If an 

interaction occurs, heat is either evolved (exothermic reaction) or absorbed 

(endothermic reaction), resulting in a temperature change in the sample cell. The 

differential power necessary to equilibrate the temperatures of the sample and 

reference cells is subsequently converted and represented as a change in calories per 

unit time. The entire experiment, including data analysis, takes place under computer 

control. Parameters ΔH, K and n can be determined directly from a binding isotherm 

obtained by non-linear least squares fitting of the equations in Appendix II to the 

calorimetric data, using appropriate binding model. ΔG and ΔS can be calculated 

subsequently using Equation 1.3 and 1.4 (Indyk and Fisher, 1998; Velazquez-

Campoy et al., 2004a). 

            

 

(1.3) 

            

 

(1.4) 
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Figure 1.13 Schematic diagram of a typical isothermal titration calorimeter and an example of 

experimental data. (A) Coin-shaped sample and reference cells are kept within the closed 

environment of the adiabatic jacket. A constant temperature difference between sample and reference 

cells (ΔT1) but also between the reference cell and the adiabatic jacket (ΔT2) is maintained by a 

system of feedbacks. (B) Typical ITC data. (Top panel) Raw data consists of ‘injection peaks’ that 

represent total heats generated upon every ligand injection. (Lower panel) Areas under the peaks are 

integrated and plotted against the molar ratio of ligand to macromolecule within the cell, allowing for 

a binding isotherm to be fitted to the data (red) using a suitable binding model (MicroCal, 2008).  

 

1.7.2 Surface plasmon resonance 
 

1.7.2.1 Introduction 

 

Surface plasmon resonance (SPR) is a matrix-based technique designed for analysis 

of molecular interactions in real time (Schasfoort and Tudos, 2008). The ligand is 

immobilised on the surface of a specific chip while a solution containing its binding 

target, called the analyte, is flowed over. SPR utilizes the phenomenon of total 

internal reflection (TIR). When a beam of polarised light travels from a medium with 

a higher refractive index (RI) to a medium with lower RI, under an angle of 

incidence exceeding a specific critical angle, none of the beam crosses the boundary. 

Instead, all of the light is reflected internally reaching TIR (Pattnaik, 2005). In the 

case of SPR, the medium with higher RI is a thin metal layer (usually gold), and the 

medium with a lower RI is the analyte solvent. Under the conditions of TIR and the 

combination of correct wavelength and angle of incidence (the SPR Angle), a small 
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amount of energy is absorbed by the gold layer resulting in a decrease in the energy 

of the reflected light. The SPR angle is affected by changes in the dielectric 

constants of the two media, which in turn can be influenced by molecular processes 

in the vicinity of the interface. The detector tracks small shifts in the SPR angle 

producing a sensorgram representing the changes of the SPR angle with time (Figure 

1.14) (Schuck, 1997). 

Figure 1.14 Surface plasmon resonance overview. The ligand, immobilized on the gold surface of a 

sensor chip, is exposed to an analyte in solution (represented by red spheres) while a single beam of 

polarised light is aimed at the opposite side of the chip through a glass prism under TIR conditions. 

The shift in the SPR angle (represented by a dip in the intensity of reflected light) is measured by an 

optical detector and presented on a sensorgram as response units as a function of time (Cooper, 2002). 
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1.7.2.2 SPR experiment 

 

A typical SPR experiment aimed at assessing the kinetics or affinity of a particular 

protein-protein interaction comprises injections of increasing concentrations of an 

analyte over a ligand immobilized on the surface of a sensor chip. An interaction 

between the ligand and analyte generates a response measured in arbitrary response 

units (RU) in real time, with one response unit corresponding to a shift in the SPR 

angle by approximately 10
-4

 degrees (Pattnaik, 2005). The magnitude of the response 

is proportional to the change in the molecular mass at the gold/buffer interface, and 

therefore to the molecular mass and the amount of analyte bound to the ligand. The 

difference in response between the sample cell and a reference cell is measured, thus 

compensating for any non-specific change in response that may occur due to the 

discrepancies between running and sample buffers, or non-specific binding of the 

analyte to the un-modified chip surface. 

 

1.7.2.3 Ligand immobilization by amine coupling 

 

An interaction can only be monitored by SPR if one of the reactants (ligand) is 

immobilized on the surface of a sensor chip. An array of immobilization techniques 

are available including covalent immobilization (amine coupling, thiol coupling and 

aldehyde coupling) (Johnsson et al., 1991; Lofas et al., 1995), high affinity capture 

(streptavidin-biotin, antibody-based and tagged proteins) (Hutsell et al., 2011) and 

hydrophobic attachment (mono/bilayer attachment). All SPR experiments performed 

in this project involved ligand immobilization by amine coupling.  

 

Amine coupling is a relatively non-specific immobilization technique utilizing the 

amino group at the N-termini of polypeptide chains and/or the ε-amino groups of 

lysine residues. First, the carboxylated sensor chip surface is activated with a 

solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-

hydroxysuccinimide (NHS). This generates reactive succinimide esters, which 

subsequently react with the amine groups on the ligand (Johnsson et al., 1991) 

(Figure 1.15). Electrostatic pre-concentration is essential to achieve accumulation of 

a sufficient amount of ligand at the surface of the sensor chip. To promote the 

interaction, the pH of the immobilization buffer should lie between the isoelectric 

point (IP) of the ligand and the pKa of the surface (<3.5). This insures a positively 
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charged ligand will interact with the negatively charged sensor chip surface. It is 

preferable to use a pH close to the physiological conditions of the ligand to avoid 

degradation or aggregation during the immobilization process. Once the activated 

surface has been exposed to the ligand, ethanolamine is flowed over the chip surface 

to deactivate remaining active groups and to remove any non-covalently bound 

ligand (O'Shannessy et al., 1992). 

Figure 1.15 Schematic diagram representing the amine coupling immobilization process. (A) 

The first step involves sensor chip surface activation with EDC/NHS. Initially EDC reacts with 

carboxyl groups on the chip surface to form a reactive O-acylisourea intermediate which is reactive 

towards nucleophiles including primary and secondary amines but also water. Due to the rapid 

hydrolysis, the O-acylisourea intermediate is converted to the more stable active N-

hydroxysuccinimide ester by NHS to allow sufficient contact time with the ligand molecules (Gedig, 

2008). (B) During the second step, the activated surface is exposed to a specific ligand resulting in 

aminolyzation of the active esters by lysines or N-terminal amino groups of the ligand. Figure adapted 

from Gedig (2008). 
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1.7.2.4 Data processing  

 

Rate constants ka and kd, and the equilibrium constant Kd, can be derived from a 

basic SPR experiment (O'Shannessy et al., 1993; Karlsson et al., 1991; 

Vandermerwe et al., 1993). For a reversible reaction between ligand L and analyte A  

 
       (1.5) 

the rate of formation of the product [AL] can be described as follows; 

      

  
                  

 

(1.6) 

After some reaction time t, a certain amount of [AL] is formed, thus Equation 1.6 

can be re-written as; 

      

  
                           

 

(1.7) 

Since the ligand is immobilized, the intensity of the response (R) is proportional to 

the formation of the AL complex at the surface of the sensor chip and the maximum 

response (RMAX) is proportional to the concentration of active ligand on the surface. 

Consequently, for an SPR experiment the above equation can be rewritten as follows 

   

  
                     

 

(1.8) 

Interactions with rate constants outside the measurable limits of the T100 (GE 

Healthcare) instrument (ka 10
3
 – 10

7
 M

-1
s

-1
 and kd 10

-5
 – 0.5 s

-1
) can be assessed 

using equilibrium analysis. Providing that a steady state is reached during all analyte 

injections, and that ligand saturation is achieved, the equilibrium dissociation 

constant (Kd) can be determined by plotting the steady state binding level (Req) for 

each injection against the appropriate analyte concentration (Vandermerwe et al., 

1993). The resulting saturation curve has a hyperbolic shape described by Equation 

1.9. 

 
  

  

   
 (1.9) 

Applied to the reversible binding interaction described by Equation 1.1, y is the 

fraction of the ligand bound to analyte, a is the maximum value for y (i.e. 1), x is the 

kd 

ka 
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analyte concentration and b represents the analyte concentration at half-maximal 

ligand saturation (i.e. y). The equation can therefore be rewritten as follows; 

     

   
 

   

      
 (1.10) 

When [A] is equal to Kd, the ligand reaches half-maximal saturation as demonstrated 

by Equation 1.11.  

if         

 
     

 

 
    

 

(1.11) 

In an equilibrium experiment the formation of the AL complex can be represented by 

the response R and the total concentration of immobilized ligand [L] as the 

maximum response (RMAX) (Equation 1.12). 

 

  
 

 
     

 

(1.12) 

1.7.3 Crystallography 
 

1.7.3.1 Overview 

 

Protein crystallography is a technique used to determine structures of proteins and 

their complexes. During this process a crystalline form of a single protein or protein 

complex has to be produced which is then exposed to an X-ray beam resulting in a 

diffraction pattern on the X-ray detector. Applying a combination of mathematical 

functions, the diffraction pattern is translated into an electron density map. A three-

dimensional model of the protein structure can then be refined against the data using 

a suite of software packages (McPherson, 2004).  

 

1.7.3.2 Crystallization  

 

Crystallization can take place when the concentration of a protein exceeds its 

solubility limit. Most of the time this would result in the protein precipitating out of 

the solution, however, in certain cases, the protein reaches a supersaturated 

metastable phase where protein crystals can grow but cannot spontaneously nucleate. 

Similar to a conventional chemical reaction, the protein has to overcome an energy 

barrier in order for the nucleation centre to form (Asherie, 2004). Once the protein 

reaches the labile supersaturated phase, and the centre of nucleation is formed, the 
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concentration of the protein in solution drops slightly and the system enters a 

metastable phase, ideal for crystal growth (Figure 1.16) (McPherson, 1999).  

Figure 1.16 Phase diagram. The optimum trajectory through the different saturation phases is 

indicated by the arrow. Initially, due to vapour diffusion, the concentration of both protein and 

precipitant increases until the nucleation phase is reached. Nuclei formation leads to a decrease in 

protein concentration and the system within the drop reaches a metastable phase, ideal for crystal 

growth. Figure adapted from Asherie, 2004. 

 

1.7.3.3 Vapour diffusion 

A common method for obtaining diffracting crystals is the vapour diffusion 

experiment (Rhodes, 2000). A typical set-up involves mixing solutions containing 

protein and precipitant which are subsequently either placed in a well next to (sitting 

drop approach) or suspended over (hanging drop method) a larger reservoir of the 

precipitant solution (mother liquor). The difference in the concentrations of 

precipitant in the drop and the reservoir solution is compensated by vapour diffusion. 

During this process water evaporates from the drop (which has a lower concentration 

of precipitant) and condenses in the reservoir solution (which has higher precipitant 

concentration) in order to reach equilibrium. Water evaporation results in a gradual 

increase in protein concentration inside the drop, moving the system towards a 

supersaturated state (McPherson, 2004; Davey and Garside, 2000). 

 

1.7.3.4 Seeding 

Seeding is a means of altering the phase trajectory and allows nucleation and 

subsequent crystal growth in the metastable phase. Introducing seeds or a solution of 

seeds to a supersaturated solution in the metastable phase provides the nucleation 

centres necessary to initiate crystal growth. The microseeding technique utilizes a 



Chapter 1 

46 

 

stock of sub-microscopic seeds in stabilizing mother liquor, generated by 

pulverization of non-diffracting crystals into crystalline particles (Bergfors, 2003; 

Luft and DeTitta, 1999). Serial dilution of the seeding stock can be performed to 

obtain the required number of nuclei. Sub-microlitre volumes of the seeding stock 

are introduced into new drops and equilibrated at a lower level of supersaturation 

usually in combination with automation. Seeding makes it possible to control the 

number of nucleation centres and consequently the number of crystals grown in each 

drop (Stura and Wilson, 1990). Microseeding offers the advantage of high 

throughput screening, which improves the likelihood of successful crystallization 

and reproducibility  

 

1.7.3.5 Crystal symmetry 

 

The crystalline form of a protein contains multiple copies of the same protein 

molecule. Each crystal is defined by a three-dimensional lattice of repeating 

structural features known as the unit cell, characterised by length of its edges (a, b, c) 

and the angles between them (α, β, γ) (Clegg, 1998). The shape of unit cell is 

restricted to one of seven potential crystal systems by the 2, 3, 4 and 6-fold rotational 

symmetries allowed within the crystal lattice. The other two symmetries, reflection 

and inversion, are not allowed within lattices formed by biological systems as it 

would require alteration in the amino acid stereochemistry. The combination of the 

seven crystal systems with the different lattice centring systems generates 14 Bravais 

lattices (Table 1.2) (Drenth, 2007). The symmetry of the entire crystalline lattice is 

defined by one of 65 possible space groups for chiral molecules, with each space 

group representing a specific combination of symmetry elements and the lattice type. 

The smallest unit of a crystal and the unique part of the unit cell is called the 

asymmetric unit, from which the rest of the unit cell and crystal can be derived if 

specific symmetry operations are applied. These symmetry operators can be 

rotational, translational or a combination of both known as ‘screw axis’. An example 

of a common ‘screw axis’ is a 21, which involves rotation about a two-fold symmetry 

axis and translation by a half of the unit cell length. As the name suggests, the 

asymmetric unit has no symmetry on its own and often more than one candidate can 

be identified for a single crystal, albeit of identical volume. If the content of 

asymmetric unit is known together with the unit cell and space group, the position of 

all atoms within the crystal can be identified (Drenth, 2007). 
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Crystal system Bravais  Essential symmetry Unit cell restriction 

Triclinic P none none 

Monoclinic P, C one two-fold α = γ = 90° 

Orthorhombic P, I, F three two-fold α = β = γ = 90° 

Tetragonal P, I one four-fold a = b; α = β = γ = 90° 

Rhombohedral P, R one three-fold a = b = c; α = β = γ (≠ 90°) 

Hexagonal P one six-fold a = b; α = β = 90°; γ = 120° 

Cubic P, I, F four three-fold a = b = c; α = β = γ = 90° 

Table 1.2 Crystal systems. Besides the seven crystal systems, symmetry and unit cell diameters, 

individual spacegroups are determined by five different lattice types: Primitive (P), C-centered (C), 

Body-centred (I), Face-centred (F), Rhombohedral (R). Table adapted from Clegg, 1998.  

 

1.7.3.6 X-ray diffraction 

 

The protein crystal, when exposed to a single wavelength X-ray beam, generates a 

specific diffraction pattern on the detector, resulting from the scattering of the X-rays 

by electrons within the crystal. The crystal can only produce reflections under 

conditions described by Bragg’s Law (Equation 1.13) which relates the distances 

between reflecting planes, the wavelength of the X-rays and the angle of incidence 

(Figure 1.17) (Drenth, 2007). The spacing between the layers of atoms within the 

crystalline lattice (d) that satisfies Bragg’s Law is defined by Miller indices (h, k and 

l). The h, k and l integers represent the number of times the unit cell edges a, b and c 

are divided by Bragg’s planes. Only a few planes would satisfy Bragg’s law in a 

crystal at a fixed position, thus the crystal is rotated through 360° while exposed to 

the X-ray beam, thereby generating a three-dimensional diffraction pattern (Drenth, 

2007). Geometry, symmetry and intensity are three important properties associated 

with the diffraction pattern, which relate to the geometry, symmetry and the 

positions of individual atoms within the unit cell. The symmetry of the diffraction 

pattern intensities however, is not identical to the crystal symmetry and is known as 

the Laue symmetry. Since there are only eleven Laue groups for all 65 space groups, 

Laue symmetry cannot uniquely determine the correct space group. The relationship 

between the crystal and reflections is determined by the dimensions of the unit cell. 

If the unit cell can be described by its edge lengths a, b and c, then the diffraction 

spots will be spaced in the ratio 1/a, 1/b and 1/c, thus the diffraction pattern is said to 

be in reciprocal space while the crystal itself is in real space (Rhodes, 2000). 
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             (1.13) 

Figure 1.17 Bragg's Law. Waves of the reflected beams are in phase at points b and c only if the 

distance ae + ec equals multiples of the beam wavelengths (λ). Since the lengths of ae or ec are equal 

to d sin(θ), the relationship between reflective plane spacing, wavelength and the angle of incidence 

can be summarised by the Equation 1.13. 

 

1.7.3.7 Data collection and processing 

 

Collection of diffraction data is often performed at 100 K to reduce the effects of 

radiation damage to the crystal. The crystal is usually vitrified in liquid nitrogen, in 

the presence of cryoprotectant (e.g. glycerol), prior to exposure to the X-ray beam. 

Given its three-dimensional lattice, the crystal is rotated in the beam to ensure a 

complete data set representing the entire unit cell is obtained. In practice, it is not 

necessary to collect data through 360° in order to obtain a complete data set. The 

degree of rotation required depends on the crystal symmetry, i.e. 180° is sufficient 

for 2-fold symmetry, 120° for 3-fold symmetry, etc. However, it is common to 

collect more than the minimum amount data to achieve improved completeness.  

 

Following successful collection of all reflections from the crystal, the diffraction 

images have to be processed in order to obtain a set of data suitable for Fourier 

transformation. The initial processing can be carried out using a variety of software 

including HKL2000 (Otwinowski and Minor, 1997) and Xia2 (Winter, 2009). 

Initially, software has to locate the diffraction spots and identifies repeating patterns 

corresponding to a unit cell, a process known as indexing. The diffraction pattern can 

subsequently be compared to those expected for the seven crystal systems (Table 

1.2). The system with highest symmetry and the best fit is used to determine the 
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space group (Blow, 2002). Integration is the second step and involves measurements 

of the raw intensity for each spot. Further corrections are applied later in order to 

obtain the final intensity for the structure solution. Scaling is a data processing step 

designed to correct the raw summed intensity affected by factors including the beam 

strength variability over time, radiation damage or the rotation of a crystal with 

unequal dimensions. Finally, a single intensity value for each unique reflection is 

obtained in the merging process by averaging the intensity of multiply measured 

reflections (Rhodes, 2000). At this point the quality of the data can be evaluated 

statistically using Rmerge, representing the agreement between symmetry related 

reflections (Equation 1.14) (Drenth, 2007).  

 

       
                          

             
 

 

(1.14) 

Where            represents the average intensity of all reflections and Ii the intensity of 

reflection i with indices hkl. 

 

1.7.3.8 Phase problem 

 

Only the amplitude of the reflected wave is recorded by the detector while the phase 

is lost (Drenth, 2007). This ‘phase problem’ can be solved by several approaches. 

While direct mathematical methods can be applied to high resolution data (<1.2Å) 

from small molecules or peptides, much more complex methods known as 

experimental phasing or molecular replacement are required for protein crystals.  

 

1.7.3.9 Experimental phasing 

Experimental phasing is the only way to solve the phase problem for structures with 

new protein folds (Drenth, 2007). Since the detectors can only detect the intensity of 

the reflection, the phase information has to be measured through variations in the 

intensities. This is achieved through interference between a diffracted wave of 

unknown phase and a reference wave of known phase. There are two possible 

sources of such a reference wave that can be introduced into the structure, a heavy 

atom (isomorphous replacement method) or anomalous atoms such as selenium, 

which resonate with incoming X-ray radiation (anomalous scattering method) (Blow, 

2002; Drenth, 2007).  
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1.7.3.10 Molecular replacement 

 

Molecular replacement utilizes the solved structure of a homologous protein as a 

model and source of the initial phases for the new structure (Blow, 2002). Only 

structures exhibiting high structural similarity can be considered as a suitable model. 

It is vital that both the orientation and position of the model are aligned with the 

target structure. The alignment is carried out using maximum-likelihood methods 

(McCoy, 2004), a recently developed statistical concept designed to identify a set of 

parameters for a model that fits the experimental data with the highest probability. 

This is done by trial and error approach, where the orientation and position of the 

model within the unit cell are set using rotational and translational functions, 

respectively. Subsequently, the phases obtained from the model structure can be 

combined with the intensities from the unknown structure to produce an initial 

electron density map. Unlike the experimental phasing methods, molecular 

replacement is a very fast and relatively straightforward approach, providing a 

suitable homology model is available (Dodson, 2008).  

 

1.7.3.11 Model building, refinement and validation 

 

Once an initial electron density map has been obtained, an iterative process 

involving a combination of manual model building with automated refinement is 

performed, resulting in improved phases, better electron density and a final model 

closely resembling the real structure. The manual building and adjustment of the 

fitted model is usually performed using standard map-fitting software packages such 

as COOT (Emsley and Cowtan, 2004), while the refinement is carried out 

automatically by the REFMAC program (Murshudov et al., 1997) included in the 

CCP4 program suite (Winn et al., 2011). REFMAC is based on the 

maximum-likelihood approach (McCoy, 2004). As a consensus, the quality of the 

model is assessed by the crystallographic reliability-value (Rfactor) defined as the 

average fractional error between the calculated amplitudes of the model and the 

observed amplitudes Equation 1.15. 

 

  
            

     
 

(1.15) 
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The aim is to achieve as low an Rfactor as possible, however, it is generally accepted 

that a value of 25% or lower is sufficient. It is essential that the refinement progress 

is assessed regularly by the Rfree, which is a means of ensuring the model is not 

‘over-fitted’, potentially leading to structure over-interpretation. The Rfree is 

calculated using a small subset of reflections, set aside prior to any model building or 

refinement.  

 

The final stage of structure solution involves the validation process. Numerous errors 

are usually introduced into the structure model during the fitting procedure and it is 

paramount that as many of those errors are corrected as possible. Common problems 

include disallowed φ and ψ backbone angles, unusual sidechain rotamers, hydrogen 

clashes, and unusually high B-factors or bond lengths. All of these can be identified 

and corrected using software such as COOT (Emsley and Cowtan, 2004), however, it 

is vital that the final structure is validated using independent software or a server 

such as MolProbity (Chen et al., 2010). 
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1.8 Aims 

Despite the growing evidence attributing a vital role to FnBPA in S. aureus IE 

aetiology, very little attention has been paid to the structural aspects of the 

Fg-binding region, the interaction with Fg and ultimately its potential effects on the 

Fn-binding ability of FnBPA. Fn and Fg are fundamental to the process of platelet 

aggregation and endothelial cell colonization and invasion by S. aureus. Containing 

binding sites for both Fg and Fn, FnBPA emerges as a key virulence factor in IE and 

possibly other major S. aureus infections. FnBPA has the potential to bind both Fg 

and Fn simultaneously to form an extensive multi-protein complex via multiple 

β-zipper interactions, however, the existence of such a complex has not been 

demonstrated. The question of whether the co-localisation of the two binding sites 

within FnBPA simply results in avidity, by harbouring an additional point of 

attachment, or whether Fg- and Fn-binding events exhibit a synergistic character 

leading to a much more complex mechanism of action within the infection, remains 

to be answered. The primary objectives of this research were to define the 

A-domain/FnBPA1 boundary and to determine whether simultaneous binding of Fg 

and Fn to FnBPA is affected by negative/positive putative cooperativity or potential 

steric effects. The specific aims were: 

 

 To design, express and purify a set of novel rFnBPA constructs suitable for the 

analysis of Fg- and Fn-binding, most notably N2N3 and AF1 (Chapter 3) 

 

 To establish the minimal region of FnBPA containing the native Fg-binding 

activity of intact FnBPA (Chapter 4) 

 

 To identify the Fg-binding site on FnBPA and the mechanism of the FnBPA-Fg 

interaction (Chapter 4) 

 

 To define the boundary between the A-domain and FnBPA1 (Chapters 4 and 5) 

 

 To test negative/positive putative cooperativity between the Fg/Fn-AF1 (AF1 

contains N2N3 and FnBPA1) interactions and whether the formation of the 

Fg-AF1-Fn ternary complex is inhibited by steric effects (Chapter 5) 
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2 Materials and Methods 

2.1 Solutions 

 

BUFFER / SOLUTION COMPOSITION 

Tris-borate-EDTA buffer (TBE) 890 mM Tris-HCl (10.8 g), 890 mM Boric 

acid (5.5 g), 20 mM EDTA (0.8 g), pH 8.3  

Phosphate buffered saline (10xPBS) 1.4 M NaCl (81.8 g), 27 mM KCl (2.0 g), 

100 mM Na2PO4.2H2O (17.8 g), 18 mM 

KH2PO4 (2.5 g), pH 7.4 after dilution (x10) 

Tris-HCl buffer 50 mM Tris-HCl (6.1 g), 50 mM NaCl  

(2.9 g), pH 7.4 

SDS-PAGE 

MES (x20) running buffer 1 M MES (97.6 g), 1 M Tris (60.6 g),  

69.3 mM SDS (10.0 g),  

20.5 mM EDTA (3.0 g) 

MOPS (x20) running buffer 1 M MOPS (104.6 g), 1 M Tris (60.6 g), 

69.3 mM SDS (10.0 g),  

20.5 mM EDTA (3.0 g) 

Nickel-affinity purification 

Loading/Wash buffer 20 mM Na/K phosphate (0.8 ml 4 M 

NaH2PO4.H2O and 4.2 ml 4 M K2HPO4), 

150 mM NaCl (8.8 g), 30 mM Imidazole 

(2.0 g), pH 7.4 

Elution buffer 20 mM Na/K phosphate (0.8 ml 4 M 

NaH2PO4.H2O and 4.2 ml 4 M K2HPO4 ), 

150 mM NaCl (8.8 g), 0.5 M Imidazole 

(34.0 g), pH 7.4 

Anion Exchange buffers 

Loading/Wash buffer 20 mM Bis-Tris (4.2 g), pH 6.2 

Elution buffer 20 mM Bis-Tris (4.2 g), 1M NaCl (58.4 g), 

pH 6.2 

Size exclusion 

Running buffer 20 mM Na/K phosphate (0.8 ml 4 M 

NaH2PO4.H2O and 4.2 ml 4 M K2HPO4), 

150 mM NaCl (8.8 g), pH 7.4 
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BUFFER / SOLUTION COMPOSITION 

SPR Buffers (Stock solutions from Biacore) 

Running buffer HBS-P+ 10 mM HEPES, 150 mM NaCl,  

0.05% (v/v) P20, pH 7.4 

Initial wash buffer 10 mM Glycine-NaOH, pH 12.0 

Immobilization buffer 10 mM Sodium Acetate, pH 5.0 

Regeneration buffer HBS-P+ (pH 1.5) 

Table 2.1 Composition of all buffers and solutions used in the project. Appropriate volumes and 

weights of all chemicals were calculated for a total volume of 1 litre (made with qH2O). 

 

2.2  Native proteins 

2.2.1 Fg from human plasma  

Human plasma glycoprotein Fg (341 kDa) was obtained as a white powder resulting 

from lyophilisation of purified Fg in 20 mM Na citrate-HCl pH 7.4 

(Calbiochem/Merck). Lyophilised powder (1 g) was reconstituted in 24 ml of pre-

warmed sterilised water (37ºC) and left at 37ºC without disturbing until the Fg was 

completely dissolved (approximately two hours). Subsequently the Fg solution was 

aliquoted and stored at -80ºC. Fg was readily soluble at temperatures equal to or 

above room temperature but precipitated quickly at lower temperatures. The batch of 

Fg was analysed by SDS-PAGE, which confirmed its purity.  

 

2.2.2 Fn from human plasma  

Native human plasma glycoprotein Fn (440 kDa) was obtained as a clear solution of 

1 mM Fn in 0.05 M TBS, pH 7.5 (Sigma Aldrich). Each batch of Fn was analysed by 

non/reducing SDS-PAGE to confirm purity and the dimeric nature of Fn. Results 

revealed only a small percentage (<10%) of the Fn sample occupied monomeric 

state. Following NaN3 addition (final concentration 0.02% v/v), sample was stable at 

4ºC for several weeks. 
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2.3 Synthetic peptides and proteolytic fragments 

2.3.1 Fg peptide (Fg1) 

Fg1 is a synthetic peptide representing the last 17 C-terminal residues of Fg γ chain 

CH3CO-GEGQQHHLGGAKQAGDV-NH2 (Mw = 1738 Da) (Severn Biotech Ltd). 

This C-terminal sequence had been shown, by solid state binding assays, to be the 

minimum fragment conferring FnBPA binding comparable with the full length Fg 

(Wann et al., 2000). The Fg1 peptide was supplied as a lyophilised powder 

containing variable amounts of water and traces of peptide counter-ion usually 

trifluoroacetic acid. The N- and C-termini of the peptide contain acetyl and amino 

caps, respectively. The synthetic peptide was readily soluble at high concentrations 

(≤3 mM) in water and most low pH buffers, however its solubility decreased 

significantly at a pH above 6.0. 

 

2.3.2 SfbI-5 
 

SfbI-5 represents the fifth Fn-binding repeat (residues 541-591) from the 

Streptococcus pyogenes extracellular protein SfbI (UniProt entry Q01924). SfbI-5 

binds specifically to NTD (
1-5

F1) with high affinity (nanomolar) (Schwarz-Linek et 

al., 2003). The construct was originally designed and created by Sophie Raibaud 

(Schwarz-Linek et al., 2003) but the SfbI-5 sample used in this work was kindly 

provided by Dr Nicole C Norris (at that time; Department of Biology, University of 

York).  

 

2.3.3 Fg fragment D (FgD) 

FgD is a proteolytic fragment containing a single D region. It is produced by plasmin 

digestion of purified Fg (Calbiochem/Merck) and has the ability to bind FnBPA. 

FgD comprises C-terminal regions of all three chains α, β and γ and has an 

approximate molecular weight of 85 kDa. The fragment was supplied as a white 

powder obtained by lyophilisation of FgD in 400 mM Glycine and 150 mM NaCl. 

Lyophilised powder (200 µg) was dissolved in 1 ml of sterile water, aliquoted and 

stored at -80ºC. The stock could then be diluted into appropriate buffer to desired 

concentration when required. FgD was readily soluble in most buffers at neutral pH 

at room temperature but formed precipitate at 4ºC. 
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2.3.4 N-terminal domain of fibronectin (NTD) 

NTD (Mw = 28880 Da; as determined by MS/ESI) is a proteolytic fragment 

generated by tryptic digestion of the N-Terminal 70 kDa Fn fragment, which is in 

turn produced by Cathepsin D digestion of purified native Fn (Sigma-Aldrich). NTD 

is supplied as a white powder resulting from lyophilisation of NTD in phosphate 

buffered saline with sucrose as a cryoprotectant. The lyophilised powder (0.5 µg) 

was dissolved in 1 ml of sterilised water, aliquoted and stored at -20ºC. Prior to any 

further experiments the stock solution of NTD was dialysed against water or the 

desired buffer solution to remove traces of sucrose. NTD was soluble in most buffer 

solutions at room temperature but its solubility decreased significantly at lower 

temperatures. 

 

2.4 Molecular biology 

2.4.1 Construct design 

Escherichia coli (E. coli) strains DH5α (Genotype: Fˉ Φ80lacZΔM15 Δ(lacZYA-

argF) U169 recA1 endA1 hsdR17 (rKˉ, mK
+
) phoA supE44 λ- thi-1 gyrA96 relA1) 

(Invitrogen) and BL21(DE3) Gold (Genotype: B Fˉ ompT hsdS(rBˉ mBˉ) dcm
+
 Tet

r
 

gal λ (DE3) endA Hte) (Stratagene) were used as hosts for cloning and expression of 

recombinant FnBPA (rFnBPA) proteins, respectively. Genes encoding all of the 

FnBPA recombinants were subcloned from pQE-30 vector containing the full 

FnBPA DNA (GenBank J04151.1, S. aureus 8325-4 strain) (Prof Tim Foster, 

Dublin) into a locally engineered pET-28a variant pET-YSBLIC-3C vector (York 

Structural Biology Laboratory, University of York), suitable for ligation independent 

cloning (LIC) (Section 2.4.4) (Bonsor et al., 2006). The FnBPA constructs were 

designed based on the full length FnBPA (UniProt entry P14738). The correct 

sequence of all rFnBPA clones was confirmed by DNA sequencing (Genomics 

Laboratory, Technology Facility, Department of Biology, University of York). 
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Figure 2.1 pET-28a vector map. The pET-YSBLIC3C is an N-terminal His6-tagged vector based on 

a modified pET-28a vector, with the thrombin cleavage site replaced by a Human rhino virus (HRV) 

3C protease site. Cleavage of the His6-tag results in four additional residues Gly, Pro, Ala and Met at 

the N-terminus of the recombinant protein. The vector comprises 5369 bp, contains kanamycin 

resistance gene and all pET-28a restriction sites remain intact. 

 

2.4.2 Primer design 

All primers comprised three main parts: the LIC specific end, a gene specific 

sequence and either a start (ATG) or stop (TTG/A) codon for the forward or reverse 

primer, respectively. Ideally, all of the designed primers should be between 25 to 45 

bases long, have minimum of 40% GC content, a melting temperature above 78ºC 

and terminate with either a G or C base. Unfortunately, due to the character of the 

template DNA sequence it was not always possible to match every criteria, 

nevertheless all the primers eventually produced constructs with correct sequence. 

All primers were synthesised by Eurofins MWG/Operon. The theoretical melting 

temperature was calculated for each primer using Equation 2.1. 

 
                    

   

 
             (2.1) 

N - total number of bases 
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2.4.3 Agarose gel electrophoresis 

Agarose gel electrophoresis is a quick and straightforward method of separating 

mixed population of DNA or RNA based on their length. Each DNA sample was 

mixed with (6x) DNA loading buffer (Fermentas) and loaded on a 1% (w/v) agarose 

gel (Table 2.1) together with 1 Kbp and 100 bp DNA markers (Fermentas). When an 

electric current was applied to the gel, the negatively charged nucleic acids travelled 

through the agarose matrix towards the positively charged electrode. Smaller species 

move easily through the porous agarose hence travelled further than larger species. 

Details of the experimental setup are listed in the Table 2.2. Addition of SYBRsafe 

to the 1% (w/v) agarose gel mixture enabled the visualisation of the DNA bands with 

UV light. Presence of the correct insert in the plasmid DNA was tested by 

sequencing (Genomics Laboratory, Technology Facility, University of York). 

 

Components Parameters 

Agarose Gel 
0.8% or 1% (w/v) Agarose, 0.01% (v/v) 

SYBRsafe, TBE (Table 2.1) 

Sample buffer 6x Orange DNA loading dye (Fermentas) 

Running buffer TBE  

Voltage (V) 100 

Current (mA) ~ 35 

Duration (minutes) 50 - 60  

Table 2.2 Agarose gel electrophoresis parameters.  

 

2.4.4 Ligation independent cloning using the pET-YSBLIC3C vector 

2.4.4.1 Plasmid linearization 

1 µl of circular plasmid (50 ng/µl) (kindly provided by YSBL) was transformed into 

a host strain (E. coli DH5α) and retrieved via the Qiagen miniprep kit. The vector 

was then linearized by incubating it with the restriction enzyme BseRI (NEB) at 

37ºC for one hour and fifteen minutes. The BseRI digest reaction composition was as 

follows: 50 µg vector DNA, 50 µl BseRI, 100 µl buffer NEB2 (10x), autoclaved 

qH2O up to a final volume of 1 ml. The reaction mixture was analysed on a 0.8 % 

(w/v) agarose gel and the vector was subsequently retrieved using the Qiagen gel 

extraction kit. 

 



Chapter 2 

59 

 

2.4.4.2 Vector LIC T4 polymerase reaction 

The linearized vector was treated with LIC qualified T4 DNA polymerase (Novagen) 

to produce sticky ends which are recognised by the sticky ends on the insert DNA. 

The T4 polymerase reaction composition was as follows: 4 pmol linearized vector 

(calculated as the number of bp x 650 pg/pmol), 40 µl T4 polymerase buffer (10x), 

40 µl dTTP (25 mM stock), 20 µl DTT (100 mM stock), 8 µl LIC qualified T4 DNA 

(2.5 U/µl) and sterile qH2O to a final volume of 400 µl. The reaction mixture was 

incubated at 22ºC for 30 minutes and then the reaction was stopped by incubating at 

75ºC for 20 minutes (the T4 polymerase reaction was carried out on a programmed 

PCR machine). The final product was diluted to a working concentration of 15 ng/µl. 

 

2.4.4.3 Insert polymerase chain reaction (PCR) 

Primers (MWG) were resuspended in sterile qH2O to give stock concentration of 100 

pmol/µl (100 µM), which was then diluted to give working concentration of 20 µM. 

The composition of the PCR reaction mix was as follows: 1 µl forward primer, 1µl 

reverse primer, 5 µl dNTP’s (2 mM), 2 µl MgSO4 (25 mM), 5 µl KOD Hot start 

polymerase buffer (10x), 0.5 µl template DNA (50 ng/µl), 1 µl KOD Hot start 

polymerase (1 U/µl) (Merck) and sterile qH2O up to a final volume of 50 µl. The 

PCR programme used is shown in Table 2.3. The PCR product was analysed using a 

1% agarose gel (Section 2.4.3) and retrieved via the Qiagen gel extraction kit. 

Table 2.3 PCR set-up. Annealing and extension temperatures were determined based on the 

properties of individual primers and optimized in order to achieve the purest product. 

  

 Temperature (ºC) Time (seconds) Number of Cycles 

Initial denature 

 

94 120 1 

 Denature 94 30 

35 Anneal 70 30 

Extension 72 180 

Final extension 72 300 1 
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2.4.4.4 Insert LIC T4 polymerase reaction and annealing 

The insert was treated with LIC qualified T4 DNA polymerase to produce sticky 

ends recognised by sticky ends on the linearized vector DNA. The T4 polymerase 

reaction composition was as follows: 0.2 pmol insert (calculated as the number of bp 

x 650 pg/pmol), 2 µl T4 polymerase buffer (10x), 2 µl dATP (25 mM stock), 1 µl 

DTT (100 mM stock), 0.4 µl LIC qualified T4 DNA (2.5 U/µl) (Novagen) and sterile 

qH2O to a final volume of 20 µl. The reaction mixture was incubated at 22ºC for 30 

minutes and then the reaction was stopped by incubating at 75ºC for 20 minutes (the 

T4 polymerase reaction was carried out on a programmed PCR machine). The T4 

polymerase treated vector and insert anneal without the use of ligase. 4 µl of insert 

was mixed with 2 µl of linearized vector (15 ng/µl) and incubated at room 

temperature (20-22ºC) for ten minutes. The reaction was quenched with 2 µl of 

EDTA (25 mM) for ten minutes to give a final volume of 8 µl. 

 

2.4.5 Transformation of competent E. coli cells with plasmid DNA  

The transformation protocol was based on (Novagen/Merck). Briefly, the whole LIC 

annealing reaction (8 µl) or 1 µl plasmid DNA (50 ng/µl) was added to 

approximately 100 µl of competent cells and incubated on ice for a minimum of 

thirty minutes followed by a heat shock (45 seconds at 42ºC and then five minutes 

on ice) to enable the plasmid DNA to enter the cells. Prior to spreading on agar 

plates containing kanamycin (50 µg/ml), 500 µl of pre-warmed Luria-Bertani media 

(LB) (42ºC) was added to the cell sample and incubated at 37ºC for an hour with 

shaking to enable initial expression of the kanamycin resistance gene. The agar 

plates were incubated at 37ºC overnight, and then stored at 4ºC. Competent cells 

lacking the vector were used as a negative control. 

 

All construct DNA was submitted for sequencing to the Genomics Laboratory 

(Technology Facility, University of York) to confirm correct sequence. Plasmid 

DNA of each construct was sequenced from both the forward and reverse directions 

using T7 and T7term pET-YSBLIC3C specific primers, respectively, which were 

supplied by the Genomics Laboratory.  
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2.5 Expression of recombinant proteins 

Plasmid DNA containing the specific rFnBPA gene was transformed into the 

expression strain of E. coli (BL21 (DE3) Gold) using the same procedure as in 2.4.5. 

A single colony was picked from the kanamycin containing agar plates and used to 

inoculate 100 ml of fresh (LB) containing kanamycin (30 µg/ml), which was then 

incubated overnight at 37ºC with shaking. Pre-warmed baffled flasks (37ºC) 

containing 500 µl of fresh sterilised LB with kanamycin were inoculated with 5 ml 

of the overnight culture each and incubated at 37ºC with shaking (200 rpm) until the 

culture reached an optical density (OD600) of 0.7 (approximately two to three hours). 

Once the optimum density had been reached the expression of the desired gene was 

initiated by adding 200 µl of a filter-sterilised 1 M stock solution of isopropyl-β-

thiogalactopyranoside (IPTG) (working concentration - 0.4 mM). The cell culture 

was then incubated at 37ºC with shaking (200 rpm) for four additional hours from 

the time of induction. Cells were harvested and pelleted using a Sorvall centrifuge, 

SLC-6000 rotor (20 minutes, 5000 rpm, 4ºC). The cell pellet was resuspended in a 

small volume of nickel-affinity chromatography loading buffer (Table 2.1) (final 

volume of 35 ml) and stored at -20ºC. 

 

2.6 Purification of recombinant proteins 

2.6.1 Cell lysis and supernatant clarification 

Frozen cell pellets were thawed at room temperature and homogenized thoroughly 

using a pasteur pipette. The resuspended cells were lysed using a pre-programmed 

sonicator 3000 (Misonix) with 60 x 3-second pulses (7 second intervals) at 70 W 

while on ice. The cell lysate was centrifuged using a Sorvall centrifuge rotor ss-34 

(30 minutes, 18000 rpm, 4ºC) and the clarified supernatant carefully retrieved to be 

used in further purification steps.  

 

2.6.2 Nickel-affinity purification 

All constructs were purified from the supernatant using a pre-packed 5 ml HisTrap 

HP column (GE Healthcare) connected to the ÄKTA Purifier 10 system 

(GE Healthcare) at room temperature. The whole system, including columns, was 

equilibrated with several column volumes of binding buffer (Table 2.1) prior to 
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loading cell lysate onto the column. The lysate was loaded onto the column at rate of 

3 ml/min followed by a wash with approximately 25 column volumes of binding 

buffer (or until the UV absorbance at 280 nm of the column eluent was reduced to 

values below 50 mA). The His6-tagged protein was retrieved from the column using 

gradient elution (apart from N3, which was retrieved using step-wise elution 

comprising 10% increments) with a buffer containing 0.5 M imidazole. Details of the 

method are listed below (Table 2.4). 

Table 2.4 Nickel-affinity purification parameters.  

 

2.6.3 SDS-PAGE  

Sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) is a quick and 

straightforward method of analysing sample purity and estimating of the molecular 

mass of proteins. Gel electrophoresis is based on the separation of protein species on 

a polyacrylamide gel according their molecular mass and net charge. The technique 

was performed to analyse the results of every purification step, however, the 

definitive method for determining the precise mass of purified proteins was MS/ESI 

(see chapter 2.8.6). Each sample, containing approximately 1 µg of protein was 

mixed with SDS (an anionic denaturing agent that also applies a negative charge to 

each protein) and, in some cases, dithiothretiol (DTT) (reducing agent) containing 

loading buffer, boiled if required to ensure complete denaturation and loaded on the 

polyacrylamide gel. As electric current was applied to the gel resulting in migration 

of the negatively charged proteins across the gel towards the positively charged 

electrode. Details of the experimental setup are listed in the Table 2.5. Most of the 

SDS-PAGE system (pre-cast 4-12% Bis-Tris 1.0 mm gradient gels, protein markers 

(molecular weight reference), lithium dodecyl sulphate (LDS) loading buffer, 

MES/MOPS running buffers and a gel tank) was supplied by Invitrogen. The 

power-pack was purchased from Biorad. The polyacrylamide gels were stained with 

Components Parameters 

Column HisTrap HP 5 ml 

Binding buffer 20 mM Na/K phosphate (Table 2.1) 

Flow rate 1 ml/min 

Gradient 0 – 40% Elution buffer (Table 2.1) 

Gradient length 25 column volumes 

Fractions 2 ml 

Detection  Absorbance at 280 nm 
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a solution of Coomassie Brilliant Blue R-250 for minimum of 1 hour and 

subsequently de-stained with a solution of 10% (v/v) Acetic acid.  

 

Components Parameters 

Gel 
4-12 % Bis-Tris 1.0 mm Gradient 

(Invitrogen) 

Running buffer MOPS/MES (Table 2.1) 

Loading buffer NuPAGE LDS sample buffer (Invitrogen) 

Voltage (V) 200 

Current (A) ~ 400 

Duration (min) 35 to 50  

Sample volume (µl) 10 (~ 1 µg) 

Table 2.5 SDS-PAGE parameters. 

 

2.6.4 NATIVE-PAGE 
 

NATIVE-PAGE analysis is based on the same principle as SDS-PAGE, though as 

the name suggests the aim of NATIVE-PAGE is to analyse intact proteins in their 

native state. Consequently, the NATIVE-PAGE set up is similar to that for 

SDS-PAGE albeit with non-denaturing buffers (to ensure the proteins remain intact) 

and gels with the appropriate resolution. All components, including buffers and 

pre-cast gels, were supplied by Invitrogen. Details of the experimental setup are 

listed in the Table 2.6. 

Table 2.6 NATIVE-PAGE parameters. 

  

Components Parameters 

Gel 
4-16 % Bis-Tris 1.0 mm Gradient 

(Invitrogen) 

Running buffer NativePAGE-Running buffer (Invitrogen) 

Loading buffer NativePAGE-Sample buffer (Invitrogen) 

Voltage (V) 150 

Current (A) ~ 400 

Duration (min) 60-100  

Sample volume (µl) 10 (~1 µg) 
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2.6.5 Cleavage of N-terminal His6-tag with HRV 3C 

Pooled fractions from the nickel-affinity purification were dialysed overnight at 4ºC 

in size exclusion buffer (Table 2.1) to remove imidazole which could interfere with 

the activity of the HRV 3C protease. HRV 3C protease (4.6 mg/ml; expressed and 

purified by HiTel) was subsequently added to the protein sample at ~ 1:500 

protease:protein molar ratio, mixed gently and incubated at 4ºC for 4 hours. The 

HRV 3C cleavage reaction was analysed by SDS-PAGE. A HisTrap HP 5 ml 

column and ÄKTA Purifier 10 system (identical setup to the nickel-affinity 

purification) was used to remove the HRV 3C protease (contains a His6-tag), the 

cleaved histidine tag and any remaining protein fragments with an uncleaved 

His6-tag. The column was equilibrated in binding buffer without imidazole and the 

flow-through of the HRV 3C cleavage reaction was collected and analysed by 

SDS-PAGE. All N2N3 constructs were almost pure (less than 5% contaminants 

detectable), however the AF1 sample still contained a significant amount of 

impurities and degradation products. Therefore, before the final purification step, 

size-exclusion chromatography, could be performed, an anion exchange 

chromatography (IEX) was carried out on the AF1 sample as an additional 

purification step. 

 

2.6.6 Anion exchange chromatography (IEX) 

The flow-through from the nickel-affinity purification, containing AF1, was dialysed 

against 5 litres of IEX binding buffer (Table 2.1) overnight at 4ºC to significantly 

reduce the salt content of the sample. AF1 was purified using a pre-packed HiTrap Q 

sepharose 5 ml column (GE Healthcare) connected to the ÄKTA Purifier 10 system 

(GE Healthcare). The whole system, including column was equilibrated in several 

column volumes of binding buffer before the AF1 containing solution was loaded 

onto the column. AF1 was loaded at flow rate of 5 ml/min and was followed by a 

wash with three column volumes of the binding buffer. AF1 was retrieved by 

gradient elution with buffer containing a high salt concentration (Table 2.6). Identity 

and purity of the resulting peaks was tested by SDS-PAGE. The main elution peak 

contained pure AF1. 
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Components Parameters 

Column 
HiTrap Q Sepharose Fast Flow 

(GE Healthcare) 

Loading buffer 20 mM Bis-Tris (Table 2.1) 

Elution buffer 20 mM Bis-Tris, 1 M NaCl (Table 2.1) 

Flow rate 0.7 ml/min 

Gradient 0-35% elution buffer (Table 2.1) 

Gradient length 30 column volumes 

Fractions 2 ml 

Detection Absorbance at 280 nm 

Table 2.7 Anion exchange chromatography parameters. 

 

2.6.7 Size-exclusion (gel filtration) chromatography 

Size-exclusion chromatography was performed as the last purification step in order 

to remove any remaining contaminants with significantly different molecular 

weights and to separate the monomeric form of the protein from multimeric species. 

All rFnBPA proteins (with the exception of N1N2) were purified using a pre-packed 

Superdex S75 16/60 HiLoad column (GE Healthcare) connected to the ÄKTA 

Purifier 10 system (GE Healthcare). The whole system, including the column, was 

equilibrated with minimum of two column volumes (240 ml) of running buffer 

(Table 2.1) prior to the injection of the sample onto the column. Samples were 

concentrated down to the volume of 1 ml in concentrators (Vivaspin, MWCO 10 

kDa) using a Sigma centrifuge (7500 g at 4ºC) to allow the injection onto the column 

using a 2 ml injection loop. Details of the method setup are listed in Table 2.8. 

Fractions of the main peak were pooled and stored at -20ºC. The molecular mass of 

all recombinant proteins was confirmed using MS/ESI. The oligomeric state for 

N2N3 and AF1 was determined by AUC (Section 2.8.4). 

Table 2.8 Size-exclusion chromatography parameters. 

Components Parameters 

Column Superdex S75 16/65 Prep HiLoad 

(GE Healthcare) 
Running buffer 20 mM Na/K phosphate (Table 2.1) 

Flow rate 1 ml/min 

Duration 240 ml (2 column volumes) 

Fractions 2 ml 

Detection Absorbance 280 nm 

Sample volume 1 ml 
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2.6.8 Protein concentration measurements and calculations 

The absorbance of the protein in solution at 280 nm wavelength was measured in 

plastic cuvettes (1 cm pathlength) using a Biophotometer (Eppendorf). The molar 

concentration was determined using the Beer-Lambert law; 

 
  

 

   
 (2.2) 

A represents the absorbance at 280 nm, ε the molar extinction coefficient and l the 

cuvette pathlength. The theoretical molar extinction coefficient is calculated 

according to following equation (Gasteiger et al., 2003); 

 
                                             (2.3) 

N represents the number of the particular amino acid and ε represents the molar 

extinction coefficient associated with each amino acid (cys – cysteine, 125 M
-1

 cm
-1

; 

tyr – tyrosine, 1490 M
-1

 cm
-1

 and trp - tryptophan, 5500 M
-1

 cm
-1

). 

 

2.7 Plasma pull-down assay 
 

The pull-down assay was conducted mainly by Andrew Brentnall (Department of 

Biology, University of York) using the ‘AminoLink Plus Immobilization Kit’ 

(Thermo Scientific) and the appropriate protocols as designed by the manufacturer. 

N2N3 and AF1 (20 mg each) were immobilised on two separate beaded agarose 

gravity-flow columns by amine coupling, utilizing the protein primary amines. One 

column was left uncharged and used as a negative control. Each column was 

equilibrated in PBS prior to applying 3 ml of human plasma, followed by wash in 

PBS (5 column volumes) and subsequent elution with citrate buffer pH 3.0. 

Solutions of purified Fg (Section 2.2.1), Fn (Section 2.2.2) or mixture of both were 

used as a control. The results were analysed by SDS-PAGE. The assay was carried 

out at room temperature.  

 

2.8 Biophysical techniques 

2.8.1 NMR spectroscopy 

Buffer solutions of all protein samples were exchanged to 20 mM Na/K phosphate, 

100 mM NaCl, pH ranging between 6.0 and 8.0. Each protein sample comprised 540 
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µl of protein solution, 60 µl D2O (10% (v/v)) and 1.2 µl of NaN3 (0.02% (v/v)). The 

final protein concentration in the sample solution was 0.2 mM. Binding studies 

involving rFnBPA proteins and Fg1 required step wise addition of the peptide to the 

protein solution to enable spectra acquisition of the protein-peptide complex at 

different molar ratios. The required protein peptide ratios were achieved using 

lyophilised aliquots of Fg1, which were dissolved in the protein solution, followed 

by pH adjustment to the original value.  

 

All 2D 
15

N
1
H transverse relaxation optimized spectroscopy heteronuclear single 

quantum coherence (TROSY-HSQC) spectra were recorded using the trosyetf3gpsi 

pulse sequence with echo/antiecho gradient selection, excitation sculpting for solvent 

suppression and sensitivity improvement incorporated into TopSpin 2.1 (Bruker 

BioSpin). All 1D and 2D spectra were recorded at 37°C on a Bruker Avance 700 

MHz Ultrashield system with a 5 mm TXI-ATM-z-gradient probe (Centre for 

Magnetic Resonance, University of York). The acquired spectra were processed with 

NMRPipe (Delaglio et al., 1995) and analysed using Analysis 1.0 software packages 

(Vranken et al., 2005).  

 

2.8.2 Surface plasmon resonance  

All SPR experiments were carried out on T100 system (Biacore) with SPR buffers 

and consumables obtained solely from Biacore (Table 2.1). Analyte samples were 

dialysed extensively against the running buffer HBS-P+. Two types of sensor chips 

were used in the experiments, namely, the CM5 chip with a carboxymethyldextran 

coated gold surface or the C1 chip with a non-dextran carboxylated surface. All 

binding experiments were carried out at flow rate of 30 µl/min. Reagents were kept 

at 25ºC in the sample compartment and all data were collected at 25ºC. Prior to all 

experiments a minimum of 5 start-up cycles were performed in order to stabilise the 

baseline. 

 

2.8.2.1 Sample preparation 

Due to high sensitivity of the SPR it was essential that all samples (analytes and 

ligands) are pure and the analyte solvent is identical to the running buffer (Table 

2.1). For all rFnBPA proteins, the analyte solvent was exchanged for the running 
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buffer and the samples were concentrated to a desired concentration to form a stock 

from which the required dilutions were made. A commercial sample of Fg stock was 

dialysed against the running buffer and concentrated to the required concentration 

prior to each SPR experiment. Different concentrations of analyte in the 

kinetics/affinity SPR experiment were prepared by serial dilutions of the highest 

concentration. The commercial sample of NTD (Sigma-Aldrich), used as a ligand, 

was supplied as a lyophilised powder and dissolved in qH2O, then dialysed against a 

further 5 litres of qH2O at room temperature to remove any traces of lyophilisation 

cryo-protectant which could potentially affect the SPR results. The sample of NTD 

in qH2O was then lyophilised and subsequently dissolved in a small volume of qH2O 

to form a high concentration stock which could be diluted into the immobilization 

buffer to the required concentration. The commercial sample of lyophilised FgD 

powder (Fisher), used as a ligand, was simply resuspended in qH2O and 

subsequently diluted into the immobilization buffer.  

 

2.8.2.2 Ligand immobilization 

Ligands in 10 mM Na acetate buffer (pH 5.0) were covalently coupled to the sample 

cell via the N-terminus of the polypeptide chain and the ε-amino groups of the lysine 

residues to reach baseline level (RL) between 50-120 response units (RU). First, the 

carboxylated sensor chip surface was activated with a solution of EDC and NHS 

(Section 1.7.2.3) (Johnsson et al., 1991) generating reactive succinimide esters, 

which react readily with the amine groups on the ligand. Next, the activated surface 

was exposed to the ligand containing solution under conditions allowing electrostatic 

pre-concentration. Since the pKa of the surface is <3.5 and the isoelectric point of all 

ligands used in the project was >6, sodium acetate buffer (10 mM) pH 5.0 was used 

in all immobilizations, as it is close to the ligand physiological solution conditions. 

Once a sufficient amount of the ligand had been accumulated at the surface of the 

sensor chip, ethanolamine was used to deactivate any remaining active groups and to 

remove any non-covalently bound ligand. A breakdown of the amine coupling 

procedure carried out is in Table 2.9. 
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Step Injection Contact time (s) 
Flow rate 

(µl/min) 
Flow cell 

1 Surface activation (EDC/NHS) 420 5 2,1 

2 Immobilization (ligand) 30-200 (based on 

the ligand type) 

5 2 

3 Deactivation of excess reactive 

groups (ethanolamine) 

420 5 2,1 

Table 2.9 Amine coupling immobilization steps. 

 

2.8.2.3 Affinity  

The majority of the binding interactions exhibited very fast on/off rates, which were 

outside the measurable limitations of the instrument (Section 1.7.2.4) and therefore 

unsuitable for determination of the Kd. However, in most cases they reached steady 

state allowing for affinity of the interaction to be determined based on the 

equilibrium binding (Req). Each experiment consisted of a minimum of 10 cycles 

during which the ligand-coated sensor chip was exposed to analyte concentrations 

between approximately two orders of magnitude below and above the predicted Kd. 

Each cycle comprised an analyte injection (association period) (180 s), a dissociation 

period (300 s) and equilibration (120 s) at flow rate 30 µl/min. Interactions analysed 

by this method are as follows; FgD-N2N3, FgD-N2N3T, FgD-AF1, FgD-AF1+NTD 

and NTD-AF1+Fg1. Data processing and evaluation was carried out using Biacore 

T100 evaluation software. 

 

2.8.2.4 Kinetics  

AF1 binding to the native Fn was the only interaction assessed using kinetic 

parameters. In a typical kinetic experiment the equilibrium constant (Kd) is 

determined based on the rate constants of the association and dissociation phase. The 

experiment comprised 10 cycles where the immobilized AF1 was exposed to 

concentrations of intact Fn between 0.0122 and 6.25 nM. Each cycle comprised an 

association period (100 s), a dissociation period (600 s), a regeneration phase (60 s) 

and an equilibration phase (120 s). 10 mM glycine buffer pH 2.5 was used for 

regeneration. Data were processed and analysed using Biacore T100 evaluation 

software  
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2.8.2.5 Ternary complex 

In the ternary complex experiments either NTD or AF1 was immobilized as 

described above, followed by a series of injections containing combinations of 

varying concentrations and concentration ratios of the complex forming analytes. 

Sfb1-5 peptide, representing the fifth NTD-binding repeat of SfbI (Section 2.3.2), 

and Fg1 or N2N3 were used in control experiments as specific inhibitors of the 

interactions between AF1 and NTD or Fg/FgD, respectively. Data analysis was 

performed using Biacore T100 evaluation software allowing for subsequent visual 

assessment of the Req and the character of both the association and dissociation 

phases.  

 

2.8.3 Isothermal titration calorimetry  
 

All ITC experiments were carried out on the same VP-ITC calorimeter (MicroCal 

Inc.) with the cell and syringe volumes of 1.4 ml and 275 µl, respectively. All 

measurements were performed in PBS at a constant temperature (25ºC). The 

concentration of the cell sample was identified based on the unitless constant c 

describing the shape of the binding isotherm and a suitable molar ratio of 

cell/syringe sample was chosen to achieve full saturation approximately half-way 

through the titration. Each experiment consisted of the initial single 2 µl injection of 

the syringe solution into the cell followed by 27 x 10 µl injections at 0.5 µl/s in 6 

minute intervals with the stirring speed set to 307 rpm for all titrations with the 

exception of the experiments involving native Fg, where the stirring speed had to be 

increased to 321 rpm due to the high viscosity of the solution. Where applicable, the 

titration was repeated under identical conditions but with no protein in the cell (blank 

titration). Heats generated during the blank titration were subtracted from the heats 

of the actual titrations to rule out potential distortion of the fitted data caused by 

heats of dilution. The raw ITC data were integrated and binding isotherms fitted by 

an iteration process based on the ‘one-set of sites’ model (MicroCal Origin 

software). Equations used to generate the single binding isotherm based on the 

obtained data are listed in Appendix II. 
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2.8.4 Analytical ultracentrifugation (AUC) 

Sedimentation velocity experiments were conducted by Dr Andrew Leech 

(Technology Facility, University of York) on a Beckman Optima XL/I analytical 

ultracentrifuge, using Beckman cells with a 12 mm path length double sector 

charcoal-filled Epon centrepieces and sapphire windows, in an AN-50Ti rotor (five 

cells plus counterbalance). Approximately 420 µl reference buffer (20mM Na/K 

phosphate, 100mM NaCl, pH 7.4) and 416 µl of sample (in reference buffer) were 

loaded into the cells. Absorbance scans were taken at 3000 rpm in order to check 

concentrations and uniform distribution of the cell content. The speed was increased 

to 35000 rpm and absorbance scans taken at approximately 3 minute intervals until 

sedimentation was complete. The run lasted 10 hours and was conducted at 20°C. 

Samples of N2N3, AF1 and N2N3T with Fg1 were at concentration of 25 µM and 

Fg1 at a twenty-fold molar excess. Data were analysed using the SEDFIT (Schuck, 

2000) software package with partial specific volumes, buffer densities and 

viscosities estimated using the program SEDNETRP (Laue et al., 1992). 

 

2.8.5 Differential Scanning Calorimetry (DSC) 

Protein samples were dialysed into 20 mM Na/K phosphate buffer, 100 mM NaCl, 

pH 7.4 and the concentration adjusted to 1 mg/ml. DSC experiments were carried out 

by Dr Iain Manfield (Astbury Centre, University of Leeds) on a VP-DSC system 

(MicroCal). Data analysis was performed using MicroCal Origin software. 

 

2.8.6 Electrospray ionization mass spectrometry (ESI/MS) 

Protein samples (typically 100 µM) usually dialysed into dH2O or a Tris-HCl buffer 

with low salt were submitted for analysis by mass spectrometry. ESI/MS 

measurements were performed by Berni Strongitharm (Technology Facility, 

University of York) on ABI Qstar tandem mass spectrometer.  

 

2.8.7 Crystallization of N2N3T 

Diffracting crystals of N2N3 grew in a Clear Strategy Screen (CSS) II condition 

containing polyethylene glycol (PEG) 20000 (8% (w/v)), PEG monomethyl ether 

(mme) 550 (8% (v/v)), 0.2 M calcium acetate, with added 50 mM Tris-HCl, 50 mM 
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NaCl, pH 7.4 at a protein concentration of 30 mg/ml using the sitting drop vapour 

diffusion method. Each drop comprised 100 nl of reservoir solution, 50 nl of seed 

stock and 150 nl of protein solutions. Seed stock was prepared by adding several 

non-diffracting crystal clusters into 100 µl of the same reservoir solution described 

above, containing a single Seed Bead (Hampton Research) and subsequent 

sonication in a sonication bath generating a homogeneous solution suitable for 

dispensing by the Mosquito® nano-drop dispensing system (TTP Labtech). 

Automated set up of crystallization screens and sitting drops was carried out using 

the HYDRA and Mosquito® liquid handling systems. Clusters of protein crystals 

grew after three days at 18°C. Whole clusters were transferred into cryo-protectant 

(reservoir solution with additional 10% (w/v) of PEG 20000 and 10% (v/v) of PEG 

mme 550) where a single diffracting crystal was broken off and vitrified in liquid 

nitrogen. 

 

2.8.8 Data collection and N2N3T structure determination  

Diffraction data for the N2N3T crystals were collected on the European Synchotron 

Radiation Facility (ESRF) (Grenoble, France) beamline ID29 at 100 K. Collected 

diffraction data were indexed and integrated with HKL2000 (Otwinowski and 

Minor, 1997) and scaled using SCALA (Evans, 2006). The N2N3T crystal structure 

was solved using the molecular replacement pipeline BALBES (Long et al., 2008) 

with the combination of ClfA (PDB entry 1n67) (Deivanayagam et al., 2002) and 

SdrG-Fg peptide complex (PDB entry 1r17) (Ponnuraj et al., 2003) identified as the 

suitable two-domain model. After a few initial cycles of Refmac 5 (Murshudov et al., 

1997), ARP (Lamzin and Wilson, 1993)/WARP (Perrakis et al., 1997) incorporated 

into CCP4 software suite (Winn et al., 2011) was used to improve the electron 

density map and to build in water molecules. Final refinement was carried out by a 

combination of manual building in COOT (Emsley and Cowtan, 2004) and 

automatic refinement by Refmac 5 until a sufficiently low Rfactor and Rfree were 

achieved. The structure was verified using MolProbity server (Chen et al., 2010). All 

root mean square deviation (r.m.s.d.) values were determined using secondary 

structure matching (s.s.m.) (Krissinel and Henrick, 2004), an algorithm incorporated 

into the CCP4mg molecular graphics software (McNicholas et al., 2011). The 

calculations of solvent accessible surface were performed using PISA (Krissinel and 

Henrick, 2007) incorporated into the CCP4 software package. 
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2.8.9 Crystallization of N2N3T-Fg1 complex 

Synthetic Fg1 peptide was dissolved slowly in the N2N3T sample buffer (50 mM 

Tris-HCl, 100 mM NaCl, pH 7.4) and its pH adjusted to 7.4. Diffracting crystals 

were grown in a CSS II screen condition containing PEG 2000 mme (25% (w/v)), 

0.2 M calcium acetate, with added 50 mM Tris-HCl, 100 mM NaCl, isopropanol 

(10% (v/v)), pH 7.4 at a protein concentration of 25 mg/ml with a 20 fold molar 

excess of Fg1. Sitting drop vapour diffusion with the micro-seeding technique was 

set up as described in 1.6.8. Crystals were obtained after 48 hours incubation at 

18°C. Again, protein crystal clusters were transferred into cryo-protectant (reservoir 

solution with additional PEG 2000 (5% (w/v)) where a single diffracting crystal was 

broken off and vitrified in liquid nitrogen. 

 

2.8.10 Data collection and N2N3T-Fg1 structure determination  

Diffraction data for the N2N3-Fg1 complex crystal were collected on the Diamond 

beamline i04-1 at 100 K. Collected diffraction data were indexed, integrated and 

scaled automatically using xia2 (Winter, 2009). The N2N3T-Fg1 crystal diffracted to 

1.83 Å and the structure was solved by molecular replacement using the structure of 

N2N3T as a model. Residues corresponding to the Fg1 peptide were modelled 

manually into a well defined electron density area with the subsequent refinement 

again carried out by a combination of manual building in COOT (Emsley and 

Cowtan, 2004) and automatic refinement by Refmac 5 (Murshudov et al., 1997) until 

a sufficiently low Rfactor and Rfree were achieved. All r.m.s.d. values were determined 

using the s.s.m. algorithm (Krissinel and Henrick, 2004) incorporated into the 

CCP4mg molecular graphics software (McNicholas et al., 2011). The calculations of 

solvent accessible surface were performed using PISA (Krissinel and Henrick, 2007) 

incorporated into the CCP4 software package. 
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3 Molecular biology, expression and purification of 

recombinant FnBPA protein constructs 
 

3.1 Introduction 
 

Numerous in vitro and in vivo studies have been carried out on native FnBPA 

(Figure 3.1), utilizing an array of solid phase assays as well as single gene-knock out 

mutants and recombinant bacterial strains. Consequently, FnBPA has been identified 

as a major virulence factor of S. aureus (Que et al., 2001b; Shinji et al., 2011) 

associated with a variety of life threatening conditions such as osteomyelitis and 

endocarditis (Musher et al., 1994; Moreillon and Que, 2004), mainly due to its 

ability to interact with multiple ECM proteins such as Fg, Fn and elastin (Wann et 

al., 2000; Froman et al., 1987; Keane et al., 2007a). The adjacent Fg and Fn binding 

sites and their putative cooperativity, have been linked with the development of 

infective endocarditis (Piroth et al., 2008; Que et al., 2001a; Fitzgerald et al., 2006b). 

While the Fn-binding region of FnBPA has been investigated in great detail using a 

range of recombinant FnBPA proteins (Massey et al., 2001; Bingham et al., 2008; 

Schwarz-Linek et al., 2003; Meenan et al., 2007), only a limited amount of data is 

available regarding the adjacent Fg-binding site and its interaction with Fg.  

Figure 3.1 Schematic diagram of native FnBPA. Fn- and the predicted Fg-binding regions (Keane 

et al., 2007a; Loughman et al., 2008) are shown in cyan and blue respectively. Domain boundaries are 

also indicated by residue numbers.  

 

3.2 Aims 
 

The main aim was to produce a set of recombinant FnBPA (rFnBPA) protein 

constructs, with the intention of characterising in detail the Fg-binding region and 

the putative cooperativity between Fg and Fn binding to FnBPA. The establishment 

of reliable and reproducible molecular biology, expression and purification strategies 

was the first step in the process. Procedures were optimised to achieve maximum 

yields and to identify the most favourable solution conditions for maintaining each 

S N1 N2 N3 1 2 3 4 5 6 7 8 9 1011 W M C

37 874 1018

LPETG

A domain

Fg-binding Fn-binding repeats

FnBPA

189 338 511 550194 
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N3
338 511

N2 N3
189 338 515

N2 N3
189 338 511

37

N2 N3N1
189 338 511

N1 N2
37 189

511 550

N2 N3 1
189 338 511 550

rFnBPA protein in a stable and soluble form. Some of the rFnBPA proteins were 

uniformly labelled with 
15

N to facilitate analysis by 2D NMR spectroscopy. The 

rFnBPA proteins utilized in this project are listed in Table 3.1. 

 

3.3 Overview of rFnBPA proteins used in this study 
 

Residues Name / Domain Schematics 

rFnBPA(189-505) / (
15

N) N2N3T (truncated) 
 

rFnBPA(189-511) / (
15

N) N2N3 
 

rFnBPA(189-515) N2N3E (extended) 
 

rFnBPA(37-511) A-domain (fA)  

rFnBPA(37-335) N1N2 
 

rFnBPA(335-511) N3 
 

rFnBPA(189-550) / (
15

N) N2N3, FnBR-1 (AF1) 
 

Table 3.1 rFnBPA protein constructs. The list includes the FnBPA residue numbering, according to 

accession code P14738 (S. aureus strain NCTC 8325-4), domain composition and the abbreviations 

used throughout the thesis. A schematic representation of each rFnBPA protein (based on Figure 3.1) 

is also shown. Recombinant proteins that were also expressed uniformly labelled with 
15

N are 

indicated. 

 

3.3.1 N2N3 
 

N2N3 comprises the complete N2 and N3 domains and is predicted to represent the 

minimum region of FnBPA that retains the ability to bind Fg (Loughman et al., 

2008; McDevitt et al., 1995; Keane et al., 2007b). However, there is no structural 

data (and little functional data) regarding this region and its interaction with Fg 

(Keane et al., 2007b). N2N3 unbound and in complex with Fg1 was subjected to 

extensive crystallization trials to produce diffracting crystals, which eventually lead 

to high resolution crystal structures of N2N3 and the N2N3-Fg1 complex. The 

FnBPA-Fg interaction was also investigated using N2N3 and a variety of biophysical 

techniques including SPR and ITC. 

N2 N3
189 338 505
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3.3.2 N2N3T 
 

N2N3T is a truncated version of the full length Fg-binding region formed by the 

domains N2 and N3. The recombinant protein lacks six C-terminal residues (Asn-

Gly-Asn-Glu-Lys-Asn) of the N3 domain (Figure 1.9). Based on previous studies of 

the homologous proteins ClfA and SdrG (Ponnuraj et al., 2003; Ganesh et al., 2008), 

these residues form a large portion of a putative latch strand which interacts with the 

N2 domain, a process thought to be involved in Fg binding (Section 1.6.3). The 

putative latch strand is also predicted to be intrinsically unstructured in the absence 

of bound Fg (Ponnuraj et al., 2003; Bowden et al., 2008). The two reasons for 

generating this particular protein were, firstly, to test whether the latch strand is 

essential to Fg binding and secondly, to obtain a more suitable candidate for 

crystallization trials (as the potentially disordered nature of the putative latch strand 

could interfere with the crystallization process). 

 

3.3.3 N2N3E 
 

The N2N3E is an extended version of the Fg-binding region containing four 

additional C-terminal residues (Gly-Pro-Ile-Ile) following the latch strand. The sole 

purpose of this construct was to produce protein suitable for crystallization and 

structure determination of the N2N3 region. Sequence alignment of FnBPA with the 

recombinant SdrG and ClfA proteins (Ganesh et al., 2008; Ponnuraj et al., 2003) 

used for crystal structure determination, revealed a number of additional residues at 

the C-terminus. N2N3E was used in crystallization trials to test its ability to form 

diffracting crystals. 

 

3.3.4 The fA 
 

Residues 37 to 511 represent the complete A-domain which, besides N2 and N3, also 

contains the N1 domain (residues 37 to 189). N1 is the most N-terminal region of the 

A-domain and, unlike N2 and N3, is completely unstructured (unpublished results). 

N1 has a much higher level of sequence conservation across different strains of 

S. aureus compared with the N2 and N3 domains (Loughman et al., 2008). However, 

solid phase binding assays ruled out a role for N1 in Fg binding and no other 

putative function has yet been identified (Keane et al., 2007b). The interaction 
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between fA and Fg was analysed by SPR and the results compared with those for the 

N2N3-Fg interaction to test whether N2N3 contained the Fg-binding activity of the 

full length A-domain.  

 

3.3.5 N1N2 and N3 
 

N1N2 comprises domains N1 and N2, while N3 contains the N3 domain only. The 

extent of the contribution to the strength of the overall N2N3-Fg interaction by the 

individual domains N2 and N3 is not clear. While some publications state that the 

minimum Fg-binding region consists of N2 and N3, others show only a fragment of 

N3 retains the Fg-binding ability (Loughman et al., 2008; Piroth et al., 2008; Keane 

et al., 2007b). Both N1N2 and N3, in combination with fA, were used in the 

preliminary SPR binding experiments aimed at establishing the individual 

contributions of N2 and N3 towards the overall intermolecular interaction of FnBPA 

with Fg. 

 

3.3.6 AF1 
 

Residues 189 to 550 that form AF1 not only encompass the full length N2N3 region 

but also the first FnBR (FnBPA1). As a result, AF1 has the capacity to bind both Fg 

and Fn. AF1 is arguably the most important rFnBPA construct, designed specifically 

to address the question of simultaneous binding of Fg and Fn to FnBPA and the 

putative cooperativity of the interactions.  

 

3.3.7 15
N-N2N3, 

15
N-N2N3T and 

15
N-AF1  

 

Three rFnBPA proteins; N2N3, N2N3T and AF1 were uniformly labelled with 
15

N 

(Marley et al., 2001) to facilitate the study of these recombinant proteins and their 

interactions with Fg and Fn peptides by NMR spectroscopy. The 
15

N-N2N3 and 

15
N-N2N3T were produced for the purpose of analysing Fg1 binding and the 

potential effect of the missing latch strand on the interaction. The 
15

N-AF1 protein 

should enable the evaluation of the putative cooperativity between Fg1 and NTD 

binding to AF1. 
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3.4 Molecular biology of N2N3T and N2N3E 
 

All rFnBPA-containing pET-YSBLIC3C vectors were produced by HiTEL 

(University of York, Technology facility) with the exception of N2N3T and N2N3E, 

which were designed and generated as described in Section 2.4. Primers used in the 

PCR to generate correct products are listed in Table 3.2. PCR results were analysed 

by agarose gel electrophoresis (Figure 3.2B). Subsequent incorporation of the PCR 

product into the pET-YSBLIC3C vector, using ligation-independent cloning (LIC) 

(Section 2.4.4) (Bonsor et al., 2006), can only be carried out providing the vector is 

in linear form. This was achieved by incubation of circular vector with the restriction 

enzyme BseRI (NEB). Linearized vector travels slower through agarose gel 

compared with vector in circular form, thus the result of plasmid linearization can be 

verified using agarose gel electrophoresis (Figure 3.2A). The final step in LIC 

involves annealing of the insert and linearized vector. The presence of the insert 

within the plasmid was tested by utilizing the restriction sites flanking the insert 

region. Incubation of the annealing reaction with restriction enzymes NdeI and NcoI 

yielded two products, the linearized vector and the insert as demonstrated by agarose 

gel electrophoresis (Figure 3.2B). The correct sequence of all rFnBPA genes was 

confirmed by sequencing conducted by members of the Technology Facility at the 

University of York (Appendix III).  

 

Primer Sequence (5’ - 3’) TM (°C) GC % bp 

N2N3(189-505/515) 

Fw 

CCAGGGACCAGCAATGGC 

GAAAGTGGAAACGGGTA 

85.6 57.1 35 

N2N3(189-505) 

Rev 

GAGGAGAAGGCGCGTTACGCTT 

TATTACTGTATAAAACTAAACC 

82.9 40.9 44 

N2N3(189-515) 

Rev 

GAGGAGAAGGCGCGTTAAATAA

TCGGACCATTTTTCTCATTT 

70.4 40.5 42 

T7 (HiTel) TAATACGACTCACTATAGGG 64.2 40.0 20 

T7 term (HiTel) TATGCTAGTTATTGCTCAGCGGT 70.0 43.5 23 

Table 3.2 List of primers corresponding to rFnBPA constructs and primers used for 

sequencing. The primer sequence is shown in 5’ to 3’ direction with the LIC-specific ends 

highlighted in red and the start codons in blue in the new primers. The table also includes information 

regarding melting temperature (TM), GC content and the number of base pairs.  
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Figure 3.2 Agarose gel electrophoresis of the PCR products and of the plasmid linearization 

reaction. (A) Results of plasmid linearization show the circular (C) and linearized (L) form of the 

pET-YSBLIC3C vector following digestion with BseRI. A 0.8% (w/v) agarose gel was used to ensure 

sufficient resolution. (B) The PCRs show two bands corresponding to a larger species N2N3E (lane 1) 

and a smaller construct N2N3T (lane 2). 1.5 kbp DNA ladder (M) (Fermentas) was also included to 

enable estimation of the construct sizes.  

 

3.5 Expression of recombinant proteins 
 

3.5.1 Unlabelled rFnBPA proteins  
 

Plasmid DNA containing the rFnBPA sequence was transformed into an expression 

strain of E. coli (BL21 (DE3) Gold) as described in Section 2.4.5. Baffled flasks, 

each containing 500 ml of fresh sterilised LB with kanamycin and inoculated with 

the starter cultures, were used to produce rFnBPA proteins (Section 2.5). Conditions 

including the temperature, length of expression, volume of LB in each flask, time of 

induction and final concentration of IPTG were optimized to achieve maximum 

yields. The final growth curves associated with each recombinant protein are shown 

in Figure 3.3. The presence of the overexpressed recombinant protein within the cell 

culture was verified by SDS-PAGE prior to the first purification step. Details of the 

SDS-PAGE methods are in Section 2.6.3.  

  

1000 bp 

500 bp 

1500 bp 

B 
C L 1 2 M 

A 
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Figure 3.3 E. coli growth curves. Growth of BL21 (DE3) Gold E. coli transformed with rFnBPA 

constructs was monitored by measuring the OD600 of the culture for ten hours at 60 minute intervals. 

All LB cultures reached an OD600 of ~ 0.7 after approximately 180 minutes. 

 

3.5.2 15
N-N2N3, 

15
N-N2N3T and 

15
N-AF1  

 

Expression protocols for 
15

N-N2N3, 
15

N-N2N3T and 
15

N-AF1 involved incubation 

at 25°C overnight in M9 minimal media (Appendix I) following induction of 

expression with IPTG (Section 2.5). To achieve a sufficient level of labelling, all 

three constructs were expressed in M9 minimal media with 
15

N (NH4)2SO4 as the 

sole source of nitrogen. Although cell cultures grew much slower in minimal media, 

the final protein yields were marginally higher than yields from expressions in LB. 

The final 
15

N content of the purified protein was determined by comparison of the 

theoretical mass (ProtParam) (Gasteiger et al., 2003) with the molecular mass 

obtained by MS/ESI (Table 3.3).  

 

3.6 Purification of recombinant proteins 
 

Cell extracts from cultures expressing each of the rFnBPA constructs were prepared 

by sonication and subsequent separation of the clarified supernatant from the cell 

debris by centrifugation (Section 2.6.1). The first purification step for all rFnBPA 

proteins was to retrieve the His6-tagged protein from the clarified supernatant by 

nickel-affinity chromatography. The nickel-affinity purification protocol applied to 

all rFnBPA proteins was designed using N2N3 (Section 3.6.1).  
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3.6.1 Nickel-affinity chromatography of His6-N2N3  
 

Initial expression and purification trials revealed problems relating to the stability 

and solubility of His6-N2N3. Nickel-affinity chromatography was carried out first on 

a system comprising a pre-packed nickel-affinity column connected to an ÄKTA 

purifier (GE Healthcare) using 50 mM Tris loading buffer, 150 mM NaCl, pH 7.4 

and an imidazole concentration gradient for protein elution. After elution the 

recombinant protein underwent rapid aggregation forming a visible precipitate. 

Concentration measurements confirmed the precipitate contained the majority of the 

His6-tagged protein. The precipitation of the His6-tagged protein was not reversed by 

subsequent dialysis. Digestion with HRV 3C protease could potentially improve the 

solubility of the His6-tagged protein, however, the high imidazole concentration 

within the sample interfered with the activity of the protease. Interestingly, a small 

fraction of the protein was cleaved despite the presence of imidazole, rendering the 

protein stable in solution over a long period of time. This indicated that the low 

stability stemmed from the additional His6-tag rather than the rFnBPA protein itself.  

 

The first approach to solving the solubility issue associated with the His6-tag entailed 

utilization of bench top gravity flow columns and nickel-coated beads in an attempt 

to cleave off the His6-tag while the protein was bound to the nickel-coated beads. 

100 µl of nickel NTA slurry (GE Healthcare) was equilibrated in binding buffer (50 

mM Tris buffer, 150 mM NaCl, 10 mM imidazole pH 7.4) then mixed with 300 µl of 

cell lysate supernatant and an additional 500 µl of the binding buffer. Following a 30 

minute incubation at 4ºC on a slow speed rotor, the nickel slurry was left to settle 

and the supernatant collected. Subsequently, 500 µl of binding buffer with 0.5 mg 

HRV 3C protease was added and the mixture incubated overnight at 4ºC with gentle 

shaking. The nickel slurry was then poured into a gravity flow column. Three wash 

steps with binding buffer ensured the collection of the cleaved protein. Samples from 

all steps were analysed by SDS-PAGE (Figure 3.4).  
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Figure 3.4 SDS-PAGE analysis of bench-top nickel-affinity chromatography of N2N3. Samples 

of both the cell lysate (L) and flow-through (F) were diluted ten-fold prior to loading onto the 4-12% 

gradient gel. Samples containing the three washes following protein binding (W1-W3), cleaved 

protein and HRV 3C protease (3C), subsequent wash (W), final imidazole elution (E) and protein 

marker (M / kDa) were also loaded onto the gel. The major bands located between the protein markers 

55.4 and 36.5 kDa correspond to the expected molecular weight of His6-N2N3 (38 kDa). 

 

Comparison of the rFnBPA protein content within the cell lysate, flow-through and 

the three washes clearly demonstrates that the majority of the protein bound the 

nickel-coated beads. The theoretical mass of His6-N2N3 (38.5 kDa - ProtParam) 

(Gasteiger et al., 2003) was in good agreement with the apparent mass (~ 38kDa). 

The SDS-PAGE result also verified that the HRV 3C digestion was successful, as 

most of the recombinant protein was present within the HRV 3C reaction solution. 

However, it also revealed the presence of numerous low level contaminants of both 

higher and lower molecular weight. Surprisingly, neither size-exclusion nor anion 

exchange chromatography achieved complete separation of N2N3 from the 

contaminants. The concentration of the lower molecular weight contaminant in 

particular did not seem to decrease with additional purification steps while some of 

the protein was lost, possibly due to degradation. The molar mass of the contaminant 

was eventually determined by MS/ESI as 26.6 kDa. 

 

Although the level of contaminant was not overwhelming, it could potentially 

interfere with the crystallization trials and some of the sensitive biophysical 

techniques such as SPR or ITC. Moreover, the purification procedure was 

cumbersome, time-consuming and impractical for larger culture volumes. To 

L 

W 

F 3C E 

3.5 

6 

14.4 

21.5 

36.5 

55.4 

97.4 

200 

1 2 3 W M 



Chapter 3 

83 

 

improve the purity of the final protein sample and to increase the efficiency and 

reproducibility of the protocol, a system comprising a pre-packed NTA column (GE 

Healthcare) connected to an ÄKTA purifier was again employed. Method parameters 

are listed in Table 2.4. This time Na/K phosphate buffers were used for loading and 

elution (Table 2.1) in an attempt to improve the stability of the protein. The 

imidazole content of the loading buffer was increased to 30 mM resulting in fewer 

contaminants binding to the column. The imidazole elution gradient was adjusted to 

30-230 mM which achieved better resolution between elution species (Figure 3.5). 

The main elution peak reaches a maximum at an approximate imidazole 

concentration of 130 mM (taking into account the 30 mM imidazole in the loading 

buffer). 

Figure 3.5 Nickel-affinity chromatography of N2N3. The chromatogram shows the absorbance at 

280 nm (blue) and percentage (v/v) of the elution buffer (green). Five elution peaks of varying size 

were detected demonstrating the presence of multiple species within the cell lysate supernatant. The 

numbering of the elution peaks corresponds to the labels in the SDS-PAGE analysis (Figure 3.6). 

SDS-PAGE analysis of the nickel-affinity chromatography shows successful 

expression of His6-N2N3 in soluble form and efficient binding to the affinity 

column, as demonstrated by the analysis of lysate, supernatant and flow-through 

(Figure 3.6). Examination of the lanes corresponding to the eluted peaks revealed 

that all contained His6-N2N3. The difference in elution times possibly stems from 

different accessibility of the His6-tag caused by ambiguities in protein folding. It is 

clear from the SDS-PAGE analysis of the major elution peak that most contaminants 

were removed successfully by nickel-affinity chromatography. 
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Figure 3.6 SDS-PAGE analysis of the nickel-affinity chromatography of His6-N2N3. Results of 

the analysis include protein marker (M / kDa), cell lysate (L), flow-through (F), wash (W) and the five 

elution peaks (1 to 5). Lanes representing peak 2 correspond to the beginning, maximum, and end of 

the peak elution (left to right). Samples of the cell lysate and flow-through were diluted ten-fold. The 

major bands located between the protein markers 55.4 and 36.5 kDa correspond to the expected 

molecular weight of His6-N2N3 (38 kDa). 

 

Crucially, precipitation was avoided by immediate dilution of the pooled fractions to 

a concentration below 0.5 mg/ml. It was essential that the temperature and 

composition of the dilution buffer, especially the imidazole content, matched that of 

the protein solvent otherwise His6-N2N3 precipitate appeared. Once sufficiently 

dilute, the His6-N2N3 could be carefully transferred into dialysis tubing and dialysed 

overnight at 4ºC in 5 litres of the same Na/K phosphate buffer but without imidazole. 

The dialysed protein solution was treated with an appropriate concentration of HRV 

3C protease (Section 2.6.5). The His6-tag was cleaved off after a 4 h incubation with 

protease (1:500 enzyme:protein molar ratio) at 4ºC. The results of the HRV 3C 

digestion were analysed by SDS-PAGE (Figure 3.7). It is clear from the SDS-PAGE 

results that the vast majority of the His6-rFnBPA was fully cleaved after 4 hours. A 

second nickel-affinity purification step separated cleaved N2N3 from remaining 

His6-N2N3, the His6-tagged HRV 3C protease, the cleaved His6-tag and any other 

protein fragments or contaminants interacting with the affinity column (Figure 3.8).  
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Figure 3.7 SDS-PAGE of the HRV 3C cleavage of His6-N2N3. Samples of His6-N2N3 (lane 0), 

His6-N2N3 after incubation with HRV 3C protease for 2 hours (lane 2) and 4 hours (lane 4) are shown 

including protein molecular weight markers (M / kDa). The major bands located between the protein 

markers 55.4 and 36.5 kDa correspond to the expected molecular weight of His6-N2N3 (38 kDa) and 

N2N3 (36 kDa), respectively. MOPS buffer (Table 2.1) was used as a running buffer in order to 

achieve the higher resolution required for assessing of cleavage of the His6-tag.  

 

Figure 3.8 Nickel-affinity chromatography of the cleaved N2N3. The chromatograph shows the 

absorbance at 280 nm (blue) and the percentage (v/v) of elution buffer (green). The broad peak 

corresponded to the flow-through containing cleaved N2N3 (Figure 3.7), while the narrow peak 

corresponds to the elution of the HRV 3C protease, remaining His6-N2N3, His6-tag and any other 

protein fragments or contaminants interacting with the affinity column. 

  

0 2 4 M 

3.5 

6 

14.4 

21.5 

36.5 

55.4 

97.4 

200 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

0

500

1000

1500

2000

2500

3000

0

20

40

60

80

100

A
b

s
o

rb
a

n
c

e
 a

t 
2

8
0

 n
m

 (
m

A
U

)

Elution volume (ml)

 E
lu

ti
o

n
 b

u
ff

e
r 

(%
)



Chapter 3 

86 

 

3.6.2 Nickel-affinity chromatography of His6-tagged N2N3T, N2N3E, 

N1N2 and fA 

Figure 3.9 Nickel-affinity chromatography of N2N3T and N2N3E. Chromatograms for (A) 

N2N3T and (B) N2N3E show the absorbance at 280 nm (blue) and the percentage (v/v) of the elution 

buffer (green). SDS-PAGE analysis of respective purification steps of (C) N2N3T and (D) N2N3E  

contains protein marker (M / kDa), cell lysate (L), flow-through (F), clarified supernatant (S), wash 

(W) and elution peaks (1 to 3). The major bands located between the protein markers 55.4 and 36.5 

kDa correspond to the expected molecular weights of His6-N2N3T (38 kDa) and His6-N2N3E (39 

kDa), respectively. 
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Figure 3.10 Nickel-affinity chromatography of N1N2 and fA. Chromatograms for (A) N1N2 and 

(B) fA show the absorbance at 280 nm (blue) and the percentage (v/v) of the elution buffer (green). 

SDS-PAGE analysis of respective nickel-affinity chromatography steps of (C) N1N2 and (D) fA 

contain protein marker (M / kDa), cell lysate (L), cell pellet (P) (resuspended and diluted ten-fold; 

only in the N1N2 SDS-PAGE), clarified supernatant (S) (in the fA SDS-PAGE only), flow-through 

(F), wash (W) and elution peaks (1 to 3). The major bands located at the protein markers 55.4 (N1N2) 

and 66.3 kDa correspond to the expected molecular weight of His6-N1N2 (35 kDa) and His6-fA (55 

kDa), respectively. Molecular mass of both recombinant proteins appear higher on the gradient gel, 

most likely due to the high content of negatively charged amino acids within the disordered N1 

domain.  
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The same procedure for nickel-affinity purification and His6-tag removal was 

utilized for the recombinant proteins N2N3T, N2N3E, N1N2 and fA (Figure 3.9 and 

Figure 3.10). The different rFnBPA proteins exhibited only small variations in 

elution volumes and in some cases, required alteration of the duration of the HRV 

3C protease digestion. Any potential complications associated with the solubility of 

the four His6-tagged rFnBPA proteins were also solved by the same approach as that 

used for N2N3.  

 

3.6.3 Nickel-affinity chromatography of His6-N3 
 

The method used for the purification of N2N3 did not result in sufficient resolution 

of the His6-N3 elution peaks (Figure 3.11). Figure 3.12 shows that all peaks in the 

chromatogram correspond to His6-N3. It is possible that the different elution times 

arise from His6-N3 species with different fold, thus different accessibility of the 

His6-tag. It is important to obtain a single species, hence the protocol was optimized 

further.  

Figure 3.11 A trial nickel-affinity chromatography of His6-N3. The chromatogram shows the 

absorbance at 280 nm (blue) and the gradient increase in the percentage (v/v) of the elution buffer 

(green). Four elution peaks were detected demonstrating the presence of multiple species within the 

cell lysate supernatant. Numbering of the elution peaks corresponds to the labels in the SDS-PAGE 

analysis (Figure 3.12). 
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Figure 3.12 SDS-PAGE analysis of the trial nickel-affinity chromatography of His6-N3. Results 

of the analysis include protein marker (M / kDa) and the four elution peaks (1 to 4). The major band 

located between protein markers 36.5 and 21.5 kDa corresponds to the expected molecular weight of 

His6-N3 (23 kDa). 

 

Figure 3.13 Nickel-affinity chromatography of His6-N3. The chromatogram shows the absorbance 

at 280 nm (blue) and step-wise increases (10%) in the percentage (v/v) of the elution buffer (green). 

Six separate elution peaks were detected demonstrating the presence of multiple species within the 

cell lysate supernatant. Numbering of the elution peaks corresponds to the labels in the SDS-PAGE 

analysis (Figure 3.14).  

 

Figure 3.13 shows that significant improvement in the resolution was achieved using 

step-wise elution (Section 2.6.2). Figure 3.14 shows that His6-N3 was expressed, is 
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imidazole concentration of ~ 80 mM and contains peaks 1 and 2. However, the early 

elution suggests the His6-tag of the corresponding N3 is the least accessible. 

Subsequently, His6-N3-containing fractions corresponding to peak 4 (which binds to 

the column more tightly) were pooled, diluted, dialysed and treated with HRV 3C 

protease as described previously (Section 3.6.1). 

Figure 3.14 SDS-PAGE analysis of nickel-affinity chromatography of His6-N3. Results of the 

analysis include protein marker (M / kDa), cell lysate (L), flow-through (F) and the six elution peaks 

(1 to 6). The major band located between protein markers 36.5 and 21.5 kDa corresponds to the 

expected molecular weight of His6-N3 (23 kDa). 

 

3.6.4 Nickel-affinity chromatography of His6-AF1 
 

Figure 3.15 demonstrates the successful expression of the His6-AF1 construct in 

soluble form and efficient binding to the affinity column, under conditions similar to 

those used for N2N3. One major and three minor elution peaks were detected. The 

main elution peak reaches a maximum at an imidazole concentration of ~130 mM 

(taking into account the 30 mM imidazole in the loading buffer). Eluted peaks 2, 3 

and 4 all appear to contain AF1, albeit with relatively high level of contaminants 

(Figure 3.16). Considering the lower molecular weight and ladder-like character of 

the additional bands on the gradient gel, it is likely that the majority of these are a 

product of partial degradation of His6-AF1 at the C-terminus. FnBPA1 might be 

susceptible to degradation, due to its intrinsically unstructured character (Schwarz-

Linek et al., 2003), but has been expressed previously (Meenan et al., 2007). As the 

His6-tag is located on the N-terminus of AF1, the truncated His6-AF1 species retain 

their ability to bind to the nickel-affinity column, thus cannot be separated from full 
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length His6-AF1 by nickel-affinity chromatography. Consequently, an anion 

exchange chromatography (IEX) step was added to the protocol (Sections 2.6.6 and 

3.6.5). Prior to IEX, His6-AF1 was dialysed and subjected to HRV 3C protease 

digest in order to remove the His6-tag, using a similar protocol to that for N2N3 

(Section 2.6.5). The His6-tagged HRV 3C protease, remaining His6-AF1 and its 

fragments were removed by the same second nickel-affinity purification step as used 

for N2N3 (Section 3.6.1). 

Figure 3.15 Nickel-affinity chromatography of His6-AF1. The chromatogram shows the 

absorbance at 280 nm (blue) and the percentage (v/v) of the elution buffer (green). The numbering of 

the elution peaks corresponds to the labels in the SDS-PAGE analysis (Figure 3.16). 

Figure 3.16 SDS-PAGE analysis of nickel-affinity chromatography of His6-AF1. The SDS-PAGE 

shows protein marker (M / kDa), cell lysate (L), cell pellet (P), flow-through (F), clarified supernatant 

(S), the four elution peaks (1 to 4) and the pooled fractions of peak 2 (D). The major band located 

between protein markers 55.4 and 36.5 kDa corresponds to the expected molecular weight of 

His6-AF1 (43 kDa).  
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3.6.5  Anion exchange chromatography of AF1 
 

A solution containing cleaved AF1 was first dialysed into IEX loading buffer (Table 

2.1) to lower the concentration of NaCl prior to loading onto the HiTrap Q FF 

Sepharose (GE Healthcare) IEX column. Elution was achieved with an increasing 

concentration gradient of NaCl. The theoretical pI of AF1 is 5.16, thus Bis-Tris 

buffer at pH 6.0 was used to ensure minimum amount of contaminants interacts with 

the column. Following initial rounds of IEX purifications, it became clear that AF1 

eluted at approximately 180 mM NaCl. The gradient used in subsequent IEX was 

therefore 0 to 350 mM NaCl over 30 CV (150 ml). The main elution peak was 

clearly asymmetrical indicating presence of multiple species (data not shown). As a 

final optimization step, the flow rate was gradually lowered from 5 to 0.7 ml/min in 

order to resolve the multiple peaks. This approach to optimization of IEX parameters 

produced a method able to remove the majority of the contaminants from AF1 

resulting in a protein of sufficient purity (>95%), as established by SDS-PAGE 

analysis (Figure 3.17 and Figure 3.18). The main peak eluted at a NaCl concentration 

of approximately 180 mM. 

Figure 3.17 Anion exchange chromatography of AF1. The chromatogram shows absorbance at 280 

nm (blue) and the percentage (v/v) of the elution buffer (green) over 30 CV. The numbering of the 

elution peaks corresponds to the SDS-PAGE analysis (Figure 3.18). 
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Figure 3.18 SDS-PAGE analysis of AF1 IEX. The SDS-PAGE contains protein marker (M / kDa), 

cell lysate (L), samples of elution peaks 1 and 2 and samples from 8 fractions corresponding to the 

third (and main) elution peak. The major band located between protein markers 55.4 and 36.5 kDa 

corresponds to the expected molecular weight of AF1 (41 kDa).  

 

3.6.6 Size-exclusion chromatography of N2N3 
 

The final purification step applied to N2N3 and all other rFnBPA proteins was size-

exclusion chromatography (Section 2.6.7). The purpose of this final round of 

purification was to remove the last traces of contaminants and to separate oligomeric 

and monomeric species of rFnBPA proteins. Following nickel-affinity 

chromatography, a sample containing N2N3 in Na/K phosphate buffer (Table 2.1) 

was concentrated to a final volume of 1 ml (approximately 0.5 mM), which could be 

easily loaded onto the size-exclusion column via a 2 ml loading loop. The main 

species elutes between 65 and 75 ml while the other species exhibit shorter elution 

times. Multiple peaks clearly demonstrate the presence of multiple species of 

different mass (and/or conformation) in the protein sample following the 

nickel-affinity purification step (Figure 3.19). The only species present within the 

elution fractions had a mass consistent with N2N3 (Figure 3.20), suggesting the 

different elution times stem from different oligomerization states of N2N3. The 

purity of the final N2N3 sample was >95%, as determined by the SDS-PAGE 

analysis. The sample of N2N3 was stored at -20ºC for four days prior to the another 

size-exclusion chromatography step where all of N2N3 eluted simultaneously 

between 65 and 75 ml of elution volume (Figure 3.21), indicating the equilibrium 

between the different forms of N2N3 is not dynamic. The major N2N3 species was 

later confirmed as a monomer by analytical ultracentrifugation (Section 3.7)  
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Figure 3.19 Size-exclusion chromatography of N2N3. The chromatogram shows the absorbance at 

280 nm (blue) over 1 CV (approximately 120 ml). Numbering of the elution peaks corresponds to the 

labels in the SDS-PAGE analysis (Figure 3.20).  

 

Figure 3.20 SDS-PAGE of the size-exclusion chromatography of N2N3. The SDS-PAGE shows 

protein marker (M / kDa) and fractions corresponding to the three elution peaks. The single band 

located between protein markers 36.5 and 55.4 kDa corresponds to the expected molecular weight of 

N2N3 (36 kDa). The molecular mass of N2N3 appears higher on the gel, possibly due to a higher 

content of negatively charged amino acids. The correct mass was confirmed by MS/ESI (Table 3.3). 
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Figure 3.21 Repeated size-exclusion chromatography of the N2N3 main species. The 

chromatogram depicts the absorbance at 280 nm (blue) over 1 CV (approximately 120 ml). The 

number of the elution peak corresponds to that in the first size-exclusion chromatography step (Figure 

3.19). 

 

3.6.7 Size-exclusion chromatography of N2N3T, N2N3E, N1N2, fA, N3 

and AF1 
 

Identical size-exclusion chromatography procedures to that for N2N3 (Section 3.6.6) 

and subsequent SDS-PAGE analyses were utilized when purifying other rFnBPA 

proteins, with a similar outcome. No visible contaminant could be detected by SDS-

PAGE indicating that the minor eluted species arise from oligomerizing rFnBPA 

proteins. Elution chromatograms for N2N3T and N2N3E (Figure 3.22) were 

comparable with that of N2N3, while subtle differences could be observed in elution 

of fA, N1N2, N3 and AF1 (Figure 3.23 and Figure 3.24). The final rFnBPA protein 

samples were analysed by SDS-PAGE, which revealed a purity of >95% (Figure 

3.22 and Figure 3.23 and Figure 3.24). N1N2, unlike the rest of rFnBPAs, was 

purified using a smaller Superdex 75 10/300GL size-exclusion column (CV = 20 ml) 

(GE Healthcare). The chromatogram indicates the presence of multiple minor forms 

of N1N2 with elution times both longer and shorter than that of the major species.  
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Figure 3.22 Size-exclusion chromatography of N2N3T and N2N3E. The chromatograms for the 

elution of (A) N2N3T and (B) N2N3E show the absorbance at 280 nm (blue) over 1 CV 

(approximately 120 ml). (RIGHT) SDS-PAGE analyses of the final samples (arrows) of N2N3T and 

N2N3E are also shown. 
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Figure 3.23 Size-exclusion chromatography of N1N2 and fA. The chromatograms for the elution of 

(A) N1N2 and (B) fA show the absorbance at 280 nm (blue). Size-exclusion chromatography of 

N1N2 was carried out on a Superdex 75 10/300GL (CV = 20 ml) column (GE Healthcare). The 

relatively low absorbance maximum results from the low extinction coefficient of N1N2 (ε = 7450). 

(RIGHT) SDS-PAGE analyses of the final samples (arrows) of N1N2 and fA are also shown. The 

molecular masses of both recombinant proteins appear higher on the gradient gel, most likely due to 

the high content of negatively charged amino acids within the disordered N1 domain. 
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Figure 3.24 Size-exclusion chromatography of AF1 and N3. The chromatograms for the elution of 

(A) AF1 and (B) N3 show the absorbance at 280 nm (blue) over 1 CV (approximately 120 ml). 

(RIGHT) SDS-PAGE analyse of the final samples (arrows) of AF1 and N3 are also shown. 

 

The purity of eluted recombinant proteins was in each case established as >95% by 

SDS-PAGE analysis and the correct mass confirmed by MS/ESI (Section 2.8.6). 

Final yields of all rFnBPA proteins were calculated based on the protein 

concentration estimated using the absorbance at 280 nm (Section 2.6.8). The final 

yields and basic properties of all purified rFnBPA proteins are listed in Table 3.3. 
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Table 3.3 Summary of rFnBPAs properties and expression yields. The table includes domain 

composition and shows the estimated molecular mass (tMw) (ProtParam) (Gasteiger et al., 2003), as 

well as the molecular mass determined by MS/ESI (Mw) (including the level of isotope labelling for 

15
N-N2N3, N2N3T and AF1). Estimated values for the extinction coefficient (ε) and the theoretical pI 

(ProtParam) of individual proteins are also included.  

 

3.7 Oligomerization state of N2N3 and AF1  
 

Oligomerization states of the final N2N3 and AF1 samples were determined by AUC 

(Section 2.8.4). Sedimentation velocity experiments and the subsequent data analysis 

were conducted by Dr Andrew Leech (Technology Facility, University of York). 

Overlaid plots of N2N3 and AF1 scans taken at regular intervals are shown in Figure 

3.25A and Figure 3.26A. Data were analysed using the SEDFIT software package 

(Schuck, 2000), with the partial specific volumes, buffer densities and viscosities 

estimated using the program SEDNETRP (Laue et al., 1992). A single symmetrical 

peak centred on the sedimentation coefficient values of 2.82S and 2.86S for N2N3 

and AF1, respectively, points to the presence of single protein forms. The main 

peaks account for approximately 91% (N2N3) and 99% (AF1) of the detected signal 

with the rest relating to a peak at the upper limit of sedimentation coefficient 

detection, which probably corresponds to a small amount of aggregate in the samples 

(Figure 3.25 and Figure 3.26B). The molecular mass estimated based on the 

sedimentation coefficients were 36 kDa for N2N3 and 39 kDa for AF1 (Figure 3.25C 

and Figure 3.26C). The result confirmed the monomeric character of the N2N3 and 

AF1 size-exclusion chromatography samples (Figure 3.19 and Figure 3.24A). 

rFnBPA tMw (Da) Mw (Da) Yield (mg/l) ε pI 

N3 20366 20368 11 27850 7.03 

N1N2 32759 32763 28 7450 4.81 

N2N3T 35716 35711 21 32320 5.58 

N2N3 36373 36373 25 32320 5.59 

N2N3E 36753 36755 27 32320 5.59 

fA 52751 52749 14 33810 5.09 

AF1 40896 40903 6 36790 5.18 

15
N-N2N3T 36145  36130 (97%) 24 32320 5.58 

15
N-N2N3 36812  36807 (99%) 25 32320 5.59 

15
N-AF1 41383  41381 (99%) 8 36790 5.18 
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Figure 3.25 Determination of the oligomerization state of N2N3 using sedimentation velocity 

experiment. (A) The raw data comprise overlaid plots of individual scans showing the absorbance at 

280 nm throughout the radius of the sample cell (boundaries). (B) The apparent differential 

sedimentation coefficient s distribution (c (s)). (C) The molar mass distribution. The data analysis was 

performed by Andrew Leech (Technology Facility, University of York). 
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Figure 3.26 Determination of the oligomerization state of AF1 using sedimentation velocity 

experiment. (A) The raw data comprise overlaid plots of individual scans showing the absorbance at 

280 nm throughout the radius of the sample cell (boundaries). (B) The apparent differential 

sedimentation coefficient distribution (c (s)). (C) The molar mass distribution are also shown. The 

data analysis was performed by Andrew Leech (Technology Facility, University of York). 
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3.8 Initial structural characterization of the rFnBPA proteins by 

1D 
1
H NMR spectroscopy 

 

The 1D 
1
H NMR spectrum can provide information regarding the folded state of a 

protein (Wishart et al., 1991). The spectrum of an unfolded protein is basically the 

sum of the random coil chemical shifts of the amino acids within the protein (Bundi 

and Wuthrich, 1979a; Schwarzinger et al., 2000). On the other hand, the signals in a 

folded protein are often shifted away from the random coil value as a result of the 

different chemical microenvironments associated with the protein structure (Bundi 

and Wuthrich, 1977; Wuthrich, 1986; Bundi and Wuthrich, 1979b). Consequently, 

the dispersion of signals in the spectrum of an unfolded protein is much narrower in 

comparison with spectrum of a folded protein (Schwarzinger et al., 2000).  

 

Samples of N1N2, N2N3 and AF1 were prepared as described in Section 2.8.1 and 

the 1D 
1
H NMR spectra acquired with identical acquisition parameters for all three 

samples (Section 2.8.1). A comparison of the three spectra revealed differences, 

most likely arising from the different levels of folding present in each protein (Figure 

3.27). The presence of strong peaks with relatively low dispersion across the 

spectrum of N1N2 suggests a significant portion of N1N2 is unstructured. Further 

NMR studies revealed the entire N1 domain is unstructured (unpublished results). 

On the other hand, the spectra of N2N3 and AF1 reveal much wider signal 

dispersion, which is particularly apparent in the amide (10 - 6 ppm) and aliphatic (4 - 

0 ppm) regions. Visible single methyl resonances at low ppm values (-0.5) is a 

further confirmation that a well defined fold is present within both N2N3 and AF1. 

Nevertheless, a subtle difference can be observed between the spectra of N2N3 and 

AF1. It is predominantly in the region corresponding to the signals from the amide 

nuclei and those within aromatic side chains, where the spectrum of AF1 shows 

some characteristics of disordered protein. This suggests that FnBPA1 remains 

unstructured in the AF1 context. 
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Figure 3.27 Comparison of the 1D 
1
H NMR spectra of N2N3 (blue), AF1 (purple) and N1N2 

(green). Typical chemical shift ranges associated with 
1
H nuclei in different protein environments are 

shown (Wishart et al., 1991). The strong peak at ~ 4.8 ppm, corresponding to the not-fully suppressed 

H2O signal is also indicated. 2,2-Dimethyl-2-silapentane-5-sulfonate (DSS) was used as an external 

reference. 

 

3.9 Solubility and long-term stability of rFnBPA proteins  
 

Removal of the His6-tag solved the initial solubility issues observed for rFnBPA 

proteins and facilitated purification of sufficient yields of pure protein. However, 

solubility and long-term stability of rFnBPA proteins is required for techniques such 

as NMR spectroscopy and X-ray crystallography. Moreover, preliminary NMR 

spectroscopy of 
15

N-N2N3 revealed that an acquisition temperature of 37ºC might be 

required to achieve high resolution spectra (data not shown). 
15

N-labelled N2N3T, 

N2N3 and AF1 were readily soluble at high concentration (<1 mM) and stable for up 

to several days at 4ºC, as determined by monitoring the sample concentration using 

absorbance at 280 nm (Section 2.6.8) and by analysing the protein solution using 

SDS-PAGE and NATIVE-PAGE (Sections 2.6.3 and 2.6.4). However, problems 
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arose when the concentrated protein samples were exposed to 37ºC over a period of 

several hours in an NMR spectrometer, resulting both from protein degradation and 

aggregation followed by precipitation. This was associated with a significant decline 

in the quality of the spectra. A systematic search for the optimum solution for NMR 

spectroscopy was carried out using a methodical optimization process testing a wide 

range of different buffers and additives (Golovanov et al., 2004; Howe, 2004; Kelly 

et al., 2002). Protein sample analysis was carried out using a combination of SDS- 

and NATIVE-PAGE (Sections 2.6.3 and 2.6.4) to detect any potential degradation or 

aggregation, respectively. Unfortunately, optimization did not lead to the 

identification of suitable conditions for the NMR sample, with all samples 

undergoing degradation and/or aggregation after 24 hours at 37°C. Eventually, the 

temperature stability of specific rFnBPA proteins was analysed using differential 

scanning calorimetry (DSC) (Section 2.8.5, Figure 3.28), a technique designed to 

measure the partial heat capacity of a solution as a function of temperature (Jelesarov 

and Bosshard, 1999; Cooper et al., 2001; Edgcomb and Murphy, 2000). All the DSC 

experiments were conducted by Dr Iain Manfield (Astbury Centre, University of 

Leeds). 

 

Model-fitting and subsequent determination of reliable thermodynamic parameters 

from DSC data can only be performed successfully if the unfolding is a single, 

cooperative and reversible process. For the rFnBPA data, this is not the case (Figure 

3.28). Results of the DSC experiments suggest that for the N2N3 region there are 

two separate transition periods, most likely corresponding to the unfolding of the two 

individual domains N2 and N3. The first signs of unfolding, marked as the beginning 

of the first transition period (T1-T2), were detected at approximately 36°C. The Cp 

maximum (also known as transition midpoint Tm1) was reached at approximately 

43°C, followed by a sharp decline in Cp, indicative of rapid aggregation. A second 

transition period occurs between 60 and 70°C leading to further aggregation. It is 

difficult to predict which domain is the less stable but there is little doubt that the 

overall unfolding process is complex and irreversible, thus unsuitable for model 

fitting and determination of ΔHcal. Nevertheless, the T1 and Tm1 values of 36°C and 

43°C provide an explanation for the low stability by N2N3 at 37°C. It is also 

probable that rFnBPA proteins would exhibit limited long-term stability at any 

temperature above 30°C, leading to a conclusion that either the NMR acquisition 
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parameters would have to be altered significantly to generate high resolution spectra 

at temperatures below 30°C or a new approach, excluding NMR spectroscopy, will 

have to be considered. 

Figure 3.28 Raw DSC data for AF1, N2N3 and N2N3T thermal unfolding experiments. 

Thermograms for Cp for AF1 (blue), N2N3 (green) and N2N3T (magenta). The temperature 

dependence of Cp for buffer (red) was also measured and used as a baseline. Two transition midpoints 

(Tm1 and Tm2) corresponding to two separate unfolding processes are also indicated. Temperatures T1 

(~ 36°C) and T2 (~ 49°C) mark the temperature limits of the first transition period. 

 

3.10 Summary 
 

Seven rFnBPA protein constructs, namely; N1N2, N3, N2N3T, N2N3, N2N3E, fA 

and AF1 (Section 3.3), were designed, cloned, expressed and purified, achieving 

relatively high yields and purity (Sections 3.6.6 and 3.6.7). Three of these constructs; 

N2N3, N2N3T and AF1 were also expressed uniformly labelled with 
15

N (Section 

3.5.2). The purification required systematic optimization and extensive 

troubleshooting. Some of the initial complications were associated with the low 

solubility of His6-tagged rFnBPA proteins (Section 3.6.1) and the additional His6-tag 

was identified as the probable cause. Other issues included the relatively high level 

of degradation products and contaminants within the purified His6-AF1 (Section 

3.6.4). Utilization of an optimized IEX purification step led to a significant reduction 

in the level of contaminants, resulting in a sufficiently pure AF1 sample (>95%), as 

determined by SDS-PAGE analysis (Section 3.6.5). The monomeric states of N2N3 

and AF1 were later confirmed by AUC (Section 3.7). 
1
H NMR spectra of N1N2, 

T1 

Tm1 

Tm2 

T2 
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N2N3 and AF1 provided an initial level of protein structural characterization 

(Section 3.8). The spectra revealed that N2N3 comprised mostly well defined folds, 

while, as expected, AF1 contained an additional unfolded region. A significantly 

larger proportion of intrinsic disorder was apparent in the spectrum of N1N2, most 

likely associated with the N1 domain. The spectra provide preliminary evidence that 

the novel rFnBPA proteins are folded and are therefore suitable for functional 

studies. All of the rFnBPA proteins appeared relatively stable for up to a few days at 

temperatures equal to or below 25°C, which is suitable for most techniques. 

However, preliminary NMR spectroscopy revealed that high resolution spectra of 

15
N rFnBPA proteins would require acquisition at 37°C for a period of up to several 

days. Unfortunately most of the rFnBPA proteins exhibit limited stability at 

temperatures above 30°C, as demonstrated by the DSC experiment (Section 3.9). For 

this reason and due to the size of the rFnBPA proteins, X-ray crystallography was 

used to solve the structures of unbound N2N3 and of N2N3 in complex with Fg1 

(Section 2.3.1). The temperature stability would also need to be considered with 

respect to functional experiments. 
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4 Structural characterization of N2N3 and its interaction 

with Fg 
 

4.1 Introduction 
 

Previous studies have addressed the question of where Fg binds to FnBPA by using 

recombinant truncated derivatives of rFnBPA, albeit with contrasting results (Wann 

et al., 2000; Keane et al., 2007b; Piroth et al., 2008). The Kd for the interaction of 

rFnBPA37-605 (contains the full A-domain and the first two FnBRs) with Fg was 

determined by SPR and fluorescence polarization (FP) as 11 and 2.4 µM, 

respectively (Wann et al., 2000). However, in two different studies the Kds for the 

interaction of Fg with the FnBPA A-domain, as well as rFnBPA(194-511), were 

determined by ELISA as 4.5 nM (Keane et al., 2007b; Loughman et al., 2008). There 

is also a lack of structural data for the N2N3 region or the whole A-domain of 

FnBPA. However, since N2N3 from FnBPA shares 26% and 22% sequence identity 

with N2N3 from ClfA and SdrG, respectively (Altschul et al., 1997), the N2 and N3 

domains of FnBPA are predicted to accommodate β-sandwich folds similar to those 

found in ClfA and SdrG.  

 

FnBPA, like ClfA, interacts with the C-terminal end of the Fg γ chain (Section 1.6.3) 

(Wann et al., 2000; McDevitt et al., 1997), however, FnBPA is expressed 

predominantly in the exponential phase of bacterial growth while ClfA is expressed 

in the stationary phase (Saravia-Otten et al., 1997; O'Brien et al., 2002a). Inhibition 

studies identified the last 17 C-terminal residues of the γ chain as the minimal Fg 

fragment retaining similar activity to intact Fg (Wann et al., 2000). A combination of 

crystallization and NMR experiments revealed this region is intrinsically disordered 

within intact Fg (Blumenstein et al., 1992; Kollman et al., 2009; Yee et al., 1997). 

Interestingly, the same Fg region also targets the platelet integrin GPIIbIIIa and is 

involved in the cross-linking process leading to fibrin formation (Fitzgerald et al., 

2006a; Fitzgerald et al., 2006b; Wolberg, 2007; Mosesson, 2005). As FnBPA has the 

potential to interfere with haemostasis, a better understanding of the interaction 

between native Fg and FnBPA could provide valuable insight into events associated 

with S. aureus infections.  
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4.2 Aims 
 

The primary objectives of the research were to identify the structural features of 

N2N3 and to characterise its interaction with Fg. Both SPR and ITC were used 

extensively to achieve this. Sections 1.7.1 and 1.7.2 describe these techniques and 

their use to study the molecular interactions. 

 

4.3 Identification of the FnBPA region that binds Fg 
 

Numerous studies have demonstrated the Fg-binding ability of the FnBPA 

A-domain, however, only a handful of these focused on which domains (N1, N2 and 

N3) are involved in the Fg-binding process and the studies had different outcomes 

(Que et al., 2005; Keane et al., 2007b; Piroth et al., 2008). The following SPR 

experiment assessed the binding of recombinant truncated derivatives of FnBPA to 

FgD (Section 2.3.3) to obtain preliminary data regarding the contribution of the 

individual domains to the interaction. 

 

Response intensity R (in RU) in a typical SPR experiment is directly proportional to 

the association constant (Ka) for the analyte-ligand interaction, and to the molecular 

mass and concentration of the analyte (Schuck, 1997). Providing these factors are 

taken into account, the steady-state binding level (Req) can be used to compare the 

relative affinities of the interactions of rFnBPA analytes with FgD. The experimental 

setup involved immobilization of FgD on the surface of a sensor chip followed by 

exposure of the FgD-coated surface to equi-molar concentrations (10 µM) of the 

rFnBPA variants. The steady-state levels of binding generated upon interaction of 

the ligand with different analytes were measured and the resulting values compared 

(Figure 4.1).  
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Figure 4.1 SPR Sensorgram. Representative sensorgrams corresponding to the Req generated upon 

exposure of a FgD-coated sensor chip to the rFnBPA truncated derivatives at a concentration of 

10 µM. N3 was also tested at a concentration of 20 µM (cyan).  

 

The recombinant FnBPA proteins used were as follows; fA, N1N2, N2N3, N3 and 

AF1 (Table 3.1). The highest Req value corresponded to the injection of fA, followed 

by AF1 and then N2N3, with the value for N3 considerably lower, and no response 

was detected upon injection of N1N2. The association phases for all four reactions 

exhibit similar characteristics, reaching a steady-state. The dissociation phase 

appears faster for N3 than for N2N3, AF1 and fA. The order of Req values correlated 

with the respective molecular masses of the recombinant proteins that bound FgD. 

The relatively small variability in Req for fA, AF1 and N2N3 most likely originates 

from the difference in molecular mass rather than affinity. However, the Req 

generated upon N3 injection is considerably smaller than that of N2N3, indicating 

that the Fg-binding site might have been compromised. Injection of N3 was repeated 

at a higher concentration (20 µM) with no significant change in the Req.  
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The maximum response generated upon analyte injection is reached when the 

immobilized ligand is fully saturated, thus the RMAX value corresponds to the analyte 

binding capacity of the surface (in RU). The theoretical RMAX (tRMAX) can be 

calculated based on the level of immobilised ligand RL (519 RU) and the molecular 

masses of the ligand ML (85 kDa) and analyte (MA 36 kDa) using Equation 4.1. 

 
      

     

  
 (4.1) 

The Kd for the interaction between the A-domain and Fg has been determined 

previously by SPR as 11 µM (Wann et al., 2000). Consequently, it can be assumed 

that at an analyte concentration of 10 µM, the response Req should be approximately 

equal to half of the RMAX. The observed Req (half-RMAX) can thus be used to estimate 

the final RMAX which can be presented as a percentage of the tRMAX. The normalized 

values can then be compared directly, as they are independent of the analyte 

molecular mass. As the same conditions, including ligand immobilization, were used 

for all analytes, the percentages should be similar, providing the Kds for the 

analyte-ligand interactions are identical (Table 4.1). It is, however, important to 

consider that the tRMAX is the ideal value and often does not reflect the real RMAX, as 

it cannot be guaranteed that all of the immobilized ligand is either functional or 

accessible to the analyte. 

Table 4.1 Results of the SPR experiment designed to test the binding of truncated rFnBPA 

derivatives to FgD. The table includes the tRMAX calculated from Equation 4.1, different responses 

determined from the sensorgram and the estimated RMAX (eRMAX) based on the observed steady state 

binding level (Req). The eRMAX value is also shown as a percentage of tRMAX to allow comparison of 

the relative values, independent of the differences in molecular mass of the individual analytes. 

  

Protein Mass (Da) tRMAX (RU) Req (RU) eRMAX (RU) % 

fA 52679 322 97.8 196 61 

AF1 40900 250 76.7 154 62 

N2N3 36323 222 71.7 143 64 

N1N2 33149 202 0 0 0 

N3 19903 122 8.7 (9.3) 17 14 
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Table 4.1 clearly shows there is no detectable interaction between N1N2 and FgD, 

and only a weak interaction between N3 and FgD. This leads to the conclusion that 

both N2 and N3 are required for Fg-binding and that FgD binds N2N3 with affinity 

similar to that for the A-domain. While these results are only preliminary, they are 

consistent with previous studies, analysing the effects of mutations in the N2N3 

region of ClfA on Fg binding (Josefsson et al., 2008; Deivanayagam et al., 2002; 

Keane et al., 2007b). 

 

4.4 N2N3 binding to Fg 
 

The dissociation constant for the interaction between the FnBPA A-domain and 

native Fg was determined previously utilizing SPR and FP as 11.0 and 2.5 µM, 

respectively (Wann et al., 2000). Broadly consistent Kds of 5.8 and 0.1 µM were 

determined for the respective ClfA- and SdrG-N2N3 regions (McDevitt et al., 1997; 

Davis et al., 2001). The sequence similarity between FnBPA and ClfA/SdrG, 

combined with the SPR results described in Section 4.3, suggests that N1 is not 

required for the FnBPA-Fg interaction.  

 

In the following experiment, the Kd for the N2N3-Fg interaction was measured by 

ITC, where intact Fg was titrated into a cell containing N2N3 (Section 2.8.3). The 

binding isotherm was fitted based on the ‘single set of sites’ model, and the Kd 

determined as 2.3 ± 0.2 µM. It is similar to that for the FnBPA(37-605) interaction with 

Fg (11.0 ± 1.2 µM) measured previously, using SPR (Wann et al., 2000). Thus the 

Fg-binding site appears to be located entirely within the N2N3 region. The derived 

stoichiometry of 2.14 (N2N3:Fg) corresponds to the presence of two identical 

binding sites on the intact Fg (dimer) (Section 1.4). Thermodynamic parameters for 

the interaction and their associated errors are listed in Table 4.2. 
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Figure 4.2 Determination of the Kd for the N2N3-Fg interaction. Peaks in the upper panel 

represent heats generated upon injections of Fg into N2N3. The experiment also includes a titration of 

Fg into the cell buffer to evaluate the heats of dilution. Measured heats were integrated, heats of 

dilution subtracted, and the best fit was calculated based on a ‘single set of sites’ model using Origin 

7 (Microcal). The ITC binding isotherm is shown in the lower panel. Thermodynamic parameters are 

listed in Table 4.2.  

 

4.5 Determining the role of the putative latch strand in Fg binding 

 

The proposed dock-lock-latch model for the SdrG (S. epidermidis)-Fg (β chain) 

interaction (Section 1.6.3) attributed a particularly important role to the latch strand 

(Figure 1.11), comprising the C-terminal extension of N3 which binds along the 

N2-E strand (Ponnuraj et al., 2003). Crystal structures of apoSdrG(273-597) and 

SdrG(273-597) in complex with the Fgβ-peptide show that the latch strand interacts 

with the E strand of the N2 domain upon Fg binding. An SPR experiment revealed 

that the removal of the latch strand significantly reduced the affinity of the 

interaction (Ponnuraj et al., 2003). Thus it has been proposed that the latch strand has 

a stabilizing effect on the structure of the complex. The latch strand in ClfA 

(S. aureus) also interacts with the N2 domain E strand (Figure 1.12), however, its 

importance in Fg (γ-chain) binding has not yet been established (Ganesh et al., 

2008). The aim of the following SPR experiment was to test the importance of the 

putative latch strand in the FnBPA-Fg interaction. 
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The Kds for interactions between FgD and N2N3 (Section 3.3.1) or N2N3T (Section 

3.3.2) were determined using SPR. FgD was immobilized on the surface of a sensor 

chip and subsequently exposed to increasing concentrations of N2N3 or N2N3T 

(Figure 4.3). The resulting sensorgrams show that both the association and 

dissociation rates are fast, and outside the measurable range of the Biacore T100 (GE 

Healthcare) instrument (Section 1.7.2.4). Consequently, Kds for the interactions were 

derived by analysis of equilibrium binding (Section 2.8.2.3). Kds for the interactions 

of N2N3 and N2N3T with immobilized FgD were 1.5 ± 0.1 µM and 3.7 ± 0.2 µM, 

respectively. The similarity between the Kd values indicates that the putative latch 

strand is not essential for the FnBPA-Fg interaction.  

 

Figure 4.3 Binding of N2N3 and N2N3T to FgD. Representative SPR sensorgrams show responses 

generated upon interactions of immobilized FgD with increasing concentrations of N2N3 (A) and 

N2N3T (B). Affinity evaluation using equilibrium analysis is also shown.  

  

A 

B 

0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

70

R
e

s
p

o
n

s
e

 d
if

fe
re

n
c

e

Time (s)

       N2N3

concentration

    (x10
-8

M)

 0

 5

 10

 20

 39

 78

 156

 313

 625

 1250

 2500

 5000

0 50 100 150 200 250 300 350 400

0

5

10

15

20

25

30

35

40

R
e

s
p

o
n

s
e

 d
if

e
re

n
c

e

Time (s)

      N2N3T 

concentration

    (x10
-8

M)

 0

 5

 10

 20

 39

 78

 156

 313

 625

 1250

 2500

 5000

1 2 3 4 5
0

5

10

15

20

25

30

35

40

 Req

 Saturation curve

 Kd  3.7 ± 0.1 x10
-6

 M

R
e

s
p

o
n

s
e

 d
if

fe
re

n
c

e
 

Analyte concentration (x10
-5

 M)

1 2 3 4 5
0

5

10

15

20

25

30

35

40

 Req

 Saturation curve

 Kd  3.7 ± 0.1 x10
-6

 M

R
e

s
p

o
n

s
e

 d
if

fe
re

n
c

e
 

Analyte concentration (x10
-5

 M)



Chapter 4 

114 

 

4.6 Native Fg binds FnBPA with similar affinity to Fg1 

 

All previous binding experiments have been carried out using either intact Fg (~ 340 

kDa) (ITC) or FgD (~ 85 kDa) (SPR). However, both Fg and FgD are large 

macromolecular species whose utilization in an NMR spectroscopy structural 

characterisation of N2N3 (and its binding to Fg) would present numerous 

complications. The physiological relevance of the Fg1 peptide (~ 1.7 kDa) (Section 

2.3.1) as a model of the FnBPA binding site on Fg had to be established. 

 

Initially, the Kd for the N2N3-Fg1 interaction was determined by ITC, where the 

ligand (Fg1) within the syringe was titrated into N2N3 in the cell (Section 2.8.3). A 

‘single set of sites’ model was utilized to fit the binding isotherm and the Kd was 

21.4 ± 1.0 µM (Figure 4.4). Specific thermodynamic parameters for the interaction 

are summarised in Table 4.2. A comparison of the Kds for the N2N3-Fg1 and the 

N2N3-Fg (2.3 ± 0.2 µM) interactions reveals a relatively small difference in affinity.  

Figure 4.4 Determination of the Kd for the N2N3-Fg1 interaction. Peaks in the upper panel 

represent heats generated upon every Fg1 injection into N2N3. The Experiment also includes a 

titration of Fg1 into the cell buffer, which was used to evaluate the heats of dilution. Measured heats 

were integrated, heats of dilution subtracted and the best fit was calculated based on a ‘single set of 

sites’ model using MicroCal Origin 7 software. The ITC binding isotherm for the titration of Fg1 into 

N2N3 is shown in the lower panel. Thermodynamic parameters are listed in Table 4.2. 
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In order to further investigate Fg1’s suitability as a model for Fg in FnBPA binding 

studies, an SPR experiment with immobilized FgD and N2N3 as the analyte was 

performed. The experimental set-up was identical to that in Section 4.5, with the 

addition of excess Fg1 as an inhibitor. Addition of a fifty- and hundred-fold molar 

excess of Fg1 to the solution of N2N3 resulted in reduction of the original response 

intensity of 35.8 RU to 11.1 and 3.8 RU, respectively. A solution containing N2N3 

with a fifty-fold molar excess of N1N2 was used as a negative control, with no effect 

on the response (Figure 4.5). The outcomes of the ITC and SPR experiments show 

that Fg and Fg1 bind N2N3 with similar affinities and use the same or overlapping 

binding sites, but also that Fg1 binds somewhat less effectively.  

Figure 4.5 Inhibition of the N2N3-FgD interaction by Fg1. Representative sensorgrams generated 

upon exposure of an FgD-coated sensor chip to N2N3 in the presence and absence of excess Fg1 or 

N1N2. 

 

Interaction Kd 
ΔH  

/ kcal mol
-1

 

ΔS  

/ cal mol
-1

 K
-1

 
n Technique 

N2N3-Fg1 21.4 ± 1.1 µM -1.28 ± 0.02 15.0 0.86 ITC 

N2N3-FgD 1.4 ± 0.2 µM - - - SPR 

N2N3-Fg 2.3 ± 0.2 µM -8.30 ± 0.09 -2.05 2.14 ITC 

N2N3T-FgD 3.7 ± 0.1 µM - - - SPR 

Table 4.2 Summary of kinetic and thermodynamic parameters for the N2N3-Fg interactions. 

The table includes Kds determined by either ITC or SPR. Values for the enthalpy (ΔH) and entropy 

change (ΔS) and stoichiometry (N2N3:Fg1/Fg) (n) were also determined for the interactions studied 

by ITC. 
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4.7 Analysis of the FnBPA-Fg interaction by NMR spectroscopy 
 

The aim of the following set of NMR experiments was to gain further insight into the 

structural characteristics of FnBPA and the binding interaction with Fg. This 

involved acquisition of a 2D 
1
H

15
N HSQC spectrum of uniformly 

15
N-labelled N2N3 

and subsequent comparison with spectra of 
15

N-N2N3 titrated with Fg1 (Section 

2.8.1). Peaks in the HSQC spectrum correspond to the N2N3 amide protons, and the 

extent of the chemical shift perturbations (upon Fg1 binding) relates to the degree of 

environmental changes on the protein:peptide interface (Stevens et al., 2001; 

Pellecchia et al., 2000). The kinetics of the binding during the titration results in 

characteristic perturbations indicative of fast, slow or intermediate exchange on the 

NMR timescale. Fast exchange is usually associated with weaker binding and rapid 

dissociation rates. Consequently, only a single set of resonances representing the 

population weighted average of the unbound and bound chemical shifts is visible 

with peaks appearing to ‘move’ in continuous fashion during the titration (Hall et al., 

2001). Slow exchange is often observed for tighter interactions and corresponds to a 

very slow dissociation rate. Resonances representing the unbound protein gradually 

disappear through the course of the titration and are replaced by a set of resonances 

for the bound protein (Williamson et al., 1997). Finally, in intermediate exchange 

peaks shift and broaden on increasing ligand concentration (Zuiderweg et al., 1981; 

McAlister et al., 1996). The exchange rate is also dependent on the chemical shift 

difference between free and bound states. Thus, peaks involved in the same 

interaction can be in different exchange regimes. 

 

4.7.1 Optimization of conditions for HSQC spectra of 
15

N-N2N3. 
 

Initially, an HSQC spectrum was acquired for 
15

N-N2N3 (Figure 4.6A). The sample 

preparation and acquisition of the spectra were performed as described in Section 

2.8.1. The resulting spectrum exhibited poor resolution and a low signal to noise 

ratio. While the relatively wide peak dispersion in the 
1
H dimension was indicative 

of folded state, clearly, the sample conditions and/or the experimental set-up needed 

adjustment to generate a better spectrum.  

 

The problem with low resolution of the spectrum was most likely the consequence of 

the relatively high molecular mass of N2N3 (36 kDa). The tumbling rate of large 



Chapter 4 

117 

 

proteins in solution is slower, causing a fast decay of the NMR signal (relaxation). 

Transverse nuclear spin relaxation leads to line broadening and a loss of NMR 

signal. Factors contributing to the increase in the rate of the transverse relaxation 

also include chemical shift anisotropy (CSA) and dipole-dipole coupling (DD) 

(Wuthrich, 1998; Riek et al., 1999). Incorporating transverse relaxation optimized 

spectroscopy (TROSY) into an NMR experiment can significantly reduce the 

relaxation rate and improve spectral resolution and sensitivity (Pervushin et al., 

1997). TROSY exploits constructive interference between DD (magnetic field 

independent) and CSA (proportionate to magnetic field), thus in a certain 
1
H 

frequency range (950-1050 MHz) the transverse relaxation is reduced to a near zero 

level. TROSY has proved particularly useful in NMR studies of proteins with high 

molecular mass, allowing acquisition of high resolution spectra which would not be 

possible with previous NMR approaches (Wider and Wuthrich, 1999; Venters et al., 

2002). The result of the TROSY-HSQC experiment with 
15

N-N2N3 is shown in 

Figure 4.6B. Although 700 MHz is not the optimum frequency, a significant 

reduction of transverse relaxation was achieved leading to improvement in both the 

signal intensity and the resolution of individual peaks (Figure 4.6). 

Figure 4.6 Comparison of (A) 2D 
1
H

15
N HSQC and (B) 2D 

1
H

15
N TROSY-HSQC spectra of 

15
N-N2N3. Both spectra were acquired on a 700 MHz spectrometer (Section 2.8.1) at 310 K, at 

pH 7.4, using an identical sample of 
15

N-N2N3. Data processing was performed using NMRPipe 

(Delaglio et al., 1995) and analysis using NMRView (Johnson and Blevins, 1994).  
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In an attempt to further improve the quality of the spectra, the sample pH was 

lowered to reduce the exchange rate between amide protons and solvent, thereby, 

potentially improving the intensity of the recorded signal (Woodward and Hilton, 

1979; Richarz et al., 1979). Three TROSY-HSQC spectra of 
15

N-N2N3 were 

acquired at pH 7.1, 6.5 and 6.0. The effect of pH on protein stability is clearly 

demonstrated by a marked deterioration in the quality of the spectra below pH 7.0, 

with the worst spectrum acquired at pH 6.0. Both the number of visible peaks and 

the overall dispersion in the 
1
H dimension decreased significantly, indicating the 

stability of the protein has been compromised through partial denaturation and/or 

aggregation (Figure 4.7A). No significant difference was observed when comparing 

TROSY-HSQC spectra recorded between pH 7.0 and pH 8.0, thus the original 

sample pH 7.4 appears to be optimal. 

Figure 4.7 Comparison of the 2D 
1
H

15
N TROSY-HSQC spectra of 

15
N-N2N3 at (A) pH 6.0 and 

(B) pH 7.4. Both spectra were acquired on a 700 MHz spectrometer (Section 2.8.1) at 310 K, using 

identical sample of 
15

N-N2N3. Processing was performed using NMRPipe (Delaglio et al., 1995) and 

analysis using NMRView (Johnson and Blevins, 1994). 
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4.7.2 TROSY-HSQC spectra of 
15

N N2N3 and 
15

N N2N3T +/- Fg1 
 

A set of 
15

N-N2N3 spectra with Fg1 at protein/peptide molar ratios ranging from 

1/0.05 to 1/6 were recorded under otherwise identical conditions and compared 

(Figure 4.8). Despite the reduced quality of the final 
15

N-N2N3-Fg1 spectrum, it is 

clear that a significant number of peaks undergo a change in chemical shift after the 

addition of the Fg1 peptide. The spectra exhibit a combination of slow and 

intermediate exchange rate indicative of relatively strong binding (Section 4.7.1).  

Figure 4.8 2D 
1
H

15
N TROSY-HSQC spectra of 

15
N-N2N3 with and without a 6-molar excess of 

Fg1. The spectra were acquired on a 700 MHz spectrometer (Section 2.8.1) at 310 K at pH 7.4. Data 

processing was performed using NMRPipe (Delaglio et al., 1995) and analysis by NMRView 

(Johnson and Blevins, 1994). The spectrum of unbound N2N3 is shown in blue, while the spectrum of 

Fg1-bound N2N3 is shown in red.  
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In the N2N3 spectrum, 260 peaks of an expected 318 were visible. The spectrum of 

N2N3 fully saturated with Fg1 peptide shows that approximately 80 peaks undergo 

chemical shift change and a further 19 new resonances appear in comparison with 

the spectrum of N2N3. The chemical shift changes demonstrate the presence of an 

interaction between N2N3 and Fg1. The proportion of residues affected on Fg1 

binding points to the formation of an extensive interface and potentially a significant 

conformational change in N2N3. The newly appeared peaks in the spectrum of the 

N2N3-Fg1 complex most likely correspond to N2N3 residues that are in exchange 

between multiple conformational states in the absence of Fg1.  

 

Finally, to investigate the effect of partial truncation of the putative latch strand on 

the N2N3 conformation and its interaction with Fg1, TROSY-HSQC spectra of 

15
N-N2N3T in the absence and presence of excess Fg1 were recorded. The spectra 

were acquired under conditions identical to those described previously. Spectra of 

apoN2N3 and apoN2N3T are almost identical with the exception of several 

additional peaks appearing in the spectrum of N2N3T (Figure 4.9A). These extra 

peaks are likely to arise due to the lack of transient interactions with the dynamic 

putative latch strand present in N2N3. Comparison of the N2N3-Fg1 and 

N2N3T-Fg1 spectra revealed that the majority of peaks overlaid, a few had different 

chemical shifts and the N2N3-Fg1 spectrum contained at least four additional peaks 

(Figure 4.9B). These extra peaks might correspond to residues from the putative 

latch strand. 
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Figure 4.9 2D 
1
H

15
N TROSY-HSQC spectra of 

15
N-N2N3 (blue) and 

15
N-N2N3T (green). The 

spectra were acquired on a 700 MHz spectrometer (Section 2.8.1) at 310 K at pH 7.4. Data processing 

was performed using NMRPipe (Delaglio et al., 1995) and analysis using NMRView (Johnson and 

Blevins, 1994). Additional peaks are indicated by circles.  
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Figure 4.10 2D 
1
H

15
N TROSY-HSQC spectra of 

15
N-N2N3 (blue) and 

15
N-N2N3T (green) with a 

6-molar excess of Fg1. The spectra were acquired on a 700 MHz spectrometer (Section 2.8.1) at 

310K at pH 7.4. Data processing was performed using NMRPipe (Delaglio et al., 1995) and analysis 

using NMRView (Johnson and Blevins, 1994). Additional peaks are indicated by circles. 
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4.8 Crystal structure of N2N3T  
 

Initial crystallization trials were carried out with N2N3 using the sitting drop vapour 

diffusion method as described in Section 2.8.7. Clusters of fragile, needle-like 

crystals grew in several different conditions in the 96-well plates overnight, however 

these were unsuitable for data collection due to the lack of diffraction properties. 

Unfortunately, optimization of numerous conditions including protein concentration, 

buffer solution, pH, temperature or protein:solvent ratio within the drop, did not lead 

to improvement of the crystal characteristics. The predicted flexible nature of the 

N2N3 putative latch strand might have been interfering with the crystallization 

process, thus preventing the formation of stable and diffracting crystals of N2N3. 

Consequently, N2N3T was considered more suitable for crystallization trials. Large 

clusters of stable N2N3T crystals grew in optimized conditions (Section 2.8.7) and 

diffracted to 2.19Å (Figure 4.11). Crystallization, data collection and structure 

refinement were carried out as described in Section 2.8.8. The refinement statistics 

are shown in Table 4.3. 

Figure 4.11 Image of N2N3T crystals and corresponding diffraction pattern. (A) Clusters of 

N2N3T crystals in a sitting drop containing polyethylene glycol (PEG) 20000 (8% (w/v)), PEG 

monomethyl ether (mme) 550 (8% (v/v)), 0.2 M calcium acetate, with added 50 mM Tris-HCl, 50 

mM NaCl, pH 7.4. (B) The diffraction pattern corresponding to a single crystal originating from the 

cluster. 

  

B A 
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Table 4.3 Data collection and refinement statistics for N2N3T. Data for the highest resolution shell 

are shown in brackets where applicable. 

 

The structure of N2N3T, like SdrG(273-597) and ClfA(229-545), is formed by two distinct 

β-strand dominated domains, N2 and N3, linked by an eight residue linker (Figure 

4.12). The N-terminal N2 domain (residues 195-335) consists of nine β-strands 

arranged in a sandwich of β-sheets. The N3 domain (residues 344-503) has a similar 

structure comprising two β-sheets formed by five β-strands each (Figure 4.12 and 

Figure 4.13). Unlike N2, however, the two β-sheets within the N3 domain are linked 

by a short α-helical feature. The structures of N2 and N3 superpose with a root mean 

square deviation (r.m.s.d.) of 3.17 Å. The structures of both domains resemble a 

distorted β-barrel rather than a typical β-sandwich (Figure 4.12).  

  

Parameter N2N3T 

Beamline ID29 

Space group P212121 

Cell dimensions a, b, c (Å) 62.6, 75.2, 85.5 

Cell dimensions α, β, γ (º) 90.0, 90.0, 90.0 

Wavelength (Å) 0.9763 

Resolution (Å) 56.5-2.2 

Rmerge 0.10 (0.52) 

I/σI 8.6 (6.0)  

Completeness 99.2 (87.3) 

Redundancy 6.7 (3.6) 

No. of unique reflections 21217 

Rfactor 0.19 

Rfree 0.24 

Average B-factor (Å
2
) 18.3 

r.m.s.d. bond lengths (Å
2
) 0.02 

r.m.s.d. bond angles (°) 1.89 
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Figure 4.12 Ribbon representation of the N2N3T structure. The ribbon diagram depicts the two 

domains N2 and N3 with the β-strands labelled (N2 A-G and N3 A’-G’; adopted from Deivanayagam 

and colleagues, 2002). The single α-helical feature (yellow), loops involved in inter-domain contacts 

(green) and both termini (arrows) are also shown.  

 

The N2 domain adopts a fold with high resemblance to a constant domain (C-type) 

of IgG, albeit with two additional anti-parallel strands between the D and E strands. 

This altered version of a C-type IgG fold is called the DEv-IgG and has been 

identified in other proteins including ClfA (Deivanayagam et al., 2002). The 

asymmetric unit comprises a single copy of N2N3T with electron density for 

residues 189-194 and 504-506 absent, most likely due to the flexible nature of these 

regions. A surface representation of the N2N3T structure reveals a predominantly 

hydrophobic cleft formed in the space between the N2 and N3 domains, which is the 

predicted binding site for the Fg γ chain C-terminus (Figure 4.14). The solvent 

accessible surface area of N2N3T is 16033 Å with 1024 Å buried in the N2 and N3 

interface. The main N2 and N3 inter-domain contacts originate from two regions. 

First, interactions between two protruding loops that connect strands D’ and D1’ 

within the N3 domain with the E and F strands of the N2 domain. Second, 

interactions of the A’ strand of the N3 domain with a loop connecting the C and D 

strands, in the N2 domain (Figure 4.12).  
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Figure 4.13 The topology of the domain folds. Schematic diagrams depict N2 and N3 domains with 

β-strands labelled A to G and A’ to G’, respectively. Neighbouring C- and N-terminal features are 

indicated. Diagrams of constant (C) and variable (V) IgG folds are also shown for comparison. Figure 

adapted from Deivanayagam and colleagues, 2002. 

 

Figure 4.14 Hydrophobicity surface representation of the N2N3T structure. The surface model 

represents hydrophobicity of individual amino acids as determined by the Kyte-Doolittle scale (Kyte 

and Doolittle, 1982). The colours range from blue for the most hydrophilic residues such as Arg, 

through white to orange-red for the most hydrophobic residues such as Ile. The predominantly 

hydrophobic cleft between the N2 and N3 domains is indicated by arrows. The figure was generated 

using the UCSF Chimera molecular graphics software (Pettersen et al., 2004). 
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4.9 Crystal structure of the N2N3T-Fg1 complex 
 

Crystals of the N2N3T-Fg1 complex did not grow in conditions identical or similar 

to that for N2N3T, thus trials and optimization procedures were repeated to obtain 

the optimum conditions (Section 2.8.9). Unlike apoN2N3T, the N2N3T-Fg1 

complex crystallization resulted in a multitude of single crystals of various 

dimensions present within a single sitting drop. Diffraction properties of selected 

crystals were tested and 1.83Å was identified as the highest resolution (Figure 4.15). 

Crystallization, data collection and structure refinement were carried out as 

described in detail in Section 2.8.10. The refinement statistics are shown in Table 

4.4. 

Figure 4.15 Image of N2N3T-Fg1 crystals and corresponding diffraction pattern. (A) 

N2N3T-Fg1 crystals in a sitting drop containing PEG mme 2000 (15% (w/v)), 0.2 M Ca Acetate, 50 

mM Tris, 100 mM NaCl, isopropanol 10% (v/v), pH 7.4 (B) Diffraction pattern generated by a single 

crystal extracted from the drop. 

  

A B 
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Parameters N2N3T-Fg1 

Beamline I041 

Space group P1 

Cell dimensions a, b, c (Å) 37.5, 59.1, 73.5  

Cell dimensions α, β, γ (º) 91.8, 98.1, 97.9 

Wavelength (Å) 0.91731 

Resolution (Å) 58.4-1.8 

Rmerge 0.07 (0.36) 

I/σI 9.1 (2.0) 

Completeness 93.6 (67.4) 

Redundancy 2.2 (2.2) 

No. of unique reflections 51268 

Rfactor 0.194 

Rfree 0.247 

Mean B-factor (Å
2
) 7.58 

r.m.s.d. bond lengths (Å
2
) 0.02 

r.m.s.d. bond angles (°) 1.95 

Table 4.4 Data collection and refinement statistics for the N2N3T-Fg1 complex. Data for the 

highest resolution shell are shown in brackets where applicable. 

 

The asymmetric unit comprises two copies of the N2N3T-Fg1 complex referred to as 

A:C and B:D, which are almost identical, as confirmed by the r.m.s.d. value of 0.33 

Å between the A and B chains (secondary structure matching (s.s.m.) of 292 

residues). Overall, the quality of the electron density map corresponding to the A:C 

complex was the marginally better of the two. As a result, a larger proportion of the 

molecule could be modelled into the A:C electron density map producing a more 

complete model of the protein complex. The calculated electron density maps 

contained clearly defined regions of electron density corresponding to 14 and 12 

amino acid residues of the full length Fg1 chains C and D (17 residues), respectively 

(Figure 4.16). The electron density corresponding to the N-terminal residues 189-194 

and C-terminal residues 504 and 505 of the A:C and B:D complexes was absent. 

Missing electron density within the N3 loop region that connects the F’ and G’ 

strands (residues 479-489), which is clearly visible in the N2N3T structure (Figure 

4.17), suggests this region is flexible in solution and stabilised in N2N3T as a result 

of crystal packing.  
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Figure 4.16 Electron density map for Fg1. Cylindrical representation of Fg1 (blue), modelled into 

the corresponding electron density map (green) within the N2N3T (magenta)-Fg1 complex (chains 

A:C) contoured at 1.5 σ of the Fg1 residues. 

 

 

Figure 4.17 Structure of the F’- G’ loop. Stereo view of the N2N3T F’-G’ loop region (cylinders; 

carbon – green, nitrogen – blue and oxygen – red), including electron density map (blue) contoured at 

1.5 σ of the N2N3T residues. 
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Figure 4.18 Ribbon representation of the N2N3T-Fg1 complex. (A) The ribbon diagram depicts 

N2N3T (magenta) in complex with Fg1 (blue). The N- and C-termini are indicated. The G222-Y501 

and N304-N503 hydrogen bonds (dotted line) are indicated. Residues G222, Y501, N304 and N503 

are shown as yellow cylinders (B) Superposition of N2N3T (purple) and N2N3T-Fg1 (magenta) with 

the Fg1.  

 

The Fg-binding site is located in the (mostly hydrophobic) cleft between N2 and N3 

(Figure 4.19). Bound Fg1 forms an additional β-strand parallel to the G’ strand in N3 

(Figure 4.18A), presenting a classic example of a β-zipper interaction (Waksman and 

Hultgren, 2009). The N2N3-Fg1 interaction is dominated by backbone hydrogen 

bonds (Figure 4.20). Fg1 binding does not induce any large conformational changes 

in the structure of N2N3T as confirmed by the r.m.s.d. value of 0.81 Å (s.s.m. of 295 

residues) between the free and Fg-bound N2N3T structures (Figure 4.18B) (Krissinel 

and Henrick, 2004). The only significant conformational change between the 

structures of unbound and Fg-bound N2N3T is the translocation of the N3-G’ strand.  
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Figure 4.19 Electrostatic surface representation of the Fg-binding site. Comparison of the surface 

representations (blue - positive, red - negative and white - neutral) of (A) free and (B) Fg1-bound 

N2N3T shows the exposed (predominantly neutral) cleft (arrows) between the N2 and N3 domains 

and the formation of the tunnel-like feature upon Fg1 (blue cylinders) binding. 

 

In the unbound N2N3T, the N3-G’ strand aligns anti-parallel with the neighbouring 

F’ strand. In the Fg-bound form, the strand ‘wraps’ around the last few C-terminal 

residues (Q13, A14 and G15) of Fg1 and interacts with the N2 domain forming a 

tunnel-like feature (Figure 4.18B and Figure 4.19B). Y501 and N503, which 

protrude away from the rest of the unbound N2N3T structure, are in close proximity 

to G222 and N304, respectively in bound N2N3T, forming a Y501-G222 and 

N503-N304 hydrogen bonds (Figure 4.18). The solvent accessible surface area of 

N2N3T that is buried as a result of Fg1 binding is 796 Å
2
 and the combined buried 

surface of N2N3T and Fg1 within the N2N3T-Fg1 interface is 1880 Å
2
 in the A:C 

chain interface (Krissinel and Henrick, 2007). Three Fg1 residues (Q13, A14 and 

G15) are buried within the tunnel-like feature upon binding and the Q13 appears to 

be the only Fg1 residue whose sidechain could potentially form hydrogen bond with 

S351 or I352. 

A 

B 

N3 

N2 

N3 

N2 
Fg1 

C-terminus 



Chapter 4 

132 

 

Figure 4.20 Hydrogen bonds between Fg1 and N2N3T. (A) Fg1 amino acid sequence including the 

N- (Ac) and C-terminal (NH2) caps. (B) Schematic diagram of the backbone hydrogen bonding 

interactions (dotted lines; max donor-acceptor distance - 3Å) between N2N3T (magenta) and Fg1 

(blue). Figure generated using ChemSketch Freeware (ACD, 2006) (C) Representation of the relative 

positions of the Fg1 and N2N3T residues involved in the hydrogen binding. 
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4.10 Discussion 
 

4.10.1 N2N3T retains the Fg-binding ability of the full A-domain 
 

The preliminary SPR experiment indicated that N2N3 is the minimum region of 

FnBPA containing the full Fg-binding domain (Section 4.3). This was further 

confirmed when the Kd for the N2N3-Fg interaction, determined by ITC and SPR 

experiments (Section 4.4), agreed with published data regarding the Fg interaction 

with the A-domain (Wann et al., 2000). Other publications have reported affinities 

three orders of magnitude higher for the N2N3-Fg interaction measured by ELISA 

(Keane et al., 2007b; Loughman et al., 2008). It is difficult to reconcile such a 

discrepancy in the results. Nevertheless, given that ITC and SPR are more accurate 

techniques than ELISA, the values presented here are more likely to represent the 

actual Kd.  

 

4.10.2 The putative latch strand is not required for Fg binding 
 

The importance of the putative latch strand (Figure 1.9) for Fg binding was also 

tested. The dock-lock-latch (SdrG) and latch-dock (ClfA) models (Section 1.6.3) for 

Fg binding were proposed based on the solved crystal structures of SdrG and ClfA in 

complex with Fg peptides (Ponnuraj et al., 2003; Bowden et al., 2008; Ganesh et al., 

2008). Both models attributed an important stabilizing role to the latch strand in the 

SdrG/ClfA-Fg interactions. However, the SPR experiments presented here clearly 

showed that the affinities of N2N3 and N2N3T for FgD were very similar, 

demonstrating that the putative latch strand is not required for the rFnBPA-Fg 

interaction (Section 4.5).  

 

4.10.3 Fg1 is a good model for the Fg-FnBPA interaction 
 

The high molecular mass of intact Fg (~ 340 kDa) renders it unsuitable for chemical 

shift perturbation assays. Fg1 (1730 Da), on the other hand, would be much more 

suitable for NMR experiments and, providing it retains the FnBPA-binding activity 

of intact Fg, it could be utilized as a model for the N2N3-Fg interaction. Results 

from both ITC and SPR experiments demonstrated that Fg1 confers most of the 

N2N3-binding activity (Section 4.6). However, the Kd for the N2N3-Fg1 interaction 
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is slightly higher compared with the Kd for the N2N3-Fg interaction. Moreover, the 

SPR data show that a high concentration of Fg1 is required to block the N2N3-Fg 

interaction (Figure 4.5). These results suggest that Fg1 might not contain the entire 

binding site of intact Fg. No such effects were reported in the original studies by 

Strong and colleagues, 1982 and Hawiger and colleagues, 1982, aimed at defining 

the ClfA binding site on intact Fg. However, this could have been due to the low 

sensitivity of the agglutination technique used (Strong et al., 1982; Hawiger et al., 

1982). A later study by Wann and colleagues, 2000 reported that an excess 

concentration of Fg1 (100 µM) was required for complete inhibition of the 

interactions between FnBPA or ClfA (1 µM) and immobilized Fg using a 

solid-phase assay.  

 

4.10.4 Structural similarities of N2N3 from FnBPA, SdrG and ClfA 
 

As expected, the β-strand dominated crystal structure of N2N3T revealed striking 

similarities with structures of equivalent Fg-binding regions from SdrG and ClfA as 

confirmed by the r.m.s.d. values of 1.88 Å and 4.07 Å (s.s.m. of 270 SdrG and 261 

ClfA residues), respectively (Figure 4.21). Joined by a short linker, both N2 and N3 

domains have well defined folds resembling distorted β-barrels rather than a typical 

β-sandwich (Branden and Tooze, 1991). Similarly to SdrG and ClfA, the topology of 

N2 is another example of the novel DEv-IgG fold described previously (Section 4.8) 

(Deivanayagam et al., 2002). A cleft of mostly hydrophobic character forms in the 

space between the two domains.  
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Figure 4.21 Comparison of N2N3T with ClfA(229-545) and SdrG(273-597). (A) Ribbon representation of 

the N2N3T structure (magenta) with N2 domain superposed on those of ClfA(229-545) (PDB entry – 

1N67) (Ganesh et al., 2008) (green; Ca
2+

 ions are shown as light brown spheres) and (B) SdrG(273-597) 

(brown) (PDB entry – 1R19) (Ponnuraj et al., 2003).  

 

4.10.5 Fg1 binds N2N3 as a parallel β-strand  
 

The overall structure of the N2N3T-Fg1 complex is similar to that of the 

ClfA(229-545)-Fg1(D16A) complex, including the orientation of the bound Fg1; i.e. also 

parallel to the N3-G’ strand. This is in contrast with the SdrG(273-597)-Fgβ peptide, 

where the Fgβ peptide aligns antiparallel to the N3-G’ strand (Figure 4.22). 

Considering the structure of native Fg, it is plausible the difference in orientation of 

the bound Fg peptides arises due to steric reasons. Both ClfA and FnBPA bind to the 

C-terminal end of the Fg γ chain, while SdrG targets the region containing the 

thrombin cleavage site located near the N-terminus of the β chain (Figure 4.23).  

 

A 

B 

N3 N2 

N3 N2 
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Figure 4.22 Comparison of N2N3T-Fg1 with ClfA(229-545)-Fg1(D16A) and SdrG(273-597)-Fgβ. 

Structural superposition of the N2 domain from the N2N3T (magenta)-Fg1 (blue) complex with (A) 

ClfA(229-545) (green)-Fg1(D16A) (cyan) (PDB entry 2VR3) and (B) SdrG(273-597) (brown)-Fgβ (light 

green) (PDB entry 1R17) using s.s.m. Orientations of the Fg peptides are also indicated. 

 

 

Figure 4.23 The crystal structure of Fg. Similar to Figure 1.4 but now showing the FnBPA, ClfA 

and SdrG binding sites as well (PDB entry - 3GHG) (Kollman et al., 2009). 
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4.10.6 The N2N3T-Fg1 interface 
 

A TROSY-HSQC experiment was utilized in 
15

N-N2N3/N2N3T-Fg1 binding 

studies, where spectra of 
15

N-N2N3/N2N3T were recorded with increasing 

concentrations of Fg1 and compared (Section 4.7.2). The large proportion of peaks 

undergoing a change in chemical shift indicates either formation of an extensive 

interface between N2N3 and Fg1 or significant conformational rearrangement of 

N2N3 upon Fg1 binding, or a mixture of both. A comparison of the N2N3T and 

N2N3T-Fg1 crystal structures revealed that the conformation of N2N3T remains 

almost identical, as confirmed by the r.m.s.d. value (0.81 Å, s.s.m. of 295 N2N3 

residues) (Section 4.9; Figure 4.18). This is in contrast with ClfA, where the relative 

orientations of the N2 and N3 domains undergo a more substantial change upon Fg 

binding, demonstrated by the r.m.s.d. value (3.13 Å, s.s.m. of 142 N2 residues) 

(Figure 4.24). Interestingly, the ClfA latch strand in apoClfA folds back, forming an 

antiparallel β-strand along the N3-G’ strand.  

Figure 4.24 Comparison of the ClfA(229-545) and ClfA(229-545)-Fg1(D16A) structures. Structural 

superposition of the N2 domain from the ClfA(229-545) (green)-Fg1(D16A) (light blue) (PDB entry 2VR3) 

and ClfA(229-545) (light pink; Ca
2+

 - brown spheres) (PDB entry 1N67) using s.s.m (Krissinel and 

Henrick, 2004).  

 

The N2N3T-Fg1 interaction exhibits characteristics typical of a β-zipper, an efficient 

binding mechanism common in disordered proteins regions and peptides (Derrick 

and Wigley, 1992; Schwarz-Linek et al., 2003; Waksman and Hultgren, 2009). Here, 

Fg1 aligns along the N3-G’ strand augmenting the β-sheet (Figure 4.18). N2N3T 

contains a pair of β-sandwich-like folds providing four potential sites for β-zipper 

binding. However, all but the actual Fg1 binding site, formed by β-strands G’ and 

N2 N3 

Fg1(D16A) 
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A’, appear to have some level of edge-strand protection. Exposed β-sheet edges are 

susceptible to a backbone dominated interaction with another β-strand, often leading 

to edge-to-edge aggregation (Siepen et al., 2003). Consequently, a variety of 

edge-strand protection mechanisms are present within protein folds. The main 

strategy includes an inward-pointing, long and charged sidechain (usually lysine), 

and a β-bulge or proline present in the edge-strands (Richardson and Richardson, 

2002; Richardson et al., 1978). Figure 4.25 shows the edge-strand protection 

mechanisms adopted by N2N3, leaving only one site suitable for β-zipper binding. 

Figure 4.25 N2N3 edge-strand protection. Ribbon representation of the three N2N3 regions 

protected against edge-to-edge interaction. (A) Inward-pointing Lys residue (green sticks) and a 

β-bulge (green sticks) are indicated (N2). (B) Ribbon representation of the short D strand and a long 

loop (green) blocking the access to the D1 and E edge-strands (N2). (C) Ribbon representation of the 

short α-helical feature (green) blocking the access to the edge strands D’ and D1’ (N3). 

 

4.10.7 The putative latch strand ‘structural flexibility’ hypothesis 
 

An interesting observation was made upon comparison of the NMR spectra of N2N3 

+/- Fg1 and N2N3T +/- Fg1. The spectrum of N2N3T contained several extra peaks 

compared with N2N3 (Section 4.7.2). Considering the only difference between the 

two proteins is the six missing residues (N506-N511), which form the majority of 

the putative latch strand (Figure 1.9), it can be presumed that the putative latch 

affects the NMR signal of some residues in N2N3. The most likely explanation 

involves the putative latch strand remaining in exchange between multiple 
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conformational states, leading to weakened NMR signals from the residues within 

the putative latch strand and those that interact with the putative latch. The fact that 

the spectrum of N2N3-Fg1 has more peaks than that of N2N3 indicates that the 

putative latch strand residues may be somewhat stabilised on Fg1 binding. Also, the 

spectrum of N2N3-Fg1 has a few additional peaks compared with the N2N3T-Fg1 

spectrum. Those additional peaks could correspond to the stabilised N2N3 N506-

N511 residues missing in N2N3T. Although some of these NMR data indicate the 

putative latch strand region might be ordered in Fg-bound N2N3, both the SPR and 

crystallization/crystallographic data suggest this region is not involved in Fg binding, 

might not fully augment the N2 β-sheet and could remain mostly disordered even in 

Fg-bound N2N3. The electron density corresponding to the N3 C-terminal residues 

504 and 505 was absent from the electron density maps of N2N3T and N2N3T-Fg1, 

suggesting this region might be disordered. The potential structural flexibility of the 

putative latch region would also provide an explanation for the inability of N2N3 

and N2N3-Fg1 to produce stable and diffracting crystals, unlike N2N3T and 

N2N3T-Fg1 which crystallized readily in multiple solution conditions.  

 

4.10.8 The minimum Fg-binding region 
 

The N2N3T and N2N3T-Fg1 structures (Figure 4.12 and Figure 4.18) revealed that 

the first N-terminal residue contributing to the formation of the N2 β-sheet appears 

to be K200. Electron density corresponding to the residues 189-194 is missing and 

the region 195-199 is not part of any secondary structure feature. It is probable that 

the entire region consisting of residues 189-199 is unstructured in solution and could 

form the C-terminus of the N1 domain. Moreover, the structure of N2N3T-Fg1 

reveals the most C-terminal residue involved in Fg binding is probably N503. As a 

result, the ‘latch’ strand might not be an appropriate name for the 501-511 region, 

and it probably should not be regarded as a part of the N3 domain. The residues 

K200 and G503 could potentially form the N- and C-terminal boundaries of N2N3, 

respectively, thus rFnBPA(200-503) might be the minimum region conferring 

Fg-binding activity similar to that of intact FnBPA.  
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5 Does AF1 form a ternary complex with Fn and Fg? 
 

5.1 Introduction 
 

The bacterial protein FnBPA interacts with multiple Fn molecules (Kuusela, 1978; 

Froman et al., 1987). The Fn-binding site was defined as a 363 residue region 

comprising 11 homologous intrinsically disordered repeats (Figure 1.8) (Massey et 

al., 2001; Bingham et al., 2008; Meenan et al., 2007; Foster and Hook, 1998). 

Recently, the presence of a single Fg-binding site within the multifunctional FnBPA 

and its involvement in the aetiology of IE have also been demonstrated (Wann et al., 

2000; Piroth et al., 2008; Que et al., 2005). The Fg-binding activity was assigned to 

the N-terminal A-domain (Wann et al., 2000; Fitzgerald and et al, 2006; Piroth et al., 

2008). The results presented in Chapter 4 confirmed N2N3 as the minimal region 

conferring native-like Fg-binding ability. Consequently, FnBPA has the potential to 

bind Fg and Fn, however, to date there is no evidence for the existence of such a 

complex. As both Fg and Fn are dimeric and intact FnBPA contains eleven FnBRs, 

there is also the potential for the formation of a vast multi-protein complex (Figure 

5.1); the physiological relevance of this is unknown. Here the question is asked 

whether Fg and Fn bind simultaneously to FnBPA, and whether there is 

cooperativity in FnBPA binding to Fg and Fn (native Fn and Fg do not interact with 

each other). As the Fg-binding site and the most N-terminal FnBR (FnBPA1) are in 

close proximity in FnBPA, there is the potential for positive or negative 

cooperativity, either through conformational changes or steric hindrance. 

 

5.2 Aims 
 

The primary aims were to test whether Fg and Fn can bind AF1 simultaneously to 

form a ternary complex and to investigate the positive/negative putative 

cooperativity between the Fg- and Fn-binding sites. AF1 (contains N2N3 and 

FnBPA1) (Table 3.1 and Figure 5.1) was utilized, as a model of FnBPA. 
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Figure 5.1 Schematic diagram of the potential Fn-FnBPA-Fg complex. For simplicity only AF1 

and three molecules of Fn and Fg are shown in the multiprotein complex. The Fn-AF1-Fg ternary 

complex is highlighted (TC). The molecule sizes are not to scale.  

 

5.3 AF1 interacts individually with Fn and Fg  
 

5.3.1 Determination of the Kd for the AF1-NTD interaction 
 

Initially, the affinity of the interaction between AF1 and NTD was determined using 

SPR. NTD was immobilized on the chip, and AF1 was used as the analyte (Figure 

5.2). The character of the sensorgrams precluded the determination of a reliable 

dissociation constant by evaluation of kinetics or equilibrium binding. The main 

issue stems from the dual character of the association phase which does not reach the 

steady state, an effect evident primarily at higher analyte concentrations. This is 

probably a consequence of an additional weaker interaction of AF1 with ligands 

whose activity was compromised by the immobilization process.  

Figure 5.2 Determination of the Kd for the NTD-AF1 interaction. (A) Representative SPR 

sensorgrams show responses generated upon interaction of immobilized NTD with increasing 

concentrations of AF1. (B) Affinity evaluation using equilibrium analysis. 
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While the kinetic evaluation could not be used as the ka (1.3 x 10
7
 ± 2.3 x 10

4
 M

-1
s

-1
) 

was outside the measurable limit of the T100 instrument (Section 1.7.2.4), the 

analysis of equilibrium binding lead to a more reasonable Kd of 1.9 ± 0.5 nM, albeit 

with high error (27%). As mentioned above, the most likely source of error relates to 

the fact that none of the responses reach Req. In order to confirm the results of the 

SPR experiment, and to determine a more reliable Kd for the AF1-NTD interaction, 

an ITC experiment was performed. 

 

The ITC experiment involved titration of AF1 (20 µM) within the syringe into the 

cell with NTD (2 µM) at 25ºC. Details of the experimental set-up are in Section 

1.7.2.2. The ‘single set of sites’ model was utilized to fit the binding isotherm and 

obtain a Kd of 0.7 ± 0.2 nM (Figure 5.3). Specific thermodynamic parameters for the 

interaction are summarised in Table 5.1. The steep transition of the binding curve 

precludes a reliable fit of the ITC data, resulting in a relatively high error (28%). 

Nevertheless, the final Kd value is similar to that obtained by SPR (Figure 5.2) and 

also to the Kd value of 4.8 ± 0.6 nM for the FnBPA1-NTD interaction obtained 

previously (Meenan et al., 2007). As a result it can be concluded that AF1 retains the 

NTD-binding ability of FnBPA1, and is not affected by the presence of N2N3. 

Figure 5.3 Determination of the Kd for the AF1-NTD interaction. Peaks in the upper panel 

represent heats generated upon ligand injection. Measured heats were integrated and the best fit was 

calculated based on the ‘single set of sites’ model in Origin 7 (Microcal), resulting in an ITC binding 

isotherm (lower panel). Thermodynamic parameters are listed in Table 5.1. 
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5.3.2 Determination of the Kd for the AF1-Fn interaction 
 

Following the characterization of the AF1-NTD interaction by ITC, it was essential 

to show that AF1 can interact with intact Fn. The Kd for the AF1-Fn interaction was 

determined by SPR where an AF1-coated sensor chip was exposed to increasing 

concentrations of Fn, as described in Section 2.8.2.4 (Figure 5.4). The rate constants 

(ka 2.8 x 10
5
 ± 1.7 x 10

3
 M

-1
s

-1
and kd 2.7 x 10

-4
 ± 8.6 x 10

-7
 s

-1
) for the interaction 

were determined and utilized to derive a Kd of 1.0 ± 0.1 nM. Although the Kd is 

almost identical to that obtained for NTD binding (1.9 ± 0.5 nM), the ka is 

significantly lower than the ka for the AF1-NTD interaction (1.3 x 10
7
 ± 2.3 x 10

4
 M

-

1
s

-1
). This is consistent with the results from previous studies, which revealed that 

NTD is probably occluded in intact Fn (Erickson and Carrell, 1983; Johnson et al., 

1999) (Section 1.5.2). 

Figure 5.4 Determination of the Kd for the AF1-Fn interaction. Representative sensorgrams 

generated on exposure of an AF1-coated sensor chip to increasing concentrations of Fn. The curves 

fitted based on a 1:1 binding model also shown (black). 

 

5.3.3 AF1 binding to Fg 
 

The Kd for the AF1-Fg1 interaction was measured by ITC, where Fg1 (2.68 mM) 

within the syringe was titrated into AF1 (273 µM) in the cell (Figure 5.5A). The 

‘single set of sites’ model was used to fit the binding isotherm and the Kd was 25.0 ± 

1.0 µM. In a second experiment, AF1 (50 µM) in the cell was titrated with intact Fg 

(250 µM) in the syringe and the Kd was 1.1 ± 0.0 µM (Figure 5.5B). Both Kds are 
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similar to those for the N2N3-Fg1/Fg interactions (Sections 4.4 and 4.6) 

demonstrating that AF1, like N2N3, retains Fg-binding ability and that adding 

FnBPA1 to the construct does not interfere with Fg binding. The AF1:Fg binding 

stoichiometry of 2:1 confirms the dimeric nature of Fg (Table 5.1). The endothermic 

character and significantly higher heats of dilution for the blank titration of Fg 

compared with those for the Fg1 titration is most likely a consequence of the high 

viscosity of the Fg solution (Figure 5.5B).  

 

Figure 5.5 Determination of the Kd for the AF1-Fg1 and AF1-Fg interactions. ITC binding 

isotherms for the titrations of AF1 with (A) Fg1 and (B) native Fg. Peaks in the upper panel represent 

heats generated on ligand injection. Both experiments contain a blank titration of the ligand into the 

cell buffer which was used to evaluate the heats of dilution. Measured heats were integrated, heats of 

dilution subtracted, and the best fit was calculated based on the ‘single set of sites’ model in Microcal 

Origin 7 software, as shown in the lower panel. Thermodynamic parameters are listed in Table 5.1. 

 

An SPR experiment to determine the Kd for the AF1-FgD interaction was also 

performed (Figure 5.6). A Kd of 1.5 ± 0.0 µM, determined by equilibrium analysis, is 

consistent with the Kd for the N2N3-FgD interaction (1.48 ± 0.1 µM) (Section 4.5). 

Also, the character of the individual sensorgrams, including the association and 

dissociation phases, resembled those for the N2N3-FgD interaction.  

A B 
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Figure 5.6 Determination of the Kd for the AF1-FgD interaction. (A) Representative SPR 

sensorgrams show responses generated upon interaction of immobilized FgD with increasing 

concentrations of AF1. (B) Affinity evaluation using equilibrium analysis. 

 

Interaction Kd 
ΔH / 

 kcal mol
-1

 

ΔS /  

cal mol
-1

K
-1

 
n Technique 

AF1-NTD 1.9 ± 0.5 nM - - - SPR 

AF1-NTD 0.7 ± 0.2 nM -35.77 ± 0.3 -78.10 0.89 ITC 

AF1-Fn 1.0 ± 0.1 nM - - - SPR 

AF1-Fg1 25.0 ± 1.0 µM -2.7 ± 0.01 11.90 1.36 ITC 

AF1-FgD 1.5 ± 0.0 µM - - - SPR 

AF1-Fg 1.1 ± 0.0 µM -6.11 ± 0.02 6.70 2.11 ITC 

Table 5.1 Summary of kinetic and thermodynamic parameters for the interactions with AF1. 

The table includes Kds determined by either ITC or SPR. Values for enthalpy (ΔH) and entropy 

change (ΔS) and stoichiometry (n) are listed where applicable. 

 

5.4 Analysis of AF1 by NMR spectroscopy. 
 

The following NMR experiment was performed for preliminary structural 

characterization of AF1 and to test whether NMR spectroscopy would be a suitable 

technique for studying the putative cooperativity of Fn and Fg binding. A 2D 
1
H

15
N 

TROSY-HSQC spectrum (Pervushin et al., 1997) of uniformly 
15

N-labelled AF1 was 

acquired (Figure 5.7). The spectrum is dominated by several high intensity peaks 

within a narrow region of chemical shift in the 
1
H dimension (7.6 – 8.6 ppm); these 

peaks are absent from the TROSY-HSQC N2N3 spectrum (Figure 5.7A) and are 
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likely to correspond to the intrinsically disordered FnBPA1 region of AF1. This was 

subsequently confirmed by comparing the spectrum with a 2D 
1
H

15
N 

TROSY-HSQC spectrum of uniformly 
15

N-labelled FnBPA1, acquired under similar 

conditions and with identical acquisition parameters. A comparison of the two 

spectra at high contour level (Figure 5.7B) highlights the similarity of chemical 

shifts between AF1 and FnBPA1. The low intensity of the N2N3 peaks in the 

spectrum of AF1 (Figure 5.7A) suggest that NMR spectroscopy might not be 

suitable for studying the putative cooperativity in Fg- and Fn-binding to AF1.  

Figure 5.7 2D 
1
H

15
N TROSY-HSQC spectra of 

15
N-AF1 (green) and 

15
N-FnBPA1 (magenta). 

Spectra were acquired on a 700 MHz spectrometer (Section 2.8.1) at 310 K and pH 7.4. Data were 

processed using NMRPipe (Delaglio et al., 1995) and analysed using NMRView (Johnson and 

Blevins, 1994). Spectra were overlaid at similar contour levels. 
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Figure 5.8 2D 
1
H

15
N TROSY-HSQC spectra of 

15
N-AF1 (red) and 

15
N-N2N3T (blue). Spectra 

were acquired on a 700 MHz spectrometer (Section 2.8.1) at 310 K and pH 7.4. Data were processed 

using NMRPipe (Delaglio et al., 1995) and analysed using NMRView (Johnson and Blevins, 1994). 

Spectra were overlaid at similar contour levels. 

 

5.5 Can NTD and FgD/Fg/Fg1 bind AF1 simultaneously to form 

ternary complexes? 
 

5.5.1 Determination of the Kds for the FgD-AF1+/-NTD interactions 
 

To test the effects of NTD on the AF1-FgD interaction, increasing concentrations of 
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analysis of the equilibrium binding was used for evaluation. Comparison of the two 

Kds revealed they were very similar; 1.6 ± 0.1 µM and 7.2 ± 0.5 µM in the absence 

and presence of NTD, respectively. The Kds are also consistent with the Kd for the 

AF1-FgD interaction, determined using ITC (1.5 ± 0.0 µM) (Table 5.1, Section 

5.3.1). The AF1+NTD SPR sample contained equimolar concentrations of each 

protein to ensure the majority of AF1 is bound within the AF1-NTD complex.  

Figure 5.9 Determination of the Kds for the FgD-AF1 and FgD-AF1+NTD interactions. 

Representative SPR sensorgrams generated upon interactions of immobilized FgD with increasing 

concentrations of (A) AF1 and (B) the AF1-NTD complex. The Kds were determined using 

equilibrium analysis. 

 

5.5.2 Determination of the Kds for the NTD-AF1+Fg1 interactions 
 

To test the effects of Fg1 on AF1 binding to NTD, the Kd for the NTD-AF1+Fg1 

interaction was determined by SPR (Figure 5.10) and compared with the Kd for the 

NTD-AF1 interaction determined in Section 5.3.1 (Figure 5.3). Due to the fast 

association and dissociation rates, analysis of the equilibrium binding was used for 

evaluation. Comparison of the Kd values revealed very little difference; i.e. 1.8 ± 0.6 
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nM and 1.9 ± 0.5 nM in the absence and presence of Fg1, respectively. The 

AF1+Fg1 sample contained a six-fold molar excess of Fg1 relative to the 

concentration of AF1 to ensure that the majority of AF1 was bound to Fg1. The 

relatively high errors of the fit are most likely caused by the character of the 

sensorgrams (see Section 5.3.1). Nevertheless, it is clear that the two SPR 

experiments produced similar results suggesting that the presence of Fg1 has no 

effect on the NTD-AF1 interaction. 

Figure 5.10 Determination of the Kd for the NTD-AF1+Fg1 interaction. (A) Representative SPR 

sensorgrams generated by interactions of immobilized NTD with increasing concentrations of 

AF1 + Fg1. (B) Affinity evaluation using equilibrium analysis. 

 

5.5.3 Formation of the NTD-AF1-Fg ternary complex 
 

The putative cooperativity in Fg and Fn binding to AF1 was also investigated in the 

following experiment, which involved exposure of an NTD-coated sensor chip to 

AF1 and the AF1-Fg complex (Section 2.8.2.5). Given that the intensity of the SPR 

response is directly proportional to the molecular mass of the analyte, a significant 

difference in the response generated upon the injection of AF1 and the AF1-Fg 

complex should be observed providing the ternary complex is formed (Figure 5.11).  
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Figure 5.11 Formation of the NTD-AF1-Fg ternary complex. (A) Representative SPR sensorgrams 

show responses from the interactions of immobilized NTD with AF1 (0.5 µM) in the presence or 

absence of equimolar concentration of Fg. The effects of specific inhibitors on the formation of the 

NTD-AF1-Fg ternary complex are also shown. (B) Overview of the SPR experiment (RIGHT) 

illustrating the formation of the ternary complex on the surface of the sensor chip. 

 

A strong response, exceeding 650 RU, was generated upon exposure of the 

NTD-coated chip to the AF1-Fg complex (brown), while separate injections of AF1 

(cyan) and Fg (magenta) only produced approximately 50 RU and 0 RU responses, 

respectively. The result clearly demonstrates that the Fg-AF1 complex interacts with 

the immobilized NTD, and that the NTD-AF1-Fg ternary complex is formed (Figure 

5.11B). To confirm that AF1 binds Fg and NTD simultaneously and that the 

interactions involved are specific, several control experiments were performed. 

Initially, a two hundred-fold molar excess of Fg1 was added to the AF1-Fg complex 

solution prior to sample injection (blue). The result shows that excess Fg1 

completely blocks the interaction between AF1 and Fg. In the second control 

experiment, a hundred-fold molar excess of the NTD-binding Sfb1-5 peptide 
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(Section 2.3.2) was added to the sample of AF1 prior to injection (orange). Sfb1-5 

inhibits the NTD-AF1 interaction, reducing the final response to that of Sfb1-5 only 

(20 RU). The character of the sensorgram and the complexity of the binding events 

on the surface of the sensor chip prevented the evaluation of the Kd for the 

NTD-AF1+Fg interaction, however, these experiments clearly demonstrate ternary 

complex formation for the first time.  

 

5.6 Steric hindrance prevents formation of an Fn-AF1-Fg ternary 

complex. 
 

In Section 5.5.3, the formation of an NTD-AF1-Fg ternary complex was 

demonstrated for the first time. However, the goal was to determine whether intact 

Fn and Fg can bind AF1 simultaneously or whether the formation of the ternary 

complex is prevented by steric effects. To test the simultaneous binding of Fn and Fg 

to AF1, an SPR experiment was performed. This involved exposure of an 

AF1-coated sensor chip surface to a solution containing Fg and Fn at various 

concentration ratios (Figure 5.12). Given the significant difference between Kds for 

Fg-AF1 and Fn-AF1 interactions, it was vital that the relative concentrations of Fg 

and Fn used in the experiment reflect those present in human plasma (Sections 1.4.1 

and 1.5.1).  

Figure 5.12 Fg and Fn binding to AF1. Representative SPR sensorgrams from interactions of 

immobilized AF1 with Fn and Fg at three different relative concentration ratios, leading to the 

AF1-coated surface saturation, first by Fn (orange) then Fg (magenta) and also by a combination of 

both (dark cyan).  
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Initially, the AF1-coated surface was exposed to a solution containing Fg and Fn at 

concentrations of 2.3 µM and 230 nM respectively, reflecting the 10:1 Fg:Fn 

concentration ratio found in human plasma (Hynes and Yamada, 1982; Kamath and 

Lip, 2003). The generated Req of 87 RU was identical to that given by Fn only, 

suggesting no Fg was interacting with AF1 in the presence of Fn. When only Fg (at a 

concentration of 2.3 µM) was injected over the sensor chip surface, an Req of 17 RU 

was produced demonstrating Fg binds AF1 in the absence of Fn (Figure 5.12; traces: 

orange, grey and black). Req of 84 RU was obtained when a solution containing a 

higher Fg:Fn ratio (Fg 23 µM and Fn 23 nM) was used. Since both glycoproteins 

generated identical Req of 71 RU when injected over the sensor chip surface 

individually at this concentration, it can be assumed both Fg and Fn binding 

contributed to the final Req of 84 RU (Figure 5.12; traces: dark cyan, brown and 

cyan). However, it was not clear whether either of the two glycoproteins saturated 

the AF1-coated surface, thus the possibility that Fn and Fg are binding to separate 

AF1 molecules could not be ruled out. Consequently, a higher molar excess of Fg 

(90 µM) was added to the solution of Fn (23 nM) and injected over the AF1-coated 

sensor surface. The Req of 106 RU was almost identical to that given upon injection 

of Fg (90 µM) only (Figure 5.12; traces: magenta, blue and cyan). The result 

indicates that the molar excess of Fg saturated the AF1-coated surface and blocked 

the AF1-Fn interaction.  

Figure 5.13 Overview of the SPR experiment. The right side of the diagram illustrates the steric 

hindrance effect that prevents Fg from binding to Fn-bound AF1 at physiological concentrations of Fg 

and Fn. 
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5.7 Fg and Fn binding to AF1 under physiological conditions 

demonstrated by a plasma pull-down assay 
 

A combination of the previous ITC and SPR experiments showed AF1 retains Fg- 

and Fn-binding ability and that only Fn binds AF1 when the relative concentrations 

of Fg and Fn reflect those present in human plasma. The aims of the pull-down assay 

were to reiterate the results from the two previous SPR experiments and to test the 

physiological relevance of AF1 by assessing its binding to Fg and Fn within the 

environment of human plasma. Following expression and purification of AF1 and 

N2N3, the assay was designed with the help of Andrew Brentnall (Department of 

Biology, University of York), who also performed the experiment. The assay 

involved covalent immobilization of AF1 and N2N3 to the column resin, exposure to 

human plasma and subsequent elution of the AF1 and N2N3 bound proteins by 

acetate buffer pH 3.0 (Figure 5.14A). A solution containing a mixture of purified Fg 

and Fn at physiological pH was used as a positive control (Figure 5.14B). A column 

with uncharged resin was used as a negative control (data not shown). The 

experimental set-up is described in detail in Section 2.7. Analysis of the eluted 

samples was performed using SDS-PAGE. A relatively high amount of AF1 and 

N2N3 had to be immobilized on the column resin to allow for visualization of the 

eluted proteins by SDS-PAGE. Consequently, the AF1-coated resin was expected to 

bind both Fg and Fn as the concentrations of the glycoproteins in plasma are not 

sufficient to saturate the immobilized AF1 (Henderson et al., 2010; Herrick et al., 

1999). The results of the experiment show that both N2N3 and AF1 bind purified Fg 

as well as Fg within the plasma sample. However, AF1 also interacts with both 

purified and plasma Fn. A significant amount of Fg was present in the wash fractions 

from both the N2N3 and AF1 columns, while no Fn could be detected in the wash 

fractions from the AF1 column. This finding correlates with the difference between 

the individual Kd values for the AF1-Fg (1.1 ± 0.0 µM) and AF1-Fn (1.0 ± 0.1 nM) 

interactions (Table 5.1), suggesting Fg is slowly dissociating from the N2N3 region 

even in the absence of elution buffer. 
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Figure 5.14 SDS-PAGE analysis of fractions from the plasma pull-down assay with N2N3 and 

AF1 resin columns. SDS-PAGE analysis of (A) the plasma pull down and (B) the control experiment 

with the solution of purified Fg and Fn include the protein marker (M / kDa) as well as multiple wash 

(W) and elution cycles (E). Fg appears as three separate bands (between 36.5 and 66.3 kDa) 

corresponding to the three individual Fg chains α, β and γ (Figure 1.4) due to the reducing conditions 

of the sample buffer. Monomeric Fn is visible as a single band just above the 200 kDa mark. 

 

5.8 Discussion 
 

5.8.1 Determination of the Kd for the AF1-NTD interaction 
 

SPR and ITC experiments were used to characterise the interaction between AF1 and 

NTD (Section 5.3.1). The final Kds for the AF1-NTD interaction determined by SPR 

and ITC were 1.9 ± 0.5 nM (Figure 5.2) and 0.7 ± 0.2 nM (Figure 5.3), respectively. 

Although, the associated errors of the fit are relatively large, the obtained Kds are 

very similar and also consistent with the Kd for the interaction of FnBPA1 with NTD 

determined previously (4.8 ± 0.6 nM) (Meenan et al., 2007). This clearly 

demonstrates that FnBPA1 retains the NTD-binding activity within AF1 context. 

The errors associated with the SPR and ITC results could be reduced through 

optimization. For example, the SPR data could be improved by altering the level of 

immobilized NTD or by using a more specific ligand immobilization approach. The 

issue with the steepness of the isotherm transition in the ITC experiment could not 

be overcome by adjusting the concentrations of NTD (cell) and/or AF1 (syringe), 

due to the limited solubility of NTD and the limiting VP-ITC sensitivity (0.1 µcal). 

An improvement could probably be achieved by increasing the reaction temperature 
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or by altering the solution conditions. However, as the purpose of these preliminary 

experiments was only to test whether AF1 contains similar NTD-binding ability to 

FnBPA1, no further optimization was performed.  

 

5.8.2 Determination of the Kd for the AF1-Fn interaction 
 

The Kd for the AF1-Fn interaction (1.0 ± 0.1 nM) was determined using SPR and a 

kinetic evaluation (Figure 5.4) (Section 5.3.2). The obtained Kd was similar to that 

for the AF1-NTD interaction (1.9 ± 0.5 nM), but the ka (2.8 x 10
5
 ± 1.7 x 10

3
 M

-1
s

-1
) 

was significantly lower than that for the AF1-NTD interaction (ka 1.3 x 10
7
 ± 2.3 x 

10
4
 M

-1
s

-1
). Since previous studies have shown that NTD is occluded in intact Fn 

(Erickson and Carrell, 1983; Johnson et al., 1999), the results presented here indicate 

that this might affect the kinetics of the AF1-Fn interaction.  

 

The reliability limitations of the equilibrium and rate constants for the AF1-Fn 

interaction had to be considered, as it was derived using a simple 1:1 binding model, 

yet native Fn is a dimeric molecule comprising two NTDs. The main issue 

associated with using a 1:1 binding model stems from avidity. Although, binding of 

the first Fn site to AF1 gives a response, no response is generated upon binding of 

the second site while the overall binding is strengthened, shifting the equilibrium 

constant (Figure 5.15A). Biacore analysis software contains a bivalent analyte 

evaluation model, thus two sets of association/dissociation rates can be determined. 

However, use of this model also has its limitations. Firstly, the association rate 

constant for the second binding site can only be presented in RU
-1

s
-1

 (not M
-1

s
-1

), 

therefore the final equilibrium constant cannot be determined. Secondly, applying 

the bivalent analyte model will only result in a good fit providing the majority of the 

analyte molecules bind via both binding sites. When applied to the AF1-Fn data, the 

bivalent model did not produce an improved fit compared with the 1:1 model. 

Consequently, it is likely that most of the AF1-bound Fn molecules interact with the 

immobilized AF1 via a single NTD molecule.  
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Figure 5.15 The avidity effect associated with the binding of a bivalent analyte. (A) Schematic 

diagram of the two step process of bivalent analyte (blue) binding to an immobilized ligand (red). 

Attachment of the first analyte site gives a response. However the engagement of the second binding 

site does not generate a response as the analyte is already bound. (B) Alternative solutions to the 

prolem of bivalent analyte, namely; very high analyte concentration (top), low level of ligand 

immobilization (middle) or immobilization of the bivalent analyte instead (bottom).  

 

The experimental parameters favouring formation of a binary complex include low 

levels of ligand immobilization, where the analyte can only reach a single ligand 

molecule, or high analyte concentrations resulting in elevated competition for the 

immobilized ligand (Figure 5.15B). Hence the experiment should ideally be repeated 

with varying levels of immobilized ligand in order to confirm the reliability of the 

obtained Kd. Immobilizing Fn on the surface of the sensor chip instead of AF1 would 

also allow the use of a 1:1 binding model (Figure 5.15B). However the 

immobilization compromised Fn’s ability to interact with AF1. It is likely that Fn 

was immobilised in the compact conformation (Section 1.5.2) with occluding NTD, 

thus rendering it inaccessible to AF1. The use of ITC could avoid the issues 

associated with the dimeric nature of Fn. Unfortunately the occurrence of heavy 

precipitation during the titration interfered with ITC data acquisition, thus ITC was 

not used. 

 

5.8.3 Determination of the Kd for the AF1-Fg1/FgD/Fg interactions 
 

The interaction between AF1 and Fg was also characterized using Fg1, FgD and Fg 

and a combination of ITC and SPR (Section 5.3.3). The thermodynamic parameters, 
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including Kds for the interactions of AF1 with Fg1 and Fg determined by ITC (Table 

5.1) were very similar to those obtained for N2N3-Fg1 and N2N3-Fg interactions 

(Table 4.2). Like N2N3, AF1 binding to Fg is marginally stronger compared with the 

binding to Fg1, which could be indicative of incompleteness of the N2N3 binding 

site on the Fg1 peptide (Section 4.10.3). The 2:1 stoichiometry (Table 5.1) for the 

AF1-Fg interaction confirms the dimeric nature of intact Fg (two γ chains) (Section 

1.4). Further confirmation of the Fg-binding ability of AF1 was provided by the Kd 

for the AF1-FgD interaction obtained by SPR, and the subsequent inhibition of that 

interaction by an excess of Fg1. All of the above experiments point to the conclusion 

that AF1 retains the full Fg-binding activity of N2N3, which is not affected by the 

additional adjacent FnBPA1.  

 

5.8.4 Characterization of AF1 by NMR spectroscopy 
 

Although the poor quality of the 2D 
1
H

15
N TROSY-HSQC spectra of 

15
N-AF1 

revealed that NMR spectroscopy was not the optimum technique for studying the 

putative cooperativity of Fg and Fn binding, the spectrum revealed some basic 

information regarding the structural features of AF1 (Section 5.4). The appearance of 

intense peaks within a narrow region in the 
1
H dimension as well as weaker peaks 

dispersed over a much wider range in the 
1
H dimension indicates the presence of 

both structured and unstructured regions within AF1. Direct comparison of the 

TROSY-HSQC spectra of 
15

N-AF1 with that of 
15

N-N2N3 and 
15

N-FnBPA1 

recorded under similar conditions and with identical acquisition parameters clearly 

demonstrates that both the structured N2N3 and unstructured FnBPA1 regions are 

present within AF1.  

 

5.8.5 NTD does not affect the FgD-AF1 interaction significantly 
 

Potentialy, only twelve residues separate the Fg and Fn binding sites on AF1 

(Section 4.10.8), which suggests that besides the negative/positive putative 

cooperativity, the simultaneous binding of Fg and Fn to AF1 could also be 

influenced by steric effects. The presence of putative cooperativity in binding of Fg 

and Fn was tested first, using FgD and NTD (Section 5.5.1). The SPR experiment 

showed only a small decrease in affinity of AF1 for FgD in the presence of NTD 

(FgD-AF1; Kd 1.6 ± 0.1 µM and FgD-AF1+NTD; Kd 7.2 ± 0.5 µM). Subtle 
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differences were also detected in the kinetics, as comparison of the sensorgrams 

revealed that both the association and dissociation rates are slightly faster for the 

FgD-AF1+NTD interaction (Figure 5.16). The results suggest that NTD might have 

an effect on the FgD-AF1 interaction, and although relatively small, it could be 

indicative of a much more significant effect associated with binding of intact Fn. 

Figure 5.16 Comparison of the SPR sensorgrams given by the FgD-AF1 and FgD-AF1+NTD 

interactions. Overlay of the raw data corresponding to the experiment in Section 5.5.1. Sensorgrams 

corresponding to the FgD-AF1 and FgD-AF1-NTD interactions shown in red and blue respectively. 

 

Although the experiment showed that AF1 binds FgD in the presence of NTD and 

that NTD does not significantly affect the FgD-AF1 interaction, the results do not 

provide direct evidence that NTD is bound to AF1 and that the FgD-AF1-NTD 

ternary complex is formed on the surface of the chip (Figure 5.16). An indication of 

the analyte form (i.e. whether AF1 or the AF1-NTD complex binds FgD) can be 

obtained by comparing estimated binding activities of the immobilized ligand (FgD) 

between the two experiments (Figure 5.9A, B). The estimate of the FgD activity is 

determined using the tRMAX (Equation 1.13, Section 4.3) / RMAX ratio and the final 

value should be similar for both experiments. The FgD activity estimates were 43% 

and 35% for the first and second experiment, respectively (assuming NTD-bound 

AF1 was the analyte in the second experiment) (Figure 5.17A). The values indicate a 

slight decrease in FgD activity in the second experiment, probably as a consequence 

of the repetitive usage of the chip. As the tRMAX is directly proportional to the 

analyte molecular mass, using the analyte mass of AF1 (40900 Da) (Figure 5.17B) 

instead of AF1-NTD (69780 Da) in the FgD activity calculations for the second 

experiment should result in a less realistic value. The estimated FgD activity was 
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60%. Since a 17% increase in FgD activity in the second experiment is unlikely, it 

appears that it is indeed the AF1-NTD complex that interacts with FgD.  

Figure 5.17 Schematic diagram representing the two possible scenarios in the SPR 

measurements of the Kd for the FgD-AF1+NTD interaction. (A) FgD-bound AF1 can interact with 

NTD thereby forming a ternary complex on the chip surface. (B) Binding of FgD to AF1 inhibits the 

AF1-NTD interactions thus only the FgD-AF1 complex is formed and detected. 

 

5.8.6 Fg1 does not affect the NTD-AF1 interaction 
 

To test whether Fg1 affects the NTD-AF1 interaction, an SPR experiment was 

performed where AF1 was flowed over an NTD-coated chip surface in the presence 

of a six-fold molar excess of Fg1 (Figure 5.10) (Section 5.5.2). The Kd was 

determined using analysis of the equilibrium binding as 1.9 ± 0.5 nM and compared 

with the Kd for the NTD-AF1 interaction (1.8 ± 0.6 nM) (Figure 5.3). While the 

results of the previous experiment revealed a small decrease in FgD-AF1 affinity in 

the presence of NTD (Section 5.8.5), the results of this experiment showed no 

detectable effect of Fg1 on the AF1-NTD interaction. Both the Kd and the character 

of the sensorgrams are virtually identical. The combined results from this and the 

previous SPR experiments suggest there is a lack of either positive or negative 

cooperativity between the Fg and Fn binding sites on AF1.  

 

5.8.7 Formation of the NTD-AF1-Fg ternary complex 
 

Figure 5.11 provides the first biophysical evidence that NTD and Fg can bind 

simultaneously to AF1 forming a ternary complex. The significantly higher intensity 

of the response given by the NTD-AF1+Fg interaction compared with that given by 

the NTD-AF1 interaction is a clear indication that Fg-bound AF1 interacts with the 

NTD-coated sensor chip surface (Section 5.5.3). The set of control experiments 

demonstrated that both interactions (NTD-AF1 and AF1-Fg) are specific as they can 

be inhibited by the known N2N3 and NTD-binding peptides Fg1 and Sfb1-5, 
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respectively. Similar to the equivalent experiment with N2N3 (Figure 4.5; Section 

4.6), a very high molar excess of Fg1 was required for the complete inhibition of the 

AF1-Fg interaction. As mentioned before, this is partially due to the marginally 

higher Kd, which could indicate that the 17 residue peptide (Fg1) does not contain 

the full binding site. It is also possible that each Fg dimer interacts with two 

NTD-bound AF1 molecules on the surface of a sensor chip, resulting in strengthened 

binding (see avidity; Section 5.8.2). Successful determination of the Kd for the 

NTD-AF1+Fg interaction was prevented by the potential complexity of the binding 

interactions taking place on the surface of the NTD-coated sensor chip. While it is 

clear that AF1 forms a link between the immobilized NTD and Fg, it would be 

difficult to determine whether the dimeric Fg forms one or two AF1-mediated 

interactions with the NTD-coated surface. Nevertheless, the results clearly show a 

lack of significant negative cooperativity between the Fg and Fn binding sites, and 

that the NTD-AF1-Fg ternary complex can form (Figure 5.18). Overall these 

experiments lead to the conclusion that the adjacent Fg and Fn binding sites on 

FnBPA act independently.  

Figure 5.18 Predicted conformation of the Fg1-AF1-NTD ternary complex. Ribbon 

representation of the predicted structure of the ternary complex based on the N2N3T-Fg1 structure 

(Section 4.9) and the crystal structures of the 
4
F1

5
F1-STAFF1 (2RKY) and 

2
F1

3
F1-STATT1 (2RKZ) 

complexes solved previously (Bingham et al., 2008). AF1 is shown in magenta, Fg1 and NTD are 

depicted in blue and cyan, respectively. Disulfide bonds holding together the individual F1 modules 

(yellow) are also indicated. The figure includes the suggested relative orientations of Fg (blue ellipse) 

and Fn (cyan ellipse) to illustrate steric hindrance preventing the formation of the Fg-AF1-Fn ternary 

complex. The location of the unstructured N1 domain is indicated by magenta ellipse. 
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5.8.8 Steric effects prevent simultaneous binding of Fg and Fn to AF1. 
 

Although the above SPR experiments (using FgD and NTD) demonstrated the 

independence of the two binding sites, the potential influence of steric effects on the 

simultaneous binding of Fg and Fn was not addressed. Several factors were likely to 

influence the formation of the ternary complex and therefore had to be considered in 

the experimental design and the subsequent analysis of the results. These included 

the relative concentrations of Fg and Fn present in human plasma and the individual 

Kds for the AF1-Fg and AF1-Fn interactions. While Fg is present in ten-fold molar 

excess in plasma compared with Fn (Hynes and Yamada, 1982; Kamath and Lip, 

2003), it is the latter glycoprotein that has higher affinity for AF1, with the Kd lower 

by three orders of magnitude (Table 5.1). The other important element was the 

amount of immobilized AF1 in relation to the Fg and Fn concentrations used. 

Achieving AF1 saturation by Fg and Fn was a key step in the experiment as it was 

the only means of ensuring the differences in response correspond to a simultaneous 

binding of Fg and Fn to the same molecule of AF1. It is possible to estimate the 

amount of the immobilized ligand using the relationship between response units and 

the mass of protein within the dextran layer (1 RU ~ pg/mm
2
) (Stenberg et al., 1991). 

The correlation can be combined with the approximate thickness of the dextran layer 

(100 nm) and converted to a molar concentration according to Equation 5.1 (Muller 

et al., 1998); where RL represents the level of ligand immobilization and ML the 

molecular mass of the ligand. 

 

                    
  

      
 

(5.1) 

The concentration of the immobilized AF1 was estimated at 35 µM (RL 143 RU, ML 

40900 Da), based on Equation 5.1. However, this value represents concentrations of 

both the active and inactive immobilized ligand, thus is often used only as guidance 

prior to the initial testing of the analyte binding activity of the ligand-coated surface.  

 

The SPR experiment revealed that saturation of the AF1-coated surface with Fn 

prevented Fg from binding to immobilized AF1 and vice versa (Figure 5.12). 

Exposure of the AF1-coated surface to the Fg:Fn concentration ratio that is found in 

human plasma, produced an identical response to that obtained with Fn alone; 

suggesting that Fg doesn’t bind AF1 under these conditions. These results provide 

the first biophysical evidence that steric effects could prevent the formation of the 
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Fg-AF1-Fn ternary complex, and raises a question regarding the physiological role 

of the Fg-binding site and a potential functional redundancy.  

 

5.8.9 AF1 binds Fg and Fn when exposed to human plasma 
 

An array of results from previous SPR and ITC experiments have shown AF1 

confers the ability to bind Fg and Fn, and thus serves as a suitable representation of 

FnBPA for the purpose of studying the cooperativity between Fg and Fn binding to 

N2N3 and FnBPA1. However, only purified Fg and Fn, or their corresponding 

proteolytic fragments have been used in all previous experiments. Outcomes of the 

final experiment, which involved exposure of AF1 to human plasma, confirmed the 

Fg and Fn-binding ability of AF1 (Section 5.7).  

 

Despite the pull-down assay being a relatively crude technique, the results provided 

evidence that AF1 retains capacity to bind Fg and Fn individually within the 

environment of human plasma (Figure 5.14). Although this in vitro approach does 

not allow for a detailed qualitative evaluation of the AF1 interaction with Fg or Fn, 

the previously established difference in the Kds (AF1-Fg 1.1 ± 0.0 µM and AF1-Fn 

1.0 ± 0.1 nM) for the two interactions was detected. While the dissociation of Fn 

from the AF1-coated resin surface could only be achieved using elution buffer, Fg 

appeared to dissociate gradually even in the absence of the elution buffer, which is 

consistent with its lower affinity towards AF1 (Figure 5.14).  

 

The presence of both Fg and Fn in the elution fractions from AF1 column indicates 

that the AF1-coated resin surface was not saturated by either of the two proteins. As 

mentioned before, a high level of AF1 immobilization was necessary for the 

visualization by SDS-PAGE and therefore approximately 20 mg of AF1 was 

covalently linked to the resin surface. Considering the approximate concentration of 

Fg and Fn found in human plasma are 3 and 0.3 mg/ml, respectively, a significantly 

larger volume of plasma would be required to reach saturation. In fact, over 700 ml 

of plasma would be required to reach a molar equilibrium between AF1 and Fn, 

assuming 100% of the immobilized AF1 retained binding activity. This clearly 

demonstrates the AF1-coated resin surface is not saturated, thus able to interact with 

both Fg and Fn by forming AF1-Fg and AF1-Fn binary rather than Fn-AF1-Fg 

ternary complexes. Ideally, subsequent experiments would be performed, which 



Chapter 5 

163 

 

would involve lower level of AF1 immobilization in combination with a more 

sensitive detection approach, such as a Western blot, to ensure AF1 saturation with 

Fn.  
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6 General discussion 
 

This work set out to characterise the FnBPA Fg-binding domain, its interaction with 

Fg and to test whether simultaneous binding of Fg and Fn is affected/prevented by 

cooperativity or potential steric effects. FnBPA was previously identified as a major 

virulence factor in S. aureus IE, utilizing both the Fg- and Fn-binding sites (Wann et 

al., 2000) to synergistically promote the infection (Piroth et al., 2008; Que et al., 

2005). While the FnBPA-Fn interaction has been the subject of an extensive research 

(Bingham et al., 2008; Meenan et al., 2007; Edwards and Massey, 2011), little 

attention has been paid to Fg-binding. The knowledge of the structural aspects of the 

FnBPA-Fg interaction and the putative cooperativity between the two adjacent 

binding sites on FnBPA would contribute significantly to our understanding of the 

complex network of processes leading to the full development of IE and potentially 

other S. aureus infections.   

 

6.1 The FnBPA-Fg interaction 
 

Sequence similarity indicated that the minimal Fg-binding region of FnBPA might 

have structural features in common with other Fg-binding MSCRAMMs. The 

structure of N2N3T was solved using X-ray crystallography and revealed that the 

conformation does indeed share many structural features with ClfA(229-545) 

(S. aureus) and SdrG(273-597) (S. epidermidis). This includes the topology of N2, 

described previously as DEv-IgG fold identified in numerous other proteins 

including ClfA, SdrG, CNA or integrin αVβ3 (Deivanayagam et al., 2002). The 

structural similarity suggested that the interaction with Fg might also resemble that 

discovered in SdrG and ClfA, which was later confirmed when a structure of the 

N2N3T-Fg1 complex was solved, also by X-ray crystallography. 

 

The structure revealed a typical β-zipper binding within a cleft formed 

predominantly by residues with hydrophobic sidechains, stretching between the N2 

and N3 domains. Studies by Blumentstein and colleagues (1992) and Mayo and 

colleagues (1990) suggested the C-terminus of the Fg γ chain is intrinsically 

disordered. Thus it is likely to undergo a disorder-to-order transition upon binding to 

FnBPA. It fits snugly into the cleft, causing the N3-G’ strand to translocate and 

‘wrap’ around the Fg C-terminus forming a tunnel-like feature, establishing a 
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relatively large interface. Thus the solvent exposed hydrophobic cleft is buried in the 

N2N3T-Fg1 complex in an interaction driven mainly by the hydrophobic effect. 

Given that only thirteen Fg residues are involved in the binding, this interaction 

appears rather efficient. Surprisingly the interaction is dominated by 

backbone-hydrogen bonds with Gln13 the only residue whose sidechain may form 

hydrogen bonds with N2N3. This type of interaction is not unique to FnBPA and has 

been identified previously in other Fg-binding MSCRAMMs including FnBPB, 

ClfA/B or SdrG. Moreover, the Fg-binding sites on FnBPA and ClfB exhibit 

promiscuity as they can interact with elastin and cytokeratin 10 (K10), respectively, 

as well as Fg. Crystal structures of ClfB(199-542)-Fgα/K10 solved recently by Ganesh 

and colleagues (2011) are almost identical (including overlapping binding sites) and 

both resemble the structures of N2N3T-Fg1 and ClfA(229-545)-Fg1(D16A). Furthermore, 

a study by Ganesh and colleagues (2008) revealed that mutations in Fg1 can lead to 

either increase or decrease in affinity of ClfA for Fg1, suggesting Fg1 might not be 

the optimum ligand. A comparison of the crystal structures of homologous N2N3 

regions from five Fg-binding proteins FnBPA, ClfA, ClfB (S. aureus) and SdrG (S. 

epidermidis) in complex with Fg1, Fg1(D16A), Fgα/K10 and Fgβ peptides, 

respectively, reveals that the peptides do not always bind in the same orientation 

(Ganesh et al., 2011; Ganesh et al., 2008; Ponnuraj et al., 2003). Whilst in FnBPA, 

ClfA and ClfB the peptide aligns parallel to the N3-G’ strand, the Fgβ peptide binds 

antiparallel to SdrG (Figure 6.1). Interestingly, the Kds for all the above interactions 

are very similar (i.e. micromolar) (Ganesh et al., 2008; Ponnuraj et al., 2003; Burke 

et al., 2010; Walsh et al., 2004). 

Figure 6.1 Sequence alignment of ligands for the Fg-binding MSCRAMMs. Sequence of the Fg γ 

chain C-terminus (Fgγ) (UniProt entry P02679) was aligned with that of the ClfB binding site on Fg α 

chain (Fgα) (UniProt entry P02671), on K10 (UniProt entry P13645) and the SdrG binding site on Fg 

β chain (Fgβ) (UniProt entry P02675) followed by some manual editing. The residue numbering 

corresponds to that in the UniProt database. The N3-G’ β-strand (magenta) and the relative orientation 

of the bound ligands (black) are indicated. The conserved Gly residues are highlighted in red. The 

multiple sequence alignment was performed using ClustalW2 (Larkin et al., 2007) 

N3-G’ 

Fgγ  GEGQQHHLGGAKQAGDV-- 421-437 

Fgα  ------WNSGSSGTGSTG- 334-345 

K10  -------SSGGGSSGGGH- 477-487 

 

Fgβ  ----DLPRHGRASFFGEEN 50-36 
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Sequence alignment of FnBPA, ClfA/B and SdrG ligands reveals relatively high 

content of Gly residues (Figure 6.1). The FnBPA-binding site on elastin has not yet 

been identified, however, a high proportion of Gly residues (29%) throughout the 

entire elastin sequence is also clear. It appears that although promiscuous, the 

Fg-binding MSCRAMMs interact preferably with regions rich in Gly residues. 

Moreover, Gly is conserved at two positions, which are within a close proximity to 

W494 and F/Y306 conserved in FnBPA/B, ClfA/B and SdrG. Studies by Keane and 

colleagues (2007) and Ganesh and colleagues (2011) showed substitution at these 

two position leads to inhibition of the binding, though the mutated recombinant 

proteins were not structurally characterised. A systematic alanine scanning of the 

FnBPA hydrophobic cleft would lead to identification of the key interactions within 

the intermolecular interface, thus provide new data with regard to specificity of the 

FnBPA-Fg interaction. Also, obtaining the structure of the N2N3T-elastin complex 

would reveal whether FnBPA does indeed bind two different ligands through the 

same mechanism. The results published previously and those presented here point to 

a conclusion that the N2N3-Fg interaction identified in this work might be an 

example of a versatile binding mechanism adopted by multiple proteins across 

different species in binding Fg as well as other ligands.  

 

Although the above evidence points to high similarity between the 

Fg-SdrG/ClfA/FnBPA interactions, a more detailed analysis of the N2N3T and 

N2N3T-Fg1 structures revealed differences in the binding mechanism which were 

supported by a body of results from an array of biophysical experiments. The 

Fg-SdrG interaction has been described as a three-step process commonly referred to 

as the dock-lock-latch model (Ponnuraj et al., 2003). Initial ‘docking’ of the Fg γ 

chain C-terminus into the hydrophobic cleft is followed by ‘locking’ of the Fg 

C-terminus in the cleft by N2 and N3 domains relocating closer to each other, and 

subsequent ‘latching’ of the N3 extension (latch strand) to the N2 domain, which has 

a stabilizing effect on the overall structure (Section 1.6.3). While the open 

conformation is necessary for Fg binding to SdrG, Ganesh and colleagues (2008) 

showed the Fg-ClfA interaction is enhanced in a closed conformation (with the latch 

strand ‘latched’ to the N2 domain) and is described by the latch-dock model. On the 

other hand, the results presented here show FnBPA to be the first Fg-binding 

MSCRAMM that might not adopt the dock-lock-latch or latch-dock Fg-binding 
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models. The relative orientations of the N2 and N3 domains in N2N3T do not 

change upon Fg1 binding, unlike in the latch-dock binding of ClfA to Fg1(A16D). 

Moreover, the Kd values determined by SPR demonstrated that Fg binding is not 

affected by the presence or absence of the putative latch strand in FnBPA. The 

crystallographic and NMR data obtained here suggest that only the first residues of 

the putative latch region (Y501 and N503) might be required for Fg-binding, while 

the rest of the latch could remain disordered even in the Fg-bound FnBPA. As such, 

FnBPA would emerge as the first known member of the family of the Fg-binding 

MSCRAMMs that does not contain the latch strand yet retains comparable affinity 

for Fg. This finding could potentially be even more significant within the context of 

the FnBPA’s Fg- and Fn-binding bifunctionality. The original hypothesis predicted 

that the putative latch strand interacts with the N2 domain, thus forming an 

N-terminal β-zipper extension to the tandem β-zippers of FnBRs. Such an 

arrangement would also be likely to favour the putative cooperativity between N2N3 

and FnBPA1. However, these assumptions had to be reconsidered in light of the new 

data regarding the N2N3-Fg1 interaction and the role of the putative latch region in 

particular. 

 

The structures of N2N3T and the N2N3T-Fg1 complex allowed, for the first time, 

the assessment of the boundaries of the N2N3 region of FnBPA. Discrepancies can 

be found in previous studies regarding the layout of FnBPA and the boundary 

between the N-terminal A-domain and the Fn-binding region in particular (Wann et 

al., 2000; Fitzgerald et al., 2006b; Heilmann et al., 2004). In the revised layout of 

FnBPA (Schwarz-Linek et al., 2003), G512 was identified as the N-terminal end of 

the FnBR region. Analysis of a crystal structure of the 
4
F1

5
F1-STAFF1 complex 

published later (Bingham et al., 2008) suggests I514 is the most N-terminal FnBPA1 

residue involved in the 
4
F1

5
F1-STAFF1 interaction. The N2N3 region comprising 

residues 194-511 was previously identified as the minimal region retaining most of 

the Fg-binding activity of FnBPA (Loughman et al., 2008; Keane et al., 2007b). 

However, the X-ray crystallography of N2N3T and the N2N3T-Fg1 complex 

indicate the 189-199 region might be unstructured in solution thus the K200 residue 

might be the most N-terminal residue of the N2 domain. The C-terminal end of the 

N3 domain also appears shorter than predicted, with the residue N503 being 

probably the most C-terminal residue of N3 involved in Fg binding. It can therefore 
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be assumed that rFnBPA(200-503) is the minimum Fg-binding region and that K504 

and the subsequent residues are not part of the N3 fold or indeed a latch strand. To 

confirm the identity of the miminum Fg-binding region and the importance of Y501 

and N503 for the N2N3-Fg interaction, truncated derivatives of the N2N3T construct 

would have to be expressed and submitted to identical experiments as 

N2N3T/N2N3. Based on the above evidence, the two binding sites (N2N3 and 

FnBPA1) appear to be separated by more residues than originally thought, in the 

form of a ten-residue (K504-P513) flexible linker. This conclusion provided the first 

indication that the two binding sites might act independently, as the intrinsically 

disordered linker would allow free adjustment in the relative orientations and/or 

conformational changes of the two binding sites (Figure 6.2). An assigned NMR 

spectrum of N2N3E (residues 189 to 515) +/- Fg1 would provide the ultimate 

confirmation of the intrinsically disordered nature of the N3-FnBPA1 linker region. 

Although the NMR spectra of N2N3 presented here were of insufficient quality 

(Section 4.7.2), preliminary NMR experiments utilizing triple-labelled 
2
D

15
N

13
C 

N2N3T lead to a significant improvement in resolution of the acquired spectra.  

Figure 6.2 Predicted conformation of the Fg1-AF1-NTD ternary complex. The intrinsically 

disordered region (IDR) separating N2N3 and FnBPA1 is highlighted, including the residues forming 

the boundaries. 

 

6.2 The putative cooperativity of Fg- and Fn-binding to FnBPA 
 

Negative/positive putative cooperativity and potential steric effects in Fg and Fn 

binding to FnBPA were investigated in Chapter 5. Although it has been shown 

previously that FnBPA can bind Fg and Fn individually, and that both interactions 

N2 

N3 

Fg1 

5
F1 

4
F1 

3
F1 

2
F1 

FnBPA1 

NTD 

FnBPA2 

K504

2 

P513 IDR 

N1 



Chapter 6 

169 

 

are key to FnBPA’s virulence, to date there are no data available regarding 

simultaneous binding of Fg and Fn. Here, AF1, a construct which contains both 

N2N3 and FnBPA1 (Section 3.3.6), was used as model for the cooperativity studies. 

Results of numerous SPR and ITC experiments showed that N2N3 and FnBPA1 

retain the Fg- and Fn-binding abilities, respectively, within the context of AF1 

(Section 5.3). The Kds for the N2N3-Fg and FnBPA1-Fn interactions were consistent 

with the Kds determined previously (Wann et al., 2000; Meenan et al., 2007). The 

physiological relevance of AF1 was demonstrated by a plasma pull-down assay, 

proving AF1 interacts with Fg and Fn individually within the environment of human 

plasma (Chapter 5). The first indication that Fg- and Fn-binding sites on AF1 act 

independently was provided by a set of SPR experiments, which showed that the 

presence of NTD or Fg1 had no effect (positive/negative) on the interactions of AF1 

with Fg or NTD, respectively. This was eventually confirmed, when the formation of 

the NTD-AF1-Fg ternary complex was shown for the first time, using SPR 

(Section 5.5.3). The result provided the first biophysical evidence for the 

simultaneous binding of Fg and NTD to the adjacent N2N3 and FnBPA1 sites, 

respectively.  

 

Despite the above evidence demonstrating that both NTD and Fg bind AF1 

simultaneously forming a ternary complex, it was not clear whether AF1 can form a 

ternary complex with intact Fn and Fg. Given the sizes of the intact glycoproteins 

and the close proximity of their binding sites on AF1, it was possible that the steric 

effects would prevent simultaneous binding. This was determined by SPR, results of 

which suggest that only one of the two glycoproteins can be bound to a single AF1 

molecule at anyone time. Outcomes of the SPR experiments revealed, for the first 

time, that both N2N3 and FnBPA1 cannot be occupied at the same time by intact Fg 

and Fn, respectively. In order to determine which of the two glycoproteins is likely 

to bind AF1 in vivo, the Fg:Fn concentration ratio was adjusted according to that 

found in plasma under normal circumstances (~10:1) (Kamath and Lip, 2003; Hynes 

and Yamada, 1982). The results implied that despite Fg being the more abundant 

plasma protein, it is the Fn-FnBPA1 interaction that prevails. This is likely to be the 

consequence of the thousand-fold higher affinity of FnBPA for Fn than for Fg. Such 

evidence gives rise to the question of the potential functional redundancy of the 

Fg-binding site. Studies in vivo by Piroth and colleagues (2008) and Que and 



Chapter 6 

170 

 

colleagues (2005) revealed that both Fg and Fn are essential for the full development 

of IE, with Fg linked predominantly to the disease induction while Fn is associated 

with severity of the infection. Taking this into account, FnBPA, which contains both 

Fg- and Fn-binding sites, should clearly emerge as a key virulence factor in IE. This 

was demonstrated in a study by Moreillon and colleagues (2001), which showed that 

FnBPA confers the ability to promote experimental endocarditis when expressed 

heterologously in non-pathogenic L. lactis. Surprisingly, the results presented here 

appear to contradict these findings by suggesting the Fg-binding site on FnBPA 

might be redundant. The key element in the discussion regarding the role of the 

Fg-binding site is the complexity of the IE aetiology. Although Fn alone is predicted 

to bind FnBPA under normal circumstances, dramatic changes in host local 

environments in response to vascular injury and/or the onset of infection, could 

potentially favour the Fg-FnBPA interaction. As discussed in the introduction, 

exposure of the sub-endothelial matrix due to vessel wall damage triggers a 

haemostatic response (including release of Fg by platelet α-granules) leading to the 

formation of a blood clot, the integrity of which is maintained by fibrin network 

(Sections 1.4.2 and 1.4.3). Given the increase in local Fg concentration and that 

fibrin is a polymerised form of Fg containing multiple targets for FnBPA, it is 

possible the Fg-binding site is engaged and utilized during infection. A study by 

Niemann and colleagues (2004) suggested that soluble fibrin, rather that Fg, might 

be the primary mediator for MSCRAMM-mediated S. aureus adhesion to platelets. 

Adding to the complexity of the FnBPA mediated S. aureus-host interaction, intact 

Fg was shown to contain a cryptic Fn-binding site within the αC region, which is 

exposed on Fg polymerisation into fibrin (Makogonenko et al., 2002). This implies 

that apart from binding to cell surface integrins, intact Fn also mediates FnBPA 

attachment to the ECM. The potential implications of this interaction on the Fg and 

Fn binding to FnBPA and its physiological relevance within the aetiology of 

S. aureus IE remains to be identified. 

 

One of the drawbacks associated with using AF1 as a model in the cooperativity 

studies is that only the activities of the neighbouring N2N3 and FnBPA1 regions are 

assessed. Thus the extent of the steric effects within the context of the intact FnBPA 

(e.g. how many FnBRs would be occluded by FnBPA-bound Fg) is not considered in 

the experiments. This could be consolidated by a solid-phase assay and rFnBPA 
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truncated derivatives expressed heterologously on L. lactis. The other aspect of the 

cooperativity between Fg and Fn binding to FnBPA that was not addressed is the 

potential effect of the intrinsically disordered N1 domain. N1 is not directly linked to 

FnBPA1 or the Fg binding site, however the N2N3T structure indicates that N1 

might be oriented within a close proximity of the N3-FnBPA1 flexible linker. 

Although N1 does not bind N2N3, FnBPA1, Fg or Fn and no other role has yet been 

assigned to N1, it might influence Fg-/Fn-binding to FnBPA due to its disordered 

nature and position within the FnBPA conformation. This could be tested by 

utilizing a new rFnBPA construct fAF1 (consisting of N1, N2, N3 and FnBPA1) as a 

model in the cooperativity studies, instead of AF1. 

 

FnBPA-mediated binding to Fg and Fn is fundamental to platelet aggregation and 

endothelial cell colonization, events closely associated with development of 

S. aureus IE. It has been shown that the activities of Fg and Fn are intertwined 

within the context of IE aetiology, however the complex mechanism of S. aureus 

action and the individual roles of FnBPA, Fg and Fn within the overall process 

remain unknown. The outcomes of this work will contribute to the general 

understanding of the process by providing new information regarding the structural 

aspects of the Fg-FnBPA interaction and its potential effects on Fn binding to FnBR.  
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7 Appendices  
 

Appendix I: Composition of growth media 

 

 

SOLUTION/MEDIUM COMPOSITION 

LB – Kan broth 10 g Tryptone  

10 g NaCl 

5 g Yeast Extract 

50 mg Kanamycin  

Dissolve in 1 L of H2O, pH 7.5 

LB Agar 15 g agar 

1 L LB 

pH 7.4 

M9 - stock solution (x 10) 60 g Na2PO4 

30 g KH2PO4 

5 g NaCl,  

Dissolve in 1 L of H2O 

Trace metals - stock solution (x1000) 1.62 g FeCl3 

0.30 g CaCl2.2H2O 

0.20 g MnCl2.4H2O 

0.29 g ZnSO4.7H2O 

0.05 g CoCl2.6H2O 

0.03 g CuCl2 

0.10 g NiCl2.6H2O 

0.05 g Na2MoO4.2H2O 

0.05 g NaSeO3.5H2O  

0.01 g H3BO3 

Dissolve in 100 ml of H2O 

Vitamins - stock solution (x1000) 0.1 g Riboflavin  

0.1 g Nicotinamide  

0.1 g Pyridoxine  

0.1 g Thiamine  

Dissolve in 100 ml of H2O 

Minimal M9 growth media 100 ml M9 (x 10) 

0.5 g
 15

N NH4Cl 

1 ml trace elements (x1000) 

1 ml vitamins (x1000) 

20 ml glucose (20% (w/v)) 

0.50 g MgSO4 

0.22 g CaCl2 

50 mg Kanamycin 

Dissolve in 1 L of H2O, pH 7.4 
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Appendix II: Equations used for fitting ITC binding data 

 

Volume displacement effect 

 

Each ligand injection is associated with displaced volume effects which are corrected 

for by the Origin software using equations 1 and 2. 

Mt – Concentration of the macromolecule in the cell corrected for the displaced volume effects (M) 

Xt – Concentration of the ligand in the cell corrected for the displaced volume effects (M) 

Mt
o
 – Initial concentration of the macromolecule in the cell (before the ligand first injection) (M) 

Xt
o
 – Hypothetical ligand concentration in the cell (Vo) after injection (M) 

Vo – Working (calorimetrically sensed) cell volume (L) 

ΔV – Injected (displaced) volume (L) 

 

 

Single set of identical sites model 

 

The binding isotherm is fitted using non-linear least square regression to a binding 

model represented by Equations 3 and 4. 

 

  
       

 
   

  

   
 

 

    
     

  

   
 

 

    
 
 

 
   

   
  (3) 

Q – Total heat content of the solution within Vo (cal) 

ΔH – Molar heat of ligand binding (cal) 

K – Binding constant (M
-1

) 

 
           

   

  
 
           

 
         (4) 

ΔQ(i) – Change of the heat content upon completion of i
th

 injection (cal) 

Vi – Injection volume (L) 
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Appendix III: Sequences of the domains comprising the truncated 

rFnBPA derivatives  

 

His6-tag 

atgggcagcagccatcatcatcatcatcacagcagcggcctggaagttctgttccaggga 

 M  G  S  S  H  H  H  H  H  H  S  S  G  L  E  V  L  F  Q  G  

ccagcaatg 

 P  A  M  

 

N1 

gcgagcgaacagaaaaccaccaccgtggaagaaaacggcaacagcgcgaccgataacaaa 

 A  S  E  Q  K  T  T  T  V  E  E  N  G  N  S  A  T  D  N  K  

accagcgaaacccagaccaccgcgaccaacgtgaaccatattgaagaaacccagagctat 

 T  S  E  T  Q  T  T  A  T  N  V  N  H  I  E  E  T  Q  S  Y  

aacgcgaccgtgaccgaacagccgagcaacgcgacccaggtgaccaccgaagaagcgccg 

 N  A  T  V  T  E  Q  P  S  N  A  T  Q  V  T  T  E  E  A  P  

aaagcggtgcaggcgccgcagaccgcgcagccggcgaacattgaaaccgtgaaagaagaa 

 K  A  V  Q  A  P  Q  T  A  Q  P  A  N  I  E  T  V  K  E  E  

gtggtgaaagaagaagcgaaaccgcaggtgaaagaaaccacccagagccaggataacagc 

 V  V  K  E  E  A  K  P  Q  V  K  E  T  T  Q  S  Q  D  N  S  

ggcgatcagcgccaggtggatctgaccccgaaaaaagcgacccagaaccaggtggcggaa 

 G  D  Q  R  Q  V  D  L  T  P  K  K  A  T  Q  N  Q  V  A  E  

acccaggtggaagtggcgcagccgcgcaccgcgagcgaaagcaaaccgcgcgtgacccgc 

 T  Q  V  E  V  A  Q  P  R  T  A  S  E  S  K  P  R  V  T  R  

agcgcggatgtggcggaagcgaaagaagcgagcaacgcgaaagtggaaaccggc 

 S  A  D  V  A  E  A  K  E  A  S  N  A  K  V  E  T  G  

 

N2 

acagatgtaacaagtaaagttacagtagaaattggttctattgaggggcataacaataca 

 T  D  V  T  S  K  V  T  V  E  I  G  S  I  E  G  H  N  N  T  

aataaagtagaacctcatgcaggacaacgagcggtactaaaatataagttgaaatttgag 

 N  K  V  E  P  H  A  G  Q  R  A  V  L  K  Y  K  L  K  F  E  

aatggtttacatcaaggtgactactttgactttactttatcaaataatgtaaatacgcat 

 N  G  L  H  Q  G  D  Y  F  D  F  T  L  S  N  N  V  N  T  H  

ggcgtatcaactgctagaaaagtaccagaaattaaaaatggttcagtcgtaatggcgaca 

 G  V  S  T  A  R  K  V  P  E  I  K  N  G  S  V  V  M  A  T  

ggtgaagttttagaaggtggaaagattagatatacatttacaaatgatattgaagataag 

 G  E  V  L  E  G  G  K  I  R  Y  T  F  T  N  D  I  E  D  K  

gttgatgtaacggctgaactagaaattaatttatttattgatcctaaaactgtacaaact 

 V  D  V  T  A  E  L  E  I  N  L  F  I  D  P  K  T  V  Q  T  

aatggaaatcaaactataacttcaacactaaatgaagaacaaacttcaaaggaattagat 

 N  G  N  Q  T  I  T  S  T  L  N  E  E  Q  T  S  K  E  L  D  

gttaaatat 

 V  K  Y  
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N3 

aaagatggtattgggaattattatgccaatttaaatggatcgattgagacatttaataaa 

 K  D  G  I  G  N  Y  Y  A  N  L  N  G  S  I  E  T  F  N  K  

gcgaataatagattttcgcatgttgcatttattaaacctaataatggtaaaacgacaagt 

 A  N  N  R  F  S  H  V  A  F  I  K  P  N  N  G  K  T  T  S  

gtgactgttactggaactttaatgaaaggtagtaatcagaatggaaatcaaccaaaagtt 

 V  T  V  T  G  T  L  M  K  G  S  N  Q  N  G  N  Q  P  K  V  

aggatatttgaatacttgggtaataatgaagacatagcgaagagtgtatatgcaaatacg 

 R  I  F  E  Y  L  G  N  N  E  D  I  A  K  S  V  Y  A  N  T  

acagatacttctaaatttaaagaagtcacaagtaatatgagtgggaatttgaatttacaa 

 T  D  T  S  K  F  K  E  V  T  S  N  M  S  G  N  L  N  L  Q  

aataatggaagctattcattgaatatagaaaatctagataaaacttatgttgttcactat 

 N  N  G  S  Y  S  L  N  I  E  N  L  D  K  T  Y  V  V  H  Y  

gatggagagtatttaaatggtactgatgaagttgattttagaacacaaatggtaggacat 

 D  G  E  Y  L  N  G  T  D  E  V  D  F  R  T  Q  M  V  G  H  

ccagagcaactttataagtattattatgatagaggatataccttaacttgggataatggt 

 P  E  Q  L  Y  K  Y  Y  Y  D  R  G  Y  T  L  T  W  D  N  G  

ttagttttatacagtaataaagcgaacggaaatgagaaaaat 

 L  V  L  Y  S  N  K  A  N  G  N  E  K  N  

 

FnBPA1 

ggtccgattattcaaaataataaatttgaatataaagaagatacaattaaagaaactctt 

 G  P  I  I  Q  N  N  K  F  E  Y  K  E  D  T  I  K  E  T  L  

acaggtcaatatgataagaatttagtaactactgttgaagaggaatatgattcatca 

 T  G  Q  Y  D  K  N  L  V  T  T  V  E  E  E  Y  D  S  S  
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8 Abbreviations 
 

ADMIDAS Adjacent to metal ion-dependent adhesion site 

ADP Adenosine diphosphate 

AF1 rFnBPA construct (N2N3-FnBPA1; residues 189-550) 

AUC Analytical ultracentrifugation 

bp base pair 

CCP4 Collaborative computational project No. 4 

ClfA Clumping factor A (S. aureus) 

ClfB Clumping factor B (S. aureus) 

CNA Collagen binding protein (S. aureus) 

CSI Chemical shift anisotropy 

CSS Clear Strategy Screen 

CV Column volume 

DD Dipole-dipole 

DNA Deoxyribonucleic acid 

dNTPs Deoxyribonucleotide triphosphates 

DSC Differential scanning calorimetry 

DSS 2,2-Dimethyl-2-silapentane-5-sulfonate 

DTT Dithiothretiol ((2S,3S)-1,4-Bis-sulfanylbutane-2,3-diol) 

dTTP Deoxythymidine triphosphate 

ECM Extracellular matrix 

EDC N-hydroxysuccinimide 

EDTA Ethylenediaminetetraacetic acid (2,2',2'',2'''-(Ethane-1,2-

diyldinitrilo)tetraacetic acid) 

EE Experimental endocarditis 

EGF Epidermal growth factor 

ELISA Enzyme-linked immunosorbent assay 

ESI/MS Electrospray ionisation mass spectrometry 

ESRF European synchrotron radiation facility 

F1 Fibronectin type one module 

F2 Fibronectin type two module 
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F3 Fibronectin type three module 

fA rFnBPA construct (A-domain; residues 37-511)  

FcγRIIa Immunoglobulin G receptor on platelets 

Fg Fibrinogen 

Fg1 Synthetic peptide representing the last 17 C-terminal residues 

of Fg γ chain 

Fgα Synthetic peptide representing ClfB binding site on Fg α chain 

Fgβ Synthetic peptide representing SdrG binding site on Fg β chain 

FgD Fibrinogen proteolytic fragment (D-region) 

Fn Fibronectin 

FnBPA Fibronectin-binding protein A 

FnBPA1 First  fibronectin-binding repeat 

FnBPB Fibronectin-binding protein B 

FnBR Fibronectin-binding region 

FnBRs Fibronectin-binding repeats 

FP Fluorescent polarisation 

G’’ (latch) C-terminal extension of the N3 domain (latch strand) 

GPIIaIIIb (αIIbβIII) Glycoprotein IIaIIIb (Platelet integrin; binds fibrinogen and 

fibronectin) 

GPIb/GPVI Glycoproteins Ib and VI, platelets receptors for collagen and 

von Willebrand factor  

His6- Affinity tag composed of six histidine residues 

HPLC High performance liquid chromatography 

HRV 3C Human rhinovirus 3C protease 

HSQC Heteronuclear single quantum coherence 

IDR Intrinsically disordered region 

IE Infective endocarditis 

IEX Ion-exchange chromatography 

IgG Immunoglobulin G 

eRMAX Estimated maximum SPR response 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

ITC Isothermal titration calorimetry 

Ka Association constant 
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ka Association rate constant 

Kd Dissociation constant 

kd Dissociation rate constant 

Kan Kanamycin 

LIC Ligation independent cloning 

LB Luria-Bertani media 

MES 2-(N-morpholino)ethanesulfonic acid 

MIDAS Metal ion-dependent adhesion site 

mme Monomethyl ether 

MRSA Methicillin-resistant Staphylococcus aureus 

MSCRAMM Microbial Surface Components Recognising Adhesive Matrix 

Molecules 

MOPS 3-(N-morpholino)propanesulfonic acid 

N1 Residues 37-189 of FnBPA 

N1N2 Recombinant FnBPA protein (residues 37-335) 

N2 Residues 189-335 of FnBPA 

N2-E N2 domain edge strand 

N2N3 Recombinant FnBPA protein (residues 189-511) 

N2N3T Recombinant FnBPA protein (residues 189-515) 

N2N3E Recombinant FnBPA protein (residues 189-505) 

N3 Residues 335-511 of FnBPA 

N3-G’ N3 domain edge strand 

NHS 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

NMR Nuclear magnetic resonance 

NTD N-terminal domain 

OD600 Optical density at 600 nm 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDB Protein data bank 

PEG Polyethylene glycol 

pI Isoelectric point 

Req SPR response generated on steady state binding 
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RL SPR response generated on ligand immobilization 

RMAX Maximum SPR response generated on ligand saturation 

r.m.s.d Root mean square deviation 

RNA Ribonucleic acid 

rpm Rotation per minutes 

RU Response units (response difference) 

SDL Specificity determining loop 

SdrG Serine-aspartate repeat-containing protein G 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Sfb1-5 Fifth FnBR of Fibronectin-binding protein I of Streptococcus 

pyogenes 

SPR Surface plasmon resonance 

s.s.m. Secondary structure matching 

STAFF1 Synthetic peptide representing residues 508-530 of FnBPA 

STATT1 Synthetic peptide representing residues 529-549 of FnBPA 

TBE Tris-Borate-EDTA buffer 

TBS Tris buffered saline 

tRMAX Theoretical maximum SPR response generated on ligand 

saturation 

Tris 2-Amino-2-hydroxymethyl-propane-1,3-diol 

TROSY Transverse relaxation optimized spectroscopy 

UV Ultra violet 

VRSA Vancomycin-resistant Staphylococcus aureus 

vWF von Willebrand factor 
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