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Summary 

A direct carbon fuel cell (DCFC) is a special type of high temperature fuel cell that uses 

solid carbon as fuel and air as oxidant. Researches in the area of the DCFC have 

focused on using fuel derived from petroleum products, coal and activated carbon but 

this current research investigates the use of biomass carbon fuel in a single cell DCFC. 

Six different biomasses were investigated (miscanthus, switchgrass, wheat, spruce, 

poplar and willow). The biomasses were subjected to pyrolysis reaction at 800oC, 

7oC/min with particle sizes of 0.50 mm to 1.00 mm, yielding 25 wt.% biomass carbon. 

The two electrolyte systems investigated were; molten carbonate electrolyte direct 

carbon fuel cell (MCDCFC) and solid oxide electrolyte direct carbon fuel cell (SODCFC) 

and these were tested using hand and ball milled biomass carbon fuels (HM and BM).  

 

The overall electrochemical reactions of the biomass carbon fuels in the SODCFC were 

better than those of the MCDCFC. The BM biomass fuels performed better in the 

SODCFC while the HM biomass fuels performed better in the MCDCFC. In terms of the 

open circuit voltage, miscanthus fuel (1.24 V) had the best value for SODCFC while 

willow fuel (0.83 V) for MCDCFC. The best peak power density was recorded for 

miscanthus fuel (77.41 mW/cm2) in the SODCFC and willow fuel (18.48 mW/cm2) in the 

MCDCFC. Miscanthus fuel (180.52 mA/cm2) gave the maximum current density for the 

SODCFC while spruce fuel (73.02 mA/cm2) for the MCDCFC. For the current density at 

80% voltage efficiency miscanthus fuel (100 mA/cm2) was superior for the SODCFC and 

willow fuel (6.67 mA/cm2) for MCDCFC. Miscanthus fuel (0.66 V) showed the highest 

voltage at peak power for the SODCFC and willow fuel (0.48 V) for the MCDCFC. The 

overall energy strategy considering two major routes of electricity generation from 

biomass were investigated. The first route is the burning of biomass in a power plant 

to generate 6.5 MJ of electricity and the second is the DCFC integrated route using 

biomass to generate 12.8 MJ of electricity. The DCFC integrated route gave superior 

outputs of energy generation with an overall conversion efficiency of 70% when 

compared with the 35% of the first route. 
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Nomenclature 
Symbol   Description       Unit 

Gc   Change in Gibbs free energy of combustion     kJ 

Gf   Change in Gibbs free energy of formation     kJ 

S  Change in entropy       JK-1 mol 

∆     Change in molar specific Gibbs free energy of combustion   kJ mol-1 

∆     Change in molar specific Gibbs free energy of formation   kJ mol-1 

   Activation Overvoltage      V 

∆H    Change in enthalpy       kJ 

  Change in molar specific enthalpy of combustion    kJ mol-1 

∆Hf   Enthalpy of formation      kJ 

∆Vohm    Voltage Drop        V 

∆Vtrans   Voltage Change due to Mass Transport   V 

A    Tafel Equation Constant     - 

A   Pre-exponential factor      time-1 

A   Surface area        m2 

A, a  Constant        - 

B  Constant        - 

B(hk)   Breadth for a two-dimensional lattice reflection in XRD  mm 

C   Capacitance        μF 

d   Separation of the plates in fuel cell     nm 

d  Layer spacing for carbon/crystal structure    Å 

D1  Dwell time 1 in Lenton furnace    min 

D2   Dwell time 2 in Lenton furnace    min 

E    Electromotive force of fuel cell at a given state   V 

E   Apparent activation energy      Jmol-1  

Eo   Electromotive force of fuel cell at standard state   V 

Eocv   Reversible open circuit voltage      V 

F     Faraday constant       C  

FR    Nitrogen gas flow rate       cm3/min 

i     Current Density       mAcm-2 

io   Exchange Current Density      mAcm-2 

k   Wave vector       - 

L1  Target set point 1 in Lenton furnace     oC 

L2  Target set point 2 in Lenton furnace    oC 

La   Mean layer length for a 2-D lattice reflection in XRD  mm 

Lc   Height of crystallite       mm 

m    Fraction of Volatiles Produced     - 

m  Constant in mass transfer overvoltage equation  V 

M1   Mass of empty crucible      g 

M2   Mass of crucible plus sample before heating   g 



 

xviii 
 

Symbol   Description       Unit 

M3   Mass of crucible plus residue after heating and    g 

M4   Final mass of soda asbestos absorber    g 

M5   Initial mass of water absorber     g 

M6   Final mass of water absorber      g 

MAl   Mass of moisture in the aluminium oxide    g 

Mc   Percentage of moisture content     % 

n  Constant in mass transfer overvoltage equation  mA-1 

p    Vapour pressure        kPa 

P  Pressure         kPa 

r    Area-Specific Resistance      kΩcm2 

R    Universal gas constant      JK-1mol-1 

R1  Ramp rate 1 in Lenton furnace    oC/min 

R2  Ramp rate 2 in Lenton furnace     oC/min  

RT   Drop in Nernst voltage     V 

T  Temperature       oC 

V    Voltage        V 

Vc    Voltage of the fuel cell     V 

Wt.%   Weight percentage on dry basis    % 

z     Number of electrons transferred     - 

 

Greek Symbols 

µf   Fuel utilization coefficient      - 

θ   Bragg scattering angle      o 

α    Charge Transfer Coefficient     - 

ε   Electrical permittivity       Fm-1 

η  Efficiency        % 

λ   Wavelength of the x-ray      m 

 

 

Subscripts 

hk  Two-dimensional lattice peak in carbon 

hkl  Three-dimensional lattice peak in carbon 

a   Anode compartment 

c   Cathode gas compartment 

rs  Carbon reactive surface site  
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Acronyms and Abbreviations 
AFC  Alkaline Fuel Cell  

APUs  Auxiliary Power Units  

ASR   Area Specific Resistance 

ASTM  American Society of Testing and Materials 

BET  Brunauer-Emmett-Teller 

BM  Ball milled biomass carbon fuel 

BSU  Basic Structural Unit  

CCE  Clean Coal Energy  

CCS  Carbon Capture and Storage  

CHP  Combine Heat and Power 

CRS  Reactive Carbon Surface Sites  

CV  Calorific Value 

DCFC  Direct Carbon Fuel Cell 

DIR  Direct Internal Reforming 

DMFC  Direct Methanol Fuel Cell 

EMF  Electromotive force  

EXAFS  Extended X-ray Absorption Fine Structure  

FC  Fuel Cell 

FCVs  Fuel cell vehicles  

HCs   Hydrocarbons 

HDS   Hydrodesulphurisation 

HHV  Higher Heating Value 

HM  Hand milled biomass carbon fuel 

HR   Heating Rate 

ICE   Internal Combustion Engine 

IIR  Indirect Internal Reforming 

Lha−1  Litres per Hectare Annual Yield 

LHV  Lower Heating Value 

LLNL  Lawrence Livermore National Laboratory  

LSM  Lanthanum Strontium Manganate 

maf   Moisture and Ash-Free Material 

MCDCFC Molten Carbonate Electrolyte Direct carbon Fuel Cell 

MCDCFCP Molten Carbonate Electrolyte Direct carbon Fuel Cell Power Density 

MCDCFCV Molten Carbonate Electrolyte Direct carbon Fuel Cell Voltage 

MCFC   Molten Carbonate Fuel Cell 

Mf  Moisture Free Material 

MH  Molten Hydroxide Electrolyte  

Mis  Miscanthus carbon fuel 

MisP  Miscanthus carbon fuel power density 

MisV  Miscanthus carbon fuel voltage 
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MSW  Municipal Solid Waste 

NMR  Nuclear Magnetic Resonance  

NTEL  National Energy Technology Laboratory  

OCV  Open Circuit Voltage  

OTEC  Ocean Thermal Energy Conversion 

PAFC   Phosphoric Acid Fuel Cell  

PEMFC  Proton Exchange Membrane Fuel Cell  

Pop  Poplar carbon fuel 

PopP  Poplar carbon fuel power density 

PopV  Poplar carbon fuel voltage 

RDF   Refused-Derived Fuel 

SARA   Scientific Application and Research Associates  

ScSZ  Scandium-Stabilised Zirconium 

SEM  Scanning Electron Microscope  

SODCFC Solid Oxide Electrolyte Direct Carbon Fuel Cell 

SODCFCP Solid Oxide Electrolyte Direct Carbon Fuel Cell Power Density 

SODCFCV Solid Oxide Electrolyte Direct Carbon Fuel Cell Voltage 

SOFC  Solid Oxide Fuel Cell  

Spr  Spruce carbon fuel 

SprP  Spruce carbon fuel power density 

SprV  Spruce carbon fuel voltage 

STP   Standard Temperature and Pressure 

Swi  Switchgrass carbon fuel 

SwiP  Switchgrass carbon fuel power density 

SwiV  Switchgrass carbon fuel voltage 

t ha−1   Tonnes per Hectare Annual Yield 

TCD   Thermal Conductivity Detector 

THT  Tetrahydrothiophene 

Whe  Wheat carbon fuel 

WheP  Wheat carbon fuel power density 

WheV  Wheat carbon fuel voltage 

Wil  Willow carbon fuel 

WilP  Willow carbon fuel power density 

WilV  Willow carbon fuel voltage 

wt.  Weight 

XANES  X-Ray Near Edge Structure  

XRD  X-Ray Diffraction  
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1.0 Introduction 

Renewable energy sources are derived primarily from the enormous power of the 

sun’s radiation and are the most ancient as well as the most modern forms of energy 

used by humanity. Renewable energy from biomass or bioenergy is our emphasis in 

this research. The main fossil fuel energy sources continue to present challenges for 

CO2 emission reduction, and carbon neutral biomass options like miscanthus will make 

an increasing contribution to the energy mix in decades ahead.  The use of carbons for 

electricity production in carbon fuel cells have been shown to provide conversion 

efficiencies up to 80%. The direct carbon fuel cell (DCFC) is a special kind of high 

temperature fuel cell that directly uses carbon as anode and fuel.  The DCFC has a 

higher achievable efficiency (80%) as an electrical power generator than other fuel 

cells.  The raw material for powering DCFC is solid carbon-rich fuels, such as biomass, 

coal, and organic waste, which are abundant in nature (Adeniyi and Ewan, 2011; 

Desclaux et al., 2010; Cao et al., 2007; Boyle, 2004; Boyle et al., 2003; Sorensen, 2000; 

Twidell and Weir, 1986). 

 

This chapter introduces renewable energy and gives the different sources of it. It also 

talks about the sustainability of fuel cell technology using biomass. The Carnot 

efficiency as it relates to heat engines and the fuel cell efficiency limits are discussed 

along with the fuel cell voltage and its efficiency. The research aims and objectives are 

given and the thesis outline is also discussed. 

 

1.1 Renewable Energy 

The energy that exists in the world can be stored, converted or amplified in different 

ways. Thus these energy resources can be classified as either finite or perpetual. The 

finite resources include both organic and inorganic based substances (e.g. coal, crude 

oil, natural gas, oil shale natural bitumen, extra heavy oil, uranium and thorium). The 

principal perpetual resources are solar energy, wind power and bioenergy; all these 

depend on the extra-terrestrial source which is the sun. Other sources such as marine 

energy (tidal energy), wave power and ocean thermal energy conversion (OTEC) also 

exists. Bioenergy are renewable energy resources, because each crop harvested 
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represent a partial renewal of its resource base, which on its own is subject to 

depletion as a result of being used as feedstock or fuel. Tables 1.1 and 1.2 give a 

comparison on the various energy sources (Babu, 2008; Lauzon et al., 2007). 

 

Table 1.1: Different sources of energy (Babu, 2008) 

 Source Features Disadvantages Reserves 
Nuclear 
power 

a. Generated using 
Uranium. 
b. Nuclear fission of 
Uranium produces heat 
and energy. 
c. No smoke or CO2 
produced. 
d. Huge amounts of 
energy from small 
amounts of fuel with 
small amounts of waste. 

a. Highly dangerous waste 
product.  
b. Waste must be sealed up 
and buried for several 
years to allow the 
radioactivity to die away. 
c. Lot of investment on 
safety. A nuclear accident 
can be a major disaster.  

a. Not renewable, once all 
the earth’s Uranium is dug 
up and used, there is no 
other. 

Coal a.  Finite energy source. 
b. The most rapidly 
growing fuel on global 
basis. 

a. Burning produces dust, 
smoke and oxides of 
impurities, leading to 
environmental pollution. 
b. Burning fossil fuel 
produces carbon dioxide 
leading to greenhouse 
effect. 
c. Burning also produces 
photochemical pollution 
from nitrous oxide and acid 
rain from sulphur dioxide. 

a. 850 billion tonnes of 
coal currently 
recoverable. 
b. Globally available in 
more than 70 countries. 

Oil  a.  Finite in nature. 
b. Different types of oil, 
different costs, 
characteristic and 
having depleting 
profiles. 
c. Most important 
primary fuel globally 
(36.4% of global energy 
consumption, without 
biomass). 

a. Expected resources of 
82 billion tonnes. 
b. 47% of total reserves of 
conventional oil 
discovered have been 
consumed. 
c. Cumulative crude oil 
production reached 143 
billion tonnes in 2005. 
Half was produced within 
the last 23 years. 

 

Biomass describes all biologically produced matter and it is the name given to all 

earth’s living matter. Biomass represents the general term for materials derived from 

growing plants or from animal manure. The solar energy drives the photosynthesis 

process in all the plant matter. The chemical energy contained in biomass is derived 

from the solar energy using the process of photosynthesis. In this process, plants take 

up carbon dioxide, water and using solar energy, convert them into sugars, starches, 

cellulose, lignin etc., which make up carbohydrate (Babu, 2008).  
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Material such as wood from natural forests, waste from agricultural and forestry 

processes, industrial, human and animal waste are the basic sources for biomass 

energy. Naturally, all biomass ultimately decomposes to its molecules with the release 

of heat. Biomass combustion is a replicate of the natural processes. Thus the energy 

from biomass is a form of renewable energy, which does not add CO2 to the 

environment in contrast to fossil fuel (Babu, 2008; Twidell, 1998). 

 

Table 1.2: More different sources of energy (Babu, 2008) 

Source Features Disadvantages Reserves 
Solar energy a. The sun is the most 

abundant permanent 
source of energy. 
b. The annual solar 
radiation reaching earth is 
over 7500 times the 
world’s annual primary 
energy consumption of 450 
Exajoules. 

Large 
investment cost 
for solar 
photovoltaic 
collectors.  

- 

Geothermal 
energy 

The natural heat of the 
earth. 

- Not a clear cut example of a 
perpetual source of energy 
like solar, wind and marine 
energy. 

Hydro-
electric 

The largest of the 
perpetual or renewable 
energy resources. 

- Total world hydro capacity is 
about 778 GW. 

Wind energy Wind generation occurs by 
complex mechanisms 
involving the rotation of 
the earth, heat energy 
from the sun, the cooling 
effects of the oceans and 
polar ice caps, temperature 
gradients between land 
and sea and the physical 
effects of mountains and 
other obstacles. 

This usually 
involves large 
investment cost 
for windmills. 

a. The world’s windiest 
regions are in the coastal 
regions of the America, 
Europe, Asia and Australasia. 
b. The world wind resources 
are vast: it has been 
estimated that if only 1% of 
the land area were utilized 
and allowance made for 
wind’s relatively low capacity 
factors, wind power potential 
would roughly equate to the 
current level of worldwide 
generating capacity. 

 

This makes biomass unique in that it effectively stores solar energy and it is the only 

renewable energy source of carbon which is able to convert conveniently into solid, 

liquid and gaseous fuels (Kwapinski et al., 2010; Babu, 2008; Demirbas, 2001; Twidell, 
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1998). Bioenergy are renewable and carbon neutral. The CO2 released during the 

energy conversion of biomass (e.g. combustion, gasification, pyrolysis, anaerobic 

digestion or fermentation) circulates through the biosphere, and is reabsorbed in 

equivalent stores of biomass through photosynthesis. Figure 1.1 shows the combustion 

of wood and the generation of CO2, this also depicts that the net CO2 generation is 

zero as new biomass is developed photosynthetically (Babu, 2008). 

 

Figure 1.1: Illustrative lifecycle of forest biomass (Babu, 2008) 

 

1.2 Sustainability and Fuel Cell Technology 

Regardless of all the benefits of fuel cells (FCs) in terms of reduced emission, higher 

fuel efficiencies, there is a need for FC sustainability through the use of renewable 

sources of energies, that is, non-fossil sources of energy that do not diminish on a 

human time scale or that is continuously regenerated by some natural processes 

(Desclaux et al., 2010; Hoogers, 2003 cited Hoogers and Potter, 1999). All other known 

renewables can be traced back to the main sources, with solar energy exceeding the 
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others by many orders of magnitude. Plant and algae harness the use of solar energy, 

by evaporation of water giving it an increased potential energy, and by the pressure 

differentials on the surface of the planet which together with the earth’s rotations to 

give wind (Hoogers, 2003). Geothermal energy is currently applied in various 

geographic locations that allow easy access to high temperature reservoirs (150-

200oC), for power generation through steam processes or in locations with low grade 

thermal water for heating purposes (e.g. as applied in Iceland, Japan, Los Alamos in 

United States). Tidal energy on the other hand can only be used in very few special 

geographical locations where differences in tidal sea levels of many meters exist within 

large estuaries. Sources of renewable and sustainable energy using fuel cell technology 

could be applied in two main routes as follow (Hoogers, 2003): 

i. The generation of hydrogen by water electrolysis with electricity based on 

renewable. 

ii. The use of biomass to generate carbon, biogas, syngas (CO and H2), 

methanol or hydrogen.  

 

1.2.1    Sustainable Hydrogen from Water Electrolysis 

Clean supplies of hydrogen to industries have been achieved through electrolysers. 

They have recently been used as an option for generating CO2-neutral hydrogen in 

conjunction with electrical energy made from renewables. Hydrogen fuelling stations 

are being set up in Sacramento, Las Vegas, Michigan, Vancouver, Hamburg, Munich, 

Milan, Osaka and other places (Hoogers, 2003 cited Dunn, 2001). Many researches in 

the area of hydrogen fuel cell have been carried out and many are still going on 

(Dikwal et al., 2008; Bujalski et al., 2007; Chan et al., 2002). 

 

1.2.2    Fuel Cell Powered by Biomass 

The possibility of sustainable and renewable solutions to fuel problems comes from 

biomass. As shown in Figure 1.2, the potential process routes from biomass to 

powering FCs are schematically presented. Biomass can be burned to generate steam 
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for driving steam turbines (or steam engine) to make electric power. The most 

interesting things are the chemical routes i.e., anaerobic digestion of “soft” biomass 

and thermal processing of “hard” biomass to make syngas, a mixture of carbon 

monoxide and hydrogen. The thermal process can also be applied in conjunction with 

almost any carbon-containing material. Typical fuels are wood, straw, fast growing 

reeds (miscanthus) and trees harvested green (Klass, 1998).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Renewable fuel for fuel cells from biomass process routes (Hoogers, 2003). 

 

For farming that involves the cultivation of energy crops, it is important to use primary 

fuels that requires neither the use of extensive machinery for planting and harvesting 

nor artificial fertilizers. This would counteract the concept of CO2 neutrality. For the 

same reason, liquid biofuels such as plant oils are less suitable. They often require high 

(fossil) energy returns which varies from one country to the other, depending on 

climatic and agricultural conditions (Hoogers, 2003 cited Koßmehl and Heinrich, 1998).  
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Waste material processing is currently of keen interest all over the world. In Germany, 

an automated process to separate and dry household waste to a so-called dry stabilate 

has been developed by Herhof (Hoogers, 2003 cited Kern and Sprick, 2001). Their 

technique is a good comparison between the consideration of the use of resources and 

excessive recycling. The process gives a result of clean iron and non-ferrous metals, 

ceramics and stone, glass and batteries. The other materials (dry stabilates) are burnt 

in power plants or in the cement industry, having a heating value similar to lignite. It 

was observed by Witzenhausen Institute, that 60 wt.% of the dry stabilate consists of 

organic matters (Hoogers, 2003; Kern and Sprick, 2001). Also currently available are 

energy efficient processes to generate syngas from dry organic materials (Hoogers, 

2003 cited Kwant, 2001). Biomass is available in large quantities all over the world. In 

terms of FC technology, syngas from biomass gasification can be further converted into 

more hydrogen and methanol by the following processes: 

a. Water-gas shift reaction as shown in Equation 1.1 

b. The use of methanol synthesis (Equation 1.2 and Equation 1.3) 

c. Fed directly into high temperature stationary fuel cell system of the molten 

carbonate fuel cell (MCFC) or solid oxide fuel cell (SOFC) type (Figure 1.3). 

CO + H2O (g)  CO2 + H2   ∆H=-41 kJmol-1     (1.1) 

CO + 2H2  CH3OH(g)   ∆H=-90 kJmol-1   (1.2) 

CO2 + 3H2  CH3OH(g) + H2O  ∆H=-49 kJmol-1    (1.3) 

The ability to make hydrogen and methanol is noteworthy because these chemicals 

can be stored as automotive fuels (Adeniyi, 2008; Hoogers, 2003). 

 

The product of anaerobic digestion in biogas is illustrated in Figure 1.3. The feed stock 

for Figure 1.3 is normally softer organic matter such as organic household waste, grass 

cuttings, manure, canteen and industrial food offal among others (Hoogers, 2003 cited 

Köttner, 2001). Table 1.3 gives the typical composition of biogas from household waste 

without additional meat and food offal co-fermentation, this composition can vary 
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greatly depending upon the feed. Methane is observed to be the major component in 

the gas, ranging between 50% and 75% by volume (Hoogers, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Fuel cells technology for biogas processing and clean up (Hoogers, 2003). 
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Table 1.3: Typical gas composition of biogas from organic household waste 

(Hoogers, 2003). 

Component Concentration (Wet gas) 

Methane 

Carbon dioxide 

Water vapour 

Nitrogen 

Oxygen 

Carbon monoxide 

Siloxanes 

Hydrogen sulphide 

60-75 % 

< 35% 

0-10% 

<5 % 

<1% 

0.2% 

< 10 mg per m3 CH4 

150 ppm 

 

A well known fact is that the biogas having similar compositions to natural gas makes 

use of the benefits ranging from direct use in high temperature fuel cells (Molten 

carbonate fuel cell (MCFC) and Solid oxide fuel cell (SOFC)) to further reforming to 

syngas or hydrogen, to meet the requirements for low temperature fuel cells (Adeniyi, 

2008; Hoogers, 2003). 

 

A flow chart for using biogas in conjunction with fuel cells is shown in Figure 1.3. 

Biogas is known to contain a wide range of contaminants, some of which are also 

found in natural gas, but there are cleanup technologies as shown in the same Figure 

1.3. This flow chart also gives alternatives to activated charcoal, iron oxide filters 

(biological filters). The latter are believed to be maintenance-free and would increase 

the useful lifetime of the subsequent activated charcoal stage (Hoogers, 2003 cited 

Lehmann et al., 2001).  The use of biogas in high temperature FCs would require fewer 

processing steps than alternative FCs, with the DCFC and MCFC being particularly 

attractive due to their inherent affinity to CO2. Both solid biomass and biogas 

represent viable and cost effective routes to powering FCs, even from waste materials. 

These options are going to become important points in the integrated management of 

effluent and fresh materials flow (Hoogers, 2003 cited Lehmann et al., 2001). 
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1.3 Carnot Efficiency and Fuel Cell Efficiency 

The Carnot efficiency limit for heat engines (like steam and gas turbines) is well known. 

The Carnot maximum efficiency possible for heat engines is given by Equation 1.4 

(Larminie and Dicks, 2003). 

 
(1.4) 

 

T1 is the maximum temperature of the heat engine, T2 is the temperature of the 

heated fluid release, where temperatures are given in Kelvin. Consider a steam turbine 

operating at 400oC (673 K), with the exhaust water from the condenser at 50oC (323 K), 

then by Equation 1.4, the Carnot efficiency limit is 52%. For the heat engines there are 

inevitably some heat energy (proportional to T2) that is wasted (Larminie and Dicks, 

2003).  

 

With the fuel cells the situations are much different, and are not subject to the Carnot 

efficiency limit. Where there is no irreversibility then the efficiency could be 100%. It is 

the Gibbs free energy that is converted to electrical energy. If it were not for the 

irreversibility, all this energy would be converted to electrical energy giving 100% 

efficiency (this is discussed in greater details in chapter four). Materials are usually 

burnt in a fuel cell to release energy, thus the comparison is made in the electrical 

energy produced with the heat that would be released by the fuel burning. This is 

known as the calorific value but more precisely the enthalpy of combustion ( . The 

 is negative when energy is released, so that Equation 1.5 gives the efficiency 

limit (Larminie and Dicks, 2003).  

 

 
(1.5) 

 

The maximum electrical energy possible is equal to the change in Gibbs free energy, so 

that we have Equation 1.6 (Larminie and Dicks, 2003). 
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(1.6) 

         

The fundamental equation for the electromotive force (EMF) or reversible open circuit 

voltage of the hydrogen fuel cells is given by Equations 1.7 (Larminie and Dicks, 2003). 

 
(1.7) 

 

Where F is the faraday constant or the charge on one mole of electron and is the 

Gibb free energy released. These are further discussed in more details in Chapter 4.  

Table 1.4 gives the values of the efficiency limit, relative to the higher heating value 

(HHV), for a hydrogen fuel cell and the maximum voltage. Figure 1.4 shows the 

maximum H2 fuel cell efficiency at standard pressure with reference to HHV (higher 

heating value), the Carnot limit in the figure is shown for comparison with a 50oC 

exhaust temperature (Larminie and Dicks, 2003). 

 

Table 1.4: Hydrogen fuel cell , maximum EMF and efficiency limit (Larminie and 

Dicks, 2003). 

Form of water 

product 

Temperature 

(oC) 

∆  

(kJ mol-1) 

Maximum EMF 

(V) 

Efficiency limit 

(%) 

Liquid 

Liquid 

Gas 

Gas 

Gas 

Gas 

Gas 

Gas 

25 

80 

100 

200 

400 

600 

800 

1000 

-237.2 

-228.2 

-225.2 

-220.4 

-210.3 

-199.6 

-188.6 

-177.4 

1.23 

1.18 

1.17 

1.14 

1.09 

1.04 

0.98 

0.92 

83 

80 

79 

77 

74 

70 

66 

62 
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Figure 1.4: Maximum H2 fuel cell efficiency at standard pressure (Larminie and Dicks, 

2003) 

 

1.4 Fuel Cell Voltage and Efficiency 

There is a relation between the maximum EMF and the maximum efficiency of a fuel 

cell. If all the energy from the fuel cell were converted to electrical energy, then the 

EMF is given by Equation 1.8 (Larminie and Dicks, 2003).  

 
(1.8) 

 

This gives 1.48 V for HHV and 1.25 V for LHV (lower heating value) and represents the 

maximum voltages obtainable under standard conditions. The efficiency is the actual 

voltage (Vc) divided by the maximum voltage to give Equation 1.9 (Larminie and Dicks, 

2003). 
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(1.9) 

 

Where Vc is the fuel cell voltage. There are other definitions of efficiency which put 

into consideration the fuel cell design and fuel utilisation. Under experimental 

condition, it is not all the fuel put inside the fuel cell that is used, some passes through 

unreacted. This requires the use of a fuel utilization coefficient (µf) given by Equation 

1.10 (Larminie and Dicks, 2003). 

 
(1.10) 

 

This gives the ratio of the fuel cell current and the current obtained when all the fuel is 

reacted. The cell efficiency is then given by Equation 1.11 (Larminie and Dicks, 2003). 

 
(1.11) 

 

In cases involving the use of LHV, then 1.25 instead of 1.48 will be applied in Equation 

1.11. A good estimation value for µf  which will allows the efficiency of a fuel cell being 

accurately estimated from voltage is 0.95 (Larminie and Dicks, 2003).  

 

1.5 Research Aims and Objectives 

This research project explores the use of biomass materials in fuel cells. The aim is to 

take advantage of the higher efficiencies available for electricity production through 

the direct carbon fuels cells (DCFCs) when compared with those from thermal cycles. 

The form of carbon required for direct carbon fuel cells is disordered carbon 

(amorphous) and this research concentrates on the most effective and energy efficient 

methods of producing carbons from a range of biomass source materials including 

miscanthus, switchgrass, wheat, spruce, willow and poplar. These were produced using 

thermochemical and mechanical routes and tested by means of available structural 



Chapter 1                                                                                                                            Introduction 
 

15 
 

measurement techniques and fuel cell devices. Thus the objectives of this research 

are; 

1. To complete a broad literature search involving; 

 Biomass as a renewable source of energy for fuel cell technology. 

 Thermochemical and mechanical conversion of biomass. 

 The technologies behind fuel cells, molten carbonate electrolyte direct 

carbon fuel cells (MCDCFCs) and solid oxide electrolyte direct carbon fuel 

cells (SODCFCs). 

 

2. To investigate thoroughly different theoretical aspect involving; 

 Thermochemical and mechanical conversion of biomass.  

 The technologies and operations behind molten carbonate electrolyte 

DCFCs and solid oxide electrolyte DCFCs. 

 

3. To outline and execute experimental methodologies involving; 

 Conceptualisation and development of a pyrolyser. Conversion of biomass 

using slow/conventional pyrolysis and the testing of different designs 

parameters for the pyrolysis of biomass. 

 Testing carbon particles produces by proximate and ultimate, calorific 

value, carbon and hydrogen contents, Malvern particle sizer, scanning 

electron microscope (SEM) and X-ray diffraction (XRD) analyses. 

 Conceptualisation, design and construction of a single cell direct carbon fuel 

cell, development of molten carbonate electrode assembly and testing 

different design options for the electrode assembly components of the 

MCDCFC and SODCFC.  

 Preparation of the electrolytes, electrode, biomass carbon fuel with molten 

carbonate mixtures, testing and performance investigations of the direct 

carbon fuel cell using carbon black fuel with molten carbonate mixture in 

the MCDCFC. 
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 Testing and performance investigations of the MCDCFC and SODCFC using 

hand and ball milled biomass carbon fuels from miscanthus, switchgrass, 

wheat, spruce, willow and poplar. 

 

4. To present and discuss the results obtained including; 

 Results from mechanical, thermochemical treatment of biomass and 

biomass carbon, particle size, SEM and XRD analyses. 

 Performance investigations from a single cell MCDCFC and SODCFC using 

hand and ball milled biomass carbon fuels from miscanthus, switchgrass, 

wheat, spruce, willow and poplar. 

 

1.6 Outline of Thesis 

This thesis report consists of eight chapters. Chapter one gives an overview and 

introduction to this research. Chapter two talks about biomass energy content, 

composition and the relationship between carbon, energy content, enthalpies of 

formations, and chemical structures of some biomasses. Chapter three discusses the 

various thermochemical and mechanical processes involved in the conversion of 

biomass into energy with emphasis placed on pyrolysis. It also presents the 

technologies behind fuel cells, its classification, history, current applications and fuel 

processing. Chapter three also discusses the history, descriptions and advantages of 

the DCFC. Chapter four gives a description of the various experimental works carried 

out during this research. Chapter five gives the various results obtained from pyrolysis, 

XRD, SEM and others during this research work. Chapters six and seven present the 

performances of a single cell MCDCFC and SODCFC respectively. Chapter eight gives 

the conclusions and recommendations for future work within this field. 
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2.1 Introduction 

Renewable energy as defined by Twidell and Weir (1986) is energy obtained from the 

continuous or repetitive current of energy recurring in the natural environment. 

Another definition by Sorensen (2000) is the energy flows which are replenished at the 

same rate as they are used. One clear point is that renewable energy sources are 

derived primarily from the enormous power of the sun’s radiation (Boyle, 2004; Boyle 

et al., 2003). Our emphasis in this research is on bioenergy and it considers biomass as 

a form of renewable energy. This chapter talks about biomass energy content and 

composition giving some heating, ultimate and proximate values for various types of 

biomass products. It also discusses the relationship between carbon, energy content, 

enthalpies of formations, and chemical structures of some biomasses. Energy 

production from biomass using virgin, forest, grasses and cultivated crops are also 

considered. Disordered or amorphous carbon structure, its preparations and the 

methods of characterisation are discussed. 

 

2.2  Biomass Energy Content and Composition 

2.2.1  Heating Values, Ultimate and Proximate Analysis 

Experimental determination of the physical moisture contents of biomass are done by 

drying a given sample at 100 to 105oC at atmospheric pressure or at lower 

temperature and reduced pressure. Some organic compounds may be lost by these 

procedures because of volatilization and/or steam distillation, but in most cases the 

results are suitable for the characterization of biomass. Typical proximate analyses and 

higher heating value (HHV- product water in liquid sate) of many biomass types and 

species illustrate a wide range of some parameters such as moisture content and ash 

content and a relatively limited range of heating values (Table 2.1). The moisture 

contents shown in Table 2.1 varies from 2 to 3 wt.% for the char and paper biomass to 

a higher value of 98 wt.% for primary biosolids (primary sewage sludge). In the field, 

greenwood usually contains 50 wt.% moisture before drying, whereas primary 

biosolids contain only a few percent suspended and dissolved solids in water (Klass, 
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1998). The total organic matter is estimated by difference between 100 and the ash 

percentage that is experimentally determined by ashing the biomass samples at 

elevated temperature using standard methods (like ASTM standard, American Society 

of Testing and Materials; Methods for the Examination of Water and Wastewater). The 

chemical analysis of the components in the ash from woody and  herbaceous biomass 

samples are given in Table 2.2, which shows that metal oxides are present, but the 

distribution of the metallic elements are different in the various samples. The 

distribution of metals in biomass and the compositions of the ash are important in the 

development of certain types of biomass conversion processes because they can affect 

the process performance (Klass, 1998). 

 

It is observable from Tables 2.1 to 2.4 that the organic matter content and the HHV are 

affected by the ash, which in almost all cases has no energy value. The higher the ash 

value, the lower the organic matter and the HHV. The elemental compositions shown 

in Table 2.2 vary over a wide range because there are so many different types and 

species. Table 2.2 shows typical proximate and ultimate analyses and the HHVs of land 

and water-based biomass and waste biomass, these are compared with those of 

cellulose, peat and bituminous coal (Klass,1998). Table 2.3 gives the typical percentage 

composition of biomass feedstock on bone dry material basis (Montross and 

Crofcheck, 2010). 

 

2.2.2  Relationship between Carbon and Energy Content of Biomass 

The energy content of biomass is a crucial factor to be considered when converting 

biomass for energy, synfuels and fuel cell applications. Different components of 

biomass have different heat of combustion simply because of the difference in 

chemical structures and carbon content. The higher the state of carbon in a given 

biomass the higher the energy content, this is illustrated in Tables 2.2 to 2.5. 

Monosaccharides have the lowest carbon content, highest degree of oxygenation, and 

lowest heating values.  
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Table 2.1: Typical proximate analysis and high heating value (HHV) for biomass, coal and peat (Klass, 1998) 

Category Name Type Moisture range 
 (wt.%) 

Organic matter 
(dry wt.%) 

Ash  
(dry wt.%) 

HHV 
 (MJ/dry kg) 

Wastes Cattle manure 
Activated biosolids 
Primary biosolids 
Refuse-derived fuel (RDF) 
Sawdust 

Feedlot 
Sewage 
Sewage 
Municipal 
Woody  

20-70 
90-97 
90-98 
15-30 
15-60 

76.5 
76.5 
73.5 
86.1 
99.0 

23.5 
23.5 
26.5 
13.9 
1.0 

13.4 
18.3 
19.9 
12.7 
20.5 

Herbaceous  Cassava 
Euphorbia lathyris 
Kentucky bluegrass 
Sweet sorghum 
Switchgrass  

Tropical  
Warm season 
Cool season 
Warm season 
Warm season 

20-60 
20-60 
10-70 
20-70 
30-70 

96.1 
92.7 
86.5 
91.0 
89.9 

3.9 
7.3 
13.5 
9.0 
10.1 

17.5 
19.0 
18.7 
17.6 
18.0 

Aquatic Giant brown kelp 
Water hyacinth  

Marine  
Fresh water 

85-97 
85-97 

54.2 
77.3 

45.8 
22.7 

10.3 
16.0 

Woody Black alder 
Cottonwood 
Eucalyptus  
Hybrid poplar 
Loblolly pine 
Redwood 
Sycamore  

Hardwood  
Hardwood 
Hardwood 
Hardwood 
Softwood 
Hardwood 
Hardwood 

30-60 
30-60 
30-60 
30-60 
30-60 
30-60 
30-60 

99.0 
98.9 
97.6 
99.0 
99.5 
99.8 
98.9 

1.0 
1.1 
2.4 
1.0 
0.5 
0.2 
1.1 

20.1 
19.5 
18.7 
19.5 
20.3 
21.0 
19.4 

Coal Illinios bituminous 
North Dakota lignite 

Soft 
Soft 

5-10 
5-15 

91.3 
89.6 

8.7 
10.4 

28.3 
14.0 

Peat Reed sedge Young coal 70-90 92.3 7.7 20.8 
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Table 2.2: Typical compositions and heating values of virgin and waste biomass, peat and coal (Klass, 1998) 

Test  Pure 
cellulose 

Pine 
wood 

Kentucky 
bluegrass 

Giant 
brown 
kelp 

Water 
hyacinth 

Feedlot 
manure 

RDF Primary 
biosolids 

Reed  
sedge 
peat 

Bituminous 
coal 

Ultimate analysis (wt.%) 
C 
H 
O 
N 
S 
Ash 
C (maf) 

 
44.44 
6.22 
49.34 
 
 
 
44.44 

 
51.8 
6.3 
41.3 
0.1 
0 
0.5 
52.1 

 
45.8 
5.9 
29.6 
4.8 
0.4 
13.5 
52.9 

 
27.65 
3.73 
28.16 
1.22 
0.34 
38.9 
45.3 

 
41.1 
5.29 
28.84 
1.96 
0.41 
22.4 
52.9 

 
35.1 
5.3 
33.2 
2.5 
0.4 
23.5 
45.9 

 
41.2 
5.5 
38.7 
0.5 
0.2 
13.9 
47.9 

 
43.75 
6.24 
19.35 
3.16 
0.97 
26.53 
59.5 

 
52.8 
5.45 
31.24 
2.54 
0.23 
7.74 
57.2 

 
69.0 
5.4 
14.3 
1.6 
1.0 
8.7 
75.6 

Proximate analysis (wt.%) 
Moisture 
Organic matter 
Ash  

  
5-50 
99.5 
0.5 

 
10-70 
86.5 
13.5 

 
85-95 
61.1 
38.9 

 
85-95 
77.7 
22.4 

 
20-70 
76.5 
23.5 

 
18.4 
86.1 
13.9 

 
90-98 
73.47 
26.53 

 
84.0 
92.26 
7.74 

 
7.3 
91.3 
8.7 

Higher Heating values 
MJ/dry kg 
MJ/kg (maf) 
MJ/kg carbon 

 
17.51 
17.51 
39.40 

 
21.24 
21.35 
41.00 

 
18.73 
21.65 
40.90 

 
10.01 
16.38 
36.20 

 
16.00 
20.59 
38.93 

 
13.37 
17.48 
38.09 

 
12.67 

 
19.86 
27.03 
45.39 

 
20.79 
22.53 
39.38 

 
28.28 
30.97 
40.99 

maf - moisture and ash-free material, RDF- Refused-Derived Fuel 
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Table 2.3: Typical composition of biomass feedstock - bone dry material basis (Montross and Crofcheck, 2010) 

Biomass Extractives  
(wt.%) 

Cellulose 
(wt.%) 

Hemicellulose 
(wt.%) 

Lignin  
(wt.%) 

Ash  
(wt.%) 

HHV  
(MJ/kg) 

Agricultural Residues 
Maize stover 
Sugarcane bagasse 
Wheat straw 

 
5.9 
4.5 
13.0 

 
35.5 
39.1 
32.6 

 
22.8 
22.6 
22.6 

 
18.7 
24.3 
16.9 

 
11.6 
5.2 
10.2 

 
18.3 
19.1 
17.4 

Forestry Products  
American sycamore 
Black locust 
Eucalyptus  
Hybrid Poplar 
Spruce (pine) 
Willow 

 
3.0 
4.7 
1.9 
4.2 
2.7 
NE 

 
39.7 
40.8 
46.3 
41.5 
41.7 
48.5 

 
18.5 
18.1 
14.9 
17.9 
20.5 
13.9 

 
25.8 
26.2 
27.2 
25.7 
25.9 
19.7 

 
1.2 
1.6 
1.1 
1.8 
0.3 
1.7 

 
19.6 
19.7 
19.6 
19.6 
19.6 
20.0 

Herbaceous Crops 
Switchgrass Alamo 
Miscanthus x giganteus 
Sericea Lespedeza 
Reed canary grass 
Timothy grass 
Alfalfa 
Tall fescue 

 
11.1 
NE 
7.7 
NE  
NE 
NE 
20.3 

 
33.1 
45.0 
36.6 
42.6 
28.8 
27.4 
24.5 

 
26.3 
30.0 
16.9 
29.7 
27.2 
11.7 
19.5 

 
18.0 
21.0 
26.2 
7.6 
4.8 
4.8 
14.7 

 
5.4 
2.3 
3.0 
NE 
NE 
NE 
11.8 

 
18.9 
17.7 
19.4 
17.9 
NE 
18.5 
NE 

NE-Not evaluated
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Table 2.4: Analysis of ash from Hybrid poplar, pine and switchgrass (Klass, 1998) 

Component Hybrid poplar 

 (dry wt.%) 

Pine  

(dry wt.%) 

Switchgrass  

(dry wt.%) 

CaO 

K2O 

P2O5 

MgO 

SiO2 

Al2O3 

BaO 

Fe2O3 

TiO2 

Na2O 

Mn2O4 

SrO 

CO2
a 

SO3
a 

Total 

47.20 

20.00 

5.00 

4.40 

2.59 

0.94 

0.70 

0.50 

0.26 

0.18 

0.14 

0.13 

14.00 

2.74 

98.78 

49.20 

2.55 

0.31 

0.44 

32.46 

4.50 

 

3.53 

0.40 

0.44 

 

 

 

2.47 

96.30 

4.80 

15.00 

2.60 

2.60 

69.92 

0.45 

0.22 

0.45 

0.12 

0.10 

0.15 

0.04 

 

1.90 

98.35 

aThe presence of carbon and sulphur in the ash is that the ashing procedure was probably performed at 

an insufficient temperature and/or for an insufficient time to volatilize all non-mineral components 

(Klass, 1998).  

 

With increase in carbon content, the degree of oxygenation is reduced and the 

structures become more hydrocarbon-like and thus the heating value increases. The 

dominant component in most biomass is usually cellulose with a high heating value of 

17.51 MJ/kg (Klass, 1998). 
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Table 2.5: Typical carbon content and heating value of biomass component 

(Klass, 1998) 

Component Carbon (wt.%)a HHV (MJ/kg)a 

Monosaccharides 

Disaccharides 

Polysaccharides 

Crude protein 

Lignins 

Lipids 

Tarpenes 

Crude carbohydrates 

Crude fibresb 

Crude triglycerides 

40 

42 

44 

53 

63 

76-77 

88 

41-44 

47-50 

74-78 

15.6 

16.7 

17.5 

24.0 

25.1 

39.8 

45.2 

16.7-17.7 

18.8-19.8 

36.5-40.0 

aApproximate values for dry mixtures, bContains 15-30% lignins 

 

The lower heating values (LHV, product water in vapour state) of some biomass are 

given in Table 2.6. It is observed that woody and fibrous materials have energy 

contents between 19 and 21 MJ/kg, whereas the water-based algae Chlorella has a 

higher value, this is attributed to the high lipid or protein contents. Also oils derived 

from plant seeds have higher energy content and approach the heating value of 

paraffinic hydrocarbons. High concentrations of inorganic components in a given 

biomass species can greatly affect its energy content because inorganic materials do 

no contribute to heat of combustion (Klass, 1998). The energy value of the total 

material can be estimated from the carbon analysis and moisture determinations 

without actual measurement using a calorimeter. Data manipulation of Table 2.2 led to 

a simple equation for calculating the HHV of biomass and also coal and peat with 

reasonably accuracy as given by Equation 2.1 (Klass, 1998). 

 HHV (MJ/dry kg) = 0.4571 (%C on dry basis) – 2.70      (2.1) 
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Table 2.6: Typical lower heating value of biomass and fossil materials (Klass, 1998) 

Material Lower Heating Value (LHV) 

(MJ/dry kg) 

Trees 

Oak 

Bamboo 

Birch 

Beech 

Oak bark 

Pine 

 

19.20 

19.23 

20.03 

20.07 

20.36 

21.03 

Fibre 

Bagasse 

Buckwheat hulls 

Coconut shells 

 

19.25 

19.63 

20.21 

Green algae 

Chlorella 

 

26.98 

Seed oils 

Linseed 

Rape 

Cottonseed 

 

39.50 

39.77 

39.77 

Amorphous carbon 

Paraffinic hydrocarbon 

Crude oil 

33.80 

43.30 

48.20 

 

Experimental HHVs and the calculated HHVs using Equation 2.1 for the biomass, coal 

and peat (applying carbon analysis of Table 2.2) were compared and this is given in 

Table 2.7, giving a reasonably small variation (Klass, 1998).  

 

2.2.3  Enthalpies of Formation 

Biomass enthalpies of formation are very important in their thermodynamic 

calculations. The standard enthalpies of formation at 298 K of the combustion 

products in MJ/kg are: CO2, -3.94; liquid H2O, -2.86; NO2, 0.34; SO2, -2.97, the 

elemental analysis and the HHV of the biomass can be used to estimate its heats of 

specific reactions. 
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Table 2.7: Measured and calculated HHVs comparison for biomass, coal and peat 

(Klass, 1998) 

Material Measured HHV 

(MJ/dry kg) 

Calculated HHV 

(MJ/dry kg) 

Error  

(%) 

Giant brown kelp 

Cattle feedlot manure 

Water hyacinth 

Pure cellulose 

Kentucky bluegrass 

Primary biosolids 

Reed sedge peat 

Pine wood 

Illinios bituminous coal 

10.01 

13.37 

16.00 

17.51 

18.73 

19.86 

20.79 

21.24 

28.28 

9.94 

13.34 

16.09 

17.61 

18.24 

17.30 

21.43 

20.98 

28.84 

-0.70 

-0.19 

+0.54 

+0.59 

-2.64 

-12.90 

+3.10 

-1.23 

+1.98 

 

The enthalpy of formation of a given biomass sample is equal to the weighted sum of 

the heats of formation of the products of combustion minus the HHV. It is mostly 

assumed that the ash is inert. Taking a giant brown kelp as an example, with empirical 

formula C2.61H4.63N0.10S0.01O2.23 (dry basis), derived from the elemental analysis, and a 

HHV of 12.39 MJ/kg, at an assumed molecular weight of 100 (including the ash). The 

enthalpy of formation stoichiometry calculation is given by Equation 2.2 (Klass, 1998); 

 

 2.61C + 2.315H2 + 0.05N2 +0.01S + 1.115O2  C2.61H4.63N0.10S0.01O2.23Ash26.7        (2.2) 

                                                                                                    ( Hf = -4.5 MJ/kg) 

 

The enthalpy of formation is -4.50 MJ/kg with the ash for the biomass inclusive. 

Application of this information to a biological gasification process under anaerobic 

conditions, with a process stoichiometry is given in Equation 2.3 (Klass, 1998): 

C2.61H4.63O2.23 (s) + 0.337H2O (l)  1.326CH4 (g) + 1.283CO2 (g)          (2.3) 

( H= -0.58 MJ/kg) 
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The process enthalpy is calculated to be -0.58 MJ/kg of the kelp reacted (Klass, 1998 

cited Klass and Ghosh, 1977). A basic assumption made by the authors is that the 

inorganic components are carried through the process unchanged, and the sulphur 

and nitrogen was ignored because of their small concentration (Klass, 1998).  

 

2.2.4  Chemical Structures of Biomass 

In order to develop processes for producing derived fuels and chemicals from biomass 

the knowledge of the major organic components are essential as this can lead to the 

improvement of existing processes, development of other advanced conversion 

techniques and a better understanding of fuel cell performances using different type 

of biomass carbon (Adeniyi, 2008; Klass, 1998). Polysaccharides such as alpha cellulose 

have a general formula (C6H10O5)n with an average molecular weight in the range of 

300,000-500,000. Complete hydrolysis shows that the polymer consists of D-glucose 

units. Partial hydrolysis yields cellobiose (glucose-β-glucoside), cellotriose and 

cellotetrose (Klass, 1998). Wood cellulose, the raw material for pulp and paper 

industry, always occurs in association with hemicelluloses and lignins whereas cotton is 

almost pure α–cellulose. Cellulose is insoluble in water, forms the skeletal structure of 

most terrestrial biomass and constitutes approximately 50% of the cell wall material 

(Klass, 1998).  Figures 2.1 and 2.2 show some hypothetical organisation of lignin and 

polysaccharides in wood and the pyrolysis product of lignin model (Henriksson et al., 

2010). 

 

The general formula of starches, which is a polysaccharide, is (C6H10O5)n. They are 

normally reserve sources of carbohydrate in some biomass and are made up of D-

glucose, in contrast to the structure of cellulose, the hexose units are linked as in 

maltose or glucose-α-glucoside. Another major difference between cellulose and 

starch is that starch can be separated into two fractions by treatment with hot water: 

amylose (10-20%), which is a soluble component and amylopectin (80-90%), which is 
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insoluble. Amylose and amylopectin have molecular weights in the ranges of 10,000-

50,000 and 50,000-1,000,000 respectively (Klass, 1998). 

 

Figure 2.1: Hypothetical network of lignin and polysaccharides in wood (Henriksson et 

al., 2010). 

Hemicelluloses occur in association with cellulose in the cell walls and are complex 

polysaccharides. Hemicelluloses are soluble in dilute alkali and consist of branched 

structures, which can vary among different species of herbaceous and woody biomass. 

They have the generic formula (C5H8O4)n. Hemicelluloses consist of 50-200 monomeric 

units and a few simple sugar residues. Xylan is the most abundant type of 

hemicelluloses, and consists of D-xylose units linked in the 1- and 4-positions (Klass, 

1998). 

 

Figure 2.2: Pyrolysis of lignin model in the presence of formic acid giving 

demethoxylated product (Henriksson et al., 2010) 
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Figure 2.3: Chemical structures of lignin in biomass (Klass, 1998) 

 

Lignins are highly branched, substituted, mononuclear aromatic polymers in the cell 

walls of most biomass, like woody species, and are bound to adjacent cellulose fibres 

to form a lignocellulosic complex. The complex and lignins are very resistant to 

conversion by microbial systems and many chemical agents. This complex can be 

broken and the lignin fraction separated by treatment with strong sulphuric acid (in 

which lignins are insoluble). The monomeric units which are dominant in the polymers 

are benzene rings bearing methoxyl, hydroxyl, and propyl groups which are attachable 

to other groups (Figure 2.3). The lignin contents on dry basis in softwoods and 

hardwoods range from 20-40% by weight, and from 10-40% by weight in other 

herbaceous species such as bagasse, corncobs, peanut shells, rice hulls and straws 

(Klass, 1998). 

 

 

Figure 2.4: Chemical structures of triglyceride in biomass (Klass, 1998) 
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The triglycerides found in biomass are esters of triol, glycerol and fatty acids (Figure 

2.4). They are water-insoluble, oil-soluble esters and are found in many biomass 

species, especially the oilseed crops in minute concentration. Most lipids in biomass 

are esters of two or three fatty acids; the most common are lauric (C12), myristic (C14), 

palmitic (C16), oleic (C18) and linoleic (C18) acids. The fatty acid of palm oil is palmitic 

(35-45%). Palm-kernel oil (52%), coconut oil (48%) and babassu nut oil (46%) are lauric 

acid. The monounsaturated oleic acid and polyunsaturated linoleic acid are about 90% 

of sunflower oil fatty acid. Linoleic acid greatly dominate the fatty acid found in corn 

oil (55%), soybean oil (53%) and safflower oil (75%) (Klass, 1998). 

 

2.3 Energy Production Using Virgin Biomass  

Energy products manufacture from virgin biomass requires that suitable quantities of 

biomass chosen for use as energy crops be grown, harvested and transported to the 

conversion plant. For a continuous, integrated biomass production and conversion, it is 

necessary to have sufficient supply of the feedstock to sustain the operation of various 

conversion plants. In comparison to the total known botanical species (250,000 of 

which only 300 are cash crops), a relatively small number are suitable for the 

manufacture of synfuels and energy products. Most of the virgin biomass which could 

be used for the production of energy are terrestrial and they include; forest, grasses 

and cultivated crops (Klass, 1998). 

 

2.3.1 Forest Biomass 

It is stated that about one-third of the world’s land area is forestland (Klass, 1998). The 

dominant species in tropical rain forest near the equator are broad-leaved evergreen 

trees (Klass, 1998). The coniferous softwood trees such as spruce, fir, and larch are 

dominant in the boreal forests at the higher latitudes in the Northern hemisphere, 

while the broad-leaved deciduous hardwoods such as oak, beach and maple and the 

conifers such as pine and fir are found in the middle latitudes. Trees are pertinent 

resources which still and will serve as major energy resources in developing countries. 



Chapter 2                                                                                                                                  Literature Review 
 
 

31 
 

About 1.5 billion people derive at least 90% of their energy requirement from wood 

and charcoal in developing countries, and another billion people meet at least 50% of 

their energy needs this way.  Many species such as Acacia, Casuarina, Eucalyptus, 

Pinus, Prosopis and Trema are used as fuelwood in developing countries. Eucalyptus is 

one tree species that has been studied as a renewable energy resource. It is an 

evergreen hardwood tree belonging to the myrtle family, Myrtaceae, and the genus 

Eucalyptus, with about 450 to 700 identifiable species in the genus (Klass, 1998).  

 

2.3.2 Grasses 

The most abundant form of biomass is grass, with about 400 genera and 6000 species 

distributed all over the world. Grass, as a family (Gramineae), includes the great fruit 

crops, sugarcane, wheat, rice, corn, sorghum, millet, barley and oats. The many species 

of sod crops that provide forage or pasturage for all farm animals are also grasses. 

Grass also includes legumes family of the clovers, and alfalfas. Another successful 

feedstock for conversion to synfuels are perennial grasses. Most of these grasses can 

be grown vegetatively, and they re-establish themselves rapidly after harvesting. Again 

more than one harvest can usually be obtained from these grasses annually. The 

warm-season grasses are preferred over the cool-season grasses because their growth 

increases rather than decline as the temperature rises to maximum in summer time. 

Some tropical and semitropical grasses are very productive with a yield of about 50–60 

t/ha-year on good sites. Digitaria decumbens is a tropical fodder grass, has a yield of 

organic matter of 85 t/ha-year (Klass, 1998). 

 

Sugarcane (Saccharum spp.) is a tropical grass that is grown commercially as a 

combination foodstuff and fuel crop. Sugarcane grows rapidly and produces high yield, 

the fibrous bagasse is used as boiler fuel for the generation of electric power, and 

sugar derived ethanol is used as a motor fuel in gasoline blends (gasohol). About half 

of the organic material in sugarcane is sugar and the other half is fibre. The total cane 

biomass yield has been reported in the range of 80-85 dry t/ha-year (Klass, 1998). 
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Miscanthus and switchgrass (Panicum virgatum) are other promising biomass energy 

crop, which has a high yield potential, adaptation to marginal sites, and tolerant to 

water and nutrient limitation. The perennials reed canary grass, tall fescue, crested 

wheatgrass, weeping lovegrass, Bermuda grass, the annual sorghum and its hybrids 

are other productive grasses being considered as raw materials for production of 

energy (Klass, 1998).   

 

2.3.3 Cultivated Crops 

Other terrestrial biomass species have been proposed as renewable energy resources 

for their high-energy components that can be used as fuels, or their components being 

capable of conversion to biofuels and chemicals. Among this group are the like of 

kenaf (Hibiscus cannabinus), an annual plant reproducing by seed only; sunflower 

(Helianthus annuus L.), an annual oil seed crop; Eurphorbia lathyris, a sesquiterpene-

containing plant species that grows in the semiarid climates; Buffalo gourd (Curcurbita 

foetidissima), a perennial root crop native to arid and semiarid regions; Jerusalem 

artichoke (Helianthus tuberosus), fodder beet (Beta vulgaris), and cassava (Manihot 

esculenta); alfalfa (Medicago sativa), a perennial legume that grows well on good sites; 

soybean (Glycine max) and rapeseed (Brassica campestris), oilseed crops that produce 

high-quality oil and protein (Klass, 1998).  

 

Sunflower is a good candidate for biomass energy application because of its rapid 

growth, wide adaptability, drought tolerance, short growing season, massive 

vegetative production, and adaptability to root harvesting. The dry yield is projected as 

high as 34 t/ha per growing season. Rapeseed is another good example, yielding 38-44 

wt.% high quality protein and over 40 wt.% of oil from the seeds. The oil offer high 

quality biodiesel fuel at the rate of 750 to 900 L/ha-year on extraction and 

transesterification. Alfalfa is another good example, it is a widely planted herbaceous 

crop that offers environmental and soil conversation advantages when grown as a 4-

year segment in a 7-year rotation with corn and soybeans. The yield is about 9 dry 
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t/ha-year, the leaf fraction is sold as a high-value animal feed, the remaining alfalfa 

stem fraction is normally used as feedstock for power generation (Klass, 1998).    

 

2.4 Disordered Carbon Structures 

Carbon materials have a large range of properties and structures. Generally there are 

the crystalline (ordered) carbon forms and the amorphous (disordered) carbon forms. 

The bondings between the neighbouring atoms of carbon based materials make them 

unique in nature. Graphite and diamonds are crystalline polymorphs having hexagonal 

structure layer and ABAB-stacking for graphite.  The cubic structure with tetragonal 

bonded carbon atoms are found in diamond. Fullerenes and carbon nanotubes are 

currently being researched for their industrial applications. Carbon nanotubes are 

mono or multilayered tubes produced by graphene sheets wrapping, fullerene on the 

other hand are closed shell structure. The many potential application of carbon 

nanotubes are in the drug delivery system, hydrogen storage, electronic and display 

devices, composite fibres etc. Fullerene potential applications are in the optics, 

superconductivity, and drug delivery system (Popov and Lambin, 2006; Reich et al., 

2004; Dasgupta and Sathiyamoorthy, 2003; Holliday et al., 1973).  

 

Disordered carbons are becoming more important for industrial and research 

purposes. In the industries carbon black and glassy carbon are widely employed for 

their disordered carbon nature and there are growing potential applications in the 

area of fuel cells, low temperature thermal nuclear reactors and other area.  

Depending on the structure of the precursor materials and the processing conditions 

the carbon obtained from the pyrolysis of organic material could be ordered or 

disordered (Dasgupta and Sathiyamoorthy, 2003; Franklin and Watt, 1957; Franklin, 

1950). Carbonaceous substances like the petroleum coke at lower temperature 

(1000oC) could possess ordered or disordered structure and when exposed to higher 

temperature could form graphite structure. These are known as soft or graphitisable 
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carbons. Hard carbons do not graphitise even at higher temperatures of 3000oC 

(Dasgupta and Sathiyamoorthy, 2003). 

 

2.5 Amorphous (Disordered) Materials 

Disordered materials have many properties which are unique to them and which are 

not shared by crystalline materials. They possess a degree of randomness which could 

be topological, spin, substitutional and vibrational disorder (Elliot, 1990). The form of 

randomness in which there is no translational periodicity is known as the topological or 

geometric disorder. In spin or magnetic disorder an underlying perfect crystalline 

lattice is available with each atomic site possessing a spin or magnetic moment which 

is oriented randomly. In substitutional disorder there is also an underlying crystalline 

lattice which is available, the material is an alloy (Cu-Au) with one type of atom 

randomly substituting for the other in the lattice. In vibrational disorder the atoms are 

vibrating about their equilibrium crystalline positions (Elliot, 1990; Holliday et al., 

1973). These types of disorder are schematically representing in Figure 2.5. 

 

2.6 Preparation of Disordered Carbon 

There are different routes in which disordered carbon can be prepared. Some of them 

are pyrolysis of organic materials, irradiation of graphitic structure, cracking of 

hydrocarbons, sputtering and evaporation (Dasgupta and Sathiyamoorthy, 2003). 

Other techniques include the glow-discharge decomposition, chemical vapour 

deposition, melt quenching, gel desiccation, electrolytic decomposition, reaction 

amorphisation, pressure-induced amorphisation, solid-state diffusional amorphisation 

among others (Elliot, 1990). Few of these are briefly described here. 
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2.6.1 Pyrolysis of Organic Materials 

During pyrolysis organic substances are heated in a controlled manner in the absence 

of oxygen/air to product solid, liquid and gaseous products. During the pyrolysis 

process polymerisation and cross-linking will take place and non-carbon materials are 

volatilized (Dasgupta and Sathiyamoorthy, 2003). Pyrolysis of biomass to produce 

disordered carbon materials is of great importance to this research work because it is 

the main route used in the production of carbon from the various biomasses for the 

direct carbon fuel cell. Pyrolysis processes are fully described in chapter three and 

other chapters of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Various type of disorder (a) topological (no long range order) (b) 

substitutional (no regular lattice), (c) spin (on regular lattice), (d) vibrational 

(equilibrium positions of a regular lattic) (Elliot, 1990). 

 

(a) (b) 

(c) 
(d) 
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2.6.2 Irradiation of Graphitic Structure  

Amorphisation of graphitic structure is brought about by the irradiation with ions or 

neutrons where energy is provided to break the crystalline structure through 

irradiation (Dasgupta and Sathiyamoorthy, 2003). The bombardment of crystalline 

solids by ions produces amorphous surface layers which could be hundreds of 

angstroms in thickness. The interaction between high energy ionizing particles and the 

crystalline solids usually produces enough structural damage to amorphise the 

material (Elliot, 1990). 

 

2.6.3 Cracking of Hydrocarbons 

Using fluidised or static bed hydrocarbons can be cracked. The properties and 

structure of the carbon produced will depend on the hydrocarbon used, the cracking 

temperature, concentration, residence time and the geometry of the reactor used 

(Dasgupta and Sathiyamoorthy, 2003).  

 

2.6.4 Sputtering and Evaporation 

Sputtering and evaporation can be achieved with the aid of plasma or by the arcing 

method where carbon atoms are evaporated and deposited to form disordered 

(amorphous) structure (Dasgupta and Sathiyamoorthy, 2003). Sputtering involves the 

bombardment of materials with energetic ions from low pressure plasma, bringing 

about the erosion of the material atom by atom or as clusters of atoms and the 

deposition of a film on the substrate. In thermal evaporation the starting materials is 

vaporised and the product material is collected on a substrate (Elliot, 1990). 
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2.7 Method of Characterisation 

2.7.1 Optical Microscopy 

Reflection microscopy is used on polished carbon because of their high absorption 

properties. The understanding of their anisotropy properties are done by polarised and 

cross-polarisers where the optical anisotropy is expressed by the phase shift produced 

by the object using Newton chart. For disordered carbons, the elemental aromatic 

layers stacks are usually smaller than the microscopic resolution, this gives rise to 

averaging the data relative to the basic structural unit (BSU, proposed by Franklin, 

1957) which is known as the nanocrystal of graphite. The data generated are highly 

sensitive to the textures, that is, to the three dimensional BSUs arrangement, to its 

perfection and to the occurrence which is of no preferred orientation but not sensitive 

to the crystalline order. A carbon material become optically isotropic where there is no 

local molecular orientation or where it is largely below the resolution of the 

microscope (Dasgupta and Sathiyamoorthy, 2003 cited Oberlin et al., 1998).  

 

2.7.2 Raman Spectroscopy  

The structural information on a given disordered carbon can be obtained using the 

Raman spectroscopy which involves the illumination of a given sample with 

monochromatic light and the investigation of the light scattered by the sample using 

the spectrometer. The scattering process could be elastic (known as the Rayleigh 

scattering) or inelastic (known as the Raman scattering). The excitations to a virtual 

state occur when the electric field component of the scattering photon perturbs the 

electron cloud of the carbon molecules. When the system exchanges energy with the 

photon whereby the system decays to vibrational energy levels below or above that of 

its initial state, then Raman scattering has occurred. Raman shift describes the 

frequency shift that corresponds to the energy difference between the scattered 

photon and the incident. In disordered carbon two broad peaks are usually generated 

(Dasgupta and Sathiyamoorthy, 2003). Figure 2.6 shows the mode of vibration in 

carbons. 
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Figure 2.6: Carbon modes of vibration (a) E2g mode-stretching (b) A1g disordered mode- 

breathing (Dasgupta and Sathiyamoorthy, 2003)  

  

Due to the loss of long range order there is no k (wave vector) conservation for 

amorphous or disordered carbon but all modes are allowed. The D mode corresponds 

to a peak in photon density of state of graphite due to the A1g mode or the breathing 

mode. This mode develops a strong Raman activity when k is no longer conserved and 

inactive for an infinite layer (Dasgupta and Sathiyamoorthy, 2003; Tuinstra and Koenig, 

1970). 

 

2.7.3 X-Ray Diffraction 

The powder diffraction pattern of amorphous carbon shows two-dimensional (hk) and 

three-dimensional (001) peaks. Equation 2.4 gives the mean layer length (La) in terms 

of the breadth (B(hk)) for a two-dimensional lattice reflection (Dasgupta and 

Sathiyamoorthy, 2003 cited Warren, 1941). 

   La = 1.84λ / *B(hk) cos θ+            (2.4) 

Where 2θ is the Bragg angle and λ is the wavelength of the x-ray. This was further 

modified to give Equation 2.5 (Dasgupta and Sathiyamoorthy, 2003 cited Warren and 

Bodestein, 1966). 

   La = 1.77λ / *B(hk) cos θ+            (2.5) 

(a) 
(b) 
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Lc gives the height of the crystallite as given by Equation 2.6: 

   Lc = 0.94λ / *B(001) cos θ+            (2.6) 

The layer spacing for pure graphite structure is 3.354 Å (26.56o) and for turbostratic is 

3.44 Å (25.88o). Franklin (1951) suggested a relation for the mean interlayer spacing as 

given by Equation 2.7 which relates the fraction of layers that are disordered (p) and 

mean layer spacing (d) for partially graphitised carbons (Dasgupta and Sathiyamoorthy, 

2003). 

  d = 3.44 – 0.086(1-p2)             
(2.7) 

 

2.7.4 Electron Microscopy  

A good technique for measuring the direct images of the carbon structure is the high 

resolution electron microscopy. Better information about the movement of the 

building blocks are obtained from images of disordered carbon treated at different 

temperature. Electron micrographs interpretation is very important. The folded film 

gives (001) reflections in the region where the aromatic layers are almost parallel to 

the incident beam, which can reflect 10 to 11 beams when the layers are 

perpendicular to the incident beam. In graphitised carbon micrographs only the (002) 

fringes are resolved which are visible only when they are approximately parallel to the 

electron beam (Dasgupta and Sathiyamoorthy, 2003).Other techniques which could be 

used include nuclear magnetic resonance (NMR), extended X-ray absorption fine 

structure (EXAFS) and X-ray near edge structure (XANES) (Dasgupta and 

Sathiyamoorthy, 2003). 
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2.8 Summary 

The chemical energy stored in biomass materials can be effectively utilised to generate 

electricity and heat for the growing world population through electrochemical reaction 

in a direct carbon fuel cell. Typical proximate analyses and higher heating value of 

many biomass species illustrate a wide range of parameters and heating values. The 

chemical analysis of the components in biomass shows that metal oxides are also 

present. The energy content of biomass is a crucial factor to be considered when 

converting biomass for energy, synfuels and fuel cell application. Different chemical 

structures and carbon content of biomass brings about different heat of combustion, 

the higher the state of carbon in a given biomass the higher the energy content. 

Disordered carbon structures are known to be good for direct carbon fuel cell 

operation which is achieved by pyrolysis and other methods. Six biomasses 

(miscanthus, switchgrass, wheat, spruce, poplar and willow) are investigated in this 

research with a view to producing disordered carbon fuel for their electrochemical 

application in the direct carbon fuel cell.  
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3.1 Introduction  

The major conventional energy resources are at the verge of extinction, these include 

petroleum, coal and natural gas. More promising environmentally friendly options are 

the biomasses. Turning these biomasses into energy form can be achieved by a range 

of thermochemical processes that include combustion, gasification, liquefaction, 

hydrogenation and pyrolysis. Pyrolsis has received a lot of attention in the current 

energy scenario because it can convert biomass directly into solid, liquid and gaseous 

products by the thermal decomposition of the biomass in the absence of oxygen 

(Goyal et al., 2008). This chapter discusses the various thermochemical processes 

involved in the conversion of biomass into energy with greater emphasis placed on 

pyrolysis. It also reports on the mechanism, kinetic, thermodynamics, products and 

yields of biomass pyrolysis. Size reduction in biomass, machines involved and the 

millings of carbon materials are some of the mechanical processes discussed. It also 

talks about the technology behind fuel cells, its classification, history, current 

applications and fuel processing. It takes a look at the energy and the electromotive 

force (EMF), fuel cell irreversibilities and concentration losses. Brief discussion on the 

history and advantages of the DCFC are presented. The electrochemical oxidations of 

carbon are covered including the mechanism, molten carbonate electrolyte, molten 

hydroxide electrolyte and the YSZ-based solid electrolyte in DCFC. Mass and heat 

integration systems for DCFC are also discussed. 

 

3.2 Conversion Route for Energy Crop 

Energy crops can be converted into electricity, heat and into transportation fuels. 

Heuvel (1994) suggested a conversion route for energy crops to electricity and heat as 

presented in Figure 3.1. For energy crops with high cellulose content, like miscanthus, 

switch grass, sugar cane and wheat straws, thermochemical conversion routes are 

most suitable.  
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3.3 Biomass Pyrolysis 

Biomass pyrolysis is the direct thermal decomposition of the organic components in 

biomass in the absence of oxygen to yield an array of useful products, such as liquid 

and solid derivatives and fuel gases. The knowledge of the effects of various 

independent parameters of biomass has led to the development of advanced biomass 

pyrolysis processes. Some of these parameters are feedstock type and composition, 

product yield, product selectivities and catalysts on reaction rates. The accumulation 

of considerable experimental data on these parameters has resulted in advanced 

pyrolysis methods for the direct thermal conversion of biomass to liquid fuels and 

other chemicals in higher yields (Klass, 1998). 

 

3.3.1 Conventional and Fast Pyrolysis 

Conventional (or slow) pyrolysis involves carbonisation, destructive distillation, dry 

distillation, and retorting which normally consist of slow, irreversible, thermal 

degradation of the organic components in biomass, most of which are lignocellulosic 

polymers, in the absence of oxygen. Slow pyrolysis is the traditional method used in 

the production of charcoal. A comprehensive study of biomass pyrolysis began in the 

1970s, which has led to the methods of controlling the selectivities and yields of the 

gaseous, liquid and solid products, by controlling the pyrolysis temperature and 

heating rate. Today, researches in the area of pyrolysis are generating considerable 

interest and are yielding good and important results in the development of 

methodologies. Flash, rapid and ultra pyrolysis are short-residence-time pyrolysis, 

which occur at moderate temperature and can be used to provide high yield of gas, 

liquid and char products (Klass, 1998).   
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Figure 3.1: Thermochemical conversion route for energy crops (Heuvel, 1994) 

 

3.3.2 Mechanisms of Biomass Pyrolysis 

During pyrolysis many processes take place such as, cracking, dehydration, 

isomerisation, dehydrogenation, aromatisation, coking, condensation reactions and 
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rearrangements. The products are water, carbon oxides, other gases, charcoal, organic 

compounds (having lower average molecular weights than their immediate 

precursors), tars and polymers. Table 3.1 shows the mechanism of the slow, dry 

distillation of wood (Klass, 1998). The pyrolysis of cellulose yields 1, 6-anhydrohexoses, 

β-glucosan or levoglucosan in good yield (Figure 3.2). Levoglucosan is a primary 

product of the pyrolysis of pure cellulose. The yield of levoglucosan on pyrolysis of 

most biomass is low even though the cellulose content is about 50 wt.%. When pure 

cellulose is treated with only a small amount of alkali, levoglucosan formation is 

inhibited and a different product state composed of furan derivative is produced 

(Klass, 1998).  

 

Table 3.1: Composition of gases evolved from slow dry distillation of wood          

(Klass, 1998) 

Process Temperature 

(oC) 

H2 

(mol.%) 

CO 

(mol.%) 

CO2 

(mol.%) 

HCsa 

(mol.%) 

Elimination of water 

Evolution of carbon oxides 

Hydrocarbon evolution starts 

Evolution of hydrocarbons 

Dissociation 

Evolution of hydrogen 

155-200 

200-280 

280-380 

380-500 

500-700 

700-900 

0 

0.2 

5.5 

7.5 

48.7 

80.7 

30.5 

30.5 

20.5 

12.3 

24.5 

9.6 

68.0 

66.5 

35.5 

31.5 

12.2 

0.4 

2.0 

3.3 

36.6 

48.7 

20.4 

8.7 

aHydrocarbons  

 

3.3.3 Kinetics of Biomass Pyrolysis 

Most kinetic studies on cellulose pyrolysis have been built on the multistep model 

proposed in the early work with cellulose and described the evolution of volatiles by a 

single, pseudo-first-order reaction type, as represented by Figure 3.3 and Equation 3.1 

(Klass, 1998). 
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Figure 3.2: β-glucosan formation on pyrolysis (Klass, 1998). 

 

 

Figure 3.3: Cellulose pyrolysis pathways (Klass, 1998) 

 

 
(3.1) 

 

From Equation 3.1, A is the pre-exponential factor (time-1), E is the apparent activation 

energy (J/mol), R is the ideal gas constant (J/mol-K), T is the absolute temperature (K), 
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and m is the fraction of volatiles produced at time t (Klass, 1998). Currently there are 

many experimental studies on plasma pyrolysis using agricultural waste, waste tyre, 

municipal solid waste and other (Babu, 2008 cited Babu, 2007; Huang and Tang, 2007; 

Huang et al., 2003; Nema and Ganesh, 2002; Guddeti et al., 2000). Thermal plasma 

pyrolysis is the process of reacting carbonaceous solid with limited amounts of oxygen 

at very high temperature to produce gas and solid products. In the highly reactive 

plasma zone, there is a large fraction of electrons, ions and excited molecules together 

with the high energy radiation. When carbonaceous particles are injected into plasma, 

they are heated very rapidly by the plasma and the volatile matter is released and 

cracked giving rise to hydrogen and light hydrocarbons such as methane and acetylene 

(Babu, 2008 cited Babu, 2007). 

 

3.3.4 Thermodynamics of Biomass Pyrolysis 

Depending on the temperature of the reactants, the pyrolysis of biomass feedstocks 

may be endothermic or exothermic. For most biomass containing highly oxygenated 

hemicellulosics and cellulosics as the main components, pyrolysis is endothermic at 

temperatures below 400 to 450oC and exothermic at temperatures higher than that. In 

a properly designed system, little or no external heat is needed to sustain the process 

once the necessary temperature has been reached. The principal exothermic reaction 

occurring during biomass pyrolysis are the reduction of carbon oxides to methane and 

methanol, water gas shift reaction, and carbonisation of celluloses as shown in Table 

3.2 (Klass, 1998). 

 

A reasonable amount of hydrogen is required for the reduction of carbon oxides to 

methane and methanol, but hydrogen is not required for the water gas shift reaction, 

which produces hydrogen and the char formation reaction (Table 3.2). The pyrolysis 

temperature should be high enough to generate the requisite hydrogen for reduction 

of the carbon oxides. The water formed on pyrolysis and the vaporisation of the 
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physically contained moisture in the fresh feed can participate in the water gas shift 

reaction. 

Table 3.2: Exothermic reactions on cellulose pyrolysis (Klass, 1998) 

Process Reaction Enthalpy (kJ/g-mol) 

Carbon converted ata 

300 K 1000 K 

Methanation CO + 3H2 CH4 + H2O 

CO2 + 4H2 CH4 + 2H2O 

-205 

-167 

-226 

-192 

Methanol 

formation 

CO + 2H2 CH3OH 

CO2 + 3H2 CH3OH + H2O 

-92 

-50 

-105 

-71 

Char formation 0.17C6H10O5 C + 0.85H2O -81 -80 

Water gas shift CO + H2O CO2 + H2 -42 -33 

aThe standard enthalpy of formation of cellulose was calculated from its heat of combustion 

 

The exothermicity of cellulose carbonisation is high per monomeric unit (C6H10O5). 

Char formation is the dominant driving force for biomass pyrolysis at lower 

temperature at which autogenous pyrolysis begins but generates low hydrogen. At 

these temperatures, pyrolysis is normally reaction-rate controlled, and at higher 

temperatures, the process is mass-transfer controlled (Klass, 1998).  

 

3.3.5 Products and Yields of Biomass Pyrolysis 

Based on the pyrolysis temperature, the char fraction contains inorganic materials 

ashed to varying degrees, any unconverted organic solids, and carbonaceous residues 

produced on thermal decomposition of the organic components. The liquid fraction is 

usually a complex mixture of water and organic chemicals having lower average 

molecular weights than the feedstock components. In highly cellulosic biomass 

feedstocks, the liquid fraction normally contains acids, alcohols, aldehydes, ketones, 

esters, heterocyclic derivatives and phenolic compounds.  The tars contain native 
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resins, intermediate carbohydrates, phenols, aromatics, aldehydes, their condensation 

products and other derivatives. The pyrolysis gas contains carbon dioxide, carbon 

monoxide, methane, hydrogen, ethane, ethylene, minor amounts of higher gaseous 

organics and water vapour. The pyrolysis gas is usually a low-to medium energy gas 

having a heating value of about 3.9 to 15.7 MJ/m3 (n) (Klass, 1998). 

 

3.3.5.1  Conventional Slow Biomass Pyrolysis 

The pyrolysis of biomass gives rise to chars, gases, light and heavy liquids and water in 

varying amounts. The yields depend on the feed composition, dimensions of the feed 

particles, heating rate, reaction time and temperature. Heating hardwoods in the 

absence of air produces charcoal and a volatile fraction that partly condenses on 

cooling to a liquor known as pyroligneous acid, separating into a dark heavy oil as the 

lower layer in about 10 wt.% yields, and an upper aqueous layer. Pine, which is a 

softwood, can be dry distillate to give similar product in equivalent amounts as well as 

a lighter pine oils and terpene liquid such as turpentines. The contents of the 

supernatant layer are methanol, acetic acid, allyl alcohol, traces of acetone and other 

water-soluble compounds. The wood tars and pitches are complex mixtures, while the 

heavy oil contains tars, higher viscosity pitches and some char. Methanol is formed 

from the lignin components bearing methoxyl groups (Ioannidou et al., 2011; Neves et 

al., 2011; Kwapinski et al., 2010; He et al., 2009; Garcia-Perez et al., 2007; McKendry 

2002; Klass, 1998; Raveendran et al., 1996, 1995). During conventional pyrolysis, 

extensive depolymerisation of the cellulose begins at about 300oC and usable charcoal 

formation, with carbon content of about 75 wt.%, begins at about 350oC. The higher 

the temperature with long residence times, there is a promotion of gas production but 

higher char yields are obtained at lower temperature and slow heating rate. Tables 3.3 

and 3.4 give result of the long-term pyrolysis of some biomass. In Table 3.4 the balance 

of the yield for the feedstock is water (Klass, 1998 cited Zaror and Pyle, 1982; Epstein 

et al, 1978).  
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Table 3.3: Product yields from thermal decomposition of biomass over 8 hours and 

400oC (Klass, 1998) 

Products Birch (wt.%) Pine (wt.%) Spruce (wt.%) 

Gases 
H2 
CO 
CO2 
CH4 
C2H4 
Subtotal 

 
0.03 
4.12 

11.19 
1.51 
0.21 

17.06 

 
0.03 
4.10 

11.17 
1.49 
0.14 

16.93 

 
0.03 
4.07 

10.95 
1.59 
0.15 

16.79 

Charcoal 33.66 36.40 37.43 

Pyroligneous oil 
Water 
Settled tar 
Soluble tar 
Volatile acids 
Alcohols 
Aldehydes 
Esters 
Ketones 
Subtotal 

 
21.42 
3.75 

10.42 
7.66 
1.83 
0.50 
1.63 
1.13 

48.34 

 
22.61 
10.81 
5.90 
3.70 
0.89 
0.19 
1.22 
0.26 

45.58 

 
23.44 
10.19 
5.13 
3.95 
0.88 
0.22 
1.30 
0.29 

45.40 

Losses 0.94 1.09 0.38 
 

 

3.3.5.2   Fast Biomass Pyrolysis 

Fast pyrolysis of biomass is usually continuously operated at temperatures within the 

range of 400 to 650oC and residence times of a few seconds to a fraction of a second. 

The control of these parameters permits the bulk product yields to be changed from 

those of conventional pyrolysis systems within a wide range, but the products are still 

chars, liquids, gases and water. Notable characteristics about fast pyrolysis are that it 

has high heating rates and rapid quenching of the liquid products to terminate 

additional conversion of the products downstream of the pyrolysis reactor. The 

fragmentation of the polymeric components of biomass is brought about by high 

heating rate, to give 60 to 70 wt.% primary vapour products composed of oxygenated 

monomers and polymer fragments. 
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Table 3.4: Product yields from various biomasses at different pyrolysis temperature (Klass, 1998 cited Epstein et al., 1978) 

Feedstock Charcoal (wt.% at oC) Pyrolytic oil (wt.% at oC) Low-energy gas (wt.% at oC) 

500oC 700oC 900oC 500oC 700oC 900oC 500oC 700oC 900oC 

Biosolids 

Corncobs 

Manure 

MSW- Municipal solid wastes 

Paper 

Wood chip 

12 

26 

28 

 

10 

27 

11 

14 

14 

24 

6 

20 

 

17 

11 

13 

4 

22 

10 

22 

18 

11 

47 

19 

2 

7 

7 

6 

8 

6 

 

3 

2 

3 

3 

2 

10 

17 

20 

23 

16 

23 

26 

65 

30 

36 

45 

35 

 

52 

42 

50 

70 

53 

The moisture content of the feedstock is not given. The balance in the yield for the feedstock is water.
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Rapid efficient quenching of the product streams and short residence time tend to 

“freeze” the product compositions so that they correspond more closely with the 

chemicals formed initially on the biomass pyrolysis (Klass, 1998). Pyrolysis of biomass 

is used in the production of solid (charcoal), liquid (tar and other organics) and gas 

products. Research in the area of pyrolysis is becoming more and more important, 

because it is not only an independent process, it is also a first step in the gasification 

and combustion processes and has many advantages as shown by the several 

researches carried out on biomass pyrolysis (Razuan et al., 2010; Goyal et al, 2008; 

Onay and Kockar, 2004; Yaman, 2004; Şensöz, 2003; Onay et al., 2001; Zanzi et al, 

2001; Putun et al, 2001; Şensöz et al., 2000; Minkova et al., 2000; Di Blasi et al., 1999; 

Xia et al., 1999; Encinar et al., 1998; Lanzetta and Di Blasi, 1998; Drummond and 

Drummond, 1996). 

 

3.4 Gasification 

There are three types of biomass gasification processes namely pyrolysis, partial 

oxidation and reforming. In sufficiently high temperature the primary products from 

the pyrolysis of biomass is gases, charcoal and liquids are either minor products or not 

present in the product mixture. Partial oxidation processes (direct oxidation, starved-

air or starved-oxygen combustion) utilises less than the stoichiometric amounts of 

oxygen needed for complete combustion, so that partially oxidised products are 

formed. Reforming was originally used to describe the thermal conversion of 

petroleum fractions to more volatile products of higher octane number, and 

represented the total effect of other simultaneous reactions, like cracking, 

isomerisation and dehydrogenation. Reforming could also refer to the conversion of 

hydrocarbon gases and vaporised organic compounds to hydrogen-containing gases 

such as synthesis gas, mixture of carbon monoxide and hydrogen. Synthesis gas can be 

produced from natural gas by reforming it in the presence of steam (steam reforming). 

In the case of biomass, reforming is the gasification of the biomass in the presence of 

another reactant. Examples of biomass gasification are steam reforming (steam 

gasification, steam pyrolysis), and steam-oxygen and steam-air reforming. Steam 
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reforming processes involves reactions of biomass and steam and of the secondary 

products formed from biomass and steam. Steam-oxygen or steam-air gasification of 

biomass often includes combustion of residual char from the gasifier, of a portion of 

the product gas, or of a portion of the biomass feedstock to supply heat (Klass, 1998). 

 

The primary products of biomass gasification under idealised conditions are virtually 

the same, with carbon oxides and hydrogen being formed. Methane and light 

hydrocarbons could also be formed. Equations 3.2, 3.3 and 3.4 give the stoichiometries 

of cellulose gasification (Klass, 1998). 

 Pyrolysis:   C6H10O5  5CO + 5H2 + C    (3.2) 

 Partial oxidation:  C6H10O5 + O2  5CO + CO2 + 5H2   (3.3) 

 Steam reforming:  C6H10O5 + H2O  6CO + 6H2    (3.4) 

Biomass gasification yield varying energy content of the product gas. When there is a 

direct contact of biomass feedstocks and air low-energy gases are usually formed (3.92 

to 11.78 MJ/m3 (n) or 100 to 300 Btu/SCF). This is because of the dilution of the 

product gases with nitrogen from air during the process of gasification. Medium-

energy gases (11.78 to 27.48  MJ/m3 (n) or 300 to 700 Btu/SCF) usually is obtained 

from direct heating of biomass gasifier with oxygen and also from indirect heating of 

biomass gasifier in air with heat transfer occurring through an inert solid medium. 

Indirect heating of the gasifier eliminates dilution of the product gas with nitrogen in 

air and keeps it separated from the gasification products. High-energy product gases 

(27.48 to 39.26 MJ/m3 (n) or 700 to 1000 Btu/SCF) is usually obtained when the 

gasification conditions promote the formation of methane and other light 

hydrocarbons, or processing subsequent to gasification is carried out to increase the 

concentration of these fuel components in the product gas (Klass, 1998). 
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3.5 Mechanical Treatment of Biomass 

3.5.1 Size Reduction of Biomass 

Before biomass can be used as a fuel in a fuel cell or even as a feedstock there is a 

need for a physical size reduction. Biomass storage volumes are greatly enhanced with 

smaller particles, which also facilitate the transportation of the material as slurry, the 

solid state handling of materials, and enable the easy separation of the bark and 

whitewood. During drying the exposed surface area is important as well as the particle 

size because they determines the drying time, conditions and techniques needed in 

moisture removal (Klass, 1998). The conversion technique applied to biomass is related 

to the physical dimensions, because there is a need for the particle size to satisfy the 

required specifications of the conversion process and reactor. The optimum size 

characteristics of biomass fuel are determined by the combustion chamber and heat 

exchanger design, technique of delivering the solid fuel, operating conditions and ash 

removal. In thermal liquefaction and gasification processes the rate of conversion are 

influenced by the particle size, size distribution, operating conditions and the product 

yields and distributions. In biological processes they are influenced by the size of the 

feedstock. Reaction rates are higher in smaller particles because more surface areas 

are exposed to chemical and biological reactions. For many biomasses the size of the 

feed are reduced by cutting, grinding and impact mechanism (Klass, 1998).   

 

3.5.2 Machines for Biomass Size Reduction 

Commercially available for the reduction of biomass sizes are the dry shredders and 

the common types are the horizontal and vertical shaft hammer mills. They are 

metallic hammers on rotating shafts which reduce the biomass by impacting the feed 

materials until they are small enough to pass through the grate opening.  For 

Municipal Solid waste (MSW), hammer mills are usually employed before separating 

the refuses-derived fuel (RDF) and other components. As tree chippers and agricultural 

choppers hammer mills are also employed. Wet shredders such as hydropulpers are 

employed on wet biomass to produce wood pulp. They consist of high-speed cutting 

blades which pulverises a water suspension of the feed over perforated plate allowing 
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the pulped materials to pass through the plate and the nonpulp materials are expelled. 

Hydropulpers are also applied in the simultaneous size reduction and separation of 

combustible component of MSW from inorganic materials and also RDF for microbial 

conversion (Klass, 1998).  

 

In the field, agricultural chopper in addition to the harvester are employed to chop 

crop during harvesting to prepare into hay as commonly applied on wheat and other 

food crops. Forage choppers normally produce materials of 25 mm or less in length. 

Chipping is a popular mechanical size reduction method used to prepare wood fuels 

for direct combustion which could be disc chipping or hogging. Hammer hogs consists 

of free-swing hammers which breaks the feed into smaller pieces, while the knife hogs 

cut the feed with blades into smaller pieces (Klass, 1998). 

 

3.5.3 Mechanical Milling of Carbon Materials 

The high electrochemical capacities of disordered carbons have given them prominent 

place in fuel cell and batteries technologies, they are used as anode in direct carbon 

fuel cell and lithium-ion rechargeable battery. Pyrolysis of biomass yield different types 

of the carbon. The use of mechanical shock or shear milling produces carbon powders 

with well defined interlayer spacing, surface area, morphology, and crystallite size 

without the production of heteroatoms such as O, H, S, N, etc. Salver-Disma et al. 

(1999) reported that mechanical grinding gave an increasing amount of disordered 

carbon at rate depending on the grinding mode of shear-and shock-grinding (Salver-

Disma et al., 1999). Many researchers have shown the effect that mechanical ball 

milling have in generating disordered (amorphous) carbon structures from given 

precursor (Salver-Disma et al., 1999; Fukunaga et al., 1998; Zhou et al., 1995). 

 

3.6 Classification of Fuel Cells 

The classification of fuel cells (FCs) is based on the electrolyte used. But it is 

noteworthy to say their functions are basically the same as shown in Table 3.5. For the 

operations at the anode, a fuel (hydrogen, carbon, etc.) is oxidized into electrons and 
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proton, and at the cathode, oxygen is reduced to oxide species. Depending on the 

electrolyte, either protons or oxide ions are transported through the ion conducting 

but electrically insulating electrolyte to combine with oxide or protons to generate 

water and electric power (Hoogers, 2003).  

 

3.7 Historical Background of Fuel Cells 

The historical background of various researches into fuel cells began in the early 

nineteenth century with the use of hydrogen and oxygen as reactants. This further 

developed after 1950 when the technology was applied in space mission (Hoogers, 

2003 cited Cohen, 1966, 1956; Grove, 1839). Grove and Schoenbein studied the first 

FCs in which they called it “gaseous voltaic batteries.” They demonstrated the 

electrochemical reaction of hydrogen and oxygen where chemical reactions took place 

on platinum (Hoogers, 2003; Grove, 1845, 1843, 1842, 1839). The design of Grove was 

improved by increasing the surface area of the platinum electrode and Lord Rayleigh 

used platinum sponge (Hoogers, 2003 cited Rayleigh, 1882). Because of the problem of 

the catalyst flooding, Mond and Langer (1889) used a diaphragm to contain the 

sulphuric acid electrolyte. This was a self-contained battery of cell but was modified by 

Alder Wright and Thompson (1889) and they called it double-aeration plate cells 

(Hoogers, 2003). Fuel cell classification and application are shown in Table 3.5. 

 

The success of using hydrogen as fuel in FC prompted research work using carbon and 

coal as fuel, in which they were used to produce electricity directly in a more efficient 

and cleaner process (Liu et al., 2010; Li et al., 2009; Li et al., 2008; Antal and Nihous, 

2008; McPhee and Tao, 2008; Hackett et al., 2005; Balachov et al., 2005; Berkovich, 

2003; Hemmes, 2003; Weston, 1963). Jacques (1896) was one of the earlier pioneers 

in direct coal FC which he called “carbon electric generator”. Haber and Bruner (1904) 

explained that the reaction was between the coal and the electrolyte rather than 

between the coal and the oxidant making it an indirect FC. 
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Table 3.5: Fuel cells classification, characteristic and applicability (Li et al., 2011;  

Jia et al., 2010; Wolk et al., 2007; Hoogers, 2003). 

Fuel Cell 
Type 

Electrolyte Charge 
Carrier 

Operating 
Temp. 

Fuel Electrical 
Efficiency 
(system) 

Power Range / 
Application 

Alkaline FC 
(AFC) 

KOH OH- 60-120oC Pure H2 35-55% <5 kW, niche 
market 

(military,space) 

Proton 
Exchange 
Membrane 
FC (PEMFC) 

Solid 
Polymer 

(e.g. 
Nafion) 

H+ 50-100oC Pure H2 
(tolerate CO2) 

35-45% Automotive CHP 
(5-250 kW), 

portable 

Phosphoric 
Acid FC 
(PAFC) 

Phosphoric 
Acid 

H+ ~ 220oC Pure H2 
(tolerate CO2, 

approx. 1% 
CO) 

40% CHP (200 kW) 

Molten 
Carbonate 
FC (MCFC) 

Lithium & 
Potassium 
Carbonate 

CO3
2- ~ 650oC H2, CO, CH4, 

hydrocarbons 
(tolerate CO2) 

>50% 200 kW-MW 
range, CHP and 

stand alone 

Direct 
Carbon FC 
(DCFC) 

MH/MC/SO  OH-/ 
CO3

2-

/O2- 

~700oC Solid carbon  >70% 2 kW-MW range, 
CHP and stand 

alone 

Solid Oxide 
FC (SOFC) 

Solid Oxide 
Electrolyte 

O2- ~1000oC H2, CO, CH4, 
hydrocarbons 
(tolerate CO2) 

>50% 2 kW-MW range, 
CHP and stand 

alone 
MH-molten hydroxide, MC-molten carbonate, SO- Solid oxide, FC-fuel cell 

 

The problem of the FC which was the degrading of the alkaline electrolyte as a result of 

CO2 in the product of the oxidation reaction was tackled by Baur and Ehrenberg (1912) 

by the use of hydroxide, carbonate, silicate and borate as electrolyte. Further 

modifications were made by Baur and Brunner (1937) in reducing the concentration 

polarization. As a continuation of the work, Baur and Preis (1937) developed a fuel cell 

with a solid electrolyte using “Nerst-Mass” containing a mixture of Zirconia and yttria 

compounds (Andujar and Segura, 2009; Hooger, 2003). 

 

The alkaline fuel cells were developed by Bacon (1969, 1979) which was further 

modified by Pratt and Whitney Aircraft for use in the Apollo space mission to produce 

on-board electricity (Hooger, 2003). Davtyan influenced the modern development of 

the molten carbonate FC electrolyte which was further improved by Broers and 
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Ketelaar (1960a, b) where they chose carbonate over other compounds because of 

their compatibility with the products of the reaction of hydrocarbon fuel. The research 

was continued by the Institute of Gas Technology and the General Electric Company 

(Hooger, 2003 cited Bacon, 1954, 1969).  

 

The hope of oxidizing fuel directly was rekindled in the development of the direct 

methanol fuel cell in which sulphuric acid was used as electrolyte. Sulphuric acid was 

selected over phosphoric acid because, at low operating temperatures (60-70oC), 

sulphuric acid had higher conductivity, and the oxygen electrodes used in the test 

performed better in the acid. Further development enabled solid polymer membranes 

to be used as electrolyte and revived the prospect of developing a practical direct 

methanol fuel cell (Hoogers, 2003 cited William et al., 1965; Tarmy and Ciprios, 1965; 

Murray and Grimes, 1963). The first solid polymer fuel cell developed by General 

Electric had problems with the membrane and an improvement was made by the use 

of nafion catalyst and electrolyte, as well as increases in the catalyst surface area of 

the electrode (Hoogers, 2003 cited Grubb and Niedrach, 1960). The solid polymer FC 

was deemed the most appropriate type for use in road vehicle because of its 

compatibility with the reaction products of hydrocarbon fuels (Hoogers, 2003). 

 

The applicability of modern fuel cells is in transportation, stationary power and 

portable application (Table 3.5). In the transport sector, fuel cells (FCs) are seriously 

competing with the internal combustion engines (ICEs). FCs are highly efficient 

because they are electrochemical rather than thermal engine and they can help to 

reduce the consumption of primary energy and the emission of CO2. Stationary power 

generation is viewed as the leading market for FC technology other than buses. The 

reduction of CO2 emission is an important argument for the use of FCs in small 

stationary power systems especially in combined heat and power (CHP) generation. In 

fact, FCs are currently the only practical engines for micro-CHP systems in the domestic 

environment (5 – 10 kW). The portable market is less well defined, but a potential for 

quiet fuel cell power generation is seen in 1 kW portable range and possibly as 
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ancillary supply in cars, the so called auxiliary power units (APUs). Portable FC often 

includes grid-dependent applications such as camping, yachting and traffic monitoring 

(Hoogers, 2003). The development in the technology of fuel cells has made it more 

feasible in its application in airplanes, motorbikes, cars and other areas. Figure 3.4 to 

Figure 3.6 shows some current innovations in fuel cell technology and their 

applications (Strahan, 2009; Moore, 2009). 

 

Figure 3.4: Fuel cell technology in automobile (Strahan, 2009) 

 

Figure 3.5: Motorbike powered by fuel cell technology (Moore, 2009) 
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Figure 3.6: Light aircraft powered by fuel cell technology (Moore, 2009) 

 

3.8 Molten Carbonate Fuel Cell (MCFC) 

The molten carbonate fuel cells electrolyte is a mixture of alkali carbonates, mostly 

Li2CO3 and K2CO3, sometimes with additions of alkaline earth carbonates, above their 

melting point at operating temperatures of around 650oC. The charge carrier ion in 

MCFC is a carbonate ion, CO3
2-, moving from cathode to anode. An interesting feature 

of MCFC is that the depletion of carbonate ion from the cathode makes it necessary to 

recycle CO2 from anode to cathode, or less commonly, to supply CO2 from some 

alternative source. A typical cathode gas is composed of 12.6% O2, 18.4% CO2 and 69% 

N2. The anode and cathode reactions in MCFC are given by Equations 3.5 and 3.6 

(Hoogers, 2003; EG&G, 2000): 

H2 + CO3
2-  H2O + CO2 + 2e-      (3.5) 

 ½ O2 + CO2 + 2e- CO3
2-       (3.6) 

The formation of water from hydrogen and oxygen with the CO2 undergoing no net 

reaction gives the overall cell reaction. The standard reversible potential is therefore 

the same as for other fuel cells, although different partial pressure of CO2 at the anode 
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and cathode will lead to an offset due to a concentration cell effect. It is also 

noteworthy that the product water is generated at the anode (Hoogers, 2003). The 

overall reaction of the MCFC is given by Equation 3.7 (Adeniyi, 2008; Larminie and 

Dicks, 2003). 

 H2 + ½O2 + CO2 (cathode)  H2O + CO2 (anode)   (3.7) 

The Nernst reversible potential for the MCFC, taking into account the transfer of CO2, 

is given by Equation 3.8 (Larminie and Dicks, 2003). 

 
(3.8) 

 

Where E, Eo are the voltages of the fuel cell (EMF), F is the Faraday constant, p the 

vapour pressures, RT signify that the drop in Nernst voltage due to fuel utilization will 

be greater in high temperature FC. Subscript a and c refer to the anode and cathode 

gas compartments respectively. When the partial pressure of CO2 are identical at the 

cathode and anode, and the electrolyte is invariant, the cell potential depends only on 

the partial pressures of H2, O2, and H2O (Larminie and Dicks, 2003). At high  operating 

temperature (600-700oC), the alkaline carbonate in MCFC form a highly conductive 

molten salt, with carbonate, CO3
2-, ions providing ionic conduction as shown in Figure 

3.7 (Adeniyi, 2008; Larminie and Dicks, 2003).  

 

The CO2 generated at the anodes of MCFC system is recycled externally to the cathode 

where it is consumed. This can be achieved by feeding the anode exhaust gas to a 

combustor (burner), which converts any unused hydrogen or fuel gas into water and 

CO2. The exhaust gas from the combustor is then mixed with fresh air and fed to the 

cathode inlet as shown in Figure 3.8 (Adeniyi, 2008; Larminie and Dicks, 2003). 
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Figure 3.7: MCFC anode and cathode reaction for hydrogen fuel (Larminie and Dicks, 2003). 

 

 

 

 

 

 

 

Figure 3.8: Addition of carbon dioxide to the cathode gas stream (Larminie and Dicks, 

2003) 

 

Nickel (anode) and nickel oxide (cathode) are adequate catalysts to promote the two 

electrochemical reactions at the operating temperature of MCFC. Unlike PAFC and 

PEMFC, noble metals are not required. Another important advantage of MCFC is the 

ability to electrochemically convert carbon monoxide directly and to internally reform 
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hydrocarbon fuels. If carbon monoxide was fed inside the MCFC as fuel, the reactions 

at each electrode shown in Figure 3.9 would occur (Larminie and Dicks, 2003). 

 

The electromotive force (EMF) of the carbon monoxide fuel cell is calculated in exactly 

the same way as for the hydrogen fuel cell. Two electrons are released for each 

molecule of CO, just as two electrons are released for each molecule of H2. Thus the 

formula for the “no loss“, reversible Open Circuit Voltage (OCV) is identical and given 

by Equation 3.9. 

 
(3.9) 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: The anode and cathode reaction for MCFC using CO as fuel (Larminie and 

Dicks, 2003). 

 

The values of E and ∆  for both hydrogen and carbon monoxide at 650oC are similar 

as shown in Table 3.6 (Larminie and Dicks, 2003). 
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 2CO3

2-   

Anode  2CO + 2CO3
2-   4CO2   +      4e- 

 

Load (electric 

Motor) 

Oxygen and carbon dioxide 

Carbon monoxide fuel 

Electrons flow around 

the external circuit  
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Table 3.6: Values of E and ∆  for H2 and CO at 650oC 

Fuel  ∆  (kJ mol-1) E (V) 

Hydrogen (H2) 

Carbon monoxide (CO) 

-197 

-201 

1.02 

1.04 

 

MCFCs achieve power densities in excess of 100 mWcm-2, with performance mainly 

limited by ohmic losses. MCFC has the same stack building blocks as the PEMFC and 

the PAFC i.e. bipolar plates, electrodes and electrolyte layer, but of higher advantage 

including high operating temperature and the corrosivity of molten carbonate salts 

require radically different materials and design features. A much higher operating 

temperature is a clear advantage with MCFC, in which the reaction kinetics is 

drastically improved to such a degree that noble metal catalysts are no longer 

required. Most MCFC cathodes are made up of lithiated NiO and the anodes are made 

up of Ni alloys (e.g. NiCr and NiAl). The order of the thickness of the electrodes and 

electrolyte layer are usually 1 mm (Larminie and Dicks, 2003).  

 

MCFCs can operate on CO as a fuel, in this case, CO is not directly electro-oxidized but 

is converted to hydrogen by rapid water-gas shift reaction inside the electrode. So the 

problem of anode poisoning by CO and to a certain extent, by other reformer gas 

impurities is not an issue of concern. MCFCs can even operate on natural gas and some 

other hydrocarbons when some pre-reforming is applied (Hoogers, 2003; EG&G, 

2000). High temperature corrosion is a major problem in MCFC technology and 

requires the use of expensive materials and protective layers. Again sealing and water 

proofing can no longer rely on polymer materials.  

 

The two gas compartments sealing from each other is achieved by using an ingenious 

combination of material porosities, more specifically well chosen pore size 

distributions. Capillary forces hold the electrolytes in a nano-porous matrix of LiAlO2 

and thus make the gas tight. The two electrodes are micro-porous and enable reactant 
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diffusion to the reactive interfaces, at the same time allowing some electrolyte 

penetration into the open pores. The size of the reactive interface, mostly the 

electrolyte-wetted parts of the porous electrodes, depends on a fine porosity/pressure 

balance and good electrolyte management (Hoogers, 2003 cited Kunz, 1987). The 

bipolar plates are made from high grade stainless steels and protected from corrosive 

attack by additional coatings of metals such as Ni for the anode or Cr for the cathode 

(Hoogers, 2003 cited Kunz, 1987). Most of these effects are now controlled reasonably 

well enough to achieve practical lifetimes for the MCFC. The process that still limits its 

lifetime is nickel dissolution from the NiO cathode. The leaching of Ni leads to a 

coarsening of the cathode pore structure, deposition of Ni at the anode and growth of 

Ni dendrites through the electrolyte layer, ultimately resulting in electric shortening 

and system failure. This is still one of the major challenges facing MCFC most especially 

for high pressure operation (Hoogers, 2003; EG&G, 2000). 

 

Table 3.7 gives the effect of fuel gas impurities and it is noteworthy to say that due to 

the recycling anode gas to cathode (for CO2 supply) practice, some contaminants may 

also harm the cathode electrode (Hoogers, 2003). Elevated temperature operation 

offers a lot of options for fuel processing. The nickel based anode catalyst, or more 

commonly, oxide supported Ni catalysts added to the anode compartment show 

sufficient (gas phase) catalytic activity to enable internal reforming (steam reforming) 

of fuels such as methane inside the anode compartment. The endothermal steam 

reforming reaction (as shown in Equation 3.10) is driven by the exothermal fuel cell 

reaction and is conveniently controlled by the rate at which hydrogen generated is 

electro-oxidized at the fuel cell anode. 

 CH4 + H2O (g)  CO + 3H2  ∆H=206 kJmol-1   (3.10) 

In contrast with this direct internal reforming (DIR), other designs employ indirect 

internal reforming (IIR) within a gas phase reactor separated from but in thermal 

contact with the anode or the two. The possibility of internal reforming simplifies the 

overall system for MCFC (Hoogers, 2003).  
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Figures 3.10 and 3.11 show practical examples of a 250 kW system of MCFC called the 

hot module (MTU Friedrichshafen). Figure 3.10 show the stack construction and Figure 

3.11 show an early demonstration unit under construction (Larminie and Dicks, 2003). 

 

Table 3.7: Tolerable Impurity levels for MCFC and SOFC   

(Hoogers, 2003; EG&G, 2000) 

Fuel Impurity Molten Carbonate Fuel Cell 

(MCFC) 

Solid Oxide Fuel Cell  

(SOFC) 

Effect Level Effect Level 

CO 

CO2 

 

H2S 

NH3 

 

HCl, other halides 

Si 

Other 

Fuel 

Diluent, 

@Cathode 

Poison 

Relatively 

Harmless 

Poison 

Probably Poison 

Poison 

- 

18.4% in air 

67% in O2 

<1 ppm 

1% 

 

0.1 ppm 

? 

0.2 ppm H2Se 

0.1 ppm As 

Fuel 

Diluent 

 

Poison 

Relatively 

Harmless 

Poison 

Anode poison 

- 

- 

- 

- 

 

<1 ppm 

0.5% 

 

0.1 ppm 

? 

- 

- 

 

The properties of the MCFC 250 kW MTU presented in Figures 3.10 and 3.11 show that 

it has a power rating of 279 kW (250 kW net AC) with 292 cells and efficiency of 49% 

LHV, the temperature of available heat is at 450oC, and a stack degradation of 

1%/1000 hour of operation (Larminie and Dicks, 2003). 
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Figure 3.10: MCFC 250 kW MTU stack construction (Larminie and Dicks, 2003). 

 

 

Figure 3.11: MCFC 250 kW MTU early demonstration under construction (Larminie and 

Dicks, 2003). 
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3.9 Solid Oxide Fuel Cell (SOFC) 

The operation of solid oxide fuel cell is at a temperature at which certain oxidic 

electrolytes become oxygen ion, O2-, conducting. It is the same effect that is 

experienced in the Lambda sensor supplied with three-way catalytic converters in 

spark ignition automobiles, and lambda sensor are used as convenient lab models for 

SOFCs. The oxides normally employed are mixture of yttria and zirconia. The electrode 

reactions are given by Equations 3.11 and 3.12 (Hooger, 2003). 

 H2 + O2-  H2O + 2e-         (3.11) 

 ½O2 + 2e-   O2-       (3.12) 

The overall cell reaction is similar to those of MCFC with standard reversible potential 

and water is generated at the anode. The SOFC benefits from excellent kinetics at the 

anode and cathode. For thermodynamics reasons, the reversible potential at the 

operating temperature is lower in SOFC than for low temperature fuel cells. The 

inherent advantages of the SOFC are the solid-state design with no water management 

problems. The main problems encountered with SOFC are materials problems relating 

to sealing and thermal cycling. The searches for the right stack design for SOFC are still 

a focal point of current research work. The tolerance impurities levels for SOFCs are 

given in Table 3.7. The SOFC technology uses two major designs, which are the planar 

and tube bundles designs (Hooger, 2003).  

 

Figure 3.12 show the end view of tubular type of the SOFC with the electrolyte and 

anode built onto the air cathode. Figure 3.12 show a small stack of 24 tubular SOFCs, 

each tube is 150 cm long and 2.2 cm in diameter. Figure 3.13 show a larger stack from 

bundles of 24 SOFC tubes consisting of 1152 cells and a power output of 200 kW 

(Larminie and Dicks, 2003). 
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Figure 3.12: Tubular SOFC end view (Larminie and Dicks, 2003). 

 

Figure 3.13: Tubular SOFC in 24 stacks (Larminie and Dicks, 2003). 
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Figure 3.14: Larger stack of tubular SOFC consisting of 1152 cells (Larminie and Dicks, 

2003). 

 

3.10 Direct Carbon Fuel Cell (DCFC) 

The DCFC technology has a long history dated to mid-nineteenth century. The 

theoretical principles and configuration of the DCFC are similar to those of the high 

temperature fuel cells (SOFC and MCFC). Usually the DCFC have three main 

components: the anode, the cathode and the electrolyte. Its difference from the MCFC 

and the SOFC is that instead of operating on gaseous fuels it uses solid carbon as fuel 

(Cao et al., 2007; Wolk et al., 2007). A comparison of the DCFC to other fuel cells is 

given in Table 3.8.  
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Table 3.8: Operating characteristics of DCFC and other conventional fuel cells               

(Li et al., 2011; Jia et al., 2010; Wolk et al., 2007) 

Type Electrolyte Operating 

Temp. 

Fuel Reforming Oxidant Efficiency 

(HHV) 

DCFC MH/MC 

/SO 

700oC 

(1110oF) 

Solid carbon Not 

needed 

Humidified 

Air 

80% 

MCFC Molten 

carbonate  

650oC 

(1200oF) 

H2/CO2/reformate External/ 

Internal 

CO2/O2/air 50-60% 

SOFC SO/ 

Ceramic 

1000oC 

(1830oF) 

H2/CO2/CH4/ 

Reformate 

External/ 

Internal 

O2/air 45-55% 

PAFC Phosphoric 

acid 

190oC 

(375oF) 

H2 reformate External O2/air 40-50% 

PEMFC Polymer 80oC 

(175oF) 

H2 reformate External O2/air 30-35% 

MH-molten hydroxide, MC-molten carbonate, SO- Solid oxide  

 

Solid carbon is directly introduced into the anode compartment and electro-oxidised 

to CO2 at high temperature generating electricity as shown in Figure 3.15. The overall 

cell reaction is given by Equation 3.13 (Cao et al, 2007).  

C + O2 = CO2     Eo = 1.02 V      (3.13)   

The first literature record of the DCFC may be traced back to the mid of 19 century. 

Bacquerelle in 1885 and Jablochkoff in 1877 built electrochemical devices using 

electrode-grade carbon as anode, Pt/Fe as cathode, and fused KNO3 as electrolyte. The 

devices though unstable due to electrolyte degradation still produce electricity. In 

1896, a large assembly of cells consisting of 100 single cells with rods of baked coal as 

anode, iron pots as cathode and molten sodium hydroxide as electrolyte were 

demonstrated by Dr William Jacques. By heating the iron pot containing the electrolyte 

to 400-500oC in a furnace and blowing air through it, a current density of about 100 

mA cm-2 and an electric power of 1.5 kW were obtained from the system. This could be 

considered the first DCFC (Cao et al., 2007). 
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Figure 3.15: Configuration of the DCFC (Cao et al., 2007). 

 

Jacques’s DCFC gave rise to many speculations over the actual performance and 

debates about the electrical power generation mechanism. For example the cell 

reaction was believed to be given by Equation 3.14 (Cao et al., 2007). 

 C + 2NaOH + O2 = Na2CO3      = 1.42 V    (3.14) 

Because the electrolyte was consumed by an irreversible reaction as given by Equation 

3.15, the device was regarded as not a fuel cell but rather a battery (Cao et al., 2007). 

CO2 + 2NaOH = Na2CO3 + H2O      (3.15) 

The cell stack was suspected to generate electricity not by electrochemical reaction 

but by a thermoelectrical effect. These doubts and the inability of reproducing 

Jacques’s results by others and also the reducing incentive for seeking electrochemical 

conversion of coal as a result of the improved efficiency of the steam-driven generator 

in the early 20th century pushed aside the development in the technology of DCFC for 

about two-third of a century until the 1970s, when a series of studies at SRI 

International (Menlo Park, CA, a National Energy Technology Laboratory (NTEL, 

Morgantown, WV) contractor) verified the practicability of completely electro-

oxidising carbon to generate electricity (Cao et al., 2007 cited Weaver et al., 1981; 

Weaver et al., 1979; Weaver et al., 1975). Studies on the DCFC in the last few years 
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have clarified the earlier misunderstanding of the DCFC and have confirmed the 

electrochemical foundation of the direct conversion of carbon to electricity and also 

demonstrated the feasibility of the DCFC (Cao et al., 2007). Currently with the 

significant development of fuel cell technology and the need for a cleaner 

environment, the fuel cell research community regained the interest of developing 

DCFC with this research being part of that development.  

 

3.10.1 Advantages of DCFC 

The direct carbon fuel cell has many unique attractive features. DCFC offers great 

thermodynamic advantages over other fuel cell types, such as MCFC and SOFC 

operated on hydrogen fuel (Cao et al., 2007; Cherepy et al., 2005; Cooper, 2004; 

Zecevic et al., 2004). Its theoretical electrochemical conversion efficiency based on 

Equation 3.13 slightly exceeds 100%. This is because the entropy change for the cell 

reaction is positive ( S= 1.6 JK-1 mol at 600oC), which results in a slightly larger 

standard Gibbs free energy change ( G= -395.4 kJ mol-1 at 600oC) than the standard 

enthalpy change ( H = -394.0 kJ mol-1 at 600oC). The product, CO2, and the reactant, C 

(carbon), exist as pure substance in separate phases, thus their chemical potentials 

(activities) are fixed and independent of the extent of conversion of the fuel or 

position within the cell. This may allow a full conversion of the carbon fuel in a single 

pass with the theoretical voltage of DCFC remaining nearly constant at ~ 1.02 V during 

the operation (minimal Nernst loss). The fuel utilisation efficiency could reach 100%, 

giving a practical typical coal to electricity efficiency of around 80%. This value is higher 

than MCFC or SOFC running on hydrogen or natural gas (nominal efficiency of 50-60%, 

Table 3.8). Thus one can say that the DCFC is one of the potentially efficient 

electrochemical power generation systems available for our time (Desclaux et al., 

2010; Nürnberger et al., 2010; Cao et al., 2007; Wolk et al., 2007; Dicks, 2006; Cooper, 

2003b).  
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Again the DCFC releases lower emissions than coal-firing power plant, it is estimated 

that DCFC can cut carbon emissions from coal by 50% and reduce off-gas volume by 10 

times when compared to conventional coal-burning power plants (Cao et al., 2007; 

Cooper and Berner, 2005; Cooper, 2003a,b). This reason may be attributed to the fact 

that the oxidation of carbon in a DCFC occurs electrochemically at the anode 

compartment without the direct mixing with air, and thus the CO2 produced is not 

mixed with other gases. The major components in the off-gas is carbon dioxide, which 

can be injected into an oilfield to enhance oil recovery and at the same time used as 

carbon capture storage (CCS) beneath the earth, further reducing the release of CO2 

into the atmosphere. DCFC also releases no particulates (fly ash). A major significance 

of using DCFC to produce electricity is a major consideration for regions heavily 

dependent on coal, like China, in which, around 80% of the electricity power is from 

burning coal, releasing 70% of its total CO2 emissions (ranked 2nd in the world), 90% of 

its SO2 emission (ranked 1st in the world), 70% of its total particles and 67% of its total 

NOx. In the United States coal-fired plants produces 55% of their electricity and large 

amount of pollutants (Cao et al., 2007; Schneider, 2005). 

 

Most solid carbon fuel can easily be produced from many different resources, such as 

coal, biomass (miscanthus straw, wheat straw, grass, wood chips, sugarcane bagasse, 

etc.), petroleum coke and organic waste. Coal is known to be the earth’s most 

abundant fossil resources and accounts for 60% of the world’s fossil fuel resources 

with 80% of the world’s coal belonging to the United States, Canada, former Soviet 

Union and China. DCFC uses pyrolysed tiny carbon particles which consumes less 

energy and requires less capital than the production of hydrogen-rich fuels for MCFC 

or SOFC by steam reforming processes. Carbon releases a very high energy per unit 

volume on oxidation with oxygen (20.0 kWh L-1) exceeding many other fuel cells, in 

case of hydrogen (2.4 kWh L-1), methane (4.0 kWh L-1), gasoline (9.0 kWh L-1), and 

diesel (9.8 kWh L-1). Since no reformers or heat engines is required for a DCFC system it 

is therefore mechanically simple. It can be built on the site of coal mine and biomass 

plantation, thus eliminating transportation, saving energy and reducing environmental 

pollution caused by shipping and handling (Cao et al., 2007).   
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3.10.2 Electrochemical Oxidation of Carbon 

Carbon electrochemical oxidation requires high temperature because of its sluggish 

kinetics and is therefore generally performed in molten salt electrolytes (such as 

molten carbonates, molten hydroxides and cryolites)(Cao et al., 2007; Cherepy et al., 

2005; Cooper, 2003; Selman, 2003). Experimental works have been carried out in the 

area of anodic oxidation and their findings are summarised below (Cao et al., 2007): 

[A] The predominant product is CO2 at polarisations greater than around 0.1 V at 

temperature above 700oC. In 1935 Tamaru and co-workers found by analysing the off-

gas composition that CO2 is dominant and concluded that the overall electrochemical 

oxidation of carbon was the same as its complete combustion (Cao et al., 2007 cited 

Tamaru and Kamada, 1935). This result was further confirmed by Hauser using gas 

evolved from graphite anode (Cao et al., 2007 cited Hauser, 1964). Over the 

temperature range of 650-800oC, he found the current efficiency based on four 

electron processes was more than 99% at applied current densities between 20 and 

120 mA cm-2. Weaver and co-workers also found that more than 90% of the anode gas 

was CO2 at high current density (Cao et al., 2007 cited Weaver et al., 1981; Weaver et 

al., 1979). Vutetakis and co-workers reported that the anodic product was CO2 and the 

CO/CO2 ratio increases as current density decreases (Cao et al., 2007 cited Vutetakis et 

al., 1987; Vutetakis, 1985). These findings overturned the assumption that the anodic 

oxidation of carbon would produce CO as the dominant species at temperature above 

750oC according to Boudouard reaction equilibrium. These observations proved that 

complete electro-oxidation of carbon to CO2 (a four-electron process) is feasible, and 

the formation of CO (a two-electron process) could be avoided at high current density 

(polarized condition) and thus built the sound foundation for the DCFC (Cao et al., 

2007).  

[B] The reactivity of carbon reaction is affected by it properties, such as, electrical 

conductivity, crystallisation, particle size and surface area. The poor crystallised, highly 

lattice disordered carbons are more reactive probably due to their surface defects 

(edges, steps), which acts as active sites. Carbons with good electrical conductivity 

would lower the ohmic polarisation and benefit the carbon electrochemical reaction 
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(Cooper, 2008; Cao et al., 2007; Cherepy et al., 2005). Weaver and co-workers 

concluded that the devolatilised coal is more reactive than spectroscopic carbon and 

pyrolytic graphite and attributed the high reactivity to large surface area and poor 

crystallisation (Cao et al., 2007 cited Weaver et al., 1979). But the work by Cooper and 

co-workers found that surface area has no strong effects on carbon discharge rate 

(Cherepy et al., 2005). 

 

3.10.2.1 Mechanism  

Carbon electrochemical oxidation mechanism is difficult because of lack of techniques 

to detect the reaction intermediates in molten salts at high temperature (> 600oC). 

Through some indirect evidence Haupin and co-workers have proposed a mechanism 

for the anodic oxidation of carbon in molten cryolite/alumina electrolyte (acidic melts-

Hall process) as given by Equations 3.16 – 3.22 (Cao et al., 2007; Cherepy et al., 2005; 

Frank and Haupin, 1985; Haupin and Frank, 1981):  

 2[Al2O2F4]2-   2O2- + 2Al2OF4O2-  Formation    (3.16) 

 CRS + O2-  CRSO2-   First adsorption   (3.17) 

 CRSO
2-   CRSO

-  + e-   Fast discharge   (3.18) 

 CRSO
-   CRSO  + e-   Fast discharge   (3.19) 

 CRSO + O2-  CRSO2
2-  Slow adsorption (rate-determining step)  (3.20) 

CRSO2
2-   CRSO2

-  + e-   Fast discharge   (3.21) 

CRSO2
2-   CO2(g)  + e-   Fast discharge and evolution  (3.22) 

The source of the O2- is the melt, the dissociation of a complex fluoaluminate ion 

generates a free oxide ion, which adsorbs on the reactive carbon surface sites, CRS 

(edges or steps). The adsorbed oxygen undergoes discharge in two, single-electron 

steps to form a C-O-C (C2O) bridge between reactive carbon atoms on the exposed 

carbon structure as shown in Figure 3.16A. The second oxygen ion adsorbs right next 

to the C2O site to extend the surface species to a C-O|-C-O-C (C3O) bridge as shown in 
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Figure 3.16B. This adsorption is kinetically hindered and requires considerable over 

potential, and thus constitutes the rate-determining step. The C3O2 is discharged in 

two, one-electron steps to form an unstable group and readily releases CO2 by cutting 

of edge C-O bonds (Cao et al., 2007). 

 

Figure 3.16: Carbon electrochemical oxidation description. (A) The first oxygen ion 

adsorption and (B) the second oxygen ion adsorption and CO2 formation (Cao et al., 

2007; Cherepy et al., 2005). 

 

Cooper and co-workers suggested that the anodic oxidation of carbon in molten 

carbonates (basic melts) might follow a similar mechanism to the Hall process with the 

exception of the oxygen ion formation step (Cao et al., 2007; Cherepy et al., 2005). 

Molten carbonates easily dissociate into CO2 and O2- at DCFC operation temperature, 

Cooper and co-worker proposed that carbonates decompose at a high temperature to 

form oxygen ions as shown in Equation 3.23, and this initiates the carbon oxidation 

reactions given in Equations 3.17 to 3.22. For molten hydroxides, the mechanism for 

anodic oxidation of carbon is unknown (Cao et al., 2007). 

 2CO3
2-   2CO2 + 2O2-        (3.23)  

 

3.10.3 Molten Carbonate Electrolyte in DCFC 

The use of mixed molten carbonates (Li2CO3/K2CO3) for DCFC is recommended because 

of their high conductivity, good stability in the presence of CO2 (carbon electro-

oxidation product) and suitable melting temperature (Cao et al., 2007; Cherepy et al., 
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2005). Equations 3.24 and 3.25 represent the anode and cathode reaction in molten 

carbonate electrolytes. Equation 3.25 gives the cell voltage. CO2 is formed at the anode 

side and consumed at the cathode side, therefore, its partial pressure has an influence 

on the cell voltage (Cao et al., 2007). 

 C + 2CO3
2-   3CO2 + 4e-        (3.24)  

 O2 + 2CO2 + 4e-  2CO3
2-         (3.25)  

 Ecell=Eo –(RT/4F)ln[CO2]3
anode + (RT/4F)ln([O2][CO2]2

cathode)  (3.26) 

Cooper and co-worker at the Lawrence Livermore National Laboratory (LLNL, 

Livermore, CA) constructed a DCFC with a tilted orientation design as shown in Figure 

3.17 (Cherepy et al., 2005; Cooper and Berner, 2005; Cooper et al., 2004; Cooper, 

2003a). They used 32% Li2CO3 and 68% K2CO3 melt as the electrolyte. The anode was a 

paste of carbon particles (<100 μm) in the melt with open-foam nickel as the current 

collector. The cathode consists of a sinistered frit of fine nickel particles (compressed 

foam nickel). Between the anode and the cathode is a separator made of several layers 

of zirconia felt. The cathode catalyst was activated by thermal treatments in air to 

form a compact layer of NiO, which was then lithiated by exposing to lithium salts to 

generate the catalytic active structure. The electrode assembly was positioned at an 

angle of 5-45o from the horizontal. To avoid flooding of the cathode the configuration 

allowed excess electrolyte to drain from the cell. They tested several carbon materials 

with different crystallinity, particle size, surface area and surface structure at 800oC. At 

a cell voltage of 0.8 V (80% of the standard potential) they obtained current densities 

ranging from 58 to 124 mA cm-2, as shown in Figure 3.18 (Cao et al., 2007; Cooper, 

2003b). They tested many carbon particles including calcined petroleum pitch, 

biological char, coal derived pitch, graphite, furnace and thermal black. They 

concluded that the carbon properties affecting DCFC performance include 

crystallographic disorder, electrical conductivity and number of surface reactive sites 

(Cao et al., 2007; Dicks, 2006; Cooper and Berner, 2005). 
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Figure 3.17: LLNL tilted direct carbon fuel cell with carbon particle anode (Cooper and 

Berner, 2005). 

 

Figure 3.18 show the curve of the cell potential (voltage) versus the current density, as 

represented by the curve starting above 1.0 V and gradually falling, while the curve 

starting from the zero point on the cell voltage axis shows the power density versus 

the current density of the cell. The performance of the cell for furnace black fuel 

(having peak power density of 100 mW/cm2) is better than that of the green needle 

petroleum coke fuel (with peak power density of 80 mW/cm2). In terms of the open 

circuit voltage (OCV) of the cell the green needle petroleum coke fuel (1.1 V) had a 

higher value than that of furnace black fuel (1.02 V) as recorded for the operating 

temperature of 800oC. The OCV of the furnace black at 700oC was slightly higher (1.03 

V) than at 800oC (1.02 V), but the overall performance of the higher temperature is 

better. At the cell potential of 0.8 V for 700oC we have a lower current density of 40 

mA/cm2 when compare to 120 mA/cm2 recorded for 800oC. 
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Figure 3.18: Performance of the LLNL tilted direct carbon fuel cell (Cooper and Berner, 

2005). 

 

They also studied the influence of impurities in the carbon on DCFC performance and 

found out that the presence of sulphur degrade the cell performance probably due to 

corrosion of the anode current collector Ni, leading to the formation of nickel sulphide 

and thus diminishing the current collection capability. They did not investigate the 

effect of ash (inorganic mineral containments) on anode polarisation and electrolyte 

properties. At LLNL they developed proprietary cathode catalyst and aerogel/carbon 

and xerogel/carbon composites anode for their DCFC (Cao et al., 2007). Hemmes and 

co-worker at the Delft University of Technology developed a DCFC model based on the 

LLNL cell design in order to provide a theoretical base for the DCFC system. Their 

simulated results shows that the system has a net electrical efficiency of 78% (Cao et 

al., 2007 cited Hemmes et al., 2005).  

 

3.10.4 Molten Hydroxide Electrolyte in DCFC 

William Jacques used molten hydroxide as electrolyte to test his DCFC. The criticism 

that followed his work led to the rejection of the DCFC because the electrolyte reacts 

with CO2 produced by carbon oxidation to form carbonates. But recent researches at 
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the Scientific Application and Research Associates (SARA, Cypress, CA) revived and 

proved the feasibility of DCFC using molten hydroxide as electrolyte. When molten 

hydroxide is compared with molten carbonate there are certain advantages that the 

molten hydroxide has, like a higher ionic conductivity and a higher activity of the 

carbon electrochemical oxidation, meaning a higher carbon oxidation rate and a lower 

overpotential (Cao et al., 2007 cited Zecevic et al., 2005a). Using molten hydroxide as 

the electrolyte in DCFC permits it operation at a lower temperature of around 600oC 

and this in turn allows the use of less expensive materials for DCFC fabrication and 

thus reduces the cost of DCFC. The dominant product of carbon oxidation at low 

temperature (<700oC) will be CO2 according to Boudouard equilibrium and so CO 

formation can be avoided. These benefits can be achieved only after the carbonate 

formation issue is overcome. Goret and Tremillon propose that the formation of 

carbonates during carbon electro-oxidation in molten hydroxides may undergo a 

chemical process and electrochemical process given by Equations 3.27 and 3.28. The 

electrochemical process consists of two steps: a fast chemical step (given by Equation 

3.29) and a slow electrochemical step, which is rate-determining and given by 

Equation 3.30 (Cao et al., 2007 cited Goret and Tremillon, 1967; Goret and Tremillon, 

1966). 

 2OH- + CO2 = CO3
2- + H20       (3.27) 

 C + 6OH-  CO3
2- + 3H2O + 4e-      (3.28) 

  6OH- = 3O2- + 3H20        (3.29) 

 C + 3O2-  CO3
2- + 4e-       (3.30) 

The concentrations of O2- and water determine the rate of carbonate formation, thus 

increasing the water content in the hydroxide electrolyte will shift Equations 3.27 and 

3.29 to the left and a significant reduction of CO3
2-. Zecevic and co-workers in SARA 

developed a DCFC with a molten hydroxide electrolyte using humidified air as the 

oxidant (Cao et al., 2007 cited Zecevic et al., 2005a). The presence of moisture (from 

air) in the electrolyte reduces carbonate formation and also increases the ionic 

conductivity of the melt. Figure 3.19 gives a description of SARA fuel cell in which a 
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cylindrical pure graphite rod acts as the anode and fuel that is immersed into molten 

sodium hydroxide contained in a cylindrical or prismatic container, which is also the 

cathode. Humidified air is fed into the cell from the bottom of the container via a gas 

distributor (Cao et al., 2007; Zecevic et al., 2003). They tested many materials as the 

cathode, such as, nickel foam lined steel and Fe2Ti steel (Iron alloy with titanium) 

which showed good catalytic activity. Their cell operated between 400 and 650oC. The 

cell performance depends on the cathode material, air flow rate, operating 

temperature and fuel cell scale. They obtained an opened circuit voltage between 0.75 

and 0.85 V, an average power output of 40 mW/cm2 at 140 mA/cm2 with over 450 h 

running time. Their peak power output was 180 mW cm-2 and their maximum current 

density greater than 250 mA/cm2.  

 

Figure 3.20 give a description of their cell performance (Cao et al., 2007; Zecevic et al., 

2003, Patton, 2003). Figure 3.20 shows the performance of the cell at an operating 

temperature of 630oC and with two different surface area of the anode. The smaller 

surface area gave a higher value for OCV of 0.85 V than the larger surface area of 0.75 

V. Also the maximum current density recorded for the smaller surface area anode (250 

mA/cm2) was better than the larger one (100 mA/cm2). Their cell had no separator to 

prevent oxygen having direct contact with the carbon, thus giving a mixed potential as 

a result of oxygen reduction on carbon anode and also reducing the performance.  
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Figure 3.19: SARA direct carbon fuel cell with a carbon rod anode (Zecevic et al., 2003) 

 

 

Figure 3.20: Performance profile of the SARA direct carbon fuel cell (Zecevic et al., 

2003) 
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Their cell performance can be improved upon by optimizing the cell design, the 

electrode material and the operation condition. Since the cell has no separator to 

prohibit oxygen from direct contacting with carbon, a mixed potential resulting from 

oxygen reduction on carbon anode might reduce the cell performance. SARA had 

already proposed the design of a separator cell, however, finding a suitable membrane 

that sustains the harsh molten hydroxide environment (corrosive, basic, high 

temperature) will take some great efforts (Cao et al., 2007).  

 

At the West Virginia University, Saddawi and co-workers developed a method to 

produce solid cylindrical carbon rods for SARA’s DCFC (Cao et al., 2007 cited Saddawi, 

2005).  Their fuel rods were made with varying amounts of petroleum coke, coal tar 

binder pitch, and either one or two coal-derived fuels. They tested the chemical 

composition, density and electrical resistivity of the carbon rods, and the results 

indicated that coal-derived rods perform significantly better than their graphite 

counterparts due to increased electrochemical activity. But the mechanisms for the 

electro-oxidation of carbon (anode reaction) and the electro-reduction of oxygen 

(cathode reaction) in molten sodium hydroxides is yet to be well understood. The 

overall electrode reaction is given by Equations 3.31 to 3.33, Equations 3.31 and 3.32 

for the anode and Equation 3.33 for the cathode (Cao et al., 2007; Zecevic et al., 

2005b).  

 C + 6OH-  CO3
2- + 3H2O + 4e-     (3.31) 

 C + 2CO3
2-  3CO2 + 4e-      (3.32) 

 O2 + 2H2O + 4e- 
 4OH-      (3.33) 

 



Chapter 3                                                                                                         Theory of Biomass and Fuel Cell 
 
 

85 
 

 

Figure 3.21: Cell configuration of the SRI direct carbon fuel cell combining advances in 

SOFC and MCFC technology (Cao et al., 2007; Balachov et al., 2005).  

 

 

Figure 3.22: Flowing liquid anode of the SRI direct carbon fuel cell combining advances 

in SOFC and MCFC technology (Cao et al., 2007; Balachov et al., 2005).  
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3.10.5 YSZ (Yttria Stabilised Zirconia)-based solid electrolyte in DCFC 

At SRI International, Balachov and co-workers developed a DCFC which combine the 

advances in SOFC and MCFC technology, this is shown in Figures 3.21 and 3.22 (Cao et 

al., 2007; Balachov et al., 2005). Their DCFC is a U-tube consisting of (from inner to 

outer of the tube), a metal mesh cathode current collector, a cathode layer 

(lanthanum strontium manganate, LSM), an electrolyte layer (Yttria Stabilised Zirconia, 

YSZ), and a metal mesh anode current collector. The U-tube is immersed into a liquid 

anode comprising a mixture of molten Li2CO3 + K2CO3 + Na2CO3 and carbon particles. 

Their DCFC is better operated in a flow mode (stirring) to facilitate the contact 

between carbon particles and anode current collector to enhance mass transport 

(Shown in Figure 3.22). They tested several fuels, such as, acetylene black, tar, coke, 

coal and mixed waste. Using conventional coal without pre-treatment they obtained 

power densities greater than 100 mW/cm2 at 950oC, as shown in Figure 3.23, which is 

comparable to power densities achieved by commercial MCFC (Cao et al., 2007; 

Balachov et al., 2005). 

 

Figure 3.23: Performance of the SRI direct carbon fuel cell liquid anode (Cao et al., 

2007; Balachov et al., 2005). 
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Figure 3.24: CCE Proposed DCFC combining SOFC and fluidized-bed technologies (Cao 

et al., 2007; Duskin, 2005). 

 

At the CellTech Power LLC (Westborough, MA), Tao and co-workers tested the direct 

oxidation of coal in a SOFC-like structure (Cao et al., 2007; Tao, 2003; Tao, 2005). Their 

cathode was 0.6 mm thick La0.84Sr0.16MnO3, the electrolyte was 0.12 mm thick 

(ZrO2)(HfO2)0.02(Y2O3)0.08, the anode was carbon black and platinum as the anode 

current collector. They obtained a power output of 10 mW/cm2 at 0.248 V and 50 

mW/cm2 at 0.507 V at temperature of 800 and 1002oC respectively. At the University 

of Akron, Chuang investigated the SOFC using solid carbon fuel, their results revealed 

that with coke as fuel, the open circuit voltage can reach around 0.8 V at 700oC and a 

current density of 50 mA/cm2 at 0.8 V can be obtained with a cell temperature of 

950oC (Cao et al., 2007; Chuang, 2005). Part of the problems with DCFC using 

electrolyte were poor contact between the carbon anode and the electrolyte and the 

high operation temperature, leading to the formation of CO due to Boudouard 

reaction (Cao et al., 2007).  Duskin and Gur (Clean Coal Energy, CCE, Stanford, CA) 

proposed a DCFC combining SOFC and fluidized-bed technologies. Figure 3.24 shows 

the description of their DCFC, the configuration allows continuous carbon feeding and 
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good contact between carbon fuel and solid electrolyte reducing mass transport 

limitation (Cao et al., 2007; Duskin, 2005).   

 

3.10.6 DCFC with Mass and Heat Integration Systems 

For most DCFC integration system, the transportation of fuel from a central site and 

the transmission and distribution of the electricity from that site to the end user is a 

key point to put in mind. System Integration process permits maximum energy 

efficiency because of the integration between fuel preparation and fuel consumption 

and also the chance to use the waste energy (methane and thermal) in other plants or 

buildings that are located within the integrated system (Wolk et al., 2007).  

 

A system with highest energy efficiency potential and great energy integration 

opportunity and co-located facilities is represented in Figure 3.25. Under this process 

concept, the feed is dried at 150oC (300oF) to remove water from the wet biomass or 

MSW material. Then the dried feed is pyrolysed at 370oC (700oF) to remove carbon 

dioxide and methane and then produce char which is fed into the DCFC. The heat 

energy needed for the operations are provided from the hot CO2-rich anode product 

gas of the DCFC which is recycled to the fuel dryer and pyrolyser. The excess energy 

from the pyrolyser waste gas and that from the CO2 rich anode off-gas could be used 

for the generation of steam and also in some other co-located energy consuming 

facilities (Wolk et al., 2007). An alternative and a simpler system than that of the highly 

integrated concept is presented in Figure 3.26.  The energy to drive the pyrolysis 

reaction is obtained by recycling a fraction of the hot, CO2-rich, anode product gas to 

the pyrolyser and the methane-rich product gas from the pyrolyser could be use as a 

combustion fuel for buildings and hot water heating (Wolk et al., 2007).   
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Figure 3.25: Highly integrated DCFC, pyrolyser and dryer for maximum efficiency (Wolk 

et al., 2007) 

 

 

 

 

 

 

 

Figure 3.26: Integrated DCFC and pyrolyser for high efficiency (Wolk et al., 2007) 

 

When the biomass source is remote from the electrical demand area then the non-

integration process may be more economically preferred. In such a situation, it might 

be cheaper to transport a lower weight particulate fuel product than the high moisture 

vegetation or MSW components to the generation site located near the demand 

centre as shown in Figure 3.27 (Wolk et al., 2007). 
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Figure 3.27: Non-integrated DCFC and pyrolyser with maximum flexibilty (Wolk et al., 

2007) 

 

3.11  The Process of Fuelling Fuel Cells 

The type of fuelling used in fuel cells varies for different type. Traditionally hydrogen is 

the chosen fuel of powering fuel cells but as a result of technological advancement in 

various fields biomass, coal, natural gas, and municipal waste have also been found to 

be suitable for fuelling fuel cell systems with the added advantage of reducing 

environmental pollution. Below are brief discussions on the various options for fuelling 

the FC systems. 

  

3.11.1 Hydrogen 

Hydrogen is the preferred fuel for most fuel cells because of its high reactivity for the 

electrochemical anode reaction, and the oxidation of hydrogen produces water which 

is environmentally friendly. The only emission that vehicles running on proton 

exchange membrane (PEM) fuel cells is water using hydrogen and thereby called zero-

emission vehicles. Hydrogen does not occur naturally as gaseous fuel, and so for 

practical fuel cell it has to be generated from a fuel source. Table 3.9 gives the basic 

chemical and physical data on hydrogen and some other fuels considered for use in 

fuel cells (Larminie and Dicks, 2003). There are many ways of producing hydrogen 
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among which are steam or methane reforming, partial oxidation, autothermal and dry 

reforming, water electrolysis (reverse of fuel cell operation), biological, 

photodissociation, direct thermal or catalytic splitting of water (Sørensen, 2005; 

Larminie and Dicks, 2003).  

 

Table 3.9: Hydrogen and other fuels properties for fuel cell systems   

(Larminie and Dicks, 2003) 

Properties Hydrogen 

H2 

Methane 

CH4 

Ammonia 

NH3 

Methanol 

CH3OH 

Ethanol 

C2H5OH 

Gasoline 

C8H18 

Molecular weight 

Freezing point (oC) 

Boiling point (oC) 

Net enthalpy of combustion 

@ 25oC (kJ mol-1) 

Heat of vaporisation (kJ kg-1) 

Liquid density (kg m-3) 

Specific heat at STP (Jmol-1 K-1) 

Flammability limits in air (%) 

Autoignition temperature in 

air (oC) 

2.016 

-259.2 

-252.77 

 

241.8 

445.6 

77 

28.8 

4-77 

 

571 

16.04 

-182.5 

-161.5 

 

802.5 

510 

425 

34.1 

4-16 

 

632 

17.03 

-77.7 

-33.4 

 

316.3 

1371 

674 

36.4 

15-28 

 

651 

32.04 

-98.8 

64.7 

 

638.5 

1129 

786 

76.6 

6-36 

 

464 

46.07 

-114.1 

78.3 

 

1275.9 

839.3 

789 

112.4 

4-19 

 

423 

114.2 

-56.8 

125.7 

 

5512.0 

368.1 

702 

188.9 

1-6 

 

220 

 

3.11.2 Petroleum  

This is a mixture of solid, liquid and gaseous hydrocarbon-based chemical compounds 

that occur in sedimentary rock deposits globally.  Fuels derived from petroleum 

account for one half of the world’s total energy supply and include gasoline, diesel 

fuel, aviation fuel, kerosene etc. Various components of petroleum are separated into 

their generic fractions by distillation (Larminie and Dicks, 2003). For fuel cell these 

chemical composition are very important because they determines the type of fuel 

processing, which could be used for generating hydrogen. Fuel converted catalytically 
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contains various trace compounds which could act as poisons for fuel cell stack 

(Larminie and Dicks, 2003). 

 

3.11.3 Coal and Coal Gas 

Coal is chemically complex and most abundant of all fossil fuels. It is formed from the 

compaction and indurations of many plant remains similar to those of peat. 

Classification of coal is based on the inherent plant material (coal type), the degree of 

metamorphosis (coal rank), and the degree of impurities (coal grade). Apart from 

combustion, further processing of coal to produce liquids, gases and coke is mainly 

dependent on the properties of the raw coal material. Fuel cell can be powered by the 

gases produced from coal gasification or from coal powder (Larminie and Dicks, 2003). 

 

3.11.4 Natural Gases 

 The combustible gas that is found in the porous rocks in the earth’s crust is natural 

gas. It is usually found with or close to crude oil reserves but can also occur alone in 

separate reservoirs. It mostly forms a gas cap trapped between liquid petroleum and 

an impervious rock layer (cap rock) in a petroleum reservoir. In high pressure, the gas 

will be intimately mixed with or dissolved in the crude oil.  Fuel cell can also be 

powered by natural gas after some processing (Larminie and Dicks, 2003). 

 

3.11.5 Bio-Fuels 

These are fuel derived from biomass and all natural organic material associated with 

living organisms, including terrestrial and marine vegetable matter, everything from 

algae to trees, together with animal tissue and manure. There is a considerable 

attraction for using biogases in fuel cell systems. Most biogases have low heating 

values and high level of carbon oxides and nitrogen. Fuel cells most especially the 
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DCFC, MCFC and SOFC are able to handle very high concentration of carbon oxides 

(Larminie and Dicks, 2003). 

 

Bio liquids are also favourites for fuel cell application, methanol and ethanol are good 

examples. Methanol is the proposed fuel for Fuel cell vehicles (FCVs).  It can be 

synthesised from syngas derived from biomass or natural gas. Ethanol is produced 

from direct fermentation of biomass. Alcohol is also a very good choice owing to the 

ease of reforming it into hydrogen-rich gas (Larminie and Dicks, 2003). Solid biomasses 

in the form of char are also very good choice of fuel for fuel cells systems. Solid 

carbons are good choices for powering DCFC and MCFC (Adeniyi and Ewan 2011; Jia et 

al., 2010; Li et al., 2009; Jain et al., 2008; Hackett et al., 2007; Cao et al., 2007; Cherepy 

et al., 2005). 

 

3.12 Energy and the EMF of Fuel Cell 

The Gibbs free energy is very important in fuel cells. The Gibbs free energy is the 

energy available to do external work, neglecting any work done by changes in pressure 

and/or volume. In fuel cell conditions, the external work involves moving electrons 

round an external circuit- any work done by a change in volume between the input and 

output is not harnessed by the fuel cell. Exergy is all the external work that can be 

extracted, including that due to volume and pressure changes. The enthalpy is the 

Gibbs free energy plus the energy connected with the entropy. These forms of energy 

are all chemical energy but in resemblance to ordinary mechanical potential energy in 

two principal ways, the point of zero energy and the mechanical potential energy 

(Larminie and Dicks, 2003). 

 

3.12.1 Zero Energy Reference Point 

When working with chemical reactions, the zero energy reference point is usually 

define as pure elements, in the normal state, at standard temperature and pressure of 
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25oC and 0.1 MPa. When adopting this convention, the term Gibbs free energy of 

formation is usually applied instead of the Gibbs free energy, and the enthalpy of 

formation instead of enthalpy. Thus for an hydrogen fuel cell operating at standard 

temperature and pressure (STP), this means that the Gibbs free energy of formation is 

zero for the input, this provide a useful simplification (Larminie and Dicks, 2003).  

 

3.12.2 Mechanical Potential Energy 

The change in Gibbs free energy of formation, Gf, gives the enthalpy released in fuel 

cell.  This change is the difference between the Gibbs free energy of the products and 

the Gibbs free energy of the reactants or inputs as given by Equation 3.34 (Larminie 

and Dicks, 2003). 

 Gf  = Gf (products) – Gf (reactants)      (3.34) 

For simplicity it is more convenient to consider these quantities in their per mole form. 

This is indicated by putting a dash (-) over the lower case letter, e.g, ( )H20 is the molar 

specific Gibbs free energy of formation for water. Equation 3.34 can be rewritten to 

give Equation 3.35 (Larminie and Dicks, 2003). 

  =  (products) –  (reactants)      (3.35) 

Table 3.10 show the  for the basic hydrogen fuel cell reaction (Larminie and Dicks, 

2003).  

 

The electrical work done by a fuel cell is equal to the Gibb free energy and the 

fundamental equation that gives the electromotive force (EMF) or reversible open 

circuit voltage of the hydrogen fuel cell is given by Equation 3.36 (Larminie and Dicks, 

2003): 

 
(3.36) 
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Where Eocv is the reversible open circuit voltage or electromotive force (EMF), and F is 

the Faradays constant. Equation 3.36 can be generalized for other fuel cells and 

batteries by replacing the value 2 by z in the denominator, and Eocv by E, so that we 

have Equations 3.37 and 3.38, where z is the number of electrons transferred for each 

molecule of the cell (Larminie and Dicks, 2003). 

 
(3.37) 

  

 
(3.38) 

 

Table 3.10: The   for the reaction H2 + ½O2 H2O at different temperature 

(Larminie and Dicks, 2003). 

Form of water product Temperature (oC)    (kJ mol-1) 

Liquid 

Liquid 

Gas 

Gas 

Gas 

Gas 

Gas 

Gas 

Gas 

25 

80 

80 

100 

200 

400 

600 

800 

1000 

-237.2 

-228.2 

-226.1 

-225.2 

-220.4 

-210.3 

-199.6 

-188.6 

-177.4 

 

3.13 Fuel Cell Irreversibilities  

A fuel cell operated at higher temperature will give a shape similar to that of Figure 

3.29, for an ideal case which involves a typical low temperature, air pressure fuel cell is 

depicted in Figure 3.28. Figure 3.29 represent a typical solid oxide fuel cell (SOFC) 

operating at about 800oC. The following points are important (Larminie and Dicks, 

2003): 
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1. The open circuit voltage is equal to or only a little less than the theoretical 

value. 

2. The initial fall in voltage is very small, and the graph is more linear.  

3. There may be a higher current density at which the voltage falls rapidly, as with 

lower- temperature cells (Larminie and Dicks, 2003).  

From Figures 3.28 and 3.29, it is observed that the reversible or no loss voltage is lower 

for the higher temperature, the operating voltage is generally higher, because the 

voltage drop or irreversibilities are smaller (Larminie and Dicks, 2003). 

  

 

Figure 3.28: The voltage for a typical low temperature, air pressure fuel cell (Larminie 

and Dicks, 2003). 

 

The voltage/current density graphs of Figures 3.28 and 3.29 characteristic shapes are 

as a result of four major irreversibilities, which are, activation losses, fuel crossover 

and internal currents, ohmic losses and mass transfer or concentration losses. 
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3.13.1  Activation Losses 

Activation losses are caused by the slowness of the reactions taking place on the 

surface of the electrodes. A proportion of the voltage generated is lost in driving the 

chemical reaction that transfers the electrons to or from the electrode (Larminie and 

Dicks, 2003). 

 

Figure 3.29: The voltage for a typical air pressure fuel cell operating at about 800oC 

(Larminie and Dicks, 2003). 

 

3.13.2  Fuel Crossover and Internal Currents 

In a practical fuel cell some fuel will diffuse from the anode through the electrolyte to 

the cathode, because of the catalyst, it will react directly with the oxygen, producing 

no current from the cell. Fuel crossover is the term used for that small amount of 

wasted fuel that migrates through the electrolyte. The crossing over of one hydrogen 

molecule from anode to cathode where it reacts, wasting two electrons, amounts to 

exactly the same as two electrons crossing from anode to cathode internally, rather 

than as an external current. The internal currents and the fuel crossover are essentially 

equivalent (Larminie and Dicks, 2003). 
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3.13.3  Ohmic Losses  

Ohmic losses are losses due to the electrical resistance of the electrodes, and the 

resistance to the flow of ions in the electrolyte. The size of the voltage drop is 

proportional to the current, by the popular Equation 3.39. 

 V= IR          (3.39) 

In fuel cells the resistance is mainly caused by the electrolyte and the cell 

interconnections. For fuel cell, the resistance corresponding to 1 cm2 of the cell, and by 

using the symbol r (area-specific resistance (ASR)). The equation for the voltage drop is 

now given by Equation 3.40, Where i is the current density (mA cm-2) and r the area-

specific resistance (kΩcm2). 

   ∆ Vohm= ir         (3.40) 

 

3.13.4  Concentration Losses (Mass Transport) 

If at the anode of a fuel cell supplied with hydrogen and during cell operation there will 

be a slight drop in pressure if the hydrogen is consumed as a result of a current being 

drawn from the cell. This pressure reduction results from the fact that there will be a 

flow of hydrogen down the supply ducts and tubes, and this flow will result in a 

pressure drop due to their fluid resistance. This reduction in pressure will depend on 

the electric current from the cell (and H2 consumption) and the physical characteristics 

of the hydrogen supply system (Larminie and Dicks, 2003). 

 

In a likewise manner, if the oxygen at the cathode of a fuel cell is supplied in the form 

of air, during fuel cell operation there will be a slight reduction in the concentration of 

the oxygen in the region of the electrode as the oxygen is extracted. The extent of 

concentration change will depend on the current being taken from the fuel cell and on 

physical factors relating to how well the air around the cathode can circulate, and how 

quickly the oxygen can be replenished. This change in concentration will cause a 
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reduction in the partial pressure of the oxygen. In both cases, the reduction in gas 

pressure will result in a reduction in voltage. Equation 3.41 gives the change in voltage 

caused by a change in hydrogen pressure (Larminie and Dicks, 2003 cited Laurencelle 

et al., 2001; Kim et al., 1995).  

 
(3.41) 

The change in pressure caused by the use of fuel gas in terms of current density is 

given by Equation 3.42. 

 
(3.42) 

Substituting Equation 3.41 into 3.42 gives Equation 3.43. 

 
(3.43) 

Equation 3.43 gives the voltage change due to mass transport, for voltage drop 

Equation 3.44 is appropriate. 

 
(3.44) 

 

3.14 Summary 

 

The thermochemical process of choice in this research for the production of carbon for 

the direct carbon fuel cell (DCFC) is the conventional slow biomass pyrolysis. The 

process is able to yield a high amount of chars, gases and liquids but the main focus is 

the char produced which is the solid carbon that can power the DCFC. The 

configurations of the DCFC proposed in this research consist of the molten carbonate 

and solid oxide fuel cell electrolyte systems.  The charge carrier ions are carbonate ion, 

CO3
2-, and oxygen ion (O2-) moving from cathode to anode. An interesting feature of 

the configuration is that the depletion of carbonate ion and oxygen ion from the 

cathode makes it necessary to recycle CO2 from anode to cathode. 
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4.1 Introduction  

This chapter give the descriptions of the various experimental works carried out during 

this research. It gives the names of the apparatus and equipment used to achieve the 

experimental purpose and some diagrams of the equipment and setup stands. The 

mechanical and thermochemical preparation of the biomass are discussed. The 

ultimate, proximate and calorific value evaluation procedures are presented for the 

biomasses. X-ray diffraction and particle size analysis using Malvern mastersizer are 

also discussed along with the ball milling of the biomass carbons. The design and 

assembling of the DCFC are covered along with the preparation of the carbonate 

electrode assembly, carbon fuel and the solid oxide electrode assembly.  

 

4.2 Biomass Preparation and Analysis 

The biomass samples were supplied by different companies. The samples were 

supplied in straws and chips and these were chopped into smaller pieces before 

grinding. The grinding was done using the Cross Beater Mill (Model 16-150, Glen 

Creston Limited, England) with a sieve size of 2.0 mm. The chopped biomass was put 

into the mill bit by bit for effective grinding and the process was repeated three times 

to obtain effective particle size.  Figures 4.1 to 4.6 show some of the biomass samples 

before and after grinding. 

 

4.2.1 Proximate Analysis of Biomass 

The proximate analysis of biomass is important because it enable us to determine the 

chemical composition of the various biomass used in this research and provide the key 

to the different combustion characteristics of the biomass. The proximate analysis of 

biomass composition (by mass) is given in terms of four constituents, namely: moisture 

content, fixed carbon, volatile matter (the gases emitted during thermal 

decomposition of the biomass in an inert atmosphere) and ash (inorganic matter left 

after combustion). The fixed carbon is estimated by difference. 
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4.2.1.1  Moisture Content Analysis of Biomass  

The moisture content analysis was carried out on each of the biomass sample in order 

to know the level of moisture (water) in the sample. An empty crucible was weighed. 

About 1.0 g of biomass sample was added gradually to the crucible and the weight and 

content was measured. The crucible was tapped gently to evenly spread the sample 

over the bottom of the crucible. The crucible with the biomass sample was placed in a 

Memmert oven at a temperature of 105oC to 110oC for one hour. The crucible was 

cooled and reweighed. The percentage moisture was calculated using Equation 4.1.  

 
(4.1) 

 

Where M1 is the mass of empty crucible, M2 is the mass of crucible plus sample before 

heating and M3 is the mass of crucible plus dried sample. 

 

 

 

 

 

 

 

Figure 4.1: Miscanthus (a) Straws    (b) Ground 
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Figure 4.2: Spruce wood (a) Chips    (b) Ground 

 

Figure 4.3: Poplar wood (a) chips    (b) Ground  

 

 

 

 

 

Figure 4.4: Switchgrass (a) Straws    (b) Ground 
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Figure 4.5: Wheat (a) Straws     (b) Ground 

 

 

 

 

 

Figure 5.6: Willow wood (a) Chips    (b) Ground 

Figure 4.6: Willow wood (a) chips     (b) Ground 

 

4.2.1.2  Ash Content Analysis of Biomass  

Ash content analysis gave an indication of the amount of inorganic matter left in the 

biomass sample after combustion. An empty crucible was weighed. About 1.0 g of 

biomass sample was added gradually to the crucible and the weight of crucible plus 

the content was measured. The crucible was tapped gently to evenly spread the 

sample over the bottom of it. The crucible was placed in a Carbolite furnace (AAF 

1100). The sample was heated to a temperature of 750oC and left at that temperature 

for one hour so that the combustible material could be completely burnt. The crucible 

was removed from the furnace and allowed to cool to room temperature. The crucible 

was reweighed and the percentage ash was calculated using Equation 4.2.  
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(4.2) 

 

Where M1 is the mass of empty crucible, M2 is the mass of crucible plus sample before 

heating and M3 is the mass of crucible plus residue. 

 

4.2.1.3  Volatiles Content Analysis of Biomass  

Volatile content analysis gave a measure of the gas that was emitted during the 

thermal decomposition of the biomass in an inert atmosphere. An empty crucible was 

weighed. 1.0 g of biomass sample was added gradually to the crucible and the weight 

of crucible plus the content was measured. The crucible was tapped gently to evenly 

spread the sample over the bottom of it. The crucible was covered and placed in a 

Carbolite furnace (Eurotherm panel) which was already preheated to a temperature of 

950oC and left at that temperature for seven minutes. The crucible was removed from 

the furnace and allowed to cool to room temperature. The crucible was reweighed and 

the percentage volatile was calculated using Equation 4.3. 

 
(4.3) 

 

Where M1 is the mass of empty crucible, M2 is the mass of crucible plus sample before 

heating, M3 is the mass of crucible plus residue after heating and Mc is the percentage 

of moisture content. 

 

4.2.1.4  Fixed Carbon Analysis of Biomass  

The fixed carbon analysis gave a measure of what is left of the biomass when moisture, 

volatiles and ash have been removed. The fixed carbon was determined by the 

application of Equation 4.4. 
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 (4.4) 

 

4.2.2  Ultimate Analysis of Biomass  

In the ultimate analysis a given biomass sample was burnt in pure oxygen in a furnace 

at a temperature of 1350oC. The carbon and the hydrogen in the biomass were 

oxidised completely to carbon dioxide and water. Any chlorine and sulphur dioxide 

released were retained within the apparatus by absorption onto silver gauze. The CO2 

and water pass out of the apparatus into a sequence of absorbers. Water was 

absorbed into magnesium perchlorate and the CO2 by soda asbestos. The hydrogen 

and carbon released were determined by measuring the increase in the weight of the 

absorbers. The values were corrected for moisture content in the biomass sample by 

making separate determination of the moisture content (same as in the proximate 

analysis). In ultimate analysis the biomass composition (by mass) is given in term of the 

chemical elements that make up the biomass mainly carbon, hydrogen, nitrogen, 

sulphur and oxygen. 

 

4.2.2.1  Carbon and Hydrogen Contents  

The carbon and hydrogen contents of the biomass were determined to obtain the 

percentage weight of carbon and hydrogen present in a given sample. The Carbolite 

furnace was heated to and kept at a temperature of 1350oC and the silver gauze was 

maintained in the right position. The absorption train to the combustion tube was 

connected and oxygen was passed through the system at 18 litres/hour for 10 

minutes. The absorption train was then disconnected from the combustion tube and 

connected to the air purification train. Purified air was drawn through the train at a 

rate of 12 litres/hour for 10 minutes. The absorption train was disconnected; each 

absorber was wiped with a clean dry cloth. The absorbers were allowed to cool to 

room temperature and then weighed.  

 



Chapter 4                                                                                                                                          Experimental 
 

107 
 

0.5 g of the biomass sample was weighed into a clean, dry sample boat. The sample 

was spread evenly over the bottom of the boat and the absorption train was 

reconnected. The rubber stopper carrying the silica was removed and the sample boat 

inserted into the combustion tube to such a position that was central (240 mm) from 

the centre of the hottest zone (first mark on the push-rod). The silica pusher was fully 

withdrawn and the rubber stopper was replaced and oxygen was passed at 18 

litres/hour. At the end of each four one-minute periods, the boat was pushed forward 

by 40 mm while withdrawing the silica pusher each time to avoid it being melted in the 

furnace. The boat was allowed to remain in the hottest part of the furnace tube for a 

further 5 minutes. The absorption train was disconnected, purge with purified air, 

wiped, cooled and reweighed. The percentage weight of the carbon in the biomass 

was evaluated using Equation 4.5.  

 
(4.5) 

 

Where M1 is the mass of empty boat, M2 is the mass of boat plus sample before 

heating, M3 is the initial mass of soda asbestos absorber and M4 is the final mass of 

soda asbestos absorber. The percentage weight of hydrogen in the biomass was 

evaluated using Equation 4.6. 

 
(4.6) 

 

Where M5 is the initial mass of water absorber, M6 is the final mass of water absorber, 

MAl is the mass of moisture in the aluminium oxide and Mc is the percentage moisture 

content of biomass. 
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4.2.3  Calorific Value (CV) Determination of Biomass  

The calorific value of a given biomass is the heat released by the biomass when it is 

completely burnt at standard pressure (1 bar) and reference temperature (298 K). The 

higher the calorific value of a given biomass, the greater the heat released. An empty 

crucible was weighed. 1.0 g of biomass sample was added gradually to the crucible and 

the weight of crucible plus the content was measured. The crucible was tapped gently 

to evenly spread the sample over the bottom of it. A 10 cm piece of nichrome wire was 

stretched between the electrodes of the bomb cap and the bomb cap was placed on a 

special stand. The crucible was placed in its holder and it was ensured that the wire 

nearly made contact with the sample. The bomb was assembled while making sure 

that the sealing ring was correctly positioned in its groove within the bomb cap and 

also it was ensured that both metal surfaces were cleaned and then the metal cap was 

tightened by hand. The F1 button on the LED display of the bomb calorimeter was 

pressed and 2 litres of water was decanted from the cooler circuit into the calorimeter. 

 

The filling tube to the bomb was connected while aligning the hole in the filler cap with 

the hole in the bomb cap. Then the oxygen cylinder was turned on through the values 

and Oxygen fill was pressed on the LED display of the calorimeter. After the display 

indicated that the bomb was filled with sufficient oxygen the filling was removed and a 

tommy-bar was used to lift the bomb into the calorimeter. The calorimeter vessel was 

placed inside the calorimeter in such a way that the handle was not impeding the 

stirrer. The bomb was then placed inside the calorimeter vessel and two black 

electrodes were attached to the bomb cap. The lid of the water jacket was lowered 

carefully. The standby light was checked to be on and then the start button was 

pressed on the LED display and the necessary details were entered into the system. 

Finally the bomb was removed from the calorimeter and examined for complete 

combustion. The final temperature increment was given by the calorimeter and the 

calorific value was computed using Equation 4.7.  

 
(4.7) 
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4.3 Pyrolysis of Biomass 

The pyrolysis of biomass helps to produce carbon-rich product from the various 

biomasses which are needed to power the direct carbon fuel cell. An empty ceramic 

boat was weighed, and then the biomass was put inside the boat and reweighed. The 

biomass sample was dried at 100oC for 1 hour before pyrolysing using Lenton 

cylindrical furnace (England, Figures 4.7-4.10). The pyrolysis was carried out in the 

furnace using a particle size range of 0.50 to 1.00 mm. In each run of the experiment 

6.0 g of feed sample was fed into the reactor. The pyrolysis experiment was conducted 

at a temperature of 400oC with a heating rate of 7oC/min. On reaching the pyrolysis 

temperature of 400oC, the sample was held for 30 min at this temperature to complete 

the pyrolysis process (the pyrolysis process took 70 min.). After the pyrolysis and on 

cooling, the reactor was opened and the solid product (char) weighed. The char was 

finely ground by hand milling using mortar and pestle. Nitrogen gas was used to purge 

the system during and after the experiment using 2000 cm3/min of flow rate. The 

temperature profile measured for the Lenton Furnace was investigated and the results 

are presented in Chapter 5. The furnace was initially programmed as follows: 

FR= N2 flow rate = 2000 cm3/min 

R1= Ramp rate 1 = 10oC/min 

L1= Target set point 1= 100oC  

D1= Dwell time 1 = 60 min 

R2= Ramp rate 2 = 7oC/min 

L2= Target set point 2= 400oC 

D2= Dwell time 2 = 30 min 

 



Chapter 4                                                                                                                                          Experimental 
 

110 
 

Exhaust Vent

Exhaust pipe

Cylindrical tube Lenton Furnace Digital thermometer

Rotameter

N2 gas tube

Control panel

 

Figure 4.7: Lenton cylindrical furnace used for pyrolysis (Model LTF 16/50/180) 

 

After the temperature profile of the furnace was taken, and on careful observations of 

the product of the pyrolysis process, there was a need to modify the Lenton furnace to 

give better temperature profile and pyrolysis product. The modified furnace is shown 

in Figure 4.8. The pyrolysis experiment were then repeated at a temperature of 800oC 

using a nitrogen flow rate of 4000 cm3/min and the furnace was programmed as 

below:  

FR= N2 flow rate = 4000 cm3/min 

R1= Ramp rate 1 = 10oC/min 

L1= Target set point 1= 100oC 

D1= Dwell time 1 = 60 min 

R2= Ramp rate 2 = 7oC/min 

L2= Target set point 2= 900oC 
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D2= Dwell time 2 = 30 min. 

 

Gas inlet tube 
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Figure 4.8: Modified Lenton cylindrical furnace used for pyrolysis (Model LTF 

12/75/610)  

 

Further modifications were needed on the cylindrical furnace to accommodate the 

liquid product from the biomass during the pyrolysis. A condenser was designed and 

connected to the furnace with an outlet at the base to collect the liquid product of the 

reaction. The modified furnace and condenser are shown in Figures 4.9 and 4.10.  
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Figure 4.9: More modification to Lenton furnace incorporating a condenser 
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Figure 4.10: Components of the condenser 
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4.4 X-Ray Diffraction (XRD) Analysis  

X-ray diffraction analyses carried out were important in the determination of the 

structure of the various biomass carbons used in this research. 1.0 g sample of the 

carbon was put into a circular metal disc. The disc was then placed on a spring cover 

which was clamped on to a bigger cylindrical disc. The mechanism was such that once 

the sample was clamped to the bigger disc it holds the sample firmly in place and 

ready for X-ray diffraction measurement. The sample was placed in the X-ray machine 

(Siemens D500 X-Ray Diffractometer System) and the computer linked to the X-ray 

machine was readjusted for fresh reading. The X-ray machine shuttle was switch on. 

The computer reading was adjusted between 0 and 80 degree.  

 

4.5 Particle Analysis with Malvern Mastersizer 

The biomass carbon particle sizes were measured using the Malvern Instrument 

(Mastersizer S standard bench MAM 5004). 0.5 g of the carbon was dispersed in 

distilled water and fed through the dispenser unit. The control panel was used to 

regulate the speed of the pump to 2610 RPM. The computer attached to the unit was 

used to capture the data of the dispersed solution being analysed in the Malvern 

Mastersizer. Figure 4.11 show the Malvern Mastersizer and some output results are 

presented in Appendix A. 

 

4.6 Ball Milling of Biomass Carbon 

In order to get smaller particles after the hand milling of the biomass carbon, the 

Fritsch Planetary mills was used. The carbons were milled in a stainless steel bowl 

using stainless steel balls (diameter of 1 mm and 5 mm) at 250 RPM for 40 minutes. 
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Figure 4.11: Malvern Mastersizer used for particle size analysis. 

 

4.7 Design and Assembling of the Direct Carbon Fuel Cell (DCFC) 

The design of the MCDCFC followed the pattern suggested by Cooper and co-workers 

(Cooper et al., 2004). The cathode of the DCFC was made up of nickel mesh (after 

several tests the nickel mesh was changed to gold mesh for better performance). The 

anode was made up of a porous nickel mesh with a thickness of 1.5 mm, diameter of 

25 mm and 40% void, which provided the conductive surface for effective carbonate 

ions transportation. After several tests the porous nickel mesh was changed to gold 

mesh. The electrolyte was a carbonate mixture of Li2CO3 and K2CO3, mixed in the ratio 

of 38 mol.% Li2CO3 and 62 mol.% K2CO3 (Cooper et al., 2004). Gold wires were used as 

electrical contacts on the electrode (anode and cathode).  

 

4.7.1 Preparation of Carbonate Electrolyte using ZrO2 Cloth (ZYW-30A)  

Carbonate electrolyte was prepared using zirconia cloth (ZrO2) and molten mixture of 

K2CO3 and Li2CO3 to provide the medium for electrochemical reaction in the MCDCFC. 

12.4 g of K2CO3 granule was mixed with 7.6 g of Li2CO3 powder in a ceramic crucible 

making 20 g of the mixture (Cooper et al., 2004). The mixture was thoroughly stirred 

using a stirrer. The bursen burner was prepared for melting the mixture. Bit by bit the 

sample was put into the stainless steel bowl on top of the burner and then stirred 
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continuously (Figure 4.12). The temperature of the heating was checked using a K-type 

Digital thermocouple inserted into the mixture from time to time. The thermocouple 

was connected to a reader which gave the prevailing temperatures. A melting 

temperature of 550oC was observed. 

 

The ZrO2 cloth (ZYW-30A) was cut into diameter of 25 mm. The zirconia cloth was then 

dipped into the melted mixture of potassium carbonate and lithium carbonate to 

saturate it. The saturated cloth was removed and placed on a flat surface to cool. The 

carbonate mixture coating on the zirconia cloth was thick, this was reduced by 

scrapping off the excess layer using Dremel 300 multi-tool accessories.  

 

Digital 
thermometer Bursen 

burner

Stainless 
steel bowl

 

Figure 4.12: Experimental setup for saturation of ZrO2 cloth (ZYW-30A). 

 

4.7.2 Preparation of Carbon Fuel Particles  

The fuel used in the DCFC was a mixture of carbon and carbonate, carbon was the 

actual fuel but it was mixed with carbonates which become molten at the operating 

temperature of the DCFC and permit the quick electrochemical reaction in the cell. The 
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carbon/carbonate salt mixture was prepared consisting of biomass carbon (15 wt. %), 

lithium carbonate (46.6 wt.%) and potassium carbonate (53.4 wt. %)(Cooper, 2008; 

Cooper et al., 2004). 16.02 g of potassium carbonate (K2CO3), 13.98 g of lithium 

carbonate (Li2CO3) and 4.5 g of biomass carbon powder were measured. The carbonate 

mixture (Li2CO3/K2CO3) was thoroughly mixed together and dissolved in 25 ml of 

distilled water to ensure proper mixing. The mixture was placed in the oven at 100oC 

for 4 hours to dry off the moisture. The carbonate mixture was finely ground and 

mixed with the carbon powder to form the fuel particle for the fuel cell.  

 

4.7.3 Behaviour of Carbon Fuel Particles (Carbon/Carbonate Mixture)  

The behaviour of the carbon/carbonate mixture was tested in order to predict the 

behaviour of the mixture during its operation in the DCFC. 1.0 g of the 

carbon/carbonate mixture was weighed and placed in a crucible. This mixture was 

heated using a bursen burner to a temperature of 450oC. It was observed that the 

mixture began to melt as the temperature increases, some of the fuel particles were 

beginning to ignite as the temperature increased.  

 

4.7.4 Assembling of the DCFC 

The assembling of the fuel cell was done after the various preparations of the anode, 

cathode and electrode assembly. The electrochemical cell units were placed between 

the two ceramic cylindrical tubes. Gold wire contacts were used at both the anode and 

cathode. Figure 4.13 shows the various parts of the DCFC. Figure 4.14 show the 

assembled DCFC. Figures 4.15 and 4.16 give the schematic components and 

dimensions of the DCFC.  
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Figure 4.13: Components of the DCFC 

(a)                                                (b)  

Figure 4.14: (a) Initial and (b) modified direct carbon fuel cell designs.  
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Figure 4.15: Schematic of the direct carbon fuel cell with overall height of 280 mm. 
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Figure 4.16: Dimensions in mm of the direct carbon fuel cell (overall height 280 mm). 
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The DCFC was located between the two ceramic cylinders and mica seals were used to 

give a compressive hold around the DCFC, helping to prevent the leakage of gases and 

fuels from the system. Another mica seal was placed at the base to tolerate any 

expansion of material when the DCFC was placed in the furnace. Gold wire contacts 

were passed through the anode and the cathode as shown in Figure 4.17. 

 

Gold wires

Cathode

Anode

Metallic 
support

Porous nickel

Zirconia 
electrolyte

 

Figure 4.17: DCFC appearance after initial performance in furnace 

 

The DCFC system was tightened and secured by using springs, nuts and bolts, these 

provided the tension and support needed to hold the DCFC in the furnace. The wire 

connectors were insulated using tiny white ceramic beads (Figure 4.17). A multimeter 

was used to test for electrical continuity in the anode and cathode side of the fuel cell. 

The connection was such that the probe was placed on the exposed side of the 

cathode and on the gold wire coming out of the cathode, and the same was done also 

on the anode side. Also the resistance between the electrodes were measured to 

check the electrical isolation of the two.  
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Figure 4.14 shows the initial and the modified design of the DCFC. The first one 

provided a firm compression for the electrode assembly, but on heating inside the 

furnace the springs lost their firmness and the contacts could not be guaranteed 

during fuel cell operation. Figure 4.14b gives the modification done to the DCFC in 

which the bolts and the steel plates were moved toward the top of the ceramic tube. 

In this case the electrode assembly contacts within the fuel cell could be guaranteed 

during operations.  

 

2.0 g of the carbon/carbonate mixture was put through the anode side of the DCFC 

system. The connections of the electrical components were done by connecting the 

electrodes to the voltmeter. A thermocouple was connected through the cathode side 

in the case of the MCDCFC and anode side for SODCFC to monitor the temperature of 

the system. Before the fuel cell could be ready for testing, gas feeds were also 

connected to the system. Nitrogen gas was connected at the top inlet to the anode (to 

purge the system from CO2 produced). Air/CO2 was connected to the bottom inlet for 

the purpose of removing the gases produced at the surface of the cathode thereby 

ensuring adequate oxidant for the half-cell electrochemical reaction. For SODCFC only 

air was connected to the cathode.  

 

4.7.5 Preparation of the SODCFC button cells 

Button cells for the solid oxide electrolyte direct carbon fuel cell (SODCFC) were 

obtained from FuelCell Materials Ltd. (Ohio, USA). The button cells were 25 mm in 

diameter. The anode side consist of nickel oxide/ZrO2 and the cathode consists of 

Lanthanum Strontium Manganese (LSM). These had to be subjected to high 

temperature operations to reduce the nickel oxide to nickel cermet. The furnace was 

set to 900oC with a heating rate of 10oC/min. Hydrogen gas (100 cm3/min, 5%) was 

introduced at 800oC to help in the reduction while nitrogen gas was introduced at 

300oC to purge the furnace. The H2 gas line was purged several times before 

connecting into the furnace to remove any air in the pipe. The button cells were left in 
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the furnace for one hour at 900oC, with hydrogen and nitrogen gases running, the 

furnace was then switch off with the gases running. Hydrogen gas was switched off at 

800oC while the nitrogen was switched off at 300oC. Gold mesh was bonded on each 

side (to serve as the current collector) of the button cells using silver ink. It was then 

placed in the furnace at 900oC for 20 minutes to allow silver ink to melt and form a 

good bond then cooled down as before with the gases. On cooling LSM ink was spread 

over the cathode side to bridge the gold mesh and the LSM electrolyte side then 

placed in a furnace at 100oC for 20 minutes to dry. The anode side was spread with 

nickel ink over the gold mesh to bridge it with the anode electrolyte side and also place 

in the furnace for 20 minutes at 100oC. On cooling the button cells were used as the 

electrode assembly of the SODCFC.  

 

4.7.6 Performance Testing Setup of the DCFC 

Figures 4.18 to 4.21 show the complete DCFC stand, showing the digital thermocouple, 

resistor box, voltmeter, furnace in which the DCFC was heated and the various 

connections for the gases.  With all these in their right places and in order to prevent 

any rapid expansion of the cell, the furnace was heated up gradually at 10 oC/min. 

When the MCDCFC temperature was at 250oC, nitrogen gas was introduced through 

the anode at a rate of 200 cm3/min to purge it. At a temperature of 350oC the air/CO2 

mixture was released through the cathode at a rate of 1500 cm3/min for air, and 600 

cm3/min for CO2. For the SODCFC nitrogen was at 500 cm3/min and air at 1000 

cm3/min. The DCFC was heated up to a temperature of 800oC while measuring the 

voltage outputs. After the measurement the furnace was shut down with nitrogen gas 

running till 300oC. Figures 4.20 and 4.21 show the external and internal sections of the 

resistor box used to apply different loads on the DCFC. Twelve different resistances 

were used (1.167 MΩ to 1.2 Ω), the open circuit voltage was taken at the highest 

resistance. The switch on the box was turned to the next resistance while allowing the 

voltage to settle down and the reading taken. This was repeated each time for all the 

resistances and the voltages taken. 
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Figure 4.18: Experimental setup for the direct carbon fuel cell  
 

 

Figure 4.19: Direct carbon fuel cell in operation 
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Figure 4.20: Resistor and voltmeter connected to the DCFC  
 

 

Figure 4.21: Internal section of the resistor box.  
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5.1 Introduction  

This chapter give the descriptions of the various results obtained from pyrolysis, XRD, 

SEM and others during this research work. The temperature profiles obtained from the 

Lenton cylindrical furnace used for the pyrolysis of the biomass are briefly described. 

The proximate, ultimate and calorific values analyses of the biomass and carbon 

produced through the biomass pyrolysis reactions are presented. For comparison basis 

two industrial carbon results are also given. Both the hand and ball milled carbon 

particle analyses are presented here. The X-ray diffraction and scanning electron 

microscopy for the biomass carbons are given. 

 

5.2 Lenton Cylindrical Furnace for pyrolysis 

5.2.1 Lenton Cylindrical Furnace Temperature Profile 

The temperature profiles of the Lenton cylindrical furnace (Lenton Model LTF 

16/50/180, England) were measured from one end of the cylindrical ceramic tube to 

the other, that is, from the entrance to the exit point. This was necessary to be able to 

predict the prevailing furnace temperature at a given set point and position within the 

furnace. The first sets of profiles are presented in Figures 5.1 and 5.2 and a schematic 

of the furnace is in Figure 5.3. Results from this temperature profiles shows that the 

peak in temperature appeared toward the centre of the cylindrical tube. From Figure 

5.1 the peak of the temperatures appear at 420 mm to 480 mm for the set points of 

400oC and 450oC while at 100oC the peak is around 300 mm. These profiles are very 

important in order to determine the right positioning of the biomass during pyrolysis. 

For the drying process when the Lenton furnace is set at 100oC, the samples were 

placed at about 220 mm from the entrance of the furnace and for pyrolysis at 400oC 

the samples were placed at 290 mm. For pyrolysis at 800oC the samples were place at 

420 mm. The outputs of the pyrolysis reactions from this furnace were not satisfactory 

as there were some indications that certain parts of the biomass were not well 

pyrolysed. This necessitated the need to modify and improve the results from the 

furnace, bringing about the use of the modified Lenton (Model LTF 12/75/610, 
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England). The temperature profiles were better distributed as shown in Figures 5.4 and 

5.5. A schematic of the furnace is in Figure 5.6.  

 

 

Figure 5.1: Lenton furnace temperature profile at set point of 100-450oC. 

 

 

Figure 5.2: Lenton furnace temperature profile at set point of 500-600oC. 
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Figure 5.3 shows the dimensions and components of the Lenton cylindrical furnace, 

the original set-up is shown in Figure 4.7 (Chapter 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Dimensions and components of the Lenton furnace (Model LTF 16/50/180) 
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furnace (LTF 12/75/610) was obtained. The temperature profiles obtained are 

presented in Figures 5.4 to 5.5. 

 

 

Figure 5.4: Modified Lenton furnace temperature profile at set point of 200-600oC. 

 

 

Figure 5.5: Modified Lenton furnace temperature profile at set point of 800-1000oC.  
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Figure 5.6 gives the dimensions and parts of the modified Lenton cylindrical furnace, 

the original set- up is shown in Figure 4.8 (Chapter 4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Dimensions and components of the modified Lenton furnace (Model LTF 

12/75/610) 
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5.3 Biomass Analyses 

The results of the proximate, ultimate and calorific values analyses on miscanthus 

straw, wheat straw, switchgrass straw, willow wood chip, spruce wood chip and poplar 

wood chip are given in Tables 5.1 to 5.7. Table 5.7 gives the comparison between the 

six biomasses. The moisture contents of the biomass vary between 5.50 wt.% and 7.38 

wt.%. Miscanthus and willow wood chip samples have the highest moisture content 

while poplar wood chip had the lowest content (Table 5.7). The ash content analyses 

presented in Tables 5.1 to 5.6 show that the wood chips have lower ash contents with 

1.61 wt.%, 0.30 wt.%, and 0.85 wt.% for willow, spruce and polar wood chips 

respectively. The ash content was higher for the energy crops with 2.00 wt.%, 7.12 

wt.%, and 7.39 wt.% for miscanthus, wheat and switchgrass respectively. The volatile 

contents vary between 70.66 wt.% and 79.74 wt.%, with wheat straw having the 

lowest value at 70.66 wt.% and poplar wood chip having the highest at 79.74 wt.%. 

The volatile contents of the wood chips were slightly higher than those of the energy 

crop with the exception of miscanthus (75.84 wt.%).  

 

Table 5.1: Proximate, ultimate and calorific value analyses for ground miscanthus  

Analysis Proximate analysis Calorific 

value 

(CV) 

MJ/kg 

Ultimate analysis 

Moisture 

contents 

wt.% 

Ash 

wt.% 

Volatiles 

wt.% 

aFixed 

carbon 

wt.%  

Carbon 

(C) 

wt.% 

Hydrogen  

(H2)  

wt.% 

1 

2 

3 

6.24 

7.97 

7.93 

2.12 

1.85 

2.02 

78.95 

73.88 

74.70 

12.69 

16.30 

15.35 

19.08 

19.69 

17.72 

45.88 

45.50 

45.88 

4.68 

5.37 

5.22 

Average 7.38 2.00 75.84 14.78 18.83 45.75 5.09 

a
by difference 
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Table 5.2: Proximate, ultimate and calorific value analyses for ground Switchgrass  

Analysis Proximate analysis Calorific 

value  

(CV) 

MJ/kg 

Ultimate analysis 

Moisture 

contents 

wt.% 

Ash 

wt.% 

Volatiles 

wt.% 

aFixed 

carbon 

wt.%  

Carbon 

(C) 

wt.% 

Hydrogen  

(H2) 

wt.% 

1 

2 

3 

7.00 

7.09 

7.03 

7.12 

7.72 

7.34 

71.11 

71.01 

73.06 

14.77 

14.18 

12.57 

16.91 

18.34 

18.32 

39.99 

42.96 

42.75 

2.64 

4.90 

4.71 

Average 7.04 7.39 71.73 13.84 17.86 41.90 4.08 

aby difference 

 

Table 5.3: Proximate, ultimate and calorific value analyses for ground wheat straw  

Analysis Proximate analysis Calorific 

value  

(CV) 

MJ/kg 

Ultimate analysis 

Moisture 

contents 

wt.% 

Ash 

wt.% 

Volatiles 

wt.% 

aFixed 

carbon 

wt.%  

Carbon 

(C) 

wt.% 

Hydrogen  

(H2) 

wt.% 

1 

2 

3 

5.93 

5.83 

5.54 

7.77 

7.30 

6.29 

71.04 

71.17 

69.78 

15.26 

15.70 

18.39 

17.40 

18.44 

19.18 

42.63 

38.73 

42.36 

5.20 

4.57 

3.35 

Average 5.77 7.12 70.66 16.45 18.34 41.24 4.37 

aby difference 
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Table 5.4: Proximate, ultimate and calorific value analyses for ground willow wood  

Analysis Proximate analysis Calorific 

value 

(CV) 

MJ/kg 

Ultimate analysis 

Moisture 

contents 

wt.% 

Ash 

wt.% 

Volatiles 

wt.% 

aFixed 

carbon 

wt.%   

Carbon 

(C)  

wt.% 

Hydrogen  

(H2)  

wt.% 

1 

2 

3 

7.30 

7.33 

7.36 

1.63 

1.48 

1.72 

75.10 

75.49 

75.31 

15.97 

15.70 

15.61 

19.47 

19.48 

18.91 

45.77 

43.98 

46.21 

3.71 

3.26 

3.90 

Average 7.33 1.61 75.30 15.76 19.29 45.32 3.62 

aby difference 

 

Table 5.5: Proximate, ultimate and calorific value analyses for ground spruce wood 

Analysis Proximate analysis Calorific 

value (CV) 

MJ/kg 

Ultimate analysis 

Moisture 

contents 

wt.% 

Ash 

wt.% 

Volatiles 

wt.% 

aFixed 

carbon 

wt.%  

Carbon 

(C) wt.% 

Hydrogen  

(H2) 

wt.% 

1 

2 

3 

6.87 

7.07 

7.01 

0.21 

0.30 

0.39 

77.18 

76.95 

78.65 

15.74 

15.68 

13.95 

19.64 

20.03 

19.34 

46.67 

46.10 

45.91 

4.25 

6.57 

5.48 

Average 6.98 0.30 77.59 15.12 19.67 46.23 5.43 

aby difference 
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Table 5.6: Proximate, ultimate and calorific value analyses for ground poplar wood 

Analysis Proximate analysis Calorific 

value (CV) 

MJ/kg 

Ultimate analysis 

Moisture 

contents 

wt.% 

Ash 

wt.% 

Volatiles 

wt.% 

aFixed 

carbon 

wt.%  

Carbon 

(C) 

wt.% 

Hydrogen 

(H2) 

wt.% 

1 

2 

3 

5.51 

5.56 

5.44 

0.81 

0.83 

0.92 

78.98 

79.74 

80.49 

14.70 

13.87 

13.15 

20.37 

20.24 

20.63 

46.15 

45.93 

45.73 

4.48 

6.05 

4.39 

Average 5.50 0.85 79.74 13.91 20.41 45.94 4.97 

aby difference 

 

The fixed carbon contents obtained by difference were between 13.84 wt.% to 16.45 

wt.%. Switchgrass has the lowest value of 13.84 wt.% and wheat straw has the highest 

value of 16.45 wt.%.  

 

Table 5.7: Comparison of ground biomass analyses 

Biomass 

 

Proximate analysis Calorific 

value (CV) 

MJ/kg 

Ultimate analysis 

Moisture 

contents 

wt.% 

Ash 

wt.% 

Volatiles 

wt.% 

aFixed 

carbon 

wt.% 

Carbon 

(C) 

wt.% 

Hydrogen 

(H2) 

wt.% 

Miscanthus 

Switchgrass 

Wheat 

7.38 

7.04 

5.77 

2.00 

7.39 

7.12 

75.84 

71.73 

70.66 

14.78 

13.84 

16.45 

18.83 

17.86 

18.34 

45.75 

41.90 

41.24 

5.09 

4.08 

4.37 

Willow  

Spruce 

Poplar 

7.33 

6.98 

5.50 

1.61 

0.30 

0.85 

75.30 

77.59 

79.74 

15.76 

15.12 

13.91 

19.29 

19.67 

20.41 

45.32 

46.23 

45.94 

3.62 

5.43 

4.97 

a
by difference 
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The calorific value (CV) analyses presented in Tables 5.1 to 5.7 show that the wood 

chips have higher CV of 19.29 MJ/kg, 19.67 MJ/kg, 20.41 MJ/kg for willow, spruce and 

polar wood chips respectively. The CVs were lower with the energy crop with 18.83 

MJ/kg, 18.34 MJ/kg, and 17.86 MJ/kg for miscanthus, wheat and switchgrass 

respectively. The overall assessment shows that ground poplar wood chip have the 

highest CV (20.41 MJ/kg) and ground switchgrass have the lowest CV (17.86 MJ/kg). 

Some of these results from the biomass analyses are in agreement with findings from 

other researchers (Ryu et al., 2006; Minkova et al., 2000; Jenkins et al., 1998). 

 

5.4 Pyrolysis and Carbon Analyses 

5.4.1 Pyrolysis Results from the Old Lenton Furnace  

Under the old Lenton furnace, 3.0 g of the biomass samples were pyrolysed at a time 

using ceramic boats (65 mm long and 25mm wide) at 400oC, 650oC and 800oC. 

Different results were obtained at 400oC, 650oC and 800oC. At a temperature of 400oC, 

there were fluctuations in the values obtained; this observation was as a result of 

placing samples at different position in the furnace. It was observed that the samples 

positioned at 550 mm from the entrance of the furnace were not fully pyrolysed thus 

giving higher percentage weight of carbon (partially pyrolysed). Sample at 290 mm 

from the entrance of the furnace were fully pyrolysed hence giving smaller carbon 

percentage weight values. The carbon percentage weights for the samples at 550 mm 

were high and straw like structure still observable in the sample after pyrolysis. 

Pyrolysis at 400oC took about 60 minute to dry the sample, 40 minutes to reach the 

pyrolysis temperature (400oC), and 30 minute dwelling at that temperature and took a 

further 120 minute to cool down to 100oC after pyrolysis reaction. Pyrolysis at 800oC 

took about 60 minute to dry the sample, 80 minutes to reach the pyrolysis 

temperature (800oC), and 30 minute dwelling at that temperature and took a further 

180 minute to cool down to 100oC after the pyrolysis.  
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From this experiment of pyrolysis carried out, it was observed that at higher 

temperature (800oC) only ash content remained, signifying that the carbon present in 

samples were being oxidised to CO2, possibly as a result of air getting into the furnace. 

This could be from these points: 

1. Through the edges of the cylindrical alumina tube (mostly the entrance). 

2. From the nitrogen/air cylinder 

The solutions applied were to: 

1. Increase the flow rate of N2 gas from 2000 to 4000 cm3/min. 

2. Use only N2 (O2 free) gas cylinder 

3. Tighten and seal the entrance into the alumina cylindrical tube. 

In order to ascertain the above observations, that is, losing carbon (by oxidising to CO2) 

during the process of pyrolysis, industrial graphite was tested and exposed to the same 

experimental conditions of pyrolysis at 800oC. The results are presented in Table 5.8, it 

reveals that we lost about 23% and 39% of carbon during the process, as indicated by 

the first two results. A more permanent seal was now placed at the entrance using an 

Asbo tape, this proved to be effective as the last result shown in Table 5.8 show that 

5% was lost, possibly the moisture lost from sample. The remaining miscanthus 

samples were now pyrolysed under the improved condition and the results are 

presented in Table 5.9 with carbon content of about 20%.  
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Table 5.8: Industrial graphite under same pyrolysis condition 

Temperature 

(oC) 

Heating rate 

(oC/min) 

Initial 

mass (g) 

Final 

mass (g) 

Carbon 

(Wt.%) 

800 

800 

800 

7 

7 

7 

1.8804 

2.8033 

1.6665 

1.1444 

1.8894 

1.5842 

60.9 

67.4 

95.1 

 

Table 5.9: Pyrolysis of miscanthus at 800oC 

Temperature 

(oC) 

Heating rate 

(oC/min) 

Biomass 

mass (g) 

Carbon 

mass (g) 

Carbon 

(wt.%) 

800 

800 

800 

800 

7 

7 

7 

7 

3.5362 

3.1628 

3.4501 

3.6524 

0.8016 

0.6396 

0.7797 

0.8654 

22.7 

20.2 

22.6 

23.7 

 

5.4.2 Pyrolysis Results from the Modified Lenton Furnace 

Tables 5.10 to 5.15 give the results obtained from the pyrolysis of the six biomasses 

considered. The same operating temperature (800oC) and heating rates (7oC/min) 

were applied to all the biomasses. For every experimental run 7.0 g of the biomass 

were pyrolysed in which miscanthus gave 24 wt.% carbon, switchgrass gave 25 wt.%, 

wheat gave 28 wt.%, willow gave 24 wt.%, spruce gave 22 wt.% and poplar gave 20 

wt.% of the carbon. All these results are reproducible and they were carried out many 

times to produce enough carbon materials for the fuel cell operations. 
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Table 5.10: Miscanthus pyrolysis using modified Lenton furnace  

Temperature 

(oC) 

Heating 

rate 

(oC/min) 

Moisture 

content 

(wt.%) 

Biomass 

mass  

(g) 

Carbon 

mass  

(g) 

Percent of 

carbon  

(wt.%) 

800 

800 

800 

800 

800 

800 

800 

800 

800 

7 

7 

7 

7 

7 

7 

7 

7 

7 

6.87 

6.80 

6.75 

6.78 

6.72 

6.70 

6.69 

6.69 

6.70 

6.1723 

7.1530 

6.9467 

6.7956 

8.0341 

7.8743 

7.1094 

7.2345 

6.9378 

1.4127 

1.6148 

1.5665 

1.5958 

1.8590 

1.8059 

1.7036 

1.7108 

1.6269 

22.87 

22.58 

22.55 

23.48 

23.14 

22.93 

23.96 

23.65 

22.45 

 

Table 5.11: Switchgrass pyrolysis using modified Lenton furnace  

Temperature 

(oC) 

Heating 

rate 

(oC/min) 

Moisture 

content 

(wt.%) 

Biomass 

mass  

(g) 

Carbon 

mass  

(g) 

Percent of 

carbon  

(wt.%) 

800 

800 

800 

800 

800 

800 

800 

800 

800 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7.73 

7.42 

7.65 

7.62 

7.26 

7.38 

7.45 

7.23 

7.42 

5.9848 

6.2410 

6.1465 

6.6726 

6.2307 

7.1171 

6.8608 

6.5526 

7.3956 

1.5538 

1.6436 

1.6137 

1.7304 

1.6185 

1.8833 

1.7592 

1.6528 

1.8479 

25.96 

26.34 

26.25 

25.93 

25.98 

26.46 

25.64 

25.22 

24.99 
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Table 5.12: Wheat straw pyrolysis using modified Lenton furnace  

Temperature 

(oC) 

Heating 

rate 

(oC/min) 

Moisture 

content 

(wt.%) 

Biomass 

mass  

(g) 

Carbon 

mass  

(g) 

Percent of 

carbon  

(wt.%) 

800 

800 

800 

800 

800 

800 

800 

800 

7 

7 

7 

7 

7 

7 

7 

7 

6.31 

6.12 

6.40 

6.06 

6.26 

6.17 

5.85 

6.10 

6.1425 

5.6371 

5.7690 

6.4061 

5.8273 

5.9584 

6.5384 

6.1719 

1.7486 

1.5815 

1.6398 

1.7905 

1.6238 

1.6702 

1.8071 

1.7250 

28.47 

28.06 

28.42 

27.95 

27.87 

28.03 

27.64 

27.95 

 

Table 5.13: Willow wood chip pyrolysis using modified Lenton furnace 

Temperature 

(oC) 

Heating 

rate 

(oC/min) 

Moisture 

content 

(wt.%) 

Biomass 

mass  

(g) 

Carbon 

mass  

(g) 

Percent of 

carbon  

(wt.%) 

800 

800 

800 

800 

800 

800 

800 

800 

800 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7.59 

7.52 

7.50 

7.48 

7.52 

7.77 

7.69 

7.59 

7.61 

7.0610 

7.9222 

7.6216 

7.3938 

8.3241 

8.1925 

7.4495 

8.1115 

7.6714 

1.7127 

1.9019 

1.8206 

1.8714 

2.0654 

2.0449 

1.8217 

1.9251 

1.8211 

24.26 

24.01 

23.89 

25.31 

24.81 

24.96 

24.45 

23.73 

23.74 
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Table 5.14: Spruce wood chip pyrolysis using modified Lenton furnace 

Temperature 

(oC) 

Heating 

rate 

(oC/min) 

Moisture 

content 

(wt.%) 

Biomass 

mass  

(g) 

Carbon 

mass  

(g) 

Percent of 

carbon  

(wt.%) 

800 

800 

800 

800 

800 

800 

800 

800 

800 

7 

7 

7 

7 

7 

7 

7 

7 

7 

6.85 

6.63 

7.07 

7.09 

6.83 

7.13 

6.45 

6.21 

6.40 

9.2229 

8.4301 

8.9354 

8.2206 

7.7835 

8.7246 

9.6293 

8.6195 

10.4210 

2.0282 

1.8253 

1.9342 

1.8597 

1.7399 

1.9632 

2.1639 

1.9216 

2.3579 

21.99 

21.65 

21.65 

22.62 

22.35 

22.50 

22.47 

22.29 

22.63 

 

Table 5.15: Poplar wood chip pyrolysis using modified Lenton furnace  

Temperature 

(oC) 

Heating 

rate 

(oC/min) 

Moisture 

content 

(wt.%) 

Biomass 

mass  

(g) 

Carbon 

mass  

(g) 

Percent of 

carbon  

(wt.%) 

800 

800 

800 

800 

800 

800 

800 

800 

800 

7 

7 

7 

7 

7 

7 

7 

7 

7 

5.61 

5.51 

5.62 

5.66 

5.49 

5.64 

5.78 

5.59 

5.67 

5.3256 

5.9827 

5.7677 

6.3072 

6.5579 

6.1136 

5.8593 

6.4064 

6.3506 

1.0838 

1.1943 

1.1662 

1.2958 

1.3288 

1.2403 

1.1813 

1.2786 

1.2906 

20.35 

19.96 

20.22 

20.54 

20.26 

20.29 

20.16 

19.96 

20.32 
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5.4.3 Carbon Analyses 

The results of the analyses carried out on the six biomasses produced through the 

pyrolysis reactions are presented in Tables 5.16 to 5.21. Tables 5.22 and 5.23 give the 

results of the same analysis on industrial carbon black and industrial graphite. Table 

5.24 on the other hand gives the comparison of the six biomass carbons and the 

industrial carbons. For miscanthus the moisture content from the ground to the 

carbon reduced from 7.38 wt.% to 5.61 wt.% (Tables 5.7 and 5.24). Surprisingly the 

biomass carbons still have high level of moisture in them. The calorific value has 

greatly improved from 18.83 MJ/kg to 29.11 MJ/kg (Tables 5.7 and 5.24). The carbon 

content almost double from 45.75 wt.% to 82.46 wt.% and the hydrogen content 

reduced from 5.09 wt.% to 0.97 wt.% (Tables 5.7 and 5.24). Similar patterns were 

observed for the other biomasses. 

 

From Table 5.24, spruce carbon (32.53 MJ/kg) has the highest calorific value followed 

by poplar (30.90 MJ/kg), then willow (29.56 MJ/kg) then miscanthus (29.11 MJ/kg), 

switchgrass (23.82 MJ/kg) and wheat (23.36 MJ/kg). These heating values will have 

effects on the performance of the biomass fuel in the fuel cells. Also similar patterns 

were observed in the carbon contents of these carbon fuels.  

 

Table 5.16: Moisture, calorific value and ultimate analyses for miscanthus carbon   

Analysis Moisture 

contents (wt.%) 

Calorific value  

(MJ/kg) 

Carbon  

(wt.%) 

Hydrogen  

(wt.%) 

1 

2 

3 

5.78 

5.50 

5.55 

28.93 

29.27 

29.14 

83.50 

80.39 

83.50 

1.47 

0.71 

0.73 

Average 5.61 29.11 82.46 0.97 

 

 



Chapter 5                                                                                      Pyrolysis, XRD, SEM Results & Discussions  
 

142 
 

Table 5.17: Moisture, calorific value and ultimate analyses for switchgrass carbon   

Analysis Moisture 

contents (wt.%) 

Calorific value  

(MJ/kg) 

Carbon 

(wt.%) 

Hydrogen  

(wt.%) 

1 

2 

3 

2.87 

2.66 

2.72 

23.46 

24.20 

23.81 

67.80 

66.43 

67.73 

1.32 

1.26 

1.28 

Average 2.75 23.82 67.32 1.29 

 

Table 5.18: Moisture, calorific value and ultimate analyses for wheat carbon   

Analysis Moisture 

contents (wt.%) 

Calorific value  

(MJ/kg) 

Carbon 

(wt.%) 

Hydrogen  

(wt.%) 

1 

2 

3 

5.41 

5.73 

6.75 

23.38 

23.40 

23.29 

65.89 

64.72 

65.43 

0.56 

0.48 

0.48 

Average 5.96 23.36 65.35 0.51 

 

Table 5.19: Moisture, calorific value and ultimate analyses for willow carbon   

Analysis Moisture 

contents (wt.%) 

Calorific value  

(MJ/kg) 

Carbon 

(wt.%) 

Hydrogen  

(wt.%) 

1 

2 

3 

4.22 

4.21 

4.18 

29.81 

29.44 

29.43 

75.41 

83.60 

83.98 

1.03 

1.65 

1.25 

Average 4.20 29.56 81.00 1.31 
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Table 5.20: Moisture, calorific value and ultimate analyses for spruce carbon   

Analysis Moisture 

contents (wt.%) 

Calorific value  

(MJ/kg) 

Carbon 

(wt.%) 

Hydrogen 

(wt.%) 

1 

2 

3 

2.56 

2.47 

2.19 

32.51 

32.52 

32.57 

92.59 

89.67 

89.91 

1.57 

0.87 

0.90 

Average 2.41 32.53 90.72 1.11 

 

Table 5.21: Moisture, calorific value and ultimate analyses for poplar carbon   

Analysis Moisture 

contents (wt.%) 

Calorific value  

(MJ/kg) 

Carbon 

(wt.%) 

Hydrogen  

(wt.%) 

1 

2 

3 

2.64 

2.69 

2.59 

30.91 

30.93 

30.84 

88.26 

85.45 

77.50 

1.31 

2.64 

1.16 

Average 2.64 30.90 83.74 1.70 

 

The calorific values presented in Table 5.22 shows carbon black having higher CV of 

33.84 MJ/kg and graphite with 32.55 MJ/kg. These heating values are slightly higher 

than those obtained for the biomass carbon and are quoted for comparison purpose 

(Table 5.24). The carbon content is also higher in carbon black than in graphite which 

gives an idea on the differences in the heating values.  
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Table 5.22: Moisture, calorific value and ultimate analyses for carbon black  

Analysis Moisture 

contents (wt.%) 

Calorific value  

(MJ/kg) 

Carbon 

(wt.%) 

Hydrogen  

(wt.%) 

1 

2 

3 

0.74 

0.49 

0.35 

35.16 

33.24 

33.11 

99.56 

99.45 

99.11 

1.26 

0.89 

0.85 

Average 0.53 33.84 99.37 1.00 

 

Table 5.23: Moisture, calorific value and ultimate analyses for graphite 

Analysis Moisture 

contents (wt.%) 

Calorific value  

(MJ/kg) 

Carbon 

(wt.%) 

Hydrogen  

(wt.%) 

1 

2 

3 

0.44 

0.37 

0.40 

32.64 

32.50 

32.51 

98.47 

98.24 

98.45 

0.95 

0.76 

0.73 

Average 0.41 32.55 98.39 0.81 

 

Table 5.24: Comparison of the pyrolysed biomass carbons and industrial carbons 

Biomass Moisture 

contents (wt.%) 

Calorific value  

(MJ/kg) 

Carbon 

(wt.%) 

Hydrogen  

(wt.%) 

Miscanthus 

Switchgrass 

Wheat 

5.61 

2.75 

5.96 

29.11 

23.82 

23.36 

82.46 

67.32 

65.35 

0.97 

1.29 

0.51 

Willow wood 

Spruce wood 

Poplar wood 

4.20 

2.41 

2.64 

29.56 

32.53 

30.90 

81.00 

90.72 

83.74 

1.31 

1.11 

1.70 

Carbon black 

Graphite 

0.53 

0.41 

33.84 

32.55 

99.37 

98.39 

1.00 

0.81 
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5.5 Hand and Ball Milling of Biomass Carbon 

The pyrolysed biomass carbons were subjected to hand milling as well as ball milling 

before preparing them for the fuel cell operations. Tables 5.25 and 5.26 show the 

results of the hand and ball milled carbon particles, sampled results are given in 

Appendix A. The carbon were hand milled for ten minutes and ball milled for forty 

minute using Fritsch (Pulvirisette 6, AGAPE) and a hundred stainless steel balls each of 

1 mm and 5 mm in diameter. 

Table 5.25: Hand milled particle size analysis of biomass carbon 

Carbon Time 

(min) 

Particle size (μm) Specific 

Surface Area 

(m2/g) 

Density 

(g/cm3) Sample 

1 

Sample 

2 

Sample 

3 

Average  

Willow 10 38.58 66.99 26.39 43.99 0.42 1.39 

Switchgrass 10 59.02 6.26 23.27 29.52 0.63 1.39 

Wheat 10 89.96 13.17 16.46 39.86 0.45 1.39 

Poplar 10 83.48 11.27 18.73 37.83 0.53 1.39 

Spruce 10 110.10 20.71 13.40 48.07 0.45 1.39 

Miscanthus 10 18.52 28.12 41.04 29.23 0.57 1.39 

 

Table 5.26: Ball milled particle size analysis of biomass carbon 

Carbon Time 

(min) 

Particle size (μm) Specific 

Surface Area 

(m2/g) 

Density 

(g/cm3) Sample 

1 

Sample 

2 

Sample 

3 

Average  

Willow 40 2.78 2.56 2.56 2.63 2.23 1.39 

Switchgrass 40 2.19 2.27 2.21 2.22 2.55 1.39 

Wheat 40 3.15 2.55 3.35 3.02 2.07 1.39 

Poplar 40 4.89 4.05 4.01 4.32 1.52 1.39 

Spruce 40 8.91 9.04 6.45 8.13 0.91 1.39 

Miscanthus 40 7.21 8.09 8.46 7.92 0.95 1.39 
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After the hand milling, miscanthus had the highest particle size of 15.09 μm, followed 

by spruce (13.18 μm), wheat (12.23 μm), willow (10.62 μm), poplar (10.18 μm) and 

switchgrass (9.18 μm). The ball milling helps to achieve a smaller particle range with 

the highest values recorded for spruce (4.78 μm), followed by miscanthus (4.57 μm), 

poplar (2.87 μm), wheat (2.10 μm), willow (1.93 μm) and switchgrass (1.70 μm). 

 

5.6  X-ray Diffraction (XRD) Pattern 

Powder X-ray diffraction (XRD) analyses were carried out on industrial carbon black 

(Alfa Aesar, USA), industrial graphite (Sigma-Aldrich, USA) and the six biomass carbons. 

The results from these XRD pattern are presented in Figures 5.7 to 5.15. The XRD from 

the industrial carbons are presented as a basis for comparison with the biomass 

carbon. 

  

Figure 5.7: Powder X-ray diffraction pattern for industrial carbon black 

 

Figure 5.7 gives the powder XRD of industrially supplied carbon black of 99.9% purity 

(metal basis), the highest peak is at an angle of 25.345o (2θ-axis), corresponding to a d-

spacing of 3.5113 on a relative intensity of 100%. These figures and values were 
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generated using the software (STOE WinXPOW 2.10) that runs with the Siemens D500 X-

Ray Diffractometer System.  

 

Figure 5.8: Powder X-ray diffraction (XRD) pattern on graphite 

 

The diffraction pattern of a substance is an “almost unique” fingerprint which is 

defined by the reflection positions (this is measured as the d-spacing or 2θ-indicated 

by the x-axis of the XRD figures) and the reflection intensities (this is measured as the 

peak height- indicated by the y-axis of the XRD figures). The diffraction pattern of a 

substance may therefore allow the identification of an unknown sample, this could be 

achieved by comparing the diffraction pattern of the unknown with reference pattern 

for known pure materials (Hyatt, 2008; Cullity and Stock, 2001; Jenkins and Synder, 

1996). The underlying principle in phase identification is to match the positions and 

intensities of the unknown with the reference pattern of the known. This could be 

done using the Hanawaldt system or more recently using computer based match 

algorithm as presented by STOE WinXPOW 2.10 (Hyatt, 2008; Reeves, 2005). Computer 

algorithm uses sample’s chemistry to narrow down possible matches, allows 

background fitting and subtractions. The computer matches has a major advantage of 
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rapid and efficient searching of large database which is invaluable for multiphase 

samples with more than three components (Hyatt, 2008; Reeves, 2005).  

 

Figure 5.8 gives the powder XRD pattern for industrially graphite. The highest peak in 

the figure is at an angle of 26.554o (2θ-axis), corresponding to a d-spacing of 3.3541 on 

a relative intensity of 100%. These figure and value were also generated using the 

software (STOE WinXPOW 2.10) that runs with the Siemens D500 X-Ray Diffractometer 

System. The pattern generated by the graphite sample shows a more crystalline 

structure unlike the disordered structure obtained from carbon black. Figures 5.9 and 

5.10 show the XRD pattern for the miscanthus carbons pyrolysed at 400oC and 800oC. 

These show the progression in obtaining disordered carbon structure through proper 

pyrolysis conditions.  

 

 

Figure 5.9: X-ray diffraction (XRD) pattern for miscanthus pyrolysed at 400oC. 

 

Figure 5.10 gives the XRD of the miscanthus carbon sample to be used in the fuel cell, 

the highest peak in the figure is at an angle of 29.909o (2θ-axis), corresponding to a d-
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spacing of 2.9850 and a relative intensity of 100%. It was observed that the pattern 

generated for the miscanthus carbon is slightly different from those of the carbon 

black and graphite. It was also observed from the figure that the d-spacing are 

different. The d-spacing is the inter-planar spacing available within the carbon 

structure and this gives a representation of the reactive sites within the carbon atom.  

The d-spacing of carbon black shows greater values which suggest a greater unit cell 

size and a greater possibility of reactive sites.  

 

The peak width of the XRD pattern generated by the carbon black (Figure 5.7) suggest 

a disordered form of carbon, this disorder nature is what is important as fuel for the 

direct carbon fuel cell. The pattern generated by the graphite sample (Figure 5.8) is 

narrower, suggesting a form of orderliness of the carbon atom, this type of uniform 

pattern might perform differently in the DCFC because it has been reported that the 

chemical reactivity of carbons to oxidation is known to be strongly dependent on 

structure, particularly the extent of graphitisation (Cao et al., 2007; Cherepy et al., 

2005). Figure 5.9 gives the miscanthus pyrolysed at 400oC, the d-spacing is much lower 

than the industrial carbon black and the graphite which could suggest that it has lower 

reactive sites. Also the peak width of the XRD pattern is not well defined, probably 

suggesting that further processing of the miscanthus is required at higher temperature 

and better pyrolysis conditions.  
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Figure 5.10: X-ray diffraction (XRD) pattern for miscanthus pyrolysed at 800 oC 

 

Figure 5.10 gives the XRD of miscanthus pyrolysed at 800oC. The highest peak in the 

figure is at an angle of 24.014o (2θ-axis), corresponding to a d-spacing of 3.7029 and a 

relative intensity of 100%. The d-spacing is higher than the one pyrolysed at 400oC, this 

probably show a better carbon structure at higher temperatures. The peak width of 

the pattern generated by Figure 5.10 is similar to that of the carbon black, and it 

reveals a form of disordered carbon structure. This may be an indication that the 

structure of the carbons at this pyrolysed condition is suitable for use in the DCFC. 

Figures 5.11 to 5.15 show the powder XRD pattern for switchgrass, wheat, willow, 

spruce and poplar respectively. There are varying degrees of the disordered pattern 

presented in this XRD.  
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Figure 5.11: X-ray diffraction (XRD) pattern for switchgrass carbon 

 

Figure 5.12: X-ray diffraction (XRD) pattern for wheat carbon 

 

The XRD pattern for switchgrass and wheat (Figures 5.11 and 5.12) show some 

similarity with that of carbon black indicating that the char has a degree of disordered 
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graphite content. In evidence also are the sharp peaks corresponding to contributions 

from silica, ash and other impurities identified from the STOE databank spectra 

(Nowakowski et al., 2007; Wornat et al., 1995). Wornat and co-workers (1995) 

reported that the peak at 26.7o correspond to quartz (crystalline SiO2). 

 

Willow and spruce carbons also present different degree of disorderliness as shown by 

Figures 5.13 and 5.14. There are two major peaks for willow at 23o and 44o and similar 

to spruce carbon. The other peaks are associated with the impurities in the biomass 

from the field. These same patterns are similar to those generated by poplar carbon.   

 

 

Figure 5.13: X-ray diffraction (XRD) pattern for willow carbon 
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Figure 5.14: X-ray diffraction (XRD) pattern for spruce carbon 

 

 

Figure 5.15: X-ray diffraction (XRD) pattern for poplar carbon 
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5.7  Scanning Electron Microscope (SEM) of Biomass Carbons  

The six biomass carbons were subjected to scanning electron microscope (SEM) to gain 

further understanding on the structures and size distributions of the carbon particles. 

The SEMs are presented for the hand milled and the ball milled carbons, which are 

shown in Figures 5.16 to 5.27. Figures 5.16 and 5.17 shows the SEM magnification at 

500x for both hand and ball milled poplar carbon. The hand milled shows larger 

particles sizes for poplar and many irregular shapes of the particles. The ball milled 

shows the effects that ball milling had in reducing the size and shape distributions.  

 

 

Figure 5.16: SEM of hand milled poplar carbon particles at magnification of 500x 
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Figure 5.17: SEM of ball milled poplar carbon particles at magnification of 500x 

 

Figures 5.17 and 5.18 show the SEM for the spruce carbon samples. There are 

evidences of larger particle present in the hand milled samples which were reduced by 

the ball milling process. The SEM results for switchgrass carbons are presented in 

Figures 5.20 and 5.21. The hand milled sample shows a combination of large and small 

particles which were further reduced by ball milling. Figures 5.22 to 5.25 show the SEM 

patterns for wheat and willow carbons. Figures 5.26 and 5.27 show the microscopy of 

miscanthus carbon. The two SEM reveals that the particle sizes and shape for the 

miscanthus are similar possibly suggesting that the ball and hand milled samples were 

within the same particle size range.  
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Figure 5.18: SEM of hand milled spruce carbon particles at magnification of 800x 

 

 

Figure 5.19: SEM of ball milled spruce carbon particles at magnification of 800x 
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Figure 5.20: SEM of hand milled switchgrass carbon particles at magnification of 500x 

 

 

Figure 5.21: SEM of ball milled switchgrass carbon particles at magnification of 500x 
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Figure 5.22: SEM of hand milled wheat carbon particles at magnification of 500x 

 

 

Figure 5.23: SEM of ball milled wheat carbon particles at magnification of 500x 
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Figure 5.24: SEM of hand milled willow carbon particles at magnification of 500x 

 

 

Figure 5.25: SEM of ball milled willow carbon particles at magnification of 500x 
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Figure 5.26: SEM of hand milled miscanthus carbon particles at magnification of 500x 

 

 

Figure 5.27: SEM of ball milled miscanthus carbon particles at magnification of 500x 
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6.1 Introduction  

The performances of a single cell molten carbonate electrolyte direct carbon fuel cell 

(MCDCFC) with the biomass carbon fuels are presented in this chapter. The results 

obtained from the MCDCFC are reproducible, the variation observed in the results are 

due to a number of factors such as ohmic resistance, activation losses, mass transport 

limitation and the aging process of the electrochemical cell system. This chapter 

presents the MCDCFC electrochemical cell design, components and development 

showing the different configuration used for the DCFC. The performances recorded for 

the MCDCFC with industrial carbon black fuel, the biomass fuels and the various cell 

arrangements with the results from the hand and ball milled biomass carbon fuels are 

presented. The temperature effects on the performances of the MCDCFC and the 

tables of the summary of the electrochemical performances for the six biomass fuels 

are also shown. Finally a comparison between the ball and hand milled biomass carbon 

fuel on the MCDCFC are given. 

 

6.2 MCDCFC Electrochemical Cell Design and Development 

Several designs were explored for the electrochemical cell unit of the molten 

carbonate direct carbon fuel cell (MCDCFC), simply referred to as the direct carbon fuel 

cell (DCFC). Some of them are presented in Figures 6.1 to 6.5. Figure 6.1 shows the first 

cell arrangement that was developed. The electrolyte consists of porous alumina 

saturated in carbonated mixture (lithium carbonate and potassium carbonate). Toward 

the anode side is gold mesh collecting the generated electrical current and channelling 

it through the gold wire electrode. On top of this is a mica seal protecting the gold 

mesh from the anode casing. At the cathode side is also a gold mesh for current 

collection and mica seal for protection.  
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Cathode

Anode Mica seal

Gold mesh

Porous alumina + Carbonate mixture

Gold mesh

Mica seal

Gold wires

 

Figure 6.1: Gold mesh, porous alumina, gold mesh electrode assembly 

 

Figure 6.2 shows the electrochemical unit cell arrangement using porous nickel, 

zirconia saturated in carbonated mixture (lithium carbonate and potassium carbonate) 

and gold mesh. The anode and cathode tube casing sides were also protected using 

mica seals. This design was further improved by introducing ceramic disc with holes 

acting as a support for the cathode side (Figure 6.3). This kept the electrolyte flat and 

in good contact with the electrodes. 

 

Cathode

Anode Mica seal

Porous Nickel

Zirconia + Carbonate mixture

Gold mesh

Mica seal

Gold wires

 

Figure 6.2: Porous nickel, zirconia, gold mesh electrode assembly 
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Cathode

Anode Mica seal

Porous nickel

Zirconia + Carbonate mixture

Gold mesh

Mica seal

Gold wires

Ceramic disc with holes

 

 

Figure 6.3: Porous nickel, zirconia, gold mesh electrode assembly with ceramic disc  

 

The fourth and fifth arrangements are shown in Figures 6.4 and 6.5. The electrolyte 

consists of zirconia saturated in carbonated mixture and on either side are gold 

meshes.  

 

Cathode

Anode Mica seal

Gold mesh

Zirconia + Carbonate mixture

Gold mesh

Mica seal

Gold wires

 

Figure 6.4: Gold mesh, zirconia, gold mesh electrode assembly 
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Cathode

Anode Mica seal

Gold mesh

Zirconia + Carbonate mixture

Gold mesh

Mica seal

Gold wires

Ceramic disc with holes

 

Figure 6.5: Gold mesh, zirconia, gold mesh electrode assembly with ceramic disc 

 

This developed electrode assembly was further improved by introducing ceramic disc 

with holes, which acted as a support for the cathode side (Figure 6.5) as well as 

keeping the electrolyte flat and in proper contact with the electrode. This cell 

arrangement was discovered to be stable unlike the other two arrangements and was 

used for the MCDCFC operations. Figures 6.6 to 6.9 show some of the components of 

the MCDCFC. 

 

 

Figure 6.6: Saturated zirconia electrolyte for MCDCFC. 
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Figure 6.7: Saturated zirconia and porous nickel electrode assembly  

 

 

Figure 6.8: Ceramic disc, gold mesh, zirconia and gold wire electrode assembly 

 

 

Figure 6.9: Mica seals used as protection for DCFC casing 
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6.3         Voltages from MCDCFC Operations 

6.3.1      Voltages from MCDCFC using Carbon Black and Porous Nickel 

The preliminary results obtained from the constructed MCDCFC were based on the 

potential of the fuel cell to produce open circuit voltage (OCV) without generating 

current from the system. Figures 6.10 and 6.11 give the open circuit voltage of the 

tests carried out on the MCDCFC using two different flow rates of CO2. The OCV 

presented in Figure 6.10, has CO2 flow rate at 140 cm3/min and air at 700 cm3/min. 

While for Figure 6.11, we have CO2 flow rate at 250 cm3/min and air at 700 cm3/min.  

The difference between the two figures demonstrates the importance of CO2 in the 

operation of the MCDCFC as well as in other fuel cells. 

 

At a lower flow rate of CO2 (Figure 6.10), the voltage (0.18 V) generated was from 

460oC and slightly increases until it got to a temperature of 480oC, there was a rapid 

increase in the voltage obtained between 480oC to 520oC. This rapid increase could be 

attributed to the point in which the electrolyte became molten and the carbonate ions 

became reactive in the MCDCFC system. A maximum open circuit voltage of 0.710 V 

was observed between the temperatures of 530oC and 540oC, this gave the point in 

the MCDCFC with maximum OCV performance. Between the temperature of 560oC 

and 570oC there was a sharp drop in voltage to 0.580 V, this illustrate a potential error 

at that point in the MCDCFC operation, the reason attributed to this error is a sudden 

drop in the CO2 pressure, a situation which is associated with the malfunctioning of the 

rotameter in maintaining the CO2 pressure.  
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Figure 6.10: MCDCFC open circuit voltage at varying temperature with CO2 flow at 140 

cm3/min 

 

 

Figure 6.11: MCDCFC open circuit voltage at varying temperature with CO2 flow at 250 

cm3/min 
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From a temperature of 590oC the voltage reading began to drop to 0.690 V and further 

continue to drop with increase in temperature, signifying a drop in the OCV 

performance of the MCDCFC. The calculated maximum voltage efficiency for the 

MCDCFC at this operating condition was 70%. Figure 6.11 shows an improved OCV 

performance from the cell as the CO2 flow was increased to 250 cm3/min, it also gave 

higher voltage reading for the MCDCFC above 0.8 V. The fuel cell OCV performances 

using industrial carbon black fuel from room temperature are presented in Figure 6.12. 

 

 

Figure 6.12: MCDCFC OCV at varying temperature using carbon black 
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operating temperature of 750oC having the highest voltage of 0.55 V.  These 

preliminary tests on the MCDCFC helped to achieve an optimum operating conditions 

of N2 (200 cm3/min), CO2 (600 cm3/min) and compressed air (1500 cm3/min). These 

were then applied for the rest of the MCDCFC operations. 

 

6.3.2 Voltages from MCDCFC using Biomass and Gold Mesh-ZrO2-Gold Mesh 

Electrode Assembly 

Figure 6.13 shows the voltages (OCV) obtained using the six biomass fuels. Poplar fuel 

(Pop) gave the highest voltage of 1.1 V, and wheat fuel (Whe) the lowest at 0.8 V. 

Spruce fuel (Spr) gave the second highest voltage of 1.0 V, followed by miscanthus 

(Mis, 1.0 V), switchgrass (Swi, 0.9 V) and willow (Wil, 0.9 V) using gold mesh, saturated 

zirconia and gold mesh arrangement. 

 

 

Figure 6.13: MCDCFC OCV for the six biomass carbon fuels at different temperature 
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It was observed that the voltage increases with increase in temperature. Poplar and 

spruce display a similar pattern in the generation of voltage. The pattern generated by 

miscanthus, switchgrass, wheat and willow were different. There was a sharp rise in 

the OCV at 500oC (Figure 6.13), which is due to the ionic conduction in the phase of the 

molten carbonate and the melting of the carbonate salt mixture. The performances of 

the fuel cell was greatly enhanced as the temperature increases up to 800oC, this is 

attributed to the decrease in the viscosity of the molten carbonate phase and a 

corresponding enhancement of the ionic conduction rate of the electrolyte and the 

electrochemical reactions at the two electrodes (Jia et al., 2010; Li et al., 2009; Jain et 

al., 2008; Hackett et al., 2007; Cherepy et al., 2005). 

 

6.4      MCDCFC Performances with Porous Nickel- ZrO2-Gold Mesh Electrode 

Assembly 

The preliminary fuel cell arrangement are shown in Figures 6.2 and 6.3 which consists 

of the electrode assembly using porous nickel, zirconia saturated in carbonated 

mixture (lithium carbonate and potassium carbonate) and gold mesh. The direct 

carbon fuel cell performances are shown in Figures 6.14 to 6.22. 

 

6.4.1 MCDCFC Performances using Carbon Black 

Figures 6.14 to 6.16 show the results obtained from the MCDCFC using carbon 

black/carbonate fuel at four different temperature regions of 550oC, 600oC, 650oC and 

700oC. Industrial carbon black was used (Acetylene, 100 % compressed, 99.9+% metal 

basis, Alfa Aesar, Johnson Matthey Co., USA). The current densities were calculated by 

dividing the cell voltages by the resistances and the active surface area of the cell (2.5 

cm2). The power density was also calculated by squaring the voltages and dividing by 

the resistances and the active surface area of the cell. 
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Figure 6.14: Voltage versus current density using carbon black at different 

temperature. 
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resistance leads to ohmic losses or voltage drop, which is the resistance to the flow of 

electrons through the material of the electrodes and the different interconnections. 

Ohmic losses also include the resistance to the flow of ions through the electrolyte. 

The ohmic resistance is also known as the area specific resistance (ASR) of the fuel cell. 

Eventually the voltage decreases sharply at high current density due to mass transport 

or concentration losses. This is brought about from the change in the concentration of 

the reactants at the electrodes surface as the fuel is being consumed. The reduction in 

concentration leads to insufficient reactants transportation to the electrode surface 

and is otherwise known as mass transport loss (Li et al., 2009; Jain et al., 2008; Hackett 

et al., 2007; O’Hayre et al., 2006; Cherepy et al., 2005; Larminie and Dicks, 2003; 

Hoogers, 2003). Figure 6.15 shows the corresponding power and current densities for 

the carbon black fuel using the same four temperature regimes. 

 

 

Figure 6.15: Power versus current density using carbon black at different temperature. 

 

There were increases in the power and current densities with increasing temperatures. 

The highest power density was recorded at 700oC (8 mW/cm2) at the maximum 

current density of 44 mA/cm2. The power greatly reduces to 3 mW/cm2 at 600oC, 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 5 10 15 20 25 30 35 40 45 50 

P
o

w
e

r 
D

e
n

si
ty

 (
m

W
/c

m
2
) 

Current Density (mA/cm2) 

      500oC 
      550oC 
      600oC                   
-     700oC 
        
 



Chapter 6                                                                                                        MCDCFC Single Cell Performances 
 

174 
 

which further reduces at 550oC to 2 mW/cm2. The value at 500oC was 1.5 mW/cm2. 

Figure 6.16 combines the results from Figures 6.14 and 6.15 and gave the overall 

performances of the MCDCFC. 500V and 500P represent the voltages and power 

densities at 500oC and this applies to the other temperatures. 

 

 

Figure 6.16: Voltage, power and current density using carbon black at different 

temperature. 

 

Figure 6.16 gives an overall assessment of the MCDCFC performances for the four 

temperature regimes. It shows that temperature has great effect on the performances 
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6.4.2 MCDCFC Performances using Miscanthus Carbon with Porous Nickel Electrode 

Assembly 

The direct carbon fuel cell performances using porous nickel, saturated zirconia and 

gold mesh are shown in Figures 6.17 to 6.19. The performances recorded for the 

miscanthus and willow using the same type of cell arrangement as the carbon black 

was much better. In the case of miscanthus fuel we have an OCV of 1.0 V as against the 

0.7 V for the carbon black and also higher current and power densities as presented in 

Figures 6.17 to 6.19. 

 

 

Figure 6.17: Voltage versus current density using miscanthus at different temperature 
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reduces at 500oC to 0.8 V and 12 mA/cm2 current density. Figure 6.18 shows the power 

and current density using miscanthus fuel at the same five different temperatures 

regimes. The highest power density was 20 mW/cm2 for the temperature regime of 

800oC. At 750oC we have 17 mW/cm2. This reduces to 13 mW/cm2 at 700oC. It was 

much smaller at 600oC with 7 mW/cm2 and finally 2 mW/cm2 at 500oC. Figure 6.19 

show the combinations of Figures 6.17 and 6.18. 

 

 

Figure 6.18: Power versus current densities using miscanthus at different temperature 
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Figure 6.19: Voltage, power and current densities using miscanthus Fuel  
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Figure 6.20: Voltage versus current density using willow at different temperature. 
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70 mA/cm2. At 600oC we have 1.0 V and 32 mA/cm2 but were much lower at 500oC 

with 0.7 V and 18 mA/cm2.  
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Figure 6.21: Power versus current density using willow at different temperature. 

 

 

Figure 6.22: Voltage, power versus current density using willow at different 

temperature. 
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6.5      MCDCFC Performances with Gold Mesh- ZrO2-Gold Mesh Electrode Assembly  

The MCDCFC performances recorded for the six biomass carbon fuels are presented in 

Figures 6.23 to 6.31. The molten carbonate direct carbon fuel cell electrode assembly 

were gold mesh, zirconia and gold mesh as shown in Figure 6.5. Figure 6.23 shows the 

voltage readings versus the current density supplied by the MCDCFC using hand milled 

(HM) biomass carbon fuels. The performances of the MCDCFC presented are for the 

first day while the second and third day operations are given in Appendix C.  

 

6.5.1      First Day Performances of the MCDCFC using HM Biomass Carbon 

Figures 6.23 to 6.25 show the voltage versus current densities results of the MCDCFC 

for the first day.  Poplar fuel gave the highest results while willow fuel gave the lowest. 

The acronym MisV and MisP represent the voltages and power densities of miscanthus 

fuel and likewise for the other fuels of Swi (switchgrass), Spr (spruce), Pop (poplar), 

Whe (wheat) and Wil (willow) biomass carbon fuels.  

 

Figure 6.23: Voltage, current density for the 6 biomass fuels at 600oC (HM-Day 1). 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0 5 10 15 20 25 30 

D
C

FC
 V

o
lt

ag
e

 (V
) 

Current Density (mA/cm2) 

MisV SwiV SprV PopV WheV WilV 



Chapter 6                                                                                                        MCDCFC Single Cell Performances 
 

181 
 

 

Figure 6.24: Voltage, current density for the 6 biomass fuels at 700oC (HM-Day 1). 
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Figure 6.25: Voltage, current density for the 6 biomass fuels at 800oC (HM-Day 1). 
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phenomena of the fuels are attributed to the overconsumption of the carbon fuel at 

the anode compartment giving rise to gaps between the fuel contact and the 

electrolyte layers (Jia et al., 2010). This was also reported by Jia and co-worker (2010) 

and their graphs are shown in Figure 6.26. The active surface area of the MCDCFC was 

2.5 cm2, this was used throughout the calculation of the current and power densities. 

The curve back phenomena lead to reduction in this active surface area but our 

calculations did not accommodate this change. This brings about lower values of the 

current and power densities and the patterns experience by some of the graphs 

presented. 

 

 

Figure 6.26: Voltage, Power and current density experiencing curving back phenomena 

at 700oC (Jia et al., 2010). 

 

Figures 6.27 to 6.29 show the power density versus the current density obtained from 

the MCDCFC operations. Poplar still showed superior performance compared with the 

other fuels and willow showed the least performance in terms of the OCV, current and 

power densities.  



Chapter 6                                                                                                        MCDCFC Single Cell Performances 
 

184 
 

 

Figure 6.27: Power, current density for the 6 biomass fuels at 600oC (HM-Day 1). 

 

 

Figure 6.28: Power, current density for the 6 biomass fuels at 700oC (HM-Day 1). 
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From Table 2.3 (Chapter 2), spruce and poplar biomass have higher values of lignin 

compared to the other biomasses, this could be responsible for the high performance 

experienced from these biomass carbons (Montross and Crofcheck, 2010; Klass, 1998). 

Lignin is also known to be amorphous due its branched and partly random structure 

(Henriksson et al., 2010). Lignin has relatively low oxygen content and large energy 

content and very stable solid material due to its chemical structure and highly cross-

linked nature (Petrus and Noordermeer, 2006). At the temperature of 600oC poplar 

still gave the highest power density (4.32 mW/cm2), which was followed by spruce 

(3.64 mW/cm2), switchgrass (2.44 mW/cm2), wheat (1.7 mW/cm2), miscanthus (1.5 

mW/cm2) and willow (1.4 mW/cm2) fuels (Figure 6.27). At 700oC there was sharp 

increase in the performance of the spruce and eventually surpassing poplar at 800oC 

for some regions. Figures 6.30 to 6.32 show the overall performances of the direct 

carbon fuel cell for the three different operating temperature regimes.  

 

 

Figure 6.29: Power, current density for the 6 biomass fuels at 800oC (HM-Day 1) 
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Figure 6.30: Overall performances for the 6 biomass fuels at 600oC (HM-Day 1) 

 

 

 

Figure 6.31: Overall performances for the 6 biomass fuels at 700oC (HM-Day 1) 
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Figure 6.32: Overall performances for the 6 biomass fuels at 800oC (HM-Day 1) 
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corresponding enhancement of the ionic conduction rate of the electrolyte and the 

electrochemical reactions at the two electrodes (Jia et al., 2010; Li et al., 2009; Jain et 

al., 2008; Hackett et al., 2007; Cherepy et al., 2005). 

 

 

Figure 6.33: MCDCFC voltages for the six biomass carbon fuels at different 

temperatures (HM-Day 1)  

 

Figures C5 and C6 show that the sharp rise in the OCV starts at 400oC. At the start of 

the second and third day the existing DCFC set-up was used, additional fuel of 1.5 g 

was used for these days and the molten carbonate phase was reached much faster. It 

was observed that higher values of the OCV were obtained for the DCFC than the 

theoretical values, a situation which is attributed to low activities of CO or CO2 at the 

anode compartment of the cell, which was help by the use of nitrogen gas purging the 

anode compartment (Jain et al., 2008). At higher temperature there is a possibly of 

more CO2 being produced which could decrease the voltage output of the cell if not 

properly removed (Hackett et al., 2007).  
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6.5.3 MCDCFC Power Efficiency and ASR for HM Biomass Carbon Fuels 

The power and voltage curves show characteristic behaviour for the single cell molten 

carbonate direct carbon fuel cell, and of particular interest are the effective open 

circuit voltage (OCV), peak power, current density and the area specific resistance 

(ASR) behaviours. A number of characteristic electrochemical parameters are 

presented in Table 6.1 and Tables D1 and D2 (Appendix D). Table 6.1 shows the 

electrochemical data for hand milled (HM) miscanthus and willow and it shows that 

the OCV, power and current densities increases with the temperature rise but the ASR 

decreases with rise in temperature. Wheat has the highest power efficiency of 71% at 

the highest operating condition and spruce has the lowest power efficiency of 26% at 

the lowest operating condition. The ASR is a measurement of the overall ohmic 

resistance from the biomass carbon fuels and electrolyte, the mechanical connections 

of the cell and the electrode materials. The ASR was calculated from the slope of the 

voltage versus the current density at the linear central region of the polarisation curves 

(Li et al., 2009; Hackett et al., 2007). The efficiency at peak power was calculated by 

dividing the voltage at peak power by the OCV and multiplying by 100%. 

 

Table 6.1: MCDCFC Electrochemical data for miscanthus and willow (HM) 

 

Cell Parameter 

Miscanthus Willow 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.66 0.72 1.03 0.42 0.45 0.83 

Peak power density (mW/cm2) 1.67 4.70 13.46 1.32 3.60 14.83 

Maximum current density 

(mA/cm2) 

12.44 18.34 24.89 11.46 23.90 34.48 

Current density at 0.8 V (mA/cm2) 0 0.64 18.59 0 0 6.49 

Voltage at peak power (V) 0.26 0.43 0.72 0.23 0.21 0.43 

Area specific resistance (Ω cm2) 46.88 22.05 13.30 34.22 15.50 13.86 

Efficiency at peak power (%) 40.00 60.00 70.00 55.00 47.00 52.00 
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Table 6.1 gives the some area specific resistances (ASR) of the MCDCFC. It can occur 

from the mechanical connections, electrode materials and within the electrolyte itself. 

The values of ASR decrease with increase in temperature (Li et al., 2009; Hackett et al., 

2007; Larminie and Dicks, 2003). For all the biomass carbon fuel the lower the ASR the 

better the performance recorded for the fuel cell. The six materials show increasing 

trend in performance with increasing temperature, with the peak power density at 

800oC being slightly higher from one carbon to the other. Also shown are thermal 

efficiency values for conversion to electricity at peak power. The enthalpy of oxidation 

of pure carbon to carbon dioxide at the operating temperatures is 394 kJ/mol, whereas 

the available work from the cell is represented by the measures ∆G value based on 

∆G=-n F E. Efficiency values are also calculated for the cells operating at the maximum 

power condition, and it can be seen that these approach 70% for the miscanthus 

material at the highest temperature. These values emphasise the efficiency benefits 

achievable for electricity generation from biomass materials when compare with 

around 35% for generation from conventional combustion and steam cycle plant 

(Adeniyi and Ewan, 2011; Cao et al., 2007). The current densities at 0.8 V corresponds 

to working at 80% voltage efficiency but at the expense of the current density as 

shown in Tables 6.1, D1 and D2. 

 

6.6      MCDCFC Performances with BM Biomass Carbon Fuels 

6.6.1      First Day Performances of the MCDCFC using BM Carbon Fuels 

Figures 6.34 to 6.36 show the voltage versus current densities results of the MCDCFC 

for the first day of the ball milled (BM) biomass carbon particle fuels. The carbons were 

subjected to ball milling for forty minutes and the particle sizes reduce from 48 μm to 

2 μm. Interestingly in terms of the OCV obtained willow gave the highest (0.75 V) but 

its maximum current density was low (5 mA/cm2). Spruce fuel had the next highest 

OCV (0.7 V) and the highest maximum current density (18 mA/cm2). Poplar fuel OCV 

was third (0.55 V) but had the second highest maximum current density (17 mA/cm2). 

Switchgrass, wheat and miscanthus had low OCVs and low current densities.  
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Figure 6.34: Voltage, current density for the 6 biomass fuels at 600oC (BM-Day 1). 

 

 

Figure 6.35: Voltage, current density for the 6 biomass fuels at 700oC (BM-Day 1). 
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Figure 6.36: Voltage, current density for the 6 biomass fuels at 800oC (BM-Day 1). 

 

Figures 6.35 and 6.38 show that at 700oC poplar fuel performance picked up while that 

of willow slides down. At 800oC willow performance increased greatly giving the best 

peak power density and the second best current density. Figures 6.34 to 6.42 show 

different degrees of the curve back phenomenon of the performances of these fuels a 

situation attributed to the overconsumption of the fuel at the anode compartment (Jia 

et al., 2010). Figures 6.34 to 6.42 show that the current density-voltage curves drop 

due to activation resistance, ohmic resistance and mass transport limitation (Li et al., 

2009; Jain et al., 2008; Hackett et al., 2007; O’Hayre et al., 2006; Cherepy et al., 2005; 

Larminie and Dicks, 2003).  Figures 6.37 to 6.39 give the power versus the current 

densities and Figures 6.40 to 6.42 show the overall performances of the biomass 

carbon fuels. 
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Figure 6.37: Power versus current density for the 6 biomass fuels at 600oC (BM-Day 1). 

 

 

Figure 6.38: Power versus current density for the 6 biomass fuels at 700oC (BM-Day 1) 
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Figure 6.39: Power versus current density for the 6 biomass fuels at 800oC (BM-Day 1) 

 

 

Figure 6.40: Overall performances for the 6 biomass fuels at 600oC (BM-Day 1) 
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Figure 6.41: Overall performances for the 6 biomass fuels at 700oC (BM-Day 1) 

 

 

Figure 6.42: Overall performances for the 6 biomass fuels at 800oC (BM-Day 1) 
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The ball milling of willow carbon fuel from 44 μm to 3 μm show some influence on its 

performance in the MCDCFC, as shown by Figures 6.34 to 6.42 others results are 

shown in Appendix C (Figures C7 to C10). The chemical reactivity of carbons to 

oxidations are said to be strongly dependent on structure particularly the extent of 

graphitization and surface area (Cherepy et al., 2005).  The specific surface area of 

willow fuel increased from 0.42 m2/g to 2.23 m2/g for HM and BM respectively.  

 

6.6.2      Temperature Effects on MCDCFC Performances with BM Carbon Fuels 

For the ball milled biomass carbon fuels, the effects that temperature has on the 

performances of the MCDCFC are shown in Figure 6.43 and in Appendix C (Figures C11 

and C12). The performances of the fuel cell was greatly enhanced as the temperature 

increases from 400oC to 800oC, this is attributed to enhancement of the ionic 

conduction rate of the electrolyte and the electrochemical reactions at the electrodes 

(Jia et al., 2010; Li et al., 2009; Jain et al., 2008; Hackett et al., 2007; Cherepy et al., 

2005). The patterns generated here are similar to those of the hand milled biomass 

carbon fuels.  

 

Figure 6.43: MCDCFC OCV for the six biomass carbon fuels at different temperature 

(BM-Day 1)  
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Figures 6.43, C11 and C12 show that the sharp rises in the OCV start below 400oC 

which is due to faster ionic conduction in the molten carbonate phase. At the start of 

the second and third day the existing DCFC set-up was used, additional fuel of 1.5 g 

was used for each day.  

 

6.6.3 MCDCFC Performance Efficiency using BM Biomass Carbon Fuels 

Figures 6.34 to 6.43 show the characteristics of power and voltage curves behaviour 

for a single cell molten carbonate electrolyte direct carbon fuel cell (MCDCFC). A 

number of characteristic electrochemical parameters are presented in Table 6.2 and 

Tables D3 and D4 (Appendix D). Switchgrass has the highest power efficiency of 65% at 

700oC and wheat the lowest power efficiency of 33% at the 700oC operating condition. 

Interestingly the low efficiency recorded for willow for the hand milled fuel has risen to 

58% at the highest temperature for the ball milled (BM) fuel.  

 

Table 6.2: MCDCFC Electrochemical data for miscanthus and willow (BM) 

 

Cell Parameter 

Miscanthus Willow 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.28 0.20 0.67 0.76 0.89 0.83 

Peak power density (mW/cm2) 0.71 0.82 9.00 1.69 6.42 18.48 

Maximum current density 

(mA/cm2) 

8.84 12.44 41.58 4.91 18.66 63.85 

Current density at 0.8 V (mA/cm2) 0 0 0 0 2.08 6.77 

Voltage at peak power (V) 0.17 0.10 0.34 0.42 0.50 0.48 

Area specific resistance (Ω cm2) 24.85 9.58 14.11 123.6 22.82 10.64 

Efficiency at peak power (%) 61.00 50.00 51.00 55.00 56.00 58.00 

 



Chapter 6                                                                                                        MCDCFC Single Cell Performances 
 

198 
 

Comparison between Tables 6.2, D3 and D4 and Tables 6.1, D1 and D2 shows that the 

OCV for the BM fuels were lower than those of the HM fuels with the exception of 

willow BM fuel. The peak power densities were relatively lower in the BM than the HM 

fuels, again with willow being an exception. The maximum current densities were 

lower in the BM than the HM with some few exceptions at 800oC. The current 

densities were lower in the BM than the HM with willow being an exception. The 

voltages at peak power were lower in the BM than the HM with willow being an 

exception. The ASR was higher for the BM fuels with miscanthus and poplar as 

exceptions.  

 

6.7 Comparison of MCDCFC Performances for HM and BM Carbon Fuels 

6.7.1    Miscanthus (Miscanthus x giganteus) Carbon Fuel 

The differences between the hand and ball milled biomass carbon fuels in the MCDCFC 

performances using miscanthus fuel at 600oC, 700oC and 800oC are shown in Figures 

6.44 to 6.46. The figures show that the hand milled miscanthus carbon fuel had better 

performance than the ball milled ones. Hand milled carbon fuel had an average 

particle size of 29 μm while the ball milled was 8 μm (Tables 5.25 and 5.26). It seems 

that at this particle sizes the effect of milling was not significant to produce better 

electrochemical reactions using the miscanthus fuel. The specific surface area also 

increased from 0.57 m2/g for the hand milled to 0.95 m2/g for the ball milled, again 

this effect was not enough to enhance the electrochemical discharge rate using this 

carbon fuel (Cherepy et al., 2005). The graphs of comparison shown here are for 

miscanthus and switchgrass the other four biomasses are presented in Appendix C 

(Figures C13 to C20). 
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Figure 6.44: Miscanthus performances for hand and ball milled fuels at 600oC. 

 

 

Figure 6.45: Miscanthus performances for hand and ball milled fuels at 700oC. 
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Figure 6.46: Miscanthus performances for hand and ball milled fuels at 800oC. 

 

Figure 6.46 present the miscanthus fuel performance at an operating temperature of 

800oC, it was observed that the hand milled fuel has high power density but low 

current density. The hand milled fuel was affected by the overconsumption of the 

carbon fuel at the anode which leads to gap between the fuel and the electrolyte 

surfaces and thus causing low current generation, but for this occurrence the current 

output could have been better (Jia et al., 2010).  Figures 6.47 and 6.48 show the SEM 

micrographs of the miscanthus carbon fuels.  These micrographs show that there are 

different particle sizes and shapes, the connectivity of the particles in aggregates for 

the hand and ball milled carbon fuels look similar.  
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Figure 6.47: SEM micrograph of hand milled miscanthus carbon particles (800x) 

 

 

Figure 6.48: SEM micrograph of ball milled miscanthus carbon particles (800x) 
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6.7.2    Switchgrass (Pancium virgatum) Carbon Fuel 

The difference between the MCDCFC performances using switchgrass HM and BM 

fuels at 600oC, 700oC and 800oC are shown in Figures 6.49 to 6.51. The figures show 

that the hand milled switchgrass carbon fuels gave better performances than the ball 

milled. Hand milled carbon fuel have an average particle size of 30 μm while the ball 

milled was 2 μm (Tables 5.25 and 5.26). Again it seems that at this particle sizes the 

effect of milling was negative in the electrochemical performances. The specific 

surface area also increased from 0.63 m2/g for the hand milled to 2.55 m2/g for the ball 

milled as given in Tables 5.25 and 5.26 (Cherepy et al., 2005).  

 

 

Figure 6.49: Switchgrass performances for hand and ball milled fuels at 600oC. 
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Figure 6.50: Switchgrass performances for hand and ball milled fuels at 700oC.  

 

 

Figure 6.51: Switchgrass performances for hand and ball milled fuels at 800oC. 
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Figures 6.49 to 6.51 show that the performances of switchgrass in this case was better 

than the miscanthus fuel with HM peak power density of 22 mW/cm2 for switchgrass 

as against 14 mW/cm2 for miscanthus at 800oC. Figures 6.52 and 6.53 shows the SEM 

micrographs of the switchgrass carbon fuels. The HM SEM show larger particles than 

those of the BM as expected but contrary to expectations the hand milled fuel 

performed better than the ball milled carbon fuels.  

 

 

Figure 6.52: SEM micrograph of hand milled switchgrass carbon particles (800x) 
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Figure 6.53: SEM micrograph of ball milled switchgrass carbon particles (800x) 

 

6.8 Summary 

Table 6.3 summarises the outcome of the MCDCFC electrochemical performances for 

both the hand (HM) and ball milled (BM) biomass carbon fuels at 800oC. The 

performances of the hand milled biomass fuels were higher than those experienced 

with the ball milled with the exception of willow fuel. In terms of the open circuit 

voltage, poplar fuel (1.08 V) had the best for the HM and willow fuel (0.83 V) for the 

BM. The best peak power density was recorded for spruce fuel (26.79 mW/cm2) for the 

HM and willow fuel (18.48 mW/cm2) for the BM. Poplar fuel (81.53 mA/cm2) gave the  

maximum current density for the HM while spruce fuel (73.02 mA/cm2) for the BM. For 

the current density at 80% voltage efficiency poplar fuel (19.80 mA/cm2) was superior 

for the HM and willow fuel (6.67 mA/cm2) for the BM. Miscanthus fuel (0.72 V) show 

the highest voltage at peak power for the HM and willow fuel (0.48 V) for the BM. The 

peak power efficiency evaluated show that wheat fuel (71%) gave the highest value for 

the hand milled and spruce carbon fuel (64%) for the ball milled.  
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Table 6.3: MCDCFC Electrochemical performance at 800oC (HM and BM) 

 

MCDCFC Parameter  

M
is
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n
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s 

Sw
it

ch
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s 

W
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ea
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W
ill

o
w

 

sp
ru

ce
 

P
o
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r 

Open circuit voltage (V)  

                                         

HM 

BM 

1.03 

0.67 

0.87 

0.77 

0.95 

0.68 

0.83 

0.83 

1.03 

0.72 

1.08 

0.59 

Peak power density (mW/cm2) HM 

BM 

13.46 

9.00 

21.60 

12.32 

11.60 

11.76 

14.83 

18.48 

26.79 

17.19 

23.91 

10.22 

Maximum current density 

(mA/cm2) 

HM 

BM 

24.89 

41.58 

74.00 

52.06 

19.65 

42.57 

34.48 

63.85 

76.62 

73.02 

81.53 

36.67 

Current density at 0.8 V 

(mA/cm2) 

HM 

BM 

18.59 

0 

7.82 

0 

7.75 

0 

6.49 

6.77 

19.62 

0 

19.80 

0 

Voltage at peak power (V) HM 

BM 

0.72 

0.34 

0.52 

0.39 

0.67 

0.38 

0.43 

0.48 

0.58 

0.46 

0.55 

0.36 

Efficiency at peak power (%) HM 

BM 

70.00 

51.00 

60.00 

51.00 

71.00 

56.00 

52.00 

58.00 

56.00 

64.00 

51.00 

61.00 
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7.1 Introduction  

A single cell solid oxide electrolyte direct carbon fuel cell (SODCFC) with the six 

biomass carbon fuels performances are presented in this chapter. The results obtained 

from the SODCFC are reproducible, the variation observed in the results are also due 

to a number of factors such as ohmic resistance, activation losses, mass transport 

limitation and the aging process of the electrochemical cell system. This chapter 

presents the SODCFC electrochemical cell design and components. The performances 

recorded for the SODCFC with the biomass carbon fuels with the hand and ball milled 

biomass carbon fuels are presented. The temperature effects on the performances of 

the SODCFC and the tables of the summary of the electrochemical results for the six 

biomass fuels are also given. A comparison between the ball and hand milled biomass 

carbon fuels on the performances of the SODCFC are presented along with the 

comparison between the MCDCFC and the SODCFC. 

 

7.2 SODCFC Electrochemical Cell Design and Development 

The major design that was explored for the electrochemical cell system of the solid 

oxide electrolyte direct carbon fuel cell (SODCFC) is presented in Figure 7.1. Button 

cells from Fuel Cell Materials Ltd., USA were used. The composition of the cell are 

lanthanum oxide, manganese oxide, strontium oxide, cerium (IV) oxide, gadolinium 

oxide, nickel (II) oxide, zirconium oxide, yttrium oxide, and scandium oxide. The cells 

consisted of Ni/Yttrium-stabilized zirconium (YSZ) anode support layer, Ni/scandium-

stabilized zirconium (ScSZ) anode active interlayer, ScSZ electrolyte layer and 

lanthanum strontium manganese (LSM)/ScSZ cathode layer. The anode and the 

cathode layers are 1.2 cm in diameter and the cells are 2.5 cm in diameter with an 

active surface area of 1.1 cm2. Because of their relatively simple experimental setup 

and good reproducibility, these button cells were employed in the SODCFC 

experiments (Li et al., 2011a,b; Wu et al., 2009; Ihara et al., 2004; Nakagawa et al., 

1988). 
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Cathode

Anode Mica seal

Gold mesh

Button Cell: Anode NiO, Cathode LSM

Gold mesh

Mica seal

Gold wires

 

Figure 7.1: SODCFC Button cell, Gold mesh, Ni/YSZ, LSM/ScSZ, gold mesh electrode 

assembly. 

 

Figure 7.2 shows the button cells before high temperature operation at 900oC to 

reduce the nickel oxide to nickel cermets. Figure 7.3 shows what the button cell looks 

like after reduction and gold mesh bonded on each side to serve as the current 

collector. Figures 7.4 to 7.6 show some of the components of SODCFC for high 

temperature operations. The preparation procedures were explained in Section 4.7.5 

(Chapter 4). 

 

 

Figure 7.2: Button cell for the SODCFC, cathode (black-LSM), anode (green-NiO2)  
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Figure 7.3: Button cell bond with gold mesh on each side as the electrolyte 

 

 

 

 

 

Figure 7.4: Assembled SODCFC ready for high temperature operation 
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Figure 7.5: SODCFC during high temperature operation  

 

 

 

 

Figure 7.6: Resistor box and voltmeter connected to SODCFC 
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7.3      SODCFC Performance with Ball Milled (BM) Biomass Carbon Fuels 

7.3.1      First Day Performance of the SODCFC 

Figures 7.7 to 7.9 show the voltage versus current densities of the SODCFC for the first 

day of the ball milled carbon particle fuels for the operating temperatures of 600oC to 

800oC. As in the case of the MCDCFC the carbons were subjected to ball milling for 

forty minutes to obtain particle sizes of 2 μm. From Figure 7.7 in terms of the OCV, 

switchgrass gave the highest (0.87 V) with a maximum current density of 56 mA/cm2. 

Wheat fuel had the next highest OCV (0.87 V) but a lower current density 18 mA/cm2. 

Poplar fuel OCV was 0.82 V but had the third highest current density (33 mA/cm2). 

Spruce and willow fuels had low OCV and low current densities.  

 

 

Figure 7.7: SODCFC voltage, current density for the 6 biomass fuels at 600oC (BM).  
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Figure 7.8: SODCFC voltage, current density for the 6 biomass fuels at 700oC (BM).  

 

 

Figure 7.9: SODCFC voltage, current density for the 6 biomass fuels at 800oC (BM).  
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Figure 7.8 shows that at 700oC wheat, spruce and poplar fuels performances picked up 

while that of willow was still down. At 800oC miscanthus performance increased 

greatly giving the best voltage and the best current density. Figures 7.7 to 7.9 show 

mild degrees of the curve back phenomenon on the performance of these fuels a 

situation attributed to the overconsumption of the fuel at the anode compartment 

giving rise to gaps between the fuel and the electrolyte surface leading to reduction of 

the current density measured (Li et al., 2009; Jain et al., 2008; Hackett et al., 2007; 

O’Hayre et al., 2006; Cherepy et al., 2005; Larminie and Dicks, 2003).  Figures 7.10 to 

7.12 give the power versus the current densities and Figures 7.13 to 7.15 show the 

overall performances of the biomass carbon fuels. 

 

 

Figure 7.10: SODCFC power, current density for the 6 biomass fuels at 600oC (BM). 
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Figure 7.11: SODCFC power, current density for the 6 biomass fuels at 700oC (BM). 

 

 

Figure 7.12: SODCFC power, current density for the 6 biomass fuels at 800oC (BM). 
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Figure 7.13: SODCFC overall performances for the 6 biomass fuels at 600oC (BM). 

 

 

Figure 7.14: SODCFC overall performances for the 6 biomass fuels at 700oC (BM). 
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Figure 7.15: SODCFC overall performances for the 6 biomass fuels at 800oC (BM). 

 

Figure 7.14 show that wheat fuel cell operation gave some interesting improvement. 

The SODCFC power density and current density increases with increase in 

temperature, reaches a maximum and finally falls at higher current densities (Li et al., 

2009; Hackett et al., 2007). At 800oC miscanthus shows some improvement in the 

performance possessing the highest OCV, current and power densities. Perhaps the 

nickel components on the buttons cells acted as catalyst during the electrochemical 

reactions. 
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performance of the fuel cell was greatly enhanced as the temperature increases up to 

800oC, this is attributed to the decrease in the viscosity of the molten carbonate phase 

and a corresponding enhancement of the ionic conduction rate of the electrolyte and 

the electrochemical reactions at the two electrodes (Jia et al., 2010; Li et al., 2009; Jain 

et al., 2008; Hackett et al., 2007; Cherepy et al., 2005;). 

 

 

Figure 7.16: SODCFC open circuit voltage for the six biomass carbon fuels at different 

temperature (Ball milled)  

 

The performances of the SODCFC at higher temperatures differ from the MCDCFC. 

Miscanthus and wheat appears to have higher OCVs with poplar fuel recording lower 

OCV. Generally at 800oC the OCV for most of the biomass carbon fuels were higher 

than 1.0 V but poplar fuel gave 0.8 V (Figures 7.15 and 7.16).  
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7.3.3 SODCFC Performance Efficiency using BM Biomass Carbon Fuel 

The current, power and voltage curves show characteristic behaviour of the single cell 

solid oxide electrolyte direct carbon fuel cell (SODCFC), and of particular interest are 

the effective open circuit voltage (OCV), peak power, current density and the area 

specific resistance (ASR) behaviours. The characteristic electrochemical performances 

are presented in Table 7.1, Tables D5 and D6 (Appendix D). Tables 7.1, D5 and D6 show 

the electrochemical properties of the six biomass carbon fuels, it reveals that the OCV, 

power and current densities increases with increase in temperatures while the area 

specific resistance (ASR) decreases with rise in temperature. Wheat has the highest 

power efficiency of 69% at 700oC operating condition and switchgrass in contrast has 

the lowest power efficiency of 39% also at 700oC. Interestingly the low efficiency 

recorded for MCDCFC willow fuel has been greatly enhanced to 63% for the ball mill 

(BM) fuel at 600oC.  

 

Table 7.1: SODCFC Electrochemical performances for miscanthus and willow (BM) 

 

SODCFC Parameter 

Miscanthus Willow 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.83 0.80 1.24 0.43 0.50 1.14 

Peak power density (mW/cm2) 16.17 9.43 77.41 1.43 5.66 58.42 

Maximum current density 

(mA/cm2) 

53.79 42.74 180.52 14.74 40.52 114.94 

Current density at 0.8 V (mA/cm2) 4.70 0.01 100.00 0 0 80.00 

Voltage at peak power (V) 1.54 0.40 0.66 0.27 0.31 0.57 

Area specific resistance (Ω cm2) 9.24 14.66 4.10 31.46 13.48 4.27 

Efficiency at peak power (%) 64.00 50.00 53.00 63.00 62.00 50.00 
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Tables 7.1, D5 and D6 summarise the results of the SODCFC electrochemical 

performances for the ball milled (BM) biomass carbon fuels at 600oC, 700oC and 800oC. 

The SODCFC performances of the BM biomass fuels were higher than those 

experienced with the MCDCFC ball milled fuels. For the SODCFC in terms of the open 

circuit voltage, miscanthus fuel (1.24 V at 800oC) had the best for the BM and spruce 

fuel (0.37 V at 600oC) the least for the BM. The best peak power density was recorded 

for miscanthus fuel (77.41 mW/cm2 at 800oC) and spruce fuel (1.34 mW/cm2 at 600oC) 

the least. Again miscanthus fuel (180.52 mA/cm2 at 800oC) gave the maximum current 

density while spruce fuel (13.26 mA/cm2 at 600oC) gave the minimum. For the current 

density at 80% voltage efficiency miscanthus fuel (100 mA/cm2 at 800oC) and wheat 

fuel (90 mA/cm2 at 800oC) were superior. Miscanthus fuel (1.54 V) shows the highest 

voltage at peak power and spruce fuel (0.15 V) the lowest. The ASR evaluation show 

that wheat fuel gave the highest (40.26 Ω cm2 at 600oC) and lowest values (3.69 Ω cm2 

at 800oC), the reduction in the ohmic resistance could have been responsible for the 

higher peak power efficiency observed at 700oC for wheat fuel.  

 

7.4      SODCFC Performance with Hand Milled (HM) Biomass Carbon Fuels 

7.4.1      First Day Performances of the SODCFC 

Figures 7.17 to 7.19 show the voltage versus current densities results of the SODCFC 

for the first day of the hand milled carbon particle fuels operating at 600oC, 700oC and 

800oC. From Figure 7.17 in terms of the OCV, miscanthus fuel had the highest OCV 

(0.83 V) and the highest current density 36 mA/cm2. Spruce fuel OCV was 0.82 V but 

had the third highest current density (25 mA/cm2). Willow, poplar and wheat did not 

perform very well in this case. 

 



Chapter 7                                                                                                         SODCFC Single Cell Performances 
 

221 
 

 

Figure 7.17: SODCFC voltage, current density for the 6 biomass fuels at 600oC (HM).  

 

 

Figure 7.18: SODCFC voltage, current density for the 6 biomass fuels at 700oC (HM).  
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Figure 7.19: SODCFC voltage, current density for the 6 biomass fuels at 800oC (HM).  

 

Figure 7.18 shows that at 700oC miscanthus, willow and spruce fuels performances 

picked up while that of wheat was still down. At 800oC spruce and willow 

performances increased greatly. Figures 7.17 to 7.19 show some slight degrees of the 

curve back phenomena of the performance of the biomass fuels again attributed to 

the overconsumption of the fuel at the anode compartment (Li et al., 2009; Jain et al., 

2008; Hackett et al., 2007; O’Hayre et al., 2006; Cherepy et al., 2005; Larminie and 

Dicks, 2003).  Figures 7.20 to 7.22 show the power versus the current densities and 

Figures 7.23 to 7.25 shows the overall performances of the biomass carbon fuels. 
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Figure 7.20: SODCFC power versus current density for the 6 biomass fuels at 600oC 
(HM). 

 

 

Figure 7.21: SODCFC power versus current density for the 6 biomass fuels at 700oC 
(HM). 
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Figure 7.22: SODCFC power versus current density for the 6 biomass fuels at 800oC 
(HM). 

 

 

Figure 7.23: SODCFC overall performances for the 6 biomass fuels at 600oC (HM). 
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Figure 7.24: SODCFC overall performances for the 6 biomass fuels at 700oC (HM). 

 

 

Figure 7.25: SODCFC overall performances for the 6 biomass fuels at 800oC (HM). 
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Figures 7.23 and 7.25 show that overall picture of the performances of these biomass 

fuels. Miscanthus and willow fuel cell operations show some interesting improvement. 

Spruce fuel finally proved its superiority in performance at higher temperatures. 

Surprisingly poplar started with high OCV but ended up with weak performances. 

 

7.4.2      Temperature Effects on SODCFC Performances with HM Carbon Fuel 

The effects of temperature on the performance of the SODCFC using the hand milled 

(HM) biomass carbon fuels are shown in Figure 7.26. There is a sharp rise in the OCV 

above 300oC, this is slightly different from the BM fuels starting at 200oC. This is 

different from the case of MCDCFC which was at 500oC and shows that the 

electrochemical reactions of the carbon fuels in the SODCFC were faster than the 

MCDCFC, this could be as a result of the nickel anode component of the SODCFC which 

not only acted as an anode but could have catalysed the reactions. The reaction of the 

SODCFC with the hand milled (300oC) fuels lag behind that of the ball milled (200oC) 

because the reactions with smaller particles (having higher surface area) lead to a 

reduction in activation loss and gave higher OCV (Kim et al., 2010). The performance of 

the fuel cell was greatly enhanced as the temperature increases up to 800oC, this is 

attributed to an enhancement of the ionic conduction rate of the electrolyte and the 

electrochemical reactions at the two electrodes (Jia et al., 2010; Li et al., 2009; Jain et 

al., 2008; Hackett et al., 2007; Cherepy et al., 2005). 

 

The performances of the SODCFC with the hand milled fuels at higher temperature 

were also higher than the MCDCFC hand milled fuels. Miscanthus seems to give the 

highest OCV recorded for the HM fuels and wheat gave the least (Figure 7.26).  
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Figure 7.26: SODCFC open circuit voltage for the six biomass carbon fuels at different 

temperature (HM)  

 

7.4.3 SODCFC Performance Efficiency using HM Biomass Carbon Fuel 

Tables 7.2, D7 and D8 (Appendix D) give the current, power and voltage characteristic 

behaviour of the SODCFC, showing the effective open circuit voltage (OCV), peak 

power, current density, voltage at peak power, area specific resistance (ASR) and the 

efficiency at peak power. Tables 7.2, D7, D8 show the electrochemical performances 

for the six biomass carbon fuels, it reveals that the OCV, power and current densities 

increases with increase in temperature while the ASR decreases with increase in 

temperature. Switchgrass has the highest power efficiency of 61% at 600oC operating 

condition and wheat in contrast has the lowest power efficiency of 32% also at the 

700oC operating condition.  
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Table 7.2: SODCFC Electrochemical performances for miscanthus and willow (HM) 

 

SODCFC Parameter 

Miscanthus Willow 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.83 1.11 1.26 0.76 0.97 1.18 

Peak power density (mW/cm2) 10.73 21.22 58.83 3.61 18.25 59.66 

Maximum current density 

(mA/cm2) 

36.10 75.15 162.10 22.10 74.42 148.84 

Current density at 0.8 V (mA/cm2) 1.52 24.00 70.00 0 15.14 78.00 

Voltage at peak power (V) 0.43 0.61 0.57 0.25 0.56 0.58 

Area specific resistance (Ω cm2) 18.02 13.14 7.26 19.35 11.39 5.66 

Efficiency at peak power (%) 52.00 55.00 45.00 33.00 58.00 49.00 

 

Tables 7.2, D7, D8 summarise the results of the SODCFC electrochemical performances 

for the hand milled (HM) biomass carbon fuels at 600oC, 700oC and 800oC. Again the 

SODCFC performances of the HM biomass fuels were higher than those of the MCDCFC 

hand milled fuels. The BM fuels have better performances than the HM fuels in the 

SODCFC, detailed comparison are given in section 7.5. For the hand milled fuels 

SODCFC in terms of the open circuit voltage, miscanthus fuel (1.26 V at 800oC) had the 

best and wheat fuel (0.62 V at 600oC) the least. The best peak power density was 

recorded for spruce fuel (64.10 mW/cm2 at 800oC) and wheat fuel (1.84 mW/cm2 at 

600oC) the least. Miscanthus fuel (162.10 mA/cm2 at 800oC) gave the maximum 

current density while poplar fuel (11.79 mA/cm2 at 600oC) gave the minimum. For the 

current density at 80% voltage efficiency spruce fuel (90 mA/cm2 at 800oC) and willow 

fuel (78 mA/cm2 at 800oC) were superior. Poplar fuel (0.69 V) shows the highest 

voltage at peak power and wheat fuel (0.23 V) the lowest. The ASR evaluations show 

that poplar fuel gave the highest (46.85 Ω cm2 at 600oC) and spruce fuel the lowest 

values (5.25 Ω cm2 at 800oC). The ASR recorded for the SODCFC were much higher than 

those recorded in literatures and this could contribute to the lowering of the 

performances of the fuel cell (Li et al., 2009; Hackett et al., 2007; Larminie and Dicks, 

2003).   



Chapter 7                                                                                                         SODCFC Single Cell Performances 
 

229 
 

7.5 Comparison of SODCFC Performances for HM and BM Carbon Fuels 

7.5.1    Miscanthus Carbon Fuel 

The differences between the SODCFC performances using hand and ball milled 

miscanthus fuel at 600oC, 700oC and 800oC are shown in Figures 7.27 to 7.29. The 

figures show that the BM miscanthus carbon fuels have better performance at 600oC 

and 800oC while the HM has at 700oC. Hand mill carbon fuel had an average particle 

size of 29 μm while the ball mill was 8 μm (Tables 5.25 and 5.26). The specific surface 

area was 0.57 m2/g for the HM and 0.95 m2/g for the BM (Tables 5.25 and 5.26). HMV 

and HMP represent the hand milled carbon fuel voltage and power density and 

likewise for the ball milled carbon fuels (BMV and BMP). 

 

 

Figure 7.27: SODCFC miscanthus performances for HM and BM fuels at 600oC. 
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Figure 7.28: SODCFC miscanthus performances for HM and BM fuels at 700oC. 

 

 

Figure 7.29: SODCFC miscanthus performances for HM and BM fuels at 800oC. 
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The performances presented in Figures 7.27 to 7.29 support the observations that 

reactions with smaller particles could enhance positively or negatively the active 

reactions sites on the biomass carbon fuel (Kim et al., 2010; Hackett et al., 2008; 

Cherepy et al., 2005). 

 

7.5.2    Switchgrass Carbon Fuel 

The difference between the SODCFC performances using switchgrass fuel at 600oC, 

700oC and 800oC are shown in Figures 7.30 to 7.32. The figures show that the BM 

switchgrass carbon fuel have better performance than the HM. Hand milled carbon 

fuel had an average particle size of 30 μm while the ball milled had 2 μm. The specific 

surface area was 0.63 m2/g for the hand milled and 2.55 m2/g for the ball milled 

(Tables 5.25 and 5.26). These show some positive and negative effects on the 

electrochemical discharge with the BM carbon fuel (Cherepy et al., 2005).  

 

 

Figure 7.30: SODCFC switchgrass performances for HM and BM fuels at 600oC. 
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Figure 7.31: SODCFC switchgrass performances for HM and BM fuels at 700oC. 

 

 

Figure 7.32: SODCFC switchgrass performances for HM and BM fuels at 800oC. 
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recorded for the HM (6.62 Ω cm2 at 800oC) was higher than those of the BM (4.11 Ω 

cm2 at 800oC) as given in Tables D5 and D7 (Appendix D). The higher the ASR value, the 

higher the ohmic resistance on the SODCFC operations and invariably the lower the 

electrochemical discharge rate from the cell (Kim et al., 2010; Hackett et al., 2008; 

Cherepy et al., 2005). 

 

7.6 Comparison of SODCFC and MCDCFC Performance for BM Carbon Fuels 

7.6.1    Miscanthus Carbon Fuel 

The performances of the SODCFC were better than the MCDCFC. The difference 

between these performances using miscanthus fuel at 600oC, 700oC and 800oC are 

shown in Figures 7.33 to 7.35. The open circuit voltage, power and current densities 

outputs from the SODCFC were superior to those of the MCDCFC. 

 

 

Figure 7.33: BM Miscanthus performances for SODCFC and MCDCFC at 600oC. 
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Figure 7.34: BM Miscanthus performances for SODCFC and MCDCFC at 700oC. 

 

 

Figure 7.35: BM Miscanthus performances for SODCFC and MCDCFC at 800oC. 
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Figures 7.33 to 7.35 shows enhanced performances with increase in temperature of 

the fuel cell. The OCV increased from 0.82 V to 1.2 V for the SODCFC as compared with 

0.3 V to 0.7 V for the MCDCFC (600oC to 800oC).  The peak power at 800oC was 80 

mW/cm2 (SODCFC) and 5 mW/cm2 (MCDCFC) with a corresponding current of 180 

mA/cm2 and 46 mA/cm2. Button cells of SOFC have been reported to have higher 

conductivity because of the composite electrolyte they are made-up of, they have 

faster kinetics, better electrodes activity and higher efficiency. This could explain the 

higher performances we have recorded for the SODCFC (Li et al., 2011a,b; Jia et al., 

2010; Liu et al., 2010; Zhu, 2003).  

 

7.6.2    Switchgrass Carbon Fuel 

The comparison between the SODCFC and MCDCFC performances using switchgrass 

fuel at 600oC, 700oC and 800oC are shown in Figures 7.36 to 7.38. The figures show 

that again the SODCFC switchgrass carbon fuel had better performance than the 

MCDCFC one.  

 

Figure 7.36: BM Switchgrass performances for SODCFC and MCDCFC at 600oC. 
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Figure 7.37: BM Switchgrass performances for SODCFC and MCDCFC at 700oC. 

 

 

Figure 7.38: BM Switchgrass performances for SODCFC and MCDCFC at 800oC. 
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From Figures 7.36 to 7.38, the OCV at 600oC were 0.88 V and 0.45 V which changed at 

700oC to 0.65 and 0.60 V and finally at 800oC changed to 1.1 V and 0.8 V for SODCFC 

and MCDCFC respectively. Also the peak power generated at 600oC was 12 and 1 

mW/cm2, and increased at 800oC to 70 mW/cm2 and 10 mW/cm2 for SODCFC and 

MCDCFC respectively. The current density increased from 55 mA/cm2 to 160 mA/cm2 

for the SODCFC while for the MCDCFC there was an increment from 5 mA/cm2 to 50 

mA/cm2. The comparison graphs for the other four biomasses are shown in Figures 

C21 to C30 (Appendix C). 

 

7.7 Energy Strategy of Electricity Generation from Biomass 

Considering two major routes of electricity generation from biomass. Route 1 is the 

burning of biomass in a power plant to generate electricity from steam cycle with a 

conversion efficiency of 35%. Route 2 is the DCFC integrated route in which pyrolysis 

gas and liquid are used to power gas turbine cycle (having 50% conversion efficiency) 

to  generate electricity and the biomass char is used in the direct carbon fuel cell to 

further generate electricity with a known conversion efficiency of 80% (Desclaux et al., 

2010; Cao et al., 2007). Figure 7.39 illustrates the two possible routes and the 

evaluations are given in Tables 7.3 and 7.4.  

 

Assuming that 1.0 kg of miscanthus biomass carbon has a heating value of 18.5 MJ 

(Ioannidou et al., 2011; Kim et al., 2011; Neves et al., 2011; Kwapinski et al., 2010; He 

et al., 2009; Garcia-Perez et al., 2007; McKendry 2002; Klass, 1998; Raveendran et al., 

1996, 1995). The first route gives the option of burning in power plant with a 

conversion of 35% giving 6.5 MJ of electricity produced from the system. For the 

second route, it is estimated that 23 wt.% of char is generated and subjected to 

electrochemical conversion of 80% giving 5.4 MJ of electricity (Adeniyi and Ewan, 

2011; Desclaux et al., 2010; Cao et al., 2007; Cherepy et al., 2005; Cooper, 2004; 

Zecevic et al., 2004). The pyrolysis gas and liquid could be use to power gas turbines 

with 50% conversion yielding a further 7.4 MJ of electricity. The total electricity 
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production from the second route is 12.8 MJ which is far higher than the first route. 

Tables 7.3 and 7.4 give the breakdown of the energy evaluation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.39: Routes of electricity generation from biomass 

 

Table 7.3: Mass and percentage of biomass fractions 

Biomass Carbon  

(kg) 

Liquid  

(kg) 

Gas   

(kg) 

Carbon 

(wt.%) 

Liquid 

(wt.%) 

Gas  

(wt.%) 

Miscanthus  0.226 0.228 0.546 22.59 22.84 54.58 

Switchgrass 0.262 0.157 0.581 26.20 15.65 58.15 

Wheat  0.287 0.128 0.585 28.71 12.78 58.51 

Willow  0.247 0.234 0.519 24.69 23.77 51.54 

Spruce  0.223 0.276 0.501 22.27 27.64 50.09 

Poplar  0.201 0.216 0.583 20.12 21.59 58.29 

 

1.0 kg of Biomass 

(18.5 MJ)  

(18.5 MJ) 

7.4 MJ Electricity 5.4 MJ Electricity 

Burn, steam cycle 

Electricity 

6.5 MJ Electricity 

35% conversion 
Char (23 wt.%) 

6.7 MJ 

DCFC 80% 

conversion 

Gas turbine 50% 

conversion 

Pyrolysis Gas & Liquid 

Energy value 14.8 MJ 

Total = 12.8 MJ Electricity Total = 6.5 MJ Electricity 

Route 1 Route 2 
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Table 7.4: Heating values of biomass fractions 

Biomass Carbon 

(MJ) 

Liquid 

(MJ) 

Gas  

(MJ) 

HV1  

(MJ) 

HV2 

(MJ) 

HV3 

(MJ) 

Miscanthus  5.453 5.686 9.069 14.755 7.378 12.778 

Switchgrass 6.322 3.916 9.650 13.566 6.783 12.183 

Wheat  6.925 3.192 9.717 12.909 6.455 11.855 

Willow  5.960 5.836 8.621 14.457 7.229 12.629 

Spruce  5.381 6.883 8.322 15.205 7.603 13.003 

Poplar  4.850 5.387 9.684 15.071 7.536 12.936 

HV1- Gas plus liquid heating value, HV2- Gas and liquid heating value at 50% conversion,   HV3- Total 

energy for Route 2. 

 

7.8 Summary 

Table 7.5 summarises the SODCFC (called SO) and MCDCFC (called MC) 

electrochemical performances for the ball milled (BM) biomass carbon fuels at 800oC. 

The performances of the SODCFC biomass fuels were higher than those experienced 

with the MCDCFC. In most of the ball milled fuels electrochemical cases, miscanthus 

fuels performs best in the SODCFC while willow in the MCDCFC. In terms of the open 

circuit voltage, miscanthus fuel (1.24 V) had the best value for SODCFC while willow 

fuel (0.83 V) for MCDCFC. The best peak power density was recorded for miscanthus 

fuel (77.41 mW/cm2) in the SODCFC and willow fuel (18.48 mW/cm2) in the MCDCFC. 

Miscanthus fuel (180.52 mA/cm2) gave the maximum current density for the SODCFC 

while spruce fuel (73.02 mA/cm2) for the MCDCFC. For the current density at 80% 

voltage efficiency miscanthus fuel (100 mA/cm2) was superior for the SODCFC and 

willow fuel (6.67 mA/cm2) for MCDCFC. Miscanthus fuel (0.66 V) shows the highest 

voltage at peak power for the SODCFC and willow fuel (0.48 V) for the MCDCFC. The 

peak power efficiency evaluated show that switchgrass fuel (55%) gave the highest 

value for the SODCFC and spruce carbon fuel (64%) for the MCDCFC.  
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Table 7.5: SODCFC and MCDCFC electrochemical performance at 800oC (BM) 

 

DCFC Parameter 

D
C
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W
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sp
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P
o
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r 

Open circuit voltage  

(V) 

SO 

MC 

1.24 

0.67 

1.13 

0.77 

1.18 

0.68 

1.14 

0.83 

1.16 

0.72 

0.78 

0.59 

Peak power density 

(mW/cm2) 

SO 

MC 

77.41 

9.00 

69.81 

12.32 

66.92 

11.76 

58.42 

18.48 

57.40 

17.19 

25.24 

10.22 

Maximum current 

density (mA/cm2) 

SO 

MC 

180.52 

41.58 

162.10 

52.06 

138.52 

42.57 

114.94 

63.85 

156.20 

73.02 

103.15 

36.67 

Current density at 0.8 V 

(mA/cm2) 

SO 

MC 

100.00 

0 

85.00 

0 

90.00 

0 

80.00 

6.77 

60.00 

0 

0 

0 

Voltage at peak power 

(V) 

SO 

MC 

0.66 

0.34 

0.62 

0.39 

0.61 

0.38 

0.57 

0.48 

0.56 

0.46 

0.37 

0.36 

Efficiency at peak power 

(%) 

SO 

MC 

53.00 

51.00 

55.00 

51.00 

52.00 

56.00 

50.00 

58.00 

48.00 

64.00 

47.00 

61.00 

SO-SODCFC, MC-MCDCFC 
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10.1 Conclusions  

The aim of this research is to investigate the use of biomass carbon fuels in a direct 

carbon fuel cell (DCFC) while taking advantage of the higher efficiencies available for 

electricity production. This Ph.D research was conducted through thorough review of 

literatures, theory and experimental techniques. Based on these major experimental 

areas were identified in the thermochemical treatment of biomass and the application 

of the biomass carbon fuels in a single cell direct carbon fuel cell using molten 

carbonate and solid oxide electrolyte systems. The significant outcomes from this 

research are:  

 Material characterisation of the six biomasses investigated showed that they 

consist of different compositions. Proximate analysis reveals that there were 

moisture, ash, volatiles and fixed carbon. The ultimate analysis reveals that 

there were carbon and hydrogen. The results obtained were within recorded 

values from literatures (Montross and Crofcheck, 2010; Nowakowski et al., 

2007; Mckendry, 2002; Klass, 1998; Raveendran et al., 1995, 1996).  

 Major pyrolysis parameters and method of analysing the biomass carbon 

quality were identified through experimental runs and literature reviews. 

Notable are the temperature and the heating rate. Optimum operating 

parameters used were: temperature of 800oC, heating rate of 7oC/min, while 

using nitrogen gas flow rate of 4000 cm3/min for purging.   

 Pyrolysis reaction greatly enhanced the properties of the biomass carbon 

produced. Results obtained reveals that there were increases in the carbon (80 

wt.%) and calorific values (30 MJ/kg) and reductions in the moisture contents 

(4 wt.%) and the hydrogen (1.2 wt.%) compositions.  

 The CV results from these biomasses were compared to those in literatures and 

found to be commensurate for these biomasses and comparable with coal. 

Among the woody materials spruce carbon gave the highest CV of 32.53 MJ/kg, 

while among the grass materials miscanthus has the highest of 29.11 MJ/kg. 

The least value was obtained from wheat (23.36 MJ/kg). 

 The results obtained from the XRD analyses reveals that the carbon produced 

from these biomasses were amorphous in nature. The SEM on the other hand 
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reveals that the shape and sizes of the biomass carbon fuels produced were of 

different sizes and shapes. Results from the hand milled carbon fuels reveal 

that we have particle size range of 29.23 μm to 48.07 μm while for the ball 

milled we have 2.22 μm to 8.13 μm. The specific surface areas obtained from 

the hand mill carbon fuels were smaller than those of the ball milled carbon 

fuels. 

 The Performances of the hand milled biomass carbon fuels were tested in a 

single cell MCDCFC using different electrochemical cell arrangement and  

industrial carbon black fuel. In each of these cases the performances of the 

biomass fuels were superior to those obtained from the industrial carbon black. 

Using porous nickel-zirconia-gold mesh electrode assembly and carbon black 

fuel we obtained an OCV of 0.73 V, maximum current density of 44 mA/cm2, 

peak power density of 8 mW/cm2 at 700oC. While using willow carbon fuel with 

the same cell arrangements and temperature we obtained a maximum OCV of 

1.10 V, maximum current density of 70 mA/cm2, peak power density 17 

mW/cm2. This corresponds to 112.5% increment in terms of power density. 

  Because of the possibilities of the porous nickel oxidising during the 

electrochemical reactions at the high operating temperatures of the MCDCFC a 

more stable electrochemical cell arrangement of gold mesh-zirconia-gold mesh 

was explored. At 800oC the performances of the hand milled biomass fuels 

were higher than those experienced with the ball milled with the exception of 

willow fuel. In terms of the open circuit voltage, poplar fuel (1.08 V) had the 

best for the HM and willow fuel (0.83 V) for the BM. The best peak power 

density was recorded for spruce fuel (26.79 mW/cm2) for the HM and willow 

fuel (18.48 mW/cm2) for the BM. Poplar fuel (81.53 mA/cm2) gave the  

maximum current density for the HM while spruce fuel (73.02 mA/cm2) for the 

BM. For the current density at 80% voltage efficiency, poplar fuel (19.80 

mA/cm2) was superior for the HM and willow fuel (6.67 mA/cm2) for the BM. 

Miscanthus fuel (0.72 V) show the highest voltage at peak power for the HM 

and willow fuel (0.48 V) for the BM. The peak power efficiency evaluated show 

that wheat fuel (71%) gave the highest value for the hand milled and spruce 

carbon fuel (64%) for the ball milled.  
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 The Performances of the BM and HM biomass carbon fuels were also 

investigated in a single cell SODCFC using gold mesh-Ni anode-ScSZ-LSM 

cathode-gold mesh electrochemical cell arrangement. The electrochemical 

reactions of the SODCFC were better than the MCDCFC with ion conduction 

starting above 200oC when compared to 500oC of MCDCFC. Using ball milled 

willow carbon fuel in MCDCFC at 800oC we obtained an OCV of 0.83 V, 

maximum current density of 64 mA/cm2, and peak power density 18 mW/cm2. 

While using ball milled willow carbon fuel in SODCFC at 800oC we obtained an 

OCV of 1.14 V, maximum current density of 115 mA/cm2, and peak power 

density 58 mW/cm2. This corresponds to 222.2% increment in terms of power 

density. 

 In the SODCFC at 800oC the performances of the ball milled biomass fuels were 

higher than those experienced with the hand milled with the exception of 

willow fuel. In terms of the open circuit voltage, miscanthus fuel (1.26 V) had 

the best for the HM and miscanthus fuel (1.24 V) for the BM. The best peak 

power density was recorded for spruce fuel (64.10 mW/cm2) for the HM and 

miscanthus fuel (77.41 mW/cm2) for the BM. Miscanthus fuel (162.10 mA/cm2) 

gave the  maximum current density for the HM while miscanthus fuel (180.52 

mA/cm2) for the BM. For the current density at 80% voltage efficiency spruce 

fuel (90 mA/cm2) was superior for the HM and miscanthus fuel (100 mA/cm2) 

for the BM. Poplar fuel (0.69 V) show the highest voltage at peak power for the 

HM and miscanthus fuel (0.66 V) for the BM. The peak power efficiency 

evaluated show that poplar fuel (56%) gave the highest value for the hand 

milled and switchgrass carbon fuel (55%) for the ball milled. 

 The performances of the SODCFC biomass fuels were generally higher than 

those experienced with the MCDCFC. In most of the ball milled fuels 

electrochemical cases, miscanthus fuels performs best in the SODCFC while 

willow in the MCDCFC. In terms of the open circuit voltage, miscanthus fuel 

(1.24 V) had the best value for SODCFC while willow fuel (0.83 V) for MCDCFC. 

The best peak power density was recorded for miscanthus fuel (77.41 

mW/cm2) in the SODCFC and willow fuel (18.48 mW/cm2) in the MCDCFC. 

Miscanthus fuel (180.52 mA/cm2) gave the maximum current density for the 
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SODCFC while spruce fuel (73.02 mA/cm2) for the MCDCFC. For the current 

density at 80% voltage efficiency, miscanthus fuel (100 mA/cm2) was superior 

for the SODCFC and willow fuel (6.67 mA/cm2) for MCDCFC. Miscanthus fuel 

(0.66 V) shows the highest voltage at peak power for the SODCFC and willow 

fuel (0.48 V) for the MCDCFC. The peak power efficiency evaluated show that 

switchgrass fuel (55%) gave the highest value for the SODCFC and spruce 

carbon fuel (58%) for the MCDCFC.  

 There were dramatic improvements in the performances of the SODCFC 

biomass fuels than the MCDCFC biomass fuels. These were observed from the 

large differences in the peak power density and the fuel cell current density at 

80% voltage efficiency. For ball milled miscanthus carbon fuel operation at 

800oC the peak power densities were 77.41 mW/cm2 (SODCFC) and 9.00 

mW/cm2 (MCDCFC). The current densities at 80% voltage efficiency were 100 

mA/cm2 (SODCFC) and 0 mA/cm2 (MCDCFC) for miscanthus fuel. Also for BM 

spruce carbon fuel operated at 800oC the peak power densities were 57.40 

mW/cm2 (SODCFC) and 17.19 mW/cm2 (MCDCFC). The current densities for 

spruce BM at 80% voltage efficiency were 60 mA/cm2 (SODCFC) and 0 mA/cm2 

(MCDCFC). 

 The overall energy strategy considering two major routes of electricity 

generation from biomass were investigated. The first route is the burning of 

biomass in a power plant to generate 6.5 MJ of electricity and the second is the 

DCFC integrated route using biomass to generate 12.8 MJ of electricity. The 

DCFC integrated route show superior output of energy generation with an 

overall conversion efficiency of 70% as compared with the 35% of the first 

route. 
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10.2 Recommendations for Future Work 

Based on the limitations of this research, the discussion of results and our conclusions, 

the following recommendations for future work within this field are given: 

 The performance studies on a wider range of biomass materials would be 

advantageous using both the MCDCFC and SODCFC. Another area worth 

investigation is the use of bio-briquette, that is, the mixture of biomass carbon 

with coal in the MCDCFC and SODCFC which could be highly beneficial at 

industrial level helping to reduce carbon emission from power plants. The 

performances of various carbonaceous fuels such as the refused derived fuel 

(RDF) and municipal solid waste (MSW) in the MCDCFC and SODCFC would be 

of great industrial benefits.   

 The recording of the results from the various test on the DCFC were carried out 

manually, which is subject to some human errors. Automation of data 

recording through LabView or other methods is recommended as this could 

greatly reduced error associated with manual collections of data. 

 The degradation studies of the electrochemical cell system of the DCFC would 

be advantageous as this could give better insight into what is causing the 

fluctuations of the data obtained from the different operations and the best 

way to solve them, so that maximum efficiency could be maintained 

throughout the DCFC operations. Investigation into the build-up of ash and 

other impurities on the electrolyte would give good information on the 

performance of the DCFC with different biomass fuel. 

 The biomass carbon particle sizes investigated in this research were within 

micro-particle range it would be interesting to investigate how the biomass 

carbon fuels within the nano-particle range performs in the DCFC. The 

electrochemical reactions of carbon in DCFC are known to be enhanced by the 

degree of disorderliness of the carbon structures subjected to mechanical 

treatments, investigation within the nano-particle range might reveal some 

interesting phenomena in the DCFC. 

 The performance studies of the DCFC operations were recorded for a few hours 

(10 hours) it would be interesting to investigate the DCFC performances at 
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different temperature for longer period of operation while studying the 

performances and degradation rates.  

 Using porous nickel as the anode side of the MCDCFC anode compartment 

show some promising results. More investigation with porous nickel at the 

anode compartment with different biomass and other fuels would be 

beneficiary. 

 Large-scale electrochemical reaction of the direct carbon fuel cell would be 

advantageous. Scaling up of the DCFC would allow large varieties of 

carbonaceous materials (biomass, coal, bio-briquette, RDF, MSW, etc.) to be 

electrochemically converted using the higher efficiencies available through the 

DCFC and contributing to electricity generated to the national grid and heating 

for domestic and industries. The information gained from such tests would 

benefits the industrial usage of these materials as fuel sources.   

 This research shows that biomass and other carbonaceous fuels could be used 

for combine heat and power (CHP) generation from the DCFC at higher 

efficiency. Detailed economic studies of the process, equipment, tax incentives 

and logistics are recommended for industrial purposes.  
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Table A1: Miscanthus biomass carbon particle analysis (Hand milled) 
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Table A2: Switchgrass biomass carbon particle analysis (Hand milled) 
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Table A3: Wheat biomass carbon particle analysis (Hand milled) 
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Table A4: Willow biomass carbon particle analysis (Hand milled) 

 

 

 

 

 

 

Result: Histogram Table

ID: 040211wilCi Run No:     7 Measured: 4/2/2011 12:28

File: KP120810 Rec. No:  100 Analysed: 4/2/2011 12:28

Path: C:\SIZERS\DATA\VIKRANT\ Source: Analysed

Range:  300 mm Beam: 10.00 mm Sampler: MS64 Obs':  18.2 %

Presentation: 3TJD Analysis:  Polydisperse Residual:  0.896 %

Modifications: None

Conc. =   0.0060 %Vol Density =   1.390 g/cm 3̂ S.S.A.=  0.4188 m 2̂/g

Distribution: Volume D[4, 3] =   64.87 um D[3, 2] =   10.31 um

D(v, 0.1) =    3.99 um D(v, 0.5) =   38.58 um D(v, 0.9) =  169.57 um

Span = 4.292E+00 Uniformity = 1.315E+00

Size

(um)

Volume Size

(um)

Volume Size

(um)

Volume Size

(um)

Volume

In %

  0.494

  0.532
   0.05

  0.574
   0.05

  0.618
   0.08

  0.667
   0.10

  0.718
   0.12

  0.774
   0.14

  0.834
   0.15

  0.899
   0.17

  0.969
   0.19

   1.04
   0.21

   1.13
   0.23

   1.21
   0.25

   1.31
   0.27

   1.41
   0.29

   1.52
   0.31

   1.64
   0.34

   1.76
   0.37

   1.90
   0.40

   2.05
   0.44

   2.21
   0.48

   2.38
   0.52

   2.56
   0.56

   2.76
   0.61

   2.98
   0.65

   3.21
   0.70

In %

   3.21

   3.46
   0.75

   3.73
   0.80

   4.02
   0.85

   4.33
   0.90

   4.66
   0.95

   5.03
   0.99

   5.42
   1.03

   5.84
   1.07

   6.29
   1.10

   6.78
   1.13

   7.31
   1.15

   7.88
   1.18

   8.49
   1.19

   9.15
   1.21

   9.86
   1.22

  10.62
   1.24

  11.45
   1.25

  12.34
   1.26

  13.30
   1.27

  14.33
   1.29

  15.45
   1.31

  16.65
   1.33

  17.94
   1.36

  19.33
   1.39

  20.84
   1.43

In %

  20.84

  22.46
   1.47

  24.20
   1.51

  26.08
   1.57

  28.11
   1.62

  30.29
   1.68

  32.65
   1.74

  35.18
   1.80

  37.92
   1.87

  40.86
   1.92

  44.04
   1.98

  47.46
   2.03

  51.15
   2.07

  55.12
   2.11

  59.41
   2.14

  64.02
   2.16

  69.00
   2.17

  74.36
   2.18

  80.14
   2.19

  86.36
   2.19

  93.07
   2.15

 100.3 
   2.11

 108.1 
   2.06

 116.5 
   2.00

 125.6 
   1.94

 135.3 
   1.87

In %

 135.3 

 145.8 
   1.79

 157.2 
   1.71

 169.4 
   1.63

 182.5 
   1.54

 196.7 
   1.44

 212.0 
   1.34

 228.5 
   1.23

 246.2 
   1.11

 265.4 
   0.96

 286.0 
   0.81

 308.2 
   0.67

 332.1 
   0.51

 358.0 
   0.25

 385.8 
   0.11

 415.7 
   0.05

 448.1 
   0.00

 482.9 
   0.00

 520.4 
   0.00

 560.8 
   0.00

 604.4 
   0.00

 651.4 
   0.00

 702.0 
   0.00

 756.5 
   0.00

 815.3 
   0.00

 878.7 
   0.00
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Table A5: Spruce biomass carbon particle analysis (Hand milled) 

 

 

 

 

 

 

Result: Histogram Table

ID: 040211sprAi Run No:     1 Measured: 4/2/2011 12:03

File: KP120810 Rec. No:   94 Analysed: 4/2/2011 12:03

Path: C:\SIZERS\DATA\VIKRANT\ Source: Analysed

Range:  300 mm Beam: 10.00 mm Sampler: MS64 Obs':  18.7 %

Presentation: 3TJD Analysis:  Polydisperse Residual:  0.519 %

Modifications: None

Conc. =   0.0151 %Vol Density =   1.390 g/cm 3̂ S.S.A.=  0.1754 m 2̂/g

Distribution: Volume D[4, 3] =  143.77 um D[3, 2] =   24.61 um

D(v, 0.1) =   11.46 um D(v, 0.5) =  110.10 um D(v, 0.9) =  328.46 um

Span = 2.879E+00 Uniformity = 8.969E-01

Size

(um)

Volume Size

(um)

Volume Size

(um)

Volume Size

(um)

Volume

In %

  0.494

  0.532
   0.02

  0.574
   0.02

  0.618
   0.03

  0.667
   0.03

  0.718
   0.04

  0.774
   0.05

  0.834
   0.05

  0.899
   0.05

  0.969
   0.06

   1.04
   0.06

   1.13
   0.07

   1.21
   0.07

   1.31
   0.08

   1.41
   0.09

   1.52
   0.09

   1.64
   0.10

   1.76
   0.11

   1.90
   0.12

   2.05
   0.13

   2.21
   0.14

   2.38
   0.16

   2.56
   0.17

   2.76
   0.19

   2.98
   0.21

   3.21
   0.23

In %

   3.21

   3.46
   0.25

   3.73
   0.27

   4.02
   0.29

   4.33
   0.32

   4.66
   0.34

   5.03
   0.37

   5.42
   0.40

   5.84
   0.42

   6.29
   0.45

   6.78
   0.48

   7.31
   0.50

   7.88
   0.53

   8.49
   0.55

   9.15
   0.58

   9.86
   0.60

  10.62
   0.63

  11.45
   0.65

  12.34
   0.67

  13.30
   0.70

  14.33
   0.72

  15.45
   0.74

  16.65
   0.77

  17.94
   0.79

  19.33
   0.82

  20.84
   0.85

In %

  20.84

  22.46
   0.88

  24.20
   0.91

  26.08
   0.95

  28.11
   0.99

  30.29
   1.03

  32.65
   1.08

  35.18
   1.13

  37.92
   1.19

  40.86
   1.25

  44.04
   1.32

  47.46
   1.39

  51.15
   1.47

  55.12
   1.55

  59.41
   1.64

  64.02
   1.73

  69.00
   1.82

  74.36
   1.92

  80.14
   2.02

  86.36
   2.12

  93.07
   2.22

 100.3 
   2.32

 108.1 
   2.42

 116.5 
   2.51

 125.6 
   2.60

 135.3 
   2.68

In %

 135.3 

 145.8 
   2.75

 157.2 
   2.83

 169.4 
   2.91

 182.5 
   2.97

 196.7 
   2.98

 212.0 
   2.96

 228.5 
   2.91

 246.2 
   2.84

 265.4 
   2.73

 286.0 
   2.60

 308.2 
   2.43

 332.1 
   2.23

 358.0 
   2.01

 385.8 
   1.77

 415.7 
   1.54

 448.1 
   1.31

 482.9 
   1.07

 520.4 
   0.84

 560.8 
   0.62

 604.4 
   0.39

 651.4 
   0.14

 702.0 
   0.00

 756.5 
   0.00

 815.3 
   0.00

 878.7 
   0.00
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Table A6: Poplar biomass carbon particle analysis (Hand milled) 

 

 

 

 

 

Result: Histogram Table

ID: 040211popBi Run No:     4 Measured: 4/2/2011 12:16

File: KP120810 Rec. No:   97 Analysed: 4/2/2011 12:16

Path: C:\SIZERS\DATA\VIKRANT\ Source: Analysed

Range:  300 mm Beam: 10.00 mm Sampler: MS64 Obs':  18.3 %

Presentation: 3TJD Analysis:  Polydisperse Residual:  1.127 %

Modifications: None

Conc. =   0.0102 %Vol Density =   1.390 g/cm 3̂ S.S.A.=  0.2513 m 2̂/g

Distribution: Volume D[4, 3] =  125.39 um D[3, 2] =   17.17 um

D(v, 0.1) =    7.07 um D(v, 0.5) =   83.48 um D(v, 0.9) =  310.03 um

Span = 3.629E+00 Uniformity = 1.140E+00

Size

(um)

Volume Size

(um)

Volume Size

(um)

Volume Size

(um)

Volume

In %

  0.494

  0.532
   0.02

  0.574
   0.03

  0.618
   0.04

  0.667
   0.06

  0.718
   0.06

  0.774
   0.08

  0.834
   0.08

  0.899
   0.09

  0.969
   0.10

   1.04
   0.11

   1.13
   0.11

   1.21
   0.12

   1.31
   0.13

   1.41
   0.14

   1.52
   0.15

   1.64
   0.17

   1.76
   0.18

   1.90
   0.20

   2.05
   0.22

   2.21
   0.24

   2.38
   0.26

   2.56
   0.29

   2.76
   0.31

   2.98
   0.34

   3.21
   0.37

In %

   3.21

   3.46
   0.41

   3.73
   0.44

   4.02
   0.48

   4.33
   0.51

   4.66
   0.55

   5.03
   0.59

   5.42
   0.62

   5.84
   0.66

   6.29
   0.69

   6.78
   0.72

   7.31
   0.75

   7.88
   0.78

   8.49
   0.81

   9.15
   0.83

   9.86
   0.85

  10.62
   0.87

  11.45
   0.89

  12.34
   0.90

  13.30
   0.92

  14.33
   0.94

  15.45
   0.95

  16.65
   0.97

  17.94
   0.99

  19.33
   1.01

  20.84
   1.04

In %

  20.84

  22.46
   1.07

  24.20
   1.10

  26.08
   1.13

  28.11
   1.17

  30.29
   1.21

  32.65
   1.26

  35.18
   1.30

  37.92
   1.35

  40.86
   1.40

  44.04
   1.45

  47.46
   1.50

  51.15
   1.56

  55.12
   1.61

  59.41
   1.66

  64.02
   1.71

  69.00
   1.75

  74.36
   1.80

  80.14
   1.86

  86.36
   1.91

  93.07
   1.96

 100.3 
   2.02

 108.1 
   2.07

 116.5 
   2.13

 125.6 
   2.19

 135.3 
   2.24

In %

 135.3 

 145.8 
   2.30

 157.2 
   2.35

 169.4 
   2.41

 182.5 
   2.47

 196.7 
   2.50

 212.0 
   2.51

 228.5 
   2.50

 246.2 
   2.47

 265.4 
   2.40

 286.0 
   2.30

 308.2 
   2.16

 332.1 
   1.99

 358.0 
   1.79

 385.8 
   1.56

 415.7 
   1.34

 448.1 
   1.12

 482.9 
   0.91

 520.4 
   0.69

 560.8 
   0.46

 604.4 
   0.24

 651.4 
   0.07

 702.0 
   0.00

 756.5 
   0.00

 815.3 
   0.00

 878.7 
   0.00
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 Adeniyi O.D. (2011) “The Use of Biomass carbon in a Direct Carbon Fuel Cell”, 

30 month seminar, Department of Chemical and Biological Engineering, The 

University of Sheffield, Sheffield, U.K., 11th May 2011. 

 Adeniyi O.D. and Ewan B.C.R. (2010) “Performance study on the Use of Biomass 

carbon in a Direct Carbon Fuel Cell”, Poster Presentation, Department of 

Chemical and Biological Engineering, The University of Sheffield, Sheffield, U.K., 

10th November 2010. 

 Adeniyi O.D. (2009) “The Use of Biomass in the Direct Carbon Fuel Cell”, MPhil 

to Ph.D Transfer Seminar, Department of Chemical and Process Engineering, 

The University of Sheffield, Sheffield, U.K., 20th October 2009, 186 pp.  

 

B2 Conference Presentation 

 Adeniyi O.D. and Ewan B.C.R. (2010) “Performance study on the use of biomass 

carbon in a direct carbon fuel cell”, Poster Presented at the Bioten Conference, 

SUPERGEN Bioenergy, Birmingham, U.K., 21-23th September 2010. 

 

B3 Conference Proceeding 

 Adeniyi O.D. and Ewan B.C.R. (2011) “Performance study on the use of biomass 

carbon in a direct carbon fuel cell”, Conference Proceedings of the Bioten 

Conference on biomass, bioenergy and biofuels 2010, SUPERGEN Bioenergy, 

Birmingham, CPL Press, U.K., pp. 407-419 (21-23th September 2010).  

 

B4 Journal Publication 

 Adeniyi O.D. and Ewan B.C.R. (2011) “Comparison of the performance of 

biomass carbons in direct carbon fuel cells”, Green Chemistry, (submitted for 

publication). 
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C1      Graph of Performances of the MCDCFC using HM Carbon Fuels 

 

Figure C1: Overall performances for the 6 biomass fuels at 700oC (HM-Day 2) 

 

 

Figure C2: Overall performances for the 6 biomass fuels at 800oC (HM-Day 2) 
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Figure C3: Overall performances for the 6 biomass fuels at 700oC (HM-Day 3) 

 

 

Figure C4: Overall performances for the 6 biomass fuels at 800oC (HM-Day 3) 
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C2      Temperature Effects on MCDCFC Performances with HM Carbon Fuel 

 

Figure C5: MCDCFC voltages for the six biomass carbon fuels at different temperatures 

(HM-Day 2)  

 

Figure C6: MCDCFC voltages for the six biomass carbon fuels at different temperatures 

(HM-Day 3)  
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C3      Graphs of 2nd Day Performances of the MCDCFC using BM Carbon Fuels 

 

Figure C7: Overall performances for the 6 biomass fuels at 700oC (BM-Day 2) 

 

 

Figure C8: Overall performances for the 6 biomass fuels at 800oC (BM-Day 2) 
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C4      Graph of 3rd Day Performances of the MCDCFC using BM Carbon Fuels 

 

Figure C9: Overall performances for the 6 biomass fuels at 700oC (BM-Day 3) 

 

 

Figure C10: Overall performances for the 6 biomass fuels at 800oC (BM-Day 3) 
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C5      Graph of Temperature Effects on MCDCFC Performances with BM Fuel 

 

Figure C11: MCDCFC OCV for the six biomass carbon fuels at different temperature 

(BM-Day 2) 

 

Figure C12: MCDCFC OCV for the six biomass carbon fuels at different temperature 

(BM-Day 3)  
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C6 Graph of Comparison of MCDCFC Performances for HM and BM Carbon Fuels 

 

 

Figure C13: Wheat performances for hand and ball milled fuels at 800oC. 

 

 

Figure C14: Willow performances for hand and ball milled fuels at 800oC. 
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Figure C15: Spruce performances for hand and ball milled fuels at 800oC. 

 

 

Figure C16: Poplar performances for hand and ball milled fuels at 800oC. 
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Figure C17: SODCFC wheat performances for HM and BM fuels at 800oC. 

 

 

Figure C18: SODCFC willow performances for HM and BM fuels at 800oC. 
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Figure C19: SODCFC spruce performances for HM and BM fuels at 800oC. 

 

 

Figure C20: SODCFC poplar performances for HM and BM fuels at 800oC. 
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C7 Graph of Comparison of SODCFC and MCDCFC Performance for BM Fuels 

 

Figure C21: BM Wheat performances for SODCFC and MCDCFC at 800oC. 

 

 

Figure C22: BM Willow performances for SODCFC and MCDCFC at 800oC. 
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Figure C23: BM Spruce performances for SODCFC and MCDCFC at 800oC. 

 

 

Figure C24: BM Poplar performances for SODCFC and MCDCFC at 800oC. 
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C8 Graph of Comparison of SODCFC and MCDCFC performance for HM fuels 

 

Figure C25: HM Miscanthus performances for SODCFC and MCDCFC at 800oC. 

 

 

Figure C26: HM Switchgrass performances for SODCFC and MCDCFC at 800oC. 
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Figure C27: HM Wheat performances for SODCFC and MCDCFC at 800oC. 

 

 

Figure C28: HM Willow performances for SODCFC and MCDCFC at 800oC. 
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Figure C29: HM Spruce performances for SODCFC and MCDCFC at 800oC. 

 

 

Figure C30: HM Poplar performances for SODCFC and MCDCFC at 800oC. 
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Table D1: MCDCFC Electrochemical data for Switchgrass and Poplar (HM) 

 
Cell Parameter 

Switchgrass Poplar 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.78 0.84 0.87 0.85 0.97 1.08 

Peak power density (mW/cm2) 2.44 10.11 21.60 4.32 13.15 23.91 

Maximum current density 
(mA/cm2) 

16.37 44.86 74.00 24.89 55.34 81.53 

Current density at 0.8 V (mA/cm2) 0.17 0.63 7.82 0.18 6.34 19.80 

Voltage at peak power (V) 0.31 0.36 0.52 0.23 0.41 0.55 

Area specific resistance (Ω cm2) 36.73 13.90 9.99 26.22 13.98 12.69 

Efficiency at peak power (%) 40.0 43.0 60.0 27.0 42.0 51.0 
 

Table D2: MCDCFC Electrochemical data for Wheat and Spruce (HM) 

 
Cell Parameter 

Wheat Spruce 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.72 0.85 0.95 0.80 0.96 1.03 

Peak power density (mW/cm2) 1.87 5.55 11.60 3.64 12.89 26.79 

Maximum current density 
(mA/cm2) 

9.46 19.32 19.65 23.25 51.08 76.62 

Current density at 0.8 V (mA/cm2) 0 0.66 7.75 0.08 2.22 19.62 

Voltage at peak power (V) 0.27 0.47 0.67 0.21 0.40 0.58 

Area specific resistance (Ω cm2) 39.53 20.34 13.15 27.22 16.09 10.79 

Efficiency at peak power (%) 38.00 55.00 71.00 26.0 42.0 56.0 
 

Table D3: MCDCFC Electrochemical data for Switchgrass and Poplar (BM) 

 
Cell Parameter 

Switchgrass Poplar 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.42 0.60 0.77 0.56 0.89 0.59 

Peak power density (mW/cm2) 0.80 3.81 12.32 2.47 7.91 10.22 

Maximum current density 
(mA/cm2) 

5.77 19.97 52.06 16.70 29.80 36.67 

Current density at 0.8 V (mA/cm2) 0 0 0 0 2.10 0 

Voltage at peak power (V) 0.18 0.39 0.39 0.31 0.31 0.36 

Area specific resistance (Ω cm2) 36.45 21.68 15.81 26.75 19.64 9.33 

Efficiency at peak power (%) 43.00 65.00 51.00 55.00 35.00 61.00 
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Table D4: MCDCFC Electrochemical data for Wheat and Spruce (BM) 

 
Cell Parameter 

Wheat Spruce 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.45 0.63 0.68 0.69 0.88 0.72 

Peak power density (mW/cm2) 0.47 3.50 11.76 2.68 9.11 17.19 

Maximum current density 
(mA/cm2) 

3.53 23.90 42.57 18.34 44.86 73.02 

Current density at 0.8 V (mA/cm2) 0 0 0 0 2.02 0 

Voltage at peak power (V) 0.22 0.21 0.38 0.32 0.34 0.46 

Area specific resistance (Ω cm2) 95.18 22.34 10.25 31.08 17.46 6.70 

Efficiency at peak power (%) 49.00 33.00 56.00 46.00 35.00 64.00 
 

Table D5: SODCFC Electrochemical performances for Switchgrass and Poplar (BM) 

 
SODCFC Parameter 

Switchgrass Poplar 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.87 0.64 1.13 0.82 0.86 0.78 

Peak power density (mW/cm2) 13.09 10.83 69.81 7.61 12.28 25.24 

Maximum current density 
(mA/cm2) 

55.26 64.10 162.10 31.68 55.26 103.15 

Current density at 0.8 V (mA/cm2) 4.66 0 85.00 1.50 4.57 0 

Voltage at peak power (V) 0.48 0.25 0.62 0.36 0.46 0.37 

Area specific resistance (Ω cm2) 11.22 7.88 4.11 25.07 12.55 6.15 

Efficiency at peak power (%) 55.00 39.00 55.00 44.00 53.00 47.00 
 

Table D6: SODCFC Electrochemical performances for Wheat and Spruce (BM) 

 
SODCFC Parameter 

Wheat Spruce 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.87 1.11 1.18 0.37 1.01 1.16 

Peak power density (mW/cm2) 2.80 34.35 66.92 1.34 16.60 57.40 

Maximum current density 
(mA/cm2) 

17.68 70.73 138.52 13.26 68.52 156.20 

Current density at 0.8 V (mA/cm2) 1.51 54.00 90.00 0 14.75 60.00 

Voltage at peak power (V) 0.38 0.77 0.61 0.15 0.54 0.56 

Area specific resistance (Ω cm2) 40.26 7.24 3.69 21.58 13.28 5.66 

Efficiency at peak power (%) 44.00 69.00 52.00 41.00 53.00 48.00 
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Table E7: SODCFC Electrochemical performances for Switchgrass and Poplar (HM) 

 
SODCFC Parameter 

Switchgrass Poplar 

Temperature oC Temperature oC 

600 700 800 600 700 
 

800 

Open circuit voltage (V) 0.76 0.81 1.13 0.77 0.93 1.24 

Peak power density (mW/cm2) 4.69 10.83 48.42 2.95 10.10 27.11 

Maximum current density 
(mA/cm2) 

28.74 56.00 140.00 11.79 44.21 71.47 

Current density at 0.8 V (mA/cm2) 0 0.01 50.00 0 4.70 30.00 

Voltage at peak power (V) 0.46 0.43 0.52 0.39 0.42 0.69 

Area specific resistance (Ω cm2) 21.69 11.82 6.62 46.85 11.93 12.54 

Efficiency at peak power (%) 61.00 53.00 46.00 51.00 45.00 56.00 
 

Table E8: SODCFC Electrochemical performances for Wheat and Spruce (HM) 

 
SODCFC Parameter 

Wheat Spruce 

Temperature oC Temperature oC 

600 700 800 600 700 800 

Open circuit voltage (V) 0.62 0.71 0.74 0.81 0.93 1.22 

Peak power density (mW/cm2) 1.84 9.55 23.00 3.82 12.87 64.10 

Maximum current density 
(mA/cm2) 

12.81 55.26 97.26 25.05 63.37 152.52 

Current density at 0.8 V (mA/cm2) 0 0 0 1.42 8.00 90.00 

Voltage at peak power (V) 0.31 0.23 0.36 0.45 0.47 0.60 

Area specific resistance (Ω cm2) 23.61 12.36 5.68 25.39 14.45 5.25 

Efficiency at peak power (%) 50.00 32.00 49.00 56.00 51.00 49.00 
 

 


