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Abstract 

 

Colorectal cancer (CRC) is one of the most prevalent malignancies in the 

Western world with a 5 year survival rate of patients with metastatic disease 

of less than 10%. As such, there remains a pressing need for novel treatment 

strategies and modalities. Established treatments including anti-EGFR 

antibodies, for example cetuximab, have improved survival although 

disappointingly only 10-20% of patients obtain an objective clinical response. 

Advancing treatment modalities include oncolytic viruses (Reovirus, Vaccinia 

Virus (JX-594)), which preferentially replicate in cancer cells causing cell 

death and stimulate anti-tumour immunity, and BH3-mimetic inhibitors (ABT-

263), which antagonise the BCL-2 family of pro-survival proteins, may 

enhance CRC patient survival.  Harnessing the potential immune and anti-

cancer effects of these treatment modalities, alone and in combination, at 

primary tumour and sites of metastatic and micrometastatic (for example 

lymph nodes) disease could form the basis of successful clinical adjuvant 

strategies. 

This MD thesis aims to investigate the efficacy of two OV, Reovirus and JX-

594 vaccinia virus against CRC.  In particular, the work outlined in this thesis 

has examined whether i) Reovirus directly kills CRC cell lines with differential 

mutational status, alone or in combination with BH3-mimetics and ii) can 

activate immune effector cells to enhance killing of EGFR targeted cells in 

order to optimise the use of anti-EGFR therapy; iii) delineate the mechanism 

of cell death induced by JX-594 treated CRC cells, and iv) test the ability of 

JX-594 to activate and induce an innate immune response in the blood and 

lymph nodes. 

Studies investigating Reovirus in combination with ABT-263 and Cetuximab 

were performed. ABT-263 in combination with Reovirus demonstrated that 

this strategy did not yield enhanced killing over either agent alone, with only 

additive effects observed in a single cell line, SW620.  However, initial studies 

combining Cetuximab with OV did reveal the potential of Reovirus to increase 

EGFR-mediated ADCC against a KRAS mutant cell line, SW480, 
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demonstrating the importance of OV immune activation in combination 

therapeutic approaches.  To date, the immune potential of reovirus is well 

recognised however, less is known about the immune potential of JX-594, an 

OV currently in clinical testing at Leeds Teaching Hospitals NHS Trust.  To 

test the ability of JX594 to activate immune cell populations, healthy donor 

blood, along with blood and lymph nodes from CRC patients, were collected 

and treated with JX-594.  JX-594 treated NK cells from patient blood and 

lymph nodes demonstrated CD69 activation, enhanced degranulation and 

increased cytotoxicity against CRC cell line targets. In blood, NK cell 

activation was dependent on IFN production and the presence of CD14+ve 

monocytes however in lymph node mononuclear cells this was IFN 

independent and the mechanism remains to be elucidated.  Importantly, OV 

activation of immune effector cells known to reside in LN is encouraging for 

targeting distant micrometastatic disease. 

OV hold promise as a novel treatment modality. Direct tumour-specific lysis, 

transgene expression and the induction of tumour specific innate immunity in 

isolation, or in combination with adjunct antitumour treatment modalities, 

means that they may provide a two-pronged attack against the tumour at 

different disease sites. 
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Chapter 1  
Introduction 

1.1 Colorectal Cancer 

1.1.1 Epidemiology 

After breast and lung cancer, colorectal cancer is the third most prevalent 

cancer in the UK. However despite this it remains the second leading cause 

of cancer death1,2. Globally there were 1.36 million new cases diagnosed in 

2012 with incidence rates being reported to have increased by up to 29% since 

1975. By 2030, the burden of colorectal cancer is expected to increase to 

more than 2.2 million new cases and 1.1 million deaths.3 Bowel cancer is more 

prevalent in males than females with a lifetime risk of developing bowel cancer 

in the UK quoted as 1 in 14 in men and 1 in 19 in women4. Increasing age is 

a prominent risk factor with approximately 75% of bowel cancer cases 

occurring in patients over 65 years of age5. 

 

1.1.2 Staging 

In 1932, Cuthert Dukes (1890-1977) published his seminal paper describing 

a staging system for rectal cancer. With the addition of some small modern 

additions, his work continues to this day to provide a simple and reproducible 

method of staging colorectal malignancy providing the bedrock for prognostic 

and therapeutic strategies in the field. The four stages, are summarised in 

Table 1.1. 
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Dukes A Confined to the mucosa and submucosa 

Dukes B Invasion through the muscularis without lymph node 

involvement 

Dukes C Invasion through the muscularis with regional node 

metastasis 

Dukes D Tumour metastasis to distant sites 

Table 1.1 Dukes staging of Colorectal Cancer. 6 

 
As Dukes originally observed, there continues to be a strong association 

between disease staging and patients expected five-year survival rate. The 

overall five-year relative survival of colorectal cancer patients in England is 

50.7%, however, 93.2% of patients diagnosed with Dukes A disease survived 

five-years from diagnosis compared to only 6.6% of those with advanced 

disease (Dukes D). Whilst Dukes A cancer therefore represents a good 

prognostic outcome, currently only approximately 13% of those patients 

diagnosed with a colorectal cancer are Dukes A. With the implementation of 

national bowel screening in December 2009 this figure is set to increase 

however there remains a pressing need for novel treatment modalities to 

increase the therapeutic armamentarium to treat late stage metastatic 

colorectal cancer 5. 

 

1.1.3 Metastatic Colorectal Cancer 

The word ‘metastasis’ has its derivation in the Greek words ‘meta’ meaning 

next to and ‘stasis’ meaning placement, which translates together into change 

of place or displacement. Simplistically, the process of metastasis can be 

summarised as ‘a complex process in which a specific population of cancer 

cells within the primary can adapt to selective pressure which allow those cells 

to spread, invade and flourish in hostile, non-native environments’ 7. 
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1.1.4 Metastatic Dissemination 

In 1889, a British Surgeon by the name of Stephen Paget proposed one of the 

early theories of metastatic dissemination. His theory was based on the 

observation and analysis of 735-autopsy records of women with metastatic 

breast cancer. Paget observed that there was a non-random involvement of 

organs by associated metastatic disease that did not occur by chance and a 

result hypothesised the seed and soil theory. In this model, certain favoured 

tumour cells with metastatic activity (‘seeds’) will have a special affinity for the 

growth-enhancing milieau within specific organs (‘soil’) and therefore the site 

of metastasis will depend on the affinity of the tumour for the 

microenvironment 8. 

There has been a great body of work since then focussing on the mechanistic 

aspects of tumour spread involving tumour biology, lymphangiogenesis,  

immunology and simply the anatomical proximity of primary tumours to 

drainage systems, a good example being colon cancer metastasising to the 

liver via the portal system. It is beyond the scope of this work to review all the 

mechanistic literature, however, Ribatti and colleagues8 provide a useful 

summary of the principle components required for tumour spread. These are: 

• Neoplasms are biologically heterogeneous and contain subpopulations 

of cells with different angiogenic, invasive and metastatic properties.  

• The process of metastasis is selective for cells that succeed in 

invasion, embolisation, survival in the circulation, arrest in distant 

capillary beds and extravasation into and multiplication within distant 

organ parenchyma.  

• Metastatic outcome depends on multiple interactions of the metastastic 

cells within host homestatic mechanisms of which the tumour cells can 

escape. 

 

1.1.5 Lymph Nodes 

Cancer related mortality associated with colorectal neoplasia is inextricably 

linked to the stage of disease at diagnosis with those patients with lymph node 

metastasis found at the time of surgery demonstrating an adverse prognosis. 

Accurate radiological and histological lymph node staging is therefore crucial 
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not only for risk stratification but also to guide targeted therapeutic strategies. 

Other factors conferring a worse prognosis include peritoneal invasion, 

perforation, extramural venous invasion, incomplete resection and extensive 

extramural spread.9,10 

Of note, there is a 25% recurrence rate in patients reported to have tumour 

negative lymph nodes suggesting that nodal staging may often be inadequate 

by traditional hematoxylin and eosin (H&E) staining or alternatively other 

factors are at play.11 Focussing on lymph nodes, surgical resection 

undoubtedly plays a pivotal role on patient outcomes with a study in 2006 of 

80,000 colorectal cancer patients in the United States demonstrating that 

resection of at least 15 lymph nodes during colectomies was associated with 

a 54-month increase in the median survival of patients with node negative 

disease.12 

Treatment strategies are discussed in more detail later in this chapter. 

Typically node positive colon cancer patients (Dukes C) will receive adjuvant 

chemotherapy, the evidence for which is largely undisputed with adjuvant 

treatment in this patient cohort proving to be cost effective, while 

demonstrating a reduction in recurrence and mortality and increasing disease 

free survival.13 The role of adjuvant therapy in those patients with node 

negative disease (Dukes B) remains less clear and is based on individuals 

risk stratification. Factors that are considered may include surgical and histo-

pathological lymph node yields, levels of primary tumour extramural spread 

and most relevant to this work, the detection of occult tumour cells in the 

surrounding lymph nodes, commonly referred to as micrometastasis.14,15 

Micrometastasis are defined by the American Joint Committee on Cancer 

(AJCC) as cohesive deposits of tumour cells of 2mm or less but larger than 

0.2mm. Since the first reports regarding micrometastasis were published there 

has been fierce debate as to the prognostic impact of these cells on patient 

outcomes. Indeed, it is estimated that only 0.05% of circulating tumour cells 

may survive to initiate a metastatic focus 16. However, a recent meta-analysis 

by Sloothak and colleagues 15 concluded that the detection of micrometastasis 

was associated with an increased risk of cancer recurrence in patients with 
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stage II colorectal cancer and recommended adjuvant therapies be initiated in 

these patients. 

There is an increasing drive to use enhanced methods to increase the rate of 

detection of these cells. Serial sectioning, immunhistochemistry (IHC) using 

cytokeratin markers, reverse transcriptase polymerase chain reaction (RT-

PCR) and more recently sentinel lymph node mapping have all increased 

diagnostic yields.  Combined data from 16 studies reviewed by Sirop et al. 

(2011)17 revealed an overall micrometastasis prevalence rate of 26.5% 

(24.7% with IHC, 36.6% with RT-PCR) with most studies in the analysis 

suggesting that the presence of micrometastasis carried a worse prognostic 

outcome when compared with node negative disease. These finding are 

supported by Ueda et al. (2013) who analysed thirteen clinicopathological 

variable and 5 biological markers in stage II colorectal cancer and identified 

lymph node micrometastasis and lymphatic invasion to be independent 

prognostic factors with respect to 5 year survival in patients diagnosed with 

stage II colorectal cancer.18 

Limited data exist with regards to the benefit of treating patients with proven 

micrometastatic disease with regards to survival benefit. Interestingly, a pilot 

study of 106 patients who underwent sentinel lymph node mapping at the time 

of surgery concluded that patients diagnosed with micrometastasis, and 

treated with chemotherapy as a result of being considered as having ‘high-

risk’ disease showed improved outcomes.17 Conversely, a recent study of 

2000 colorectal cancer patients in the United States demonstrated no benefits 

of adjuvant chemotherapy in patients with stage II disease regardless of the 

presence or absence of poor prognostic features.19 

Despite mixed reports in the literature, it seems clear that traditional staging 

procedures provide insufficient information to identify those high-risk patients 

who may or may not benefit from adjuvant therapy. Minimal residual disease 

certainly acts as a strong prognostic predictor of patient survival and could be 

a used to guide and stratify individualised treatment strategies for these 

patients. Further clinical trials are certainly needed, however it is clear that the 

presence of occult disease in the form of micrometastasis in lymph nodes or 
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simply circulating tumour cells could provide exciting new targets for novel 

treatment strategies.20 

1.2 The Immune System 

1.2.1 General Principles 

The immune system is an organisms primary defence system and comprises 

of an array of biological processes and structures that allow an organism to 

protect itself against disease. Fundamentally the immune system works by 

distinguishing ‘self’ from ‘non-self’. The immune system consists of two basic 

arms, the innate and adaptive immune response. Functioning as ‘the first line 

of defence’, the innate immune response is non-specific with no immune 

memory and responds to foreign stimuli in a generic fashion. Adaptive 

(acquired) immunity creates immunological memory following an initial 

response to a specific pathogen. Accordingly, subsequent encounters with the 

same pathogen are met with an enhanced or primed host response. Adaptive 

immunity is the basis of vaccination, whereby a low volume pathogenic trigger 

primes immunological memory and lasting immunity.21 

Broadly speaking the innate immune system initiates an acute primary 

inflammatory response stimulated and regulated by a range of cytokines, 

prostaglandins and complement proteins. Inflammation acts as a physical 

barrier against the spread of infection and promotes healing of damaged 

tissues following pathogenic clearance. Antigen presenting cells including 

dendritic cells (DC’s) and macrophages, express pattern recognition receptors 

(PRR’s) such as Toll-like Receptors (TLR) or RIG-1 like receptors (RLR) on 

their cell surface, in endosomes and within their cytoplasm. PRR’s recognise 

specific small molecular motifs expressed by foreign pathogens known as 

pathogen associated molecular patterns (PAMPS) and/or biomolecules 

(nuclear or cytosolic proteins, tumour DNA, HMGB-1) released outside cells 

or exposed on the surface of cells following tissue damage, known as 

damage-associated molecular patterns (DAMPS). Receptor activation by a 

PAMP/DAMP triggers a plethora of signalling cascades leading to gene 

transcription, release of inflammatory mediators and immune cell recruitment 

and activation.22 
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The adaptive immune response is highly pathogen specific, creates 

immunological memory and provides long lasting cell protection. The adaptive 

system uses specialised leukocytes derived from multipotent haematopoetic 

stem cells of the bone marrow called lymphocytes. Two broad classes are 

responsible for the antibody (humoral) response and the cell-mediated 

response, B cells and T cells, respectively. Adaptive immunity relies on the 

capacity of immune cells to distinguish between so called ‘self’ and foreign 

antigens. Antigens, are recognised by major histocompatibility complex 

(MHC) and professional APC’s such as DC, B-cells and Macrophages. MHC 

class I and II molecules found on the surface of APCs mediate the process of 

antigen presentation. MHC class I and class II are similar in function and act 

to deliver short peptides to the cell surface for recognition by cytotoxic CD8+ 

and helper CD4+ T cells respectively. Endogenous (intracellular) peptides bind 

to MHC-I and exogenous (extracellular) peptides bind to MHC-II. APC’s 

express antigen MHC complexes, along with co-stimulatory ligands on their 

cell surface which are recognised by specific T-cell receptors (TCR) to activate 

specialist T-cell subgroups as described above.  

Virus infection triggers an endogenous antigen response secondary to 

intracellular viral replication. After virus destruction, viral antigens are 

presented to naïve cytotoxic T cells by coupling of their TCR with a peptide 

bound MHC class I leading to activation of cytotoxic CD8+ T lymphocytes 

(CTL). Effector CTL release perforin and granzyme leading to apoptosis and 

cell death. 

Exogenous antigens (bacteria and toxins) are engulfed by DC which migrate 

via chemotactic signals to lymph nodes rich in T cells. Following a process of 

maturation and pathogenic destruction, DC’s display the non-self antigen on 

their surface and form an MHC:antigen complex (MHC-class II for exogenous 

antigens) which activates a CD4+ T Helper 1 (TH1) or T Helper 2 (Th2) cell 

response depending on the antigen (Figure 1.1).  Helper T cells release 

interleukins amongst other cytokines, which stimulate B cells to  produce 

antibodies.   

Humoral, adaptive immunity is governed by B cells which are the major cell 

type involved in the creation of immunoglobulins. B cells express a unique B 
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cell receptor (BCR) which recognise antigens in their native form and trigger 

a series of events leading to antibody production by terminally differentiated 

plasma cells. Antibodies recognise unique antigens and form antigen-

antibody complexes which coordinate the induction of several cell death 

mechanisms. Mechanisms include agglutination, activation of the complement 

cascade causing inflammation and cell lysis, opsonisation which enhances 

phagocytosis, ADCC (see section 1.2.3.2) and neutralisation.23 
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Figure 1.1 The Innate and Adaptive Immune Response; An Overview. 

Innate immune mechanisms include the production of cytokines and the activation of 

antigen-presenting cells (macrophages and dendritic cells) and natural killer (NK) 

cells. Antigens are degraded into smaller peptides in endosomes/lysosomes in the 

APCs and are subsequently expressed on the cell surface in MHC class II peptide 

complexes, which can be recognized by CD4+ T helper lymphocyte cells. T helpers 

assist B cells to proliferate and mature into antibody-producing plasma cells. DCs 

can also present epitopes to CD8+ T cells. This is also known as cross-presentation. 
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1.2.2 Cancer and the Immune System 

The role of the immune system in cancer has been the subject of debate for 

many years after it was first highlighted by Virchow et al. over 150 year ago. 

In his studies, Virchow made the crucial observation that certain cancers 

resulted in inflammation that were inherently associated with white blood cells. 

Thereafter, numerous reports of spontaneous tumour regression relating to 

acute concomitant infections (influenza, smallpox, tuberculosis, hepatitis and 

gonorrhoea) were published.24,25 Following the observation of tumour 

regression in a patient with streptococcal infection in an ulcerated tumour, 

William Coley, the ‘Father of Immunotherapy’ embraced the potential 

relationship between cancer and the immune system. His experiments 

involved directly injecting tumours or metastatic deposits with a so called 

‘vaccine’ containing a mixture of Gram negative (Serratia marcescens) and 

Gram-positive (Streptococcus pyogenes) bacteria. Coley’s Toxin was 

reported to cause spontaneous regression in several tumours including 

lymphoma and sarcoma, however despite some positive results, treatment 

related deaths, reporting inconsistencies, and poorly controlled experimental 

design led to general criticism and disbelief from the wider scientific 

community.25,26 In the last 30 years rapid advances in the understanding of 

immunooncology has validated many of Coley’s initial observations with 

respect to the interplay between cancer pathogenesis and immune activation.  

With regard to cancer, for the immune system to discriminate between self 

and non-self and mount an appropriate response it must be able to recognise 

differences in the antigenic make-up between transformed cells such as 

tumours, and normal cells. As such the underlying relationship between 

cancer and immunity, is for the immune system to survey for the development 

of malignancy and eliminate tumour cells when they arise. The three principals 

involved include detection of non-self-antigens from malignant cells, effector 

functions to target and destroy the malignant cell whilst protecting the host, 

and the development of immunological memory via the adaptive immune 

response. However, cancer cells arise from normal host cells and as such are 

recognised by the immune system as self or altered self-antigens. 
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As a direct result, the immune system is now thought to play a dual role in 

cancer, the paradigm known as immunoediting, which provides a positive and 

negative balance of immune surveillance, encompassing the recognition of 

altered self and tumour elimination with cancer progression.27 The multi-

faceted mechanism consists of three phases, elimination, equilibrium and 

escape where the immune system can suppress tumour growth by destroying 

or inhibiting tumour cell development, and promote tumour progression either 

by selecting for tumour cells with acquired resistance or genetic modification, 

or enhancing conditions within the tumour microenvironment that facilitate 

tumour growth.28 

One of the hallmarks of cancer is the ability of cancer to evade or escape 

immune response embodied by both host and tumour related mechanisms. 

Failure to mount an effective anti-tumour immune response has obvious 

sequelae for the patient in the form of tumour progression but also, 

significantly presents one of the key factors which limits the efficacy of anti-

cancer immunotherapies. Several important mechanisms exist by which 

tumours evade an immune response and are summarised below. 

 

1.2.2.1 Reduction in expression of cell surface antigens 

Loss of antigen expression and resultant reduction in overall immunogenicity 

results from tumour cell genome instability. Genetic mutations lead to a 

passive loss of MHC-1 expression resulting in tumours avoiding recognition 

by specific TCR and reduced sensitivity to cytotoxic T cell mediated lysis. 

Interestingly, Rees et al. (1999)29 described the loss of all MHC-1 molecules 

in some colorectal and prostate malignancies, render tumour cells completely 

unrecognisable by CTL’s, but instead make the tumour more susceptible to 

NK-cell mediated killing. Complete loss of MHC-1 expression is rare and more 

commonly human tumours downregulate their expression to approximately 

50% conferring an overall tumour cell survival benefit.30 
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1.2.2.2 Modulation of immune cell killing mechanisms 

Three distinct processes ultimately induce immune cell killing of tumour cells 

which include i) formation of death-inducing signalling complexes leading to 

apoptosis (eg binding of Fas Ligand (FasL) to Fas Receptor (FasR); ii) binding 

of tumour necrosis factor related apoptosis inducing ligand (TRAIL) to tumour 

necrosis factor related apoptosis inducing ligand receptor (TRAIL-R) and iii) 

the release of perforin and granzyme from cytotoxic granules.31 

Metastatic CRC cells amongst others have been reported to show decreased 

and/or mutated levels of FasR and TRAIL-R on their cell surface resulting in 

tumour cell protection.31 Interestingly, recent data has demonstrated 

upregulation of FasR in various tumour types which whilst making tumours 

more susceptible to Fas-mediated apoptosis is conversely thought to 

upregulate cell proliferation and differentiation, chemokine production and 

inflammatory responses through a series of non-cytotoxic, non-apoptotic 

signalling cascades leading to the promotion of tumour growth.31 

Furthermore, with respect to Fas-mediated tumour immune protection, 

O’Connell et al. (1997) first described the so call ‘Fas Counterattack’ 

mechanism of immune escape in colon, melanoma, and liver cancer cells 

which relates to the active killing of Fas-sensitive tumour infiltrating 

lymphocytes (TIL) by tumour derived FasL thereby imparting an ‘immune 

privilege’ on the tumour.32 Several findings support this theory including i) 

various cancer cell lines have been shown to express FasL and kill 

lymphocytes through Fas-mediated apoptosis in vitro; ii) human cancers are 

known to express variable amounts of Fas-L, and iii) inducing FasR-mediated 

apoptosis of activated leukocytes results in immune tolerance and gives 

immunological protection to the tumour as demonstrated in animal allograft 

transplantation models.32–34 

 

1.2.2.3 Modification of the tumour microenvironment 

Tumour can evade NK cell-mediated innate immune cell death by shedding 

NK ligands (e.g. NKG2D ligands; MICA, MICB and RAET/ULBP proteins) into 

the tumour microenvironment and as such avoiding NK cell recognition 

pathways. Salih et al. (2008)35 reported that in a variety of tumours, release of 



- 13 - 

NKG2DL had been observed to interfere with NKG2D-mediated tumour 

immunity. Mechanisms of NK cell escape utilised by tumours include a 

reduction of ligand density on the tumour cell surface, decreased expression 

of NK receptors (described below) and blocking of the NKG2D-binding site.36 

 

1.2.3 Components of the immune system 

There are multiple vital components of the immune system which fall beyond 

the scope of this study. However, to understand this work it is important to 

explore the function of natural killer cells and immunoglobulins in more detail. 

 

1.2.3.1 Natural Killer Cells 

Natural killer cells are a specialized population of granular lymphocytes that 

are highly cytotoxic to both tumour cells and virus-infected cells. NK cells act 

as the first line of defense against viral infections preceding the development 

of an antibody response and produce significant levels of cytokines and 

chemokines (IFN-α, IFN-β, IL-12, IL-18).37 Activation is dependent on cytokine 

production with IFN-α and β acting as potent inducers of NK-cell mediated 

cytotoxicity, and IL-12 resulting in production IFN-γ which induces an antiviral 

state.  The response is regulated by a selection of activating (CD16, NKG2D, 

NKp30, NKp44, NKp46) and inhibitory receptors, which recognise MHC class 

I and MHC-like molecules on the surface of target cells. Tumour cells, and 

virus infected cells therefore become a natural target for NK cells as a result 

of them down-regulating MHC in order to evade the host adaptive immune 

response.38–40 

Given the early activation of NK cells in response to a virus challenge, one 

would expect NK cell inhibition or depletion to enhance intratumoural spread 

of an oncolytic virus and enhance tumour killing though lytic pathways. 

Several studies have indeed validated this theory. Replication, tumour 

necrosis and animal survival was significantly enhanced following VSV 

infection in an in vivo model of rats bearing intrahepatic multifocal 

hepatocellular carcinoma (HCC) after antibody mediated depletion of NK 

cells.41 A second study showed that HSV activated NK cells preferentially 
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lysed HSV-infected glioblastoma cells, a process that was dependent on NK 

cell natural cytotoxicity receptors (NCRs) such as NKp30 and NKp46. In the 

absence of these receptors (NCR(-/-) knockout mice) HSV titres and efficacy 

increased.42  

Conversely, other studies have reported an anti-tumoural effect of NK cells 

after oncolytic viral treatment. Prestwich et al. (2009) compared the direct 

oncolytic effect of Reovirus in the resistant murine melanoma cell line, 

B16ova, compared with the parental cell line, B16. Resistance of B16ova was 

thought to be due to the absence of the Reovirus receptor, JAM-1, and 

unsurprisingly Reovirus replication was not detectable after subcutaneous 

injection of B16ova tumours in mice. Despite this, B16ova tumours regressed 

in vivo, in an NK cell dependent fashion. Further in vitro studies by the same 

group, loaded dendritic cells (DC) with Reovirus infected Mel888 cells known 

to secrete a broad range of chemokines, causing NK cell migration. The 

resultant secretion of IFN-β stimulated NK cell-mediated cytotoxicity of the 

Mel888 cells and concurrent NK cell recruitment caused DC maturation. Both 

studies together reinforce the role of NK cells in an innate anti-tumoural 

response.43,44  

The complex interplay of NK cells in response to viruses serves to adequately 

highlight just some of the challenges faced in optimising potential oncolytic 

therapies. On one hand the innate immune response is seen as inhibitory to 

therapeutic efficacy acting to quash desired viral replication and cell lysis. 

However counter-intuitively an ever-increasing body of data exists highlighting 

the important role of oncolytic viruses to induce innate and adaptive immune 

responses against the tumour thereby increasing their overall therapeutic 

effect. 

 

1.2.3.2 Antibody-Dependent Cell Cytotoxicity (ADCC) 

ADCC is a mechanism of cell-mediated immune defence in which immune 

effector cells (NK cells, monocytes/macrophages, neutrophils, dendritic cells) 

actively lyse target cells (tumour cells, cells infected with intracellular 

pathogen) whose membrane antigens have been bound by specific antibodies 

(belonging to IgG, IgA or IgE classes). ADCC contributes to the clearance of 



- 15 - 

infected or foreign cells via the innate and acquired immune system.45 ADCC 

mechanisms vary depending on the effector cells that are recruited by 

antibodies but broadly follow a similar path.  Initially, the Fab region of an 

antibody recognises and binds to a specific antigen found on the surface of a 

target cell and the Fc region of the antibody binds to Fc𝛾 receptors (Fc𝛾R) on 

effector cells. The target cell-antibody-effector cell complex activates effector 

cells and results in the release of preformed cytotoxic factors, such as perforin 

and granzyme, which destroy target cells. Synchronous immunoregulatory 

cytokine and chemokine release from the activated effector cell further 

mediates the development of an immune response. 

The majority of ADCC research has involved the use of peripheral blood 

mononuclear cells (PBMC’s) in which NK cells are the main effector. The most 

common Fc𝛾R expressed by NK cells is CD16 (Fc𝛾RIII) which binds to IgG 

bound to the surface of target cells (infected with pathogen or Ab-targeted 

cancer cells). Antibody-dependent NK-mediated killing occurs via several 

complimentary pathways: 1) exocytosis of cytotoxic granules; 2) TNF family 

death receptor signalling leading to apoptosis and 3) pro-inflammatory 

cytokine release, for example IFN-𝛾. IFN-𝛾 release is reported to inhibit cell 

proliferation, promotes antigen presentation, increase angiogenesis, increase 

MHC surface expression and contribute to the upregulation of TRAIL 

expression on NK cells which work synergistically to promote tumour/infected 

cell death.46,47 Less is known about ADCC by non NK-cell populations in 

peripheral blood and mucosal compartments. However, antibody-dependent 

cell phagocytosis (ADCP) has been described for phagocytic immune cell 

populations such as DC, monocytes and macrophages.48,49 

ADCC is a rapid effector pathway whose efficacy is strongly dependent on a 

number of variables including the density and stability of the antigen and both 

antibody affinity and FcR-binding affinity. For example, ADCC involving 

human IgG1 (the most utilised class by therapeutic antibodies) is highly 

dependent on the glycosylation profile of the antibody Fc portion and efficacy 

is effected by Fc𝛾RIIa and Fc𝛾RIIIa polymorphisms. This variant ADCC 

activity allows scientists to modulate, enhance and mimic the effects of ADCC 

in order to develop potential novel therapeutics. Recombinant antibody 

engineering of the Fc region of IgG can optimise IgG1 antibodies for NK 
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binding and enhance ADCC. Similarly the use of bispecific antibodies that are 

able to bind activating molecules expressed by both tumour cells and cytotoxic 

cells can mimic classical ADCC in experimental studies.50  Also see section 

1.3. for antibody-induced ADCC. 

 

1.2.3.3 Interferons (IFNs) 

Interferons (IFNs) are secreted glycoproteins discovered by Isaacs et al. in 

1957,51 so called because they ‘interfere’ with viral replication within cells. 

They are a species-specific class of cytokine and have a potent antiviral effect, 

by allowing communication between cells to trigger the immune system to 

attack tumour and pathogens. There are three classes of IFN described; Type 

I, Type II and Type III summarised in Table 1.2. For the purposes of this thesis, 

this summary focusses largely on type I IFNs as they provide a pivotal 

component of the innate anti-viral immune response. 

 

 

Type	 Interferon	

Type	I	 IFN-α,	IFN-β,	IFN-δ	IFN-ω	IFN-κ	

Type	II	 IFN-γ	

Type	III	 IFN-λ	

Table 1.2 The three classes of IFNs. 

 
 

Type I and III interferons are secreted in response to virus infection and exert 

their effects via Type I IFN and Type III IFN receptors respectively. Type I IFN 

receptor is expressed ubiquitously whereas Type III IFN receptor has a more 

limited distribution within tissues with receptor expression limited to cells of 

epithelial origin. Type II IFN’s are secreted by activated immune cells for 

example natural killer cells (NK) and/or T-cells. Type II IFN’s role is to activate 
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macrophages and promote a cell-mediated adaptive immune response via T-

helper 1 (Th1) cells. 52 

The type I IFN response is initiated after host cell PRR such as membrane-

associated TLR and RIG-1-like receptors identify viral PAMPs, for example 

foreign cytoplasmic RNA. Activation of the PRR stimulate a signalling cascade 

that initially activates transcription factors such as activator protein-1, NF-κB 

and IFN-regulatory factor 7 before these proteins are translocated into the 

nucleus and trigger the transcription of genes encoding type I IFNs, cytokines 

and chemokines. Initial responses are driven mainly by IFN-β but switch to 

IFN-α during a subsequent amplification phase of the overall response.53 

Following secretion of the Type I IFNs, they bind to their respective receptors 

either on the same cell or neighbouring cells and trigger a Janus kinase 

(JAK)/signal transducer and activator of transcription (STAT) signalling 

cascade leading to the production of IFN-stimulated genes (ISG) which act to 

confer an antiviral state. ISGs produced include protein kinase R (PKR) which 

inhibits protein synthesis, 2’-5’-oligoadenylates synthase (OAS) which works 

to degrade cellular and viral mRNA and ISG15 which conjugates a range of 

proteins involved in the IFN response stabilising them against degradation.  

Ultimately the expression of hundreds of ISGs therefore results in a 

coordinated antiviral response leading to an antiviral state within the cell. 54 A 

schematic diagram of the IFN response is shown in Figure 1.2. 
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Figure 1.2 Schematic diagram to illustrate antiviral cell IFN response 
signalling pathway and areas in which oncolytic virus can antagonise 
the pathway.  

Virus infection is sensed by PRRs which trigger signalling cascades leading to 

activation of transcription factors NF-κB, IRF3 and AP-1. On entering the nucleus 

they stimulate transcription of the IFN-β gene. IFN-β is secreted from the cell where 

it binds to the type I IFNR on the same or adjacent cells triggering activation of the 

JAK/STAT pathway.  This leads to the assembly of the ISGF3 complex in the nucleus 

and the transcription of hundreds of ISGs. The positions where viral proteins can 

inhibit the production and/or action of IFN are denoted by red stars. This figure is 

adapted from a review by Haller et al. (2006).54 
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Whilst it is clear viruses stimulate a potent host cell innate immune response 

via the IFN pathway for successful infection to take place viruses must multiply 

extensively. Therefore, it is now evident that most viruses have developed 

means to down-regulate the host IFN response. Using Vaccinia Virus (VV) to 

illustrate this for the purposes of this report, inhibition of the IFN response is 

not only multi-mechanistic but also occurs at multiple levels with each 

individual VV protein potentially antagonising multiple pathways. Some 

mechanisms utilised by VV to evade immune clearance and allow replication 

are summarised below. 

1. Reduced production and recognition of PAMPs 

VV acts to minimise production of PAMPS primarily by minimising the 

production of dsRNA as a result of structural arrangements within the terminal 

regions of the genome. Similarly by blocking host cell protein synthesis there 

is a reduction and loss of IFN transcription. An example of this is the numerous 

intracellular proteins (A49, B14, C4, K7, M2, N1) that inhibit NF-κB activation. 

Finally the virus actively expresses proteins such as E3, which sequesters 

dsRNA via a C-terminal dsRNA binding domain thereby preventing activation 

of the dsRNA-binding PRR-induced protein signalling cascade.55,56  

2. Secretion of IFN capture proteins (Decoy receptors). 

B18R is an IFN-binding protein that acts both in solution and via 

glycosaminoglycans (GAG) at the cell surface to sequester and bind type I 

IFNs, preventing them from activating IFNR in both infected and uninfected 

cells. B18R targets IFN-α and not IFN-β which relies on more intracellular 

mechanisms. IFN-α is produced in large quantities by dendritic cells, which 

are recruited to the site of infection or inflammation and therefore requires 

neutralisation outside the infected cell.57 

3. Signal transduction inhibition 

VV blocks and antagonises signalling cascades induced by the binding of type 

I IFNs to their respective receptor complexes. An example of this is the protein 

VH1, which rapidly dephosphorylates STAT1 and STAT2 after concordant 

entry into the cell along with infecting virion.58 

4. Blocks action of intracellular ISGs 
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Within the infected cell, VV encoded proteins inhibit the actions of protein 

transcribed ISGs. Examples include the E3 protein which binds ISG15 

preventing its antiviral activity and similarly the E3 binds dsRNA to prevent the 

activation of PKR and OAS.59 

The relationship between an oncolytic virus and the innate immune response 

is complex given scientists desire for the innate immune system to mediate 

part of the viruses therapeutic efficacy. Inhibition of this innate response could 

theoretically impair potential treatment function. Indeed in VV genetically 

engineered to express IFN-β (JX-795), Kirn et al. (2007) reported that the 

generation of anti-tumour immunity resulted in improved tumour selectivity 

and efficacy when compared with controls. Similarly, engineering IFN-β into 

Vesicular Stomatitis Virus (VSV) is reported to enhance NK cell activation and 

increase inflammatory cytokine production.60,61 

Importantly, there is an active and intact antiviral innate immune response 

within normal cells but not tumour which prevents toxicity of virus 

administration. Indeed evidence suggests that severe toxicity is seen from 

both Reovirus and VSV in normal tissues when administered to IFN-α and 

IFN-β knockout mice.62 Balancing the generation of anti-tumour efficacy with 

potentially unacceptable toxicity is therefore vital to the generation of 

successful oncolytic viral agents. 

 

1.3 Epidermal Growth Factor Receptor (EGFR)  

EGFR is a cell membrane growth factor receptor tyrosine kinase which plays 

a critical role in the control of key cellular transduction pathways including 

promoting cell proliferation and opposing apoptosis in both normal and 

cancerous cells. EGFR is commonly upregulated in various cancers including 

metastatic colorectal cancer.63 Overexpression of EGFR is linked to the 

promotion of cancer progression with EGFR levels being shown to predict 

tumour grade, relapse rates and patient prognosis.64,65 
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EGFR mediated signal transduction is complex and beyond the scope of this 

work to detail in full, however Figure 1.3 shows a summary of EGFR induced 

and KRAS mediated signalling pathways.  
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Figure 1.3 EGFR-induced and KRAS-mediated signalling pathways.  

A) Activation of EGFR by ligand binding and receptor auto-phosphorylation create a 

docking site for the SOS/GRB2 complex, resulting in KRAS activation. KRAS then 

signals through the RAF/MEK/ERK and PI3K/AKT cascades to promote cell growth 

and suppress apoptosis. B) Cetuximab and Panitumumab, bind to EGFR preventing 

ligand binding and KRAS activation leading to growth suppression and cell death by 

inhibition of RAF/MEK/ERK and PI3K/AKT pathways. Mutant KRAS and BRAF cause 

constitutive activation of the  pathway, leading to anti-EGFR antibodies resistance,  

cell growth and survival. (Adapted from Knickelbein et al. (2015)66) 
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EGFR downstream signalling pathway are relevant given their interaction with 

anti-EGFR receptor inhibitors (discussed in section 1.3.1) used for the 

treatment of CRC and the constitutional activation of the pathway in various 

tumour cell types, making them an obvious target for cancer-related research. 

Following EGFR activation, RAS stimulation is triggered. Activated RAS 

promotes membrane recruitment and activation of its downstream effectors. 

Over 18 effectors have been reported to be controlled by activated RAS, which 

provides the common upstream molecule of several pathways. These include 

RAF/Mek/ERK and PI3k/Akt. Four RAS proteins have been reported (NRAS, 

HRAS, KRASa and KRASb) which show varying potencies to activate the 

different cascade pathways. KRAS is considered the stronger inducer of the 

RAF/MEK/ERK pathway while HRAS induces the PI3k/Akt pathway 

preferentially.67 Importantly in human cancer, RAS demonstrates different 

mutational frequencies with KRAS reported as the most frequently mutated 

RAS isoform.68 These mutations result in constitutive activation of the proteins 

and therefore no longer require ligand binding to EGFR for activation. 

Downstream in the RAS-RAF-MEK pathway is the serine/threonine (S/T) 

kinase Raf family. Activation occurs in a complex series of events mediated 

by its interaction with RAS. As with RAS, mutation rates in RAF are high in 

certain cancers for example the BRAF mutation rates are documented as 30% 

in ovarian cancer, 27-70% in melanoma and 5-22% in colorectal cancer.69–72 

Mutations can occur at different locations in the BRAF protein but the most 

commonly reported mutation (V600E) occurs at residue number 600 and 

replaces valine with glutamic acid. The V600E mutation is present in almost 

60% of all melanoma patients73 and interestingly has recently been reported 

to be responsible for the pre-malignant transformation of benign colorectal 

polyps into serrated adenomas defining it as a marker and risk factor for the 

progression of colorectal cancer.74 

RAF phosphorylation ultimately regulates the activity of mitogen-activated 

protein kinase/ERK kinase (MEK1). Once activated, the cascade is reported 

to play a critical role in apoptosis by phosphorylating various apoptotic 

regulatory factors such as Bas, Bim, Mcl-1, caspase 9 and BCL-2. 

Furthermore the pathway also influences cell cycle regulation, cell 

differentiation, migration, metabolism and proliferation.75 
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PI3K can also be activated as a result of ligand binding to EGFR. The 

signalling cascade induced ultimately recruits Akt, the primary mediator of 

PI3K-initiated signalling. Akt acts to mediate both the activation of certain 

substrates (CREB) or the inactivation of others (BRAF, Bim, BAD and 

Procaspase 9). Interestingly, the pathway also includes several phosphatases 

which inhibit the growth-promoting effect of PI3k by removing phosphates 

from PIP2 and PIP3 as such the genes encoding them (e.g. PTEN) are 

referred to as tumour suppressor genes. 

 

1.3.1 Anti- EGFR Receptor Inhibitors 

Two pharmacological approaches have been delineated to target and inhibit 

EGFR functions for cancer treatment, which include anti-EGFR monoclonal 

antibodies and small molecule tyrosine kinase inhibitors (not discussed 

further). Anti-EGFR antibodies are competitive antagonists against EGFR 

which act by occluding the ligand binding region of the extracellular binding 

domain. Anti-EGFR monoclonal antibodies are highly selective, recognising 

EGFR exclusively, however resistance to these agents is well documented 

and is thought to relate to constitutive activation of downstream mediators as 

a result of mutational variations. In an unselected patient cohort only 10% will 

be responsive with mutations in the KRAS gene, causing constitutive pathway 

activation and treatment failure accounting for up to 40% of resistant 

patients.76 

To date two anti-EGFR monoclonal antibodies, cetuximab and panitumumab 

are in mainstream use for metastatic CRC therapy.  

 

1.3.1.1 Cetuximab 

Cetuximab (Erbitux™) is a chimeric monoclonal IgG1 antibody composed of 

variable regions (Fv) of a murine anti-EGFR antibody, which displays high 

affinity for EGFR, and a constant region (Fc) of a human IgG1 kappa 

immunoglobulin. Cetuximab is now in widespread clinical use with evidence 

supporting the first and second line use of Cetuximab as an option for 

previously untreated epidermal growth factor receptor (EGFR)-expressing, 
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RAS wild-type, metastatic colorectal cancer in adults in combination with 

either FOLFOX (5-fluorouracil, folinic acid and oxaliplatin) or FOLFIRI (5 

fluorouracil, folinic acid and irinotecan) and third-line as a monotherapy.77 

Importantly in this patient cohort, retrospective biomarker analysis confirmed 

KRAS mutation status as an effective predictive biomarker although 

disappointingly the authors were unable to draw any definitive conclusions 

with respect to BRAF mutation status due to the small numbers of BRAF 

mutant genotypes found in the cohort (11 of 309 patients).78,79 However, 

analysis of an alternative treated patient cohort comparing objective tumour 

responses, progression free survival and overall survival following Cetuximab 

or Panitumumab treatment by Nicolantonio et al. (2009) showed that in the 

presence of BRAF V600E mutations there was no response. The authors 

hypothesised that combination strategies to target both EGFR and BRAF may 

yield interesting outcomes.80 

Cetuximab’s principle mode of action is to inhibit EGFR signalling and by 

doing so reduce cell proliferation, angiogenesis and cell survival, however in 

addition Cetuximab is reported to induce ADCC (see section 1.2.3.2) by 

recruiting immune effector cells and also acts to induce apoptosis by 

increasing the expression of pro-apoptotic proteins such as Bax and caspase 

3 or by inactivating anti-apoptotic proteins for example BCL-2.81 

ADCC is triggered by the binding of the Fc region of Cetuximab, which is 

already bound via Fv regions to the target cell, to any of the Fc𝛾 receptors 

expressed by cells of the innate immune system (for example CD16 on NK 

cells). The role of specific immune cell types to the anti-tumour ADCC 

response exerted by anti-EGFR monoclonal antibodies remains unclear.  

General consensus points to NK cells being the primary immune effector with 

in vitro experiments demonstrating that Cetuximab is able to mediate NK-

dependent ADCC with the magnitude of response directly related to CD16 

(Fc𝛾RIII) polymorphism.82,83 Conflicting evidence however exists with respect 

to whether high affinity or low affinity Fc𝛾R polymorphisms are required to 

improve clinical outcomes. Studies by Bibeau et al. (2009)84 and Lopez-

Albaitero et al. (2009)83 reported longer progression free survival in patients 

with higher affinity Fc𝛾R polymorphisms in metastatic colorectal patients 
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treated with cetuximab and irinotecan. Conversely, the opposite association 

was found by Zhang et al. (2007)85 and Dahan et al. (2011)86 with better 

outcomes reported in patients with low affinity polymorphisms. Direct 

comparison, however, is limited given significant study variation in the 

underlying number of patients expressing KRAS mutations and other studies 

incorporating concurrent alternative antibody treatments alongside cetuximab. 

The impact of these variations is unknown but could arguably account for 

some of the differences seen in evaluating the impact of Fc𝛾R polymorphisms 

on Cetuximab efficacy.87 

 

1.3.1.2 Panitumumab 

Panitumumab (Vectibix™) is a humanized IgG2 kappa monoclonal antibody. 

Like Cetuximab, in the United Kingdom its use is recommended by NICE and 

the European Medicines agency for use in untreated, RAS wild-type 

metastatic colorectal cancer in adults as a monotherapy (third-line) or in 

combination with FOLFOX or FOLFIRI. There is also good evidence that the 

response to Panitmumab is also limited to only those patients with wild-type 

KRAS tumours.88 

Like Cetuximub, Panitumumab works prinicipally via competitive inhibition of 

the EGFR thus blocking downstream signalling cascades, however it also has 

been shown to activate an immune response. As an IgG2 anti EGFR antibody, 

ADCC is induced via cells of myeloid lineage (neutrophil and monocytes). 

Panitumumab  is less effective at inducing NK-dependent ADCC which is 

likely related to reduced avidity/preference of IgG2 immunoglobulins for CD16 

when compared with IgG1.89,90 

 

1.3.1.3 GA201 

GA201 is a novel anti-EGFR monoclonal antibody designed to have enhanced 

ADCC properties. GA201 was developed from the humanisation of the rat 

ICR62 antibody with the Fc region glycoengineered to contain afuscosylated 

carbohydrates to encourage enhanced binding to Fc𝛾RIIIA. Initial in vitro data 
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demonstrated that GA201 had a similar efficacy to Cetuximab, inhibiting EGF 

ligand binding, downstream signalling and cell proliferation. 

Interestingly, GA201 exhibited superior binding to both high and low affinity 

variants of Fc𝛾RIIIA, which when compared with Cetuximab, resulted in 

enhanced induction of ADCC against both wild-type KRAS and mutant KRAS 

tumour cell lines. In vivo  experiments using a variety of immunocompetent 

mouse xenograft models (pancreas, colorectal and breast) also showed a 

significant therapeutic benefit of GA201 compared with Cetuximab in both 

KRAS wild-type and KRAS mutant tumours with variable EGFR expression. 

Furthermore the efficacy of GA201 was potentiated further when combined 

with Irinotecan chemotherapy.91 

With clinical responses of approximately 15% across all sub classes of anti-

EGFR monocloncal antibodies, only modest overall survival benefits when 

compared with best supportive care, and increasingly robust cost-benefit 

analysis of novel therapies being undertaken by many countries, the 

challenges are clear. The future of monoclonal antibody therapy is to identify 

biomarkers and individualise treatment strategies to allow clinicians to predict 

and target only eligible patients. Strategies should incorporate not only the 

mechanistic effects of targeting EGFR and downstream signalling pathways 

but also the potential benefit of exploiting  antibody immune potential.92 

 

1.4 Oncolytic Viruses 

1.4.1 Background 

In the late nineteenth century and into the early twentieth century cancer 

therapy as a field of medicine was wholly reliant on surgical excision with a 

clear push towards alternative treatments. Viruses as an option for the 

treatment of cancer therefore developed in a somewhat innocuous fashion 

under the observational premise that in some cases cancer patients who 

contracted an infectious disease went into brief periods of clinical remission. 

Particular examples included cases of leukaemia where it became well 
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recognised that the contraction of influenza virus could in some cases 

demonstrate beneficial effects93. 

Thereafter, throughout the 20th century viruses have been the focus of 

fluctuating attention in the quest to find novel experimental agents for the 

treatment of cancer. Interest initially peaked in the 1950’s and 60’s with the 

evaluation of the oncolytic properties of numerous viruses including 

Bunyamera, Ilheus, West Nile Virus, Semliki Forest Virus and adenovirus to 

name a few being explored in human tumour cell lines and then 

immunosuppressed rats. Proof of concept of the ‘oncolytic virus’ was driven 

by Moore et al.94 who using a novel in vivo tumour model in mice 

demonstrated that the virus, Russian Far East Encephalitis Virus, could 

selectively target and kill cancer cells (Sarcoma 180), and in some cases 

completely destroy it. Unsurprisingly, however, infection did eventually cause 

fatal encephalitis in the treated mice94,95. 

Over the next two decades little to no research progress was made, however 

in the last fifteen years developments in virology, genetic manipulation and 

molecular biology have enabled there to be a resurgence in the field. 

Recombinant technology has allowed researchers to genetically engineer 

viruses to enhance their safety profile by selectively targeting tumours cells, 

an approach first published by Martuza et al. (1991) using a herpes simplex 

virus type one (HSV-1) in an experimental glioma model96. Thereafter, a huge 

wave of interest has driven both pre-clinical and clinical research. 

Investigation of viruses for oncolytic and/or anti-tumour properties, and the 

potential interactions between viruses and the immune system, continues 

unabated with clinical grade viruses now reaching phase III trials 97. 

 

1.4.2 Vaccinia Virus 

1.4.2.1 History 

Variola Virus (Variola major) is a member of the poxvirus family and for 

thousands of years was responsible for devastating epidemic outbreaks of 

smallpox and millions of deaths worldwide. The origin of smallpox as a natural 

disease has been lost in history but is believed to date back to 10,000BC. 
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Colloquially, known as ‘speckled monster’ the disease was non selective, 

affecting all levels of society and in Europe alone in the 18th century was 

responsible for 400,000 deaths annually and a fatality rate of up to 60% in 

adults and 98% in children.98,99 

Throughout time it was well established that survivors of smallpox became 

immune to the disease and the practice of variolation or inoculation, by which 

a small of amount of fresh matter from an infected pustule was injected 

subcutaneously into an uninfected individual to impart immunity, became 

widely accepted practice.100 In the late 18-hundreds Edward Jenner 

discovered the protective effects of cowpox to variola virus (VARV) after 

overhearing tales of dairymaids being protected from smallpox naturally after 

having suffered from cowpox and established a vaccination against the 

disease. Based on his work, and following a worldwide vaccination campaign 

the World Health Organisation (WHO) declared smallpox to be eradicated in 

1980.101,102 The agent used for the vaccination programme was not the same 

and its exact origins are unclear. It was called vaccinia virus (VV) and 

demonstrates a close relationship to the cowpox virus suggesting that it may 

be a hybrid of cowpox and VARV.103,104 

By the 1980’s, VV had emerged as an increasingly useful adjunct for use in 

alternative biological and medical applications. Several factors enabled the 

virus to develop in this way including VV’s large double-stranded DNA 

genome, which enables insertion of up to 25 kb of foreign DNA without any 

loss of infectivity. As a direct result of its historical importance as a smallpox 

vaccine, the biology and pathogenesis of VV has been investigated 

extensively and there is a large and established safety profile for the virus. 

Finally, and importantly, VV continues to demonstrate high infection efficiency 

making them important in the field of oncolytic virotherapy.105 

A variety of recombinant viruses now exist derived from various vaccinia 

strains and continue to be heavily investigated in the laboratory, these include 

Modified Vaccinia Ankara (MVA), Western Reserve (WR), Lister (LIVP), New 

York Vaccinia Virus (NYVAC) and Copenhagen (COP). There use in a wide 

variety of solid tumours continues to show promise in a pre-clinical setting with 

several forms progressing into clinical trials. 
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1.4.2.2 Structure, Replication and Life Cycle of VV 

1.4.2.2.1 Structure 

Vaccinia virus remains one of the largest viruses to replicate within humans 

and as a result of its success as a live viral vaccine it is also one of the most 

extensively studied members of the poxviridae family.  

The vaccinia virion is a single membrane barrel-like structure measuring 320-

380nm in the long axis by 260-340nm in the short.106,107 The virion has a 

complex internal structure featuring a bioconcave core flanked by lateral 

bodies (Figure 1.4).108 The core is made up of a proteinaceous wall with pore-

like structures throughout enclosing a nucleocapsid, while the lateral bodies 

surrounding this structure are comprised of amorphous protein structures that 

to date have no known function (Figure 1.5).109,110  
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Figure 1.4 Electron micrograph of thin-sectioned vaccinia virus particles 
demonstrating an outer membrane surrounding a bioconcave core. 

(reproduced from swissinfo.ch) 
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DNA sequencing has confirmed that the genome consists of 191,636 base 

pairs with a basic composition of 66.6% A & T within which there are 198 

‘major’ protein-coding regions and 65 overlapping minor regions encoding a 

potential 263 genes.111 Mass spectrometry has analysed the protein 

composition of the mature virions and identified at least 70 virus proteins 

although the localization of many of these virion proteins within the genome 

remains unknown. 
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a 

 

b 

 

 

Figure 1.5 Illustrative representation of two vaccinia virion structures, 
IMV (a) and EEV (b).  

The Intracellular mature virion (a) is the most abundant form and is the first virus 

particle transcribed in the host cell. The single membrane structure has a bioconcave 

core flanked by lateral bodies. IMV’s are responsible for local cell-cell spread. The 

extracellular enveloped virion (b), develops from the IMV form and gains a second 

membrane as a result of a wrapping process undertaken in the golgi apparatus. The 

EEV’s are responsible for distant virus dissemination and the extra membrane 

covering allows the EEV’s to play a role in evasion of host innate immunity (ds; double 

stranded). 
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1.4.2.2.2 Morphogenesis and Replication 

Virion morphogenesis is a complex process ultimately leading to the 

production of two major classes of mature virion differentiated from one 

another by their number of membranes. Intracellular mature virus (IMV) has a 

single membrane and remains within the cytoplasm of the infected cell until 

cell lysis. The IMV’s are thought to be responsible for the horizontal spread of 

poxvirus and remain largely intracellular until cell lysis. The second set of 

mature virions acquire an additional wrapping from the host trans-golgi 

network, resulting in a second membrane. The so-called extracellular 

enveloped viruses, (EEV) are exported from the cell, prior to cell death by 

fusing with the plasma membrane before being released via exocytosis. The 

EEV’s are thought to be responsible for the distant spread of the virus within 

the host.112,113 Importantly, in addition to their role in dissemination, and as a 

direct result of being wrapped in a host derived membrane they play a pivotal 

role in enabling VV to evade host antibody and complement responses.114 

Unique to the poxvirus family, the entire life cycle including transcription, 

replication and virus assembly occurs within the host cell cytoplasm. Virus 

replication is initiated by the binding and entry of virions into susceptible cells. 

After direct fusion of cellular and viral membranes, the inner viral core is 

delivered by microtubules into the cytoplasmic compartment where it remains 

intact for several hours. Fusion of both types of virion is facilitated by the 

interaction of a group of virion entry/fusion proteins (A21, A28, H2 and 

L5)115,116 within the virus membrane with either glucosoaminoglycans (GAGS) 

or laminins on the cell surface.117,118 These proteins enable fusion of the virus 

to the host cell but also facilitate cell to cell spread. 

The core contains structural proteins, a tightly compacted viral DNA genome 

and various transcriptional enzymes necessary to initiate replication. Within 

several minutes of infection, the virus genome is transcribed into early 

messenger RNA (mRNA) by the virus associated DNA-dependent RNA 

polymerase. Translated proteins from these mRNA’s allow replication of virus 

DNA, and modification of the cell microenvironment to the advantage of the 

virus, enabling the virus to escape from the host innate immune response.  

Later gene transcription follows, with genes encoding for new virus particles 

and enzymes packaged into virions that initiate transcription in the next 



- 35 - 

infected cell.119 The immature virion (IV) is released upon cell lysis and a 

minority of virions are transported for ‘wrapping’, the addition of a second 

cellular membrane to form the EEV population.114 Host cells undergo lysis 7-

24 hours after initial infection releasing both infectious EEV and IMV forms 

with each individual infected cell yielding approximately 10,000 new viral 

particles. A summary of the life cycle is shown in Figure 1.6. 
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Figure 1.6 Illustrative overview of Vaccinia virus replication and 
lifecycle. 

There are 18 steps in the VV lifestyle which are described below: (1) Entry of EEV’s. 

(2) Core released and early mRNA synthesis. (3) Protein synthesis. (4) Secretion of 

early proteins including proliferation stimulators and immune evasion factors. (5) Viral 

DNA genome release. (6,7) Viral DNA synthesis. (8,9)Intermediate phase gene 

transcription. (10,11) Late phase gene transcription. (12,13) Formation and assembly 

of the immature virion. (14) Maturation into IMV. (15) Cell lysis and release of IMV. 

(16) Proportion of IMV’s undergo wrapping with second membrane to form 

intracellular enveloped virion (IEV). (17) IEV transported to the cell surface by 

microtubules and released via exocytosis in the form of mature EEV’s. (18) 

Membrane fusion and infection of neighbouring cells. (Figure adapted from Boyle et 

al. 2009).120 
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1.4.2.3 Vaccinia as an Oncolytic Virus 

As a result of vaccinia’s role as a vaccine in the treatment of smallpox, it has 

become the most extensively researched and understood virus for use in 

humans. A wealth of literature existed examining virus biology and 

pathogenesis in both pre-clinical and clinical settings, making it a very 

attractive proposition for developing into a potential biotherapeutic cancer 

agent. 

Vaccinia virus has several unique features that make it an ideal candidate for 

use as a potential oncolytic or immunotherapeutic agent and consequently 

there are a range of recombinant VV viruses being investigated with promising 

results. Some of these features are discussed below: 

1. VV rapidly infects, replicates and lyses target cells when compared with 

other virus species with the first viral particles reportedly released before 

8 hours of infection and cell death seen at between 48 and 72 hours.121 

 

2. VV possesses a broad tumour tropism which inherently targets tumour 

cells in a multi-mechanistic fashion. Primarily this occurs as a result of VV 

utilization of membrane fusion pathways to infect target cells.122 In addition 

tumour cell targeting is also increased by the infrastructure of the cancer 

cell mimicking that of a virally infected host cells with deregulated cell 

cycles, defective apoptotic pathways and immune evasion pathways.123 

Finally, cancer cells typically demonstrate activation of the 

EGFR/RAS/MAPK signal transduction pathway and defective anti-viral 

type I IFN responses, which support VV replication and spread. In fact, 

evidence suggests that VV targets these pathways by secretion of an EGF 

homologue, vaccinia growth factor (VGF), to activate the 

EGFR/RAS/MAPK pathway and secrete B18R to inhibit type I IFN’s.124 

 

3. VACV possesses an intrinsic ability to evade host cell defenses by utilising 

the EEV antigenic virion, therefore making it incredibly attractive for 

potential intravenous delivery. EEV cloaks itself in a host derived cell 

membrane containing various host complement proteins. This allows 
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efficient and protected virus dissemination to distant sites and also allows 

the virus to be transported unharmed in the bloodstream.125 

 

4. As a result of the size of the genome, VACV is easily amenable to genetic 

manipulation and can be armed with multiple large transgenes to enhance 

various functional aspects of the chosen therapeutic design. 

 

5. Due to the extensive historical clinical utilization of the poxviridae family 

they are considered safe in a clinical setting and do not integrate into host 

DNA due to their replication pathway. Importantly, in the event of an 

adverse outcome several antiviral agents already exist that could be 

utilised to treat patients.126 

	
	

1.4.2.4 Virus modification strategies to enhance tumour specificity 

While Vaccinia virus has a high natural tropism for tumour cells, research has 

continued to explore different strategies to enhance tumour specific replication 

in bioengineered viruses. In JX-594, utilised in this study and discussed later, 

the genetic modifications are specifically designed to augment its natural 

intrinsic targeting, enhance tumour specific replication and potentiate the 

oncolytic potential of vaccinia virus, whilst enhancing anti-tumour immunity 

through the expression of transgenes.127 Some of the genetic modifications 

are discussed in more detail in this section. 

 

1.4.2.4.1 Deletion of Thymidine Kinase 

Thymidine kinase (TK) is an E2F-responsive gene involved in 

deoxyribonucleotide synthesis in dividing cells. Normal cells intrinsically have 

low nucleotide concentrations and therefore require TK to allow replication, 

however cancer cells constitutively express high levels of nucleotides 

rendering TK redundant in cancer cell proliferation cycle. By deleting the TK 

gene in JX-594, the virus is forced to preferentially replicate in cancer cells, 

relying on adequate concentrations of nucleotides present in host tumour 

cells. The TK-deleted virus is quickly cleared from healthy tissue which acts 
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as an additional protective mechanism against viral toxicity.128 Various models 

have validated tumour selective replication as a result of TK deletion, and 

demonstrated anti-tumour efficacy (positive results) in various animal models 

(including mouse and rabbit) including melanoma, colon cancer, sarcoma and 

liver metastasis.129–132 

 

1.4.2.4.2 Deletion of Vaccinia Growth Factor (double deleted vaccinia virus). 

Vaccinia growth factor (VGF) is a secreted 77 amino acid glycoprotein, which 

is expressed as an early phase protein in the vaccinia virus lifecycle. It is an 

epidermal growth factor (EGF) homologue that stimulates cell proliferation by 

binding to the EGF receptor (EGFR) found on both infected and surrounding 

non-infected cells. Vaccinia virus relies on the proliferation of cells for efficient 

virus production and therefore stimulates normal cells to divide using VGF. In 

contrast, cancer cells naturally proliferate making expression of VGF, to 

enhance this process, superfluous in this setting. Deletion of VGF from the 

vaccinia genome therefore enhances tumour selectivity.133 Studies of a double 

deleted vaccinia virus (ddVV), involving the combination of TK deletion with 

VGF deletion have confirmed that this is a promising tumour selective gene 

therapy vector. In vitro, resting and dividing NIH3T3 cells were infected with 

ddVV-GFP. In resting cells (those requiring VGF to divide) a reduced viral 

yield was seen when compared with control virus. In contrast, in the freely 

dividing cells (mimicking cancer cells) virus recovery was equivalent to wild 

type or single deletion variants. In vivo similar results were gained with 

improved survival and tumour specific replication observed in nude mice 

following intraperitoneal (i.p.) injection.  

 

1.4.2.4.3 Arming Vaccinia Virus with immune-stimulatory molecules 

The fact that oncolytic viruses can amplify in tumour tissue with accompanying 

transgene expression makes ‘arming’ viruses with therapeutic proteins or 

immunomodulatory molecules a potential way of enhancing anti-tumour 

efficacy and/or immunity. Various strategies have been investigated to 

enhance virus oncolytic activity. For example, secreted transgene products 
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such as the cytosine deaminase/5-fluorocytosine (CD/5-FC) have been used 

to stimulate a cytotoxic effect on neighboring non-infected cells and is 

described as so-called suicide gene system.134 An alternative strategy utilised 

is to inhibit tumour angiogenesis; in renal cell cancer models enhanced splenic 

extramedullary hamatopoieis was seen after systemic treatment with a ddVV 

armed with vascular endothelial growth factor (VEGF) receptor 1 to sequester 

VEGF and promote an antiangiogenic effect.135 Similarly, VACV encoding 

GLAF-1, a single chain antibody targeting human and murine VEGF, exhibited 

significantly enhanced therapeutic efficacy in vitro and in human xenograft 

models in nude mice.136 

 

1.4.2.5 JX-594 

There are a wide variety of recombinant viruses derived from various vaccinia 

backbones in pre-clinical and clinical testing, however for the remainder of this 

report we will focus on the experimental virus utilised, JX-594. JX-594, 

commercially known as Pexa-Vec, was initially designed and manufactured 

by Jennerex & Partners, however in 2014 the company and product was taken 

over by Sillajen Biotherapeutics Inc.  

JX-594 is an engineered targeted poxvirus with transgene ‘arming’ developed 

from the Wyeth vaccine strain (Dryvax; Wyeth Laboratories, Madison, NJ). 

The virus backbone is genetically modified to disrupt TK to enhance tumour 

selectivity and attenuation. Immune stimulation is driven by insertion of human 

granulocyte-macrophage colony-stimulating factor (GMCSF) under the 

control of an engineered early-late promoter. Finally, a lacZ transgene 

encoding β-Galactosidase (β-Gal) controlled by the p7.5 early/late promoter 

aids virus tracking.127,137 (Figure 1.7) 

To date, JX-594 is the most advanced vaccinia based oncolytic virus in the 

clinical setting, entering phase III trials with promising results. The virus has 

been given safely to over 250 patients in a selection of advanced tumour types 

and was the first virus to induce partial and complete tumour responses, be 

recovered from tumours after systemic intravenous delivery and demonstrate 

improved survival rates in randomized trials.138–140 
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JX-594 is highly cancer selective, although the mechanisms behind this still 

remain poorly understood. It is clear however, that it is multi-mechanistic in 

nature involving EGFR/RAS pathway signaling, cellular TK levels and cancer 

cell resistance to type I interferons.124 
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Figure 1.7 Schematic diagram to show modification of Wyeth strain 
vaccinia virus to construct JX-594. 

The top fragment shown represents the virus J segment, a 5.1kb section in which the 

TK gene is found. A pSC65 vector with a GM-CSF insert is inserted by homologous 

recombination into the TK gene area and results in TK gene disruption. In addition, 

the LacZ gene is inserted encoding for β-galactosidase. For experimental JX-594 

subtypes this area can be replaced with green fluorescent protein (GFP) or 

Luciferase (fLUC) to aid virus recognition in experimental models (Adapted from 

Mastrangelo et al. (1998)).137 
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1.4.3 Reovirus 

1.4.3.1 Background 

Reovirus (Respiratory Enteric Orphan Virus) is a member of the Reoviridae 

family. The virus was first isolated in 1953 from a rectal swab taken from a 

healthy human child and thereafter three serotypes were identified and 

designated into the Reoviridae family. The name Reovirus was coined later in 

1959 by Sabin et al. (1959)141 as an acronym reflecting the fact that the viruses 

in this group had been found in both the Respiratory and Enteric tracts with 

no associated disease, and as such were described as Orphan in nature.  

As mentioned, three serotypes of Reovirus have been reported based on their 

activity and are designated Type 1 Lang, Type 2 Jones, Type 3 Abney and 

Type 3 Dearing. The serotypes are all ubiquitous in both their ability to infect 

nearly every known mammalian species and their geographical distribution, 

being largely found in stagnant water and sewerage. Exposure is common, 

with anywhere between 70-100% of those investigated demonstrating 

seropositivity and 50% of adults aged 20-30 years demonstrating exposure by 

carrying antibodies against the virus.142,143 Despite these high exposure 

levels, symptoms remain very mild, with reported cases largely limited to the 

very young and are often subclinical in nature.144 Interestingly, the non-

pathogenic nature of the virus was demonstrated by Rosen et al. (1963)145 

who inoculated (intranasally) 27 volunteers in a correctional institution with 

serotypes 1,2 and 3; only 30% of those patients developed minor symptoms. 

 

1.4.3.2 Structure, Function and Lifecycle 

Reovirus is a non-enveloped virus composed of a genome of 10 segments of 

double stranded-DNA enclosed in two inner and outer concentric isosahedral 

protein capsid shells.146 The virus replicates within the cell cytoplasm and the 

10 segments of dsRNA range in length from 1.2 to 3.9 kilobases and are 

named accordingly (3 x lambda (long), 3 x mu (medium) and 4 x sigma (small) 

segments). The ten segments encode twelve viral proteins in total, eight 

structural and four non-structural (Figure 1.8).147  
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Figure 1.8 Reovirus structure 

Reovirus is a non-enveloped dsRNA virus approximately 80nm in diameter. The viral 

genome consists of 10 segments of dsRNA contained within an outer and inner 

capsid which encode for structural and non-structural proteins. Sigma-1 has been 

identified as the viral attachment protein and alongside Sigma-3 is reported to play a 

role in virulence. Mu-1, Mu-2 and Lambda-3 have roles in viral replication. Figure 

adapted from Gong and Mita (2014)148 
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Reovirus infection is initiated by the binding of the viral protein sigma 1 (𝜎1), 

a filamentous attachment protein, to junctional adhesion molecule-A (JAM-A), 

a serotype-independent, cell surface receptor.149 𝜎1 also binds to cell-surface 

carbohydrate in a serotype dependent fashion, for example, sialic acid in 

serotype 3 strains. Following attachment to the cell surface, Reovirus 

internalisation is initiated via 𝛽1 integrins which promote a clathrin-dependent 

endocytotic process.147 Within the endosome,  the virus undergoes proteolytic 

disassembly to form sub virion particles (ISVP) in the host cytoplasm and 

replication proceeds. In addition, cleavage fragment particles escape into the 

cytoplasm where they activate NF-𝜅B and modulate apoptotic cell death 

pathways. Interestingly, inhibition of these pathways using either 

pharmacological agents or via expression of transdominant forms of I𝜅B result 

in complete cessation of Reovirus-induced apoptosis suggesting a critical role 

for NF-𝜅B activation in Reovirus cell death.150 

 

1.4.3.3 Reovirus as an Oncolytic Agent 

Initial experimentation using Reovirus focused on its relatively non-pathogenic 

nature and therefore it represented a useful model to investigate viral 

replication and pathogenesis. However, in 1977 Hashiro et al.151 described 

the susceptibility of certain tumour cells and spontaneously transformed cell 

lines of human and murine origin to ‘cytotoxic Reovirus induction’.  

Furthermore, the authors also found that ‘normal’ cells were resistant to the 

virus and as such the potential for Reovirus to be used as an oncolytic agent 

was ignited. These early findings were further validated by Duncan et al 

(1978)152 who reported a differential sensitivity to infection with type 3 

Reovirus in normal and SV40-tranformed WI-38 cells. The authors reported 

complete lysis of transformed cells at 96 hours post infection compared with 

no detectable cell death in normal cells.  

 

1.4.3.4 Reovirus and Clinical Trials 

The first reported clinical use of Reovirus was in 1963 in a study to ascertain 

the clinical manifestations of the virus. All 3 serotypes were given as an 
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intranasal inoculation to healthy adult volunteers after which they were 

followed up for 23 days. There was some evidence of minor upper respiratory 

tract illness and diarrhoea but no significant clinical manifestations.145    

Following the development of Reolysin by Oncolytics Biotech Inc. (Calgary, 

Canada) a clinical grade product developed from the type-3 Dearing strain, 

Reovirus has demonstrated activity in clinical trials across a range of cancer 

types, including but not limited to breast, prostate malignant glioma, 

pancreatic, head and neck and ovarian cancers.153  Various administrative 

strategies have been explored and similarly trials have examined the virus 

when given alone and in combination with other cancer therapies.154 

The first phase 1 cancer related study (REO-001) undertaken was an open-

label study to determine the safety and tolerability of Reolysin. 19 patients with 

clinically accessible and evaluable disease of varying cancer types (head and 

neck, sarcoma, breast), who had failed to improve on standard treatment 

regimens, were given escalating doses of intratumoural virus. At the end of 

six weeks, there was a 37% local target tumour response with one patient 

exhibiting complete remission. Significantly, it was also noted that three 

patients had responses recorded in synchronous lesions distant from the site 

of primary treatment.155 

Thereafter, Reovirus has been the subject of intense investigation in the 

clinical setting with 32 clinical trials completed or ongoing. Reovirus is safe to 

use via both intralesional/intratumoural and systemic routes of administration 

in Phase I trials. In Phase II trials it has successfully reduced tumour size and 

burden and promoted tissue necrosis, validating pre-clinical data. The first 

phase III trial continues to explore the overall survival and progression free 

survival benefit of intravenous administration of Reolysin in combination with 

paclitaxel and carboplatin versus chemotherapy alone, in patients with 

metastatic or recurrent squamous cell carcinoma of the head and neck; initial 

reports are keenly awaited.  
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1.5 Oncolytic Virus and the immune system, friend or foe? 

Oncolytic viruses have emerged as attractive tools in the development of 

novel anti-cancer therapies. Historical research has focused on the direct 

cytotoxic effects of these agents and only recently has the potential role of the 

immune system in viral therapy been highlighted and become the focus of 

attention.  Understandably, initial hypothesis revolved around the immune 

system being detrimental and inhibitory to the success of virotherapy with the 

host immune system lacking the sophistication to identify the difference 

between malevolent pathogens and therapeutic agents, ultimately leading to 

viral clearance, neutralization and the negation of direct tumour cell killing. 

However, it is now a widely accepted and increasingly understood 

phenomenon that the efficacy of these therapies relies on a three-way 

interaction between the oncolytic viruses, the immune system and the tumour 

microenvironment.  Acting as an immunotherapy, viruses can prime anti-

tumour immunity, generating both innate and adaptive immune responses, 

and ultimately resulting in tumour regression. 60  

 

1.5.1 Vaccinia, JX-594 and the immune system 

The historical use of vaccinia virus during the eradication of smallpox, has 

meant that its immune activating potential is well understood and documented. 

Furthermore, the clinical progress of clinical grade vaccinia virus, such as 

GMCSF expressing JX-594, has allowed the potential for this virus to target 

the immune response and enhance virotherapy to be well explored.  

The first significant report of vaccinia eliciting an anti-tumour immune 

response was by Mastrangelo et al. (1999)137 who conducted a phase 1 trial 

in seven immunocompetent, revaccinated patients with surgically incurable 

cutaneous melanoma. For six weeks, the group administered a twice weekly 

intra-tumoural injection of JX-594 in an escalating dose protocol.  An anti-

vaccinia humoral response was identified in all seven treated patients with 

injected tumours becoming inflamed and infiltrated with a number of immune 

cell types. The clinical outcomes were mixed, however, importantly five of the 
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seven patients demonstrated tumour regression at both treatment site and 

distant untreated disease loci, indicative a systemic anti-tumour response.  

Regardless of the immune potential elicited by an oncolytic virus, if the virus 

is not delivered directly into tumour it is important to establish that viral 

infection is targeted and tumour cell specific. Studies using systemic delivery 

methods have demonstrated that vaccinia virus can be delivered to tumour in 

mouse models, however insufficient tumour cell killing and infection of normal 

tissues remained an issue.   Hung et al. (2007),156 for example, used a non-

invasive luminescence imaging system to monitor ovarian tumours treated 

with intraperitoneal vaccinia in a mouse model. They reported that vaccinia 

virus was able to selectively target, control and illicit a potent anti-tumour 

immune response when delivered intraperitoneally but intravenous delivery 

methods did not yield successful therapy. 

One strategy considered to improve tumour selectivity, undertaken by Kirn et 

al. (2007)61, was to clone IFN-	𝛽 gene into a B18R deletion vaccinia mutant. 

IFN-	𝛽 in normal tissues is known to inhibit viral replication, however tumour 

cells are often resistant to the antiviral effects of type I IFNs and as such viral 

replication should not be inhibited in tumour cells. Using this virus the authors 

were able to show a complete tumour response following systemic delivery; 

moreover the response was associated with protection from tumour re-

challenge in a CMT93 murine tumour model indicating a systemic and 

continued anti-tumour immune response.  

 

1.5.2 Reovirus and the immune system 

Despite Reovirus progressing to clinical trials for the treatment of various 

localized and disseminated malignancies, the first study to examine the 

potential immune contribution to Reovirus efficacy was performed by Errington 

et al. (2008).157 The authors examined the ability of Reovirus to activate 

human dendritic cells (DC), important regulators in both the innate and 

adaptive immune response, and reported that Reovirus could induce DC 

maturation and stimulate the production of various inflammatory cytokines 

including IFN-𝛼, TNF-𝛼, IL-12 and IL-6. Furthermore, Reovirus-activated DC 

upregulated IFN-𝛾 production and increased NK cell cytolytic activity when co-
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cultured with autologous NK cells. Similarly, when Reovirus-activated DC 

were co-cultured with autologous T cells Reovirus augmented T cell cytokine 

production and the induction of CTL-mediated tumour cell killing.  

In a separate study examining the use of Reovirus in Melanoma, Errington et 

al. (2008)158 showed that Reovirus could replicate in and lyse human 

melanoma cell lines and freshly resected melanoma samples. The study 

demonstrated that virus-induced cell death was associated with the release of 

a range of pro-inflammatory cytokines and chemokines along with abrogation 

of the immunosuppressive cytokine, IL-10.  The authors reported that 

Reovirus-induced cell death may act to reverse the immunosuppressive milieu 

of the tumour microenvironment, actively recruiting immune effector cells and 

leading to the generation of an innate anti-tumour immune response.  

These data were further supported by Prestwich et al. (2009)44 who 

demonstrated that DC’s loaded with Reovirus infected melanoma cells and 

co-cultured with PBMC induced IFN-	𝛾 production within the NK cell 

population in a cell to cell contact dependent manner. Importantly, they also 

showed that DC loaded with infected melanoma cells induced NK cell 

cytotoxicity towards tumour cells via an IFN-dependent mechanism. Murine 

melanoma cell lines (B16ova) were resistant to direct Reovirus oncolysis in 

vitro, however C57BL/6 mice bearing B16ova lymph node and splenic 

metastasis were cleared of their disease burden when treated intravenously 

(i.v.) with Reovirus loaded T-cells. In the same in vivo model using immuno-

deficient mice Reovirus had no effect. These results clearly demonstrated the 

importance of the immune system for the efficacy of Reovirus.43 

 

1.6 Apoptosis, Necrosis and Autophagy 

1.6.1 Cell death mechanisms and OV 

Oncolytic virus mediated cell death traditionally does not follow the classic 

pathways of apoptosis, necrosis or autophagy but instead typically will display 

features of all three modalities with some variation seen between different 

virus types. In an effort to explain the mixed cell death pathways alternative 
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definitions have emerged including programmed apoptosis, necroptosis and 

necrosis-like programmed cell death. 

In Vaccinia infection the classical pathways have all been implicated to varying 

degrees with cell lysis considered the common endpoint of infection.  

Apoptosis has been reported in some cancer cell lines and immune cells, 

autophagy is disrupted in fibroblasts following infection and necroptosis has 

also been shown to have a role in the death of vaccinia infected T cells.159 

Reovirus-induced cell death is widely reported to primarily occur by an 

apoptotic mechanism, however it has also been to shown to activate a 

caspase independent cell death pathway, inducing features consistent with 

necroptosis.160 However, understanding the mechanism of virus-induced cell 

death will enable complimentary combination strategies to be defined.  

 

1.6.2 Apoptosis 

Apoptosis is an essential process to maintain normal development and tissue 

homeostasis. It is characterised by defined morphological changes such as 

the formation of apoptotic bodies, caspase activation and loss of integrity from 

mitochondrial membranes. Apoptotic bodies are removed by phagocytosis 

after a process of flipping of phosphatidylserines to the outer membrane 

surface and at the same time anti-inflammatory cytokines are released to 

minimise immune activation. The process is considered non-immunogenic.161 

Vaccinia virus is known to encode various inhibitors of apoptosis including 

F1L, N1L and SPI-2 which combine to prevent premature cell death and may 

inhibit viral replication and spread. However, apoptosis has been observed 

following infection with VV.  In response to infection with VV, Greiner et al. 

(2006)162 demonstrated a time dependent increase in apoptosis but no 

evidence of necrosis in Mel526 cells as discriminated by annexin-V and 7-

AAD staining. Similarly, Humlova et al (2002)163 suggested VV stimulated 

apoptosis in a murine macrophage line (J774.G8) using various techniques 

including mitochondrial membrane potential and annexin-V positivity. 

Interestingly the study reported that VV-induced apoptosis was dependent on 

early gene expression and was associated with reduced levels of Bcl-x(L), an 

anti-apoptotic member of the Bcl-2 family.  
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Reovirus is reported to induce apoptosis in a wide variety of in vitro and in vivo 

experimental models including cancer cells and tumours. Reovirus-induced 

apoptosis  involves the release of TRAIL from infected cells and the activation 

of TRAIL-associated death receptors (DR), DR4 and DR5. A subsequent 

activation cascade results in caspase 8 activation, cleavage of Bid and the 

release of pro-apoptotic mitochondrial factors.164,165 The combined activation 

of death receptor and mitochondrial pathways leads to downstream activation 

of effector caspases, such as caspase-3, the role of which is considered 

critical to Reovirus-induced apoptosis.166   

 

1.6.2.1 The Bcl-2 Family; Proapoptotic versus Prosurvival 

One of the hallmarks of cancer is the evasion of apoptosis.167 Cancer cells 

demonstrate attrition against a plethora of cellular stresses that would almost 

certainly result in normal cells undergoing apoptosis. Examples include 

unfavourable microenvironments, aberrant cell cycle progression and 

oncogene activation. However, cancer cells have evolved multiple strategies 

in order to evade these normal cell cycling processes, one of which being the 

upregulation of the pro-survival BCL-2 family proteins. BCL-2 family members 

have either pro-apoptotic (BH3-only proteins; Bax, Bak, Bad, Bim, Noxa) or 

anti-apoptotic (BCL-2, Bcl-XL, Bcl-w, Mcl-1) functions. The so called BH3-only 

proteins are pro-apoptotic in nature and principally act to control mitochondrial 

death signalling via the release of cytochrome C, a potent catalyst of 

apoptosis. On activation by stimuli such as intracellular damage, Bim, Bad and 

Noxa sequester anti-apoptotic targets and initiate apoptosis by permeabilising 

the mitochondrial outer membrane and inducing the release of pro-apoptotic 

enzymes, such as cytochrome C. Cytochrome C then activates the caspase 

pathway ultimately leading to cell death. Various danger signals can induce 

the pathway to initiate cell death, for example following DNA damage, the p53 

tumour suppressor gene upregulates the expression of Bax, which in turn 

stimulates mitochondrial release of cytochrome C.168 In many tumours, 

apoptosis is dysregulated by upregulation of pro-survival family members or 

mutations in the p53 pathway which abrogate the normal activation pathways 

apoptosis triggers.  
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A summary of the intrinsic and extrinsic apoptotic pathways along with the 

interaction of BCL-2 family proteins, is presented is in Figure 1.9.  
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Figure 1.9 Apoptosis and BCL-2 family protein. 

A) A summary of the extrinsic and intrinsic signalling cascade leading to activation of 

caspase 3/7,  caspase 8/10 and cell death. B) BCL-2 inhibits apoptosis by interacting 

with BAK and BAX. BH3-only proteins (BAD, BIM, NOXA) activate apoptosis by 

inhibiting BCL-2. Specific BH3-only proteins (BID, PUMA) can also induce apoptosis 

by directly activating BAK and BAX. ABT-263 is a ‘BAD-like’ mimetic that can bind 

BCL-2, BCL-XL and BCL-W selectively inhibiting their action. 
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1.6.3 Necrosis  

Necrosis is a less coordinated, studied and defined method of cell death. Cells 

undergoing necrosis characteristically demonstrate swelling of the cytoplasm 

and organelles, which is followed by rupture of the plasma membrane and 

release of the cytoplasmic contents. Necrosis is thought to be immunogenic 

in nature and is accompanied by the release of various pro-inflammatory 

cytokines including tumour necrosis factor-α (TNF-α).169 Necrosis was 

traditionally thought to be unregulated in nature, with no set pathways or 

cellular regulation. However, more recent evidence has shown that necrosis 

can be a controlled mechanism with defined pathways and molecular 

regulation and as such has been aptly called programmed necrosis or 

necroptosis.170 

Necroptosis has been reported in response to vaccinia virus (Lister-dTK 

strain) in ovarian cancer cell lines although features more consistent with 

apoptosis and autophagy, such as LC3 lipidation and phosphatidylserine 

exposure, were also seen.  In response to Lister dTK swollen nuclei, ruptured 

membranes, cytoplasmic vacuolation and HMGB-1 release were observed all 

of which are associated with necrosis. In addition, the authors reported a 

significant increase in glycolysis and mitochondrial respiration 24 hours post 

infection consistent with active necrosis and confirmed this modality as the 

principle causative process for the cell death observed.159 

Similarly, Berger et al. (2013)160 described Reovirus-induced necroptosis cell 

death in L929 cells treated with Type 3 Dearing  Reovirus (T3D). T3D was 

shown to activate NF-kB and initiate caspases consistent with virus-induced 

apoptosis. However, interestingly blockade of NF-kB and/or caspases (using 

ZVAD-FMK) did not affect T3D-induced cell death. The alternative cell death 

pathway was further defined to be RIP-1 kinase dependent, reduce cellular 

ATP levels and was associated with cell membrane destruction consistent 

with necroptosis.  
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1.6.4 Autophagy 

Autophagy is described as a catabolic process designed to protect and ensure 

an organisms well-being. Autophagy involves the sequestering of a wide array 

of undesired intracellular constituents into double-membrane vesicles known 

as autophagosomes which then undergo lysosomal degradation.171 

Autophagy is a reversible process particularly in the context of nutrient 

starvation. It is not completely clear therefore if autophagy represents a 

complete cell death mechanism or a trigger to alternative cell death 

phenomena.  Autophagy also represents an important innate immune 

response against viral infection by enhancing viral antigen presentation on 

MHC-I, although it is also known that some viruses utilise host cell autophagy 

to enhance  survival and replication.  

Vaccinia virus actively disrupts cellular autophagy through a poorly 

understood novel mechanism involving abnormal LC3 lipidation and direct 

conjugation of ATG12 and ATG3. Despite this it is clear that there is no 

general activation of autophagic processes and cell death is not thought to be 

dependent upon the induction of autophagy. 159,172 

Evidence for Reovirus-induced autophagy remains limited with no conclusive 

experimental evidence in the literature. Thirukkumaran et al. (2012)173 studied 

Reovirus-induced cell death mechanisms in human multiple myeloma cell 

lines. Apoptosis was the principle mechanism of cell death, however, in 

addition at 24-48hours post-infection there was formation of autophagosome 

puncta containing LC3-II, consistent with the activation of autophagy. 

Interestingly, formation of the autophagosome, was abrogated by the 

autophagy inhibitor, 3-methyladenine (3-MA). It remains unclear, however to 

what extent autophagy plays a role in Reovirus-induced cell death with 

conflicting reports suggesting that the mechanisms behind Reovirus induced-

apoptosis might in fact shift the cell away from autophagy like death.174 
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1.7 Agents which may potentiate OV direct killing 

1.7.1 BH3 Mimetics 

As discussed previously, the antiapoptotic proteins Bcl-2 and Bcl-XL play a 

critical role in the maintenance of normal cell homeostasis. These proteins are 

however often overexpressed in solid tumours, and have been implicated in 

therapy resistance making these proteins attractive targets for the 

development of novel anticancer drugs.175  Selective inhibition of these anti-

apoptotic proteins was therefore designed to normalise cell death machinery 

and overcome chemoresistance and may prove useful in potentiating OV 

therapy.168 

 

1.7.1.1 ABT-737 

ABT-737 was developed in the mid-2000’s by Abbott Laboratories as a novel 

Bcl-2, Bcl-XL and Bcl-W but not Mcl-1 mimetic. ABT-737 demonstrated higher 

affinity for its targets than previous molecules and enhanced intrinsic apoptotic 

signals rather than directly initiating apoptosis. 

Oltersdorf et al. (2005)176 reported ‘single agent mechanism based killing’ in a 

variety of cancer cell lines and primary patient derived cells including small-

cell lung carcinoma (SCLC) and lymphoma. Hann et al. (2008) also examined 

the therapeutic efficacy of ABT-737 in de novo human primary SCLC tumour 

xenograft models and standard cell line xenograft models. In the cell line 

models, ABT-737 induced dramatic tumour regression, however the authors 

described more mixed results in the primary xenograft models with only one 

of three SCLC showing a significant response. Variable BCL-2 family protein 

expression in the primary tumours, in particular increased Mcl-1 (not targeted 

by ABT-737) and decreased Noxa were suggested as the  most likely 

explanation for ABT-737 resistance. The hypothesis was further supported by 

multiple in vitro experiments demonstrating a reduction in Mcl-1 could 

overcome ABT-737 resistance.168,177–179 The findings opened the door to 

potential combination strategies using alternative agents such as Sorafenib 

and Cisplatin which have been shown to downregulate Mcl-1 in renal tubular 

epithelial cells and acute myeloid leukaemia (AML).180,181 
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1.7.1.2 ABT-263 (Navitoclax) 

A major limitation of ABT-737 is that it is not orally bioavailable and as such 

provides a limited ability to translate from the laboratory to the clinic given the 

inability to perform dose escalation trials. To resolve this issue, ABT-263 a 

structurally related but orally bioavailable Bad-like BH3 mimetic was designed. 

Initial studies performed by Tse et al. (2008)182 demonstrated ABT-263 could 

induce Bax translocation, cytochrome C release and apoptosis in in vitro 

models. Faber et al. (2015)183 examined the efficacy of ABT-263 across a 

panel of greater than 500 cancer cell lines and using gene expression data 

were able to demonstrate that high expression of BIM and low MCL-1 

predicted ABT-263 sensitivity.  Further in vivo studies of oral administration of 

ABT-263 alone induced almost complete tumour cell regression in mouse 

xenograft models of acute lymphoblastic leukaemia and SCLC.184,185 In 

xenograft models of multiple myeloma and B-cell lymphoma only a modest 

response was seen, however in combination with standard of care treatment 

regimes, ABT-263 was able to significantly enhance treatment efficacy.182 

ABT-263 has now been the subject of various Phase I and Phase II clinical 

trials. The latest phase I trials have explored combination strategies in 

advanced solid tumours with erlotinib186, irinotecan187 and gemcitabine188 and 

in refractory lymphoid malignancies with rituximab189. Mixed response rates 

have been reported however the combinations do offer a favourable safety 

profile. Two recent phase 2 studies have examined the use of navitoclax as a 

single agent in patients with relapsed SCLC and in combination with or without 

rituximab in treatment naïve B cell chronic lymphocytic leukaemia (CLL). 

Limited single agent activity in advanced and recurrent SCLC was reported by 

Rudin et al. (2012)190, however its use in combination with rituximab in B-cell 

CLL resulted in higher response rates and prolonged progression free 

survival.191 
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Aims of the Study 

 

This thesis covers a broad range of oncolytic virus activity including 

mechanistic and immunologic function. Significant volumes of work in the field 

of oncolytic virotherapy exist in the literature and as such this study aimed to 

focus on some outstanding areas of interest and gaps in knowledge in order 

to investigate strategies that may increase the therapeutic efficacy of two 

distinct viruses, Reovirus and Vaccinia Virus.  

While the immune potential of Reovirus is well recognised, less is known 

about JX-594, an OV currently in clinical testing at Leeds Teaching Hospitals 

NHS Trust. Access to fresh human tissue samples from CRC patients allowed 

this study to explore the immune potential of JX-594 and furthermore examine 

for the potential immune effects it may have at distant disease harbouring 

sites, such as lymph nodes.  

The thesis is divided into 3 results chapters with separate stratified aims and 

include the following:  

Chapter 3 – Combination strategies with Reovirus  

• Examines Reovirus cytotoxicity in a range of colorectal cell lines with 

varying EGFR expression and KRAS/BRAF/PI3K mutational variations. 

• Explores the ability of ABT-263 (Navitoclax), an orally administered BH3 

mimetic, to act synergistically with Reovirus and enhance OV direct 

cytotoxicity.  

• Investigates the ability of Reovirus to enhance the effects of anti-EGFR 

monoclonal antibody therapy by promoting ADCC/ADCP. 

Chapter 4 – Vaccinia Virus (JX-594) mechanism of action. 

• Evaluates the mechanism of JX-594 direct oncolysis and cell death 

mechanisms including apoptosis, necroptosis and autophagy. 
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Chapter 5 - JX-594-induced innate immune response 

• Phenotypes fresh human tissue ex-vivo lymph node samples. 

• Examines the effects of JX-594 treatment on the innate immune system in 

blood and lymph nodes, with particular focus on NK cell activation as a 

marker for innate immune activity. 
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Chapter 2  
Materials and Methods 

2.1 General Tissue Culture 

Tissue culture was all performed under aseptic conditions in laminar flow 

NuAire Class II Microbiological Safety Cabinets (NuAire Inc, Plymouth, USA). 

Cabinets were cleaned routinely pre and post procedures with 2% (w/v) Virkon 

(Scientific Laboratory Supplies, (SLS), Nottingham, UK) followed by 70% (v/v) 

ethanol (Sigma-Aldrich Ltd., Dorset, UK) to maintain sterility throughout. 

Plastic ware used was bought in pre-sterilised sealed packages from Corning 

Costar (High Wycombe, UK) or BD Biosciences (Oxford, UK). All pipettes 

used were produced by Gilson Inc. (supplied by Anachem Ltd., Bedfordshire, 

UK). All centrifugation was carried out for 5 minutes at 400g at room 

temperature (RT), using an Eppendorf 5810R centrifuge (Eppendorf, 

Leicestershire, UK) unless otherwise stated. Routine cell observation and cell 

counts were undertaken with an Olympus CKX41 light microscope (Olympus 

UK Ltd., South-End-On-Sea, UK ) using 0.2% (v/v) Tryphan Blue (Sigma-

Aldrich) and a haemocytometer (Weber Scientific International, West Sussex, 

UK). 

 

2.2 Cell Lines 

All cell lines were purchased from American Type Culture Collection (ATCC), 

the European Collection of Cell Cultures (ECACC) or acquired from 

collaborative working groups. All cell lines were cryopreserved in liquid 

nitrogen in 90% foetal calf serum (FCS) supplemented with 10% (v/v) dimethyl 

sulphoxide (DMSO) (Sigma-Aldrich Company Ltd, Dorset, UK) in 1.2ml 

cryotubes (Nunc, NY, USA). A summary of cell lines used and there derivation 

is shown in Table 2.1. 

Prior to testing all cell lines were authenticated using short tandem repeat 

(STR) profiling and direct comparison with Leibniz-Institut Deutsche 

Sammiung von Mikroorganismen und Zellkulturen (DSMZ) databases. 
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Cell lines were recovered from frozen by rapid thawing in a water bath at 37°C 

followed by further dilution in fresh media (x10) and centrifugation to remove 

any residual, potentially toxic, DMSO. Thereafter cells were re-suspended in 

fresh media, either Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma) or 

Roswell Park Memorial Institute (RPMI) 1640 (Sigma) (Table 2.1) 

supplemented with 10% (v/v) heat inactivated FCS (56°C, 30 minutes) and 

maintained in either a 75cm3 or 150 cm3 vented plastic tissue culture flasks 

(Corning Costar, Amsterdam, The Netherlands) in a Sanyo CO2 incubator at 

37°C. Adherent cell lines were routinely passaged or harvested at or near 

confluence by washing with phosphate buffered saline (PBS) (Sigma, Dorset, 

UK ), with or without the additional supplementation of 

Ethylenediaminetetraacetic acid (EDTA) where required (Table 2.1), followed 

by Trypsin-EDTA (10x stock solution diluted in Hanks Buffered Salt Solution 

(HBSS) (Sigma)).  Non-adherent cell lines were washed in PBS and 

centrifuged before being re-suspended in fresh media. 
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Cell Lines Culture 
Properties 

Culture 
Medium Wash Purchased 

Colorectal cell Lines 

SW480 Adherent DMEM + 10% 
FCS 

PBS + EDTA  ATCC 

SW620 Adherent DMEM + 10% 
FCS 

PBS + EDTA ATCC 

HCT116 Adherent DMEM + 10% 
FCS 

PBS + EDTA ATCC 

Colo320 Suspension, multi 
cell aggregates 

DMEM + 10% 
FCS  

PBS ATCC 

HT29 Adherent DMEM + 10% 
FCS 

PBS + EDTA ATCC 

LoVo Adherent DMEM + 10% 
FCS 

PBS + EDTA ATCC 

LIM 1215 Adherent RPMI + 10% 
FCS 

PBS + EDTA Donated 

LIM1899 Adherent RPMI + 10% 
FCS 

PBS + EDTA Donated 

LIM 2408 Adherent RPMI + 10% 
FCS 

PBS + EDTA Donated 

Normal Kidney Cell Lines 

VERO Adherent DMEM + 10% 
FCS 

PBS + EDTA ATCC 

Osteosarcoma Cell lines 

U20S Adherent DMEM + 10% 
FCS 

PBS + EDTA Donated 

Miscellaneous 

PBMC Suspension RPMI + 10% 
FCS 

PBS Fresh 

LNMNC Suspension RPMI + 10% 
FCS 

PBS Fresh 

Table 2.1 Cell Lines and growing conditions 
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2.3 Measurement of viral titre by Plaque Assay 

2.3.1 Reovirus 

Reovirus Type 3 Dearing Strain was provided by Oncolytics Biotech Inc.  

Stock virus titres were determined using a plaque assay technique. Titred 

aliquots were stored at 4°C for up to 1 month to avoid loss of efficacy through 

repeated freeze-thaw, or at -80°C for longer storage. 

The mouse C3H/An connective tissue cell line, L929, is known to be sensitive 

to Reovirus and was therefore used to determine the plaque forming activity 

of Reovirus stock virus titres and Reovirus treated samples. L929 cells were 

seeded into 6 well plates at a density of 1x106 cells/well in 2mL of DMEM 

containing 10% FCS, and incubated for 4 hours, at 37°C, to allow for cell 

adherence. Stock virus and sample dilutions were prepared by serial dilutions 

in DMEM to give a logarithmic dilution ranging from 10-2-10-11. 

At 4 hours, culture media was removed carefully from the adherent cells with 

special care taken not disturb the monolayer and replaced in either duplicate 

or triplicate with 500μL of the prepared virus samples. Plates were incubated 

for a further 4 hours at 37°C. The virus dilutions were then removed from the 

wells and replaced with 2mL of overlay medium (2:1 ratio of DMEM containing 

10% FCS and 1.6% (w/v) of carboxymethylcellulose (CMC)). Cells were then 

incubated for a further 3 days at 37°C. After 3 days the media:CMC solution 

was removed and the wells washed with PBS before being fixed with 0.5mL 

1% glutaradehyde for 10 minutes at RT. Glutaradehyde was then removed 

prior to the addition of 0.5mL 1% methylene blue (in 50% ETOH) for 3 minutes 

in order to stain the cells and visualise the plaques. Areas that were clear as 

a result of Reovirus-induced lysis (plaques) were counted using a lightbox to 

enhance visualization and the following formula used to calculate viral titre. 

 
Plaque forming units/mL =   average no. of plaques   x   2 

    dilution 
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2.3.2 JX-594 

JX-594 was provided by John Bell and Colleagues (Ottawa Hospital Research 

Institute, Ottawa, Canada) on behalf of Jennerex Biotherapeutics Inc (recently 

acquired by Sillajen Inc, Korea). Several genetically modified strains were 

provided for use in different experimental models with the principle form used 

in these studies being JX-594-GMCSF-eGFP (referred to as JX-594 if not 

further clarified from this point forward). The insertion of the genes encoding 

for granulocyte macrophage colony stimulating factor (GMCSF) and green 

fluorescent protein (GFP) under an early/late promoter is useful not only due 

to its clinical relevance but because they can also be used as surrogate 

markers for the assessment of viral replication in experimental models.  Other 

versions included in these studies were JX-594-GMCSF-fLuc (Luciferase) and 

JX-594-YFP (Yellow Fluorescent Protein) which does not express GMCSF.  

Titred aliquots were stored at -80°C and thawed when required. The JX-594 

viral backbone is understood to tolerate repeated freeze-thawing with regards 

to maintaining viral titre levels. However where possible this was minimized 

and when in use virus was stored at 4°C for no longer than 72 hours. 

The human bone osteosarcoma epithelial cell line U2OS (originally known as 

2T) were seeded into 6-well plates at a density of approximately 8.4x105 

cells/well in 2mLs DMEM containing 10% FCS, and incubated overnight at 

37°C. 

Stock virus and virus-treated samples for viral quantification underwent serial 

dilutions in serum free DMEM with a dilution factor range of 10-1 to 10-8 in a 

96-well plate.  Media was then carefully removed from the cells and 1mL of 

virus dilution added to appropriate wells, virus was incubated for a further 2hr 

incubation at 37°C. After 2 hours, the media was replaced with 2mL of over 

lay medium (1:1 ratio CMC mix with 3% CMC and 2 x DMEM + 20% FBS) and 

plates incubated for 96 hours at 37°C.  Thereafter the overlay medium was 

aspirated and a single PBS wash of the cell monolayer undertaken. Plaques 

were fixed and stained with 0.5mL 1% glutaradehyde for 10 minutes followed 

by 0.5mL 1% methylene blue (in 50% ETOH) for 3 minutes. Plaque counting 

and calculations were undertaken as previously described to attain virus titres. 
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2.4 Flow Cytometry – Fluorescence-Activated Cell Sorter  
(FACS) 

Flow cytometry was used to analyse the physical and chemical characteristics 

of all experimental cell types. Multiple fluorochoromes were utilised to allow 

for the identification of different subset populations within the mixed-cell 

sample population. Flow cytometry antibodies are outlined in Table 2.2.  All 

flow cytometry outlined in the materials and methods was performed using the 

Attune® NxT Acoustic Focusing Cytometer (Life Technologies, Paisley, UK; 

Thermo Fisher Scientific, Loughborough, UK) and data analysed using the 

Attune® Cytometric Software. (v2.1.0) (Life Technologies, Paisley, UK; 

Thermo Fisher Scientific, Loughborough, UK) 
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TARGET 
MOLECULE 

FLUOROCHROME VOLUME 
ADDED 

MANUFACTURER INDICATION 

CONTROLS     

Triple 
Isotype 

FITC/PE/PErCP 2 μL Dako Cytomation Control Antibody 

Isotype 
IgG1 

FITC/ 

PE 

10 μL 

5 μL 

Dako Cytomation Control Antibody 

Isotype 
IgG2B 

PerCP 5 μL Dako Cytomation Control Antibody 

IMMUNE CHARACTERISATION   

CD3 PerCP 10 μL BD Biosciences T-Cell Marker 

CD4 FITC 5 μL BD Biosciences T-Helper Cell 
marker 

CD8 FITC 5 μL BD Biosciences Cytotoxic T-Cell 
marker 

CD11B PERcP 10 μL BD Biosciences Pan-
Macrophage 
marker 

CD11C PE 5 μL BD Biosciences Dendritic Cell 
(DC) Marker  

CD14 PE 5 μL BD Biosciences Monocytes/ 
Macrophage 
marker 

CD19 PE 5 μL BD Biosciences B-Cell Marker 

CD56 PE 

FITC 

2 μL 

10 μL 

BD Biosciences NK Cell and 
activated T cell 
(NKT) marker 

CD68 FITC Intra-

cellular 

staining 

BD Biosciences Pan-
macrophage 
marker 

CD69 FITC 10 μL BD Biosciences Early activation 
marker 

CD80 PE 2 μL BD Bioscience Activation/ 
Maturation 
marker of 
Mature DC’s 

CD86 PE 2 μL BD Biosciences Early activation/ 
maturation 
marker of DC’s 
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Table 2.2 Flow Cytometry Antibodies 

 
 

 

 

 

CD107a FITC 5 μL BD Biosciences NK Cell 
degranulation 
marker 

CD107b FITC 5 μL BD Biosciences NK Cell 
degranulation 
marker 

CD274 PE 5 μL Sigma-Aldrich Marker for 
Programmed 
Death Ligand -1 
(PDL-1) 

CD279 PE 5 μL Sigma-Aldrich Marker of 
programmed cell 
death protein 1 
(PD-1) 

Class II PE/FITC 2 μL BD Biosciences Cell Surface 
expression on 
antigen 
presenting cells 
(APC’s) 

CELL LINE CHARACTERISATION   

CEA FITC 5 μL BD Biosciences Marker of 
Colorectal 
carcinoma 

EGFR PE 5 μL BD Biosciences  Epidermal 
growth factor 
receptor (EGFR) 
– stimulates cell 
growth and 
differentiation 

BerEp4 

(Anti-
EpCAM) 

FITC 5 μL AbCam Epithelial 
specific antigen. 
Tumour cell 
marker in lymph 
nodes, highly 
conserved 
expression in 
carcinoma 
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2.5 Viability Assays 

2.5.1 Measurement of Cell Viability using Live/Dead™ 	

Cell viability was assessed using the Live/Dead™ reactive dye (Life 

Technologies).  Following experimental conditions, cells were harvested into 

FACS tubes (BD Falcon) and washed in 1mL PBS by centrifugation for 5 

minutes at 400g at RT. The supernatant was discarded and cell pellets were 

re-suspended in 1mL of PBS containing 1μL of PE-conjugated Live/Dead™ 

fluorescent dye (Invitrogen, Paisley, UK). The cell suspension was incubated 

in the dark for 30 minutes at RT. A final PBS wash was performed before the 

cells were fixed in 300μL of 1% Paraformaldehyde (PFA). FACS analysis 

(Section 2.4) was undertaken immediately where possible or alternatively cells 

were stored at 4°C and acquisition was  performed within one week of sample 

preparation. 

 

2.5.2 Methylthiazoyldiphenyl-tetrazolium bromide (MTT) 
metabolic activity. 

Cells were seeded in triplicate at a density of 8 x 103 cells/well (in 200μL) into 

96-cell well plates (Costar) and incubated overnight at 37°C.  After 24 hours 

cells were treated with required virus doses and/or inhibitors and incubated at 

37°C until assay end points.  At the designated time points 20μL MTT  

(5mg/mL diluted in PBS) was added to the existing medium in each well and 

incubated for a further 4 hours at 37°C.  After 4 hours, all media was carefully 

aspirated from the wells, taking particular care not to disrupt the adherent cell 

monolayer, and replaced with 150μL DMSO and left for 5 minutes to allow 

cells to solubilize. Optical density was measured using a multi-well scanning 

spectrophotometer (Multiskan EX plate reader (Thermo Fisher Scientific, 

Northumberland, UK)) at a wavelength  of 550nm and viability calculated by 

direct comparison and normalization against an untreated control. 
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2.6 EGFR expression, Cetuximab and GA201 Binding studies 

Cell lines were harvested as per section 2.2 and divided into FACS tubes at a 

density of 5x105 cells/mL. Cells were washed in 2mL of FACS buffer (PBS + 

1% (v/v) FCS and 0.1% (w/v) sodium azide) and pelleted by centrifugation for 

5 minutes at 400g (RT), with the supernatant discarded. EGFR expression 

was examined using 5μL of stated antibody (Table 2.2) and incubated at 4°C 

for 30mins. To assess efficiency of anti-EGFR antibody drug binding, cell 

pellets were re-suspended in 1mL of media (DMEM, 10% FCS) and 0, 1.25, 

2.5, 5, 10μg/mL of Cetuximab, Panitumumab and GA201 added to the cell 

suspension. The antibodies were incubated for 30 minutes at 37°C before cell 

were washed in 2mL of FACS buffer. Following this, 10μL FITC Mouse anti-

human IgG (Table 2.2) was added to the cell pellets and cells were incubated 

for a further 30 minutes at 4°C. After a final wash in 2mL FACS buffer cells 

were pelleted by centrifugation at 400g for 5 minutes, supernatants discarded 

and cells fixed by the addition of 300μL of 1% PFA. Binding of Cetuximab, 

Panitumumab and GA201 was determined by flow cytometry (section 2.4) 

immediately where possible, or cells were stored at 4°C in the dark for a 

maximum of one week before data acquisition was undertaken. 

 

2.7 51Chromium (51Cr) Cytotoxicity Release Assay 

Tumour target cells (SW480 and SW620) and effector cells (PBMC ± 

overnight pre-treatment with virus) were harvested, washed and centrifuged 

to form a cell pellet as described in section 2.2. Tumour target cells were 

labelled with 50μCi of 51Chromium (Perkin Elmer, Cambridgeshire, UK) per 

one million cells and incubated for 1 hour at 37°C. Radioactive substance 

handling precautions were used at all times and any excess unbound 51Cr was 

removed by three further wash steps using 50mL Hanks Buffered Salt Solution 

(HBSS) (Sigma-Aldrich). Target cells were finally re-suspended in RPMI 

containing 10% FCS at 1x105 cells/mL. Following the harvest of effector cells, 

pellets were also re-suspended in RPMI/10% FCS at a specific cell density to 

enable a known target to effector ratio to be set up. Serial dilutions of the 

effector cell suspension was undertaken to achieve a final volume of 100μl 
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per well, seeded out in triplicate in 96-well round bottomed plates (NUNC, 

Thermo Scientific, Roskilde, Denmark). 50μL of the previously 51Cr-labelled 

target cells were added to each well where required. To control for 

spontaneous release and quantify maximum 51Cr release binding from cell 

targets, two simultaneous control plates were set up containing either target 

cells alone in media or target cells treated with 1% (v/v) Triton-X (Sigma) in 

RPMI (10% FCS) respectively. All plates were incubated for 4 hours at 37°C 

before being centrifuged (5 minutes, 400g, RT) and  harvesting of 50μL of the 

supernatant from each well onto Luma scintillation plates (Perkin Elmer, 

Warrington, Cheshire). Luma plates were allowed to dry overnight at RT and 

levels of 51Cr release determined using a 1450 MicrobetaJet Scintillation 

Counter (Wallac EG & G Ltd., Milton Keynes, UK).  The 51Cr release was 

measured in counts per minute (cpm). Results were converted to and 

expressed as ‘percentage tumour cell lysis’ using the following formula: 

 

% Lysis =  (sample cpm – spontaneous cpm) x 100 
     (max cpm–spontaneous cpm) 

 

2.8 Human primary tissue and blood 

For human tissue and blood experiments written, informed consent was 

obtained from all patients in accordance with local institutional ethics review 

and approval guidelines. (Leeds (East) Research Ethics Committee, 

06/Q1206/106). For healthy donor volunteers, verbal consent was obtained 

and samples collected in accordance with University of Leeds Institute of 

Cancer and Pathology guidelines. 

 

2.8.1 Isolation of peripheral blood mononuclear cells (PBMC) from 
fresh blood using density gradient separation. 

Whole peripheral blood was collected using standard local precautions from 

patients (Leeds Teaching Hospitals NHS Trust) with colorectal cancer 

undergoing colonic surgical resection and/or patients with metastatic 
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colorectal liver cancer undergoing liver resection surgery. Similarly, whole 

peripheral blood was also collected from healthy donor controls. Blood was 

first diluted 1:1 with HBSS and thereafter carefully layered onto Lymphoprep© 

(Axis Shield, Cambridgeshire, UK) at a ratio of two parts blood, one part 

lymphoprep in a 50mL Falcon Tube. Tubes were centrifuged at RT for 25 

minutes at 800g with no brake. Excess plasma was removed and the white 

cell layer collected using a wide-tipped Pasteur pipette (Alpha laboratories Ltd. 

Hampshire, UK). The collected interface PBMC layer was washed in 50mLs 

HBSS and cells pelleted by further 10 minute centrigugation at 400g at RT. 

Cells were washed a second time in 50mLs HBSS and centrifuged at 300g for 

5 minutes at RT. PBMC’s were counted and resuspended in fresh RPMI 

containing 10% FCS culture medium at 2x106 cells/mL. 

 

2.8.2 Primary Tissue Collection 

Fresh tissue samples were acquired from patients undergoing elective, 

planned resection for primary colorectal cancers of any type. The operations 

from which tissue was acquired were wide ranging and tumour location and 

staging at time of operation was variable. Written, informed consent was taken 

from all donors in accordance with institutional ethics review and approval 

(Leeds (East) Research Ethics Committee, 06/Q1206/106).  Whole resection 

specimens were collected under sterile conditions as per the operating 

surgeons preferences and taken fresh, in the absence of formalin, 

immediately to a Consultant Histopathologist for processing. Samples were 

collected at the discretion of the histopathologist to avoid inadequate clinical 

processing, however, tissue considered of primary interest and priority was 

normal and/or tumour draining lymph nodes taken from the specimens 

mesenteric fat. Where possible additional tissue collected included healthy full 

thickness bowel (mucosa to serosa), primary colorectal tumour and in the 

case of concurrent operations to remove liver metastasis, liver tumour and 

hepatic parenchymal samples. As a result of the nature of collection, and 

understandable different disease profiles within donors there was some 

variability to the samples available from each specimen. Samples were 

transported to the laboratory in sterile 150mL screw-topped pots in RPMI 
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containing 10% FCS with the addition of 1% antibiotic, antimycotic solution (A 

combination of 10,000 units Penicillin, 10mg Streptomycin and 25μg 

Amphotericin B (Sigma)), and processed immediately. 

 

2.8.3 Isolation of lymph node mononuclear cells (LNMNC) from 
fresh lymph node specimens using density gradient 
separation 

Fresh lymph node samples were placed in a Petri dish containing 10mL, 

RPMI, 10% FCS and 1% antibiotic and carefully dissected to remove any 

excess fat, necrotic debris or surrounding non-lymph node tissue. Clean 

lymph nodes were then repeatedly injected with media to disaggregate them 

using a 21 gauge, 40mm green needle and 10mL syringe. The remaining cell 

suspension was then passed through a 70μm cell strainer (BD Biosciences) 

and any remaining debris removed using a 50mL large volume wash and 

centrifugation for 5 minutes at 400g, supernatant was discarded leaving a 

single cell suspension of LNMNC’s. 

The remaining single cell suspension of lymph node cells was diluted to a total 

volume of 30mLs in HBSS and layered carefully onto 15mLs of Lymphoprep© 

in a 50mL falcon tube before being centrifuged at 800g for 25 minutes at RT 

with no brake. The plasma containing supernatant was slowly removed with a 

pipette before the remaining LNMNC layer was collected using a wide-tipped 

Pasteur pipette. Cell were washed in 50mLs of HBSS and centrifuged for 10 

minutes at 400g at RT before a second wash again in 50mLs of HBSS with 

centrifugation for 5 minutes at 300g at RT. Cells were counted and 

resuspended in RPMI at 1x106 cells/mL or 2x106 cells/mL depending on cell 

population yields which were variable between samples. 

  

2.8.4 Characterisation of LNMNC’s 

To identify cell populations and the phenotypic appearance cells, LNMNC’s 

cells were harvested and aliquoted into FACS tubes at a density of 5x105-

1x106 cells/tube. Cells were washed in 2mL of FACS buffer, centrifuged 

(Sorvall RT6000B refrigerated centrifuge, Kendro Lab Products, 
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Hertfordshire, UK) at 400g for 5 minutes at 4°C before discarding the 

supernatants. To identify cell populations, a targeted selection of 

fluorescently-conjugated antibodies were added (see Table 2.2) and cells 

incubated for 30 minutes in the dark at 4°C. After 30 minutes cells were 

washed in 2mL of FACS buffer and centrifuged again. The supernatant was 

discarded and the stained cells were fixed in 300μL of 1% PFA. FACS analysis 

(Section 2.4) was undertaken immediately where possible or alternatively cells 

were stored at 4°C and analysis performed within one week of acquisition. 

 

2.8.5 CD14 Positive cell separation of PBMC’s/LNMNC’s using 
magnetic-activated cell sorting (MACS) bead selection. 

Fresh PBMC’s/LNMNC’s were prepared as described in sections 2.8.1 and 

2.8.3, respectively. Cell separation of the CD14 positive and negative fractions 

was then undertaken. The harvested mononuclear cells were washed in 5mL 

of MACS buffer (1% (v/v) FCS + 2mM EDTA in PBS), centrifuged and the cell 

pellet re-suspended in 80μL of MACS buffer per 1x107 total cells in a 15mL 

Falcon tube. 20μL per 1x107 cells of MACS CD14 Microbeads (Miltenyi Biotec 

Ltd., Surrey, UK) were added to the falcon tubes and incubated for 15 minutes 

at 4°C prior to being washed in 2mL of MACS buffer and centrifuged at 300g 

for 5 minutes at RT. The supernatant was again discarded and the remaining 

cell pellet re-suspended in 500 μL/1x108 cells of MACS buffer. A MACS LS 

magnetic separation column was mounted on a magnetic board (both Mltenyi 

Biotec Ltd., Surrey, UK) and washed with 3mLs of MACS buffer prior to use.  

The cell suspension was then loaded and allowed to pass through the column.  

The CD14-ve cell population remained unbound and was collected as the run-

off after 3 further 3mL MACS buffer washes. To collect the bound CD14+ve cell 

population retained in the column, the column was  immediately removed from 

the magnet and flushed using a supplied column plunger. Thereafter 5mL of 

MACS buffer was added to the column and the resultant cell suspension was 

collected into a 50mL Falcon tube. The separated cell populations were then 

counted and utilised as required. 
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2.9 Virus Treatment of Cell Lines, PBMC’S and LNMNC’s 

2.9.1 Cell lines 

Harvested cell lines were seeded into 6 well plates at a density of 2x105 

cells/mL in 3mls of culture medium. Cells were incubated for 4 hours in order 

to allow adherence prior to virus treatment at a range of doses (0, 0.1, 1, 

10pfu/cell).   Plates were further incubated thereafter at 37°C for the required 

experimental time under investigation. 

 

2.9.2 PBMC’s and LNMNC’s 

PBMC’s and LNMNC’s were cultured at 2x106 cells/mL in 24-well plates. Cell 

lines were allowed to settle as required and thereafter were able to be used 

immediately if required. Virus was added at a range of doses (0, 0.1, 1, 

10pfu/cell) and incubated at 37°C for the required experimental time under 

investigation.  

Cell lines, LNMNC and PBMC’s were then utilised where required in further 

experiments described in this chapter: NK cell activation studies such as 

CD69 and CD107 degranulation (section 2.11.2 and 2.11.3 respectively); 

chromium release assays (section 2.7); cell specific phenotyping studies 

(section 2.4) and culture supernatants were collected throughout and 

analysed by ELISA (section 2.12). 

 

2.10 Inhibition of Apoptosis, Necroptosis and Autophagy 
Death Pathways 

SW480 and SW620 cell lines were seeded into a 24-well plate at a density of 

7.5x104 cells in 1mL of culture medium and incubated for a minimum of 4 

hours at 37°C to allow adherence. The apoptotic, necroptosis and autophagy 

inhibitors were then added to the wells at the doses listed in Table 2.3 as 

single agents or in combination and incubated for 1 hour at 37°C. Cells were 

treated with 0 – 10pfu/cell Reovirus or JX-594 for up to 96 hours. At specific 
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time points cells were harvested and cell viability was analysed using 

Live/Dead™ Cell Viability Assay as described in Section 2.5.1. 

 

Inhibitor Inhibits Company Concentration 
Used 

Z-VAD-FMK Apoptosis Calbiochem, 
Nottingham, UK 50μM 

Necrostatin-1 Necroptosis Tocris Bioscience, 
Bristol, UK 50μM 

Necrosulphonamide Necroptosis Tocris Bioscience, 
Brsitol, UK 10μmol/l 

3-Methyladenine     
(3-MA) Autophagy Sigma-Aldrich, St 

Louis, MO 50μM 

Table 2.3 Cell death mechanistic inhibitors 

 

2.11 Immune Activation 

2.11.1 NK Cell Activation 

Natural Killer Cells (NK) within both a PBMC and LNMNC population (‘effector 

cells’) were assessed utilising the cell surface expression of CD69 (Section 

2.11.2) and degranulation (section 2.11.3) assessed using CD107a/b. Treated 

effector cell populations were cultured overnight in RPMI containing 10% FCS 

in the presence and absence of virus. Target cell populations (SW480 and 

SW620 cell lines) were harvested as previously described (section 2.2), 

washed in PBS and pelleted by centrifugation. Where appropriate 

supernatants were saved and stored at -80°C for further analysis by ELISA 

(section 2.12). 
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2.11.2 CD69 Expression Assay 

5x105 effector cells in 200μL of RPMI (10% FCS) were added to a FACS tube, 

washed with 2mL of FACS buffer and centrifuged at RT for 5 minutes at 400g. 

The pellet was then stained with the fluorescently-conjugated antibodies CD3 

PerCP, CD56 PE and CD69 FITC (as per Table 2.2) and incubated in the dark 

at RT for 30 minutes. Cells were finally washed in a further 2mL of FACS 

buffer and fixed in 1% PFA before being analysed by flow cytometry (section 

2.4). 

 

2.11.3 CD107 Degranulation Assay 

5x105 effector cells in 200μL of RPMI (10% FCS) were added to FACS tubes 

and 5x104 target cells in 200μL of RPMI (10% FCS) added to give a final 10:1 

effector:target ratio in a total volume of 400μL of media. Cells were co-cultured 

in the FACS tubes for 1 hour at 37°C. After 1 hour an antibody mix containing 

10μL CD3 PerCP, 2μL CD56 PE (for identification of NK cells), 5μL anti-

CD107a FITC, 5μL anti-CD107b FITC and 0.5mL Brefeldin A (Sigma) giving 

a working concentration of 1μL/mL (see Table 2.2) made up to 100μL volume 

with media was added to each tube. Tubes were then incubated at 37°C for a 

further 4 hours before being washed in 2mL of FACS buffer, and fixed in 

300μL of 1% (w/v) PFA. Analysis was undertaken immediately if possible or 

cells were stored in the dark at 4°C for a maximum of a week prior to data 

acquisition by flow cytometry (section 2.4). 

 

 

2.11.4 Interferon Blocking of Natural Killer (NK) cell mediated 
virus activation. 

To assess the pathways involved in virus-induced NK cell activation, type I 

Interferon α/β was blocked and CD69 activation and CD107 degranulation 

assays repeated as described above (sections 2.11.2 and 2.11.3 

respectively). PBMC’s or LNMNC’s cells were seeded at 1x106 cells/mL in a 

12-well plate and incubated for 1 hour at 37°C to allow cells to settle. 30 

minutes prior to the addition of virus 15μL of medium was added to each of 
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the control wells, a combination of 7.5μL anti-IFN α sheep serum (sigma), 

7.5μL anti-IFN β sheep serum and 12.5μL anti-α/β receptor antibodies were 

added to the block interferon and finally 15μL sheep serum and 12.5μL IgG2a 

isotype antibody were added to treatment control wells. Thereafter, cells were 

infected in triplicate (control, interferon block and isotype control) with 0, 0.1 

and 1pfu JX-594 and incubated for 24 hours at 37°C. Cells were harvested as 

detailed in (section 2.8.1 and 2.8.3) and 5x105 effector cells resuspended in 

200μl RPMI/10% FCS before continuing with assays to assess CD69 

expression and CD107 a/b degranulation (section 2.11.2 and 2.11.3 

respectively). 

 

2.12 Enzyme-linked Immunosorbent Assay (ELISA) 

2.12.1 ELISA for IFN-α, IFN-γ, IP-10, GMCSF and TNF- α 

Maxisorp© (96 well, flat-bottomed plates) (Nunc) were coated with pre-

optimised dilutions of capture antibodies (see Table 2.4) diluted in either PBS 

or coating buffer (100mM NAHCO3 in ddH2O) as indicated. Plates were 

wrapped in cling film and stored at 4°C overnight. The following morning plates 

were washed three times with PBS-Tween (0.05% Tween (Sigma) in PBS) 

using a plate washer (Skan Washer 300, Molecular devices, Berkshire, UK) 

and blocked with 200μL of blocking solution (PBS containing 10% FCS) for 2 

hours at RT. Plates then underwent a further 3 washes with PBS-Tween. 

200μL of recombinant protein standards (of known concentration) were added 

in triplicate to the top wells and halving serial dilutions into 100μL of media to 

create a standard curve with halving concentration of recombinant standards; 

the lower most channel only containing media to act as control for background 

optical density readings. Thereafter plates were loaded with sample 

supernatants in triplicate at 100μL/well, wrapped in cling film and stored 

overnight at 4°C. Following the incubation period, plates were washed six 

times in PBS-Tween and 100μL of biotinylated detection antibody diluted in 

blocking solution was added for a further 2 hours at RT. Plates were washed 

again six times in PBS-Tween before 100μL of Extravidin-alkaline 

phosphatase conjugate (Sigma), diluted 1:5000 times with PBS-Tween, was 
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added and incubated for 1 hour at room temperature. Plates were washed 

three times with PBS-Tween and three times with ddH2O. Finally substrate 

solution (p-nitrophenyl phosphate alkaline phosphatase, prepared to 

manufacturers guidelines (Sigma)) was added at 100μL/well and plates left to 

develop in the dark for 15-60 minutes.  

Plates were read using a Multiskan EX plate reader (Thermo Fisher Scientific) 

at a wavelength of 450nM to record optical densities. Using the standard curve 

optical density readings were then used to reveal sample protein quantities 

(pg/mL). 

 

 

Antibody	 Capture	 Detection		 Standard	(Top	

Concentration)	

Type	 Manufacturer	

IFN-α	 1:250	 1:500	 5000pg/ml	 Mouse	Anti-	

Human	

Mabtech	

IFN-γ	 1:250	 1:500	 10000pg/ml	 Mouse	Anti-	

Human	

BD	Biosciences	

IP-10	 1:500	 1:500	 5000pg/ml	 Mouse	Anti-	

Human	

BD	Biosciences	

CXCL-10	 1:180	 1:180	 2000pg/ml	 Goat	Anti-	

Human	

R&D	Systems,	

Bio-techne.	

GMCSF	 1:500	 1:1000	 2000pg/ml	 Mouse	Anti-

human	

Mabtech	

TNF-	α	 1:1000	 1:1000	 2000pg/ml	 Mouse	Anti-

human	

BD	Biosciences	

Table 2.4 ELISA antibodies and protein standards 
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2.12.2 ELISA for IFN-β 

ELISA for IFNβ production was undertaken utilizing a Verikine™ Human IFN 

Beta ELISA kit (PBL Interferon Source, NJ, USA). Pre-coated 96-well plates 

provided with the kit were loaded in duplicate with serial dilutions of 

recombinant protein standards as per manufacturer’s instructions before 50μL 

of sample supernatants were added and incubated for 1 hour at RT. Plates 

were washed three times utilizing a supplied wash buffer. 100μL of detection 

antibody, appropriately diluted in a concentrate diluent was then added before 

a further 1 hour incubation at RT. Plates were washed once more 3 times in 

wash buffer prior to addition of 100μL of appropriately diluted Horseradish 

peroxidase (HRP) for a further 1 hour incubation at RT. A final single wash in 

wash buffer was then undertaken before 100μL of TMB substrate (provided 

with kit) was added to each well and allowed to develop for 15 minutes in the 

dark.  Following the addition of 100μL of stop solution, optical densities were 

determined using a Multiskan plate reader at a wavelength of 405nm. Optical 

densities were converted to protein quantities (pg/mL) using the standard 

curve generated. 

 

2.13 Western Blots for HMGB1 

Cell free supernatants were harvested from pre-cultured SW480 and SW620 

cell lines infected with an multiplicity of infection (MOI) of 0, 0.1 or 1 for 24, 48 

and 72 hours. Supernatants were then stored at -80°C until required. 

Alongside this, cell pellets were prepared from harvested DLD-1 cell lines 

cultured in T75 flasks to act as a positive control. 

Running gels and stacking gels were prepared using: ddH2O, 30% acrylamide 

mix; 10% (w/v) SDS, 1.5M Tris pH 8.8 (running gel), 1M Tris pH6.8 (stacking 

gel), 10%  (w/v) ammonium persulphate and Tetramethylethylenediamine 

(TEMED) according to previously described protocols and quantities 

described by Sambrook et al. (1989)192. A 10% running gel was poured into 

prefabricated cassettes (Invitrogen Life Technologies) and allowed to set. The 

cassette was then rinsed with ddH2O, and the stacking gel and comb added. 

20μL of each  of the cell free supernatants diluted 1:1 with Laemmli buffer (4% 
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SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.004% bromophenol blue, 

0.125 M Tris HCl at pH 6.8) were loaded into the sample lanes alongside 2μL 

of protein molecular marker (Odyssey, LI-COR Biosystems, Lincoln, USA) 

added to the control lane in order to identify the size of the detectable proteins. 

Gels were run at 160-180V for approximately 60 minutes (until dye had run to 

the bottom of the gel) using a XCell SureLock™ Mini Cell system (Invitrogen) 

and a Bio-Rad laboratories PowerPac™ HC. Protein transfer was then 

performed at 25V for 120 minutes onto a Hybond™ C Super nitrocellulose 

membrane (Amersham Biosciences, Little Chalfont, UK). The membrane was 

washed three times in PBS containing 0.1% (v/v) Tween (PBST) and blocked 

overnight in Odysssey blocking buffer (LI-COR Biosciences). 

Staining for HMGB1 was undertaken using a monoclonal mouse anti-human 

HMGB1 antibody (R&D systems, Abingdon, UK) at a 1:500 dilution in a 1:1 

mix of blocking buffer and PBST. The membrane was placed carefully in a 

50mL Falcon tube and 5mL of the antibody mix added and placed on roller 

apparatus for 1 hour at room temperature. The membrane was then washed 

four times for 5 minutes each in PBST. The secondary antibody used was 

goat anti-mouse conjugated with AlexaFluor 680 (Molecular Probes, 

Invitrogen), this was used at a 1:5000 dilution in 5mL of 1:1 ratio mix of 

blocking buffer and PBST. Incubation for 1 hour at RT in the dark was again 

achieved by placing the membrane in a 50mL Falcon and continuously 

rotating on a roller to ensure consistent antibody/membrane coverage. The 

membrane was finally washed four further times for 5 minutes, each in PBST 

before Supersignal™ West Pico Chemiluminescent substrate (Thermo Fisher 

Scientific, Loughborough, UK) was added to the membranes for 5 minutes. 

Excess liquid was removed and the membrane was taken to the dark room 

and exposed to Amersham Hyperfilm™ECL™ film (GE Healthcare Life 

Sciences, Buckinghamshire, UK) and developed using a Kodak X-OMAT 

3000RA Processor. 
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2.14 Statistical Analysis 

Data was represented graphically as mean ± standard error of the mean 

(S.E.M). Statistical analysis was performed using Graphpad Prism for Mac 

(v6.0, Graphpad Software, Inc). p values were calculated by using the one-

way or two-way analysis of variants (ANOVA) with Bonferroni post-hoc test or 

a paired student t-test with two-tailed distribution. p values were considered 

significant at p<0.05. 
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Chapter 3  
Combination Strategies 

3.1 Introduction 

The development of novel targeted therapies for CRC, such as cetuximab and 

Panitumumab, has improved colorectal cancer patient overall survival 

although anti-epidermal growth factor receptor (EGFR) immunotherapy is not 

suitable for all patients, with only 10-20% achieving clinical responses.  KRAS, 

BRAF and PI3KCA mutations (causing constitutively activated EGFR-

signalling) have been implicated in cellular resistance to anti-EGFR therapy.   

Cetuximab (an IgG1 chimeric anti-EGFR antibody) and Panitumumab (an 

IgG2 fully-humanised anti-EGFR antibody) induce their anti-cancer effects by 

two distinct mechanisms; blockade of EGF-receptor binding preventing pro-

survival/proliferation signals, and ADCC/ADCP.  A role for monocytes and NK 

cells has been described for cetuximab-ADCC/ADCP, whereas Panitumumab 

utilises monocytes and neutrophils for its immune-mediated effects; these 

targeted interactions are regulated by Fcγ receptor expression on different 

immune effector cells.193 GA201, a humanised-IgG1 glyco-engineered anti-

EGFR antibody is reported to have increased Fc-gamma binding affinity and 

induction of ADCC in KRAS wild-type and mutant cells, and is also in pre-

clinical development.194 

ADCC should occur irrespective of EGFR-signalling mutations and one would 

expect patients with KRAS-mutations to demonstrate some clinical response 

if ADCC played an important role in vivo. Disappointingly, large clinical studies 

have shown that KRAS-mutant patients do not benefit from anti-EGFR therapy 

(regardless of antibody mechanism of action) and it is currently only offered 

to patients with wild-type KRAS cancers.195 Immune cell populations within 

the tumour microenvironment can either support tumour growth or contribute 

to anti-tumour activity and as such can be used as diagnostic and prognostic 

biomarkers. High lymphocyte counts typically are reported to correlate with 

good prognosis and high tumour-associated macrophages (TAM)/neutrophils 

(TAN) are associated with poor prognosis.196 Interestingly, a controversial role 

for TAM has been described for CRC with both pro- and anti-tumour activities 
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being reported. Acting as ‘pro-tumour macrophages’ TAMS promote initiation 

and metastatic progression of tumour cells, stimulate tumour angiogenesis 

and via the modulation of T-cell activity inhibit anti-tumour immune 

responses.196 Furthermore, TAMS are reported to protect colorectal cancer 

cells from TNF-related apoptosis induced ligand (TRAIL)-mediated 

apoptosis.197  

Conversely, strong evidence also exists for the anti-tumour activity of TAMS 

with several authors reporting an association between increased macrophage 

infiltration and improved outcomes, the mechanisms behind which remain less 

clear.198–201 Some suggested mechanisms include macrophages along the 

tumour margin inducing apoptosis in a Fas ligand-dependent process, as 

reported by Sugita et al. (2002)199 or alternatively peritumoral macrophages 

differentiating into a tumoricidal phenotype as a result of reduced tumour 

derived cytokine exposure and being located in a less hypoxic area.202,203 

Clearly, harnessing the immune cell repertoire within the tumour is likely to be 

important for generating objective clinical responses and it is possible that 

immune cell activation could increase the efficacy of anti-EGFR 

immunotherapy for both wild-type and mutant-KRAS CRC. 

Oncolytic viruses (OV) preferentially replicate in cancer cells causing cell 

death. Oncolytic Reovirus, a clinically advanced OV, exerts its cytotoxic 

effects by direct oncolysis (reported to be caspase-dependent and therefore 

apoptotic in nature) and/or activation of anti-tumour immunity.204 Reovirus 

sensitivity has been reported to be dependent on KRAS-mutations, or 

downstream activating signalling mutations (such as PI3K) (Figure 1.3) hence 

KRAS-mutant patients that are resistant to cetuximab should be susceptible 

to Reovirus-induced oncolysis.  As such we hypothesise, that immune 

activation of monocytes, neutrophils and NK cells by Reovirus may potentiate 

cetuximab/panitumumab mediated-ADCC/ADCP.  In support of this, 

published research has demonstrated that Reovirus can; activate monocytes 

within white blood cells (WBCs)205; activate NK cells both in vitro and in vivo206; 

be isolated from CRC liver metastases after systemic delivery206; and enhance 

rituximab-mediated ADCC of autologous CLL cell targets.205  
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Recently, detailed analysis of CRC liver metastases demonstrated that B-Cell 

Lymphoma Extra Large (BCL-XL), an anti-apoptotic, pro-survival protein 

associated with advanced disease and resistance to chemotherapy, is 

upregulated in CRC and associated with KRAS-mutations.207  Interestingly, 

inhibition of BCL-XL, using the pro-apoptotic BH3 mimetic (ABT-737) which 

mechanistically antagonizes the BCL-2 family of anti-apoptotic proteins, was 

shown to sensitise HRASG12V-expressing colorectal cancer cells to cetuximab 

cytotoxicity.207  As such, it has been proposed that combination strategies 

incorporating ABT-263/Navitoclax (a clinical grade BH3-mimetic) could have 

the potential to increase OV direct cytotoxicity.208 

These hypotheses remain untested and could provide strong evidence to 

support the use of OV, in appropriate combinations with either 

cetuximab/Panitumumab and/or BCL-2 family antagonists for all CRC 

patients, including those with EGFR-signalling mutations or specifically to 

target those patients resistant to anti-EGFR monotherapy.  

 

3.2 Results 

3.2.1 Colorectal cell lines are variably susceptible to Reovirus 
killing 

Previous members of the group have demonstrated that a number of CRC 

cells are susceptible to Reovirus-induced oncolysis204 and replication-

competent Reovirus can be recovered from CRC liver metastases after 

intravenous injection prior to surgical resection.206 Previous work has however 

not been contextualised with regard to genetic mutations and has utilised a 

selective and limited panel of colorectal cell lines. This study therefore initially 

aimed to broaden the range of cell lines investigated, examining their 

susceptibility to OV killing using a Live/Dead™  flow cytometry cell viability 

assay. 

 

Nine colorectal cell lines in total were available for experimentation from either 

collaborative groups or from within the local cell bank library. A summary is 

shown in Table 3.1. 
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Table 3.1 CRC cell line library 

Summary of original patient demographics, cancer site and disease profile. (un = 

unknown)  

 
A broad range of mutational profiles exist within this panel of cell lines (Table 

3.2) and we therefore planned to utilise this library of CRC cell lines to test 

susceptibility of various KRAS/BRAF/PI3KCA mutations to Reovirus 

cytotoxicity using cell viability (Live/Dead™  and MTT (data not shown)) 

assays. This is important given that we know Reovirus can access CRC in 

particular, liver metastasis, following systemic delivery to cancer patients. 

Levels of cell death were  examined in the context of KRAS/BRAF/PI3KCA 

mutations to determine whether a specific genetic mutation, or combinations 

thereof, could be used to predict Reovirus sensitivity. 

Cell	Line Age Ethnicity	 Gender	 Organ	 Disease Stage Derivation Morphology

SW480 50 Caucasion Male Colon Colorectal	

Adenocarcinoma

Dukes	B	 Primary	

Tumour

Epithelial

SW620 51 Caucasion Male Lymph	Node	

Metastasis

Colorectal	

Adenocarcinoma

Dukes	C	 Metastasis Epithelial

HCT116 48 Caucasion Male Ascending	Colon Colorectal	

Adenocarcinoma

Dukes	D Primary	

Tumour

Epithelial

Colo320 55 Caucasion Female Sigmoid	Colon Colorectal	

Adenocarcinoma

Dukes	C Primary	

Tumour

Rounded	&	

Refractile

HT29 44 Caucasion Female Colon Colorectal	

Adenocarcinma

Dukes	C Primary	

Tumour

Epithelial

LoVo 56 Caucasion Male Left	

Supraclavicular	

Lymph	Node

Colorectal	

Adenocarcinma

Dukes	C Metastasis Epithelial

LIM1215 34 Caucasion Male Omental

Metastasis

Heridatory	

nonpolyposis	

colorectal	cancer

Duke	D Metastatis Epithelial

LIM1899 UN Unknown Unknown Colon Colorectal	

Adenocarcinoma

Dukes	C Primary	

Tumour

Epithelial,	

Rounded	&	

clustered

LIM2408 UN Unknown Unknown Splenic	Flexure Moderately	

differentiated	

adenocarcinoma

Dukes	C Primary	

Tumour

Epithelial
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Table 3.2 CRC cell line panel. 

Table highlighting reported EGFR expression and KRAS/BRAF/PI3KCA mutational 

status within the experimental CRC cell line panel. 

 

3.2.2 Reovirus demonstrates variable levels of cytotoxicity 
against CRC cells with different mutational characteristics.  

Initial experimentation therefore involved the direct cytotoxic potential of 

Reovirus on our panel of CRC cell lines. All nine available cell lines were 

initially studied, however, for the purposes of this report two of the lines were 

excluded. Both LOVO and LIM1215 cell lines showed wide variability in results 

and high levels of cell culture death in the absence of treatment. Further 

examination demonstrated mycoplasma infection and despite attempts to 

decontaminate the stored samples a decision was made to exclude these 

lines from further experimentation. 

SW480, SW620, HCT116, Colo320, HT29, LIM1899 and LIM2408 cell lines 

were directly infected with 0, 0.1, 1 and 10pfu/cell Reovirus for 24-96 hours 

before cell viability was determined using Live/Dead™  cell viability assay and 

flow cytometry. Figure 3.1 shows data for the 48 and 72 hour time points. 

SW480 SW620 HCT116 Colo320 HT29 LOVO LIM1215 LIM1899 LIM2408

EGFR
expression

Yes Low Yes No Yes Yes Yes Yes Yes

KRAS G12V G12V G13D WT WT G13D WT G12A WT

BRAF WT WT WT WT V600E WT WT WT V600E

P13K WT WT H1047R WT WT WT WT WT WT
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Figure 3.1 Reovirus-induced cell death in CRC Cell Lines. 

Cell lines A-G (A-SW480, B-SW620, C-HCT116, D-Colo320, E-HT29, F-LIM1899 

and G-LIM2408) were treated with 0 (control), 0.1, 1 and 10pfu/cell Reovirus for 48 

and 72 hours. At each time point cells were harvested and stained with Live/Dead™  

for assessment by flow cytometry. Graphs show mean percentage cell death of at 

least 3 independent experiments + SEM. Statistical significance is denoted by * 

p<0.05 (one-way ANOVA) 
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Our panel of cell lines responded with mixed sensitivity to infection with 

Reovirus. Consistent with previous data from our laboratory, SW480 cells 

showed a repeatable dose-dependent and time dependent response with 

maximal death seen at 72 hours with 10pfu/cell Reovirus. SW620 cells, the 

metastatic line relating to the SW480 primary are known to be more resistant 

to virotherapy and as such no death was seen at 48 hours but thereafter 

Reovirus killed in a dose and time dependent fashion. The suggestion of a 

continuing effect and further death was seen at 96 hours (data not shown) but 

for the purposes of this study we did not extend this time point further. Similar 

reduced sensitivity to Reovirus was observed in HT29 cell lines with only low 

level cell death seen following high dose, 10pfu Reovirus treatment. Increased 

cytotoxicity was seen in a time dependent fashion (16.3% to 29.9% for 10pfu 

at 48 and 72 hours respectively) but remained low when compared with other 

cell lines. 

As with SW480, Colo320 and LIM2408 cells were sensitive to Reovirus-

induced oncolysis even at lower doses of Reovirus. Maximal percentage cell 

death (58.3% and 47.9% respectively) was observed after 72 hours and 

treatment with 10pfu Reovirus. Moreover, HCT 116 cells demonstrated the 

most sensitivity to Reovirus cytotoxicity with cell death observed at early time 

points and low concentrations of virus (16.7% cell death at 48hrs and 

0.1pfu/cell Reovirus; 48.6% cell death at 72hrs and 0.1pfu/cell Reovirus) when 

compared to other cell lines.  

There was no cytotoxicity seen in LIM1899 across the time points implying 

that this cell line is completely resistant to Reovirus infection. Across our panel 

of cell lines there was no evidence that Reovirus induced death demonstrated 

any correlation to mutational status, however of note HCT116 were the most 

sensitive and contain mutational changes in the RAS pathway. Interestingly, 

Colo320 which are wild type and harbour no mutations in the 

KRAS/BRAF/PI3K pathway, and therefore maybe expected to be resistant are 

in fact sensitive to Reovirus-induced cell death. It remains unclear as to the 

mechanism behind this but hypothetically this could be due to mutations in 

alternative uncharacterised genes in the RAS pathway or alternatively that 

Reovirus sensitivity is not ubiquitously controlled by the RAS signalling 

pathway. 
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3.3 EGFR Binding studies 

Given that the mutational status of CRC cell lines did not correlate with 

Reovirus sensitivity, we wanted to confirm that the cell profiling reported in the 

literature was consistent with our in house cell populations. Particular focus 

was placed on EGFR binding, given its relevance to work discussed later in 

this chapter regarding anti-EGFR monoclonal antibody combination 

strategies. Cell surface expression of EGFR was determined using an anti-

human EGFR-PE monoclonal antibody by flow cytometry. All cell lines were 

tested and representative results are shown for 4 cell lines (Figure 3.2). 

SW480 cells demonstrated the most significant EGFR cell surface expression, 

whilst moderate expression was seen in HT29 and HCT116. As reported 

Colo320 CRC cells showed no evidence of EGFR expression. For the 

remaining cell lines tested, EGFR expression correlated with published 

reports (See Table 3.2).  
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Figure 3.2 Cell surface EGFR expression for four CRC cell lines. 

Freshly harvested cell lines were stained with an anti-human-EGFR-PE antibody or 

IgG isotype control. Cell surface expression was determined by flow cytometry (Red 

line: EGFR expression; shaded area: Isotype control). Data shown is representative 

of 3 independent experiments. 
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3.4 Combination strategies with BCL-2 antagonists. 

The PI3K-AKT and RAS-ERK pathways are two of the most important 

signaling pathways that regulate cell proliferation and survival. Functional 

mutations in genes for these two signaling pathways, such as RAF, RAS and 

PI3K are frequently observed in malignant tumours and result in abnormal 

activation causing primary drug resistance and reduced efficacy of 

chemotherapeutic agents.168,209,210 These pathways therefore present 

promising therapeutic targets however the targeting of individual molecules 

often results in only limited anti-tumour efficacy and as such combination 

strategies to target various aspects of the pathway could provide a more 

promising therapeutic effect. Interestingly, Leverson et al. (2015) 210 showed 

that inhibition of the PI3K-AKT or RAS-ERK pathway (by for example anti-

EGFR antibodies) upregulates the pro-apoptotic proteins BIM or BAD and 

downregulates the pro-survival proteins BCL-2 and MCL-1. These effects 

were significantly enhanced by co-treatment with the BH3 mimetic, ABT-263, 

and resulted in ‘on-target cancer cell killing activity’. 

 

ABT-263 (Navitoclax) is an orally administered active analogue of ABT-737, a 

BH3 mimetic designed to induce apoptosis by blocking the functions of the 

pro-survival BCL-2 family proteins. Combination strategies using ABT-263 

with various FDA approved drugs have reached clinical trials for the treatment 

of both solid tumours and haematological malignancies, however tumour cells 

expressing high levels of MCL-1 have shown resistance to both ABT-263 and 

ABT-737.178,211 Furthermore after long exposure to the BH3 mimetic inhibitors, 

resistance is acquired as a result of upregulation of MCL-1.212 

 

3.4.1 ABT-263 induced cell death in Colorectal Cell lines  

Given the mechanism of action of ABT-263 (i.e. modulation of the pro vs anti 

apoptotic pathway), we hypothesised that combination with OV (which can kill 

via apoptotic mechanisms) may increase the efficacy of oncolytic virotherapy 

producing a synergistic effect. ABT-263 activity and cell death is thought to 

rely on releasing BIM to promote apoptosis213. High levels of BIM are reported 

to predict an increased sensitivity to ABT-263 while resistance is correlated 
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with high MCL-1 levels. Various studies have documented that almost 50% of 

cancer cell lines are resistant to ABT-263 as a direct result of the variation in 

the levels of these pro vs anti-apoptotic molecules.183,214,215 Therefore, before 

exploring combination strategies we initially examined whether our library of 

CRC cell lines were sensitive to ABT-263 monotherapy.  

SW480, SW620, HCT116, Colo320, HT29, LIM1899 and LIM2408 cell lines 

were treated with 0, 0.1, 1 and 10μM ABT-263 for 24-96 hours before cell 

viability was determined using Live/Dead™ cell viability assay and flow 

cytometry. Results for 48 and 72 hours are shown in Figure 3.3. 
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Figure 3.3 ABT-263 induced cell death in CRC Cancer Cell Lines. 

Cell lines A-G (A-SW480, B-SW620, C-HCT116, D-Colo320, E-HT29, F-LIM1899 

and G-LIM2408) were treated with 0, 0.1, 1 and 10μM ABT-263 for 48 and 72 hours. 

At each time point cells were harvested and stained with Live/Dead™  for 

assessment of cell viability using flow cytometry. Graphs show mean percentage cell 

death of at least 3 independent experiments + SEM. Statistical significance is 

denoted by * p<0.05 (one-way ANOVA). 
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Treatment of our cell lines with ABT-263 resulted in a mixed response. 

Following treatment, two cell lines LIM1899 and Colo320 showed no 

significant change in cell viability, either in a concentration or time dependent 

manner. SW480 and LIM2408 cells were killed in the presence of ABT-263 in 

a concentration dependent manner, with no significant change in effect seen 

at different time points. For example, 10μM ABT-263 treatment of LIM2408 

resulted in 50.1% and 53.7% cell death at 48 and 72 hours, respectively, and 

similarly in SW480 cells treatment resulted in 55.7% and 60.6% cell death at 

the same time points. The remaining cell lines tested, SW620, HT29 and 

HCT116 were less sensitive to ABT-263 treatment at the 48 hour time point 

(29.4%, 12.8% and 34.1% cell death for 10μM ABT-263 at 48hrs, respectively) 

but responded to treatment in both a dose and time dependent fashion with 

increased death at 72 hours for SW620 (49.26%). HT29 (31.8%) and HCT116 

(43.9%).  

As with Reovirus, across our panel of cell lines there was no evidence that 

ABT-263 induced cell death demonstrated any correlation to cell line 

mutational status. Of note, however is that Colo320, which is wild-type in 

KRAS/BRAF/PI3K genotype was the least sensitive to ABT-263 killing. Whilst 

this may indicate a requirement for a positive mutational status to be present 

to allow independent ABT-263 killing a similar lack of response was also seen 

in the LIM1899 cell line which is KRAS mutant. The relevance of this remains 

unclear, but could result from differential downstream signalling pathways 

being modulated in response to the different codon mutations. To support this 

hypothesis, and whilst it remains controversial, some authors have suggested 

that sensitivity to certain therapeutic agents may be effected by the exact 

codon effected by the mutation.216,217 For example, Kumar et al (2014)217 

suggested that whilst mutational constitutive activation of the RAS/RAF/MAPK 

signalling pathway is generally accepted to result in drug resistance a 

proportion of patients with the KRAS G13D mutation did in fact respond to 

anti-EGFR antibody therapy. The complex interaction of cell signalling 

processes is beyond the scope of this study but it is clear that the interplay 

between EGFR signalling and expression of pro vs anti-apoptotic BCL-2 

protein family members is important to understanding how we might utilise, 
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and optimise, potential combination strategies both in the lab and 

translationally into the clinic.    

  

3.4.2 Efficacy of combining ABT-263 and Reovirus in vitro 

Given the variable response of our cell lines to both Reovirus, which kills by 

inducing apoptosis and ABT-263, a pro-apoptotic molecule, we then went on 

to investigate whether using both agents in combination may induce 

synergistic killing, enhancing the oncolytic potential of Reovirus. 

 

The panel of CRC cell lines were treated with various combinations of high-

dose and low-dose ABT-263 and high dose and low dose Reovirus alone, or 

in combination, and cell viability at various time points was assessed. 

Graphical representation of the data is presented in Figure 3.4. 
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Figure 3.4 Reovirus and ABT-263 combination induced cell death in CRC 
cell lines. 

Cell lines A-G (A-SW480, B-SW620, C-HCT116, D-Colo320, E-HT29, F-LIM1899 

and G-LIM2408) were treated with 0, 0.1, 1 and 10μM ABT-263 and/or 0, 0.1, 1 and 

10pfu/cell Reovirus for 48-72 hours. At each time point cells were harvested and 

stained with Live/Dead™  for assessment of cell viability using flow cytometry. 

Graphs show mean percentage cell death of at least 3 independent experiments + 

SEM. Statistical significance is denoted by * p<0.05 (one-way ANOVA). 

 

 

0 0.1 1 10
0

20

40

60

80

Reovirus (pfu)

%
 C

el
l D

ea
th

0 0.1 1 10
0

20

40

60

80

Reovirus (pfu)

%
 C

el
l D

ea
th

0 0.1 1 10
0

20

40

60

80

Reovirus (pfu)

%
 C

el
l D

ea
th

0 0.1 1 10
0

20

40

60

80

Reovirus (pfu)

%
 C

el
l D

ea
th

0 0.1 1 10
0

20

40

60

80

Reovirus (pfu)
%

 C
el

l D
ea

th

0 0.1 1 10
0

20

40

60

80

Reovirus (pfu)

%
 C

el
l D

ea
th

Control 0.1µM ABT 1µM ABT 10µM ABT

E. HT29

F. LIM1899

G. LIM2408

48 hours 72 hours



- 100 - 

Combinations of Reovirus and ABT-263 demonstrated a mixed but largely 

limited effect of the combination therapy. SW620 CRC cells were the only cell 

line which showed a significant increase in cell death when compared with 

single agent therapy in a dose dependent and time dependent manner. 

Notably, however in LIM2408, SW480 and HT29 cell lines, maximal death was 

achieved with high dose ABT-263 alone and Reovirus demonstrated no 

additional effect over and above this treatment. To further analyse these data, 

and ascertain if there was either a synergistic or additive effect present, further 

analysis of the data was undertaken using a single chosen dose of both ABT-

263 (1μM) and Reovirus (10pfu/cell), at a single time point (72hrs) as a 

representative sample of response across the cell lines. Data is shown in 

Figure 3.5. 
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Figure 3.5 The effect of combining 10pfu Reovirus and 1μM ABT-263 on 
CRC cell death. 

Cell lines A-F (A-SW480, B-SW620, C-HCT116, D-Colo320, E-HT29 and F-

LIM2408) were treated with 1μM ABT-263 and 10pfu/cell Reovirus for 72 hours. Cells 

were harvested and stained with Live/Dead™  for assessment of cell viability using 

flow cytometry. Graphs show mean percentage cell death of at least 3 independent 

experiments + SEM. Statistical significance is denoted by * p<0.05 (paired student t-

test).  
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Disappointingly, increased death was only seen as a direct result of 

combination therapy in the SW620 cell line. Coefficient regression analysis, 

however, demonstrated no synergistic effect suggesting that the increased 

death seen was additive and the result of both agents working in 

mechanistically different ways rather than acting to enhance the effect of each 

other. 

3.5 Combination strategies to optimise Anti-EGF Receptor 
monoclonal antibody (Cetuximab/GA201) therapy. 

As discussed previously, alternative therapies that may act in combination or 

hypothetically be modulated by oncolytic Reovirus, are the anti-EGFR 

receptor monoclonal antibodies.  Clinically, Cetuximab and GA201 are directly 

cytotoxic against KRAS wild-type cells but exert limited toxicity against KRAS-

mutant cells. Hypothetically, Reovirus could enhance killing by promoting the 

ADCC/ADCP mechanisms of the anti-EGFR monoclonal antibodies. 

However, of note, it is possible that this effect may be countered, certainly in 

wild type cell lines, by antibodies blocking EGFR signalling and directly 

impeding the RAS signalling mechanisms used by Reovirus for direct killing, 

given that Reovirus oncolyis can be facilitated by constitutively activated 

EGFR-signalling pathways.218 

 

Utilising our panel of CRC cell lines with varying EGFR expression/genetic 

susceptibility mutations (Table 3.2) we first aimed to test the direct cytopathic 

effects of cetuximab and GA201 (data no shown) before investigating the 

ability of potential reciprocal interaction with Reovirus treatment. Having 

confirmed EGFR cell-surface expression in our CRC cell line was in 

accordance with reported literature (Figure 3.2), we then sought to confirm 

EGFR-antibody binding to CRC cell lines using FACS (Figure 3.6).  
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Figure 3.6 Cetuximab binding studies in CRC cell lines with varying 
EGFR expression.  

Four cell lines (HCT116, SW620, SW480 and Colo320) were selected for their variable 
EGFR expression status. EGFR expression and Cetuximab binding were compared. A.(i) 

shows a FACS plot of EGFR expression on SW480 CRC cell lines by flow cytometry 
compared with A(ii) showing SW480 cells labelled with 5µg/mL cetuximab for 30mins at 

37°C; Binding of Cetuximab was determined using a FITC-conjugated anti-human IgG1 
antibody and flow cytometry.  B. Cell lines were labelled with increasing doses of 

cetuximab (0, 1.25, 2.5, 5 and 10μg/mL) for 30mins at 37°C and binding was determined 
using FITC-conjugated anti-human IgG1 antibody and flow cytometry; Representative 
FACS plots are shown. C. FACS data was quantified as mean fluorescent intensity. Bar 

charts represent EGFR (left) and cetuximab binding (5μg/mL) (right) for each cell line 
investigated. Graphs show mean + SEM of 2 independent experiments.  
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Four cell lines were selected for their variability in EGFR expression and 

KRAS mutant status. SW480 and HCT116 both express EGFR on their cell 

surface, SW620 has low EGFR cell surface expression and Colo320 has no 

EGFR cell surface expression as confirmed in earlier experimentation (Figure 

3.2) and consistent with reported literature. As expected the data 

demonstrates binding of cetuximab in the cell lines with high EGFR 

expression, limited cetuximab binding in SW620 cell lines, consistent with the 

low EGFR expression and no evidence of cetuximab binding on Colo320 cells. 

Importantly, of note, both SW480 and HCT116 cell lines are KRAS genotype 

mutants and additionally HCT116 also has a PI3K mutation. As such 

cetuximab is likely to demonstrate less efficacy as a direct agent but may act 

via ADCC triggered by FC𝛾R engagement with NK cells. In support of this 

there is good evidence that cetuximab-mediated ADCC activity is correlated, 

with the cell surface expression level of EGFR, regardless of the mutational 

status of the CRC cell line.219 

 

3.5.1 Cetuximab induced cell death in Colorectal Cell lines 

Clinically cetuximab only achieves a less than ten percent objective response 

rate when utilised as a monotherapy in an unselected patient population and 

only 25% clinical response in those patients genotyped for wild-type KRAS 

and BRAF genes.220,221 Before investigating combination strategies we aimed 

to assess whether our panel of colorectal cell lines would respond in a similar 

fashion to cetuximab monotherapy in vitro.  SW480, HCT116, HT29, SW620, 

Colo320 and LIM1899 cell lines were directly treated with 0, 0.1, 1 and 

10μg/mL Cetuximab for 48 (data not shown) and 72 hours before cell viability 

was determined using Live/Dead™  cell viability assay and flow cytometry. 

Similarly, to confirm methodological accuracy treated cell lines were assessed 

by MTT assay to determine any anti-proliferative and cytotoxic effects. Figure 

3.7 shows data at 72 hour time point for both MTT and Live/Dead™ viability 

assays with increasing doses of cetuximab. 
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Figure 3.7 Cetuximab monotherapy was not cytotoxic against CRC cell 
lines despite KRAS/BRAF status. 

A) CRC cell lines SW480, HCT116 and HT29 were seeded at 8 x 103 cells per well 

in a 96-well plate  and treated with cetuximab at concentrations of 0, 0.1, 1 and 10 

μg/mL. 72 hours post treatment, MTT was added for 4 hours and DMSO used to 

solubilise cells. Percentage viability was calculated as absorbance measured relative 

to untreated cells. Graphs show mean ± SEM for 3 independent experiments. B) 

Colorectal cell lines were treated with 0, 0.1, 1 and 10μg/mL Cetuximab for 72 hours 

before being harvested and stained with Live/Dead™  to assess cell viability by flow 

cytometry. Graphs show mean percentage cell death of 3 independent experiments 

± SEM. 
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In our cohort of cell lines tested, we were unable to illicit or demonstrate any 

cetuximab cytoxicity using either MTT or Live/Dead™  cell viability assays. No 

cell death was seen even at high cetuximab doses and previously reported 

significant time points. These findings are consistent with recently published 

data which suggests that single agent cetuximab-induced cytotoxicity is only 

seen in colorectal cell lines which are EGFR positive and RAS wild type in 

their genotype. The only such cell line in our panel which would meet this 

criteria is LIM1215 which was excluded from our study based on mycoplasma 

contamination issues mentioned previously.  The other RAS wild type cell line 

included Colo320, does not express EGFR and would therefore preclude the 

action of an anti-EGFR binding antibody; Similarly HT29 which whilst RAS 

wild type, has a BRAF mutation and as such acts to constitutively activate the 

RAS-BRAF-PI3K cascade, downstream of EGFR. It is therefore perhaps not 

surprising that in the tested cell line panel we were unable to illicit any 

demonstrable single agent cetuximab-induced cytotoxicity. However, the 

absence of direct cetuximab killing enabled us to assess the efficacy of 

cetuximab-mediated immune based killing mechanisms such as NK-mediated 

ADCC. 

 

3.5.2 The combination of cetuximab and Reovirus increases 
ADCC–mediated killing. 

Strategies to overcome the inhibitory effect of RAS-RAF-MAPK mutations 

have been widely explored and tested in order to enhance the efficacy of anti-

EGFR antibody therapy, these include consideration of cell-mediated 

ADCC/ADCP.  

After a monoclonal antibody binds to the tumour antigen, the Fc portion of the 

monoclonal antibody will interact via the Fc𝛾R on the surface of an immune 

effector cell (e.g. NK cells). Responses to this can be stimulatory or inhibitory 

depending on both the Fc𝛾R triggered and the effector cell involved. Several 

immune effector cells (NK cells, T cells and macrophages) have the ability to 

recognise target cell populations through FcR-mediated antibody binding 

mechanisms, for example EGFR on the surface of colorectal cells will bind 

Cetuximab and can lead to potent anti-tumour immunity. NK cells can be 
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activated by binding monoclonal antibodies (such as cetuximab) through 

engagement of Fc𝛾R on their surface and death of the antibody opsonised 

cancer cell target. Various ADCC mechanisms have been reported  including 

pro-inflammatory cytokine release (IFN𝛾), cytotoxic granule exocytosis and 

TNF family death receptor signalling which ultimately result in target cell 

apoptosis.222 

As previously discussed, it is well understood that monocytes and NK cells 

play a crucial role in cetuximab-mediated ADCC and our laboratory has 

previously demonstrated that NK cells isolated from both healthy donor and 

colorectal cancer patient PBMCs can be activated by Reovirus, both in vitro 

and in vivo.204 We therefore planned to investigate if Reovirus activation of 

PBMCs and resultant NK cell activation could increase cetuximab mediated-

ADCC in a mutant KRAS colorectal cell line population (SW480 cells) using a 
51Chromium release assay. Results are shown in Figure 3.8. 
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Figure 3.8 Combination of cetuximab and Reovirus increases ADCC-
mediated killing. 

Healthy donor PBMCs were harvested from whole blood and treated with 0pfu/cell or 

0.1pfu/cell Reovirus overnight. Treated PBMCs were then co-cultured with 51Cr-

labelled SW480 cells ± cetuximab-binding at different effector:target ratios for 4hrs; 

% lysis was determined by 51Cr-release using a Microbetajet scintillation counter. 

Data is presented from a single experiment.  
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At all effector:target ratios examined Reovirus activated PBMC’s 

demonstrated a clear increase in cetuximab-induced ADCC. Of note, dose 

dependent cell lysis was seen in both independently treated cell populations. 

Reovirus activated PBMCs in the absence of cetuximab resulted in 40% lysis 

at the 50:1 E:T ratio, consistent with activated NK cells acting as the main 

cytolytic agent. Interestingly, despite SW480 demonstrating a mutant KRAS 

genotype, cetuximab treatment alone also resulted in 45% lysis at the 50:1 

E:T ratio.  This is consistent with reported literature demonstrating that 

cetuximab has the potential to act via two independent pathways; as used in 

the clinical setting, in WT cell lines through direct ligand binding and disruption 

of the RAS-RAF-PI3K pathway and in this case, in a constitutively activated 

mutant cell line, SW480, by recruitment and activation of NK cells via FcR 

binding and induction of ADCC. Despite the fact that low level cell lysis was 

seen within those cell populations treated with Reovirus and cetuximab 

independently, a combination strategy produced improved killing in the 

experimental setting with Cetuximab induced-ADCC being enhanced by 

Reovirus activation with a resultant 67% lysis at the 50:1 E:T ratio, 17% and 

12% greater than Reovirus and cetuximab treatment alone, respectively. 

 

3.6 Discussion 

This chapter aimed to examine the use of oncolytic Reovirus as a potential 

combination partner with existing and developing colorectal cancer therapies.  

Anti-EGFR antibody treatment has proved highly effective for those patients 

who are susceptible, however they remain ineffective as a monotherapy for 

the large majority of colorectal cancer patients seen in the clinical setting.  

Hypothetically the use of these agents in combination with oncolytic virus 

should complement, enhance and improve their anti-tumour efficacy. Likewise 

ABT-263 has been lauded as an agent with great promise for the treatment of 

various solid tumour types. Clinically Navitoclax has reached phase II trials for 

the treatment of both SCLC and haematological malignancies,190,223,224 

however, disappointingly despite positive early data has demonstrated limited 

single agent activity in the clinical setting. Despite limited tumour responses,  
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correlation with several putative biomarkers measured at the time suggest that 

Navitoclax is acting with a positive benefit in patients and may enhance the 

sensitivity of solid tumours to traditional cytotoxic agents.190  The focus, 

therefore shifted to treatment strategies involving its potential use in 

combination with other agents. Previous data reported from our lab has 

demonstrated that Reovirus when combined with ABT-263 shows increased 

efficacy against CLL targets and therefore the combined activity against a 

panel of colorectal targets was of interest.225 

 

With regard to ABT-263 and despite previous promising early data generated 

in ex-vivo CLL samples which showed enhanced cytotoxicity at low doses of 

virus and ABT-263, initial experimentation using our cell line panel was 

disappointing. The results of combining ABT-263 with Reovirus only showed 

evidence of increased killing in one cell line, SW620. Maximal percentage cell 

death across the other cell lines tested was seen with single Reovirus 

treatment, and the addition of ABT-263 offered no propensity to demonstrate 

an increase in recorded cell death levels. In SW620 CRC cells, where an 

objective response to combination treatment was seen, statistical analysis 

showed no evidence of synergistic activity between the two agents.  It is 

presumed therefore that the increased oncolysis witnessed was therefore a 

result of an additive effect rather than as hypothesised, ABT-263 acting to 

alter the sensitivity of the CRC cells.   

 

Given the lack of synergistic efficacy witnessed in these preliminary screening 

experiments further mechanistic exploration was not pursued, however it 

would be interesting to further examine the expression of anti-apoptotic 

proteins such as BCL-2/BCL-XL/BCL-w by intracellular-FACS or western blot. 

Hypothetically it might be that Reovirus is acting to modulate the pro vs anti-

apoptotic profile of the cancer cell and by doing so in CRC cells is rendering 

ABT-263 activity ineffectual. Moreover, it is possible that the CRC cells tested 

in this study do not have dysregulated or overexpressed anti-apoptotic 

proteins (ie. BCL-2/BCL-XL/BCL-w) 
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Further consideration might also go to whether the ‘scheduling’ of agents may 

effect potential synergistic efficacy. Reovirus infection is known to alter the 

expression of genes associated with apoptosis and pathogenesis and as such 

can act to modulate the pro vs anti-apoptotic profile of cancer cells. 

Specifically relevant to ABT-263 combination strategies, Clarke et al. (2005)226 

report a detailed analysis of the apoptotic mechanisms involved in Reovirus 

infection. The authors demonstrated induction of  MCL-1, BNIP-1 (a BCL-2 

interacting protein) and additionally the upregulation of a survival motor 

neuron (SMN) gene which encodes for SMN proteins. The SMN protein 

interacts with BCL-2 conferring protective effects against both BAX-induced 

and FAS-mediated apoptosis. It is feasible, therefore, that to see maximal 

efficacy in this combination strategy we need to initially ‘prime’ CRC cell lines 

with Reovirus to upregulate anti-apoptotic proteins and induce a resistant 

phenotype before treatment with ABT-263 to modulate this Reovirus-induced 

phenotype and thereby enhance killing. However, interestingly previous 

studies reporting positive synergistic outcomes with BH3-mimetics, in 

combination with other small molecule inhibitors in a variety of haematological 

and solid tumours have not reported the need for treatment 

scheduling.183,208,210 

 

To date, there is no published literature reporting the use of Reovirus with 

BH3-mimetics, however Samuel et al. 2010227 examined the use of the BCL-

2 inhibitor Obatoclax (GX15-070), which acts via a similar mechanism to ABT-

263, and vesicular stomatitis virus (VSV) in chronic lymphocytic leukaemia 

(CLL). In CLL patients, high levels of BCL-2 correlates with chemoresistance 

and a reduced overall survival rate as a result of enhancing leukemogenesis 

by interfering with apoptosis. Additionally, BCL-2 expression has also been 

shown to interfere with VSV-oncolysis in vitro in primary CLL cell lines. The 

authors therefore rationalised that combining VSV with Obatoclax could 

potentially act synergistically to enhance anti-tumour activity. In both in vitro 

and in vivo models, an enhanced effect was seen in response to combination 

treatment. Further examination of the mechanistic process driving this 

enhanced killing revealed stimulation of the apoptotic pathway, with increased 

caspase-3 and -9 cleavage, NOXA up-regulation and the release of BAX and 
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MCL-1. Thereafter the same group used a similar strategy combining VSV 

with ABT-737 in primary ex vivo CLL patient samples. As before, they reported 

that the combination resulted in an enhanced therapeutic effect by inducing 

apoptosis to mediate the cytolytic effect of VSV.228 Alternative tumour types 

and/or oncolytic viruses have not been explored further in the literature and 

as such would certainly provide an interesting direction of investigation for 

future studies. 

 

With this in mind, ABT-263 monotherapy also had a variable cytotoxic effect 

on our cell line panel. There is no published data available with respect to the 

‘LIM’ cell lines however our findings with respect to ABT-263 sensitivity in 

colorectal cell lines are generally consistent with other groups.211,229 As 

discussed, cell death occurs via an apoptotic mechanism and variation in the  

BCL-XL to BAX ratio plays a key role in cell sensitivity and level of ABT-263-

death seen. Cell lines with high expression of BCL-XL tested include HT29 and 

SW480 which both showed increased sensitivity to direct ABT-263 

cytotoxicity.230 No significant cell-death was observed in response to ABT-263 

treatment in Colo320 cells however, these cells are reported to have no BCL-

XL expression but similar levels of BAX to the other cell lines tested. The result 

of this is a much lower BCL-XL to BAX ratio and reduced sensitivity to ABT-

263.231 Indeed this may only be the case for ABT-263 as you might generally 

expect that cells with lower levels of anti-apoptotic proteins (such as BCL-XL) 

may have an increased sensitivity to drugs that kill by apoptotic mechanisms. 

 

There is very limited use of LIM cell lines within the literature which may reflect 

some of the difficulties we encountered in this study. However consideration 

should be given to the ABT-263 and Reovirus induced cytotoxic resistance, 

demonstrated by LIM1899 cells, which may be caused hypothetically by high 

expression of an alternative anti-apoptotic protein, MCL-1. In a range of 

colorectal cell lines tested, Shao et al. (2013)211 highlighted high levels of 

MCL-1 expression on tumour cells to be directly associated with resistance to 

ABT-263. Similarly, Kelly et al. (2012)232 and Knowlton et al. (2012)233 showed 

that Reovirus mediated apoptosis induces the pro-apoptotic BCL-2 homology 

3 (BH3)-only protein, NOXA and knockdown models confirm a significant 
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reduction in Reovirus-induced apoptosis in those cells lacking this pro-death 

protein. The NOXA/MCL-1 ratio is widely reported to be critical to apoptosis 

with those cells expressing NOXA and MCL-1 at different ratios correlating 

well with the extent of apoptosis seen.234,235 Given this, it is likely that over 

expression of MCL-1, may also impede Reovirus-toxicity. No reported 

literature exists for LIM1899 cell lines with respect to the levels of NOXA and 

MCL-1 protein expression however, detailed characterisation would be 

valuable to examine the potential role of MCL-1 in Reovirus and ABT-263 

resistance observed in this cell line.  

Apoptotic mechanisms with respect to anti-EGFR antibody therapy 

demonstrate, more predictably perhaps, that high levels and not low levels of 

BCL-XL are associated with drug resistance and interestingly inhibition of these 

apoptotic proteins can enhance cetuximab cytotoxicity in KRAS-mutant cell 

populations.207 Kasper et al. (2012)207 defined the mechanism by suggesting 

that mutant RAS confers anti-EGFR antibody resistance not purely by 

constitutively activating the RAS/RAF/PI3K cascade but also by blocking 

apoptotic caspase activation through a pathway regulated by upregulation of 

BCL-XL. As a result, the authors were successfully able to reverse RAS-

mediated resistance to cetuximab using ABT-737, a closely related pre-cursor 

to ABT-263. By antagonising the anti-apoptotic activities of BCL-2, BCL-XL and 

BCL-w but not MCL-1 in RAS mutant HRASG12V-Difi cells, cetuximab-induced 

apoptosis was also restored. Unfortunately our study did not investigate the 

ability of ABT-263 to enhance Cetuximab killing of mutated CRC cells but this 

would be of interest for future studies.  

 

Cetuximab resistance remains complex and clinically its use remains limited 

to the treatment of wild-type KRAS colorectal cancer (CRC). Combination 

strategies continue to be explored to overcome these therapeutic challenges 

and include combinations with various chemotherapeutic agents and 

immunomodulators. To date there has been limited success at translating 

promising pre-clinical data into the clinical setting. 

 

Reovirus also exerts its cytotoxic effects by two mechanisms;  direct oncolysis 

via an apoptotic pathway or alternatively, activation of anti-tumour immunity. 
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Interestingly, Maitra et al.236 demonstrated that Reovirus preferentially exerts 

its apoptotic effect in KRAS mutant CRC cell lines and not wild-type cells, the 

opposite to cetuximab direct killing.  They showed, for example that induction 

of apoptosis in the KRAS mutant cell line, HCT116, was more significant when 

compared to its isogenic KRAS WT derivative. In our cell line cohort, Colo320 

represents the only wild type cell line for the KRAS/BRAF/PI3K pathway 

tested, and we would therefore expect this to be more resistant to Reovirus 

killing, however contrary to this, our data showed that this cell line was in fact 

one of the more sensitive CRC cell lines to direct Reovirus killing. Predicting 

biomarkers for Reovirus response is complex and multi-factorial in nature but 

our data supports that of Twigger et al. (2012)237 who also failed to identify 

any correlation between Reovirus sensitivity and the  EGFR/RAS/MAPK 

pathway in a panel of 15 Head and Neck cancer cell lines.  

 

Similarly HT29 cells showed the least sensitivity to Reovirus treatment with 

the exception of LIM1899 which showed no evidence of cell death at all. HT29 

cells have a V600EBRAF mutation and would therefore, based on previous 

reported literature be expected to respond well to Reovirus therapy. Roulstone  

et al. (2015) 238, investigated the use of BRAF inhibitors (PLX4720) to enhance 

Reovirus cytotoxicity and found that against expectation, BRAF inhibition 

paradoxically led to enhanced cell killing in BRAF mutated melanoma cell lines 

again suggesting that the mechanism of Reovirus sensitivity remains 

incompletely understood. As a result attempts to study a single element 

independently within the complex interplay of mechanisms involved is likely to 

have significant limitations in translational endpoints making the study of 

combination therapies for the treatment of solid tumours a challenging area.  

 

Interestingly whilst not continued in the context of this research, preliminary 

results did demonstrate the ability of Reovirus to increase EGFR-mediated 

ADCC in a KRAS mutant cell line, SW480, as demonstrated by 51Cr release-

assay. The initial data is certainly promising and should form the basis of 

further work looking at a spectrum of CRC cell lines and experimental 

duplication to validate these results. Additionally, whilst beyond the scope of 

this thesis, this preliminary work does provoke many questions that would 
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certainly be of interest. Examples include exploring whether OV-induced 

changes in NK cells, macrophages, or levels of cell surface EGFR expression 

on target cells may influence the efficacy of anti-EGFR antibodies such as 

cetuximab; potentially reversing the suppressive cytokine milieu and 

increasing the anti-tumour properties seen.  

 

Indeed, various work has previously been done confirming the role of both NK 

cells and monocytes in mediating antibody-dependent lysis in CRC cells but 

NK depletion studies could be used to further clarify if cetuximab-induced 

ADCC is NK cell dependent across our panel of cell lines, regardless of 

mutational status. Abdullah et al. (1999)239 isolated NK cell populations from 

normal and colorectal cancer patients and compared their ability to mediate 

ADCC against HT29 CRC cells, before using depletion experiments to confirm 

their findings. They found NK cells to be the most important effectors 

mediating ADCC in vitro and furthermore confirmed an impairment in NK cell 

function in CRC patients. Similarly Kurai et al. (2007)240 studied cetuximab-

mediated ADCC in lung cancer and compared the effector cells; PBMCs, 

purified T cells, monocytes and NK cells from healthy and patient donors. 

They concluded that CD3-CD56+ NK cells were primarily responsible for 

cetuximab-induced ADCC and interestingly this could be augmented by IL-2, 

raising the question of using cytokines as additional combination 

immunotherapy.  

 

With respect to Reovirus, Adair et al (2013)204, demonstrated that patient 

PBMC-NK cells from CRC patients were activated by Reovirus to a similar 

level, and by the same mechanism, as healthy donor PBMC-NK cells. 

Furthermore, liver mononuclear cells (LMC)- NK cells isolated from patients 

with metastatic colorectal cancer were also activated by Reovirus to target 

CRC tumour cells. An inflammatory milieu was generated in response to 

Reovirus activation which would likely negate the potential need for additional 

cytokines as suggested above.  

 

Blockade of Fcγ receptors (CD16/CD32/CD64) could identify which FcR are 

important in the mechanism involved. A number of studies have shown that 
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anti-tumour activity for various tumour specific monoclonal antibodies is 

associated with high affinity FcRs, based on their genotype.  Broadly speaking 

FCγR IIa and IIIa polymorphisms have been shown to play an important role 

in clinical outcomes.82,84 For example, further specific analysis by Zhang et al. 

(2007) suggested that the FCγR IIIa FF genotype invoked an increased 

survival and treatment benefit with Cetuximab over the FCγR IIIa VV 

genotype,85 this has however since been disputed by Meller et al. (2013) who 

concluded that differences in FCγR IIIa genotype inferred no ability to predict 

cetuximab sensitivity.241 

 

EGFR is overexpressed in various solid tumours and as such targeting it using 

monoclonal antibodies is attractive. Similarly, identifying reliable biomarkers 

of clinical efficacy, such as EGFR expression remain a priority in order to 

personalise targeted therapies towards individual patients in the clinical 

setting. However, controversy remains with regard to how EGFR surface 

expression may relate to cetuximab efficacy with conflicting evidence 

presented in various tumour types. Pirker et al. (2012)242 demonstrated that 

high EGFR expression can be used as a positive predictive biomarker of 

efficacy in patients with advanced non-small cell  lung cancer (NSCLC) after 

analysing data generated from a phase III First-Line ErbituX in lung cancer 

(FLEX)243 study. Conversely, Licitra et al. (2013)244 prospectively collected 

tumour immunohistochemistry data from patients in two further phase III trials 

examining the effect of cetuximab in both recurrent/metastatic squamous cell 

carcinoma of the head and neck (SCCHN) and KRAS wild-type metastatic 

colorectal cancer (EXTREME245 and CRYSTAL,79 respectively). The authors 

showed that the addition of cetuximab to chemotherapy in these tumours 

improved survival regardless of tumour EGFR expression.  

 

Whilst clinical trial data is useful translationally in the clinic,  the mechanism 

of action behind this variation remains unclear from these studies. A 

systematic review by Derer et al. (2013)246 therefore set out to examine the 

mode of action of EGFR antibodies against EGFR cell surface expression. 

The authors concluded from their findings that the different mechanisms of 

cetuximab action discussed earlier may be more effective in different settings 
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depending on EGFR tumour expression. The study suggests that cetuximab-

ADCC may predominate in tumours expressing high levels of EGFR, whereas 

effects resulting from direct ligand binding inhibition may be more important in 

those patients with tumours expressing low EGFR levels. Given these findings 

exploring further the effects seen in our in vitro studies (Figure 3.7; Figure 3.8) 

with respect to both direct and immune-mediated cetuximab mechanism of 

action against the variable cell surface EGFR expression of our cell line panel 

(Figure 3.2) may have yielded interesting correlating data. 

 

Finally, of note, problems encountered with the LIM cell lines, and particularly 

LIM1215 certainly resulted in a less complete data interpretation given the 

loss of our EGFR positive, KRAS/BRAF/PIK3 wild-type cell line. Useful 

analysis would have been generated from comparable results against this 

control cell line, however disappointingly this proved not to be possible. There 

are indeed limited reported cell line options available that are EGFR positive 

and KRAS/BRAF/PIK3 wild-type in their genotypic/phenotypic makeup but a 

suitable alternative for future work could be Caco-2 cells used in similar 

studies by Shigeta et al. (2013).247 In this study, the authors used Caco-2 as 

a wild-type control to evaluate the correlation between EGFR levels detected 

by Cetuximab and drug sensitivities of SW480 and HCT116 CRC cell lines. 

They conclude that in their study, high EGFR expression correlates with 

strong Cetuximab response. Acquisition of this cell line may allow direct 

comparison with our panel of mutant cell lines and may lead to further 

conclusions being drawn. 
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Chapter 4  
JX-594 Mediated Direct Oncolysis and Cell Death 

Mechanisms 

4.1 Introduction 

Infection of tumour cells by JX-594 triggers a cascade of events which 

ultimately leads to tumour cell death. JX-594 is known to kill target cells by 

direct oncolysis but also induces a pro-inflammatory tumour 

microenvironment which promotes immune cell recruitment stimulating innate 

and adaptive anti-tumour immunity.248 

Various modes of administration have been tested and shown to be safe in 

early clinical studies for a wide variety of oncolytic agents. Delivery methods 

tested have included intratumoural (IT), intraperitoneal (IP), intrapleural (IPl) 

and intravenous (IV), however it is clear for the widespread translational 

application of oncolytic viruses, and to harness their full potential to target 

disseminated malignant disease, systemic delivery remains the most practical 

approach.249 

In order to allow both direct oncolysis, activate the innate immune response 

and prime adaptive anti-tumour immunity, it is considered vital that the virus 

can primarily access tumour. Previous members of the Melcher group, using 

oncolytic Reovirus as an OV, have demonstrated that not only can Reovirus 

be recovered from tumour (colorectal liver metastases) after systemic delivery 

in humans, moreover, there was no evidence of toxicity as a result of 

widespread infection, dissemination and replication.206 Likewise, JX-594 

(Pexa-Vec) has been evaluated in 12 completed and ongoing clinical trials 

including greater than 1000 individual Pexa-vec treatments in total (IV or 

IT).250 Systemic delivery was safe and well tolerated, associated with dose-

dependent delivery to multiple solid tumour types (including colorectal cancer, 

lung cancer, pancreatic cancer and mesothelioma) and demonstrates 

antitumour activity at high doses.138,251  

There remains limited published data, however with regard to the effects of 

JX-594 once it has reached its primary tumour target and similarly, little is 
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known about the potential viral effects in other tissues not directly related to 

the primary tumour. Clearly this may be of significant therapeutic importance. 

With most adjuvant therapy focussing on the clearance of micro-metastatic 

disease to prevent recurrence or non-resectable disseminated malignancy, 

organs and tissues that may harbour micrometastases, for example lymph 

nodes or blood where circulating tumour cells reside (CTC’s) are of particular 

interest. Conceptually, OV could eradicate this low volume disease by direct 

oncolysis (Chapter 4) or activation of an appropriate immune response 

(Chapter 5). 

Vaccinia virus has been described as being able to utilise various cytolytic 

mechanisms to implement tumour cell death, however these mechanisms 

remain poorly understood. Evidence of  apoptosis, necrosis, programmed 

necrosis (also known as necroptosis) and autophagy have all been reported 

at least in part in response to vaccinia virus in a variety of cell types and in 

some reports various components of each pathway interacting with one 

another have been described.159 However there remains limited work 

characterising these mechanisms of cell death in malignant tumour cells 

Understanding the mechanism surrounding direct tumour oncolysis is a 

rapidly evolving field and it is increasingly becoming clear that signalling 

pathways regulating the mechanisms of cell death and cell survival are tightly 

regulated via complex molecular interplay. Indeed it is likely that all the cell 

death modalities (apoptosis, necrosis, programmed necrosis and autophagy) 

triggered by death receptor activation in cells are unlikely to be mutually 

exclusive and as such interact with each other via a complex cascade of 

intracellular signalling and crosstalk.252 

There are no previous reports in the literature studying death mechanisms of 

JX-594 in colorectal cancers cells specifically and as such this chapter aims 

to explore some of the direct oncolytic mechanisms used by the virus as part 

of its therapeutic armamentarium against cancer targets. Identifying these 

mechanisms may allow complimentary combination approaches to be 

identified. 

Of note, some of the preliminary work referred to in this thesis was completed 

in part by my predecessors, Rajiv Dave. This work is as yet unpublished but 
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has been submitted and accepted as his MD thesis to the University of Leeds 

(2014).253  

 

4.2 Colorectal cell lines are susceptible to JX594 killing, viral 
replication and infection. 

Initial work completed by the Melcher group had demonstrated that the 

colorectal cell lines, SW480, SW620, LoVo and HCT116 were susceptible to 

killing by JX-594, as assessed by Live/Dead™ and MTT assays.253 

Furthermore, cell lines were infected by JX-594 as demonstrated using a 

green fluorescent protein (GFP) expressing virus (JX594-GFP) and 

visualisation of GFP using a confocal laser scanning microscopy. Plaque 

assays, thereafter, demonstrated that JX-594 replicated in all cell lines tested 

(data not shown). 

For the purposes of this work, we focussed on the cell lines SW480 and 

SW620. These cells lines were derived from the same 50 year old patient prior 

to any adjuvant therapy and represent a primary (SW480) and metastatic 

(SW620) colorectal tumour, respectively. SW480 cells were established from 

a resected Dukes B primary large bowel cancer specimen and the SW620 

cells from an intraabdominal lymph node metastasis resected six-months after 

primary surgery. 

Figure 4.1 shows images of both cells lines taken during in vitro cell culture. 

SW480 cells (Figure 4.1A) were larger in size and displayed an epithelial-like 

morphology. SW620 cells (Figure 4.1B) demonstrate rounder, more 

aggregated characteristics and notably grow much faster than the primary cell 

line, SW480.  
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Figure 4.1 In vitro images of SW480 and SW620 human colorectal 
adenocarcinoma cell lines. 

SW480 (A) and SW620 (B) were cultured as described in section 2.2. DMEM 

supplemented with 10% FCS and passaged regularly at sub confluent levels. Original 

magnification 10x.  
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To corroborate the groups previous findings and standardise data, 

Live/Dead™  assays were repeated with new JX-594 virus stock on SW480 

and SW620 cell lines. With increasing doses of virus, and increasing time (48-

96hours), JX-594 demonstrates a statistically significant dose-dependent and 

time-dependent cytotoxic effect, with maximal death observed at 10pfu/cell 

and 96 hours post-infection for both cell lines (Figure 4.2). Given the related 

nature of the cell lines, direct comparison is interesting and whilst not 

statistically significant the SW620 metastatic cell line appeared, particularly at 

earlier time points to be more resistant to the JX-594 oncolysis and required 

higher viral titres to produce comparable levels of killing. (Figure 4.3) 
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Figure 4.2 Colorectal cell lines are susceptible to JX-594-induced 
oncolysis.  

Colorectal cell lines (a) SW480 (b) SW620 were seeded at 2 x 105 cells/well in a 6-

well plate and infected with JX-594 at concentrations of 0, 0.1, 1 and 10 pfu/cell for 

48-96 hours. At each time point cells were harvested and stained with Live/Dead™  

for assessment by flow cytometry. Graphs show mean + SEM of three (N=3) 

independent experiments. Statistical significance is denoted by *p<0.05, ** p<0.005, 

***p<0.001 (one-way ANOVA). 
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Figure 4.3 SW620 metastatic CRC lines are more resistant to JX-594 
oncolysis than SW480 lines. 

SW480 and SW620 were seeded at 2 x 105 cells/well in a 6-well plate and infected 

with JX-594 at concentrations of 0 and 10 pfu/cell for 48-96 hours. At each time point 

cells were harvested and stained with Live/Dead™  for assessment by flow 

cytometry. Graphs show mean + SEM of 3 (N=3) independent experiments.  
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4.3 Evaluating mechanisms by which JX-594 kills CRC 
tumour cells 

4.3.1 Caspase-dependent apoptosis 

Having demonstrated that colorectal cell lines were susceptible to JX-594 

killing, the mode of tumour cell death was then explored given that 

understanding the molecular mechanism involved in cell death could allow us 

to develop combination strategies with oncolytic viruses  

Previous work has demonstrated increased expression of active Caspase-3, 

a member of the Cysteine-aspartic acid protease (Caspase) family, important 

for the execution phase of apoptosis, following infection with JX-594. Using 

an active caspase-3 apoptosis kit, Dave (2015) 

(etheses.whoterose.ac.uk/6887) showed approximately 60-65% of SW480 

cells and 35-40% of SW620 cells expressed active caspase-3, 96 hours 

following JX-594 infection (data not shown). Hence, it was therefore 

hypothesized that JX-594 may induce death in a caspase-dependent manner, 

classically associated with programmed apoptosis.  

Building on these initial observations, this study aimed to further elucidate the 

role of caspase-mediated apoptosis in SW480 and SW620 cell lines using Z-

VAD-FMK, a pan-caspase inhibitor which inhibits caspase-dependent 

apoptosis by binding irreversibly to the catalytic site of caspase proteases. 

Mel888 cells, a human melanoma cell line, have previously been shown to 

undergo oncolysis in response to Reovirus in an apoptotic fashion and 

therefore acted as a positive control.  Z-VAD-FMK was added to the cell 

culture medium 1 hour prior to infection with JX-594 and cell death was 

measured 72 and 96 hours following infection using a Live/Dead™ flow 

cytometry assay. Results are shown in Figure 4.4.  
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Figure 4.4 Effect of Z-VAD-FMK on JX-594 induced cell death. 

SW480 (a), SW620 (b) and Mel888 (c) cell lines were treated with ± 50μM Z-VAD-

FMK for 1 hour prior to infection with 0, 0.1, 1 and 10 pfu/cell JX-594 (A & B) or 

Reovirus (C). Cells were harvested  72 and 96 hours post JX-594-infection or 48 

hours after Reovirus treatment. Cell death was assessed using Live/Dead™ cell 

viability assay. Graphs show mean percentage cell death (n=3) + S.E.M. Statistical 

significance is denoted by *p<0.05 (One-way ANOVA). 
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The addition of Z-VAD-FMK prior to infection significantly decreased 

Reovirus-induced cell death in the Mel888 control cell line (44% to 16% at 

10pfu/cell) demonstrating that the inhibitor used was functional. In contrast, Z-

VAD-FMK did not inhibit JX-594-induced cell death at 72 or 96 hours in either 

the SW480 or SW620 cell lines. These results were consistent between the 

two cell lines. 

Taken together the results suggest that Reovirus induces death in a caspase 

dependent apoptotic manner, however JX-594, despite induction of caspase-

3 does not induce caspase-dependent apoptosis. These findings are 

consistent with previous literature studying VV mechanism of death in ovarian 

cancer cells. Whilding et al. (2013) 159 reported upregulation of various 

markers of apoptosis following VV infection, including caspase-3, however 

inhibition of apoptosis by Z-VAD-FMK failed to attenuate the cytotoxicity of 

VV. This study also highlighted that VV utilises multiple mechanisms to induce 

cell death and there is therefore a need for the use of a broad spectrum of 

assays to evaluate OV-induced cell death.  

 

4.3.2 Necrosis/Necroptosis 

Given the lack of evidence for caspase-dependent apoptotic cell death 

pathway by JX-594, alternative death pathways were investigated. As 

discussed previously, necrosis and its regulated form necroptosis are  cellular 

mechanisms of necrotic cell death induced by apoptotic stimuli under 

conditions where apoptotic execution is prevented.254 Using Necrostatin-1 

which inhibits the kinase activity of RIP-1, and Necrosulfonamide which 

targets mixed lineage kinase domain like protein (MLKL), we investigated 

whether JX-594 kills colorectal cell lines by necroptosis, as previously 

described by Whilding et al. (2013)159 in ovarian cancer cell lines. Interestingly 

the authors reported a dose dependent inhibition of  VV activity by both RIP-

1 and MLKL antagonism, both alone and in combination with Z-VAD-FMK. 

As such Necrostatin-1 ± Z-VAD-FMK and Necrosulphonamide, respectively 

were added to the cell culture medium 1 hour prior treatment with JX-594 for 

96 hours and subsequent levels of cell death measured using Live/Dead™ 

and flow cytometry. Results are shown in Figure 4.5. 
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Figure 4.5 Role of Necrosis/Necroptosis in JX-594-induced cell death. 

SW480 (Left) and SW620 (Right) cell lines were treated with JX-594±10μM 

Necrosulphonamide (A), or 50 μM Necrostatin-1 in the presence or absence of 50µM 

Z-VAD-FMK (B), 1 hour prior to infection with 0, 0.1, 1 and 10 pfu/cell JX-594. Cell 

were harvested at 96 hours and  level of cell death assessed using Live/Dead™ cell 

viability assay. Graphs show mean percentage cell death (n=2) + S.E.M. Statistical 

significance is denoted by *p<0.05 (Student t-test). 
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In a similar fashion to the apoptotic inhibitor Z-VAD-FMK, both necrostatin-1 

and necrosulphonamide had no effect on the levels of cell death induced by 

JX-594 at 96 hours suggesting the virus is not acting via a necroptotic 

pathway. Similarly, the combination of Z-VAD-FMK and necrostatin-1 had no 

discernible effect on percentage cell death. Interestingly, necrostatin-1 

appeared to enhance the virus induced cytotoxicity in SW480 cell lines at 

lower doses of virus; Percentage cell death increased from 21.6% to 45.6%  

after treatment with 0.1pfu JX-594 for 96 hours in the presence of 50μM 

necrostatin-1. This effect was not seen in the metastatic SW620 cells. The 

mechanism behind this remains unclear with limited data in the literature 

investigating the mechanistic process behind VV-induced cell death. 

Interestingly though both Whilding et al. (2013) and Baird et al. (2008) also 

observed an increase in cell death in response to cell death inhibitors. In 

IGROV1 cells, an ovarian cancer cell line, treatment with combinations of  Z-

VAD-FMK and VV and 3-MA and Adenovirus resulted in increased cell 

cytoxiticity.159,255 Clearly VV-induced cell death remains a complex process 

with multiple positive and negative feedback pathways, with the potential for 

some pathways to be acting to promote cell survival.  

 

4.3.3 High Mobility Group Box Protein B1 (HMGB1) is absent from 
JX-594-mediated cell death 

HMGB1 is a non-histone nuclear protein involved in the structural organization 

of DNA and is released following cell activation or alternatively as a result of 

cell necrosis. After its release from the cell, HMGB1 acts as a potent danger 

signal and mediates inflammation and immune activation.256 Free HMGB1 

release is not usually a feature of apoptotic cell death and instead is 

translocated into membranous vesicles generated by apoptosing cells.256 In 

contrast, cells undergoing necrosis are reported to release HMGB1 into the 

extracellular space and vaccinia virus specifically has been shown to induce 

a necrosis-like morphology with resulting, and demonstrable, HMGB1 release 

in ovarian cancer cell lines.159  
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To further delineate the cellular death mechanisms at play we examined 

HMGB1 release in cell free supernatants harvested from JX-594 infected 

SW480 and SW620 cell lines. 

Treatment with 1pfu/cell JX-594 for 72 and 96 hours results in significant cell 

death in both SW480 and SW620 cell lines, as shown in Figure 4.2. Western 

blots of cell-free supernatants taken at these time points however, showed no 

evidence of detectable levels of HMGB1, despite strong and proportionate 

bands with the positive controls (DLD-1 cell lysates; Figure 4.6). These data 

would fit with a more apoptotic cell death morphology given the previously 

observed induction of caspase-3, lack of effect observed in combination with 

necrostatin-1 and necrosulphonamide and the expectation of necrotic cell 

death to produce high levels of extracellular HMGB1.  
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Figure 4.6 Detection of HMGB1 by Western Blot. 

Cell-free supernatants were collected from SW480 and SW620 cells, 72 (data not 

shown) and 96 hours after treatment with JX-594 at 1pfu/cell. Supernatants were 

prepared for western blot by mixing 1:1 in Laemmli buffer prior to loading onto a 12% 

SDS-PAGE gel in duplicate (channel 5-8). Molecular weight markers and control 

DLD-1 cell lysates were also mixed 1:1 in Laemmli buffer and loaded in duplicate at 

20μl (channel 1 and 2) and 10μl (channel 3 and 4) respectively. Following protein 

transfer to nitrocellulose membranes, membranes were blocked and stained with an 

anti-human HMGB1 antibody followed by a goat anti-mouse secondary antibody. The 

result shown is a representative example of n=3 independent experiments.  
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4.3.4 Autophagy 

Autophagy is a conserved homeostatic mechanism of lysosomal degradation. 

Accumulating evidence suggests that OVs interact with the autophagy 

machinery in infected tumor cells, and may play a role in virus-mediated 

cancer cell death. A number of studies have reported that modulating 

autophagy with autophagy inducers, such as rapamycin or RAD001, can 

augment the anti-tumour effect of adenovirus in glioma cells and Newcastle 

disease virus in lung cancer cells.257–259 With respect to vaccinia virus, 

Whilding et al.159 suggested that VV may interfere with the autophagic process 

but does not rely on autophagy to induce cell death. Given these previous 

findings it was therefore of interest to examine the effect of autophagic 

inhibition on JX-594-induced oncolysis in the colorectal cell lines, SW480 and 

SW620.  

3-Methyladenine (3-MA) inhibits PI3K which is known to control the activation 

of mTOR, a key regulator of autophagy. By inhibiting PI3K, 3-MA serves to 

block autophagosome formation and thus inhibits autophagy.260 3-MA  was 

added to the cell culture medium 1 hour prior to infection with JX-594 and cell 

death was measured using Live/Dead™ flow cytometry. Results are shown in 

Figure 4.7. 
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Figure 4.7 Effect of 3-MA, an autophagy inhibitor on JX-594-induced 
SW480 and SW620 cell death. 

SW480 (A) and SW620 (B) cell lines were treated with ± 50μM 3-MA, 1 hour prior to 

infection with 0, 0.1, 1 and 10 pfu/cell JX-594. Cell were harvested at 96 hours and  

level of cell death assessed using a Live/Dead™ cell viability assay. Graphs show 

mean percentage cell death (n=2) + S.E.M. Graph (C) represents the same data 

directly comparing the effect of 3-MA on SW480 and SW620 cell lines after infection 

with 10pfu/cell JX-594.  Statistical significance is denoted by *p<0.05 (Student t test). 
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As with apoptosis and necrosis/necroptosis inhibition, 3-MA did not inhibit JX-

594-mediated oncolysis in either the SW480 or SW620 cell lines suggesting 

the mechanism of cell death is not autophagy related, as previously reported 

in ovarian cancer models. Interestingly, as seen in Figure 4.5 as a direct result 

of necrostatin-1, JX-594-induced cell death of SW480 cells was in fact 

significantly augmented by 3-MA with the percentage cell death increasing 

from 25.95% to 53.75% and 33.85% to 63.55% for 1pfu and 10pfu/cell JX-594 

(Figure 4.7C), respectively. The mechanism behind this effect remains unclear 

but may simply be the result of autophagy eradicating virus from the cell.  

 

4.4 Discussion 

Taken together these data show that JX-594 triggers significant cell oncolysis 

associated with up-regulation of caspase-3 and the absence of HMGB1 

release which is consistent with apoptosis being the primary cell death 

pathway. Activation of the full apoptotic effector pathway however is not 

induced given the inability of Z-VAD-FMK to block cell death. This suggests 

death may not be caspase mediated or apoptosis alternatively apoptosis can 

be bypassed. Similarly virus oncolysis does not occur via necroptosis or 

autophagy given the inability of necrostatin-1, necrosulphonamide or 3-MA to 

block JX-594 induced cell death.  

Studies available in the literature examining the mechanisms by which 

oncolytic JX-594 induces tumour death are limited, however, those available 

both support and refute our findings. Probably the most comparable study in 

the literature was conducted by Whilding et al. (2013)159 who evaluated 

apoptosis, necroptosis and autophagy in ovarian cancer cell lines following 

infection with a lister-strain VV. They demonstrated as with our study that 

despite some features of apoptosis being present, (the appearance of sub-G1 

DNA populations, phosphatidylserine externalisation and PARP cleavage), 

VV did not induce death via an apoptotic mechanism.  

Conversely, however, VV-induced apoptotic death has been reported in 

various malignant cell lines including both melanoma and cervical 

cancer.162,261 In these studies, both authors utilised a wild type VV strain 
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Western Reserve (WR), and these data may therefore represent strain 

specific variation. Furthermore, further analysis reveals the conclusions drawn 

by Liskova et al. (2011)261 in HeLa and BSC-40 cell lines were solely based 

on the upregulation and activation of caspase 2, 3 and 4 using the WR strain. 

As with both our study, and Whilding and colleagues, the authors failed to 

demonstrate any significant effect using both pan-caspase inhibitors (Z-VAD-

FMK) and inhibitors of calpain and cathepsin D and E. 

Examining apoptosis in isolation is clearly complex with no single assay able 

to adequately demonstrate the significance of the role it plays. As such, there 

is a need for multiple assays to explore the various aspects of these pathways 

in combination, however, this remains challenging. To illustrate the 

challenges, examples in the literature include identifying features classically 

reported as consistent with apoptosis, including Bax-mediated release of 

apoptosis-inducing factor, which have subsequently been described as a 

critical step in programmed necrosis.262 It is now generally accepted that the 

pathways involved in apoptosis, necrosis and autophagy share a large 

numbers of similarities and it is therefore unsurprising that delineating a single 

pathway in this study was unsuccessful.  

Further challenges are highlighted by the role of alternative pathways that can 

be bypassed by traditional inhibitor molecules. Lafont et al. (2010)263 studied 

the function of caspase-10 in response to FasL (a member of the TNF receptor 

super family) to mediate cell death. They reported that in the presence of Z-

VAD-FMK, FasL activation initiated by RIP-1 could trigger an alternative, non-

apoptotic caspase-dependent form of cell death dependent on caspase-10. 

The study highlights that whilst Z-VAD is often utilised as a pan-caspase 

inhibitor, it may be that cell death pathways exist utilising alternative caspases 

not effectively targeted by Z-VAD. Similarly, a study by Lieberman et al. 

(2010)264 demonstrated that granzyme A, a serine protease found in killer cell 

cytotoxic granules, could activate caspase-independent programmed cell 

death that morphologically resembled apoptosis but had unique substrates 

and mediators. Indeed whilst Z-VAD-FMK has been used in many studies to 

block apoptotic cell death, the literature also reports that it may sensitise cells 

to necrosis and actively induce autophagy.265 
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Given the mixed evidence for an independent apoptotic pathway being utilised 

by JX-594, we went on to explore alternative mechanisms, such as 

necroptosis and autophagy. Whilding et al. (2013) demonstrated that vaccinia 

virus was capable of ‘inducing a regulated and programmed necrotic cell 

death’ in ovarian cancer cell lines. Their data demonstrated that VV induced 

a reduction in intracellular ATP, modified mitochondrial metabolism and 

released HMGB1, consistent with necroptosis. Furthermore using the 

necroptosis inhibitors, necrostatin-1 and necrosulphonamide, they 

demonstrated a dose-dependent abrogation of virus induced cell death. 

Similarly, Heinrich et al. (2017)266 explored the type of cell death induced by 

VV in melanoma cell lines using FACS staining for phosphatidylserine 

(expressed by early apoptotic cells) and DNA of necrotic cells stained with PI. 

Treated cells demonstrated a more necrotic type cell death. 

In our study in colorectal cell lines, despite good levels of JX-594-induced cell 

death we were unable to demonstrate any effect of either necrosulphonamide 

or necrostatin-1 and no evidence of HMGB1 release in the cell free 

supernatants. These data are at odds with Whilding’s study and would support 

the suggestion of a classical apoptotic mechanism. Whilst it is possible that 

results are variable between different cancer models tested, interestingly, this 

is also the opposite to findings by Guo et al. (2005)267, using the CRC cell line 

HT-29. The authors reported a time-dependent increase in HMGB1 detection 

by Western Blots following infection with a WR VV. The same paper also 

reported features consistent with apoptotic death reconfirming the complex 

nature of cell death pathways. In addition, differences between virus strains 

as well as cancer cell population variability may also account for the conflicting 

results observed. Indeed, the various VV strains commonly used have been 

reported to encode for different apoptotic and necroptosis inhibitors, and 

inducers of immunogenic cell death which makes like for like comparison 

across a spectrum of viruses studied difficult. Examples of molecules encoded 

by VV include the direct caspase/serine protease inhibitor, cytokine response 

modifier A (CrmA) and F1L which is a direct inhibitor of Bax and Bak.268 

Interestingly, in a recent study by Schock et al. (2017)269 examining the 

prevalence of virus-induced necroptosis across a broad range of virus strains, 
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only two of the seven viruses investigated resulted in significant necroptotic 

cell death demonstrating the diversity of these agents. 

Very limited data exist with regard to the role of autophagy in VV-induced cell 

death, however interestingly there is an increasing body of evidence to 

suggest that various OV may interact with intrinsic autophagic mechanism to 

exert anti-tumour effects. Our study did not identify any evidence of autophagy 

as the underlying pathway responsible for cell death but did suggest that 

modulating autophagy could be used to enhance direct lytic killing by VV. 

Autophagy was first recognised as a virus-induced cell death mechanism by 

Ito et al. (2006)257 using a glioma cell model infected with adenovirus. 

Autophagy was assessed by examining cell morphology, the formation of 

acidic vesicular organelles, signalling via mammalian target of rapamycin 

(mTOR) and Western Blot analysis to monitor ‘an autophagy associated 

molecule’. However, in a recent review of the current literature by Hu et al. 

(2017)270 the authors concluded that the underlying mechanisms by which 

autophagy exerts both direct and anti-tumour effects remains largely 

unknown. However, interestingly they identified four distinct OV’s that had 

been reported in the literature to modulate autophagic pathways to induce 

both an innate and adaptive immune response (Herpes simplex, Adenovirus, 

Newcastle disease virus and Measles) indicating autophagy may also 

contribute to OV-mediated immunotherapy. 

As described, the pathways involved in JX-594 are complex, multifaceted and 

remain to be completely elucidated. Our data is consistent with JX-594 

inducing significant cell oncolysis which has previously been reported by 

colleagues to be associated with the upregulation of caspase-3.  The 

additional absence of HMGB1 release further supports apoptosis being the 

primary cell death pathway. However, it is possible that the full apoptotic 

effector pathway is not induced given the inability of Z-VAD-FMK to inhibit JX-

594-induced oncolysis. Whilst definitive conclusions are difficult it is possible 

that death is not solely caspase mediated, or that tumour cells utilise 

alternative caspase pathways, not inhibited by Z-VAD-FMK, for example 

caspase 10 not thought to be inhibited. It remains unclear how JX-594 induces 

tumour cell death however, it is likely that a mixed non-linear morphology 
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probably exists, incorporating complex feedback systems and a programmed 

series of events.  

Understanding the complex interplay of OV’s with cell death mechanisms 

remains an area of significant research and as such continues to provide 

potential therapeutic targets and areas of interest for future studies. For 

example, recent advances in our understanding of the potential for autophagy 

modulators to regulate OV-induced antitumour immune responses (as 

reviewed by Hu and colleagues (2017)270) could provide potential therapeutic 

combination strategies and would certainly provide interesting continuation 

work for this thesis. Furthermore, delineating further the mechanisms behind 

our observation of necrostatin-1 potentiating VV-induced cytotoxicity in 

primary cancer SW480 cell lines would significantly enhance our 

understanding and may provide options to explore novel targeted strategies. 
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Chapter 5  
JX-594-induced innate immune response 

5.1 Innate immune activation in the blood 

It is increasingly evident that for oncolytic viruses to be effective as anti-cancer 

therapies, irrespective of their direct oncolytic effect or cytotoxic pathways, 

they must be highly immunogenic and stimulate an innate and/or adaptive 

immune response. Likewise, as more work has been undertaken to evaluate 

the mechanisms underpinning cancer immunotherapy, the importance of 

immune activation has been recognised as increasingly important. The 

interaction between innate and adaptive immune effectors such as cross-

activation between DC and NK cells and evidence of improved clinical 

outcomes in colorectal tumour infiltrated with both innate NK cell and adaptive 

T cells, highlights the importance of harnessing both arms of the immune 

response.38,271–273 

As previously discussed, the immune response triggered by oncolytic viruses, 

such as JX-594 or Reovirus is of critical benefit to the clinical efficacy of these 

treatments. Importantly, these anti-tumour immune effects have been 

enhanced in virus platforms by the use of genetic modification and the 

insertion of various immune genes. Examples include, Kottke et al. (2009)274 

who showed that the addition of IL-2 enhances the anti-tumour immune effects 

of Reovirus and is associated with an adaptive response against tumour-

associated antigens (TAA) in tumour draining lymph nodes. Similarly, the 

insertion of GMCSF into VV generates a systemic anti-tumour response in 

vivo associated with the recruitment and activation of DC into the tumour 

microenvironment.275 

Furthermore, the trafficking of immune cells to lymph nodes is well established 

to play a pivotal role in immunity and as such, clearance and detection of 

lymph node micrometastasis is the focus of multiple pre-clinical and clinical 

trials particularly in the field of colorectal and breast cancer.276–278 The 

combination of OV-immunogenicity and the prevalence of both 

micrometastasis and circulating tumour cells therefore makes the study of 

both lymph nodes and blood an obvious target for OV research. Indeed, 
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unpublished data from Breitbach et al., a collaborative group in Canada 

demonstrated that, as seen with Reovirus, JX-594 can be recovered from 

blood, lymph nodes, normal liver, primary colon and metastatic colorectal liver 

metastasis after i.v. delivery in patients with metastatic colorectal cancer. 

Therefore, to address the potential wider immune response to systemic 

delivery of JX-594, and assess the viruses ability to generate anti-tumour 

effects both in blood and at distant sites harbouring non-resected microscopic 

disease, we investigated the innate effects of JX-594.  Initial studies focussed 

on the blood of healthy volunteers and colorectal cancer patients and 

thereafter we examined the same immune responses in freshly resected 

lymph node tissue from colorectal cancer patients. 

 

5.2 Natural Killer Cells in JX-594 infection 

Following intravenous administration of JX-594, high-doses of virus will be 

present in the circulating blood. Not only is this relevant to virus carriage but 

the presence of circulating tumour cells (CTC) within the blood has been 

reported to be associated with significantly increased recurrence, mortality 

rates and poor prognostic outcomes.279 In colorectal cancer the stimulation of 

an anti-tumour innate immune response in this setting, and indeed in other 

micrometastatic sites, may be sufficient to provide a therapeutic effect and 

clear tumour even if there is minimal virus access and yield. 

Within the group, NK cells have been the focus of attention as a marker of 

innate immune activation. Colleagues have previously demonstrated NK cell 

activation and immune-mediated killing in PBMCs following treatment with 

Reovirus.206 

Defined as CD3-veCD56+ve lymphocytes, NK cells constitute between 10-20% 

of the PBMC population. They can be sub-classified into two distinct forms 

based on their discrete functions, properties and phenotypes. CD56Dim cells 

are highly cytotoxic and are predominantly found in the blood and at sites of 

inflammation whereas, CD56Bright cells are reported to have little cytotoxic 

activity, and play an important role in immunoregulation, rapidly inducing 
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cytokine production. This phenotype makes up the majority of NK cells found 

in lymph nodes.280   

Figure 5.1 denotes the typical phenotypic appearances of NK cell populations 

in healthy donor PBMC as seen following flow cytometry. 
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Figure 5.1 Phenotypic appearances of CD3-CD56+ lymphocytes (NK 
cells) and their discrete subpopulations CD56Dim and CD56Bright in 
PBMCs as demonstrated by Flow Cytometry.  

PBMCs were prepared from whole blood of healthy volunteers and stained using 

CD3-PerCP and CD56-PE anti-human antibody. Cell were analysed using flow 

cytometry. (A) denotes a forward scatter (FSC) vs side scatter (SSC) dot plot with the 

R1 gate incorporating the lymphocyte cell population. (B) shows a BL3 fluorescence 

channel (CD3- PerCP) vs BL2 (CD56-PE) of the R1 selected cell population. The R2 

gates surrounds the total NK cell population (CD3-CD56+), 10-15% NK cells within 

total PBMCs. Bright and dim arrows delineate the sub-populations within this gate. 
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5.3 NK Cell Activation and CD107 Degranulation 

CD69 is a membrane receptor glycoprotein which is transiently expressed 

after activation of haematopoietic derived cells with the exception of 

erythrocytes281. In resting lymphocytes it is not normally detectable, however 

selective expression occurs as a result of active immune responses and in 

chronic inflammatory infiltrates. Activation of NK cells leads to rapid CD69 

expression associated with NK-cell derived cytotoxicity, regulation of NK cell 

proliferation and down regulation of cell auto-immunity.281 Furthermore, CD69 

acts to regulate the expression of other functional activation molecules such 

as TNF-α, CD25 and intracellular adhesion molecule-1 (ICAM-1) and 

mobilizes calcium in pre-activated NK cells.282,283 CD69 can therefore be 

utilised as an important early marker of NK cell activation. A typical histogram 

plot showing CD69 expression (FITC) of a resting NK cell population is shown 

in Figure 5.2. 

A second marker that can be utilised for the investigation of NK cell functional 

activity is a highly glycosylated lysosomal membrane protein, CD107 (also 

known as lysosomal-associated membrane protein (LAMP-1). NK cells 

contain high concentrations of preformed cytolytic granules within their 

cytoplasm containing cytolytic proteins, such as perforin and granzyme. These 

granules are specifically designed to induce death in target cells following their 

release. Perforin and granzyme work synergistically to induce target cell 

death, with perforin being responsible for pore formation in cell membranes 

allowing delivery of granzymes (serine proteases), where they activate distinct 

cell death pathways.264,284 Activation of NK cells results in rapid release of 

these granules triggering cell lysis and death. CD107 is found lining the 

surface of these granules and has been described as a good marker of NK 

cell functional activity.285 As such, the transient expression of CD107 on the 

cell surface in concordance with loss of perforin correlates well with NK cell 

mediated lysis of target cells. Brefeldin A is utilised in the assay to prevent 

CD107 recycling into the Golgi complex, resulting in accumulation of proteins 

in the endoplasmic reticulum and enhanced detection of molecules of interest 

at the cell surface.  Expression of CD107 is observed within 2 hours of cell 

stimulation making CD107a and CD107b ideal markers of NK cell activity.285–
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288 A representative flow cytometry picture of NK cell degranulation is shown 

in Figure 5.2.. Increased CD107a/b expression is consistent with enhanced 

NK cell degranulation.  
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Figure 5.2 Flow Cytometry analysis of NK cells (CD3-CD56+ lymphocytes), 
CD69 (FITC) expression and degranulation within PBMCs. 

PBMCs were prepared from whole blood of healthy volunteers and stained using 

CD3-PerCP and CD56-PE anti-human antibodies. FSC vs SSC dot plot with the R1 

gate incorporating the lymphocyte cell population and a BL3 fluorescence channel 

(CD3-PerCP) vs BL2 (CD56-PE) of the R1 selected cell population, as shown in 

figure 5.1 to identify NK cells. (A) delineates a typical histogram plot showing CD69 

expression (FITC) on NK cells. (B) shows a representative flow cytometry picture of 

NK cell degranulation following co-culture with a target cell population (SW480) ± VV; 

PBMCs were stained with antiCD107a-FITC and anti-CD107b-FITC in the presence 

Brefeldin A.  
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5.3.1 JX-594 activates NK cells in healthy donor PBMCs 

Utilising CD69 and CD107 as markers of NK cell activation we investigated 

whether JX-594 could activate NK cells within healthy donor PBMCs. PBMCs 

were isolated from whole blood venesection of healthy donor volunteers by 

density gradient centrifugation. Isolated PBMCs were treated with 0, 0.1 and 

1pfu/cell of JX-594 for 24 hours before being harvested for flow cytometry; 

CD69 expression was quantified using mean fluorescence intensity after 

staining with a CD69-FITC anti-human antibody. Treatment of PBMCs with 

JX-594 activated NK cells, increasing CD69 expression in a dose-dependent 

manner (Figure 5.3A). 

Similarly PBMCs from the same donor blood were treated with 0, 0.1 and 1 

pfu/cell JX-594 overnight before being co-cultured with SW480 and SW620 

target cells at a ratio of 10:1 (PBMCs:Target cells) for 4 hours. Cells were 

stained with CD107a and CD107b and expression was examined using flow 

cytometry. The presentation of target cells to JX-594-treated PBMCs resulted 

in a dose dependent increase in NK cell degranulation with similar 

enhancement of expression observed in response to both SW480 (18% 

control, 28% 0.1pfu/cell and 36% 1pfu/cell JX-594) and the metastatic cell line 

SW620 (17% control, 27% 0.1pfu/cell and 32% 1pfu/cell JX-594). Results are 

shown in Figure 5.3B. 
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Figure 5.3 JX-594 activates NK cells in healthy donor PBMCs.  

PBMCs were isolated from whole blood of healthy donor volunteers by density 

gradient centrifugation. Isolated PBMCs were treated with 0, 0.1 and 1pfu/cell JX-

594 for 24 hours before being harvested and stained with CD3/CD56/CD69-FITC 

antibody or co-cultured with SW480 and SW620 colorectal cell lines prior to staining 

with CD3/CD56/CD107a/b-FITC antibodies. Mean CD69 expression (A) and the 

percentage of NK cells expressing CD107a/b (B) measured using flow cytometry; 

graphs show mean + SEM for 4 individual healthy donors. 
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5.4 JX-594 induces type I IFN and GMCSF release in healthy 
donor PBMCs 

To further delineate the mechanism by which NK cells were activated in 

response to JX-594, we analysed the cell free supernatants from PBMC cell 

cultures after infection with JX-594. The innate immune response relies on 

cell-cell cross talk, with NK cells responding to interaction with other immune 

cells, such as dendritic cells and macrophages, or the secretion of soluble 

factors (cytokines). Cytokines known to activate NK cells include IFN-α, IFN-

β (Type I IFNs), IL-2, IL-10, IL-12, IL-15 and IL-18, whilst cytokines released 

by activated NK cells include IFNγ, TNF-α, IL-13 and GMCSF.289 

To examine the secretion of selected cytokines, cell-free supernatants were 

collected from PBMCs which had been treated with 0, 0.1, 1pfu/cell JX-594, 

or 0.1 and 1pfu/cell Reovirus for comparison and analysed by ELISA. There 

was no evidence of IL-2, IL-6, IL-8, IL-10, TNF-α or IFNγ (data not shown). 

However, JX-594 did lead to the production of IFN-α and GMCSF, but no IFN- 

β (Figure 5.4). Our group has previously demonstrated the secretion of IFN-α 

and IFN-β in response to Reovirus treatment and a direct virus comparison 

was of therefore of interest. As demonstrated in Figure 5.4, JX-594 infected 

PBMCs produce a relatively low level of IFN-α (A) compared to Reovirus and 

no IFN-β (B), however there is a significant dose related increase in GMCSF 

(C) which was not seen after Reovirus treatment. It remains unclear if this 

increase in GMCSF is as a result of immune activation and cytokine release 

from activated NK/PBMC cells, or secondary to the early replication of JX-594, 

which has been genetically engineered to encode GMCSF. To examine this 

further, GMCSF release was examined following treatment of PBMC with a 

non-GMCSF encoded virus (VV-LUC) using independent healthy donors. 

Despite the absence of the virus encoded GMCSF virus modification, 

significant levels of GMCSF secretion were still seen following infection with 

VV-LUC (1549pg/ml, 1pfu/cell VV-LUC). Graphical representation is shown in 

Figure 5.5. Whilst this was less than that seen with JX-594-GMCSF 

(3874.8pg/ml, 1pfu/cell JX-594-GMCSF-GFP) it is strongly suggestive that 

GMCSF release is in fact, at least in part, as a result of immune cell activation 

rather than simply the result of viral replication. 
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Figure 5.4 IFN and GMCSF production from JX-594 treated PBMCs. 

PBMCs were isolated from peripheral blood of healthy donors. Cells were treated 

overnight with 0, 0.1 and 1pfu/cell JX-594 and/or 0.1 and 1pfu/cell reovirus. Cell-free 

supernatants were collected and analysed by ELISA for the presence of IFN- α (A), 

IFN- β (B) and GMCSF (C). Graphs show mean + S.E.M for 3 individual donors. 
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Figure 5.5 GMCSF production from VV-Luciferase treated PBMC. 

PBMCs were isolated from peripheral blood of healthy donors. Cells were treated 

overnight with 0, 0.1 and 1pfu/cell VV-luciferase. Cell-free supernatants were 

collected and analysed by ELISA for the presence of GMCSF. Graphs show mean + 

SEM for 4 individual donors. Statistical significance is denoted by *p<0.05 (One-way 

ANOVA). 
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5.5 JX-594 mediated NK cell activation is dependent on type 
I IFN in healthy donor PBMCs 

The role of the type I IFNs is of particular interest with several studies reporting 

them to have a decisive role in the activation of NK cells. Despite relatively 

low levels of Type I IFNs identified in PBMC supernatants as a result of JX-

594 treatment we wanted to confirm whether the NK cell activation 

demonstrated in Figure 5.3 was dependent on type I IFN production. CD69 

activation and CD107 degranulation assays were therefore repeated in the 

presence or absence of IFN blocking antibodies in three independent healthy 

donor volunteers.  Assays were carried out in a directly comparable fashion 

to previous experiments with the modification that 30 minutes prior to the 

addition of JX-594 to PBMCs, combinations of soluble IFN blocking serum and 

IFN receptor blocking antibodies were added alongside appropriate 

serum/isotype antibody controls. 

Figure 5.6A demonstrates increased CD69 expression following infection with 

JX-594 in a dose dependent fashion. Significantly this response is completely 

removed in the presence of IFN blocking serum antibodies and restored to 

normal levels in the presence of serum/isotype controls. Similarly, Figure 5.6B 

shows that JX-594 activated NK cells degranulate to a significant level against 

both SW480 and SW620 target cells. In addition, degranulation was also IFN-

dependent and was inhibited to baseline levels when IFN blocking antibodies 

were used. Importantly, isotype controls did not significantly impede NK cell 

degranulation and results were consistent between the primary and metastatic 

cell line. 

Therefore, JX594 treatment of donor PBMCs activates NK cells to degranulate 

against colorectal cancer target cells.  Despite the low levels of IFN production 

in response to JX-594, NK cell activation is an IFN-dependent process with 

both NK cell phenotypic activation and degranulation being prevented in the 

absence of type I IFN signalling. 
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Figure 5.6 JX-594 activation of NK cells is dependent on type 1 
interferons in PBMCs.  

PBMCs were isolated from whole blood of healthy donor volunteers prior to JX-594 

treatment, PBMCs were treated with control media, IFN-α/IFN-β blocking antibody 

serum and IFNα/β receptor blocking antibodies or IgG2a isotype and control sheep 

serum. Following this pre-incubation, PBMCs were treated with 0, 0.1 and 1pfu/cell 

of JX-594 for 24 hours before being stained with (A) CD3/CD56/CD69-FITC 

antibodies for 30 mins or (B) co-cultured and incubated with SW480 and SW620 

colorectal cell lines (10:1 ratio) for 4 hours prior to assessment of CD107a/b 

expression using flow cytometry. Graphs show mean + SEM for three individual 

donors. Statistical significance is denoted by *p<0.05 (One-way ANOVA).  
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5.6 JX-594 mediated NK cell activation is dependent on 
monocytes in healthy donor PBMCs 

It should be noted that these data examine only an element of the innate 

immune response to oncolytic virus therapy. Hou et al. (2012)290 for example 

suggested VV infection induces monocytes to differentiate into mature 

dendritic cells with enhanced capacity to activate T cells, and activate innate 

and acquired antiviral immunity.  

Interestingly therefore, previous work by the group investigated the primary 

immune cell target for JX-594 and using a GFP-expressing vaccinia virus 

demonstrated that CD14+ monocytes were the predominant cells within 

PBMCs to become infected with JX-594 and hence express the GFP 

transgene (data not shown). Of interest to this work, previous studies have 

demonstrated a role of  CD14+ monocytes in the virus-induced activation of 

NK cells291 and as a result we therefore wished to further explore these 

concepts for JX-594. 

PBMCs from 3 independent healthy donors were collected and using 

magnetic beads CD14+ monocytes were removed. Whole PBMCs and CD14- 

PBMC cell populations from the same donors were treated with 0, 0.1 and 

1pfu/cell of JX-594 for 24 hours before being harvested and NK cell activation 

investigated using CD69 and CD107 degranulation assays. These data 

demonstrates that; 1) in the CD14- population there was no upregulation in 

CD69 expression on NK cells following JX-594 treatment, and 2) that 

degranulation against the two CRC cell targets, SW480 and SW620 was 

significantly reduced (Figure 5.7). Hence, CD14+ monocytes clearly play a role 

in the activation of NK cells within PBMCs in response to JX-594 infection with 

CD69 expression being completely abrogated and degranulation significantly 

reduced. 
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Figure 5.7 JX-594 activation of NK cells is dependent on monocytes in 
PBMC. 

PBMC were isolated from whole blood of healthy donor volunteers by density 

gradient centrifugation and CD14- cells depleted using magnetic beads. CD14+ and 

CD14- PBMCs were treated with 0, 0.1 and 1pfu/cell JX-594 for 24 hours before being 

harvested and (A) stained with CD3/CD56/CD69-FITC for 30 mins or (B) co-cultured 

and incubated with SW480 and SW620 cell lines prior to staining with 

CD3/CD56/CD107a/b-FITC. CD69 and CD107a/b expression, respectively, was 

assessed using flow cytometry. Graphs show mean + SEM for 3 separate healthy 

donors. Statistical significance is denoted by *p<0.05 (One-way ANOVA). 
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As previously demonstrated NK cell activation was dependent on IFN and as 

a direct result of removing CD14+ monocytes from PBMC cell populations, NK 

cell activation was also inhibited. Importantly there was no evidence of 

interferon release in the supernatants depleted of CD14+ monocytes (Figure 

5.8).  
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Figure 5.8 IFN-α production in JX-594 treated whole PBMCs and CD14- 
PBMC population. 

Cell-free supernatants were collected during the experiment described in Figure 5.7. 

Supernatants were analysed by ELISA for the presence of IFN- α. Graphs show 

mean + SEM for 3 individual donors. Statistical significance is denoted by *p<0.05 

(One-way ANOVA). No statistically significant values were observed. 
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5.7 Innate immune characterisation and NK cell activation in 
ex-vivo freshly resected human lymph node tissue 

Having confirmed in PBMCs that JX-594 can activate NK cell in blood we next 

addressed the potential for JX-594 to demonstrate a similar effect in lymph 

nodes. As discussed in Chapter 1, cancer related mortality is intimately linked 

to the progression of disease at diagnosis with the presence of visible lymph 

node disease providing a clear marker of poor prognosis. Occult disease is 

more difficult to assess but with a reported 25% recurrence rate in patients 

with initial node negative staging at the time of diagnosis there is a clear desire 

for novel therapies to target these areas.  

Several studies have described effective transit of virus to tumour draining 

lymph nodes in in vivo models following i.t. injection using various OV’s.292,293 

Indeed using an orthotopic breast cancer mouse model, Gholami and 

colleagues (2012)294 showed that a Lister strain, GFP-expressing VV (GLV-

1h153) could not only be tracked in metastatic lymph nodes 48 hours after a 

single dose i.t. injection but 5 weeks after treatment, the authors were unable 

to find any evidence of metastatic cells within the harvested lymph nodes 

within the treatment group. Untreated controls, however, continued to 

demonstrate detectable metastatic cells.  Clearly, translationally this could 

provide a plethora of exciting new treatment options and the ability of JX-594 

to act by both direct oncolysis and activate an innate immune response at 

these distant tumour locations, rich in immune cells, is of significant interest. 

 

5.7.1 Examination of immune cell components in lymph nodes.  

Access to fresh tissue samples, particularly lymph nodes holds significant 

challenges and to date little is reported in the literature about the phenotypic 

appearance of fresh human lymph nodes samples. Initial work focussed, 

therefore on characterising the cell populations we were able to identify within 

these lymph nodes with a particular interest in NK cells. Lymph Node 

Mononuclear cells (LNMNC) isolated from CRC donor patients were prepared 

by density centrifugation and cell populations identified by flow cytometry 

(Figure 5.9).  



- 158 - 

 

Figure 5.9 Immune cell populations in lymph nodes. 

Freshly resected lymph node tissue retrieved from the mesentery of patients 

undergoing colorectal resection for malignancy were disaggregated into single cell 

suspensions and cell population assessed by staining with CD3-PERCP, CD3/CD4-

FITC, CD3/CD8-FITC, CD11b-PERCP, CD11c-PE, CD14-PE, CD19-PE, 

CD3/CD56-FITC and CD69-FITC for 30 minutes prior to analysis using flow 

cytometry. Data is representative of at least 3 separate lymph nodes. A) shows a 

representative FSC vs SSC for lymph node biopsies. B) shows representative 

histogram plots for each of the antibody panels used.  
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Given our previous work in PBMCs, we wanted to see what cell 

populations/markers we could detect in lymph nodes in order to define what 

might be utilised to respond to virus therapy and furthermore identify cell 

populations responsible for possible immune activation. Phenotyping 

experiments identified, as expected, non-tumour LNMNCs did not contain 

monocytes. Perhaps surprisingly CD11b cells were also not detectible; CD11b 

is globally expressed on the surface of neutrophils, monocytes, macrophages 

and NK cells and mediates the inflammatory response by regulating leukocyte 

adhesion and migration. Previous published data describe human lymph 

nodes as locations for immature NK cell populations that express low levels 

of CD11b intergrin would also support this observation.295 The lymph node cell 

population did however, contain CD11c+ and CD19+ cells typically found on 

the surface of DC and B-cells, respectively. CD11c is a type 1 transmembrane 

protein found in high levels on most human DC but also expressed on 

monocytes, macrophages and B cells. CD11c DC are required for 

lymphocytes to traffic towards lymph nodes in vivo and have been implicated 

as likely carriers of pathogens to lymph nodes.296,297 Clearly with respect to 

OVs this may have direct implications with regards virus carriage and access 

to distant disease harbouring sites.  

 

5.8 JX-594 activates NK cells in human, non-tumour, lymph 
nodes 

Studies on human lymph node tissue are scarce, but mouse data suggests 

that NK cells are ‘either normally excluded or at low levels in resting naïve 

lymph nodes but can be rapidly recruited to lymph node draining sites in 

response to immune signalling’.298 It is thought that the primary innate immune 

response causes activated NK cells to kill target cells and/or produce 

inflammatory cytokines such as IFN-g.299 Thereafter, IFN-g production plays 

an important role in T cell priming, inducing CD4+ T cell Th1 differentiation and 

a CD8 cytotoxic response.  Of note, NK cell recruitment to lymph nodes is 

tightly regulated by activation status and requires endogenous IFN-g, although 
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the mechanism by which this controls NK cell recruitment to lymph nodes 

remains unclear.298 

In human tissue, one study identified the presence CD56Bright NK cells in 

human lymph nodes consistent with our data presented below (Figure 5.11). 

The authors demonstrated that the lymph node residing NK cells could be 

stimulated by T-cell derived IL-2, acting through constitutively expressed high 

affinity IL-2 receptors to secrete IFN-g, clearly illustrating the cross talk 

between the innate and adaptive immune response.300 Induction of an innate 

immune response and NK cell activation in the lymph node tissue following 

OV therapy could translate into potential targeted therapeutic effects in 

micrometastases, initiating a focal anti-tumour immune response..  

Having identified cell types present in the LNMNC and demonstrated the 

presence of NK cells (CD3-/CD56+) (Figure 5.10), we further investigated 

whether JX-594 could activate NK cells and trigger an innate immune 

response within the lymph nodes, similar to that seen previously in the blood.  
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Figure 5.10 The Phenotypic appearances of CD3-CD56+ lymphocytes (NK 
cells) and their discrete NK cell subpopulations (CD56Dim and CD56Bright) 
within LNMNCs. 

LNMNCs were prepared from disaggregated fresh lymph node tissue and stained 

with CD3 PerCP and CD56 PE anti-human antibodies. Cells were analysed using 

flow cytometry. (A) denotes a forward scatter (FSC) vs side scatter (SSC) dot plot, 

with the R1 gate incorporating the lymphocyte cell population. (B) Shows CD3 PerCP 

vs CD56 PE expression within the R1 selected cell population. The R2 gates 

surrounds the total NK cell population (CD3-CD56+) with CD56Dim and CD56Bright NK 

Cell populations highlighted. 
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As previously described, CD69 and CD107 staining were utilised as 

representative markers of NK cell activation. Prepared LNMNC cells from 

lymph nodes acquired from the mesentery of colorectal cancer specimens 

were treated with JX-594 (Figure 5.11).  
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Figure 5.11 JX-594 activates NK cells in LNMNCs. 

LNMNCs were prepared from disaggregated fresh lymph node tissue as previously 

described. Isolated LNMNCs were treated with 0, 0.1 and 1pfu/cell of JX-594 for 24 

hours before being harvested and stained with CD69-FITC antibody for 30 mins and 

then washed and fixed with 1% PFA prior to analysis using flow cytometry. Graphs 

show mean + SEM for 3 individual lymph nodes. Statistical significance is denoted 

by *p<0.05 (One-way ANOVA). 
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As a direct result of virus challenge, NK cell activation was observed in non-

tumour bearing lymph nodes, as demonstrated by a significant increase in 

CD69 expression after treatment with 1pfu/cell JX-594. Whilst still significant 

this was less pronounced than that previously demonstrated within PBMCs. 

(Figure 5.3A) 

Similarly, to assess NK cell degranulation, LNMNCs were treated with 

increasing doses of JX-594 and co-cultured with SW480 and SW620 

colorectal cell line targets. Figure 5.13 demonstrates that JX-594-activated 

LNMNC NK cells degranulate against  both SW480 and SW620 cell line 

targets which was significant compared to untreated controls. No significant 

degranulation was observed in the absence of SW480 or SW620 cell targets. 
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Figure 5.12 JX-594-activated LNMNC NK cells degranulate against 
colorectal cell line targets. 

LNMNCs were isolated from disaggregated fresh lymph node tissue obtained from 

CRC patients undergoing surgical resection and treated with 0, 0.1 and 1pfu/cell of 

JX-594 for 24 hours before being harvested. LNMNCs were then co-cultured with 

SW480 and SW620 colorectal cell lines for 4 hours prior to staining with CD107a/b-

FITC antibodies. The percentage of NK cells expressing CD107a/b was quantified 

using flow cytometry and recorded as percentage degranulation. Graphs show mean 

+ SEM for 3 separate lymph node donors. Statistical significance is denoted by 

*p<0.05 (One-way ANOVA). 
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Of note, as with healthy donor PBMC (Figure 5.3) higher levels of 

degranulation were seen against the metastatic colorectal target cell line 

SW620 cells compared with SW480 cells. No statistically significant increase 

was observed in the absence of targets (data not shown). Whilst we 

acknowledge small differences and low levels of degranulation involved, 

purely hypothetically this could present significant translational potential for 

targeting of micrometastasis. 

 

5.9 Cytokines involved in JX-594 activation of NK cells in 
LNMNC. 

To explore the mechanistic process behind the NK cell activation observed 

we analysed the cell free supernatants after infection with JX-594 to quantify 

specific cytokines that may be involved in NK cell activation. In PBMCs, type 

I IFN’s appeared to play a key role in NK cell activation, as demonstrated by 

the production of IFN-α in response to JX-594 infection, and the cessation of 

NK cell activation when assays were performed in the presence of IFN 

blocking (Figure 5.6). 

Unlike in PBMCs, however, LNMNCs did not appear to stimulate the 

production of type 1 IFNs (α/b). At 1pfu/cell JX-594, IFN-α was just detectable 

at very low levels (less than 100pg/ml; Figure 5.13A) and IFN-b was not 

present (data not shown) after treatment with JX-594. GMCSF was secreted 

in a dose-dependent manner, with increased expression associated with 

increasing virus dose; levels were comparable to that seen with PBMCs 

(Figure 5.13C). 

Given previous literature regarding lymph nodes which suggests an important 

role for IFN-Interferon-g in both NK cell recruitment and activation we also 

looked for interferon gamma-induced protein 10 (IP-10). IP-10 (also known as 

C-X-C motif chemokine 10 (CXCL10)) is a small cytokine belonging to the 

alpha chemokine family. It is constitutively expressed at low levels in lymph 

node stroma301 and secreted by various cell types including monocytes, 

fibroblasts  and endothelial cells. IP-10 plays an important role in T-cell 
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trafficking and mediates the IFN-g response. Interestingly, given the absence 

of significant IFN-α or IFN-b, IP-10 was also detected at low levels, although 

levels detected demonstrated wide variability across the repeat experiments 

(Figure 5.13B). 
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Figure 5.13 IFN- α, IP-10 and GMCSF production from JX-594 treated 
LNMNCs. 

Cell-free supernatants were collected from treated LNMNCs and analysed by ELISA 

for the presence of IFN- α, IP-10 and GMCSF. Graphs A & B show mean + SEM for 

3 separate donors. Graph C is data from a single donor. Statistical significance is 

denoted by *p<0.05 (One-way ANOVA). No statistically significant values were 

observed. 
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5.10 JX-594 activation of NK cells in donor LNMNCs is 
independent of type 1 IFNs  

Data from PBMCs demonstrated that despite relatively low levels of Type I 

IFNs identified as a result of JX-594 infection, NK cell activation was indeed 

dependent on type I IFN production.  For example, CD69 expression and NK 

cell CD107 degranulation were both inhibited in the presence of IFN blocking. 

Hypothetically it was anticipated that the same should be true for LNMNC 

response to JX-594 treatment. However, given the unexpectedly low, almost 

undetectable levels of Type I IFN found in the supernatants of infected 

LNMNCs we postulated that IFN may not be the primary mechanism of NK 

cell activation within lymph nodes. To elucidate the importance of IFN for NK 

cell activation in lymph node samples we used interferon blocking experiments 

as previously described to allow direct comparison with data acquired for 

PBMCs. The CD69 and CD107 degranulation assays on LNMNCs in the 

presence and absence of IFN blocking serum antibodies yielded no significant 

reduction in CD69 activation or degranulation.  

Similar levels of CD69 activation (3.6% fold increase from control to 1pfu JX-

594) were observed in response to JX-594 treatment, however, the addition 

of IFN blockade or isotype controls did not inhibit CD69 upregulation in 

response to JX-594, suggesting a mechanism different to that seen in blood, 

and not type I IFN dependent (Figure 5.14A). Likewise, NK cell degranulation, 

was also independent of type 1 IFN with no demonstrable difference in NK 

degranulation seen in the presence or absence of IFN blockade. Of note, this 

was consistent between the SW480 and SW620 target cells with no difference 

seen between the primary and metastatic cell lines (Figure 5.14B). 
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Figure 5.14 JX-594 activation of NK cells is independent on type 1 
interferons in patient LNMNCs. 

LNMNCs were isolated from lymph node samples retrieved from patients undergoing 

colorectal cancer resection prior to JX-594 treatment. LNMNCs were treated with  

control media, IFN-α, IFN-β blocking serum and an IFNα/β receptor blocking antibody 

or IgG2a isotype and control sheep serum. Following this pre-incubation, LNMNCs 

were treated with 0, 0.1 and 1pfu/cell of JX-594 for 24 hours before being stained 

with (A) CD3/CD56/CD69-FITC antibodies or (B) co-culture with SW480 and SW620 

colorectal cell lines (10:1 ratio) for 4 hours prior to assessment of CD107a/b on NK 

cells. Graphs show mean + SEM for 3 separate patient samples. Statistical 

significance is denoted by *p<0.05 (One-way ANOVA). 
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5.11 Reovirus induced NK cell activation in LNMNCs 

As discussed earlier in this chapter, previous work by colleagues in the 

laboratory have largely focused on an alternative virus, Reovirus. Given this 

previous body of work, it was of interest to see if NK cell activation could be 

initiated by Reovirus in lymph nodes in a similar fashion to JX-594.  

As with JX-594, Reovirus resulted in a significant increase in CD69 with 

results largely consistent with those observed for JX-594. Significant NK cell 

activation was observed at lower doses of Reovirus (0.1pfu/cell) resulting in a 

significant increase in CD69 expression (2903.7 - 4422.4mfi; Figure 5.15). 

Similarly, we also examined the ability of Reovirus to promote NK cell 

degranulation within our LN samples. As with JX-594, Reovirus-activated 

LNMNC NK cells resulted in degranulation against colorectal targets in a dose 

dependant fashion. Percentage degranulation against both colorectal cancer 

cell targets were however almost 3-fold greater than those seen with JX-594, 

with similar enhanced levels of degranulation seen in response to both the 

primary and metastatic target cell population (Figure 5.16).  
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Figure 5.15 Reovirus activates NK cells in LNMNCs. 

LNMNCs were prepared from disaggregated fresh lymph node tissue as previously 

described. Isolated LNMNCs were treated with 0, 0.1 and 1pfu/cell of Reovirus for 24 

hours before being harvested and stained with CD69-FITC antibody for 30 mins prior 

to analysis using flow cytometry. Graphs show mean + SEM for 3 individual lymph 

nodes. Statistical significance is denoted by *p<0.05. 
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Figure 5.16 Reovirus-activated LNMNC NK cells degranulate against 
colorectal cell line targets. 

LNMNCs were isolated from disaggregated fresh lymph node tissue from CRC 

patients undergoing surgical resection and treated with 0, 0.1 and 1 pfu/cell of 

Reovirus for 24 hours before being harvested. LNMNCs were then co-cultured with 

SW480 and SW620 colorectal cell lines (10:1 ratio) for 1 hour prior to staining with 

CD107a and b - FITC antibodies in the presence of Brefeldin A for a further 4 hours. 

Percentage of cells expressing CD107a/b was measured using flow cytometry and 

recorded as percentage degranulation. Graphs show mean + SEM for 3 separate 

lymph node donors. Statistical significance is denoted by *p<0.05. 
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Given the levels of NK cell degranulation seen in response to Reovirus it was 

important to also further define the mechanism of Reovirus-induced NK  

degranulation in lymph nodes given the mechanism of action adopted by JX-

594 does not appear to utilise type-1 IFN. In response to Reovirus, significant 

levels of IFN-α were produced (Figure 5.17) consistent with a type 1 IFN 

response. IP-10 was also produced at low levels (Figure 5.17), however no 

GMCSF production (data not shown). 
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Figure 5.17 IFN-α and IP-10 production from Reovirus treated LNMNCs. 

Cell-free supernatants were collected from Reovirus treated LNMNCs and analysed 

by ELISA for the presence of IFN- α, and IP-10. Graphs show mean + SEM for 3 

separate donors. 
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Hypothetically, the high level of IFN-α produced in response to Reovirus in 

LNMNC, in contrast to JX-594, would suggest the mechanism of NK cell 

activation is  likely to be type I IFN dependent as observed in PBMC. Whilst 

beyond the scope of this work, and as a direct result of limited access to further 

lymph node samples, a single preliminary experiment using 10pfu Reovirus, 

was carried out in the presence of interferon block. Surprisingly, in the 

experiment undertaken, IFN blocking yielded no significant reduction in NK 

cell activation or degranulation (Figure 5.18). 

Drawing firm conclusions from single experiments is difficult and further 

repeats would be necessary to corroborate these initial findings, but it seems 

possible that two different mechanisms of action are involved in OV-induced 

NK cell activation in PBMCs and LNMNCs, regardless of the virus chosen. 

OV-induced NK cell activation in PBMCs is type-1 IFN dependent and likely 

controlled by IFN-α, albeit at low levels. In LNMNCs, despite variable IFN 

production depending on the OV chosen, there appears to be no correlation 

between the presence of type 1 IFNs and NK cell activation, in fact, the 

mechanism appears to be independent of type-1 IFNs.  
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Figure 5.18 Reovirus activation of NK cells may be independent of type 
1 interferons in patient LNMNC. 

LNMNC were isolated from lymph node samples retrieved from patients undergoing 

colorectal cancer resection prior to Reovirus treatment. LNMNCs were treated with 

control media, IFN-α, IFN-β blocking serum and an IFNα/β receptor blocking antibody 

or IgG2a isotype and control sheep serum. Following this pre-incubation, LNMNCs 

were treated with 0, 10 pfu/cell Reovirus for 24 hours before being stained with (A) 

CD3/CD56/CD69-FITC antibodies or (B) co-cultured with SW480 and SW620 

colorectal cell lines (10:1 ratio) for 4 hours prior to assessment of CD107a/b on NK 

cells. Graphs show data from a single patient sample.  
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5.12 Discussion 

The initial benefits of OV therapy focussed on their direct oncolytic effects, 

however, more recently modulating OV immune response has been the focus 

of various groups around the world. OV’s have a natural tropism for tumour 

cells, which can be enhanced by genetic modifications to the virus backbone 

resulting in improved cell specificity and supporting anti-tumour immunity. 

Tumour cells also have an impaired antiviral response, demonstrating both a 

diminished IFN response and an increased biological tolerance of viral 

infection making them attractive cancer therapy agents.52 This chapter aimed 

therefore to further define the mechanisms by which JX-594 acts as an 

immunotherapeutic agent.  

The focus of the chapter relates to NK cell activation which has been used by 

our group extensively in previous similar studies as a direct marker of innate 

immune activation and thereafter examined the consequences of associated 

cytokine release. Specific focus was placed on type 1 IFNs, the role of which 

have been reviewed by Biron et al. (1999)40 and Le Bon et al. (2002)302 but 

act to govern a number of immune-regulatory functions that control both the 

innate and adaptive immune response, for example regulating phenotypic and 

functional changes in DC. The production of IFN-α was initially demonstrated 

by Gerosa et al. (1991)303 to induce the upregulation of CD69 expression on 

resting human NK cells and more recent data demonstrated that Reovirus 

infection could induce CD69 expression on NK cells in whole PBMCs in an 

IFN dependent fashion.204 With respect to this, our group has also previously 

demonstrated that RNA viruses, such as Reovirus, oncolytic VSV and 

measles virus activate a generalised inflammatory response following tumour 

cell infection, characterized by the secretion of a range of molecules, in 

addition to the type I IFNs (α and β), including, RANTES, IL-6, IL-8, MIP-1a 

and MIP-1b, which have been shown to be able to regulate innate tumour 

killing.43,206,304,305 

For JX-594, unpublished data reported by my predecessor analysed the 

profile of chemokines and cytokines secreted following JX-594 treatment. JX-

594 infection of CRC cell lines did not result in the secretion of significant 

levels of any of the inflammatory molecules listed above with the exception of 
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IL-6 and GMCSF, where GMCSF is encoded by the virus. However, a dose-

dependent reduction in the classically immunosuppressive cytokines, VEGF 

and IL-10 was observed suggesting that JX-594 can promote a pro-

inflammatory, anti-angiogenic tumour microenvironment (Data not shown; see 

also R Dave unpublished thesis).253 

To progress these data we have demonstrated that JX-594 treatment of 

healthy donor PBMCs activates NK cells to degranulate against colorectal 

cancer target cells. NK cell activation was an IFN-dependent process with 

both activation and degranulation being prevented when IFN signalling was 

abrogated by IFN blocking serum. Interestingly, this occurs despite the 

relatively low levels of IFN production reported in response to JX-594 when 

compared with alternative OV reported in the literature.157,304,306 

Interestingly, previous studies examining the effect of OV (Reovirus) in 

isolated NK cells in vitro, have shown an inability of Reovirus to activate NK 

cells in isolation. Rather it acts to induce phenotypic maturation of 

DC/monocytes and the production of inflammatory cytokines leading to the 

activation of NK cells upon co-culture.157 The effect of JX-594 therefore in 

whole PBMCs is interesting and broadly mimics the response observed by 

both Adair et al. (2013)204 and Parrish et al. (2015)205 seen after Reovirus 

infection of whole PBMCs albeit, with lower IFN production levels. The findings 

further highlight the complex interaction at play in response to virus infection 

of whole PBMCs, with DC, a plethora of inflammatory cytokines and NK cells 

involved in cell-cell cross-talk driving an inflammatory response. Within this 

pathway, IFN-α, secreted from DC, drives an anti-viral response by activating 

other effector cells and propagating the immune response against target 

cells.307  However, various authors have demonstrated, including my 

predecessor for JX-594 (data unpublished) that this anti-viral IFN-α response 

does not completely abrogate direct oncolysis or viral replication.308,309 

Indeed, these mechanisms underly JX-594 inherent tumour selectivity. As a 

result of cellular infection by JX-594, the virus secretes viral proteins from the 

infected cell in order to manipulate pathways that allow it to replicate, spread 

and evade IFN-mediated anti-viral clearance. Two distinct proteins are 

released, vaccinia growth factor (VGF) which activates the EGFR/RAS/MAPK 
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signal transduction pathway driving virus replication and spread and B18R 

which inactivates type 1 IFNs.124 

The other cytokine produced in significant quantities was GMCSF. Initially it 

remained unclear if this increase in GMCSF was as a result of cytokine release 

from activated NK cells or simply as a result of replication of JX-594, which 

has been genetically engineered to encode for GMCSF within PBMCs. VV-

Luciferase treatment of PBMCs, a virus not engineered to encode GMCSF, 

also resulted in a significant, albeit reduced increase in GMCSF. It would 

seem likely therefore that JX-594 stimulates GMCSF production directly from 

immune cells in response to virus challenge, although additional production 

from early phase replication of the virus in PBMCs cannot be discounted.  

Currently, GMCSF is the immune gene that has been inserted most 

successfully into a range of clinical grade OV. Interest stems from its 

underlying ability to generate a potent systemic adaptive anti-tumour immune 

response following expression in tumour cells, this is associated with 

differentiation, maturation and recruitment of DC within the tumour 

microenvironment.271 Numerous clinical trials have now shown clinical benefit 

of this strategy with large scale accumulation of DC seen at injection sites, 

resulting in the processing and presentation of tumour antigens to activate 

tumour-specific T cells.310,311 The findings in this study of both induced and 

encoded GMCSF expression in response to JX-594 infection further supports 

these translational strategies.  

A further interesting observation in this study is that it is evident that CD14+ 

monocytes play a crucial role in the activation of NK cells within PBMCs in 

response to JX-594. As previously mentioned prior work by the group 

demonstrated that CD14+ monocytes were the predominant cell population 

within PBMCs to become infected with JX-594, an observation supported by 

Hou et al. (2012)290 who demonstrated a role of CD14+ monocytes in the virus-

induced activation (VSV, vaccinia, influenza A virus, circulating swine-origin 

virus) of NK cells. Likewise, Sanchez-Puig et al. (2004)312 and Byrd et al 

(2013)313 both conclude that VV infection of peripheral blood leukocytes show 

a strong bias towards the infection of monocytes over alternative immune cell 

populations.  
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In a similar vein to our data, the important relationship between monocytes, 

NK cells and type 1 IFNs in response to virus challenge is consistent with 

recent data published in knock out mice experiments carried out by Lee et al. 

(2017)314. In response to Herpes Simplex Virus Type-2 (HSV-2) infection in 

an in vivo murine model, the authors concluded that type 1 IFN receptor 

signalling in monocytes, not DC’s or NK cells, is essential for NK cell 

activation. In their study, knock-out mice deficient in type 1 IFN signalling 

resulted in ‘significantly lower levels of inflammatory monocytes, deficient  IL-

18 production and lacked NK cell-derived IFN-	𝛾’ following treatment with 

HSV-2. Furthermore, depletion of monocytes (as with our study) resulted in 

complete loss of NK cell activation.314  

Interestingly, CD14+ monocyte dependent NK cell activation in virus treated 

PBMCs has also been reported with Reovirus. Parrish and colleagues 

(2015)205 abrogated CD69 expression and NK cell degranulation in CD14+ 

depleted Chronic Lymphocytic Leukaemia (CLL) patient PBMC following 

Reovirus treatment suggesting monocytes are critical for activation to occur. 

Hypothetically, both our data and previous studies within the group suggest 

that within PBMCs, monocytes take up JX-594 causing a phenotypic shift 

(data not shown) which results in a cascade of events that ultimately leads to 

IFN-α production and NK cell activation. Given the immune response 

demonstrated in PBMCs, one might expect to see similar results in LNMNCs. 

Indeed, JX-594 infection of donor LNMNCs did activate NK cells to 

degranulate against CRC targets, as expected. However, our data does not 

support a role for an IFN dependent system, as with PBMCs, and the 

mechanism of virus activation in lymph nodes remains to be fully elucidated 

and is discussed further below.  

Notable and important differences exist in the phenotyping of LNMNCs when 

compared with PBMCs, namely the lack of monocytes (CD14+ cells) which 

appear critical to the virus response of PBMCs. This is not unexpected for 

lymph nodes in their resting state as typically during infection, monocytes or 

monocyte/derived cells are recruited from the blood into lymph nodes to 

mediate, and promote, an adaptive immune response.315 Vaccinia virus has 

been reported to induce type 1 IFN expression by inflammatory monocytes, 

and recruitment to lymph nodes requires toll-like receptor 2 (TLR2) stimulation 



- 182 - 

by viral ligands in endosomes of virus infected cells. Following recruitment to 

the lymph nodes, monocytes differentiate along distinct pathways based on 

distinct pathogen-derived ligands.316 Indeed only eighteen hours after VV 

infection, different subsets of DC can be identified characterised in part by 

increased cell surface expression of the DC maturation marker CD83, and is 

associated with rapid disappearance of CD14+ cells.290  

Within the lymph nodes, the main initiators of a cellular immune response are 

thought to be antigen presenting cells (APC) which act to present processed 

viral antigens to naïve T cells in the draining lymph nodes. Of these APC, DC 

are reported to be the most important in stimulating T-cell proliferation. In 

murine lymph nodes several phenotypically distinct DC populations exist but 

consistent with our data all are CD11c+.317 Interestingly a review by Colonna 

et al. (2002) demonstrated that CD11c+ DC’s secreted large amounts of type 

1 IFN in vitro following infection with HSV-1 in both humans and mice.318 This 

is at odds to the minimal IFN production seen in response to JX-594 but is 

consistent with the IFN production observed following Reovirus treatment. 

Hypothetically, this may reflect different virus acting on different DC subsets, 

i.e. plasmayctoid DC or conventional DC both of which express a different 

array of TLR.316  

To examine potential reasons for the differences observed between both the 

JX-594 and Reovirus and PBMC and LN responses, it is important to explore 

human NK cell biology in more detail. Human NK cells, as previously 

discussed are identified by CD56 expression and the absence of the T cell 

marker CD3. CD56 NK cells can be sub-classified further into CD56Dim and 

CD56Bright which can be found in different quantities depending on tissue type 

examined. The CD56Dim subset are largely found in the blood and are 

characterised by high cytotoxicity and low cytokine production, in keeping with 

our PBMC findings which demonstrate low levels of CD56Bright in phenotyping 

studies (Figure 5.1) and low levels of cytokine production in response to NK 

cell activation. Conversely, CD56Bright NK cells are largely found in lymph node 

tissues, and are reported to show low cytotoxicity, and produce large amounts 

of cytokines, specifically IFN-𝛾,319 not examined in this study. Our phenotyping 

of lymph nodes certainly demonstrated an increased proportion of CD56Bright 

when compared with PBMC data and perhaps suggests OV-induced NK cell 
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activation is exerting its effect via two different subpopulations of NK cell in 

the two different tissue types, as reviewed by Zwirner et al. (2017)320. 

Different cell types and cytokine release is supported by a previous study 

examining NK cells in mice and human lymph nodes by Watt et al. (2008)298. 

The authors identified mature NK cells to be recruited preferentially into 

draining lymph nodes following DC challenge in a tightly regulated IFN-𝛾 -

dependent mechanism. Thereafter, DC induced NK cell activation was 

reported to produce IFN-𝛾 which played an important role in inducing Th1 

responses. Several reports suggest a tightly coordinated network involving 

DC, T cell and NK cells which act within the local LN microenvironment to 

determine an immune response.321–323 Interestingly, consistent with these 

findings, Rajani et al. (2015) 324 also demonstrated an adaptive T cell 

response in LN following Reovirus treatment. In mice treated with i.t. Reovirus, 

an IFN−𝛾 memory recall response to B16 tumour lysates was detected in 

pooled splenocytes and lymph nodes suggestive of Reovirus priming anti-

tumour T-cell responses.  

Furthermore, Hayakawa et al. (2008)321 examined the effect of prior NK cell 

activation with two molecules, poly(I:C) and α-GalCer on NK cell recruitment 

to draining LN.  Poly(I:C) and α-GalCer are known to be type I and type II IFN 

dependent in their mechanism of action, however acted to diminish NK cell 

recruitment to draining LN whilst downregulating expression of the activated 

NK cell chemokine receptor, CXCR3. The authors hypothesise that reduced 

CXCR3 expression may be driven by the cell microenvironment to avoid any 

undesired contribution that pre-activated NK cells may play during T cell 

priming. It is clear from these studies, as with our data that NK cell biology in 

the lymph nodes may act through different mechanism to that utilised by 

PBMCs. In this study, we did not look at IFN−𝛾, however the literature 

suggests that IFN−𝛾 plays a pivotal role in coordinating both NK cell 

recruitment and activation in lymph nodes and this would therefore be an 

interesting continuation of this work. As previously stated, confirming a 

different mechanism by which OV-induced immune priming can act between 

PBMCs and LNMNCs could open the window to the targeting of 

micrometastatic disease in lymph nodes in addition to the blood.  
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Whilst much work remains examining the wider immune response to systemic 

virus and the potential anti-tumour effects, this could hold the key to treating 

non-resectable microscopic disease. It is likely that multiple other effectors, 

not examined here also play a role in driving innate immune responses, an 

example being neutrophils which are reported to contribute to the innate anti-

tumour efficacy of other oncolytic viruses (Reviewed by Choi et al. (2016))325. 

In addition, our preliminary data with Reovirus showed that Reovirus is also 

capable of activating LNMNC NK cells and as observed for PBMC, was more 

efficient than JX-594 at inducing IFN-𝛼 and activating NK cell populations. 

Reovirus anti-tumour efficacy is widely reported to depend upon a potent anti-

tumour immune response mediated through the activation of DC to stimulate 

NK cells and T cell mediated cytotoxicity.43,157,324,326 Our preliminary findings, 

suggest improved type 1 IFN release from LNMNC as a result of Reovirus 

treatment with significantly higher levels of IFN-𝛼 recorded compared with JX-

594. However, as observed for JX-594 NK cell activation did not appear to be 

type-1 IFN dependent in LNMNCs in the pilot experiment performed.  

This study may also provide the basis for exploring further combination 

strategies to treat micrometastatic disease, for example, the use of OV with 

immune checkpoint inhibitors. Rajani et al. (2015)324 reported a significantly 

improved survival benefit in mice treated with a combination of Reovirus and 

anti-PD-1 antibody compared with either PBS controls or single agent 

treatment. Preliminary phenotyping experiments in our LNMNC population 

(data not shown) showed significant levels of PD-1 and PDL-1 and as such 

the potential for translational combination strategies in the clinical setting must 

be considered promising and provides an area of interest to explore further in 

more detail in future experiments.324 

It is clear from these studies that JX-594 is able to alter both phenotypic and 

functional aspects of NK cell activity acting via different mechanisms in the 

blood and lymph nodes. These different mechanistic processes may allow 

translational opportunities with JX-594 targeting tumour cells in both blood and 

lymph node tissue. Indeed, if low levels of virus can access any non-resected 

tissue, activation of an innate immune response at specific tissue sites may 

provide sufficient therapy to treat this micrometastatic disease and our data 
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suggests that JX-594 holds promise as a novel treatment modality. Moreover, 

direct tumour-specific lysis, transgene expression and the induction of tumour 

specific innate immunity means that it may provide a multi-pronged, and 

selective attack, against the tumour at various disease sites. 
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Chapter 6  
Conclusion 

As discussed colorectal cancer remains a significant clinical problem. By 2030 

CRC globally is estimated to be diagnosed in 2.2 million new cases per year 

and account for 1.1 million deaths, an increase of 60%.3 Nonetheless bowel 

cancer survival has undoubtedly improved.  In the UK alone survival has more 

than doubled in the last 40 years (22%-57%), however these figures remain 

dependent on stage of disease at diagnosis, patient demographics, comorbid 

state and tumour biology.327  

In part, improved survival has transpired as a result of now established 

treatments such as anti-EGFR antibodies (Cetuximab, Panitumumab, and 

GA201). Unfortunately they are currently only offered to about 50% of CRC 

patients, based on identification of appropriate genetic susceptibility; 

disappointingly only 10-20% of patients obtain objective clinical responses 

with KRAS, BRAF and PI3KCA mutations (causing constitutively activated 

EGFR signalling) implicated in this cellular resistance. Newer classes of 

anticancer agents include oncolytic viruses (T-VEC and HSV-1) which have 

been approved by regulatory bodies for mainstream use in the treatment of 

inoperable melanoma, and BH3-mimetic (Navitoclax) which continue to 

develop as experimental agents in phase II clinical trials. 

The laboratory has a broad breath of experience with respect to delineating 

the cytotoxic and immune potential of a variety of oncolytic viruses in a range 

of tumour types and as such this study set out to explore the potential for OV 

involvement in combination with alternative immune-mediated therapies. 

Furthermore, viral effects in areas other than the tumour itself and its 

microenvironment may also be therapeutically important.  This is particularly 

the case in organs which can harbour micrometastases such as lymph nodes, 

which may potentially be targeted and cleared by appropriate activation of an 

innate and adaptive immune response. An alternative OV, JX-594 was 

therefore chosen to investigate if it could preferentially replicate, and kill, CRC 

at micrometastastic sites, and activate and induce an innate immune response 

in both the blood and lymph nodes. 
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This thesis examined the ability of Reovirus and JX-594 to kill a range of CRC 

cell lines regardless of their EGFR/KRAS/BRAF/PI3K mutational phenotype. 

Variable levels of cytotoxicity were demonstrated against cells with different 

mutational profiles with some cell lines demonstrating consistent dose-

dependent, time dependent killing (SW480, SW620) and other cell lines 

completely resistant to OV treatment (LIM1899). However, no correlation 

between mutational status and OV-induced death was elicited.  

Before exploring treatments in combination, the cytotoxic potential of ABT-263 

and Cetuximab in isolation was examined. Consistent with data that reports 

up to 50% of cancer cell lines are resistant to ABT-263 because of variable 

expression of pro vs anti-apoptotic molecules, our data also elicited a mixed 

response. Some cell lines tested were completely resistant whilst others 

showed time-dependent, dose-dependent increases in cytotoxicity. Once 

again, no correlation was seen between killing and cell line mutational status 

although the WT cell line, Colo320, was least sensitive suggesting a potential 

requirement for positive mutational status to allow ABT-263 cytotoxic death. 

Despite positive results with monotherapies, the effect of combining Reovirus 

and ABT-263 was disappointing. A single cell line (SW620) elicited increased 

cell death as a direct result of using both treatments in combination however, 

statistical analysis revealed only additive effects.  

Cetuximab induces its anti-cancer effect by two distinct mechanisms; 1) 

antagonism of EGFR binding preventing pro-survival and proliferation signals, 

and 2) immune-mediated ADCC. Irrespective of EGFR signalling mutations, 

ADCC should occur and Reovirus immune activation of monocytes, 

neutrophils and NK cells, as demonstrated previously by the group might 

potentiate this antibody-induced ADCC.328 Interestingly, regardless of EGFR 

cell surface expression or KRAS/BRAF/PI3K mutational status cetuximab 

induced no direct cytotoxicity against the selected CRC cell lines, although we 

were unable to test this model specifically against an EGFR positive, RAS wild 

type cell line, which has been reported by other groups to be sensitive to direct 

killing by cetuximab. Despite the lack of direct killing we did demonstrate 

preliminary evidence that pre-treatment of PBMCs with Reovirus, and 

resultant NK cell activation, did increase cetuximab-mediated ADCC in a 
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KRAS mutant cell line (SW480). Further work is needed to validate this data 

fully but certainly provides promise and direction for future experimentation.  

JX-594 like Reovirus can kill target cells by direct oncolyis, replicate within 

CRC cell lines, and induce a pro-inflammatory, anti-angiogenic tumour 

microenvironment by promoting immune cell recruitment to stimulate an 

innate and adaptive immune response. However, VV-induced death 

mechanisms in CRC remain poorly understood and similarly the effects of VV 

on distant tissues, not related to the primary tumour, remain to be elucidated. 

These areas of study are however important given that targeting 

micrometastatic disease, in for example the blood and lymph nodes, with 

novel treatment strategies such as combinations of anti-EGFR antibodies and 

OV might prevent recurrence and the development of non-resectable 

disseminated disease.  

Significantly, JX-594 infection has been shown to be associated with increase 

caspase-3 expression in previous work by the group. Caspase-3 is an 

important protein used in apoptosis and as such JX-594 was expected to, at 

least in part, kill by this mechanism. Despite the upregulation of these 

markers, and having confirmed JX-594 could induce direct killing in our panel 

of cell lines, we were unable to elicit any attenuation of VV-induced cytotoxicity 

using a pan-caspase inhibitor. Similarly, necroptosis inhibitors had no effect 

on JX-594-mediated death, which along with the absence of HMGB1 in post-

treatment cell free supernatants was suggestive that necrosis and necroptosis 

were also not the primary mechanisms of action. The final mechanism of cell 

death investigated was autophagy, a process which VV has been shown to 

interfere with in ovarian cancer cell lines. In the CRC cell lines used in this 

study, no evidence of autophagy was demonstrated. Therefore, whilst it is 

clear that JX-594 induces significant cell oncolysis, the exact mechanism 

remains to be identified. It would seem likely that cell death is a coordinated, 

multi-faceted process involving parts of each pathway investigated and as 

such beyond the scope of this work to delineate further. 

It is now well understood that for a virus to be an effective therapeutic agent, 

it must be highly immunogenic and stimulate an innate and adaptive immune 

response. Indeed, even if systemic delivery yields relatively low levels of virus 
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to non-tumour tissue, such as blood and lymph nodes, activation of an innate 

immune response may be sufficient to provide adequate therapy against 

CTCs and micrometastatic disease. We therefore first examined the innate 

effects of JX-594 on blood, which would be readily accessed at high dose 

following intravenous administration and which can harbour circulating tumour 

cells, a feature of CRC associated with poor prognosis. Virus treated NK cells 

from donor blood demonstrated CD69 activation, NK cell degranulation and 

increased cytotoxicity against CRC cell line targets. This was dependent on 

IFN production and the presence of CD14+ monocytes. The relatively low 

levels of IFN-a and absence of IFN-b contrasts with Reovirus which produced 

relatively high levels of type-I IFNs. It is likely that this may be due to proteins 

such as B18R, encoded by VV, whose role is to blunt the infected cells IFN 

response. High levels of GMCSF were also seen following JX-594 treatment. 

Taken together the findings demonstrate the ability of JX-594 to infect 

monocytes within PBMC, leading to IFN-a mediated NK cell activation for 

potential killing of CTC’s. 

The study then addressed whether JX-594 mediated innate immune activation 

may have therapeutic effects in LN tissue. Data pertaining to the examination 

of fresh human lymph nodes using ex vivo models is relatively scarce in the 

literature, presumably because of the challenge of accessing samples. Initial 

work therefore determined the phenotypic appearance of lymph node tissue 

and identifiable cell populations. Not surprisingly, LNMNCs did not contain 

monocytes and CD14 was absent. NK cells were however identified, along 

with the presence of CD11c, which is implicated as a likely carrier of 

pathogens to lymph nodes, which as discussed raises the potential for virus 

carriage to distant disease harbouring sites. 

Having identified NK cells in LNMNCs, we repeated PBMC experimental 

protocols. Again virus treated LNMNC demonstrated CD69 activation, 

degranulation and increased cytotoxicity against CRC targets. Interestingly 

however this was a type-I IFN independent process with CD69 expression and 

NK cell CD107 degranulation not abrogated by the presence if IFN blocking. 

In addition, there was almost undetectable levels of type 1 IFN found in the 

cell free supernatant. Interestingly, similar results were observed in a 
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preliminary experiment using Reovirus treated LNMNC despite the production 

of high levels of IFN-a. 

This work opens the door to several areas of interest for continuing work. 

Defining the mechanism behind LNMNC viral induced NK cell activation, and 

validating the preliminary finding for Reovirus induced activation, will help 

delineate treatment strategies further. Exploration of IFN-g would also provide 

an important extension of this work.  

Furthermore, this study may also provide the basis for examining alternative 

OV combination strategies for example with immune checkpoint inhibitors 

given the significant levels of PD-1 and PDL-1 found in our LNMNC 

population. Anti-PD-1 antibody inhibitors are the focus of promising recent 

research and have been shown to improve survival in in vivo mouse models 

when combined with Reovirus.324 Given the findings from our LNMNC 

populations examining this combination would certainly be a promising 

experimental avenue to explore. 

Indeed the arrival of the first two clinical grade PD-1 checkpoint inhibitors, 

Nivolumab and Pembrolizumab for the treatment of advanced melanoma and 

non-small cell lung cancer have shown significant promise in the field of 

immuno-oncology and as such are beginning to change the landscape of 

available treatment strategies for advanced disease.329 As a result of these 

novel molecules, exploring combination strategies holds understandable 

appeal and as such the field of immuno-oncology continues to pursue the ideal 

combination to enhance patient outcomes. It is however, becoming apparent 

that this process is complicated with potential significant safety concerns 

associated with certain tested strategies. Pre-clinical testing of combined 

immune checkpoint blockade with a PD-1 inhibitor and CTLA-4 inhibitor for 

the treatment of various cancer types has demonstrated unprecedented 

efficacy, however is associated with a considerable toxic profile and high 

incidence of adverse drug reaction raising significant concerns about 

safety.330As such the challenges remain clear, and balancing improved 

treatment efficacy with toxicity is vital. Novel combination strategies clearly 

hold great promise, and as such the potential for immune checkpoint inhibitors 
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in combination with oncolytic virus provides an exciting avenue of further 

research. 

Whilst there continues to be significant focus on immune checkpoints other 

areas of development and research include small molecule agents that 

modulate the tumour immune microenvironment such as CSF1R, IDO1, A2AR 

and KIR, cell therapies that engineer immune cells such as T cells to directly 

attack cancer cells (e.g. anti-CD19 CAR-T) and cancer vaccines that induce 

antigen specific antitumour immunity (e.g. sipuleucel-T).331 Indeed the field is 

broad with currently 940 clinical-stage immuno-oncology agents including 

oncolytic viruses registered modulating 271 different targets.329  

Immunomodulatory targets continue to be approved as the standard of care 

for many advanced tumour types, however with such a crowded and diverse 

molecular profile available some authors have recently questioned the 

efficiency of resources available to test all these agents effectively. Indeed the 

therapeutic milieu available to scientists and clinicians has been reported to 

be overwhelming to even the most experienced investigators, with limited 

availability of patients to register for clinical trials and as such may be delaying 

future innovation and clinical development.331 Without doubt, progress 

continues to be rapid however the challenges remain multifaceted moving 

forward. Exploring combination strategies, controlling adverse effects and 

toxicity and targeting tumours that don’t respond as yet to immunotherapy all 

hold potential for future research. As an aside, there is increasing calls for the 

development of collaborative working practices within academic institutions, 

biotech companies and pharmaceutical organisations as a way of bringing 

promising cancer immunotherapies to patients, sooner rather than later which 

must be the goal of any research study within this field.  

In summary, it is evident from this work that both JX-594 and Reovirus hold 

promise as novel treatment modalities both as a monotherapy and in 

combination with adjuvant therapies. Both viruses tested can alter the 

phenotypic and functional aspects of NK cell activity via different mechanisms 

in the blood and lymph nodes. Moreover, direct tumour-specific lysis, 

transgene expression, the induction of tumour specific innate immunity and 

the potential to modulate other immunotherapies, means that these viruses 
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may be able to provide multi-faceted and selective targeted therapy against 

tumour at both primary and distant locations. 
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